
Copyright is owned by the Author of the thesis. Permission is given for a
copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Generating Mock Skeletons for
Lightweight Web Service Testing

A thesis presented in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

at Massey University, Manawatū,

New Zealand.

Thilini Bhagya, Randunu Pathirannehelage

2020

Abstract

Modern application development allows applications to be composed using light-
weight HTTP services. Testing such an application requires the availability of
services that the application makes requests to. However, continued access to de-
pendent services during testing may be restrained, making adequate testing a
significant and non-trivial engineering challenge. The concept of Service Virtu-
alisation is gaining popularity for testing such applications in isolation. It is a
practise to simulate the behaviour of dependent services by synthesising responses
using semantic models inferred from recorded traffic. Replacing services with their
respective mocks is, therefore, useful to address their absence and move on applic-
ation testing.

In reality, however, it is unlikely that fully automated service virtualisation
solutions can produce highly accurate proxies. Therefore, we recommend using
service virtualisation to infer some attributes of HTTP service responses. We fur-
ther acknowledge that engineers often want to fine-tune this. This requires al-
gorithms to produce readily interpretable and customisable results. We assume
that if service virtualisation is based on simple logical rules, engineers would have
the potential to understand and customise rules. In this regard, Symbolic Machine
Learning approaches can be investigated because of the high provenance of their
results.

Accordingly, this thesis examines the appropriateness of symbolic machine
learning algorithms to automatically synthesise HTTP services’ mock skeletons
from network traffic recordings. We consider four commonly used symbolic tech-
niques: the C4.5 decision tree algorithm, the RIPPER and PART rule learners, and
the OCEL description logic learning algorithm. The experiments are performed
employing network traffic datasets extracted from a few different successful, large-
scale HTTP services. The experimental design further focuses on the generation
of reproducible results.

The chosen algorithms demonstrate the suitability of training highly accurate
and human-readable semantic models for predicting the key aspects of HTTP
service responses, such as the status and response headers. Having human-readable
logics would make interpretation of the response properties simpler. These mock
skeletons can then be easily customised to create mocks that can generate service
responses suitable for testing.

i

Acknowledgements

This thesis would not have been possible without the inspiration and support of
a number of wonderful individuals. My thanks and appreciation to all of them for
being part of this journey and making this a success. Especially, I would like to
express my deepest gratitude to my supervisors, Prof. Hans Guesgen and A/Prof.
Jens Dietrich. Without their constant enthusiasm, encouragement, support, and
optimism, this thesis would not have been achievable. Their immense knowledge
and plentiful experience have always inspired me in my academic research and
in my daily life, helping me to grow both professionally and personally. I would
also like to thank the staff and my colleagues in the Computer Science cluster,
Massey University, Palmerston North for their valuable discussions and feedback
on my research, and, of course, their kind cooperation and friendship. A special
appreciation must also go to my family. They have given unwavering support and
encouragement to complete my PhD successfully.

ii

Contents

Abstract i

Acknowledgements ii

Table of Contents iii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Overview . 1
1.2 Motivating Example . 3
1.3 Aims and Objectives . 4
1.4 Research Method . 6
1.5 Thesis Overview . 7

2 Preliminaries 9
2.1 Services . 9
2.2 Application Testing . 15
2.3 Symbolic Machine Learning Techniques 19
2.4 HTTP Protocol . 28
2.5 Summary . 35

3 Systematic Literature Review 36
3.1 Introduction . 36
3.2 Methodology . 37
3.3 Results and Discussion . 41
3.4 Summary . 49

4 Data Acquisition 50
4.1 Introduction . 50
4.2 GHTraffic Dataset . 55
4.3 Twitter, Google Tasks, and Slack Datasets 66
4.4 Summary . 70

5 Experimental Methodology 71
5.1 Introduction . 71
5.2 Data Preprocessing . 72
5.3 Data Transformation . 73

iii

5.4 Model Construction . 81
5.5 Model Evaluation . 83
5.6 Reproducing Experimental Results 86
5.7 Summary . 88

6 Experimental Results 89
6.1 Introduction . 89
6.2 Results and Discussion . 91
6.3 Threats to Validity . 137
6.4 Summary . 138

7 Conclusions and Future Work 139
7.1 Summary of Contributions . 139
7.2 Future Work . 141

A HTTP Datasets 143
A.1 JSON Schemas for GHTraffic Dataset 143
A.2 Sample Records on GHTraffic Dataset 159
A.3 Sample Records on Twitter Dataset 164
A.4 Sample Records on Google Tasks Dataset 169
A.5 Sample Records on Slack Dataset 171

B Training Data 174
B.1 Attributes Summary . 174
B.2 Sample ARFF Files . 181
B.3 Sub-Datasets of GHTraffic, Twitter, and Slack 187
B.4 Sample OWL Knowledge Bases . 188

C Results 194
C.1 Sample C4.5 Trees . 194
C.2 Sample RIPPER Rulesets . 217
C.3 Sample PART Rulesets . 240
C.4 Sample OCEL Class Expressions 261
C.5 2-Fold Cross Validation of Attribute-Based Learning Algorithms . . 287
C.6 T-Test Results . 293

D List of Publications 295

Bibliography 296

iv

List of Figures

1.1 A Sample Stubbing Method Call 2

2.1 The Interaction Between Service Consumers and Service Providers . 13
2.2 The Virtual Service Creation Process 18
2.3 A Sample Decision Tree for GOLF Dataset 23
2.4 A Sample Decision Ruleset for GOLF dataset 24
2.5 A Sample Ontology for FORTE Dataset 26
2.6 The HTTP Message Structure . 29
2.7 A Sample JSON Representation of Employee Data 32
2.8 A Sample XML Representation of Employee Data 32
2.9 An Example Record of HTTP Interactions 33

3.1 The Systematic Literature Review Process 37
3.2 The Search String . 39

4.1 GitHub’s Data Schema . 56
4.2 The Processing Pipeline . 58
4.3 GHTraffic Schema . 58
4.4 Extractor Algorithm to Process Records 59
4.5 Algorithm to Generate Synthetic Data 61
4.6 The Process of Generating Network Traffic 66

5.1 The Machine Learning Framework 72
5.2 The Feature Tree . 73
5.3 Attribute and Value Derivation From a Sample URI 74
5.4 The Knowledge Base Generation Process 77
5.5 A Sample Inference on Object Properties 79
5.6 Effect of Maximum Execution Time on Predictive Accuracy 82
5.7 K-Fold Cross Validation . 84

6.1 The Sample C4.5 Tree for ResponseStatusCode in GHTraffic . . . 96
6.2 The Sample RIPPER Ruleset for ResponseStatusCode in GHTraffic 97
6.3 The Sample PART Ruleset for ResponseStatusCode in GHTraffic . 98
6.4 The Sample C4.5 Tree for ResponseHeader X-OAuth-Scopes in

GHTraffic . 99
6.5 The Sample RIPPER Ruleset for ResponseHeader X-OAuth-Scopes

in GHTraffic . 99
6.6 The Sample PART Ruleset for ResponseHeader X-OAuth-Scopes

in GHTraffic . 99
6.7 The Sample C4.5 Tree for ResponseStatusCode in Twitter 104

v

6.8 The Sample RIPPER Ruleset for ResponseStatusCode in Twitter . 104
6.9 The Sample PART Ruleset for ResponseStatusCode in Twitter . . 104
6.10 The Sample C4.5 Tree for ResponseHeader x-rate-limit-limit

in Twitter . 105
6.11 The Sample RIPPER Ruleset for ResponseHeader x-rate-limit-limit

in Twitter . 105
6.12 The Sample PART Ruleset for ResponseHeader x-rate-limit-limit

in Twitter . 105
6.13 The Sample C4.5 Tree for ResponseStatusCode in Google Tasks . . 108
6.14 The Sample RIPPER Ruleset for ResponseStatusCode in Google

Tasks . 108
6.15 The Sample PART Ruleset for ResponseStatusCode in Google Tasks108
6.16 The Sample C4.5 Tree for ResponseHeader Content-Type in Google

Tasks . 108
6.17 The Sample RIPPER Ruleset for ResponseHeader Content-Type

in Google Tasks . 108
6.18 The Sample PART Ruleset for ResponseHeader Content-Type in

Google Tasks . 108
6.19 The Sample C4.5 Tree for ResponseBody kind in Google Tasks . . 110
6.20 The Sample RIPPER Ruleset for ResponseBody kind in Google

Tasks . 110
6.21 The Sample PART Ruleset for ResponseBody kind in Google Tasks 111
6.22 The Sample C4.5 Tree for ResponseBody ok in Slack 113
6.23 The Sample RIPPER Ruleset for ResponseBody ok in Slack 114
6.24 The Sample PART Ruleset for ResponseBody ok in Slack 114
6.25 The Sample C4.5 Tree for ResponseBody channel in Slack 114
6.26 The Sample RIPPER Ruleset for ResponseBody channel in Slack . 115
6.27 The Sample PART Ruleset for ResponseBody channel in Slack . . 115
6.28 The Best OCEL Descriptions for Some ResponseStatusCode Val-

ues in GHTraffic . 116
6.29 The Best OCEL Descriptions for ResponseHeader X-OAuth-Scopes

Values in GHTraffic . 121
6.30 The Best OCEL Descriptions for ResponseStatusCode Values in

Twitter . 127
6.31 The Best OCEL Descriptions for ResponseHeader x-rate-limit-limit

Values in Twitter . 127
6.32 The Best OCEL Descriptions for Some ResponseStatusCode Val-

ues in Google Tasks . 128
6.33 The Best OCEL Descriptions for ResponseHeader Content-Type

Values in Google Tasks . 132
6.34 The Best OCEL Descriptions for ResponseBody kind Values in

Google Tasks . 133
6.35 The Best OCEL Descriptions for ResponseBody ok Values in Slack 136
6.36 The Best OCEL Descriptions for ResponseBody ok Values in Slack 136

vi

List of Tables

2.1 Common HTTP Methods . 30
2.2 Common HTTP Status Codes . 30

3.1 Search Terms . 38
3.2 Data Sources . 40
3.3 Service Virtualisation Tools Comparison 44

4.1 Overview of HTTP Benchmarks and Datasets 54
4.2 GHTraffic Transactions Per HTTP Method 62
4.3 GHTraffic Transactions Per HTTP Response Code 63
4.4 GHTraffic Transactions Per Record Type 63
4.5 GHTraffic 2.0.0 Transactions Per HTTP Method 64
4.6 GHTraffic 2.0.0 Transactions Per HTTP Response Code 64
4.7 GHTraffic 2.0.0 Transactions Per Record Type 65
4.8 Transactions Per HTTP Method on Twitter, Google Tasks, and

Slack Datasets . 68
4.9 Transactions Per HTTP Response Code on Twitter, Google Tasks,

and Slack Datasets . 68

5.1 Overview of Input Data for Attribute-Based Learning 76
5.2 Overview of Input Data for Description Logic Learning 81

6.1 Average Predictive Accuracy Achieved by Algorithms on Datasets . 90
6.2 Average Precision Achieved by Algorithms on Datasets 90
6.3 Average Recall Achieved by Algorithms on Datasets 90
6.4 Average Model Size Achieved by Algorithms on Datasets 91
6.5 Results of Attribute-Based Learning Algorithms per Response Fea-

ture in GHTraffic . 93
6.6 Results of Attribute-Based Learning Algorithms per Response Fea-

ture in Twitter . 101
6.7 Results of Attribute-Based Learning Algorithms per Response Fea-

ture in Google Tasks . 109
6.8 Results of Attribute-Based Learning Algorithms per Response Fea-

ture in Slack . 112
6.9 Results of Description Logic Learning Algorithm per Response Fea-

ture Value in GHTraffic . 117
6.10 Results of Description Logic Learning Algorithm per Response Fea-

ture Value in Twitter . 122
6.11 Results of Description Logic Learning Algorithm per Response Fea-

ture Value in Google Tasks . 129

vii

6.12 Results of Description Logic Learning Algorithm per Response Fea-
ture Value in Slack . 134

viii

Chapter 1

Introduction

This chapter presents the background and main contributions of this research. A
brief introduction to the research is given in Section 1.1 and Section 1.2 discusses
a motivating example. Section 1.3 includes an explanation of the aims and ob-
jectives of this research, followed by Section 1.4 which briefly details the research
methodology adopted. Finally, Section 1.5 outlines the remaining chapters of the
thesis.

1.1 Overview

Service-Oriented Computing (SOC) is a popular approach to facilitate the develop-
ment of large, modular applications using diverse technologies. There is a range of
technologies that have been used in SOC, starting with early attempts to establish
standards around the Web Services Description Language (WSDL) [1] and Simple
Object Access Protocol (SOAP) [2] protocols. In recent years, more lightweight
HTTP-based services (i.e., RESTful services [3]) have become the mainstream.

When using HTTP services, different parts of the application cooperate by
sending and responding to HTTP requests, typically in order to access and ma-
nipulate resources. The ubiquitousness of HTTP means that clients and servers
can be easily implemented in a wide range of languages and deployed on many plat-
forms. While this is useful in itself to architect and design large applications, this
approach is now increasingly used to facilitate the development of product ecosys-
tems around successful services. Examples include the Application Programming
Interfaces (APIs) that can be used to access the services of Google1, Twitter2,
Amazon3, and Flickr4.

This has created new challenges for both the engineering and the research
community. Of particular interest is how to assure the accurate functioning of
service-oriented applications before live deployment. Adequately testing with de-
pendent services is not always possible due to limitations in the observability of
service code, lack of control, and the costly access [4]. Therefore, a number of ap-

1. https://developers.google.com/apis-explorer [accessed 02 Aug. 2020]
2. https://developer.twitter.com/en.html [accessed 02 Aug. 2020]
3. https://developer.amazon.com/documentation [accessed 02 Aug. 2020]
4. https://flickr.com/services/api [accessed 02 Aug. 2020]

1

https://developers.google.com/apis-explorer
https://developer.twitter.com/en.html
https://developer.amazon.com/documentation
https://flickr.com/services/api

LinkedList mockedList = mock(LinkedList.class);

when(mockedList.get (0)).thenReturn("first");

Figure 1.1: A Sample Stubbing Method Call

plicable approaches have been investigated over the years to test such applications
independent of the services which they depend on.

A most common practise is mocking, i.e., to manually define behavioural re-
sponses from scratch based on underlying service syntax and semantics (i.e., mock
objects [5]). A challenge of mocking is that it requires a detailed understanding of
the service semantics. Service Virtualisation (SV) [6,7] tries to address this prob-
lem by automatically constructing virtual models of services suitable for testing
by inferring service semantics from network traffic recordings. For example, SV
will try to emulate the behaviour of a dependent service by generating anticip-
ated responses using the inferred semantic model. Yet, existing approaches to SV
are error-prone. Some [8–11] require detailed knowledge of the service structure
and system protocol for the response generation to be effective. Others [12–20]
specify interaction behaviour rather conforming to the contemporary context of
services. Besides, comprehensibility (i.e., results present in such a way that it may
be inspected and interpreted by humans) is one of the major features missing.

SV often draws on Artificial Intelligence (AI) techniques as inference mechan-
isms. Amongst them, Symbolic Machine Learning (SML) algorithms have gained
popularity due to the provenance of their results, which means that humans can
interpret the outcome of the results with relative ease as the system produces
human-readable explanations (through representations like decision trees and lo-
gical rules). This is in stark contrast to many sub-symbolic AI techniques (e.g.,
neural networks and deep learning algorithms) that lack provenance, and are black-
box by nature. In the context of symbolic learning, attribute-based learning (i.e.,
decision tree learning and rule learning) and inductive logic programming/de-
scription logic learning are the typical approaches [21]. While these techniques
are well-established, they have gained attention relatively recently in Explainable-
AI [22].

The approach proposed in this thesis can be seen as a hybrid method: we pro-
pose to use SV to infer some attributes of HTTP service responses, but acknow-
ledge that engineers will often want to fine-tune this to create mocked services.
This requires the SV algorithm to generate results that can be understood and
customised by engineers. Inherently interpretable AI systems [23] usually provide
clear, human-readable results in the form of rules. Therefore, we expect that if the
SV is based upon inference rules, the engineers used to writing mock tests will find
it easy to customise those rules. To emphasise this point, consider the snippet of
Java code in Figure 1.1 written using the popular Mockito framework [24]. In the
second line, the functionality of a linked list is stubbed for the purpose of testing.
Interestingly, no actual LinkedList is required at this stage. The process of stub-
bing basically uses a simple logical rule, expressed using a domain-specific language
provided by the mock framework. By using explainable SML techniques, we aim
at a solution that provides a sweet spot between highly accurate automation and
customisability. This takes into account that completely automated techniques

2

are unlikely to provide sufficient accuracy to mock complex services. Consider for
instance a service providing financial transactions: while it is certainly feasible to
infer rules modelling the response codes of accessing account information, based
on authentication headers, URIs, resource ids and state inferred from transaction
history, it is much more complex to model unexpected server behaviour (such as
a server returning a response with status code 500 Internal Server Error) and
in general, the flakiness (non-deterministic behaviour) associated with distributed
and concurrent systems, or the content of data returned by the server (such as
inferring the structure of PDF documents synthesised by the server, used for ac-
count statements). Similarly, flakiness issues in testing with services (tests provide
varying outcomes even though there are no changes in the source code or execu-
tion environment) often impede the implementation of fully automated mocking
techniques. Test flakiness has become a significant and acknowledged issue in mod-
ern service-oriented application development, i.e., the recent study [25] shows that
a non-negligible percentage of flaky tests has been observed in Microsoft (4.6%
of individual tests were identified as flaky when monitoring five projects over a
one-month period).

Accordingly, this research is initiated in order to understand the suitability of
symbolic learning techniques in predicting some of the features of HTTP service
responses directly from the recorded interaction traces. Considering that a single
HTTP response has multiple features that are optimal to predict, from the machine
learning perspective, this is a multi-class or multi-target classification problem.
And we name the resulting set of output predictions mock skeleton. These model
predictions with explanatory power will allow engineers to precisely comprehend
the semantics of the response properties, making it easier to edit or refine them
to create mocks that can generate responses for given requests.

1.2 Motivating Example

Assume, for example, a simplified scenario of developing an e-commerce platform,
which is our Application-Under-Test (AUT). The application is primarily to be
integrated with certain external HTTP/REST services in its production environ-
ment to realise certain functional requirements (such as with a payment service
offered by a third-party vendor in order to incorporate online payment capabil-
ity). The behaviour of the application depends on the responses it receives from
these dependent services, and engineers have to test how the application behaves
based on the responses prior to live deployment (they want to know what happens
if particular responses are returned, including various HTTP statuses as well as
response bodies and headers).

As the application depends on services not operated in-house, it cannot be
fully tested without accessing external service providers. Especially, if the applica-
tion development is iterative, each development version must be repeatedly tested
against the same service. However, these services are not readily available and
controllable for testing purposes, e.g., certain services have restrictions and/or
costs associated with their invocations. Frequent testing at a high rate of usage is
thus quite challenging. If engineers proceed without completing the required tests,
there would be errors that are far more difficult and expensive to fix later on.

3

Mocking is a promising approach to bypassing the absence of dependent ser-
vices in testing, i.e., aims to simulate the behaviour of real services on which the
application depends. The most general practise is to manually define the responses
that a real service would produce using the available knowledge of the underly-
ing interaction protocol and service behaviour. However, each such response is
only capable of fulfilling a certain development need at a certain point in time.
Engineers, therefore, need to write and rewrite a variety of interaction patterns
to perform tests throughout the entire development cycle. It takes a significant
amount of time and is often prone to errors. In particular, the lack of precise
knowledge of the service hinders the accuracy of the synthesised responses. SV
is another practise. It automatically produces responses using machine learning
models derived from traffic recordings (a collection of requests sent by the AUT to
the live service and the responses sent back from the service). Once a virtual ser-
vice model is built, testing can be carried out free of charge as often as desired over
multiple development cycles. But, with current SV frameworks, it is not feasible
to generate accurate approximations of the real responses of HTTP-based services
(especially as they simulate responses rather adhering to the service state). It is
also obvious that fully automated solutions cannot render highly precise mocks
in practical settings as there are response properties which cannot be predicted
using automated methods (such as the date and time at which the response was
originated). On top of that, the solutions lack transparency, which means that the
engineers using them cannot understand how the responses are formed and what
factors have been taken into account in the response generation and whether the
responses are rational. They are usually unable to decide if the mocked service is a
suitable representation of the actual service, which may potentially result in lower
acceptance and satisfaction. In addition to this, engineers often want to inspect
and adjust the responses generated, e.g., to return responses representing various
failure scenarios that might be difficult to reproduce using the real service, and
when service evolution occurs (if there are certain changes in the new version of
the service than the one created mocks with). Presenting responses to engineers
in human-readable format can facilitate comprehension of the semantics of the
service (this helps them to understand why the system has delivered particular
outcomes), thereby increasing trust and reliance on the system and making it
easier to modify them accordingly (providing clear-cut means for customisation).

A novel SV technique is, therefore, required that is capable of automatically
infer some attributes of HTTP service responses (i.e., mock skeletons) while main-
taining a high level of accuracy with human comprehension. SML approaches can
be explored in this regard due to the inherent interpretability of their results.

1.3 Aims and Objectives

The aim of this study is two-fold. The primary aim is to examine the appro-
priateness of SML techniques for automatically generating HTTP services’ mock
skeletons that are both accurate and customisable. The following research object-
ives would facilitate the achievement of the main study aim.

• The first objective is to investigate the potential of SML techniques to automat-
ically synthesise some of the attributes of HTTP service responses without ex-

4

plicit knowledge of the service. It focuses on examining whether the algorithms
can infer HTTP response properties directly from network traffic recordings.
We conduct experiments on algorithms targeting at learning different response
properties employing network traffic datasets extracted from a few different suc-
cessful, large-scale HTTP services (i.e., GitHub, Twitter, Google, and Slack).

• The second objective is to investigate the potential of SML techniques to auto-
matically synthesise some of the attributes of HTTP service responses in an
accurate manner. Typically, valid HTTP responses adhere to the protocol struc-
ture and the current state of the service. This objective, therefore, focuses on ex-
amining whether the algorithms are capable of automatically inferring protocol-
and state-compliant response properties. We conduct experiments on algorithms
targeting at learning response properties by extracting knowledge about the pro-
tocol structure and the service status from recorded interactions. We evaluate
the validity of the results produced using metrics such as predictive accuracy,
precision, and recall.

• The third objective is to investigate the potential of SML techniques to auto-
matically synthesise some of the attributes of HTTP service responses in a
format that is easy to customise. Generally, presenting logical rules in a human-
readable format will make it easier to comprehend and modify them. This ob-
jective, therefore, focuses on investigating whether the algorithms are capable
of automatically making human-readable logical inferences for response proper-
ties. During the experiments, we evaluate the comprehensibility of the results
produced with metrics such as model size.

In order to achieve the aforementioned research objectives, a set of SML algorithms
must be selected. We are particularly interested in employing a leading algorithm
(which is extensively used to support computing research) in each category of sym-
bolic learning techniques (i.e., decision tree learning, rule learning, and description
logic learning) to make the research findings unbiased. As well, considering that
the real-world HTTP traffic (request/response pairs) that has to be processed
typically contains both categorical and numerical data, the algorithms to be em-
ployed should be capable of handling both data types. These criteria result in the
selection of four algorithms from different approaches: the C4.5 [26] (decision tree
learning), the RIPPER [27] and PART [28] (rule learning), and the OCEL [29] (de-
scription logic learning). The C4.5 algorithm is a landmark algorithm in decision
tree learning that has been most widely used in practice to date, and both the
RIPPER and PART algorithms are considered as state-of-the-art in rule induc-
tion [30,31]. The OCEL is the prevailing scheme for description logic learning [32].
Apart from being recognised as the prominent approaches in use today for their
respective categories, these algorithms have proved their ability to work directly
with nominal and numeric attributes in concept learning.

The secondary aim of this study is to provide research results that are easier to
reproduce (i.e., to be able to obtain the same results of the study using the same
data and the same methods used). Recently, there has been a greater attention on
the reproducibility of results obtained from empirical studies [33, 34], with some
disciplines now considering reproducibility as an expectation to be published in

5

conferences and journals (including ACM SIGPLAN conferences). An integral as-
pect to facilitate reproducibility is the use of standard datasets, along with the
provision of executing scripts or artefact. Follows that, we perform experiments us-
ing carefully sourced and/or constructed datasets (all datasets are extracted from
well-defined processes, also holding characteristics that reflect the up-to-date use
of HTTP services in general). We develop a set of scripts to automate the execu-
tion of all the experiments and provide clear instructions about how to re-run all
the experiments and to collect all the experimental results. Both datasets and im-
plementations reported in this research are also made publicly available. Moreover,
we provide a pre-configured VirtualBox image that replicates our experimentation
environment to ensure that all the experiments can be reproduced with little effort
in any computer that has VirtualBox installed and meets our minimum system
requirements. It should be noted that the results of existing SV studies are diffi-
cult/impossible to reproduce (there is no open access to either datasets or scripts)
where this particular aim advances over those approaches.

1.4 Research Method

The whole research study can be roughly divided into four key phases: Inception,
Elaboration, Construction, and Transition. It is structured following the main
idea of the Rational Unified Process (RUP) [35] approach, which represents a very
robust and disciplined pathway to various software engineering projects. Some of
these steps can be iterative or even mutually influence each other when practically
conducting this research.

1. Inception

The inception phase is focused on understanding the nature of the problem to be
addressed in this study. In this regard, the latest research approaches in service-
oriented application testing in relation to service simulation are examined.

2. Elaboration

A more extensive review of the literature is performed during the elaboration
phase. Experiments are also designed to assess the suitability of SML algorithms
to learn some attributes of HTTP service responses from recorded traffic. In this
case, HTTP datasets are constructed from network traffic and a broader range of
SML techniques are explored.

3. Construction

The main focus of the construction phase is to run the experiments with selected
algorithms across all datasets. Later, the inferred semantic models are evaluated,
the results are interpreted, and conclusions are drawn.

4. Transition

The primary research findings are published as conference or journal papers during
the transition phase. Furthermore, the implementation code and the experimental

6

datasets are made publicly available to permit reproduction of the research results
reported in this thesis.

1.5 Thesis Overview

Chapter 2 (Preliminaries)

The chapter covers some background knowledge which helps with understanding
the rest of this thesis. It briefly introduces the concept of services and the evolution
of SOC. This is followed by an introduction to lightweight HTTP-based services,
that explicitly utilise the REST constraints. Then, the definitions and advances
in application testing are presented, along with the approaches to test service-
oriented applications, including SV. It also summarises the history of relevant AI
techniques and then presents a description of the concept learning algorithms used
in this research. The chapter ends with an overview of the HTTP protocol.

Chapter 3 (Systematic Literature Review)

The chapter discusses the related work to this research. It reports systematic re-
view results on existing approaches in service-oriented applications testing. The
chapter then proceeds into a discussion on studies in the field of SV. By covering
major issues in existing approaches, we raise the need for creating accurate and
provenance semantic models of HTTP services in the absence of services’ know-
ledge. It further covers the different approaches to services testing and the latest
work on AI-driven strategies to software testing, which are important references
to our research.

Chapter 4 (Datasets Acquisition)

The chapter outlines the network traffic datasets used for the experiments. Four
standard datasets are derived from real HTTP services (i.e., GitHub, Twitter,
Google, and Slack) referring to the second study aim which is to facilitate repro-
ducibility of results. The chapter discusses use cases for such datasets and extracts
a set of requirements from those use cases. Then, it presents the design, and the
methods and tool used to construct the datasets. We conclude our contribution
by providing some selective metrics that characterise each dataset and basic in-
structions on how to obtain and use the datasets.

Chapter 5 (Experimental Methodology)

The chapter gives a detailed description of the basic procedure used during the ex-
periments. The process includes four major steps. In the first step, basic cleaning
is done to remove the contents that impede raw datasets from being processed an-
d/or parsed correctly. In the second step, the preprocessed datasets are converted
and filtered to best expose to chosen SML algorithms (i.e., C4.5, RIPPER, PART,
and OCEL). In the third step, the algorithms are applied to train classification
models from training data to predict different attributes associated with response
properties. Finally, the predictive ability of the models is assessed by cross val-
idation. The predictive accuracy, precision, and recall are measured to evaluate

7

the validity of classification models. The size of the tree or the number of rules or
the length of the class expression produced is considered to assess the readability.
Additionally, the chapter provides instructions on how to reproduce the results.

Chapter 6 (Experimental Results)

The chapter presents the results of this study and discusses with reference to the
main research intent, which is to examine the suitability of SML algorithms to
automatically synthesise mock skeletons of HTTP services directly from network
traffic recordings. It mainly explores experimental results based on datasets. For
each dataset, the results of algorithms are analysed with respect to the target
attributes associated with the key HTTP response features, including the status,
response headers, and response body. It addresses the possible threats to the valid-
ity of the experimental results at the end.

Chapter 7 (Conclusions and Future Work)

The chapter sums up our contributions. It briefly concludes the results and findings
of this research. At last, it presents an overview of the prospects for future work.

8

Chapter 2

Preliminaries

This chapter presents some of the background to the research presented in this
thesis.

2.1 Services

The concept of services is widely adopted in modern heterogeneous distributed
computing. It has evolved from object-oriented and component computing to mi-
croservices. REST is currently the most common form of service implementation.
As such, Section 2.1.1 examines the evolution of services in detail, Section 2.1.2
defines the term service, Section 2.1.3 outlines the basic interactions between ser-
vices, and Section 2.1.4 explains the basic principles of REST and explores services
based on REST and HTTP.

2.1.1 History of Service-Oriented Computing

Back in the early 1980s, the Remote Procedure Call (RPC) [36] technique marked
the first major step toward systems distributed computing. The idea behind RPC
was to invoke procedures (functions) on remote servers in the same way as local
calls (in order to allow transparent access). It was a powerful facilitator for the de-
velopment of large, modular applications. The concept was initially formed by Sun
Microsystems during the implementation of the Network File System (NFS) [37].
RPC was also used as the foundation of Apollo’s Network Computing System
(NCS) [38]. Distributed Computing Environment (DCE) [39] was established at
the end of the 1980s by the Open Software Foundation (OSF) as an attempt to
standardise these various RPC implementations. DCE also incorporated standards
for security, naming, and time management to build and run applications. How-
ever, it did not gain massive support from the industry for political reasons [40].

The advent of object-oriented programming led to the next major shift in the
techniques used to develop distributed applications. During the time, distributed
object solutions were widely implemented. In 1989, the Object Management Group
(OMG)1 was founded by a group of major platform vendors (e.g., Microsoft, IBM,
AT&T, and Sun Microsystems) to create standards for distributed object comput-
ing. As the first effort, OMG released the Common Object Request Broker Archi-

1. https://omg.org [accessed 02 Aug. 2020]

9

https://omg.org

tecture (CORBA) [41], a language-independent and architecture-neutral platform
for building distributed object-oriented applications. Objects in CORBA architec-
ture were usually supported by an Object Request Broker (ORB), which managed
interactions between remote objects transparently. CORBA quickly became more
popular and was used to develop a number of distributed applications. Around
the early 1990s, Microsoft released its own Distributed Component Object Model
(DCOM) [42] to compete with OMG CORBA. DCOM was closely linked to the
CORBA model but designed exclusively for the integration of Windows-based ap-
plications [43]. Simultaneously, Sun Microsystems introduced the Remote Method
Invocation (RMI) model [44]. RMI was similar to CORBA and DCOM but worked
only with objects written in Sun’s Java programming language. All of these tech-
nologies were quite successful in integrating homogeneous applications within a
local area network. Gradually, at that time, the industry was confronted with a
competitive battle between the standards [45].

Advances in component-based technology allowed distributed computing to
expand further. A component is a reusable modular unit subject to third-party
composition with a contractually defined interface [46]. Starting in the mid-1990s,
several platform vendors built component-based development models. This origin-
ated with the Common Business Object Facility (CBOF) [47] in 1996 but, due
to political infighting, this effort was eventually abandoned. Subsequently, Sun
Microsystems released Enterprise Java Beans (EJB) [48]. EJB was built on top
of Java programming language and was therefore not interoperable with other
languages. As a language-neutral superset of Sun’s EJB, OMG introduced the
CORBA Component Model (CCM) [49] at the end of 1990s.

The next phase of the evolution of distributed computing technologies came
with the emergence of the Web. Starting in the mid-1990s, the Web became pop-
ular and key to commercial success for most enterprises. The Hypertext Trans-
fer Protocol (HTTP) was the primary transport protocol of the Web (see Sec-
tion 2.4 for more detail on HTTP). At that time, there was a growing demand
for application interoperability across networks. However, most of the existing
distributed application frameworks could not be accessed via the Internet (did
not comply with Web standards) [45]. During the late 1990s, Extensible Markup
Languages (XML) [50] became another new industry standard with an application-
independent ability to represent data. Microsoft, therefore, created an entirely new
technology for method invocation in conjunction with XML. The World Wide Web
Consortium (W3C)2 standardised it as Simple Object Access Protocol (SOAP) [2]
in 1999. It was extensively used by the major platform vendors at the time for
incorporating applications across networks. This eventually led to the advent of
the notion of Web Services primarily to support distributed computing for the
integration of highly heterogeneous systems over the Internet [51]. In 2000, IBM,
Microsoft, and Ariba developed a new set of standards called Web Services De-
scription Language (WSDL) [1] and Universal Definition, Discovery and Integra-
tion (UDDI) [52] to enable Web services to be described, written and used in a
language, platform and location-independent manner. As a result, Web services
were developed and deployed around 2005 mainly together with SOAP, WSDL,
and UDDI technologies [53].

2. https://w3.org [accessed 02 Aug. 2020]

10

https://w3.org

Service-Oriented Architecture (SOA) has become the next major support model
for the growth of distributed client-server applications in parallel with these ad-
vancements. The concept of SOA emerged at some point in the early 1980s, but
the recent interest in the architecture was spurred, especially after the invention
of Web services [54]. SOA is a set of software design principles for building and de-
ploying business functions as distinct services, enabling them to be easily accessed
and reused through well-defined, documented interfaces and messaging protocols,
and to be rapidly consolidated at runtime to function as a whole [40]. In particu-
lar, SOA relies on the concept of Services (Section 2.1.2 points out what a service
is). A service in the SOA is designed in such a way that various services can be
interconnected through an enterprise service bus with minimal effort to carry out
business transactions. By that time Web services (services delivered over the Web)
became the preferred way to realise SOA. Notably, from 2005 to 2010, SOA and
Web services were collectively applied in most distributed application development
projects [55]. Implementing SOA with Web services enabled interoperable deploy-
ments. Over time, however, the industry noted that SOAP-based Web services
were often complicated, although it offered very rich functionalities, and gradu-
ally started shifting to alternative technologies to build distributed computing
solutions.

In the meantime, the advent of REST (REpresentational State Transfer) in-
troduced a simple, lightweight, and scalable service implementation paradigm.
REST is a set of architectural constraints derived from the doctoral dissertation
by Roy Fielding in 2000 [3]. It was strongly inspired by the philosophy of the Web
and reused the features of HTTP as much as possible (see Section 2.1.4 below).
By around 2010, RESTful implementations via HTTP began gaining popularity
by enabling heterogeneous services to interact best on the Web, even some lead-
ing software firms, such as Google and Amazon, had started to adopt REST to
implement their Web services (i.e., at that point, Amazon had both SOAP and
REST implementations to its Web services, but the REST accounted for 85%
of their use3). The JavaScript Object Notation (JSON) [56] message format has
also become a popular alternative to XML due to its more lightweight structure
and object-oriented notations (see Section 2.4.2 for further details on XML and
JSON).

The Open Service Gateway Initiative (OSGi) framework [57] also emerged
as another viable approach for developing and deploying services. It was intro-
duced as a modularisation platform for Java by the OSGi alliance4 in 1999. OSGi
provides primitives and supports the construction of modular Java applications,
based on the composition of small, reusable, and self-contained modules called
bundles [58]. OSGi leverages the SOA support to allow interactions among bundles.
OSGi bundles interact with each other through services, which are Java objects ac-
cessible via public Java interfaces. Popular industry applications such as Eclipse5,
Glassfish6, WebLogic7, and WebSphere8 have widely adopted this approach.

3. https://aws.amazon.com/blogs/aws/rest_vs_soap [accessed Aug. 02 2020]
4. https://osgi.org [accessed 02 Aug. 2020]
5. https://eclipse.org [accessed 02 Aug. 2020]
6. https://glassfish.java.net [accessed 02 Aug. 2020]
7. https://oracle.com/middleware/technologies/weblogic.html [accessed 02 Aug. 2020]
8. https://ibm.com/cloud/websphere-application-platform [accessed 02 Aug. 2020]

11

https://aws.amazon.com/blogs/aws/rest_vs_soap
https://osgi.org
https://eclipse.org
https://glassfish.java.net
https://oracle.com/middleware/technologies/weblogic.html
https://ibm.com/cloud/websphere-application-platform

Microservices is the latest trend in the field of distributed computing. Around
2011, ideas related to microservices originated from best practises in the in-
dustry, but only recently, academic researchers started to study this approach.
Microservices architecture is an evolution of the traditional SOA [59]. The ser-
vices are more fine-grained and functionally independent from each other and
communicate through a simple API [60]. Lightweight HTTP-based Web services
(or RESTful services which use HTTP as their underlying protocol) have become
the standard for most microservices-based application development. In line with
this paradigm, large-scale ecosystems are also being developed around successful
software products to provide easy access to their resources and services, which
include Google and Twitter.

2.1.2 Definition of Service

Services are the basic building blocks in Service-Oriented Computing (SOC). Still,
in the context of SOC, there is no widely accepted formal definition for a service;
the different standards bodies and the researchers have their own interpretations
with varying levels of detail. Therefore, it would be wise to revisit some of them
in order to come up with a meaningful definition appropriate to guide this study.

The W3C provides a general definition of a service as an abstract entity able
to perform a function [61]. The Organization for the Advancement of Structured
Information Standards (OASIS)9 defines a service as a mechanism for allowing
access to one or more capabilities where access is given through a defined interface
and is exercised in accordance with the constraints and policies laid down in the
service description [62], but in this respect it is difficult to distinguish services
from objects and components.

Some of the most widely accepted service definitions exist in academic liter-
ature. For example, a service is described in [63] as a coarse-grained, discoverable
software object that acts as a single instance and interacts with applications and
other resources through a loosely coupled, message-based communication model.
The idea is based on SOA principles but is given without reference to the self-
contained nature, which is a popular feature of the service-oriented paradigm.
In [64], a service is described as a well-defined, self-contained entity that does not
depend on the context or status of other services.

Therefore, given the nature of this research and in accordance with existing
descriptions, the suitable definitions which can be extracted is that a service is:
a self-contained (does not require state information from other services), loosely-
coupled (hides implementation from user and is easily accessible over a network),
modular (serves a distinct business function) software unit that communicates with
applications and other services via messages.

2.1.3 Service-Oriented Interaction Schema

There are two major roles in any service-oriented application: service providers and
service consumers. The service providers offer a range of resources and activities for
service consumers to use. In order to advertise and promote services, the providers

9. https://oasis-open.org [accessed 02 Aug. 2020]

12

https://oasis-open.org

Figure 2.1: The Interaction Between Service Consumers and Service Providers

publish them in a registry along with service contracts (defines the nature of
the service, how to access it, the service specifications, and the service charges).
The service consumers could locate the services from the registry and build the
necessary client components to bind and use the services.

The focus of the research in this thesis is on the end-use of services where
service consumers interact directly with service providers (service consumers send
requests to service providers and, in return, receive responses from those service
providers). This relationship is depicted in Figure 2.1. Each request and response
exchanged between a consumer and a provider is considered as a transaction.

Communication between the parties is controlled by an application-layer pro-
tocol. Therefore, each request and response must comply with the syntax and
semantics of the protocol. Every message should include two different types of in-
formation: protocol structure information that specifies the type and format of the
message, and payload information that includes service-specific attribute values
and metadata. The information returned with the response is usually dependent
on the values of the request and the internal service state (previous transactions
history can affect the current transaction). For a more detailed example, see Sec-
tion 2.4.3.

It is also very common for service-oriented applications to act as both the
service provider and consumer by offering a service responding to consumers re-
quests as well as making requests for other services. In this thesis, however, we only
consider service-oriented applications from the point of view of the consumers.

2.1.4 RESTful Services

The term REST stands for REpresentational State Transfer and was defined by
Roy Fielding (one of the co-authors of the HTTP specification) in his PhD thesis
back in 2000 [3]. REST is not the software architecture itself, but rather a set
of architectural constraints to generate software services that are faster, more
efficient, and easier to scale. These constraints can be summarised as follows:

• Client-server architecture

It is important to follow a client-server architecture. The client has to be de-
coupled from the server allowing one another to evolve independently.

• Statelessness

13

Interaction between the client and the server must be stateless in such a way
that each client request must be dealt with independently, which is not related
to any prior request and must include all the information needed to understand
and function. The server does not have to keep the status information between
requests. Here, statelessness refers in particular to the state of the application
(the position of the client within the interaction and varies from client to client)
whereas the servers still maintain the state of the resource (data properties on
the server and is the same for all clients). Statelessness improves the scalability
(each request can be processed by a separate server) and the visibility (any
request can be understood).

• Cacheability

The response the server sends to the request should explicitly indicate whether
or not the data is cacheable. Cacheable responses can then be reused by clients
later. Better controlled caching decreases the load on the server (as it elim-
inates some client-server interactions) and improves efficiency, scalability, and
performance.

• Layered system

The architecture should consist of hierarchical layers. Each layer of intermediar-
ies should be inserted seamlessly and must act independently and only interact
with immediately adjacent layers. Layering allows for greater flexibility.

• Uniform interface

There should be a clearly defined interface between the client and the server.
The four guiding principles of the uniform interface are:

– Identification of resources

A resource must be identified by using the URI standard10.

– Manipulation of resources through representations

The resource representation and the resource itself are two distinct things.
A resource could have multiple representations. The server must present a
resource representation to manipulate the resource according to the needs
and capabilities of the client.

– Self-descriptive messages

Each request and response message should contain sufficient information to
describe how to process the message.

– Hypermedia as the engine of application state

Each response should contain appropriate hypermedia controls (such as hy-
perlinks) to inform the client of possible next steps to be taken to change the
resource (state of the resource).

A service that exhibits all defined constraints is known as RESTful. More often,
RESTful services are implemented using HTTP as the REST constraints works
seamlessly with the HTTP protocol (REST can be deployed via any protocol).

10. https://w3.org/Addressing [accessed 02 Aug. 2020]

14

https://w3.org/Addressing

HTTP inherits the client-server architecture where clients make HTTP re-
quests and servers listen to and respond to HTTP requests. It also is designed in
a stateless manner: each HTTP request must contain all the information neces-
sary for the server to understand it (for example, HTTP requests should always
carry headers like Host, even if they remain the same all the time). HTTP ex-
plicit caching headers (e.g., Cache-Control, ETag) address on cacheability. In
addition, HTTP meets the layered system constraint by allowing the direct inser-
tion of intermediate layers (such as proxies and firewalls). The uniform interface
constraint is generally implemented through a combination of different HTTP
constructs. For example, resources are uniquely identified by HTTP URIs. Clients
are provided with different representations through HTTP content negotiation
(the client and the server agree on the best mutually understandable media type
among the alternatives available). Typically, the HTTP client specifies its prefer-
ences with the HTTP Accept header, the HTTP server indicates its choice with the
Content-Type header. Well-defined syntax and semantics of HTTP also permit
self-descriptive messages. Each message within an HTTP interaction is expressed
explicitly based on agreed media types. HTTP also includes a limited number of
standardised methods (i.e., POST, GET, PUT/PATCH, and DELETE) which, in prac-
tise, often correspond and are mapped to create, read, update, and delete (CRUD)
database operations where intermediaries could easily interpret messages. In addi-
tion, HTTP allows the response to include hyperlinks to show what steps a client
should take, and to clarify how such steps should be taken.

HTTP is a robust protocol which can support REST constraints directly. Sec-
tion 2.4 provides a more detailed explanation of the HTTP constructs. However,
most of the Web services that are currently branded as RESTful are simply HTTP-
based services where the design is tied to the HTTP protocol standards (do not
implement all aspect of REST), but if these services explicitly enforce REST
constraints using HTTP constructs as previously mentioned, it particular allows
simple, lightweight, and fast HTTP-based services. This approach is becoming in-
creasingly popular in the development of distributed client-server applications. In
this study, we consider these lightweight HTTP-based services.

2.2 Application Testing

Application testing is necessary to produce highly reliable applications. Through-
out the history of application development, there have been many advances in
testing. These aspects are discussed briefly in Section 2.2.1. Section 2.2.2 then
outlines the service virtualisation technique proposed to provide a testing envir-
onment suitable for service-oriented applications.

2.2.1 History of Application Testing

Application testing was really basic in the early days of computing, and the main
focus was on finding errors in the final software product. Testing was usually
carried out once at the end of the application development effort and performed
manually [65]. As application complexity dramatically increased since the early
1980s, testing both functional and non-functional attributes become important

15

throughout the development cycle. Typically, the units were first tested, and the
integration tests were then carried out, and the fully integrated system was then
tested. In some cases, the acceptance test was performed after the system test.

Most of the current functional and non-functional testing concepts were ini-
tially proposed before the 1980s [66], including stress testing to evaluate how the
system performs beyond its normal operating limits, mutation testing to identify
programmes error by modifying small parts of the code, regression testing to en-
sure that the correctness of the programme is not adversely affected by adding
new functionality or removing faults, load testing to evaluate the application can
handle predefined load conditions, etc.

Beginning in the mid-1980s, automated testing tools started to appear in the
industry to automate the manual nature of testing [65]. These tools were ini-
tially fairly simple and backed by the recording and playback approach; recording
manual tests and playing them back. In 1989, Mercury Interactive released the
first version of LoadRunner11 to accelerate the performance testing. Since then,
automated test technologies have evolved and developed, providing rich scripting
languages and reporting facilities, thus reducing the need for human involvement
and taking less time. There are now several commercial as well as open-source
software platforms available to support various aspects of application testing.

At the beginning of the 1990s, the development of object-oriented applications
became popular in the software development market. At that time, the majority
of testing activities focused on the applicability of traditional testing techniques
to object oriented applications [67]. Testing for such a programme, however, was
more difficult than for traditional systems because objects might communicate
with each other with unpredictable variations and invocations (flakiness) [68]. As a
result, many testing techniques have been discovered to support the development of
object-oriented applications, such as state-based testing [69] to assess interactions
of methods in each class, use-case testing [70] to test each scenario in every use
case, class-based testing [71] to evaluate each class, class derivative, interaction
and aggregation, and thread-based testing [72] to test the integration of all classes
necessary to perform a single application case.

In addition, testing evolved in the early 1990s from using unstructured ap-
proaches to a process-driven methodology [66]. The test process started with test
preparation, and then test cases were designed, tests were developed, maintained
and executed. In the mid-1990s, component-based technology emerged as the main
application development strategy. Testing in this paradigm also introduced new
challenges [73]. The unavailability of external and dependent components for test-
ing was the main difficulty encountered by most engineers, and the general ap-
proach was to test a particular component directly in isolation. This was usually
done by replacing the dependencies with stubs that are lightweight versions of the
system components [74].

By the late 1990s, Test-Driven Development (TDD) [75] was practised in the
software development industry. Though it had been around for some time, it has
been re-discovered as one of the main features of Extreme Programming (XP) [76].
It is a software building technique which guides iterative development by first

11. https://microfocus.com/products/loadrunner-professional [accessed 02 Aug. 2020]

16

https://microfocus.com/products/loadrunner-professional

writing the test and then implementing system functionality to pass the test.
TDD was first practised in the Smalltalk12 environment by designing the SUnit13

unit testing framework to support the TDD process. Since then, for almost any
programming language, a series of tools known as XUnit began to appear that
essentially applied the same approach to unit testing. Among them, the most
successful unit testing framework was JUnit14, which brought the automated unit
testing to Java.

Eventually, the concept of mock objects emerged from the XP community as a
TDD support technique [77]. A mock object was a much more advanced version
of stub in which the notion of isolation was supported [5]. From then on, the
industry saw an increase in the use of mock objects and frameworks to support
mocking. EasyMock [78] was created in 2001 as a Java-based mock library but
originally allowed only mock interfaces. The extension that allowed class mocking
appeared in 2003. There is now a wide range of mocking frameworks in many
different languages, e.g., Moq [79] for C# and Mocker [80] for Python.

By around 2000, SOC gained increased attention in the application develop-
ment industry. Services were primarily considered as test units, and functional
testing was conducted in accordance with service specifications [81]. When ser-
vices evolved and moved towards the SOA, different testing strategies emerged
with respect to evaluating SOA capabilities (i.e., discovery, binding, and publish-
ing). Testing service compositions and versioning also saw substantial demand
during this time.

Developing applications with external services has caused difficulties in testing,
as adequate testing with external dependent services has not always been feasible.
Initially, engineers practised mocking to emulate dependent services. There, the
behavioural responses of each method call were specified explicitly in order to
bypass their absence at a particular test run. Mocking, however, posed a greater
hurdle in the service-oriented paradigm, primarily due to the lack of a detailed un-
derstanding of service syntax and semantics as well as being too time-consuming.
Service Virtualisation (SV) [6, 7] has originated from the industry as an altern-
ative to mock objects. SV is a cost- and time-effective method for automatically
generating service responses from recorded traffic. Section 2.2.2 discusses further
details about SV and introduces important SV steps. In the early days, SV prac-
tises used the record and replay approach, but currently use AI techniques to infer
the service’s semantic model to be used to generate service responses. SV is still
a new research topic in application testing; in particular, academia has begun to
study this approach only around the mid-2010s.

Numerous automated testing tools for service-oriented application testing have
also been implemented. For example, JMeter [82] was developed as a load-generating
performance testing tool by the Apache Software Foundation (ASF) in 2001, the
first version of SoapUI [83] was released in 2005 for Web service functional testing,
Parasoft released its SV solution [9] in 2002 as the first step towards SV.

A shift in service-orientation towards microservices has been taking place over
the last few years. As the concept of microservices is relatively new, there are very

12. https://squeak.org [accessed 02 Aug. 2020]
13. http://sunit.sourceforge.net [accessed 02 Aug. 2020]
14. http://junit.org [accessed 02 Aug. 2020]

17

https://squeak.org
http://sunit.sourceforge.net
http://junit.org

Figure 2.2: The Virtual Service Creation Process

few studies in the field of microservice testing. Since microservices are expand-
ing SOA practises, industry practitioners use most of the current service-oriented
application testing methods, such as SV.

2.2.2 Service Virtualisation

As SOC opens the possibility of service reuse in different contexts, today most
applications are not built from the ground. Instead, third-party services are used
extensively to realise certain functional behaviours that an application needs. Ac-
cess to external service dependencies is, therefore, important when performing
application testing (e.g. integration tests, functional tests, and end-to-end test-
ing). But this raises a greater challenge as external services may be:

• lack of control over many aspects of the test situation

• difficult to configure within a test environment

• only available in a limited capacity or at inconvenient times for testing

• costly to use

• restricted in the observability of service specification and code

Service Virtualisation (SV) eliminates such dependency constraints in application
testing. It is a practise to create virtual service models that are capable of simulat-
ing the interactive behaviour of a dependent service in such a way that it responds
and reacts, in the same way, the actual service [6, 7].

Typically, a semantic model of the service is derived from recorded message-
level interactions between the Application-Under-Test (AUT) and the real depend-
ent service. Those recorded transactions usually follow the protocol specification
and contain information about request-response patterns, including parameter val-
ues and possible temporal properties. The inference usually takes place through
supervised machine learning (learning from input-output pairs). SV uses the in-
ferred models to communicate with the AUT by producing responses to incoming

18

requests and thus tries to simulate the behaviour of constrained services. As shown
in Figure 2.2, the basic process of SV can be simplified into three key stages [6].

1. Capture: record live interactions between an AUT (in terms of request-response
messages) and the service on which it relies

2. Model: construct a virtual service model using the collected traffic

3. Simulate: deploy the model in the development environment as a stand-in for
the real service that generates responses to incoming requests.

SV enables frequent and comprehensive testing, even in the absence of actual ser-
vices in the application architecture. This helps in lowering testing costs, increasing
productivity, and delivering application of higher quality in a shorter time frame.
It could, therefore, be beneficial to use SV to test applications that rely heavily
on external, more lightweight HTTP services. We suggest using SV in this study
to infer some of the response attributes of HTTP services.

2.3 Symbolic Machine Learning Techniques

Artificial intelligence enables machines to learn from experience and/or data. It
has many approaches, but most examples of artificial intelligence used today (from
chess computer programmes to self-driving cars) rely heavily on machine learn-
ing techniques. Amongst them, deep learning is currently the most widely used
machine learning technique. Despite its high efficiency, the most important weak-
ness in deep learning is the lack of interpretability of the models generated, which
makes it difficult to handle descriptive learning tasks. In the contrast, the mod-
els created using symbolic machine learning techniques produce inherently inter-
pretable models (also referred to as explainable models) that directly incorporate
interpretability into the model structure and are thus are self-explanatory. In the
context of symbolic learning, attribute-based learning and description logic learn-
ing are typical approaches. Thereby, Section 2.3.1 explores the evolution of artifi-
cial intelligence techniques with an emphasis on machine learning. Sections 2.3.2
and 2.3.3 describe common symbolic techniques: attribute-based learning (i.e., de-
cision tree and rule-induction) and description logic learning (has been developed
as an extension of inductive logic programming) where few selective algorithms
are discussed in each category, i.e., C4.5, RIPPER, PART, and OCEL (note that
the exact implementation of these algorithms has not been studied in depth since
it is beyond the scope of this thesis).

2.3.1 History of Machine Learning

Machine Learning (ML) is a sub-field of the Artificial Intelligence (AI) discipline,
which aims to design and develop algorithms and techniques that enable models to
be automatically learned from sample data (i.e., training data/examples) that can
be used to make predictions or decisions. The origin of ML dates back almost to the
beginning of AI [84]. Since then, numerous ML algorithms have been developed,
ranging from declarative, symbolic forms to neural network training and numerical,
statistical methods.

19

There are two major categories of ML: supervised and unsupervised. The su-
pervised ML is based on the labelled training data (example input-output pairs).
Regression (algorithm returns a numerical target for each example) and Classific-
ation (algorithm attempts to classify each example by selecting between different
classes) are two types of supervised techniques. Unsupervised ML does not require
such initial labelling.

Symbolic ML (SML) has become one of the most impactful research areas
within the AI in recent years. It is an ML approach that involves training models
in a declarative form capable of human comprehension. In 1952, Arthur Samuel
at IBM [85] created one of the first learning programmes. It was a programme to
play Checkers, capable of studying movements and learning patterns that would
offer better moves for the latter stages and was a truly exciting development back
then.

Sub-Symbolic ML is yet another widely accepted field of AI that is black-box
by nature, which basically means that the trained model can not be inspected to
interpret the output in terms of the features of its input [86]. This contrasts with
symbolic AI techniques where the trained model has human-readable explana-
tions. The Neural Network (NN) is a prominent example of sub-symbolic learning
strategies that emerged from the interest of academic and industrial researchers
in processing data similar to that of the human brain. The general idea is to train
layers of functions as much as neurons in the human brain to convert data input
into the desired output. The first major step towards NN was proposed by Frank
Rosenblatt, named Perceptron, in 1957 [87]. The perceptron was based on a single-
layer NN which was able to learn classification models for grouping data into one
of the two classes by adjusting the weights of the connection. It was successful in
classifying certain patterns, but unfortunately it was rejected as a general learning
technique because there were fundamental limitations in what functions could be
presented, such as the inability to properly measure even a simple function like
XOR [88]. In the late 1960s, heuristic-based pattern recognition algorithms were
also developed, including Nearest Neighbours [89]. It was a huge advancement
in ML at that time since approximation and heuristics-based techniques allowed
computationally intensive problems to be solved.

The 1970s era was known as AI Winter, as funding and interest in AI and
ML research fell substantially. Not much work was done in the ML area until the
1980s. However, in the early 1980s, researchers showed renewed interest in NN. In
1981, Multi-Layer Perceptron (MLP) [90] was discovered with Backpropagation
(BP) learning algorithm in order to overcome Perceptron’s inherent limitations.
By using hidden layers of neurons, the MLP could be used for a wide range of com-
plex functions. Several researchers in the early 1960s developed the BP algorithm
as a general method of optimisation for performing automatic differentiation of
complex nested functions. But it was not applied to NN until the early 1980s.
Today, BP is the key element in NN architectures.

The revival of SML began with the introduction of attribute-based learning ap-
proaches, more specifically with the development of algorithms for Decision Tree
(DT) and Rule induction. The DT algorithm, known as Iterative Dichotomiser
3 (ID3) [91], developed in the early 1980s was one of the first significant devel-
opments. DT algorithms typically construct classification models in the form of a

20

tree structure based on the provided attributes. The induction of DT became quite
popular at that time as the models provided a clear representation of patterns in
the training data. After ID3, several different learning algorithms have been de-
veloped by the ML research community, such as C4.5 [26], Random Forest [92],
ADTree [93], and CART [94]. Section 2.3.2 further describes the concept of the
DT.

In parallel with these, the Quasi-Optimal (AQ) family of algorithms [95, 96]
emerged as one of the early approaches to rule learning. The aim of rule induc-
tion is to produce classification models as symbolic decision rules (essentially are
equivalent to propositional logic) where humans can interpret the outcome with
relative ease. This approach has been widely adapted with promising benefits, and
several other rule learners have emerged such as CN2 [97], OneR [98], DecisionT-
able [99], RIPPER [27], and PART [28]. Section 2.3.2 is a brief description of the
rule induction. Still, DT and rule learning methods are the prominent topics in
AI due to their easy comprehensibility.

In the early 1990s, there was a growing demand for ML techniques which have
the capability to represent complex relationships among instances. This resulted
in the introduction of a number of algorithms that learn at first-order predicate
logic levels, such as FOIL [100] and Golem [101]. This led to the creation of a
new ML area called Inductive Logic Programming (ILP) [102,103]. ILP is a type
of SML that uses logic programming. The distinctive feature of ILP is that it
can use background knowledge in the learning process. It aims at finding a hypo-
thesis (a set of rules) that covers all positive examples and none of the negatives
while taking into account the background knowledge. Since then, a number of
ILP algorithms (such as Aleph [104]) have evolved that can induce theories from
examples and background knowledge, and use computational logic as a repres-
entation mechanism. Using an expressive representation language, ILP algorithms
gained an advantage over other learning approaches. Yet, ILP continues to be one
of the ongoing research fields of ML.

During the same timeframe, the ML work shifted from knowledge-driven to
more data-driven learning, mainly due to the intersection of Computer Science
and Statistics. One of the most significant findings during that time was the Sup-
port Vector Machines (SVMs) [105] proposed in 1995. Similarly, Bayesian Net-
works [106] emerged as another approach to statistical learning.

ML work from 2000 was largely influenced by the advent of big data. At that
time, researchers developed a new collection of learning algorithms called Bandit
algorithms [107–109] which made learning simpler and more adaptable to large-
scale problems. By 2001, Random Forests (RF) [110] was created as an ensemble
learning model that operated by creating a multitude of decision trees at the time
of training and providing the class that is the most common among the tree classes.
Meanwhile, the Logistic Regression has been rediscovered and redesigned for large
scale ML problems [111]. With the introduction of the Semantic Web [112], De-
scription Logics (DLs)/Web Ontology Language (OWL) became the standard rep-
resentational language for knowledge bases. By around 2010, ILP broadened its
scope by considering the concept learning descriptions presented in the DLs/OWL;
constructing hypotheses in the form of class descriptions that could include con-
junction, disjunction, and existential quantification. Several learning algorithms

21

were developed at the time. Notably, implementations that were explored with
the DL-Learner framework (e.g., OCEL and CELOE) [113, 114] attracted much
interest in the 2010s. Section 2.3.3 presents a more detailed explanation on DL
learning.

NN began to recover around 2005, in particular, during this period computer
vision made efficient use of conventional NN. It has also been able to make their
way into fields like natural language processing and voice recognition. In the 2010s,
Deep Learning techniques [115] became popular in NN due to high learning capab-
ilities and have been at the forefront of AI research, such as robotics, autonomous
vehicles, and medical diagnostic systems. Deep learning tries to model high-level
abstractions of training data using a deep graph with multiple processing layers
that consist of several linear and non-linear transformations. The main limita-
tion to deep-learning systems is that it is difficult to understand how the system
came to a conclusion, particularly when there is a need to understand unexpected
choices (i.e., particularly transparent learning is needed when it comes to critical
applications such as self-driving cars). There is, therefore, a recent interest in com-
bining deep learning with symbolic logics to provide explanation facilities. This
also resulted in a new area of AI called Explainable-AI [22]. This will provide a
way to understand the patterns in AI systems easily.

2.3.2 Attribute-Based Learning

Attribute-based learning is a supervised learning technique that uses the propos-
itional attribute-value language to describe training sets and predictive models:
objects in the training set must be described by their values for a fixed set of
attributes (features), and the predictive model must be represented as a function
of those same attributes. The key approaches to attribute-based learning include
decision tree induction and rule induction [116].

The learning process is simple and yields efficient and comprehensible res-
ults. The main advantage comes from the expressive power of the propositional
attribute-value language used to describe instances and concepts. Also, many
learning algorithms which operate within this context do not use the background
knowledge of the domain. Attribute-based learning techniques have proved useful
in a wide range of applications. Also many of the practical data mining/ML tools
that are used today often support attribute-based settings. WEKA15 is a notable
example of this.

Decision Tree Induction

Many attribute-based learning algorithms are used to express what is learned as
a Decision Tree (DT). A DT is a flowchart like tree structure, where each node
represents an input attribute, each branch represents a possible value that an input
attribute can hold, and each leaf represents a value of the target attribute that is
to be predicted.

