Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Massey University Library New Zealand & Pacific Collection

DISSOLUTION AND PLANT-AVAILABILITY OF PHOSPHATE ROCKS IN SELECTED NEW ZEALAND AND INDONESIAN SOILS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University

Donald Tambunan 1992

Massey University Library Thesis Copyright Form

Title of thesis: Disolution and Plant-Availability of Phosphete Rocks in Selected New Zalgadom and Indonesion soils

- (1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.
 - (b) I do not wish my thesis to be made available to readers without my written consent for ... months.
- (2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.
 - (b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ... months.
- (3) (a) I agree that my thesis may be copied for Library use.
 - (b) I do not wish my thesis to be copied for Library use for ... months.

Signed <

Date

18. November 1992

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

15

ABSTRACT

Use of phosphate rocks (PRs) as direct-application fertilizers has received considerable attention in countries that have large areas of acidic soils. Properties of acidic soils generally favour dissolution of PRs and increase their effectiveness as direct-application fertilizers. In this study, the dissolution and effectiveness of several PRs, North Carolina (NCPR), Moroccan (MPR) and Pati (PPR) phosphate rocks, was investigated in a range of New Zealand and Indonesian soils. The main objective of the thesis was to provide information that could assist in improving recommendations on their use in field situations.

Laboratory studies showed that the extent of PR dissolution could be estimated using sequential P fractionation techniques to measure amounts of residual (undissolved) PR in soils. In New Zealand soils, residual PR was accurately estimated from the increase in HCl-extractable P (Δ HCl-P) between NCPR-fertilized and unfertilized soils following sequential extraction of soil and soil/NCPR mixtures with 0.5 M NaCl/TEA (30 min), 1 M NaOH (16 h) and 1 M HCl (16 h). The Δ HCl-P method, however, was not suitable for use on strongly weathered Indonesian soils because of low recovery P in the HCl extractant following NaOH extraction. Tri-acid (HNO₃:HCl:HClO₄) digestion or H₂SO₄ (0.5-1 M) extraction overcame this problem. A Δ H₂SO₄-P method involving 0.5 M NaCl/TEA, 1 M NaOH and 0.5 M H₂SO₄ extractions was subsequently tested and shown to be suitable for measuring residual PR in acidic New Zealand and Indonesian soils. Measurement of ³²P-labelled synthetic francolite dissolution in these soils confirmed the accuracy of the new Δ H₂SO₄-P method.

Considerable evidence exists from this study to indicate that the capacity of soil to supply acid and remove Ca from the site of PR dissolution are most important in determining the extent of PR dissolution. The extent of NCPR dissolution in New Zealand soils was found to decrease with increasing additions of $CaCO_3$ or NaHCO₃ due to increases in soil pH (for NaHCO₃ and CaCO₃-amended soils) and exchangeable Ca (for CaCO₃-amended soils). The maximum extent of PR dissolution occurring in the range of acidic New Zealand and Indonesian soils incubated with NCPR and MPR was found to be negatively correlated with initial amounts of exchangeable soil Ca (r=0.83-

0.92) and the percentage Ca saturation of the cation exchange capacity (r=0.78-0.92). Also, increases in soil pH, and possibly solution concentration of Ca, were the main reasons for decreases in synthetic francolite dissolution in soils amended with increasing rates of plant residue. And finally, field trials conducted in Indonesia showed that the extent of PR (NCPR, MPR and PPR) dissolution was greater in the more acidic Ultisol ($pH_{H20}=4.8$) than in the Entisol ($pH_{H20}=5.3$).

Laboratory incubation studies showed that the key factors determining the chemicalavailability (i.e. extractable with Olsen, Bray 1 and resin tests) of P derived from soluble P fertilizer or PRs in New Zealand and Indonesian soils were rate of addition, soil pH and P sorption characteristics and the nature of soil test. A short-term (30 days) glasshouse study using a range of New Zealand soils showed that the plant-P uptake from soil fertilized with NCPR was low, relative to monocalcium phosphate (MCP), indicating the low extent of NCPR dissolution. The plant-availability of soluble P and dissolved P from PR, however, was more dependent on soil P adsorption characteristics than on other soil properties.

Field trials in Indonesia showed that PRs were more effective agronomically than triple superphosphate (TSP) for maize in a P deficient Ultisol only when the PRs were applied to *Calopogonium caeruleum* cover crop 6 to 18 months prior to sowing maize. In an Entisol, PRs were less effective than TSP irrespective of application time. In the Ultisol, PR effectiveness was not affected by liming, provided that the PRs were applied 6 to 18 months prior to the addition of lime.

Results of the Indonesian field trials showed that Bray 1 test was a better predictor of plant growth responses than either Olsen or resin tests in PR-fertilized Ultisol, where high effectiveness of PRs was observed.

Three PR dissolution models of increasing complexity (Mitscherlich, Cubic, Kirk and Nye) were tested using NCPR and MPR dissolution data generated from a laboratory incubation study. Only Mitscherlich and Kirk and Nye models adequately described PR dissolution in the soils studied. A sensitivity analysis showed that any differences between observed and simulated PR dissolution by the Kirk and Nye model could be

attributed to problems in obtaining a representative measure of soil solution pH.

