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ABSTRACT

Tree-based discrimination methods provide a way of handling classification and discrimination
problems by using decision trees to represent the classification rules. The principal aim of tree-
based methods is the segmentation of a data set, in a recursive manner, such that the resulting
subgroups are as homogeneous as possible with respect to the categorical response variable.
Problems often arise in the real world involving cases with a number of measurements (variables)
taken from them. Traditionally, in such circumstances involving two or more groups or
populations, researchers have used parametric discrimination methods, namely, linear and quadratic
discriminant analysis, as well as the well known non-parametric kemel density estimation and Kth
nearest neighbour rules.

In this thesis, all the above types of methods are considered and presented from a methodological
point of view. Tree-based methods are summarised in chronological order of introduction,
beginning with the Automatic Interaction Detector (AID) method of Morgan and Sonquist (1963)
through to the IND method of Buntine (1992).

Given a set of data, the proportion of observations incorrectly classified by a prediction rule is
known as the apparent error rate. This error rate is known to underestimate the actual or true error
rate associated with the discriminant rule applied to a set of data. Various methods for estimating
this actual error rate are considered. Cross-validation is one such method which involves omitting
each observation in turn from the data set, calculating a classification rule based on the remaining
(n-1) observations and classifying the observation that was omitted. This is carried out n times, that
is for each observation in the data set and the total number of misclassified observations is used as
the estimate of the error rate.

Simulated continuous explanatory data was used to compare the performance of two traditional
discrimination methods, linear and quadratic discriminant analysis, with two tree-based methods,
Classification and Regression Trees (CART) and Fast Algorithm for Classification Trees (FACT),
using cross-validation error rates. The results showed that linear and/or quadratic discriminant
analysis are preferred for normal, less complex data and parallel classification problems while
CART is best suited for lognormal, highly complex data and sequential classification problems.
Simulation studies using categorical explanatory data also showed linear discriminant analysis to
work best for parallel problems and CART for sequential problems while CART was also preferred
for smaller sample sizes. FACT was found to perform poorly for both continuous and categorical
data. Simulation studies involving the CART method alone provided certain situations where the
0.632 error rate estimate is preferred to cross-validation and the one standard error rule over the
zero standard error rule. Studies undertaken using real data sets showed that most of the
conclusions drawn from the continuous and categorical simulation studies were valid. Some
recommendations are made, both from the literature and personal findings as to what characteristics

of tree-based methods are best in particular situations.

Final conclusions are given and some proposals for future research regarding the development of
tree-based methods are also discussed. A question worth considering in any future research into
this area is the use of non-parametric tests for determining the best splitting variable.
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INTRODUCTION

Data often arise in the real world involving many objects with a number of measurements
(variables) taken from them. These measurements may be quantitative (continuous or
discrete) or qualitative (ordered or unordered categories). The latter may, in some cases, be
defined by only two categories and are then binary variables. When more than two categories
are involved, instances where the categories can be ordered in a meaningful way are known as
ordinal variables, while examples where the categories have no natural ordering are defined
as nominal variables. For example, plants may be measured for stem length, stem width and
plant height. These measurements are all continuous. A medical study would usually contain
information on a patients age, whether he/she smokes or not and whether there is a family
history of cancer or not. Age (to the nearest year) is a discrete quantitative variable while the
other two variables are binary. A sample survey might ask questions relating to the
respondents’ educational qualifications, attitudes to race relations and current marital status.

Marital status 1s a nominal variable while the other two variables are ordinal.

Often, the objective of such studies is to distinguish between several groups or populations
based on the measurements collected. A botanist may be interested to know which
measurements can best distinguish between two related species of plants. A medical
practitioner would like to know what variables are best able to predict whether a person will
develop cancer or not. A sociologist could be trying to determine if there is any relationship
between a person’s religious beliefs and various sociological and demographical variables. In
such cases involving two or more groups or populations, a large number of methods are
available to the botanist/medical practitioner/sociologist to handle the above types of data.
The desired intention is that the methods will produce a set of classification or prediction

rules, which are both accurate and informative, and serve as a basis for future decisions.

The aim of this thesis is to study and compare the performance of classification methods, both
tree-based and more traditional approaches, over a variety of data types with the main goal

being to determine in which situations tree-based methods are the preferred approach.

In Chapter 2, the focus is on traditional discrimination and the four most common methods
for estimating the conditional density functions of each population in the data set, thereby

approximating the Bayes rule. The four methods investigated are linear and quadratic



discriminant analysis, kernel density estimation and Kth nearest neighbour rules. The first
two methods are based on parameter estimates while the latter two are wholly non-parametric.

A summary table is provided which compares and contrasts each of the above four methods.

In Chapter 3, the focus switches to tree-based classification methods, whose classification
rules are portrayed in the form of a decision tree. After surveying the foundations of the tree-
based approach to classification, ten tree-based methods are presented from a methodological
point of view, examining characteristics such as splitting criteria, stopping rules and
interactive and graphical ability among others, as well as critiques of each method from
articles in the literature. To conclude the chapter, a summary table is presented comparing all

ten tree-based methods.

In Chapter 4, after surveying the various types of error rate estimates that are used in the tield
of classification, a number of simulation studies are carried out involving continuous
explanatory data. In Section 4.2, a comparison i1s made between two traditional
discrimination methods, linear and quadratic discriminant analysis, and two tree-based
methods, CART and FACT, in terms of overall accuracy, over every possible combination of
five factors involving dimension, sample size, Mahalanobis distance between populations,
distribution and priors-covariance structure. In Section 4.4, the same study plan is used
except one of the distribution types 1s changed in order to make comparisons with previous
studies. Section 4.5 deals with the estimation of individual class error rates for each of the
four methods and how these error rates are affected when the prior probabilities of class
membership are altered. The final section of this chapter investigates the reliability of various
error rate estimators for three of the methods for predicting the correct class of future

observations of the same type.

In Chapter 5, a comparative study is undertaken comparing the four methods used in Chapter
4 for categorical explanatory variables, in particular, five and ten-dimensional binary data.
After providing a literature review of previous studies comparing classification methods for
such data, a simulation study is carried out using overall accuracy as the measure of classifier
performance. In Section 5.4, the reliability of vaiious error rate estimators is determined, as

carried out for continuous data in Section 4.6.



Chapter 6 concentrates exclusively on the CART method. Firstly, in Section 6.2, the
reliability of various error rate estimation techniques is investigated for continuous data. Data
sets are of varying distances between populations. sample sizes and data structure. Four
performance criteria are used to evaluate the error rate estimators. In Section 6.3, the same
error rate estimators are compared for the categorical data sets used in Chapter 5. In Section
6.4, the so called standard error rule used in CART is analysed while Section 6.5 explores the

effects of transforming the error rates.

Chapter 7, firstly, reports the results from a empirical comparison of five classification
methods for a number of real world data sets. In Section 7.4, a case study is carried out using
some family planning data trom India in order to illustrate the approaches taken by linear

discriminant analysis and tour tree-based methods.

Chapter 8§, firstly, compares the approaches taken by tree-based methods to grow a
classification tree, through both a survey of the literature and the results of simulation and
case studies undertaken in this thesis. Secondly, a subjective comparison of traditional
discrimination and tree-based methods is made. A summary of the literature where critical
assessment of the interpretability of the two approaches is presented. This is followed by a
personal assessment of which method(s) provide the most interpretable and humanly
comprehensible models, based on the results of simulation and empirical studies presented in

this thesis, as well as personal experience.

In conclusion, a set of recommendations is made, based on the findings of this thesis, as to
which methods should be used in which situations. Some proposals for the future
development of tree-based programs and research are also presented, atter tracing the links

and developments of tree-based methods.






2.1

2.2

TRADITIONAL DATA DISCRIMINATION METHODS

INTRODUCTION
The optimal rule of classification in a p-dimensional, k-class problem is the Bayes rule which

1s defined to be
Dp(x) = {x; f;(x) w; = max; fj(x) TEJ-} (2.1.1)

where f;(x) is the conditional density of x, given that x belongs to class 1 and m; is the prior
probability that x belongs to class i. The optimal rule for the proportion of observations

falsely classified is called the Bayes misclassification error rate. This is calculated as
R(B) = 1 - [ max; [fj(x) m;] dx (2.1.2)

It is very unusual, however, for either the f;(x) or the m; to be known. The w; can easily be

estimated by class sample proportions but the f;(x) are another matter.

This chapter focuses on the four most commonly used methods for estimating the f;(x),
thereby approximating the Bayes rule. The four methods, which attempt to correctly classify
a random observation into one of k classes, are linear and quadratic discriminant analysis,
kemel density estimation and Kth nearest neighbour rules. The methods are described both
algebraically and in words. A table of the assumptions and properties of the four methods is

presented in conclusion.

LINEAR DISCRIMINANT ANALYSIS

Suppose that an object is to be allocated to one of two p-dimensional multivariate ellipsoidal
populations on the basis of an observation vector x. Let us assume that observations from the
first population, I1;, occur in a proportion 7y and the remainder are from I1; in the proportion
Ty = (1 - ). Let f;(x) be the multivariate density of x in [I;, with mean p; and covariance

matrix 2;, where

f,(x) = 2y P2 [3, 12 exp[- F-p) -y | (2.2.1)



Suppose that we assign x to I1; if x is in some region A; and to I, if x is in a region A,
where A; and A, form an exhaustive and mutually exclusive partition of the sample space,
thatis, Pr(A; N Ap) =0 and Pr(A; U Aj) = 1. Then, the total probability of misclassification,
T(A, f), is the proportion of observations from Aj that are falsely classified as belonging to

A, and vice-versa. Thus

TA,D=m | , 100 dx + 7y I a, £200) dx
=m(l-] a, 1000x] + 5 | o, F200) dx
=) + JAI [7) f2(x) - mp f(x)] dx (2.2.2)

T(A, f) will be a minimum if 75 f5(x) - T f3(x) < O for all observations in Aj. That is, the
minimum error will occur if the product of the class priors and density functions in Aj 1s
much larger for I1; than for I1,. With the assumption that 3; = ¥, =2, that is covariance

matrices are equal, the optimal rule of allocation D(x) assigns x to 1y if
f1x)/ H(x) >my / my (2.2.3)

otherwise x is assigned to I1,, where the likelihood ratio f;(x)/fo(x) is given by

fy(x)/f5(x) = exp[x' (1 - po) % (rg + 1) Ty - o)) (2.2.4)

A}

Taking logarithms produces the rule: assign x to [ if
D) = (1 - B2)’ T [x -3 (1 + B)] > In(my/my) (2.2.5)

otherwise to IT,.

The above quantity, D(x), is known as the true discriminant function. D(x) is a linear
function of x. Now if x is multivariate ellipsoidal then D(x) will also be multivariate

ellipsoidal thus the means and variances of D(x) can also be used to calculate the estimated



error rates from using D(x) as the allocation rule. Now E[D(x) | [1;] is the mean value of
D(x) given thatx is from I1;. Thus

E(D() 1 TT1] = [l -5 (1 + B2V Ty - 1)
(1 - K2 Tk - o)
82 (2.2.6)

= )=

where 82 is the square of the true Mahalanobis distance between IT; and IT5.

Similarly

E[D(x) I TI)] = -+ §2 (2.2.7)
The common variance can be calculated thus:

E[D(x) - D(1;)1? = E[(x - 1)’ (kg - Hp)I?

= E[(11 - Hp)" T70x - p)(x - )’ Tk - 1)

= (M1 - M) TE[x - ) (x - W) 21y - 1))

= (- M) TNy - ) as E[(x-p)x-p)1=3

=§2 (2.2.8)

Let R;(T) be the probability of misclassifying an observation from [Ty, so that

Ry(T) = Pr{D(x) < In(my/m;) | x € TT4] (2.2.9)

Under the assumption of normality (2.2.9) can be expressed by

DX - E(D(x))  (my/wy) - E(D(x))
RiD =Y =] < selDm)] }

2
=¢)‘:1n(n2m1) -8 12] (2.2.10)
)
and
: 2
Ry(T) = (D[- (1n(n2m61) +d Qj] 22.11)

where @(.) is the cumulative normal distribution function.



If a sample of size nj is drawn from Il and size n, from I, then ; can be replaced by the
1

sample estimate X; = 2 x;;/n;, (=1, 2) and 2 by the estimate of the pooled sample variance,
j

Sy, given by

Sp =[(n;- 1)S; + (ny-1)S5]/(n; + np - 2) (2.2.12)

where S; are the estimates of 2;, (i = 1, 2). If these sample estimates are placed into equation

(2.2.5), then the optimal sample allocation rule is to assign a random observation x to Iy if

(;1 + KE)] > ln('ﬂ:y‘ﬂl) (2.2.13)

b |—

D(x) = (X - %)’ s]‘p1 [x -

Ii(x) is the linear discriminant function, the sample estimate of D(x). This discrimination rule
assumes that the cost of misclassifying an observation from [I; to I1,, C(2/1), is the same as
misclassifying an observation from I, to I1;, C(1/2). If C(2/1) # C(1/2), then (2.2.13) takes

the form given so that an observation x is assigned to Iy if

D(x) > C(1/2)In ®y/ C(2/1) In ; (2.2.14)

otherwise to I15.

In the case of equal a priori probabilities of belonging to a certain class, (2.2.13) simplifies to
“classify x to I1y if D(x) > 0”, otherwise to 1.

An alternative way of tackling the problem of classification in the linear discriminant analysis
context is to use the group classification functions, f,i(x), where

i’is;f X; (2.2.15)
- a+b'x (2.2.16)

In the case of k groups, there are k group classification functions, so the rule is to assign x to
I, if

~ -~

L (x) = max; Li(x), i=1,..k (2.2.17)



The above I:,i(x) can be used to form what has previously been called the linear discriminant

function, D(x), in the case of k = 2 groups, where

D(x) = Lj(x) - Ly(x). (2.2.18)

In the case of k = 3 groups, the situation becomes more complex. A set of linear discriminant
functions, ﬁij(x), can be defined as

Dy(x) = Lix) - Ljx), 0 I (2.2.19)

Jennrich (1977) calls these type of linear discriminant functions, group separation functions.

In general, there are C;‘ = k!/2!(k-2)! = k(k-1)/2 such group separation functions in a sample

consisting of k distinct classes. The rule is to assign x to I1; if

Dji(x) >0, Vi<j, and
Djj(x) <0, Vi>] (2.2.20)

Otherwise, x is assigned to one of the other (k-1) classes. For example, in the case of k = 4

classes, the rule is

Assign to [Ty iflﬁli(x) >0, j=2,3,4
Assign to I, if D;a(x) <0, 1523(x) >0 and Dou(x) >0
Assign to I3 if ﬁlz(x) <0, ]523(x) <0 and 1534(x) >0

otherwise assign x to Il .

Figure 2.1 illustrates this procedure for a set of twenty six urinary samples (see data set R
from Table 7.1) involving two chemical measurements (androsterone and etiocholanolone)
taken from eleven healthy heterosexual and fifteen healthy homosexual males. Linear
discriminant analysis is ideally suited to this problem, with the linear discriminant function
(LDF), providing perfect discrimination between the two classes, showing that for men with
the same values of androsterone, homosexuals have higher values of etiocholanolone than

heterosexuals. Therefore. the separation is in a linear combination of the two variables.



Plot of Etiocholanolone (mg/24 hours) against Androsterone
(mg/24 hours) from Urinary Samples for 26 Healthy Heterosexuals
and Homosexuals with Linear Discriminant Function
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2.2.1 Stepwise Discriminant Analysis

A special application of linear discriminant analysis is stepwise discriminant analysis,
whereby only a subset of the original p variables is selected to carry out the discriminant
analysis. As above, suppose that a sample of dimension p contains nj observations from I1;
and n, observations from Il,. Variables are chosen to either enter or leave the model
according to whether the Wilks-Lambda ratio of between to within class variance is greater
than or less than a pre-specified significance level, while also taking into account the
variables that are already in the model. Alternatively, the partial correlation coefficients
between each predictor variable and the class variable can be used to force a variable to either
enter or leave the model. In essence, the variables that contribute most to the discriminatory
power of the model are selected to carry out the discriminant analysis. However, authors
such as Habbema et al (1974) have pointed out that the best q variables selected by stepwise
discriminant analysis, may not necessarily be the *“‘best” variables for this type of data, just the
best for this particular sample. Snapinn and Knoke (1989) give illustrations where the
apparent error rate, the error rate found from resubstituting the original sample, should never
be used on a data set which contains only the best q variables, selected by stepwise

discriminant analysis, though this has been found to hold for most discrimination methods.
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2.4
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QUADRATIC DISCRIMINANT ANALYSIS

In real world situations, the requirement of equal covariance matrices is rarely satisfied,
though the differences are often too small to cause any deterioration in the performance of
linear discriminant analysis. In cases where the covariance matrices are quite different,
though, and x is p-dimensional multivanate ellipsoidal, quadratic discriminant analysis is the

appropriate method to use where the discriminant function is
Q(x) = In[f(x) / fp(x)] (2.3.1)

and we assign x to I[1; if Q(x) > In(ny/m;). If we again replace ; and 3; by the sample

estimates X; and S; then the result is the sample estimate of Q(x), the quadratic discriminant

function:
aov_ L 811, —vely sy.1, =wel. =
Q(x)_—zln Sl -5 (x-Xq) S;(x-x))+5(x-X) S, (x-Xp) (2.3.2)
and x is assigned to IT; if Q(x) > In (ma/m)). (2.3.3)

THE ROBUSTNESS OF LINEAR AND QUADRATIC

DISCRIMINANT ANALYSIS

Simulation studies previously undertaken by authors such as Lachenbruch et al (1973), Marks
and Dunn (1974), Aitchison et al (1977). Krzanowski (1977) and W ahl and Kronmal (1977),
among others, have made many interesting discoveries about the robustness of linear and

quadratic discriminant analysis, henceforth called LDA and QDA, respectively.

Seber (1984) has summarised many of these findings, noting in particular that:

(1) LDA and QDA should perform equally well when covariances are roughly equal and
the number of variables, p, is small (p < 6).

(i1) For small samples (nj, np < 25) and small covariance differences and/or p large, LDA is
preferred, but when both covariance differences and p are large neither method is

recommended.



(111)

(iv)

QDA is better than LDA when both covariance differences and the number of variables
are large, p > 6 and when sample sizes are large. Itis suggested that ny =np =25 and
p = 4 as a minimum with 25 additional observations per class for every extra two
dimensions.

QDA should not be used in poorly posed situations, that is where the number of
variables is not much less than the class sample sizes, resulting in S; being a poor
estimate of ;. The extreme case occurs where the data is ill-posed, when p > n;

meaning S; does not exist.

From the above findings and many applications in case studies, both LDA and QDA should

be best when each class is multivariate normal with equal covariances matrices and the ratio

of class sample size to dimension is large. LDA is fairly robust to any departures from these

conditions, while QDA is only robust to differences in the class covariance matrices.

Morgan and Sonquist (1963), while introducing their Automatic Interaction Detector (AID)

program, came to the conclusion that the usual parametric methods of classification were

often inadequate in analysing survey data, noting in particular that parametric methods were:

(1)

(1)

(111)

(iv)

(v)

Unable to handle interaction effects, without adding many extra terms to the model, as
interactions may be quite complex, affected in different ways by different parts of the
data set.

Variables may not have linear effects, thus there is the need to create many extra terms
(for example, quadratic, cubic etc).

Not good at handling categorical explanatory variables, especially those with many
categories. Parametric methods usually treat categorical explanatory variables as a
number of binary variables and create linear functions from those variables. As with (i)
and (i1) above, the number of variables in the data set could increase dramatically and
the data matrix will be sparse.

Not robust to errors in the variables such as decimal points in the wrong place. As
parametric methods make use of all the data at once, any errors in the measurements
will lead to false classification rules.

Affected adversely by intercorrelations among the explanatory variables used in the
analysis. These correlations interfere with assessing the importance of individual

variables.

13
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2.4.1 Modifications to Linear Discriminant Analysis

Friedman (1989) and Raveh (1989) have tried two modifications to LDA in an attempt to
solve the problems mentioned in the last section. Friedman developed a method called
regularized discriminant analysis (RDA) especially for ill-posed situations, as outlined
earlier. He noted that when the sample covariance is singular then the p - n; + 1 smallest
eigenvalues are estimated to be 0. The net effect of this biasing phenomenon on discriminant
analysis 1s to, sometimes, dramatically exaggerate the importance associated with the low

variance subspace spanned by the eigenvectors corresponding to the eigenvalues near zero.

Friedman tackles the problem using regularization. whereby a reduction in the variance of the
sample-based estimates is carried out so as to minimise a potentially increased bias. Two
regularization parameters, 0 < A <1 and 0 <y < 1, are selected in order to jointly minimise
future misclassification errors. The above two parameters are incorporated into a variance
function that controls the degree of shrinkage of the individual class covariance matrices that
contribute to the pooled estimate. Simulation studies showed that RDA was much better than
LDA and QDA in cases where the covariances were spherical. In those cases where the
covariance matrices were highly ellipsoidal. and equal. LDA did best but when covariance

matrices were unequal, RDA did best.

Raveh developed non-metric discriminant analysis (NDA). a method that requires none of the
parametric assumptions required by both LDA and QDA (for example, the assumption of
multivariate normality). NDA uses a separation measure so that as many observations as
possible from I1; are greater than or less than the observations from I1,. Thus NDA is based
solely on the ranks of the individual observations and not the actual values. Through
simulation studies, Raveh has shown that NDA is error-free for non-overlapping distributions
and that NDA outperforms LDA in cases where the distribution of the data is highly non-

normal or where covariance matrices are quite different.

KERNEL DENSITY ESTIMATION

Often, it occurs that a parametric form cannot be assumed for the f;(x) so that in order to
apply the likelihood-ratio test, the f;(x) have to be estimated using an unstructured approach.
An example where this approach is necessary is in a sample exhibiting gross non-normality

and unequal covariance matrices. Such an approach is called non-parametric estimation.



‘Kemel density estimation is one form of non-parametric estimation. Hand (1981), Seber
(1984) and Fukunaga (1990) all give excellent summaries of how kernel density estimation

works.

The basic idea behind kemel density estimation is to use the sample data (xij, 1=1, .., kand
j=1, ..., n;) to estimate each of the f;(x)’s. Hand (1981) first considers the case p = 1.
Suppose that v(x/I1,) is the number of sample points belonging to class m, 1 < m < k, with
values less than or equal to x andf:(x/ﬂm) is the estimate of the cumulative distribution and

1s given by

number of class m observations < x
total number of class m observations

Fou/T) =

_ v(x/Mpy)

Nm

(2.5.1)

This function cannot be differentiated because the probabilities are not continuous, but an

approximation to the derivative of IE(x/IIm) can be made.

] F(x + WIT1.) - E(x - h/T1
T ) = ot ) = PO~ W)

[v(x+h/T1) - v(x-h/T1)])/ng,

h (2.5.2)

This can then be rewritten as

- 1 m X - X:
(Tl = 2 ko (—hl) (2.5.3)

where Xj» 1=1.2, .., ng are the class m sample observations and
0, forlzl>1

ko(2) ={ (2.5.4)

%, forlzl <1

where z = (x - xj) / h.

15
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The above implies that every point in the interval (x-h, x+h) contributes 1/2nph to the
estimation of the density function at x while any points that lie outside of that interval
contribute nothing. It seems wrong that a point near the boundary of (x-h, x+h) carries the
same weight as a point very close to x, while a point just outside of the interval contributes
nothing. To overcome this problem, a smoothing weighting function is used. For instance,
let ko(z) be from the normal distribution with zero mean so that observations closest to x have
the greatest weighting but all observations in the sample contribute to some degree in the
calculation of the density function. Another alternative would be to use the uniform
distribution as the weighting function so that every observation is equally weighted. “Any
other unimodal density could be used as a kernel.” (Seber, 1984, p 322.)

Classification is determined by use of the likelihood ratio statistic, -In(f;(x)/f,(x)), and
whether this value is greater than or less than a threshold value. In the case of two

populations and p > 2, the kemel density discrimination function, K(x), is given by

K(x) = -In M
fr(x/T1p)

n
(I/ny) ¥ kp (x-xyp5)
_ =l (2.5.5)
np
(I/mp) 3 ko (x-x2j)
j=1

An observation is assigned to I1; if

R(x)> In (Ej (2.5.6)
T

otherwise to I1,. That is, the density estimates of f;j(x) are based on the number of points

from IT; within the region (x - h, x +h) where h is a p-dimensional area.



2.6 Kth NEAREST NEIGHBOUR METHODS

The Kth nearest neighbour method (K-NN) is another tool that is used whenever the class
density functions, fj(x), are unknown. In fact, this was the first non-parametric method for

classification and was introduced by Fix and Hodges (1951).

The idea behind the method is relatively simple. Cover and Hart (1967) define a random
observation X, X €{x1, ..., X, }, as the nearest neighbour to x if

min d(xj, x) = d(Xp, X), =122, oyl (2.6.1)

where d(xj, x) is a distance function. The nearest neighbour rule decides that x belongs to the
class IT; of its neighbour xp,. The above is the single nearest neighbour rule, that is K = 1,

and only applies to the single nearest neighbour to x. All other observations are ignored.

The idea is extended naturally to the K nearest neighbours of x. Lachenbruch (1975)
describes the general K-NN rule as follows. Suppose there are ny and n) sample observations
from I1; and I1; respectively. Suppose that the objective is to classify an observation x to one
of Iy or I1p. Using a distance function, d(xjj, X), order the values, x;;. Let K; be the number
of observations from I1; among the K closest observations to x. The rule is to assign x to I1;

if

Br. 2

>
1'!1 I'l2

(2.6.2)

otherwise to Il,. In other words, the procedure involves the relatively simple concept of

assigning a random observation x to the class having the greater proportion of observations
closest to x. Asn; — oo, it has been found that (2.6.2) tends to the maximum likelihood rule.

17
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AND KTH NEAREST NEIGHBOUR METHODS
Simulation studies by various authors, including Habbema et al (1974), have shown that the
kemel density method for classification was just as efficient as LDA in the case of normally

distributed data but when non-normality occurred, kernel density estimation was superior.

Feng et al (1993) have shown that the K-NN method were often slow in terms of running
time, as was kernel density estimation. For most of the case studies tested in that paper, the
K-NN method produced a very low apparent error rate but quite often the test sample error
rate found from the classification rules on another set of data that was not used to construct
the classifier, was comparatively high. This fact calls into question the reliability of the

classification rules proposed by the K-NN method.

Breiman et al (1984), p 17, have criticised both the above non-parametric classification

methods on the following grounds:

(1) They are sensitive to the choice of a metric IIxIl and there is usually no intrinsically
preferred definition.

(11)  There is no natural or simple way to handle categorical variables and missing data.

(i11) They are computationally expensive as classifiers. The learning sample must be stored,
the inter-point distances and classification rule recomputed for each new observation.

(iv) Most serious, they give very little usable information regarding the structure of the data.
That is, neither of the two methods provide a set of simple and intuitive set of

classification rules.



2.8 SUMMARY TABLE OF THE ASSUMPTIONS AND PROPERTIES OF TRADITIONAL DATA DISCRIMINATION

METHODS

ISSUE

LLDA

QDA

KERNEL DENSITY

K-NN

Optimality

Multivariate ellipsoidality and
equal covariance matrices within
cach group.

Multivariate cllipsoidality and
cqual covariance matrices within
cach group.

No assumptions about the present
distribution of variables.

No assumptions about the present
distribution of variables.

Types of Variables

Quantitative

QQuantilative.

Quantitative.

(Quantitative.

Computations

Cormputations arc based on class
sample means and the pooled
covariance matrix of the class
sample covariances.

Computations are bascd on class
sample means and individual
class sample covariances.

Uses the individual data values
and a weighting function ky(z).

Uses the K observations that are
closest to x.

Discrimination
Rule

Assign x to [Ty if

D(x) > In (my/m;)
where

D(x) = In [£,(x)/f5(x)).
Otherwise, assign x to I1,.

Assign x to I, if

Q(x) > In (my/my)
where

Q) = In [f;(x)/f5(x)).
Otherwisc, assign x to I1,.

Assign x to IT if
K(x) > In (my/m;)

where
l]l
2 ky(xxp)
A N\ i=1
K(x) = (n—2 J———n ]
1 2

2 ka(x-x2)
=

Otherwise, assign to IT,.

Assign x to I, if
Kl’"l > K2/112
where K; is the number of class i

observations among the K nearest
neighbours to x.
Otherwise, assign x to IT5.

Critiques of
the Method

e Very fast.

* Robust to mild non-normality
in the variablcs.

* Unable to properly handle
interaction effects.

e Not good at handling

categorical predictor variables.

* Robustto departures from
cqual covariance matrices.

* Not suited when the ratio of
dimension to sample size is
small.

* Very scnsitive to departures
fromnormality in the
variables.

* Not good at handling
categorical predictor variables,

* Not affected by either non-
normality or unequal
covariance matices.

* Produces reliable classification
rules.

 Gives very little usable
information about the data.

* Not good at handling
categorical predictor variables.

* Notaffected by cither non-
normality or unequal
covariance matrices.

* Produccs unreliable
classification rules.

 (Gives very littlc usable
information about the data.

* Not good at handling
categorical predictor variables.

Optimality

Types of Variables
Computations
Discrimination Rule
Critiques of the Method

Under what conditions is the method optimal?
FFor what type of explanatory variables is the method suited?
What statistics/values are used in the calculation of the discrimination rules?

How is an observation x classified to one of the two populations?

From the literature, what are four key advantages or disadvantages of the mcthod?
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3.

3.1

3.2

A TABULAR COMPARISON ON TEN TREE-BASED METHODS

ORIGINS OF TREE-BASED METHODS

Tree-based methods of classification are children of the computer age. The idea of decision
trees could only have been dreamed of betore the introduction of the computer as the amount
of number crunching required to construct a data-intensive method, such as a decision tree

classifier, would have been far too much for the simple adding machine.

The ideas behind decision tree methods were originally developed by Belson (1959). The
approach he proposed to take was the binary segmentation of a data set, in a recursive
manner, so that each of the subgroups formed would be as homogeneous as possible with
respect to the response variable. At each stage of the analysis the predictor variable providing
the “best” dichotomous partition would be chosen to partition the subgroup into two further
subgroups.

Belson’s proposals form the foundations from which all tree-based methods have been built,
being the result of a dissatisfaction with standard statistical techniques. In conclusion, Belson
states, “[t]Jhe method as I have described it is, it is true, a movement towards a more empirical
way of doing things; but it is just as much a movement away from a sophistication which is
too often either baffling or misleading™ (Belson, 1959, p 75).

INTRODUCTION
In this chapter, ten tree-based methods are to be summarised in chronological order of

introduction. The methods are:

(1) AID Automatic Interaction Detector.

(i) THAID THeta AID

(1) ID3

(iv) CHAID CHi-squared AID

(v) CART Classification And Regression Trees
(vi) C45

(vii) FACT Fast Algonthm for Classification Trees

21



22

(viii)) KnowledgeSeeker
(ix)  Splus Trees()
(x) IND

The ten methods are to be tabulated on the following bases:

Author(s)

Introduction

Classification/Regression

Tree Growth

Tree Pruning

Validation Procedures

Interactive Ability

Graphical Ability

Who developed the method?

The year the method was introduced and a short summary
of how the author(s) describe(s) the method.

W hat type of response variable is handled?

Is the tree grown on all the data or only on a subset of the

data?

(a)

(b)

(c)
(d)

(e)

Splitting Method. What rules are used by each
method to partition the data?

Type of Splits. How does the method partition the
data? Binary/Multiway splits on a single variable
(US) or a linear combination of variables?
Costs/Priors.  Are these incorporated into the
splitting algorithm?

Stopping Rules. What types of stopping rules are
employed?

Node Classification/Prediction. How are the nodes
classified/predicted?

What pruning procedure, if any, exists in the method?

Is there validation of the decision rules constructed by
means of a test sample or cross-validation?

Do facilities exist in the program for the user to easily
interact with the tree-growing procedures, so as to
automatically change the splitting variable, stop splitting,

etc?

Can the program display the decision tree graphically?



One-Stage Optimality Does the methad only look for the optimal split of the
current node? If not, do facilities exist to examine the
effects of splits at the next one or two stages of the tree-
growing process?

Missing Values How are missing values handled?

Criticisms What is written about the program in the literature? What
problems have been identitied?

Examples in the literature A list of important papers using the method.

Finally, a short, summary table comparing all ten tree-based methods is given, over all the

attributes described above.

Safavian and Landgrebe (1991) have conducted a survey of a large number of tree-based
methods. Their paper includes a summary table comparing each of the methods in terms of
the assumptions each approach makes, their performance criterion and some of the specific
requirements for each method. The approach adopted in this chapter is intended to be more
than a mere enumeration of material or collated bibliography of tree-based methods.
Therefore, only ten such methods have been selected and presented in detail with some

attempt at critical comparison.

A major difference between the tree-based methods studied in this chapter is the way in
which the aims of Belson are carried out, that is, the method of splitting. A decision tree
procedure either uses binary splitting where the data is segmented into two groups, Or uses
multiway splitting, where the data can be split into more than two groups. These splits can
either be carried out on a single variable, called univariate splits (US), or on a linear

combination of variables.

Figure 3.1 illustrates the method of binary splits for Fisher’s Iris data (data set H from Table
7.1) involving three species of iris (I. virginica, I. setosa and I. versicolor) each with 50 cases
and measurements taken on four variables (sepal length, sepal width, petal length and petal
width). Although the problem involves four variables, only two variables are used to form
the tree using the CART algorithm (see Section 3.7). The first split is on petal length and
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asks the question as to whether petal length < 1.95, and if so, observations are sent to the
right. It would be possible for the next split also to be on petal length, but here the next split
1s whether or not petal width < 1.75, for those cases where petal length > 1.95.

The tree produced by CART is shown in Figure 3.2. As only two splits were made, there
were three terminal nodes, where a node is defined as a subset of the data and a terminal node
1s a terminal subset of the data which is assigned to one of k classes. The terminal node at top
left consisted of 50 class 1 (I. virginica) flowers and was classified as class 1. The terminal
node at bottom left was classified as class 2 (I. setosa) and consisted of 49 class 2 and S class
3 flowers (I. virginica). The terminal node at bottom right was classified as class 3,
consisting of 1 and 45 in classes 2 and 3 respectively. Notice that there were 6 flowers

overall misclassified by the classification tree.

Figure 3.3 illustrates the method of multiway splitting for the same data. The FACT
algorithm (see Section 3.9) was used to partition the data. In this case, there is only one split
carried out, that being on petal width, but it is a three-way split, dividing the data into three
subgroups. The first subgroup corresponds to the case where petal width < 0.787 (split 1a),
while the second subgroup corresponds to tlowers where 0.787 < petal width < 1.677 (split
1b), with the third subgroup corresponding to all those cases where petal width > 1.677. The
FACT tree is shown in Figure 3.4. Basically, the FACT tree has split the data into three
homogeneous terminal nodes using only one multiway split, compared with the two needed in
the binary splits example. As with Figure 3.2, 6 tflowers have been misclassified by this

classification tree.

The above examples were both carried out using only one variable at a time. Figure 3.5
provides an illustration of a linear combination split, when used with CART. The first split is
the same as that of Figure 3.1. The second split, however, involves both petal length and
petal width and asks the question, for those cases where petal length > 1.95, as to whether
0.209 * petal length + 0.977 * petal width <2.51. The CART tree for this example is given in
Figure 3.6. The major difference from Figure 3.2 is that no class 3 cases were misclassified,

and two fewer cases overall were misclassified.
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n = sample size at each node
n; = sample size for class i at each node
r(t) = purity measure at each node (that is, the proportion of observations not from the class

with the largest number of observations at each node)

Circles represent decision nodes which have to be split on while rectangles represent terminal
nodes which are assigned to a particular class given below the node.

Figure 3.2: CART Tree for Fisher's Iris Data



Multiway Splits Example: Plot of Petal Length against Petal Width
for Fisher's Iris Data using FACT
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Figure 3.4: FACT Tree for Fisher’s Iris Data
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Figure 3.6: CART Tree for Fisher’s Iris Data - Linear Combination Split
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3.3 AID

Author(s)

J N Morgan and J A Sonquist (USA).

Introduction

The Automatic Interaction Detector was published in 1963.
The essence of the algorithm is the sequential application of a
one-way analysis of variance model (Morgan and Sonquist,
1963). The purpose of the program was to handle interactions
and inter-correlations among the data in a more explicit way.

Classification/Regression

Designed to perform regression using a continuous dependent
variable, although dichotomous dependent variables can be
handled by transforming one of the two categories into a
proportion.

Tree Growth:

- Splitting Method

- Type of Splits

- Priors/Costs

- Stopping Rules

The tree is grown on all the data set.

Sonquist (1964), summarises the four steps in the tree growing

procedure as follows:

(i) Choose, for splitting, the node, t, with the largest total
sum of squares, TSS,= Zylz - (Syp¥n.

(i) ~ Split each variable, x;, into two subgroups such that this
division leads to the biggest decrease in unexplained sum

of squares, i.e. maximise BSS; = (nﬁ% + nz'ig) - 0y yf.
(i11) Partition variable x, over node t where
BSSm 1S maxi BSSJ
(iv) Returnto step (i). '

Binary splits are the only method used and are carried out on
only one variable at a time.

-No.

Direct stopping rules are used. A number of different criteria

exist for stopping tree growth:

(1) TSS; <R *TSS;, where R is a parameter 0 <R < 1, and
TSS; is the total sum of squares for the whole sample.

(i) BSS;<Q*TSSjoverallx;, 0<Q<I.

(i11) Number of unsplit nodes > P.

(iv) Sample size of each unsplit node < L.
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- Node Classification/Prediction

All observations within a node are assigned the average value
for the response variable in that node.

Tree Pruning No.

Validation Procedures No. —
Interactive Ability No. |
Graphical Ability No. _

One-Stage Optimality?

Fielding (1977) describes the r-step lookahead option used by
AID I1I, the then current version of AID. The earlier version of
AID grew the tree on a sequential basis so that the prediction
error was only minimised at each step of the analysis, that is,
“stage by stage optimization”. The r-step lookahead option is
an attempt to improve on the stage by stage procedure.

For m predictors there will be m tentative splits under
consideration. The best splits for each predictor on these

subgroups is then obtained. One now has m?2 possible
two-stage trees under consideration. This process could

be continued for r stages with m" possible trees. Clearly
this lookahead option could involve a tremendous amount
of computation and information storage were it not
restricted. The current version of AID III limits the
lookahead steps to three, including the first split (Ibid,
p 249).

Morgan (1993), in a personal correspondence, noted that the
repeated use of the lookahead feature failed to find any usetul
applications or examples, and was dropped in later versions of
the program. One might think it would find offsetting effects,
as when young men and old women are more likely to go to the
hospital, but the sequential strategy seems to uncover these too
according to Morgan.

Missing Values

Missing values are replaced by class means estimated from non-
missing values in the learning sample.




Criticisms

The AID algorithm has been criticised by a number of authors,
including Einhorn (1972), Doyle (1973), Kass (1975), Doyle
and Fenwick (1975), Kass (1980) and de Ville (1990). The
principal reasons for this criticism are:

(1) It requires very large sample sizes, usually > 1000
observations.