These algorithms use divide-and-conquer strategy in top-down fashion to con-
struct a DT structure from a training set of instances [117]. The algorithm first

15. https://cs.waikato.ac.nz/ml/weka/ [accessed 02 Aug. 2020]

22

https://cs.waikato.ac.nz/ml/weka/

Figure 2.3: A Sample Decision Tree for GOLF Dataset

selects the best attribute for the root node based on a splitting criterion and gen-
erates a branch for each possible value of the attributes, then splits the instances
into disjoint subsets, one for each branch that extends from the node. As the
tree is being constructed, the procedure is applied recursively to each branch. If
a set includes only examples from the same class, the corresponding node will be
converted into a leaf node and labelled with the class. This process of forming a
DT is straightforward and thus provides interpretable solutions. DTs can also be
interpreted as a set of decision rules (each path from the root node to a leaf node
represents a rule) [118]. Figure 2.3 shows a sample DT for a well-known GOLF
dataset [119], where examples are explanations of weather conditions (Outlook,
Humidity, Windy, and Temperature) and the target is whether or not these con-
ditions are ideal for playing golf. Classification of a new instance starts at the
root node and selects the branch that corresponds to the attribute value. This
continues until a leaf node arrives and selects it as the target attribute value.

Over many years, the algorithms for constructing DTs were developed and
improved, starting with ID3 (Iterative Dichotomizer 3). C4.5 is one of the best
known and most widely used DT implementations.

• C4.5 Decision Tree Algorithm

The C4.5 [26] algorithm has become the industry standard to produce DTs
because it actually fits well for most types of problems. It is an improved version
of ID3 [91]. In tree learning, C4.5 uses entropy (the measure of uncertainty in
the dataset, the less entropy at the node, the more information is known about
the classification of the data at this point of the tree) and the information gain
(the estimate of the difference in entropy from before to after the set is split on
the attribute) to select the best attribute to divide the dataset on each iteration;
the attribute for which the resulting information gain is maximum (or smallest
entropy) is selected to do the split. This makes C4.5 capable of achieving an
optimal solution. The C4.5 algorithm enables the handling of training data with
missing attribute values, given they are distributed statistically in relation to
the known values of that attribute. C4.5 works with both discrete (has a finite
number of possible values) and continuous (has an infinite set) attributes. In
order to handle continuous attributes, C4.5 specifying a cut-off threshold and
then splits the list into those whose attribute value is above the threshold and
those that are less than or equal to it. C4.5 carries out pruning (removing nodes)
of the constructed tree which results in smaller trees, simpler rules, and more

23

(Outlook=sunny)and(humidity=high)->PlayTennis=no

(Outlook=rainy)and(windy=true)->PlayTennis=no

(Outlook=overcast)->PlayTennis=yes

(Humidity=normal)->PlayTennis=yes

->PlayTennis=yes

Figure 2.4: A Sample Decision Ruleset for GOLF dataset

intuitive interpretations. This allows the model to well generalise any data from
the problem domain (reduce overfitting).

Rule Induction

Other attribute-based learning algorithms represent induced knowledge as either
a ruleset or a decision list (rules are ranked by their priority) for each class to be
described. Any set of rules takes the form of a collection of if-then statements.
Rule Induction algorithms use separate-and-conquer strategy (also referred to as
covering approach) [120] to learn rules, whose basic idea is to look for a rule that
explains part of the training data, delete the covered examples successively and
repeat the process with the remaining examples by learning more rules until there
are no examples left. This means each instance of the training set is covered by
at least one rule. Rule learners make training models highly comprehensible and
human-readable, just as DTs do [121]. Figure 2.4 presents a sample set of rules,
a ML algorithm could be learned from the GOLF dataset [119]. The rules are
tried in order to classify a new instance and chooses the class of the first rule that
covers. If no rule is applicable, the default rule is chosen (which typically predicts
the majority class)

There are different rule induction algorithms that share this simple separate-
and-conquer technique (usually individual algorithms vary mainly in the way they
learn single rules). RIPPER and PART are two dominant schemes.

• RIPPER Rule Induction Algorithm

The RIPPER (Repeated Incremental Pruning to Produce Error Reduction) [27]
is considered as the state-of-the-art in inductive rule learning. This is a refine-
ment of Incremental Reduce Error Pruning (IREP) algorithm [122]. There are
two main stages in the algorithm. First, the training data is randomly divided
into a growing set and a pruning set (ratio 2:1). Using the growing set, a rule
for each class is extracted from an empty rule, by greedily applying conditions
to the rule until it is 100% accurate (does not cover negative instances). It tests
every possible value of each attribute and selects the condition with the most
information gain. Once the rule is grown, it is immediately pruned using the
pruning dataset by considering removing the final condition sequence from the
rule that maximises the worth of the rule (e.g., success rate). That is done until
the deletion does not increase the worth. The process continues until rules are
created for all classes. After constructing the initial set of rules, an optimisa-
tion step is performed. Here, two variations of each rule are produced in the
initial ruleset. One of the variations is created by an empty rule by growing and
pruning the rule where the pruning stage is guided to optimise the accuracy of

24

the entire rule base. Another variant is generated by greedily adding conditions
to the original rule. The rule with the minimum descriptive length will then
be chosen for the final rule base. The algorithm continues to optimise the rules
for the initial set of rules. As the rule is revised and constantly modified, this
could lead to an increase in accuracy. By repeated incremental pruning, RIP-
PER effectively prevents overfitting. The algorithm also manages the missing
values satisfactorily without the need for any preprocessing and is able to deal
efficiently with continuous attributes.

• PART Rule Induction Algorithm

PART [28] stands for Projective Adaptive Resonance Theory. It is a separate-
and-conquer algorithm which learns a decision list of rules. For each iteration
it produces a partial C4.5 DT, prunes the tree for the current set of instances
(using the same C4.5 heuristics), makes the leaf with maximum coverage a rule,
and discards the tree. The instances covered by the rule are then excluded, and
the algorithm continues to create rules recursively for the remaining instances
until none is left. The construction and discarding of partial DTs for the creation
of rules avoids the tendency to over prune. Pruning is used to handle overfitting.
Adapting C4.5, PART offers a simpler and more efficient way to extract optim-
ised rules. It also has the ability to handle missing data as well as a number of
data types, including discrete, binary, and continuous data, as does C4.5.

WEKA (Waikato Environment for Knowledge Analysis)

WEKA [123] is a popular machine learning and data mining workbench which
contains numerous inbuilt algorithms for classification and prediction, accompa-
nying with techniques for preprocessing and postprocessing of data. It supports a
variety of file formats including most common CSV (Comma-Separated Values)
and ARFF (Attribute-Relation File Format). WEKA also has a general API to
embed other libraries.

In this study, experiments are conducted in the WEKA environment by util-
ising the J48 decision tree classification algorithm (Java implementation of the
C4.5 in WEKA), JRip (WEKA’s implementation of the RIPPER), and PART to
construct classification models to infer response properties of HTTP services. This
thesis examines the possibility of these algorithms producing accurate, human-
readable logic for HTTP response features.

2.3.3 Description Logic Learning

Description Logic (DL) learning is a supervised ML technique that has its roots in
Inductive Logic Programming [102, 124]. DL learning applies Description Logics
(DLs) as the representation mechanism (DLs are a family of knowledge repres-
entation languages with well-known DLs like ALC, SHOIQ, SHIQ, SHOIN ,
and SROIQ). The expressiveness of DLs gives DL learning the flexibility to spe-
cify more domain knowledge (capable of using the complex structures of available
background knowledge in the learning process) and the understandability of learnt
theories.

25

TBox

Class: Person Class: Female Class: Male

SubClassOf: Thing SubClassOf: Person SubClassOf: Person

ObjectProperty: hasChild

ABox

Individual: tom Individual: eve Individual: john

Types: Male Types: Female Types: Male

Facts: hasChild tom

Individual: mary Individual: peter

Types: Female Types: Male

Facts: hasChild tom Facts: hasChild mary

Figure 2.5: A Sample Ontology for FORTE Dataset

DLs describe domain knowledge in terms of concepts that model sets of objects,
and roles that model binary relationships between objects. These atomic concepts
and role are combined by using appropriate constructs such as negation (¬), in-
tersection (u), and existential restriction (∃) to produce more complex terms.
Connectives are also used to define relationships between terms, for example, in-
clusion (v). Every such relationship is known as an axiom. In DL learning, data
is stored in the Knowledge Base (KB) as a set of axioms. A KB is also referred
to as a background knowledge base or ontology and consists of two components:
TBox and ABox. The TBox encodes the terminology (domain vocabulary) that
defines the general properties of concepts and roles. The ABox encodes assertions
of individual objects in terms of concepts and roles. More details on DLs and their
semantics can be found in [125]. For the purpose of learning a definition, certain
instances within the KB are marked as positive examples and others as negative
ones.

OWL [126] is considered to be one of the most common DL-based languages.
OWL stands for Web Ontology Language and is the official W3C standard onto-
logy language for the Semantic Web [112]. It inherits characteristics from Resource
Description Framework (RDF) and RDF Schema (RDFS) resulting in enhanced
expressive power. The KB at OWL is called ontology. In OWL, different naming
conventions are usually used when compared to DLs. The concept in the DLs cor-
responds to the OWL class, the role corresponds to the property and the object
represents the individual. Thing is the superclass of all classes in OWL ontology.
Furthermore, OWL properties are differentiated between object properties and
data properties where an object property describes the relationship between two
instances and a data property describes the relationship between an instance and
a literal. The ontologies can be processed by a reasoner to automatically infer
new knowledge and also to check the logical consistency of the ontology. The first
version of OWL included three major dialects: OWL Lite, OWL DL, and OWL
Full. They were based on the SHOIN language. The most up-to-date version of
OWL is OWL2 [127], which comes in two flavours: OWL2 DL and OWL2 Full.
OWL 2 provides a number of extensions to OWL based on the SROIQ language.

26

All these various dialects of OWL and OWL2 have varying expressive capacities,
and OWL2 DL is currently the most expressive with reasoning capabilities.

The most common setting of DL learning is to learn OWL class expressions
that cover all given positive examples and none of the negative ones while tak-
ing into account the background knowledge. All positive examples are, therefore,
representations of the induced expressions, and none of the negative examples are
instances of it. Because of its logical representation, the learned class expressions
are easy to understand. Figure 2.5 shows a sample ontology representing a part of
the well-known FORTE family dataset [128]. This dataset contains observations of
family relationships, such as Aunt, Brother, Daughter, Father, Uncle, etc. Given
the set of positive examples = {john, peter} (who are fathers) and negative ex-
amples = {mary, tom, eve} (who are not fathers), an ML algorithm could, then,
suggest that the Father relationship is equivalent to the following OWL class
expression in Manchester OWL syntax16:
Male and hasChild some Person

DL-Learner17 has become the central implementation of DL learning. The plat-
form provides a wide range of ML algorithms for learning concepts in DLs/OWL.
Among them, OCEL is the standard learning algorithm and is the commonly used
and proved to be competitive.

• OCEL Class Expression Learning Algorithm

OWL Class Expression Learner (OCEL) [29] is introduced and distributed with
the DL-Learner as the standard learning algorithm for supervised learning in
DL. It is designed specifically for learning class expressions that are concise and
readable. The algorithm uses a top-down strategy to learn class expressions. It
starts with the root of the class hierarchy (i.e., Thing) and applies the downward
refinement operator and the criterion of horizontal expansion (sum of its length
and number of times it has been refined) to generate descriptions in the search
space (by means of specialisation) until an accurate description is found. The
selection of descriptions in the search space for expansion is primarily based on
the accuracy of the description with respect to the positive and negative ex-
amples. A description can be refined in the search space several times. However,
it is only allowed for the refinement operator to produce descriptions of a length
that is shorter or equal to the horizontal expansion of the refined description (in
order to accommodate the infinity property of the refinement operator). These
heuristics provide the best possible generalisation of examples, avoiding overfit-
ting. The OCEL algorithm also supports nominal (categorical) and numerical
data types.

DL-Learner

DL-Learner [130] is a prominent open-source software framework for DL concept
learning. This offers a range of learning algorithms that support a variety of DLs,
including ALC, ALCQ, and OWL/OWL2. It also contains reasoners, such as

16. See [129] for more details on Manchester OWL syntax.
17. http://dl-learner.org [accessed 02 Aug. 2020]

27

http://dl-learner.org

closed world reasoner, or can be connected to common OWL reasoners (e.g., Pel-
let18, HermiT19). DL-Learner provides an API which allows the tool to be easily
used and extended with new features.

In this study, the experiments are further extended by using the OCEL learning
algorithm in DL-Learner tool to construct class descriptions for HTTP response
features and to determine the suitability for generating reliable, comprehensible
results.

2.4 HTTP Protocol

The Hypertext Transfer Protocol is the underlying protocol used by the Web
and has become the popular application-layer protocol for distributed service-
orientated applications. The following sections take a close look at the basics of
the HTTP protocol, in particular, Section 2.4.1 briefly overviews the protocol,
Section 2.4.2 details the structure of HTTP request and response messages as well
as the encoding rules, and finally, Section 2.4.3 presents a sample representation
of the HTTP message exchanges.

2.4.1 HTTP Overview

The HyperText Transfer Protocol (HTTP) is an application-layer protocol that
was originally designed as the underlying protocol for the Web. It is an extensible
protocol that has evolved over time. The initial version of HTTP (HTTP/0.9)
was created in the early 1990s and as the Web grew in size and popularity, it
eventually expanded to the HTTP/1.0 [132] and HTTP/1.1 [133], with improved
performance and added features.

Recently, HTTP/2 [134] was launched as an enhancement of existing HTTP
1.x specifications for faster and safer data transfer. The demand for the HTTP
protocol has been further enhanced due to the increased use of service-oriented
computing in the development of distributed enterprise applications. HTTP is
currently the most widely adopted protocol for building services across networks.

In general, HTTP is a client-server protocol. Like most network protocols,
the basic HTTP communication process involves a relatively simple exchange of
a request-response message pair between the client and the server. An HTTP
client is usually a computer programme that initiates request messages to prompt
the server to take actions. It establishes a Transmission Control Protocol (TCP)
connection for sending HTTP request messages (HTTP allows multiple requests
per connection) to a particular port on the host (default TCP/IP port is 80 but
other ports can be used). An HTTP server is another computer programme that
listens on that port and is waiting for a request message from the client. After
receiving the request from the client, the server must take appropriate action
specific to the request and send a response message indicating whether the request
has been successful or not, and may also contain the requested content in its
message body. Once the response has been delivered, both the server and the client

18. For info, see [131]
19. http://hermit-reasoner.com [accessed 02 Aug. 2020]

28

http://hermit-reasoner.com

Figure 2.6: The HTTP Message Structure

forget each other and do not maintain state between the exchanges of messages.
This feature makes the HTTP protocol stateless.

HTTP messages as described in HTTP/1.1 and older protocol versions are
basically human-readable (text-based) and simple, making them easier to use. In
HTTP/2, these simple messages are encapsulated into frames to improve perform-
ance, making it more difficult to read directly. But the basic message semantics has
remained the same since HTTP/1.0. All HTTP messages are intended to follow
the generic message format. A brief description of this standard message structure
is presented in the following subsections.

2.4.2 HTTP Generic Message Format

The generic message format for HTTP is shown in Figure 2.6. It is based loosely on
the RFC 822 message specifications for electronic mails [135] and the Multipurpose
Internet Mail Extensions (MIME) specification [136]. Each HTTP message begins
with a start line, then contains a number of message headers, followed by an empty
line, and optionally, a message body.

Start Line

The start line is a special text line that reflects the nature of the HTTP message.
The request line is the start line used for request messages. It states the action
that the client wants to be performed, followed by a resource upon which the
action should be taken, and the version of HTTP the client is using. Each element
is separated by a space (SP) character. The formal syntax for the request line is:

<REQUEST -METHOD >SP <REQUEST -URI >SP <HTTP -VERSION >

The request method specifies the type of action to be performed on the resource
defined by the request URI. Table 2.1 lists the most common HTTP methods.
The request URI specifies the resource location and the resource name to identify

29

Table 2.1: Common HTTP Methods

Method Description

GET asks the server to send the data of a resource specified by the URI

HEAD asks the server to send information about a resource but without its
data

POST asks the server to add a resource or take an action on an existing
resource

PUT asks the server to add or update (if the resource already exists) a
resource in its entirety

PATCH asks the server to update part of an existing resource

DELETE asks the server to delete a resource

Table 2.2: Common HTTP Status Codes

Status Code Reason Phrase Description

200 OK The request succeeded and the result-
ing resource is returned in the message
body.

201 Created The request succeeded and a new re-
source is created.

204 No Content There is no content to send for this re-
quest

400 Bad Request The server could not understand the re-
quest due to invalid syntax.

401 Unauthorized The request needs user authentication

404 Not Found The requested resource does not exist
in the server

422 Unprocessable Entity The request is well-formed but unable
to be followed due to semantic errors.

500 Internal Server Error An unexpected error occurred inside
the server

503 Service Unavailable The server is temporarily unavailable

the resource which the request should be applied. Every URI follows a particular
form:

<SCHEME >://<AUTHORITY><PATH>?<QUERY>#<FRAGMENT>

where the scheme defines the mechanism to be used to reach the resource (for
example, HTTP or HTTPS), the optional authority component consists of user
identification details (host and optional port number), the path element identifies
a specific resource, the query shows additional data that the resource can use, and
the fragment contains an optional identifier to a specific part of the resource.

30

The status line is the start line used for response messages. It specifies the version
of the protocol used by the server and provides a summary of the results of the
request. The formal syntax for the status line is:

<HTTP -VERSION >SP <STATUS -CODE >SP <REASON -PHRASE >

The HTTP version indicates the version number the server uses for its response.
The server must return a version number that is no greater than the one sent by
the client in its request. The status code provides information about the outcome
of the request. HTTP status codes are three-digit integer numbers where the first
digit identifies the general response category: 1xx indicates the progress of the
request prior to completion, 2xx indicates the success of the request, 3xx redirects
the client to another URL, 4xx indicates an error on the client’s side, 5xx indicates
an error on the server’s side. The reason phrase is a short descriptive text string
of the status code. Table 2.2 lists the most common status codes, together with
the standard reason phrases, and their meanings.

Header Fields

The HTTP header fields provide additional information about the HTTP message.
The formal syntax of a header is as follows:

<HEADER -NAME >:SP <HEADER -VALUE >

Each HTTP header is defined as a key-value string where the key is the header
name and it is followed by a colon and then the header value text. A number of
headers are listed in HTTP and are grouped into four categories based on the
function and type of message they serve.

• General headers: provide basic information about the message itself. General
headers are used in both request and response messages.

• Request headers: provide additional information about the request or the client
itself. Request headers are used only in HTTP request messages.

• Response headers: provide additional information about the response or the
server itself. Response headers are used only in HTTP response messages.

• Entity headers: provide meta-data about the resource carried in the message
body (when a resource is carried in the HTTP message body it is called an
entity). Entity headers used in both request and response messages.

HTTP headers are optional for an HTTP message and it is possible to send headers
in any order. However, the Host header must be present in each request according
to HTTP/1.1. Besides the standard HTTP headers, custom application-specific
header fields can be used. In particular, the use of X- prefix generally implies such
custom headers.

Message Body

For HTTP messages, the message body is optional. It is where the data is sent
from the client to the server (e.g., when using the methods POST, PATCH, and PUT),
or where the resource requested by the client is returned, or where the descriptive

31

{

"employees": [

{

"id": 101,

"name": "John",

"address": {

"houseNumber": 21,

"street": "2nd Street",

"city": "Palmerston North",

"state": "Manawatu",

"zipCode": "4445"

},

"contacts": [

"email1@employee1.com",

"email2@employee1.com"

]

},

{

"id": 102,

"name": "Peter",

"contacts": null

}

]

}

Figure 2.7: A Sample JSON Representation of Employee Data

<employees >

<employee >

<id >101 </id >

<name >John </name >

<address >

<houseNumber >21</ houseNumber >

<street >2nd Street </street >

<city >Palmerston North </city >

<state >Manawatu </state >

<zipCode >4445 </ zipCode >

</address >

<contacts >email1@employee1.com </contacts >

<contacts >email2@employee1.com </contacts >

</employee >

<employee >

<id >102 </id >

<name >Peter </name >

<contacts/>

</employee >

</employees >

Figure 2.8: A Sample XML Representation of Employee Data

32

Figure 2.9: An Example Record of HTTP Interactions

text is passed when an error occurs. Some of the common data formats for services
are as follows:

• Javascript Object Notation (JSON)

JSON [56] is one of the most popular interchangeable data serialisation formats
used in Web services. JSON syntax is derived from the JavaScript object literals,
but its format is text only (does not do any processing or computation).

33

JSON is simpler and lightweight. It makes reading and writing much easier
and simpler for humans and machines. The JSON syntax only defines two data
structures: objects and arrays. An object is a set of key-value pairs, and an
array is a list of values. JSON supports simple data type: strings, numbers,
booleans, and null. JSON syntax also permits nested objects and arrays to
represent complex data. As JSON has less extraneous information associated
with it, it is easier and faster for machines to parse and generate. JSON can be
simply parsed by a standard JavaScript function. JSON schemas describe the
structure of JSON-based data. The JSON Schema specification20 is a popular
schema language of JSON.

An example JSON object is given in Figure 2.7. It defines an employees object
(enclosed in { }) with an array of two employees (enclosed in []). The object
within the array contains another object named address and yet another array
called contacts. This example also includes other data types such as string,
number, null, etc.

• Extensible Markup Language (XML)

XML [50] is another common format for data interchange between Web ser-
vices. It is a text-based markup language derived from the Standard Generalized
Markup Language (SGML)21, i.e., it is not intended solely for data exchange
purposes but developed to define unique markup languages where appropriate
(to process and format documents and objects).

XML is powerful, and can be extended. The XML syntax describes two ba-
sic data structures: elements and attributes. XML elements generally contain
data text and markup by tags. Attributes are key-value pairs that describe the
properties of the elements. Elements can be nested to any depth within other
elements to represent complex data. XML does not specify a fixed set of tags
or any predefined semantics. It provides facilities for the user to define custom
tags. XML offers a wider selection of data types such as number, text, images,
charts, graphs, etc. It also has built-in support for metadata, attributes, and
namespaces. It powers query languages such as XPath and XQuery (to access
data) as well as transformations with XSLT (to store data in one form and con-
vert to any other format). In order to deal with XML, there are different types of
parsers available: SAX and DOM. XML has the ability to define a schema that
provides the constraints on valid data through standard W3C XML Schema
Definitions22 and then to validate it when producing and consuming the data.

Figure 2.8 gives a sample XML representation of the same JSON example.

2.4.3 Sample HTTP Exchange

Consider a prototype HTTP-based employee record management service where
the client can add, update or delete employees or access existing employee details.
The sample interaction trace in Figure 2.9 shows the structural elements of the
HTTP request and response messages, as well as an indication of the form of the

20. http://json-schema.org/specification.html [accessed 02 Aug. 2020]
21. https://iso.org/standard/16387.html [accessed 02 Aug. 2020]
22. https://w3.org/TR/xmlschema11-1 [accessed 02 Aug. 2020]

34

http://json-schema.org/specification.html
https://iso.org/standard/16387.html
https://w3.org/TR/xmlschema11-1

headers that could be contained. Transaction 1 uses the HTTP POST request to
create a new employee record (resource) and Transaction 2 uses an HTTP GET

request to retrieve data from that particular employee.

The client sends the POST request to the URI /employees first. The HTTP
body contains the name attribute value of the new resource, Dan. The HTTP
request includes an example of both message headers and body. The HTTP server
generates an ID for the new employee, creates an employee in its internal model,
and sends a response with 201 status code to the client. Status code 201 means
that this is a positive response to a request and that a new resource is being
created. This response also includes a Location HTTP header that indicates the
URI under which the created resource is available.

The client then submits a GET request to the URI /employees/103 to access
the details of the new employee. As shown in the figure, this HTTP request does
not contain an entity, so there are no entity headers and the message body is empty.
The request is handled by the HTTP server and a successful response message is
sent with 200 status code. The response message contains the employee object.

2.5 Summary

In this chapter, we explored the basic concepts around different domains relevant
to the study. First, we looked at the evolution of service-oriented computing and
claimed the importance of lightweight HTTP-based services for the development
of heterogeneous client-server applications. The fundamental principles of such
services have also been explained. Next, the advances in application testing along
with the approaches to test service-oriented applications were discussed and noted
the benefits of using the service virtualisation technique to test applications that
rely heavily on lightweight HTTP services. The fundamental principles of service
virtualisation have also been presented. After that, we summed up the evolution of
artificial intelligence techniques with an emphasis on machine learning and iden-
tified the significance of symbolic machine learning approaches in training models
that are simple and easy to understand. We then outlined the typical symbolic
techniques: attribute-based learning (i.e., decision tree and rule-induction) and
description logic learning, and identified the most widely accepted implementa-
tions of each category. In particular, the C4.5 is the commonly used decision tree
implementation, the RIPPER and PART are dominant schemes for rule learning,
and the OCEL is the well-established algorithm for description logic learning. The
selective algorithms have also been discussed in detail. Finally, we reviewed the
HTTP protocol and explored its syntax and semantics.

35

Chapter 3

Systematic Literature Review

This chapter outlines the related work to the research discussed in this thesis.
An overview of the review study is presented in Section 3.1. Section 3.2 briefly
explains the adopted approach. Section 3.3 presents a summary of the findings.

3.1 Introduction

The development of modern enterprise applications enables applications to be
composed using lightweight HTTP services (i.e., RESTful services). Testing such
an application (from the service consumer perspective) requires the availability
of services that the application makes requests to. However, continuous access
to the real dependent services may be limited or expensive. Simulating the be-
haviour of such services is, therefore, useful in addressing their absence and in
making progress on testing. This is basically what we base our research on. Ac-
cordingly, the main purpose of this review study is to comprehensively examine
existing approaches to mimic the behaviour of constrained services to which the
application-under-test is making requests. That would provide the state-of-the-art
software testing practises in service simulation. The review further conducts rel-
evant investigations into existing approaches to services testing (from the service
provider perspective), particularly for RESTful services, to better understand the
current state of the research.

There is also a growing demand for test automation in order to significantly
improve the performance of software testing. Artificial Intelligence (AI) is an emer-
ging approach for automating testing processes. Test practises could be optimised
using AI technologies, i.e., AI is intended to deliver more accurate results in less
time and offer promising means to make the entire testing process more efficient.
Here, we are interested in getting insights into how AI has been used to automate
software testing practises. The review, therefore, performs related investigations
into AI applications in software testing.

To conduct our review study, we adopt the formal systematic literature review
guidelines proposed by Kitchenham et al. [137]. It has attracted considerable in-
terest from researchers in Software Engineering as it provides a more objective
process for selecting, evaluating, and interpreting all relevant studies for a partic-
ular research compared to conventional review strategies.

36

Figure 3.1: The Systematic Literature Review Process

3.2 Methodology

A general overview of the review approach is given in Figure 3.1. There are primar-
ily five stages: formulating review questions, defining the search strategy, identi-
fying applicable literature, extracting data, and finally, formalising a discussion
to identify trends and research gaps. The rest of this section provides a detailed
explanation of the process.

3.2.1 Review Questions

The scope of our literature review and its emphasis can be outlined using the
following review questions (RQs):

RQ1 What software testing tools and frameworks are used to simulate the beha-

37

Table 3.1: Search Terms

Basic Term Alternative Terms

Testing Test, Application Testing, Software Testing, Unit Test-
ing, Integration Testing, Quality Assurance, Test Auto-
mation, Test Oracle, Test Generation

Services Web Services, External Services, Third-party Services,
SOAP Services, RESTful Services

Simulation Emulation, Modelling, Mocking, Mock Objects, Virtual-
isation

Artificial Intelligence Machine Learning, Symbolic Reasoning, Knowledge En-
gineering, Neural Networks, Decision Trees, Rule Learn-
ing, Support Vector Machines, Deep Learning, Classific-
ation

viour of services that an application-under-test interacts with and what are
the key benefits and limitations of each mechanism? This question would
explicitly describe techniques that are used in service-oriented applications
testing to mimic the behaviour of dependent services in order to address
their absence in application tests.

RQ2 What is the current state of the research in services testing? This question
would summarise what studies are being conducted in services testing. This
question is specifically included in order to find research efforts which are
used to test RESTful services.

RQ3 What is the current state of the research in which AI technologies are used
for software testing? This question would give an overview of the application
of AI techniques in software testing practises.

The review study would separately address the questions: the RQ1 will be ex-
amined in depth (as it deals with the main objective of this review), while the
RQ2 and the RQ3 will be examined in less detail (only to identify the present
state of the research).

3.2.2 Search Strategy

In order to retrieve the related literature, we perform the search process in two
steps:

1. Primary search phase: search for relevant literature in digital databases, search
engines, individual journals, conference proceedings, and grey literature sources

2. Secondary search phase: references are perused for each selected primary study
to identify important studies which may be missed during the initial search
process

A detailed summary of search strategies in the primary analysis phase is given
below.

38

((Testing OR Test OR Application Testing OR Software Testing OR
Unit Testing OR Integration Testing OR Quality Assurance OR
Test Automation OR Test Oracle OR Test Generation)

AND
(((Services OR Web Services OR External Services OR Third -party

Services OR SOAP Services OR RESTful Services) AND (Simulation

OR Emulation OR Modelling OR Mocking OR Mock Objects OR
Virtualisation))

OR
(Services OR Web Services OR External Services OR Third -party

Services OR SOAP Services OR RESTful Services)

OR
(Machine Learning OR Symbolic Reasoning OR Knowledge Engineering

OR Neural Networks OR Decision Trees OR Rule Learning OR
Support Vector Machines OR Deep Learning OR Classification)))

Figure 3.2: The Search String

Search Strings

The following criteria are used to construct the search string that will be used in
our search for relevant publications:

• Derive major search terms from RQs

• Identify synonyms for key terms

• Check keywords on any known publications

• Use boolean OR to incorporate synonyms

• Use boolean AND to restrict the search

The main terms derived from RQs and synonyms are outlined in Table 3.1. These
words are then combined with boolean operators (i.e., OR and AND) to formulate
the final search strings. Figure 3.2 lists the search string that is appropriate for
the automated search.

Data Sources

Table 3.2 details the selected sources to be used in our search for related publica-
tions. The choice is based on our prior knowledge of the research domain.

Study Selection Criteria

Study selection refers to the assessment of retrieved articles. For this purpose,
inclusion and exclusion criteria are defined to filter and eliminate any studies
which are irrelevant, so that only relevant papers can be used for data extraction.
Mainly, we choose to only consider primary studies published between January
2010 and May 2020.

Below is a description of other criteria for inclusion and exclusion of papers re-
turned from the initial search phase.

39

Table 3.2: Data Sources

Databases

ACM Digital library

IEEE Xplore

Springer Link

Google Scholar

Journals

IEEE Transactions on Software Engineering (TSE)

IEEE Transactions on Services Computing

Journal of Systems and Software (JSS)

Automated Software Engineering (ASE)

Software Testing, Verification and Reliability

Service Oriented Computing and Applications

Proceedings

International Symposium on Software Testing and Analysis (ISSTA)

International Conference on Software Testing Verification and Validation (ICST)

International Conference on Service Oriented Computing (ICSOC)

IEEE International Conference on Web Services (ICWS)

IEEE International Conference on Services Computing (SCC)

Enterprise Distributed Object Computing (EDOC)

IEEE Congress on Services (SERVICES)

Grey Literature

Technical Reports

IBM

Oracle

SAP

HP

CA

Repositories
Maven

GitHub

Discussion Forums Stack Overflow

Inclusion Criteria:

• Primary studies on approaches for emulating the interactive behaviour of ser-
vices to test applications from the perspective of the service consumers

• Primary studies on approaches to services testing from the perspective of the
service providers

• Primary studies on AI algorithms applied to software testing

Exclusion Criteria:

• Primary studies on approaches for emulating consumers who send requests to
services

• Primary studies on simulation practises but not connected with software testing

• Primary studies on software testing approaches but not related to services test-
ing

• Primary studies on AI-based approaches but not related to software testing

• Primary studies on techniques for testing AI systems

40

Before applying the search strategy to the actual large-scale search, we carry out
a pilot study to validate the search proposal on the basis of the relevant papers
that we already know and make a number of refinements.

3.3 Results and Discussion

The final list of 22, 25 and 46 papers linked to RQ1, RQ2 and RQ3 is obtained
through the search process. The subsections below describe the extracted data
addressing the RQs.

3.3.1 Service Simulation

A number of tools and approaches have been proposed to provide testing environ-
ments that are suitable for testing service-oriented applications independently of
the services on which they depend. These solutions fall under two groups: mock
objects and service virtualisation.

Mock Objects

A common practise for dealing with the absence of dependent services during test
runs is to replace the behaviour of constrained services with mock objects. Marri
et al. [138] describe the benefits of using mock objects for testing purposes. The
creation of mock objects is often supported by generic mocking frameworks, e.g.,
Mockito [24], EasyMock [78], Jmock [139], and Moq [79], which allow engineers
to manually create mock objects that serve as dummy implementations for actual
dependencies. Mostafa et al. [140] report on the widespread use of mock frame-
works in application development projects. In order to generate the environment
required to adequately test an application using mock objects, engineers must ex-
plicitly define the interaction behaviour by specifying the expected return values
for each method call. In particular, variations in these values require separate test
cases, which take more time and effort to maintain. This typical form of mocking
is also inexpressive and can not be reused [77].

Some authors aim to create more declarative and generalise mock objects. For
example, Tillmann and Schulte [141, 142] introduce a generalised variant called
parameterised mock objects (i.e., mock objects that represent symbolic variables)
to automatically represent various possible return values. Thus, a single call to
a mock object could return different values that the unit-under-test expects. In
order to facilitate multiple executions without parameterisation, Achenbach and
Ostermann [143] use non-deterministic choice technique (specify option sets of
return values) to mock objects. These methods could, however, only be used to
create mocks manually.

Various techniques are proposed to automatically construct generic mock ob-
jects as part of the automated test case generation. For example, Tillmann and
Schulte [144] introduce a tool that automatically generates parameterised mock
objects dependent on the symbolic execution of the .NET code. It uses symbolic
execution to analyse how a .NET unit test and a programme-under-test use a mock
object and applies a constraint solver to decide how different return values can

41

affect different execution paths. The tool later produces code that builds a mock
object for each observed execution path. Galler et al. [145] suggest an approach to
creating mock objects based on formal contact specifications of the original classes
(i.e., pre- and/or post-conditions). Islam and Csallner [146] propose a similar ap-
proach alongside a symbolic execution engine to Java with the exception that
mock objects are based on interfaces (with no concrete implementations) rather
than contracts. AutoMock [147] is another proposal that automatically synthesises
mock objects based on post-conditions resulting from symbolic execution of path
constraints. The work of Arcuri et al. [148] implements a technique in their auto-
mated test suite generation tool named EvoSuite to automatically create mock
objects using the Mockito framework. However, there is no assurance in these
proposals that the mocking behaviour is compatible with the behaviour expected
from the components being mocked. Further, these mock objects are not reused
across tests and other areas in the application development cycle.

Samimi et al. [149] provide an automated approach that defines and verifies the
mock objects against a contract and is reused through tests and other codes where
mock objects are required. It involves contract specifications written in a domain-
specific language (PBnJ) which describes the intended responses to be mocked
(requires engineers to learn the language). It uses a constraint solver to determine
the return values of method calls on these mock objects. Solms and Marshall [150]
offer a similar kind of solution where the component contract is specified in the
standard Java language. It automatically constructs and maintains mock objects
in accordance with the contract specification and allows for the reuse of mock
objects. It also verifies the correctness of the mock objects upon the contract.
However, all of the above techniques require source code, or explicit knowledge
or documentation of the system protocols to successfully generate mock objects,
most of which are not necessarily available to engineers who write mock tests.

Saff et al. [151] present a mocking technique using the recording and replay
approach in their work on test factoring for Java. It automatically captures and
records method calls and return values from a series of system tests. Afterwards,
it replays the recorded results to the code-under-test by acting as a mock object.
There are a few other approaches (e.g., [152, 153]) that suggest a similar mock
generation technique to assist the testing process. With this strategy, it is possible
to create mock objects without prior knowledge of the element being mocked. The
behaviour of mock objects, however, depends on the richness of the recorded traces
(availability of records for all possible method calls).

There are relatively few studies which explicitly apply the concept of mock ob-
jects to service-oriented applications testing. Mani et al. [154] present a framework
that automatically generates semantic service stubs (mock objects like entities)
from the behavioural contracts of the target services. The elements of a contract
include semantic annotations such as pre-conditions that a consumer must meet
in order to obtain the service, post-conditions that the service provides to the con-
sumer, and exceptional conditions. These semantic annotations are added to the
source code or WSDL specification of the service, and the annotated code is pro-
cessed through an automated translator to construct the source code for the stub.
A constraint solver is used to generate realistic test data to be returned when a
service operation is invoked. A semantic service stub would verify request messages

42

and return the appropriate response and exception messages along with test data,
simulating some of the behaviour of the service. Test cases for a service-oriented
application, therefore, can be carried out throughout the entire development cycle
by invoking the service stubs. Ashikhmin et al. [155] use the RESTful API Mod-
eling Language (RAML) specification to automatically build mocks of RESTful
services. The RAML specification describes the service interface, endpoints, ap-
propriate request format, and expected response to those requests (particularly a
JSON scheme to describe the response body structure). The solution accepts the
RAML specification as input and implements a mock service to be operated as
a Docker [156] container. A mock service would handle incoming requests, start-
ing with the validation of the request endpoints and parameters based on the
RAML specification, and it would generate an appropriate response body based
on the JSON schema specified in the RAML. Reza and Van Gilst [157] introduce
RESTful service simulation framework that encompasses the need for engineers to
input the API specification as XML scripts into the framework. The work of Soni
et al. [158] proposes a similar framework called MockRest in Java. Overall, the
existing solutions illustrate the possibility of simulating the behaviour of actual
services by producing responses using mock objects. Then, there are Web service
testing tools like SoapUI [83] that support the creation of mock services for both
SOAP and RESTful services. Some of these tools allow mock services to be cre-
ated automatically based on interface specifications while others are required to
configure requests and associated responses to simulate actual service behaviour.
However, the lack of detailed knowledge of the services or access to the source code
and/or service documentations prohibits the use of either of the aforementioned
techniques.

Service Virtualisation

Service Virtualisation (SV) is another practise used in the software development
industry to address the dependency constraints in application testing. This cor-
responds to (automatically created) mock objects. It is an approach to replace
the target services of an Application-Under-Test (AUT) by virtual service models,
ensuring that engineers have continuous access to realistic testing environments.
A virtual service model is often created by recording traffic between the AUT and
the live service rather than creating the interaction pattern from scratch based
on service documentations. SV can represent much realistic behaviour relative to
simple mocks.

There are a number of white papers (e.g., [159–161]) that explain SV, its
advantages and express the concept of using SV in testing service-oriented ap-
plications. Subbiah et al. [162] share the idea of constraint-free testing using SV.
Similarly, Upadhyay et al. [163] discuss how SV could address the challenges in
testing service-oriented applications.

Multiple vendors, including CA [8] and Parasoft [9], and some open-source pro-
jects (e.g., Wiremock [10] and Hoverfly [11]) offer SV tooling. These solutions simu-
late the behaviour of dependent services through synthesising responses mainly by
recording and then replaying interaction messages. Most of these support multiple
application-layer protocols. However, all rely on a priori knowledge of the service
structure and message protocol. Possibly responses are manually modified after

43

Table 3.3: Service Virtualisation Tools Comparison

Tool Protocol Supported Reasons on State Commercial Uses AI

Parasoft Most Yes Yes No

CA Most Yes Yes Yes

Wiremock HTTP Yes No No

Hoverfly HTTP Yes No No

the recording (i.e., when responses are based on request attributes and data). The
quality of synthesised responses depends on the availability of traffic recordings for
every potential interaction scenario. In addition, the tools function as a black-box
(engineers who use them can not understand how responses are produced by a
specific service). Table 3.3 shows a general evaluation of these tools.

Opaque SV [12–15] is a proposal where dependent services are emulated by
synthesising responses using semantic models inferred from recorded interactions.
It allows responses to be created automatically, without requiring prior know-
ledge of the service protocols. The inference is done by means of clustering and
bioinformatics-based learning techniques, i.e. the VAT cluster algorithm [164] is
used to group recorded transactions by request type, the Multiple Sequence Align-
ment algorithm [165] is used to derive a request prototype for each cluster, and the
Needleman-Wunsch algorithm [166] is used to locate the prototype closest to the
incoming request (thereby to identify the matching cluster) and to identify com-
mon fields between both the request and the response messages of the centroid
transaction of the selected cluster. The approach will later take the response from
the centroid transaction of the cluster and dynamically modify the identified fields
by copying the related information from the incoming request in order to generate
a playback response. This approach has been incorporated successfully into the CA
Service Virtualisation commercial product. FancyMock [18] is relatively similar to
the Opaque SV that focuses on arbitrary message formats. It uses a different clus-
tering algorithm (i.e., K-Nearest Neighbors classification algorithm [89]) to group
requests and response messages, and sets a bound to each cluster size. It constructs
a dictionary of payload fields for response clusters. The framework determines the
closest matching request to an incoming request and selects a corresponding re-
sponse to generate a response. Similar payload fields between selected messages
will be modified from the incoming request values, and all other fields of the selec-
ted response will be randomly filled with dictionary values. However, all authors
ignored the temporal properties of protocols when formulating responses, i.e., the
response generation solely on the basis of the incoming request and the recorded
interaction traces, but not the service state history. Therefore, it is recommended
that these techniques are only appropriate if the target service is stateless (when
all the information needed for a correct response is provided in the request) or if
the test scenario does not require highly accurate responses.

The latest research by Hossain et al. [16, 17] extends previous SV studies and
introduces a framework for simulating service behaviour, taking into account the
state of the service when synthesising responses from recorded interactions. Clus-
tering techniques are used to group requests as well as response messages into type-

44

specific groups, and a single representation (prototype) is inferred for each batch.
The kTail algorithm [167] is used to infer a message dependency model to learn
the service state from the record-specific interaction history (use request/response
types for each transaction). A data dependency model (i.e., a set of substitution
rules) is derived by comparing the response prototypes with the corresponding
request prototypes from each response cluster. The technique would then use the
message dependency model to identify the correct response type for incoming re-
quests (which then be used to select the response prototype). For message-specific
fields of the selected response prototype, the data dependence model would be used
to insert the required data values. The record-specific fields would be replaced by
values from one of the randomly selected interactions of the respective response
cluster. This SV solution, however, only takes into account the service’s current
status when choosing the response type. But, depending on the state of the ser-
vice, the response body can also be changed, and such changes are not considered
when formulating responses in this proposal. Further, it does not incorporate all
service features (i.e., message headers) when constructing responses. The service
models produced in all of the above-mentioned SV studies are also a black-box
for the engineers who use them. It is not possible for engineers to comprehend
the application-layer protocol and the underline service. But engineers often want
to fine-tune and adjust the generated responses. This requires that virtual ser-
vice models be produced in a format that is convenient for them to interpret and
modify.

Another recent study by Enişer et al. [19,20] proposes two separate SV meth-
ods which make use of past service history transactions when inferring service
models from recorded interactions. One of the solutions proposed uses classifica-
tion as an inference mechanism: [19] employs the rule-based RIPPER algorithm
as the base classifier (which we use in our work as well) but [20] does not ex-
plicitly describe which classification algorithms are used. The other SV proposal
makes use of deep neural networks. Information about the request type and con-
tent along with interaction history (use previous request/response types/contents
up to 10 transactions) are the features that provide input to algorithms whose
task is to induce models to predict the response type and content for a given re-
quest. One-hot encoding is used to provide numerical encoding for input features
with categorical data. In terms of training time, the classification-based solution
works better, but virtual service models trained by neural networks generate more
accurate responses. It is, therefore, recommended that the methodology based on
classification could be used when the test scenario needs a fast but not very accur-
ate virtualisation. While this work is close to the study presented in this thesis,
some significant differences do exist. Their approach lacks the potential for reliable
prediction of HTTP-based services. The procedure is principally biased towards
predicting the response state. When training models, it uses fixed history sizes and
also does not include all service features. The datasets used are not satisfactory
as experiments are small and may miss important aspects of real-world, state-of-
the-art services. The interpretability of the resulting models is not considered to
be a significant measure.

It is evident that there is a growing interest in SV related approaches in both
industry and academia. SV is a promising method in service-oriented applications

45

testing as it eliminates the constraints on accessing real dependent services and
isolates the application under test. SV could be particularly beneficial in replacing
lightweight HTTP services on which modern enterprise applications rely heavily.
Existing SV studies propose solutions for the automated creation of virtual models
of services based on recorded traffic and employ machine learning techniques as
part of their implementations. However, the usability of these approaches remains
limited. It is not possible to generate accurate approximations of real responses
of HTTP/REST services with current practises (as valid responses should be gen-
erated depending on the internal service state). On top of that, their results lack
provenance. There is, therefore, a need for a novel SV technique that can automat-
ically generate behavioural responses, while achieving a high degree of accuracy
with human comprehension. This is our major motivation in this thesis.

3.3.2 Services Testing

Services testing has been examined extensively in the literature. Some prior studies
(e.g., [168–174]) cover broad surveys on Web service testing.

Most of the work focused primarily on black-box testing approaches (the test-
ing process does not require the implementation of source code) for conventional
SOAP-based services using their Web Services Description Language (WSDL)
specification, like for example [175–182].

There are testing methods that use formal specifications or models to test
RESTful services. For example, Chakrabarti and Kumar [183] present a func-
tional testing framework called Test-the-REST to automatically create test cases
from service specifications written in the Web Application Description Language
(WADL) [184]. This approach is further extended in the work of Chakrabarti and
Rodriquez [185] incorporating testing of service connectedness (possibility of ac-
cessing any other resource from a root resource) based on models representing the
connections between resources. Ed-douibi et al. [186] also suggest a model-driven
approach for testing RESTful services based on their OpenAPI specifications1.
Fertig and Braun [187] present a domain-specific language to describe RESTful
service models and further emphasise the automated generation of test cases from
these models. UML protocol state machines are introduced by Pinheiro et al. [188]
to construct behaviour models for test case development.

Property-Based Testing (PBT) has been used to test RESTful Web services.
The key concept behind PBT is to test the validity of the properties by generat-
ing random input data and verifying the expected behaviour. Seijas et al. [189]
propose a PBT methodology based on property-based models that depicts the
idealised form of RESTful services. Similarly, Karlsson et al. [190] applies a PBT
approach to automatically generate tests employing OpenAPI specifications. The
method produces static test cases and arbitrary parameter values and sequences of
operations that exploit previously returned results to perform stateful operations.

Segura et al. [191] propose a Metamorphic Testing (MT) approach for RESTful
services to alleviate the oracle problem (difficulty in assessing whether the outcome
of a method call is correct, within a reasonable amount of time). MT focuses on

1. https://github.com/OAI/OpenAPI-Specification [accessed 02 Aug. 2020]

46

https://github.com/OAI/OpenAPI-Specification

the analysis of the relations among the inputs and outputs of multiple executions
of the service-under-test.

Fuzz testing is an increasingly popular testing technique. While first-generation
black-box fuzzers generated random input in order to expose defects, modern grey-
box and white-box fuzzers use or even infer models of the AUT in order to increase
the chances of discovering bugs. An example is fuzzers that can infer the gram-
mar of the programming language or data format [192], or use dynamic feedback
from test executions (such as coverage). Recently, some of those ideas have been
applied to RESTful services testing [193]. Fuzzing uses AI to generate the ac-
tual tests, whereas our approach uses AI to generate services the (user-written)
tests interact with, and we use fuzzing techniques to construct the datasets for
evaluation (Section 4.3 details the data generation process).

There are other testing approaches that generate tests for RESTful Web ser-
vices without any formal specification or model, but instead use the service’s source
code, as for example Arcuri [194] proposes a tool called EvoMaster2 to automatic-
ally collect and exploit white-box information from code instrumentation to create
test cases at system level using evolutionary algorithms. Zhang et al. [195] offer an
extension to the EvoMaster tool that takes the resource relationships into account
while creating test cases.

It is clear from these findings that a range of testing models, tools, and tech-
niques are proposed as the popularity of RESTful services rises. Many of them ad-
dress black-box testing (focusing on testing based on the API specifications). These
studies propose specification-based test cases generation techniques for REST Web
APIs by relying on their interface definitions, particularly the OpenAPI specific-
ations. When the source code is fully available to developers, white-box testing
would become a viable option. However, the related studies on white-box testing
for REST services are rather limited. On the other hand, there is indeed a growing
number of research studies suggesting fuzz test tools for REST APIs.

3.3.3 Artificial Intelligence in Software Testing

Artificial Intelligence (AI) techniques, in particular Machine Learning (ML) al-
gorithms, have been adapted and used for the automation of software testing
activities. Few review articles (i.e., [196–198]) contain an overview of existing lit-
erature on ML-based approaches to software testing. King et al. [196] discuss how
AI is to be used to test applications from an industry perspective.

There are research studies which use ML to automate test case generation. For
example, Bergadano and Gunetti [199] present an approach for generating test
cases that distinguish a given programme from an alternative set of programmes.
Inductive Logic Programming (ILP) [102, 103] induces alternative programmes
that are equivalent to the original that users can interpret. Sant et al. [200] sug-
gest a technique that automatically derives test cases for Web applications from
statistical ML models (i.e., Markov models) based on user session data. Ahmed
and Hermadi [201] and Wegener et al. [202] use evolutionary algorithms to produce

2. https://github.com/EMResearch/EvoMaster [accessed 02 Aug. 2020]

47

https://github.com/EMResearch/EvoMaster

test cases. Rosenfeld et al. [203] also present a methodology that leverages ML al-
gorithms to generate functional test cases for mobile applications. Chen et al. [204]
apply a semi-supervised K-Means clustering algorithm for the selection of test
cases during regression testing. The approach groups test cases into clusters (test
cases in the same cluster are considered to have similar behaviours). Some studies
detail the use of ML algorithms to support test case refinement and evaluation,
e.g., Briand et al. [205,206] present a semi-automatic process for re-engineering test
suites based on classification rules induced from the C4.5 tree learning algorithm
that relate properties of test inputs to output equivalence classes. The engineers
can easily interpret these rules to determine potential refinements in test suites.
Mayrhauser et al. [207] use Artificial Neural Networks (ANNs) to build a model
for estimating the effectiveness of the generated test cases. Gove and Faytong [208]
also employ learners in Support Vector Machine (SVM) and grammar induction
to identify infeasible test cases. Grammar induction yields results which make it
clear for engineers to understand. In terms of efficiency, the SVM-trained classifiers
perform well.

Wang et al. [209] explore how SVM could be used to automatically produce
test oracles for reactive systems without relying on software specifications. The
feature vectors created from the test traces are used as inputs for the proposed
method. The generated model works as a test oracle. The work of Agarwal et
al. [210] evaluates the effectiveness of Info Fuzzy Networks (IFN) and ANNs to
implement test oracles. Test cases are used as inputs to the proposed approach.
The model learned is able to predict the expected behaviour of the new test
cases. Similarly, Singhal et al. [211] outline two ML solutions to generate test
oracles. The first method is based on ANNs, and the second is based on decision
trees. Vanmali et al. [212], Shahamiri et al. [213–215], and Gholami et al. [216]
also recommend ANN algorithms to create automated test oracles. The work of
Monsefi et al. [217] combines a deep learning and a fuzzy inference system to
generate oracles. In addition, Hewson et al. [218] propose a ML-based approach
to generate statistical test oracles for performance regression testing. Kanewala et
al. [219], on the other hand, suggest a method based on the C4.5 tree algorithm
to make metamorphic relationship predictions to support the test process without
the need for test oracles.

Several research works use AI to assist with test planning, like for example,
Cheatham et al. [220] use the COBWEB decision tree type learning algorithm
to identify factors that influence the testing time. Software metrics (e.g., code
complexity) are used as input for the learning process, and a tree model is built
as output to predict the testing time for the new software. Some other research
efforts are the work of Briand et al. [221] proposing a method based on the C4.5
decision tree algorithm to predict potential software bugs and locate the actual
bugs to reduce debugging time, and the work of Wong and Qi [222] on suggesting
an adaptive solution for locating errors based on a neural back-propagation (BP)
network.

The application of AI to fuzz testing has received significant attention as
well. The most widely adopted AI methodology for fuzz testing is deep learning.
Samplefuzz [223], for example, uses Sequence-to-Sequence (Seq2Seq) Recursive
Neural Networks to automatically learn a language model for PDF objects from

48

the sample data. The generated model can produce a large number of new PDF
objects that can be used to generate test cases. DeepFuzz [224] also uses Seq2Seq
to learn the grammar of the correct C programme. It can generate grammatically
correct C programmes on the basis of the learned model. NeuFuzz [225] learns
about the known vulnerabilities programmes and unknown vulnerabilities in the
sample through Long Short-Term Memory Networks (LSTMs) to discover the ex-
ecution path that could contain the vulnerabilities. Fan and Chang [226] propose
an approach that uses deep learning for black-box fuzzing of network protocols.
Several other studies exist, such as Cheng et al [227], Hu et al. [228], Cummins et
al. [229], Sablotny et al. [230], Rajpal et al. [231], and Gong et al. [232], which use
deep learning in fuzzing.

In the context of Web services testing, Ioini et al. [182] propose a method
based on the J48 decision tree algorithm (i.e., C4.5 [26]) to provide service pro-
viders with the means to expand the WSDL specifications that will allow service
consumers to automatically validate their calls on the client-side. The learner re-
ceives interaction traces with request parameters and response messages as inputs.
As output, it constructs a decision tree model for the input parameters of the ser-
vice. The service provider could update existing WSDL specifications using the
induced rules from the tree model. Such a new version of the WSDL file could
be later used by service consumers to annotate their service calls. RESTler [193]
offers an automatic black-box solution to AI-driven fuzz testing of REST services
through its API. Existing service virtualisation research efforts [12–20] often use
AI techniques to infer service semantic models based on recorded traffic that assist
service consumers in testing applications that rely heavily on external black-box
services in isolation (see Section 3.3.1 for an extensive survey).

All research works demonstrate that the use of AI/ML algorithms is a success-
ful way of automating a wide range of software testing practises. Amongst them,
studies based on ILP and decision tree/rules (i.e., symbolic AI) are capable of gen-
erating inference models that are easily interpretable. These techniques produce
rules which can be customised to the requirements.

3.4 Summary

In this chapter, we reviewed literature from different domains that appear to be
most relevant to our study in order to determine the scope of our research work.
First, we examined existing approaches and tools to overcome the dependency
issues in service-oriented application testing, and confirmed that service virtual-
isation is the most promising practise. We also analysed current approaches to
service virtualisation and identified their major limitations which we aim to ad-
dress in this thesis. We then surveyed different approaches to services testing and
the latest work on AI-driven approaches to software testing which are import-
ant references to our research. To the best of our knowledge, this research is the
first to study the virtualisation of HTTP-based services and to focus directly on
producing HTTP responses with human-readable logic.

49

Chapter 4

Data Acquisition

The chapter outlines the network traffic datasets that will be used to perform the
experiments in this study. These datasets are designed to be suitable for repro-
ducible research in service-oriented computing in general and can be considered
as one of the major outcomes of this thesis. Section 4.1 presents an overview of
the intent of such datasets and their requirements. Details of the datasets can be
found in Section 4.2 and Section 4.3.

4.1 Introduction

Service-Oriented Computing (SOC) is a popular computing paradigm that sup-
ports accelerated, low-cost development of distributed applications in heterogen-
eous environments. Over the past few years, RESTful HTTP-based services have
been the dominant technology for realising SOC. This basically allows clients and
servers in various languages and running in diverse platforms to work seamlessly
together by sending HTTP requests and responding to them. This has, however,
created new challenges both for the research and for the engineering community.
Of particular interest are scalability, reliability, and security of (systems using and
providing) services.

Like other fields of computing research, studies of SOC should aim for repro-
ducibility [33,34]. There is a wider push for reproducibility in computing research,
with some disciplines now including research artefact evaluation as part of the
standard peer-review process [233]. One way to facilitate the reproducibility and
also the dissemination of research is the provision of standardised datasets. By
using carefully sourced and/or constructed datasets, research results become (1)
easier to reproduce (2) comparable (i.e., results from different studies can be com-
pared), and (3) generalisable (i.e., we can assume with a certain amount of con-
fidence that results from a study can be applied to other data/systems that were
not studied).

The provision of such datasets is a key contribution of this thesis. We present
GHTraffic, a dataset comprising HTTP transactions extracted from a successful,
large-scale service, GitHub, by reverse-engineering API interactions from existing
repository snapshots, and augmented with synthetic API interactions that cannot
be recovered from snapshots, namely (non-state-changing) queries. In addition,
three other HTTP datasets are generated by creating random traffic targeting the

50

services offered by Twitter, Google Tasks, and Slack. In order to form transactions,
various operations to create, read, update, and delete (CRUD) service-specific re-
sources are formed, and the respective responses are recorded, simulating service
interactions by users through applications. The resources, the operations inter-
acted with are tweets (Twitter), messages (Slack), and lists (Google Tasks). All
these dataset creation processes result in large, rich, and diverse datasets. We argue
that these datasets can be used for a wide range of studies, including performance
benchmarking and service virtualisation (which is the basis of our research in this
thesis).

The rest of the section is organised as follows: use cases and requirements are
discussed in detail in Section 4.1.1 and an overview of related work is presented
in Section 4.1.2.

4.1.1 Use Cases and Requirements

Three scenarios for the type of research that motivates the construction of the
datasets are described below.

Performance Benchmarking

Modern enterprise applications usually cooperate with a variety of software ser-
vices such as Web servers, application servers, databases, proxies, and Web service
clients to perform their functionalities. These services need to be tested in order
to ensure that they are able to deal with large data and transaction volumes. In
particular, performance benchmarking can provide useful indications about how
services behave under different load conditions. A typical benchmarking tool gen-
erates synthetic workloads or replays recorded real-world network traffic in order
to simulate realistic workloads and measures performance-related metrics, such as
latency and throughput.

A dataset that is large, complex, and extracted from actual network traffic
facilitates the benchmarking of such systems with non-trivial, realistic workloads.

Functional Testing

A standard dataset can also be employed for functional testing. For instance, it can
be used to test a generic REST framework with a CRUD back-end provided by a
(non-SQL) database. This would take advantage of the fact that such a dataset en-
codes a certain semantics, usually a combination of the standard HTTP semantics
(for instance, the idempotency of certain methods) plus additional, application-
specific rules and constraints. In other words, a suitable dataset can provide an
oracle of correct system and service behaviour. As an example, consider an HTTP
GET request to a named resource. This request should result in a response with
200 status code if there was an earlier successful POST transaction for the resource
and no successful DELETE transaction between the POST and the GET, and 404

otherwise. A suitable dataset should contain transaction sequences to reflect such
behavioural patterns.

51

Service Virtualisation

Service Virtualisation (SV) [6,7] is an approach to build a semantic model of a ser-
vice based on recorded traffic. For instance, SV will try to simulate the behaviour
of an actual service by generating responses using models inferred from recor-
ded transactions. This inference is usually done by means of supervised machine
learning. The main application is to test systems that heavily rely on external
black-box services in isolation. This corresponds to (automatically created) mock
objects popular in application testing [77].

A suitable standardised dataset could be used to test SV. It would provide
an oracle of actual service behaviour to be used in order to assess the quality of
inferred behaviour.

Requirements

From the use cases above, we extract the following set of requirements to guide
the construction of the datasets.

REQ1 Large, yet manageable: a good dataset should be of significant size to
facilitate the use cases outlined and obtain results that are generalisable.
However, this often conflicts with usability as experiments on large data-
sets are more difficult to setup and time-consuming. This can be addressed
by providing several editions of different sizes.

REQ2 Ease of use: a good dataset should be presented in a format that is easy
to process and preferably includes scripts to facilitate the processing and
analysis of data, and a schema that (formally) describes the format used
to represent data.

REQ3 Reproducible, independent, and derived from principles: a good
dataset should not be produced ad-hoc, but extracted from real-world
data or synthesised using a well-defined process unbiased by its use for
one particular experiment.

REQ4 Current: a good dataset should reflect the state-of-the-art use of HTTP-
based services. While this is difficult to assess in general, we argue that by
extracting the dataset from the traffic of one of the most successful active
Web services known for its excellent scalability and robustness, this can
be achieved.

REQ5 Precise and following standards: a good dataset should contain trans-
actions that comply with the syntax and semantics of HTTP, and the
service(s) used.

REQ6 Diverse: a good dataset should support a wide set of HTTP features, such
as various HTTP methods and status codes. In particular, it should go
beyond the exclusive use of POST and GET requests which is a characteristic
of older-generation Web applications designed for browser-based clients.

52

4.1.2 Related Work

This section provides an overview of the standard benchmarks and datasets con-
taining HTTP message traces.

SPECweb2009 [234] is a standardised Web server benchmark produced by
the Standard Performance Evaluation Corporation (SPEC). It is designed to evalu-
ate a Web server ability to serve static and dynamic page requests. The benchmark
comprises four distinct HTTP workloads to simulate three common types of con-
sumer activities. The first workload is based on online banking, the second one is
based on an e-commerce application, and the third one uses a scenario where sup-
port patches for computer applications are downloaded. All these workloads are
developed by analysing log files of several popular Internet servers. The benchmark
uses one or more client systems to generate HTTP workloads for the server accord-
ing to the specified workload characteristics. Each client sends HTTP requests to
the server and then validates the response received. However, the benchmark uses
only HTTP 1.1 GET and POST requests and all of these requests are expected to
result in responses with 200 status code. Server errors are especially communicated
back to clients by generating error pages that return 200.

