Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. THE COMPLEXING OF CALCIUM AND MAGNESIUM BY ORGANIC PLANT CONSTITUENTS

LESLIE FRANCIS MOLLOY

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Chemistry/Biochemistry Department Massey University February 1971

ABSTRACT

The definition, occurrence and aetiology of hypomagnesaemic tetany is discussed as an introduction to the practical implications of the present investigation. The current hypotheses, involving an unfavourable pasture chemical composition, accounting for the binding of Ca^{++} and Mg^{++} in the intestinal tract of ruminants are reviewed. The role of undigested or partlydigested plant cell wall materials is advanced as another such hypothesis, and the present investigation of the cell wall polymers of a typical pasture grass is outlined.

The comprehensive analysis of the grass Yorkshire fog (<u>Holcus lanatus</u>) involves, initially, the extraction and purification of pectic substances, lignin, hemicelluloses and cellulose. The non-volatile organic acid content of the grass is also determined.

Analytical methods are developed and evaluated in order to assess the homogeneity of these isolated cell wall fractions, and their chemical constitution investigated to aid in determining any possible relationship between cation complexing and polymer (or monomer) structure.

The pectic fraction isolated from Yorkshire fog is approximately 90% polygalacturonic acid while the hemicelluloses are basically arabinoxylans with varying hexose and uronic acid content. Attempts to fractionate the predominant hemicellulose, hemicellulose B, into homogenous arabinoxylans gives inconclusive results. Most of the chemical evidence, however, indicates the presence of three discreet polysaccharides in this fraction a simple arabinoxylan, an acidic galactoarabinoxylan and a neutral glucan.

Infrared and ultraviolet spectroscopy is utilised to

i

determine the purity of the isolated lignin as well as the presence of typical lignin functional groups. Yorkshire fog lignin has a moderate phenolic hydroxyl and -OMe content and, like most other monocotyledonous lignins, gives yields of syringaldehyde, vanillin and p-hydroxybenzaldehyde on alkaline nitrobenzene oxidation. The outstanding feature of the lignin is its appreciable content of etherified hydroxyl groups in the 4-position of the aromatic ring and the low yield of syring= aldehyde.

The water-soluble, non-volatile organic acids are quantitatively determined by anion-exchange resin chromatography and their identity confirmed by paper chromatography. The major acid is the tricarboxylic acid, <u>trans</u>-aconitic acid, which is determined spectrophotometrically. The normal plant acids, citric and malic, are present in moderate quantities while the alicyclic acids, quinic anc shikimic, are only present in minor amounts.

A limited amount of data on the seasonal fluctuation of these organic fractions in Yorkshire fog is presented.

Electrolytes and the concept of ionic activity are discussed in the introduction to the study of the ability of these plant fractions to bind Ca⁺⁺ and Mg⁺⁺ in an aqueous salt solution of cationic composition similar to that of the intestine of a ruminant. A cation exchange method is developed whereby changes in the activity of Ca⁺⁺ or Mg⁺⁺ on the introduction of a plant fraction into the salt solution are reflected in the cationic composition of the equilibrium resin. An investigation is undertaken of a large number of calibration solutions varying in $[Ca^{++}]$ and $[Mg^{++}]$, but constant in $[Na^{+}]$, $[K^{+}]$ and $[NH_{l_{+}}^{+}]$, the latter cations being present in excess as 'swamping' cations.

ii

Regression expressions relating solution cation concentration to the equilibrium resin cation concentrations are derived and used as calibration equations to determine the amounts of bound and ionic Ca⁺⁺ and Mg⁺⁺ in solutions in equilibrium with the plant fractions.

The pectic substances, lignin and the organic acids are effective in complexing a large proportion of the solution Ca in a non-ionic form but only lignin and the organic acids display a significant complexing of solution Mg⁺⁺. Except for hemicellulose B (branched) at a slightly alkaline pH, the hemicelluloses and cellulose have little ability to complex either Ca⁺⁺ or Mg⁺⁺.