The Kirk and Nye model was modified to simulate PR dissolution in the field and tested using data from the Ultisol field site. The model adequately predicted NCPR and MPR dissolution over 545 days. In this case the accuracy of predictions was found to be dependent on the value of the initial soil pH and the accuracy of simulating daily soil water contents. The model showed potential for use in a wider range of soil-plant-climate conditions in order to assist with the selection of soils suitable for the use of direct-application PR fertilizers.

d'a

ACKNOWLEDGEMENTS

I would like to express my gratitude and appreciation to the following people for their contributions towards the completion of this thesis:

Dr. M.J. Hedley, for his supervision, continual guidance, enthusiasm, encouragement, patience and friendship during the course of my study.

Dr. N.S. Bolan, for his supervision, valuable suggestions, patience and friendship.

Dr. M.A. Turner, for valuable discussion and constructive criticism.

All staff in the Department of Soil Science, for their assistance and friendship throughout the course of my study.

Ms. Sylvia Weil, Dr. A. Basker, Dr. K. Sakadevan, Messrs. S. Baskaran, A. Hammond and S. Mahimairaja, for their comments and proof-reading, and other postgraduate students in the Department of Soil Science, for their friendship.

Dr. N.J. Barrow, CSIRO Division of Animal Production, Wembley, Western Australia, for providing the initial Kirk and Nye Basic program.

My colleagues at the Research Institute for Estate Crops (RIEC), Sembawa, Indonesia, for their help with field work.

The Ministry of External Relations and Trade of New Zealand, for the scholarship grant, and the Director of Research Institute for Estate Crops (RIEC), Sembawa, Indonesia, for granting me study leave.

All Indonesian friends at Massey University, for their friendship.

Finally, but most important, my parents, for their prayers, love and continual support, and to my brothers, Edison and Edwin, for their care.

TABLE OF CONTENTS

v

ABSTRACTi
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES xiii
LIST OF FIGURES xvii

CHAPTER 1

INTRODUCTION	1
INTRODUCTION	

CHAPTER 2

LITERATURE REVIEW

2.1	INTR	ODUCTION		. 3
2.2	WORI	LD PHOSPHA	TE ROCK RESERVES AND RESOURCES	. 3
2.3	MINE	RALOGICAL	COMPOSITION OF PHOSPHATE ROCK	. 5
	2.3.1	Fe-Al phosph	ates	. 5
	2.3.2	Ca-Fe-Al-pho	sphates	. 5
	2.3.3	Ca-phosphate	s	6
2.4	GEOL	OGICAL FOR	RMATION OF PHOSPHATE ROCK	. 7
2.5	CHEN	ICAL REACT	TIVITY OF PHOSPHATE ROCK	. 8
	2.5.1	Compositiona	l differences	. 8
	2.5.2	Assessment o	f phosphate rock reactivity	11
	2.5.3	Chemical read	ctivity indices vs. agronomic effectiveness	14
2.6	DISSO	DLUTION OF	PHOSPHATE ROCK IN SOIL	16
	2.6.1	Factors affect	ing phosphate rock dissolution	17
		2.6.1.1	Phosphate rock factors	17
		2.6.1.2	Soil factors	19
		2.6.1.3	Plant factors	21
		2.6.1.4	Climatic conditions	21
		2.6.1.5	Soil amendments	22
	2.6.2	Availability of	of dissolved P	23
2.7	METH	HODS OF ASS	ESSING PHOSPHATE ROCK DISSOLUTION	
	IN SC	DIL		24
	2.7.1	Measurement	of phosphate rock dissolution	24
		2.7.1.1	Δ extractable Ca (Δ Ca) method	24

	2.7.1.2 Fractionation of inorganic P	25
	2.7.2 Measurement of plant-availability of dissolved P	27
2.8	USE OF PHOSPHATE ROCK FOR DIRECT APPLICATION IN NEW	
	ZEALAND AND INDONESIAN AGRICULTURE	29
	2.8.1 New Zealand	29
	2.8.2 Indonesia	33
	2.8.2.1 Perennial crops	33
	2.8.2.2 Annual crops	34
2.9	SUMMARY OF LITERATURE REVIEW AND RESEARCH	
	OBJECTIVES	36