TPC Benchmark W (TPC-W) [235] from the Transaction Processing Coun-
cil is a notable open-source Web benchmark specifically targeted at measuring the
performance of e-commerce systems. TPC-W simulates the principal transaction
types of a retail store that sells products over the Internet. The workload of this
benchmark specifies emulated browsers that generate Web interactions which rep-
resent typical browsing, searching, and ordering activities. It creates different GET
and POST requests for specific documents and collects performance data. All these
requests are expected to result in responses with 200 status code.

Rice University Bidding System (RUBiS) [236] is another open-source
Web benchmark. It is based on an online auction site, modelled after eBay. This
benchmark implements the core functionality of an auction site, in particular,
selling, browsing, and bidding. The benchmark workload relies on a number of
browser emulators that mimic the basic network interactions of real Web browsers.
Read and write interactions are implemented using HTTP GET and POST requests.

DARPA dataset [237] by the MIT Lincoln Laboratory is a widely used eval-
uation dataset in intrusion detection research. There are three major releases (i.e.,
1998, 1999, and 2000). Each release contains tcpdump files carrying a wide variety
of simulated normal and malicious Web traffic in a military network setting. These
network packet dumps can be used as a direct input to packet filtering engines such
as Wireshark to extract sub-datasets that only contain HTTP request/response
messages as relevant to our work. In particular, it is possible to use DARPA 2000
to obtain a dataset that holds 25,000 HTTP transactions (including HTTP 1.0
GET requests and responses with 200 status code).

CSIC 2010 [238] by the Information Security Institute of Spanish Research
National Council is another publicly available dataset intended for the purpose of
testing intrusion detection systems. It contains normal and anomalous HTTP 1.1
POST and GET requests targeting an e-commerce Web application. However, the
dataset does not contain response data.

53

Table 4.1: Overview of HTTP Benchmarks and Datasets

Name HTTP Method Response Code Count

TPC-W GET, POST 200 13,500,000

RUBiS GET, POST 200 4,030,000

DARPA 2000 GET 200 25,000

CSIC 2010 GET, POST - 36,000

Opaque SV GET, POST 200 1,825

There are few other HTTP datasets relating to SV studies. For example, the
work of Versteeg et al. [12–15] describes a dataset with HTTP messages. The
authors study Opaque SV using a relatively small HTTP dataset (consists of
1,825 request/response messages) collected through the Twitter REST API1. It
includes both POST and GET requests returning 200. However, none of the datasets
employed in existing SV studies represent a wide range of HTTP features present
in modern Web services or are publicly available for research purposes.

Table 4.1 summarises related benchmarks and datasets showing their request
types, response codes, and transaction count. It is apparent that all these datasets
only use a small fraction of the HTTP in terms of methods and status codes.
They are somehow biased towards performance testing for older Web server where
(static) pages are retrieved and in some cases created. They do not reflect the
richness of modern Web APIs that take advantage of a much larger part of the
HTTP.

Standard datasets have been widely used to support research in many other
areas of Computer Science. For instance, the programming language and soft-
ware engineering communities use datasets such as DaCapo [239] and Qualitas
Corpus/XCorpus [240, 241] for benchmarking and empirical studies on source
code. Sourcerer [242] is an infrastructure for large-scale collection and analysis
of open-source code. The Sourcerer database is populated with more than 2,000
real-world open-source projects taken from Sourceforge, Apache, and Java.net.

The machine learning community uses several standardised datasets. This in-
cludes UCI Machine Learning Repository [243] by the Center for Machine
Learning and Intelligent Systems at the University of California, Irvine. It provides
a collection of benchmark datasets which can be used for the empirical analysis of
learning algorithms. Another example is Google’s Kaggle2. It offers ready-to-use
public datasets for machine learning experiments that often include a description,
usage examples and, in some cases, algorithms to solve the prediction problem
associated with that particular dataset.

1. https://developer.twitter.com [accessed 02 Aug. 2020]
2. https://kaggle.com/datasets/ [accessed 02 Aug. 2020]

54

https://developer.twitter.com
https://kaggle.com/datasets/

4.2 GHTraffic Dataset

This section discusses the design of GHTraffic and the methods and tool used
to construct it, then presents the results of some measurements on the dataset
and provide basic instructions on how to obtain and use the GHTraffic. It also
addresses versioning of the dataset and briefly reviews threats to validity.

4.2.1 Methodology

Input Data Selection

Over the past few years, GitHub3 has emerged as the dominant platform for col-
laborative software engineering. It contains a rich set of features to manage code-
related artefacts, including commits, pull requests, and issues.

There are several clients provided by GitHub that can be used to access its
services, including the Web front-end and the desktop app. Many developers also
use the standard git command line interface (CLI). In order to facilitate the de-
velopment of a rich product ecosystem to access its services, GitHub also provides
a REST API4. This allows third parties to integrate GitHub services into their
products. Examples include mobile clients as well as IDE and build tool integra-
tions (plugins).

The GitHub REST API provides a rich set of services to create, read, update,
and delete resources related to the core GitHub functionality. It employs a large
subset of HTTP features for this purpose and is, therefore, semantically richer
than the datasets discussed on Section 4.1.2. Unfortunately, GitHub does not
provide direct access to the recorded API interactions, so this information cannot
be directly used for dataset construction.

An interesting use of the GitHub REST API for research purposes is GHT-
orrent [244]. This project uses the API to harvest information from repositories
and stores that information by creating snapshots. These snapshots can then be
downloaded and imported into a local MongoDB or MySQL database and queried.
As of Apr. 2020, GHTorrent offers more than twenty terabytes of downloadable
snapshots. These snapshots have already been used in empirical studies, examples
include Gousios et al. [245] work on the pull-based software development model
and Vasilescu et al. [246] work on the use of crowd-sourced knowledge in software
development.

While GHTorrent provides a static view on the state of GitHub at certain
points in time, we are interested in a more dynamic view of how interactions of
clients with the repository have created this state. The basic idea is to reverse-
engineer the respective API interactions (i.e., HTTP transactions) by cross ref-
erencing GHTorrent data with GitHub API functions. This has some obvious
limitations. Firstly, we do not know whether all of these records were created via
the REST API. They could have been created or altered using a different, or older
version of the API, or via GitHub internal systems that bypass the API. We do not

3. https://github.com/ [accessed 02 Aug. 2020]
4. https://developer.github.com/v3/ [accessed 02 Aug. 2020]

55

https://github.com/
https://developer.github.com/v3/

Figure 4.1: GitHub’s Data Schema

consider this as a significant limitation. As far as the data inferred transactions are
concerned, this will only have an impact on the User-Agent header. Secondly, the
static data of the snapshots means that certain API interactions are not visible.
This includes all read access (i.e., GET requests), requests that fail (e.g., a DELETE

56

request resulting in a 404 response code will have no effect on the database), and
shadowed requests (e.g., a successful PUT request followed by a successful DELETE
request). To deal with those un-observable requests, we decided to augment the
dataset with synthetic data.

Scope

GHTorrent collects a large amount of data on the terabyte scale. To make the
data volume more manageable (REQ1), we decided to focus on a particular sub-
set of GHTorrent, the Issue Tracking System. The issue tracking system itself
references other entities5 of the overall data model. The respective model (UML
2.0) is depicted in Figure 4.1. It is a refined version of the relational schema used
in GHTorrent6. The stereotypes indicate which entities were included in the con-
struction of the GHTraffic dataset.

Issues reference multiple other entities such as comments, milestones, labels,
and users. While it is important to model some of them to facilitate our use cases,
we decided to limit this to user, milestone, and label data. In particular, while issue
comments look like integral parts of the issue tracking system, they are modelled
in a relational style as one-to-many relationships via back-references. This means
that comments reference the issue they are associated with, but issues do not
directly reference comments.7

The design of the GHTraffic is driven by the use cases and the requirements
derived from them. We wanted to construct a dataset that is large and diverse, and
uses the features seen in modern Web services. This can be achieved by restricting
the dataset to user, milestone, and label. Adding issue comments and other related
data does increase the size further but does not add new features to the dataset.
On the other hand, the increased size makes the dataset less manageable. As we
will demonstrate in Section 4.2.2, the dataset is already sufficiently large.

Data represented in different entities is usually inlined in data returned by
API calls. This means that if issue information is returned via the API, the JSON
representation of the issue contains information about the issue and a summary
of the users, labels, and milestones associated with it. Part of this information
are URLs that can be used to query the full information for the respective entity.
We treat these URLs as external, un-resolved references in the sense that our
dataset does contain transactions to create, modify, delete or query these resources.
Note that the GitHub API already uses references to external resources for which
resolution cannot be guaranteed, an example for this is the gravatar id attribute
pointing to a picture of the user provided by the gravatar8 service. The GHTraffic

dataset is based on the 04 Aug. 2015 GHTorrent snapshot9. This is the largest

5. Entity is used in this paragraph in the context of entity-relationship data modelling [247],
as opposed to the use of entity in the context of HTTP as defined by [133, Sect. 7]
6. http://ghtorrent.org/relational.html [accessed Apr. 03 2020]
7. The JSON representation of an issue contains a field comments, but this contains only
the number of comments for the respective issue. This number can then be used to construct
comments queries.
8. https://pt.gravatar.com/ [accessed 02 Aug. 2020]
9. The respective dump is available from http://ghtorrent-downloads.ewi.tudelft.nl/

mongo-full/issues-dump.2015-08-04.tar.gz [accessed 02 Aug. 2020]. The download size is

57

http://ghtorrent.org/relational.html
https://pt.gravatar.com/
http://ghtorrent-downloads.ewi.tudelft.nl/mongo-full/issues-dump.2015-08-04.tar.gz
http://ghtorrent-downloads.ewi.tudelft.nl/mongo-full/issues-dump.2015-08-04.tar.gz

Figure 4.2: The Processing Pipeline

Figure 4.3: GHTraffic Schema

release of issues MongoDB database dumps as of Apr. 2020.

Processing Pipeline

An abstract overview of the infrastructure used to create the GHTraffic dataset is
shown in Figure 4.2. GHTorrent snapshots are accessed by two core components,
the Extractor and the Generator, the purpose of both is to create HTTP trans-
actions. While the extractor builds transactions directly from snapshot data, the

6,128 MB which results in a 48.29 GB database with 21,077,018 records after restoring.

58

Figure 4.4: Extractor Algorithm to Process Records

generator infers synthetic transactions. In order to achieve this, it still needs access
to the snapshot data. The reason for this is to get access to resource identifiers
to be used in order to generate URLs. For instance, the generator creates queries,
i.e., GET requests to query issues. If the respective resource names (i.e., issues ids)
were generated randomly, almost all of those requests would fail with a 404. This
is not very realistic: in practise, most GET requests would try to access existing
resources and succeed. In order to model this, the generator needs to access the
GHTorrent snapshot.

The transactions generated by both the extractor and the generator instantiate
a simple model depicted in Figure 4.3. This model is implemented in Java, i.e.,
each transaction has a transient in-memory representation as a Java object when
the dataset is created. At the centre of this model are HTTP transactions, basically
request/response pairs.

At the end of the pipeline is an Exporter component that processes the trans-
actions represented as Java objects and persists them by encoding/serialising using
JSON. The structure of the JSON files produced is defined by JSON schemas [248].
Note that there are separate schemas for each HTTP method.

The implementation of the components discussed have some abstractions to
facilitate alternative extraction, inference, and data representations. The overall
processing model is lazy and stream-like, i.e., only a small number of records
remain in memory at any time in order to make processing scalable.

Processing can be customised by employing data filters (predicates). Only re-
cords matching certain criteria are processed. The main use case for this is filtering
by URL and here in particular by the project. This allows us to build different
editions of the dataset with certain target sizes. While there is a potentially easier
way of doing this by just restricting the number of records being processed and
included, using filters has an inherent advantage. GitHub data is fragmented by
project and by filtering it accordingly, we are able to extract transactions that ma-

59

nipulate the same resources, reflecting the same issue being created and updated.
This way, we can obtain coherent subsets of the overall dataset that still reflect
the service semantics derived from issue tracking workflows.

Extraction

Each data record has created at, updated at, and closed at timestamps which
enable us to trace lifecycle events of the issue. Using this data, the GHTraffic scripts
produce transaction records. An overview of the process is shown in Figure 4.4. For
instance, a POST transaction record is created in order to represent the creation of
an issue at the time stipulated in the created at attribute. The value is converted
to the standard date format used by the HTTP [133, Sect. 3.3] and set as the value
of Date header.

Both the request and the response used headers as specified in the GitHub API
documentation. This is a mix of standard HTTP headers and API-specific headers
with names starting with “x-”. In case the header values cannot be inferred from
snapshot data, we use synthetic data. For example, we generate random token
strings and use them as values for the Authorization headers. There is also a
list of user agent strings to assign randomly as the value of the User-Agent head-
ers. Further, for the request body, the script extracts the values of the title,

body, assignee, milestone, labels parameters from the snapshot record and
encodes it in JSON as stipulated in the API. The response creation process is
analogous. Most of the values for the JSON-encoded response body are filled out
with data directly taken from the snapshot. Besides, the GHTraffic script as-
signs the created at value to the updated at field. Further, it explicitly specifies
closed at:null, closed by:null, state:open, and locked:false.

Every time a GitHub user updates an existing issue, its updated at timestamp
gets renewed with the date and time of the update. Marking an issue as closed
is a special type of update, as an issue is not deleted, but its status is changed
to close. In order to extract PATCH transactions used to close issues, the script
queries issues whose closed at value is not null and only those are processed by
the extractor. The request and response messages are formed by following the
GitHub Issues API documentation. Particularly, the closed at value is converted
to the standard HTTP date format and set as the value of Date response header
and the closed at value is also assigned to the updated at field to set closed at

and updated at columns’ values same.

Besides, an update might be changing the title of an issue, changing its descrip-
tion, specifying users to assign the issue to, etc. However, we could not extract
exactly what input data was used for editing an issue, therefore, we did not gen-
erate such transaction types.

Synthesising Queries

Only successful POST and PATCH transactions can be constructed by reverse-engineering
the GHTorrent snapshot. In order to generate additional transaction records such
as queries and delete requests, we had to resort to using synthetic data. The aim
of generating synthetic data is to mimic transactions concerning several other

60

Figure 4.5: Algorithm to Generate Synthetic Data

HTTP request methods that are covered by the API and requests that fail, which
is indicated by an error HTTP status code.

Figure 4.5 shows the process of synthetic data generation. The script generated
GET and HEAD transactions for each record in the snapshot. The process is analogous
to the process described in Section 4.2.1. However, the Date response header is
set to the system date and time at which the request is formed. Similarly, PUT
transactions for locking an issue are generated for records with locked value set
to false and followed by DELETE transactions for unlocking the respective issues
using the format described in the GitHub API.

Furthermore, the script produces unsuccessful transactions for all those HTTP
methods by specifying requests:

• without authorisation token

• with badly formatted URL

• without request body

• with invalidly formatted JSON body

61

Table 4.2: GHTraffic Transactions Per HTTP Method

Method S M L

POST 7,193 32,130 508,664

PATCH 4,286 30,807 468,080

GET 3,117 22,692 344,474

HEAD 1,796 15,130 245,127

PUT 3,662 15,945 238,115

DELETE 2,341 16,457 246,180

All the respective transactions have an error status code as defined in the API
and are generated from a sample of 40% random records from the snapshot.10

More specifically, a message explaining the error is added to the response body
as specified in the GitHub API. For this purpose, we performed experiments on
a toy project repository (i.e., a repository created to obtain real-time experience
with the GitHub API) for creating synthetic data that closely resemble real-world
representation as we found that certain aspects of the GitHub Issue API are
undocumented. Additionally, we generated a small number of GET requests that
returned 500 status code, in order to represent system failures.

Data Representation and Meta-Data

The target format of the GHTraffic dataset is described by the UML class diagram
as shown in Figure 4.3. HTTPTransaction is the base element of the model. A
transaction contains a single Request and Response. Each message could have
any specific number of MessageHeaders. Additionally, a MessageBody is used to
represent data associated with a request/response. MetaData is used to provide
some additional information about the transaction record. The source attribute
is set to GHTorrent, specifying the source of information. The type attribute
is set to either real-world or synthetic depending on whether the data was
directly derived from a GHTorrent record or synthesised as described above. The
processor is the name of the script used to generate the record, i.e., this is the
fully qualified name of a Java class. Finally, the timestamp field holds date and
time when the record was created.

The actual JSON format of the dataset is defined by a set of JSON schemas for
each transaction type (i.e., for each HTTP method). These schemes are presented
in Appendix A.1, or can be found in the repository, in the schemas folder. The
schemas comply with the JSON Schema Draft 4 specification [249]. Appendix A.2
presents sample GHTraffic records (over a single resource) for each request type.

4.2.2 Metrics

The GHTraffic dataset comprises three different editions: Small (S), Medium (M),
and Large (L). The S dataset includes 22,395 HTTP transaction records cre-

10. The generator component needs to use at least 40% of GHTorrent snapshot records in order
to extract an adequate amount of unsuccessful transactions on particular projects.

62

Table 4.3: GHTraffic Transactions Per HTTP Response Code

Response Code S M L

200 4,649 22,163 391,903

201 1,796 8,808 150,662

204 3,588 5,756 82,554

400 2,717 13,807 196,474

401 547 19,302 291,831

404 5,909 43,658 646,346

422 1,868 12,626 196,678

500 1,321 7,041 94,192

Table 4.4: GHTraffic Transactions Per Record Type

Type S M L

Real-world 2,853 13,355 241,241

Synthetic 19,542 119,806 1,809,399

ated from the google/guava [250] repository and takes up to 49.9 MB of disk
space. Guava is a popular Java library containing utilities and data structures.
It is a medium-sized large active project, and sourcing an edition from a single
project has the advantage of creating a coherent dataset. The M dataset of size
345.2 MB includes 133,161 records from the npm/npm [251] repository. It is
the popular de-facto standard package manager for JavaScript. The L dataset
contains 3.73 GB of data with 2,050,640 records that were created by select-
ing eight repositories containing large and active projects on GitHub as of 2015,
including rails/rails [252], docker/docker [253], rust-lang/rust [254], angu-
lar/angular.js [255], twbs/bootstrap [256], kubernetes/kubernetes [257],
Homebrew/homebrew [258], and symfony/symfony [259].

Tables 4.2–4.4 present several selective metrics about the status of these three
datasets.

4.2.3 Accessing and Using GHTraffic

The different editions of the GHTraffic dataset can be downloaded by using the
following URLs11:

• https://zenodo.org/record/1034573/files/ghtraffic-S-1.0.0.zip

• https://zenodo.org/record/1034573/files/ghtraffic-M-1.0.0.zip

• https://zenodo.org/record/1034573/files/ghtraffic-L-1.0.0.zip

11. The dataset is published on Zenodo [260]. It is a data repository platform hosted at the
European Organization for Nuclear Research Data Center, which was specifically designed to
provide long-term preservation of all forms of research output.

63

https://zenodo.org/record/1034573/files/ghtraffic-S-1.0.0.zip
https://zenodo.org/record/1034573/files/ghtraffic-M-1.0.0.zip
https://zenodo.org/record/1034573/files/ghtraffic-L-1.0.0.zip

Table 4.5: GHTraffic 2.0.0 Transactions Per HTTP Method

Method S L

POST 5,805 456,941

PATCH 7,577 454,475

GET 5,325 502,183

HEAD 3,491 279,395

PUT 5,285 369,834

DELETE 4,732 341,449

Table 4.6: GHTraffic 2.0.0 Transactions Per HTTP Response Code

Response Code S L

200 5,839 496,814

201 1,793 150,662

204 3,104 221,038

400 3,499 143,733

401 5,227 143,374

404 10,378 1,032,327

422 1,859 148,692

500 516 67,637

We also provide access to the scripts used to generate GHTraffic, including a Virtu-
alBox image with a pre-configured setup. Note that due to the use of random data
generation these scripts will produce slightly different datasets at each execution.
Using the scripts, users can modify the configuration properties in config.properties
file in order to create a customised version of the GHTraffic dataset for their own
use. The readme.md file included in the distribution provides further information
on how to build the code and run the scripts. GHTraffic scripts can be accessed
by cloning the repository (https://bitbucket.org/tbhagya/ghtraffic.git) or
by downloading the pre-configured VirtualBox image from https://zenodo.org/

record/1034573/files/ghtraffic-artifact-1.0.0.zip.

4.2.4 GHTraffic Versioning

The original GHTraffic dataset is released as version 1.0.0. A new version of the
dataset (version 2.0.0) is also being produced incorporating minor changes to
the synthetic data generation process and adding another subset of unsuccessful
transactions. The intention is to model enhanced transaction sequences that reflect
more complex behavioural patterns.

The entire data generation process is quite similar to the original design as
described in Section 4.2.1, except when transactions are synthesised, the original
scripts fill in the Date response header with the current date and time and the

64

https://bitbucket.org/tbhagya/ghtraffic.git
https://zenodo.org/record/1034573/files/ghtraffic-artifact-1.0.0.zip
https://zenodo.org/record/1034573/files/ghtraffic-artifact-1.0.0.zip

Table 4.7: GHTraffic 2.0.0 Transactions Per Record Type

Type S L

Real-world 2,845 241,241

Synthetic 29,370 2,163,036

transactions are composed accordingly, whereas the new scripts use a random date
after a resource is successfully posted to make up the request and response. In
particular, it uses created at timestamps of resources to assign successive dates.
The scripts also generate another form of failed transactions by stipulating requests
prior to the successful creation of resources (emulating requests for unavailable
resources). The created at timestamps are again used here to generate preceding
random dates to be set as the value of Date header. These result in a far more
dynamic series of transactions to named resources.

This latest version consists of two different editions: Small (S) and Large (L)
where the records were created by selecting the same repositories as the original
Small and Large datasets (it does not, however, include a medium edition, since
a variety of extensive datasets have already been achieved). The newest S data-
set contains 32,215 records (64.5 MB) of data collected from google/guava re-
pository. The L dataset of size 4.54 GB contains 2,404,277 records from eight
repositories (i.e., rails/rails, docker/docker, rust-lang/rust, angular/angu-
lar.js, twbs/bootstrap, kubernetes/kubernetes, Homebrew/homebrew,
and symfony/symfony). Tables 4.5–4.7 display some metrics that characterise
the dataset. The datasets are available for download using the following URLs:

• https://zenodo.org/record/4007589/files/ghtraffic-S-2.0.0.zip

• https://zenodo.org/record/4007589/files/ghtraffic-L-2.0.0.zip

The project scripts are also available from the repository (https://bitbucket.
org/tbhagya/ghtraffic-version-2.0.0) and can easily be customised and ex-
tended to generate dataset variants. The small edition of GHTraffic 2.0.0 is selected
for use in this study.

4.2.5 Threats to Validity

As seen in Tables 4.4 and 4.7, the size of synthetic data drastically exceeds the size
of data extracted from the snapshot. This leaves the possibility that the GHTraffic
does not reflect realistic workloads. To mitigate this threat, we ensured that the
request/response formats for the transaction types that were synthesised had been
sampled and validated using the toy GitHub repository. That is, we used a few
samples of each transaction type, sent similar requests to the toy repository, and
checked whether the sample response formats were equivalent to what the ac-
tual GitHub API returned. This practise guaranteed that the transactions were
syntactically and semantically correct, even though they did not actually occur.
In addition to this, the representation of the transactions has information about
whether they are synthetic or not, and users of the GHTraffic can use this to
completely remove or reduce the ratio of synthetic data by applying filters.

65

https://zenodo.org/record/4007589/files/ghtraffic-S-2.0.0.zip
https://zenodo.org/record/4007589/files/ghtraffic-L-2.0.0.zip
https://bitbucket.org/tbhagya/ghtraffic-version-2.0.0
https://bitbucket.org/tbhagya/ghtraffic-version-2.0.0

Figure 4.6: The Process of Generating Network Traffic

We acknowledge that the GHTraffic was generated from a 2-year-old snapshot
of GHTorrent. As noted earlier, this design decision was made to produce a dataset
large enough to facilitate the use cases described, but still manageable with typical
resources available to researchers and practitioners. We also provide access to the
scripts used to generate the GHTraffic, and users can utilise these scripts in order
to generate customised versions from newer instances of GHTorrent if needed.

4.3 Twitter, Google Tasks, and Slack Datasets

This section discusses the method used to create Twitter, Google Tasks, and Slack
datasets, followed by some selective metrics that characterise the datasets, and
includes basic instructions on obtaining and using the data.

4.3.1 Methodology

Subject Services

In addition to GitHub, three of the popular and active Web services currently in
use are Twitter12, Google Tasks13, and Slack14. Twitter is a social media platform
that allows users to send and receive short messages called tweets. Google Tasks
is a service offered by Google Inc. to manage tasks and task lists. Slack is a
channel-based messaging platform. Each of these platforms has a wide variety of
different features and also offers a REST API which enables application developers
to flexibly access the available services through simple HTTP requests. In addition,
each REST API provides a rich set of services to create, read, update, and delete
resources related to the core functionalities using a set of HTTP features, including
various HTTP methods and status codes. Thereby, datasets constructed directly
from capturing API interactions represent the richness of modern Web APIs and
are semantically richer than the ones mentioned in Section 4.1.2.

We are interested in generating three separate HTTP datasets by creating ran-
dom traffic for the services offered by Twitter, Google Tasks, and Slack. The basic
idea is to simulate a variety of service interactions by users via applications. The
creation of the datasets is driven by the use cases and the requirements set out in
Section 4.1.1. In order to form transactions, different CRUD operations are cre-
ated to service-specific resources and corresponding responses are recorded. The

12. https://twitter.com [accessed 02 Aug. 2020]
13. https://play.google.com/store/apps/details?id=com.google.android.apps.tasks

[accessed 02 Aug. 2020]
14. https://slack.com [accessed 02 Aug. 2020]

66

https://twitter.com
https://play.google.com/store/apps/details?id=com.google.android.apps.tasks
https://slack.com

resources most intuitively used by the users are chosen to produce random API
calls, namely tweets15 (Twitter), lists16 (Google Tasks), and messages17 (Slack).
The following is a list of operations chosen from each category (which are fre-
quently used to interact with specified resources).

• Tweets

– POST /statuses/update.json

Updates the authenticated user’s current status

– GET /statuses/show/:id

Returns the status specified by the id parameter

– POST /statuses/destroy/id.json

Deletes the status specified by the id

• Lists

– POST /lists

Creates a new task list and adds it to the authenticated user’s task lists

– GET /lists/id

Returns the authenticated user’s task list specified by the id

– PATCH /lists/id

Updates the authenticated user’s task list specified by the id

– DELETE /lists/id

Deletes the authenticated user’s task list specified by the id

• Messages

– POST /chat.postMessage

Posts a message to a channel

– POST /chat.update/:id

Updates a message specified by the id parameter in a channel

– POST /chat.delete/:id

Deletes a message specified by the id parameter from a channel

15. https://developer.twitter.com/docs/tweets/post-and-engage/api-reference/

post-statuses-update [accessed 02 Aug. 2020]
16. https://developers.google.com/tasks [accessed 02 Aug. 2020]
17. https://api.slack.com/methods [accessed 02 Aug. 2020]

67

https://developer.twitter.com/docs/tweets/post-and-engage/api-reference/post-statuses-update
https://developer.twitter.com/docs/tweets/post-and-engage/api-reference/post-statuses-update
https://developers.google.com/tasks
https://api.slack.com/methods

Table 4.8: Transactions Per HTTP Method on Twitter, Google Tasks, and Slack Datasets

Method Twitter Google Tasks Slack

POST 20,445 1,124 17,422

PATCH - 1,082 -

GET 5,608 1,367 -

DELETE - 1,129 -

Table 4.9: Transactions Per HTTP Response Code on Twitter, Google Tasks, and Slack Datasets

Response Code Twitter Google Tasks Slack

200 1,515 2,607 17,422

204 - 606 -

404 24,538 1,478 -

503 - 11 -

Network Traffic Generation

An overview of the approach used to generate traffic is shown in Figure 4.6. The
actual input generation uses fuzzing techniques. In particular, Apache JMeter [82]
is used as it has the functionality to fuzz RESTful services (randomly generate
various types of API calls by providing different inputs) and recording interactions
in a suitable textual format for further processing. The fuzzing is guided by a
light-weight semantic service model provided as Swagger18 spec. Swagger (recently
renamed as OpenAPI) has emerged as the standard approach for specifying and
documenting HTTP APIs in a way that is both human- and machine-readable.
Swagger defined APIs can be directly used with the Swagger Codegen tool19 to
create API clients and server stubs (which are configured to get input data that
the API expects to pass in from CSV files). Since the services used to construct
datasets all possess Swagger APIs20, we are able to use Swagger Codegen to auto-
generate JMeter scripts. This approach allows us to automate much of the data
generation process.

The JMeter scripts produced require input data (parameter values) from CSV
files in order to render API calls. As we intended to construct large and diverse
datasets (to facilitate our use cases), these files need to be filled out with a variety
of values to support different types of calls. However, if resource identifiers are
provided arbitrarily almost all requests would fail (with HTTP 404). This is not
realistic, since most requests would attempt to access existing resources. Therefore,
first, we specify parameter values in order to randomly create resources, then use
those resource identifiers to randomly read, update, and delete resources. We are

18. https://github.com/OAI/OpenAPI-Specification [accessed 02 Aug. 2020]
19. https://github.com/swagger-api/swagger-codegen [accessed 02 Aug. 2020]
20. The swagger spec for Twitter, Google Tasks, and Slack can be accessed from https:

//api.apis.guru/v2/specs/twitter.com/current/2.1/openapi.json, https://api.apis.

guru/v2/specs/googleapis.com/tasks/v1/openapi.json, and https://api.apis.guru/

v2/specs/slack.com/1.5.0/openapi.json, respectively [accessed 02 Aug. 2020]

68

https://github.com/OAI/OpenAPI-Specification
https://github.com/swagger-api/swagger-codegen
https://api.apis.guru/v2/specs/twitter.com/current/2.1/openapi.json
https://api.apis.guru/v2/specs/twitter.com/current/2.1/openapi.json
https://api.apis.guru/v2/specs/googleapis.com/tasks/v1/openapi.json
https://api.apis.guru/v2/specs/googleapis.com/tasks/v1/openapi.json
https://api.apis.guru/v2/specs/slack.com/1.5.0/openapi.json
https://api.apis.guru/v2/specs/slack.com/1.5.0/openapi.json

able to achieve more realistic behavioural patterns with this strategy. As seen
in Section 4.3.2 below, the resultant datasets explicitly support a wide range of
HTTP features and are sufficiently large in size.

4.3.2 Metrics

The Twitter dataset contains 26,053 HTTP transaction records and the total size
of the dataset is 58 MB. The Slack dataset in size 33.9 MB has 17,422 records and
the Google Tasks dataset contains 4,702 transactions in 8.8 MB. Further details of
these three datasets are summarised in Tables 4.8 and 4.9 showing the transaction
counts based on the request type as well as the response code. The datasets clearly
demonstrate the standard datasets criteria set out in Section 4.1.1 for facilitating
studies related to the motivating use cases.

4.3.3 Accessing and Using Datasets

The following URLs can be used to download the datasets:

• https://zenodo.org/record/4007570/files/twitter-1.0.0.zip

• https://zenodo.org/record/4007570/files/googletasks-1.0.0.zip

• https://zenodo.org/record/4007570/files/slack-1.0.0.zip

Each dataset is available in XML format. Appendix A.3, A.4, and A.5 present
sample transaction records over a resource in each dataset for each operation
type. The JMeter scripts used for datasets construction are accessible from the
repository (https://bitbucket.org/tbhagya/http-traffic-datasets), giving
the flexibility to extend the datasets.

4.3.4 Threats to Validity

As seen in Tables 4.8 and 4.9, the Twitter, Google Tasks, and Slack datasets do
not have a broad variety of HTTP features (such as different HTTP methods an-
d/or status codes). This leaves the possibility that the datasets do not represent
the features seen in modern Web APIs. The subject HTTP-based services, how-
ever, are being extensively used at present and these datasets were constructed
directly from capturing API interactions (different CRUD operations were created
to service-specific resources and corresponding responses were recorded). On the
one hand, it could be observed that these APIs do not allow certain actions on
resources or do not use HTTP features to provide semantic meaning for the inten-
tion of the action being taken and the response being received. For example, the
Twitter API uses the POST HTTP method for both create and delete operations
and is not allowed to modify a single Tweet (no explicit usage of the DELETE and
PUT/PATCH request types defined) and that the Slack API does post, update, and
delete operations through the POST HTTP method and is not allowed to retrieve a
particular message from a channel (no explicit use of any other request type except
for HTTP POST) as well as it always returns the HTTP 200 code even when it
has unexpected behaviour. This means that these APIs literally only use a small
portion of the HTTP in terms of methods and status codes. However, in the data

69

https://zenodo.org/record/4007570/files/twitter-1.0.0.zip
https://zenodo.org/record/4007570/files/googletasks-1.0.0.zip
https://zenodo.org/record/4007570/files/slack-1.0.0.zip
https://bitbucket.org/tbhagya/http-traffic-datasets

generation process, we were able to issue a number of common CRUD operations,
simulating service interactions that exist in realistic service scenarios as much
as possible (it was, therefore, not necessary to create additional syntactic trans-
actions). Thereby, each constructed dataset provides an oracle of actual service
behaviour and of substantial size to facilitate experiments with realistic network
traffic.

4.4 Summary

In this chapter, we outlined the network traffic datasets to be used in the experi-
ments. First, we discussed use cases, and requirements of such datasets, followed
by an overview of related work. Then, we presented the GHTraffic, a dataset
comprising HTTP transactions extracted from GitHub data and augmented with
synthetic transaction data. After that, we introduced three other HTTP traffic
datasets that were obtained from fuzzing the services offered by Twitter, Google
Tasks, and Slack. All four datasets are carefully sourced and/or built from suc-
cessful active Web services reflecting realistic HTTP workloads. The datasets are
also of significant size and relatively easy to use and customise. These datasets
could be considered as the standard datasets for reproducible research on many
aspects of service-oriented computing. We hope that the datasets will find uses in
many areas of research. These are chosen for use in this study in order to facilitate
the reproducibility of research results.

70

Chapter 5

Experimental Methodology

This chapter presents the experimental setup and describes the methodology used
to achieve the research aims of this thesis. Section 5.1 provides a summary of the
study. Sections 5.2–5.5 describe the key phases of the experiment. Section 5.6 sets
out instructions to reproduce the experiment results.

5.1 Introduction

Modern application development makes extensive use of lightweight HTTP ser-
vices to implement certain functionalities that applications require (more on this
in Section 2.1). One of the significant engineering challenges is how to adequately
test such applications with the services on which they depend. The concept of
Service Virtualisation (SV) is gaining popularity in addressing this problem. It is
a practise to mimic the behaviours of real dependent services by synthesising the
anticipated responses using semantic models inferred from recorded traffic (details
on SV are in Section 2.2.2).

SV often applies Artificial Intelligence (AI) techniques when it comes to in-
ferring service semantics. Among the different categories of AI, there is growing
demand for Symbolic Machine Learning (SML) algorithms due to the provenance
of their results (see Section 2.3.1). SML techniques represent learned knowledge
in simple logical rules that are generally easier for humans to analyse and un-
derstand. Typical symbolic learning approaches include Attribute-Based Learning
and Inductive Logic Programming/Description Logic (DL) Learning.

In reality, however, fully automated SV techniques are unlikely to provide a
sufficient level of accuracy to mock complex services, i.e., response properties could
exist that are obviously much more complex to model using automated methods
(described in Section 1.1). Therefore, we recommend using SV to infer some attrib-
utes of the HTTP service responses. Besides, we understand that engineers often
want to inspect the SV results and make changes. This requires the presentation
of results to engineers in an appropriate format that is easier to understand and
customise. We assume that if SV is based on inference rules, engineers will have
the potential to fine-tune and adjust the rules to create mocks suitable for testing.

Accordingly, the primary aim of this research is to understand the potential
of SML techniques for generating HTTP services’ mock skeletons directly from
traffic records. We examine three attribute-based learning algorithms, namely the

71

Figure 5.1: The Machine Learning Framework

C4.5 decision tree algorithm and the RIPPER and PART rule learners. For these
algorithms, we use the WEKA implementations (as WEKA is commonly used in
the community). The algorithm that we consider in DL learning is the OCEL class
expression learning algorithm implemented in DL-Learner. These algorithms have
been used extensively and have proven their ability to handle both numerical and
nominal data properly. See Section 2.3.2 and 2.3.3 for details on the algorithms. All
the experiments will be performed employing network traffic datasets extracted
from a few different successful, large-scale HTTP services (i.e., GitHub, Twitter,
Google, and Slack) described in Chapter 4. The experimental design focuses on
the production of reliable results, fair comparisons, and accurate evaluations of
the achievements of the algorithms chosen. This also focuses on the production of
reproducible results (addressing the secondary research aim). Section 1.3 provides
a comprehensive explanation of these two research aims. For the experiments,
we use 2.2 GHz Quad-Core Intel Core i7 processor, 16 GB memory and macOS
(Catalina) operating system with a Java Runtime Environment (JRE) 8 (64-bit)
Java Virtual Machine (JVM). The default heap size of the JVM is 8 GB.

The general overview of the experimental methodology (i.e., machine learning
workflow) can be found in the Figure 5.1. There are four stages: first the Data
Preprocessing step corresponding to the cleaning of the raw datasets, then the
Data Transformation step converts preprocessed data into data formats ap-
propriate for learning algorithms, the Model Construction step builds model
artefacts from training data, and finally the Model Evaluation step assesses the
predictive ability of the models generated. The following sections will discuss the
construction of these phases in more detail.

5.2 Data Preprocessing

The experimental datasets do not contain any error interaction records nor du-
plicates. So all data records can be taken into account in this study.

A basic data cleaning process is performed to remove the contents of data
records that impede raw datasets from being processed and/or parsed correctly.
In particular, it identifies and deletes all data properties with long text. Examples
of this will be title and body in the GHTraffic dataset. Texts found in title

and body often contain extremely long strings with whitespace, line breaks, and
blank lines, that need to be excluded from the original before any processing takes
place. These modifications have little or no effect on learning (i.e., datasets are
still meaningful without them). The cleansed data will be stored separately from
the raw datasets for the next step to load up and process.

72

Figure 5.2: The Feature Tree

5.3 Data Transformation

The attribute-based learning algorithms expect input data described in the pro-
positional attribute-value format, whereas algorithms based on DL learning require
data with rich domain knowledge expressed in description logics. We, therefore,
pursue two different directions for the transformation of preprocessed data. Each
of the approaches focus on capturing as many important information as possible
contained in HTTP datasets (in particular data about request/response messages
and service state history) with sound generalisation.

5.3.1 Attribute-Based Learning Approach

As described in Section 2.3.2, attribute-based learning takes as input a set of
labelled instances (i.e., examples) where each instance is described in terms of
values for a fixed set of attributes (an attribute vector). The goal of learning is to
induce the mapping from attribute vectors to target class labels.

Data transformation in attribute-based learning is a two-step process: Feature
Extraction and Data Preparation. The feature extraction step enables the
collection of attributes from HTTP datasets. Once the features are extracted,
the attributes are filtered and processed in the data preparation step (using the
WEKA API1 written in Java) to be properly accessible by learning algorithms.

1. https://weka.sourceforge.io/doc.stable [accessed 02 Aug. 2020]

73

https://weka.sourceforge.io/doc.stable

Figure 5.3: Attribute and Value Derivation From a Sample URI

Feature Extraction

Through interpreting the structural properties of HTTP messages, features are
extracted to be used as attributes by the learning algorithms. Figure 5.2 presents a
high-level overview of the features used to capture the structure of HTTP messages
(features are organised in a simple hierarchy, the feature tree). The following is a
description of the process for extracting the features.

The first group of attributes is the general characteristics that each HTTP
transaction has, in particular, the RequestMethod and the ResponseStatusCode.
Several other attributes are derived from the request URIs. The URI has a ca-
nonical structure which consists of the schema, host, path, query, and fragment.
Elements such as the schema and the host can be explicitly used as attributes
(i.e., the RequestUriSchema and the RequestUriHost). The path segment can
be tokenised using standard delimiters (i.e., /), and each token can be used as
an attribute named RequestUriPathToken suffixed by the position index of the
token in the path (use up to six indexes by studying general API implementa-
tions). If no value is presented for the respective token, the value of the attribute
is set to not-exist, otherwise, the value of the token will be used. The query
string parameters (key-value pairs) can be decoded and separated by the & de-
limiter to be used as attributes named RequestUriQueryToken suffixed by the
position index (use up to four indexes). We can also perform fragment tokenisa-
tion to obtain a separate set of attributes (i.e., the RequestUriFragmentToken1

and the RequestUriFragmentToken2). Figure 5.3 illustrates this process using an
example.

It is also possible to derive attributes based on the characteristics of request
and response bodies. The HasRequestPayload and the HasValidRequestPayload
are boolean attributes that are introduced to indicate whether a request has a
message body and whether the message body is encoded correctly according to its
content type. Although HTTP services can use arbitrary content types, we only
support JSON as it is by far the most widely used format for data exchange via

74

HTTP services. Basic tokenisation is also done by separately parsing the request
and the response bodies extracting two different sets of all possible service-specific
keys based the set of HTTP transactions (usually the body is a JSON object).
These keys can lead to a wide collection of attributes prefixed by RequestBody

or ResponseBody with the name of the key. We also perform deep tokenisation
if JSON objects contain object arrays. If the respective key is presented in the
message body, the attribute value is set to value of the key, otherwise, the value
will be set to not-exist.

Furthermore, we extract attributes from the request and the response headers
that include both standard HTTP headers as well as API-specific headers (i.e.,
usually identifiable by header names starting with x-). The process is analogous to
the approach previously described and applies the same logic with the stipulation
to name attributes as RequestHeader or ResponseHeader along with the name
of the header (key) and return not-exist if there is no header in the transaction.
Moreover, an inferred HasAuthorisationToken attribute will be extracted when
encountering information about the request authentication. The inference is based
on the presence of an authentication token with either the HTTP Authorization

request header or the URI query parameter (e.g., Slack sends an authentication
token through a query string parameter).

Finally, we generate attributes to represent the features (i.e., state) of the pre-
decessors on each transaction (a transaction that is just before and a set of transac-
tions that precedes a named resource).2 The HasImmediatePreviousTransaction
boolean attribute is added to indicate whether or not another transaction happened
immediately prior to a particular transaction interacting with the same resource.
The attribute ImmediatelyPreviousRequestMethod is used to specify the CRUD
operation that transaction performed. Additional boolean attributes are also in-
troduced in relation to this, based on the presence of certain naming patterns in
the URI tokens (e.g., Slack uses postMessage, update, delete, Twitter uses up-
date, destroy, show). Both the ImmediatelyPreviousResponseStatusCode and
HasImmediatePreviousTransactionSucceeded are introduced to depict the im-
mediate predecessor status. The HasImmediatePreviousTransactionSucceeded,
in particular, is an inferred attribute dependent on the use of certain status codes,
and/or the availability of certain properties in the response body (e.g., Slack in-
cludes a top-level boolean property ok indicating success or failure). Concerning
all predecessors, a list of boolean attributes can also be inferred indicating whether
or not successful CRUD operations have occurred on the specific resource in the
past.

As mentioned above, the names are given to attributes in such a way that
humans can clearly recognise the intent of attributes. That could also potentially
lead to the development of more human-readable models.

2. In order to easily identify the order of transactions, the value of the Date header in GMT
(day-name, day month year hour:minute:second GMT) is converted into the Unix Epoch
format (an integer representation of time in the form of seconds from January 1, 1970, UTC).
This would provide a simple numerical value for the transaction date/time.

75

Table 5.1: Overview of Input Data for Attribute-Based Learning

Dataset Input Attributes Targets Examples

GHTraffic 34 50 32,215

Twitter 32 63 26,053

Google Tasks 33 16 4,702

Slack 32 8 17,422

Data Preparation

The data extracted from recorded HTTP transactions is converted into Attribute-
Relation File Format (ARFF) to be used in WEKA. Appendix B.1 includes a
complete list of attributes obtained from each dataset. The ARFF files created
can be found in the project repository, in the training-data folder. Appendix B.2
presents a summary of the contents of each ARFF file.

Data type conversion is done as the classification algorithms require attribute
values to be nominal or binary (numeric or string attributes can have a de facto
infinite domain). All numeric values are converted into a set of nominal attributes
by using the NumericToNominal filter of WEKA. The filter basically takes all
the integer values and adds them to the list of nominal values of the attribute
(e.g., ResponseStatusCode has a predefined finite set of all possible values after
the filter is applied). A similar approach is applied to string attributes using the
StringToNominal filter.

The aim of the study is to generate HTTP response skeletons with multiple
attributes (e.g. status code, response headers, response body). From the machine-
learning point of view, this is, therefore, a multi-class or multi-target learning
problem. Unfortunately, none of the machine learning toolboxes currently allow
multivariate predictions. The only option is to train separate models for each
target feature. When training a model for a target, all other target attributes are
excluded, so that they do not influence the output (as only the request and the
service history will determine the response feature).

The classification algorithms have confined the use of classifiers to non-unary
targets (the target attribute must have at least two values). Accordingly, all target
attributes which only have one distinct value are also ignored, as they have no
discriminative value. On the other hand, target attributes holding a fairly large
set of distinct values can also be excluded from learning as they are non-optimal
for predictions. An example for a response feature with only one value is the server
(assuming that service runs always on the same server), an example for a response
feature with too many values is a high-precision timestamp (assuming that each
transaction has a unique value). Similarly, it is possible to exclude high-variety
input attributes as they are unreliable as inputs to a model. Using such excessive
features decreases training speed, takes up a larger amount of memory, lowers
model interpretability, and, most importantly, can result in overfitting and poor
generalisation. The default threshold for exclusion is set to 10 distinct values. In
all of these cases, the WEKA’s Remove filter is used to eliminate attributes before
the data is passed to the algorithms.

76

Figure 5.4: The Knowledge Base Generation Process

A summary of the number of features associated with each input dataset after
attribute removal is listed in Table 5.1. As can be seen, the datasets contain a
variable number of features and targets. This depends on the amount of data each
subject service maintains on its resources and how complex the resources are. The
GHTraffic dataset, for instance, is based on the GitHub issue tracking system,
where each issue has data on itself and other associated entities (like milestones,
labels, and users), such that a considerable amount of data was received from
the GitHub API leading to a range of features and targets. Appendix A shows
examples of transaction records over service-specific resources.

5.3.2 Description Logic Learning Approach

As described in Section 2.3.3, DL learning requires two inputs. The first is a
background knowledge base (or ontology) expressed in DL, which includes a set of
concepts (i.e., classes) and relations (i.e., properties) encoded in a TBox, and sets
of individual objects and their relationships to one another captured by an ABox.
The second is a list of positive and negative examples based on the target class
to be learnt (serve as a subset of individuals in the knowledge base). The goal of
DL learning is to find a definition (logical formula) for the target class covering
all/many positive examples and none/few negative examples.

77

The key steps in the data transformation task in DL learning involve building
knowledge bases for experimental datasets using the OWL2 DL knowledge rep-
resentation language (the most expressive OWL dialect) utilising the OWL API3

written in Java, and identifying certain individuals within knowledge bases as
examples and further processing to be adequately parsed to learning algorithms.

Background Knowledge Base Construction

An outline of the background knowledge base development process is shown in
Figure 5.4. Each step is explained in detail in the section below.

We plan to use background knowledge bases to assist in learning definitions for
the values of the different response features from the values associated with the
incoming request features and the service state history. It is, therefore, necessary
to include different classes in the knowledge base referring to all those attributes-
values. Transaction is the root class in the knowledge base that represents all
transaction records. It is also possible to add subclasses of Transaction (i.e., leaf
classes) which defines the basic features that can be found in HTTP request/re-
sponse messages. We use the same set of attributes obtained on the basis of the
structural properties of HTTP messages in attribute-value learning (as described
in Section 5.3.1) and extract the distinct values retained by each attribute. These
attribute values result in an extensive set of subclasses (the key idea is to generate
one class for each distinct value of an attribute). These distinctions are vital in
this domain as objects with different values for an attribute are different kinds
of objects. However, in this approach, attributes that hold a fairly large set of
distinct values (e.g., a common case would be a date that belongs to exactly one
transaction) are ignored as having low predictive power. We filter out these irrel-
evant features by applying the threshold limit of 10 (as same as in attribute-value
learning). If a given property holds distinct values above the specified threshold
limit then it will be ignored without creating new classes.

We follow the naming convention that class names start with the attribute
name and use underscore to join the value name (e.g., RequestMethod POST). In
many attributes, however, the value names hold special characters and are lengthy,
therefore, we use short human-readable strings (derived from the real values). For
example, the ResponseHeader Content-Type attribute contains a unique occur-
rence named application/json;charset=UTF-8 where Json is inferred as the
name of the value to create the ResponseHeader Content-Type Json subclass.
The full name can be stored using the annotation property rdfs:label. This
convention helps to make the intent of the property clearer to humans, which in
turn allows learning algorithms to generate more human-readable expressions for
class descriptions.

We also define some more details about these classes. The classes related to
the same attribute have been made disjoint from one another as it is not possible
for an individual to be an instance of more than one of these classes (e.g., the
ResponseStatusCode 200 and the ResponseStatusCode 204 classes are disjoint:
an instance of 200 can not be an instance of 204 at the same time). This is
expressed in OWL using owl:disjointWith construct.

3. http://owlcs.github.io/owlapi [accessed 02 Aug. 2020]

78

http://owlcs.github.io/owlapi

Figure 5.5: A Sample Inference on Object Properties

A set of object properties are added to the ontology to depict semantics on
service state history. These properties relate Transaction class to itself, setting
the order of transactions that happened to a named resource. A property called
hasPrevious is defined. It is used to relate an instance of Transaction that
occurred just prior to another instance of Transaction for a given resource. It is
defined to be a functional property indicating that for any instance there can be
at most one instance to be directly preceded. For example, given two instances
of Transaction class, say, T1 and T2, if T2 hasPrevious T1, then T2 has no
other instances immediately prior to that. The hasPrevious is also defined as an
asymmetric property. This means that if T2 hasPrevious T1, then T1 does not
relate to T2 along the same hasPrevious property (as T1 did not occur before
T2). It is also defined as irreflexive property because an individual cannot be
related to itself through the property. A property called isPrecededBy is defined
as a super property of the hasPrevious. It is used to relate a set of instances of
Transaction that have taken place prior to another instance of Transaction for
a given resource. It is defined to be a transitive property, therefore, for three given
instances of Transaction class, say T1, T2, and T3, if T2 isPrecededBy T1, and
T3 isPrecededBy T2, then T3 isPrecededBy T1.

The next step is to create individuals, then add them to classes, and add re-
lationships between individuals through object properties. Every transaction in
the dataset is presented as an individual in the knowledge base (named T suffixed
with a unique integer) and is allocated as a member of the class Transaction.
These individuals can be further assigned to the subclasses by means of the val-
ues that each transaction carries for the request/response attributes. The order
of transactions for a given resource is asserted by relating two consecutive indi-
viduals using the object property hasPrevious. However, it is not necessary to
make the isPrecededBy relation between individuals explicit. This can be auto-
matically computed using a DL reasoner4. Such a reasoner can use the sub prop-
erties and simply infer the super properties. For example, in three instances of
Transaction (T1, T2, and T3), if T2 hasPrevious T1, the reasoner may infer that

4. DL learning algorithms use reasoners to infer new knowledge automatically that is not
explicitly contained within the background knowledge bases and to confirm the logical validity
of knowledge bases. There are also multiple reasoner components introduced in the DL-Learner.

79

T2 isPrecededBy T1, since hasPrevious is a subset of isPrecededBy. In addi-
tion, if T3 hasPrevious T2, the reasoner may easily infer that T3 isPrecededBy

T1, since the property isPrecededBy has been declared as transitive. Figure 5.5
illustrates this graphically.

Ensuring that the knowledge base is logically consistent is an important part
of this development. Inconsistent knowledge bases may have a significant impact
on the quality of results. Therefore, the resulting knowledge bases are checked for
consistency by the reasoner before being used in model generation.

Identification of Examples and Data Preparation

DL learning is intended to be used to obtain descriptions for classes related to
the response properties (known as target classes) given the background knowledge
about the incoming request and the preceding request/response messages. It is,
therefore, a multi-class learning problem that DL learning algorithms do not cur-
rently support. The only option is to perform separate learning tasks per target
class.

Not all individuals on the background knowledge base serve as examples. We
select the individuals that have happened most recently to each resource as the
example set, and remove each of them from the target classes. Thus, the examples
are the individuals presented in the form of the incoming request and the service
history on the knowledge base. Some instances in the example set can be then
listed as positive examples and others as negative ones to learn class definitions.
Assume that the class description to be learned is the ResponseStatusCode 200,
where instances in the example set with the status code value of 200 are grouped
into the positive set, while the remaining instances in the example set are into the
negative set that is not applicable to the learning.

DL learning algorithms have confined their application to learning problems
whose background knowledge bases ranging from several to hundreds of thousands
of axioms (where datasets range from small to large). This allows the entire know-
ledge bases to be loaded into OWL reasoners used in the algorithms for processing
and reasoning. The Google Tasks dataset is a mid-sized and mid-complex dataset
(the complexity of a dataset depends particularly on the number of resources in the
dataset and transactions occurred per resource) that meets the above-mentioned
criteria. However, the other three datasets, i.e., GHTraffic, Twitter, and Slack, are
very large and complex, containing millions of axioms in their knowledge bases.
Therefore, the DL Learning algorithms cannot be applied directly to learning
problems with such knowledge bases (as reasoners cannot load the entirely of the
large ontologies into memory). The potential solution for this problem is to use
sub-datasets of the originals (making them manageable) that potentially cover the
behaviour that occurs in the original datasets as much as possible, enabling the
inferencing to be performed with medium-size knowledge bases. As a consequence,
sub-datasets from GHTraffic, Twitter, and Slack are extracted for the development
of background knowledge bases and examples (for conducting DL learning exper-
iments).5 Appendix B.3 provides details of all three sub-datasets and the URLs

5. Up to 20% of resources from the GHTraffic dataset, 40% from the Twitter, and 70% from
the Slack need to be considered in order to extract transactions to form manageable datasets

80

Table 5.2: Overview of Input Data for Description Logic Learning

Dataset Targets/Leaf Classes Classes Assertions Object Properties Object Property Assertions Examples/Individuals

GHTraffic 81/196 177,696 2 4,106 377/2,430

Twitter 126/162 201,209 2 4,042 504/2,525

Google Tasks 39/68 163,146 2 7,156 1,124/4,702

Slack 14/58 205,995 2 7,490 1,499/5,244

for accessing datasets.

DL learning algorithms have also limited their use to learning problems where
both positive and negative examples exist. Accordingly, all target classes with
no negative examples (the response properties with a single distinct value) are
ignored from learning definitions. The target classes which do not include any
positive examples would also be exempt from learning.

Appendix B.4 shows a complete list of classes and properties of the resulting
background knowledge bases associated with each HTTP dataset visualised in
Protege6. These knowledge bases can be found in the repository, in training-data
folder. A summary of each background knowledge base after data preparation is
given in Table 5.2.

5.4 Model Construction

Model construction in attribute-based learning is carried out using the WEKA 3.5
workbench. The WEKA implementation of C4.5 (implemented as J48), RIPPER
(implemented as JRip), and PART algorithms are applied to train multiple models
to predict different attributes associated with the response properties on each
dataset. The generated ARFF files (as discussed in Section 5.3.1) are given as
input to the algorithms. All algorithms are executed with the default configuration
settings7 since they have been empirically proven to perform well in general. In
addition, there are no major hyperparameters available that could optimise the
performance, so that a positive bias could be introduced if the parameters are
adjusted (to maximise performance).

Model construction in DL learning is performed using the DL-Learner 1.4.0.
The OCEL algorithm is utilised to learn class expressions for classes which relate
to different values associated with the response properties on each dataset (each
response property value is treated as a separate class learning problem). The back-
ground ontology built (in Section 5.3.2) is used as the input to OCEL along with
a list of positive and negative examples related to the target class to be learnt.
We use the ClosedWorldReasoner available in DL-Learner, so that those learning
problems assume that all related information is known about the individuals in
the domain and included in the knowledge base to be inferred. Moreover, there

while presumably retaining interaction patterns in the initial datasets. These percentages are
determined depending on complexity of each dataset.
6. Protege is a free and open-source ontology editor and knowledge base framework available
from https://protege.stanford.edu [accessed 02 Aug. 2020]. It has an attractive user inter-
face that allows users to create, edit, and manage background knowledge bases.
7. The default WEKA parameters are explained in https://weka.sourceforge.io/doc.dev/

weka/classifiers/AbstractClassifier.html [accessed 02 Aug. 2020]

81

https://protege.stanford.edu
https://weka.sourceforge.io/doc.dev/weka/classifiers/AbstractClassifier.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/AbstractClassifier.html

10 60 120 180 240

91

92

93

94

95

96

97

98

99

100

Maximum Execution Time [s]

P
re

d
ic
ti
v
e
A
c
c
u
ra

c
y

[%
]

GHTraffic Twitter Google Tasks Slack

Figure 5.6: Effect of Maximum Execution Time on Predictive Accuracy

are hyperparameters in OCEL that influence the training process.8 The most im-
portant hyperparameter in this case is the MaxExecutionTimeInSeconds (which
stops the algorithm when the pre-set time is reached). The current default is 10
seconds, which could limit the ability of the algorithm to find an optimal solution.
We perform a pilot study to determine the optimum value of this parameter that
would yield the best results. This is achieved by setting five commonly used values
for the maximum execution time (10, 60, 120, 180, and 240 seconds), constructing
models targeting classes that only correspond to the response state of each dataset,
and measuring the average predictive accuracy of the 2-fold cross validation (see
Section 5.5 for more details on the evaluation methodology). The experimental
results are plotted on the graph in Figure 5.6. As is evident from the results,
the increase of the maximum execution time in the GHTraffic does not improve
the predictive accuracy (almost similar results can be achieved with any time).
In all other datasets, the predictive accuracy increases slightly from 10 seconds,
resulting in the highest value at 120 seconds and almost constant from then on.
This implies that it is possible to use any time from 120 seconds to achieve nearly

8. The configuration options used by DL-Learner is available in https://cdn.rawgit.com/

AKSW/DL-Learner/master/interfaces/doc/configOptions.html [accessed 02 Aug. 2020]

82

https://cdn.rawgit.com/AKSW/DL-Learner/master/interfaces/doc/configOptions.html
https://cdn.rawgit.com/AKSW/DL-Learner/master/interfaces/doc/configOptions.html

similar results. Thus, we would choose the maximum execution time to be 120
seconds as the setting for OCEL on all datasets. This value stays constant during
the training process.

5.5 Model Evaluation

Based on the aims of this thesis, it is important to evaluate the classification models
generated by algorithms in terms of their performance and customisability. In the
following sections, we discuss the selection of evaluation metrics and methods to
calculating the metrics.

5.5.1 Evaluation Metrics

The performance evaluation metrics are selected with a particular focus on meas-
uring the predictive capability of models (how well classes are identified). Predict-
ive accuracy is the most commonly reported metric in the literature [261–264].
It simply stands for the capability of a model to identify instances correctly. To
provide a more thorough evaluation of the models, we are also interested at two
other widely used metrics: precision and recall. Precision is the ability of a model
to not classify an instance as positive when it is not, whereas recall can be seen
as the ability of a model to identify all positive instances. Below are the formulas
for calculating the metrics:

• Predictive Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalsePositive + FalseNegative

where: TruePositive is a number of positive instances correctly predicted to be
positive, TrueNegative is a number of negative instances correctly predicted to be
negative, FalsePositive is a number of negative instances erroneously predicted
to be positive, and FalseNegative is a number of positive instances erroneously
predicted to be negative.

• Precision =
TruePositive

TruePositive + FalsePositive

• Recall =
TruePositive

TruePositive + FalseNegative

The customisability of the models is evaluated mainly by emphasising the
comprehensibility (how easy the models are to understand). The model size is
often used to measure the comprehensibility with the implicit assumption that
small/short models are easier to interpret (less complex models are more easily
readable) [265–267]. The number of leaves and size of the tree (total number of
nodes) or the number of rules produced by attribute-based learning algorithms
is measured to assess the comprehensibility (as the number of nodes in a tree
is roughly equivalent to the size of the corresponding ruleset, this can lead to a
reasonable comparison). The definition length in the OWL class expression (total
number of concepts, role, qualifiers, and connective symbols occurring that appear
in the expression) is measured as a proxy for model size for DL learning.

The measures set out above will be calculated automatically by WEKA. DL-
Learner, however, does not calculate precision or recall, so that the original scripts

83

Figure 5.7: K-Fold Cross Validation

have to be modified to suit the needs. The corresponding implementation code can
be found in the repository9. In order to get an idea of how well the learning al-
gorithms perform on average on each dataset, the mean and the standard deviation
of all these measures are later computed from all observed results of the collection
of single-targeted models.

The experimental results of the selected algorithms will be presented and com-
pared with each other in Chapter 6.

5.5.2 Cross Validation Approach

Cross Validation (CV) is a popular method used to evaluate ML models. The
basic idea is to train a set of models on sub-datasets of the input data and to test
them on the complementary sub-dataset. Typically, it is the preferred technique
for assessing the generalisation capability of models (how well models perform on
unseen data).

In k-fold CV, the examples in the input dataset are randomly divided into k
equal sub-datasets (i.e., folds). Each of the k sub-dataset is then iteratively used
as a test set, with the remaining k-1 used to train the model in each iteration. A
graphical explanation can be found in Figure 5.7. This process is repeated k times,
so that each example is used at least once in both the training and the test set.
The chosen evaluation metrics are simply calculated as the average of all of the k
folds. Repeating the experiment helps to avoid the issue of overfitting the data to
the models and to have a clear understanding of the generalisation of the models.