The complexing results are discussed in terms of the relationship of polymer structure to observed cation affinity. Factors involved in cation binding are:

- the charge and degree of hydration of the cation itself;
- distribution and degree of esterification of carboxyl groups in the polymer;
- monomer conformation;
- type of glycosidic linkage in the polymer;
- the possibility of hydrogen-bonding and non-bonded interactions between substituents on the polymers;
- solution pH.

The <u>in vivo</u> implications of the results are finally discussed in the context of general ruminant nutrition and alkalineearth metal absorption discussed in the introduction.

iii

ACKNOWLEDGMENTS

I wish to thank my supervisor, Professor E. L. Richards for his encouragement and assistance in this project; I am also grateful to Professor G. N. Malcolm and Dr. P. Buckley of the Chemistry/Biochemistry Department for valuable discussions on aspects of the investigation.

The valuable assistance with the statistical treatment of the complexing data, rendered by Mr W. B. Currie, Dairy Husbandry Department, is gratefully acknowledged.

Thanks are also due to Professor Watkins, Agronomy Department for supplying the Yorkshire fog plots; to Dr. R. L. Bailey, Applied Eiochemistry Division, D.S.I.R., for standard sugar samples and advice on analytical methodology; to my fellow research students, Mike Timperley, Rex Gallagher and Alan Danks for many helpful discussions; and to the other staff of the Chemistry/Biochemistry Department for their assistance in many ways.

To my wife, Sonia, who could have spent many more valuable hours at music practise had she not been typing this manuscript.

Finally, I wish to express my sincere gratitude to the Soil Eureau, Department of Scientific and Industrial Research for the finance which made this investigation possible.

iv

CONTENTS

ABSTRACT	i
ACKNOWLEDGMENTS	iv
CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	ri
PART I HYPOMAGNESAEMIC TETANY AND ITS RELATIONSHIP TO THE CHEMISTRY OF DIETARY CALCIUM AND MAGNESIUM	
1.1. DEFINITION, OCCURRENCE AND AETIOLOGY OF	
HYPOMAGNESAEHIC TETANY	1
Hypomagnesaemia	2
1.2. ABSORPTION OF CALCIUM AND MAGNESIUM FROM THE DIGESTIVE TRACT OF RUMINANTS	4
The physico-chemical activity of calcium and magnesium in the small intestine of a ruminant	7
1.3. UNFAVOURAELE PASTURE CHEMICAL COMPOSITION HYDOTHESES	8
1 3 1 Protein/canbobydrate imbalance	0
1.7.2. Wighon fotty poids (UFA)	7
1. J. Z. Organia anida	10
	12
1.3.4. Inorganic anions	14
1.3.5. Histamine	15
1.3.6. Conclusions	15
1.4. OUTLINE OF PRESENT INVESTIGATION	15
PART II THE COMPREHENSIVE ANALYSIS OF THE ORGANIC FRACTIONS OF YORKSHIRE FOG	
2.1. INTRODUCTION	18
2.2. DRVING AND STORAGE OF GRASS	18.

2.3. EXTRACTION AND PURIFICATION PROCEDURE 20 2.3.1. Priliminary extractions 20 2.3.2. Pectic substances 20 2.3.3. Lignin 21 2.3.4. Hemicelluloses 22 2.3.5. Cellulose 24 2.3.6. Organic acids 25 2.4. CHEMICAL ANALYSIS OF CAREOHYDRATE FRACTIONS 25 2.4.1. Analytical methods 25 Hydrolysis of polysaccharides 25 Paper chromatography 25 Quantitative estimation of sugars 26 (a) Spectrophotometric (b) Gas-liquid chromatographic 27 Comparison of spectrophotometric and gas-liquid chromatographic methods 31 Uronic acid analysis of polysaccharides 32 General polysaccharide purification and analysis 34 2.4.2. Results and discussion 34 2.5. CHEMICAL ANALYSIS OF LIGNIN 41 2.5.1. Analytical methods Nitrobenzene/alkali oxidation of lignin 41 Chromatography of oxidation products 41 Spectrophotometric analyses 42 2.5.2. Results and discussion 42 Ultraviolet spectroscopy 43 Infrared spectroscopy 47 Alkaline nitrobenzene oxidation 49 Conclusions 52 2.6. ANALYSIS OF OPGANIC ACIDS 53 2.6.1. Analytical methods Anion exchange chromatography 53 Paper chromatography 54 2.6.2. Results and discussion 55