PHOSPHATE ROCK DISSOLUTION IN SOILS OF VARYING pH AND EXCHANGEABLE Ca CONTENTS

INTR	ODUCTION		38
OBJE	CTIVES		39
MAT	ERIALS AND	METHODS	39
3.3.1	Experiment 1.	. Development of a sequential extraction	
	method for m	easuring residual phosphate rock in soil	39
	3.3.1.1	Soils and soil pretreatment	39
	3.3.1.2	Phosphorus source characteristics	41
	3.3.1.3	Recovery of NCPR-P and NCPR-Ca from soil	41
	3.3.1.4	Sequential extraction of P and Ca from	
		soil/PR mixtures	41
3.3.2	Experiment 2.	Measurement of the extent of phosphate rock	
	dissolution in	soil	43
	3.3.2.1	Soils	43
	3.3.2.2	Phosphorus sources	43
	3.3.2.3	Incubation study	43
3.3.3	Soil analysis		45
	3.3.3.1	General soil chemical analysis	45
	3.3.3.2	Sequential extraction of soil/P fertilizer	
		mixtures	46
3.3.4	Fertilizer anal	ysis	46
	3.3.4.1	Particle size	46
	3.3.4.2	Total P content	47
	3.3.4.3	Solubility	47
RESU	LTS AND DIS	CUSSION	47
3.4.1	Experiment 1.	. Development of a sequential extraction	
	method for m	easuring residual phosphate rock in soil	47
	3.4.1.1	Recovery of NCPR-P and NCPR-Ca in different	
		extractants	47
	3.4.1.2	Comparison of Δ HCl-P vs. Δ HCl-Ca methods	52
	INTRO OBJE MATT 3.3.1 3.3.2 3.3.2 3.3.3 3.3.4 RESU 3.4.1	INTRODUCTION OBJECTIVES MATERIALS AND 3.3.1 Experiment 1 method for m 3.3.1.1 3.3.1.2 3.3.1.3 3.3.1.4 3.3.2 Experiment 2. dissolution in 3.3.2.1 3.3.2.2 3.3.2.3 3.3.3 Soil analysis 3.3.3.1 3.3.2.2 3.3.4.3 RESULTS AND DIS 3.4.1 Experiment 1 method for m 3.4.1.1 3.4.1.2	INTRODUCTION OBJECTIVES MATERIALS AND METHODS 3.3.1 Experiment 1. Development of a sequential extraction method for measuring residual phosphate rock in soil 3.3.1.1 Soils and soil pretreatment 3.3.1.2 Phosphorus source characteristics 3.3.1.3 Recovery of NCPR-P and NCPR-Ca from soil 3.3.1.4 Sequential extraction of P and Ca from soil/PR mixtures 3.3.2 Experiment 2. Measurement of the extent of phosphate rock dissolution in soil 3.3.2.1 Soils 3.3.2.2 Phosphorus sources 3.3.3.3 Soil analysis 3.3.3.1 General soil chemical analysis 3.3.3.2 Sequential extraction of soil/P fertilizer mixtures 3.3.4 Particle size 3.3.4.1 Particle size 3.3.4.2 Total P content 3.3.4.3 Solubility RESULTS AND DISCUSSION

чi

	3.4.2	Experiment 2 dissolution ir	2. Measurement of the extent of phosphate rock	53
		3.4.2.1	Amounts of residual NCPR and extent of NCPR	00
			dissolution	53
		3.4.2.2	Relationships between soil pH and NCPR	
			dissolution	56
3.5	CONC	LUSIONS .	••••••	61

A COMPARATIVE EVALUATION OF METHODS FOR MEASURING RESIDUAL PHOSPHATE ROCK IN A RANGE OF NEW ZEALAND AND INDONESIAN SOILS

INTRO	INTRODUCTION		
OBJEC	JECTIVE		
MATE	ERIALS AND METHODS	64	
4.3.1	Soils	64	
4.3.2	Phosphate fertilizer characteristics	64	
4.3.3	Recovery of NCPR-P from soil	64	
4.3.4	Soil analysis	64	
	4.3.4.1 General soil analysis	64	
	4.3.4.2 Sequential extraction of soil/NCPR mixtures	66	
RESU	JLTS	67	
4.4.1	Recovery of NCPR-P from New Zealand and Indonesian soils by	,	
	sequential extraction involving NaCl/TEA, NaOH and HCl	67	
4.4.2	Recovery of NCPR-P from soils by sequential extraction		
	including either 1 M HCl extraction or tri-acid digest	67	
4.4.3	Recovery of NCPR-P from soils by sequential extraction following	ng	
	immediate additions of NCPR varying in particle size	67	
4.4.4	Recovery of NCPR-P and MCP-P from soils by either single or		
	sequential extraction	70	
4.4.5	Recovery of NCPR-P from Sembawa soil in various concentration	ons	
	of HCl or H_2SO_4 following 0.5 M NaCl/TEA and 1 M NaOH		
	extractions	70	
DISCU	USSION	73	
CONCLUSIONS			
	INTRO OBJE MATI 4.3.1 4.3.2 4.3.3 4.3.4 RESU 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 DISC CONO	 INTRODUCTION OBJECTIVE MATERIALS AND METHODS 4.3.1 Soils 4.3.2 Phosphate fertilizer characteristics 4.3.3 Recovery of NCPR-P from soil 4.3.4 Soil analysis 4.3.4.1 General soil analysis 4.3.4.2 Sequential extraction of soil/NCPR mixtures RESULTS 4.4.1 Recovery of NCPR-P from New Zealand and Indonesian soils by sequential extraction involving NaCl/TEA, NaOH and HCl 4.4.2 Recovery of NCPR-P from soils by sequential extraction including either 1 M HCl extraction or tri-acid digest 4.4.3 Recovery of NCPR-P from soils by sequential extraction following immediate additions of NCPR varying in particle size 4.4.4 Recovery of NCPR-P and MCP-P from soils by either single or sequential extraction 4.4.5 Recovery of NCPR-P from Sembawa soil in various concentration of HCl or H₂SO₄ following 0.5 M NaCl/TEA and 1 M NaOH extractions DISCUSSION CONCLUSIONS 	

CHAPTER 5

MEASURING AND MODELLING THE EFFECTS OF SOIL PROPERTIES ON PHOSPHATE ROCK DISSOLUTION

5.1	INTRODUCTION	77
5.2	OBJECTIVES	78

5.3	MATE	ERIALS AND	METHODS
	5.3.1	Soils	
	5.3.2	Phosphate roc	ks
	5.3.3	Incubation of	soil and phosphate rock 79
	5.3.4	Models used	to evaluate the influence of soil properties
		on phosphate	rock dissolution 79
		5.3.4.1	Regression analysis
		5.3.4.2	Cubic model
		5.3.4.3	Kirk and Nye model 82
	5.3.5	Chemical ana	lysis
		5.3.5.1	General soil analysis 88
		5.3.5.2	Soil solution extraction
		5.3.5.3	Sequential extraction of soil/PR mixtures 89
		5.3.5.4	Soil solution ionic strength measurement 90
5.4	RESU	LTS AND DIS	SCUSSION
	5.4.1	Experimental	results
		5.4.1.1	Effects of PR reactivity on PR dissolution 91
		5.4.1.2	Effects of rate of application on PR dissolution 94
	5.4.2	Evaluation of	the influence of soil properties on phosphate rock
		dissolution us	ing various models
		5.4.2.1	Regression analysis
		5.4.2.2	Cubic model
		5.4.2.3	Kirk and Nye model 108
5.5	GENE	ERAL DISCUS	SION AND CONCLUSIONS