9. https://bitbucket.org/tbhagya/http-mock-skeletons [accessed 02 Aug. 2020]

84

https://bitbucket.org/tbhagya/http-mock-skeletons

We apply the commonly used 10-fold CV in our evaluation of models generated
from attribute-based learning algorithms. However, evaluation in OCEL with 10-
fold CV turns out to be too computational intensive for the given datasets and ends
up in out of memory exception. The CV may require more memory depending
on how the OCEL algorithm is implemented. Further, the size of the knowledge
bases is much larger (as expressed in OWL) for the algorithm to operate under
the evaluation condition. Therefore, we use basic 2-fold CV for OCEL on each
dataset. This approach is still superior as models have the potential to be trained
and tested from all data and usually results in robust estimates. The evaluations
in attribute-based learning algorithms are also repeated with 2-fold CV to allow
the implicit comparison. This is reported in the evaluation results in Chapter 6.

5.5.3 Statistical Significance Test

The measures obtained from experiments (i.e., mean and standard deviation com-
puted for each algorithm in each dataset) can be used to determine the suitability
of symbolic learning techniques for predicting HTTP service responses (such as
more or less accurate). However, it is important to decide whether the differences
between the experimental outcomes reflect a trend or occur only by chance. In
this respect, a statistical significance test can be carried out to draw relevant
conclusions.

Every significance test usually starts with a null hypothesis and an altern-
ative hypothesis. A null hypothesis states that there is no significant difference
in the experimental results (assumes that the algorithms perform the same) and
an alternative hypothesis states that there are significant differences in the results
(assumes that algorithms perform differently). An appropriate test statistic is then
utilised to measure the sampling distribution under the null hypothesis. The res-
ult of the test statistic is used to determine (usually by means of a p-value [268])
whether the null hypothesis can be accepted or denied with respect to a significant
level. In the case where there is no evidence to reject the null hypothesis, there is
no significant difference between the measures in relation to the given significant
level. The significant level is the probability of rejecting the null hypothesis when
it is valid. The most commonly used significance level is 0.05 which corresponds
to a 5% chance of the results occurring randomly.

There are several statistically significant testing methodologies available (e.g.,
z-test [269], t-test [270], f-test [271]). Amongst, we are interested in using the t-
test as it is the standard to be followed where the population variance is unknown
and is measured using the sample variance (through the standard deviation). It
compares the mean and the standard deviation (for a particular metric) of the
two groups to see whether there is a significant difference between them. We thus
perform pairwise tests between algorithms over all datasets to conclude the results
of each metric at the statistical level.

Given the experimental results of two learning algorithms on a dataset, the
t-value of the t-test for a single metric is calculated using the following formula:

• t-value = x̄1−x̄2√
(s2(1

n1
+ 1

n2
))

85

where: x1 and x2 are the means of the metric for the two groups being compared,
s2 is the pooled standard error of the two groups of the metric, and n1 and n2

are the numbers of observations in each of the groups. The p-value can then be
estimated in relation to the t-value by using the t-distribution table [272]. If the
p-value is higher than the statistical significance level, the difference between the
evaluation results is not statistically significant (i.e., the null hypothesis is not
rejected). It means that the algorithms being studied performed the same. The
statistical results are used in Chapter 6 for the formulation of the discussion on
the overall experimental results.

5.6 Reproducing Experimental Results

The experimental methodology described above is implemented in the Java lan-
guage and is developed using the Maven software project management architec-
ture. We provide access to these scripts, including a VirtualBox image with a
pre-configured setup, to run the experiments and to reproduce the results.

Obtaining Scripts

The project scripts can be accessed either by cloning the repository from https:

//bitbucket.org/tbhagya/http-mock-skeletons or by downloading the pre-
configured VirtualBox image from https://zenodo.org/record/4025955/files/

http-mock-skeletons-artifact-1.0.0.zip

Environment Setup

The following settings are required to use the experimental scripts by cloning the
repository:

1. Install Java Runtime Environment (JRE) 810 or above

2. Install Apache Maven 3.5.011 or above

3. Create scripts/src/resources folder where all raw and training data is stored

4. Download the appropriate dataset12, based on the learning type you intend to
experiment with (i.e., attribute-based learning or description logic learning)

5. Extract the zipped file and move the raw dataset file to the scripts/src/resources

10. https://oracle.com/java/technologies/javase-jre8-downloads.html [accessed 16
Aug. 2020]
11. https://maven.apache.org/download.cgi [accessed 16 Aug. 2020]
12. The GHTraffic dataset (small edition of 2.0.0) to conduct experiments with attribute-
based learning can be downloaded from https://zenodo.org/record/4007589/files/

ghtraffic-S-2.0.0.zip, and Twitter, Google Tasks and Slack can be downloaded using the
links provided in Section 4.3.3. Use the links provided in Appendix B.3 to download the
GHTraffic, Twitter, and Slack datasets (sub-datasets of the originals) to conduct experiments
with description logic learning. The original Google Tasks dataset from https://zenodo.org/

record/4007570/files/googletasks-1.0.0.zip is used to perform experiments on descrip-
tion logic learning.

86

https://bitbucket.org/tbhagya/http-mock-skeletons
https://bitbucket.org/tbhagya/http-mock-skeletons
https://zenodo.org/record/4025955/files/http-mock-skeletons-artifact-1.0.0.zip
https://zenodo.org/record/4025955/files/http-mock-skeletons-artifact-1.0.0.zip
https://oracle.com/java/technologies/javase-jre8-downloads.html
https://maven.apache.org/download.cgi
https://zenodo.org/record/4007589/files/ghtraffic-S-2.0.0.zip
https://zenodo.org/record/4007589/files/ghtraffic-S-2.0.0.zip
https://zenodo.org/record/4007570/files/googletasks-1.0.0.zip
https://zenodo.org/record/4007570/files/googletasks-1.0.0.zip

Running Experiments

The three shell scripts resided in the scripts folder can be used to perform different
experimental phases.

1. The script datapreparator.sh is configured to execute the Data Prepro-
cessing and Data Transformation phases in which the downloaded raw data
is cleaned and converted into data formats suitable for different learning types.

It requires two arguments:

• -l with either abl (for attribute-based learning) or dll (for description logic
learning) specifying the learning type intended for experimentation

• -d with either GHTraffic, Twitter, GoogleTasks or Slack specifying the
type of dataset downloaded

Depending on the learning type and dataset specified, the training data (e.g.,
ARFF or OWL) will be generated and stored in the resources folder.

2. The script modellearner.sh is configured to execute the Model Construc-
tion step in which the model artefacts are generated from training data created
by datapreparator.sh.

It requires three arguments:

• -a with either C4.5, RIPPER, PART or OCEL specifying the learning algorithm
intended for experimentation

• -d with either GHTraffic, Twitter, GoogleTasks or Slack specifying the
type of dataset

• -i with the target index to train in attribute-based learning or -c with
the name of target class to train in description logic learning

Based on the specified algorithm and the target, the model will be generated
and output to the terminal.

The script also contains options -ilist and -clist with either GHTraffic,
Twitter, GoogleTasks or Slack for retrieving the full list of target attribute
indexes or target class names that are optimal for predictions in the specified
dataset. By referring to these lists, users can identify the target attribute index
or the target class name that they want to learn.

3. The script modelevaluator.sh is configured to execute the Model Evalu-
ation step in which the generated model artefacts are tested using the cross
validation technique.

It requires the same input arguments as modellearner.sh.

Depending on the specified algorithm and the target, the model will be evalu-
ated and the results will be output to the terminal.

The readme.md file included in the repository provides further information on how
to build and run the scripts. Note that the evaluation results can slightly differ in
each execution as cross validation procedure randomly generates folds.

87

5.7 Summary

In this chapter, we presented a comprehensive overview of our experimental setup.
The process was designed and implemented to preserve the reproducibility, gener-
alisation, and comparability of results. It started with the cleaning of raw datasets.
The preprocessed datasets were then converted into data formats compatible with
selected symbolic learning algorithms and further filtered for best exposure to
algorithms. This was followed by the development of multiple models to predict
different response properties from the training data. Finally, the models generated
were evaluated for their correctness and comprehensibility by cross validation and
the t-test was used to assess the statistical significant differences between the res-
ults. The experimental results will be presented in the subsequent chapter of this
thesis. We also provided instructions on how to reproduce the results.

88

Chapter 6

Experimental Results

This chapter presents and discusses the results of our experiments. A brief intro-
duction to the experimental setup is provided in Section 6.1. The experimental
evaluation results will be outlined and discussed in detail in Section 6.2 and po-
tential threats to the validity of the results will be highlighted in Section 6.3.

6.1 Introduction

As was described in the introductory chapter, the main purpose of this study is to
understand the appropriateness of Symbolic Machine Learning (SML) techniques
for constructing mock skeletons of HTTP services directly from network traffic
recordings. And as such, the study examined four promising SML algorithms, in-
cluding three of the attribute-based learning algorithms, i.e., the C4.5 decision
tree algorithm, the RIPPER and PART rule learners (utilising their WEKA im-
plementations), and the OCEL Description Logic (DL) learning algorithm (from
the DL-Learner). All the experiments were carried out on the interaction traces ob-
tained from four different real HTTP services (i.e., GitHub, Twitter, Google, and
Slack). Chapter 5 outlines the experimental approach adopted: the raw datasets
were first cleaned up, followed by the transformation of the data into formats suit-
able for the selected learning algorithms. The algorithms and training datasets
were then used to train multiple models to predict different features associated
with the response properties, and finally, the resultant models were evaluated.
There has also been a significant emphasis on the reproducibility of the experi-
mental results.

We, particularly, employed the 10-fold Cross Validation (CV) technique to
evaluate the models built by attribute-based learning algorithms. However, due
to memory constraints, we could not perform 10-fold CV on OCEL and therefore
opted to perform tests with 2-fold. A 2-fold CV was carried out subsequently on
attribute-based learning algorithms to see whether any significant differences ex-
ist. Section 5.5.2 provides a complete overview of the method. In CV, the inferred
models were assessed in two different aspects: predictive ability and comprehensib-
ility. The predictive capability of the models was evaluated in terms of predictive
accuracy, precision, and recall. To evaluate the comprehensibility of the mod-
els, the model size was used (i.e., tree size or number of rules was measured in
attribute-based learning and class expression length was measured in DL learning).

89

Table 6.1: Average Predictive Accuracy Achieved by Algorithms on Datasets

Technique

Dataset C4.5 RIPPER PART OCEL

GHTraffic 0.9835±0.0165 0.9835±0.0165 0.9835±0.0165 0.9533±0.0972

Twitter 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 0.9941±0.0040

Google Tasks 0.9988±0.0009 0.9986±0.0009 0.9988±0.0009 0.9733±0.0452

Slack 0.9544±0.1290 0.9544±0.1290 0.9544±0.1290 0.9216±0.1855

Table 6.2: Average Precision Achieved by Algorithms on Datasets

Technique

Dataset C4.5 RIPPER PART OCEL

GHTraffic 0.4481±0.2789 0.4480±0.2789 0.4481±0.2789 0.9341±0.1506

Twitter 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 0.9852±0.0151

Google Tasks 0.9000±0.1532 0.8998±0.1531 0.9000±0.1532 0.8263±0.3310

Slack 0.9147±0.2413 0.9147±0.2413 0.9147±0.2413 0.9188±0.1848

Table 6.3: Average Recall Achieved by Algorithms on Datasets

Technique

Dataset C4.5 RIPPER PART OCEL

GHTraffic 0.4509±0.2733 0.4510±0.2735 0.4509±0.2733 0.9851±0.0637

Twitter 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 0.9986±0.0015

Google Tasks 0.9005±0.1524 0.9003±0.1523 0.9005±0.1524 0.8690±0.3376

Slack 0.9375±0.1768 0.9375±0.1768 0.9375±0.1768 1.0000±0.0000

Section 5.5.1 outlines the details of each metric. In order to gain a better under-
standing of the overall (average) performance of algorithms on each dataset, the
mean and the standard deviation of all these measurements were calculated from
the observed results of the single-targeted model sets (plus, as in Section 5.5.3,
the t-tests were performed to determine whether there were statistically significant
differences in the averages obtained). It is also important to note that although the
techniques proposed in [16,17] and [19,20] are aimed for stateful service virtualisa-
tion, we did not compare our results against them, due to their major limitations
as listed in Chapter 3, especially because of their inability to generate accurate
approximations of the actual behavioural responses of the HTTP/REST services
depending on the internal service state, and the lack of provenance of their results.
The research reported in this thesis is the very first to study the virtualisation of
HTTP-based services and to focus directly on the generation of accurate HTTP
responses with human-readable logics.

In the following sections, a detailed discussion of the experimental evaluation
results will be presented.

90

Table 6.4: Average Model Size Achieved by Algorithms on Datasets

Technique

Dataset C4.5 RIPPER PART OCEL

GHTraffic 6.4000±11.6986 2.2000±2.9416 3.2400 ±5.2238 7.9753±4.1261

Twitter 9.8889±0.8819 3.9365±0.3044 2.9841±0.1260 9.3651±1.1771

Google Tasks 5.3750±1.8212 2.5000±0.6325 3.3125±1.0782 6.8974±4.2165

Slack 9.3750±4.5020 3.3750±1.1877 4.0000±1.3093 3.5714±2.5933

6.2 Results and Discussion

Tables 6.1–6.4 present overall performance measurements (mean and standard
deviation of predictive accuracy, precision, recall, and model size) based on dif-
ferent techniques applied (i.e., C4.5, RIPPER, PART, and OCEL), over all four
datasets (i.e., GHTraffic, Twitter, Google Tasks, and Slack). For detailed quantit-
ative results of attribute-based learning algorithms at target level in each dataset,
see Tables 6.5–6.8. Appendix C.5 presents the 2-fold CV results of attribute-based
learning algorithms. Evidently, there is no substantial difference in model perform-
ance when adjusting the number of folds in CV (between 2 and 10) and evaluating
models generated from attribute-based learning algorithms. Therefore, an impli-
cit comparison can be made between the obtained results from attribute-based
learning and DL learning strategies. Tables 6.9–6.12 provide detailed quantitative
OCEL results at the target level of each dataset. Appendix C.6 presents the results
from t-tests comparing performance of algorithms on each dataset.

In general, the algorithms perform with an average accuracy of around 0.9216-
1.0000 on all datasets, which means that the error rate is low and most of the
inferred classifiers are reliable. The observed precision and recall averages of each
algorithm are often quite close to the predictive accuracy on each dataset with
the exception of the attribute-based learning algorithms (i.e., C4.5, RIPPER, and
PART) on the GHTraffic1, so we can reasonably be confident that most classifiers
return accurate results (high precision corresponds to low false positive rate) and
that the majority of the results are positive (high recall corresponds to low false
negative rate). Moreover, the standard deviations of all of those measures are quite
low (range from 0.0000-0.3376), which confirms that there are low variations in
the measurements for different training and testing sets in the CV. The results of
the t-tests further indicate that there are no statistically significant differences in

1. The GHTraffic dataset especially contains a set of response properties that are not optimal
for predictions (which do not have associations with the request features and the service state
history) and also have extremely unbalanced value distributions (a large proportion of instances
from one value and relatively few instances spread across the rest). In attribute-based learning,
the input attributes are irrelevant to the learning problem, and the algorithms use the central
tendency of each target for classification, which results in high accuracy but low precision and
recall. This will be addressed in more detail in Section 2.1. In DL learning, the inferred models for
these targets always reach high measures. However, the algorithm can only learn the mapping for
targets from the incoming request features and non-state-related response features of previous
transactions (as the language used by DL learning account for much more expressive input than
others).

91

the average measures between the C4.5, RIPPER, and PART across all datasets
(estimated p-values between the attribute-based learning algorithms are larger
than the considered significance level of 0.5, showing that we cannot reject the
null hypothesis that there is no significant difference in the experimental results),
whereas the averages of OCEL are generally slightly lower than those of the C4.5,
RIPPER, and PART (estimated p-values between the attribute-based learning
algorithms and the DL learning algorithm are less than 0.05, showing that we
can reject the null hypothesis and conclude that there are differences). These
results statistically provide convincing evidence that attribute-based learning and
DL learning techniques perform slightly differently, despite both present higher
predictive capabilities.

On the other hand, the average size of the classifiers produced by algorithms
on all datasets is around 2.2000-9.8889, which means that the models are most
compact and in a format that can be more easily interpreted. The t-test statistics
from the experimental results show that that there is a slight statistical signi-
ficance difference between the model size of algorithms across datasets. This is
apparent because there are differences in the way the models are expressed by the
algorithms.

While the classification algorithms are capable of achieving highly accurate
models with human-readable logics for most of the targets associated with the
response properties in each dataset, it is worth to note that there are certain
targets where algorithms obtain comparatively low results. This can be attributed
to factors such as the complexity of the learning problem (it is much more complex
to model certain response features depending on the characteristics of the request
and the status inferred from the service history), as well as insufficient training
data (a limited number of transaction sequences representing various behavioural
patterns). The following is a comprehensive review of the experimental results,
along with a discussion of a few other circumstances which significantly impact
the quality of the predictions.

6.2.1 Attribute-Based Learning Approach

This section discusses experimental findings in attribute-based learning based on
different datasets. For each dataset, C4.5, RIPPER, and PART results are analysed
with respect to the target attributes associated with the key HTTP response
features, including the status, response headers, and response body.

Results on GHTraffic Dataset

Table 6.5 outlines the experimental results produced by C4.5, RIPPER, and PART
for each target attribute in the GHTraffic dataset. See Appendix C.1.1, C.2.1,
and C.3.1 for the sample classification models. A summary of all attributes found
in the dataset is given in Appendix B.1.1.

As presented in Section 4.2, the GHTraffic dataset consists of HTTP transac-
tions extracted from the GitHub’s Issue Tracking system. It contains a set of POST
requests to create issues returning 201, 400, 404 and 422, GET and HEAD requests
to query issues returning 200 and 404, PATCH requests to update issues returning

92

T
ab

le
6.

5:
R

es
u

lt
s

of
A

tt
ri

b
u

te
-B

as
ed

L
ea

rn
in

g
A

lg
or

it
h

m
s

p
er

R
es

p
o
n

se
F

ea
tu

re
(T

a
rg

et
)

in
G

H
T

ra
ffi

c.
T

h
e

ca
lc

u
la

te
d

m
ea

n
a
n
d

st
a
n

d
a
rd

d
ev

ia
ti

o
n

in
d

ic
a
te

th
e

ov
er

al
l

p
er

fo
rm

an
ce

of
ea

ch
al

go
ri

th
m

in
p

re
d

ic
ti

n
g

re
sp

o
n

se
p

ro
p

er
ti

es
o
f

th
e

d
a
ta

se
t

(a
s

se
en

in
T

a
b

le
s

6
.1

,
6
.2

,
6
.3

,
a
n

d
6
.4

).

T
a
rg

e
t

C
4
.5

R
IP

P
E
R

P
A

R
T

A
c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

L
e
a
v
e
s

S
iz

e
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s

R
e
sp

o
n
se

S
ta

tu
sC

o
d
e

0
.9

8
5
8

0
.9

9
4
8

0
.8

8
9
6

3
8

5
1

0
.9

8
5
8

0
.9

9
4
8

0
.8

8
9
6

9
0
.9

8
5
8

0
.9

9
4
8

0
.8

8
9
6

2
3

R
e
sp

o
n
se

H
e
a
d
e
r

C
a
c
h
e
-C

o
n
tr

o
l

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
6

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8

R
e
sp

o
n
se

H
e
a
d
e
r

V
a
ry

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
6

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8

R
e
sp

o
n
se

H
e
a
d
e
r

X
-A

c
c
e
p
te

d
-O

A
u
th

-S
c
o
p

e
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
5

2
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

7
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

7

R
e
sp

o
n
se

H
e
a
d
e
r

X
-O

A
u
th

-S
c
o
p

e
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2

R
e
sp

o
n
se

B
o
d
y

a
ss

ig
n
e
e
.s

it
e

a
d
m

in
0
.9

6
3
4

0
.4

8
1
5

0
.5

0
0
0

1
1

0
.9

6
3
4

0
.4

8
1
5

0
.5

0
0
0

1
0
.9

6
3
4

0
.4

8
1
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

a
ss

ig
n
e
e
.t

y
p

e
0
.9

6
3
4

0
.4

8
1
5

0
.5

0
0
0

1
1

0
.9

6
3
4

0
.4

8
1
5

0
.5

0
0
0

1
0
.9

6
3
4

0
.4

8
1
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

a
ss

ig
n
e
e
s.

si
te

a
d
m

in
0
.9

8
2
5

0
.4

9
1
5

0
.5

0
0
0

1
1

0
.9

8
2
5

0
.4

9
1
5

0
.5

0
0
0

1
0
.9

8
2
5

0
.4

9
1
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

a
ss

ig
n
e
e
s.

ty
p

e
0
.9

8
2
5

0
.4

9
1
5

0
.5

0
0
0

1
1

0
.9

8
2
5

0
.4

9
1
5

0
.5

0
0
0

1
0
.9

8
2
5

0
.4

9
1
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.a

v
a
ta

r
u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.e

v
e
n
ts

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.f

o
ll
o
w

e
rs

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.f

o
ll
o
w

in
g

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.g

is
ts

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.h

tm
l

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.i
d

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.l
o
g
in

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.o

rg
a
n
iz

a
ti

o
n
s

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.r

e
c
e
iv

e
d

e
v
e
n
ts

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.r

e
p

o
s

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.s

it
e

a
d
m

in
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.s

ta
rr

e
d

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.s

u
b
sc

ri
p
ti

o
n
s

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.t

y
p

e
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.u

rl
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

d
o
c
u
m

e
n
ta

ti
o
n

u
rl

0
.9

8
5
6

0
.9

8
9
5

0
.9

8
8
7

3
4

4
3

0
.9

8
4
2

0
.9

8
8
5

0
.9

9
3
5

1
7

0
.9

8
5
6

0
.9

8
9
5

0
.9

8
8
7

2
3

R
e
sp

o
n
se

B
o
d
y

lo
c
k
e
d

0
.9

9
9
9

0
.6

6
6
3

0
.6

6
6
7

1
6

2
3

0
.9

9
9
9

0
.6

6
6
3

0
.6

6
6
7

4
0
.9

9
9
9

0
.6

6
6
3

0
.6

6
6
7

8

R
e
sp

o
n
se

B
o
d
y

m
e
ss

a
g
e

0
.9

9
5
9

0
.8

3
0
8

0
.8

3
3
3

1
8

2
7

0
.9

9
5
9

0
.8

3
0
8

0
.8

3
3
3

9
0
.9

9
5
9

0
.8

3
0
8

0
.8

3
3
3

1
4

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
a
v
a
ta

r
u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
e
v
e
n
ts

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
fo

ll
o
w

e
rs

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
fo

ll
o
w

in
g

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
g
is

ts
u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
h
tm

l
u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
id

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
lo

g
in

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
o
rg

a
n
iz

a
ti

o
n
s

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
re

c
e
iv

e
d

e
v
e
n
ts

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

C
o
n
ti

n
u
e
d

o
n

n
e
x
t

p
a
g
e

93

T
a
b
le

6
.5

–
c
o
n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

T
a
rg

e
t

C
4
.5

R
IP

P
E
R

P
A

R
T

A
c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

L
e
a
v
e
s

S
iz

e
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
re

p
o
s

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
si

te
a
d
m

in
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
st

a
rr

e
d

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
su

b
sc

ri
p
ti

o
n
s

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
ty

p
e

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.d

u
e

o
n

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.o

p
e
n

is
su

e
s

0
.9

6
5
4

0
.2

5
0
0

0
.2

4
1
2

1
1

0
.9

6
5
4

0
.2

5
0
0

0
.2

4
1
2

1
0
.9

6
5
4

0
.2

5
0
0

0
.2

4
1
2

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.s

ta
te

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1

R
e
sp

o
n
se

B
o
d
y

st
a
te

0
.9

7
9
0

0
.9

3
5
0

0
.9

2
7
7

1
3

2
1

0
.9

7
9
0

0
.9

3
5
0

0
.9

2
7
7

5
0
.9

7
9
0

0
.9

3
5
0

0
.9

2
7
7

1
4

R
e
sp

o
n
se

B
o
d
y

u
se

r.
si

te
a
d
m

in
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
6

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8

R
e
sp

o
n
se

B
o
d
y

u
se

r.
ty

p
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
6

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8

M
e
a
n

0
.9

8
3
5

0
.4

4
8
1

0
.4

5
0
9

4
.7

8
0
0

6
.4

0
0
0

0
.9

8
3
5

0
.4

4
8
0

0
.4

5
1
0

2
.2

0
0
0

0
.9

8
3
5

0
.4

4
8
1

0
.4

5
0
9

3
.2

4
0
0

S
ta

n
d
a
rd

D
e
v
ia

ti
o
n

0
.0

1
6
5

0
.2

7
8
9

0
.2

7
3
3

8
.4

4
9
8

1
1
.6

9
8
6

0
.0

1
6
5

0
.2

7
8
9

0
.2

7
3
5

2
.9

4
1
6

0
.0

1
6
5

0
.2

7
8
9

0
.2

7
3
3

5
.2

2
3
8

94

200, 400, 401, 404 and 422, and PUT and DELETE requests to lock and unlock
issues returning 204, 401 and 404. There are also a few GET requests which return
500 status code. Both in terms of size and complexity, this dataset is the largest
and complex experimental dataset used in this study.

Basically, the GitHub API uses the response status code to indicate whether
or not a request is successful. In case of a failure, the documentation url and
message fields in the response body are used to describe the error in depth.
Accordingly, the ResponseStatusCode, ResponseBody documentation url, and
ResponseBody message are the target attributes associated with the response
state in the GHTraffic dataset. As can be seen in Table 6.5, the inferred semantics
models by C4.5, RIPPER, and PART have high predictive performance for each
of these state-related targets and are small in size and less complex. For example,
consider the ResponseStatusCode target attribute which has 8 distinct values:
200, 201, 204, 400, 401, 404, 422, and 500. It can be observed that the C4.5,
RIPPER, and PART models for ResponseStatusCode score 0.9858 predictive ac-
curacy by correctly classifying 31,758 instances out of 32,215, and the precision and
recall rates are 0.9948 and 0.8896, respectively. Note that all incorrectly classified
instances are from HTTP status 500 (which indicates that the server has en-
countered an unexpected condition). In particular, the GHTraffic dataset contains
516 records with HTTP 500 (see Table 4.6) of which 59 are correctly classified,
and the remaining 457 instances are misclassified as HTTP 404 (i.e., 457 false
positives for class 404 and 457 false negatives for class 500). This is mainly due to
the fact that it is much more complex to infer rules that precisely model such un-
expected server behaviour. However, it can be confirmed that all generic response
codes in the GHTraffic dataset could be 100% accurately identified by the models.
In reality, such a server error occurs at a very low frequency. Figure 6.1 shows the
textual representation of the sample C4.5 decision tree. The first number in brack-
ets at the end of each leaf is the total instances which reach the particular leaf.
The second number represents the instances misclassified. The tree is 51 (nodes)
in size and includes 38 leaves (due to the complexity of the dataset, the model
size is fairly large compared to other datasets, but is readable and describes the
scenario well). The resultant tree can also be represented in the form of unordered
rules (a total of 38 rules could be obtained by extracting one rule per leaf). Some
of the rules drawn from the tree are as follows:
1 IF (HasSuccessfulCreateOperationOccurredBefore = false) AND

(HasRequestPayload = true) AND (HasValidRequestPayload = true) AND

(RequestMethod = POST) AND

(HasAuthorisationToken = true) THEN

ResponseStatusCode = 201

2 IF (HasSuccessfulCreateOperationOccurredBefore = false) AND

(HasRequestPayload = false) AND

(RequestMethod = PATCH) THEN

ResponseStatusCode = 404

Rule 1 encodes the semantics of HTTP 201 (Created) status code (which indicates
the successful creation of an issue in the GitHub’s Issue Tracking system). It
stipulates that the response status code for a request will be HTTP 201 if the
particular resource has not been successfully created previously and the request
made using the method POST, valid authentication tokens, and a payload with
correctly encoded values. Conversely, Rule 2 encodes the semantics of HTTP 404

(Not Found) status code to an edit (PATCH) request. It states that the response

95

HasSuccessfulCreateOperationOccurredBefore = false

| HasRequestPayload = false

| | RequestMethod = HEAD: 404 (1769.0)

| | RequestMethod = DELETE: 404 (1698.0)

| | RequestMethod = POST: 422 (542.0)

| | RequestMethod = GET

| | | ImmediatelyPreviousStatusCode = not -exist: 404 (295.0/67.0)

| | | ImmediatelyPreviousStatusCode = 404

| | | | ImmediatelyPreviousMethod = not -exist: 404 (0.0)

| | | | ImmediatelyPreviousMethod = HEAD: 404 (303.0/56.0)

| | | | ImmediatelyPreviousMethod = DELETE: 404 (332.0/71.0)

| | | | ImmediatelyPreviousMethod = POST: 404 (254.0/43.0)

| | | | ImmediatelyPreviousMethod = GET: 500 (59.0)

| | | | ImmediatelyPreviousMethod = PUT: 404 (275.0/52.0)

| | | | ImmediatelyPreviousMethod = PATCH: 404 (274.0/61.0)

| | | ImmediatelyPreviousStatusCode = 400: 404 (291.0/52.0)

| | | ImmediatelyPreviousStatusCode = 201: 404 (0.0)

| | | ImmediatelyPreviousStatusCode = 200: 404 (0.0)

| | | ImmediatelyPreviousStatusCode = 422: 404 (118.0/55.0)

| | | ImmediatelyPreviousStatusCode = 401: 404 (0.0)

| | | ImmediatelyPreviousStatusCode = 204: 404 (0.0)

| | | ImmediatelyPreviousStatusCode = 500: 404 (59.0)

| | RequestMethod = PUT: 404 (1720.0)

| | RequestMethod = PATCH: 404 (0.0)

| HasRequestPayload = true

| | HasValidRequestPayload = false: 400 (1752.0)

| | HasValidRequestPayload = true

| | | RequestMethod = HEAD: 404 (0.0)

| | | RequestMethod = DELETE: 404 (0.0)

| | | RequestMethod = POST

| | | | HasAuthorisationToken = true: 201 (1793.0)

| | | | HasAuthorisationToken = false: 404 (1718.0)

| | | RequestMethod = GET: 404 (0.0)

| | | RequestMethod = PUT: 404 (0.0)

| | | RequestMethod = PATCH: 404 (1729.0)

HasSuccessfulCreateOperationOccurredBefore = true

| HasAuthorisationToken = true

| | RequestUriPathToken6 = not -exist

| | | HasRequestPayload = false

| | | | RequestMethod = HEAD: 200 (1722.0)

| | | | RequestMethod = DELETE: 200 (0.0)

| | | | RequestMethod = POST: 200 (0.0)

| | | | RequestMethod = GET: 200 (3065.0)

| | | | RequestMethod = PUT: 200 (0.0)

| | | | RequestMethod = PATCH: 422 (1317.0)

| | | HasRequestPayload = true

| | | | HasValidRequestPayload = false: 400 (1747.0)

| | | | HasValidRequestPayload = true: 200 (1052.0)

| | RequestUriPathToken6 = lock: 204 (3104.0)

| HasAuthorisationToken = false: 401 (5227.0)

Figure 6.1: The Sample C4.5 Tree for ResponseStatusCode in GHTraffic

status code for a request will be HTTP 404 if the particular resource has not been
successfully created before and the request made using the PATCH method, and no
payload has been transferred along with the request. Likewise, the inferred decision
tree model is very simple to comprehend. Figures 6.2 and 6.3 present the sample
RIPPER and PART decision lists (ordered rulesets) for ResponseStatusCode with
9 and 23 rules. Numbers in brackets at the end of each rule indicate the total
number of instances that classified into the particular rule and the number of
misclassified instances. We can observe that both RIPPER and PART models
are simple to interpret: the rules are analysed in order, and the last rule is the
default rule that applies if none of the other rules are true. In terms of induced
knowledge, the models share similarities with C4.5, but do have some variations

96

(RequestMethod = GET) and

(HasSuccessfulCreateOperationOccurredBefore = false) and

(ImmediatelyPreviousMethod = GET) and

(ImmediatelyPreviousStatusCode = 404) => ResponseStatusCode =500 (59.0/0.0)

(RequestMethod = POST) and

(HasValidRequestPayload = true) and

(HasAuthorisationToken = true) => ResponseStatusCode =201 (1793.0/0.0)

(RequestMethod = PATCH) and

(HasRequestPayload = false) => ResponseStatusCode =422 (1317.0/0.0)

(RequestMethod = POST) and

(HasRequestPayload = false) => ResponseStatusCode =422 (542.0/0.0)

(RequestUriPathToken6 = lock) and

(HasAuthorisationToken = true) and

(HasSuccessfulCreateOperationOccurredBefore = true) => ResponseStatusCode =204

(3104.0/0.0)

(HasRequestPayload = true) and

(HasValidRequestPayload = false) and

(HasAuthorisationToken = true) => ResponseStatusCode =400 (3499.0/0.0)

(HasAuthorisationToken = false) and

(HasValidRequestPayload = false) => ResponseStatusCode =401 (5227.0/0.0)

(HasSuccessfulCreateOperationOccurredBefore = true) => ResponseStatusCode =200

(5839.0/0.0)

=> ResponseStatusCode =404 (10835.0/457.0)

Figure 6.2: The Sample RIPPER Ruleset for ResponseStatusCode in GHTraffic

due to the way algorithms work. It is clear from all of these examples that the
models produced can be used to easily understand the possible causes of particular
status codes. Having such information at hand makes it easy for the engineers to
inspect and understand the logic behind status codes of service responses.

On the other hand, there are few target attributes associated with the re-
sponse headers in the GHTraffic dataset that hold a single distinct value and
are therefore excluded from the learning process, as the use of attribute-based
learning algorithms is limited to non-unary targets. The ResponseHeader Server,
ResponseHeader Content-Type, and ResponseHeader X-GitHub-Media-Type are
examples for targets with only one value (each record has the same value). In ad-
dition, targets with a fairly large set of distinct values are also exempt from learn-
ing because they are not appropriate for predictions. The ResponseHeader Date,
ResponseHeader ETag, and ResponseHeader X-GitHub-Request-Id are examples
for targets with too many values (each record has a unique value). However,
we can see that all targets with a limited number of distinct values relating
to the response headers in the GHTraffic dataset (i.e., ResponseHeader Vary,
ResponseHeader Cache-Control, ResponseHeader X-Accepted-OAuth-Scopes,
and ResponseHeader X-OAuth-Scopes) achieve the maximum predictive perform-
ance across all algorithms (means 1.0 predictive accuracy, precision, and recall).
The classification models are also small in size, which in turn, can be readily
understood. As an instance, for the target ResponseHeader X-OAuth-Scopes (re-
lated to the X-OAuth-Scopes API-specific header) containing 2 distinct values:
public repo and not-exist, C4.5 produces a tree with size 3 (including 2 leaves),
while RIPPER and PART generate rulesets of 5 and 8 rules. Figures 6.4–6.6 depict

97

HasSuccessfulCreateOperationOccurredBefore = false AND

HasRequestPayload = false AND

RequestMethod = HEAD: 404 (1769.0)

HasSuccessfulCreateOperationOccurredBefore = false AND

HasRequestPayload = false AND

RequestMethod = PUT: 404 (1720.0)

HasSuccessfulCreateOperationOccurredBefore = false AND

HasValidRequestPayload = true AND

RequestMethod = POST AND

HasAuthorisationToken = true: 201 (1793.0)

HasSuccessfulCreateOperationOccurredBefore = false AND

HasRequestPayload = true AND

HasValidRequestPayload = true: 404 (3447.0)

HasAuthorisationToken = false: 401 (5227.0)

RequestUriPathToken6 = lock AND

HasSuccessfulCreateOperationOccurredBefore = true: 204 (3104.0)

HasRequestPayload = true AND

HasValidRequestPayload = false: 400 (3499.0)

HasSuccessfulCreateOperationOccurredBefore = true AND

RequestMethod = GET: 200 (3065.0)

HasSuccessfulCreateOperationOccurredBefore = true AND

RequestMethod = HEAD: 200 (1722.0)

HasRequestPayload = false AND

HasSuccessfulCreateOperationOccurredBefore = false AND

RequestMethod = DELETE: 404 (1698.0)

HasRequestPayload = false AND

RequestMethod = PATCH: 422 (1317.0)

RequestMethod = PATCH: 200 (1052.0)

RequestMethod = POST: 422 (542.0)

ImmediatelyPreviousStatusCode = 404 AND

ImmediatelyPreviousMethod = DELETE: 404 (332.0/71.0)

ImmediatelyPreviousStatusCode = 404 AND

ImmediatelyPreviousMethod = HEAD: 404 (303.0/56.0)

ImmediatelyPreviousStatusCode = not -exist: 404 (295.0/67.0)

ImmediatelyPreviousStatusCode = 400: 404 (291.0/52.0)

ImmediatelyPreviousStatusCode = 404 AND

ImmediatelyPreviousMethod = PUT: 404 (275.0/52.0)

ImmediatelyPreviousStatusCode = 404 AND

ImmediatelyPreviousMethod = PATCH: 404 (274.0/61.0)

ImmediatelyPreviousStatusCode = 404 AND

ImmediatelyPreviousMethod = POST: 404 (254.0/43.0)

ImmediatelyPreviousStatusCode = 422: 404 (118.0/55.0)

ImmediatelyPreviousStatusCode = 404: 500 (59.0)

: 404 (59.0)

Figure 6.3: The Sample PART Ruleset for ResponseStatusCode in GHTraffic

98

HasAuthorisationToken = true: public_repo (25270.0)

HasAuthorisationToken = false: not -exist (6945.0)

Figure 6.4: The Sample C4.5 Tree for ResponseHeader X-OAuth-Scopes in GHTraffic

(HasAuthorisationToken = false) => ResponseHeader_X -OAuth -Scopes=not -exist

(6945.0/0.0)

=> ResponseHeader_X -OAuth -Scopes=public_repo (25270.0/0.0)

Figure 6.5: The Sample RIPPER Ruleset for ResponseHeader X-OAuth-Scopes in GHTraffic

HasAuthorisationToken = true: public_repo (25270.0)

: not -exist (6945.0)

Figure 6.6: The Sample PART Ruleset for ResponseHeader X-OAuth-Scopes in GHTraffic

the sample models by C4.5, RIPPER, and PART. The first number in parentheses
at the end of each leaf/rule is the total instances reaching the particular leaf/rule
and the second number represents misclassified instances. These models can be
used to easily interpret the semantics of X-OAuth-Scopes header. They stipulate
that all responses for requests made with valid authorisation tokens will include
the X-OAuth-Scopes header with the value public repo, otherwise, there will be
no X-OAuth-Scopes header in the responses.

In addition, the GHTraffic dataset includes a wide variety of target attrib-
utes associated with the content of the response body. Some have a fairly large
set of distinct values (e.g., ResponseBody user.id, ResponseBody created at,
and ResponseBody comments) and thus are ignored when generating models. It
is noted that there are several other targets relevant to the response body (e.g.,
ResponseBody assignee.type and ResponseBody milestone.open issues) that
attain high predictive accuracy but fail to perform equally on other metrics. The
induced models are either a single node tree or a ruleset with only the default
class, resulting in high accuracy but low precision and recall (leading to a re-
latively high variance in the average measurements). It is very likely that the
standard pruning options are preventing the models from growing. This is prob-
ably because the input attributes are irrelevant to the learning problem and the
best an algorithm can do is to use the central tendency of that target for classific-
ation. We observe that these targets relate to the data returned by the server with
respect to multiple entities to which the Issue Tracking system refers itself (such
as users, labels, and milestones) and that correlation between/across targets and
input attributes (features of the respective request message and service state his-
tory) cannot be guaranteed. It is also particularly notable that these targets have
extremely unbalanced value distributions (a large proportion of instances from one
value and relatively few instances spread across the rest of the values) contribut-
ing to high predictive accuracy. For example, the ResponseBody assignee.type

has two values (not-exist and User) and comprises 31,035 instances from the
total dataset of 32,215 records related to not-exist (96.34% of the overall data-
set), and even if the output is a single node (class not-exist), it could simply

99

predict each instance as no-exist, thus achieving 0.9634 predictive accuracy.
However, this will lead to low precision and recall values, as not even a single
instance can be accurately identified in User class. Such target features are,
therefore, non-optimal for predictions. Yet, there are few targets from the re-
sponse body (such as ResponseBody locked and ResponseBody state) for which
the algorithms produce very accurate, simple classifiers. For example, the target
ResponseBody state represents the state parameter that specifies whether the
particular issue is open or closed. Accordingly, the target has 3 distinct values:
open, closed, and not-exist. As can be seen in Table 6.5, the inferred models
by C4.5, RIPPER, and PART for the ResponseBody state have high predictive
performance (all the instances misclassified belong to the HTTP status code 500)
and lower complexity. See Appendix C.1.1, C.2.1, and C.3.1 for sample classifica-
tion models. It is obvious that these models can be used to easily understand the
semantics of the state field in the response body.

Overall, C4.5, RIPPER, and PART are able to achieve highly accurate models
with human-readable logics for the targets associated with the main response
features of the GHTraffic dataset, with the exceptions for certain targets linked
to the content of the response body. These targets represent data returned by the
server, where no correlation can be guaranteed between/across targets and input
attributes (features of the respective request message and service state history). In
addition, the dataset includes records of unexpected service behaviour that often
hinder algorithms from learning perfectly accurate models.

Results on Twitter Dataset

The results obtained from C4.5, RIPPER, and PART for each target in the Twitter
dataset are shown in Table 6.6. The sample classification models are provided
in Appendix C.1.2, C.2.2, and C.3.2. See Appendix B.1.2 for a complete list of
attributes in the dataset.

The Twitter dataset is made up of HTTP messages collected from Twitter’s
Tweets feature. This includes POST requests to create and delete tweets that return
200 and 404, and GET requests to retrieve tweets that returns 200 and 404. Note
that all of the requests have been directed to a single user account. See Section 4.3
for further details on the dataset.

Typically, the Twitter API uses the request method along with the naming
patterns in the URI to define which Create, Read, Update, and Delete (CRUD) op-
eration to execute on a resource. The API also incorporates both the status code

and the status response header to express the state information for a request.
When an error happens, the errors object is added to the response body with
a concise error code and error text (code and message properties). As such, the
target attributes corresponding to the response state in the Twitter dataset include
the ResponseStatusCode, ResponseHeader status, ResponseBody errors.code,
and ResponseBody errors.message. As can be seen from Table 6.6, the semantic
classifiers inferred by C4.5, RIPPER, and PART achieve the highest predictive
performance scores for all of the targets associated with the response status. In
particular, the models result in 1.0 predictive accuracy by correctly classifying all
26,053 instances of records. The precision and recall measures are also 1.0. It can

100

T
ab

le
6.

6:
R

es
u

lt
s

of
A

tt
ri

b
u

te
-B

as
ed

L
ea

rn
in

g
A

lg
or

it
h

m
s

p
er

R
es

p
o
n

se
F

ea
tu

re
(T

a
rg

et
)

in
T

w
it

te
r.

T
h

e
ca

lc
u

la
te

d
m

ea
n

a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

in
d

ic
a
te

th
e

ov
er

al
l

p
er

fo
rm

an
ce

of
ea

ch
al

go
ri

th
m

in
p

re
d

ic
ti

n
g

re
sp

on
se

p
ro

p
er

ti
es

o
f

th
e

d
a
ta

se
t

(a
s

se
en

in
T

a
b
le

s
6
.1

,
6
.2

,
6
.3

,
a
n

d
6
.4

).

T
a
rg

e
t

C
4
.5

R
IP

P
E
R

P
A

R
T

A
c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

L
e
a
v
e
s

S
iz

e
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s

R
e
sp

o
n
se

S
ta

tu
sC

o
d
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

H
e
a
d
e
r

st
a
tu

s
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

H
e
a
d
e
r

x
-r

a
te

-l
im

it
-l

im
it

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2

R
e
sp

o
n
se

B
o
d
y

c
o
n
tr

ib
u
to

rs
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

c
o
o
rd

in
a
te

s
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

e
n
ti

ti
e
s.

h
a
sh

ta
g
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

e
n
ti

ti
e
s.

sy
m

b
o
ls

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

e
n
ti

ti
e
s.

u
rl

s
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

e
n
ti

ti
e
s.

u
se

r
m

e
n
ti

o
n
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

e
rr

o
rs

.c
o
d
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

e
rr

o
rs

.m
e
ss

a
g
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

fa
v
o
ri

te
c
o
u
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

fa
v
o
ri

te
d

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

g
e
o

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

in
re

p
ly

to
sc

re
e
n

n
a
m

e
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

in
re

p
ly

to
st

a
tu

s
id

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

in
re

p
ly

to
st

a
tu

s
id

st
r

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

in
re

p
ly

to
u
se

r
id

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

in
re

p
ly

to
u
se

r
id

st
r

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

is
q
u
o
te

st
a
tu

s
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

p
la

c
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

re
tw

e
e
t

c
o
u
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

re
tw

e
e
te

d
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

tr
u
n
c
a
te

d
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
c
o
n
tr

ib
u
to

rs
e
n
a
b
le

d
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
c
re

a
te

d
a
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
d
e
fa

u
lt

p
ro

fi
le

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
d
e
fa

u
lt

p
ro

fi
le

im
a
g
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
fa

v
o
u
ri

te
s

c
o
u
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
fo

ll
o
w

re
q
u
e
st

se
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
fo

ll
o
w

e
rs

c
o
u
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
fo

ll
o
w

in
g

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
fr

ie
n
d
s

c
o
u
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
g
e
o

e
n
a
b
le

d
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
h
a
s

e
x
te

n
d
e
d

p
ro

fi
le

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
id

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
id

st
r

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
is

tr
a
n
sl

a
ti

o
n

e
n
a
b
le

d
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

C
o
n
ti

n
u
e
d

o
n

n
e
x
t

p
a
g
e

101

T
a
b
le

6
.6

–
c
o
n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

T
a
rg

e
t

C
4
.5

R
IP

P
E
R

P
A

R
T

A
c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

L
e
a
v
e
s

S
iz

e
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s

R
e
sp

o
n
se

B
o
d
y

u
se

r.
is

tr
a
n
sl

a
to

r
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
la

n
g

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
li
st

e
d

c
o
u
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
lo

c
a
ti

o
n

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
n
a
m

e
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
n
o
ti

fi
c
a
ti

o
n
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

b
a
c
k
g
ro

u
n
d

c
o
lo

r
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

b
a
c
k
g
ro

u
n
d

im
a
g
e

u
rl

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

b
a
c
k
g
ro

u
n
d

im
a
g
e

u
rl

h
tt

p
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

b
a
c
k
g
ro

u
n
d

ti
le

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

b
a
n
n
e
r

u
rl

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

im
a
g
e

u
rl

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

im
a
g
e

u
rl

h
tt

p
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

li
n
k

c
o
lo

r
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

si
d
e
b
a
r

b
o
rd

e
r

c
o
lo

r
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

si
d
e
b
a
r

fi
ll

c
o
lo

r
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

te
x
t

c
o
lo

r
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

u
se

b
a
c
k
g
ro

u
n
d

im
a
g
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

te
c
te

d
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
sc

re
e
n

n
a
m

e
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
ti

m
e

z
o
n
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
tr

a
n
sl

a
to

r
ty

p
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
u
rl

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
u
tc

o
ff

se
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
v
e
ri

fi
e
d

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

M
e
a
n

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
.9

3
6
5

9
.8

8
8
9

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3
.9

3
6
5

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
.9

8
4
1

S
t
a
n
d
a
r
d

D
e
v
ia

t
io

n
0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.5

0
4
0

0
.8

8
1
9

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.3

0
4
4

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.1

2
6
0

102

be further observed that the resultant models are reasonably small in size and less
complex. Consider, for example, the target ResponseStatusCode with 2 distinct
values: 200 and 404, where C4.5 builds a tree with 10 nodes and 6 leaves, and each
RIPPER and PART rule learner builds an ordered ruleset with 3 rules. The textual
representation of the sample C4.5 classification model is depicted in Figure 6.7.
The first number in brackets the end of each leaf is the total instances which reach
that particular leaf and the second number represents the instances misclassified.
This tree can also be represented as a set of unordered decision rules by extracting
paths from root to leaf. The derived classification rules are as follows:

1 IF (RequestHeader_Content -Type = application/x-www -form -urlencoded) THEN

ResponseStatusCode = 200

2 IF (RequestHeader_Content -Type = not -exist) AND

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false) AND

(HasImmediatePreviousTransactionSucceeded = false) THEN

ResponseStatusCode = 404

3 IF (RequestHeader_Content -Type = not -exist) AND

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false) AND

(HasImmediatePreviousTransactionSucceeded = true) AND

(ImmediatelyPreviousMethod = not -exist) THEN

ResponseStatusCode = 404

4 IF (RequestHeader_Content -Type = not -exist) AND

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false) AND

(HasImmediatePreviousTransactionSucceeded = true) AND

(ImmediatelyPreviousMethod = POST) THEN

ResponseStatusCode = 404

5 IF (RequestHeader_Content -Type = not -exist) AND

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false) AND

(HasImmediatePreviousTransactionSucceeded = true) AND

(ImmediatelyPreviousMethod = GET) THEN

ResponseStatusCode = 200

6 IF (RequestHeader_Content -Type = not -exist) AND

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) THEN

ResponseStatusCode = 200

The semantics of ResponseStatusCode are very clear. Take Rule 1, for example,
which encodes one of the possibilities of getting HTTP 200 (OK) status code
in the dataset (indicates that the request has been successful). It simply states
that the status code for a request will be HTTP 200 if the request contains the
Content-Type header with the application/x-www-form-urlencoded value. As
we take a closer look at the dataset, it can be observed that each resource (tweet)
has a POST request (with the update.json token held by the URI) to create
the corresponding tweet (to update the user’s current status with a text) as the
very first transaction that returns 200 and these are the only records containing
the Content-Type request header (as requests for retrieval and deletion of tweets
do not have payloads). Thus, any request with the Content-Type header with
the value application/x-www-form-urlencoded in this dataset may apparently
represent the successful creation of a tweet. Evidently, the model can accurately
capture the presented scenario. Figures 6.8 and 6.9 display the resultant RIPPER
and PART models. Numbers in brackets at the end of each rule represent the
total number of instances that classified under the given rule and the number of
misclassified instances. We can note that they are very simple classification rules
and even share parallels with C4.5 in terms of induced knowledge. It is obvious
that the models can be easily interpreted by engineers to identify which properties

103

RequestHeader_Content -Type = application/x-www -form -urlencoded: 200 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: 404 (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: 404 (0.0)

| | | ImmediatelyPreviousMethod = POST: 404 (513.0)

| | | ImmediatelyPreviousMethod = GET: 200 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 200

(547.0)

Figure 6.7: The Sample C4.5 Tree for ResponseStatusCode in Twitter

(RequestUriPathToken3 = update.json) => ResponseStatusCode =200 (867.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false) =>

ResponseStatusCode =200 (648.0/0.0)

=> ResponseStatusCode =404 (24538.0/0.0)

Figure 6.8: The Sample RIPPER Ruleset for ResponseStatusCode in Twitter

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: 404 (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 200

(1515.0)

: 404 (513.0)

Figure 6.9: The Sample PART Ruleset for ResponseStatusCode in Twitter

are likely to lead to specific status codes. The differences between how the three
techniques work also become very apparent from these samples.

Besides, most of the target attributes related to the response headers in the
Twitter dataset have either a single value or a significant number of distinct
values, such that they are excluded from learning. Examples for targets with
a one value are the ResponseHeader content-type, ResponseHeader server,
and ResponseHeader x-xss-protection. The ResponseHeader last-modified,
ResponseHeader date, and ResponseHeader x-response-time are examples for
targets with number of multiple values. Further, the ResponseHeader status and
ResponseHeader x-rate-limit-limit are the targets with a few distinct values.
As discussed above, the ResponseHeader status is linked to the response status
and algorithms produce 100% accurate classification models that can be easily
comprehended. The remaining ResponseHeader x-rate-limit-limit represents
the response header x-rate-limit-limit, indicating the current limit in the num-
ber of API requests, which usually appears to be 900 for GET requests in the
dataset. The target has thus 2 separate values, 900 and not-exist. As shown in
the experimental results, this target also reaches the maximum degree of predict-
ive performance (1.0 predictive accuracy, precision, and recall) and the classifiers
are smaller, meaning the classifiers produced are reliable and interpretable. Fig-
ure 6.10 displays the sample classification model by C4.5. The number of leaves is
2 and the size of the tree is 3. Figures 6.11 and 6.12 show the RIPPER and PART

104

RequestMethod = POST: not -exist (20445.0)

RequestMethod = GET: 900 (5608.0)

Figure 6.10: The Sample C4.5 Tree for ResponseHeader x-rate-limit-limit in Twitter

(RequestMethod = GET) => ResponseHeader_x -rate -limit -limit =900 (5608.0/0.0)

=> ResponseHeader_x -rate -limit -limit=not -exist (20445.0/0.0)

Figure 6.11: The Sample RIPPER Ruleset for ResponseHeader x-rate-limit-limit in Twitter

RequestMethod = POST: not -exist (20445.0)

: 900 (5608.0)

Figure 6.12: The Sample PART Ruleset for ResponseHeader x-rate-limit-limit in Twitter

models where each ruleset includes 2 rules. The first number in parentheses at the
end of each leaf/rule is the total instances reaching the particular leaf/rule and the
second number represents misclassified instances. It is noticeable that the mod-
els lead to a simple understanding of the semantics of the x-rate-limit-limit

header and are capable of inferring the values precisely.

Moreover, there is a relatively larger number of target attributes related to the
response body. Among them, some of the targets represent the status information
and, as mentioned earlier in this section, it is apparent that the derived models are
accurate and have a structure which can be readily comprehended. Table 6.6 shows
that for all remaining targets associated with the response body, the classification
models generated by C4.5, RIPPER, and PART have the highest predictive per-
formance values and are as smaller as the others. However, it can be observed that
all of these targets are correlated with the data values returned from the server
referring to multiple other entities, such as tweets, user, and timelines objects,
which could not normally be inferred from the features of the respective request
and state history (the same issue has been detected with the response payload
targets of the GHTraffic). But, as we look at the dataset more closely, we discover
that each target has only two distinct values depending upon the success or failure
of the request. Specifically, successful transactions have the same payload values
(as directed to a single user) and there are no such data values for unsuccessful
transactions. This means that the target values are centred on the status of the re-
sponse. For the sample classification models, see Appendix C.1.2, C.2.2, and C.3.2.
It can be clearly seen in all cases that the generated models are equivalent to the
results of ResponseStatusCode. It is obvious that the algorithms generate precise
and simple models that correctly capture this particular scenario in the dataset.

In all, the results demonstrate that the C4.5, RIPPER, and PART algorithms
are significantly outperformed in training models that are both accurate and
human-readable for all targets related to the core features of HTTP responses
in the Twitter dataset.

105

Results on Google Tasks Dataset

Table 6.7 reports the experimental results for each target attribute in the Google
Tasks dataset on C4.5, RIPPER, and PART. All of the sample classification models
generated can be found in Appendix C.1.3, C.2.3, and C.3.3. Appendix B.1.3 is a
complete list of attributes in the dataset.

As presented in Section 4.3, the Google Tasks dataset comprises HTTP trans-
actions extracted from the Task Lists system in Google Tasks. It contains a col-
lection of POST requests to create task lists that return 200, GET requests to view
task lists that return 200 and 404, PATCH requests to update task lists that return
200 and 404, and DELETE requests to remove task lists that return 204 and 404.
There are also a few GET and PATCH requests that return 503.

Usually, the Google Tasks API embeds the success or failure of a request into
the status code of the response. If an error occurs with a request, the API addi-
tionally returns a detailed description of the error in the response body (an error

object with the properties code and message and errors array). Accordingly, the
ResponseStatusCode, ResponseBody error.code, ResponseBody error.message,
ResponseBody error.errors.domain, ResponseBody error.errors.reason, and
ResponseBody error.errors.message are the target attributes related to the
response state in the Google Tasks dataset. The results presented in Table 6.7
demonstrate that the classifiers induced by C4.5, RIPPER, and PART have good
predictive performance for all of these state-related targets and are quite small and
less complex. As an example, for the ResponseStatusCode (with 4 distinct values:
200, 204, 404, and 503), the inferred models achieve 0.9977 predictive accuracy
by correctly classifying 4,691 instances from the total dataset of 4,702 records and
the precision and recall are 0.7487 and 0.75, respectively. It is noted that the mod-
els misclassify all 11 instances that belong to HTTP status code 503 (indicates
that the server is temporarily unable to process the request) in the Google Tasks
dataset (see Table 4.9 for details on the dataset), resulting in 7 false positives
for class 200, 4 false positives for class 404, and 11 false negatives for class 503.
This is primarily because it is certainly not feasible to infer rules modelling the
response codes of such unpredictable server behaviour based on the features of
the request message and service state history. Nor is there a lack of training data
for class 503. In reality, the frequency at which such an error occurs is also very
low. However, all generic response codes in the Google Tasks dataset can be 100%
accurately defined by the models. The textual representation of the sample model
for ResponseStatusCode is shown in Figure 6.13. The first number in parentheses
at the end of each leaf is the total number of instances that reach the leaf, and
the second number is the number of instances that are misclassified. The tree has
7 nodes and 5 leaves. The following set of unordered rules can also be retrieved
by traversing the tree from root to leaf:

1 IF (HasSuccessfulDeleteOperationOccurredBefore = false) AND

(RequestMethod = POST) THEN

ResponseStatusCode = 200

2 IF (HasSuccessfulDeleteOperationOccurredBefore = false) AND

(RequestMethod = GET) THEN

ResponseStatusCode = 200

3 IF (HasSuccessfulDeleteOperationOccurredBefore = false) AND

(RequestMethod = PATCH) THEN

106

ResponseStatusCode = 200

4 IF (HasSuccessfulDeleteOperationOccurredBefore = false) AND

(RequestMethod = DELETE) THEN

ResponseStatusCode = 204

5 IF (HasSuccessfulDeleteOperationOccurredBefore = true) THEN

ResponseStatusCode = 404

Rules 1 to 3 encode the semantics of HTTP 200 (OK) status code (which indicates
the successful creation/access/update of a task list). These rules stipulate that if
the particular resource has not been successfully deleted before and the request
made using either POST, GET, or PATCH, the response status code to the request
will be HTTP 200. Rule 4 encodes the semantics of HTTP 204 (No Content)
status code (which indicates the successful deletion of a task list). It states that the
response status code will be 204 if the particular resource has not been successfully
deleted before and the request made using the DELETE method. On the contrary,
Rule 5 encodes HTTP 404 (Not Found) semantics (which shows that the server
can not find the requested resource). It specifies that if the particular resource has
been successfully deleted before, then the response status code for the request will
be HTTP 404. In fact, it is evident that all these classification rules are very easy to
comprehend. Figures 6.14 and 6.15 show the sample RIPPER and PART decision
lists for ResponseStatusCode where each ruleset has 4 and 5 rules, respectively.
The number in parentheses at the end of each rule is the instances reaching that
particular rule and the instances that are misclassified. It can be observed that
RIPPER and PART models also encode the same knowledge as C4.5, even though
there are structural differences depending on how algorithms operate. It is very
apparent that all models can be used to easily figure out the cause of a particular
status code.

Besides, the Google Tasks dataset contains few target attributes related to
the response headers that are either single-valued (i.e., ResponseHeader Server

and ResponseHeader Alt-Svc) or have a large number of distinct values (i.e.,
ResponseHeader Date, ResponseHeader ETag, and ResponseHeader Expires),
thus exempt when constructing models. However, some of the targets with a lim-
ited number of distinct values linked to the headers, such as ResponseHeader Vary

and ResponseHeader Cache-Control have near-perfect predictive performance
measurements on C4.5, RIPPER, and PART (misclassifying few of 503). The clas-
sification models produced are also smaller. The ResponseHeader Content-Type,
ResponseHeader X-Content-Type-Options, ResponseHeader X-Frame-Options,
and ResponseHeader X-XSS-Protection are the targets associated with the re-
sponse headers in the dataset for which the inferred classifiers are 100% correct.
Figure 6.16 displays the C4.5 model for ResponseHeader Content-Type. The con-
structed tree is size 7 (nodes) and contains 5 leaves. Figures 6.17 and 6.18 show
the sample RIPPER and PART ordered rulesets where each includes 2 and 4 rules.
The first number in parentheses at the end of each leaf/rule is the total instances
reaching the particular leaf/rule. The second number represents misclassified in-
stances.

All algorithms perform predictive accuracy of 1.0 including precision and recall
rates of 1.0. This target represents the Content-Type response header which spe-
cifies the type of content returned in the responses. As can be seen, the samples
models explicitly state that all responses to requests will contain the Content-Type

107

HasSuccessfulDeleteOperationOccurredBefore = false

| RequestMethod = POST: 200 (1124.0)

| RequestMethod = GET: 200 (1005.0/3.0)

| RequestMethod = PATCH: 200 (485.0/4.0)

| RequestMethod = DELETE: 204 (606.0)

HasSuccessfulDeleteOperationOccurredBefore = true: 404 (1482.0/4.0)

Figure 6.13: The Sample C4.5 Tree for ResponseStatusCode in Google Tasks

(RequestMethod = DELETE) and

(HasSuccessfulDeleteOperationOccurredBefore = false) => ResponseStatusCode =204

(606.0/0.0)

(HasSuccessfulDeleteOperationOccurredBefore = true) => ResponseStatusCode =404

(1482.0/4.0)

=> ResponseStatusCode =200 (2614.0/7.0)

Figure 6.14: The Sample RIPPER Ruleset for ResponseStatusCode in Google Tasks

HasSuccessfulDeleteOperationOccurredBefore = true: 404 (1482.0/4.0)

RequestMethod = POST: 200 (1124.0)

RequestMethod = GET: 200 (1005.0/3.0)

RequestMethod = DELETE: 204 (606.0)

: 200 (485.0/4.0)

Figure 6.15: The Sample PART Ruleset for ResponseStatusCode in Google Tasks

RequestMethod = POST: application/json; charset=UTF -8 (1124.0)

RequestMethod = GET: application/json; charset=UTF -8 (1367.0)

RequestMethod = PATCH: application/json; charset=UTF -8 (1082.0)

RequestMethod = DELETE

| HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (606.0)

| HasSuccessfulDeleteOperationOccurredBefore = true: application/json; charset=

UTF -8 (523.0)

Figure 6.16: The Sample C4.5 Tree for ResponseHeader Content-Type in Google Tasks

(RequestMethod = DELETE) and

(HasSuccessfulDeleteOperationOccurredBefore = false) => ResponseHeader_Content -

Type=not -exist (606.0/0.0)

=> ResponseHeader_Content -Type=application/json; charset=UTF -8 (4096.0/0.0)

Figure 6.17: The Sample RIPPER Ruleset for ResponseHeader Content-Type in Google Tasks

RequestMethod = GET: application/json; charset=UTF -8 (1367.0)

HasRequestPayload = true: application/json; charset=UTF -8 (2206.0)

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (606.0)

: application/json; charset=UTF -8 (523.0)

Figure 6.18: The Sample PART Ruleset for ResponseHeader Content-Type in Google Tasks

108

T
ab

le
6.