(1) Itdoes not take the intercorrelations among the predictors
Into account.

(i1) It is not robust to deviations from normality in the
variables.

(iv) The tree size is affected too much by noise in the data.

(v)  Only binary splits are carried out.

(vi) Most importantly, there is no validation of the prediction
rules constructed, either by testing for significance, or
using an independent test sample.

Morgan (1993) has responded to these criticisms. He believes

that (i1) i1s wrong, except that once a split is made on one

predictor, it may leave groups where a second predictor has lost
whatever power it had, but that information is useful to know.

For example, in searching for what makes people happy, the

program splits first on the quality of the network of friends, then

on health, and only then on income! Of criticism (ii1), Morgan
affirms that this is true of any least squares procedure, though

AID alerts the user to isolated cases by splitting these off into a

separate subgroup. Problem (v) is irrelevant according to

Morgan, since multiple splits on the same predictor are

possible, and it is wasteful to start with k subgroups when k-1

will do. The loss of information from grouping data is small,

and a very few subgroups contain almost all the information.

The last criticism, claims Morgan, is not a function of the

program but of the user, who can always grow the tree on three

quarters of the sample and see how well the final groups
account for the variance in the other quarter. It must be noted,
however, that it is wasteful to not use all the data in the tree
growing phase and test sample estimates of error are highly
varible for small samples. (See Section 4.2 and Breiman et al,
1984.)

Examples in the Literature:

Assael, H (1970). Segmenting markets by groups purchasing
behaviour: An application of the AID technique, Journal of
Marketing Research, 7, pp 153-158.

Heald, J I (1972). The application of the automatic interaction
detector programme and multiple regression techniques to
assessment of store performance and site selection, Operational
Research Quarterly, 23, pp 445-457.

Muxworthy, D T (1972). Review of AID III, British
Sociological Association Maths, Statistics and Computing
Applications Group Newsletter, 9.
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Author(s)

J N Morgan and R C Messenger (USA).

Introduction

Developed in 1973, THeta AID was designed as an extension of
the AID algorithm (Morgan and Sonquist, 1963) to handle
categorical dependent variables. It was “... viewed as a
simplitfied version of the present AID”. (Messenger and
Mandell, 1972, p 18.)

Classification/Regression

Designed for classification specifically for use on nominally
scaled dependent variables.

Tree Growth:

- Splitting Method

The tree is grown on all the data set.

Two methods for splitting are used.

(1) Theta criterion or what Messenger and Mandell (ibid,
p 12), call “optimal prediction-to-the-mode strategy”.
The objective is to find the split at the unsplit node t
which maximises:

2 : :
I
e 1 S
By =2 n;)( ‘n”i )_ o (my + m))

total number of observations in node t

total number of observations in the ith split
group

m; = total number of misclassified observations

in the ith split group.

where n;
L

Or else, the Delta criterion could be used. Messenger and
Mandell, (ibid, p 15), define this as “... based on the
simple notion that one should find split groups whose
probability distributions differ maximally from the
original group and hence trom each other™.

The basic idea is to find the split on the variable for
which

k K
Oy/x =1y _Zl Ipj - pyjl + n2 '21 Ip; - pyjl
= =



- Type of Splits

- Priors/Costs

- Stopping Rules

where  p; = proportion of observations from class j in
nodet,j=1, ..k

and p1j = proportion of observations from class j in
split group 1.

Note that the authors of THAID recommend the Delta
criterion for splitting if the ratio of sample size of the
largest group to the second largest group is greater than
2:1 (Messenger and Mandell, 1973).

Only binary splits are carried out using only one variable at a
time.

No.

Direct stopping rules are used. Stop if:
(1) ny2 < np;p, where np;, is a preset parameter, and

(i) either B/ < Omip o1 Sy/x < dmin-

- Node Classification/Prediction

Assign a terminal node to the class with the largest number of
observations in that node.

Tree Pruning No.
Validation Procedures No.
Interactive Ability No.
Graphical Ability No.
One-Stage Optimality? Yes.

Missing Values

Missing values are replaced by class means estimated from non-
missing values in the learning sample.
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Criticisms

Most of the criticisms levelled at AID, are also valid for
THAID. Basically the method does not know when to stop.
Kass (1980), p 120, also states that, “(k]Jnowledge of the
theoretical behaviour of the Theta criterion is lacking still”.
Morgan (1993) has written in, noting that there is a maximum-
likelihood XZ splitting option available in the new SEARCH
program which has replaced THAID. The procedure 1is
designed to maximise stability and remove the chance of erratic
results.

Examples in the Literature

Morgan, J N (1990). A conditional analysis of movers’ housing
responses. Journal of Economic Behaviour and Organisation.

3.5 ID3
Author(s) J R Quinlan (Australia)
Introduction Introduced in 1979, this procedure is in the family of recursive
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partitioning, tree-based algorithms, although it is from the
machine learning rather than the statistical literature. Quinlan
(1983), describes the method as *... recover(ing] valuable
information from large masses of low grade data by a process of
inductive inference’.

Classification/Regression

Handles classification problems only.

Tree Growth:

- Splitting Method

A subset of the original learning sample, called a ‘window’ is
chosen at random and a decision tree formed that correctly
classifies all observations in the window. All objects in the
learning sample, but not in the window are then classified using
this tree. If the tree gives the correct classification for all
objects then this tree is declared optimal, otherwise some more
observations are added to the window with the tree-growing and
evaluation process being repeated. The process continues until
all cases in the learning sample are correctly classified.

Splitting is achieved by means of an information measure. An
observation is determined to belong to class 1 with probability
p1 = m/(n+m) and to class 2 with probability pp = n/(m+n),
where m and n are the number of observations from class 1 and
class 2 respectively. The expected information needed to
classify an object using a tree is:



- Type of Splits

- Priors/Costs

- Stopping Rules

I(m, n) = -p; loga p1 - p2 log2 p2.

Let a variable, x;, considered for partitioning, contain v distinct
categories {Aj, ..., Ay}. The node t that is to be considered for
splitting will be split into v descendant nodes, ty, ..., t,, each
described by one particular category of x;. The information
required for the subtrees with t; is I(mj, n;), where m; and n; are
the number of class 1 and 2 observations in the ith node. The
expected information required for trees partitioned on x; at the
root node is

E(x)) = 'Zl [(m; + n;)/(m+n)] * I(m;, n;)
i=

where the weight of the ith branch is the proportion of objects in
t that belong to t;. Information gained by branching on x; is
gzlin(xj) =I(m, n) - E(xj).

ID3 examines all variables, x;, j = 1, ..., p, and chooses x; to
maximise gain(x;). This process is continued on the recursively
found nodes, ty, ..., t,. Itis known as the gain criterion.

Multiway splits are used here. In fact, splitting is carried out
using every possible value of a variable. If a predictor variable
is continuous, some form of clustering of the values is carried
out before splitting. Only univariate splits are carried out.

No.

(1) Stop when all cases in the learning sample are correctly
classified.

(1) An alternative stopping rule is: Use the xz statistic to
determine if the categories of variable x; are independent
of those class of objects in S. No furtlller testing of the
variables (splitting) is done if that variables irrelevance
cannot be rejected at a very high confidence level.

- Node Classification/Prediction

Assign a terminal node to the class with the largest number of
observations in that node.

Tree Pruning

No.

Validation Procedures

No.
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Interactive Ability No.
Graphical Ability No.
One-Stage Optimality? Yes.

Missing Values

Observations can either be discarded from the data set before
splitting, or, alternatively, use the ratio of class sample sizes
multiplied by what Quinlan calls a ‘token’ to find a predicted
value of the variable for which a particular observation is
missing.

Criticisms

Many of the problems inherent in AID have been also found
present in this algorithm. deVille (1990) discusses the
tollowing problems.

(1) Biased towards the selection of variables with many
categories though they may not be the best predictor.

(i) Do not know when to stop. ID3 continues splitting on
nodes with only a small number of observations. The
resultant decision tree would not hold up in the real world,
being principally a function of the data at hand.

(111) Overly large trees are too complex and not easy to
understand.

Quinlan et al (1986), p 164, states that “[e]mpirical
investigations have found that trees generated from such sets
are usually simpler and more accurate than those constructed
from random samples”. However, in the next paragraph, it is
argued that “... decision trees produced by any top-down
approach are more complex than can be justified by the data.”
(Ibid, p 164).

Examples in the Literature

Schwartz, S, Wiles, J, Gough, I and Phillips, S (1993).
Connectionist, rule-based and Bayesian decision aids: an
empirical comparison, in “Artificial Intelligence Frontiers in
Statistics”, D J Hand (ed), London: Chapman & Hall, pp 264-
278.




3.6 CHAID

Author(s)

G V Kass (South Africa)

Introduction

Developed in 1980 as an offshoot of AID for use with
categorical response variables. It was designed to tackle the
criticisms of AID by *“... embedding the partitioning problem in
a significance testing framework™ (Kass, 1980, p 120). Known
as CHi-squared AID.

Classification/Regression

Handles only classification problems.

Tree Growth:

- Splitting Method

- Type of Splits

- Costs/Priors

The tree is grown on all the data set.

According to Kass, the splitting method proceeds as follows:

(1) For each predictor variable in turn, with the dependent
variable having k classes, cross-tabulate the categories of
the predictor with the dependent variable. Go to step (ii).

(i1) Find the pair of categories of the 2*k subtable that are
least significantly different. Merge the two categories into
one compound category if the significance does not
exceed a critical value. Repeat this step until no more
mergers can be found.

(ii1) For each compound category consisting of three or more
of the original categories, find the most significant binary
split into which the merger may be resolved. If the
significance exceeds a critical value, implement the split
and return to step (ii).

(iv) Calculate the significance level of each optimally merged
predictor and isolate the most significant one. If this
significance is beyond a criterion value, split the data
according to the merged categories of the chosen
predictor.

(iv) Retumn to step (1) for each, as yet, unsplit node t.

Multiway splitting can be used with this method, for example,
three-way, four-way or larger splits. Single variable splits only
are carried out.

No.
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- Stopping Rules

Stop if:
(1) ng<ngip-
(11) The split on the optimally merged predictor < xz((,_l) o On

g compound categories for a preset value of o.

Tree Pruning

No.

Validation Procedures

No.

Interactive Ability

A current version of CHAID runs on SPSS for windows. A
series of menus with a mouse button allow the user to set values
for the parameters used in the tree-growing process, and begin
the analysis. The tree-growing process can be interrupted at
any point and the values of the parameters altered.

Graphical Ability

The graphical display of the tree works in unison with the tree-
building process. As a node is split into a number of sub-nodes,
the results are displayed immediately on screen by means of a
decision tree. The level of detail about each node and each split
carried out can also be altered.

One-Stage Optimality?

Yes.

Missing Values

These are excluded from the tree-growing process.

Criticisms

No criticism of CHAID directly has been discovered in the
literature. The weakness of the method, however, would appear
to be the lack of any procedure for validating the results. As
Einhorn (1972), p 368, stated, eight years before CHAID
appeared, “... the results should be subjected to a more rigorous
criterion than statistical significance or some other statistical

_criterion”. He noted, “replication is the backbone of science

and when techniques capitalise on chance fluctuations in the
particular sample at hand, it is imperative to replicate (or cross-
validate) the results on a new set of cases” (Ibid, p 368).

Another possible criticism of CHAID is the use of a direct
stopping rule. The authors of CART, Breiman et al (1984),
criticised this type of stopping rule on the following basis. If
the significance level is set too high (large p-values), then there
1s too much splitting so that the tree is too large and just a
reflection of the sample data. If the significance level is too
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low, then one may cease splitting too early and declare a node
as terminal when there still existed splits with large decreases in
impurity.

Examples in the Literature

CART
Author(s) L Breiman, J H Friedman, R A Olshen and C J Stone (USA).
Introduction Breiman et al began work on recursive partitioning in the

1970°s. Their work was completed with the publication of the
CART monograph (Breiman et al, 1984). The purpose of the
algorithm had the dual goals of providing a set of accurate
decision rules in the form of a tree that were easily intepretable
while seeking to solve the problems inherent in some of the
earlier methods of the above type, such as AID and THAID.

Classification/Regression

Standing for Classification and Regression Trees, CART
handles both numeric and categorical response variables. For
comparison with the other methods and simplicity, everything
hencetforth will be described in the classification context only.

Tree Growth:

- Splitting Method

The tree is grown on the whole data set. If, however, the data
set is overly large, a tree can be grown on only a subsample of
the data.

At the root node of the tree, the splitting variable is chosen to
maximise the class purity, that is, as many observations as
possible are from the same class, of the two descendant nodes,
these being the two sets of points that went either left or right
when the chosen variable was split, as well as aiding the future
growth of the tree.

Two ditterent criteria are available in CART to achieve the
above two aims, namely the Gini and twoing splitting criteria.
Breiman et al (1984) have found that the final classification tree
generated is fairly insensitive to the choice of a splitting rule.
The Gini splitting criterion works in the following way.
Suppose at a node t, an object can be assigned to class 1 with
probability p(i/t) while the estimated probability that the object
is in class j is p(j/t), then the estimated probability of
misclassification under the Gini index is
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- Type of Splits

- Costs/Priors

1) =2 pt) p(i/y).

i
The Gini criterion seeks to maximise the function

Ai(s, t) = i(t) - pLi(tp) - PRI(IR)

where p; and pR are the proportion of observations at node t
sent left and right respectively by the split.

The twoing criterion seeks to amalgamate the set of k classes
into two superclasses, Cq and C,. The measure of goodness-of-

split, Ai(s, t), is computed as if it were a two class problem.
“The idea is then, at every node, to select the conglomeration of
classes into two superclasses so that considered as a two-class
problem, the greatest decrease in node impurity is realised”.
(Breiman et al, 1984, p 105). The twoing splitting rule thus
maximises

O(s/t) =p, T IpG/tL) - pA/V1 + pr X 1 pG/R) - pG/D)).
J ]

In general, Breiman et al state that Gini tends to split into one
small pure node and one large impure node, that is, to separate
the classes out one at a time. Breiman et al call this end cut
preterence. In contrast, twoing tavours splits that tend to make
the two descendant nodes as pure as possible in the two
superclasses. ‘It gives strategic splits and informs the user of
class similarities. ... [It] attempts to group together large
numbers of classes that are similar in some characteristic [near
the top of the tree] ... [and] attempts to isolate single classes
[near the bottom of the tree].” (ibid, p 105). The twoing
criterion is in fact the same as the delta cniterion used in THAID
(see Morgan and Messenger, 1973).

CART is a binary recursive partitioning algorithm that sends a
case either left or right. Univariate splits using both ordered
and categorical variables can be carried out as well as linear
combination splits for ordered or quantitative variables only.

Both priors and misclassification costs can be varied and
incorporated into the CART tree building process. Priors can
be varied to take account of samples that are not representative
of the populations from which they came, that is, the class
sample proportions are different from the class proportions in
the population. Misclassification costs can also be varied to
take into account instances whereby it is more serious to
misclassify some class(es) than other class(es). At a node t, the



- Stopping Rules

estimated probability of misclassification using the Gini index
1S

2, C@/p) pG/t) pGirn).

11

The process is terminated only when all nodes that have not yet
been split are pure, or if the node size for all unsplit nodes falls
below a specitied value.

- Node Classification/Prediction

A node is assigned to the class with the largest number of
observations in that node, in the case of priors proportional to
sample size and unit costs. If either priors or costs are varied,
then classification of a node must also take into account the
values of the costs of misclassitication and class priors.

Tree Pruning

It is clear that CART’s stopping rule produces a tree that could
be very large, with an overly optimistic error rate and many of
the splits near the bottom of the tree occurring only because of
noise in the data. To guard against this possibility, CART
employs a backwards recursive node recombination or pruning
algorithm on the completed tree. The algorithm proceeds as
follows. For any subtree T of Tp,,x, Where T ay is the fully
grown tree, define the cost-complexity measure, Ry (T) as

Ro(T) =R(AT) + a L(T)

where R(AT) is the resubstitution estimate of the accuracy of
the subtree, L(T) is the number of terminal nodesin T and ot =2 0

is the complexity parameter. For each value of o find the
subtree T, that minimises R, (T) above. In practice, each
successive pair of descendant nodes is recombined and an
estimate of accuracy is compared for the split/unsplit situations
using the cost-complexity function above. A larger penalty is
assigned to a larger sized tree. If there is no improvement in
accuracy then the two descendant nodes are recombined and
tested for accuracy in the same manner. If there is some
improvement from splitting, this subtree is retained and the
process continues trying to find the next smallest subtree which
produces an increase in accuracy through splitting. The end
result is a sequence of trees with decreasing size and increasing
resubstitution error rate.

A ‘honest’ sized tree can be obtained by either running an
independent test sample down this sequence of subtrees and
selecting the tree having the minimum error rate or using g-fold
cross-validation, 2 < g < n. With cross-validation in the CART
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context, a tree of maximum size is grown in each of the sets of
size (n - (n/g)) and the pruning algorithm is carried out as for
the original sample. Then, each of the g sets of omitted
observations (size = n/g) can be used as an independent test
sample for the sequence of subtrees created by the pruning
algorithm. The sizes of each of the g trees are averaged and the
tree from the learning sample that is closest in size to the
average of the chosen cross-validated trees is then selected.
Breiman et al recommend using a measure of error as well,
whereby

se(R(T)) = (R(D) (1 - R(T))/n) 12

is the standard error estimate for the test sample or cross-
validated error rate R(T). The idea is to choose the smallest tree

within one standard error of R(I). This was recommended to
reduce the size of the decision tree created as it was found that
independent error rate estimates were fairly constant over quite
a wide range of tree sizes.

Validation Procedures

As seen above, test sample validation and cross-validation are
used by CART to seclect the “right-sized” tree. These two
techniques are also used to estimate the true error rate of the
prediction rules obtained.

Interactive Ability

CART by Systat provides an enhanced version of CART that is
more user-friendly than the original. There is some interaction
with a menu system, however a whole tree must be grown
before any alterations can be made. CART, though, does not
allow you to change the splitting variable at an intermediate
stage of the tree-growing process.

Graphical Ability

CART by Systat produces files that can be displayed by an
independent graphics program, after the CART analysis has
been carried out. This is not possible in the original CART.

One-Stage Optimality?

Yes.

Missing Values

Missing values are handled by what Breiman et al call surrogate

splits. This is defined as follows. Suppose that s* is the optimal
partition of a node tinto t; and tg. If a split, s;, is carried out on
a variable, x;, then the probability that s; sends the cases in t the

* .
same€ way as S 18



P(s™, 8) =pLL(s". §) + PRR(S™, §))
where

PLL(S", ) = Pt N U )/p(t)

and U'ris the set of observations sent left by s;. A surrogate

split, §j on x;, occurs if
p(s", §;) = max p(s”, s)
_ 5

Breiman et al define a surrogate split as the split on x; that most
accurately predicts the action of s”.

This then leads to the use of surrogate splits with missing
values. If a case has a missing value for the splitting variable,

so that s” is not defined for that case, then for all the non-
missing variables for that case, find the best surrogate split, §;,
and split the case using §;.

Criticisms

CART could be considered as a ‘watershed’ in the development
of tree-based methods in that it veered away from the direct
stopping rules of previous decision tree-based methods and
adopted the approach of ‘grow an overly large tree, then prune
and validate’. In taking this approach it set a benchmark for
future methods to build on, as well as being open to criticism.

Loh and Vanichsetakul (1988) criticise CART on the following

bases:

(1) Based on sort and search principles.

(i1) Typically no more accurate than LDA.

(i11) Too slow it cross-validation is employed.

(iv) Uses only binary splits.

(v) The cross-validation estimate of error is not genuine as it
was also used to select the tree size.

(vi) Produces different results when the variables are
transformed.

Breiman and Friedman (1988) answered all these criticisms as
well as criticising the FACT program of Loh and
Vanichesetakul.

Quinlan (1987) criticises the pruning algorithm employed by
CART. First, he believes that there is no valid reason why the
cost-complexity model should be favoured over any other.
Second, he does not know why the sequence of subtrees
produced should be abandoned after selection of the best tree.
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Lastly, he feels that the use of cross-validation is
computationally expensive.

In an empirical study using a wide variety of data sets,
comparing a number of tree-based as well as statistical
algorithms and neural networks, Feng et al (1993) found that
CART performed rather well over all the data sets. They also
found that CART tended to produce the smallest sized trees,
hence the simplest trees. Also on the positive side, “... [the
introduction of] a cost-handling mechanism in the testing phase
(in CART) can make a visible improvement compared to, say,
C4.5”. (ibid, p 51). Feng et al found that CART produced
results much closer to those produced by traditional statistical
algorithms than other tree-based methods. They suggested that
this could be due to the fact that CART incorporates a cost
structure.

On the negative side, they found that CART’s pruning
algorithm was not all that efficient and wrongly assumed that
there was a single global parameter for the amount of pruning to
be done. As well, they found that CART can prune too heavily
if the one standard error rule is used and there is very little noise
in the data. Using the zero standard error rule, however, can
mean that trees are too large if there is noise in the data.

Examples in the Literature

Grajski, K A, Breiman, L, Viano Di Prisco, G and Freeman, W
J (1986). Classification of EEG spatial patterns with tree-
structured methodology: CART, IEEE Transactions on
Biomedical Engineering, 33, pp 1076-1086.

Ildiko, E F and Lanteri, S (1989). Classification models:
discriminant analysis, SIMCA, CART, Chemometrics and
Intelligent Laboratory Systems, S, pp 247-256.

Crawford, S L and Souders, S K (1990). A comparison of two
conceptual clustering algorithms, International Journal of
Pattern Recognition and Artificial Intelligence, 4, pp 409-420.




3.8 C4.5

Author(s)

J R Quinlan (Australia).

Introduction

Published in 1986, C4.5 is a descendant of ID3 (Quinlan, 1979).
It is described by Quinlan et al (1986), p 157, as “... a new
inductive inference tool that is capable of dealing with large
volumes of messy, real-world data”. Unlike ID3, though, the
tree-growing process is followed by a number of pruning
procedures. In addition, a larger range of options and parameter
settings is available in C4.5 than ID3.

Classification/Regression

Handles classification problems only.

Tree Growth:

- Splitting Method

The first stage of the process is very similar to ID3. According
to Quinlan et al (1986), a subset (approximately 10%) of the
learning sample is chosen at random. This subset is known as a
working set. A decision tree is grown on the working set. The
remaining 90% or so of cases in the learning sample are
classified using this decision tree. If all the observations from
the learning sample are correctly classified, then the process
stops and the decision tree is satisfactory. Otherwise, another
set of observations from the learning sample is added to the
working set and a completely new tree is grown.

The gain criterion, as used by ID3, can also be used in C4.5. An
alternative is the gain ratio criterion. If a variable, x;, has v
distinct values then v possible descendant nodes can be found
from splitting on x;. The information measure or ‘correctness of
the answer’, IV(x;) from splitting on x; is found by

v
_ mi+ni mi+ni
IV(XJ)_'E'Im+n 2 m+n

where m and n are number of observations from class 1 and
class 2 respectively, while m; and n; are the number of class 1
and class 2 observations in the ith node. Let the expected
information content from a split on x; be defined as

\% m: + n;
Ex)=3% ml+n1

1=1

IV(x).
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- Type of Splits

- Priors/Costs

- Stopping Rules

The gain in splitting on x; is:

gain(xj) = IV(xj) 2 E(xj).

The gain ratio criterion chooses the variable with the maximum
ratio of gain(xj)/IV(xj) to split on, subject to a number of minor
constants.

Multiway splitting, as in ID3, is carried out. Splitting is done on
every distinct value of the splitting variable. Only univariate
splits are carried out.

No.

The process is halted, when after a few iterations of the tree-
growing process, no decrease in misclassification error rate has
been observed. This would usually occur if there were
inconsistencies in the learning sample.

- Node Classification/Prediction

A node is assigned to the class with the maximum number of
observations in that node.

Tree Pruning

In contrast with Breiman et al (1984), C4.5 uses pessimistic
pruning, to decide tree size. Quinlan (1987), defines the
method as follows. Let T be a subtree of the tree T ,,
containing L(T) terminal nodes and letting >K and >J be the
total number of observations and number of misclassified
observations respectively in subtree T. A pessimistic view of T
is that it will misclassify L= (3J + L(T)/2) out of the XK unseen
cases, with standard error

se(L) =~ f %

The above involves using the continuity correction as in
binomial probabilities. Let E be the number of observations
misclassified by the best terminal node within T. The
pessimistic pruning algorithm replaces T by the best terminal
node whenever L = XJ + L(T)/2 is within the limits of
L +se(L). A number of repetitions of the tree growing and
pruning process is carried out. As the initial working set is
selected purely at random, the same learning sample can give
rise to completely difterent trees, as completely different parts
of the learning sample may be chosen. The pruning process
selects the best trees based on a combination of low
misclassification error and small tree size. Quinlan (1987)
states the following as the two prime advantages of pessimistic
pruning.



(1)  Faster than other pruning methods.

(i1) Does not need a test sample distinct from the learning
sample.

The validity of the second advantage is questionable as some

form of bootstrapping or cross-validation could be used in the

pruning process.

Validation Procedures

Validation of the rules is carried out after the creation of the
decision trees. Validation by an independent test sample is
done by dividing the data into a test sample and a learning
sample before analysis.

Interactive Ability No.
Graphical Ability No.
One-Stage Optimality? Yes:

Missing Values

Either omit observations with missing values from the analysis
or use class sample sizes multiplied by some parameter to
estimate missing values.

Criticisms

Recent studies by Feng et al (1993) and Schwartz et al (1993)
have compared C4.5 with other classification methods.
Schwartz et al found that C4.5 was very robust to noise in the
data, produced sensibly sized trees and provided new insight
into a particular set of data by uncovering important
relationships among the variables. C4.5, however, due most
probably to its creation in the machine learning environment,
has no mechanism for incorporating a cost structure. Schwartz
et al note that C4.5 produced large differences in group
misclassification error rates. Feng et al (1993) carried out a
more thorough study than Schwartz et al. Their results
tentatively showed that C4.5 produced larger trees than CART,
hence produced rules that were biased towards the learning
sample. They note “[r]eliability is negatively related to the
difference between [learning] and testing accuracy” (Feng et al,
1993, p 48). As a tree increases in size, node sample sizes
decrease so rules are being generated from smaller and smaller
sized samples. This makes these rules less reliable. They
conclude by saying “[as] our tests show, even simply
introduc[ing] a cost-handling mechanism in the testing phase (in
CART) can make a visible improvement compared to, say,
C45.
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Examples in the Literature

Quinlan, J R, Compton, P J, Horn, K A and Lazarus, L (1986).
Inductive knowledge acquisition: a case study, in “Applications
of Expert Systems, Volume 17, J R Quinlan (ed), Wokingham:
Addison-Wesley, pp 157-183.

Schatter, C (1993). Selecting a classification method by cross-
validation, Personal Communication.

3.9 FACT
Author(s) W Y Loh (USA) and N Vanichsetakul (Thailand).
Introduction Published by Loh and Vanichsetakul in 1988 at the University
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of Wisconsin, the full title of the program is Fast Algorithm for
Classification Trees. The goal of the procedure is an algorithm
sharing the best features of LDA and CART, namely the speed
of linear techniques and the readily comprehendable structure of
decision trees.

Classification/Regression

FACT deals with categorical dependent variables only.

Tree Growth:

- Splitting Method

The tree 1s grown on the whole data set.

Three splitting algorithms are used by FACT. The first deals
with univariate splits. Univariate F-ratios for variable selection
are used at each node, to obtain the variable with the highest F-
ratio for splitting, and then carrying out LDA on the selected
variable to partition the co-ordinate axis. If the largest F-ratio
of between to within-class variance is less than a specitied
threshold, Fq, no split is formed and the node is declared

terminal.

Linear combination splits can also be generated by FACT using
principal component analysis of the correlation matrix at each
node. Then, LDA is carried out on the scores of the m largest
principal components with m depending on user input. Loh and
Vanichsetakul (1988) prefer linear combination splits over
univariate splits.

A third method of splitting can be used whenever spherical
symmetry is detected in a node, whereby univariate and linear
combinations would be ineffective. Polar coordinate splits
solve this problem, which involves transforming the best



- Type of Splits

- Priors/Costs

- Stopping Rules

splitting variable x; after subtracting the mean y; from each
observation yj;, and splitting on the resulting transformation,
where y;; is the ith principal component score for the jth
observation.

Multiway splitting can be used by FACT, dividing a node into
two, three or more descendant nodes. As mentioned previously,
splitting can be carried out using only one variable at a time, or
a linear combination of the variables.

As FACT uses LDA to split each node, both ditferent priors and
cost matrices can be incorporated into the tree building process.

A direct stopping rule is used to determine tree size. Splitting is
stopped if the error rate found from resubstituting the original
sample does not decrease with splitting or the node size falls
below a certain value.

- Node Classification/Prediction

A node is assigned to the class with the largest number of
observations in that node, unless priors and/or costs are altered.

Tree Pruning

No.

Validation Procedures

The final decision tree generated in FACT can be validated by
g-tfold cross-validation, 2 < g < 25.

Interactive Ability

No.

Graphical Ability

Draws trees using Splus functions.

One-Stage Optimality?

. Yes.

Missing Values

Missing values are replaced by class means estimated from non-
missing values in the learning sample.

Criticisms

The principal criticisms of FACT appeared in Breiman and
Friedman (1988). They were:

The authors of CART, in Breiman and Friedman (1988), regard
FACT as a step back in the evolution of binary decision trees.
Breiman and Friedman criticise FACT on the following
grounds.
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(i) The principal motivation for FACT is computational.
Running time is sacrificed for accuracy and simplicity.

(i) Linear combination splits are not better than univariate
splits. In most cases where recursive partitioning has
performed better than traditional parametric methods it
has been through univariate splits.

(111) Top-down stopping rules, as used in AID, THAID, etc,
were one of the main reasons why the above methods
were not really recognised. “The optimal-complexity tree
pruning algorithm (based on cross-validatory choice)
implemented in CART is probably the most important
contribution of Breiman et al (1984).” (Breiman and
Friedman, 1988, p 726).

(iv) FACT cannot handle categorical variables in a clean and
elegant way.

(v) FACT is not invariant under transformations of variables.

(vi) There are no surrogate variables to handle missing values.

Examples in the Literature Wolberg, W H, Tanner, M A, Loh, W Y and Vanichsetakul, N

(1987). Statistical approach to fine needle aspiration diagnosis
of breast masses, Acta Cytologica, 31, pp 731-741.

3.10 KnowledgeSeeker
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Author(s)

B de Ville, E Suen and D Biggs (Canada).

Introduction

Released commercially in 1989, KnowledgeSeeker is a decision
tree package that according to its authors, ““... mine[s] a database
for its critical decision-making and problem-solving
information” (de Ville, 1990, p 30). The results are presented in
a graphical display with an easy-to-use interactive ability which
“... provides both end users and specialists with high levels of
interaction of accurate, illuminating and reliable decision-
making information and knowledge based rules” (Ibid, p 30).

Classification/Regression

Both numeric and categorical response variables can be
handled. For comparison with the other methods and
simplicity, everything henceforth will be described in the
classification context only.




Tree Growth:

- Splitting Method

- Type of Splits

- Costs/Priors

- Stopping Rules

The tree is grown on the whole data set.

KnowledgeSeeker seeks to overcome the problems inherent in
AID and ID3 by using a significance testing approach to
splitting as used in the CHAID program (Kass, 1980). Two
alternatives exist for splitting using the significance testing
approach. The first uses exhaustive partitioning, as in CART,
searching over all possible combinations of values of every

variable to find the split which maximises the 2 statistic with
respect to the class variable. This method is guaranteed to find
the optimal split for the data at hand based on statistical
inference. The second approach is to use a heuristic clustering
technique. Values of a particular variable are grouped with one
another on the basis of their similarity in the response variable.
This merging of values continues until no further merging is
significant at a specified level of significance. Once values are
merged, they can be split again using a more stringent level of
significance. This approach is not optimal, but de Ville (1990)
regards it as intuitive and appealing.

Since the most alike values of a particular predictor are
clustered together, multiple branches can accrue from the same
node. That is, multiway partitioning 1is used by
KnowledgeSeeker. Splits are carried out on only one variable
at a time.

No.

Splitting is stopped if either:

(1) Node size falls below a certain value.

(11) The optimal split on a predictor at a particular node

does not exceed a specified significance level.

- Node Classification/Prediction

A node is assigned to the class with the largest number of
observations in that node.

Tree Pruning

According to de Ville (1990), KnowledgeSeeker supports both
validation and tree pruning methods, that either verify the
decision tree or which rate the quality of new branches on the
decision tree and truncate them if its quality fails to pass a
certain threshold valve. In the literature of decision tree
methods, the above is NOT a pruning method, but rather a set of
tests used in the tree growing process. Thus KnowledgeSeeker,
like CHAID, its closest ancestor, does not have a tree pruning
method.
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Validation Procedures

Version 2.0 of KnowledgeSeeker does incorporate a validation
procedure whereby part of the data is used to grow the tree
while the other part of the data is used to test the rules created.
It is relatively quick and easy to divide the data in two and use
each half in turn as a learning sample and a test sample.
Unfortunately, the latest version (2.1) of KnowledgeSeeker
does not contain any validation procedure.

Interactive Ability

With the click of a mouse button, the user can investigate other
possible partitionings of the decision tree at every step of the
tree growing process. KnowledgeSeeker automatically
calculates the best alternate splits at every node, so the user can
examine the effects on the tree by changing from the best split
to the best alternate/second best alternate split etc, so as to “...
correspondingly mould the creation of the decision tree or rule
base to support their understanding of the problem area and
decision making task at hand” (de Ville, 1990, p 30). In
addition, the user has the choice of either growing the tree
automatically or growing it on a node-by-node (stepwise) basis.
All operations are started by the use of a pull-down menu.

Graphical Ability

The graphical display of the tree works in unison with the tree
building process. As a node is split into a number of sub-nodes,
the results are displayed immediately on the screen by means of
a decision tree. The user can interrupt the process to investigate
the current state of the tree and then continue at the point where
splitting was ceased. The level of detail about each node and
each split carried out can also be altered.

One-Stage Optimality?

KnowledgeSecker is, in theory, one-stage optimal. In practice,
however, it is relatively quick and easy to investigate the effects
on the tree of changing the partition of a particular node to one
of the other significant partitions.

Missing Values

KnowledgeSeeker handles missing values in two difterent

ways:
(1) They are excluded from the decision tree growing
process.

(11) They are treated as an additional category of a variable,

and so can be combined with the categories that they most
resemble.




Criticisms

Very few, if any, reviews of KnowledgeSeeker have appeared
in the literature. Biggs et al (1991) conducted some simulation
studies with different significance levels. They found that
KnowledgeSeeker can confidently be used with either small or
large data sets involving categorical predictors and a response.
They also found that the same confidence applied with
continuous responses, provided that the response was
approximately normally distributed with roughly equal
variances.

One major criticism that could be made of KnowledgeSeeker is
that it moves away from any form of validation of the results,
by independent test samples. As Breiman et al (1984) state, the
use of the resubstitution estimate of error rate as an estimate of
the true error rate can give an overly optimistic picture of the set
of decision rules constructed. The omission of a validation
procedure goes against current statistical practice in the decision
tree field and even contradicts what was written in de Ville
(1990). In a personal communication, de Ville (1994) affirms
that the forthcoming version of KnowledgeSeeker does support
a hold back sample and validation facility.

Examples in the Literature

3.11 Splus Trees ()

Author(s)

L Clark (USA) and D Pregibon (Canada).

Introduction

Developed in 1991 using the Splus language to carry out a
CART-like decision tree modelling method. Of all the decision
tree-based methods, the Splus tree routines are the closest to
those used by CART with binary recursive partitioning, pruning
and cross-validation.

Classification/Regression

Splus trees() handles both categorical and numeric dependent
variables hence can be used for classification and regression
problems. For comparison with the other methods and
simplicity, everything henceforth will be described in the
classification context only.
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Tree Growth:

- Splitting Method

- Type of Splits
- Priors/Costs

- Stopping Rules

The tree 1s grown on the whole data set.

The deviance function for an observation yj; is defined as (Clark
and Pregibon, 1992).

K
D(k;, y;) = -2 _Zl yij log(n)
J:

that is, negative two times the log-likelihood function, where Yi
denotes the probability that the ith response falls in jth class.

At a given node, the mean parameter L is constant for all
observations. The maximum likelihood (or minimum deviance)

estimate of {1 is given by the node proportions. The deviance of
a node i1s defined as the sum of the deviances of all the

observations in the node, D(f1; y) = > D(f; y;). A node where
all the observations belong to the same class will have a
deviance of zero.

Splitting is achieved by comparing the deviance of the current

node to that of the two descendant nodes, where the combined
deviance of the two descendant nodes is

D(AL, AR: Y) =§. D(iy; y) +g, D(iR; y)
and the split that maximises

AD =D(f; y) - D(L, AR: ¥)
1s the split used at the given node.
Only binary splits are used, and only on one variable at a time.
No.
Splitting is stopped by one or two different rules. The first sets
a minimum node size below which splitting cannot be done
while the second stops splitting if the ratio of deviances

between a tree with r terminal nodes and the root node is less
than some threshold value.

- Node Classification/Prediction

A node is assigned to the class with the largest number of
observations in that node.




Tree Pruning

As with CART, an overly large tree, biased towards the learning
sample, can be grown by Splus trees(). The next step is to
apply a pruning procedure that determines a nested sequence of
subtrees of the original tree by cutting off branches containing
relatively unimportant splits. This is achieved by means of a
cost-complexity measure

Dy (T) = D(T) + a L(T)

where Dg(T) is deviance of the subtree T, size L(T) is the

number of terminal nodes contained in T and o is the cost-
complexity parameter. By default, the procedure produces a
sequence of subtrees that minimise the cost-complexity
measure. Note that this algorithm is very similar to the one
used by CART, except that CART uses a measure of
misclassitication error rate rather than deviance.

A similar procedure used by Splus trees() is the shrink-tree()
function which determines a sequence of subtrees from the
original tree that differ in their fitted values. The function uses
the recursion relation

§(node) = a(y(node)) + (1-ct) §(parent)

where y(node) is the usual fitted value for each node and
y(parent) is the shrunken fitted value for the node’s parent,
which was in turn obtained in the same way. The technique

basically uses a parameterization of o that optimally shrinks the
descendant nodes to their parent nodes based on the magnitude

of the difference between y(node) and y(parent). The result of a
plot of deviance against size of the subtrees found by shrinking
is a smooth decreasing curve which flattens out as the size of
the subtrees increase.

Validation Procedures

A second approach Splus trees() uses to test the sequence of
subtrees produced by either pruning or shrinking, is to use g-
fold cross-validation, 2 < g < n, to select the tree with the
minimum cross-validated deviance rather than the minimum
error rate. No standard error rule is used by Splus trees().
Thus, like CART, the decision tree that is produced should be
relatively robust, giving a set of rules that are valid when
applied to another set of data from the same population.
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Interactive Ability

Splus trees() has an option to allow the user to examine the
goodness of split for each variable at a particular node. This
information is conveyed by means of a scatter plot for
categorical variables and a high density bar graph for numeric
predictors. The user is able to see what variable (and value(s)
of that variable) is the best discriminator of the class variable.
In order to change the splitting variable, however, from that
chosen by the splitting algorithm,.the edit.tree() function is
called with the variable to be split and its value explicitly stated.