THE AVAILABILITY OF PHOSPHORUS IN SOILS FERTILIZED WITH MONOCALCIUM PHOSPHATE AND PHOSPHATE ROCK

6.1	INTRO	DUCTION	
6.2	OBJEC	CTIVE	
6.3	MATE	RIALS AND	METHODS 125
	6.3.1	Experiment 1	
		6.3.1.1	Soils and P fertilizers
		6.3.1.2	Incubation of soil and P fertilizer 126
		6.3.1.3	Pot experiment
	6.3.2	Experiment 2	
		6.3.2.1	Soils and PRs 127
		6.3.2.2	Incubation of soil and PR 127
	6.3.3	Soil solution e	extraction
	6.3.4	Soil analysis	
	6.3.5	Plant analysis	
6.4	RESU	LTS AND DIS	CUSSION
	6.4.1	Experiment 1	
		6.4.1.1	Dry matter yield
		6.4.1.2	Plant P uptake

	6.4.1.3	Olsen-extractable P 13	2
	6.4.1.4	Relationship between plant P uptake and	
		extractable soil P 14	0
6.4.2	Experiment 2		7
	6.4.2.1	Inorganic phosphorus concentrations in soil	
		solution	7
	6.4.2.2	Olsen-extractable P 14	9
	6.4.2.3	Bray 1- and resin-extractable P14	9
	6.4.2.4	Relationships between amounts of P dissolved from	
		PR and various estimates of plant-available P 15	2
	6.4.2.5	Relationships between various soil testing	
		methods	8
CONC	LUSIONS .		8

6.5

EFFECTS OF PLANT RESIDUES ON THE DISSOLUTION AND AVAILABILITY OF PHOSPHATE FROM ³²P-LABELLED FRANCOLITE

7.1	INTR	ODUCTION		
7.2	OBJE	CTIVE		
7.3	MATI	ERIALS ANI	D METHODS	
	7.3.1	Plant residu	les	
	7.3.2	Soils		
	7.3.3	3.3 Preparation of ³² P-labelled synthetic francolite		
		7.3.3.1	Reagents	
		7.3.3.2	Synthesis	
	7.3.4	Incubation	of soil, francolite and plant residue	
	7.3.5	Analytical r	neasurements	
		7.3.5.1	Fertilizer analysis	
		7.3.5.2	Soil analysis	
		7.3.5.3	Plant analysis	
		7.3.5.4	Radioisotope analysis 166	
7.4	RESU	LTS		
	7.4.1	Relationship	p between the extent of francolite dissolution in soil	
		estimated b	y $\Delta 0.5 \text{ M H}_2 \text{SO}_4$ - ³¹ P and $\Delta 0.5 \text{ M H}_2 \text{SO}_4$ - ³² P methods . 167	
	7.4.2	Francolite d	lissolution	
	7.4.3	Olsen-extra	ctable Pi	
		7.4.3.1	Amount of Olsen-extractable Pi	
		7.4.3.2	Amount of Olsen-extractable Pi derived from the	
			francolite	
7.5	DISC	USSION		
	7.5.1	Francolite c	lissolution	
	7.5.2	Olsen-extra	ctable Pi	
7.6	CON	CLUSIONS		

AGRONOMIC EFFECTIVENESS OF PHOSPHATE ROCKS IN INDONESIAN SOILS

8.1	INTRO	DUCTION	
8.2	OBJEC	TIVES	
8.3	MATE	ERIALS AND I	METHODS
	8.3.1	Field trial site	selection
	8.3.2	Phosphate fert	ilizers
	8.3.3	Conduct of the	e experiment
		8.3.3.1	Land clearing and plot layout 193
		8.3.3.2	Phosphate fertilizer treatments
		8.3.3.3	Lime application
		8.3.3.4	Transplanting of Calopogonium seedlings 197
		8.3.3.5	Sowing maize 197
	8.3.4	Harvesting .	
	8.3.5	Soil sampling	
	8.3.6	Soil analysis	
	8.3.7	Plant analysis	
	8.3.8	Meteorologica	l data
8.4	RESU	LTS AND DIS	CUSSION
	8.4.1	Rainfall data	
	8.4.2	Dry matter yie	eld of maize
		8.4.2.1	Residual effect of TSP and NCPR applied at
			different rates
		8.4.2.2	Effect of P fertilizer form and application
			time
		8.4.2.3	Effect of liming
	8.4.3	Uptake of P b	y maize
		8.4.3.1	Residual effect of TSP and NCPR applied at
			different rates
		8.4.3.2	Effect of P fertilizer form and application
			time
	8.4.4	Relationship h	between P uptake and dry matter yield
	8.4.5	Relative agrou	nomic effectiveness (RAE) of phosphate
		fertilizers	
		8.4.5.1	Residual effect of TSP and NCPR applied at
			different rates
		8.4.5.2	Effect of P fertilizer form and application
			time
	8.4.6	Dissolution of	f phosphate fertilizers in soil
		8.4.6.1	Measurements at the end of Calopogonium
			growth
		8.4.6.2	Measurements after harvesting maize
	8.4.7	Plant-availabl	e P
		8.4.7.1	Residual effect of TSP and NCPR applied at
			different rates