7:
R

es
u

lt
s

of
A

tt
ri

b
u

te
-B

as
ed

L
ea

rn
in

g
A

lg
or

it
h
m

s
p

er
R

es
p

o
n

se
F

ea
tu

re
(T

a
rg

et
)

in
G

o
o
g
le

T
a
sk

s.
T

h
e

ca
lc

u
la

te
d

m
ea

n
a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

in
d

ic
a
te

th
e

ov
er

al
l

p
er

fo
rm

an
ce

of
ea

ch
al

go
ri

th
m

in
p

re
d

ic
ti

n
g

re
sp

o
n

se
p

ro
p

er
ti

es
o
f

th
e

d
a
ta

se
t

(a
s

se
en

in
T

a
b

le
s

6
.1

,
6
.2

,
6
.3

,
a
n

d
6
.4

).

T
a
rg

e
t

C
4
.5

R
IP

P
E
R

P
A

R
T

A
c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

L
e
a
v
e
s

S
iz

e
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s

R
e
sp

o
n
se

S
ta

tu
sC

o
d
e

0
.9

9
7
7

0
.7

4
8
5

0
.7

5
0
0

5
7

0
.9

9
7
7

0
.7

4
8
5

0
.7

5
0
0

3
0
.9

9
7
7

0
.7

4
8
5

0
.7

5
0
0

5

R
e
sp

o
n
se

H
e
a
d
e
r

A
c
c
e
p
t-

R
a
n
g
e
s

0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
5

3
5

0
.9

9
8
5

0
.9

9
8
0

0
.9

9
8
5

3
0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
5

3

R
e
sp

o
n
se

H
e
a
d
e
r

C
a
c
h
e
-C

o
n
tr

o
l

0
.9

9
8
5

0
.9

9
8
3

0
.9

9
8
3

5
7

0
.9

9
8
3

0
.9

9
8
3

0
.9

9
8
0

3
0
.9

9
8
5

0
.9

9
8
3

0
.9

9
8
3

4

R
e
sp

o
n
se

H
e
a
d
e
r

C
o
n
te

n
t-

T
y
p

e
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
7

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

H
e
a
d
e
r

P
ra

g
m

a
0
.9

9
9
1

0
.9

9
9
0

0
.9

9
9
0

5
7

0
.9

9
9
0

0
.9

9
9
0

0
.9

9
9
0

4
0
.9

9
9
1

0
.9

9
9
0

0
.9

9
9
0

4

R
e
sp

o
n
se

H
e
a
d
e
r

T
ra

n
sf

e
r-

E
n
c
o
d
in

g
0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
5

3
5

0
.9

9
8
1

0
.9

9
7
5

0
.9

9
8
0

3
0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
5

3

R
e
sp

o
n
se

H
e
a
d
e
r

V
a
ry

0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
5

3
5

0
.9

9
8
3

0
.9

9
7
5

0
.9

9
8
5

3
0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
5

3

R
e
sp

o
n
se

H
e
a
d
e
r

X
-C

o
n
te

n
t-

T
y
p

e
-O

p
ti

o
n
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
7

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

H
e
a
d
e
r

X
-F

ra
m

e
-O

p
ti

o
n
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
7

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

H
e
a
d
e
r

X
-X

S
S
-P

ro
te

c
ti

o
n

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
7

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

B
o
d
y

e
rr

o
r.

c
o
d
e

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
3

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2

R
e
sp

o
n
se

B
o
d
y

e
rr

o
r.

e
rr

o
rs

.d
o
m

a
in

0
.9

9
8
5

0
.9

9
9
0

0
.9

9
7
5

2
3

0
.9

9
8
5

0
.9

9
9
0

0
.9

9
7
5

2
0
.9

9
8
5

0
.9

9
9
0

0
.9

9
7
5

2

R
e
sp

o
n
se

B
o
d
y

e
rr

o
r.

e
rr

o
rs

.m
e
ss

a
g
e

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
3

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2

R
e
sp

o
n
se

B
o
d
y

e
rr

o
r.

e
rr

o
rs

.r
e
a
so

n
0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
3

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2

R
e
sp

o
n
se

B
o
d
y

e
rr

o
r.

m
e
ss

a
g
e

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
3

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2

R
e
sp

o
n
se

B
o
d
y

k
in

d
0
.9

9
8
5

0
.9

9
8
5

0
.9

9
8
5

5
7

0
.9

9
8
5

0
.9

9
8
5

0
.9

9
8
5

3
0
.9

9
8
5

0
.9

9
8
5

0
.9

9
8
5

5

M
e
a
n

0
.9

9
8
8

0
.9

0
0
0

0
.9

0
0
5

3
.6

8
7
5

5
.3

7
5
0

0
.9

9
8
6

0
.8

9
9
8

0
.9

0
0
3

2
.5

0
0
0

0
.9

9
8
8

0
.9

0
0
0

0
.9

0
0
5

3
.3

1
2
5

S
ta

n
d
a
rd

D
e
v
ia

ti
o
n

0
.0

0
0
9

0
.1

5
3
2

0
.1

5
2
4

1
.4

0
0
9

1
.8

2
1
2

0
.0

0
0
9

0
.1

5
3
1

0
.1

5
2
3

0
.6

3
2
5

0
.0

0
0
9

0
.1

5
3
2

0
.1

5
2
4

1
.0

7
8
2

109

HasSuccessfulDeleteOperationOccurredBefore = false

| RequestMethod = POST: tasks#taskList (1124.0)

| RequestMethod = GET: tasks#taskList (1005.0/3.0)

| RequestMethod = PATCH: tasks#taskList (485.0/4.0)

| RequestMethod = DELETE: not -exist (606.0)

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (1482.0)

Figure 6.19: The Sample C4.5 Tree for ResponseBody kind in Google Tasks

(HasSuccessfulDeleteOperationOccurredBefore = true) => ResponseBody_kind=not -

exist (1482.0/0.0)

(RequestMethod = DELETE) => ResponseBody_kind=not -exist (606.0/0.0)

=> ResponseBody_kind=tasks#taskList (2614.0/7.0)

Figure 6.20: The Sample RIPPER Ruleset for ResponseBody kind in Google Tasks

header with the value ‘application/json; charset=UTF-8’ except for successful
delete requests (which usually do not contain any content in the response body).
It is noticeable that these models lead to a simple interpretation of the semantics
of the Content-Type header and are capable of inferring the exact values.

The Google Tasks API typically includes relatively small payloads for re-
sponses, such that there are only a few associated targets in the Google Tasks
dataset. Among them are targets representing the status information and, as dis-
cussed above, we found that the resultant models are accurate and have a basic
structure that is easy to interpret. Additionally, there are few targets associated
with the response body in the Google Tasks dataset that hold a fairly large set
of distinct values and therefore ignored without learning. Apart from all that,
the ResponseBody kind is the only other target with respect to the response
body in the Google Tasks dataset. The ResponseBody kind represents a prop-
erty called kind in the response body that specifies the type of resource, that
appears to always be tasks#tasks for successful POST, GET, and PATCH requests.
Accordingly, the target has 2 distinct values: tasks#tasks and not-exist. As
can be seen from Table 6.7, the inferred models by C4.5, RIPPER, and PART for
the ResponseBody kind obtain 0.9985 predictive accuracy by correctly classifying
4,695 instances out of 4,702 and also have 0.9985 precision and recall. In all of
these contexts, 7 instances belonging to HTTP 503 are classified incorrectly. The
corresponding C4.5, RIPPER, and PART models can be seen respectively in Fig-
ures 6.19–6.21, where the tree is size 7 (contains 5 leaves), and each set of rules
contains 4 and 5 rules. The first number in brackets at the end of each leaf/rule
is the total instances which reach the particular leaf/rule, whereas the second
number represents the instances misclassified. From the examples, it is apparent
that the semantics of the kind property can be readily understood. It is noticed
that the target values are centred on the response status and hence the generated
models are equivalent to the ResponseStatusCode models.

In view of the results, it can be concluded that the C4.5, RIPPER, and PART
algorithms achieve higher predictive performance results when predicting all the
core features of the HTTP responses in the Google Tasks dataset and the models
are readable. However, because the dataset includes records of unexpected service

110

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (1482.0)

RequestMethod = POST: tasks#taskList (1124.0)

RequestMethod = GET: tasks#taskList (1005.0/3.0)

RequestMethod = DELETE: not -exist (606.0)

: tasks#taskList (485.0/4.0)

Figure 6.21: The Sample PART Ruleset for ResponseBody kind in Google Tasks

behaviour, it hinders algorithms from learning perfectly accurate models.

Results on Slack Dataset

The experimental results obtained for the target attributes in the Slack dataset
on C4.5, RIPPER, and PART are shown in Table 6.8. The sample classification
models can be found in Appendix C.1.4, C.2.4, and C.3.4. A list of all attributes
in the dataset is provided in Appendix B.1.4.

The Slack dataset contains a collection of POST requests for sending, updating,
and deleting chat messages to/from a channel that returns 200. Note that all of
the requests have been directed from a single user account to a single channel. See
Section 4.3 for further details on the dataset.

In general, the Slack API uses HTTP POST for each request and presents certain
naming patterns in URI tokens to signify which CRUD operation to perform. For
example, to operate on a chat message, the API adds either a chat.postMessage,
chat.update, or chat.delete to the URI. The Slack API also always passes
HTTP 200 status code (even if a request failed) and adds more substantive in-
formation about the state to the response body. In particular, the response body
contains the boolean property ok indicating the success or failure of a request. In
the event of a failure, the response body further holds the error property with a
short error message. Accordingly, the ResponseStatusCode target attribute in the
Slack dataset has only one distinct value (i.e., 200) and therefore is ignored when
generating models. In accordance with Table 6.8, the inferred models by C4.5,
RIPPER, and PART for all other targets associated with the response status
in the Slack dataset, i.e., ResponseBody ok and ResponseBody error, score the
highest degree of predictive performance. They reach 1.0 predictive accuracy by
correctly classifying all 17,422 instances of records, and the precision and recall
rates are 1.0. The models are also smaller and less complex, which in effect, can
be interpreted more easily. As an example, Figure 6.22 presents the textual rep-
resentation of the sample model for ResponseBody ok by C4.5. The constructed
tree is 8 nodes in size and has 14 leaves. Figures 6.23 and 6.24 show the RIPPER
and PART models where each ruleset includes 4 rules, respectively. The number
in parentheses at the end of each leaf/rule is the total instances reaching that par-
ticular leaf/rule and the misclassified instances. These models demonstrate that
the semantics of ok can be well understood. One of the logics identified is that
the ok will be true if the particular resource has not been successfully deleted
before and if the URI path of the request carries the chat.postMessage token
at its second position (means if the request is to create the resource) and if the

111

T
ab

le
6.

8:
R

es
u

lt
s

of
A

tt
ri

b
u

te
-B

as
ed

L
ea

rn
in

g
A

lg
or

it
h

m
s

p
er

R
es

p
o
n

se
F

ea
tu

re
(T

a
rg

et
)

in
S

la
ck

.
T

h
e

ca
lc

u
la

te
d

m
ea

n
a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

in
d

ic
a
te

th
e

ov
er

al
l

p
er

fo
rm

an
ce

of
ea

ch
al

go
ri

th
m

in
p

re
d

ic
ti

n
g

re
sp

on
se

p
ro

p
er

ti
es

o
f

th
e

d
a
ta

se
t

(a
s

se
en

in
T

a
b
le

s
6
.1

,
6
.2

,
6
.3

,
a
n

d
6
.4

).

T
a
rg

e
t

C
4
.5

R
IP

P
E
R

P
A

R
T

A
c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

L
e
a
v
e
s

S
iz

e
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s

R
e
sp

o
n
se

H
e
a
d
e
r

x
-s

la
c
k
-r

o
u
te

r
0
.6

3
5
0

0
.3

1
7
5

0
.5

0
0
0

1
1

0
.6

3
5
0

0
.3

1
7
5

0
.5

0
0
0

1
0
.6

3
5
0

0
.3

1
7
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
h
a
n
n
e
l

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8
1
4

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

B
o
d
y

e
rr

o
r

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8
1
4

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

B
o
d
y

m
e
ss

a
g
e
.b

o
t

id
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5

R
e
sp

o
n
se

B
o
d
y

m
e
ss

a
g
e
.e

d
it

e
d
.u

se
r

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

B
o
d
y

m
e
ss

a
g
e
.t

y
p

e
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5

R
e
sp

o
n
se

B
o
d
y

m
e
ss

a
g
e
.u

se
r

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5

R
e
sp

o
n
se

B
o
d
y

o
k

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8
1
4

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

M
e
a
n

0
.9

5
4
4

0
.9

1
4
7

0
.9

3
7
5

5
.6

2
5
0

9
.3

7
5
0

0
.9

5
4
4

0
.9

1
4
7

0
.9

3
7
5

3
.3

7
5
0

0
.9

5
4
4

0
.9

1
4
7

0
.9

3
7
5

4
.0

0
0
0

S
ta

n
d
a
rd

D
e
v
ia

ti
o
n

0
.1

2
9
0

0
.2

4
1
3

0
.1

7
6
8

2
.3

8
6
7

4
.5

0
2

0
.1

2
9
0

0
.2

4
1
3

0
.1

7
6
8

1
.1

8
7
7

0
.1

2
9
0

0
.2

4
1
3

0
.1

7
6
8

1
.3

0
9
3

112

HasSuccessfulDeleteOperationOccurredBefore = false

| HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = false

| | RequestUriPathToken2 = chat.update

| | | HasImmediatePreviousTransaction = false: false (309.0)

| | | HasImmediatePreviousTransaction = true: true (1292.0)

| | RequestUriPathToken2 = chat.delete

| | | HasImmediatePreviousTransaction = false: false (206.0)

| | | HasImmediatePreviousTransaction = true: true (1826.0)

| | RequestUriPathToken2 = chat.postMessage: true (3985.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = true

| | HasImmediatePreviousTransactionSucceeded = false: false (335.0)

| | HasImmediatePreviousTransactionSucceeded = true: true (540.0)

HasSuccessfulDeleteOperationOccurredBefore = true: false (8929.0)

Figure 6.22: The Sample C4.5 Tree for ResponseBody ok in Slack

immediately preceding transaction does not have an update token in the URI of
the request (means that no transaction exists to update the resource immediately
preceding). This particularly encodes the semantics of the successful creation of a
message in Slack’s Messages system. Clearly, the samples show that the generated
classifiers are very easy to understand and explain well the scenario presented in
the dataset. The semantic knowledge inferred by C4.5, RIPPER, and PART can
also be observed to be close.

Further, the Slack dataset contains a relatively high number of targets related
to the response headers with either a single value or a large set of different values
that are not appropriate for predictions. The ResponseHeader Cache-Control,
ResponseHeader Content-Type, and ResponseHeader Server are examples for
targets with a single value. The ResponseHeader Date and ResponseHeader Via

are examples for targets with many different values. Besides, the only target
trained in relation to the response headers is ResponseHeader x-slack-router.
The target has two values: p and not-exist and comprises 11,063 instances from
the value p (63.5002% of the overall dataset). It can be observed that the gen-
erated C4.5 model is a single node tree (p) and that the RIPPER and PART
models have only the default class p. The models reach 0.635 predictive accur-
acy by simply predicting each instance as p and the precision is 0.3175 whereas
the recall is 0.5. This is probably due to the fact there that is no correlation
between the target and input attributes, so that algorithms can not learn any-
thing useful from the data (algorithms do not have adequate information to grow
the models). It is noted that the x-slack-router response header contains data
returned by the server and there is no relation between its values and the re-
spective request features and the service state history. The relatively low scores of
ResponseHeader x-slack-router also lead to comparatively low average scores
in the Slack dataset with a notable value distribution. Although a target of this
sort has a few distinct values, it is not optimal for predictions.

On the other hand, there are few targets associated with the response payload.
Among, the ResponseBody ts, ResponseBody text, ResponseBody message.ts,
ResponseBody message.text, and ResponseBody message.edited.ts are ignored
from the learning process as they contain many unique values (as such targets are
not predictable). However, we can note that all other targets with few distinct
values (e.g., ResponseBody channel and ResponseBody message.user) have the
highest predictive performance statistics (1.0 predictive accuracy, and 1.0 preci-

113

(HasSuccessfulDeleteOperationOccurredBefore = false) and

(RequestUriPathToken2 = chat.postMessage) => ResponseBody_ok=true (3985.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_ok=true (3118.0/0.0)

(HasSuccessfulDeleteOperationOccurredBefore = false) and

(HasImmediatePreviousTransactionSucceeded = true) => ResponseBody_ok=true

(540.0/0.0)

=> ResponseBody_ok=false (9779.0/0.0)

Figure 6.23: The Sample RIPPER Ruleset for ResponseBody ok in Slack

HasSuccessfulDeleteOperationOccurredBefore = true: false (8929.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = false AND

RequestUriPathToken2 = chat.postMessage: true (3985.0)

HasImmediatePreviousTransactionSucceeded = true: true (3658.0)

: false (850.0)

Figure 6.24: The Sample PART Ruleset for ResponseBody ok in Slack

HasSuccessfulDeleteOperationOccurredBefore = false

| HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = false

| | RequestUriPathToken2 = chat.update

| | | HasImmediatePreviousTransaction = false: not -exist (309.0)

| | | HasImmediatePreviousTransaction = true: CCGRWTRKQ (1292.0)

| | RequestUriPathToken2 = chat.delete

| | | HasImmediatePreviousTransaction = false: not -exist (206.0)

| | | HasImmediatePreviousTransaction = true: CCGRWTRKQ (1826.0)

| | RequestUriPathToken2 = chat.postMessage: CCGRWTRKQ (3985.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = true

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (335.0)

| | HasImmediatePreviousTransactionSucceeded = true: CCGRWTRKQ (540.0)

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (8929.0)

Figure 6.25: The Sample C4.5 Tree for ResponseBody channel in Slack

sion and recall) and the inferred semantic models are smaller and simple (more
convenient to interpret). As an instance, for the target ResponseBody channel

containing 2 distinct values: CCGRWTRKQ and not-exist, C4.5 produces a tree with
size 8 (including 5 leaves), while RIPPER and PART generate rulesets of 4 rules.
Figures 6.25–6.27 depict the sample models induced by C4.5, RIPPER, and PART.
The numbers in brackets at the end of each leaf/rule denote the total number of in-
stances classified into the particular leaf/rule and the misclassified instances. This
target reflects the ResponseBody channel property in the response body that lists
the channel ID where requests have been directed to, which always happens to be
UC8J6APLN for successful requests in the Slack dataset. We observe that the sample
models express exactly the same semantics as the ResponseBody ok because the
ResponseBody channel values are based on the response state. Once again, the
models illustrate good relevance and interpretability.

Therefore, it can be concluded that C4.5, RIPPER, and PART are capable
of obtaining promising predictive performance results predicting all of the main
response features in the Slack dataset and clearly outperforming model size fa-

114

(HasSuccessfulDeleteOperationOccurredBefore = false) and

(RequestUriPathToken2 = chat.postMessage) => ResponseBody_channel=CCGRWTRKQ

(3985.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_channel=CCGRWTRKQ (3118.0/0.0)

(HasSuccessfulDeleteOperationOccurredBefore = false) and (

HasImmediatePreviousTransactionSucceeded = true) => ResponseBody_channel=

CCGRWTRKQ (540.0/0.0)

=> ResponseBody_channel=not -exist (9779.0/0.0)

Figure 6.26: The Sample RIPPER Ruleset for ResponseBody channel in Slack

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (8929.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = false AND

RequestUriPathToken2 = chat.postMessage: CCGRWTRKQ (3985.0)

HasImmediatePreviousTransactionSucceeded = true: CCGRWTRKQ (3658.0)

: not -exist (850.0)

Figure 6.27: The Sample PART Ruleset for ResponseBody channel in Slack

vouring comprehensibility, with the exception of one header field specific to the
data values returned from the server.

6.2.2 Description Logic Learning Approach

In this section, OCEL findings are discussed based upon different datasets. With
each dataset, the results are analysed with respect to the target classes corres-
ponding to the values of the different attributes associated with the main HTTP
response features (i.e., status, headers, and body).

Results on GHTraffic Dataset

Table 6.9 summarises the number of positive and negative examples for each of the
target class in the GHTraffic knowledge base and shows the experimental results
for each target on OCEL. The generated sample class definitions can be found in
Appendix C.4.1. Appendix B.4.1 provides a complete list of classes in the Protege
environment.

As stated in Section 6.2.1, the target attributes associated with the response
status in the GHTraffic dataset are ResponseStatusCode, ResponseBody message,
and ResponseBody documentation url. Thereby, a number of target classes re-
ferring to the distinct values of these attributes are available in the background
knowledge base of the GHTraffic dataset. As shown in the experimental res-
ults, for the majority of status-related target classes, the inferred OCEL descrip-
tions attain high to excellent predictive performance and are shorter. Consider,
for example, the target classes derived from the attribute ResponseStatusCode

(ResponseStatusCode 200, ResponseStatusCode 201, ResponseStatusCode 204,
ResponseStatusCode 400, ResponseStatusCode 401, ResponseStatusCode 404,
ResponseStatusCode 422, and ResponseStatusCode 500). Among these targets,

115

ResponseStatusCode_204:

RequestHeader_HasAuthorisationToken_true and

RequestUriPathToken6_lock and

(isPrecededBy some ResponseStatusCode_201)

ResponseStatusCode_400:

RequestHeader_HasAuthorisationToken_true and

RequestHeader_HasRequestPayload_true

and RequestHeader_HasValidRequestPayload_false

ResponseStatusCode_401:

RequestHeader_HasAuthorisationToken_false

ResponseStatusCode_422:

RequestHeader_HasRequestPayload_false and

RequestMethod_PATCH

ResponseStatusCode_200:

(RequestHeader_HasValidRequestPayload_true or

(RequestUriPathToken6_not -exist and

(not (RequestMethod_PATCH)))) and

(isPrecededBy some ResponseStatusCode_201)

Figure 6.28: The Best OCEL Descriptions for Some ResponseStatusCode Values in GHTraffic

the ResponseStatusCode 201 and ResponseStatusCode 500 have no positive ex-
amples and are ignored when generating models, as the use of OCEL is con-
fined to learning problems where there are both positive and negative examples.
Out of the others, ResponseStatusCode 204 (with 56 positive and 321 negat-
ive examples), ResponseStatusCode 400 (with 38 positive and 339 negative ex-
amples), ResponseStatusCode 401 (with 98 positive and 279 negative examples),
and ResponseStatusCode 422 (with 23 positive and 354 negative examples) are
targets where OCEL produces 100% accurate classification models by covering all
positive examples and zero negative cases. Each of these classifiers is 7, 5, 1, and
3 in length, respectively. And for the ResponseStatusCode 200 with 139 posit-
ives and 238 negatives, OCEL almost reaches maximum accuracy. The definition
learned by OCEL fully defines positive examples with 6 more negative (false pos-
itives) cases. This leads to a predictive accuracy of 0.9841 as shown in Table 6.9,
together with a precision of 0.9605 and a recall of 1.0. The length of the defini-
tion produced is 10. In this context, the resultant classifier appears to be rather
general, i.e., since OCEL is a top-down algorithm, it could not generate more spe-
cialised descriptions before the timeout (120 seconds) and thus accepts some false
positives. This is because some examples include past transactions with HTTP
500 (Internal Server Error) indicating unexpected server behaviour (and as stated
in Section 6.2.1, it is more challenging to model the exact relations from such a
knowledge base), while some others include a small number of instances describ-
ing different behavioural patterns (no sufficient instances to learn about certain
transaction sequences). However, it is obvious that all these learning problems
are simple queries that require less reasoning, leading to top scores. The remain-
ing class ResponseStatusCode 404 with 23 positive and 354 negative examples
is one of the most difficult learning problems in the GHTraffic dataset. The in-
ferred OCEL model is more general and describes 19 positive examples which also
include 121 negative ones (4 false negatives and 121 false positives). It hardly
reaches 0.6687 predictive accuracy, 0.1456 precision, and 0.8258 recall. Although
there are few positive examples, it can be observed that they reflect a variety

116

T
ab

le
6.

9:
R

es
u

lt
s

of
D

es
cr

ip
ti

on
L

og
ic

L
ea

rn
in

g
A

lg
o
ri

th
m

p
er

R
es

p
o
n

se
F

ea
tu

re
V

a
lu

e
(T

a
rg

et
)

in
G

H
T

ra
ffi

c.
T

h
e

n
u

m
b

er
o
f

p
os

it
iv

e
an

d
n
eg

at
iv

e
ex

am
p

le
s

is
al

so
sh

ow
n

fo
r

ea
ch

ta
rg

et
co

n
ce

p
t.

C
la
ss

P
o
si
ti
v
e
s

N
e
g
a
ti
v
e
s

A
cc

u
ra

cy
P
re

ci
si
o
n

R
e
ca

ll
L
e
n
g
th

R
es

p
o
n

se
S
ta

tu
sC

o
d

e
2
0
0

1
3
9

2
3
8

0
.9

8
4
1

0
.9

6
0
5

1
.0

0
0
0

1
0

R
es

p
o
n

se
S
ta

tu
sC

o
d

e
2
0
4

5
6

3
2
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

7

R
es

p
o
n

se
S
ta

tu
sC

o
d

e
4
0
0

3
8

3
3
9

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5

R
es

p
o
n

se
S
ta

tu
sC

o
d

e
4
0
1

9
8

2
7
9

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1

R
es

p
o
n

se
S
ta

tu
sC

o
d

e
4
0
4

2
3

3
5
4

0
.6

6
8
7

0
.1

4
5
6

0
.8

2
5
8

1
2

R
es

p
o
n

se
S
ta

tu
sC

o
d

e
4
2
2

2
3

3
5
4

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
es

p
o
n

se
H

ea
d

er
C

a
ch

e-
C

o
n
tr

o
l

m
a
x
-a

g
e

1
3
9

2
3
8

0
.9

8
4
1

0
.9

6
0
5

1
.0

0
0
0

1
0

R
es

p
o
n

se
H

ea
d

er
C

a
ch

e-
C

o
n
tr

o
l

n
o
t-

ex
is

t
2
3
8

1
3
9

0
.7

0
0
5

0
.6

8
2
1

1
.0

0
0
0

1
0

R
es

p
o
n

se
H

ea
d

er
V

a
ry

a
cc

ep
t

1
3
9

2
3
8

0
.9

8
4
1

0
.9

6
0
5

1
.0

0
0
0

1
0

R
es

p
o
n

se
H

ea
d

er
V

a
ry

n
o
t-

ex
is

t
2
3
8

1
3
9

0
.7

0
0
5

0
.6

8
2
1

1
.0

0
0
0

1
0

R
es

p
o
n

se
H

ea
d

er
X

-A
cc

ep
te

d
-O

A
u

th
-S

co
p

es
n

o
t-

ex
is

t
9
8

2
7
9

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1

R
es

p
o
n

se
H

ea
d

er
X

-A
cc

ep
te

d
-O

A
u

th
-S

co
p

es
a
cc

ep
te

d
-p

u
b

li
c-

re
p

o
1
9
5

1
8
2

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
0

R
es

p
o
n

se
H

ea
d

er
X

-A
cc

ep
te

d
-O

A
u

th
-S

co
p

es
re

p
o

8
4

2
9
3

0
.5

2
5
1

0
.3

1
5
6

0
.9

6
4
3

1

R
es

p
o
n

se
H

ea
d

er
X

-O
A

u
th

-S
co

p
es

n
o
t-

ex
is

t
9
8

2
7
9

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1

R
es

p
o
n

se
H

ea
d

er
X

-O
A

u
th

-S
co

p
es

p
u

b
li
c-

re
p

o
2
7
9

9
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1

R
es

p
o
n

se
B

o
d

y
a
ss

ig
n

ee
.s

it
e

a
d

m
in

fa
ls

e
1
7

3
6
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
a
ss

ig
n

ee
.s

it
e

a
d

m
in

n
o
t-

ex
is

t
3
6
0

1
7

0
.9

6
5
6

0
.9

7
2
8

0
.9

9
1
7

5

R
es

p
o
n

se
B

o
d

y
a
ss

ig
n

ee
.t

y
p

e
n

o
t-

ex
is

t
3
6
0

1
7

0
.9

6
5
6

0
.9

7
2
8

0
.9

9
1
7

5

R
es

p
o
n

se
B

o
d

y
a
ss

ig
n

ee
.t

y
p

e
U

se
r

1
7

3
6
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
a
ss

ig
n

ee
s.

si
te

a
d

m
in

fa
ls

e
1
1

3
6
6

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6

R
es

p
o
n

se
B

o
d

y
a
ss

ig
n

ee
s.

si
te

a
d

m
in

n
o
t-

ex
is

t
3
6
6

1
1

0
.9

7
8
8

0
.9

9
1
7

0
.9

8
6
3

5

R
es

p
o
n

se
B

o
d

y
a
ss

ig
n

ee
s.

ty
p

e
n

o
t-

ex
is

t
3
6
6

1
1

0
.9

7
8
8

0
.9

9
1
7

0
.9

8
6
3

5

R
es

p
o
n

se
B

o
d

y
a
ss

ig
n

ee
s.

ty
p

e
U

se
r

1
1

3
6
6

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6

R
es

p
o
n

se
B

o
d

y
d

o
cu

m
en

ta
ti

o
n

u
rl

ed
it

-a
n

-i
ss

u
e

9
2

2
8
5

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
es

p
o
n

se
B

o
d

y
d

o
cu

m
en

ta
ti

o
n

u
rl

lo
ck

-a
n

-i
ss

u
e

4
6

3
3
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
es

p
o
n

se
B

o
d

y
d

o
cu

m
en

ta
ti

o
n

u
rl

n
o
t-

ex
is

t
1
9
9

1
7
8

0
.9

6
5
5

0
.9

3
8
9

1
.0

0
0
0

1
2

R
es

p
o
n

se
B

o
d

y
d

o
cu

m
en

ta
ti

o
n

u
rl

u
n

lo
ck

-a
n

-i
ss

u
e

2
1

3
5
6

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
es

p
o
n

se
B

o
d

y
d

o
cu

m
en

ta
ti

o
n

u
rl

v
3

1
7
8

1
9
9

0
.6

1
5
1

0
.5

5
8
6

0
.9

6
6
3

1
0

R
es

p
o
n

se
B

o
d

y
lo

ck
ed

fa
ls

e
1
0
9

2
6
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

9

R
es

p
o
n

se
B

o
d

y
lo

ck
ed

n
o
t-

ex
is

t
2
6
8

1
0
9

0
.7

7
2
1

0
.7

7
1
5

0
.9

7
7
6

7

R
es

p
o
n

se
B

o
d

y
m

es
sa

g
e

in
v
a
li

d
-r

eq
u

es
t

2
3

3
5
4

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
es

p
o
n

se
B

o
d

y
m

es
sa

g
e

n
o
t-

ex
is

t
1
9
9

1
7
8

0
.9

6
5
5

0
.9

3
8
9

1
.0

0
0
0

1
2

R
es

p
o
n

se
B

o
d

y
m

es
sa

g
e

n
o
t-

fo
u

n
d

1
9

3
5
8

0
.8

2
1
9

0
.5

3
2
8

0
.4

7
2
2

1
2

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

117

T
a
b

le
6
.9

–
co

n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

C
la
ss

P
o
si
ti
v
e
s

N
e
g
a
ti
v
e
s

A
cc

u
ra

cy
P
re

ci
si
o
n

R
e
ca

ll
L
e
n
g
th

R
es

p
o
n

se
B

o
d

y
m

es
sa

g
e

p
ro

b
le

m
s-

p
a
ss

in
g
-j

so
n

3
8

3
3
9

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

es
sa

g
e

re
q
u

ir
es

-a
u

th
en

ti
ca

ti
o
n

9
8

2
7
9

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
a
v
a
ta

r
u

rl
a
v
a
ta

r-
v
3

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
a
v
a
ta

r
u

rl
n

o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
ev

en
ts

u
rl

ev
en

ts
-p

ri
v
a
cy

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
ev

en
ts

u
rl

n
o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
fo

ll
o
w

er
s

u
rl

fo
ll
o
w

er
s-

cg
d

ec
k
er

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
fo

ll
o
w

er
s

u
rl

n
o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
fo

ll
o
w

in
g

u
rl

fo
ll
o
w

in
g
-c

g
d

ec
k
er

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
fo

ll
o
w

in
g

u
rl

n
o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
g
is

ts
u

rl
g
is

ts
-c

g
d

ec
k
er

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
g
is

ts
u

rl
n

o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
h
tm

l
u

rl
h
tm

l-
cg

d
ec

k
er

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
h
tm

l
u

rl
n

o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
id

1
0
1
5
6
8

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
id

n
o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
lo

g
in

cg
d

ec
k
er

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
lo

g
in

n
o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
o
rg

a
n

iz
a
ti

o
n

s
u

rl
n

o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
o
rg

a
n

iz
a
ti

o
n

s
u

rl
o
rg

a
n

iz
a
ti

o
n

s-
cg

d
ec

k
er

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
re

ce
iv

ed
ev

en
ts

u
rl

ev
en

ts
-c

g
d

ec
k
er

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
re

ce
iv

ed
ev

en
ts

u
rl

n
o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
re

p
o
s

u
rl

n
o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
re

p
o
s

u
rl

re
p

o
s-

cg
d

ec
k
er

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
si

te
a
d

m
in

fa
ls

e
1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
si

te
a
d

m
in

n
o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
st

a
rr

ed
u

rl
n

o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
st

a
rr

ed
u

rl
st

a
rr

ed
-c

g
d

ec
k
er

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
su

b
sc

ri
p

ti
o
n

s
u

rl
n

o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
su

b
sc

ri
p

ti
o
n

s
u

rl
su

b
sc

ri
p

ti
o
n

s-
cg

d
ec

k
er

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
ty

p
e

n
o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
ty

p
e

U
se

r
1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
u

rl
cr

ea
to

r-
cg

d
ec

k
er

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
cr

ea
to

r.
u

rl
n

o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
d

u
e

o
n

n
o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

118

T
a
b

le
6
.9

–
co

n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

C
la
ss

P
o
si
ti
v
e
s

N
e
g
a
ti
v
e
s

A
cc

u
ra

cy
P
re

ci
si
o
n

R
e
ca

ll
L
e
n
g
th

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
d

u
e

o
n

n
u
ll

1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
o
p

en
is

su
es

0
9

3
6
8

0
.9

9
7
4

1
.0

0
0
0

0
.9

9
7
4

1
2

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
o
p

en
is

su
es

1
7

3
7
0

0
.9

9
7
4

1
.0

0
0
0

0
.8

7
5
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
o
p

en
is

su
es

n
o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
st

a
te

cl
o
se

d
1
6

3
6
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
3

R
es

p
o
n

se
B

o
d

y
m

il
es

to
n

e.
st

a
te

n
o
t-

ex
is

t
3
6
1

1
6

0
.9

7
0
9

0
.9

7
0
6

1
.0

0
0
0

5

R
es

p
o
n

se
B

o
d

y
st

a
te

cl
o
se

d
6
5

3
1
2

0
.9

2
5
6

0
.7

7
5
9

0
.9

6
9
7

1
3

R
es

p
o
n

se
B

o
d

y
st

a
te

n
o
t-

ex
is

t
2
6
8

1
0
9

0
.7

7
2
1

0
.7

7
1
5

0
.9

7
7
6

7

R
es

p
o
n

se
B

o
d

y
st

a
te

o
p

en
4
4

3
3
3

0
.9

5
7
6

0
.7

4
9
7

0
.9

5
4
6

1
5

R
es

p
o
n

se
B

o
d

y
u

se
r.

si
te

a
d

m
in

fa
ls

e
1
0
9

2
6
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

si
te

a
d

m
in

n
o
t-

ex
is

t
2
6
8

1
0
9

0
.7

7
2
1

0
.7

7
1
5

0
.9

7
7
6

7

R
es

p
o
n

se
B

o
d

y
u

se
r.

ty
p

e
n

o
t-

ex
is

t
2
6
8

1
0
9

0
.7

7
2
1

0
.7

7
1
5

0
.9

7
7
6

7

R
es

p
o
n

se
B

o
d

y
u

se
r.

ty
p

e
U

se
r

1
0
9

2
6
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
1

M
e
a
n

0
.9

5
3
3

0
.9

3
4
1

0
.9

8
5
1

7
.9

7
5
3

S
ta

n
d
a
rd

D
e
v
ia
ti
o
n

0
.0

9
7
2

0
.1

5
0
6

0
.0

6
3
7

4
.1

2
6
1

119

of behavioural patterns that trigger HTTP 404 (meaning that there are not ad-
equate instances to represent each specific transaction sequence). Some examples
include past transaction sequences containing HTTP 500 (which make it more
complex to trace the correlations). Such that the algorithm is unable to produce
more specialised class descriptions that capture the respective behavioural pat-
terns prior to the timeout. It is clear that the algorithm performs poorly when the
data is varied and when contains unexpected service behaviour. Figure 6.28 shows
the best descriptions produced for the target classes ResponseStatusCode 204,
ResponseStatusCode 400, ResponseStatusCode 401, ResponseStatusCode 422,
ResponseStatusCode 200 in the Manchester OWL Syntax. Take into account, for
example, the sample class description for ResponseStatusCode 204 which encodes
the semantics of HTTP 204 (No Content) status code (indicates the successful
locking or unlocking of an issue in the GitHub’s Issue Tracking system). The
rule stipulates that the response status code for a request will be HTTP 204

if the request is made using a valid authentication token and the request URI
path carries the lock token at its sixth position, and the request has a preced-
ing HTTP 201 transaction for that particular resource (means that issue has
already been successfully created). Another example is that the class description
for ResponseStatusCode 400 which encodes the semantics of HTTP 400 (Bad
Request) status code (indicates that the server is unable to handle the request
due to malformed message syntax) as if the request is made using a valid authen-
tication token and has a request payload which does not have correctly encoded
values. The samples demonstrate that the generated relational concept descrip-
tions are very simple to understand and describe well each scenario. It can also
be observed that the induced knowledge exchanges similarities with knowledge
derived from attribute-based learning algorithms as described in Section 6.2.1.
Clearly, the class expressions produced can easily be used to understand the exact
causes of particular status codes.

On the other hand, the background knowledge base of the GHTraffic dataset
contains target classes for attribute values associated with the response headers.
Among these are target classes with only positive examples (the target attrib-
ute has just one distinct value) that are ignored when constructing models. The
ResponseHeader Server GitHub.com, ResponseHeader Content-Type json, and
ResponseHeader X-GitHub-Media-Type v3-json are examples of this. However,
we can see that most of the other target classes related to the response headers in
the GHTraffic knowledge base achieve high to maximum predictive performance
statistics on OCEL. The generated classifiers are also shorter. As example, for the
target classes ResponseHeader X-OAuth-Scopes public repo (including 279 pos-
itive and 98 negative examples) and ResponseHeader X-OAuth-Scopes not-exist

(including 98 positive and 279 negative examples) obtained from the attribute
ResponseHeader X-OAuth-Scopes, OCEL produces class descriptions of length 1
which are 100% accurate (result in 1.0 predictive accuracy, precision, and recall).
Figure 6.29 depicts the best-learned OCEL class expressions. As can be seen, the
ResponseHeader X-OAuth-Scopes public repo description specifies that if the
request is made with a valid authorisation token, the response will contain the
ResponseHeader X-OAuth-Scopes header with the value public repo. In con-
trast, the description for ResponseHeader X-OAuth-Scopes not-exist specifies
that if the request is made without a valid authorisation token, there will be no

120

ResponseHeader_X -OAuth -Scopes_public_repo:

RequestHeader_HasAuthorisationToken_true

ResponseHeader_X -OAuth -Scopes_not -exist:

RequestHeader_HasAuthorisationToken_false

Figure 6.29: The Best OCEL Descriptions for ResponseHeader X-OAuth-Scopes Values in
GHTraffic

ResponseHeader X-OAuth-Scopes header. It is evident that the semantics of the
header values of X-OAuth-Scopes can be correctly and easily interpreted by these
definitions. We also note that the models express exactly the same knowledge that
is learned from attribute-based learning algorithms. Besides, for some targets relev-
ant to the response headers values, such as the ResponseHeader Vary not-exist

related to the ResponseHeader Vary, the generated concept definitions are not
sufficiently specialised to fully describe all the positive examples. Many of the
negatives are also covered. These learning problems are difficult to learn as the
background knowledge base and certain examples represent HTTP 500 (unpredict-
able server behaviour). The lack of examples describing some of the transaction
sequences also makes it impossible to generate perfectly accurate class expressions.

Moreover, there is a wide range of target classes associated with the attrib-
ute values of the response body. Many have only positive or negative examples
and are thus ignored from learning definitions. Table 6.9 reveals that there are
many other target classes for which the inferred OCEL models are highly accur-
ate and less sophisticated. Even so, it can be observed that, in all these cases,
OCEL is able to learn the mapping for attribute values of the response body
from just the values associated with the incoming request features and the non-
state-related response body features of the previous transactions (however, as
discussed in Section 2.1.3, the HTTP response message should depend on the
values of the request and the state inferred from transaction history). This is
probably because the values related to the features of interaction status history
are not relevant to the learning problem. These target classes can be observed
to be correlated to the data values returned by the server. There is, therefore,
no potential relation between the target classes and the internal service status,
for which the same happens with attribute-based learning. Consequently, such
target classes are not optimal for predictions. Despite all these, there are few
target classes, such as ResponseBody state open, ResponseBody state closed,
and ResponseBody state not-exist, for which the algorithm produces precise
and simple descriptions. See Appendix C.4.1 for the best-discovered class descrip-
tions.

In view of the results, it can be concluded that OCEL is capable of learning
highly accurate and human-readable concepts for targets associated with the key
response feature values in the GHTraffic dataset, apart from targets with complex
learning problems (when examples are diverse and/or are linked to past transac-
tions with unexpected server behaviour) and for targets linked to the content of
the response body that are correlated with the data values returned by the server
where there is no relation between the targets and the features of the request and
the service state history.

121

T
ab

le
6.

10
:

R
es

u
lt

s
of

D
es

cr
ip

ti
on

L
og

ic
L

ea
rn

in
g

A
lg

o
ri

th
m

p
er

R
es

p
o
n

se
F

ea
tu

re
V

a
lu

e
(T

a
rg

et
)

in
T

w
it

te
r.

T
h

e
n
u

m
b

er
o
f

p
os

it
iv

e
an

d
n
eg

at
iv

e
ex

am
p

le
s

is
al

so
sh

ow
n

fo
r

ea
ch

ta
rg

et
co

n
ce

p
t.

C
la
ss

P
o
si
ti
v
e
s

N
e
g
a
ti
v
e
s

A
cc

u
ra

cy
P
re

ci
si
o
n

R
e
ca

ll
L
e
n
g
th

R
es

p
o
n

se
S

ta
tu

sC
o
d

e
2
0
0

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
S

ta
tu

sC
o
d

e
4
0
4

3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
H

ea
d

er
st

a
tu

s
2
0
0
O

K
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
H

ea
d

er
st

a
tu

s
4
0
4
N

o
tF

o
u

n
d

3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
H

ea
d

er
x
-r

a
te

-l
im

it
-l

im
it

9
0
0

9
3

4
1
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1

R
es

p
o
n

se
H

ea
d

er
x
-r

a
te

-l
im

it
-l

im
it

n
o
t-

ex
is

t
4
1
1

9
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1

R
es

p
o
n

se
B

o
d

y
co

n
tr

ib
u

to
rs

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
co

n
tr

ib
u

to
rs

n
u

ll
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
co

o
rd

in
a
te

s
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
co

o
rd

in
a
te

s
n
u

ll
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
en

ti
ti

es
.h

a
sh

ta
g
s

em
p

ty
-l

is
t

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
en

ti
ti

es
.h

a
sh

ta
g
s

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
en

ti
ti

es
.s

y
m

b
o
ls

em
p

ty
-l

is
t

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
en

ti
ti

es
.s

y
m

b
o
ls

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
en

ti
ti

es
.u

rl
s

em
p

ty
-l

is
t

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
en

ti
ti

es
.u

rl
s

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
en

ti
ti

es
.u

se
r

m
en

ti
o
n

s
em

p
ty

-l
is

t
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
en

ti
ti

es
.u

se
r

m
en

ti
o
n

s
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
er

ro
rs

.c
o
d

e
1
4
4

3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
er

ro
rs

.c
o
d

e
n

o
t-

ex
is

t
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
er

ro
rs

.m
es

sa
g
e

n
o
-s

ta
tu

s-
fo

u
n

d
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
er

ro
rs

.m
es

sa
g
e

n
o
t-

ex
is

t
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
fa

v
o
ri

te
co

u
n
t

0
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
fa

v
o
ri

te
co

u
n
t

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
fa

v
o
ri

te
d

fa
ls

e
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
fa

v
o
ri

te
d

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
g
eo

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
g
eo

n
u
ll

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
in

re
p

ly
to

sc
re

en
n

a
m

e
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
in

re
p

ly
to

sc
re

en
n

a
m

e
n
u

ll
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
in

re
p

ly
to

st
a
tu

s
id

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
in

re
p

ly
to

st
a
tu

s
id

n
u

ll
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
in

re
p

ly
to

st
a
tu

s
id

st
r

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

122

T
a
b

le
6
.1

0
–

co
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

C
la
ss

P
o
si
ti
v
e
s

N
e
g
a
ti
v
e
s

A
cc

u
ra

cy
P
re

ci
si
o
n

R
e
ca

ll
L
e
n
g
th

R
es

p
o
n

se
B

o
d

y
in

re
p

ly
to

st
a
tu

s
id

st
r

n
u

ll
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
in

re
p

ly
to

u
se

r
id

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
in

re
p

ly
to

u
se

r
id

n
u

ll
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
in

re
p

ly
to

u
se

r
id

st
r

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
in

re
p

ly
to

u
se

r
id

st
r

n
u

ll
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
is

q
u

o
te

st
a
tu

s
fa

ls
e

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
is

q
u

o
te

st
a
tu

s
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
p

la
ce

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
p

la
ce

n
u

ll
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
re

tw
ee

t
co

u
n
t

0
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
re

tw
ee

t
co

u
n
t

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
re

tw
ee

te
d

fa
ls

e
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
re

tw
ee

te
d

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
tr

u
n

ca
te

d
fa

ls
e

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
tr

u
n

ca
te

d
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

co
n
tr

ib
u

to
rs

en
a
b

le
d

fa
ls

e
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

co
n
tr

ib
u

to
rs

en
a
b

le
d

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

cr
ea

te
d

a
t

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

cr
ea

te
d

a
t

W
ed

M
a
r0

7
0
9

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

d
ef

a
u

lt
p

ro
fi

le
fa

ls
e

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

d
ef

a
u

lt
p

ro
fi

le
im

a
g
e

fa
ls

e
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

d
ef

a
u

lt
p

ro
fi

le
im

a
g
e

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

d
ef

a
u

lt
p

ro
fi

le
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

fa
v
o
u

ri
te

s
co

u
n
t

6
4

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

fa
v
o
u

ri
te

s
co

u
n
t

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

fo
ll
o
w

re
q
u

es
t

se
n
t

fa
ls

e
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

fo
ll
o
w

re
q
u

es
t

se
n
t

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

fo
ll
o
w

er
s

co
u

n
t

1
8
5

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

fo
ll
o
w

er
s

co
u

n
t

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

fo
ll
o
w

in
g

fa
ls

e
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

fo
ll
o
w

in
g

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

fr
ie

n
d

s
co

u
n
t

2
4
9

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

fr
ie

n
d

s
co

u
n
t

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

g
eo

en
a
b

le
d

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

g
eo

en
a
b

le
d

tr
u

e
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

123

T
a
b

le
6
.1

0
–

co
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

C
la
ss

P
o
si
ti
v
e
s

N
e
g
a
ti
v
e
s

A
cc

u
ra

cy
P
re

ci
si
o
n

R
e
ca

ll
L
e
n
g
th

R
es

p
o
n

se
B

o
d

y
u

se
r.

h
a
s

ex
te

n
d

ed
p

ro
fi

le
fa

ls
e

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

h
a
s

ex
te

n
d

ed
p

ro
fi

le
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

id
5
1
7
4
1
7
8
1
6

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

id
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

id
st

r
5
1
7
4
1
7
8
1
6

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

id
st

r
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

is
tr

a
n

sl
a
ti

o
n

en
a
b

le
d

fa
ls

e
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

is
tr

a
n

sl
a
ti

o
n

en
a
b

le
d

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

is
tr

a
n

sl
a
to

r
fa

ls
e

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

is
tr

a
n

sl
a
to

r
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

la
n

g
en

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

la
n

g
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

li
st

ed
co

u
n
t

3
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

li
st

ed
co

u
n
t

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

lo
ca

ti
o
n

K
u

ru
n

eg
a
la

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

lo
ca

ti
o
n

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

n
a
m

e
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

n
a
m

e
T

h
il
in

iB
h

a
g
y
a

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

n
o
ti

fi
ca

ti
o
n

s
fa

ls
e

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

n
o
ti

fi
ca

ti
o
n

s
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

b
a
ck

g
ro

u
n

d
co

lo
r

1
A

1
B

1
F

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

b
a
ck

g
ro

u
n

d
co

lo
r

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

b
a
ck

g
ro

u
n

d
im

a
g
e

u
rl

h
tt

p
-a

b
c.

tw
im

g
.c

o
m

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

b
a
ck

g
ro

u
n

d
im

a
g
e

u
rl

h
tt

p
s

h
tt

p
s-

a
b

c.
tw

im
g
.c

o
m

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

b
a
ck

g
ro

u
n

d
im

a
g
e

u
rl

h
tt

p
s

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

b
a
ck

g
ro

u
n

d
im

a
g
e

u
rl

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

b
a
ck

g
ro

u
n

d
ti

le
fa

ls
e

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

b
a
ck

g
ro

u
n

d
ti

le
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

b
a
n

n
er

u
rl

h
tt

p
s-

p
b

s.
tw

im
g
.c

o
m

-p
ro

fi
le

-b
a
n

n
er

s
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

b
a
n

n
er

u
rl

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

im
a
g
e

u
rl

h
tt

p
-p

b
s.

tw
im

g
.c

o
m

-p
ro

fi
le

-i
m

a
g
es

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

im
a
g
e

u
rl

h
tt

p
s

h
tt

p
s-

p
b

s.
tw

im
g
.c

o
m

-p
ro

fi
le

-i
m

a
g
es

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

im
a
g
e

u
rl

h
tt

p
s

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

im
a
g
e

u
rl

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

li
n

k
co

lo
r

3
E

4
5
4
7

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

124

T
a
b

le
6
.1

0
–

co
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

C
la
ss

P
o
si
ti
v
e
s

N
e
g
a
ti
v
e
s

A
cc

u
ra

cy
P
re

ci
si
o
n

R
e
ca

ll
L
e
n
g
th

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

li
n

k
co

lo
r

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

si
d

eb
a
r

b
o
rd

er
co

lo
r

F
F

F
F

F
F

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

si
d

eb
a
r

b
o
rd

er
co

lo
r

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

si
d

eb
a
r

fi
ll

co
lo

r
2
5
2
4
2
9

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

si
d

eb
a
r

fi
ll

co
lo

r
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

te
x
t

co
lo

r
6
6
6
6
6
6

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

te
x
t

co
lo

r
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

u
se

b
a
ck

g
ro

u
n

d
im

a
g
e

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

fi
le

u
se

b
a
ck

g
ro

u
n

d
im

a
g
e

tr
u

e
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

te
ct

ed
fa

ls
e

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

p
ro

te
ct

ed
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

sc
re

en
n

a
m

e
b

h
a
g
y
a
sl

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

sc
re

en
n

a
m

e
n

o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

ti
m

e
zo

n
e

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

ti
m

e
zo

n
e

n
u

ll
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

tr
a
n

sl
a
to

r
ty

p
e

n
o
n

e
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

tr
a
n

sl
a
to

r
ty

p
e

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

u
rl

h
tt

p
-t

.c
o

1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

u
rl

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

u
tc

o
ff

se
t

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

R
es

p
o
n

se
B

o
d

y
u

se
r.

u
tc

o
ff

se
t

n
u

ll
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

v
er

ifi
ed

fa
ls

e
1
5
6

3
4
8

0
.9

9
0
1

0
.9

6
9
9

1
.0

0
0
0

1
0

R
es

p
o
n

se
B

o
d

y
u

se
r.

v
er

ifi
ed

n
o
t-

ex
is

t
3
4
8

1
5
6

0
.9

9
8
0

1
.0

0
0
0

0
.9

9
7
1

9

M
e
a
n

0
.9

9
4
1

0
.9

8
5
2

0
.9

9
8
6

9
.3

6
5
1

S
ta

n
d
a
rd

D
e
v
ia
ti
o
n

0
.0

0
4
0

0
.0

1
5
1

0
.0

0
1
5

1
.1

7
7
1

125

Results on Twitter Dataset

The number of positive and negative examples together with experimental results
from OCEL for each target class in the Twitter knowledge base are shown in
Table 6.10. The sample classifiers can be found in Appendix C.4.2. Appendix B.4.2
provides the full list of classes in the Protege environment.

As defined in Section 6.2.1, the following are the target attributes related to the
response status in the dataset: ResponseStatusCode, ResponseHeader status,
ResponseBody errors.message, and ResponseBody errors.code. And as such,
the background knowledge base of the Twitter dataset contains separate target
classes for each distinct value of those attributes. The findings in Table 6.10
demonstrate that the trained class descriptions by OCEL for the target classes
associated with the response status obtain near-perfect predictive performance
scores and are shorter and less complex. Take into account, for example, the
ResponseStatusCode 200 and ResponseStatusCode 404 targets derived from the
ResponseStatusCode attribute. It can be observed that the OCEL classifier for
the ResponseStatusCode 200 (with 156 positive examples and 348 negative ex-
amples) achieves 0.9901 predictive accuracy by covering all positive ones includ-
ing 5 of the negatives (false positives). This also has 0.9699 precision and 1.0
recall. The length of the definition produced is 10. In a similar way, for the target
ResponseStatusCode 404 with 348 positive and 156 negative examples, the OCEL
classifier reaches 0.998 predictive accuracy by retrieving 347 positives (1 false neg-
ative) and not capturing any negative, and the precision and recall rates are 1.0 and
0.9971, respectively. It has a length of 9. Both are simple learning problems. How-
ever, we can see that the algorithm can not completely locate a class description
that defines all the positive and none of the negative examples before the timeout.
This means that the generated concepts are not successively specialised. That
is because some of the transaction sequences are not represented by sufficient ex-
amples in the training dataset. As a result, the algorithm is unable to specialise the
solutions until it includes all positive examples but no negative ones. Figure 6.30
depicts the best OCEL class definitions induced for ResponseStatusCode 200 and
ResponseStatusCode 404 (in Manchester OWL syntax). The class description for
ResponseStatusCode 200 describes the semantics of HTTP 200 (OK) status code
(indicating the successful creation/retrieval/deletion of a tweet) as if the request
contains the Content-Type header with the value form-urlencoded (which sug-
gests the semantics of successful tweet creation) or if the request does not contain
the Content-Type header and the request has an immediately preceding HTTP
200 transaction for that particular resource where the request URI path does not
carry the destroy token at its third position (means that a retrieval or deletion of
a tweet will be successful if the request has a successful transaction immediately
preceding it without a successful deletion). It is evident from the samples that the
resulting relational concepts are very easy to comprehend and explain well each
scenario. It can also be found that the inferred semantic knowledge has parallels
with the knowledge extracted from the attribute-based learning algorithms (de-
scribed in Section 6.2.1). Apparently, the class expressions generated can easily be
used to obtain accurate insights into the exact causes that lead to different status
codes.

Furthermore, several of the target classes related to the distinct values of the

126

ResponseStatusCode_200:

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseStatusCode_404:

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

Figure 6.30: The Best OCEL Descriptions for ResponseStatusCode Values in Twitter

ResponseHeader_x -rate -limit -limit_900:

RequestMethod_GET

ResponseHeader_x -rate -limit -limit_not -exist:

RequestMethod_POST

Figure 6.31: The Best OCEL Descriptions for ResponseHeader x-rate-limit-limit Values in
Twitter

response headers, such as the ResponseHeader content-type json, are limited
to positive examples, so that they are excluded from the learning process. There
are also target classes for the response header values that represent the status in-
formation and, as discussed above, the OCEL algorithm is able to produce highly
accurate and readily understandable classification models. Other than that, the
only remaining targets are the ResponseHeader x-rate-limit-limit 900 and
ResponseHeader x-rate-limit-limit not-exist, which are aligned with the
values of the x-rate-limit-limit response header. The results indicate that
for all these targets, the class definitions induced by OCEL have the maximum
degree of predictive performance (1.0 predictive accuracy, precision, and recall)
and are shorter in length, thus, potentially perfectly reliable and comprehens-
ible. The best class expressions obtained are shown in Figure 6.31. As can be
seen, the ResponseHeader x-rate-limit-limit 900 description states that if
the request is made using the GET method, the response will include the header
x-rate-limit-limit with the value 900. Conversely, the other expression states
that if the request is made using the POST, there will be no x-rate-limit-limit

header in the response. It is evident that the inferred definitions explicitly lead
to an exact and simpler interpretation of the semantics of the header values. It
is also noticeable that the knowledge learned has similarities with the knowledge
obtained from attribute-based learning algorithms as defined in Section 6.2.1.

The Twitter knowledge base also contains a fairly large number of target classes
associated with the attribute values of the response body. Some target classes cor-
respond to the state of response as previously mentioned, and OCEL is clearly
capable of providing highly accurate classification models that can be easily com-
prehended. According to Table 6.10, even for all the remaining targets related to
the response body values, the generated OCEL expressions attain higher predictive
performance and are smaller as well. These target classes, however, are found to be
correlated with the data values retrieved by the server (similar to those identified in
the attribute-based learning). This means that there is also no possible correlation
between the targets and the values of the request and the internal service status.

127

ResponseStatusCode_200:

(not (RequestMethod_DELETE)) and

(hasPrevious some ResponseStatusCode_200)

ResponseStatusCode_204:

RequestMethod_DELETE and

(hasPrevious some ResponseStatusCode_200)

ResponseStatusCode_404:

isPrecededBy some ResponseStatusCode_204

Figure 6.32: The Best OCEL Descriptions for Some ResponseStatusCode Values in Google
Tasks

At the same time, as we discussed in Section 6.2.1, the targets are observed to be
dependent on the success or failure of the request. The findings demonstrate the
point very clearly. In all these cases, the inferred OCEL models are equivalent to
those inferred for the ResponseStatusCode 200 and ResponseStatusCode 404.
Obviously, the generated models are accurate and readable and correctly repres-
ent this particular scenario in the dataset. See Appendix C.4.2 for the best class
expressions learned for each target in Manchester OWL syntax.

In all, the results demonstrate that the OCEL algorithm is significantly outper-
formed in training class expressions that are both accurate and human-readable
for all targets related to the values of the core features of HTTP responses in
the Twitter dataset. It is clear that the algorithm is much better at answering
simple queries that require less reasoning. However, having a limited number of
examples representing certain behavioural patterns hinders the algorithm from
learning perfectly correct definitions.

Results on Google Tasks Dataset

Table 6.11 outlines the number of positive and negative examples and the results
produced by OCEL for each target classes in the Google Tasks knowledge base.
See Appendix C.4.3 for the sample class definitions. A complete classes list found
in the knowledge base (in the Protege environment) is given in Appendix B.4.3.

As specified in Section 6.2.1, the Google Tasks dataset contains multiple target
attributes related to the response state. Like, for example, ResponseStatusCode,
ResponseBody error.code, and ResponseBody error.message. As a result, the
background knowledge base of the Google Tasks dataset includes multiple tar-
get classes relating to the distinct values of those attributes. As can be seen in
Table 6.11, the class descriptions induced by OCEL for most of the target classes
associated with the response status have higher predictive performance and are
shorter, and thus more reliable and readable. For example, consider the targets
ResponseStatusCode 200, ResponseStatusCode 204, ResponseStatusCode 404,
and ResponseStatusCode 503 related to the ResponseStatusCode. For the tar-
get ResponseStatusCode 200 with 517 positive and 607 negative examples, the
generated classifier scores 0.9884 predictive accuracy by covering 514 positive ex-
amples and 10 negatives (false positives), and the precision and recall rates are
0.9813 and 0.9942, respectively. The definition length is 6. The OCEL classifier
for ResponseStatusCode 204 (with 100 positive and 1124 negative examples) ob-
tains 0.9947 predictive accuracy, 0.9546 precision, and 0.99 recall by covering 99

128

T
ab

le
6.