<u>2.7. C(</u>	DNSTITUENT CHEMICAL ANALYSIS OF	
10	JRASHINE FOG	
2.7.1.	Results and discussion	60
PART I		
THE CON	IPLEXING OF Cat AND Mot BY THE	
ORGANIC	CONSTITUENTS OF YORKSHIRE FOG	
3.1.1.	Introduction	63
3.1.2.	Electrolytes and the concept of ionic activity Standard salt solution	64 68
3.2. IC	DN EXCHANGE METHODOLOGY	70
3.2.1.	Cation exchange equilibria	70
3.2.2.	Resin equilibration with standard salt solution	72
3.2.3.	Preparation of resin eluates and cation analyses	75
3.2.4.	Resin calibration	79
3.2.5.	Equilibration with complexing ligand	79
3.3. RI	ESULTS	81
3.3.1.	Effect of ligand concentration	81
3.3.2.	Resin calibration results	82
3.3.3.	Plant fraction complexing	83
3.3.4.	Resin calibration with solutions lower in	
	calcium and magnesium concentration	88
3.3.5.	Calculation of Ca ⁺ and Mg ⁺⁺ bound by plant fractions	89
	Errors	89
PART IV DISCUSSI	V LON	
4.1. GI	ENERAL DISCUSSION OF METHODOLOGY AND RESULTS	92
	Plant fraction complexing	95

vii

4.2. RELATIONSHIP OF POLYMER STRUCTURE TO CATION AFFINITY

viii

4.2.1.	Pectic substances and polyuronides	96
	Nature of the cation-uronide linkage	99
	Configuration of polyuronides	100
	Hydrogen bonding and steric factors involved	
	in cation binding	104
	Structure-function relationships in monouronides	107
4.2.2.	Hemicelluloses and other polysaccharides	108
4.2.3.	Lignin	114
4.2.4.	Organic acids	115
4.3. P	OSSIBLE IN VIVO IMPLICATIONS OF COMPLEXING	
R	ESULTS	117
APPENDI	X I	121
APPENDI	X II	126
REFERENC	CES	129

LIST OF TABLES

NUMBER	TITLE	PAGE
1	R _{rhamnose} VALUES OF SUGARS IN TWO CHROMATOGRAPHIC SOLVENTS	26
2	RETENTION TIMES AND PEAK/AREA RATIOS OF ALDITOL ACETATES FROM POLYSACCHARIDES	30
3	COMPARISON OF METHODS OF ANALYSIS OF MONO- SACCHARIDE COMPOSITION OF HEMICELLULOSES	32
4	CHEMICAL ANALYSIS OF POLYSACCHARIDES FROM YORKSHIRE FOG	36
5	MONOSACCHARIDE ANALYSIS OF ETHANOL-FRACTION- ATED LINEAR AND BRANCHED HEMICILLULOSE B	40
6	PHENOLIC HYDROXYL CONTENT OF LIGNIN FROM YORKSHIRE FOG AS CALCULATED FROM $\triangle \mathcal{E}(OH^-)$ CURVE OF FIG. 5b.	46
7	CHROMATOGRAPHIC DATA ON AROMATIC ALDEHYDES FROM ALKALINE NITROBENZENE OXIDATION OF LIGNIN	51
8	NON-VOLATILE ORGANIC ACID CONTENT (% dry weight) OF FOUR SEASONAL SAMPLES OF YORKSHIRE FOG	56
9	CONSTITUENT ANALYSIS OF THREE SEASONAL SAMPLES OF YORKSHIRE FOG IN % DRY WEIGHT	61
10	WATER-SOLUBLE CONSTITUENTS OF YORKSHIRE FOG (5/3/68)	61
11	ACTIVITY COEFFICIENTS CALCULATED FOR ELECTROLYTES IN STANDARD SALT SOLUTION	69
12	CATIONIC LOAD OF RESIN IN EQUILIBRIUM WITH STANDARD SALT SOLUTION	73
13	IONIC CHARGE/RADII RELATIONSHIPS	73
14	ATOMIC ABSORPTION OPERATING CONDITIONS AND COEFFICIENTS OF VARIATION AS AN INDEX OF	
15	PRECISION OF DETERMINATION OF 5 CATIONS REGRESSIONS FOR VARIATION OF RESIN INDI- VIDUAL CATION LOAD M ⁿ⁺ R WITH SOLUTION	78
	CALCIUM CONCENTRATION Ca++ S	83