1

	8.4.7.2	Effect of P fertilizer form and application
		time
	8.4.7.3	Relationship between extractable soil P and
		dry matter yield of maize 225
8.5	GENERAL DISCU	SSION AND CONCLUSIONS

MODELLING THE DISSOLUTION OF PHOSPHATE ROCK UNDER FIELD CONDITIONS

9.1	INTR	ODUCTION		231
9.2	OBJE	CTIVES		231
9.3	MATE	ERIALS AND	METHODS	231
	9.3.1	Phosphate roo	ck materials and application times	232
	9.3.2	Measured dat	a on phosphate rock dissolution	. 232
	9.3.3	Meteorologica	al data	233
9.4	DEVE	LOPMENT O	F WATER BALANCE SUBMODEL	. 233
	9.4.1	Accounting for	or changes in soil water content	. 233
		9.4.1.1	Calculating drainage volume	233
		9.4.1.2	Estimating daily evapotranspiration	. 234
	9.4.2	Estimating vo	blumetric water content	. 235
	9.4.3	Executing the	e model	. 235
9.5	PARA	METERIZAT	ION	. 236
	9.5.1	Soil paramete	2TS	. 236
	9.5.2	Phosphate roo	ck parameters	. 236
	9.5.3	Plant paramet	ters	. 236
9.6	RESU	LTS AND DIS	SCUSSION	. 237
	9.6.1	Prediction of	soil volumetric water content	. 237
	9.6.2	Prediction of	phosphate rock dissolution	. 237
	9.6.3	Prediction of	the amount of the dissolved P taken up by plant	• • • •
	9.6.4	Sensitivity A	nalysis of the "field" modified Kirk and Nye	
		model		. 243
		9.6.4.1	Effect of initial soil pH	. 243
		9.6.4.2	Effect of initial concentration of Ca in soil	
			solution	. 245
		9.6.4.3	Effect of volumetric water content	. 245
		9.6.4.4	Effect of plant root density	. 248
		9.6.4.5	Effect of acid secretion	. 250
		9.6.4.6	Effect of PR particle size	. 250
		9.6.4.7	Effect of application rate	. 254
9.7	GENE	RAL DISCUS	SION	. 254
9.8	CONC	CLUSIONS .		. 257

SUMMARY

10.1	REVIEW OF LITERATURE
10.2	DEVELOPMENT OF METHODS FOR MEASURING RESIDUAL PHOSPHATE ROCK IN SOIL
10.3	DISSOLUTION OF PHOSPHATE ROCK IN SOIL
10.4	AVAILABILITY OF P DISSOLVED FROM P FERTILIZERS 260
10.5	FIELD EVALUATION OF PHOSPHATE ROCK IN INDONESIA 261
10.6	MODELLING PHOSPHATE ROCK DISSOLUTION
10.7	SUGGESTIONS FOR FUTURE WORK
REFE	RENCES
APPE	NDICES

LIST OF TABLES

Table 2.1	Substitutions in the apatite structure of fluorapatite (McClellan and Gremilion, 1980)
Table 2.2	Unit-cell a dimension and empirical formulas of apatites in selected PRs (Hammond et al., 1986) 10
Table 2.3	Reactivity of PRs based on their solubility in 2% formic acid (Quin et al., 1987) 13
Table 2.4	Regression equations relating P solubility of 36 PRs in neutral ammonium citrate (NAC), 2% citric acid and 2% formic acid based on ASI values (adapted from McClellan and Gremillion, 1980) 13
Table 3.1	Some properties of the soil used in Experiment 1 40
Table 3.2	Some chemical and physical characteristics of North Carolina phosphate rock (NCPR)
Table 3.3	Some original chemical properties of the soils used in Experiment 2
Table 3.4	The range of adjusted pH values and exchangeable Ca contents 44
Table 3.5	PR-P recovered from soil by sequential extraction with and without pre- extraction following an immediate addition of 400 mg P kg ⁻¹ soil of NCPR
Table 3.6	PR-Ca recovered from soil by sequential extraction with and without pre- extraction following an immediate addition of 1068 mg Ca kg ⁻¹ soil of NCPR
Table 3.7	Values of pH of NaCl and NaCl/TEA extracts of soil and soil+PR mixtures
Table 3.8	Regression equations describing the effect of soil pH on dissolution of NCPR in 30 and 80 day incubated soils
Table 4.1	Selected properties of the soils used in the study
Table 4.2	Recovery of added NCPR-P (500 mg P kg ⁻¹ soil) from soils following 0.5 M NaCl/TEA, 1 M NaOH and 1 M HCl extractions
Table 4.3	Recovery of added NCPR-P (500 mg P kg ⁻¹ soil) from Sembawa and Prabumulih soils by sequential extraction including either 1 M HCl extraction or tri-acid digestion