Graphical Ability

Trees can be drawn and labelled through Splus graphics. Either
the use of a mouse or Splus commands can edit the tree,
examine splits and cxamine the distribution of the classes in the
terminal nodes.

One-Stage Optimality?

The method is one-stage optimal examining only the best splits
at a current node. As seen above, though, the splitting variable
at a particular node can easily be changed but a new tree cannot
be grown after changing the splitting variable.

Missing Values

The function na.tree.replace() is used to handle missing values
in Splus trees(). The function creates a new level for any
variable containing missing values, coded as ‘NA’. Numeric
predictors are first grouped into c categories. Clark and
Pregibon (1992) describe how missing values are predicted as
tollows:

The approach we adopt is that once an NA is detected
while dropping a (new) observation down a fitted tree, the
observation ‘stops’ at that point where the observation is
required to continue the path down the tree. This is
equivalent to sending an observation down both sides of
any split requiring the missing value and taking the
weighted average of the vector of predictions in the
resulting set of terminal nodes.

Criticisms

Many of the criticism3 levelled at CART would also apply to
Splus trees(). However, “([tthe S computing language ... is
currently one of the most developed interactive programming
environments for data analysis and graphics”. (Le Blanc and
Crowley, 1993, p 466). The interactive facilities that Splus
trees() has appears to give it a distinct advantage over CART.
As Clark and Pregibon (1992), p 415 state *“[o]Jur recommended
approach to tree building is far less automatic than that provided
by other software for the same purpose, as the unbundling of
procedures for growing, displaying and challenging trees
requires user initiation in all phases”. Perhaps one other



criticism of Splus trees() is that the method requires an adequate
knowledge of the Splus language, which is not menu-driven nor
user-triendly.

Examples in the Literature

Bradford, E (1993). Tree-based models in S, New Zealand
Statistician, 28, pp 36-51.

Morton, S C (1992). Personal crunching: new advances in
statistical dendrology, Chance, S, pp 76-79.

3.12 IND
Author(s) W Buntine (Australia).
Introduction Introduced in 1991, the technique tries to combine the

simplicity of decision tree rules with the power of Bayesian
methods. Bayesian methods are used for splitting, smoothing
and tree averaging. “IND provides a potentially bewildering
number of options to allow the user to precisely control how
data is interpreted, how trees are grown and tested, and how
results are displayed” (Buntine and Caruana, 1993, p 1-4). As
well, IND has the ability to simulate the CART and C4.5 tree-
based methods, or follow a minimum message length idea such
as that used in Wallace and Patrick (1993), or indeed the newly
developed decision graph approach of Oliver (1993).

Classification/Regression

Used only for classification.

Tree Growth:

- Splitting Method

The tree is grown on the whole data set.

IND can choose from a number of different criteria when
evaluating the quality of ditferent splits or tests. For example
the Gini and twoing splitting criterion (see Section 3.7) can be
used or the gain ratio criterion, as used with C4.5 (see Section
3.8). Buntine recommends the use of Bayesian splitting which
evaluates each possible split of a particular node into several
sub-nodes.

The Bayesian estimate of the posterior probability of each

possible split being correct is then evaluated, with the split
producing the maximum posterior probability being carried out.
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- Type of Splits

- Priors/Costs

- Stopping Rules

Multiway splitting is used, splitting on each distinct value of a
variable. Only univariate splits are carried out.

In the Bayesian mode, “class priors” in the CART sense of the
word, do not exist. The algorithm incorporates priors but these
are Bayesian prior probabilities of the class probabilities in each
terminal node prior to seeing any data.

IND has cost structures. As the technique is Bayesian, the
incorporation of priors is trivial. The tree returns a class
probability vector. The cost vector is then combined with that
so that a minimum cost decision can be made. It’s a simple
add-on to the tree interpretation routine.

Splitting stops when the quality measure above for the best split
at a particular node fails to exceed a prespecified criterion.

- Node Classification/Prediction

It classification is not determined by cost, then each terminal
node is assigned to the class with the maximum probability
within the terminal node. If costs are incorporated into the tree
growing process then the terminal node is assigned to the
minimum cost class.

Tree Pruning

IND adopts a Bayesian approach to pruning, which uses a
smoothing technique. The usual approach is to find the class
probabilities of observations in the terminal nodes. The
smoothing approach also takes into account the class probability
vectors for all the intermediate (decision) nodes en route to the
terminal nodes. The resultant final tree may have widely
differing class probabilities for the terminal nodes. If the class
probabilities of two or more terminal nodes are similar, and
come from the same parent, they can be pruned upwards.

Validation Procedures

One has to divide the data into a learning sample and a test
sample before the tree growing process is begun. A routine
exists in IND to carry this out. In a personal communication,
Buntine (1993) recommends growing the tree on the full data
set and believes that if you want to produce the best predictions
possible, all of the data should be used to grow the tree, as per
standard Bayesian theory. As several different class probability
trees are grown for each data set, the weighted average of the
class probability vectors each tree assigns to an observation can
be taken. This is the Bayesian averaging approach which
Buntine favours instead of learning/test samples.




Interactive Ability

Advanced features allow the user to interactively search for the
best splits and control the tree-growing process.

Graphical Ability

IND contains a graphical display routine that is used to display
the tree classifiers in various forms.

One-Stage Optimality?

No. The method encompasses an N-ply lookahead facility,
whereby not only are the best splits examined at the current
node, but also how the resulting descendant nodes and their
sons should be split? For example, a 2-ply lookahead scheme
would search for the best split at the current node as well as the
best split at the resulting son nodes. This may lead the user to
find that the so-called ‘best’ split of the current node was not
the optimal split in terms of future tree development, as this
variable may not interact with any other variables in the data
set. A ‘lesser’ split may in fact lead to a greater reduction in
misclassification in the next stage of tree development. The N-
ply lookahead facility allows the user to uncover such a
structure in the data.

Missing Values

Missing values are handled using Quinlan’s preferred strategy.
That is, IND sends a case down each branch with the proportion
found in the learning sample at that node. In eftect, each case
with missing vanables is split into a number of parts, with the
largest part going down the branch where most other cases have
gone. Otherwise, a routine exists to send a case down the
branch of the tree most commonly taken by other examples.

Criticisms

IND is a relatively new method so there has yet to be an article
either criticising or praising IND in the literature. It would
perhaps be criticised for having no mechanism to incorporate
“class priors” in the CART sense of the word. Buntine (1993)
tfeels that the main criticism of IND is that he hasn’t optimised
to handle all those important real-world things like real-valued
splits, which can be done, but without much thought.

Examples in the Literature

61



3.13 SUMMARY TABLE COMPARING THE TEN TREE-BASED METHODS

Attribute AID THAID 1D3 CHAID CART
Author(s) J N Morgan J N Morgan J R Quinlan G V Kass L Breiman
J A Sonquist R C Messenger J H Friedman
R A Olshen and C J Stone
Introduction 1963 1973 1979 1980 1984
Classification/Regression Regression Classification Classification Classification Both

Tree Growth

- Splitting Method

- Type of Splits
- Costs/Priors
- Stopping Rules

Uses all the data.

Maximum between to
within-group variance.

Binary/US.
No.
Direct stopping.

Uses all the data.

Theta or delta splitting
criterion,

Binary/US.
No.
Direct stopping.

Uses a subsample of the
data.

Maximisation of the gain
criterion.

Multiway/US.

No.

All cases in the learmming
sample are correctly
classified.

Uses all the data.

Maximising the X2
statistic of grouped
categories.
Muttiway/US.

No.

No significant splits.

Uses either all or a
subsample of the data.
Gini or twoing splitting
criterion.

Binary/US or LC.

Yes.

All nodes are pure to one
class.

- Node Classlfication/Prediction Average value of the Class with largest number | As for THAID. As for THAID. As for THAID after
cases in the terminal of observations in the accounting for costs and
node. node. priors.

Tree Pruning No No No No Cost-Complexity

Validation Procedures No No No No Yes

Interactive Ability No No No Yes Yes/No

Graphical Ability No No No Yes Yes

One-Stage Optimal? Yes Yes Yes Yes Yes

Missing Values Estimated using class Estimated using class Estimated using Omitted Estimated using
means. means. class proportions surrogate splits

Criticisms * Produces overly large | * Produces overly large |+ Does not know when to | No validation of the * Instability of cost-

trees.

* Too dependent on sizes
of stopping rules.

* No validation of
results.

trees.

* Too dependent on sizes
of stopping rules.

* No validation of
results.

stop.
¢ No validation of the
results.

results.

complexity pruning.

* Tree size affected too
much by the standard
error rule.




TABLE 3.13 (cont’d)

incorporating a cost
structure.

* Tends to produce overly
large trees.

simple and accurate.

* Direct stopping rules arc
used.

* Not robust to non-
normality.

results.

complexity pruning.

Attribute C4.5 FACT Knowledge Splus Tree(s) IND
Seeker
Author(s) J R Quinlan WY Loh B de Ville 1. Clark W Buntine
N Vanichsetakul I Suen D Pregibon
D Biggs
Introduction 1986 1988 1989 1991 1991
Classification/ Classification Classification Both Both Classification
| Regression

Tree Growth Uses a sub-sample of the | Uses all the data. Uses all the data. Uses all the data. Uses all the data.

data.

- Splitting Method Maximisation of the gain | Discriminant analysis. Maximising the %2 Likelihood ratio statistic. | Quality measure.

ratio criterion. statistic of grouped
categorics.

- Type of Splits Multiway/US. Multiway/US or LC. Multiway/US. Binary/US. Binary/US.

- Costs/Priors No. Yes. No. No. Yes/No.

- Stopping Rules Direct stopping. Direct stopping. No significant splits. Deviance below a certain | Quality measure below a

value. certain value.

- Node Classification/Prediction As for THAID. As for CART. As for THAID. As for THAID. Maximum class
probabilities after
accounting for cost.

Tree Pruning Pessimistic No No Cost-complexity Bayesian

with deviances

Validation Yes Yes No Yes Yes

Procedures

Interactive No No Yes Yes Yes

Ability

Graphical No Yes Yes Yes Yes

Ability

One-Stage Yes Yes Yes/No Yes No

Optimal?

Missing Estimated using Estimated using Creation of a Creation of a Estimated using class

Values class proportions class means new category new category proportions

Criticisms * No mechanism for * Decision rules not * No validation of the * Instability of cost- e No mechanism for

incorporating priors
structure

* Notdesigned for real-
valued splits.







4.

4.1

4.2

SIMULATION STUDIES INVOLVING CONTINUOUS DATA

INTRODUCTION

Data sets involving distinct groups of populations arise in many disciplines, including the
social sciences, business and medicine. Multivariate data sets are often not easy to analyse,
so it is important that the method should be both powerful and easy to understand. In the
classification context, the prediction rule should be accurate, that is have a low, unbiased

errorrate, yet be as easy to interpret as possible.

In Section 4.2, through a literature survey, an investigation is carried out into the various

types of error rate estimates that are used in the field of classification.

Next, in Sections 4.3 and 4.4, a comparison of four classification methods from the domains
of traditional discrimination and tree-based methods is done. LDA and QDA are the two
most commonly used classification methods in statistics to handle the above type of data.
These two parametric techniques are compared and contrasted with two tree-based methods,
CART and FACT. (See Sections 2.2, 2.3, 3.7 and 3.9 for details on LDA, QDA, CART and
FACT respectively.)

This chapter compares both the accuracy and reliability of these four classification methods in
classifying individuals into two multivariate populations under certain combinations of
parameters. Three types of data distributions will be investigated, involving normal,
lognormal and standardised lognormal. The robustness of each method to a change in the

value of the a priori probabilities of class membership will also be determined.

ERROR RATES

A great deal has been written on the subject of the error rates in classification analysis over
the past three or more decades. In this section, a review of the literature on error rates is
given as well as a formal definition of each of the error rate estimators, including those to be
used later in this chapter. Extensive reviews of error rate estimation may be found in Kanal
(1974), Toussaint (1974), Lachenbruch (1975), Efron (1982, 1983), Hand (1986) and
McLachlan (1986, 1987) among others.

65



In any classification problem, the object is to assign a random observation x to one of k
populations, Iy, ..., 1. Paraphrasing Toussaint (1974), one of the most important problems

with the use of any classification method is estimating the probability of misclassification.

The optimal error rate of any classifier is the Bayes error rate, which is defined as
R(B) = 1 - [ max; [fi(x) m;] dx (4.2.1)

where fj(x) is the class conditional density function for II; and =; is the a priori probability of
belonging to I1;. According to Hand (1986), p 335, ““[this] is the minimum possible error rate

12

given a set of [variables).” This is the error rate that would result if the class conditional

density functions were known.
The actual or true error rate, R(T), is defined as the expected probability of misclassification
when the class conditional density functions are known and the Bayes rule is not used. In

practice, this is the error rate that would result when applying the classifier to an infinite test
sample. In notation form, and assuming that m; = 7

: 1 .
R(T) =% [ oz [ B dx (4.2.2)
where Al = {x: Dix) = [x~ % X1 + X)) S‘l(il - X7) > 0} and with,

A10A2=¢.

The probability that x falls in A, given that x € I1, is

D) - D) -D(Pz)} B d,[ D(py)
vV Wl LNV

Pr[D(x) >0 1II;] = Pr[ } (4.2.3)

where D(x) is as defined in (2.2.5) and

V=X -Xp) $71T 8°1(x; - Xp).



It follows that

Pr(D(x) <0 11I;) = (D[ 'D\!(f:_l)] 4.2.4)
so that
R(T):é—d)[:%(_sﬁ]-;-%tb{gj—%z—)] (4.2.5)

Realistically, the samples at hand are always finite and the class conditional density functions
are often not known. Therefore, another measure of classification error is needed to be used

for a classification rule. One such measure is the expected error
R(E) = E[R(T)] (4.2.6)

for learning samples of a given size. In practice, however, the amount of data at hand does

not allow for the estimation of R(T). Hence, another estimate of R(T) is needed.

Two approaches are available for the estimation of R(T). The first uses functions which
combine the sample estimates of the class means and covariances with the number of
variables and sample size in a data setto estimate the error rate. These methods are known as
parametric error rate estimators. Examples of these types of estimators are the L estimator
of Lachenbruch (1967), the M estimator of McLachlan (1974), and the NS and NS*
smoothing estimators of Snapinn and Knoke (1985, 1988). These methods have been shown
to provide accurate, unbiased estimates of the actual error rate as seen in their use with LDA
(Prada Sanchez and Otero Cepeda, 1989 and Ganeshanandam and Krzanowski, 1990) and
with stepwise discriminant analysis (Snapinn and Knoke, 1989) in the case of normal or other
symmetric distributions, such as the uniform distribution. It has been noted that *“‘caution
should be exercised with the use of the parametric estimators of the error rates as they may
not be reliable under departures from the parametric model adopted” (McLachlan, 1986, p
271.) Indeed, recent studies by Snapinn and Knoke (1989) and Konishi and Honda (1990)
have shown that these parametric estimators do not perform well with skewed distributions.
Konishi and Honda found that parametric estimators, in particular, the M estimator above,
should be applied with extreme care in the case of skewed distributions such as the
lognormal. Snapinn and Knoke found that the smoothed bootstrap estimator deteriorated

markedly from the normal case, when used in stepwise discriminant analysis for lognormal
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distributions. Since simulation studies in this chapter involve lognormal data, parametric

error rate estimators will not be used.

The second approach available for the estimation of the actual error rate are non-parametric
error rate estimators, where no assumptions about f;(x) are required. All such methods can
be called error count estimates in that they involve counting the number of falsely classified

observations determined by the classification rules.

Hand (1986), describes error rate estimation as a relatively simple process if in addition to the
data set [(xq, ..., Xp)] from which the classifier was designed, there is available an independent
test set of observations [(Xy, ..., X,)] sampled from the same distribution. This error rate
estimator is defined as the test sample estimate of R(T), R(TS). In practice however, there is
very seldom any additional data available. If there is. then the test set is often small and
although providing an unbiased estimate of R(T), it has large variance. That is, if many test
samples of small size are obtained and a classitier is trained on these then the individual test
sample error rates will vary between being pessimistically and optimistically biased, though

most probably average out to zero.

A second, more feasible approach is to train the classitier on the learning sample L = (xy, ...,
xp) from which the classitier was formed. This estimator, R(A), is known as the apparent or
resubstitution error rate estimator. Authors such as Lachenbruch and Mickey (1968), among
others, have shown that this method is optimistically biased in LDA in that it almost always
underestimates R(T). Efron (1983), ofters an explanation for this phenomenon. R(A) is the
error rate for points zero distance from the learning set while R(T) is the expected error rate
for a new observation, xg, which may be some distance away from the learning set. If the
error rate of the prediction rule increases as the point being predicted moves away from L
then R(A) will underestimate R(T). In other words, it is unlikely that all future observations
will lie within the range of values spanned by L or be distributed in the same manner as L.
The classification rules are designed to optimise the error rate for all observations in L.
Theretore, a test sample which either has values outside the range of the values in L or not

distributed the same way as L will have a larger error rate than R(A).



A third non-parametric method of estimating R(T) is the hold out error rate estimator, R(H).
This is found by dividing the data set into two and using one part as the learning sample to
construct the classifier and the other part as the test sample. As with R(TS), the test sample
estimate of the error rate, R(H) has large variability when n is small. As well *“... it is an
inefficient use of data - one would like to use all the available data to design the best possible
classifier” (Hand, 1986, p 336). Toussaint (1974), quotes numerous studies which have found

R(H) to have a pessimistic bias in estimating R(T).

The rotation method makes more efficient use of the data. The idea is to divide the data into
two halves and use each half in turn as a learning sample and a test sample. By averaging the
two test sample error rate estimates the rotation error rate estimate, R(ROT), is obtained.
Although making a more efficient use of the data, Toussaint (1974) still found this method to

be pessimistically biased.

The above idea was extended to divide the data into g mutually and randomly chosen sets of
data of size n/g. The method of g-fold cross-validation omits each of the g groups in turn
from the data set, calculates a classification rule based on the remaining (n - (n/g))
observations and classifies the omitted group of observations. Then it counts the total number
of misclassified observations divided by the size of the data set to get an estimate of the error
rate. Toussaint (1974), refers to this as the [1 method. When g = 2, that is, two-fold cross-
validation, this is the rotation method. When g = n, this is the n-fold cross-validation error

estimator, R(CV), attributed to Lachenbruch (1967), where, in the case of two populations

2 2
R(CV) = ~Zl '21 nij/ni (427)
1=] )=

This method is also known as the ‘leave-one-out’ or U estimate. Studies undertaken by
numerous authors including Efron (1983) have shown that n-fold cross-validation has large
variance. Thus, although R(CV) may be an unbiased estimate, the contidence with which the

user can expect R(CV) for his/her sample to approach R(T) is not great.
The jackknife error rate estimate is due to Quenouille (1949). The method involves omitting

each observation in tum from the learning sample and to obtain the apparent error rate for the

learning sample with the jth observation omitted, R;(A), so that
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I e
n 2 B® @28
J:

*
R;(A)=
so that Wy, the jackknife estimate of the bias of R(A), is

Wy = (1) [R}(A) - R(A)] (4.2.9)

leading to the jackknife estimate of the error rate
R()=nR(A) - (n-1) Ry (A) (4.2.10)

Another approach is to use the estimated posterior probabilities of class membership, 6;(x),

where
k
8;(x) = 7; £;(x) ![ zlnm fm(x)] (4.2.11)
m=

1s the posterior probability that x belongs to I'l;. An observation, x, is assigned to IT; if
8;(x) = maxp, 6,(x). (4.2.12)

This naturally leads to the posterior probability error rate estimator, R(PP), where each
observation is not assigned outright to a population; rather it is given an estimated probability

of membership to each population. This estimator takes the form

n

R(PP) = ¥ min Gm(xj)/n (4.2.13)
J=1

Glick (1978) has shown this estimator to be optimistically biased, though with smaller

variability than R(A). Ganesalingam and Lynn (1991) have considered posterior probability

error rate estimation in the context of a mixture of two normal populations. They also found

that R(PP) generally underestimated R(T).



A recent development in the field of error rate estimation is the bootstrap error rate estimator,
R(B), due to Efron (1979) and developed turther in Efron (1982, 1983). The idea is as
follows. Let x; be a random observation from C;j, and let xg be a new observation that is to be
classified, belonging to Cy. Let the x;’s and x( be from the entire population mixture
distribution, F(x). Letting Co be the predicted class of x( using the classifier constructed

from L. Efron (1983) defines a loss function

Q(Cq, Cp) = {? glsceﬂ =Cq (4.2.14)

Theretore, the actual error rate of the classitication rule is
R(T) = E[Q(Cy. Cp)] (4.2.15)

while the apparent error rate is

R(A) =% QC;. G (4.2.136

1

e

The true bias involved in using R(A) as an estimate of R(T) is
w =E[R(T) - R(A)] (4.2.17)

If w was known, then an accurate estimate of R(T) could be obtained. In theory, there is no
knowledge of w. Bootstrapping estimation is an attempt to approximate w by calculating Wg,

the bootstrap estimate of the bias involved in using R(A) as an estimate of R(T).

The basic sampling procedure behind bootstrapping is a clever, yet simple idea. In the

% % % a ) .
univariate case, let (xl, Xogs -onr xn) be a random sample of observations drawn with

replacement from L, with weight 1/n placed on each observation in L. This is known as the
bootstrap sample. A classification rule is constructed from the bootstrap sample and the
apparent error rate estimate, R*(A), for the classifier is found. In addition, the cases from L

. . R * %
are classified using the rules generated from (x,, ..., x ). Then
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5 Bl . # .
Wp = j§1 (E “Pjip ) QG;, G) (4.2.18)

* . . ~ . . * * ~

where Pjp 18 the resampled proportion of observations in (x,, ..., X ). Therefore, only
. . * * . . .. 8

observations that are not in (), ... x,) will contribute positively to wy,. B bootstrap samples

are generated in the same way and the Wy, are calculated in the same way for each bootstrap

sample. These are then averaged over the B samples to get the bootstrap estimate of the bias
of R(A), that is

B
Wp= Y W/B = E[R"(T)-R*(A)] (4.2.19)
b=1

so that, R(BOOT), the boostrap bias-corrected estimate of the actual error rate is
R(BOOT) =R(A) + Wp (4.2.20)

Variants on the bootstrap have also been proposed by Efron (1982). These include the
randomised bootstrap whereby empirical bootstrap samples are drawn from L with the
proportion of observations drawn from [J; a preset value. For example, the numbers drawn
from each class could be set to be proportional to class sample sizes. Then if ©t; = 0.6, 60%
of each bootstrap sample would be taken from I1;. Another variant is the double bootstrap
which was designed to correct the observed optimistic bias of the ordinary bootstrap. The
process involves taking another lot ot bootstrap samples to correct the above-mentioned bias

of the ordinary bootstrap.
A third variant i1s the 0.632 estimator, defined as

R(0.632) =0.368 * R(A) + 0.632 * R(¢) (4.2.21)

where R(g) is the average error rate for all observations not in a bootstrap sample over all B
bootstrap samples. The (0.632 estimator was developed by considering the distribution of the
distance & between the point where the classification rule is applied and the closest point in

the learmning sample. It was noted that observations in the bootstrap sample have a high
probability of being instance d = 0 away from observations in L, whereas the reverse would



occur if another independent sample of data from the same distribution was taken. “Their
probability is equal to the probability that the point at which the rule is applied is included in
the bootstrap sample, whichis 1 - (1-1/n)" and tends t0 0.632 as n — «.” (McLachlan, 1987,

p 234.) The bias of R(A) estimated by the 0.632 estimator is

w0632 =0.632 (R(A) - R(g)) (4.2.22)
so that
R(0.632) = R(A) - Wg 632 = 0.368 * R(A) + 0.632 * R(e).

Efron (1983) showed that the asymptotic expansion of R(g) was very similar to the
asymptotic expansion of R(ROT) and that the correlations between R(€) and R(ROT) in the
simulation studies undertaken by him were very high (range 0.86 - 0.98). This implies that

the estimator

R(0.632) = 0.368 * R(A) + 0.632 * R(ROT) (4.2.23)

1s almost the same as (4.2.21). McLachlan (1977), Wernecke, Kalb and Sturzebecher (1980)
and Wernecke and Kalb (1983) have considered similar estimators to (4.2.23). McLachlan
(1977) tried to find the parameter T which lead to the greatest reduction in the bias of the

apparent error rate, whereby
R(1t) =1t * R(GCV) + (1-1) * R(A) (4.2.24)

where 0 £ T < 1 and R(GCV) is the g-fold cross-validation error rate estimate. McLachlan
found that very little weight should be given to R(A), that is, T close to 1, unless G is set to 2,
where T varied from 0.3 to 0.4. Simulation studies undertaken by Chernick, Murthy and
Nealy (1985, 1986) have shown that R(g) is overly pessimistic, as is R(ROT). Therefore, a
weighting function of a pessimistic estimator (R(€) or R(ROT)) and an optimistic estimator

(R(A)) seems a very logical step.

Simulation studies undertaken by Efron (1983), Chernick et al (1985) and Fitzmaurice et al
(1991) with LDA, Gong (1986) with logistic regression and Crawford (1989) with CART
have found that the bootstrap and more particularly the 0.632 estimator are unbiased as well
as having low variability. Rather contradictory results from those reported above were
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obtained by Ganeshanandam and Krzanowski (1990). In a study involving error rate
estimation in two group discriminant analysis, they found that the 0.632 error rate always
estimated the actual error rate in the vicinity of the 0.3 to 0.4 range. This meant that the
method was best when either the Mahalanobis distance between populations or sample size
was small, while estimation of the actual error rate was overly pessimistic for large samples
and/or large Mahalanobis distance between populations. They also found that contrary to
Efron (1983) and others, the n-fold cross-validation estimator, R(CV), performed especially

wel thegh its relative variability did increase as sample size decreased.

4.3 SIMULATION STUDY I

74

4.3.1 Study Plan

Eighty different bimodal probability models were generated by using every possible
combination of five different factors. The five factors used were; the number of variables (p),
total sample size (n), Mahalanobis distance (d), type of distribution (f(x)) and priors-

covariance structure (e). The values of the first four factors, each at two levels, were

p=2,6
n =60, 300
5=23 (4.5.1)

f(.) = normal, lognormal

However, for this study, the lognormal data is transformed to have mean J; and covariance

matrix 2; for I;, by letting

_— Xjj - E(xij) i=1,2, and x;; is lognormal
1) Sd(\”) ’ :

which is lognormal (0, 1).

For Hz,

X2j = Z2j + Haj-



Hence, the distribution is standardized lognormal rather than pure lognormal.

The fifth factor, e, with five levels, had values:

w1 =05 Z1=2,=1 (1)
n =05 Z1=1 Z,=3Z; (2)
n11=025Z1=2,=1 3) (4.3.2)

71 =0.25:Z1=1, Z,=3Z; (4)
71 =0.75:Z1 =1, Zp=3%; (5)

The values of the first three factors were carefully chosen, both from examples in the
literature and to approximate real world data situations. The extreme situations encountered
in this study were at one end, small, bivariate, moderately separated populations while at the

other extreme had large, six-dimensional, well separated populations.

Other authors have used the pure lognormal to compare with the normal in simulation studies.
However, the use of the pure lognormal means that if observations in I1; have a larger mean,
the range of values will be much larger, resulting in a much higher covariance for I1, than for
[1,. Therefore, methods are not only being compared across degree of skewness of a
distribution, but also across covariance structures, which are now different. Lachenbruch et al
(1973) noted this problem but took no action to correct it. The use of the standardised
lognormal distribution, on the other hand, preserves covariance structure but maintains the

degree of skewness.

The values of the fifth factor were based on those used in other authors’ simulation studies.
More extreme covariance differences between populations were considered, for example,
2, = 10Z,, but the present values were chosen to reflect real-world situations.

The effects of the experimental factors on the four classification methods, LDA, QDA, CART
and FACT were investigated, using a split-plot design as employed by Ganeshanandam and
Krzanowski (1990). The experimental factors were given in the experimental factor (main
plot) stratum while the main effect of classification method (R), together with all first and

second-order interactions involving R were contained in the method (sub-plot) stratum. All
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second order interactions and above in the experimental factor stratum and all third order
interactions and above in the method stratum were pooled with the respective error variances.
Individual analyses of the main effects and first order interactions for the four methods were
also carried out in order to compare the effects of the different experimental factors within
each method separately, and also because the mean square errors for each method were found

to be unequal.

In order to obtain an unbiased estimate of the error rate for each run, g-fold cross-validation
was carried out. Ideally it would be desirable to set the value of g = n for all methods, but
using this caused the FACT program to crash on many occasions, due to either a floating
point error or cross-validation samples being too unbalanced or too similar at some node. On
those occasions where n-fold cross-validation was successtful, however, the ten-fold and n-
fold cross-validation error rates were found to be nearly identical. Hence, as suggested by

Loh (1988), the number of cross-validations for FACT was set to ten.

G-fold cross-validation was used by Ildiko and Lanteri (1989), Feng et al (1993) and Schatter
(1993) as a means of comparing various classification methods using real data sets.
Although, as seen in Section 4.2, it was noted by many authors that cross-validation had large
variance for small samples, most of the reported results were for smaller sized samples than

occur here.

4.3.2 Results

The results from the experimental factor stratum of the ANOVA are not of interest in this
study, indicating only if the experimental factors had any effect on the error rates for all
methods considered as a whole. The method stratum, however, gave more relevant results
showing that the R (method) main effect (F = 72.13) and the R * f(x) (method by distribution)
interaction (F = 54.98) were extremely significant although all other first order interactions
were also highly significant with smaller F-ratios (range: F =937 to F = 17.04), exceptR * e
(the interaction of method by priors-covariance structure) which was not significant. Five
second order interactions were also found to be significant, but all except two were only just
significant, those being R * p * f(.), where p is the number of variables (F = 60.01) and R * &
* £(.), where & is the distance between groups (F = 4.24). These results not only showed that
there were differences in error rates between the four methods but also that a comparison of
error rates between the four methods depended on the factors p, n (sample size), & and f(.) as

well as the p * f(.) and & * f(.) interactions.



Tables 4.1 to 4.7 give the means and standard errors of the differences in means for the
computed error rates of the main effects and two most significant first order interactions for
each method, with the method producing the lowest error rate for each factor or interaction
given in bold. Three standard errors for the differences between the means are given below

each table. They are:

The standard error of the difference between the QDA means.
The standard error of the difference between the LDA, CART and FACT means.
The standard error of the difference between QDA and the other three methods.

This was carried out because LDA, CART and FACT had roughly equal mean square errors
from the individual ANOVA’s while QDA had a mean square error roughly twice that of the

other three methods.

It was found that increasing the number of variables increased the error rate for all of the
methods, with the largest effect for the individual ANOVA’s being for FACT (F = 168.22),
with the error rate being 9.9 points larger when p = 6 compared to p = 2. Table 4.1 shows
that CART produced the lowest average error rate, no matter what the value of p, though the
average error estimates for LDA were both within 2.5% of the CART error rates. QDA,
however, was influenced by distribution as well. This will be discussed in a later paragraph

on interactions.

Table 4.1: Means and standard errors of the differences in means of the cross-
validation error rate estimates for each classification method with

respect to the dimension (p)

Level LDA QDA  CART FACT
p=2 0.089 0.096 0.068  0.114
p=6 0.115 0.144 0102 0212

Standard error of the difterence between the QDA means = 0.011

Standard error of the difference between the LDA, CART and FACT means = 0.008

Standard error of the difference between QDA and the other three methods = 0.010

Increasing sample size had the effect of reducing the error rates for all the methods with LDA
having the largest effect for increasing n (F = 94.67). Table 4.2 shows that CART produced
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the lowest average error rate, no matter what the value of n, though as for p, the average error
estimates for LDA were within 2.5% of the CART error rates.

Table 4.2: Means and standard errors of the differences in means of the cross-
validation error rate estimates for each classification method with

respect to the sample size (n)

Level LDA QDA CART FACT
n =60 0.111 0.136 0.101 0.200
n =300 0.093 0.104 0.069 0.126

Standard error of the difterence between the QDA means = 0.011

Standard error of the difference between the LDA, CART and FACT means = 0.008

Standard error of the difference between QDA and the other three methods = 0.010

Increasing the distance between groups also had the effect of reducing the error rates for all
the methods with LDA having the largest eftect for increasing 8 (F = 82.63). Table 4.3 shows
that if 6 = 3, LDA did slightly better than CART, but when & = 2, the average error rate for
LDA was 4% more than that for CART. CART, and to a lesser extent, QDA and FACT,
were also influenced by the distribution. This will be discussed in a later paragraph on

interactions.

Table 4.3: Means and standard errors of the differences in means of the cross-
validation error rate estimates for each classification method with

respect to the distance between groups (3)

Level LDA QDA CART FACT
=12 0.139 0.161 0.097 0.193
5=3 0.065 0.079 0.073 0.133

Standard error o f the difference between the QDA means = 0.011

Standard error of the ditference between the LDA, CART and FACT means = 0.008

Standard error of the difference between QDA and the other three methods = 0.010

The most interesting finding however, was with respect to the distribution of the data set. If
f(.) was lognormal rather than normal the error rate would decrease for LDA, CART and



FACT, whereas for QDA, the error rate would significantly increase (F = 6.35). The LDA
finding does not support Lachenbruch et al (1973), but in that study the pure lognormal
distribution was used. CART was found to be most sensitive to changes in f(.). Table 4.4
shows that when f(.) was normal, QDA produced the lowest error rate, slightly lower than
LDA and moderately lower than CART, but when f(.) was lognormal the average error rate
for CART was at least 5% less than that for LDA, which in turn had a mean error rate at least
5% less than that for QDA. The error rates for some of the methods though were affected by

the dimension and/or distance between the groups.

Table 4.4: Means and standard errors of the differences in means of the cross-
validation error rate estimates for each classification method with

respect to the type of distribution, (f(.))

Level LDA QDhA CART FACT
f(x) = normal 0.121 0.106 0.140 0.200
f(x) = lognormal 0.083 0.134 0.030 0.126

Standard error of the difference between the QDA means = 0.011

Standard error of the difterence between the LDA, CART and FACT means = 0.008

Standard error of the difference between QDA and the other three methods = 0.010

Table 4.5 shows that the error rates for QDA when f(.) was normal were not greatly affected
by the size of p, but when f(.) was lognormal, increasing p almost doubled the error rate for
QDA. QDA did best on all occasions where f(.) was normally distributed, while CART did

appreciably better where f(.) was lognormal.
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Table 4.5: Means and standard errors of the differences in means of the cross-
validation error rate estimates for each classification method with

respect to the dimension-distribution interaction (p * f(.))

Interaction LDA QDA CART FACT
p =2, f(.) = normal 0.112 0.100 0.111 0.151
p =2, f(.) = lognormal 0.066 0.091 0.025 0.077
p =6, f(.) = normal 0.130 0.112 0.169 0.249
p = 6, f(.) = lognormal 0.100 0.176 0.034 0.176

Standard error of the difterence between the QDA means = 0.016
Standard error of the difterence between the LDA, CART and FACT means = 0.011

Standard error of the difterence between QDA and the other three methods = 0.013

Table 4.6 shows that CART, and to a lesser extent, QDA and FACT, were affected more by
f(.) for & = 2 than for = 3. As for the p * f(.) interaction, QDA did best on all occasions

where f(.) was normally distributed, while CART did appreciably better where f(.) was

lognormal.

Table 4.6: Means and standard errors of the differences in means of the cross-
validation error rate estimates for each classification method with

respect to the distance-distribution interaction (5 * f(.))

Interaction LDA QDA CART FACT
6 =2, f(.) = normal 0.160 0.139 0.162 0.238
& =2, f(.) = lognormal 0.118 0.183 0.031 0.148
6 =3, f(.) = normal 0.082 0.073 0.118 0.162
d =3, f(.) = lognormal 0.048 0.085 0.028 0.105

Standard error of the difterence between the QDA means = 0.016
Standard error of the difference between the LDA, CART and FACT means = 0.011

Standard error of the difference between QDA and the other three methods = 0.013

From Tables 4.1 through 4.6 itcan also be seen that the average error rate for FACT exceeded
all others except where f(.) was lognormal and & = 3.



Of the five-level factor, only the fifth level was found to be significant for any method, and
that for LDA only, implying that using LDA on samples which had more observations in the
group with the smallest variance will increase the error rate from the ideal equal priors, equal

variance instance.

Table 4.7 gives the results for the five level factor for completeness, showing that CART
produced the lowest error rate every time, but the differences between the methods only
mirrored the overall differences between the methods, taken over all 80 data sets.

Table 4.7: Means and standard errors of the differences in means of the cross-
validation error rate estimates for each classification method with

respect to the priors-covariance structure (e)

Level LDA QDA CART  FACT
n1=05 Z1=27=1 0.106 0.127 0.099 0.171
m=05 Z1=1 %=3%;  0.100 0.128 0.075 0.166
n1=0.25Z=2;=1 0.086 0.107 0.079 0.160

71 =025Z1=1 =37  0.090 0.114 0.072 0.157
%1-20.95" 3= 1 B9 =35 0.128 0.123 0.100 0.161

Standard error of the difference between the QDA means = 0.017

Standard error of the ditterence between the LDA, CART and FACT means = 0.012

Standard error of the difference between QDA and the other three methods = 0.015

ANOVA'’s were also calculated for the size of the decision trees from CART and FACT on
the experimental factors. On average, a CART tree contained 4.35 terminal nodes with only
increasing p and/or a lognormal data set having any significant influence on the size of the
tree. The average size of a FACT tree also contained 4.35 terminal nodes, but depended on
many factors. For both CART and FACT, various rules were used to limit the size of a tree to
less than ten terminal nodes involving either increasing the size below which a node cannot
be split for both CART and FACT, or selecting the smallest tree within b standard errors, 0 <
b < 2, of the tree with the smallest cross-validated error rate, where the standard error of the

misclassification cost is
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ser(cy) = [R(CV) (1 - R(CV))/ n]03

where n is the size of the data set and R(CV) is as defined earlier. This last rule only applies
for CART.

4.3.3 Summary

In this study, it was found that increasing the dimension significantly increased the error rate
while increasing either sample size or distance between groups both significantly decreased
the error rate for each of the four methods. Using a data set that was lognormally rather than
normally distributed significantly reduced the error rate for each of LDA, CART and FACT,
but increased the error rate when QDA was used. The size of a FACT tree depends on many
different criteria, but CART is only influenced by the distribution, normal or lognormal,

and/or the dimension of the data set.

This study has also shown that CART performs better (on average) than either LDA or QDA
no matter what the sample size or number of variables. LDA performed slightly better on
average than CART when the distance between groups was large and when the data set was
normally distributed. In the latter situation, QDA even outperformed LDA. CART, on the
other hand, performed much better than both LDA and QDA when the distance between
groups was not so large, and moderately better than LD A and considerably better than QDA

when the data set was lognormal.