11
:

R
es

u
lt

s
of

D
es

cr
ip

ti
on

L
og

ic
L

ea
rn

in
g

A
lg

o
ri

th
m

p
er

R
es

p
o
n

se
F

ea
tu

re
V

a
lu

e
(T

ar
g
et

)
in

G
o
o
g
le

T
a
sk

s.
T

h
e

n
u

m
b

er
of

p
os

it
iv

e
an

d
n

eg
at

iv
e

ex
a
m

p
le

s
is

a
ls

o
sh

ow
n

fo
r

ea
ch

ta
rg

et
co

n
ce

p
t.

C
la
ss

P
o
si
ti
v
e
s

N
e
g
a
ti
v
e
s

A
cc

u
ra

cy
P
re

ci
si
o
n

R
e
ca

ll
L
e
n
g
th

R
es

p
o
n

se
S

ta
tu

sC
o
d

e
2
0
0

5
1
7

6
0
7

0
.9

8
8
4

0
.9

8
1
3

0
.9

9
4
2

6

R
es

p
o
n

se
S

ta
tu

sC
o
d

e
2
0
4

1
0
0

1
0
2
4

0
.9

9
4
7

0
.9

5
4
5

0
.9

9
0
0

8

R
es

p
o
n

se
S

ta
tu

sC
o
d

e
4
0
4

5
0
5

6
1
9

0
.9

9
9
1

0
.9

9
8
0

1
.0

0
0
0

3

R
es

p
o
n

se
S

ta
tu

sC
o
d

e
5
0
3

2
1
1
2
2

0
.9

8
9
3

0
.0

0
0
0

0
.0

0
0
0

1
7

R
es

p
o
n

se
H

ea
d

er
A

cc
ep

t-
R

a
n

g
es

n
o
n

e
5
7
0

5
5
4

0
.9

9
7
3

1
.0

0
0
0

0
.9

9
4
7

5

R
es

p
o
n

se
H

ea
d

er
A

cc
ep

t-
R

a
n

g
es

n
o
t-

ex
is

t
5
5
4

5
7
0

0
.9

9
9
1

1
.0

0
0
0

0
.9

9
8
2

5

R
es

p
o
n

se
H

ea
d

er
C

a
ch

e-
C

o
n
tr

o
l

m
u

st
-r

ev
a
li
d

a
te

4
5
4

6
7
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5

R
es

p
o
n

se
H

ea
d

er
C

a
ch

e-
C

o
n
tr

o
l

n
o
-c

a
ch

e-
m

u
st

-r
ev

a
li
d

a
te

1
6
3

9
6
1

0
.9

0
5
6

0
.6

6
7
4

0
.9

9
3
8

7

R
es

p
o
n

se
H

ea
d

er
C

a
ch

e-
C

o
n
tr

o
l

p
ri

v
a
te

5
0
7

6
1
7

0
.9

2
2
7

0
.8

7
3
5

0
.9

9
8
0

3

R
es

p
o
n

se
H

ea
d

er
C

o
n
te

n
t-

T
y
p

e
js

o
n

1
0
2
4

1
0
0

0
.9

5
5
5

0
.9

5
5
5

1
.0

0
0
0

6

R
es

p
o
n

se
H

ea
d

er
C

o
n
te

n
t-

T
y
p

e
n

o
t-

ex
is

t
1
0
0

1
0
2
4

0
.9

9
4
7

0
.9

5
4
6

0
.9

9
0
0

5

R
es

p
o
n

se
H

ea
d

er
P

ra
g
m

a
n

o
-c

a
ch

e
1
6
3

9
6
1

0
.9

0
5
6

0
.6

6
7
4

0
.9

9
3
8

7

R
es

p
o
n

se
H

ea
d

er
P

ra
g
m

a
n

o
t-

ex
is

t
9
6
1

1
6
3

0
.8

8
6
2

0
.8

8
3
3

1
.0

0
0
0

5

R
es

p
o
n

se
H

ea
d

er
T

ra
n

sf
er

-E
n

co
d

in
g

ch
u

n
k
ed

5
7
0

5
5
4

0
.9

9
7
3

1
.0

0
0
0

0
.9

9
4
7

5

R
es

p
o
n

se
H

ea
d

er
T

ra
n

sf
er

-E
n

co
d

in
g

n
o
t-

ex
is

t
5
5
4

5
7
0

0
.9

9
9
1

1
.0

0
0
0

0
.9

9
8
2

5

R
es

p
o
n

se
H

ea
d

er
V

a
ry

o
ri

g
in

5
7
0

5
5
4

0
.9

9
7
3

1
.0

0
0
0

0
.9

9
4
7

5

R
es

p
o
n

se
H

ea
d

er
V

a
ry

X
-O

ri
g
in

5
5
4

5
7
0

0
.9

9
9
1

1
.0

0
0
0

0
.9

9
8
2

5

R
es

p
o
n

se
H

ea
d

er
X

-C
o
n
te

n
t-

T
y
p

e-
O

p
ti

o
n

s
n

o
sn

iff
1
0
2
4

1
0
0

0
.9

5
5
5

0
.9

5
5
5

1
.0

0
0
0

6

R
es

p
o
n

se
H

ea
d

er
X

-C
o
n
te

n
t-

T
y
p

e-
O

p
ti

o
n

s
n

o
t-

ex
is

t
1
0
0

1
0
2
4

0
.9

9
4
7

0
.9

5
4
6

0
.9

9
0
0

5

R
es

p
o
n

se
H

ea
d

er
X

-F
ra

m
e-

O
p

ti
o
n

s
n

o
t-

ex
is

t
1
0
0

1
0
2
4

0
.9

9
4
7

0
.9

5
4
6

0
.9

9
0
0

5

R
es

p
o
n

se
H

ea
d

er
X

-F
ra

m
e-

O
p

ti
o
n

s
S

A
M

E
O

R
IG

IN
1
0
2
4

1
0
0

0
.9

5
5
5

0
.9

5
5
5

1
.0

0
0
0

6

R
es

p
o
n

se
H

ea
d

er
X

-X
S

S
-P

ro
te

ct
io

n
b

lo
ck

1
0
2
4

1
0
0

0
.9

5
5
5

0
.9

5
5
5

1
.0

0
0
0

6

R
es

p
o
n

se
H

ea
d

er
X

-X
S

S
-P

ro
te

ct
io

n
n

o
t-

ex
is

t
1
0
0

1
0
2
4

0
.9

9
9
1

1
.0

0
0
0

0
.9

9
0
0

5

R
es

p
o
n

se
B

o
d

y
er

ro
r.

co
d

e
4
0
4

5
0
5

6
1
9

0
.9

9
9
1

0
.9

9
8
0

1
.0

0
0
0

3

R
es

p
o
n

se
B

o
d

y
er

ro
r.

co
d

e
5
0
3

2
1
1
2
2

0
.9

8
9
3

0
.0

0
0
0

0
.0

0
0
0

1
7

R
es

p
o
n

se
B

o
d

y
er

ro
r.

co
d

e
n

o
t-

ex
is

t
6
1
7

5
0
7

0
.9

8
7
6

0
.9

7
9
7

0
.9

9
8
4

8

R
es

p
o
n

se
B

o
d

y
er

ro
r.

er
ro

rs
.d

o
m

a
in

g
lo

b
a
l

5
0
7

6
1
7

0
.9

2
2
7

0
.8

7
3
5

0
.9

9
8
0

3

R
es

p
o
n

se
B

o
d

y
er

ro
r.

er
ro

rs
.d

o
m

a
in

n
o
t-

ex
is

t
6
1
7

5
0
7

0
.9

8
7
6

0
.9

7
9
7

0
.9

9
8
4

8

R
es

p
o
n

se
B

o
d

y
er

ro
r.

er
ro

rs
.m

es
sa

g
e

B
a
ck

en
d

E
rr

o
r

2
1
1
2
2

0
.9

8
9
3

0
.0

0
0
0

0
.0

0
0
0

1
7

R
es

p
o
n

se
B

o
d

y
er

ro
r.

er
ro

rs
.m

es
sa

g
e

n
o
t-

ex
is

t
6
1
7

5
0
7

0
.9

8
7
6

0
.9

7
9
7

0
.9

9
8
4

8

R
es

p
o
n

se
B

o
d

y
er

ro
r.

er
ro

rs
.m

es
sa

g
e

N
o
tF

o
u

n
d

5
0
5

6
1
9

0
.9

9
9
1

0
.9

9
8
0

1
.0

0
0
0

3

R
es

p
o
n

se
B

o
d

y
er

ro
r.

er
ro

rs
.r

ea
so

n
b

a
ck

en
d

E
rr

o
r

2
1
1
2
2

0
.9

8
9
3

0
.0

0
0
0

0
.0

0
0
0

1
7

R
es

p
o
n

se
B

o
d

y
er

ro
r.

er
ro

rs
.r

ea
so

n
n

o
t-

ex
is

t
6
1
7

5
0
7

0
.9

8
7
6

0
.9

7
9
7

0
.9

9
8
4

8

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

129

T
a
b

le
6
.1

1
–

co
n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

C
la
ss

P
o
si
ti
v
e
s

N
e
g
a
ti
v
e
s

A
cc

u
ra

cy
P
re

ci
si
o
n

R
e
ca

ll
L
e
n
g
th

R
es

p
o
n

se
B

o
d

y
er

ro
r.

er
ro

rs
.r

ea
so

n
n

o
tF

o
u

n
d

5
0
5

6
1
9

0
.9

9
9
1

0
.9

9
8
0

1
.0

0
0
0

3

R
es

p
o
n

se
B

o
d

y
er

ro
r.

m
es

sa
g
e

B
a
ck

en
d

E
rr

o
r

2
1
1
2
2

0
.9

8
9
3

0
.0

0
0
0

0
.0

0
0
0

1
7

R
es

p
o
n

se
B

o
d

y
er

ro
r.

m
es

sa
g
e

n
o
t-

ex
is

t
6
1
7

5
0
7

0
.9

8
7
6

0
.9

7
9
7

0
.9

9
8
4

8

R
es

p
o
n

se
B

o
d

y
er

ro
r.

m
es

sa
g
e

N
o
tF

o
u

n
d

5
0
5

6
1
9

0
.9

9
9
1

0
.9

9
8
0

1
.0

0
0
0

3

R
es

p
o
n

se
B

o
d

y
k
in

d
n

o
t-

ex
is

t
6
0
7

5
1
7

0
.7

7
0
0

0
.7

7
0
5

0
.9

9
8
4

5

R
es

p
o
n

se
B

o
d

y
k
in

d
ta

sk
L

is
t

5
1
7

6
0
7

0
.9

8
8
4

0
.9

8
1
3

0
.9

9
4
2

6

M
e
a
n

0
.9

7
3
3

0
.8

2
6
3

0
.8

6
9
0

6
.8

9
7
4

S
ta

n
d
a
rd

D
e
v
ia
ti
o
n

0
.0

4
5
2

0
.3

3
1
0

0
.3

3
7
6

4
.2

1
6
5

130

positive examples and 5 negative ones, whereas for the ResponseStatusCode 404

(with 505 positive and 619 negative examples), the inferred OCEL classifier has
0.9991 predictive accuracy, 0.998 precision, and 1.0 recall covering all positive
examples and 1 of the negative examples. The length of the constructed class
descriptions is 8 and 3, respectively. It can be noted that, in all targets, the incor-
rectly identified positive and/or negative cases are either HTTP status 503 (Ser-
vice Unavailable) or those with past transaction sequences that contain HTTP
503. As explained in the attribute-based learning, this is due to the fact that
it is much more difficult to learn class descriptions that precisely represent all
positive and none of the negative examples from the background knowledge base
and examples comprising such unexpected server behaviour. In the same way,
for the class ResponseStatusCode 503 with 2 positive examples and 1122 neg-
ative examples, OCEL reaches 0.9893 predictive accuracy, 0.0 precision and 0.0
recall. It is because the inferred class description does not describe any posit-
ive examples correctly. This can be also attributed to difficulties in discovering
the right concept for this kind of unforeseeable behaviour. There is also an im-
balance between positive and negative examples that contributes further to this
outcome. In reality, however, such server failures occur very rarely, such that these
variations can be disregarded. The highest predictive performance can be mostly
achieved by excluding the instances. Figure 6.32 presents the sample descrip-
tions obtained for the ResponseStatusCode 200, ResponseStatusCode 204, and
ResponseStatusCode 404 in the Manchester OWL syntax. The class description
for ResponseStatusCode 200 encodes the semantics of HTTP 200 (OK) status code
(indicating the successful creation/access/modification of a task list). It states that
if the request is not made using the DELETE method (means if the request method
is either POST, GET, or PATCH) and if the request has an immediately preceding
transaction with HTTP 200 for that particular resource (that implies the request
has a successful immediately preceding transaction), the response status code to
the request will be HTTP 200. The class description for ResponseStatusCode 204

encodes the semantics of HTTP 204 (No Content) status code (indicating the suc-
cessful deletion of a task list). This states that if the request is made using the
DELETE method and had an immediately preceding transaction with HTTP 200

for that specific resource, the response status code will be 204. Conversely, the
class description for ResponseStatusCode 404 encodes HTTP 404 (Not Found)
semantics (indicating that the server can not locate a task list). It specifies that
if the request has a prior transaction with HTTP 204 for that particular resource
(meaning the resource has been successfully deleted before), the response status
code for the request will be HTTP 404. It can be observed that the inferred se-
mantic knowledge is close to the knowledge derived from attribute-based learning
algorithms (described in Section 6.2.1). In general, it is very evident that all of
these classification rules are easier to read and provide useful insights as to what
properties are likely to lead to a certain status code.

Besides, the background knowledge base of the Google Tasks dataset contains
the ResponseHeader Alt-Svc quic and ResponseHeader Server GSE targets re-
lated to the response header values which have no negative examples and are there-
fore excluded from the learning process. Table 6.11 shows that for all other target
classes relevant to the response headers in the knowledge base, the definitions pro-
duced by OCEL are accurate and shorter. One example is the target classes associ-

131

ResponseHeader_Content -Type_json:

(not (RequestMethod_DELETE)) or

(isPrecededBy some ResponseStatusCode_204)

ResponseHeader_Content -Type_not -exist:

RequestMethod_DELETE and

(hasPrevious some ResponseStatusCode_200)

Figure 6.33: The Best OCEL Descriptions for ResponseHeader Content-Type Values in Google
Tasks

ated with the distinct values of the attribute ResponseHeader Content-Type. The
OCEL classifier for ResponseHeader Content-Type json (with 1024 positive and
100 negative examples) obtains 0.9555 predictive accuracy (by covering all posit-
ives and 50 negatives) and has 0.9555 precision and 1.0 recall as well. The definition
is 6 in length. The classifier for ResponseHeader Content-Type not-exist (with
100 positive and 1024 negative examples) reaches 0.9947 predictive accuracy. It
covers 99 positive and 5 negative examples and archives 0.9546 precision and 0.99
recall rates. The length of the definition is 5. In these contexts, the generated con-
cepts are not sufficiently specialised to only represent all the positive examples and
not the negative ones. There are two reasons for this: firstly, the background know-
ledge base and examples include unpredictable server behaviour, and secondly,
inadequate examples of some of the transaction sequences in the knowledge base.
The best OCEL descriptions learned are presented (in the Manchester OWL syn-
tax) in Figure 6.33. As can be seen, the ResponseHeader Content-Type json

description clearly specified that if the request is not made using the DELETE

method (means if the request method is either POST, GET, or PATCH) or if the
request has a preceding transaction with HTTP 204 for that particular resource
(meaning the resource has been successfully deleted before), the response will con-
tain the Content-Type header with the value json (means ‘application/json;
charset=UTF-8’). The ResponseHeader Content-Type json description shows
that if the request is made using the DELETE method and has an immediately
preceding transaction with HTTP 200 for that specific resource (means preceded
by a succesful requests), the response will not contain the Content-Type header.
These definitions follow the exact same knowledge generated by the attribute-
based learning algorithms for the semantics of the header values in Content-Type

(suggesting that all responses to requests contain the Content-Type header with
the value ‘application/json; charset=UTF-8’ except for successful delete re-
quests).

Additionally, there are different target classes in the knowledge base for dis-
tinct values of the response’s payload attributes. Amongst them are the targets
representing the response status and, as discussed above, the resultant OCEL clas-
sifiers are correct and have an easy-to-understand structure. Apart from these,
the remaining target classes are the ResponseBody kind taskList (with 517 pos-
itive examples and 607 negative examples) and ResponseBody kind not-exist

(with 607 positive examples and 517 negative examples). Both classes are associ-
ated with the ResponseBody kind attribute in the Google Tasks dataset, which
tends to have the value tasks#tasks for successful POST, GET, and PATCH requests
(means for requests resulting in status code 200). The experiment result reveals

132

ResponseBody_kind_taskList:

(not (RequestMethod_DELETE)) and

(hasPrevious some ResponseStatusCode_200)

ResponseBody_kind_not -exist:

RequestMethod_DELETE or

(isPrecededBy some ResponseStatusCode_204)

Figure 6.34: The Best OCEL Descriptions for ResponseBody kind Values in Google Tasks

that the inferred model by OCEL for ResponseBody kind taskList has higher
predictive performance since the learning problem is relatively simple. It reaches
0.9884 predictive accuracy by retrieving 514 positive examples and 10 negatives,
as well as 0.9813 precision and 0.9942 recall. The length of the definition pro-
duced is 6. The model can be observed as being similar to ResponseStatusCode

200. The target ResponseBody kind not-exist is quite complex, as is the case
with examples from HTTP 204, 404, and even 503. As such, the model achieves
slightly low predictive performance scores (0.77 predictive accuracy, 0.9984 recall,
and precision 0.7705). It has a length of 5. In this case, OCEL is unable to com-
pute a more precise class description from the training set before 120 seconds.
Figure 6.34 displays the best OCEL description learned. However, it is obvious
from the samples that the concept descriptions can be easily readable.

Overall, the experimental results confirm that OCEL is able to achieve highly
reliable models with human-readable logics for targets associated with the main
HTTP response feature values of the Google Tasks dataset, except for targets
with complex learning problems (when predicting unforeseeable service beha-
viour). However, in general, having unpredictable server behaviour and insuffi-
cient examples of some transaction sequences hinder the algorithm from learning
definitions that are 100% accurate.

Results on Slack Dataset

Table 6.12 summarises the number of positive and negative examples for each
target class along with the OCEL results obtained for targets in the Slack know-
ledge base. The sample class definitions can be found in Appendix C.4.4. A full
list of classes in the knowledge base (in the Protege environment) is provided in
Appendix B.4.4.

As mentioned in Section 6.2.1, the ResponseStatusCode target attribute in the
Slack dataset has only one distinct value (i.e., 200). For this reason, the corres-
ponding target class ResponseStatusCode 200 in the background knowledge base
of the Slack dataset has no negative examples and is ignored in model creation.
The ResponseBody ok and ResponseBody error are the other two state-related
target attributes in the dataset and the background knowledge base includes target
classes associated with the distinct values of those attributes. The experimental
results presented in Table 6.12 indicate that the class definitions induced by OCEL
for all these targets have high to excellent predictive performance and are shorter
in length and less complex, which in turn, are more precise and can be inter-
preted easier. Take into account, for example, the ResponseBody ok true (with
477 positive and 1,022 negative examples) and the ResponseBody ok false (with

133

T
ab

le
6.

12
:

R
es

u
lt

s
of

D
es

cr
ip

ti
on

L
o
g
ic

L
ea

rn
in

g
A

lg
o
ri

th
m

p
er

R
es

p
o
n

se
F

ea
tu

re
V

a
lu

e
(T

a
rg

et
)

in
S

la
ck

.
T

h
e

n
u

m
b

er
of

p
os

it
iv

e
an

d
n

eg
at

iv
e

ex
a
m

p
le

s
is

a
ls

o
sh

ow
n

fo
r

ea
ch

ta
rg

et
co

n
ce

p
t.

C
la
ss

P
o
si
ti
v
e
s

N
e
g
a
ti
v
e
s

A
cc

u
ra

cy
P
re

ci
si
o
n

R
e
ca

ll
L
e
n
g
th

R
es

p
o
n

se
H

ea
d

er
x
-s

la
ck

-r
o
u

te
r

n
o
t-

ex
is

t
5
6
5

9
3
4

0
.3

7
6
9

0
.3

7
6
9

1
.0

0
0
0

1

R
es

p
o
n

se
H

ea
d

er
x
-s

la
ck

-r
o
u

te
r

p
9
3
4

5
6
5

0
.6

2
3
1

0
.6

2
3
1

1
.0

0
0
0

1

R
es

p
o
n

se
B

o
d

y
ch

a
n

n
el

C
C

G
R

W
T

R
K

Q
4
7
7

1
0
2
2

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8

R
es

p
o
n

se
B

o
d

y
ch

a
n

n
el

n
o
t-

ex
is

t
1
0
2
2

4
7
7

0
.9

6
7
3

0
.9

5
4
3

1
.0

0
0
0

2

R
es

p
o
n

se
B

o
d

y
er

ro
r

m
es

sa
g
en

o
tf

o
u

n
d

1
0
2
2

4
7
7

0
.9

6
7
3

0
.9

5
4
3

1
.0

0
0
0

2

R
es

p
o
n

se
B

o
d

y
er

ro
r

n
o
t-

ex
is

t
4
7
7

1
0
2
2

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8

R
es

p
o
n

se
B

o
d

y
m

es
sa

g
e.

b
o
t

id
B

C
E

P
N

C
Q

D
N

4
2
8

1
0
7
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
es

p
o
n

se
B

o
d

y
m

es
sa

g
e.

b
o
t

id
n

o
t-

ex
is

t
1
0
7
1

4
2
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2

R
es

p
o
n

se
B

o
d

y
m

es
sa

g
e.

ty
p

e
m

es
sa

g
e

4
2
8

1
0
7
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
es

p
o
n

se
B

o
d

y
m

es
sa

g
e.

ty
p

e
n

o
t-

ex
is

t
1
0
7
1

4
2
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2

R
es

p
o
n

se
B

o
d

y
m

es
sa

g
e.

u
se

r
n

o
t-

ex
is

t
1
0
7
1

4
2
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2

R
es

p
o
n

se
B

o
d

y
m

es
sa

g
e.

u
se

r
U

C
8
J
6
A

P
L

N
4
2
8

1
0
7
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
es

p
o
n

se
B

o
d

y
o
k

fa
ls

e
1
0
2
2

4
7
7

0
.9

6
7
3

0
.9

5
4
3

1
.0

0
0
0

2

R
es

p
o
n

se
B

o
d

y
o
k

tr
u

e
4
7
7

1
0
2
2

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8

M
e
a
n

0
.9

2
1
6

0
.9

1
8
8

1
.0

0
0
0

3
.5

7
1
4

S
ta

n
d
a
rd

D
e
v
ia
ti
o
n

0
.1

8
5
5

0
.1

8
4
9

0
.0

0
0
0

2
.5

9
3
3

134

1,022 positive and 477 negative examples). As can be seen, the OCEL model
for ResponseBody ok true reaches 1.0 predictive accuracy by completely cover-
ing every positive example and none of the negatives, and precision and recall
rates are both 1.0. The class description built is 8 in length. The OCEL model
for ResponseBody ok false achieves 0.9673 predictive accuracy along with 0.9534
precision and 1.0 recall rates by retrieving all positives but also 49 additional neg-
atives (49 false positives), and the length of the definition is 2. Figure 6.35 displays
the best definitions learned in the Manchester OWL syntax. The class definition
for ResponseBody ok true encodes the semantics of the true value of the ok as if
the request URI path carries the chat.postMessage token in its second location
(means if the request is to create a message), or if the request URI path does not
carry the chat.update and has an immediately preceding transaction for that par-
ticular resource with the ok value true (means if the request is to delete a message
and it directly precedes by a successful transaction). Looking at the knowledge base
closely, we can see that all the positive examples of ResponseBody ok true are
related to the successful creation and deletion of messages (there are no examples
with message modification in the sub-dataset that we used to build the knowledge
base) and that all the instances for the creation of messages are successful. It is
therefore clear that the inferred description describes the situation well. On the
contrary, the class description for ResponseBody ok false encodes the semantics
of the false value of the ok field (which implies the failure of a request). This
specifies that the ok field will be false if the request URI path does not have
the chat.postMessage token in its second location (means if the request is not to
create a message). The resultant definition is general in this case, which retrieves
some false positives. This is probably that the train set is not adequate to learn
the mapping (insufficient examples to represent certain sequences of transactions
in the knowledge base).

Further, the background knowledge base of the Slack dataset includes cer-
tain target classes relevant to the response header values with no negative ex-
amples, that are not suitable for learning class expressions. Examples include
the ResponseHeader Content-Type json, ResponseHeader Server Apache, and
ResponseHeader Cache-Control private. The only target classes trained with
respect to the response headers are the ResponseHeader x-slack-router p and
ResponseHeader x-slack-router not-exist (built from the attribute values of
ResponseHeader x-slack-router). In the ResponseHeader x-slack-router p,
there are 934 positive examples (62.31% of total examples) and 565 negative ex-
amples. The target ResponseHeader x-slack-router not-exist has 565 positive
examples (37.69% of total examples) and 934 negative cases. It can be observed
that the inferred OCEL classification models for these two classes consist only
of the root node owl:Thing (all instances in the knowledge base are individu-
als of owl:Thing). By simply covering all positive and negative examples with
owl:Thing, the model for ResponseHeader x-slack-router p achieves 0.6231
predictive accuracy, 0.6231 precision, and 1.0 recall, while the classification model
for ResponseHeader x-slack-router not-exist achieves 0.3769 predictive ac-
curacy, 0.3769 precision, and 1.0 recall. This can be attributed to the fact that
the algorithm is unable to derive more specific class definitions starting from the
most general concept owl:Thing prior to timeout. This is probably because there
is no mapping between the given examples and background knowledge. As already

135

ResponseBody_ok_true:

RequestUriPathToken2_chat.postMessage or

((not (RequestUriPathToken2_chat.update)) and

(hasPrevious some ResponseBody_ok_true))

ResponseBody_ok_false:

not (RequestUriPathToken2_chat.postMessage)

Figure 6.35: The Best OCEL Descriptions for ResponseBody ok Values in Slack

ResponseBody_message.user_UC8J6APLN:

RequestHeader_Content -Type_x -www and

(not (RequestUriPathToken2_chat.update))

ResponseBody_message.user_not -exist:

not (RequestUriPathToken2_chat.postMessage)

Figure 6.36: The Best OCEL Descriptions for ResponseBody ok Values in Slack

stated in Section 6.2.1, it is clear that the ResponseHeader x-slack-router val-
ues and the respective request features and the service status history do not cor-
relate. Therefore, the targets are not ideal for learning. These fairly low scores also
lead to comparatively low average scores in the Slack dataset with a significant
value distribution.

There are also several target classes associated with the property values of the
response body. Specifically, the ResponseBody message.edited.user UC8J6APLN

and ResponseBody message.edited.user not-exist targets represent the user
who edits a message. However, as noted above, there are no examples in the back-
ground knowledge base of the Slack dataset that involve modifications of messages.
Therefore, the ResponseBody message.edited.user UC8J6APLN is ignored when
generating models because no positive examples can be found in the knowledge
base, and the ResponseBody message.edited.user not-exist is also ignored
since it has only positive examples. Apart from this, as we discussed above, there
are some of the target classes correspond to state information. In addition, the
ResponseBody channel CCGRWTRKQ and ResponseBody channel not-exist tar-
gets represent the ResponseBody channel property values in the response body,
and we note that the models express exactly the same performance measures and
semantics as ResponseBody ok because the values of the ResponseBody channel

are based on the response state. All the remaining target classes associated with
the response body in the knowledge base of the Slack dataset are found to be de-
pendent on whether or not the transaction is successful in creating a message. The
concept descriptions generated very precisely demonstrate this particular scenario.
It can be observed that the inferred OCEL descriptions reach the highest rate of
predictive performance (1.0 predictive accuracy, precision, and recall) and that
they are shorter, illustrating excellent relevance and interpretability. Figure 6.36
depicts the best class expressions learned in the Manchester OWL syntax for target
classes derived from the attribute ResponseBody message.user.

It can, therefore, be concluded that OCEL is capable of providing promising
predictive performance results predicting the key HTTP response feature values in
the Slack dataset and is able to produce comprehensible models, with the exception
of certain targets linked to the response header values relevant to the data returned

136

by the server. In addition, the lack of sufficient examples of certain transaction
sequences prevents the algorithm from learning fully accurate concepts at times.

6.3 Threats to Validity

Three threats that could potentially influence the results of the experiments and
the generalisability of the findings should be considered:

1. The study examined four SML algorithms, including three of the attribute-
based learning algorithms, i.e., the C4.5 decision tree algorithm, the RIPPER
and PART rule learners, and the OCEL description logic learning algorithm, to
assess the potential of SML algorithms in producing mock response skeletons
of HTTP services. This leaves the possibility that the chosen algorithms do
not necessarily cover a broader context of SML techniques, thereby limiting
the ability to generalise the results of the study. However, we ensured that the
selection of algorithms was based on how well-established and efficient the al-
gorithms are in each category of symbolic learning techniques: attribute-based
learning (i.e., decision tree learning and rule learning) and description logic
learning, and their ability to handle both continuous and discrete data types
(as required when considering the typical nature of HTTP services). All of these
chosen algorithms have been established and effective in their respective cat-
egory of symbolic technique and have been well-explored by several researchers
and, in particular, have demonstrated their ability to work directly with nom-
inal and numerical attributes in model learning. Hence, it is very likely that the
study has drawn reliable conclusions which can be extended to SML techniques
in general.

2. The HTTP datasets used in the study were collected by reverse-engineering
REST API interactions from repository snapshots or by recording traffic through
fuzzing REST APIs. This leaves the possibility that such datasets do not rep-
resent realistic workloads, thereby, research results may not be realistic and
generalisable. However, we extracted datasets from the most successful active
Web services and synthesised them using well-defined processes. All API inter-
actions were derived on the basis of the syntax and semantics of HTTP and
the underline services, and a wide set of HTTP features was also implemented.
Each dataset was large enough to facilitate the research described. We managed
to preserve the behaviour that exists in real HTTP traffic as much as possible
and believe that all datasets reflect the state-of-the-art use of HTTP-based ser-
vices in general. We are, therefore, confident that the results of the research
were accurate and can be applied to other HTTP-based services that were not
studied.

3. The classification models generated by algorithms were mainly evaluated by
emphasising their predictive capability and comprehensibility. Metrics such as
predictive accuracy, precision, and recall have been used to assess predictive
validity and model size was used to measure comprehensibility. Such met-
rics may not be sufficient to determine how suitable the symbolic learning
algorithms are for producing accurate and customisable mock response skelet-

137

ons. Further analysis is expected in the future, in particular, to evaluate models
by a targeted group of end-users in order to verify the extent of their usability.

6.4 Summary

In this chapter, we presented and discussed the experimental results in order to
evaluate the appropriateness of Symbolic Machine Learning techniques in produ-
cing mock response skeletons for HTTP-based services. Specifically, we explored
results based on GHTraffic, Twitter, Google Tasks, and Slack datasets. With each
dataset, the results of C4.5, RIPPER and PART (from attribute-based learning)
and OCEL (from description logic learning) were analysed with respect to the tar-
get attributes associated with the key HTTP response features, including status,
response headers, and response body. At the end of the chapter, we discussed pos-
sible threats to the validity of the results. Overall, the results obtained reveal that
the significance of the Symbolic Machine Learning algorithms in the training of
accurate, human-readable models for predicting the core features of HTTP service
responses. It can be also observed that all algorithms have similarities in terms of
induced semantic knowledge. Moreover, it confers the usefulness of the proposed
attributes in building classification models.

138

Chapter 7

Conclusions and Future Work

This chapter summarises the results and contribution of this thesis and outlines
some future works. Section 7.1 presents the key contributions of our research.
Section 7.2 discusses directions for future work.

7.1 Summary of Contributions

The research in this thesis is primarily aimed at identifying the suitability of
Symbolic Machine Learning (SML) techniques in automatically producing mock
response skeletons of HTTP-based services that are both accurate and customis-
able. This goal has been achieved by examining four promising symbolic learning
algorithms: the C4.5 decision tree algorithm, the RIPPER and PART rule learners
(from attribute-based learning) and the OCEL class expression learning algorithm
(from description logic learning), utilising network traffic datasets derived from the
services offered by GitHub, Twitter, Google Tasks, and Slack. Several experiments
were conducted on the chosen algorithms targeting at training models to predict
some of the properties of HTTP service responses by directly inferring knowledge
of the protocol structure and service status from recorded interactions, and testing
the predictive ability and comprehensibility of generated models through cross val-
idation. The predictive performance was measured by using predictive accuracy,
precision, and recall, while the model size was used to calculate the comprehens-
ibility.

The experimental results discussed in Chapter 6 demonstrate that the selec-
ted SML algorithms are suitable for making highly accurate and human-readable
predictions for the key aspects of HTTP service responses, including the status,
response headers, and response body. Such a set of output predictions is known as
a mock skeleton. The generated models for most of the response properties have
higher predictive performance and are smaller in size and less complex, which in
turn, are more precise and can be easily interpreted by domain specialists. All the
output predictions enable a better comprehension of the service semantics through
proper logic. In terms of induced knowledge, the algorithms (both attribute-based
learning and description logic learning) share similarities, even though there are
structural differences depending on how the algorithms operate. Having such know-
ledge at hand would make it easier for the engineers used to write mock tests to
inspect and understand the causes behind the different response property values,

139

enabling them to easily edit or refine the predictions to create mocks that can gen-
erate service responses suitable for application testing. The engineers could add
missing response property values that could not be predicted in practise (filling
the gaps in the skeletons). They can identify which response properties are not
available in skeletons by referring to a few sample responses in the network traffic
traces collected. The fact that key characteristics of the HTTP service responses
can be precisely predicted in human-readable format help engineers to easily make
decisions about whether the mock service is a suitable representation of the actual
service. It promotes the trust of the engineers in the generated mock service. Even
if the service evolves from time to time (i.e., if there are certain changes in the new
version of the service than the one created mock skeletons with), consider for ex-
ample, that if the service now changes its usage from PUT to PATCH, engineers could
simply modify the generated mock service accordingly as they understand the se-
mantics rather than going through the much more expensive process of capturing
the service interactions again and re-learning the service.

It is observed that the algorithms could not be used with some response proper-
ties to learn perfectly accurate models based on factors such as the lack of training
data (a limited number of transaction sequences representing various behavioural
patterns) and where the training data contains unexpected service behaviour (such
as HTTP 500 Internal Server Error). Of the two causes listed above, the first
is more common and the accuracy can be improved by increasing the number of
individuals in the training set. Unfortunately, this would not be a possibility for
OCEL at present, because it could cause the reasoner to run out of memory. The
second one is a rarely occurring issue in reality, so that such variations can be dis-
regarded. There are also some response properties which have either a single value
(e.g., Host, assuming that the service may always use the same host) or a fairly
large number of distinct values (e.g., Date, assuming that each transaction has a
unique value) that are not suited for predictions. Yet, these types of characteristics
of the responses can be handled in practice with very little manual effort. Some
other response properties, such as the content of the data returned by the server
(such as data on external entities to which the service itself refers) and the data
on unexpected service behaviour, also remain unpredictable, as no correlation can
be guaranteed with the service structure and status. Such features are often not
incorporated into response mocks in practice as well.

In general, this is the very first research that studies the virtualisation of
HTTP-based services and directly emphasises the generation of HTTP responses
with human-readable explanations. Considering that the SML techniques pro-
duce inherently interpretable results (contrary to the sub-symbolic techniques),
our study is primarily intended to explore the suitability of SML techniques to
accurately predict HTTP response properties with human-readable constructs. It
is important to note that the existing SV solutions [8–20] are not able to produce
accurate approximations of the actual responses of HTTP-based services. And
the techniques largely lack transparency. This research, therefore, advances the
state-of-the-art SV techniques. By concluding the research, SML algorithms are
recommended for generating mock skeletons for HTTP-based services testing.

In addition to the findings mentioned above, this thesis has also made several
other considerable contributions. All the experimental datasets comprising HTTP

140

transactions (which were introduced in Chapter 4) are publicly available to enable
users to track the provenance of our findings (we also provide access to the scripts
used to generate the datasets). These datasets are ideal for reproducible research
on many aspects of service-oriented computing. The scripts used to automate all
the experiments (in Chapter 5) are also publicly accessible and explicit guidelines
(on how to re-run experiments) are given, such that users could run experiments
themselves using the same datasets and scripts to obtain the same results from this
study (presented in Chapter 6). In addition, a pre-configured VirtualBox image
(i.e., artefact) is provided that replicates the experimental environment ensuring
that all experiments can be reproduced with little manual effort on any computer
that has VirtualBox installed and satisfies the minimum system requirements. All
of these practices particularly covered the secondary aim of the research, i.e., to
produce research results that are easier to reproduce. It is notable that there is
no open access to datasets and/or scripts used in existing SV studies [12–20] to
reproduce the published results, so our study has taken a lead in this regard.

The experimental methodology presented in Chapter 5 also introduced a well-
designed, robust machine learning framework for reliable predictions of HTTP
response properties. The framework orchestrates and automates sequences of ma-
chine learning tasks by allowing data preprocessing, data transformation, and
training and evaluating models to achieve outcomes. These tasks were specially
designed to comply with any HTTP-based service in general. The framework offers
a reproducible machine learning workflow that could be used for future research
towards HTTP service simulation. Moreover, Chapter 3 contributed a system-
atic overview of the literature on existing approaches and tools in service-oriented
application testing that address dependency issues. It also presented literature
surveys in the fields of services testing and AI-driven software testing.

7.2 Future Work

There are a few other potential research directions that can be followed to further
improve the quality of the findings or to advance the scope of the research.

As stated in the discussion of potential threats to the validity of the research
(in Chapter 6), it would be useful to assess the usability of the generated models
with real end-users (i.e., quality assurance engineers). This would provide a more
thorough empirical investigation into the ability of algorithms to produce custom-
isable skeletons for mocked services. It would be an indispensable direction to help
the results to be more useful for real-world applications.

It would also be interesting to extend the experiments by adding similar data-
sets from other service providers using similar processes and algorithms and/or by
adding additional SML algorithms using similar datasets and processes.

Another potential direction for future research work is to implement a service
virtualisation approach based on the symbolic learning techniques studied to re-
place the real target services for testing purposes. Such a technique could make it
possible to construct accurate mock response skeletons in simple logics that can
facilitate easy comprehension of service semantics and can easily be tuned and

141

adjusted to create mocks that can generate service responses. This would signific-
antly increase the flexibility and usability of mocks in service-oriented applications
testing. The generated mocks would be transparent to the engineers using them.
The machine learning framework presented in this thesis (in Chapter 5) could be
used as the basis for such research.

142

Appendix A

HTTP Datasets

A.1 JSON Schemas for GHTraffic Dataset

A.1.1 POST HTTP Transaction

{

"$schema": "http ://json -schema.org/draft -04/ schema#",

"description": "A representation of an HTTP POST transaction",

"type": "object",

"properties": {

"MetaData": {

"type": "object",

"properties": {

"processor": {

"type": "string",

"description": "asserted"

},

"source": {

"type": "string",

"description": "asserted"

},

"type": {

"type": "string",

"description": "asserted"

},

"timestamp": {

"type": "string",

"description": "asserted"

}

}

},

"Request": {

"type": "object",

"properties": {

"Message -Body": {

"type": "string"

},

"Message -Header": {

"type": "object",

"properties": {

"Authorization": {

"type": "string",

"description": "asserted"

},

"Accept": {

"type": "string",

"description": "asserted"

},

"Content -Length": {

"type": "integer",

"description": "asserted"

},

143

"Content -Type": {

"type": "string",

"description": "asserted"

},

"Host": {

"type": "string",

"description": "asserted"

},

"User -Agent": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Authorization",

"Accept",

"Content -Length",

"Content -Type",

"Host",

"User -Agent"

]

},

"Method": {

"type": "string",

"description": "asserted",

"enum": [

"POST"

]

},

"Request -URI": {

"type": "string",

"description": "inferred"

},

"HTTP -Version": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Message -Body",

"Message -Header","Method","Request -URI","HTTP -Version"],

"additionalProperties": false

},

"Response": {

"type": "object",

"properties": {

"Message -Body": {

"type": "string"

},

"Message -Header": {

"type": "object",

"properties": {

"Date": {

"type": "string",

"description": "inferred"

},

"Server": {

"type": "string",

"description": "asserted"

},

"Content -Length": {

"type": "integer",

"description": "inferred"

},

"Content -Type": {

"type": "string",

"description": "asserted"

},

"Location": {

"type": "string",

"description": "inferred"

},

"X-GitHub -Request -Id": {

144

"type": "string",

"description": "asserted"

},

"Vary": {

"type": "string",

"description": "asserted"

},

"ETag": {

"type": "string",

"description": "asserted"

},

"Access -Control -Allow -Origin": {

"type": "string",

"description": "asserted"

},

"X-GitHub -Media -Type": {

"type": "string",

"description": "asserted"

},

"Cache -Control": {

"type": "string",

"description": "asserted"

},

"X-OAuth -Scopes": {

"type": "string",

"description": "asserted"

},

"X-Accepted -OAuth -Scopes": {

"type": "string",

"description": "asserted"

},

"Access -Control -Expose -Headers": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Date",

"Server",

"Content -Length",

"Content -Type",

"Location",

"X-GitHub -Request -Id",

"Vary",

"ETag",

"X-Accepted -OAuth -Scopes",

"X-OAuth -Scopes",

"Access -Control -Allow -Origin",

"X-GitHub -Media -Type",

"Cache -Control",

"Access -Control -Expose -Headers"

]

},

"Reason -Phrase": {

"type": "string",

"description": "asserted"

},

"Status -Code": {

"type": "integer",

"description": "asserted"

},

"HTTP -Version": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Message -Body",

"Message -Header",

"Reason -Phrase",

"Status -Code",

"HTTP -Version"

],

145

"additionalProperties": false

}

},

"required": [

"Meta -Data",

"Request",

"Response"

]

}

A.1.2 PATCH HTTP Transaction

{

"$schema": "http ://json -schema.org/draft -04/ schema#",

"description": "A representation of an HTTP PATCH transaction",

"type": "object",

"properties": {

"MetaData": {

"type": "object",

"properties": {

"processor": {

"type": "string",

"description": "asserted"

},

"source": {

"type": "string",

"description": "asserted"

},

"type": {

"type": "string",

"description": "asserted"

},

"timestamp": {

"type": "string",

"description": "asserted"

}

}

},

"Request": {

"type": "object",

"properties": {

"Message -Body": {

"type": "string"

},

"Message -Header": {

"type": "object",

"properties": {

"Authorization": {

"type": "string",

"description": "asserted"

},

"Accept": {

"type": "string",

"description": "asserted"

},

"Content -Length": {

"type": "integer",

"description": "asserted"

},

"Content -Type": {

"type": "string",

"description": "asserted"

},

"Host": {

"type": "string",

"description": "asserted"

},

"User -Agent": {

"type": "string",

"description": "asserted"

}

},

146

"required": [

"Authorization",

"Accept",

"Content -Length",

"Content -Type",

"Host",

"User -Agent"

]

},

"Method": {

"type": "string",

"description": "asserted",

"enum": [

"PATCH"

]

},

"Request -URI": {

"type": "string",

"description": "inferred"

},

"HTTP -Version": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Message -Body",

"Message -Header",

"Method",

"Request -URI",

"HTTP -Version"

],

"additionalProperties": false

},

"Response": {

"type": "object",

"properties": {

"Message -Body": {

"type": "string"

},

"Message -Header": {

"type": "object",

"properties": {

"Date": {

"type": "string",

"description": "inferred"

},

"Server": {

"type": "string",

"description": "asserted"

},

"Content -Length": {

"type": "integer",

"description": "inferred"

},

"Content -Type": {

"type": "string",

"description": "asserted"

},

"X-GitHub -Request -Id": {

"type": "string",

"description": "asserted"

},

"Vary": {

"type": "string",

"description": "asserted"

},

"ETag": {

"type": "string",

"description": "asserted"

},

"Access -Control -Allow -Origin": {

"type": "string",

147

"description": "asserted"

},

"X-GitHub -Media -Type": {

"type": "string",

"description": "asserted"

},

"Cache -Control": {

"type": "string",

"description": "asserted"

},

"X-OAuth -Scopes": {

"type": "string",

"description": "asserted"

},

"X-Accepted -OAuth -Scopes": {

"type": "string",

"description": "asserted"

},

"Access -Control -Expose -Headers": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Date",

"Server",

"Content -Length",

"Content -Type",

"X-GitHub -Request -Id",

"Vary",

"ETag",

"X-Accepted -OAuth -Scopes",

"X-OAuth -Scopes",

"Access -Control -Allow -Origin",

"X-GitHub -Media -Type",

"Cache -Control",

"Access -Control -Expose -Headers"

]

},

"Reason -Phrase": {

"type": "string",

"description": "asserted"

},

"Status -Code": {

"type": "integer",

"description": "asserted"

},

"HTTP -Version": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Message -Body",

"Message -Header",

"Reason -Phrase",

"Status -Code",

"HTTP -Version"

],

"additionalProperties": false

}

},

"required": [

"Meta -Data",

"Request",

"Response"

]

}

148

A.1.3 GET HTTP Transaction

{

"$schema": "http ://json -schema.org/draft -04/ schema#",

"description": "A representation of an HTTP GET transaction",

"type": "object",

"properties": {

"MetaData": {

"type": "object",

"properties": {

"processor": {

"type": "string",

"description": "asserted"

},

"source": {

"type": "string",

"description": "asserted"

},

"type": {

"type": "string",

"description": "asserted"

},

"timestamp": {

"type": "string",

"description": "asserted"

}

}

},

"Request": {

"type": "object",

"properties": {

"Message -Header": {

"type": "object",

"properties": {

"Authorization": {

"type": "string",

"description": "asserted"

},

"Accept": {

"type": "string",

"description": "asserted"

},

"Host": {

"type": "string",

"description": "asserted"

},

"User -Agent": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Authorization",

"Accept",

"Host",

"User -Agent"

]

},

"Method": {

"type": "string",

"description": "asserted",

"enum": [

"GET"

]

},

"Request -URI": {

"type": "string",

"description": "inferred"

},

"HTTP -Version": {

"type": "string",

"description": "asserted"

149

}

},

"required": [

"Message -Header",

"Method",

"Request -URI",

"HTTP -Version"

],

"additionalProperties": false

},

"Response": {

"type": "object",

"properties": {

"Message -Body": {

"type": "string"

},

"Message -Header": {

"type": "object",

"properties": {

"Date": {

"type": "string",

"description": "asserted"

},

"Server": {

"type": "string",

"description": "asserted"

},

"Content -Length": {

"type": "integer",

"description": "inferred"

},

"Content -Type": {

"type": "string",

"description": "asserted"

},

"X-GitHub -Request -Id": {

"type": "string",

"description": "asserted"

},

"Vary": {

"type": "string",

"description": "asserted"

},

"ETag": {

"type": "string",

"description": "asserted"

},

"Last -Modified": {

"type": "string",

"description": "inferred"

},

"Access -Control -Allow -Origin": {

"type": "string",

"description": "asserted"

},

"X-GitHub -Media -Type": {

"type": "string",

"description": "asserted"

},

"Cache -Control": {

"type": "string",

"description": "asserted"

},

"X-OAuth -Scopes": {

"type": "string",

"description": "asserted"

},

"X-Accepted -OAuth -Scopes": {

"type": "string",

"description": "asserted"

},

"Access -Control -Expose -Headers": {

"type": "string",

150

"description": "asserted"

}

},

"required": [

"Date",

"Server",

"Content -Length",

"Content -Type",

"X-GitHub -Request -Id",

"Vary",

"ETag",

"Last -Modified",

"X-Accepted -OAuth -Scopes",

"X-OAuth -Scopes",

"Access -Control -Allow -Origin",

"X-GitHub -Media -Type",

"Cache -Control",

"Access -Control -Expose -Headers"

]

},

"Reason -Phrase": {

"type": "string",

"description": "asserted"

},

"Status -Code": {

"type": "integer",

"description": "asserted"

},

"HTTP -Version": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Message -Body",

"Message -Header",

"Reason -Phrase",

"Status -Code",

"HTTP -Version"

],

"additionalProperties": false

}

},

"required": [

"Meta -Data",

"Request",

"Response"

]

}

A.1.4 HEAD HTTP Transaction

{

"$schema": "http ://json -schema.org/draft -04/ schema#",

"description": "A representation of an HTTP HEAD transaction",

"type": "object",

"properties": {

"MetaData": {

"type": "object",

"properties": {

"processor": {

"type": "string",

"description": "asserted"

},

"source": {

"type": "string",

"description": "asserted"

},

"type": {

"type": "string",

"description": "asserted"

},

151

"timestamp": {

"type": "string",

"description": "asserted"

}

}

},

"Request": {

"type": "object",

"properties": {

"Message -Header": {

"type": "object",

"properties": {

"Authorization": {

"type": "string",

"description": "asserted"

},

"Accept": {

"type": "string",

"description": "asserted"

},

"Host": {

"type": "string",

"description": "asserted"

},

"User -Agent": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Authorization",

"Accept",

"Host",

"User -Agent"

]

},

"Method": {

"type": "string",

"description": "asserted",

"enum": [

"HEAD"

]

},

"Request -URI": {

"type": "string",

"description": "inferred"

},

"HTTP -Version": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Message -Header",

"Method",

"Request -URI",

"HTTP -Version"

],

"additionalProperties": false

},

"Response": {

"type": "object",

"properties": {

"Message -Header": {

"type": "object",

"properties": {

"Date": {

"type": "string",

"description": "asserted"

},

"Server": {

"type": "string",

"description": "asserted"

152

},

"Content -Length": {

"type": "integer",

"description": "inferred"

},

"Content -Type": {

"type": "string",

"description": "asserted"

},

"X-GitHub -Request -Id": {

"type": "string",

"description": "asserted"

},

"Vary": {

"type": "string",

"description": "asserted"

},

"ETag": {

"type": "string",

"description": "asserted"

},

"Last -Modified": {

"type": "string",

"description": "inferred"

},

"Access -Control -Allow -Origin": {

"type": "string",

"description": "asserted"

},

"X-GitHub -Media -Type": {

"type": "string",

"description": "asserted"

},

"Cache -Control": {

"type": "string",

"description": "asserted"

},

"X-OAuth -Scopes": {

"type": "string",

"description": "asserted"

},

"X-Accepted -OAuth -Scopes": {

"type": "string",

"description": "asserted"

},

"Access -Control -Expose -Headers": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Date",

"Server",

"Content -Length",

"Content -Type",

"X-GitHub -Request -Id",

"Vary",

"ETag",

"Last -Modified",

"X-Accepted -OAuth -Scopes",

"X-OAuth -Scopes",

"Access -Control -Allow -Origin",

"X-GitHub -Media -Type",

"Cache -Control",

"Access -Control -Expose -Headers"

]

},

"Reason -Phrase": {

"type": "string",

"description": "asserted"

},

"Status -Code": {

"type": "integer",

153

"description": "asserted"

},

"HTTP -Version": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Message -Header",

"Reason -Phrase",

"Status -Code",

"HTTP -Version"

],

"additionalProperties": false

}

},

"required": [

"Meta -Data",

"Request",

"Response"

]

}

A.1.5 PUT HTTP Transaction

{

"$schema": "http ://json -schema.org/draft -04/ schema#",

"description": "A representation of an HTTP PUT transaction",

"type": "object",

"properties": {

"MetaData": {

"type": "object",

"properties": {

"processor": {

"type": "string",

"description": "asserted"

},

"source": {

"type": "string",

"description": "asserted"

},

"type": {

"type": "string",

"description": "asserted"

},

"timestamp": {

"type": "string",

"description": "asserted"

}

}

},

"Request": {

"type": "object",

"properties": {

"Message -Header": {

"type": "object",

"properties": {

"Authorization": {

"type": "string",

"description": "asserted"

},

"Accept": {

"type": "string",

"description": "asserted"

},

"Host": {

"type": "string",

"description": "asserted"

},

"User -Agent": {

"type": "string",

"description": "asserted"

154

}

},

"required": [

"Authorization",

"Accept",

"Host",

"User -Agent"

]

},

"Method": {

"type": "string",

"description": "asserted",

"enum": [

"PUT"

]

},

"Request -URI": {

"type": "string",

"description": "inferred"

},

"HTTP -Version": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Message -Header",

"Method",

"Request -URI",

"HTTP -Version"

],

"additionalProperties": false

},

"Response": {

"type": "object",

"properties": {

"Message -Header": {

"type": "object",

"properties": {

"Date": {

"type": "string",

"description": "asserted"

},

"Server": {

"type": "string",

"description": "asserted"

},

"Content -Type": {

"type": "string",

"description": "asserted"

},

"X-GitHub -Request -Id": {

"type": "string",

"description": "asserted"

},

"Access -Control -Allow -Origin": {

"type": "string",

"description": "asserted"

},

"X-GitHub -Media -Type": {

"type": "string",

"description": "asserted"

},

"X-OAuth -Scopes": {

"type": "string",

"description": "asserted"

},

"X-Accepted -OAuth -Scopes": {

"type": "string",

"description": "asserted"

},

"Access -Control -Expose -Headers": {

"type": "string",

155

"description": "asserted"

}

},

"required": [

"Date",

"Server",

"Content -Type",

"X-GitHub -Request -Id",

"X-Accepted -OAuth -Scopes",

"X-OAuth -Scopes",

"Access -Control -Allow -Origin",

"X-GitHub -Media -Type",

"Access -Control -Expose -Headers"

]

},

"Reason -Phrase": {

"type": "string",

"description": "asserted"

},

"Status -Code": {

"type": "integer",

"description": "asserted"

},

"HTTP -Version": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Message -Header",

"Reason -Phrase",

"Status -Code",

"HTTP -Version"

],

"additionalProperties": false

}

},

"required": [

"Request",

"Response"

]

}

A.1.6 DELETE HTTP Transaction

{

"$schema": "http ://json -schema.org/draft -04/ schema#",

"description": "A representation of an HTTP DELETE transaction",

"type": "object",

"properties": {

"MetaData": {

"type": "object",

"properties": {

"processor": {

"type": "string",

"description": "asserted"

},

"source": {

"type": "string",

"description": "asserted"

},

"type": {

"type": "string",

"description": "asserted"

},

"timestamp": {

"type": "string",

"description": "asserted"

}

}

},

"Request": {

156

"type": "object",

"properties": {

"Message -Header": {

"type": "object",

"properties": {

"Authorization": {

"type": "string",

"description": "asserted"

},

"Accept": {

"type": "string",

"description": "asserted"

},

"Host": {

"type": "string",

"description": "asserted"

},

"User -Agent": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Authorization",

"Accept",

"Host",

"User -Agent"

]

},

"Method": {

"type": "string",

"description": "asserted",

"enum": [

"DELETE"

]

},

"Request -URI": {

"type": "string",

"description": "inferred"

},

"HTTP -Version": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Message -Header",

"Method",

"Request -URI",

"HTTP -Version"

],

"additionalProperties": false

},

"Response": {

"type": "object",

"properties": {

"Message -Header": {

"type": "object",

"properties": {

"Date": {

"type": "string",

"description": "asserted"

},

"Server": {

"type": "string",

"description": "asserted"

},

"Content -Type": {

"type": "string",

"description": "asserted"

},

"X-GitHub -Request -Id": {

"type": "string",

157

"description": "asserted"

},

"Access -Control -Allow -Origin": {

"type": "string",

"description": "asserted"

},

"X-GitHub -Media -Type": {

"type": "string",

"description": "asserted"

},

"X-OAuth -Scopes": {

"type": "string",

"description": "asserted"

},

"X-Accepted -OAuth -Scopes": {

"type": "string",

"description": "asserted"

},

"Access -Control -Expose -Headers": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Date",

"Server",

"Content -Type",

"X-GitHub -Request -Id",

"X-Accepted -OAuth -Scopes",

"X-OAuth -Scopes",

"Access -Control -Allow -Origin",

"X-GitHub -Media -Type",

"Access -Control -Expose -Headers"

]

},

"Reason -Phrase": {

"type": "string",

"description": "asserted"

},

"Status -Code": {

"type": "integer",

"description": "asserted"

},

"HTTP -Version": {

"type": "string",

"description": "asserted"

}

},

"required": [

"Message -Header",

"Reason -Phrase",

"Status -Code",

"HTTP -Version"

],

"additionalProperties": false

}

},

"required": [

"Request",

"Response"

]

}

158

A.2 Sample Records on GHTraffic Dataset

A.2.1 POST HTTP Transaction (Create Issue)

{

"Request": {

"Message -Body": "{\" milestone \":6 ,\" title \":\" Multimaps.newListMultimap

should document that map must be empty \",\" body \":\".. If the map passed

to Multimaps.newListMultimap is not empty an IllegalArgumentException is

thrown ..\" ,\" labels \":[\" status: fixed \",\" type: defect \"]}",

"Message -Header": {

"Authorization": "token 9f8ea2dd9a582c92488de26f7725bd6eaa561df3",

"Accept": "*/*",

"User -Agent": "Mozilla /5.0 (Macintosh; U; Intel Mac OS X; en) AppleWebKit

/418.9 (KHTML , like Gecko) Safari /419.3",

"Host": "api.github.com",

"Content -Length": 223,

"Content -Type": "application/json; charset=utf -8"

},

"Request -URI": "/repos/google/guava/issues",

"Method": "POST",

"HTTP -Version": "HTTP /1.1"

},

"Response": {

"Message -Body": "{\" comments \":0 ,\" closed_at \":null ,\" user \":{\" login \":\"

gissuebot \",\"id \":8091570 ,\" avatar_url \":\" https :\\/\\/ avatars.

githubusercontent.com\\/u\\/8091570?v=3\" ,\" gravatar_id \":\"\" ,\" url \":\"

https :\\/\\/ api.github.com \\/ users \\/ gissuebot \",\" html_url \":\" https

:\\/\\/ github.com\\/ gissuebot \",\" followers_url \":\" https :\\/\\/ api.

github.com \\/ users \\/ gissuebot \\/ followers \",\" following_url \":\" https

:\\/\\/ api.github.com\\/ users \\/ gissuebot \\/ following {\\/ other_user }\" ,\"

gists_url \":\" https :\\/\\/ api.github.com \\/ users \\/ gissuebot \\/ gists {\\/

gist_id }\" ,\" starred_url \":\" https :\\/\\/ api.github.com\\/ users \\/

gissuebot \\/ starred {\\/ owner }{\\/ repo }\" ,\" subscriptions_url \":\" https

:\\/\\/ api.github.com\\/ users \\/ gissuebot \\/ subscriptions \",\"

organizations_url \":\" https :\\/\\/ api.github.com \\/ users \\/ gissuebot \\/

orgs \",\" repos_url \":\" https :\\/\\/ api.github.com\\/ users \\/ gissuebot \\/

repos \",\" events_url \":\" https :\\/\\/ api.github.com\\/ users \\/ gissuebot

\\/ events {\\/ privacy }\",\" received_events_url \":\" https :\\/\\/ api.github.

com \\/ users \\/ gissuebot \\/ received_events \",\" type \":\" User \",\"

site_admin \": false},\" assignees \":[] ,\" created_at \":\"2014 -10 -31 T17 :22:22

Z\",\" title \":\" Multimaps.newListMultimap should document that map must

be empty \",\" body \":\".. If the map passed to Multimaps.newListMultimap is

not empty an IllegalArgumentException is thrown ..\" ,\" url \":\" https

:\\/\\/ api.github.com\\/ repos \\/ google \\/ guava \\/ issues \\/736\" ,\" labels

\":[{\" url \":\" https :\\/\\/ api.github.com\\/ repos \\/ google \\/ guava \\/

labels \\/ status %3A+fixed \",\" name \":\" status: fixed \",\" color

\":\"009800\"}] ,\" labels_url \":\" https :\\/\\/ api.github.com \\/ repos \\/

google \\/ guava \\/ issues \\/736\\/ labels {\\/ name }\",\" number \":736 ,\"

milestone \":{\" url \":\" https :\\/\\/ api.github.com \\/ repos \\/ google \\/

guava \\/ milestones \\/6\" ,\" labels_url \":\" https :\\/\\/ api.github.com \\/

repos \\/ google \\/ guava \\/ milestones \\/6\\/ labels \",\"id \":849118 ,\" number

\":6 ,\" title \":\"11.0\" ,\" description \":\"\" ,\" creator \":{.. another user

},\" open_issues \":0 ,\" closed_issues \":25 ,\" state \":\" closed \",\"

created_at \":\"2014 -11 -01 T03 :46:46Z\",\" updated_at \":\"2014 -11 -06 T23

:12:24Z\",\" due_on \":null ,\" closed_at \":\"2014 -11 -06 T23 :12:24Z\"} ,\"

updated_at \":\"2014 -10 -31 T17 :22:22Z\",\" html_url \":\" https :\\/\\/ github.

com \\/ google \\/ guava \\/ issues \\/736\" ,\" id \":47420734 ,\" state \":\" open

\",\" assignee \":null ,\" locked \": false}",

"Message -Header": {

"X-Accepted -OAuth -Scopes": "public_repo , repo",

"Server": "GitHub.com",

"Access -Control -Allow -Origin": "*",

"Date": "Fri , 31 Oct 2014 17:22:22 GMT",

"Access -Control -Expose -Headers": "ETag , X-OAuth -Scopes , X-Accepted -OAuth -

Scopes",

"Cache -Control": "private , max -age=60",

"ETag": "44210 f0e808dc4eaf31dd49631a71979",

"X-GitHub -Media -Type": "github.v3; format=json",

"Vary": "Accept , Authorization , Cookie",

"Content -Length": 1004,

159

"X-OAuth -Scopes": "public_repo",

"Content -Type": "application/json; charset=utf -8",

"X-GitHub -Request -Id": "7B12:CABC5:5 FCE305:F7EDEF9:BDA312D8",

"Location": "https ://api.github.com/repos/google/guava/issues /736"

},

"Status -Code": 201,

"HTTP -Version": "HTTP /1.1",

"Reason -Phrase": "Created"

},

"Meta -Data": {

"source": "GHTorrent",

"type": "real -world",

"processor": "nz.ac.massey.ghtraffic.scripts.extractor.