*

Table 4.4	Recovery of added NCPR-P (500 mg P kg ⁻¹ soil) varying in particle diameter from Sembawa soil following 0.5 M NaCl/TEA, 1 M NaCl and 1 M HCl extractions
Table 4.5	Recovery of added NCPR-P and MCP-P (500 mg P kg ⁻¹ soil) from Sembawa soil following sequential extraction with or without 1 M NaOH extraction
Table 4.6	Recovery of added NCPR-P and MCP-P (500 mg P kg ⁻¹ soil) from Indonesian soils by single 1 M HCl extraction
Table 4.7	Recovery of added NCPR-P and MCP-P (500 mg P kg ⁻¹ soil) from Sembawa soil by acid extraction following 0.5 M NaCl/TEA and 0.5 M NaOH extractions
Table 5.1	Selected properties of PRs used in the study
Table 5.2	Summary of equations used in Kirk and Nye model to calculate PR dissolution
Table 5.3	pH of soil solution of the 60-day incubated soils fertilized with PR (500 mg P kg ⁻¹ soil)
Table 5.4	Coefficients of the Mitscherlich regression equation describing the dissolution of NCPR and MPR applied at different levels 96
Table 5.5	Correlation coefficients (r) for the relationships between maximum PR dissolution (a in Equation 5.1) and some soil properties 100
Table 5.6	The least square fitted K values for the NCPR- and MPR-incubated soils over 90 days of incubation period
Table 5.7	K values (μ g P cm ⁻² day ⁻¹) for NCPR and MPR predicted during the first (K ₁), second (K ₂) and fourth (K ₄) 10 day intervals
Table 5.8	Correlation coefficients (r) for the relationships between soil properties and PR dissolution rate constant (K) predicted in the first (K_1) and fourth (K_4) 10 day intervals
Table 5.9	Soil pH measured in $CaCl_2$ solution of differing ionic strength (μ)
Table 5.10	Values of input parameters used in Kirk and Nye simulation 113
Table 6.1	Inorganic P (Pi) concentrations of soil solution of 60 day-incubated soils fertilized with 500 mg P kg ⁻¹ soil of North Carolina (NCPR) and Moroccan (MPR) phosphate rocks $\dots 148$

Table 6.2	Relationship between amounts of available P extracted by various soil tests from 90 day-incubated soils fertilized with NCPR and MPR (500 mg P kg ⁻¹ soil)
Table 7.1	Chemical composition and moisture content of white clover 162
Table 7.2	Some properties of the ³² P-labelled synthetic francolite used in the study
Table 7.3	Effect of plant residue and francolite application on the dissolution of francolite in Dannevirke and Prabumulih soils after 40 days of incubation
Table 7.4	The activity of ³² P and percentage of Olsen-Pi derived from francolite relative to total francolite-P added (%Pidff) in (a) Dannevirke and (b) Prabumulih soils
Table 7.5	Amounts of Olsen-Pi derived from francolite (Pidff) and soil or soil plus plant residue (Pidfs), and percentage of Olsen-Pi derived from francolite relative to total Olsen-Pi (%PifNa) in (a) Dannevirke and (b) Prabumulih soils
Table 8.1	Description of field trial sites
Table 8.2	Selected properties of the soil (0 - 75 mm) used in the study192
Table 8.3	Several characteristics of P fertilizers used in the field trials194
Table 8.4	Forms and application times of P fertilizer in Section A (main plots) and Section B (response curve plots) at Sembawa and Serong field sites
Table 8.5	Mean dry matter yield of maize at Sembawa and Serong as influenced by form and application time of P fertilizer (80 kg P ha ⁻¹) 205
Table 8.6	Effect of form and application time of P fertilizer (80 kg P ha ⁻¹) on P uptake by maize at Sembawa and Serong
Table 8.7	Relative agronomic effectiveness (RAE) of TSP and NCPR residues, applied at different rates at T_1 , for maize at Sembawa and Serong
Table 8.8	Dissolution of P fertilizers (applied at 80 kg P ha ⁻¹) in Sembawa soil measured at the end of the Calopogonium growth
Table 8.9	Dissolution of P fertilizers (applied at 80 kg P ha ⁻¹) in Sembawa and Serong soils measured at the end of maize growth

Table 8.10	Amounts of extractable soil P (0 - 50 mm) in (a) Sembawa and (b) Serong samples taken prior to sowing maize
Table Q 1	Comparison between measured and predicted PR dissolution (applied at

LIST OF FIGURES

Figure 2.1	World distribution of identified phosphate resources, expressed in terms of commercial product (Slansky, 1986)
Figure 2.2	Solubility of phosphate rock materials in 2% formic acid, 2% citric acid and neutral ammonium citrate (Syers <i>et al.</i> , 1986)
Figure 2.3	Schematic diagram showing the rate-limiting factors (boxes in stippled area) for phosphate rock dissolution in soils and the variables (boxes outside stippled area) which determine the magnitude and degree of interaction of the rate-limiting factors (Bolan <i>et al.</i> , 1990) 17
Figure 2.4	Relative agronomic effectiveness of various phosphate rocks for pastures in New Zealand soils under glasshouse (\triangleright) and field (\triangleright) conditions (compiled from Bolan <i>et al.</i> , 1990)
Figure 3.1	Effect of pH and incubation time on amounts of Δ HCl-extractable P in soils fertilized with NCPR
Figure 3.2	Effect of pH and incubation time on the extent of MCP (-) and NCPR () dissolution in 30 (0) and 80 (+) day-incubated soils 55
Figure 3.3	Phosphate adsorption isotherms of selected soils amended to two different pH values
Figure 5.1	Dissolution of (a) NCPR and (b) MPR (applied at 500 mg P kg ⁻¹ soil) during 90 days of incubation
Figure 5.2	Dissolution of NCPR () and MPR (), applied at different rates, in soils after 90 days of incubation
Figure 5.3	Predicted NCPR dissolution (applied at 500 mg P kg ⁻¹ soil) in Tokomaru, Dannevirke, Sembawa and Lubuk Linggau soils using Mitscherlich equation
Figure 5.4	Measured () and predicted (-) NCPR-P remaining in (a) Tokomaru and (b) Dannevirke soils using Cubic model. NCPR was applied at rates equivalent to 250, 500 and 1000 mg P kg ⁻¹ soil $\dots \dots \dots$
Figure 5.5	Changes in ionic strength (μ) of leachate over time measured after leaching the soil columns
Figure 5.6	Measured and predicted NCPR dissolution in soils using Kirk and Nye model. NCPR was applied at rates equivalent to (\circ) 250, (*) 500 and (+) 1000 mg P kg ⁻¹ soil