The differences in error rates between CART and LDA or QDA for the data sets with
different priors and/or covarnance structures, was found to be negligible, whereas for the two
most significant first-order interactions, the dimension * distribution and the distance *
distribution interactions, CART performs best on average except where the data set was
normally distributed for which QDA did best. QDA performed poorly when the distribution
was lognormal though, while FACT had the largest error rate for almost every run,

performing especially badly when there were six variables in the data set.

It can thus be concluded that CART, a tree-based, non-parametric method, will in many cases
perform as well as if not better than the usual parametric methods of classification, LDA and
QDA, constructing a tree that is usually not too large. Only when the distribution of the data
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set is normal or the distance between the popuations is large does either LDA and/or QDA
perform better than CART. From a predictive point of view then, CART is a narrow winner.

Quinlan (1993) noted the distinction between parallel classification problems whereby all the
variables have equal weightings, so that the classification rules depend on all the variables,
and sequential classification problems whereby only a few of the variables contribute to the
classification rules generated. He suggested that connectionist methods such as LDA and
QDA are preferred for parallel classification problems while symbolic methods such as tree-
based procedures are best for sequential problems. In this study, all the data sets were
examples of parallel classification problems, and not suited to CART (and FACT). Hence,
CART has been shown to perform relatively well for classification problems for which it is

not particularly suited.

SIMULATION STUDY II

4.4.1 Study Plan

It was decided, in retrospect, to compare normally distributed data with the pure lognormal,
so that comparisons could be made with the work of other authors (for example, Lachenbruch
et al, 1973 and Chinganda and Subrahmaniam, 1979). This is, in fact, a monotonic
transformation of the variables so the results for CART are invariant under either type of
distribution. In the previous section, each observation was divided by the original class
standard deviations. As the standard deviation for 1, was greater than that for 1y, in the

lognormal case, the rankings of the x;;’s would not remain the same after transformation.

Therefore, another simulation study was carried out using exactly the same probability
models that were used in Section 4.3 except that f(.) was either normal or true lognormal

(without standardization) so that log[f(.)] was normal.

4.4.2 Results

As in Section 4.3, the results from the probability model stratum of the ANOVA are not
useful for this study, indicating only if the probability models had any effect on the error rates
for all methods considered as a whole. The method stratum, however, gave more relevant
results showing that the R(method) main effect (F = 74.57) and the R * f(.) (method by

distribution) interaction (F = 52.45) were extremely large while all other first order
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interactions were highly significant (range: F = 5.66 to 26.19). Five second order interactions
were also found to be significant at the 5% level with four of those interactions also being
significant at the 1% level, those being the interactions of R * p * & where p is the number of
variables and § is the distance between groups, R * p * f(.), R * 8 * f(.) and R * f(.) * e, where
e 1s the prior-covariance structure of the data. Residual mean square for the analysis was
1.35 x 1073, These results showed that a comparison of error rates between the four methods
depended on the factors p, n (sample size), 8, f(.) and e as well as the p * §, p * £(.), & * £())

and f(.) * e interactions.

Tables 4.8 to 4.16 give the means and standard errors of the differences in means for the
computed error rates of the main effects and the four most significant first order interactions
for each method, with the method producing the lowest error rate for each level of the factor
or interaction given in bold. Three standard errors for the differences between means are

given below each table. They are:

The standard error of the difference between the FACT means.
The standard error of the difference between the LDA, QDA and CART means.
The standard error of the difference between FACT and the other three methods.

This was carried out because LDA, QDA and FACT had roughly equal mean square errors
from the individual ANOVA’s while FACT had a mean square error roughly five times that

of the other methods.

It was found that increasing the number of variables increased the error rates for CART and
FACT, with the largest effect being for CART (F = 78.02), whereas for LDA, the error rate
decreased (F = 16.56). There was no real effect on the QDA error rate when increasing p.
Table 4.8 shows that CART produced the lowest average error rate when p = 2 but whenp =
6, QDA did best. Note though that CART and FACT were influenced by distance as well
while LDA and FACT were also intluenced by the distribution.



Table 4.8: Means and standard errors of the difference in means of the cross-
validation error rate estimates for each classification method with

respect to the dimension (p)

Level LDA QDA CART _ FACT
p=2 0.198  0.128 0111  0.174
p=6 0173 0.129 0.169 0231

Standard error of the difference between the FACT means = 0.014
Standard error of the difference between the LDA, QDA and CART means = 0.006

Standard error of the ditference between FACT and the other three methods = 0.011

Increasing sample size had the effect of reducing error rates for CART and FACT, with
CART having the largest effect (F = 22.37), but had no real effect on the error rates for LDA
and QDA. Table 4.9 shows that QDA produced the lowest average error rate when n = 60
while the difterence between CART and QDA was negligible for n = 300.

Table 4.9: Means and standard errors of the difference in means of the cross-
validation error rate estimates for each classification method with

respect to the sample size (n)

Level . IDA QDA  CART  FACT
n = 60 0191 0133 0156 0235
n = 300 0.180  0.125 0.124 _ 0.170

Standard error of the difference between the FACT means = 0.014

Standard error of the difterence between the LDA, QDA and CART means = 0.006

Standard error of the difference between FACT and the other three methods = 0.011

Increasing the distance between groups had the effect of reducing error rates for all the
methods with QDA having the largest etfect for increasing & (F = 210.37). Table 4.10 shows
that if 8 = 2, CART did slightly better than QDA but when & = 3, the average error rate for
CART was 3% more than that for QDA. Note though that CART and FACT were also
influenced by dimension while LDA, QDA and FACT were also influenced by distribution.
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Table 4.10: Means and standard errors of the difference in means of the cross-
validation error rate estimates for each classification method with

respect to the distance between groups (5)

Level ~_LDA QDA CART  FACT |
5=2 0.215 0.173 0.162 0.228
5=3 0.156 0.085 0.118 0-1-¢7

Standard error of the difference between the FACT means = 0.014

Standard error of the difference between the LDA, QDA and CART means = 0.006

Standard error of the difference between FACT and the other three methods = 0.011

It was found that if f(.) was lognormal rather than normal, the error rate would increase for
LDA and QDA but have no real eftect for CART and FACT. For CART. there was no
change at all to the results due to the fact that CART is invariant under all monotone
transformations of the variables. LDA was found to be most sensitive to changes in f(.)
(F = 408.96) supporting the findings of Lachenbruch et al (1973). Table 4.11 shows that
QDA did best when f(.) was normal while CART did best when f(.) was lognormal. The error
rates for LDA and FACT were also influenced by dimension while all other methods except

CART were intluenced by distance and priors-covariance structure.

Table 4.11: Means and standard errors of the difference in means of the cross-
validation error rate estimates for each classification method with
respect to the distribution of the data set (f(.))

Level _ ~LDA QDA  CART FACT
f(.) = normal 0.121 0.106 0.140 0.200
f(.) = lognormal 0.250 0.151 0.140 0.205

Standard error of the difference between the FACT means = 0.014
Standard error of the difference between the LDA, QDA and CART means = 0.006
Standard error of the difference between FACT and the other three methods = 0.011




All methods were affected by changing the priors-covariance structure of the data with the

largest effect being tor LDA (F = 48.79), which had a large increase in error rate when
ny =0.25 and 2, = 3%;. CART was the least affected by any change in priors-covariance
structure. Table 4.12 shows that QDA did best on all occasions where 2, # X,. Note,

though, that all methods except CART were also aftected by the distribution.

Table 4.12: Means and standard errors of the difference in means of the cross-

validation error rate estimates for each classification method with

respect to the priors-covariance structure (e)

Level . LDA
=05 21 =3,=1 0.154
o) =0:5 Zp=k Zoa=32) 0.185
6 =10. 2502 =12 =11 0.190

1 =025 =1 =33, 0.264
n1=0.75:Z1 =1, Z=3%, 0.134

QDA

0.163
0.092
0.191
0.100
0.098

CART
0.178
0.124
0.148
0.118
0.132

FACT

0.225
0.189
0.230
0.219
0.149

Standard error of the difference between the FACT means = 0.023

Standard error of the difference between the LDA, QDA and CART means = 0.010

Standard error of the difference between FACT and the other three methods = 0.018

Table 4.13 shows that the error rates for CART when p = 2, were more aftfected by an

increase in & than when p = 6, while for FACT, the opposite effect occurred. CART did best

on both occasions when p = 2 while QDA produced the lowest average error rates when

p=6.
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Table 4.13: Means and standard errors of the difference in means of the cross-
validation error rate estimates for each classification method with

respect to the dimension-distance interaction (p * 3)

Level e DA QDA CART  FACT
p=2, §=2 0222 0172 0142  0.188
p=2, §=3 0.175  0.085  0.079  0.160
p=6, 5=2 0207 0174 0181  0.68
p=6, 8=3 0.138  0.084 0157  0.194

Standard error of the difference between the FACT means = 0.020
Standard error of the difference between the LDA, QDA and CART means = 0.009

Standard error of the difference between FACT and the other three methods = 0.016

Table 4.14 shows that the error rates for LDA were affected more by f(.) when p = 2 than for
p = 6. whereas for FACT when p = 2, the error rate increased if f(.) was lognormal rather than
normal, but when p = 6, the error rate decreased if f(.) was lognormal. QDA did best except

when p =2 and f(.) was lognormal where CART produced the lowest mean error rate.

Table 4.14: Means and standard errors of the difference in means of the cross-
validation error rate estimates for each classification method with respect to

the dimension-distribution interaction (p*{(.))

Levee ~~  LDA QDA  CART FACT |
p=2, f(.)=normal 0.112 0.100 0.111 0.151
p=2, f(.) =lognormal 0.285 0.156 0.111 0.197
p=16, f(.) =normal 0.130 0.112 0.169 0.249
p=6, f(.) =lognormal 0.215 0.146 0.169 0.213

Standard error of the difference between the FACT means = 0.020
Standard error of the ditterence between the LDA, QDA and CART means = 0.009

Standard error of the difference between FACT and the other three methods = 0.016

88



Table 4.15 shows that f(.) had a different effect on LDA, QDA an‘d FACT when 6 =2

compared to § = 3. The most interesting finding was tor FACT where the error rates for § =2

were lower when f(.) was lognormal rather than normal, but when & = 3 the reverse effect

occurred. QDA produced the lowest error rate except when 6 = 2 and f(.) was lognormal

where CART did best.

Table 4.15: Means and standard errors of the difference in means of the cross-

validation error rate estimates for each classification method with

respect to the the distance-distribution interaction (4 * {(.))

Level LDA
o =2, f(.) = normal 0.160
8 =2, f() =lognormal 0.269
8 =3, f(.) = normal 0.082
& =3, f(.) =lognormal 0.230

QDA
0.139
0.207
0.073
0.096

CART

0.162
0.162
0.118
0.118

FACT |
0.238
0.219
0.162

0.192

Standard error of the difference between the FACT means = 0.020

Standard error of the difference between the LDA, QDA and CART means = 0.009

Standard error of the ditference between FACT and the other three methods = 0.016

Table 4.16 shows that all methods except CART were aftected by the f(.) * e interaction.
QDA did best on all occasions where 2} # 25, while LDA did best when f(.) was normal and

21 =2, and CART did best when f(.) was lognormal and 2{ = 2.
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Table 4.16: Means and standard errors of the difference in means of the cross-
validation error rate estimates for each classification method with

respect to the distribution-priors-covariance interaction (f(.) * e)

Level LDA QDA CART__ ) __FACT
f(.) =normal, e=1 0.120 0.127 0.178 0.224
f(.) =normal, e =2 0.112 0.087 0.124 0.201
fil.) =mormal, &=3 0.120 0.132 0.148 0.211
f(.) =normal, e =4 0.113 0.084 0.118 0.188
f(.) =normal, e =5 0.141 0.101 0.132 0.175
f(.) =lognormal, e =1 0.187 0.199 0.178 0.226
f(.) =lognormal, e =2 0.258 0.097 0.124 0.177
f(.) =lognormal, e =3 0.261 0.250 0.148 0.250
f(.) =lognormal, e =4 ().416 0.116 0.118 0.250
f(.) =lognormal, e =5 0.128 0.095 0.132 0.123
Standard error of the difference between the FACT means = 0.032

Standard error of the difterence between the LDA. QDA and CART means = 0.014
Standard error of the difference between FACT and the other three methods = 0.025

Legend:
e=1: n1=05:Z1=2p=1
g2k 751 =105 Zi=nlh =032
e=I3k n1=025:X1=2)=1
e=4: m1=025:X1 =1, =3,
ea= 5t m =0.75:Z) =1, Zp=3%,

From Tables 4.8 to 4.16 1t can be seen that on most occasions the average error rate for FACT

exceeded all others.

ANOVA'’s were also calculated for the size of the decision trees from CART and FACT on
the experimental factors. On average, a CART tree contained 5.18 terminal nodes with only
increasing p and/or the p * e interaction having any significant influence on the size of the
tree. The average FACT tree contained 4.41 terminal nodes, but depended on many factors.
For both CART and FACT, various rules were used to limit the size of a tree to less than ten

terminal nodes involving either increasing the size below which a node cannot be split for



both CART and FACT, or selecting the smallest tree within b standard errors, 0 < b < 2, of
the tree with the smallest cross-validated error rate, where the standard error of the

misclassification cost is as given in Section 4.3.

4.4.3 Summary and Discussion

In this study, it was found that either increasing dimension or decreasing sample size had the
effect of increasing the error rate for CART and FACT while increasing dimension decreased
the error rate for LDA. Neither dimension nor sample size had any real effect on the error
rates for QDA nor did sample size for LDA. This was most probably because neither the
sample size nor ratio of dimension to sample size were set low enough to seriously affect the
error rates from the above two methods. Increasing the distance between groups was found to
significantly decrease the error rate for all methods while using a data set that was
lognormally rather than normally distributed significantly increased the error rate for all
methods except CART where it had no etfect at all. The error rates for LDA were affected
most by the changes in the five-level factor while CART was attected least. Note, however,
that only for sample size were there no significant interactions. It was also found that the size

of a FACT tree depended on many different criteria in contrast to a CART tree.

This study has also shown that CART performs better on average than the other three
methods when either the distribution was lognormal, dimension was small or the distance
between groups was small, as well as when there were equal covariance matrices but unequal
priors. On all other occasions, QDA produced the lowest average error rate except in the
equal priors, equal covariance case, where LDA did best and when sample size was large

where the differences between QDA and CART were negligible.

For the four most significant first order interactions, QDA did best on average when the
distribution was normal, except when the covariance matrices were equal. CART did best on

most occasions where the distribution of the data set was lognormal.

At this stage, it would be desirable to tie together the results from both Sections 4.3 and 4.4,
in order to provide some reasons for the ditferences in results. In Section 4.3, normally
distributed data was compared with lognormal data with the means and covariances (thus &

values) being exactly as specified in (4.3.1) and (4.3.2) by standardising the data. In Section

4.4, however, no standardisation was undertaken resulting in means and covariances grossly
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different to the values used in Section 4.3. Consider the simple case of p = 1. If X ~ N(, 02)
and Y = e* (that is, lognormally distributed) the values of E[Y] and V[Y], the mean and
covariance of Y respectively, are defined as (Aitchison and Brown, 1957):

E[Y] =exp(it + c2/2) 4.4.1)

and
V[Y] = exp(2u + 62) [exp(c?) - 1] (4.4.2)

Suppose that X; ~ N(0, 1) and X, ~ N(2. 1). Let Y; =¢! and Y, =€*2, then

E[Y;]=¢%5 and V[Y{]l=eE-]1)
with E[Y,)=e23 and V[Yj;]=e'e-1)

giving § = 0.924.

Therefore, the distance between populations has been reduced by 53.8% from the case of
normally distributed data. When the distance between populations is increased in the case of
normally distributed data, the relative reduction in 4 caused by the exponential transformation

increases correspondingly.

From the results, it is obvious that methods which use linear discriminant functions to form
the classification rules (LDA and FACT) have lower error rates for lognormally shaped data
when the covanance structure of the data is unaltered (see Tables 4.4. 4.5 and 4.6). When the
data 1s transformed to be true lognormal. the means and covariances are drastically altered so
that the distance between populations is reduced. This implies that the markedly increased
error rates for LDA in this situation have been caused by a reduction in the separation
between populations rather than the lognormally shaped data. For FACT, the increase in
error rates is minimal. QDA, which models the individual class means and covariances
separately, was affected in the same way by lognormally shaped data (increased error rates),
no matter what the means and covariance structure of the data were. This also provides an
explanation why there were no significant priors-covariance structure main effects or

interactions in Section 4.3 but that there were numerous such occurrences in Section 4.4.



4.5 THE EFFECTS OF PRIORS ON ERROR RATES

4.5.1 Introduction

This section gives details of a simulation study which was carried out using the data sets that
were used in Section 4.4. The pure lognormal was used rather than the standardised
lognormal so that comparisons could be made with the work of other authors (for example,
Lachenbruch et al, 1973). The purpose of the study was to compare the group
misclassification error rates for the two parametric discrimination methods, LDA and QDA,
and those of the two tree-based methods, CART and FACT, using both priors proportional to
sample size (PPSS) and equal priors. A comparison of the overall error rates using PPSS and
equal priors was also done. The results are presented followed by a discussion of the

implications of the study.

4.5.2 Purpose of this study

Tests using several data sets have found that although the set of decision rules produced by
CART were about as accurate as those produced by LDA, the individual group
misclassification error rates tended to be more variable for CART using PPSS. The most
noticeable trend observed was that CART favoured the group(s) with the larger sample size(s)
to the detriment of the group(s) with the smaller sample size(s). This occurred despite the
fact that a larger proportion of observations from a class with a smaller sample size were sent
one way than a class with a larger sample size. However, because there were more
observations from the class with the larger sample size sent the same way, the node was
assigned to that class. This resulted in all the observations trom the smaller class(es) being
misclassified. Using LDA, however, in the case ot PPSS, did not lead to such extremes of
group misclassifications that were encountered above for CART. This is because the group

separation functions used in LDA to discriminate between two groups

- i i ¥, o =

Dj;(x) = In(my/m) + &; - X)) S1[x - J X; + X))]
are only changed by one term, that is In(ry/%;), when sample sizes are different. The rules
tend to favour the class with the larger size but not to the same extent as those of CART, but

if an observation is much closer to one sample than another then that observation should still
be allocated to that sample no matter what the ratio of class sample sizes.
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Making the priors equal had a vastly different ettect on CART than LDA for many of the
examples carried out. The net result was that when the observations in the small sample were
even slightly more homogeneous than those in the larger sample, in relation to the
discriminatory variables, then the splits were biased in favour of the small samples. This
often resulted in all the observations from a larger class being completely misclassified, while
most of those in the smaller samples were correctly classified, leading to a large overall error
rate and hence an inaccurate set of decision rules. As well, the decision rules created were
totally ditferent from those tfound using PPSS, with the variables strongly associated with the
smaller sample(s) being split on. It could be stated that altering the priors had somewhat
reversed the group misclassification error rates for CART. With LDA, however, In(mj/m;) = 0
so there was no bias due to sample size with discrimination based solely on the distance

measure of one observation to a pair of sample means.

This study was carried out to assess the performance of LDA and CART, as well as QDA and
FACT, in correctly classifying observations in the simple case of just two groups. The study
was intended to test whether CART is more susceptible to changes in the structure of the
prior probabilities of group membership. Note. though, that a failure to show this trend will
not necessarily invalidate what was conjectured betore about CART’s sensitivity to changes
in the structure of the priors, but instead that CART works adequately in the case of two

samples.

4.5.3 Study Plan

This study uses the eighty difterent bimodal probability models that were generated in
Section 4.4. The prior probabilities for each of the two classes will be set to either equal or
PPSS.

As in the estimation of overall error rates in Sections 4.3 and 4.4, the group misclassification
error rates R(1/)), 1, ) = 1, 2, 1 # j, were estimated using n-fold cross-validation. The
resubstitution or apparent error rates were also calculated in the case of both PPSS and equal
priors for LDA and CART only.

Two measures of comparison of the group misclassification error rates were carried out. The

first compares the ditference between the two group error rates

R(1/2) - R(Q2/1)



It could be argued that the above is not a true measure of the performance of the individual
methods over the possible range of error rates. For example, suppose that R(1/2) = 0.4 and
R(2/1) = 0.35. This gives a difference of 0.05. In another set, R(1/2) =0.05 while R(2/1) =0
which also gives a ditference of 0.05. However, in the high error case the two group error
rates are relatively similar, while those in the low error case are not. The straight difference
between error rates is heavily weighted towards the data sets with the lowest error rates.
Theretore, a second proposed measure of pertormance is the ratio of the two group error rates
adjusted to avoid the possibility of invalid values in the cases where R(2/1) = 0.

(R(172) + 0.01) / (R(2/1) + 0.01)

4.5.4 Results

The results of this study were analysed by a series of split-plot ANOVA’s. (See Section 4.3
for details.) The first involved a comparison of the differences between group
misclassification error rates using n-fold cross-validation for LDA, QDA, CART and tenfold
cross-validation for FACT with PPSS. The results from the experimental factor stratum of
the ANOVA are not useful for any of the analyses in this study indicating only if the
experimental factors had any eftect on either the difference between group error rates or the

ratio of group error rates. The results of interest appear in the method stratum.

When comparing the differences between group error rates, it was found that the method (R)
main eftect (F = 393.57) was by far the most important effect. Seven method * factor(s) first
and second order interactions were also significant at less than the 0.01% significance level of
the F-distribution with the R * {(.) (method by distribution) interaction (F = 130.71) and the R
* e (the method by priors-covariance structure) interaction (F = 91.4) being the largest. The
results could not be summarised in terms of either method by distribution or method by
priors-covariance structure as the second order interaction of R * f(.) * e (F = 9.91) was also
highly significant. As a check on the assumptions for carrying out the ANOVA a plot of
residuals against fitted values revealed no dramatic trends with just a small number of unusual
observations. Boxplots of residuals for each method showed variation to be relatively similar
tor LDA, QDA and CART although the variability for FACT did appear to be much larger
than the other three methods. A weighting using the inverses of the mean square errors from

the ANOVA'’s of the differences in error rates on the experimental factors was employed.
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Previous analyses where this weighting was carried out had shown that the results were not

drastically aftected.

Figures 4.1a and 4.1b give the mean absolute differences between group error rates for the
five levels of e, using the data sets that were normally and lognormally distributed
respectively, using PPSS. The ideal situation is where R(1/2) - R(2/1) = 0. Figure 4.1a shows
that all methods produced relatively similar error rates in the ideal equal priors, equal
variance case. When the covariance structure of the data was changed, it was LDA that
suffered the most, with more observations from the class with the larger variance being
misclassified. When one looks at the three cases where priors were not equal then it is
noticeable that the two parametric methods were least affected while the two tree-based
methods, FACT more so than CART, were most affected, by misclassifying a larger number

of observations from the class with the smaller sample size.

Figure 4.1b shows in the case of lognormal data that the mean differences tor CART were the
same as in Figure 4.1a, as would be expected since one of the properties of CART is its
invariance to monotone transformations of the variables. LDA has done better than CART in
the unequal priors, equal covariance case but worse when covariances were unequal. The
mean values for R(1/2) - R(2/1) using LDA for e = | and e = 3 were very similar as were
those fore =2, ¢ =4 and e = 5 implying that it was the difference in covariance values that
caused the large disparity between group error rates when using LDA rather than the fact the
data sets were lognormally distributed. FACT was the most affected by lognormal data when
e =3 and e = 4, that is when the class with the smallest sample size had the largest variance,
but was less affected when e = 1, 2 or 5. As in Figure 4.1a, QDA was least atfected by
changes in the prior-covariance structure of the data. In general, QDA produced differences
in misclassification errors which were usually larger when f(.) wué lognormally rather than
normally distributed but those differences were not as great as those using LDA. These
results contirm those of Lachenbruch et al (1973) where a very similar set of parameters were

used.
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The second analysis compared LDA, QDA, CART and FACT using the ratio of the two
group error rates. The results of the split-plot ANOVA show that as in the previous analysis,
the R main effect was by far the most important effect (F = 164.12) with the R * f()
interaction (F = 71.8) also being important. As with the previous analysis, the R * f(.) * ¢
(F = 21.14) interaction was significant so results will be presented in terms of these three
factors. Analysis of the residuals shows that there was rather a funnel-like pattern among
them, implying that the variation of residuals was not constant. Increasing the fitted value
increased the variation of the residuals. Boxplots of the residuals for each method showed, as
in the previous analysis, that the mean square ervor for FACT was much larger than that for

the other three methods.

Figures 4.2a and 4.2b give the mean ratios of the group error rates using the adjustment factor
mentioned earlier. The ideal situation in this case is where R(1/2)/R(2/1) = 1. It is noticeable
that the trends observed are similar to. yet somewhat different from those in Figures 4.1a and
4.1b. Figure 4.2a shows that in the case of f(.) being normally distributed both the LDA and
QDA error rates were the most stable of all the methods over the given priors-covariance
levels. CART performed very badly in the unequal priors case while the results for FACT
when e = 3 and e = 4 were omitted from the graph due to the excessively high values

recorded.

Figure 4.2b shows that in the case of lognormal data, QDA was the best method. It must be

remembered. as noted in Section 4.3.1, the variance for the second class where X, >0 will be

substantially larger than that for the first class where x7 = (. Therefore, the quadratic rules
should be expected to work better than the linear rules. LDA has performed badly again but
as in Figures 4.1a and 4.1b, LDA has performed consistently poorly, whereas the ratio of
priors for CART was affected mostly by sample size. The results for FACT were not really

worth quoting due to the excessively high ratios of error rates.

In the third analysis. it was decided to compare the mean difference between both the cross-
validation and apparent group error rates using CART and LDA, but this time using equal
priors. The results. from the method stratum again show the R main effect (F = 222.46) to be

most important with the R * f() interaction (F = 130.8) also being very important.



The fourth analysis compared the CART and LDA apparent and cross-validation group error
rates using the ratio of group error rates as the measure of performance. The results from the
ANOVA show rather ditferent trends to those exhibited in the previous analysis with the
magnitude of the F-ratios having dramatically decreased. For instance, for the R main effect,
the F-ratio was only 2.43, which not significant at even the 5% level of significance. This
indicates that differences between the group misclassification error rates did indeed increase
with the total error rate so that the transformations were not really necessary here though the

analysis is included for completeness.

Both analyses showed that the R * f(.) * e second order interaction was highly significant so
that results are presented in terms of these three factors as in the first two analyses. Figure
4.3a shows that in the case of the data sets that were normally distributed, the apparent group
error rates were very similar but there was a large difference between the cross-validated
group error rates, with the class having the larger sample size having the substantially larger
error rate. In contrast, the apparent and cross-validated error rates for LDA were very close
together, being affected most by the change in covariance structure rather than sample size.
This is illustrated by the error rate tor class 2 being larger than that for class 1 when both
e =4and 5.

Figure 4.3b shows a similar pattern to Figure 4.3a except that the differences in group error
rates for LDA have greatly increased using lognormally rather than normally distributed data
sets. These patterns are further exemplitied in Figures 4.4a and 4.4b. It has thus been shown,
in the case of equal priors, that class sample size is the main factor in determining group error
rates for CART when cross-validation is done, though this problem does not manifest itself
when used to calculate the group error rates from the learning sample. Sample size, however,
as expected, had no influence on the group error rates for LDA, in the case of equals priors

which were instead influenced by the covariance structure and distribution of the data set.
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The fifth analysis compared the CART and LDA cross-validated group error rates using the
difference between error rates as the measure of performance, while the sixth analysis used
the ratio of error rates, in the case of both equal priors and PPSS. As in the previous
analyses, the R * f(.) * e interaction was very important so the results will be presented in
terms of those three factors. Figures 4.5a and 4.5b show that choice of priors did not affect
the absolute difference in group error rates, no matter what the distribution of the data set. As
in the previous analyses, the group error rates for LDA were most affected by change in the
covariance structure of the data set. With CART, a different pattern emerges. The use of
equal priors rather than priors proportional to sample size has meant a reduction in the
difference between group error rates. The greatest influence on individual group error rates

for CART was sample size. Figures 4.6a and 4.6b confirm the trends mentioned above.

A next step in the analysis was to compare the overall LDA and CART error rates using equal
priors. As with the group misclassification error rates, the results were analysed using a split-
plot ANOVA. The ANOVA showed that the R main effect (F = 111.8) was highly
significant as were all the R * f(.) interactions and a number of second order interactions.
The two most important of these were the R * p * n (F = 8.43) andR * p * f() (F =6.47)

interactions.

Figures 4.7a and 4.7b compare the n-fold cross-validation and apparent error rates over all
combinations of dimension and sample size using equal priors. The two graphs suggest that
there was a large difference between the R(CV) and R(A) error rates in CART for smaller
samples, indicating the bias of the latter estimator in such situations. This bias was only
minimal for LDA. Considering the cross-validation estimates only, CART did best when p =
2 and LDA when p = 6.

Figures 4.8a and 4.8b illustrate the situation of the p * f(.) interaction. As in Figures 4.7a and
4.7b, there was a large discrepancy between the R(CV) and R(A) error rates for CART,
which did not arise for LDA. Looking at the R(CV) estimates shows that LDA did best for
normal data and lognormal data when p = 6, while CART had the lowest error rate when
p = 2 and the data was lognormal, as distinct from the situation of PPSS where CART did

best for lognormal data no matter what the number of variables in the data set.
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A final analysis was done to compare the overall LDA and CART R(CV) estimates using
both PPSS and equal priors. A split-plot ANOVA showed that the R main effect (F = 18.75)
was not the most significant effect present. More important were the R * p (F =39.37), R *
f(.) (F =82.69) and R * e (F = 22.04) interactions, as well as the R * f(.) * e second order
interaction (F = 24.15). The R * p * f(.) interaction was also found to be highly significant (F
= 6.49). Therefore, the differences between some of the methods/priors * factor interactions

were more important than the differences between the methods/priors themselves.

Figure 4.9a shows there was a relatively small difference in the LDA error rates when p =2
and no real difference when p = 6. For CART when p = 2, there was very little difference in
the error rates but when p = 6, the use of equal priors resulted in an increase of approximately
0.09 from using PPSS. Figure 4.9b shows tor lognormal data, that there was a larger
difterence in the LDA error rates, with the equal priors case resulting in the lower error rate.
Note though, that even in circumstances unfavourable to LDA, this difference was smaller

than that between the CART error rates.

From Figure 4.10a, it can be seen that using equal priors tor LDA produced the lowest error
rate except when my = ().75 and ¥, = 33| though the ditferences were relatively minor.
Figure 4.10b illustrates that tor lognormal data. the same situation as above occurred though
the differences were much larger. For CART, using PPSS produced the lowest error rate, no

matter what the priors-covariance structure of the data.

4.5.5 Summary

In this section, the group misclassification error rates for LDA, QDA, CART and FACT were
compared using both priors proportional to sample size and equal priors. Overall, the results
showed that the individual error rates for QDA were least affected by changes in the priors
and covariance structure of the data with LDA being the second least affected by the above
mentioned alterations. CART was the least affected by using data that was lognormally
rather than normally distributed, but was severely affected by changes in the priors-
covariance structure of the data, misclassifying tewer observations from the class with the
largest sample size, as suggested by Breiman et al (1984). This trend was even more
apparent for FACT. Lognormal data severely affected both parametric discrimination
methods, LDA more so than QDA which supports the results of Lachenbruch et al (1973).
As noted previously, a different set of parameters was used in that study. It was stated in
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Section 2.3 that if the ratio of class sample sizes to dimension is large, QDA works
particularly well. In the majority of cases studied here, the above ratio was large so that QDA

should be expected to work well.

Using FACT on the lognormal data sets had little effect on the group error rates when sample
sizes were equal, but, when one class was larger than the other, all observations from the
class with the smallest number of observations were misclassitied, except when that class had

unit covariance.

It was also found that there were large differences between the apparent and cross-validated
group error rates for CART with the apparent error rates for each group being very similar,
but the cross-validated error rates exhibited wide differences. With LDA, there were
negligible differences between the apparent and cross-validated error rates. Using equal
priors rather than priors proportional to sample size with CART decreased the difference
between (or ratio of) group error rates but the differences were still larger than those using

LDA on normally distributed data sets.

It could be recommended, based on these simulations, that CART would be the preferred
method when the data is lognormal, if the criterion used to judge a method performance is the

group misclassification error rates.

When comparing overall error rates using equal priors, it was found that in comparing the n-
fold cross-validation and apparent error rates tor LDA and CART, the difterences were very
dependent on the interaction of dimension and sample size as well as dimension and
distribution of the data. LDA did best in all the above situations, except when there was only

a low number of variables with lognormal data.

In comparing the error rates found from using priors proportional to sample size and equal
priors tor LDA, the ditferences between the two error rates were minimal for normal data,
though rather large for lognormal data. The choice of priors affected overall error rates more

for CART except when the data was lognormal.



4.6

The results from this section, even in the simple case of two populations, point to CART
being very sensitive to the proportion of observations from each class in the sample. The
results have shown that the objective of CART is to optimise the overall error rate at the
expense of the respective group misclassification error rates. When 1 = 7y, there is no such
problem, but when one of the class sample sizes is small, then CART will tend to correctly
classify as many observations as possible from the largest class at the cost of misclassifying

many or most observations from the smallest class.

It could thus be recommended based on these simulation results, that LDA (or QDA) is
preterred in the case of disparate sample sizes. If CART is used, some caution should be

shown when interpreting the results.

SIMULATION STUDY III

4.6.1 Introduction

Sections 4.3, 4.4 and 4.5 compared the accuracy of the four classification methods in the
setting of multivariate continuous data. This section compares the reliability of n-fold cross-
validation error rate estimators for each of LDA, QDA and CART in estimating the actual
error rate. The predictive ability of FACT was shown to be particularly poor, especially in

non-ideal situations, hence further consideration of this method will not be done.

Numerous papers including Efron (1983), Hand (1986) and McLachlan (1986, 1987) have
noted the n-told cross-validation estimator of error rate has a large variance, especially when
n is small, when used with LDA. These results were echoed by Crawford (1989) when used
with CART. Hence, the reliability of the n-fold cross-validation error rate estimators is
compared to a number of other error rate estimators that were introduced in Section 4.2, both

within and across the three methods.

4.6.2 Study Plan

The same probability models that were used in Section 4.4 will be used here to compare and
assess the reliability of each error rate estimator, across and within the three methods, in
approximating the actual error rate, R(T). The error rate estimators that were considered for
LDA and QDA are the n-told cross-validation estimator, R(CV), the apparent estimator,
R(A), the rotation estimator, R(ROT), and the 0.632 estimator, R(0.632), using
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R(0.632) =0.368 * R(A) +().632 * R(ROT)

as this has been shown to be very similar to using R(€), instead of R(ROT), the average error

rate for all observations not included in the bootstrap sample.

For CART, the R(CV) and R(ROT) estimators were used as for LDA and QDA, while a ten-
fold cross-validation error rate estimator, R(TEN), was also calculated. Since the tree chosen
tor each of the probability models by the above three error estimation techniques may be of
different size and hence have different apparent error rates, three different apparent error rates
were calculated. These were associated with each of the above three error estimation
techniques and given by, R(ACV), R(AR) and R(AT) corresponding to n-fold cross-
validation, rotation and ten-fold cross-validation respectively. In addition, the R(0.632)
estimator was calculated in the same manner as for LDA and QDA with tree size chosen by
R(ROT).

For all methods, a test sample of size 5000 was used to give an accurate value of R(T) and in
the case of CART, to choose the right-sized tree. The pertormance of each method was

determined by the mean square error criterion
MSE = E[R(T) - R(T)}?

where R(T) is the particular error rate estimator. The MSE criterion provides a measure of
both bias and variability of an error rate estimator. As in Sections 4.3, 4.4 and 4.5, a split-
plot ANOV A was used to analyse the results of the simulations.

4.6.3 Results

The first analysis looked at the error rate estimators for only LDA and QDA. The R main
effect (F = 8.71) and six R * factor interactions were significant at the o = 1% level (and
indeed at the o = 0.1% level). The largest among these were the R * (1) (F = 12.07),R *e

(F=7.55) and R * {(.) * e (F = 6.00) interactions. Of the first order interactions, only the
R * § interaction was not significant showing that for both LDA and QDA, all error rate

estimators produced fairly similar results, no matter what the distance between populations.
Note, though, that when & = 2, R(B) = 0.159 and when & = 3, R(B) = 0.067, hence the

probability models studied here were for fairly well separated populations. Ganeshanandam



and Krzanowski (1990) found the R * & interaction to be highly significant although they
used & = 1.01 and 6 = 2.53 (R(B) = 0.291 and R(B) = 0.103), thus based their results over a
much wider range of Bayes error rates. The results given here, though, were comparable with
those of Fitzmaurice et al (1991) for R(B) = 0.05 and 0.15.

When comparing the seven error rate estimators for CART, the R main effect (F = 50.76) and
seven R * factor interactions were significant at the oo = 1% level. Of the first order
interactions, only the R * f(.) interaction was not significant, which was as expected, given
that CART is robust to non-normality of the variables. The results showed though that the
CART error rate estimators were very sensitive to the choice of the number of variables,
sample size, Mahalanobis distance between populations and the priors-covariance structure of

the data.

A final analysis was done to compare all the error rate estimators over the three methods. As
expected, with so many error rate estimators over different methods, almost all the R* factor
interactions were significant at the o = 1% level. A personal correspondence from David
Hand suggested that this approach may be infeasible if there were different residual variances
among the method-error rate estimator combinations. A plot of the residuals against each of
the method - error rate estimator combinations showed that the assumption of equal residual
variances was not really valid. As suggested by Hand. a weighting of the MSE’s for each
method error rate estimator combination was carried out, using 1/52i as the weights, where Si2

1s the variance of the MSE’s for the ith method-error rate estimator combination. The results,
however, showed a number of differences from the unweighted analysis, in that a few less of
the R* factor interactions were significant, but in the main, the important effects identified in
the unweighted analysis showed up in the weighted analysis. However, the magnitude of the
F-ratios can still be used to indicate which were the most important effects influencing the

performance of the various error rate estimators across the three methods.

Tables 4.17 to 4.19 show the mean values for the most important second order interactions,
those being R * n * § (F =5.79) and R * f(.) * e (F = 4.37). Table 4.17 shows that most
estimators were more reliable (that is, had lower mean square error) when 8 = 3 than when &
= 2 for smaller sample size. A notable exception to the rule was R(0.632) for CART which
confirms what was shown in Crawford (1989). R(0.632) for LDA had lower mean square
error for & = 3 than for 8 = 2, which confirms a trend shown in Fitzmaurice et al (1991).

109



110

When n = 300, some of the CART error rate estimators were more reliable when 6 = 2 than
when & = 3. Of the R(CV) estimators, QDA and CART were the most reliable while those
for LDA were rather unreliable, due most probably to the large variability of the estimator.
Overall, R(0.632) for CART did best when & = 2, no matter what the sample size. When
6 =3, R(CV) for CART did best when n = 60 and R(TEN) for CART did best when n = 300.