ix

NUMBER

TITLE

- 16 INDIVIDUAL AND TOTAL MEAN RESIN CATION LOADS (meq/g) AFTER EQUILIBRATION WITH COMPLEXANTS
- 17 MEAN DEVIATION (in meq/g) OF RESIN Mg⁺⁺, Na⁺, K⁺ AND NH₄⁺ LOADS FROM VALUE PRE-DICTED IN FIG. 13 FOR RESIN Ca⁺⁺ LOADS (in meq/g) OBTAINED ON EQUILIBRATION WITH PLANT FRACTIONS
- 18 MEAN RESIN CATION LOADS (meq/g) PLUS CORRESPONDING MEAN DEVIATIONS (d, described in table 17) FROM Ca⁺⁺ LOADS PREDICTED FROM FIG. 13 AFTER EQUILIBRATION WITH COMPLEXANTS
- 19 PERCENTAGE OF Ca⁺⁺ AND Mg⁺⁺ IN STANDARD SALT SOLUTION (20 cm³) BOUND BY PLANT FRACTIONS (50 mg)
- 20 RELATIONSHIP BETWEEN URONIDE CONTENT OF PLANT FRACTIONS AND DEGREE OF Ca⁺⁺ AND Mg⁺⁺ BINDING

85

86

90

87

xi

LIST OF FIGURES (AND PLATE)

NUMBER		AFTER PAGE
	SCHEMATIC DIAGRAM OF DIGESTIVE ORGANS OF A RUMINANT	6
1	SCHEME FOR FRACTIONATION OF POLYSACCHARIDES IN GRASS	20
2	STANDARD ABSORBENCE CURVES FOR SUGARS	27
3	SEPARATION OF ALDITOL ACETATES FROM HEMI- CELLULOSE B (linear) ON SE-30	30
4	ETHANOL FRACTIONATION OF LINEAR AND BRANCHED HEMICELLULOSE B	38
5	DIRECT (a) AND DIFFERENCE (b) ULTRAVIOLET SPECTRA OF LIGNIN	43
6	INFRARED SPECTRA OF PLANT FRACTIONS	47
7	SEPARATION OF AROMATIC ALDEHYDES FROM LIGNIN	51
8	ELUTION SPECTRUM OF NON-VOLATILE ORGANIC ACIDS FROM ANION-EXCHANGE RESIN, DOWEX 1	56
9	UPTAKE OF CATIONS BY EQUILIBRATING RESIN AS INDICATED BY EFFLUENT CATION CONCEN- TRATION	72
10	EFFECT OF IONIC RADIUS ON ION EXCHANGE IN A CARBONACEOUS ZEOLITE (Data of Nachod and Wood)	75
11	PROGRESSIVE RESIN ADJUSTMENT TO NEW EQUI- LIBRIUM BY SUCCESSIVE EQUILIBRATIONS WITH A NEW SOLUTION	79
12	CHANGE IN RESIN CATION CONCENTRATION WITH INCREASE IN LIGAND CONCENTRATION	81

xii

NUMBER

AFTER

PAGE

- 13 VARIATION IN RESIN INDIVIDUAL CATION LOAD WITH CHANGE IN Ca⁺⁺ IN CALIBRATION SOLUTIONS 82
- PLATE POLYSACCHARIDES AND LIGNIN ISOLATED FROM YORKSHIRE FOG 22