GHTorrentTransactionFactoryForIssueCreation",

"timestamp": "Mon , 04 Dec 2017 00:08:38 GMT"

}

}

A.2.2 PATCH HTTP Transaction (Update Issue 736)

{

"Request": {

"Message -Body": "{\" state \":\" closed \"}",

"Message -Header": {

"Authorization": "token 1d67ee5c6a67127672b42bdfa1528111e03f2d74",

"Accept": "*/*",

"User -Agent": "Opera /9.27 (Windows NT 5.1; U; en)",

"Host": "api.github.com",

"Content -Length": 55,

"Content -Type": "application/json; charset=utf -8"

},

"Request -URI": "/repos/google/guava/issues /736",

"Method": "PATCH",

"HTTP -Version": "HTTP /1.1"

},

"Response": {

"Message -Body": "{\" comments \":5 ,\" closed_at \":\"2014 -10 -31 T20 :08:23Z\",\"

user \":{\" login \":\" gissuebot \",\"id \":8091570 ,\" avatar_url \":\" https

:\\/\\/ avatars.githubusercontent.com\\/u\\/8091570?v=3\" ,\" gravatar_id

\":\"\" ,\" url \":\" https :\\/\\/ api.github.com \\/ users \\/ gissuebot \",\"

html_url \":\" https :\\/\\/ github.com \\/ gissuebot \",\" followers_url \":\"

https :\\/\\/ api.github.com \\/ users \\/ gissuebot \\/ followers \",\"

following_url \":\" https :\\/\\/ api.github.com\\/ users \\/ gissuebot \\/

following {\\/ other_user }\" ,\" gists_url \":\" https :\\/\\/ api.github.com \\/

users \\/ gissuebot \\/ gists {\\/ gist_id }\" ,\" starred_url \":\" https :\\/\\/ api

.github.com\\/ users \\/ gissuebot \\/ starred {\\/ owner }{\\/ repo }\",\"

subscriptions_url \":\" https :\\/\\/ api.github.com \\/ users \\/ gissuebot \\/

subscriptions \",\" organizations_url \":\" https :\\/\\/ api.github.com\\/

users \\/ gissuebot \\/ orgs \",\" repos_url \":\" https :\\/\\/ api.github.com\\/

users \\/ gissuebot \\/ repos \",\" events_url \":\" https :\\/\\/ api.github.com

\\/ users \\/ gissuebot \\/ events {\\/ privacy }\",\" received_events_url \":\"

https :\\/\\/ api.github.com \\/ users \\/ gissuebot \\/ received_events \",\" type

\":\" User \",\" site_admin \": false},\" assignees \":[] ,\" created_at

\":\"2014 -10 -31 T17 :22:22Z\",\" title \":\" Multimaps.newListMultimap should

document that map must be empty \",\" body \":\".. If the map passed to

Multimaps.newListMultimap is not empty an IllegalArgumentException is

thrown ..\" ,\" url \":\" https :\\/\\/ api.github.com \\/ repos \\/ google \\/ guava

\\/ issues \\/736\" ,\" labels \":[{\" url \":\" https :\\/\\/ api.github.com\\/

repos \\/ google \\/ guava \\/ labels \\/ status %3A+fixed \",\" name \":\" status:

fixed \",\" color \":\"009800\"}] ,\" labels_url \":\" https :\\/\\/ api.github.

com \\/ repos \\/ google \\/ guava \\/ issues \\/736\\/ labels {\\/ name }\",\" number

\":736 ,\" milestone \":{\" url \":\" https :\\/\\/ api.github.com\\/ repos \\/

google \\/ guava \\/ milestones \\/6\" ,\" labels_url \":\" https :\\/\\/ api.github

.com\\/ repos \\/ google \\/ guava \\/ milestones \\/6\\/ labels \",\"id

\":849118 ,\" number \":6 ,\" title \":\"11.0\" ,\" description \":\"\" ,\" creator

\":{.. another user},\" open_issues \":0 ,\" closed_issues \":25 ,\" state \":\"

closed \",\" created_at \":\"2014 -11 -01 T03 :46:46Z\",\" updated_at

\":\"2014 -11 -06 T23 :12:24Z\",\" due_on \":null ,\" closed_at \":\"2014 -11 -06 T23

:12:24Z\"} ,\" updated_at \":\"2014 -10 -31 T20 :08:23Z\",\" html_url \":\" https

:\\/\\/ github.com\\/ google \\/ guava \\/ issues \\/736\" ,\" id \":47420734 ,\"

state \":\" closed \",\" assignee \":null ,\" locked \": false}",

"Message -Header": {

160

"X-Accepted -OAuth -Scopes": "public_repo , repo",

"Server": "GitHub.com",

"Access -Control -Allow -Origin": "*",

"Date": "Fri , 31 Oct 2014 20:08:23 GMT",

"Access -Control -Expose -Headers": "ETag , X-OAuth -Scopes , X-Accepted -OAuth -

Scopes",

"Cache -Control": "private , max -age=60",

"ETag": "e190e34f817af76bee13b2c45eae724c",

"X-GitHub -Media -Type": "github.v3; format=json",

"Vary": "Accept , Authorization , Cookie",

"Content -Length": 997,

"X-OAuth -Scopes": "public_repo",

"Content -Type": "application/json; charset=utf -8",

"X-GitHub -Request -Id": "86A0:A40B3:2 BC9CE2 :1899064:33066 C43"

},

"Status -Code": 200,

"HTTP -Version": "HTTP /1.1",

"Reason -Phrase": "OK"

},

"Meta -Data": {

"source": "GHTorrent",

"type": "real -world",

"processor": "nz.ac.massey.ghtraffic.scripts.extractor.

GHTorrentTransactionFactoryForIssueClosing",

"timestamp": "Mon , 04 Dec 2017 20:17:54 GMT"

}

}

A.2.3 GET HTTP Transaction (Issue 736)

{

"Request": {

"Message -Header": {

"Authorization": "token 90 b10e0c3cce4aca8215d75d11261af364b0d968",

"Accept": "*/*",

"User -Agent": "Opera /9.27 (Windows NT 5.1; U; en)",

"Host": "api.github.com"

},

"Request -URI": "/repos/google/guava/issues /736",

"Method": "GET",

"HTTP -Version": "HTTP /1.1"

},

"Response": {

"Message -Body": "{\" comments \":5 ,\" closed_at \":\"2014 -10 -31 T20 :08:23Z\",\"

created_at \":\"2014 -10 -31 T17 :22:22Z\",\" user \":{\" login \":\" gissuebot

\",\"id \":8091570 ,\" avatar_url \":\" https :\\/\\/ avatars.githubusercontent.

com \\/u\\/8091570?v=3\" ,\" gravatar_id \":\"\" ,\" url \":\" https :\\/\\/ api.

github.com \\/ users \\/ gissuebot \",\" html_url \":\" https :\\/\\/ github.com \\/

gissuebot \",\" followers_url \":\" https :\\/\\/ api.github.com\\/ users \\/

gissuebot \\/ followers \",\" following_url \":\" https :\\/\\/ api.github.com\\/

users \\/ gissuebot \\/ following {\\/ other_user }\",\" gists_url \":\" https

:\\/\\/ api.github.com\\/ users \\/ gissuebot \\/ gists {\\/ gist_id }\",\"

starred_url \":\" https :\\/\\/ api.github.com\\/ users \\/ gissuebot \\/ starred

{\\/ owner }{\\/ repo }\",\" subscriptions_url \":\" https :\\/\\/ api.github.com

\\/ users \\/ gissuebot \\/ subscriptions \",\" organizations_url \":\" https

:\\/\\/ api.github.com\\/ users \\/ gissuebot \\/ orgs \",\" repos_url \":\" https

:\\/\\/ api.github.com\\/ users \\/ gissuebot \\/ repos \",\" events_url \":\"

https :\\/\\/ api.github.com \\/ users \\/ gissuebot \\/ events {\\/ privacy }\",\"

received_events_url \":\" https :\\/\\/ api.github.com\\/ users \\/ gissuebot \\/

received_events \",\" type \":\" User \",\" site_admin \": false},\" title \":\"

Multimaps.newListMultimap should document that map must be empty \",\" body

\":\".. If the map passed to Multimaps.newListMultimap is not empty an

IllegalArgumentException is thrown ..\" ,\" url \":\" https :\\/\\/ api.github.

com \\/ repos \\/ google \\/ guava \\/ issues \\/736\" ,\" labels \":[{\" url \":\"

https :\\/\\/ api.github.com \\/ repos \\/ google \\/ guava \\/ labels \\/ status %3A+

fixed \",\" name \":\" status: fixed \",\" color \":\"009800\"}] ,\" labels_url

\":\" https :\\/\\/ api.github.com \\/ repos \\/ google \\/ guava \\/ issues

\\/736\\/ labels {\\/ name }\" ,\" number \":736 ,\" milestone \":{\" url \":\" https

:\\/\\/ api.github.com\\/ repos \\/ google \\/ guava \\/ milestones \\/6\" ,\"

labels_url \":\" https :\\/\\/ api.github.com \\/ repos \\/ google \\/ guava \\/

milestones \\/6\\/ labels \",\"id \":849118 ,\" number \":6 ,\" title

\":\"11.0\" ,\" description \":\"\" ,\" creator \":{.. another user},\"

161

open_issues \":0 ,\" closed_issues \":25 ,\" state \":\" closed \",\" created_at

\":\"2014 -11 -01 T03 :46:46Z\",\" updated_at \":\"2014 -11 -06 T23 :12:24Z\",\"

due_on \":null ,\" closed_at \":\"2014 -11 -06 T23 :12:24Z\"},\" updated_at

\":\"2014 -11 -01 T03 :49:40Z\",\" html_url \":\" https :\\/\\/ github.com\\/

google \\/ guava \\/ issues \\/736\" ,\" id \":47420734 ,\" state \":\" closed \",\"

assignee \":null ,\" locked \": false}",

"Message -Header": {

"X-Accepted -OAuth -Scopes": "public_repo , repo",

"Server": "GitHub.com",

"Access -Control -Allow -Origin": "*",

"Last -Modified": "Sat , 01 Nov 2014 03:49:40 GMT",

"Date": "Wed , 25 Nov 2015 13:42:36 GMT",

"Access -Control -Expose -Headers": "ETag , X-OAuth -Scopes , X-Accepted -OAuth -

Scopes",

"Cache -Control": "private , max -age=60",

"ETag": "5d71e477bfd135cca5f6ea0b795de667",

"X-GitHub -Media -Type": "github.v3; format=json",

"Vary": "Accept , Authorization , Cookie",

"Content -Length": 951,

"X-OAuth -Scopes": "public_repo",

"Content -Type": "application/json; charset=utf -8",

"X-GitHub -Request -Id": "5CB3:3F9CC:9 AD4FE3 :9 B17BC8 :5 B3E2854"

},

"Status -Code": 200,

"HTTP -Version": "HTTP /1.1",

"Reason -Phrase": "OK"

},

"Meta -Data": {

"source": "GHTorrent",

"type": "synthetic",

"processor": "nz.ac.massey.ghtraffic.scripts.generator.

CreateGETTransactionsForIssueListing",

"timestamp": "Sun , 03 Dec 2017 23:15:56 GMT"

}

}

A.2.4 HEAD HTTP Transaction (Issue 736)

{

"Request":{

"Message -Header":{

"Authorization":"token af8bd688c0d7855fd822fde931f2682e46d167e2",

"Accept":"*/*",

"User -Agent":"Mozilla /5.0 (Macintosh; U; Intel Mac OS X; en) AppleWebKit

/418.9 (KHTML , like Gecko) Safari /419.3",

"Host":"api.github.com"

},

"Request -URI":"/repos/google/guava/issues /736",

"Method":"HEAD",

"HTTP -Version":"HTTP /1.1"

},

"Response":{

"Message -Header":{

"X-Accepted -OAuth -Scopes":"public_repo , repo",

"Server":"GitHub.com",

"Access -Control -Allow -Origin":"*",

"Last -Modified":"Sat , 01 Nov 2014 03:49:40 GMT",

"Date":"Mon , 09 Mar 2015 23:28:26 GMT",

"Access -Control -Expose -Headers":"ETag , X-OAuth -Scopes , X-Accepted -OAuth -

Scopes",

"Cache -Control":"private , max -age=60",

"ETag":"2e98b04cdd292be895f5827952476987",

"X-GitHub -Media -Type":"github.v3; format=json",

"Vary":"Accept , Authorization , Cookie",

"Content -Length":945,

"X-OAuth -Scopes":"public_repo",

"Content -Type":"application/json; charset=utf -8",

"X-GitHub -Request -Id":"982C:D7AEC :96 E9240:6 D2608F :7 EC9768F"

},

"Status -Code":200,

"HTTP -Version":"HTTP /1.1",

"Reason -Phrase":"OK"

162

},

"Meta -Data":{

"source":"GHTorrent",

"type":"synthetic",

"processor":"nz.ac.massey.ghtraffic.scripts.generator.

CreateHEADTransactionsForGettingHeaderInfo",

"timestamp":"Tue , 05 Dec 2017 01:07:24 GMT"

}

}

A.2.5 PUT HTTP Transaction (Lock Issue 736)

{

"Request":{

"Message -Header":{

"Authorization":"token cdb7938ef6d53a8098e86d7acaf68f2452cbbb3f",

"Accept":"*/*",

"User -Agent":"Mozilla /5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9) Gecko

/2008052906 Firefox /3.0",

"Host":"api.github.com"

},

"Request -URI":"/repos/google/guava/issues /736/ lock",

"Method":"PUT",

"HTTP -Version":"HTTP /1.1"

},

"Response":{

"Message -Header":{

"X-Accepted -OAuth -Scopes":"public_repo , repo",

"Access -Control -Expose -Headers":"ETag , X-OAuth -Scopes , X-Accepted -OAuth -

Scopes",

"Server":"GitHub.com",

"X-GitHub -Media -Type":"github.v3; format=json",

"Access -Control -Allow -Origin":"*",

"X-OAuth -Scopes":"public_repo",

"Date":"Fri , 17 Apr 2015 14:06:03 GMT",

"Content -Type":"application/json; charset=utf -8",

"X-GitHub -Request -Id":"F004:E8FD6:D25CA40 :565 CCA2:D7A986D6"

},

"Status -Code":204,

"HTTP -Version":"HTTP /1.1",

"Reason -Phrase":"No Content"

},

"Meta -Data":{

"source":"GHTorrent",

"type":"synthetic",

"processor":"nz.ac.massey.ghtraffic.scripts.generator.

CreatePUTTransactionsForIssueLocking",

"timestamp":"Tue , 05 Dec 2017 02:56:24 GMT"

}

}

A.2.6 DELETE HTTP Transaction (Unlock Issue 736)

{

"Request":{

"Message -Header":{

"Authorization":"token 90 e94922c2533e6fc0a44dcb9674d38095e37a83",

"Accept":"*/*",

"User -Agent":"Mozilla /5.0 (Macintosh; U; Intel Mac OS X; en) AppleWebKit

/418.9 (KHTML , like Gecko) Safari /419.3",

"Host":"api.github.com"

},

"Request -URI":"/repos/google/guava/issues /736/ lock",

"Method":"DELETE",

"HTTP -Version":"HTTP /1.1"

},

"Response":{

"Message -Header":{

"X-Accepted -OAuth -Scopes":"public_repo , repo",

"Access -Control -Expose -Headers":"ETag , X-OAuth -Scopes , X-Accepted -OAuth -

Scopes",

163

"Server":"GitHub.com",

"X-GitHub -Media -Type":"github.v3; format=json",

"Access -Control -Allow -Origin":"*",

"X-OAuth -Scopes":"public_repo",

"Date":"Wed , 26 Aug 2015 22:14:09 GMT",

"Content -Type":"application/json; charset=utf -8",

"X-GitHub -Request -Id":"E2EE:1C0CC:C9CB561:E1B633E :508 E8422"

},

"Status -Code":204,

"HTTP -Version":"HTTP /1.1",

"Reason -Phrase":"No Content"

},

"Meta -Data":{

"source":"GHTorrent",

"type":"synthetic",

"processor":"nz.ac.massey.ghtraffic.scripts.generator.

CreateDELETETransactionsForIssueUnlocking",

"timestamp":"Mon , 04 Dec 2017 21:40:48 GMT"

}

}

A.3 Sample Records on Twitter Dataset

A.3.1 Create Tweet

<httpSample >

<responseHeader class="java.lang.String">HTTP /1.1 200 OK

cache -control: no-cache , no -store , must -revalidate , pre -check=0, post -check =0

content -disposition: attachment; filename=json.json

content -length: 2240

content -type: application/json;charset=utf -8

date: Tue , 12 Jun 2018 01 :28:57 GMT

expires: Tue , 31 Mar 1981 05 :00:00 GMT

last -modified: Tue , 12 Jun 2018 01 :28:56 GMT

pragma: no -cache

server: tsa_l

set -cookie: personalization_id="v1_+lt2VvjC7bCOuKVAD3PJlQ =="; Expires=Thu , 11

Jun 2020 01 :28:56 GMT; Path =/; Domain =. twitter.com

set -cookie: lang=en; Path=/

set -cookie: guest_id=v1%3 A152876693686675953; Expires=Thu , 11 Jun 2020 01

:28:56 GMT; Path =/; Domain =. twitter.com

status: 200 OK

strict -transport -security: max -age =631138519

x-access -level: read -write -directmessages

x-connection -hash: 1f061e276683143e95b32011c18a0f45

x-content -type -options: nosniff

x-frame -options: SAMEORIGIN

x-response -time: 263

x-transaction: 0059 ae40006deb8e

x-tsa -request -body -time: 0

x-twitter -response -tags: BouncerCompliant

x-xss -protection: 1; mode=block; report=https: // twitter.com/i/xss_report

</responseHeader >

<requestHeader class="java.lang.String">Connection: keep -alive

Authorization: OAuth oauth_consumer_key="bicHvLbtKnuU9tFomq3grx7GI",

oauth_signature_method="HMAC -SHA1",oauth_timestamp="1528766855",

oauth_nonce="37 a0188427b640b7a5ff432fd26819e8",oauth_version="1.0",

oauth_signature="I90GLGyUGX5RuJk4oqusO3Fci2c %3D",oauth_token="517417816 -

bQOa8fStCdHsHB4pt8uYsELEdyUO0E6NN3qOhY8z"

Content -Type: application/x-www -form -urlencoded

Content -Length: 17

Host: api.twitter.com

User -Agent: Apache -HttpClient /4.5.5 (Java /1.8.0 _131)

</requestHeader >

<responseData class="java.lang.String">{

"created_at":"Tue Jun 12 01 :28:56 +0000 2018",

"id":1006347588856045569 ,

"id_str":"1006347588856045569",

"text":"yywSNRtUzC",

"truncated":false ,

164

"entities":{

"hashtags": [],

"symbols":[],

"user_mentions":[],

"urls":[]

},

"source":"MockTweetsApp ",

"in_reply_to_status_id":null ,

"in_reply_to_status_id_str":null ,

"in_reply_to_user_id":null ,

"in_reply_to_user_id_str":null ,

"in_reply_to_screen_name":null ,

"user":{

"id":517417816 ,

"id_str":"517417816",

"name":"Thilini Bhagya",

"screen_name":"bhagyasl",

"location":"Kurunegala",

"description":"",

"url":"http://t.co/sQduiwqJiy",

"entities":{

"url":{

"urls":[

{

"url":"http://t.co/sQduiwqJiy",

"expanded_url":"http:// inkedin.com/in/bhagyasl/",

"display_url":"inkedin.com/in/bhagyasl/",

"indices":[

0,22

]

}

]

},

"description":{

"urls":[]

}

},

"protected":false ,

"followers_count":185 ,

"friends_count":249 ,

"listed_count":3,

"created_at":"Wed Mar 07 09 :41:33 +0000 2012",

"favourites_count":64 ,

"utc_offset":null ,

"time_zone":null ,

"geo_enabled":true ,

"verified":false ,

"statuses_count":308 ,

"lang":"en",

"contributors_enabled":false ,

"is_translator":false ,

"is_translation_enabled":false ,

"profile_background_color":"1A1B1F",

"profile_background_image_url":"http: //abs.twimg.com/images/themes/

theme9/bg.gif",

"profile_background_image_url_https":"https: //abs.twimg.com/images/

themes/theme9/bg.gif",

"profile_background_tile":false ,

"profile_image_url":"http://pbs.twimg.com/profile_images

/950100192048562176/ LKr7Ay21_normal.jpg",

"profile_image_url_https":"https: //pbs.twimg.com/profile_images

/950100192048562176/ LKr7Ay21_normal.jpg",

"profile_banner_url":"https: //pbs.twimg.com/profile_banners

/517417816/1399047954",

"profile_link_color":"3E4547",

"profile_sidebar_border_color":"FFFFFF",

"profile_sidebar_fill_color":"252429",

"profile_text_color":"666666",

"profile_use_background_image":true ,

"has_extended_profile":false ,

"default_profile":false ,

"default_profile_image":false ,

"following":false ,

165

"follow_request_sent":false ,

"notifications":false ,

"translator_type":"none"

},

"geo":null ,

"coordinates":null ,

"place":null ,

"contributors":null ,

"is_quote_status":false ,

"retweet_count":0 ,

"favorite_count":0 ,

"favorited":false ,

"retweeted":false ,

"lang":"eu"

}

</responseData >

<cookies class="java.lang.String"></cookies >

<method class="java.lang.String">POST</method >

<queryString class="java.lang.String">status=yywSNRtUzC </queryString >

<java.net.URL>https: //api.twitter.com /1.1/ statuses/update.json</java.net.URL>

</httpSample >

A.3.2 Retrieve Tweet 1006347588856045569

<httpSample >

<responseHeader class="java.lang.String">HTTP /1.1 200 OK

cache -control: no-cache , no -store , must -revalidate , pre -check=0, post -check =0

content -disposition: attachment; filename=json.json

content -length: 2240

content -type: application/json;charset=utf -8

date: Tue , 12 Jun 2018 02 :43:07 GMT

expires: Tue , 31 Mar 1981 05 :00:00 GMT

last -modified: Tue , 12 Jun 2018 02 :43:07 GMT

pragma: no -cache

server: tsa_l

set -cookie: personalization_id="v1_Va+j+c1nPX4SOFuU51pnXg =="; Expires=Thu , 11

Jun 2020 02 :43:07 GMT; Path =/; Domain =. twitter.com

set -cookie: lang=en; Path=/

set -cookie: guest_id=v1%3 A152877138757955854; Expires=Thu , 11 Jun 2020 02 :43:07

GMT; Path =/; Domain =. twitter.com

status: 200 OK

strict -transport -security: max -age =631138519

x-access -level: read -write -directmessages

x-connection -hash: d50dff659e3101d499b3443da33db09e

x-content -type -options: nosniff

x-frame -options: SAMEORIGIN

x-rate -limit -limit: 900

x-rate -limit -remaining: 898

x-rate -limit -reset: 1528772287

x-response -time: 189

x-transaction: 002789 b80029c96c

x-twitter -response -tags: BouncerCompliant

x-xss -protection: 1; mode=block; report=https: // twitter.com/i/xss_report

</responseHeader >

<requestHeader class="java.lang.String">Connection: keep -alive

Authorization: OAuth oauth_consumer_key="bicHvLbtKnuU9tFomq3grx7GI",

oauth_signature_method="HMAC -SHA1",oauth_timestamp="1528771283",oauth_nonce

="5dc53671321d4f2f8cff0267df1953c9",oauth_version="1.0",oauth_signature="

Vn9ZyiFUDG0hmzAn2edxCqFNoBU %3D",oauth_token="517417816 -

bQOa8fStCdHsHB4pt8uYsELEdyUO0E6NN3qOhY8z"

Host: api.twitter.com

User -Agent: Apache -HttpClient /4.5.5 (Java /1.8.0 _131)

</requestHeader >

<responseData class="java.lang.String">{

"created_at":"Tue Jun 12 01 :28:56 +0000 2018",

"id":1006347588856045569 ,

"id_str":"1006347588856045569",

"text":"yywSNRtUzC",

"truncated":false ,

"entities":{

"hashtags":[],

"symbols":[],

166

"user_mentions":[],

"urls":[]

},

"source":"MockTweetsApp ",

"in_reply_to_status_id":null ,

"in_reply_to_status_id_str":null ,

"in_reply_to_user_id":null ,

"in_reply_to_user_id_str":null ,

"in_reply_to_screen_name":null ,

"user":{

"id":517417816 ,

"id_str":"517417816",

"name":"Thilini Bhagya",

"screen_name":"bhagyasl",

"location":"Kurunegala",

"description":"",

"url":"http://t.co/sQduiwqJiy",

"entities":{

"url":{

"urls":[

{

"url":"http://t.co/sQduiwqJiy",

"expanded_url":"http:// inkedin.com/in/bhagyasl/",

"display_url":"inkedin.com/in/bhagyasl/",

"indices":[

0,22

]

}

]

},

"description":{

"urls":[]

}

},

"protected":false ,

"followers_count":185 ,

"friends_count":249 ,

"listed_count":3,

"created_at":"Wed Mar 07 09 :41:33 +0000 2012",

"favourites_count":64 ,

"utc_offset":null ,

"time_zone":null ,

"geo_enabled":true ,

"verified":false ,

"statuses_count":369 ,

"lang":"en",

"contributors_enabled":false ,

"is_translator":false ,

"is_translation_enabled":false ,

"profile_background_color":"1A1B1F",

"profile_background_image_url":"http: //abs.twimg.com/images/themes/theme9/

bg.gif",

"profile_background_image_url_https":"https: //abs.twimg.com/images/themes/

theme9/bg.gif",

"profile_background_tile":false ,

"profile_image_url":"http://pbs.twimg.com/profile_images

/950100192048562176/ LKr7Ay21_normal.jpg",

"profile_image_url_https":"https: //pbs.twimg.com/profile_images

/950100192048562176/ LKr7Ay21_normal.jpg",

"profile_banner_url":"https: //pbs.twimg.com/profile_banners

/517417816/1399047954",

"profile_link_color":"3E4547",

"profile_sidebar_border_color":"FFFFFF",

"profile_sidebar_fill_color":"252429",

"profile_text_color":"666666",

"profile_use_background_image":true ,

"has_extended_profile":false ,

"default_profile":false ,

"default_profile_image":false ,

"following":false ,

"follow_request_sent":false ,

"notifications":false ,

"translator_type":"none"

167

},

"geo":null ,

"coordinates":null ,

"place":null ,

"contributors":null ,

"is_quote_status":false ,

"retweet_count":0 ,

"favorite_count":0 ,

"favorited":false ,

"retweeted":false ,

"lang":"eu"

}

</responseData >

<cookies class="java.lang.String">

</cookies >

<method class="java.lang.String">GET</method >

<queryString class="java.lang.String">

</queryString >

<java.net.URL>https: //api.twitter.com /1.1/ statuses/show.json?id

=1006347588856045569 </java.net.URL>

</httpSample >

A.3.3 Delete Tweet 1006347588856045569

<httpSample >

<responseHeader class="java.lang.String">HTTP /1.1 200 OK

cache -control: no-cache , no -store , must -revalidate , pre -check=0, post -check =0

content -disposition: attachment; filename=json.json

content -length: 2240

content -type: application/json;charset=utf -8

date: Tue , 12 Jun 2018 02 :43:07 GMT

expires: Tue , 31 Mar 1981 05 :00:00 GMT

last -modified: Tue , 12 Jun 2018 02 :43:07 GMT

pragma: no -cache

server: tsa_l

set -cookie: personalization_id="v1_ZDYAbtrmlpVn4HwZ /36 aEQ=="; Expires=Thu , 11

Jun 2020 02 :43:07 GMT; Path =/; Domain =. twitter.com

set -cookie: lang=en; Path=/

set -cookie: guest_id=v1%3 A152877138756118875; Expires=Thu , 11 Jun 2020 02 :43:07

GMT; Path =/; Domain =. twitter.com

status: 200 OK

strict -transport -security: max -age =631138519

x-access -level: read -write -directmessages

x-connection -hash: 49 f40fcd3a367c548d46f9d700c2f394

x-content -type -options: nosniff

x-frame -options: SAMEORIGIN

x-response -time: 210

x-transaction: 00 c122f500a0512a

x-twitter -response -tags: BouncerCompliant

x-xss -protection: 1; mode=block; report=https: // twitter.com/i/xss_report

</responseHeader >

<requestHeader class="java.lang.String">Connection: keep -alive

Authorization: OAuth oauth_consumer_key="bicHvLbtKnuU9tFomq3grx7GI",

oauth_signature_method="HMAC -SHA1",oauth_timestamp="1528771162",oauth_nonce

="077 befedc9bf4d5aa51796db6c0a4a12",oauth_version="1.0",oauth_signature="

X4tPxkrSV7kAgKy17hWi77ZnekY %3D",oauth_token="517417816 -

bQOa8fStCdHsHB4pt8uYsELEdyUO0E6NN3qOhY8z"

Content -Type: application/x-www -form -urlencoded

Content -Length: 0

Host: api.twitter.com

User -Agent: Apache -HttpClient /4.5.5 (Java /1.8.0 _131)

</requestHeader >

<responseData class="java.lang.String">{

.. same response data as previous record

}

</responseData >

<cookies class="java.lang.String">

</cookies >

<method class="java.lang.String">POST</method >

<queryString class="java.lang.String">

</queryString >

<java.net.URL>https: //api.twitter.com /1.1/ statuses/destroy /1006347588856045569.

168

json</java.net.URL>

</httpSample >

A.4 Sample Records on Google Tasks Dataset

A.4.1 Create List

<httpSample >

<responseHeader class="java.lang.String">HTTP /1.1 200 OK

Cache -Control: no-cache , no -store , max -age=0, must -revalidate

Pragma: no -cache

Expires: Mon , 01 Jan 1990 00 :00:00 GMT

Date: Mon , 27 Aug 2018 22 :26:26 GMT

Vary: X-Origin

Content -Type: application/json; charset=UTF -8

X-Content -Type -Options: nosniff

X-Frame -Options: SAMEORIGIN

X-XSS -Protection: 1; mode=block

Server: GSE

Alt -Svc: quic=":443"; ma =2592000; v="44,43,39,35"

Accept -Ranges: none

Vary: Origin ,Accept -Encoding

Transfer -Encoding: chunked

</responseHeader >

<requestHeader class="java.lang.String">Connection: keep -alive

Authorization: Bearer ya29.GlsGBl1zrjbnkq3md8zOcY5ckJFt42xg2YfRFbL8gHLVwLiHSb -

bIAdlzp0d9VLxkqSLDXASS5MxM3RB2Qf2iudWSQLBxOyyZ_W7DuYgqsA78BnojJyS_RnveXXL

Content -Type: application/json

Content -Length: 24

Host: www.googleapis.com

User -Agent: Apache -HttpClient /4.5.5 (Java /1.8.0 _131)

</requestHeader >

<responseData class="java.lang.String">{

"kind": "tasks#taskList",

"id": "MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NDkwODMyNjA4MDE0NTUyMTow",

"etag": "\"FhCqMAsBrrKDkDLKevwtJykQ9I8/jrhhSpFMBCqafUWVdyMd0X4tB2U\"",

"title": "VSUmpg",

"updated": "2018 -08 -27 T22:26:26 .000Z",

"selfLink": "https: //www.googleapis.com/tasks/v1/users/@me/lists/

MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NDkwODMyNjA4MDE0NTUyMTow"

}

</responseData >

<responseFile class="java.lang.String"></responseFile >

<cookies class="java.lang.String"></cookies >

<method class="java.lang.String">POST</method >

<queryString class="java.lang.String">{

"title": "VSUmpg"

}

</queryString >

<java.net.URL>https: //www.googleapis.com/tasks/v1/users/@me/lists</java.net.URL

>

</httpSample >

A.4.2 Return List MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NDkwODMyNjA4MDE0NTUyMTow

<httpSample >

<responseHeader class="java.lang.String">HTTP /1.1 200 OK

Expires: Mon , 27 Aug 2018 23 :56:57 GMT

Date: Mon , 27 Aug 2018 23 :56:57 GMT

Cache -Control: private , max -age=0, must -revalidate , no-transform

ETag: "FhCqMAsBrrKDkDLKevwtJykQ9I8/jrhhSpFMBCqafUWVdyMd0X4tB2U"

Vary: Origin

Vary: X-Origin

Content -Type: application/json; charset=UTF -8

X-Content -Type -Options: nosniff

X-Frame -Options: SAMEORIGIN

X-XSS -Protection: 1; mode=block

Content -Length: 346

169

Server: GSE

Alt -Svc: quic=":443"; ma =2592000; v="44,43,39,35"

</responseHeader >

<requestHeader class="java.lang.String">Connection: keep -alive

Host: www.googleapis.com

User -Agent: Apache -HttpClient /4.5.5 (Java /1.8.0 _131)

Authorization: Bearer ya29.GlsGBl1zrjbnkq3md8zOcY5ckJFt42xg2YfRFbL8gHLVwLiHSb -

bIAdlzp0d9VLxkqSLDXASS5MxM3RB2Qf2iudWSQLBxOyyZ_W7DuYgqsA78BnojJyS_RnveXXL

</requestHeader >

<responseData class="java.lang.String">{

"kind": "tasks#taskList",

"id": "MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NDkwODMyNjA4MDE0NTUyMTow",

"etag": "\"FhCqMAsBrrKDkDLKevwtJykQ9I8/jrhhSpFMBCqafUWVdyMd0X4tB2U\"",

"title": "VSUmpg",

"updated": "2018 -08 -27 T22:26:26 .000Z",

"selfLink": "https: //www.googleapis.com/tasks/v1/users/@me/lists/

MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NDkwODMyNjA4MDE0NTUyMTow"

}

</responseData >

<responseFile class="java.lang.String"></responseFile >

<cookies class="java.lang.String"></cookies >

<method class="java.lang.String">GET</method >

<queryString class="java.lang.String"></queryString >

<java.net.URL>https: //www.googleapis.com/tasks/v1/users/@me/lists/

MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NDkwODMyNjA4MDE0NTUyMTow </java.net.URL>

</httpSample >

A.4.3 Update List MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NDkwODMyNjA4MDE0NTUyMTow

<httpSample >

<responseHeader class="java.lang.String">HTTP /1.1 200 OK

Cache -Control: no-cache , no -store , max -age=0, must -revalidate

Pragma: no -cache

Expires: Mon , 01 Jan 1990 00 :00:00 GMT

Date: Tue , 28 Aug 2018 04 :20:24 GMT

Vary: X-Origin

Content -Type: application/json; charset=UTF -8

X-Content -Type -Options: nosniff

X-Frame -Options: SAMEORIGIN

X-XSS -Protection: 1; mode=block

Server: GSE

Alt -Svc: quic=":443"; ma =2592000; v="44,43,39,35"

Accept -Ranges: none

Vary: Origin ,Accept -Encoding

Transfer -Encoding: chunked

</responseHeader >

<requestHeader class="java.lang.String">Connection: keep -alive

Authorization: Bearer ya29.GlsHBm6kl2pDgXcSc8dSUBfRI0oDWSTR3tMw_wrzzSsRnm -

HY1bN6T33vOmx025iVBd18Ayfg_pW8MMTb4xsdaAnapfc9TB5ab6ODvVVTFU789V_SA -RXp4f -

qnK

Content -Type: application/json

Content -Length: 24

Host: www.googleapis.com

User -Agent: Apache -HttpClient /4.5.5 (Java /1.8.0 _131)

</requestHeader >

<responseData class="java.lang.String">{

"kind": "tasks#taskList",

"id": "MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NDkwODMyNjA4MDE0NTUyMTow",

"etag": "\"FhCqMAsBrrKDkDLKevwtJykQ9I8/Gv7_Jj_E1F9qe_U0rPOpyxSA4aE\"",

"title": "PYUbjq",

"updated": "2018 -08 -28 T04:20:24 .000Z",

"selfLink": "https: //www.googleapis.com/tasks/v1/users/@me/lists/

MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NDkwODMyNjA4MDE0NTUyMTow"

}

</responseData >

<responseFile class="java.lang.String"></responseFile >

<cookies class="java.lang.String"></cookies >

<method class="java.lang.String">PATCH</method >

<queryString class="java.lang.String">{

"title": "PYUbjq"

}

</queryString >

170

<java.net.URL>https: //www.googleapis.com/tasks/v1/users/@me/lists/

MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NDkwODMyNjA4MDE0NTUyMTow </java.net.URL>

</httpSample >

A.4.4 Delete List MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NDkwODMyNjA4MDE0NTUyMTow

<httpSample >

<responseHeader class="java.lang.String">HTTP /1.1 204 No Content

Cache -Control: no-cache , no -store , max -age=0, must -revalidate

Pragma: no -cache

Expires: Mon , 01 Jan 1990 00 :00:00 GMT

Date: Tue , 28 Aug 2018 04 :21:32 GMT

ETag: "FhCqMAsBrrKDkDLKevwtJykQ9I8/vyGp6PvFo4RvsFtPoIWeCReyIC8"

Vary: Origin

Vary: X-Origin

Server: GSE

Alt -Svc: quic=":443"; ma =2592000; v="44,43,39,35"

</responseHeader >

<requestHeader class="java.lang.String">Connection: keep -alive

Authorization: Bearer ya29.GlsHBm6kl2pDgXcSc8dSUBfRI0oDWSTR3tMw_wrzzSsRnm -

HY1bN6T33vOmx025iVBd18Ayfg_pW8MMTb4xsdaAnapfc9TB5ab6ODvVVTFU789V_SA -RXp4f -

qnK

Content -Length: 0

Host: www.googleapis.com

User -Agent: Apache -HttpClient /4.5.5 (Java /1.8.0 _131)

</requestHeader >

<responseData class="java.lang.String"></responseData >

<responseFile class="java.lang.String"></responseFile >

<cookies class="java.lang.String"></cookies >

<method class="java.lang.String">DELETE </method >

<queryString class="java.lang.String"></queryString >

<java.net.URL>https: //www.googleapis.com/tasks/v1/users/@me/lists/

MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NDkwODMyNjA4MDE0NTUyMTow </java.net.URL>

</httpSample >

A.5 Sample Records on Slack Dataset

A.5.1 Send Message

<httpSample >

<responseHeader class="java.lang.String">HTTP /1.1 200 OK

Content -Type: application/json; charset=utf -8

Transfer -Encoding: chunked

Connection: keep -alive

Date: Mon , 27 Aug 2018 06 :49:30 GMT

Server: Apache

x-slack -router: p

X-Slack -Req -Id: a27dd9ef -de0a -464b-aeda -264135557811

X-OAuth -Scopes: identify ,channels:write ,chat:write:user

X-Accepted -OAuth -Scopes: chat:write:user

Expires: Mon , 26 Jul 1997 05 :00:00 GMT

Cache -Control: private , no-cache , no-store , must -revalidate

Vary: Accept -Encoding

Pragma: no -cache

X-XSS -Protection: 0

X-Content -Type -Options: nosniff

X-Slack -Exp: 1

X-Slack -Backend: h

Referrer -Policy: no-referrer

Strict -Transport -Security: max -age =31536000; includeSubDomains; preload

Access -Control -Allow -Origin: *

X-Via: haproxy -www -d7fx

X-Cache: Miss from cloudfront

Via: 1.1 d070a57995f9fd009c96043a24002ef2.cloudfront.net (CloudFront)

X-Amz -Cf-Id: DnFnpcnDyTAvRDl4JyvJUdesXs1REP4_J2syd5DpaJhQJN2I5L1DWg ==

</responseHeader >

<requestHeader class="java.lang.String">Connection: keep -alive

Content -Type: application/x-www -form -urlencoded

171

Content -Length: 111

Host: slack.com

User -Agent: Apache -HttpClient /4.5.5 (Java /1.8.0 _131)

</requestHeader >

<responseData class="java.lang.String">{

"ok":true ,

"channel":"CCGRWTRKQ",

"ts":"1535352570.000200",

"message":{

"type":"message",

"user":"UC8J6APLN",

"text":"PmWoE",

"bot_id":"BCEPNCQDN",

"ts":"1535352570.000200"

}

}</responseData >

<cookies class="java.lang.String"></cookies >

<method class="java.lang.String">POST</method >

<queryString class="java.lang.String">token=xoxp

-415149719555 -416618363702 -422804431936 - b30a935a430030bec72e399b896b0bcc&

channel=CCGRWTRKQ&text=PmWoE</queryString >

<java.net.URL>https: //slack.com/api/chat.postMessage </java.net.URL>

</httpSample >

A.5.2 Update Message 1535352570.000200

<httpSample >

<responseHeader class="java.lang.String">HTTP /1.1 200 OK

Content -Type: application/json; charset=utf -8

Transfer -Encoding: chunked

Connection: keep -alive

Date: Mon , 27 Aug 2018 08 :18:00 GMT

Server: Apache

x-slack -router: p

X-Slack -Req -Id: 71cef103 -2415 -4afe -8083 -94 de9d8d13da

X-OAuth -Scopes: identify ,channels:write ,chat:write:user

X-Accepted -OAuth -Scopes: chat:write:user

Expires: Mon , 26 Jul 1997 05 :00:00 GMT

Cache -Control: private , no-cache , no-store , must -revalidate

Vary: Accept -Encoding

Pragma: no -cache

X-XSS -Protection: 0

X-Content -Type -Options: nosniff

X-Slack -Exp: 1

X-Slack -Backend: h

Referrer -Policy: no-referrer

Strict -Transport -Security: max -age =31536000; includeSubDomains; preload

Access -Control -Allow -Origin: *

X-Via: haproxy -www -elvs

X-Cache: Miss from cloudfront

Via: 1.1 62 b57aad96f95c086d713d3c9a7e766a.cloudfront.net (CloudFront)

X-Amz -Cf-Id: 4R6I1YPQCOdbn4PaenngVV0rGquNuUnQHM6eGdu9lwrRRVr4FFDkaA ==

</responseHeader >

<requestHeader class="java.lang.String">Connection: keep -alive

Content -Type: application/x-www -form -urlencoded

Content -Length: 133

Host: slack.com

User -Agent: Apache -HttpClient /4.5.5 (Java /1.8.0 _131)

</requestHeader >

<responseData class="java.lang.String">{

"ok":true ,

"channel":"CCGRWTRKQ",

"ts":"1535352570.000200",

"text":"nKMOgn",

"message":{

"type":"message",

"user":"UC8J6APLN",

"text":"nKMOgn",

"bot_id":"BCEPNCQDN"

}

}

172

</responseData >

<cookies class="java.lang.String"></cookies >

<method class="java.lang.String">POST</method >

<queryString class="java.lang.String">token=xoxp

-415149719555 -416618363702 -422804431936 - b30a935a430030bec72e399b896b0bcc&

channel=CCGRWTRKQ&ts =1535352570.000200& text=nKMOgn </queryString >

<java.net.URL>https: //slack.com/api/chat.update </java.net.URL>

</httpSample >

A.5.3 Delete Message 1535352570.000200

<httpSample >

<responseHeader class="java.lang.String">HTTP /1.1 200 OK

Content -Type: application/json; charset=utf -8

Transfer -Encoding: chunked

Connection: keep -alive

Date: Mon , 27 Aug 2018 10 :52:23 GMT

Server: Apache

X-Content -Type -Options: nosniff

X-Slack -Req -Id: fa5431af -453c-457f-bda0 -d01247f2760c

Expires: Mon , 26 Jul 1997 05 :00:00 GMT

Cache -Control: private , no-cache , no-store , must -revalidate

X-OAuth -Scopes: identify ,channels:write ,chat:write:user

Vary: Accept -Encoding

Pragma: no -cache

X-Accepted -OAuth -Scopes: chat:write:user

X-XSS -Protection: 0

Strict -Transport -Security: max -age =31536000; includeSubDomains; preload

Referrer -Policy: no-referrer

X-Slack -Exp: 1

X-Slack -Backend: h

Access -Control -Allow -Origin: *

X-Via: haproxy -www -npmn

X-Cache: Miss from cloudfront

Via: 1.1 d070a57995f9fd009c96043a24002ef2.cloudfront.net (CloudFront)

X-Amz -Cf-Id: UpadK_fa_fcHooLbmCC --NapQet1A_FCYeF95BxJZklvfGZQXiWqfQ ==

</responseHeader >

<requestHeader class="java.lang.String">Connection: keep -alive

Content -Length: 0

Host: slack.com

User -Agent: Apache -HttpClient /4.5.5 (Java /1.8.0 _131)

</requestHeader >

<responseData class="java.lang.String">{

"ok":true ,

"channel":"CCGRWTRKQ",

"ts":"1535352570.000200"

}

</responseData >

<cookies class="java.lang.String"></cookies >

<method class="java.lang.String">POST</method >

<queryString class="java.lang.String"></queryString >

<java.net.URL>https: //slack.com/api/chat.delete?token=xoxp

-415149719555 -416618363702 -422804431936 - b30a935a430030bec72e399b896b0bcc&

channel=CCGRWTRKQ&ts =1535352570.000200 </java.net.URL>

</httpSample >

173

Appendix B

Training Data

B.1 Attributes Summary

B.1.1 Attributes for GHTraffic

Attribute Distinct

RequestMethod 6

ResponseStatusCode 8

RequestUriSchema 1

RequestUriHost 1

RequestUriPathToken1 1

RequestUriPathToken2 1

RequestUriPathToken3 1

RequestUriPathToken4 1

RequestUriPathToken5 1794

RequestUriPathToken6 2

RequestUriQueryToken1 1

RequestUriQueryToken2 1

RequestUriQueryToken3 1

RequestUriQueryToken4 1

RequestUriFragmentToken1 1

RequestUriFragmentToken2 1

HasRequestPayload 2

HasValidRequestPayload 2

HasAuthorisationToken 2

RequestHeader Accept 1

RequestHeader Content-Length 29

RequestHeader Content-Type 2

RequestHeader Host 1

RequestHeader User-Agent 5

ResponseHeader Access-Control-Allow-Origin 1

ResponseHeader Access-Control-Expose-Headers 1

ResponseHeader Cache-Control 2

ResponseHeader Content-Length 39

ResponseHeader Content-Type 1

ResponseHeader Date 32210

ResponseHeader ETag 7633

ResponseHeader Last-Modified 1024

ResponseHeader Location 1794

ResponseHeader Server 1

ResponseHeader Vary 2

ResponseHeader X-Accepted-OAuth-Scopes 3

ResponseHeader X-GitHub-Media-Type 1

174

ResponseHeader X-GitHub-Request-Id 32215

ResponseHeader X-OAuth-Scopes 2

RequestBody state 2

ResponseBody assignee.avatar url 20

ResponseBody assignee.events url 11

ResponseBody assignee.followers url 11

ResponseBody assignee.following url 11

ResponseBody assignee.gists url 11

ResponseBody assignee.gravatar id 1

ResponseBody assignee.html url 11

ResponseBody assignee.id 11

ResponseBody assignee.login 11

ResponseBody assignee.organizations url 11

ResponseBody assignee.received events url 11

ResponseBody assignee.repos url 11

ResponseBody assignee.site admin 2

ResponseBody assignee.starred url 11

ResponseBody assignee.subscriptions url 11

ResponseBody assignee.type 2

ResponseBody assignee.url 11

ResponseBody assignees.avatar url 20

ResponseBody assignees.events url 11

ResponseBody assignees.followers url 11

ResponseBody assignees.following url 11

ResponseBody assignees.gists url 11

ResponseBody assignees.gravatar id 1

ResponseBody assignees.html url 11

ResponseBody assignees.id 11

ResponseBody assignees.login 11

ResponseBody assignees.organizations url 11

ResponseBody assignees.received events url 11

ResponseBody assignees.repos url 11

ResponseBody assignees.site admin 2

ResponseBody assignees.starred url 11

ResponseBody assignees.subscriptions url 11

ResponseBody assignees.type 2

ResponseBody assignees.url 11

ResponseBody closed at 1059

ResponseBody closed by.avatar url 4

ResponseBody closed by.events url 4

ResponseBody closed by.followers url 4

ResponseBody closed by.following url 4

ResponseBody closed by.gists url 4

ResponseBody closed by.gravatar id 1

ResponseBody closed by.html url 4

ResponseBody closed by.id 4

ResponseBody closed by.login 4

ResponseBody closed by.organizations url 4

ResponseBody closed by.received events url 4

ResponseBody closed by.repos url 4

ResponseBody closed by.site admin 2

ResponseBody closed by.starred url 4

ResponseBody closed by.subscriptions url 4

ResponseBody closed by.type 2

ResponseBody closed by.url 4

ResponseBody comments 46

ResponseBody created at 1792

ResponseBody documentation url 6

ResponseBody html url 1794

ResponseBody id 1794

175

ResponseBody locked 3

ResponseBody message 6

ResponseBody milestone.closed at 15

ResponseBody milestone.closed issues 13

ResponseBody milestone.created at 16

ResponseBody milestone.creator.avatar url 3

ResponseBody milestone.creator.events url 2

ResponseBody milestone.creator.followers url 2

ResponseBody milestone.creator.following url 2

ResponseBody milestone.creator.gists url 2

ResponseBody milestone.creator.gravatar id 1

ResponseBody milestone.creator.html url 2

ResponseBody milestone.creator.id 2

ResponseBody milestone.creator.login 2

ResponseBody milestone.creator.organizations url 2

ResponseBody milestone.creator.received events url 2

ResponseBody milestone.creator.repos url 2

ResponseBody milestone.creator.site admin 2

ResponseBody milestone.creator.starred url 2

ResponseBody milestone.creator.subscriptions url 2

ResponseBody milestone.creator.type 2

ResponseBody milestone.creator.url 2

ResponseBody milestone.description 1

ResponseBody milestone.due on 2

ResponseBody milestone.html url 11

ResponseBody milestone.id 16

ResponseBody milestone.labels url 16

ResponseBody milestone.number 16

ResponseBody milestone.open issues 4

ResponseBody milestone.state 3

ResponseBody milestone.title 16

ResponseBody milestone.updated at 20

ResponseBody milestone.url 16

ResponseBody number 1794

ResponseBody state 3

ResponseBody updated at 2967

ResponseBody url 1794

ResponseBody user.avatar url 137

ResponseBody user.events url 135

ResponseBody user.followers url 135

ResponseBody user.following url 135

ResponseBody user.gists url 135

ResponseBody user.gravatar id 1

ResponseBody user.html url 135

ResponseBody user.id 134

ResponseBody user.login 135

ResponseBody user.organizations url 135

ResponseBody user.received events url 135

ResponseBody user.repos url 135

ResponseBody user.site admin 2

ResponseBody user.starred url 135

ResponseBody user.subscriptions url 135

ResponseBody user.type 2

ResponseBody user.url 135

HasImmediatePreviousTransaction 2

HasImmediatePreviousTransactionSucceeded 2

ImmediatelyPreviousStatusCode 9

ImmediatelyPreviousMethod 7

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate 1

HasURLInImmediatelyPreviousTransactionContainsATokenToRead 1

176

HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate 1

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete 1

HasSuccessfulCreateOperationOccurredBefore 2

HasSuccessfulReadOperationOccurredBefore 2

HasSuccessfulUpdateOperationOccurredBefore 2

HasSuccessfulDeleteOperationOccurredBefore 2

B.1.2 Attributes for Twitter

Attribute Distinct

RequestMethod 2

ResponseStatusCode 2

RequestUriSchema 1

RequestUriHost 1

RequestUriPathToken1 1

RequestUriPathToken2 1

RequestUriPathToken3 3

RequestUriPathToken4 538

RequestUriPathToken5 1

RequestUriPathToken6 1

RequestUriQueryToken1 1053

RequestUriQueryToken2 1

RequestUriQueryToken3 1

RequestUriQueryToken4 1

RequestUriFragmentToken1 1

RequestUriFragmentToken2 1

HasRequestPayload 1

HasValidRequestPayload 1

HasAuthorisationToken 1

RequestHeader Connection 1

RequestHeader Content-Length 10

RequestHeader Content-Type 2

RequestHeader Host 1

RequestHeader User-Agent 1

ResponseHeader cache-control 1

ResponseHeader content-disposition 1

ResponseHeader content-length 17

ResponseHeader content-type 1

ResponseHeader date 19517

ResponseHeader expires 1

ResponseHeader last-modified 19511

ResponseHeader pragma 1

ResponseHeader server 1

ResponseHeader status 2

ResponseHeader strict-transport-security 1

ResponseHeader x-connection-hash 3688

ResponseHeader x-content-type-options 1

ResponseHeader x-frame-options 1

ResponseHeader x-rate-limit-limit 2

ResponseHeader x-rate-limit-remaining 901

ResponseHeader x-rate-limit-reset 27

ResponseHeader x-response-time 278

ResponseHeader x-transaction 26053

ResponseHeader x-twitter-response-tags 1

ResponseHeader x-xss-protection 1

ResponseBody contributors 2

ResponseBody coordinates 2

ResponseBody created at 517

ResponseBody entities.hashtags 2

177

ResponseBody entities.symbols 2

ResponseBody entities.urls 2

ResponseBody entities.user mentions 2

ResponseBody errors.code 2

ResponseBody errors.message 2

ResponseBody favorite count 2

ResponseBody favorited 2

ResponseBody geo 2

ResponseBody id 868

ResponseBody id str 868

ResponseBody in reply to screen name 2

ResponseBody in reply to status id 2

ResponseBody in reply to status id str 2

ResponseBody in reply to user id 2

ResponseBody in reply to user id str 2

ResponseBody is quote status 2

ResponseBody lang 30

ResponseBody place 2

ResponseBody retweet count 2

ResponseBody retweeted 2

ResponseBody text 853

ResponseBody truncated 2

ResponseBody user.contributors enabled 2

ResponseBody user.created at 2

ResponseBody user.default profile 2

ResponseBody user.default profile image 2

ResponseBody user.description 1

ResponseBody user.favourites count 2

ResponseBody user.follow request sent 2

ResponseBody user.followers count 2

ResponseBody user.following 2

ResponseBody user.friends count 2

ResponseBody user.geo enabled 2

ResponseBody user.has extended profile 2

ResponseBody user.id 2

ResponseBody user.id str 2

ResponseBody user.is translation enabled 2

ResponseBody user.is translator 2

ResponseBody user.lang 2

ResponseBody user.listed count 2

ResponseBody user.location 2

ResponseBody user.name 2

ResponseBody user.notifications 2

ResponseBody user.profile background color 2

ResponseBody user.profile background image url 2

ResponseBody user.profile background image url https 2

ResponseBody user.profile background tile 2

ResponseBody user.profile banner url 2

ResponseBody user.profile image url 2

ResponseBody user.profile image url https 2

ResponseBody user.profile link color 2

ResponseBody user.profile sidebar border color 2

ResponseBody user.profile sidebar fill color 2

ResponseBody user.profile text color 2

ResponseBody user.profile use background image 2

ResponseBody user.protected 2

ResponseBody user.screen name 2

ResponseBody user.statuses count 423

ResponseBody user.time zone 2

ResponseBody user.translator type 2

178

ResponseBody user.url 2

ResponseBody user.utc offset 2

ResponseBody user.verified 2

HasImmediatePreviousTransaction 2

HasImmediatePreviousTransactionSucceeded 2

ImmediatelyPreviousStatusCode 3

ImmediatelyPreviousMethod 3

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate 2

HasURLInImmediatelyPreviousTransactionContainsATokenToRead 2

HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate 1

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete 2

HasSuccessfulCreateOperationOccurredBefore 2

HasSuccessfulReadOperationOccurredBefore 2

HasSuccessfulUpdateOperationOccurredBefore 1

HasSuccessfulDeleteOperationOccurredBefore 2

B.1.3 Attributes for Google Tasks

Attribute Distinct

RequestMethod 4

ResponseStatusCode 4

RequestUriSchema 1

RequestUriHost 1

RequestUriPathToken1 1

RequestUriPathToken2 1

RequestUriPathToken3 1

RequestUriPathToken4 1

RequestUriPathToken5 1

RequestUriPathToken6 1122

RequestUriQueryToken1 1

RequestUriQueryToken2 1

RequestUriQueryToken3 1

RequestUriQueryToken4 1

RequestUriFragmentToken1 1

RequestUriFragmentToken2 1

HasRequestPayload 2

HasValidRequestPayload 2

HasAuthorisationToken 1

RequestHeader Connection 1

RequestHeader Content-Length 15

RequestHeader Content-Type 2

RequestHeader Host 1

RequestHeader User-Agent 1

ResponseHeader Accept-Ranges 2

ResponseHeader Alt-Svc 1

ResponseHeader Cache-Control 3

ResponseHeader Content-Length 10

ResponseHeader Content-Type 2

ResponseHeader Date 4161

ResponseHeader ETag 883

ResponseHeader Expires 2341

ResponseHeader Pragma 2

ResponseHeader Server 1

ResponseHeader Transfer-Encoding 2

ResponseHeader Vary 2

ResponseHeader X-Content-Type-Options 2

ResponseHeader X-Frame-Options 2

ResponseHeader X-XSS-Protection 2

ResponseBody error.code 3

179

ResponseBody error.errors.domain 2

ResponseBody error.errors.message 3

ResponseBody error.errors.reason 3

ResponseBody error.message 3

ResponseBody etag 1612

ResponseBody id 1125

ResponseBody kind 2

ResponseBody selfLink 1125

ResponseBody title 1606

ResponseBody updated 1590

HasImmediatePreviousTransaction 2

HasImmediatePreviousTransactionSucceeded 2

ImmediatelyPreviousResponseStatusCode 5

ImmediatelyPreviousRequestMethod 5

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate 1

HasURLInImmediatelyPreviousTransactionContainsATokenToRead 1

HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate 1

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete 1

HasSuccessfulCreateOperationOccurredBefore 2

HasSuccessfulReadOperationOccurredBefore 2

HasSuccessfulUpdateOperationOccurredBefore 2

HasSuccessfulDeleteOperationOccurredBefore 2

B.1.4 Attributes for Slack

Attribute Distinct

RequestMethod 1

ResponseStatusCode 1

RequestUriSchema 1

RequestUriHost 1

RequestUriPathToken1 1

RequestUriPathToken2 3

RequestUriPathToken3 1

RequestUriPathToken4 1

RequestUriPathToken5 1

RequestUriPathToken6 1

RequestUriQueryToken1 1

RequestUriQueryToken2 1

RequestUriQueryToken3 7614

RequestUriQueryToken4 6421

RequestUriFragmentToken1 1

RequestUriFragmentToken2 1

HasRequestPayload 1

HasValidRequestPayload 1

HasAuthorisationToken 1

RequestHeader Connection 1

RequestHeader Content-Length 13

RequestHeader Content-Type 2

RequestHeader Host 1

RequestHeader User-Agent 1

ResponseHeader Access-Control-Allow-Origin 1

ResponseHeader Cache-Control 1

ResponseHeader Connection 1

ResponseHeader Content-Type 1

ResponseHeader Date 11977

ResponseHeader Expires 1

ResponseHeader Pragma 1

ResponseHeader Referrer-Policy 1

ResponseHeader Server 1

180

ResponseHeader Strict-Transport-Security 1

ResponseHeader Transfer-Encoding 1

ResponseHeader Vary 1

ResponseHeader Via 47

ResponseHeader X-Accepted-OAuth-Scopes 1

ResponseHeader X-Amz-Cf-Id 17422

ResponseHeader X-Cache 1

ResponseHeader X-Content-Type-Options 1

ResponseHeader X-OAuth-Scopes 1

ResponseHeader X-Slack-Backend 1

ResponseHeader X-Slack-Exp 1

ResponseHeader X-Slack-Req-Id 17422

ResponseHeader X-Via 126

ResponseHeader X-XSS-Protection 1

ResponseHeader x-slack-router 2

ResponseBody channel 2

ResponseBody error 2

ResponseBody message.bot id 2

ResponseBody message.edited.ts 50

ResponseBody message.edited.user 2

ResponseBody message.text 5321

ResponseBody message.ts 3986

ResponseBody message.type 2

ResponseBody message.user 2

ResponseBody ok 2

ResponseBody text 1340

ResponseBody ts 3986

HasImmediatePreviousTransaction 2

HasImmediatePreviousTransactionSucceeded 2

ImmediatelyPreviousResponseStatusCode 2

ImmediatelyPreviousRequestMethod 2

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate 2

HasURLInImmediatelyPreviousTransactionContainsATokenToRead 1

HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate 2

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete 2

HasSuccessfulCreateOperationOccurredBefore 2

HasSuccessfulReadOperationOccurredBefore 1

HasSuccessfulUpdateOperationOccurredBefore 2

HasSuccessfulDeleteOperationOccurredBefore 2

B.2 Sample ARFF Files

B.2.1 ARFF File for GHTraffic

@relation ghtraffic

@attribute RequestMethod {HEAD ,DELETE ,POST ,GET ,PUT ,PATCH}

@attribute ResponseStatusCode numeric

@attribute RequestUriSchema {not -exist}

@attribute RequestUriHost {not -exist}

@attribute RequestUriPathToken1 {repos}

@attribute RequestUriPathToken2 {google}

@attribute RequestUriPathToken3 {guava}

.

.

.

@attribute HasRequestPayload {false ,true}

@attribute HasValidRequestPayload {false ,true}

@attribute HasAuthorisationToken {true ,false}

@attribute RequestHeader_Accept {*/*}

.

181

.

.

@attribute ResponseHeader_Access -Control -Allow -Origin {*}

@attribute ResponseHeader_Access -Control -Expose -Headers {'ETag , X-OAuth -Scopes , X

-Accepted -OAuth -Scopes '}
@attribute ResponseHeader_Cache -Control {not -exist ,'private , max -age =60'}
.

.

.

@attribute ResponseBody_locked {not -exist ,false ,true}

.

.

.