Table 4.17: Average mean square errors (MSE’s) for different error rate estimators
using LDA, QDA and CART with respect to the sample size-distance interaction
(n *3§) (105

n =60 n =300

Method Error Rate Estimator & =2 6=3 5=2 6=3
LDA R(CV) 708 344 504 424
R(A) 564 271 492 417

R(ROT) 427 525 484 366

R(0.632) 400 375 483 381

QDA R(CV) 189 111 84 39
R(A) 278 86 70 33

R(ROT) /7 533 57 34

R(0.632) 366 174 49 31

CART R(CV) A 51 57 101
R(ACV) 2869 763 36 293

R(ROT) 6E 234 58 56

R(AR) e 687 21 224

R(0.632) - 118 23 74

R(TEN) 483 477 66 24

R(AT) 1532 850 262 184

Table 4.18 shows that the error rate estimators using LDA and QDA were generally more
reliable than those for CART, for normally distributed data. Of the R(CV) estimates, LDA
and QDA were the most reliable except when 11 =0.75 and 2, =33 (e = 5) where CART
did best and LDA especially fell down. The R(0.632) estimator for CART performed
uniformly well over all five levels of factor e while the other estimators for CART were more



variable. The R(ROT) estimate tor CART did best overall in the equal covariance, unequal

priors case (e = 3).

Table 4.18: Average mean square errors (MSE’s) for different error rate estimators
using LDA, QDA and CART with respect to priors-covariance structure (e) and
normal data (* 107).

Method Error Rate Estimator e=1 e=2 2=3 e=4 BI=15
LDA R(CV) 60 49 109 152 440
R(A) 108 20 64 112 268
R(ROT) 18 97 331 140 374
R(0.632) 29 52 179 91 315
QDA R(CV) 87 55 173 39 194
R(A) 411 133 83 87 39
R(ROT) 232 294 704 197 940
R(0.632) 237 104 237 56 372
CART R(CV) 121 182 192 204 74
R(ACV) 1422 1203 970 1064 699
R(ROT) 114 175 56 177 145
R(AR) 1027 421 482 605 427
R(0.632) 102 47 79 101 w2
R(TEN) 434 297 187 268 126
R(AT) 1247 651 409 710 519
Legend:

Er=sSeSn=>=l
1 =0.5: Z1 =1, £, =3%;
m1=025Z1=2,=1
m =025 =1, Zp=3%,
n;=0.75:Zy =1, Zp=3%,

o o 0o o o
o
ARSI

Table 4.19 shows the error rate estimators for the lognormally distributed data. The general
trend observed was that the estimators for LDA deteriorated markedly in the case of unequal

variances, but in the equal covariance case, the estimates closely approximated the actual

111



error rate. The estimators for QDA remained relatively constant for all levels of € and not tog
dissimilar from the normal data situation. Naturally, the CART estimators were exactly the
same as in the normal data situation. Of the R(CV) estimators, LDA did best in the case of
both equal priors and covariances, CART for unequal priors but equal covariances and QDA
elsewhere. The R(0.632) estimate tor CART had consistently low mean square error for aj]

levels of e.

Table 4.19: Average mean square errors (MSE’s) for different error rate estimators
using LDA, QDA and CART with respect to priors-covariance structure (e) and
lognormal data.

Method Error Rate Estimator e =1 e-=2 e=3 e=4 e-==>
LDA R(CV) 16 89 652 3231 150
R(A) 50 100 499 2959 182
R(ROT) 32 125 1178 1971 240
R(0.632) 16 70 873 2264 208
QDA R(CV) 43 84 267 62 52
R(A) 62 75 210 20 56
R(ROT) 191 269 178 184 305
R(0.632) 71 89 160 67 157
121 182 192 204 74

CART R(CV)
R(ACV) 1422 1203 970 1064 699
R(ROT) 114 175 56 177 145
R(AR) 1027 421 482 605 427
R(0.632) 102 47 79 101 72
R(TEN) 434 297 187 268 126
R(AT) 1247 651 409 710 519

Legend:

m =05 21=22=1
=05 2=, 2=
n1=025:X1=X=1
11 =0.25:%1 =1, 2y =3%,
11 =0.75:Z1=1, Zp=3%;

o o 00 o
]
98 5 R =
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4.7

4.6.4 Summary

The results of this study have found that the differences between the error rate estimators for
CART were most affected by dimension, sample size, distance between populations and the
priors-covariance structure of the data. The differences in error rate estimators for LDA and
QDA were affected most by all the above factors, except distance between populations, as
well as being affected by the distribution of the data. Considering the error rate estimators
over all methods, it was found that estimation of the actual error rate depended very much on
the sample size - distance interaction as well as the distribution - priors - covariance structure

interaction.

Overall, the QDA and CART error rate estimates most closely approximated the actual error

rate, excluding the apparent error rates for CART, which were unreliable in most situations.

Of the n-fold cross-validation estimates, those for QDA and CART were the best, usually
having the lowest mean square error. The n-fold cross-validation estimates for LDA, away

from the ideal situations, were found to be rather poor.

The 0.632 error rate estimate for CART was found to be very reliable throughout and not
influenced to a great extent by any of the factors. This was confirmed by a separate ANOVA
explaining the eftects on the (0.632 estimator alone. It was noted that this estimator was
particularly good tor less well separated populations. On the other hand, the 0.632 estimate
tor LDA (and QDA) was sensitive to changes in the priors-covariance structure of the data

and lognormal data.

CONCLUSIONS

In this chapter, a comparative study was undertaken for four classification methods, namely
LDA, QDA, CART and FACT on the basis of predictive accuracy. The four methods were
compared over different dimensions, sample sizes, distances between populations,
distributions and priors-covariance structures. The results showed that LDA and QDA
performed best for normal data, higher dimension and well separated populations, while
CART pertormed well for lognormal data, lower dimension, less well separated populations
and equal covariances with unequal priors. QDA was found to be the preferred method in the

case of unequal covariances. In most situations, FACT’s prediction rules were a poor fourth.
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In Section 4.5, a study was undertaken, based on the findings from real data sets, to determine
the effect on the individual group error rates for each of the four classification methods.
These studies found that CART was aftected quite drastically by the ratio of class sample
sizes used, though not to the same extent as FACT. The individual error rates for LDA and
especially QDA were least affected by unequal class sample sizes. It was recommended from
that study that caution should be shown when using CART on data sets with grossly unequal

class sample sizes.

In the final section of this chapter, an investigation was carried out into the reliability of each
n-fold cross-validation error rate estimate for LDA, QDA and CART over the different
probability models studied. The results showed that the n-fold cross-validation estimates
were fairly reliable for QDA and CART in most situations, but that for LDA, were unreliable
in situations where there were unequal covariance matrices. A deal of promise was shown by
the 0.632 estimator for CART, in that it performed uniformly well over all situations studied.
The reliability of this and other error rate estimates will be investigated in more detail in
Chapter 6.

It could therefore be concluded that LDA and QDA would be preferred over CART in many
situations, and CART as the preferred method in others, if accuracy were the sole measure of

the performance of a method.



5.1

SIMULATION STUDIES INVOLVING CATEGORICAL DATA

INTRODUCTION

Often in multivariate data settings, problems do not involve continuous variables. Rather, the
problem may involve ordered categorical variables such as the ratings of a certain product
(bad, average, good) or number of years education. These variables can be treated as
continuous although the requirement of multivariate ellipsoidality may not always be met. In
other situations, the problem may involve unordered categorical or nominal variables,
whereby there is no natural ordering of the categories. Race and marital status are two

examples of nominal variables.

The general approach taken by traditional discrimination methods for such variables is to

code the c categories into (c-1) binary variables where

~_ |1 if ¢ present
*¥IT10  else

As seen earlier, CART and many other tree-based procedures do not require the use of binary
variables to handle nominal varnables. Instead, most tree-based procedures attempt to find the
grouping of categories that leads to the least overall misclassification error. FACT, in
contrast, is one tree-based method which takes the LDA approach to handling categorical

variables.

This chapter focuses on a comparison of LDA, QDA, CART and FACT for the above type of
data. Firstly, the four methods are compared from an accuracy point of view in classifying
observations into two distinct populations, I1; and I1,. For the sake of a direct comparison to
be made between CART and the other three methods, only p-variate binary data is used. As
in Chapter 4, the reliability of these classification methods is investigated as well as different
error rate estimates for LDA and QDA.
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5.2 PREVIOUS STUDIES
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Moore (1973) carried out some simulation studies using six-dimensional, bimodal, binary
data sets comparing LDA and QDA with various multinomial procedures. Two factors were

varied, those being
pij = probability of getting a response x; = 1 for I
and Ik = correlation between x; and xy for ;.

Moore’s results showed that LDA performs very well except when there is a “‘reversal” in the
log-likelihoods for each population. Moore illustrates by using the following example. Let
x1 and x; be given as

~ { 1 if birthweight is high
X1 = 10 if birthweight is low

1 if gestation length is long

X2= 10 if gestation length is short

A baby would be classitied as normal when x| =() and x, =0 or x; =1 and x, = I, otherwise

1t 1s abnormal.

The optimal linear rule would be to assign x to Iy if
2
a(x) =PBp + Zl Bix; > c.
=

Now a(l, 1)=a(0, 1) +a(l, 0) - a0, 0).

As a(l, 1) > max{a(l.0), a0, 1)}
= a(0, 0) < minfa(l, 0), a(0, 1)}

then, if (1, 1) is assigned to IT;, (0, 0) has to be assigned to I1,. This leads to gross errors in
misclassification. The problem is in using a monotonically increasing function of x; and x;

to approximate the log-likelihood, L(x), which is not monotonic. In the two-dimensional



case, the problem can be solved quite simply by including an interaction term in the model.
When there are a large number of variables, however, this approach is infeasible.

Others have shown that not only different correlation structures in the two populations lead to
these reversals, but so will moderate and large positive correlations. Krzanowski (1977)
considered a mixture of both binary and continuous random variables with various values of
Pjj used and rj;); set to either 0 or 0.375 (no, or moderate, positive correlation). The results
showed that LDA performed well when there was no correlation between the binary
variables, but performed poorly if there was a moderate positive correlation among all the
binary variables or the correlations between the binary and continuous variables differ
markedly between the two groups. For both types of data, QDA has been found rarely to

perform as well as LDA.

Ganeshanandam and Krzanowski (1990) compared a number of different error rate estimators

for LDA as well as the n-fold cross-validation estimate for QDA, for multivariate binary data.
Their simulation results showed that the p;;’s and sample size all had significant effects on the
estimation of the actual ervor rate though the rjj factor did not.

SIMULATION STUDY I

5.3.1 Study Plan

The factors used in this study were the same as those employed in Ganeshanandam and
Krzanowski (1990) in order to be able to check the results tor LDA and QDA against theirs..
The factor p had settings of 5 and 10. A separate analysis was done for each of the two
dimension levels. Factor n had three settings, those being “‘small, medium and large” relative
to the number of variables. In the case of p =5, n = 20, 60 and 100, while for p = 10, n =40,
120 and 200. In all cases, ®; = mp = 0.5 implying that class sample sizes were equal. When
p =5, factor rjj had two levels, those being, all rj = 0 and all rj = 0.25. When p = 10, all
rjjx were set to zero for the first five variables and to 0.25 for the second block of five. The
last factor was the values of the p;;’s. The levels of the pj;’s are shown in Table 5.1 with level
1 corresponding to wide separation between groups with increasing levels leading to narrower
separation. Level 5 corresponds to identically distributed populations. For p = 10, the pjj’s
for the first block of five variables were repeated for the second block of five. This gives 45
multinomial learning samples for p = 5 and 10 combined. Three replicates for each

multinomial situation were conducted for p = 5 and six replicates for p = 10, giving 180 data
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sets in total (90 for each dimension size). Generation of the data was a straightforward

process using MINITAB macros.

Table 5.1: Values of p;; for each set of five binary variables.

Level I1 1 Hz

X1 X2 X3 X4 Xg X1 X2 X3 Xq Xq

020 020 020 020 020 08 080 0.80 0.80 0.80
025 030 035 040 045 075 070 065 060 0.55
040 045 050 055 060 060 055 050 045 040
025 030 035 040 045 045 040 035 030 025
030 040 050 060 070 030 040 050 0.60 0.70

hn A W D -

The methods were compared by means of the n-fold cross-validation error rates, R(CV),
except for FACT where ten fold cross-validation was used as outlined in Section 4.3. For
both CART and FACT, the minimum size below which a node will not be split was set to
five, while for CART alone, the one standard error rule was used. A split-plot ANOVA was
used to identify which factors lead to differences between the methods, as in Chapter 4.
Tables of means and the standard deviations of the differences between means are presented

for each significant effect.

5.3.2 Results

For the case p = 5, the results showed that the R (method) main effect (F = 10.19) was highly
significant and dominated the variation in error. All interactions involving R had F-values
less than 1.1. This meant that there were differences between the methods when using p =5

binary variables, and these differences were not intluenced by other factors.

In both the analyses forp = 5 and p = 10), the plot of residuals against fitted values showed no
real trends, in contrast with the results for the continuous data. The plots of residuals against
each method showed there to be roughly equal residual variances for each method. Individual
ANOVA'’s were constructed for each method separately. These results confirmed the above
finding of equal residual variances. Therefore, the results of the split-plot ANOVA are
strictly valid.



The average values for each method, when p = 5, are given in Table 5.2, as well as the
standard error of difference between the methods. The results showed that CART was the
best method by some distance from LDA, FACT and QDA.

Table 5.2: Means and standard error of the differences in means of the cross-

validation error rate estimates for each method.

p=>5

Level LDA QDA CART FACT

0.343 0.368 304 358

Standard error of the difference between means = ().013.

In the case of p = 10, the split-plot ANOVA showed that the R(method) main eftect (F =
20.78) was highly significant, though the R * p;; (method by probability pattern) interaction
(F =4.2) and R * n (method by sample size) interaction (F = 4.91) were also highly
significant (o < (0.001). This showed that for p = 10, there were not only differences between
the methods but that these differences were aftected by both sample sizes, and to a slightly
lesser extent, the pattern of probabilities in the parent populations.

Table 5.3 shows that increasing sample size had the effect of reducing the error rates for all
methods, except CART, where sample size had no real effect. The greatest reduction in error
rate occurred when going from n = 40 to n = 120, for LDA, QDA and FACT. CART did best
notably when n = 40 and slightly better than LDA when n = 120. When n = 200, however,
LDA did better than CART. FACT was a poor fourth except when n = 40, where, because of
the small ratio of dimension to class sample sizes, QDA did worst.
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Table 5.3: Means and standard error of the differences in means of the cross-
validation error rate estimates for each classification method with respect to

sample size (n).

p=10
Level LDA QDA CART FACT
n =40 0.329 0.401 0.284 0.366
n=120 0.289 0.307 0.287 0.345
n =200 0.274 0.292 0.284 0.333

Standard error of the difference in means = ().016.

Increasing the level of the probability patterns, pij effectively narrowing the distance between
populations, had the effect of increasing the error rates for all methods, with the two tree-
based methods being less atfected than both LDA and QDA. Table 5.4 shows that LDA did
best for pj; = 1 and narrowly better than CART when py; =2. For all other levels of pj;, CART
had the lowest average error rate. An explanation why LDA did best for p; = 1 is that this is
an example of a parallel classification problem (see Section 4.3), in that all variables are
equally important in determining the classification rules. Levels 2 to 4 for p;; are examples of
a sequential classification problem, in that only a subset of the variables are ever used to
determine the classification rules. Methods such as LDA and QDA are suited to the former
type of problems while CART is designed tor the latter. The good performance of CART for
less well separated populations mirrors what was observed for continuous data in Chapter 4.
A noteworthy trend observed here was that the average error for CART in the case of
identical populations (p;; = 5) was (.43, so that CART was managing to build a tree from

noise. All other methods for p;; = 5 contained error rates in the vicinity of 0.5.



Table 5.4: Means and standard error of the differences in means of the cross-
validation error rate estimates for each classification method with respect to
probability patterns (p;;).

p=10
Level LDA QDA CART  FACT
pij =1 0.073 0.097 0.132 0.175
pij = 2 0.177 0.230 0.189 0.249
pij =3 0.346 0.389 0.325 0.410
pij =4 0.365 0.426 0.349 0.415
Pij =5 0.524 0.525 0.430 0.492

Standard error of the difference in means = (0.021.

5.3.3 Summary

For five-dimensional categorical data, it was found that there were differences in the cross-
validated error rates of the four methods, but these differences were due only to the methods
and not to any other factor such as sample size or probability patterns. It was found that
CART was clearly the best method followed by LDA.

For ten-dimensional categorical data, the differences in error rates were due not only to
method, but also to probability patterns and sample size. CART was found to be the least
affected of all methods by changes in either sample size or the pattern of probabilities and had
the lowest error rate for smaller sized samples and poorly separated populations. These
results echo very much what was observed tfor CART in Chapter 4, for continuous data. In all
other situations, LDA did best. In accordance with other studies, QDA performed poorly
except when sample size was large or the two populations were well separated. As for the

continuous data, FACT was a poor fourth in almost all situations.
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5.4 SIMULATION STUDY II
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5.4.1 Introduction

Section 5.3 compared the accuracy of tour classification methods in the setting of categorical
data, specifically with p-variate binary data. This section compares the reliability of the
cross-validation error rate estimates produced by three of the four methods as well as a
comparison of ditferent error rate estimators using both LDA and QDA. Further analyses for
FACT were not done due to the poor predictive capability exhibited by the method through

the simulation studies.

5.4.2 Study Plan

The first analysis compared the n-tfold cross-validation, R(CV), and apparent, R(A),
estimators for both LDA and QDA, as well as the rotation, R(ROT), and 0.632, R(0.632),
estimators for LDA alone. The latter was calculated as in (4.2.23). For both p =5 and
p =10, when n was small, the R(ROT) estimates could not be calculated for QDA as n; <p
tor each class. Therefore, the R(ROT) and R(0.632) estimators tor QDA were not included in

the analysis.

The R(CV) estimators for LDA, QDA and CART were then compared to test their reliability
in estimating the actual error rate, R(T). for each data set used in Section 5.3. Test samples of
size 5000 were used throughout to calculate the values of R(T). A comparison of ditferent

error rate estimators for CART, using categorical data, will be undertaken in a latter chapter.

5.4.3 Results

The results are presented in the same tormat as Section 5.3. Comparing the error rate
estimators for LDA and QDA first, in the case of p = 5, the split-plot ANOVA showed that
there was a definite difference between the error rate estimators, R, (F = 34.76) and that
those difterences depended to a large extent on sample size, R * n (F = 7.64) and, to a much
lesser degree, on the pattern of probabilities in the IT;’s, R * p;; (F = 2.37). These results very
closely follow the results exhibited in Ganeshanandam and Krzanowski (1990) where the R *
n effect was also more important than the R * p;; effect. Any effect involving rjj. had very

lattle effect on the estimation of R(T).



For p =10, it was observed that, in addition to the R, R * n and R * p;; effects being highly
significant, the R * p;; * n interaction (F = 3.96) was also significant at the 0.1% level.
Ganeshanandam and Krzanowski gave no indication of the importance of this second order
interaction, but, it must be taken into account in any analysis of means implying that the error
rate estimators for both LDA and QDA were influenced by sample size in conjunction with
the pattern or probabilities.

It is clear from Table 5.5 that the mean square errors (MSE’s) for all estimators decreased as
sample size increased, that is, the estimators were more precise for larger rather than smaller
sized samples. The R(CV) estimator was the least affected by altering sample size while the
R(A) estimators were most affected. The R(CV) estimator for LDA did best for the smallest
sized samples, the R(ROT) estimator for n = 60 and the R(CV) estimator for QDA for the
largest samples. These results were in relatively close agreement to those of Ganeshanandam
and Krzanowski (1990), although their results showed sample size to have no effect on the
MSE for the R(0.632) estimator. Note that the standard error of the difference was not
calculated from either of the apparent estimators. This occurred, because the variation in

MSE'’s for these two estimators was four to five times larger than that for the other estimators.

Table 5.5 Means and standard error of the differences in means of the MSE’s for

each error rate estimator with respect to sample size (n) (* 107%)
p=5

Level n=20 n = 60 n =100

LDA, R(CV) 139 56 46

LDA,R(A) 443 107 41

LDA,R(ROT) 181 47 35

LDA, R(0.632) 200 49 25

QDA, R(CV) 216 71 23

QDA, R(A) 685 252 155

Standard error of the difference between means = 37.2.
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Table 5.6 shows that the error rate estimators exhibited different behaviour over the various
levels of pj;. The R(CV) estimator, for LDA, had lowest MSE for pj; = 1 and highest for
pj; = 3, while the R(0.632) estimator had lowest MSE for p;; =3 and almost the highest at Pjj
= 1. R(CV) did best overall for p;; = 1, 4 and 5, the R(0.632) estimator for pj; = 2 and the
R(ROT) estimator for p;; = 3. In the case of p = 5, these results fairly closely matched those
of Ganeshanandam and Krzanowski (1990) where R(0.632) was found to perform best for

less well separated populations.

Table 5.6: Means and standard error of the differences in means of the MSE’s for
each error rate estimator with respect to probability patterns (p;;) (* 10°9)

p=5
Level pij=1 pj=2 pij=3  pij=4  p;j=5
LDA, R(CV) 22 131 85 85 75
LDA, R(A) 74 184 214 268 245
LDA, R(ROT) 86 96 48 120 89
LDA, R(0.632) 118 74 63 118 84
QDA,R(CV) 56 114 109 117 120
QDA,R(A) 172 219 481 485 462

Standard error of the difference between means = 48.

Figures 5.1 to 5.3 show the MSE’s for the different error rate estimators over the different
levels of pjj, for sample sizes of 40, 120 and 200 respectively. The apparent estimators for
both LDA and QDA are not shown due to their exceedingly high MSE’s in most cases. The
general trend for the other estimators was an increase in MSE as sample size decreased while
decreasing the distance between populations generally increased the MSE, though there were
some exceptions. The graphs show that the R(CV) estimator was the most consistent, and
thus reliable over all combinations of probability pattern and sample size. The R(CV)
estimator for QDA was sometimes the most reliable estimator, but in other situations was the
least reliable, especially for larger sample sizes. The R(0.632) estimator did best for poorly
separated populations and n = 120 or 200, though not for populations which were the same
(pij =3).
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A comparison of the reliability of the n-fold cross-validation error rates for LDA, QDA and
CART showed that when p = 5, the R main effect was not significant. That is, there were no
differences in the reliability of the R(CV) estimators between the three methods.

For p = 10, the R main effect (F = 3.45) was the only significant result, and that only at the
o = 5% level. Table 5.7 shows that both the LDA and QDA R(CV) estimators were roughly
equally reliable while that for CART was comparatively high (roughly twice the magnitude of
the LDA estimate). This discrepancy was due mainly to the overoptimistic estimates for R(T)
when Pij = 5 produced by cross-validation.

Table 5.7: Means and standard error of the difference in means of the MSE’s for
the n-fold cross-validation error rate estimates for each classification method
(* 107%)

p=10

Level LDA QDA CART

43 48 82

Standard error of the difference between means = 17.

5.4.4 Summary
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For five-dimensional categorical data. it was found when comparing the reliability of various
error rate estimators for LDA and QDA that sample size and probability patterns for each
population were important in determining differences between error rate estimators. The
R(CV) estimator for LDA did best for either small samples or large differences between
populations while the R(ROT) and R(0.632) estimators were better for larger samples or
smaller differences between populations. For ten-dimensional categorical data, it was found
that the interaction of sample size and probability patterns was important in differentiating the
estimators, while R(CV) was the most reliable estimator overall.

In comparing the n-fold cross-validation estimators for LDA, QDA and CART, it was found
that there were no differences present in the five-dimensional case. However in the ten-
dimensional case, LDA and QDA had the most reliable estimates with CART some distance
behind.



5.5 CONCLUSIONS
In this chapter, four classification methods were compared in the setting of p-variate
categorical data. In the case of five-dimensional categorical data, the only significant effect
was the overall difference between the methods. where CART was found to be the best
method. For the ten-dimensional data, the results followed a very similar pattern to those for
the continuous data in that LDA did best when every variable counted an equal amount for
the classification rules or where there was fairly good separation between groups. CART, on
the other hand, did better for less well separated groups or where only a few variables were
important to the creation of the classification rules. As well, CART did better for smaller

samples and LDA for larger samples. thus appears particularly useful for categorical data.

A comparison of different error rate estimators for LDA and QDA showed that the n-fold
cross-validation estimator for LDA was the better estimator of the actual error rate. A
comparison of the n-fold cross-vlidation error rate estimators for LDA, QDA and CART
showed that the CART estimator was the least reliable of the three.

The last finding led to a comparison of the various error rate estimators for CART using
categorical data. the results of which are reported in Chapter 6 along with a comparison of the

various estimators for continuous data.

Another interesting finding was that there was only a minor difference between the third and
fourth levels of the probability pattern variable (see Table 5.1). Ganeshanandam and
Krzanowski (1990) reported that the error rates for the third level were twelve to seventeen
points higher than those for the fourth level. The results here have shown that difference to
be approximately only a few points. It is possible that Ganeshanandam and Krzanowski
(1990) actually used different probability patterns than those stated, because theoretically, the
error rates for the third level should be closer to those in level 4 rather than level 2 as

occurred in their studies.
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6.1

6.2

CART SIMULATION STUDY

INTRODUCTION

In Section 4.6, an investigation was carried out into the performance of various techniques for
determining tree size and estimating the actual error rate in CART. Recent studies have
suggested, however, that the range of Bayes error rates directly affects the performances of
the error rate estimators, especially the 0.632 estimator for CART in the case of continuous

data.

The objective of this chapter was firstly to compare the various error rate estimators over a
wider range of Bayes error rates, and reduced sample sizes from those studied in Chapter 4.
Numerous studies (Efron, 1983, Gong, 1986 and Crawford, 1989 for instance) have shown

that sample size is a crucial factor in determining the performance of an error rate estimator.

A second objective was to compare the various error rate estimation techniques for CART
over the categorical data sets that were used in Chapter 5, to determine if similar patterns as

were observed for continuous data could be seen.

Thirdly, based on the comments of Feng et al (1993), a comparison between the zero and one
standard error rules for selecting the right sized tree, was carried out, in order to determine in

which situations, if any, one should/should not use the one standard error rule.

A final objective was to brought about by a study of Fitzmaurice et al (1991). They affirmed
that the untransformed error rate scale, bounded by O and 1, may not be appropriate for the
comparison of different methods. Thus, a number of transformations were carried out on the
error rates and the effects of the transformations analysed.

ERROR RATE ESTIMATION FOR CONTINUOUS DATA IN CART

6.2.1 Previous Studies

This study was motivated by the work of Breiman et al (1984) and Crawford (1989).
Breiman et al in Section 1 1.7, suggest that on the basis of tests on both real and simulated
data sets, the bootstrap error rate estimate had lower variance than the cross-validated error
rate estimate, but was highly overoptimistic when compared with those based on g-fold cross-

129



130

validation. When the learning sample is large. they state that the bias effect dominates the
variance so that the g-fold cross-validation estimator is superior to bootstrapping.

Breiman et al (1984) suggested that perhaps a modified bootstrap estimator could be used to
determine both optimal tree size and provide an estimate of the actual error rate. Crawford
(1989) tested these assertions by comparing the performance of cross-validation, the bootstrap
and the 0.632 bootstrap, using

R(0.632) =0.368 * R(A) +0.632 * R(¢).

He found for small data sets (n = 20) that the 0.632 estimator, R(0.632). was the best in terms
of having the lowest mean square error (MSE), while for larger samples (n = 100), the cross-
validation estimator, R(CV). was best for high values of R(B) but R(CV) for low values of
R(B). Crawford suggested the use of a combined strategy whereby n-fold cross-validation
was used to select the right sized tree and R(0.632) to estimate R(T) on the selected tree.
Crawford concluded that this combined approach minimised the chance of poor performance

when faced with either a high or low value of R(B).

In Section 11.5, Breiman et al, p 85. affirmed that ... we have not come across any situations
where taking [g] larger than 10 gave a significant improvement in accuracy for the tree
selected.” They suggest that the use of ten fold cross-validation gives adequate accuracy in
most situations, and indeed. this is the default value used within the CART program. As yet,

no results have appeared in the literature validating these assertions.

6.2.2 Study Plan

The aim of this study was to use CART to compare the performance of the n-fold and ten-fold
cross-validation, rotation and 0.632 estimators, along with the associated apparent error rates
in approximating the actual error rate, R(T). of the sample. As in Section 4.6. R(T) was found
by using an independent test sample of size 5000. The objective was to expand on the work
of Breiman et al and Crawford (1989) in order to find out which method was the best in
selecting the most “‘honest” sized tree. The error rate estimators were as used in Section 4.6.
The 0.632 estimator, using R(ROT) in the equation instead of R(€) provides a simple
alternative to the combined strategy proposed by Crawford (1989). His proposal involved a
double calculation, hence a large increase in processing time, in that n-fold cross-validation



was needed to select the right-sized tree, then B bootstrap samples had to be generated in
order to estimate R(T). This version uses the rotation method to calculate the right-sized tree
and then uses that error rate in the equation for R(0.632).

In addition, a comparison of the sizes of the trees produced by each method was made to

determine if there were any differences between methods.

The data were generated from two multivariate normal populations, as it is known that CART
is invariant under monotone transformations of the variables. Three factors were varied in a
full factorial design; R(B), the Bayes error rate; n. the sample size with m; = w5 for all cases;

and q, a combination of dimension (p), means and correlations between variables.

The values of the first and second factors were:
@) R(B) =0.05. 0.15, 0.25 and 0.35.
(11) n =20, 100.

The third factor, g, had levels whereby p; = 0 for all j. where 11); is the mean of the first

population for variable j; and H2; is the mean of the second population for variable j.

P=2. Mo =i p=0

P=2. Hy=Hz, p=05

p=4 whereby pp;=2U05=6H23 Hg=0

1 0 05 0 [ ] 0 075 0

0 1 0O O 0 1 0
and P = and P, =

-0.5 0 1 0 - 1075 0 1 0
0O 0 0 1 0O 0 0 1

where P; = [(pjjx)] is the population correlation matrix for I1;.

The values for the first and second factors were similar to those used by Crawford (1989) and
Fitzmaurice (1991), except that no studies were done for R(B) = 0.45, where, as noted by
Fitzmaurice et al, any classification rule which produced an error rate in the region of 0.45

would probably not be widely used.
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The levels of the third factor were chosen after some conclusions by Quinlan (1993) aboy;
parallel and sequential classification problems and summarised in Chapter 4. Therefore, iy
this study, the first two levels of factor q correspond to situations which are less favourable g
CART while the third level corresponds to a situation more favourable to CART.

Each of the 24 factor combinations was used for 25 simulations. The number of simulations
was chosen so as to be able to adequately depict the true trends. The effects of a few ‘bad’
samples will be minimised by the large number of ‘good’ samples. Four criteria of
performance were used to compare the various error rate estimators, namely, the bias of each

technique in estimating R(T), where
bias = R(T) - R(T). T=CV.A.ROT.0.632 or TEN
the standard deviation of the bias; thirdly, the MSE. where
MSE = E[(R(T) - R(T)?).

A fourth measure used was the COUNT criterion. corresponding to the proportion of samples
for each factor combination in which the estimated error rate was less than the actual error
rate, and is therefore a measure of the optimism involved in using each estimator. A large
value for COUNT, say > 75%. would correspond to an overoptimistic estimation whereas a
low value for COUNT. say < 25%. would correspond to a pessimistic or under optimistic

estimation.

For all the data sets in this section. the zero standard error rule was employed while the size
below which a node will not be split was set to tive. Independent test samples of size S000

were used throughout to determine R(T).

6.2.3 Results

As in Chapters 4 and 5, a split-plot ANOVA was used to assess the relative importance of the
experimental factors in intluencing the MSE's for the various error estimation techniques. A
large number of replicates were carried out in this study, in contrast to Chapters 4 and 5,
hence the F-ratio from the ANOVA should not be regarded as a true measure of the

significance of each result.



The R (method) main effect (F = 87.68) and R * R(B) (method by Bayes error) interaction
(F = 20.18) dominated the other R * factor interactions. All other effects were very small
though, rather surprisingly, the R * R(B) * n * q interaction was the next largest (F = 2.57).
Therefore, it was decided to compare the four error estimation techniques over all possible

combinations of R(B), n and q.

The results of the average bias, standard deviation, MSE's and COUNT’s are presented
graphically in Figures 6.1 to 6.24. Only the R(CV), R(ROT), R(0.632) and R(TEN)
estimators are shown as the values for the respective apparent estimators were on most

occasions highly overoptimistic, leading to extreme values of the above four measures.

Figures 6.1 to 6.6 show the average bias values for each estimator over the ranges of the
factors used. The results show that for almost all values of R(B), n =20 and q =1 and 2, that
R(0.632) had the lowest bias. All other methods were markedly overly pessimistic in the
estimation of R(T). The exception to the rule was when q = 2 and R(B) =0.15. When q = 3,
however, a different picture emerged. The R(CV), R(0.632) and R(TEN) estimators all had
similar bias with this bias increasing pessimistically as R(B) increased. The R(ROT)

estimator was consistently more pessimistic than the other three estimators.

For larger samples (n = 100), it is noticeable that the performance of the R(0.632) estimator
deteriorated as R(B) increased in that the bias became overly optimistic. The R(CV)
estimator was usually the least biased for R(B) = 0.05 and 0.15, but deteriorated for higher
R(B). In those situations, R(TEN) produced the lowest errors. For highly separated
populations (R(B) = 0.05), the R(0.632) estimate was comparable to or better than the R(CV)
estimate. As with the smaller samples, the R(ROT) estimator was consistently pessimistic.

Turning to the standard deviations of the estimates. it can be seen that for smaller samples
(Figures 6.7 t0 6.9), for q = 1 and 3, that all estimators exhibit a distinctive inverted U shaped
pattern in that the lowest standard deviations occurred for either the lowest or highest R(B).
For q = 2, the trends were different, for all estimators. In terms of performance, the R(0.632)
estimator had lowest variability when R(B) = 0.05 and 0.15, though highest variability when
R(B) =0.25 and 0.35. The large variability of the R(CV) and R(TEN) estimators is clearly

evident.
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For larger samples (Figures 6.10 to 6.12), a more linear trend is apparent for all estimators in
that variability increased as R(B) increased. For q = 1 and 2, the R(0.632) estimator was
often the least variable estimator for higher R(B) with roughly similar variability to the cross-
validation estimators for lower R(B), but for q = 3, it was the best estimator for low R(B) and
worst for high R(B).

In the next analysis, the bias and variation of the estimators were combined into the MSE
criterion. For small samples (Figures 6.13 to 6.15), it is clear that for @ = 1 and 2, the
R(0.632) estimator did best except when R(B) = 0.35 and that the best results occurred at low
R(B) and the worst at moderate R(B). It should noted, though, that the R(0.632) estimator
was the least affected of all estimators by changes in the values of R(B). In accordance with
the results of Crawford (1989), the R(CV) estimate had high MSE, due mostly to the large
variability, as shown in Figures 6.7 and 6.8. For q = 3, a slightly different picture emerged.
All estimators had roughly similar MSE except R(ROT) when R(B) £ 0.25.

In the case of n = 100, similar trends can be seen in all three graphs (Figures 6.16 to 6.18).
Generally. the performance of each estimator deteriorated as R(B) increased. The R(CV) and
R(TEN) estimates performed very much the same. The R(0.632) estimator did best overall
forq =1 and 2 while the R(CV) and R(TEN) estimators had lowest MSE for q = 3.

Figures 6.19 to 6.24 provide another measure of performance giving the values of the
COUNT's of optimism for each estimator. Values closest to 0.5 were the most ideal. For
small samples (Figures 6.19 to 6.21), the trends exhibited are very similar to those exhibited
for bias. Forq =1 and 2, the R(0.632) estimator produced the most unbiased estimates of
error while the other estimators were highly pessimistic. For q = 3, all methods, except
R(ROT), had similar COUNT’s. For R(B) = 0.05 and 0.15, these estimates were around 0.5
but for R(B) =0.25 and 0.35, the estimates were highly pessimistic.

For larger samples (Figures 6.22 to 6.24), it is clear that for @ = 1 and 2, the R(0.632)
estimator was consistently optimistic. For q = 3, this also occurred when R(B) > 0.15, but for
R(B) = 0.05, the proportion of samples where R(T) was either over or underestimated was
roughly 0.5. For q = 1. R(CV) did best while for q = 2, R(TEN) did best with R(CV) tending
to be rather optimistic. For q = 3, both R(CV) and R(TEN) performed equally well. The
overly pessimistic nature of the R(ROT) estimator is reinforced by these results. In other
words, R(ROT) was much higher, on average, than the actual error rate, R(T).
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These results were fairly similar to those of Crawford (1989). though he used a different MSE
criterion to the one used here. Generally, these results have shown that the R(0.632)
estimator for CART was clearly the most reliable estimator for smaller samples and
marginally the best for larger samples in the case of conditions less favourable to CART. The
R(CV) and R(TEN) estimators were best for larger samples in situations most favourable to
CART and for larger R(B). For smaller samples and situations favourable to CART, there
was little to choose between the estimators. The R(ROT) estimator was found to be the worst

due to the often large pessimistic bias.

As an extension to the studies undertaken here. it was decided to compare the performance of
the holdout estimator, R(H), for n = 100 only. The R(H) estimator was calculated by using
two thirds of the original data as the learning sample to grow a classification tree and the
other third as a test sample to select the tree size and estimate the error rate of the chosen tree.
In summary, the results showed that the R(H) estimator was unbiased but that the variability
of the estimator was very large, leading to a consistently higher MSE than the other
estimators. As recommended by Breiman et al (1984), the holdout method should not be used
with CART unless the data set is very large. (They recommend a combined data set of at

least 1000 cases.)

A final analysis in this study was carried out to compare the tree sizes generated by each of
the three error estimation methods. Naturally the tree chosen by R(ROT) was the same as
that for R(0.632). The results showed that the method effect (F = 14.08) dominated all others,
and that on average, the trees produced by the rotation method were the simplest, containing
3.5 terminal nodes compared with 3.63 for tenfold cross-validation and 4.35 for n-fold cross-

validation.

6.2.4 Summary

This study has shown that trees produced by using the rotation method for tree selection, then
using the 0.632 method to estimate R(T), the actual error rate, for the selected tree, were in
the main fairly unbiased, or if biased optimistically, generally exhibited low varability. The
R(0.632) estimator was found to be the most reliable of all error estimation techniques for
small samples in non-ideal situations (parallel classification problems) and marginally more
reliable than other methods for smaller samples and ideal situations (sequential classification
problems), when R(B), the Bayes error rate, was low to moderate, as well as for larger
samples and non-ideal situations. Only when the classification problem was sequential and
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R(B) was moderate to high did R(CV) and R(TEN) clearly outperform R(0.632). The R(CV)
and R(TEN) estimates were found to be extremely variable for small samples, although as
claimed by Breiman et al (1984), R(TEN) did no worse than R(CV). The R(ROT) estimator
was found to be overly pessimistic in nearly all situations.

The general trend observed for all estimators was that for small samples, reliability was best
for either lowest or highest R(B), but for large samples, reliability decreased with increasing
R(B).

ERROR RATE ESTIMATION FOR CATEGORICAL DATA IN CART

6.3.1 Study Plan

In this section, the various error rate estimation techniques were calculated using the same
data sets that were employed in Chapter 5. However, the tourth level of the probability
patterns, p;;, was omitted as the results for that level were found to be very close to those of
the third level. This meant that there was unnecessary replication of the same type of

classification problem. For simplicity, level 5 was recoded as level 4.