1 11

Figure 5.7	The variation in measured dissolution of NCPR (0) and MPR (*) explained (R^2) by the dissolution predicted using the Kirk and Nye model in (a) Tokomaru and (b) Sembawa soils. The PRs were applied at rates equivalent to 250 to 1000 mg P kg ⁻¹ . Dotted lines indicate theoretical 1:1 relationships
Figure 5.8	Sensitivity analyses showing the effect of changing soil input parameters on the predicted NCPR dissolution [applied at a rate equivalent to 250 mg P kg ⁻¹ soil (0.2105 kg P m ⁻¹)] in Dannevirke soil. Bracketed values are unadjusted input parameters
Figure 6.1	Effect of pH on dry matter (DM) yield of ryegrass in soils fertilized with different P sources
Figure 6.2	Effect of pH on the amount of P taken up by plants from soils fertilized with different P sources
Figure 6.3	Effect of pH on the amount of P derived from P fertilizer taken up by plants (pdf) in soils fertilized with different P sources
Figure 6.4	Effect of pH on the amount of Olsen-extractable P (Olsen-P) after 30 and 80 days of incubation in soils fertilized with different P sources. Vertical bars are LSD (P<0.05) values
Figure 6.5	Effect of pH on the increase in of Olsen-extractable P caused by NCPR (Δ Olsen-P) after 30 and 80 days of incubation
Figure 6.6	Relationship between amounts of P derived from NCPR taken up by plants (pdf-PR) and amounts of P dissolved from NCPR after (a) 30 and (b) 80 days of incubation
Figure 6.7	Relationship between amounts of Olsen-extractable P (Olsen-P) in all 30- day incubated soils fertilized with (a) MCP or (b) NCPR and amounts of P taken up by plants
Figure 6.8	Relationship between amounts of Olsen-extractable P (Olsen-P) in each 30 day-incubated soil fertilized with (a) MCP or (b) NCPR and amounts of P taken up by plants
Figure 6.9	Relationship between increases in Olsen-extractable P (Δ Olsen-P) caused by (a) MCP or (b) NCPR fertilization in 30 day-incubated soil and amounts of P taken up by plants derived from MCP (pdf-MCP) or NCPR (pdf-NCPR)
Figure 6.10	Effect of incubation time on changes in Olsen-extractable P (Olse2n-P) in (a) Sembawa and (b) Prabumulih soils fertilized with NCPR and MPR (500 mg P kg ⁻¹ soil) 150

Figure 6.11	Increases in Olsen-extractable P (Δ Olsen-P) in 90 day-incubated soils fertilized with NCPR and MPR at different application rates (250-1000 mg P kg ⁻¹ soil)
Figure 6.12	Amounts of Bray 1-extractable P (Bray 1-P) after 30 and 90 days of incubation in soils fertilized with NCPR and MPR (500 mg P kg ⁻¹ soil)
Figure 6.13	Amounts of resin-extractable P (resin-P) after 30 and 90 days of incubation in soils fertilized with NCPR and MPR (500 mg P kg ⁻¹ soil) 154
Figure 6.14	Relationship between amounts of Olsen-extractable P (Olsen-P) and amounts of P dissolved from NCPR and MPR (applied at 500 mg P kg ⁻¹ soil) after 30 and 90 days of incubation
Figure 6.15	Relationship between amounts of Bray 1-extractable P (Bray 1-P) and amounts of P dissolved from NCPR and MPR (applied at 500 mg P kg ⁻¹ soil) after 30 and 90 days of incubation
Figure 6.16	Relationship between amounts of resin-extractable P (Resin-P) and amounts of P dissolved from NCPR and MPR (applied at 500 mg P kg ⁻¹ soil) after 30 and 90 days of incubation
Figure 7.1	X-ray diffractograms of powdered materials of (a) North Carolina phosphate rock (NCPR) and (b) synthetic francolite (N.S. Bolan, unpublished data)
Figure 7.2	Relationship between the extent of francolite dissolution (applied at 250, 500 and 1000 mg P kg ⁻¹ soil) in Dannevirke and Prabumulih soils estimated by $\Delta H_2 SO_4$ - ³¹ P and $\Delta H_2 SO_4$ - ³² P methods
Figure 7.3	Effect of incubation time on the extent of francolite dissolution (applied at 250, 500 and 1000 mg P kg ⁻¹ soil) in (a) Dannevirke and (b) Prabumulih soils amended with (0) 0, (*) 2500 and (+) 5000 kg dry matter ha ⁻¹ of plant residue. Vertical bars are LSD (P<0.05) values 170
Figure 7.4	Effect of incubation time on changes in amounts of NaHCO ₃ -extractable Pi (Olsen-Pi) in (a) Prabumulih and (b) Dannevirke soils fertilized with 250, 500 and 1000 mg P kg ⁻¹ of francolite and amended with (0) 0, (*) 2500 and (+) 5000 kg dry matter ha ⁻¹ of plant residue. Vertical bars are LSD (P<0.05) values
Figure 7.5	Effect of incubation time on increases in amounts of NaHCO ₃ -extractable Pi (Δ Olsen-Pi) in (a) Dannevirke and (b) Prabumulih soils fertilized with 250, 500 and 1000 mg P kg ⁻¹ of francolite and amended with (0) 0, (*) 2500 and (+) 5000 kg dry matter ha ⁻¹ of plant residue. Vertical bars are LSD (P<0.05) values