The aim of this study was the same as that of Section 6.2, except that the conclusions apply to
categorical rather than continuous data. Comparisons of the error estimation techniques were
made by means of the twin criteria of bias and MSE. In addition. a comparison of the tree

sizes by each method was made to determine if there were any ditferences.

For all the data sets in this section, the one standard error rule was used while the size below
which a node will not be split was set to five. Independent test samples of size S000 were

used throughout to determine R(T).



6.3.2 Results

For p = 5 variables, the split-plot ANOVA showed that the method main effect (R, F = 4.36)
and the interactions of method with probability pattern (R * p;;, F = 2.74), method with
sample size (R * n, F = 2.66) and method with probability pattern and sample size
(R * pj; * n, F = 2.44) were the only significant effects, hence the results are presented in

terms of the latter.

As in Section 6.2, the results for the three apparent error rate estimators are not presented in
order to preserve display resolution. as in most situations, the bias and MSE’s of these
estimators was much larger than that of the other estimators. Figures 6.25 to 6.27 give the
values of the bias for the other four estimators when p=35. For n = 20, the R(0.632) estimator
was least biased for the first three levels of pij as well as either R(ROT) or R(TEN). For all
four levels of pj;, R(CV) was highly optimistic, and most disturbingly. underestimating R(T)
by almost 10% in the case of identical populations. For n = 60, R(CV) did best for the most
highly separated populations (pj; = 1) but for other levels of p;; was consistently the worst
(overoptimistic). The R(0.632) and R(ROT) estimators exhibited fairly similar trends, being
fairly unbiased. Forn = 100, the R(CV) estimator did equally well for p;; = 1 and 2, but was
the worst for the other two levels of pij.- The other estimators all had very similar error rates.

In terms of MSE, Figure 6.28 shows that when n = 20, the performance of all estimators
varied across the levels of Pij» with R(0.632) doing best for Pij = 1 and 3, along with R(ROT)
for Pij = 3, R(CV) for Pjj = 2 and R(TEN) for pij = 4. where R(CV) did worst. For n = 60,
Figure 6.29 shows that R(ROT) did marginally better than R(0.632) except for pj; = 1 where
R(0.632) did narrowly better than R(CV). The poor performance of R(CV) for pj; = 2,3 and
4 can also be seen. Forn = 100, Figure 6.30 shows a similar pattern to that for the smallest
samples in that the R(0.632) estimator had the lowest MSE for pij = 1 and 3, R(CV) for pij = 2
and R(TEN) for pij = 4.

For p = 10, the split-plot ANOVA showed that the R main effect (F = 14.58) and R * pj; (F =
2.48) and R * n (F = 2.32) interactions were all significant at the oc = 1% level. Hence, the
results are presented in terms of p;; and n in turn. Figure 6.31 shows that in terms of bias, the
R(0.632) estimator was best for Pij = 2and 4. For pij = 3, R(ROT) did best, otherwise it was
overly pessimistic. The R(TEN) estimator was narrowly better than R(0.632) for py = 1 but

was overly optimistic for other levels.
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Figure 6.32 shows that in terms of MSE, R(0.632) was clearly best for p;; = 1 and 2, while
R(ROT) was the most reliable for p;j = 3 and 4. R(CV) was found to be the least reliable
estimator in all situations. Interestingly, these results mirror those found for continuous data
in that R(0.632) was shown to be the best estimator for parallel classification problems which
were not suited to CART as well as for the best separated populations (p;; = 1 and 2). Note,
though, that the reliability of the R(0.632) estimate exhibited a distinctive U shape pattern,

doing best for either well-separated or identical populations.

Figure 6.33 shows that R(0.632) was the least affected by changing sample size and was the
least biased for small samples. The high optimistic bias of R(CV) for small samples is clearly

evident and remains optimistic for larger samples.

In terms of MSE, Figure 6.34 shows that R(0.632) did best for n = 40. For n = 120, R(0.632)
was slightly better than R(ROT) while for n = 200, R(0.632), R(ROT) and R(TEN) did
equally well. The R(CV) estimator for all sample sizes performed consistently the worst.

A final analysis in this section compared the sizes of the trees resulting from each of the three
error estimation methods for both p = 5 and p = 10 binary variables. For p = 5 variables, the
split-plot ANOVA showed there to be a difference between methods (F = 7.69) with R(ROT)
producing the smallest sized trees (2.03 terminal nodes) and R(CV) the largest (2.64 terminal
nodes). For p = 10, again the method effect (F = 7.7) dominated all others with the R(ROT)
estimator producing the smallest sized trees (2.9 terminal nodes) on average. The average
sized trees produced by R(CV) and R(TEN) contained 5.07 and 4.44 terminal nodes
respectively implying that the rotation method produced trees with 1.5 less terminal nodes

than any other method.
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6.3.3 Summary

This study has shown that for categorical data, the R(0.632) and R(ROT) estimators produced
the most reliable classification trees as well as being the simplest. It was found that, as for the
continuous data in Section 6.2, the R(0.632) estimator was the most reliable for small
samples, parallel classification problems and well separated populations. As with the
continuous data, and in agreement with other studies, the R(CV) estimator was found to be a
poor estimator for small samples and highly optimistic, especially for poorly separated
populations. Based on the results of this study. the use of n-fold cross-validation with

categorical data is not recommended.

THE STANDARD ERROR RULE IN CART

6.4.1 Previous Studies

The motivation for doing this study was provided by Breiman et al (1984). They
recommended the use of the one standard error (1-SE) rule for, firstly, the sake of accuracy,
noting that in most cases, the cross-validation estimate of error was over optimistic.
Secondly, they stated that a plot of R(CV) against tree size had the characteristics of an initial
sharp decrease followed by a long, flat valley across a wide range of tree sizes and then an
increase for very small trees. Inside the long valley, most eror rates were found to be within
the + 1-SE range and that the position of the minimum may be unstable. The 1-SE rule was

used to reduce that instability as well as produce trees which are as simple as possible.

Feng et al (1993) carried out a small-scale empirical study comparing the zero standard error
(0-SE) and 1-SE rules using various data sets. They found that trees produced by the 0-SE
rule were between two and ten times larger than those constructed using the 1-SE rule, so that
the latter were biased towards simplicity. In determining which rule was better they were
rather inconclusive. “We believe that there is no single best rule, instead it depends on how
much “noise” there is in the data. If there is little noise in the data, then the O-SE rule should
be used. If there is a lot of noise then ... the 1-SE rule should be used.” (ibid, p 49.)
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6.4.2 Study Plan

In Section 6.2, the performance of various error rate estimators was compared in estimation of
the actual error rate using the 0-SE rule. In this section, only two estimators, R(CV) and
R(0.632), were used, one of which worked best in any one of the factor combinations studied
in Section 6.4. The two error estimation methods were compared over the factor
combinations studied in Section 6.2 involving the Bayes error rate, R(B). sample size, n, and
the third factor q. using both the O-SE and 1-SE rules. with the objective of determining in
which situations either of the above two rules should be used. Comparisons were made using
both the bias and MSE performance criteria. In addition, a comparison of the decrease in tree
size produced by using the 1-SE rather than the 0-SE rule was made forq = 3 only.

6.4.3 Results

Figures 6.35 to 6.37 compare the average bias for n =20. Forq =1 and 2, it is clear that both
the R(CV) and R(0.632) estimators using the O-SE rule were less biased than the
corresponding estimates using the 1-SE rule except for R(B) = 0.05. For q = 3, there was
little to choose between the use of the 0-SE or 1-SE rules. except the R(0.632) estimate for
larger R(B) which was excessively pessimistic. Note too that the two R(CV) estimators
exhibited very similar trends as functions of R(B) while the two R(0.632) estimates did not.
For g = | and 2. the average bias decreased as R(B) increased using the 0-SE rule while the

bias increased as R(B) increased using the 1-SE rule.

Figures 6.38 to 6.40 illustrate the cases of n = 100. Forq =1, 2 and 3, the estimates using the
1-SE rule were generally less biased than those using the 0-SE rule, with the latter tending to
be over optimistic. For g = 3, the disparity in bias between the 0-SE and I-SE rule estimates
was less marked for low R(B) than high R(B). As with n = 20, the R(CV) estimates followed
similar patterns while the R(0.632) estimates behaved rather differently.

In terms of MSE, Figures 6.41 to 6.43 illustrate the cases of n =20. The trends shown are
very similar to those for bias. Forq =1 and 2, the 0-SE estimates produced the lowest MSE
except when R(B) = 0.05. For q = 3, the difference between methods was marginal.
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For larger samples, Figures 6.44 to 6.46 show trends slightly different to those for bias. For
q =1 and 2, one of the 0-SE estimates was lowest in terms of MSE for higher R(B), with
R(0.632) using the 1-SE rule having a very high MSE, while for higher R(B) (R(B) = 0.25),
the 1-SE estimates were more reliable. For q = 3, the 1-SE estimates were equivalent to those
using the 0-SE rule for R(B) = 0.05 and better than the 0-SE for R(B) = 0.15 and 0.25. For
R(B) = 0.35, the 0-SE estimates performed best.

These results would tend to suggest that sample size plays an important part in determining
the choice between the 0-SE and 1-SE rules for CART. as well as if there is any noise in the
data or not. Based on these results, the recommendation is to use the 0-SE rule with very
small data sets for parallel classification problems involving little or no noise. while for
sequential classification problems and some noise in the data. the 1-SE rule is preferred on the
grounds of simplicity. For larger samples. the (-SE rule should be used for well separated
populations in cases involving parallel classification problems. For sequential classification

problems, the 1-SE rule should be used unless the populations are not well separated.

Comparing the tree sizes obtained by using the 1-SE rule instead of the 0-SE rule, showed
that overall, for both methods, n had a very large eftect (F = 12.94) compared with all other
effects and interactions. This implies that sample size was a major factor in determining if
tree size decreased or not with the use of 1-SE rule. In fact. the overall increase in tree size

was one terminal node larger for large n than for small n.

Investigation of the probability model stratum of the ANOVA showed there to be no
significant method effect or method by factor interactions, therefore the decrease in tree size
resulting from using the 1-SE rule was no different for either of the two error estimation
methods. On the evidence here it would appear that tree size was little affected by using the
0-SE rule instead of the 1-SE rule, certainly less than suggested by Feng et al (1993), though

for larger samples with more variables, the increase may be much greater.
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6.4.4 Summary

The results from this particular study have indicated that when using either the R(CV) ¢
R(0.632) estimates to both select tree size and calculate an “honest” estimate of R(T), the
1-SE rule should not be used for either small samples or when there is little noise in the data,
unless the populations are not well separated. For situations where there exists a lot of noise

in the data, the 1-SE rule is preferred unless the populations are not well separated.

TRANSFORMATIONS OF ERROR RATES

6.5.1 Study Plan

The previous sections have dealt with the analyses of untransformed error rates so a
difference of 0.1 from R(T) = 0.05 was treated the same as a difference of 0.1 from 0.35.
This seems a somewhat unfair and inappropriate comparison, as suggested by Fitzmaurice et
al (1991). in that the former difference should receive more weight than the latter (see Section
4.5.3).

In this section, two transformations of the error rates were tried to try and right this
imbalance, namely the logit and proportion transformations. For the logit transformation,
R(T) was replaced by LR(T). where

LR(T) = In[R(T)/ (1 - R(T))]
and its estimate, R(T), by

LR(D) = In[R(T) / (1 - R(D))
while for the proportion transformation, R(T) was replaced by PR(T), where

PR(T) =(R(T) - R(T)) / R(T) =0

and its estimate, R(T), by

PR(T) = (R(T) - R(T)) / R(T).



For example, if R(T) = 0.05 and R(T) =0.2

LR(T) - LR(T) = 1n[0.2 / (1-0.2)] - In[0.05 / (1-0.05)] = 1.558
PR(T) - PR(T) = (0.2 - 0.05) /0.05=3

while if R(T) = 0.35 and R(T) = 0.5

LR(T) - LR(T) = In[0.5/0.5] - In[0.35/0.65) = 0.619
PR(T) - PR(T) = (0.5 - 0.35) / 0.35 = 0.429.

From these results it can be seen that using the proportion transformation has the greatest
effect on the error rates, as the magnitude of differences between (0.2 - 0.05) and (0.5 - 0.35)

is 7 and 2.517 for the proportion and logit transtormations respectively.

The two transformations were used on the R(CV). R(ROT), R(0.632) and R(TEN) error rate
estimates calculated in Section 6.2 with the intention of determining what differences, if any,

appeared in the MSE's for all four estimators.

6.5.2 Results

As with Fitzmaurice et al (1991), the two transtormations had very similar effects on the
patterns of MSE’s. Therefore. only the results for the proportion transformation are
demonstrated here. The results for n = 20 appear in Figures 6.47 to 6.49 and differ from the
untransformed results, given in Figures 6.13 to 6.15, in a number of respects. Firstly, all
estimators now exhibit the general trend of an initial sharp decrease in MSE going from
R(B) =0.05 to 0.15 then a gradual decrease from R(B) = 0.15 to 0.35. Note, though, that the
MSE’s for the R(0.632) estimator were least affected by changes in the values of R(B). For
q =1 and 2, the differences between the R(0.632) and other estimators for R(B) = 0.05 were
accentuated. As with the untransformed scale, the R(0.632) estimator did best when q = 1

and 2, except for high R(B), while no single estimator was best for q = 3.
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For larger samples, a slightly different trend than appeared with smaller samples ig
highlighted in Figures 6.50 to 6.52, with the initial decrease in MSE for all estimators, except
R(ROT), being not as large as that for small samples and increasing MSE for R(B) = 0.35.
As with smaller samples, though, the performance of each estimator is clearly defined for low
R(B). R(0.632) did best, in the cases of ¢ = | and 2, for moderate R(B), and high R(B) for
q=8.

6.5.3 Summary

The results reported here were very similar to those given by Fitzmaurice et al (1991) using
LDA. A comparison of the MSE's of the four error methods was not greatly affected by the
transformations . However, as recorded by Fitzmaurice et al, the methods now performed best
for high R(B) and worst for low R(B) in contrast with the untransformed results where for
small samples, MSE was highest for moderate R(B). while for larger samples, it was largest
for high R(B).

CONCLUSIONS

In this chapter, simulation study results have shown that the R(0.632) method for estimating
the actual error rate when using CART performed well in most situations for both continuous
and categorical data. For continuous data. the R(0.632) clearly had the lowest MSE for
smaller samples and parallel classification problems and marginally lower MSE for smaller
samples and sequential classification problems as well as larger samples and parallel
classification problems. Only when the classification problem was sequential and the
distance between populations was moderate to large did other techniques outperform
R(0.632).

For categorical data, most of the trends noted above were also observed. The R(CV)
estimator, as for continuous data, was found to be a poor estimator for small samples and
highly optimistic for poorly separated populations. For both continuous and categorical data,
the R(0.632) estimator (R(ROT)) was found to produce the smallest sized trees.
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In studies comparing the use of the zero and one standard error rules in CART, it was found
that the one standard error rule should not be used for either small samples for when there is
little noise in the data, unless the populations are poorly separated. In all other situations, the

one standard error rule is the preferred method.

Finally, a transformation of the error rate scale produced results which were not unexpected.
For large differences between populations, that is low Bayes error rates, the differences
between error estimation techniques were accentuated from the case of untransformed error

rates.

Therefore, the technique of using the rotation method to select tree size then using the 0.632
method to estimate the actual error rate of a data set is recommended as a quick, easy and
reliable technique when used with CART decision trees. However, as mentioned by
Crawford (1989), the user should not be constrained to using one method to select the right-
sized tree, but instead, with a mixture of common sense and prior knowledge of the domain,

make a sensible tree selection.
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CASE STUDIES

INTRODUCTION

In this chapter, a number of the classification methods outlined in Chapters 2 and 3, are
applied to 24 real-world data sets and compared by means of a number of criteria to be
outlined later in this chapter. These data sets are used to either validate or not some of the

conclusions reached after the simulation studies undertaken in Chapters 4, 5 and 6.

Later in this chapter, a comparison of various tree-based methods is made for one particular

data set.

PREVIOUS STUDIES

I1diko and Lanteri (1989) compared LDA. QDA. SIMCA (a form of QDA) and CART on
four data sets selected from various fields of chemistry. They concluded that no overall
method was superior in terns of prediction error. They also recommend that the type of data
structure involved should be explored and then to choose the optimal rule for that particular
type of data. If in doubt, several different methods should be used and compared.

Lynn and Brook (1991) undertook an empirical study comparing the performance of
traditional discrimination methods with CART on twelve predominantly multivariate normal
classification problems, differing in sample size, dimension and modality. Subsequently, it
was found that for only three of the data sets was the assumption of equality of variances
valid, hence, it was decided to use only LDA to compare with CART. For the other nine data
sets investigated both QDA and kemel density estimation were carried out. In all cases,
comparisons were made by means of n-fold cross-validation. The findings of this paper
suggested that CART does not perform as well as discriminant analyses in cases where the
data set is small and/or simple but does perform at least as well as discriminant analysis in
most cases where the data set is larger and/or complex (multi-modal, non-normally
distributed and/or high-dimensional), especially where the covariance structure is

heterogeneous.
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Feng et al (1993) reported a number of papers from the literature which have compared
various classification methods. However, they noted a number of problems common to the
papers referred to above. such as applying different methods to data sets which were not the
same, and using old versions of some methods while using the latest versions of others. In
their study, Feng et al as mentioned earlier, compared a large number of classification
methods for eight data sets involving industrial applications. Generally, the data sets were of
much larger sample size and dimension than those used by Lynn and Brook (1991). “In
conclusion, it seems that there is no one particular algorithm or one particular method
superior to the others on all the data sets. There is indication from our results that which
algorithm performs best depends on the characteristics of the data sets. Our work is,

however, incomplete in the analysis of such dependent relationships™. (Feng et al, 1993,
p Sl).

Brown et al (1993) compared CART with neural networks, a method which uses multiple
layers of processes. Each processor produces a weighted non-linear function of the variables.
Their comparative studies were carried out for several multi-modal classification problems
and found that the two methods produced classification rules with comparable error rates, but
CART is preferred for data sets with a large number of irrelevant or noisy variables and when

the ratio of sample size to dimension is small.

COMPARATIVE STUDIES

7.3.1 Methods and Data Sets

Five classification methods were used in this study. involving two categories of methods:

(1) Traditional discrimination methods. which include LDA, QDA and kernel density

estimation.
(2) Decision tree-based methods, which include CART and FACT.

Twenty four data sets, described in Tables 7.1 and 7.2, were chosen for the purpose of
comparison. All the data sets were a convenient selection of published data. Twelve of the
data sets were used previously in a comparative study undertaken by Lynn and Brook (1991).
Those data sets, however, all contained continuous variables, nine of which were
approximately normally distributed. The additional twelve data sets used here contain a
wider variety of data types, including some data sets involving binary and ordinal categorical

variables.



Table 7.1:

A. Mammo:

B. Marksl:
C. Marks2:
D. Marks3:
E. Digit:
F. Birth:

Description of data sets (block 1)

This problem involves an attempt to discriminate between women’s
experiences with mammography (three levels) based on five variables,
describing their knowledge, attitude and behaviour towards
mammography.

Source: R J Zapka and Ms D Sporrs, Universiry of Massachussets,
Division of Public Health.

This involves discriminating between males and females based on their
Grade Point Average at university and five pre-university academic
variables.

Source: Moore and McCabe (1989).

This involves discriminating between three groups of students with
different majors on the basis of the same six variables in B.
Source: Moore and McCabe (1989).

This involves discriminating between six groups of students with
different sex and/or majoring subject on the basis of the same six
vanables in B.

Source: Moore and McCabe (1989).

In this example, the data are generated from a faulty calculator. Each of
the seven lights (X, .... X7) of the digit display has 0.1 probability of not
doing what it is supposed to do. The problem is an attempt to distinguish
between the values 1 to 10, which occur with equal probability.

Source: Breiman eral (1984).

For this set of data, an attempt was made to discriminate between
overweight and underweight babies based on various medical and
demographic variables relating to the mother.

Source: Hosmer and Lemeschow (1989).
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G.

H.

L

&

K.

|

Family:

Iris:

Enures:

Blood1:

Pinetree:

Wheat:

This problem was analysed by Kumar (1993), containing information on
the type of contraceptive device used by 174 Indian couples. An attempt
was made to discriminate between the four types of contraceptive device
based on the values of twelve variables collected from each couple.

Source: Family Planning Association of India.

This 1s the classic problem posed by Fisher involving discrimination
between three allied species of 111s based on four measurements relating
to the size of the iris.

Source: Fisher (1936).

One method of treatment of enuretic children involves an alarm buzzer
which wakes the child whenever a bed becomes wet. It was proposed to
investigate whether the outcome of the treatment could be predicted from
seven measurements, where the possible outcomes are 1 = fail, 2 =
relapse after apparent cure and. 3 = long term cure.

Source: Dr Svivia Dische (from Hand (1981)).

In the context of genetic counselling, the question of discriminating
between normal and haemophilia A carrying women was considered on
the basis of two variables.

Source: Habbema, Hermans and Van Den Broek (1974).

This data consists of the measurements, in centimetres of 60 pinetrees
which were felled in three different areas of the forest. For each tree,
measurements were taken on four positions. The problem involves
distinguishing between trees grown in each of the three areas.

Source: NZ Forestry Deparrment.

This problem involves discriminating between two varieties of wheat on
the basis of six measurements taken from a sample of the two species.

Source: Indian Agricultural Research Institute, India (1972).



R

Biomass1:

Biomass2:

Biomass3:

Compl:

Employ:

Urinary:

This problem involves discriminating between three different islands on
the basis of the growth of spartina biomass and four different chemicals
from each of the three islands.

Source: Rawlings (1988).

This involves distinguishing between three different types of vegetation
cover on the basis of the same tive variables in M.
Source: Rawlings (1988).

This involves distinguishing between nine different location-vegetation
types on the basis of the same five variables in M.
Source: Rawlings (1988).

Users of the University of London Computer Centre are divided into
non-medical and medical users. An attempt is made to distinguish
bertween the two based on the numbers of units of computing used under
two different operating systems.

Source: Hand (1981).

This problem involves discriminating between three groups of countries
(North-Western, Southern and Eastern Europe respectively) on the basis
of the percentages of the labour force employed in nine different types of
industry.

Source: Euromoniror (1979).

This problem involves discriminating between homosexual and
heterosexual males on the basis of two chemical measurements taken

from urinary samples.
Source: Margolese (1970).
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Table 7.2:

S. Blood2:
T. Lingual:
U. Sparrow:
V.  Comp2:
W. Beetle:

X. Nuclear:

Description of data sets (block 2)

This is the same problem as J except that the two discriminating

variables are logged (base 10).

This problem involves discrimination between a set of 27 children who
had an inborn error of metabolism known as transient neonatal
tyrosinemia (TNT) and a control group of 27 normal children based on
the scores of ten psycholingual variables.

Source: Peter Mullins.

This problem involves discriminating between sparrows that did or did
not survive a severe storm off Rhode Island on 1 February 1889, on the
basis of five measurements taken on each bird.

Source: Bumpus (1898).

This is the same problem as P except that the two discriminatory

variables are logged (natural log).

In this case, an attempt is made to distinguish between two allied species
of flea beetles that were long confused with one another, on the basis of
two joint measurements.

Source: Lubischew (1962).

This data involves two measurements (population and area) on each of
the fifteen largest British cities. excluding London. The fifteen cities
used are divided into two classes; those with an estimated fatality rate of
70% or more resulting from a nuclear strike and those with an estimated
rate of less than 70%.

Source: Laurie (1979).



The data sets were first sorted into two blocks after a Chi-squared test for heterogeneity of
variance within groups was carried out for each data set, and where heterogeneity was present
to a significant amount, those data sets were assigned to the first block (Table 7.1), otherwise
to the second (Table 7.2). Within each of the two blocks of comparison methods, the data
sets were ordered by sample size. As some data sets within each block were of similar size,

those data sets were ordered by dimension.

Table 7.3 lists some details about each of the data sets, including sample size, dimension,
number of classes, Chi-squared test for the equality of class covariance matrices, equal priors
or not, variable types and data structure. Variable type reters to whether the variables in the
data set are continuous (normal (N)/skewed (S)). ordinal (O), nominal (C), binary (B) or a
mixture of the above five types. Data structure reters to how many of the variables in the data
were important for the classification process and how many were imrelevant. A data set could
be described as either a parallel classification problem, whereby all of the variables have
approximately equal weighting, or as a sequential classification problem where relatively few
variables are important. As outlined in Section 4.3, traditional discrimination methods should
perform best for parallel classification problems with tree based methods doing better for
sequential problems. A third category “mixed” was also used for problems where a particular
data set did not fit neatly into any of the above two categories. Both stepwise discriminant
analysis and CART’s varible ranking technique were employed to determine into which
category each of the twenty four data sets should be classed.

For each data set, priors proportional to class sample sizes were used, and for all methods,
with the exception of FACT, models were obtained which minimised the misclassification
error rate by n-fold cross-validation, although LDA and CART were also compared using the
0.632 error rate (see further on in this section). Tenfold cross-validation was used with FACT
for reasons outlined in Section 4.3. With kernel density estimation, a normal kernel was used
with smoothing parameter, h = 0.5. For both CART and FACT, the size below which a node
would not be split on was set to 5. It was decided to use the one standard error rule
throughout for CART for the purpose of consistency, although simulation results in Section
6.4 had shown that the use of the zero standard error rule would be a more reliable estimate of

the actual error rate for smaller data sets.
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Table 7.3: Data sets and their various characteristics

Data Sample | Dimension [ Classes X:’- LEqual Variable Data Best |
Set Size priors? tvpe(s) structure Method
A 374 5 3 155.94"" No O.B parallel? LDA
B 234 6 2 58.80"" Yes S parallel CART
C 234 6 3 107.62°" Yes S parallel CART
D 234 6 6 294.29"" Yes S mixed® KDE
E 200 7 10 2105.08"" No B parallel LDA
F 188 8 2 42.76" No N.S.CB | sequential® | CART
G 174 12 4 1108.47"" No N.O.C.B| mixed LDA
H 150 4 3 154.42°" Yes N parallel | KDE/QDA
I 112 7 3 2363.75" No B sequential LDA
] 75 2 2 1590 No S parallel | KDE/QDA
K 60 4 3 92.12"" Yes N parallel LDA
L 54 6 2 43.23™" Yes N mixed LDA
M 45 5 3 13550 Yes N mixed KDE
N 45 s 3 107.81"" Yes N parallel CART
0 45 S 9 400.55"" Yes N parallel KDE
P 49 2 2 101.51"" No S mixed FACT
Q 26 9 3 193.35" No N mixed KDE
R 26 2 2 11.22" No N parallel LDA
S 75 2 2 5.24 No N parallel KDE
T 54 10 2 52.27 Yes N sequential FACT
U 49 5 2 0.69 No N parallel CART
\Y 49 2 2 3.92 No N mixed QDA
w 36 2 2 2.15 Yes N parallel | LDA/KDE
X 15 2 2 9.30 No N, S mixed KDE

=
N

1WA N2

ano® %y
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Chi-squared test for homogeneity of the within class covariances

Normally distributed variables

Skewed variables
Ordinal variables
Nominal variables
Binary variables

o< 0.01
a<0.05

Refers to a problem where most of the variables are important in forming the classifier.
Refers to a problem where relatively few variables are important.
Refers to a problem not fitting neatly into one of the above two categories.
The method producing the lowest error rate in Table 7.4. Where one of (LDA, QDA, kernel density

estimation (KDE))} had an error rate at least 33% less than one of {CART, FACT]}, or vice-versa, that
method is shown in bold.



7.3.2 Cross-Validation Error Rate Results
The results for the twenty four data sets analysed by each of the five methods are shown in
Table 7.4. Relating the performance of each method to the characteristics of the data sets

provides some explanations for the results.

In terms of covariance structure, it can be seen that CART produced the lowest cross-
validated error rate on four of the data sets with heterogeneous covariance structures, but only
in one out of the six data sets with homogeneous covariance structures, and that being the
sparrow data set (U), which is a trivial case since no tree was formed and all class 1 objects
were classified as belonging to class 2. For most of the other fourteen variables with
heterogeneous covariance stiuctures, CART also pertormed relatively well with respect to the
best classification method. though with a number of exceptions.

There appears to be little common pattern in the results when related to either dimension,
sample size or modality. Nor did whether class sample sizes were equal or not have any real
influence on the comparison between methods. or if they did. the effects were tied up with
other factors. More important were the types of variables in the data set, how well separated
were the classes (error structure) and the stiucture of the data.

With respect to the types of varnables first, the results show that CART did well relative to the
other methods when at least some of the variabies werc skewed, categorical or a mixture of
data types, with the relative performance declining for normally distributed data. In accord
with simulation studies in Sections 4.3 and 4.4 and/or critiques from the literature in Section
2.7, QDA, and to a lesser extent, kernel density estimation were not suited to categorical data,
though handling skewed continuous data fairly well. The performance of LDA markedly
deteriorated for skewed data, as did FACT, whose error rates were on the whole higher than

those of CART as expected from the simulation study results.

With reference to the inherent error structure in the data, it is apparent that CART’s
performance relative to other methods was best for high error models (greater than 0.2), but
for lower error models, worked much better than both CART and FACT. These trends

support the conclusions made from the simulation studies for both continuous and categorical

data in Chapters 4 and 5 respectively.
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Table 7.4: A summary of cross-validation error rates for datasets A-X

Data Method

Set LDA QDA KDE? CART FACT
A 0.37 0.41 0.39 0.38(8)" 0.42(4)
B 0.30 0.31 0.23 0.22(31) 0.34(2)
C 0.53 0.52 0.30 0.25(40) 0.49(7)
D 0.55 0.61 0.35 0.45(62) 0.56(21)
E 0.27 0.60 0.29 0.34(10) 0.34(10)
E 0.29 0.34 0.30 0.28(2) 0.36(2)
G 0.20 0.27 0.26 0.21(4) 0.21(3)
H 0.07 0.03 0.03 0.05(3) 0.04(3)
I 0.37 0.48 0.43 0.41(5) 0.46(9)
J 0.16 0.13 0.13 0.20(3) 0.30(3)
K 0.08 0.12 0.12 0.41(4) 0.45(7)
L 0.07 0.11 0.15 0.13(3) 0.17(6)
M 0.11 0.09 0.07 0.15(6) 0.13(9)
N 0.29 0.29 0.31 0.22(3) 0.33(6)
0] 0.38 N/A 0.31 0.34(12) 0.47(22)
B 0.24 0.24 0.24 0.30(2) 0.22(2)
Q 0.27 N/A 0.04 0.08(3) 0.19(5)
R 0 0.04 0.04 0.16(3) 0.23(3)
S 0.17 0.17 0.12 0.20(3) 0.16(4)
] 0.48 0.48 0.48 0.50(1)¢ 0.43(2)
U 0.45 0.57 0.57 0.43(1)¢ 0.43(1)¢
\% 0.31 0.20 0.22 0.30(2) 0.24(4)
W 0.03 0.06 0.03 0.14(2) 0.11(4)
X 0.20 0.27 0.13 0.40(2) 0.47(1)¢

a KDE is kernel density estimation

b The number in parenthesis indicates the number of terminal nodes in the decison tree

c No trees were created in these cases

N/A QDA was not able to be carried out as at least one of the class covariance matrices
was not of full rank
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Finally, in reference to the data structure, one of the tree-based methods has produced the
lowest ertor rate for two (F, T) of the three data sets which were described as sequential. For
the other sequential classification problem (I), CART had the second lowest error rate.
Interestingly, for most parallel and mixed classification problems, either LDA, QDA or kemel
density estimation produced the lowest error rates. although CART did best for three such
data sets. One could draw the conclusion from these empirical results that tree based methods
are preferred for sequential classification problems. Unfortunately, there were not more data
sets of this type to lend more weight behind this assertion.

In comparing the decision tree sizes of the two tree-based methods, some interesting results
are noticeable from Table 7.4. As Breiman et al (1984) point out, tree size is negatively
related to the reliability of the classification model, in that smaller trees are heavily biased in
favour of the learning sample. The general trend exhibited here is that CART tended to
produce the larger trees tor larger data sets (I-X), but for larger data sets (A-H), the FACT
trees were never larger than those produced by CART, and in some cases were considerably
smaller. The most striking examples of the latter situation were for the marks data sets (B-D)
where CART produced excessively large trees, which, in two cases at least, led to the most
accurate set of prediction rules. With such large trees, however, one should not have too

much confidence in the resulting set of classitication rules.

In general, it appears that CART should best be used for problems involving either skewed or
categorical data, where the classes are not well separated and only a few out of many
variables are important in the classification process. In other situations, LDA and/or
QDA/kernel density estimation are preferred. It must be noted, in passing, that there are
always exceptions to the rule and the above recommendations should not be regarded as “set
in stone”. The biomass2 data set (N) involving discrimination between three types of
vegetation provides an example of normally distributed data, where all the variables are
important and the classes are at least moderately separated, and in which CART has produced

the most accurate set of classification rules.
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7.3.3 0.632 Error Rate Results

The 0.632 error rates were also calculated for the twenty four data sets using equation
(4.2.20), for both LDA and CART. The results of these analyses are shown in Table 7.5.
Overall, the results are not drastically different from those found using n-fold cross-
validation, in that CART worked well relative to LDA for data sets with heterogeneous
covariance structures for lognormal data and higher error models. LDA had the lowest error
rate for two of the three sequential classification problems. but some other characteristics of
these data sets were perhaps influencing these results. When compared with the cross-
validation error rates for LDA and CART in Table 7.4. it appears that the cross-validation
error rates for both methods were higher than the corresponding 0.632 error rates for a
majority of the data sets, with a relatively large proportion of cross-validated error rates being
higher for smaller sized data sets. Otherwise, there appears to be no patterns in the data
which determine what error rate will be lower than the other. In comparing tree sizes, the
trees produced using the 0.632 error rate were smaller than those produced by using the cross-
validation error rate, in the main., which tends to suggest that the classification trees produced
by using the former estimate were more reliable than the latter. The results for tree size

correspond to the findings of the simulation study in Section 6.2.

7.3.4 Individual Class Error Rates

In Section 4.5, simulation results suggested that CART was more sensitive to unequal class
sample sizes than LDA (and indeed QDA) for continuous data. Table 7.6 gives the individual
class error rates for the thirteen data sets with unequal class sample sizes in an attempt to
verify the above assumptions. The results show that the above findings hold for nine of the
thirteen data sets. The instances where the class error rates tor CART were less variable than
those for LDA, occurred for either categorical variables (A and E) or for skewed varables (P
and X), with simulation results showing that the error rates for LDA suffered under the latter
situation. In addition, it should be noted that the ratios of class sample sizes were not too
dissimilar, except A, that is nj < 2n; where n; is the sample size for the class with the largest
number of observations and n; is the sample size for the class with the smallest number of

observations.



Table 7.5: 0.632 error rates for LDA and CART

a
b

Data Method
Set LDA CART
A 0.37 0.39(7)2
B 0.28 0.20(15)
C 0.49 0.28(26)
D 0.62 0.41(36)
E 0.30 0.32(10)
F 0.31 0.29(2)
G 0.20 0.20(2)
H 0.05 0.05(3)
I 0.37 0.48(1)
J 0.15 0.23(2)
K 0.08 0.28(8)
L 0.08 0.12(3)
M 0.13 0.14(5)
N 0.26 0.24(3)
0 0.22 0.30(7)
P 0.21 0.20(2)
Q 0.29 0.22(2)
R 0.23 0.19(3)
S 0.16 0.23(2)
T 0.39 0.50(1)P
U 0.45 0.43(1)P
\% 0.31 0.20(2)
w 0.03 0.17(2)
X 0.13 0.33(3)

The number in parenthesis indicates the number of terminal nodes in the decision tree

No trees were created in these cases
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Table 7.6: Class error rates for data sets with unequal class sample sizes

—_
Data
Set Method R(i/j)
1 2 3 4 5 6 i 8 9 10
A LDA 0.49 1 0.12
CART [ 053 092 0.16
E LDA 006 031 030 025 023 029 021 041 042 0.10
CART [ 0.17 042 025 042 038 029 026 041 046 0.30
F LDA 0.73 0.15
CART | 0.69 0.09
G LDA 0.14 0.13 0.86 1
CART | 027 0.68 1 1
I LDA 044 047 0.28
CART [ 050 053 03]
J LDA 0.20 0.13
CART | 0.13 0.31
p LDA 039 0.05
CART | 043 0.14
Q LDA 0.15 060 0.13
CART 0 0.4 0.3
R LDA 0 0
CART | 027 0.13
S LDA 0.17 0.16
CART | 0.17 0.31
U LDA 0.76 0.21
CART 1 0
Vv LDA 0.25 0.38
CART | 043 0.14
X LDA 0.38 0
CART | 0.50 0.29

R(i/j) = proportion of class j observations misclassified as class 1,1 # j.



7.3.5 The Standard Error Rule in CART

In the comparative study with other methods in Section 7.3.2, the 1-SE rule was used in
CART to select the right sized tree. In Section 6.4, it was found through simulation studies
that the 1-SE rule is inappropriate for smaller samples or when there is little noise in the data,
unless the populations are not well separated. For situations where there exists a large
amount of noise in the data, the 1-SE rule should be used. Hence, it was decided to analyse
the error rates and tree sizes of the classification rules produced by using both the 0-SE and 1-
SE rules for CART over all twenty four data sets. The O-SE results are given in Table 7.7.
Comparing these results with the 1-SE results in Tables 7.4 and 7.5, the empirical evidence
suggests that tree sizes were not greatly affected by either rule, though. as expected, tree sizes
for the larger data sets were somewhat reduced. while those for the smaller data sets remained
basically unchanged, as evidenced in Section 6.4. The small number of sequential
classification problems encountered here, situations in which tree size should be greatly
reduced. makes it very difficult to reach any firm conclusions about the differences between

the two rules.

7.3.6 Splus Trees( ) versus CART

Since Splus Trees() is basically the incorporation of the CART method into the Splus
programming environment, the trees produced by Splus should be of roughly comparable size
to those produced by CART, with similar error rates. The most obvious differences between
the two methods are that Splus Trees() uses deviances as a measure of goodness of split in
contrast with the misclassification error rate criterion used by CART, in addition to having a
shrinking algorithm as well as a pruning algorithm, both of which are based on deviances. In
order to test whether there are any differences between the two methods, Splus Trees() was
carried out on all 24 data sets, using both optimal shrinking and cost-complexity pruning.
Both n-fold cross validation error rates as well as tree sizes were recorded and compared with
CART. The CART results were the same as those used in Table 7.4, that is, for trees using
the 1-SE rule.