xix

Figure 7.6	Relationship between amounts of P dissolved from francolite and percentage of dissolved P extracted by Olsen reagent from (a) Dannevirke and (b) Prabumulih soils amended with different rates of plant residue
Figure 7.7	Effect of incubation time on pH_{H20} of unfertilized Dannevirke soil amended with different rates of plant residue
Figure 8.1	Map of Sumatra Island showing the location of field trials 191
Figure 8.2	Rainfall distribution for Sembawa during May 1989 - February 199201
Figure 8.3	Residual effects of TSP (0) and NCPR (*) applied at T_1 (18 months prior to sowing maize) on dry matter yield of maize in unlimed plots at (a) Sembawa and (b) Serong
Figure 8.4.	Residual effects of TSP (0) and NCPR (*) applied at T_1 (18 months prior to sowing maize) on P uptake by maize in unlimed plots at (a) Sembawa and (b) Serong
Figure 8.5	Relationship between P uptake and dry matter yield of maize in unlimed plots at (a) Sembawa or (b) Serong fertilized with TSP (-) or PRs ()
Figure 8.6	Relationship between P uptake and dry matter yield of maize in (a) unlimed or (b) limed plots at Sembawa
Figure 8.7	Relative agronomic effectiveness (RAE) of fertilizers (80 kg P ha ⁻¹) at (a) Sembawa (unlimed) and (b) Serong, relative to fresh TSP. T_1 , T_2 , T_3 and T_4 indicate P application times
Figure 8.8	Effect of rate of application of TSP (0) and NCPR (*) at T_1 (18 months prior to sowing maize) on amounts of soil P extracted by different soil tests from samples taken prior to sowing maize
Figure 8.9	Relationship between amounts of soil P extracted by different soil tests from samples taken prior to sowing maize and dry matter yield of maize at (a) Sembawa and (b) Serong plots fertilized with TSP (O) or PRs(*) Solid (-) and dotted () lines indicate the fitted relationship for PRs and TSP fertilized plots, respectively
Figure 9.1	Predicted soil volumetric water content (θ) in Sembawa topsoil (0 - 100 mm) during the experimental period (May 1989 to November 1990). T ₁ , T ₂ , and T ₃ indicate PR application times. T ₄ indicates the end of experimental PR dissolution for three separate applications (80 kg P ha ⁻¹) during 545 days
Figure 9.2	Predicted dissolution of NCPR (-) and MPR () during the three time periods

хx

Figure 9.3	Predicted plant uptake of P (kg P ha ⁻¹) during the three time periods
Figure 9.4	Effect of a change in initial (at T_2) soil pH on predicted dissolution of NCPR (T_2 - T_4). Initial unadjusted pH is 4.60
Figure 9.5	Effect of a change in initial (at T_2) soil solution Ca concentration on predicted dissolution of NCPR (T_2 - T_4). Initial unadjusted Ca concentration is 0.002 mol dm ⁻³
Figure 9.6	Predicted dissolution of NCPR in the first 180 days of the second and third time periods
Figure 9.7	Comparison between the predicted dissolution of NCPR during the three time periods using the "actual" (-) and "average" () values of θ . T ₁ , T ₂ , and T ₃ indicate PR application times. T ₄ indicates the end of experimental PR dissolution for 3 separate applications 249
Figure 9.8	Effect of a change in root density (Lv) on predicted NCPR dissolution (-) and proportion of PR-P taken up by plant () assuming an initial value of $Lv=52 \text{ dm dm}^{-3} \dots 251$
Figure 9.9	Effect of a change in amount of acid excreted by roots (F) on predicted dissolution of NCPR assuming an initial value of $F=3 \times 10^{-12}$ mol dm ⁻² s ⁻¹
Figure 9.10	Effect of a change in particle size of PR (A_i) on predicted dissolution of NCPR. The initial average A_i is 0.00092 dm
Figure 9.11	Effect of a change application rate (w) on predicted dissolution of NCPR. The measured w was 0.08 kg P m ³ for the field experiment 255

xxi

MASSE'

Private Bag 11222 Palmerston North New Zealand Telephone 0-6-350 Facsimile 0-6-350

FACULTY OF AGRICULTURAL AND HORTICULTURAI SCIENCES

DEPARTMENT OF SOIL SCIENCE

TO WHOM IT MAY CONCERN

This is to state the research carried out for the Ph.D. thesis entitled "Dissolution and Plant-availability of Phosphate Rocks in Selected New Zealand and Indonesian Soils" was done by D Tambunan in the Soil Science Department, Massey University, Palmerston North, New Zealand. The thesis material has not been used for any other degree.

Dr MJ Hedley

(Chief Supervisor)

18t November 1992 Date