Bradford (1993) has compared Splus Trees() with CART using the data sets from Lynn and

Brook (1991). Bradford, however. has only constructed trees using cost-complexity pruning

and has used tree size as the sole measure of comparison between the two methods.
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Table 7.7: Error rates for CART using the zero standard error rule

a
b

Data Error Rate
Set Cross-Validation 0.632
A 0.38(8)? 0.39(7)
B 0.22(31) 0.17(31)
C 0.25(40) 0.28(26)
D 0.45(62) 0.41(36)
E 0.34(21) 0.32(10)
F 0.28(2) 0.29(2)
G 0.18(6) 0.17(4)
H 0.05(3) 0.04(4)
I 0.41(5) 0.45(3)
] 0.25(2) 0.23(2)
K 0.38(15) 0.28(8)
L 0.11(6) 0.09(6)
M 0.13(7) 0.09(6)
N 0.22(3) 0.22(4)
@) 0.31(14) 0.30(7)
)2 0.30(2) 0.20(2)
Q 0.08(3) 0.13(3)
R 0.19(3) 0.19(3)
S 0.25(2) 0.23(2)
T 0.48(2) 0.50(1)"
U 0.43(1)" 0.43(1)
\% 0.30(2) 0.20(2)
W 0.14(2) 0.172)
X 0.33(3) 0.33(3)

i i ision tree
The number in parenthesis indicates the number of terminal nodes in the decision t

No trees were created in these cases



The results are given in Table 7.8. The empirical evidence suggests that the final decision
trees created by Splus Trees() were not always the same as those built by CART. In fact, for
only 13 out of the 24 data sets were the error rates the same. For those examples where there
were differences between the two methods, the CART trees were generally larger and had

lower error rates than the Splus trees.

The evidence also suggests that sample size and covariance structure are major factors in
determining whether CART and Splus Trees() produce the same set of decision rules or not.
CART's trees were noticeably less succinct than Splus for larger samples, as well as for data
sets where the covariances were not equal. Therefore, it could be concluded that Splus

provides shorter trees than CART with more conservative error rates.

Comparing the shrunken and pruned trees created by Splus, there seems to be only minor
differences in tree sizes and error rates. Clark and Pregibon (1991) believe that optimally
shrunk trees have lower error rates than pruned trees, but are correspondingly larger. The
case studies given here produce a number of counter examples to this assertion, most notably
for data sets B, C and E. This shows that the choice of either optimal shrinking or cost-

complexity pruning should not influence the final Splus tree to a large extent.

7.3.7 Summary

In this section, five classification methods from the fields of both traditional discrimination
and tree-based methods were compared over twenty four real data sets. The cross-validation
results showed that, to a considerable degree, which method performed best depended on the
characteristics of each data set. CART worked well for either categorical or skewed data,
poorly separated classes and where only a small proportion of the variables in the data set
were important in the classification process. Otherwise, traditional data discrimination
methods worked best. These findings are in general agreement with the simulation study

results of Chapter 4.

On most occasions, CART trees were found to be smaller than FACT trees for smaller data
sets while FACT trees were never larger than those of CART forlarger data sets.

When using 0.632 error rates, it was discovered that very little differences occurred from the
cross-validation results when using LDA and CART, though the cross-validation error rates
tended to be higher than the corresponding 0.632 error rates, especially for smaller data sets.
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Table 7.8: Cross-validation error rates and tree sizes for CART and Splus Trees()
Data Method
Set CART ST-0S? ST-TPP
A 0.38(8)¢ 0.43(2) 0.43(2)
B 0.22(31) 0.28(12) 0.30(3)
C 0.25(40) 0.42(14) 0.34(20)
D 0.45(62) 0.65(15) 0.58(23)
E 0.34(10) 0.34(10) 0.34(15)
F 0.28(2) 0.31(1)d 0.31(1)d
G 0.21(4) 0.21(4) 0.21(4)
H 0.05(3) 0.06(5) 0.06(4)
I 0.41(5) 0.48(3) 0.48(2)
J 0.20(3) 0.20(3) 0.25(2)
K 0.41(4) 0.67(3) 0.67(3)
L 0.13(3) 0.13(3) 0.13(5)
M 0.15(6) (.36(4) 0.25(5)
N 0.22(3) 0.22(3) 0.22(3)
O 0.34(12) 0.79(5) 0.59(7)
P 0.30(2) 0.30(2) 0.30(2)
Q 0.08(3) 0.08(3) 0.19(2)
R 0.16(3) 0.16(3) 0.16(3)
g 0.20(3) 0.20(3) 0.20(2)
T 0.50(1)4 0.50(1)4 0.50(1)4
U 0.43(1)d 0.43(1)d 0.43(1)d
\Y 0.30(2) 0.30(2) 0.30(2)
w 0.14(2) 0.17(4) 0.17(4)
X 0.40(3) 0.40(3) 0.40(3)

ST-OS is Splus Trees() using optimal shrinking.

ST-TP is Splus Trees() using cost-complexity tree pruning.
The number in parenthesis indicates the number of terminal nodes in the decision tree.

a 0o o

No trees were created in these cases.
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Trees produced by using the 0.632 error rate were generally smaller than those constructed

using the cross-validation errorrate, supporting simulation results.

Also in accord with simulation results, CART was tound to be more affected by unequal class

sample sizes than LDA, except perhaps for skewed and categorical data.

The empirical results given here appear rather inconclusive as to the choice of standard error
rule to use in CART. Simulation study results suggested that sample size and the amount of
noise in the data were two determining criteria in such a choice. though only some evidence

appears here to support both those assertions.

In comparing CART with Splus Trees(). it was found that the two methods produce fairly
similar sized trees with not dissimilar error rates, though CART’s trees were noticeably larger
with lower error rates for both larger samples and where the class covariance matrices were
not equal. The empirical evidence also pointed to trees produced by using either cost-
complexity pruning or optimal shrinking being generally of a similar size with comparable

€rror rates.

ILLUSTRATIVE CASE STUDY

7.4.1 Methods and Data

The data in this study was collected from the Family Planning Association of India (FPAI),
Lucknow (UP) branch. This data (used as data set G in Section 7.3) contains the information
on all the family planning cases done at FPAI during 1990. Kumar (1993) hopes that the
data, especially the analysis done on it, will be of some use to the motivators and policy
makers of India and help in developing the promotional strategies for various family planning

devices, and hence, manpower and resources can be allocated accordingly.

There are four types of family planning devices measured in this study; IUD (56), Tubectomy
(103), foam tablets (7) and oral pills (8), with Tubectomy being the only terminal device in
nature. The figures in parenthesis represent the number of couples that used each family
planning device. Information on twelve socio-economic and demographic variables for each

of the 174 couples who accepted the use of the one of the four devices, was also collected.
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The twelve variables were:

1. Wife_Age Age of wife

2 Husb_Age Age of husband

3. Husb_Edu Education of husband. levels 0-7

4. Wife Edu Education of wife, levels 0-7

5. Occupn Occupation of husband (service. business, farming, labour)
6. Income Household income

7. No_Child Total number of living children

8. No_Males Total number of male living children

9. No_Femal Total number of female living children

10. Age_Baby Age (in months) of youngest child

11.  Urb/Rur Whether an individual belongs to an urban or a 1ural background
12.  Religion Hindu, Muslim. Christian. Sikh

Thus there was a mixture of continuous. ordinal and nominal categorical variables. Note, 100,
that a previous study by Kumar and Srivastava (1989) had found all these variables to be

significant while analysing the profile of those couples that accept family planning.

7.4.2 Linear Discriminant Analysis

In order to be able to carry out LDA on this data set. it was first necessary to transform the
two nominal categorical variables. each having four levels. into two batches of three binary
variables. Considering the relatively large number of variables involved in this problem
(p = 16, with ten untranstormed and six binary varables). it was decided to use stepwise LDA
(SDA), with stepwise selection of the best g variables. using an o = 0.15 significance level 0
enter variables to or delete from the model. A summary table of the order they were entered

in the model is given in Table 7.8.



Table 7.8: Stepwise discriminant variable selection for the family data

Variable
Step Entered Removed Number In Partial RZ  F Statistic  Prob>F
)| No_Child 1 0.446 45.69 0.00
2 Wife_Edu 2 0.191 13.27 0.00
3 Husb_Edu 3 0.158 10.48 0.00
4 Age_Baby 4 0.072 431 0.00
S Income S 0.037 2.13 0.09

As there were k = 4 classes in the data set, there were four group classification functions,

Li(x), and six group separation tunctions. Dj;(x). created. The four group classification

functions using SDA are shown in Table 7.9. Priors were set proportional to sample size

(ppss)-

Table 7.9: Group classification functions, I:.i(x), using SDA for the family data

Ly (x) Lo(x) La(x) La(x)
Constant -8.3951 -11.0312 -11.9301 -12.5852
Husb_Edu -0.1483 0.4608 -0.2586 -0.3092
Wife_Edu 1.7542 0.4235 1.3594 2.0982
Income 0.0008 0.0013 0.0024 0.0001
No_Child 3.0541 4.7036 3.6580 3.5821
Age_Baby 0.0212 0.0531 0.0360 0.0553

Both the n-fold cross-validation and 0.632 error rates were calculated for the SDA
classification rules above, with R(CV) = 0.195 and R(0.632) = 0.177. The corresponding
values for LDA using all sixteen variables were R(CV) = 0.204 and R(0.632) = 0.194,

showing that the stepwise model was more accurate. As numerous authors in the field of

stepwise discrimination and the closely related topic of stepwise regression have pointed out,

the best q variables found from the original sample may not be the best variables over the

whole population of values. Forinstance, the five selected variables here may not necessarily

be the most important variables for couples throughout all India seeking family planning

advice.
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Visually, the classification model is very hard to interpret. As the SDA group separation
functions involve five variables, it is impossible to depict the full classification model. Figure
7.1 shows a three-dimensional graph of the three most important variables found during the
stepwise selection process, that is, No_Child, Husb_Edu, and Wife_Edu. [Key to Figure 7.1:
Club = IUD; Star = Tubectomy; Balloon =foam tablets; Diamond = oral pills.] From Figure
7.1 as well as the table of coefficients in Table 7.9, it is apparent that those who used IUD
were characterised as having wives with a higher level of education and a small number of
children. Those cases where the wife had little or no schooling led to the use of Tubectomy,
while those cases where the wife had a higher level of education and a larger family also used
Tubectomy. Distinguishing characteristics for the other two groups are not particularly

relevant for these three variables.

As the class sample sizes were drastically different. it was decided to do another analysis
using equal priors. The only difference that occurred from Table 7.9 is that the constants
have change as evidenced from Section 4.5. Thus. each classification function changed by

only one term after alteration of the priors.

7.4.3 CART

In contrast with LDA, CART used all twelve variables to perform the analysis. The CART
tree, using PPSS, is as shown in Figure 7.2 (sce Section 3.2 for a description of the CART
tree analysis). To build this tree. the Gini splitting criterion was employed and the minimum
node size was set at 5. The 1-SE rule was used to select the “right sized™ tree. The twoing
splitting criterion was also tried, but. in this instance, produced the same tree as that using

Gini, though this is not always the case.

From Figure 7.2, it is clear that those cases where the wife had little or no schooling led to he
use of Tubectomy. If the wife had a higher level of education and the husband was 32 or
younger, then IUD was the predominant device used. Of those cases not already classified,
husband’s education was the final splitting variable used. Those cases where the husband had
little or no education used Tubectomy in the main while those left over were more than likely
to use IUD. For this tree, R(CV) =0.213 and R(0.632) = 0.205.
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r(t)

Is Wife_Edu < 3.57

Yes No
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0.09
Tubectomy Is Husb_Age < 32.57
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[UD Is Husb_Edu < 3.5?
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an Tubectomy
Variable Relative Importance
No_Child 100
Wife_Edu 78
Husb_Age 63
No_Males 62
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n(t) = number of observations in the node.

r(t) = resubstitution error rate of the node.

Circles represent decision nodes which have to be split on while rectangles represent terminal

nodes which are assigned to a particular class given below the node.

Figure 7.2: CART Tree with PPSS for the Family Data
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Itis clear from Figure 7.2 that there were a relatively small number of cases who used either
foam tablets or oral pills, but were all classified as using either IUD or Tubectomy. This
would not be a very good situation if these women were going to have adverse reactions when
using either IUD or Tubectomy. In an attempt to counter this, another CART tree was grown,
this time using equal priors and is given in Figure 7.3. The CART tree shown here has
changed markedly from that of Figure 7.2. The first split is similar to that in Figure 7.2 with
cases where the wife had less than three years education being classified as using Tubectomy.
Cases where wives had three or more years education were next divided on the basis of
income. Cases where wives had three or more years education were next divided on the basis
of income, Figure 7.4 graphically depicts what happens in the CART tree. The solid line
marks the first split so that all cases to the left of that line were classified as using Tubectomy.
The interval line denotes the position of the second split. Those cases above the interval line
were classified as using foam tablets while those below were predicted to be using oral pills.
The disturbing feature about this tree, though, was the large number of IUD users in the
sample, who were all misclassified, which as in the CART tree of Figure 7.2, could lead to

very serious problems if this classification tree was put into practice.

As seen in Table 7.6, the number of misclassified observations from each class with CART
was negatively related to sample size when ppss were used. When equal priors were used,
only a small number of foam tablet and oral pill users were misclassified, but, as mentioned

previously, all of those who used IUD were falsely classified.

7.4.4 FACT
In contrast with CART which is totally non-parametric, FACT uses F-ratios of between to
within class variance to select the partitioning variable, then cairies out LDA on the selected

coordinate axis to partition the data.
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Figure 7.3: CART Tree with Equal Priors for the Family Data
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The FACT trees for the family data are given in Figures 7.5 and 7.6. Figure 7.5 illustrates the
case of PPSS. The FACT tree is very different from the CART uee using ppss, shown in
Figure 7.2. Interestingly, the two variables used to split on in this FACT tree were, however,
two of the variables used in the SDA functions. This shows the link between LDA and
FACT. Although FACT represents its output in a decision tree format, it is basically a
parametric technique applied iteratively to each descendant subsample of observations. One
might then expect the final classification structure to be similar to that produced by LDA,

although this has not happened in this case.

As can be seen from Figure 7.5. FACT has failed to cowectly classify any of those people
who used either foam tablets or oral pills. Those with three or more children were more than
likely to have a Tubectomy, while those with less than three children. and a youngest child
who was three years old or more, were also more than likely to have a Tubectomy. Those
with less than three children and whose voungest child was less than three years old were
more than likely to use TUD. These rules seem to be straightforward and common sense
compared with those found in Figure 7.2. which tended to be more sociological in nature.
The FACT tree indicates that those with either larger families or who had not had any

children for a while were more than likely to use a terminal contraceptive device. For this
tree, R(0.632) =0.197.

Figure 7.6 gives the FACT tree in the case of equal priors. Similar to CART and quite
differently from LDA. the decision rules have changed quite dramatically after alteration of
the priors. The tree contains only four splits but all arc muluway rather than binary splits.
The end result is a tree with ten terminal nodes. which are representative of all four classes
(labelled 1 to 4 on the wree for the sake of space). Actually. the class misclassification error

rates were not too dissimilar.

7.4.5 KnowledgeSeeker

KnowledgeSeeker is an example of a tree-based approach that uses, in contrast to CART, a
statistical significance testing approach to splitting. Differently from FACT, however, 2
contingency table analysis is used to distinguish between the groups. rather than the use of
means and covariances as employed by FACT. The method is based firmly on the
refinements to AID carried out by Kass (1980). which resulted in the CHAID program.
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Figure 7.5: FACT Tree with PPSS for the Family Data
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Figure 7.6: FACT Tree with Equal Priors for the Family Data
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The KnowledgeSeeker trees for the family planning data are given in Figures 7.7 to 7.12,
using different partitioning methods. significance levels for splitting and splitting variables at
the first node. Figures 7.7 to 7.10 show the trees with the first split being carried out on the
most important variable. Version 2.1 of KnowledgeSeeker was used for all four trees. An
obvious difference is the reduction in tree size when the significance level is decreased.
Noticeable too is the slightly smaller trees produced using heuristic splitting as was suggested
in the KnowledgeSeeker User’s guide. Added to this is the increase in speed using heuristic
partitioning. One trade off in using the heuristic partitioning algorithm is that a slightly
different tree may be produced every time a new tree is created. This will not occur if
exhaustive partitioning is used. One could argue that a tree may be “pruned” by decreasing
the significance level used for splitting, but the wee that was originally created will only

remain unchanged if exhaustive partitioning is used for tree construction.

Comparing the KnowledgeSeeker trees with those of CART and FACT, it is evident that this
method has produced somewhat of a compromise between CART and FACT. No_Child was
selected as the most important first splitting variable. as did FACT, and stepwise discriminant
analysis also showed this to be the most important discriminating variable. Thus, all methods
which use statistical significance to determine the classification rules, whether tree based or
not, chose No_Child as the most important splitting variable. Using Figure 7.9 as the
standard KnowledgeSeeker tree, it can be seen that those with either one or two children were
more than likely to use IUD, with greater probability if there was only one child rather than
two. Of those with three or more children. those with wives having zero to four years
education were almost all users of Tubectomy. Those with wives having five or more years

education were quite likely to use either foam tablets or oral pills.

No technique for handling priors exists in KnowledgeSeeker, though the tree of Figure 7.9
can be seen to have correctly classified at least some of the observations from every class.
The larger trees produced here by KnowledgeSeeker should make the process more robust to
large discrepancies in sample size. Reduction in the significance levels may affect group
misclassifications to some degree, although this has not occurred for the examples presented

here.
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Figures 7.11 and 7.12 feature the KnowledgeSeeker trees with the first split being carried out
on the second and third most important splits respectively. In Figure 7.11, the first split was
done on Wife_Edu. This tree had an apparent error rate lower than the tree of Figure 5.9,
though, as mentioned numerous times before, the apparent error rate is usually a biased
estimate of the true performance of any classification rule. This is most particularly true of
tree-based methods which are data intensive, using subsamples of the original data rather than
all the data to construct a set of classification rules. Figure 7.12 has the first split carried out

on Wife_Age, then on number of children in the family.

In order to truly test the validity of the KnowledgeSeeker trees, Version 2.0 was used so as to
carry out some validation procedures. KnowledgeSeeker does not support the use of any
form of cross validation so the rotation method was implemented as follows. The data set
was first divided into two equal parts. Each half was in turn used as a learning sample and a
test sample with the two test sample error rates being averaged to get the rotation estimate of
the error rate. The technique was used on all six KnowledgeSeeker trees previously depicted
(Figures 7.7 to 7.12). The rotation, resubstitution and 0.632 error rate estimates for the six
trees are given in Table 7.10, with the minimum error rate tor each estimate, over all six trees,

given in bold.

Table 7.10: Rotation, resubstitution and 0.632 error rates for six KnowledgeSeeker
trees for the family data

Error Rate

Tree Rotation Resubstitution 0.632
Figure 7.7 0.236 0.144 0.203
Figure 7.8 0.282 0.144 0.221
Figure 7.9 0219 0.149 0.193
Figure 7.10 0.248 0.213 0.221
Figure 7.11 0214 0.138 0.186
Figure 7.12 0.184 0-.172 0.180
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From Table 7.10. it is apparent that the tree in Figure 7.12 had both the lowest rotation and
0.632 error rates, with the tree in Figure 7.11 having the second lowest error rates of the
above type, showing that the best tree was not necessarily the one which produced the
greatest separation of the classes at the first split. The ideal situation is to have the
independent estimate of the error rate equal to the apparent error rate so that one can be
confident in the classification rules generated from the learning sample. Using this as a
criterion to choose the optimal KnowledgeSeeker tree, the tree in Figure 7.12 using heuristic
partitioning with a 1% signiticance level, after initially splitting on Wife_Age was best. Now
Wife_Age was noted as only the third most important variable for splitting at the first node.
This perhaps shows that this tree was the most accurate classitier for the family data, backed
up by the tree having the lowest overall independent error rates. One of the principal reasons
for the initial creation of decision tree techniques was to identify complex interactions among
the data, that could not be detected by parametric methods, such as LDA, without
prespecifying the interaction terms directly. Tree-based methods. in general, appear to be
very dependent on the initial split, that is, the largest main effect for the whole sample. If the
first split is not particularly good. then it is unlikely that further partitionings of the data set
will lead to a robust set of decision rules. If the first split is very good, but does not interact
well with the other variables. the decision rules may also be rather weak. The interaction
structure produced by the decision tree is going to be very dependent on the association with
the first splitting variable. If splitting initially on a variable, x;, does not lead to as purer
descendant nodes as splitting on another variable, x;, it may still produce a more robust tree
than initially splitting on X;, if the interaction structure is stronger between x; and the other
variables than between x; and the other variables. In this example, Wife Edu was rated the
third most important variable or main effect. but in real terms, the interaction between
Wife_Age and the other variables in the data set produced the more accurate set of decision
rules using KnowledgeSeeker. Splitting initially on either No_Child or Wife_Edu did not

produce as good a decision tree as that found through splitting first on Wife_Age.

7.4.6 Splus Trees()

“The tree modelling interactive environment now available in Splus is to the batch mode
program CART as graphical statistical packages such as Splus or JMP are to batch processing
SAS for other statistical methods” (Morton, 1992, p 76). The method provides an example of
the CART approach to decision tree growth, while incorporating all the advantages of an

interactive environment for tree constiuction, pruning and graphics.

203



204

Figure 7.13 contains the fully grown (or overgrown Splus tree). Similarly to CART, and
unlike FACT and KnowledgeSeeker, Wite_Edu was chosen as the initial splitting variable,
thus having the largest main effect for the whole sample. The graph is rather messy as there
are too many splits, hence terminal nodes in the tree. The residual deviance for this tree was
0.661 with R(A) =0.149. Obviously, this error rate is optimistically biased. Figures 7.14 and
7.15 give the deviances for the sequences of subtrees produced by cost-complexity pruning
and optimal shrinking respectively. As mentioned earlier (Section 3.11), the deviance always
decreases as tree size increases, with the former being a step function because optimal

subtrees remain constant between adjacent values of subtree sizes.

The rotation method was used to determine the optimal sized tree, that is, with minimum
deviance. The average values for the deviance of given tree sizes, using rotational validation
after optimal shrinking are given in Figure 7.16. This plot would tend to indicate that a tree
with six terminal nodes would be optimal but perhaps the use of a standard error rule such as

that used in CART would tend to suggest that a tree with four terminal nodes would suffice.

The resultant tree chosen by the rotation method 1s shown in Figure 7.17. The initial split is
made on “Husb_Edu < 3.5” as occurred with the CART uee in Figure 7.2. The subgroup
whose wives had less than tfour years education were next split on No_Child while the other
subgroup was split on Husb_Age. For those cases where the husband was 33 or more years

b

of age, a further split was made on “Husb_Edu < 3.5”. A final split was made on the node
whose husbands had four or more years education. splitting on the number of girls in the
family. Those families with either no girls or only one girl were more than likely to use a
terminal device (Tubectomy) while those with two or more girls opted for oral pills. The
residual deviance for this tree was 0.933 with R(A) =0.162, R(ROT) =0.207 and R(0.632) =
0.190. In contrast with the CART tree of Figure 7.2, at least some of those cases who used
oral pills were not misclassified. Notice 0o, that the 0.632 error rate is lower for this tree
than that in Figure 7.2, due most probably to the much smaller apparent rate for the tree in

Figure 7.17.
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7.4.7 Summary

This section has dealt with a set of data involving family planning information in a certain
part of India. In terms of the accuracy of the rules produced and sensitivity to the prior
probabilities of class membership, the parametric methods were marginally better, with
stepwise LDA being the best overall. This case study has illustrated that CART is sensitive to
the choice of priors used in the selection rule. and that care should be taken when interpreting
the results from such a decision tree. Of the four tree based methods investigated, one of the

trees constructed using KnowledgeSeeker had the lowest 0.632 estimate of error rate.

It has emerged from this case study that caution should be shown when interpreting the
results from a decision tree. The choice of the first splitting variable can be very important to
the future development of the tree. The main etfect or first split chosen by a particular

method may not necessarily lead to the most accurate set of decision rules.

In terms of accuracy of the models created. all methods were fairly similar. If, however,
accuracy 1s not regarded as the sole criterion on which to judge the performance of particular
methods, but other factors such as interpretability and comprehensibility of the models
produced, ease of use etc, then different conclusions to those reached in this chapter as well as
Chapters 4, 5 and 6 may be made. These performance criteria are investigated in Chapter 8.



8.1

8.2

WHICH CHARACTERISTICS OF TREE-BASED METHODS ARE
PREFERRED

INTRODUCTION
In Chapter 3, ten tree-based methods were presented from a methodological point of view,
examining a number of characteristics such as splitting criteria, stopping rules and tree

pruning methods.

In this chapter. recommendations are made as to which options are preferred for each of the
above characteristics. Thus the focus is not on comparing methods, but on comparing the
approaches taken by each of the above methods to grow a classification tree. These
recommendations are made both on what has been written in the literature, but also on the
results of simulation and case studies undertaken in this thesis.

In Section 8.3, areview is carried out of what other authors from various fields of study have
written about the various methods studied in this thesis. Recommendations are made as to
what methods are preferred from the point of view of human comprehensibility and ease of
use, based on the findings from the simulation studies in Chapters 4, 5 and 6, empirical

studies in Chapter 7 and personal experience.

WHICH CHARACTERISTICS OF TREE-BASED METHODS ARE
PREFERRED?

8.2.1 The Method of Splitting

Authors of early tree-based methods felt that their splitting rules were sufficient enough to
grow an accurate decision tree, believing that the set of rules they developed for selecting the
best variable at a node and value(s) of that variable to split on would produce an accurate and
robust decision tree classifier. Most authors of more recent methods, starting with the CART
algorithm of Breiman et al (1984), adopted the approach that regarded splitting rules more as
a heuristic to form an overly large tree to be pruned rather than an end in itself, believing that
the pruning process is perhaps the most important part of the tree growing procedures (see,

for instance, Buntine and Caruana. 1993).
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In the literature, there seems to be little clear-cut evidence as to which choice of splitting rules
is best. Mingers (1989) shows that the accuracy of a decision tree is not affected by the
choice of splitting rule, even when variables are selected randomly. Buntine and Niblett
(1992) produce results indicating that random splitting leads to increased error, but other
measures perform with similar acuracy to each other. Simulation and empirical studies in this
thesis (see Sections 4.3, 4.4, 5.3 and 7.3.2) have shown that splitting using linear discriminant
functions are not recommended for nonnormal data. examples where the covariance matrices
are not equal, nor for categorical predictor variables. For normal data, with equal covariance
matrices, linear discriminant splitting. as used by FACT, has been shown to perform
satisfactorily. Comparisons between the information gain measure of C4.5 and the
Gini/twoing goodness of split criteria of CART have proved inconclusive as have
comparisons between the Gini and twoing criteria alone (Breiman et al, 1984). Buntine
(1992) has found that the Bayesian quality measure approach employed in IND performs very
similarly to the approaches used in CART and C4.5. Empirical studies undertaken in this
thesis (see Section 7.3.6) have also shown that trees produced by the Splus deviance goodness
of split criterion and CART’s Gini criterion were often rather different even though the two
splitting mechanisms produced partitions on the same variables and values of those variables
at every node. This reinforces the point that the choice of splitting rule is not the most
important step in the building of a reliable and accurate decision tree classifier.

Some authors of recent papers in the ficld of tree-based methods. however, have focused on
the deficiencies of certain existing splitting methods and/or created a new type of splitting
rule in the belief that this will lead to significantly “better” decision trees. For example,
Todeschini and Marengo (1992) have used full p-variate LDA at each stage of the tree
growing process in order to utilise the splitting power of LDA. Taylor and Silverman (1993)
have emphasised the two main failings of the Gini splitting criterion, when used with CART,
in the case of more than two classes. namely. the tendency to produce two offspring nodes
that are as pure as possible and a bias towards splits which create descendant nodes of
roughly the same size. They also noted that the twoing splitting criterion, which is also used
in CART, failed to rectify these “weaknesses” of the Gini splitting criterion. This prompted
Taylor and Silverman to develop an alternative splitting rule that placed less emphasis on
creating pure offspring. This rule is known as the Mean Posterior Improvement (MPI)

criterion. *“[T]he MPI criterion is designed to be high when, for all k [classes], the individuals



of class k are all placed in the same offspring ... [but] does not directly strive for the offspring
to be pure”. (Taylor and Silverman, 1993, p9.)

To correct against the bias towards equally sized samples, adaptive anti-end cut factors are
introduced while still attempting to guard against splits which favour radically different sized
descendant nodes. The main idea behind adaptive anti-end cut factors is to allow the
differences between descendant node sizes to vary depending on the complexity of the

problem.

Taylor and Silverman appear to place greater emphasis on interpretation of the tree and fitting
a good model to the data at hand rather than constructing a robust tree that can be applied to
other data sets of the same type. For the examples used in their paper, the independent
misclassification rates for trees constructed using the MPI splitting criterion were no lower
than those found using the Gini splitting criterion. As Einhorn (1972), Doyle (1973), Doyle
and Fenwick (1975) and Breiman et al (1984). amongst others, have repeatedly stressed, a

good classification tree is one which will work well on another data set of the same type.

8.2.2 Binary versus Multiway Splits

The choice of the type of splits, binary or multiway. is a question of debate amongst authors
of decision tree methods. Quinlan (1979, 1986). Loh and Vanichsetakul (1988) and Biggs et
al (1991) tavour the use of multiway splits. whereas Breiman et al (1984) and Clark and
Pregibon (1992) prefer the binary splitting approach. In the Bayesian approach adopted by
IND, Buntine has used only binary partitioning. The advantage of the binary partitioning
approach is simplicity. The cases in a node can be sent in only one of two ways. The
direction a case is sent is dependent only on a yes/no question. Multiway splits may involve

several conditional yes/no questions at the one node.

A major debate over whether binary or multiway splits are best occurred between Loh and
Vanichsetakul (1988) and Breiman and Friedman (1988). Loh and Vanichsetakul argue that
the use of binary splits has the following advantages: (1) categorical variables can be handled
naturally as ordered variables, and (ii) the idea of surrogate splits is more straightforward to
implement than if each node is split into varying pieces. They also see the disadvantage that
they can produce a highly nested tree which leads to an increase in complexity and loss of
interpretability . Multiway splitting, in their opinion, can reduce the level of nesting in the

tree. If the number of partitions created at the root node is the same as the number of classes,
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tree interpretation becomes much easier. However, Loh and Vanichsetakul warn that
multiway splits may produce trees which are too short, stopping before any valuable

information about the data set can be gained.

Breiman and Friedman (1988) criticise the belief that multiway splitting is superior to binary
splitting. Using results from Friedman (1977). Breiman and Friedman argue that multiway
splitting is not as effective in making use of the conditional information present in a tree as is
binary splitting. Breiman and Friedman also argue that trees produced using multiway splits

are no more interpretable than trees containing binary splits.

The results of simulation studies in Sections 4.3, 4.4 and 5.2, as well as for real-world data
sets in Section 7.3, have shown that there are no major difterences in the sizes of the final
trees produced by the two methods. Using binary splits generally produces longer, narrower
trees than using multiway splits which produce shorter. wider trees. where the size of a tree is
determined by the number of terminal nodes contained in it. (Note: the number of terminal
nodes in a tree equals the number of decision points plus one. For example, a tree with four
terminal nodes has three decision points. while a m-way split contains (m-1) decision points.)
For example, compare the CART wree for the Iris data, using binary splits (Figure 3.2) with
that of the FACT tree, using multiway splits (Figure 3.4). Both trees have three terminal
nodes thus contain two decision points. The CART tree, however. involves two splits while

the FACT tree produces only one split. but partitions the data into three nodes.

8.2.3 Univariate versus Linear Combination Splits

On the question of whether linear combination splits are preferable over univariate splits, a
major debate also took place between Loh and Vanichsetakul (1988) and Breiman and
Friedman (1988). Loh and Vanichsetakul preferred the use of linear combination splits as
their method involves carrying out LDA at each node. This approach has been taken further
by Todeschini and Marengo (1992) with the use of full p-variate LDA at each stage of the
tree growing process. Breiman and Friedman argued that linear combination splits are not
better than univanate splits, stating that in most cases where recursive partitioning has
performed better than traditional parametric methods. it has been through univariate splits.
No complete comparisons of univariate and linear combination splits in either the CART or
FACT program were made in this thesis. Comparing Figure 3.6 (CART tree with linear
combination splits for the Iris data) with Figure 3.2 (CART tree with univariate splits for the

Iris data), it is apparent that Figure 3.6 has the lower resubstitution error rate. However, the



tree in Figure 3.6 is no smaller than that of Figure 3.2, instead it is now more complex. In
addition, the cross-validated error rate is 0.07 compared with 0.05 for the tree in Figure 3.2,
implying that using linear combination splits in this example has led to a less accurate tree.
Other instances where linear combination splits have been used have led to increases in
accuracy, sometimes quite large, but these were for problems not suited to CART (normality,

low dimension and sample size).

If the discriminatory variables are not coirelated individually with the classification variable
but are highly correlated in tandem with the classification variable then linear combination
splits should perform better than univariate splits. An example of this scenario, 1s, in the case
of a two class, two dimensional problem, where the scores of the first discriminatory variable
are all higher than the scores of the second discriminatory variable for class one cases, while
the opposite is true for class two cases. Generally, it appears that the choice of either
univariate or linear combination splits involves a trade oft between accuracy and simplicity,
in the above situation. Linear combination splits may produce more accurate trees than
univariate splits but the complexity ot the rules produced is on a par with traditional
discrimination methods. In the limited use of linear combination splits with more complex

problems, there is no evidence of any increase in accuracy over univariate splits.

Linear combination splits provide the user with direct information about the splitting power
of a number of variables at each stage of the tree growing process, via the coefficients
associated with each variable in the linear combination. In contrast, univariate splits provide
the user with direct information on only one variable at each node of a tree. Indirectly,
however, most tree-based methods also provide information on the best competing splits. For
instance, with CART, a list is provided of the best alternate and surrogate splits. In
KnowledgeSeeker, the user can immediately investigate the effects on the tree of changing
from the best possible partition to the best alternate/second best alternate partition etc. In
Splus Trees(), graphical facilities are available to compare competing splits at a particular

node. A procedure also exists for automatically changing the current split.
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8.2.4 Costs and Priors

Feng et al (1993) compared a number of decision tree-based methods over a number of
performance criteria. Their findings suggested that a method which incorporated a cost-
handling mechanism should perform considerably better than methods without such a device.
Methods such as CART and FACT which incorporate costs into the tree building process,
therefore, have an advantage over C4.5, KnowledgeSeeker and other methods which have no
capacity for handling costs. Buntine argues that IND has cost structures in that a vector of
costs is combined with the class probability vector so that a minimum cost decision can be

made.

On the question of class priors, both simulation and case studies in this thesis (see Sections
4.5 and 7.3.4) have shown that the choice of priors can dramatically alter the character of the
final decision tree, thus leading to instability in the tree structure. Growing decision trees on
data sets with grossly unequal class sample sizes, using priors proportional to sample size
tends to lead to trees weighted very heavily in favour of the larger class(es). This results in
all or nearly all of the observations from the smallest class(es) being misclassified. Using
equal priors has been shown to sometimes have the opposite effect (see Section 7.4.3 of this
thesis and Breiman et al. 1984, pp 112-113). The message, therefore, is that caution should

be shown when viewing the classification trees generated from such data sets.

8.2.5 Stopping Rules and Tree Pruning

The use of stopping rules has been viewed by a number of authors of recent tree-based
methods as unnecessary, if not inappropriate. due to the fact that *“... a tree has to be grown
out before any advantage is realised.” (Buntine and Caruana, 1993, p 3-4). Some recent
methods still use direct stopping rules. either stopping when node size falls below a certain
value, or the number of terminal nodes is too large, or more commonly, use some measure of
statistical significance to cease splitting. For instance, FACT stops splitting when the ratio of
between to within group variance is less than a certain threshold value while
KnowledgeSeeker ceases splitting if the optimal split on a predictor at a particular node does
not exceed a specified significance level Breiman and Friedman (1988) criticised the top-
down approach stating that it was one of the main reasons why early tree-based methods were

not really recognised within the statistical community.



The illustrative case study of Section 7.4 showed that tree-based methods which used pruning
algorithms were not always guaranteed to produce the most accurate tree. For that particular
case study, a KnowledgeSeeker tree was more accurate than both the CART and Splus trees.
Evidence from the literature, for instance, Breiman et al (1984), Quinlan (1987), Clark and
Pregibon (1992) and Buntine (1992), amongst others, however, would tend to favour the view

that pruning is preferred over direct stopping rules.

This naturally leads to the question of what pruning rule one should use? Quinlan (1987)
conducted an empirical comparison of three pruning methods. The three methods tested
were; cost-complexity pruning, as used in CART, pessimistic pruning, as used in C4.5, and
reduced error pruning, a technique which reduces a subtree to the best terminal node and
compares the test sample error rate of the new tree with that of the old. If the new tree has a
test sample error rate less than or equal to that of the old. the subtree is replaced by the best
terminal node. Quinlan’s results showed that trees produced using cost-complexity pruning
were usually the simplest. but also often the least accurate. He also stated that the method
required an independent test sample of data although g-fold cross-validation can also be used.
Buntine (1992) has incorporated Bayes pruning into the IND procedure. He mentions that
comparisons with other pruning and smoothing techniques are difficult because the Bayesian
methods are highly parametric. His belief, though, is that Bayesian pruning is the best

approach as it allows the user to grow and evaluate more trees in less time.

From the literature, as well as simulation and empirical study results, it is difficult to
determine which type of pruning algorithm is best as the pruning algorithm is dependent on
the sequence of trees generated by the splitting rules. types ot splits etc. When comparing
cost-complexity pruning and optimal shrinking when used with Splus Trees(), it was found
that which method worked best depended on the data sets, but often the final trees generated

were exactly the same.
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8.3 HUMAN COMPREHENSIBILITY AND USER-FRIENDLINESS OF
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CLASSIFICATION METHODS

In assessing the performance of a set of classification rules, one should not only be concemed
with predictive accuracy but also how much information the classification methods provide
the users, through the complexity and interpretability of the results. In other words, another
major concern in the choice of classification method should be the explanatory power of the
model. In making any such assessment, it is clear that all such recommendations are of a
subjective nature, and that there are no right answers only opinions backed up by solid

arguments.

As seen in Chapter 3, the ideas behind a decision tree, developed by Belson (1959), were an
attempt to move away from the over complicated models of standard statistical techniques
towards a much simpler approach. These ideas were incorporated into the AID algorithm of
Morgan and Sonquist (1963). Einhorn (1972), Doyle (1973), Breiman et al (1984) and
Quinlan (1986), amongst others. concluded that early AID (and THAID) constructed
unnecessarily large trees. containing a number of redundant splits, resulting in a set of rules
which were as incomprehensible, if not more so. than the standard statistical techniques they

were designed to replace.

In contrast, Breiman et al (1984), the authors of CART, cite the example of a medical study
where the objective was to identify high risk heart attack patients, those who will die within
the next month, based on 19 measurements taken within their first 24 hours of being admitted
to San Diego Medical Centre. The CART tree contained classification rules based on three
yes-no questions. Standard statistical classification methods were far more complicated, and
in this case, less accurate. It is stressed that “[t]he tree procedure output gives easily
understood and interpreted information regarding the predictive structure of the data”
(Breiman et al, 1984, p 58). They state that the method has been used in a wide variety of
applications, with users finding *“... that the classifier provides an illuminating and natural
way of understanding the structure of the problem” (ibid, p 58). In contrast, they find that the
standard statistical algorithms including stepwise discriminant analysis, kernel density
estimation and Kth nearest neighbour methods are. except for relatively simple problems,
difficult to interpret. In the case of the latter two techniques, very little useable information is

gained regarding the structure of the data.



It must be remembered that, as the authors of CART. the opinions of Breiman et al must be
treated with caution. The other authors of tree-based methods have also made claims as to
why their method is best and why other methods fall down, though as Feng et al (1993) have
pointed out, the studies were either biased in favour of the authors own method so
demonstrating its effectiveness relative to other methods or were conducted over very similar
data sets (similar in regards to dimension, sample size etc), so that only a subset of the
parameter space is tested. Therefore. it is fairer to use those papers that were mentioned in
the previous chapter, involving studies undertaken by authors with no deep seated inclinations

towards one method or another.

Ildiko and Lanteri (1989) compared LDA. QDA. CART and SIMCA over various chemical
data sets. From the point of view of complexity and interpretability of the model, CART was
the clear winner with usually small, compact binary trees and classification rules that can be

used to classify future unknowns from the same population.

Brown et al (1993) compared CART with a back propagation neural network algorithm,
although neural networks are not covered in this thesis. They found that CART trees were

simple and easy to read. providing a set of useable rules tor the future.

Feng et al conducted a large scale comparative study across a variety of data structures from
industrial settings. They found that the decision tree methods produced the most interpretable
results, whereas the majority of traditional discrimination methods produced little or no
explanation at all. They also tound that tree-based methods were easy to use, though also
noted that techniques such as LDA and QDA were user-friendly too. Of the tree-based
methods used in their study, only two, CART and C4.5, have been mentioned in this thesis. It
was suggested that CART produced the smallest. hence simplest, trees of all such methods,
with evidence indicating that C4.5 trees were rather more complex than those of CART. No
other direct comparisons of tree-based methods with those using traditional discrimination,

have been discovered in the literature.

Based on the simulation studies undertaken in Chapters 4, 5 and 6 and empirical studies in
Chapter 7, a subjective comparison of tree-based and traditional discrimination methods can
be made. For bivariate problems, involving only two classes, the LDA rules are relatively
simple. Only one group separation tunction is calculated and an observation is classified into
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one of two classes based on whether the discriminant function is greater or less than zero.
Graphically, the problem can also be depicted quite simply. (For example, see Figure 2.1.)
In most cases where there exists a linear relationship between the variables within each class,
decision trees may be more complicated, for example, the FACT trees for data sets R and S in
Table 7.3, with each having four terminal nodes. In higher dimensional, two-class settings,
the interpretation of the rules produced by LDA becomes more complex and difficult to
understand, especially for non-statistically oriented users. One could use stepwise
discrimination to obtain the best two variables. then do LDA on those two variables to
calculate a linear discriminant function and graph the results. However, when p, the number
of variables, is large, this is inadvisable as information on (p-2) variables in the data set is
being thrown away. In situations where there are a large number of variables and/or a large
number of classes. decision trees such as those produced by CART and FACT are
recommended. As seen from the results for data sets B, C and D in Table 7.3, though, the
decision tree approach is not guaranteed to produce the most easily understood classification
rules. In those examples, one had to sort through twenty plus questions to classify a

particular observation. leading to an unnecessary amount of complication.

The rules produced by QDA and kernel density estimation were completely unintelligible to
anyone without a statistical background. One would have to be guaranteed a significant
increase in predictive accuracy of the classification models produced by these methods to
warrant their use. Empirical studies (and simulations) have suggested that this is not the case.
From the point of view of complexity and interpretability of the model, decision trees are a
clear winner. Compact decision trees. such as those created by CART and FACT, are clear
and simple compared to the other complex. algebraic decision rules associated with
traditional discrimination methods. though a decision tree modelis not always going to be the

simplest. One should always explore alternative approaches if possible.

Having decided that a tree-based approach is the most suitable for the data at hand, the
question could be asked as to which method or program should be used? To help answer this
question, four tree-based methods; CART, FACT. KnowledgeSeeker and Splus trees() were
compared in terms of the complexity and interpretability of the models produced, as well as

ease of use or user-friendliness of the computer package.



One of the prime motivations for the development of recursive partitioning, tree-based
methods was to shy away from the often complex and unintelligible rules produced by
traditional discrimination, at least to the statistically illiterate, as noted earlier. The decision
tree output, however, should not be too simple. As seen in Section 7.4, both the CART tree
(Figure 7.2) and the FACT tree (Figure 7.5) contained three terminal nodes. Both of these
trees had rules which were too simple, as the number of terminal nodes was less than the
number of classes in the data set. The Splus tree had six terminal nodes, two more than the
number of classes. though all those cases who used foam tablets were misclassified. The
KnowledgeSeeker tree on the other hand. through the use of multiway splits, had nine
terminal nodes, but was still relatively easy to understand. In addition. at least some of the
cases who used either foam tablets or oral pills were correctly classified. One could argue
that the use of equal priors in both CART and FACT created rules which did correctly
classify many of those who used either foam tablets or oral pills. but this was at the expense
of the overall accuracy of the tree, and in the case of FACT, made the decision tree overly

complicated.

Another criterion on which to judge the four methods is the ease of use or user-friendliness of
the computer package. In ease of use, the menu driven approach of KnowledgeSeeker is
difficult to beat. Both FACT and the Splus trees() procedures 1un on Splus, thus one must be
familiar with the Splus language to be able to grow decision trees, then use all the add-on
facilities that the program provides. With little or no knowledge of the Splus programming
language, this would not be the preferred method of choice for the business manager, the
medical researcher or the social scientist. CART, in its original form, requires data
specifications and options files to be set up first, then is run in batch mode. When used with

Systat’s menu driven approach the above problems disappear.

In terms of the ability to produce graphical displays. KnowledgeSeeker also seems to come
out on top. The tree is displayed as it is grown and printed out with the click of a mouse
button. CART, using Systat, can also display trees graphically, but the trees must be drawn
separately after each analysis is done. Splus trees() and FACT both require the use of the
Splus graphics facilities, a relatively easy task if one has mastered the intricacies of the Splus
language! Both KnowledgeSeeker and Splus trees() have the ability to examine and change
the variable to be split on at a particular node. Knowledge Seeker lists the most important
splits at a node. If the user wants to see the effect on the tree of using the second or third
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most important split at that node, a click of the mouse button allows the user to alter the split
to be carried out. Splus trees() uses a function to change the split at a node. In contrast,
CART and FACT split only on the value of a variable that is deemed optimal by each
particular algorithm. The only way that one could see the effect of splitting on another
variable at a node is to remove the most important varible from the analysis altogether.
Naturally, this is an undesirable situation for the deleted variable may have had some impact

in the latter stages of tree growth.

Although it has been stated that KnowledgeSeeker is the preferred method to use for this data
in terms of comprehensibility of the models produced and ease of use, this does not mean that
KnowledgeSeeker will always do the best for every problem encountered. The ease of use
and interactive ability make KnowledgeSeeker an appealing method to use but the lack of a
pruning algorithm may lead to trees that are overly large. hence complex, in some cases, and
not applicable to other data sets of exactly the same type. The lack of a true validation
procedure in the latest version of KnowledgeSeeker also provides some cause for concemn.
For those who have a good working knowledge of Splus, the Splus trees() routine, with its
CART approach and functions for tree display. growth and modification, provides an

excellent alternative.



CONCLUSIONS AND PROPOSALS FOR THE FUTURE

In this thesis, ten tree-based methods and the four most commonly used methods for
estimating the conditional densities of observations, namely linear discriminant analysis,
quadratic discriminant analysis, kernel density estimation and Kth nearest neighbour rules,
were presented from a methodological point of view. Articles from the literature were used to

identify and summarise where and when one should use each of the above methods.

A flow chart on a time scale is presented in Figure 9.1 showing the development of tree-based
methods. Based on the ideas of Belson (1959), AID was developed as a technique using a
sequential application of the one-way analysis of variance model, recursively partitioning the
data into two subsets. The method was designed to predict the value of a continuous response
variable. THAID was born out of AID in 1973 to handle categorical response variables. In
the machine learning and artificial intelligence school of thought, the proposals of Hunt et al
(1966) were developed further by Quinlan (1979) and put into the ID3 algorithm. All three of
these early methods were criticised tor. amongst other things, producing overly large and
unreliable decision trees. Kass (1980) incorporated a significance testing approach into
THAID to produce the CHAID method. in an attempt to solve the above mentioned problems.
In contrast, Breiman et al (1984) developed tree pruning and validation procedures to build on
the THAID algorithm. The end result of their work was the CART program. In 1986, in
response to criticisms of ID3. Quinlan introduced its direct predecessor, C4.5, which also
incorporated the idea of a pruning algorithm. FACT incorporated some of the ideas behind
CART, but used statistical theory to carry out the splitting process. Both CART and FACT
were criticised by various authors for, most particularly, the pruning algorithms and tree sizes.
KnowledgeSeeker was developed directly out of CHAID but also included some of the
approaches used by CART and C4.5. Splus Trees() was the incorporation of the CART
method into the Splus programming environment, providing the user with many more options
and flexibility than were available in the old CART program. The final method mentioned,
IND, is a combination of the CART and C4.5 approaches to tree growth, tied together with
Bayesian statistics. This last algorithm seems to be the complete package, allowing the user
to implement either the CART. C4.5. minimum message length or Bayesian tree growing

routines.
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Figure 9.1: The Development of Tree-Based Methods Over Time



A range of simulation studies were undertaken in Chapters 4, 5 and 6 for both continuous and
categorical data, involving a wide range of factors, while a number of empirical comparisons
were carried out in Chapter 7. In Chapter 8. some recommendations were made, both from
the literature and personal findings as to which characteristics of tree-based methods are
important, as well as which method is preferred from the point of view of complexity and

interpretability of the models produced.

In this, the concluding chapter of the thesis, the recommendations from the penultimate
chapter are tied together with the findings of Chapters 4 to 7, to classify which methods
should be used in particular situations. Some proposals for the development of future tree-
based methods are also provided. The focus in this thesis has been on when to use a tree-
based discrimination method in preference to either a parametric method, such as linear
discriminant analysis. or a non-parametric technique. such as kernel density estimation. It has
been established (see Chapter &) that the tree-based approach, in the main, provides a more
user-friendly approach to examining a set of data. Tree-based methods have also been used in
conjunction with other methods, providing an alternative way of looking at a data set and
suggesting possible interactions of variables and uncovering various subgroups. Though tree-
based methods have been in existence for thirty years. there still appears to be a reluctance to
use a tree-based method on its own to analyse a set of data. A primary objective of this thesis
has been to compare tree-based methods with other discrimination techniques, through both
simulation and empirical studies, to determine in which situations a tree-based method is
most appropriate. The misclassification error rate of a prediction rule has been used as the
performance criterion, providing a measure of the statistical power of each method. The

results of these studies have led to the following set of recommendations.

For continuous explanatory variables (see Sections 4.3, 4.4 and 7.3.2), the distribution of the
data is the most important factor in deciding which method to use. Itis well known that for
normally distributed data a parametric technique such as linear or quadratic discriminant
analysis is likely to be best. Forlognormal data, a non-parametric technique such as CART is
recommended, or indeed Splus trees() which utilises the basic CART approach. Tree-based
methods, such as FACT, which use traditional statistical methods have unfortunately been
shown to perform poorly, especially for unequal sample sizes, differing covariances and
categorical data (see Sections 4.3, 4.4, 4.5 and 5.3). The second most important factor in
choosing a classification method would appear to be the type of classification problem.
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Sequential classification problems, where only a few out of many variables are important, are
suited to CART-like methods. Parallel problems. where all the variables have approximately
equal weighting. should be handled by traditional discrimination methods. Other factors
which are linked to the complexity of the problem, that is, sample size, dimension and
covanance structure are less important than the type of distribution. Results indicate that the
more complex a data set is (larger sample size. higher dimension and unequal covariance
matrices) the better the performance of CART-like methods over other techniques. A highly
complex problem as defined here, if the variables are normally distributed, may be best
analysed by CART-like methods while for less complex problems where the variables are
normally distributed a traditional discrimination approach will perhaps be preferred. Another
consideration in the choice of classification method is the distance between populations as
measured by the difference in class means or the Mahalanobis distance. For well separated
populations, traditional discrimination methods are preferred while the CART-like methods
are better for poorly separated populations. As for the complexity of the data, however. these
recommendations are very dependent on the type of distribution and classification problem.

For categorical explanatory variables (see Sections 5.3 and 7.3.2). in lower dimensional
settings, a first consideration is the type of classification problem. CART-like methods do
best for sequential problems while traditional discrimination methods work better for parallel
problems, as occurred for continuous data. When there are a larger number of categorical
variables, the same rules given above also apply. Other considerations are sample size where
CART does best for smaller samples. while traditional discrimination methods are preferred
for larger samples, in contrast to the recommendations for continuous data. Slightly less
important is the question of distance between populations. CART-like approaches are suited
for less well separated populations while linear discriminant analysis etc are preferred for
highly separated populations in accordance with results for continuous data.

If CART was chosen as the tree-based method to use, which error rate estimator should be
used to choose the optimum-sized tree from the pruned sequence of subtrees produced by
CART’s pruning algorithm? Using the twin criteria of accuracy, that is, how close the error
rate of the tree is to the error rate found from running a very large test sample down the tree
and simplicity of the rules produced, as well as the size of the final decision tree, the
following recommendations can be made. If the explanatory variables are continuous (see

Sections 4.6, 6.2 and 7.3.3), with small samples, Figure 9.2 shows that the 0.632 estimator



should be used unless only a few variables are impoitant (sequential classification problem)
and the classes are poorly separated. For continuous explanatory variables, with large
samples, as above, the 0.632 estimator should be used unless the classification problem is
sequential and the classes are not well separated. Simulation study results suggest that in
such situations, it would be advisable to use the tenfold error rate estimate.

O

classification problem parallel?

Y(V No

0.632 populations well separated?
v X
0.632 Tentold

Circles represent decision nodes which have to be split while rectangles represent terminal

nodes which are assigned to a particular class given below the node.

Figure 9.2: Decision Tree for deciding which Error Rate Estimator to use
in CART: Continuous Explanatory Data

For categorical explanatory variables (see Sections 6.3 and 7.3.3), Figure 9.3 shows that the
0.632 estimator should be used for small samples, parallel classification problems and well
separated populations, when the number of variables is not large. For higher dimensional
problems, the 0.632 error rate estimate is recommended for either small or moderate sample
sizes (and suitable for large sample sizes) or for moderately to well separated populations.
For other situations, either the rotation or tenfold cross-validation error rate estimates should
be used, with the former preferred for smaller samples. The n-fold cross-validation estimate
should be used with a deal of caution, especially for small samples and poorly separated
populations. In the latter situation. n-fold cross-validation was discovered to produce

excessively optimistic error rates, hence overly large trees.
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Circles represent decision nodes which have to be split while rectangles represent terminal

nodes which are assigned to a particular class given below the node.

Figure 9.3: Decision Tree for deciding which Error Rate Estimator to use
in CART: Categorical Explanatory Data

Having decided on which error rate estimator to use in CART, the next question to be asked
1s whether one should use the one standard error rule or not to select the right sized tree (see
Sections 6.4 and 7.3.5). A set of recommendations on the use of the one standard error rule is
displayed in Figure 9.4. in the form of a decision tree. In summary, the one standard error
rule should be employed for small samples and sequential classification problems, and for
large samples, when the classification problem is parallel and the populations are well
separated or for sequential classification problems where the populations are poorly
separated. Otherwise, the zero standard error rule should be used. The one standard error
rule is designed to both correct the optimistic bias of the cross-validation estimate of error and

produce as simpler tree as possible. When there is a large amount of noise in the data, the one



standard error rule should be used to remove unwanted splits. If, however, there is very little

noise in the data, the one standard rule could lead to some important splits being removed,

O

sample size small?

and hence should not be used.

classification problem parallel? classification problem parallel?
0-SE 1-SE

populations well separated? populations well separated?

7S

1-SE 0-SE 0-SE 1-SE

O-SE = use the zero standard error rule.
1-SE = use the one standard error rule.

Circles represent decision nodes which can be split while rectangles represent terminal
nodes which are assigned to a particular class given below the node.

Figure 9.4:  Decision Tree for deciding when to use the One Standard Error Rule
in CART

The rest of the chapter is devoted to future trends and developments in tree-based methods.
With the tremendous advance of technology and computing power in the last few decades,
there has been a corresponding increase in the number of tree-based methods appearing,
usually with greater sophistication than their immediate predecessors. In ten, or even five

years, most if not all of the tree-based methods that have been studied in this thesis may be
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regarded as obsolete or discarded in favour of new, innovative and faster techniques. A
number of ideas are presented here for the further development and refinement of tree-based
methods.

The IND procedure also incorporates the decision graph algorithm of Oliver (1992), which
Buntine (1993) suggests may be a hint of what is to come. The method involves a three stage

process for growing decision graphs:

1. Foreach node, t. determine the variable. x;. to be split on. Do not carry out the split but

note the saving in message length.

2. For each pair of nodes. t; and tr. calculate the saving in message length from

amalgamating the two nodes into one. Do not pertorm the amalgamation.

3. Choose the alteration from (1) and (2) which had the greatest saving. Carry out this

alteration.

This approach looks very appealing though empirical results have shown that there is no real
increase in accuracy over C4.5 from using this method. If. instead, one wishes to take the

simple CART-like binary-tree approach, how should one proceed?

From simulation studies undertaken in this thesis. it is apparent that the performance of tree-
based methods is determined to a large extent by the characteristics of the data set. A first
step in any decision tree program should be the printing of summary statistics of a data set.
These statistics would include dimension, sample size. Mahalanobis distance between classes,
some measure of skewness, a measure of equality of covariance matrices, a variable ranking
procedure and a correlation matrix for all variables in the data set. From these summary
statistics, the user should be able to know what sort of problem he/she is dealing with. For
example, the information may indicate that the data is positively skewed, with poorly
separated classes and only a few of the many variables being important. It would be very
helpful for the program, on the basis of these summary statistics, to make recommendations

as to which parameters should be used in the tree building process.



The purpose of the above procedure is to provide an option of almost complete automation in
the tree building process, if the user so desires. Thus, the simplicity of the procedure would
be increased. Simplicity in both running the program and interpreting the results should
remain a key feature in any tree-based program. Recently, a paper by Todeschini and
Marengo (1992) appeared detailing the linear discriminant classification tree (LDCT) method.
As with FACT, the method is designed to combine the best features of LDA and
classification tree methods, but unlike FACT, the algorithm uses full p-variate LDA at each
stage of the tree growing process. Although Todeschini and Marengo claim an increase in
accuracy, the method is not, as they also claim it to be, characterised by low complexity and
ready interpretability. Such a method is indeed outside the aims of a tree-based method.
Future tree-based methods should consider the simplicity of the interpretation of results as a

primary ob jective.

This approach has been taken up by Taylor and Silverman (1993). They have produced a
new form of displaying a classification tree. known as a block diagram, using a
reimplementation of the CART algorithm. They focus on the use of tree-based methods as a
means of better exploring and interpreting the data rather than providing a predictive

classification model.

Without going into too much detail. block diagrams provide the user, through the colour
coding of the nodes, with an indication of the splitting power ot the discriminatory variables.
Terminal nodes which are predominantly one colour indicate that CART has been relatively
successful for a particular problem, while multicoloured nodes show examples of unreliable
predictions with a strong overlapping of the classes. *“[Taylor and Silverman] have found that
block diagrams make it possible to identify and rectity failures in the classification method
itself, rather than just to identify features of the classification of the particular data set under
consideration.” (Taylor and Silverman, 1993, p 6.) With the incorporation of text to help in
the understanding of each split and makeup ot each node. an inexperienced user would have

comparatively little difficulty in interpreting the decision tree.

It has become apparent in this thesis that tree size is the major factor in determining the
comprehensibility of a particular decision tree. Therefore, it would be appropriate to
introduce a criterion that restricts the size of a decision tree to between preset lower and upper

limits. This would be incorporated into the pruning algorithm with the tree having the
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minimum cross-validation (or 0.632) error rate within those limits being chosen as the final
tree. Naturally, the lower bound should not be set too low so as to make the tree too small,
nor should the upper bound be set too high, thus leading to lack of interpretability.

A sensible choice of a lower limit could be k. the number of classes in the data set, with an
upper limit of say 2k. Alternatively, a better measure may be to take into account how well
each class is represented in the data set. If certain classes are not well represented in the data
set, it may be wasteful to attempt to produce extra terminal nodes in order to incorporate these
classes. One way of determining how many well represented classes there are in a particular

data setis touse m’ (1), the reciprocal entropy index as used by Taylor and Silverman, where

]

’

T

m (1) =

and ©’ = (wy, Wy, ..., ®y) is the vector of class probabilities. For data sets where all class
sample sizes are equal. m”(t) = k. Otherwise. m”(t) decreases as class sample sizes become
more disparate. The lower and upper bounds for tree size could be set at m*(t) and Zm*(t)

respectively.

The question of correlation between variables raises another point in the formulation of a new
tree-based method. It may happen, at a node. that a variable which, while not giving the best
split, provides the second or third best split. As well, most of the cases sent left or right by
the best split may be sent the same way by the alternate split. This implies that the two
variables are highly correlated. At each node of the splitting process, some notification of the
correlation between variables should be given so that the user knows what would happen if
the split changed from say x; < c 10 X, < d. Such facilities as those provided by
KnowledgeSeeker for changing splits automatically should be a requirement for any future

tree-based program.

Allied with the idea of correlation between variables at a single node is the question of
correlation between a split at a current node and future partitions. As seen in Section 7.4, and
mentioned elsewhere in the thesis. most decision tree methods are one-stage optimal in that
they are only guaranteed to find the maximal separation of the k classes at each stage of the
tree-growing process, that is, at the current node. No account is made of what will happen to



future tree growth if this so-called “optimal” split is carried out. The *“optimal” split at each
stage of the tree-growing process may not correlate well with future partitions and hence not
lead to the most accurate tree possible. A lesser split at the current node, may, in contrast,
correlate well with future partitions and so be best for future tree growth. As mentioned
previously, such a r-stage lookahead option becomes infeasible for large r as p' possible splits
have to be examined where p is the number of variables in the data set. Morgan (1993) stated
that such an option did not lead to any real improvements with AID (see Section 3.3), though
Buntine (1992) has incorporated such a facility into the IND program. The case study of
Section 7.4 showed that such instances of improvement can and do happen.

Future research into this area with more detailed simulation and/or empirical studies are
required to decide whether the lookahead option does provide any significant improvement in
accuracy over the one-stage optimality procedure. With the tremendous advances in
computing power occurring today, the computing and information storage required is not the

major drawback it was for the developers of carlier tree-based methods.

Other unanswered questions requiring further research and tests are whether univariate splits
are preferred to linear combination splits as well as how sequential/parallel a classification
problem appears. As discussed in Section 8.2.3, various views abound as to whether
univariate splits are better than linear combination splits. Further simulation and/or empirical
studies should be undertaken to determine which method is preferable both in terms of
accuracy and overall tree size. In terms of the amount of usable information provided by the

decision tree, the question of which approach is best remains rather subjective in nature.

A question mark also hangs over the issue of the type of classification problem, that is
sequential, where relatively few of the variables are important, or parallel, where most of the
variables are important in forming the classifier.. In Section 7.3, a “mixed” classification
problem was defined as one which did not fit neatly into being either sequential or parallel.
Other criteria should be set up so as to define where a problem is best suited to tree-based
methods (sequential problems), or where the problem is best suited to traditional
discrimination methods (parallel problems) though such criteria are unlikely to completely
eliminate the fuzzy area between the two.
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A final proposal for future methods is the further development of the FACT splitting
criterion. Simulation studies have shown that splitting using F-ratios and univariate LDA was
inappropriate for lognormally distributed data. One possible way of getting around this
problem is to determine the best split by using non-parametric tests. In the case of two
classes, the Mann-Whitney, or two sample Wilcoxon rank, test (see Lehmann, 1975), could
be used for calculating the difference between two class medians. The assumptions for the
test are that the two samples have the same shape and variances. For lognormal data, the
assumption of equal variances may be violated. An alternative is the Kruskal-Wallis (or k-
sample Mann-Whitney) test which has the sole assumption that the k classes all have the
same shape. The observations from all classes are pooled together and ranked from 1 ton. A
test statistic involving the average rankings for each of the k classes is then calculated and the

variable with the largest of these is used to split on.

Another alternative is to use the MOOD median test (see Lehmann), which carries out a form
of contingency table analysis. Firstly, the overall median is calculated for all the k classes
pooled together. Then, for each class. MOOD determines the number of observations less
than or equal to the overall median. and the number of observations greater than the overall
median. This gives a 2 * k table of counts. A %2 test of independence or association is
carried out on the table and the significance of the result calculated. The MOOD test is more
robust to outliers than the Kruskal-Willis test. but is less efficient for normally distributed
data. In such cases. the use of parametric tests would be preferable. After determining the
best variable to split on, splitting can then be carried out on that variable by means of Raveh’s
non-metric discriminant analysis method (see Section 2.4.1), so that as many observations
from the first class are greater than or less than those in the second class (assuming two

classes).

This thesis has been designed to serve a number of purposes. Firstly, it provides a critical
reference guide for current users of tree-based methods. Secondly, it gives guidelines as to
when and where tree-based methods are best used. Thirdly, it offers recommendations as to
which options should be employed when using the CART method. Finally, and no less
importantly, some suggestions are made as to what a future tree-based method should look
like. With increasing memory capabilities and processing speed, tomorrow’s computers will
provide a mechanism, ready and able to handle the development of more sophisticated and

accurate, yet also more user-friendly, decision tree packages.
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NOTATION INDEX

Below is given a list of the notation used in this thesis. The list is ordered by the number of the

page that the term first appears. The general rule adopted here is that vectors and matrices appear in

bold.

CART
FACT
X
Dg(x)
fi(x)
Lot
R(B)
k

I

H;

Z;
z

T(A, )
D(x)

52

R1(T)
D(.)
E(D(x))
se[D(x)]

Q(x)
Q)
LDA
QDA

RDA

O O 00 00 00 00 00 00 00 00 00 N N 9 O O O O O \;vr L L L W W D N

12
12
12
12
14

Classification and Regression Trees

Fast Algorithm for Classification Trees

vector of measurements for an observation

Bayes classification rule, optimal rule of allocation

conditional density function of x

prior probability that x belongs to class i

Bayes misclassification error rate, optimal error rate of any classifier
number of classes/populations/groups in the data set
class/population/group 1

mean vector for class i

covariance matrix for class i

pooled covariance matrix tor k classes

total probability of misclassification

the true discriminant function

square of the true Mahalanobis distance between two classes

true probability of misclassifying an observation belonging to class 1
cumulative normal distribution function

expected value of the true discriminant function

standard error of the true discriminant function

number of sample observations from class i

sample mean vector of the observations from class i

sample covariance matrix of the observations from class i

pooled estimate of the sample covariance matrix

linear discriminant function in the case of two populations

cost of misclassifying an observation from class j to class i

group classification function for class i

group separation function, linear discrimination function in the case of more
than two groups

optimal rule of allocation in the case of unequal class covariance matrices
quadratic discriminant function

linear discriminant analysis

quadratic discriminant analysis

number of variables/dimension of the data set

regularised discriminant analysis
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Ay
NDA
v(x/Tp)
F(x/I1,)
f/Ty)
ko(z)
K(x)
K-NN
d(x;, x)
AID
THAID
CHAID

r(t)

Pj

Dpmins Omine Smin
m, n

I(m, n)

I(mi, Ili)
E(xj)

gain(xj)
p(i/Y)
pG/)
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21
21
26
26

31
31
31
31
31
Bil
31
31

regularisation parameters used in regularised discriminant analysis
non-metric discriminant analysis

number of class m sample points with values less than or equal to x
cumulative distribution function estimate

density function estimate

smoothing weighting function used in kernel density estimation
kernel density discriminant function

Kth nearest neighbour method

distance function between x; and x

Automatic Interaction Detector

THeta AID

CHi-squared AID

sample size, sample size at a node

proportion of observations not from the class with the largest number of
observations at each node

subset of the data. node

total sums of squares for node t

response in node t

between group sum of squares found after splitting on variable x;

mean of responses in the first subgroup of node t

maximum between group sums of squares over all variables

total sum of squares for the whole data set

parameters used in AID stopping 1ules

Theta splitting criterion

total number of observations at node t

total number of misclassified observations in the ith split group

Delta splitting criterion

proportion of observations from class j in node t

proportion of observations from class j in split group 1

parameters used in THAID stopping rules

the number of observations from classes 1 and 2 respectively (ID3 only)
expected information needed to classify an object using an ID3 tree.

v distinct categories of a variable

descendant nodes of t

information required to classify an object using a subtree from t;
expected information required for trees partitioned on variable x; at the root
node

information gained through branching on x;

probability an object can be assigned to classi at node t

probability an object can be assigned to class j at node t



1(t)

Ai(s, t)
PL> PR

1(tp)

C1, Gy
O(sh)
Tmax
T

Ry (T)
R(AT)
o
L(T)
Ty
R(T)

se(R(T))
S*

Sj .
ps , s-)
PLL(S . S))

t
L

p(V)
5]
IV(x j)
2K

2]

L

se(L)

E

Yij

D, yi)
D(1L; y)

DL, AR3Y)

AD

Dy(T)
y(node)

42
42
42
42

42

42
42
43
43
43
43
43
43
43
44

44
44

45
45

45

45
45
47
48
48
48
48
48
56
56
56

56

$fl
57

estimated probability of misclassification under the Gini index

a split

Gini splitting criterion

proportion of observations at node t sent left or right respectively by the’
split

estimated probability of misclassification for the observations sent left by
the split

amalgamation of classes. superclasses

twoing splitting criterion

a fully grown tree

a subtree of T,y

cost-complexity measure tor T

resubstitution error rate for T

cost-complexity parameter

number of terminal nodes in T

subtree that minimises R, (T)

independent estimate of the error rate, test sample or cross-validation error
rate estimate

standard error of R(T)

optimal partition of a node tinto t_ and tg

split carried out on variable X

probability that s; sends the cases in t the same way as &

probability that both s™ and sj send the cases in t. to the left

set of observations sent left by s

probability that an observation is in node t

surrogate split on variable X]

correctness of the answer from splitting on Xj

total number of observations in subtree T

total number of misclassified observations in subtree T

pessimistic view of the number of misclassified observations in subtree T
standard error of L

number of observations misclassified by the best terminal node within T
probability that the ith response falls in the jth class

deviance function for an obseivation y;

deviance of a node. sum of the deviances of all observations in the node
combined deviance of the two descendant nodes

difference between deviance of a node and the combined deviance of the
two descendant nodes

cost-complexity measure for T using deviances

fitted value for each node
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y(parent)
y(node)
y(parent)
R(T)

R(E)
R(TS)
R(A)
R(H)
R(ROT)
R(CV)

R;(A)
Ry (A)
Wy
R()
Gi(x)
R(PP)

RBOOT)
R(0.632)
R(g)
W0.632
R(GCV)
R (1)

zij

€
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57
)
o/
66

67
68
68
69
69
69

69
70

70
70
70

70
71
71
71
71

71

shrunken fitted value for the node’s parent

shrunken fitted value for the node’s parent

fitted value for the node’s parent

actual or true error rate, expected probability of misclassification when class
conditional density functions are known

the expected error rate for a learning sample of a given size

test sample error rate estimate

apparent/resubstitution error rate estimate

holdout error rate estimate

rotation error rate estimate. twofold cross-validation error rate estimate
n-fold cross-validation error rate estimate, leave-one-out estimate, U
estimate

apparent error rate for the learning sample with the jth observation omitted

average jackknife error rate estimate

jackknife estimate of the bias of the apparent error rate
jackknife error rate estimate

posterior probability that x belongs to class i

posterior probability error rate estimate

class of observation x;

J
predicted class of observation x;
(0, 1) loss function

true bias involved in using the apparent error rate as an estimate of the
actual error rate

random sample of observations drawn with replacement from the learning

sample, bootstrap sample

apparent error rate of the bootstrap sample

actual error rate of the bootstrap sample

resampled proportion of observations in the bootstrap sample

bias involved in using the apparent error rate of the bootstrap sample
bootstrap estimate of the bias of the apparent error rate
bootstrap error rate estimate

0.632 error rate estimate
average error rate for all observations not in the boostrap sample

0.632 estimate of the bias of the apparent error rate

g-fold cross-validation error rate estimate

weighted estimate of the g-fold cross-validation and apparent error rates
standardised distribution with mean zero and standard deviation one
combination or prior probabilities and covariance matrices factor

classification method factor



ANOVA
SER(CV)
PPSS
R())

R(TEN)
R(ACV)
R(AR)
R(AT)
R(T)
MSE

Ci
Pij
Tijk

COUNT

LR(T)
LR(T)
PR(T)
PR(T)
m™ (1)

76
82
)
94

108
108
108
108
108
108

115
116
116
131
131
131
132

158
158
158
158
230

analysis of variance

standard error of the misclassification cost

priors proportional to sample size

group/class misclassification error rates, proportion of observations from
class i classified as class

tenfold cross-validation error rate estimate

apparent error rate for CART trees chosen by n-fold cross-validation
apparent error rate for CART trees chosen by rotation

apparent error rate for CART trees chosen by tenfold cross-validation

Any error rate estimating the actual error rate

expected value of the squared distance between an error rate estimate and
the actual error rate

category 1 in a categorical variable

probability of getting a response xj=1 for class 1, probability pattern factor
correlation coefficient between x; and x for class i, correlation factor

factor combination of means, dimension and correlation

population correlation coefticient

population cormrelation matriix for class i

expected value of the difference between the actual error rate and the error
rate estimate

proportion of samples for each factor combination in which the estimated
error rate was less than the actual error rate

actual error rate after a logit transformation

error rate estimate after a logit transformation

actual error rate after a proportion transformation

error rate estimate after a proportion transtormation

reciprocal entropy index
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ADDENDA
pS, 12: change "is defined to be" to "assigns a random observation x to population IT; if".
pS, | -5. change "Let us" to "In the case of two p-dimensional multivariate normal
populations (the general multivariate ellipsoidal case is not considered here), let
us".
pS, I -1: in formula (2.2.1) change "Z-1" to "Z;1".

p6, 111: omit "much".

p7: in the formula after (2.2.9) change "R,(T) = ®[...]" to "R,(T) = Pr[...]" and change
"In(x,/m,).

p7, -1  after "cumulative" add "standardised".
P9, /11. change "Bji <0, Vvi>j"

P9, 116: change "612(x)“ to "’[\313(x)".

p42, 17 change "C, and C,"to "SC, and SC,".
p48, 1-10: change "L = ZJ + L(T)/2" to "E + 1/2".

p65, /5. after "error rate" add "estimate".

BB, Note: The discussion from (4.2.2) on is restricted to multivariate normal data using
LDA.
JoSIh on a new line after (4.2.7) add "where nj is the number of observations from IT,

falsely classified to I, i ="

p74, 1 12: after "(e)." add "The above model involves a full factorial design. It may have
been better to adopt some form of fractional design, so allowing a wider range of
factors to be explored. However, as is almost always the case in simulation
studies, the possible range of factors that can be explored is vast, so that a line
has to be drawn somewhere."

p74,1-4. change "xij is lognormal” to "log (x;) is normal (0,1)".

p74,1-3: delete "which is lognormal (O, 1)".



p74: | -1

On a new line add "In summary, univariate normal data, Xx; was generated for
each dimension j, then transformed to y; = exp(x). Finally, the data was
standardised giving marginals with mean O and standard deviation 1, that is,

z,= (y;-y) / estimated s.d.(y;). "

The ranking of observations has changed after standardisation though the z, are
independent (uncorrelated) as the x; are independent.” '

p75, | -3: after "(1990)." add "The two tree-based methods were chosen because of their

p76, | -14:

p82, 1 8:

ready availability and representing two different approaches to tree-based
classification. LDA and QDA were selected because they are the two most
commonly used classification methods."

After "here." add "It may have been preferable to have used a separate test set
instead of the cross-validation method which does introduce possible error. |t
was decided to use cross-validation instead of an independent test set as the
former is used more often in the real world as large test sets are usually
unavailable."

after "was used." add "This decrease in LDA error rate between normal and
lognormal is most probably due to the effects of standardisation which maintains
the theoretical covariance differences, hence distances between populations.
However, as the distributions of the two populations are skewed, the lower 75%

.of the distribution will be bunched together around a high peak, thus closer to

the respective class mean than in the case of normally distributed data. The net
effect is that fewer observations are misclassified for standardised lognormal
data.”

p83, /-9: after “transformation." add "In this case, for pure lognormally distributed data, the

p83, 1 -7:

p83, I -6:

actual values of & will be different from those given in Section 4.3.1."
after "true" add "(pure)".

change "log(f(.)]" to 'In[f(x)]".

p91, | -2: after "data" add ", though this alters the correlations between variables so that

BOZ M &
p93, I -5:

po94, | -1:

p96, I 3:

p97ff.

the covariance matrices are different from those in (4.3.2)
change "covariance" to "variance".
insert a transpose symbol (') between )" and "S-1".

on a new line add "though absolute differences are used in the graphs to make
for easier comparison between methods."

after "rates" add "(to make the graph easier to read)".

e" classifications as on p 75.



p116: after /-7 add "with §; >0, j=1, 2."

p117, 1 -13: after "theirs." add "Binary data rather than general categorical data was also
used for simplicity. Using categorical variables containing more than two
categories would involve creating a large number of binary variables to use in
LDA and QDA."

p117, 1-11: after "n" add "(total sample size)".

p117,1-8: after "rijkz 0.25" add ", j = k"

el TS omit "Level" from Table 5.2.

p121: omit “p; =" from Table 5.4.

p122, | -10: after “of R(T)." add "The mean square error (MSE) criterion was used to
compare different error rate estimators for each method (see p 108)."

p126: omit "Level" from Table 5.7.

p130, I -7: change "of the sample" to "associated with the classification tree".

p132, | -2: change "the F-ratio should not be regarded as a true measure of the statistical
significance of each result." to "a statistically significant F-ratio may not be of
substantive significance."

p165, /-9: change "variances" to “covariance matrices".

p171, 1-12: change "varible" to "variable".

p178: in Table 7.6 (and at the bottom of p178), change "R(i/j)' to " ZjR(/j)".

p184, | 16: after "significant" add "(with univariate tests)".

p186, / 14: convert "change" to "changed".

p187:  Note: Husb_Edu and Wife_Edu are ordinal categorical variables with values
ranging from zero to seven and refer to the education level of the husband and
wife respectively. No_Child refers to the number of children in the family.

p209, /-8. omit "enough".

p231, /1 11: change "significant" to "major".

p236: on a new line after / 12 add "US 23 univariate split".

p237,18: change "C,, C,"to"SC,, SC,".



p238:

p239:

p239 (2):

on a new line after / 12 add "n; 69 the number of observations from II; falsely
classified to IT".

after "Breiman, ... (1984)..." add the reference "Brown, D.E., Corruble, V. and
Pittard, C.L. (1993)" A comparison of decision tree classifiers with back-
propagation neural networks for multimodal classification problems, Pattern
Recognition, 26, pp 953-961."

Note: The page numbers for the Bibliography are wrong. This se\btion should
start on p241 and all other pages should be put back two pages.
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