@attribute HasImmediatePreviousTransaction {false ,true}

@attribute HasImmediatePreviousTransactionSucceeded {false ,true}

@attribute ImmediatelyPreviousStatusCode {not -exist

,404 ,400 ,201 ,200 ,401 ,204 ,500 ,422}

@attribute ImmediatelyPreviousMethod {not -exist ,PATCH ,DELETE ,GET ,POST ,HEAD ,PUT}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToCreate {false}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToRead {false}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate {false}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToDelete {false}

@attribute HasSuccessfulCreateOperationOccurredBefore {false ,true}

@attribute HasSuccessfulReadOperationOccurredBefore {false ,true}

@attribute HasSuccessfulUpdateOperationOccurredBefore {false ,true}

@attribute HasSuccessfulDeleteOperationOccurredBefore {false ,true}

@data

PATCH ,404,not -exist ,not -exist ,repos ,google ,guava ,issues ,591,not -exist ,not -exist ,

not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,true ,true ,true ,*/*,55,'
application/json; charset=utf -8',api.github.com ,'Mozilla /4.0 (compatible;

MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 1.0.3705) ',*,'ETag , X-

OAuth -Scopes , X-Accepted -OAuth -Scopes ',not -exist ,111,'application/json;
charset=utf -8','Wed , 30 Oct 2013 20 :20:20 GMT',not -exist ,not -exist ,not -exist ,
GitHub.com ,not -exist ,repo ,'github.v3; format=json' ,72
D9:FC4D9:8A69082:7281141:84B33D38 ,public_repo ,closed ,not -exist ,not -exist ,not -

exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,

not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -

exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,

not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -

exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,

not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -

exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,https: //

developer.github.com/v3,not -exist ,not -exist ,not -exist ,'Not Found ',not -exist ,
not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -

exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,

not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -

exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,

not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -

exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,

not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,false ,false ,not -

exist ,not -exist ,false ,false ,false ,false ,false ,false ,false ,false

.

.

.

B.2.2 ARFF File for Twitter

@relation twitter

@attribute RequestMethod {POST ,GET}

@attribute ResponseStatusCode numeric

@attribute RequestUriSchema {https}

@attribute RequestUriHost {api.twitter.com}

@attribute RequestUriPathToken1 numeric

@attribute RequestUriPathToken2 {statuses}

@attribute RequestUriPathToken3 {update.json ,show.json ,destroy}

.

.

.

@attribute HasRequestPayload {false}

@attribute HasValidRequestPayload {false}

182

@attribute HasAuthorisationToken {true}

@attribute RequestHeader_Connection {keep -alive}

.

.

.

@attribute ResponseHeader_pragma {no -cache}

@attribute ResponseHeader_server {tsa_l}

@attribute ResponseHeader_status {'200 OK','404 Not Found '}
.

.

.

@attribute ResponseBody_errors.code {not -exist ,144}

@attribute ResponseBody_errors.message {not -exist ,'No status found with that ID.'
}

.

.

.

@attribute ResponseBody_user.id string

@attribute ResponseBody_user.id_str string

.

.

.

@attribute ResponseBody_user.verified {false ,not -exist}

@attribute HasImmediatePreviousTransaction {false ,true}

@attribute HasImmediatePreviousTransactionSucceeded {false ,true}

@attribute ImmediatelyPreviousStatusCode {not -exist ,200 ,404}

@attribute ImmediatelyPreviousMethod {not -exist ,POST ,GET}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToCreate {false ,

true}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToRead {false ,true

}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate {false}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToDelete {false ,

true}

@attribute HasSuccessfulCreateOperationOccurredBefore {false ,true}

@attribute HasSuccessfulReadOperationOccurredBefore {false ,true}

@attribute HasSuccessfulUpdateOperationOccurredBefore {false}

@attribute HasSuccessfulDeleteOperationOccurredBefore {false ,true}

@data

POST ,200,https ,api.twitter.com ,1.1, statuses ,update.json ,not -exist ,not -exist ,not -

exist ,status=WeZxBzRvxI ,not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,

false ,false ,true ,keep -alive ,17, application/x-www -form -urlencoded ,api.twitter.

com ,'Apache -HttpClient /4.5.5 (Java /1.8.0 _131)','no-cache , no -store , must -

revalidate , pre -check=0, post -check=0','attachment; filename=json.json' ,2240,
application/json;charset=utf -8,'Tue , 12 Jun 2018 02 :44:20 GMT','Tue , 31 Mar

1981 05 :00:00 GMT','Tue , 12 Jun 2018 02 :44:20 GMT',no-cache ,tsa_l ,'200 OK',
max -age =631138519 , e33e2c761417500910572dfc5cf2aff9 ,nosniff ,SAMEORIGIN ,not -

exist ,not -exist ,not -exist ,299 ,003 a698700d60804 ,BouncerCompliant ,'1; mode=

block; report=https: // twitter.com/i/xss_report ',null ,null ,'Tue Jun 12 02

:44:20 +0000 2018' ,[],[],[],[],not -exist ,not -exist ,0,false ,null
,1006366562146611200 ,1006366562146611200 , null ,null ,null ,null ,null ,false ,eu,

null ,0,false ,WeZxBzRvxI ,false ,false ,'Wed Mar 07 09 :41:33 +0000 2012',false ,
false ,?,64,false ,185,false ,249,true ,false ,517417816 ,517417816 , false ,false ,en

,3,Kurunegala ,'Thilini Bhagya ',false ,1A1B1F ,http://abs.twimg.com/images/
themes/theme9/bg.gif ,https: //abs.twimg.com/images/themes/theme9/bg.gif ,false ,

https: //pbs.twimg.com/profile_banners /517417816/1399047954 , http: //pbs.twimg.

com/profile_images /950100192048562176/ LKr7Ay21_normal.jpg ,https: //pbs.twimg.

com/profile_images /950100192048562176/ LKr7Ay21_normal.jpg ,3E4547 ,FFFFFF

,252429 ,666666 , true ,false ,bhagyasl ,495,null ,none ,http://t.co/sQduiwqJiy ,null ,

false ,false ,false ,not -exist ,not -exist ,false ,false ,false ,false ,false ,false ,

false ,false

B.2.3 ARFF File for Google Tasks

@relation google tasks

@attribute RequestMethod {POST ,GET ,PATCH ,DELETE}

@attribute ResponseStatusCode numeric

@attribute RequestUriSchema {https}

@attribute RequestUriHost {www.googleapis.com}

183

@attribute RequestUriPathToken1 {tasks}

@attribute RequestUriPathToken2 {v1}

@attribute RequestUriPathToken3 {users}

.

.

.

@attribute HasRequestPayload {true ,false}

@attribute HasValidRequestPayload {true ,false}

@attribute HasAuthorisationToken {true}

@attribute RequestHeader_Connection {keep -alive}

@attribute RequestHeader_Content -Length string

@attribute RequestHeader_Content -Type {application/json ,not -exist}

@attribute RequestHeader_Host {www.googleapis.com}

.

.

.

@attribute ResponseHeader_Pragma {no -cache ,not -exist}

@attribute ResponseHeader_Server {GSE}

.

.

.

@attribute ResponseBody_error.code {not -exist ,404 ,503}

@attribute ResponseBody_error.errors.domain {not -exist ,global}

.

.

.

@attribute ResponseBody_kind {tasks#taskList ,not -exist}

.

.

.

@attribute HasImmediatePreviousTransaction {false ,true}

@attribute HasImmediatePreviousTransactionSucceeded {false ,true}

@attribute ImmediatelyPreviousResponseStatusCode {not -exist ,200 ,204 ,404 ,503}

@attribute ImmediatelyPreviousRequestMethod {not -exist ,POST ,GET ,PATCH ,DELETE}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToCreate {false}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToRead {false}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate {false}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToDelete {false}

@attribute HasSuccessfulCreateOperationOccurredBefore {false ,true}

@attribute HasSuccessfulReadOperationOccurredBefore {false ,true}

@attribute HasSuccessfulUpdateOperationOccurredBefore {false ,true}

@attribute HasSuccessfulDeleteOperationOccurredBefore {false ,true}

@data

POST ,200,https ,www.googleapis.com ,tasks ,v1,users ,@me ,lists ,not -exist ,not -exist ,

not -exist ,not -exist ,not -exist ,not -exist ,not -exist ,true ,true ,true ,keep -alive

,24, application/json ,www.googleapis.com ,'Apache -HttpClient /4.5.5 (Java /1.8.0

_131)',none ,'quic=:443; ma =2592000; v=44,43 ,39,35','no-cache , no-store , max -

age=0, must -revalidate ',not -exist ,'application/json; charset=UTF -8','Tue , 28

Aug 2018 01 :30:29 GMT',not -exist ,'Mon , 01 Jan 1990 00 :00:00 GMT',no-cache ,GSE
,chunked ,'Origin ,Accept -Encoding ',nosniff ,SAMEORIGIN ,'1; mode=block',not -
exist ,not -exist ,not -exist ,not -exist ,not -exist ,FhCqMAsBrrKDkDLKevwtJykQ9I8/

e9GywRc -x6tOAMrNyueWJEEHNx8 ,

MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NTkxMjg3NTgxMjE4NDQyMzow ,tasks#taskList ,https: //

www.googleapis.com/tasks/v1/users/@me/lists/

MTcyMDU1OTI5NDQ0MDQ0ODg3NjI6NTkxMjg3NTgxMjE4NDQyMzow ,glIijN ,2018 -08 -28

T01:30:28 .000Z,false ,false ,not -exist ,not -exist ,false ,false ,false ,false ,false ,

false ,false ,false

.

.

B.2.4 ARFF File for Slack

@relation slack

@attribute RequestMethod {POST}

@attribute ResponseStatusCode numeric

@attribute RequestUriSchema {https}

@attribute RequestUriHost {slack.com}

@attribute RequestUriPathToken1 {api}

@attribute RequestUriPathToken2 {chat.update ,chat.delete ,chat.postMessage}

@attribute RequestUriPathToken3 {not -exist}

184

.

.

.

@attribute HasRequestPayload {false}

@attribute HasValidRequestPayload {false}

@attribute HasAuthorisationToken {true}

@attribute RequestHeader_Connection {keep -alive}

@attribute RequestHeader_Content -Length numeric

@attribute RequestHeader_Content -Type {application/x-www -form -urlencoded ,not -

exist}

@attribute RequestHeader_Host {slack.com}

.

.

.

@attribute ResponseHeader_Pragma {no -cache}

@attribute ResponseHeader_Referrer -Policy {no -referrer}

@attribute ResponseHeader_Server {Apache}

.

.

.

@attribute ResponseHeader_Cache -Control {'private , no-cache , no -store , must -

revalidate '}
.

.

.

@attribute ResponseBody_channel {not -exist ,CCGRWTRKQ}

@attribute ResponseBody_error {message_not_found ,not -exist}

@attribute ResponseBody_message.bot_id {not -exist ,BCEPNCQDN}

.

.

.

@attribute ResponseBody_message.type {message ,not -exist}

@attribute ResponseBody_message.user {UC8J6APLN ,not -exist}

@attribute ResponseBody_ok {true ,false}

.

.

.

@attribute HasImmediatePreviousTransaction {false ,true}

@attribute HasImmediatePreviousTransactionSucceeded {false ,true}

@attribute ImmediatelyPreviousResponseStatusCode {not -exist ,200}

@attribute ImmediatelyPreviousRequestMethod {not -exist ,POST}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToCreate {false ,

true}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToRead {false}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate {false ,

true}

@attribute HasURLInImmediatelyPreviousTransactionContainsATokenToDelete {false ,

true}

@attribute HasSuccessfulCreateOperationOccurredBefore {false ,true}

@attribute HasSuccessfulReadOperationOccurredBefore {false}

@attribute HasSuccessfulUpdateOperationOccurredBefore {false ,true}

@attribute HasSuccessfulDeleteOperationOccurredBefore {false ,true}

@data

POST ,200,https ,slack.com ,api ,chat.postMessage ,not -exist ,not -exist ,not -exist ,not -

exist ,token=xoxp -415149719555 -416618363702 -422804431936 -

b30a935a430030bec72e399b896b0bcc ,channel=CCGRWTRKQ ,text=GhyIQ ,not -exist ,not -

exist ,not -exist ,false ,false ,true ,keep -alive ,111, application/x-www -form -

urlencoded ,slack.com ,'Apache -HttpClient /4.5.5 (Java /1.8.0 _131)',*,'private ,
no-cache , no-store , must -revalidate ',keep -alive ,'application/json; charset=

utf -8','Mon , 27 Aug 2018 08 :06:54 GMT','Mon , 26 Jul 1997 05 :00:00 GMT',no-
cache ,no-referrer ,Apache ,'max -age =31536000; includeSubDomains; preload ',
chunked ,Accept -Encoding ,'1.1 60287558223 e50f42a557f7dddcf3385.cloudfront.net

(CloudFront)',chat:write:user ,awo -
YAvO7c1B1qfB9GvcaUZykX59IRx3wRuXIQYnU9XUVCRoGhqlWA ==,'Miss from cloudfront ',
nosniff ,'identify ,channels:write ,chat:write:user ',h,1,bf11c89e -1412 -4457 -9b03
-2755 d06a95a5 ,haproxy -www -sv7g ,0,p,CCGRWTRKQ ,not -exist ,BCEPNCQDN ,not -exist ,

not -exist ,GhyIQ ,1535357214.000300 , message ,UC8J6APLN ,true ,not -exist

,1535357214.000300 , false ,false ,not -exist ,not -exist ,false ,false ,false ,false ,

false ,false ,false ,false

.

.

.

185

B.3 Sub-Datasets of GHTraffic, Twitter, and Slack

Transactions Per Method on Sub-Datasets

Method GHTraffic Twitter Slack

POST 629 2,307 5,245

PATCH 555 - -

GET 357 218 -

HEAD 274 - -

PUT 394 - -

DELETE 221 - -

Transactions Per Response Code on Sub-Datasets

Response Code GHTraffic Twitter Slack

200 472 1,022 5,245

201 354 - -

204 191 - -

400 238 - -

401 280 - -

404 829 1,503 -

422 56 - -

500 10 - -

Accessing Sub-Datasets

• https://zenodo.org/record/4008239/files/sub-ghtraffic-S-2.0.0.zip

• https://zenodo.org/record/4008239/files/sub-twitter-1.0.0.zip

• https://zenodo.org/record/4008239/files/sub-slack-1.0.0.zip

186

https://zenodo.org/record/4008239/files/sub-ghtraffic-S-2.0.0.zip
https://zenodo.org/record/4008239/files/sub-twitter-1.0.0.zip
https://zenodo.org/record/4008239/files/sub-slack-1.0.0.zip

B.4 Sample OWL Knowledge Bases

B.4.1 GHTraffic Knowledge Base Visualised in Protege

187

188

B.4.2 Twitter Knowledge Base Visualised in Protege

189

190

B.4.3 Google Tasks Knowledge Base Visualised in Protege

191

B.4.4 Slack Knowledge Base Visualised in Protege

192

Appendix C

Results

C.1 Sample C4.5 Trees

C.1.1 Trees from C4.5 on GHTraffic

ResponseStatusCode

HasSuccessfulCreateOperationOccurredBefore = false

| HasValidRequestPayload = true

| | RequestMethod = PATCH: 404 (153.0)

| | RequestMethod = DELETE: 201 (0.0)

| | RequestMethod = GET: 201 (0.0)

| | RequestMethod = POST

| | | HasAuthorisationToken = true: 201 (354.0)

| | | HasAuthorisationToken = false: 404 (122.0)

| | RequestMethod = HEAD: 201 (0.0)

| | RequestMethod = PUT: 201 (0.0)

| HasValidRequestPayload = false

| | HasRequestPayload = true: 400 (138.0)

| | HasRequestPayload = false

| | | RequestMethod = PATCH: 404 (0.0)

| | | RequestMethod = DELETE: 404 (109.0)

| | | RequestMethod = GET: 404 (161.0/10.0)

| | | RequestMethod = POST: 422 (15.0)

| | | RequestMethod = HEAD: 404 (171.0)

| | | RequestMethod = PUT: 404 (123.0)

HasSuccessfulCreateOperationOccurredBefore = true

| HasAuthorisationToken = true

| | RequestUriPathToken6 = not -exist

| | | HasRequestPayload = true

| | | | HasValidRequestPayload = true: 200 (173.0)

| | | | HasValidRequestPayload = false: 400 (100.0)

| | | HasRequestPayload = false

| | | | RequestMethod = PATCH: 422 (41.0)

| | | | RequestMethod = DELETE: 200 (0.0)

| | | | RequestMethod = GET: 200 (196.0)

| | | | RequestMethod = POST: 200 (0.0)

| | | | RequestMethod = HEAD: 200 (103.0)

| | | | RequestMethod = PUT: 200 (0.0)

| | RequestUriPathToken6 = lock: 204 (191.0)

| HasAuthorisationToken = false: 401 (280.0)

ResponseHeader Cache-Control

RequestUriPathToken6 = not -exist

| HasAuthorisationToken = true

| | HasValidRequestPayload = true

| | | RequestMethod = PATCH

| | | | HasImmediatePreviousTransactionSucceeded = false: not -exist

(153.0)

193

| | | | HasImmediatePreviousTransactionSucceeded = true: private , max -age

=60 (173.0)

| | | RequestMethod = DELETE: private , max -age =60 (0.0)

| | | RequestMethod = GET: private , max -age=60 (0.0)

| | | RequestMethod = POST: private , max -age=60 (354.0)

| | | RequestMethod = HEAD: private , max -age=60 (0.0)

| | | RequestMethod = PUT: private , max -age=60 (0.0)

| | HasValidRequestPayload = false

| | | HasSuccessfulCreateOperationOccurredBefore = false: not -exist (485.0)

| | | HasSuccessfulCreateOperationOccurredBefore = true

| | | | RequestMethod = PATCH: not -exist (141.0)

| | | | RequestMethod = DELETE: private , max -age=60 (0.0)

| | | | RequestMethod = GET: private , max -age =60 (196.0)

| | | | RequestMethod = POST: private , max -age=60 (0.0)

| | | | RequestMethod = HEAD: private , max -age=60 (103.0)

| | | | RequestMethod = PUT: private , max -age =60 (0.0)

| HasAuthorisationToken = false: not -exist (210.0)

RequestUriPathToken6 = lock: not -exist (615.0)

ResponseHeader Vary

RequestUriPathToken6 = not -exist

| HasAuthorisationToken = true

| | HasValidRequestPayload = true

| | | RequestMethod = PATCH

| | | | HasImmediatePreviousTransactionSucceeded = false: not -exist

(153.0)

| | | | HasImmediatePreviousTransactionSucceeded = true: Accept ,

Authorization , Cookie (173.0)

| | | RequestMethod = DELETE: Accept , Authorization , Cookie (0.0)

| | | RequestMethod = GET: Accept , Authorization , Cookie (0.0)

| | | RequestMethod = POST: Accept , Authorization , Cookie (354.0)

| | | RequestMethod = HEAD: Accept , Authorization , Cookie (0.0)

| | | RequestMethod = PUT: Accept , Authorization , Cookie (0.0)

| | HasValidRequestPayload = false

| | | HasSuccessfulCreateOperationOccurredBefore = false: not -exist (485.0)

| | | HasSuccessfulCreateOperationOccurredBefore = true

| | | | RequestMethod = PATCH: not -exist (141.0)

| | | | RequestMethod = DELETE: Accept , Authorization , Cookie (0.0)

| | | | RequestMethod = GET: Accept , Authorization , Cookie (196.0)

| | | | RequestMethod = POST: Accept , Authorization , Cookie (0.0)

| | | | RequestMethod = HEAD: Accept , Authorization , Cookie (103.0)

| | | | RequestMethod = PUT: Accept , Authorization , Cookie (0.0)

| HasAuthorisationToken = false: not -exist (210.0)

RequestUriPathToken6 = lock: not -exist (615.0)

ResponseHeader X-Accepted-OAuth-Scopes

HasAuthorisationToken = true

| HasSuccessfulCreateOperationOccurredBefore = false

| | HasValidRequestPayload = true

| | | RequestMethod = PATCH: repo (153.0)

| | | RequestMethod = DELETE: public_repo , repo (0.0)

| | | RequestMethod = GET: public_repo , repo (0.0)

| | | RequestMethod = POST: public_repo , repo (354.0)

| | | RequestMethod = HEAD: public_repo , repo (0.0)

| | | RequestMethod = PUT: public_repo , repo (0.0)

| | HasValidRequestPayload = false: repo (717.0)

| HasSuccessfulCreateOperationOccurredBefore = true

| | RequestMethod = PATCH

| | | HasValidRequestPayload = true: public_repo , repo (173.0)

| | | HasValidRequestPayload = false: repo (141.0)

| | RequestMethod = DELETE: public_repo , repo (48.0)

| | RequestMethod = GET: public_repo , repo (196.0)

| | RequestMethod = POST: public_repo , repo (0.0)

| | RequestMethod = HEAD: public_repo , repo (103.0)

| | RequestMethod = PUT: public_repo , repo (143.0)

HasAuthorisationToken = false: not -exist (402.0)

194

ResponseHeader X-OAuth-Scopes

HasAuthorisationToken = true: public_repo (2028.0)

HasAuthorisationToken = false: not -exist (402.0)

ResponseBody assignee.site admin

: not -exist (2430.0/116.0)

ResponseBody assignee.type

: not -exist (2430.0/116.0)

ResponseBody assignees.site admin

: not -exist (2430.0/95.0)

ResponseBody assignees.type

: not -exist (2430.0/95.0)

ResponseBody closed by.avatar url

: not -exist (2430.0/8.0)

ResponseBody closed by.events url

: not -exist (2430.0/8.0)

ResponseBody closed by.followers url

: not -exist (2430.0/8.0)

ResponseBody closed by.following url

: not -exist (2430.0/8.0)

ResponseBody closed by.gists url

: not -exist (2430.0/8.0)

ResponseBody closed by.html url

: not -exist (2430.0/8.0)

ResponseBody closed by.id

: not -exist (2430.0/8.0)

ResponseBody closed by.login

: not -exist (2430.0/8.0)

ResponseBody closed by.organizations url

: not -exist (2430.0/8.0)

ResponseBody closed by.received events url

: not -exist (2430.0/8.0)

195

ResponseBody closed by.repos url

: not -exist (2430.0/8.0)

ResponseBody closed by.site admin

: not -exist (2430.0/8.0)

ResponseBody closed by.starred url

: not -exist (2430.0/8.0)

ResponseBody closed by.subscriptions url

: not -exist (2430.0/8.0)

ResponseBody closed by.type

: not -exist (2430.0/8.0)

ResponseBody documentation url

HasAuthorisationToken = true

| HasSuccessfulCreateOperationOccurredBefore = false

| | RequestMethod = PATCH: https: // developer.github.com/v3 (153.0)

| | RequestMethod = DELETE: https: // developer.github.com/v3 (109.0)

| | RequestMethod = GET: https: // developer.github.com/v3 (161.0/10.0)

| | RequestMethod = POST

| | | HasValidRequestPayload = true: not -exist (354.0)

| | | HasValidRequestPayload = false: https: // developer.github.com/v3/

issues /#create -an -issue (153.0)

| | RequestMethod = HEAD: not -exist (171.0)

| | RequestMethod = PUT: https: // developer.github.com/v3 (123.0)

| HasSuccessfulCreateOperationOccurredBefore = true

| | RequestMethod = PATCH

| | | HasValidRequestPayload = true: not -exist (173.0)

| | | HasValidRequestPayload = false: https: // developer.github.com/v3/

issues /#edit -an-issue (141.0)

| | RequestMethod = DELETE: not -exist (48.0)

| | RequestMethod = GET: not -exist (196.0)

| | RequestMethod = POST: not -exist (0.0)

| | RequestMethod = HEAD: not -exist (103.0)

| | RequestMethod = PUT: not -exist (143.0)

HasAuthorisationToken = false

| RequestMethod = PATCH: https: // developer.github.com/v3/issues /#edit -an -issue

(88.0)

| RequestMethod = DELETE: https: // developer.github.com/v3/issues /#unlock -an-

issue (64.0)

| RequestMethod = GET: https: // developer.github.com/v3/issues /#lock -an-issue

(0.0)

| RequestMethod = POST: https: // developer.github.com/v3/issues /#create -an-issue

(122.0)

| RequestMethod = HEAD: https: // developer.github.com/v3/issues /#lock -an-issue

(0.0)

| RequestMethod = PUT: https: // developer.github.com/v3/issues /#lock -an-issue

(128.0)

ResponseBody locked

HasValidRequestPayload = true

| HasAuthorisationToken = true

| | RequestMethod = PATCH

| | | HasImmediatePreviousTransactionSucceeded = false: not -exist (153.0)

| | | HasImmediatePreviousTransactionSucceeded = true: false (173.0)

| | RequestMethod = DELETE: false (0.0)

| | RequestMethod = GET: false (0.0)

| | RequestMethod = POST: false (354.0)

| | RequestMethod = HEAD: false (0.0)

196

| | RequestMethod = PUT: false (0.0)

| HasAuthorisationToken = false: not -exist (122.0)

HasValidRequestPayload = false

| RequestMethod = PATCH: not -exist (229.0)

| RequestMethod = DELETE: not -exist (221.0)

| RequestMethod = GET

| | HasSuccessfulCreateOperationOccurredBefore = false: not -exist (161.0)

| | HasSuccessfulCreateOperationOccurredBefore = true: false (196.0)

| RequestMethod = POST: not -exist (153.0)

| RequestMethod = HEAD: not -exist (274.0)

| RequestMethod = PUT: not -exist (394.0)

ResponseBody message

HasAuthorisationToken = true

| HasSuccessfulCreateOperationOccurredBefore = false

| | RequestMethod = PATCH: Not Found (153.0)

| | RequestMethod = DELETE: Not Found (109.0)

| | RequestMethod = GET: Not Found (161.0/10.0)

| | RequestMethod = POST

| | | HasValidRequestPayload = true: not -exist (354.0)

| | | HasValidRequestPayload = false

| | | | HasRequestPayload = true: Problems parsing JSON (138.0)

| | | | HasRequestPayload = false: Invalid request (15.0)

| | RequestMethod = HEAD: not -exist (171.0)

| | RequestMethod = PUT: Not Found (123.0)

| HasSuccessfulCreateOperationOccurredBefore = true

| | HasRequestPayload = true

| | | HasValidRequestPayload = true: not -exist (173.0)

| | | HasValidRequestPayload = false: Problems parsing JSON (100.0)

| | HasRequestPayload = false

| | | RequestMethod = PATCH: Invalid request (41.0)

| | | RequestMethod = DELETE: not -exist (48.0)

| | | RequestMethod = GET: not -exist (196.0)

| | | RequestMethod = POST: not -exist (0.0)

| | | RequestMethod = HEAD: not -exist (103.0)

| | | RequestMethod = PUT: not -exist (143.0)

HasAuthorisationToken = false

| HasValidRequestPayload = true: Not Found (122.0)

| HasValidRequestPayload = false: Requires authentication (280.0)

ResponseBody milestone.creator.avatar url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.events url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.followers url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.following url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.gists url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.html url

: not -exist (2430.0/112.0)

197

ResponseBody milestone.creator.id

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.login

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.organizations url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.received events url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.repos url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.site admin

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.starred url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.subscriptions url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.type

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.url

: not -exist (2430.0/112.0)

ResponseBody milestone.due on

: not -exist (2430.0/112.0)

ResponseBody milestone.open issues

: not -exist (2430.0/112.0)

ResponseBody milestone.state

: not -exist (2430.0/112.0)

ResponseBody state

RequestBody_state = closed

| HasImmediatePreviousTransactionSucceeded = false: not -exist (173.0)

| HasImmediatePreviousTransactionSucceeded = true

| | HasValidRequestPayload = true: closed (173.0)

| | HasValidRequestPayload = false: not -exist (68.0)

RequestBody_state = not -exist

| HasValidRequestPayload = true

| | HasAuthorisationToken = true: open (354.0)

198

| | HasAuthorisationToken = false: not -exist (122.0)

| HasValidRequestPayload = false

| | RequestMethod = PATCH: not -exist (141.0)

| | RequestMethod = DELETE: not -exist (221.0)

| | RequestMethod = GET

| | | HasSuccessfulCreateOperationOccurredBefore = false: not -exist (161.0)

| | | HasSuccessfulCreateOperationOccurredBefore = true

| | | | HasSuccessfulUpdateOperationOccurredBefore = false: open

(84.0/2.0)

| | | | HasSuccessfulUpdateOperationOccurredBefore = true

| | | | | ImmediatelyPreviousStatusCode = not -exist: open (0.0)

| | | | | ImmediatelyPreviousStatusCode = 404: open (0.0)

| | | | | ImmediatelyPreviousStatusCode = 400

| | | | | | HasSuccessfulReadOperationOccurredBefore = false: closed

(5.0/1.0)

| | | | | | HasSuccessfulReadOperationOccurredBefore = true: open

(3.0/1.0)

| | | | | ImmediatelyPreviousStatusCode = 201: open (0.0)

| | | | | ImmediatelyPreviousStatusCode = 200: closed (39.0/7.0)

| | | | | ImmediatelyPreviousStatusCode = 401: open (16.0/6.0)

| | | | | ImmediatelyPreviousStatusCode = 204

| | | | | | ImmediatelyPreviousMethod = not -exist: open (0.0)

| | | | | | ImmediatelyPreviousMethod = PATCH: open (0.0)

| | | | | | ImmediatelyPreviousMethod = DELETE: closed (4.0/1.0)

| | | | | | ImmediatelyPreviousMethod = GET: open (0.0)

| | | | | | ImmediatelyPreviousMethod = POST: open (0.0)

| | | | | | ImmediatelyPreviousMethod = HEAD: open (0.0)

| | | | | | ImmediatelyPreviousMethod = PUT: open (41.0/7.0)

| | | | | ImmediatelyPreviousStatusCode = 500: open (0.0)

| | | | | ImmediatelyPreviousStatusCode = 422: open (4.0/1.0)

| | RequestMethod = POST: not -exist (153.0)

| | RequestMethod = HEAD: not -exist (274.0)

| | RequestMethod = PUT: not -exist (394.0)

ResponseBody user.site admin

HasValidRequestPayload = true

| HasAuthorisationToken = true

| | RequestMethod = PATCH

| | | HasImmediatePreviousTransactionSucceeded = false: not -exist (153.0)

| | | HasImmediatePreviousTransactionSucceeded = true: false (173.0)

| | RequestMethod = DELETE: false (0.0)

| | RequestMethod = GET: false (0.0)

| | RequestMethod = POST: false (354.0)

| | RequestMethod = HEAD: false (0.0)

| | RequestMethod = PUT: false (0.0)

| HasAuthorisationToken = false: not -exist (122.0)

HasValidRequestPayload = false

| RequestMethod = PATCH: not -exist (229.0)

| RequestMethod = DELETE: not -exist (221.0)

| RequestMethod = GET

| | HasSuccessfulCreateOperationOccurredBefore = false: not -exist (161.0)

| | HasSuccessfulCreateOperationOccurredBefore = true: false (196.0)

| RequestMethod = POST: not -exist (153.0)

| RequestMethod = HEAD: not -exist (274.0)

| RequestMethod = PUT: not -exist (394.0)

ResponseBody user.type

HasValidRequestPayload = true

| HasAuthorisationToken = true

| | RequestMethod = PATCH

| | | HasImmediatePreviousTransactionSucceeded = false: not -exist (153.0)

| | | HasImmediatePreviousTransactionSucceeded = true: User (173.0)

| | RequestMethod = DELETE: User (0.0)

| | RequestMethod = GET: User (0.0)

| | RequestMethod = POST: User (354.0)

| | RequestMethod = HEAD: User (0.0)

| | RequestMethod = PUT: User (0.0)

| HasAuthorisationToken = false: not -exist (122.0)

HasValidRequestPayload = false

| RequestMethod = PATCH: not -exist (229.0)

199

| RequestMethod = DELETE: not -exist (221.0)

| RequestMethod = GET

| | HasSuccessfulCreateOperationOccurredBefore = false: not -exist (161.0)

| | HasSuccessfulCreateOperationOccurredBefore = true: User (196.0)

| RequestMethod = POST: not -exist (153.0)

| RequestMethod = HEAD: not -exist (274.0)

| RequestMethod = PUT: not -exist (394.0)

C.1.2 Trees from C4.5 on Twitter

ResponseStatusCode

RequestHeader_Content -Type = application/x-www -form -urlencoded: 200 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: 404 (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: 404 (0.0)

| | | ImmediatelyPreviousMethod = POST: 404 (513.0)

| | | ImmediatelyPreviousMethod = GET: 200 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 200

(547.0)

ResponseHeader status

RequestHeader_Content -Type = application/x-www -form -urlencoded: 200 OK (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: 404 Not Found (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: 404 Not Found (0.0)

| | | ImmediatelyPreviousMethod = POST: 404 Not Found (513.0)

| | | ImmediatelyPreviousMethod = GET: 200 OK (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 200 OK

(547.0)

ResponseHeader x-rate-limit-limit

RequestMethod = POST: not -exist (20445.0)

RequestMethod = GET: 900 (5608.0)

ResponseBody contributors

RequestHeader_Content -Type = application/x-www -form -urlencoded: null (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: null (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: null

(547.0)

ResponseBody coordinates

RequestHeader_Content -Type = application/x-www -form -urlencoded: null (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: null (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: null

(547.0)

200

ResponseBody entities.hashtags

RequestHeader_Content -Type = application/x-www -form -urlencoded: [] (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: [] (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: []

(547.0)

ResponseBody entities.symbols

RequestHeader_Content -Type = application/x-www -form -urlencoded: [] (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: [] (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: []

(547.0)

ResponseBody entities.urls

RequestHeader_Content -Type = application/x-www -form -urlencoded: [] (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: [] (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: []

(547.0)

ResponseBody entities.user mentions

RequestHeader_Content -Type = application/x-www -form -urlencoded: [] (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: [] (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: []

(547.0)

ResponseBody errors.code

RequestHeader_Content -Type = application/x-www -form -urlencoded: not -exist (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: 144 (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: 144 (0.0)

| | | ImmediatelyPreviousMethod = POST: 144 (513.0)

| | | ImmediatelyPreviousMethod = GET: not -exist (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: not -

exist (547.0)

201

ResponseBody errors.message

RequestHeader_Content -Type = application/x-www -form -urlencoded: not -exist (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: No status found with

that ID. (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: No status found with that ID.

(0.0)

| | | ImmediatelyPreviousMethod = POST: No status found with that ID.

(513.0)

| | | ImmediatelyPreviousMethod = GET: not -exist (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: not -

exist (547.0)

ResponseBody favorite count

RequestHeader_Content -Type = application/x-www -form -urlencoded: 0 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: 0 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 0

(547.0)

ResponseBody favorited

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

ResponseBody geo

RequestHeader_Content -Type = application/x-www -form -urlencoded: null (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: null (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: null

(547.0)

ResponseBody in reply to screen name

RequestHeader_Content -Type = application/x-www -form -urlencoded: null (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: null (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: null

(547.0)

202

ResponseBody in reply to status id

RequestHeader_Content -Type = application/x-www -form -urlencoded: null (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: null (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: null

(547.0)

ResponseBody in reply to status id str

RequestHeader_Content -Type = application/x-www -form -urlencoded: null (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: null (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: null

(547.0)

ResponseBody in reply to user id

RequestHeader_Content -Type = application/x-www -form -urlencoded: null (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: null (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: null

(547.0)

ResponseBody in reply to user id str

RequestHeader_Content -Type = application/x-www -form -urlencoded: null (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: null (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: null

(547.0)

ResponseBody is quote status

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

203

ResponseBody place

RequestHeader_Content -Type = application/x-www -form -urlencoded: null (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: null (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: null

(547.0)

ResponseBody retweet count

RequestHeader_Content -Type = application/x-www -form -urlencoded: 0 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: 0 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 0

(547.0)

ResponseBody retweeted

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

ResponseBody truncated

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

ResponseBody user.contributors enabled

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

204

ResponseBody user.created at

RequestHeader_Content -Type = application/x-www -form -urlencoded: Wed Mar 07 09

:41:33 +0000 2012 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: Wed Mar 07 09 :41:33 +0000 2012

(101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: Wed Mar

07 09 :41:33 +0000 2012 (547.0)

ResponseBody user.default profile

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

ResponseBody user.default profile image

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

ResponseBody user.favourites count

RequestHeader_Content -Type = application/x-www -form -urlencoded: 64 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: 64 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 64

(547.0)

ResponseBody user.follow request sent

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

205

ResponseBody user.followers count

RequestHeader_Content -Type = application/x-www -form -urlencoded: 185 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: 185 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 185

(547.0)

ResponseBody user.following

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

ResponseBody user.friends count

RequestHeader_Content -Type = application/x-www -form -urlencoded: 249 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: 249 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 249

(547.0)

ResponseBody user.geo enabled

RequestHeader_Content -Type = application/x-www -form -urlencoded: true (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: true (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: true

(547.0)

ResponseBody user.has extended profile

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

206

ResponseBody user.id

RequestHeader_Content -Type = application/x-www -form -urlencoded: 517417816 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: 517417816 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true:

517417816 (547.0)

ResponseBody user.id str

RequestHeader_Content -Type = application/x-www -form -urlencoded: 517417816 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: 517417816 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true:

517417816 (547.0)

ResponseBody user.is translation enabled

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

ResponseBody user.is translator

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

ResponseBody user.lang

RequestHeader_Content -Type = application/x-www -form -urlencoded: en (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: en (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: en

(547.0)

207

ResponseBody user.listed count

RequestHeader_Content -Type = application/x-www -form -urlencoded: 3 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: 3 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 3

(547.0)

ResponseBody user.location

RequestHeader_Content -Type = application/x-www -form -urlencoded: Kurunegala

(867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: Kurunegala (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true:

Kurunegala (547.0)

ResponseBody user.name

RequestHeader_Content -Type = application/x-www -form -urlencoded: Thilini Bhagya

(867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: Thilini Bhagya (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: Thilini

Bhagya (547.0)

ResponseBody user.notifications

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

ResponseBody user.profile background color

RequestHeader_Content -Type = application/x-www -form -urlencoded: 1A1B1F (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: 1A1B1F (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 1A1B1F

(547.0)

208

ResponseBody user.profile background image url

RequestHeader_Content -Type = application/x-www -form -urlencoded: http: //abs.twimg.

com/images/themes/theme9/bg.gif (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: http://abs.twimg.com/images/themes/

theme9/bg.gif (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: http://

abs.twimg.com/images/themes/theme9/bg.gif (547.0)

ResponseBody user.profile background image url https

RequestHeader_Content -Type = application/x-www -form -urlencoded: https: //abs.twimg

.com/images/themes/theme9/bg.gif (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: https: //abs.twimg.com/images/themes/

theme9/bg.gif (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: https: //

abs.twimg.com/images/themes/theme9/bg.gif (547.0)

ResponseBody user.profile background tile

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

ResponseBody user.profile banner url

RequestHeader_Content -Type = application/x-www -form -urlencoded: https: //pbs.twimg

.com/profile_banners /517417816/1399047954 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: https: //pbs.twimg.com/

profile_banners /517417816/1399047954 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: https: //

pbs.twimg.com/profile_banners /517417816/1399047954 (547.0)

ResponseBody user.profile image url

RequestHeader_Content -Type = application/x-www -form -urlencoded: http: //pbs.twimg.

com/profile_images /950100192048562176/ LKr7Ay21_normal.jpg (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: http://pbs.twimg.com/profile_images

/950100192048562176/ LKr7Ay21_normal.jpg (101.0)

209

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: http://

pbs.twimg.com/profile_images /950100192048562176/ LKr7Ay21_normal.jpg (547.0)

ResponseBody user.profile image url https

RequestHeader_Content -Type = application/x-www -form -urlencoded: https: //pbs.twimg

.com/profile_images /950100192048562176/ LKr7Ay21_normal.jpg (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: https: //pbs.twimg.com/profile_images

/950100192048562176/ LKr7Ay21_normal.jpg (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: https: //

pbs.twimg.com/profile_images /950100192048562176/ LKr7Ay21_normal.jpg (547.0)

ResponseBody user.profile link color

RequestHeader_Content -Type = application/x-www -form -urlencoded: 3E4547 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: 3E4547 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 3E4547

(547.0)

ResponseBody user.profile sidebar border color

RequestHeader_Content -Type = application/x-www -form -urlencoded: FFFFFF (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: FFFFFF (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: FFFFFF

(547.0)

ResponseBody user.profile sidebar fill color

RequestHeader_Content -Type = application/x-www -form -urlencoded: 252429 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: 252429 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 252429

(547.0)

ResponseBody user.profile text color

RequestHeader_Content -Type = application/x-www -form -urlencoded: 666666 (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: 666666 (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: 666666

(547.0)

210

ResponseBody user.profile use background image

RequestHeader_Content -Type = application/x-www -form -urlencoded: true (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: true (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: true

(547.0)

ResponseBody user.protected

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

ResponseBody user.screen name

RequestHeader_Content -Type = application/x-www -form -urlencoded: bhagyasl (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: bhagyasl (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: bhagyasl

(547.0)

ResponseBody user.time zone

RequestHeader_Content -Type = application/x-www -form -urlencoded: null (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: null (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: null

(547.0)

ResponseBody user.translator type

RequestHeader_Content -Type = application/x-www -form -urlencoded: none (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: none (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: none

(547.0)

211

ResponseBody user.url

RequestHeader_Content -Type = application/x-www -form -urlencoded: http: //t.co/

sQduiwqJiy (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: http://t.co/sQduiwqJiy (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: http://t

.co/sQduiwqJiy (547.0)

ResponseBody user.utc offset

RequestHeader_Content -Type = application/x-www -form -urlencoded: null (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: null (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: null

(547.0)

ResponseBody user.verified

RequestHeader_Content -Type = application/x-www -form -urlencoded: false (867.0)

RequestHeader_Content -Type = not -exist

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

| | HasImmediatePreviousTransactionSucceeded = true

| | | ImmediatelyPreviousMethod = not -exist: not -exist (0.0)

| | | ImmediatelyPreviousMethod = POST: not -exist (513.0)

| | | ImmediatelyPreviousMethod = GET: false (101.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true: false

(547.0)

C.1.3 Trees from C4.5 on Google Tasks

ResponseStatusCode

HasSuccessfulDeleteOperationOccurredBefore = false

| RequestMethod = POST: 200 (1124.0)

| RequestMethod = GET: 200 (1005.0/3.0)

| RequestMethod = PATCH: 200 (485.0/4.0)

| RequestMethod = DELETE: 204 (606.0)

HasSuccessfulDeleteOperationOccurredBefore = true: 404 (1482.0/4.0)

ResponseHeader Accept-Ranges

HasRequestPayload = true: none (2206.0)

HasRequestPayload = false

| HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (1611.0/3.0)

| HasSuccessfulDeleteOperationOccurredBefore = true: none (885.0)

ResponseHeader Cache-Control

HasSuccessfulDeleteOperationOccurredBefore = false

| RequestMethod = POST: no-cache , no-store , max -age=0, must -revalidate (1124.0)

| RequestMethod = GET: private , max -age=0, must -revalidate , no-transform

(1005.0/3.0)

| RequestMethod = PATCH: no-cache , no -store , max -age=0, must -revalidate

(485.0/4.0)

| RequestMethod = DELETE: no-cache , no -store , max -age=0, must -revalidate

(606.0)

HasSuccessfulDeleteOperationOccurredBefore = true: private , max -age=0 (1482.0)

212

ResponseHeader Content-Type

RequestMethod = POST: application/json; charset=UTF -8 (1124.0)

RequestMethod = GET: application/json; charset=UTF -8 (1367.0)

RequestMethod = PATCH: application/json; charset=UTF -8 (1082.0)

RequestMethod = DELETE

| HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (606.0)

| HasSuccessfulDeleteOperationOccurredBefore = true: application/json; charset=

UTF -8 (523.0)

ResponseHeader Pragma

HasSuccessfulDeleteOperationOccurredBefore = false

| RequestMethod = POST: no-cache (1124.0)

| RequestMethod = GET: not -exist (1005.0)

| RequestMethod = PATCH: no-cache (485.0/4.0)

| RequestMethod = DELETE: no-cache (606.0)

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (1482.0)

ResponseHeader Transfer-Encoding

HasRequestPayload = true: chunked (2206.0)

HasRequestPayload = false

| HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (1611.0/3.0)

| HasSuccessfulDeleteOperationOccurredBefore = true: chunked (885.0)

ResponseHeader Vary

HasRequestPayload = true: Origin ,Accept -Encoding (2206.0)

HasRequestPayload = false

| HasSuccessfulDeleteOperationOccurredBefore = false: X-Origin (1611.0/3.0)

| HasSuccessfulDeleteOperationOccurredBefore = true: Origin ,Accept -Encoding

(885.0)

ResponseHeader X-Content-Type-Options

RequestMethod = POST: nosniff (1124.0)

RequestMethod = GET: nosniff (1367.0)

RequestMethod = PATCH: nosniff (1082.0)

RequestMethod = DELETE

| HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (606.0)

| HasSuccessfulDeleteOperationOccurredBefore = true: nosniff (523.0)

ResponseHeader X-Frame-Options

RequestMethod = POST: SAMEORIGIN (1124.0)

RequestMethod = GET: SAMEORIGIN (1367.0)

RequestMethod = PATCH: SAMEORIGIN (1082.0)

RequestMethod = DELETE

| HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (606.0)

| HasSuccessfulDeleteOperationOccurredBefore = true: SAMEORIGIN (523.0)

ResponseHeader X-XSS-Protection

RequestMethod = POST: 1; mode=block (1124.0)

RequestMethod = GET: 1; mode=block (1367.0)

RequestMethod = PATCH: 1; mode=block (1082.0)

RequestMethod = DELETE

| HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (606.0)

| HasSuccessfulDeleteOperationOccurredBefore = true: 1; mode=block (523.0)

ResponseBody error.code

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (3220.0/7.0)

HasSuccessfulDeleteOperationOccurredBefore = true: 404 (1482.0/4.0)

213

ResponseBody error.errors.domain

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (3220.0/7.0)

HasSuccessfulDeleteOperationOccurredBefore = true: global (1482.0)

ResponseBody error.errors.message

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (3220.0/7.0)

HasSuccessfulDeleteOperationOccurredBefore = true: NotFound (1482.0/4.0)

ResponseBody error.errors.reason

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (3220.0/7.0)

HasSuccessfulDeleteOperationOccurredBefore = true: notFound (1482.0/4.0)

ResponseBody error.message

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (3220.0/7.0)

HasSuccessfulDeleteOperationOccurredBefore = true: NotFound (1482.0/4.0)

ResponseBody kind

HasSuccessfulDeleteOperationOccurredBefore = false

| RequestMethod = POST: tasks#taskList (1124.0)

| RequestMethod = GET: tasks#taskList (1005.0/3.0)

| RequestMethod = PATCH: tasks#taskList (485.0/4.0)

| RequestMethod = DELETE: not -exist (606.0)

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (1482.0)

C.1.4 Trees from C4.5 on Slack

ResponseHeader x-slack-router

: p (17422.0/6359.0)

ResponseBody channel

HasSuccessfulDeleteOperationOccurredBefore = false

| HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = false

| | RequestUriPathToken2 = chat.update

| | | HasImmediatePreviousTransaction = false: not -exist (309.0)

| | | HasImmediatePreviousTransaction = true: CCGRWTRKQ (1292.0)

| | RequestUriPathToken2 = chat.delete

| | | HasImmediatePreviousTransaction = false: not -exist (206.0)

| | | HasImmediatePreviousTransaction = true: CCGRWTRKQ (1826.0)

| | RequestUriPathToken2 = chat.postMessage: CCGRWTRKQ (3985.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = true

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (335.0)

| | HasImmediatePreviousTransactionSucceeded = true: CCGRWTRKQ (540.0)

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (8929.0)

ResponseBody error

HasSuccessfulDeleteOperationOccurredBefore = false

| HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = false

| | RequestUriPathToken2 = chat.update

| | | HasImmediatePreviousTransaction = false: message_not_found (309.0)

| | | HasImmediatePreviousTransaction = true: not -exist (1292.0)

| | RequestUriPathToken2 = chat.delete

| | | HasImmediatePreviousTransaction = false: message_not_found (206.0)

| | | HasImmediatePreviousTransaction = true: not -exist (1826.0)

| | RequestUriPathToken2 = chat.postMessage: not -exist (3985.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = true

| | HasImmediatePreviousTransactionSucceeded = false: message_not_found

(335.0)

| | HasImmediatePreviousTransactionSucceeded = true: not -exist (540.0)

HasSuccessfulDeleteOperationOccurredBefore = true: message_not_found (8929.0)

214

ResponseBody message.bot id

HasSuccessfulDeleteOperationOccurredBefore = false

| RequestUriPathToken2 = chat.update

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (392.0)

| | HasImmediatePreviousTransactionSucceeded = true: BCEPNCQDN (1341.0)

| RequestUriPathToken2 = chat.delete: not -exist (2775.0)

| RequestUriPathToken2 = chat.postMessage: BCEPNCQDN (3985.0)

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (8929.0)

ResponseBody message.edited.user

HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = false: not -exist

(12564.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = true

| HasImmediatePreviousTransactionSucceeded = false: not -exist (4318.0)

| HasImmediatePreviousTransactionSucceeded = true

| | RequestUriPathToken2 = chat.update: UC8J6APLN (49.0)

| | RequestUriPathToken2 = chat.delete: not -exist (491.0)

| | RequestUriPathToken2 = chat.postMessage: not -exist (0.0)

ResponseBody message.type

HasSuccessfulDeleteOperationOccurredBefore = false

| RequestUriPathToken2 = chat.update

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (392.0)

| | HasImmediatePreviousTransactionSucceeded = true: message (1341.0)

| RequestUriPathToken2 = chat.delete: not -exist (2775.0)

| RequestUriPathToken2 = chat.postMessage: message (3985.0)

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (8929.0)

ResponseBody message.user

HasSuccessfulDeleteOperationOccurredBefore = false

| RequestUriPathToken2 = chat.update

| | HasImmediatePreviousTransactionSucceeded = false: not -exist (392.0)

| | HasImmediatePreviousTransactionSucceeded = true: UC8J6APLN (1341.0)

| RequestUriPathToken2 = chat.delete: not -exist (2775.0)

| RequestUriPathToken2 = chat.postMessage: UC8J6APLN (3985.0)

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (8929.0)

ResponseBody ok

HasSuccessfulDeleteOperationOccurredBefore = false

| HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = false

| | RequestUriPathToken2 = chat.update

| | | HasImmediatePreviousTransaction = false: false (309.0)

| | | HasImmediatePreviousTransaction = true: true (1292.0)

| | RequestUriPathToken2 = chat.delete

| | | HasImmediatePreviousTransaction = false: false (206.0)

| | | HasImmediatePreviousTransaction = true: true (1826.0)

| | RequestUriPathToken2 = chat.postMessage: true (3985.0)

| HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = true

| | HasImmediatePreviousTransactionSucceeded = false: false (335.0)

| | HasImmediatePreviousTransactionSucceeded = true: true (540.0)

HasSuccessfulDeleteOperationOccurredBefore = true: false (8929.0)

215

C.2 Sample RIPPER Rulesets

C.2.1 Rules from RIPPER on GHTraffic

ResponseStatusCode

(RequestMethod = PATCH) and

(HasRequestPayload = false) => ResponseStatusCode =422 (41.0/0.0)

(RequestMethod = POST) and

(HasRequestPayload = false) => ResponseStatusCode =422 (15.0/0.0)

(RequestUriPathToken6 = lock) and

(HasSuccessfulCreateOperationOccurredBefore = true) and

(HasAuthorisationToken = true) => ResponseStatusCode =204 (191.0/0.0)

(HasRequestPayload = true) and

(HasValidRequestPayload = false) and

(HasAuthorisationToken = true) => ResponseStatusCode =400 (238.0/0.0)

(HasAuthorisationToken = false) and

(HasValidRequestPayload = false) => ResponseStatusCode =401 (280.0/0.0)

(RequestMethod = POST) and

(HasAuthorisationToken = true) => ResponseStatusCode =201 (354.0/0.0)

(HasSuccessfulCreateOperationOccurredBefore = true) => ResponseStatusCode =200

(472.0/0.0)

=> ResponseStatusCode =404 (839.0/10.0)

ResponseHeader Cache-Control

(HasValidRequestPayload = true) and

(HasAuthorisationToken = true) and

(RequestMethod = POST) => ResponseHeader_Cache -Control=private , max -age=60

(354.0/0.0)

(HasSuccessfulCreateOperationOccurredBefore = true) and

(RequestUriPathToken6 = not -exist) and (HasRequestPayload = false) and

(RequestMethod = GET) => ResponseHeader_Cache -Control=private , max -age=60

(196.0/0.0)

(ImmediatelyPreviousStatusCode = 201) and

(HasValidRequestPayload = true) => ResponseHeader_Cache -Control=private , max -age

=60 (173.0/0.0)

(RequestMethod = HEAD) and

(HasSuccessfulCreateOperationOccurredBefore = true) => ResponseHeader_Cache -

Control=private , max -age=60 (103.0/0.0)

=> ResponseHeader_Cache -Control=not -exist (1604.0/0.0)

ResponseHeader Vary

(HasValidRequestPayload = true) and

(HasAuthorisationToken = true) and

(RequestMethod = POST) => ResponseHeader_Vary=Accept , Authorization , Cookie

(354.0/0.0)

(HasSuccessfulCreateOperationOccurredBefore = true) and

(RequestUriPathToken6 = not -exist)

and (HasRequestPayload = false) and

(RequestMethod = GET) => ResponseHeader_Vary=Accept , Authorization , Cookie

(196.0/0.0)

(ImmediatelyPreviousStatusCode = 201) and

(HasValidRequestPayload = true) => ResponseHeader_Vary=Accept , Authorization ,

Cookie (173.0/0.0)

216

(RequestMethod = HEAD) and

(HasSuccessfulCreateOperationOccurredBefore = true) => ResponseHeader_Vary=Accept

, Authorization , Cookie (103.0/0.0)

=> ResponseHeader_Vary=not -exist (1604.0/0.0)

ResponseHeader X-Accepted-OAuth-Scopes

(HasAuthorisationToken = false) => ResponseHeader_X -Accepted -OAuth -Scopes=not -

exist (402.0/0.0)

(HasSuccessfulCreateOperationOccurredBefore = false) and

(HasValidRequestPayload = false) => ResponseHeader_X -Accepted -OAuth -Scopes=repo

(717.0/0.0)

(RequestMethod = PATCH) and

(HasImmediatePreviousTransactionSucceeded = false) => ResponseHeader_X -Accepted -

OAuth -Scopes=repo (194.0/0.0)

(RequestMethod = PATCH) and

(HasValidRequestPayload = false) => ResponseHeader_X -Accepted -OAuth -Scopes=repo

(100.0/0.0)

=> ResponseHeader_X -Accepted -OAuth -Scopes=public_repo , repo (1017.0/0.0)

ResponseHeader X-OAuth-Scopes

(HasAuthorisationToken = false) => ResponseHeader_X -OAuth -Scopes=not -exist

(402.0/0.0)

=> ResponseHeader_X -OAuth -Scopes=public_repo (2028.0/0.0)

ResponseBody assignee.site admin

=> ResponseBody_assignee.site_admin=not -exist (2430.0/116.0)

ResponseBody assignee.type

=> ResponseBody_assignee.type=not -exist (2430.0/116.0)

ResponseBody assignees.site admin

=> ResponseBody_assignees.site_admin=not -exist (2430.0/95.0)

ResponseBody assignees.type

=> ResponseBody_assignees.type=not -exist (2430.0/95.0)

ResponseBody closed by.avatar url

=> ResponseBody_closed_by.avatar_url=not -exist (2430.0/8.0)

ResponseBody closed by.events url

=> ResponseBody_closed_by.events_url=not -exist (2430.0/8.0)

ResponseBody closed by.followers url

=> ResponseBody_closed_by.followers_url=not -exist (2430.0/8.0)

ResponseBody closed by.following url

=> ResponseBody_closed_by.following_url=not -exist (2430.0/8.0)

217

ResponseBody closed by.gists url

=> ResponseBody_closed_by.gists_url=not -exist (2430.0/8.0)

ResponseBody closed by.html url

=> ResponseBody_closed_by.html_url=not -exist (2430.0/8.0)

ResponseBody closed by.id

=> ResponseBody_closed_by.id=not -exist (2430.0/8.0)

ResponseBody closed by.login

=> ResponseBody_closed_by.login=not -exist (2430.0/8.0)

ResponseBody closed by.organizations url

=> ResponseBody_closed_by.organizations_url=not -exist (2430.0/8.0)

ResponseBody closed by.received events url

=> ResponseBody_closed_by.received_events_url=not -exist (2430.0/8.0)

ResponseBody closed by.repos url

=> ResponseBody_closed_by.repos_url=not -exist (2430.0/8.0)

ResponseBody closed by.site admin

=> ResponseBody_closed_by.repos_url=not -exist (2430.0/8.0)

ResponseBody closed by.starred url

=> ResponseBody_closed_by.starred_url=not -exist (2430.0/8.0)

ResponseBody closed by.subscriptions url

=> ResponseBody_closed_by.subscriptions_url=not -exist (2430.0/8.0)

ResponseBody closed by.type

=> ResponseBody_closed_by.type=not -exist (2430.0/8.0)

ResponseBody closed by.url

=> ResponseBody_closed_by.url=not -exist (2430.0/8.0)

ResponseBody documentation url

(RequestMethod = DELETE) and

(HasAuthorisationToken = false) => ResponseBody_documentation_url=https: //

developer.github.com/v3/issues /#unlock -an-issue (64.0/0.0)

(HasAuthorisationToken = false) and

(RequestMethod = PUT) => ResponseBody_documentation_url=https: // developer.github.

com/v3/issues /#lock -an-issue (128.0/0.0)

(RequestMethod = PATCH) and

(HasValidRequestPayload = false) => ResponseBody_documentation_url=https: //

developer.github.com/v3/issues /#edit -an-issue (229.0/0.0)

(RequestMethod = POST) and

218

(HasValidRequestPayload = false) => ResponseBody_documentation_url=https: //

developer.github.com/v3/issues /#create -an-issue (153.0/0.0)

(HasAuthorisationToken = false) => ResponseBody_documentation_url=https: //

developer.github.com/v3/issues /#create -an-issue (122.0/0.0)

(HasSuccessfulCreateOperationOccurredBefore = false) and

(RequestUriPathToken6 = lock) => ResponseBody_documentation_url=https: // developer

.github.com/v3 (232.0/0.0)

(HasSuccessfulCreateOperationOccurredBefore = false) and

(RequestMethod = PATCH) => ResponseBody_documentation_url=https: // developer.

github.com/v3 (153.0/0.0)

(RequestMethod = GET) and

(HasSuccessfulCreateOperationOccurredBefore = false) =>

ResponseBody_documentation_url=https: // developer.github.com/v3 (161.0/10.0)

=> ResponseBody_documentation_url=not -exist (1188.0/0.0)

ResponseBody locked

(HasValidRequestPayload = true) and

(HasAuthorisationToken = true) and

(RequestMethod = POST) => ResponseBody_locked=false (354.0/0.0)

(ImmediatelyPreviousStatusCode = 201) and

(HasValidRequestPayload = true) => ResponseBody_locked=false (173.0/0.0)

(RequestMethod = GET) and

(HasSuccessfulCreateOperationOccurredBefore = true) => ResponseBody_locked=false

(196.0/0.0)

=> ResponseBody_locked=not -exist (1707.0/0.0)

ResponseBody message

(RequestMethod = PATCH) and

(HasRequestPayload = false) => ResponseBody_message=Invalid request (41.0/0.0)

(RequestMethod = POST) and

(HasRequestPayload = false) => ResponseBody_message=Invalid request (15.0/0.0)

(HasRequestPayload = true) and

(HasValidRequestPayload = false) and

(HasAuthorisationToken = true) => ResponseBody_message=Problems parsing JSON

(238.0/0.0)

(HasAuthorisationToken = false) and

(HasValidRequestPayload = false) => ResponseBody_message=Requires authentication

(280.0/0.0)

(HasSuccessfulCreateOperationOccurredBefore = false) and

(RequestUriPathToken6 = lock) => ResponseBody_message=Not Found (232.0/0.0)

(HasSuccessfulCreateOperationOccurredBefore = false) and

(RequestMethod = PATCH) => ResponseBody_message=Not Found (153.0/0.0)

(HasAuthorisationToken = false) => ResponseBody_message=Not Found (122.0/0.0)

(RequestMethod = GET) and

(HasSuccessfulCreateOperationOccurredBefore = false) => ResponseBody_message=Not

Found (161.0/10.0)

=> ResponseBody_message=not -exist (1188.0/0.0)

ResponseBody milestone.creator.avatar url

=> ResponseBody_milestone.creator.avatar_url=not -exist (2430.0/112.0)

219

ResponseBody milestone.creator.events url

=> ResponseBody_milestone.creator.events_url=not -exist (2430.0/112.0)

ResponseBody milestone.creator.followers url

=> ResponseBody_milestone.creator.followers_url=not -exist (2430.0/112.0)

ResponseBody milestone.creator.following url

=> ResponseBody_milestone.creator.following_url=not -exist (2430.0/112.0)

ResponseBody milestone.creator.gists url

=> ResponseBody_milestone.creator.gists_url=not -exist (2430.0/112.0)

ResponseBody milestone.creator.html url

=> ResponseBody_milestone.creator.html_url=not -exist (2430.0/112.0)

ResponseBody milestone.creator.id

=> ResponseBody_milestone.creator.id=not -exist (2430.0/112.0)

ResponseBody milestone.creator.login

=> ResponseBody_milestone.creator.login=not -exist (2430.0/112.0)

ResponseBody milestone.creator.organizations url

=> ResponseBody_milestone.creator.organizations_url=not -exist (2430.0/112.0)

ResponseBody milestone.creator.received events url

=> ResponseBody_milestone.creator.received_events_url=not -exist (2430.0/112.0)

ResponseBody milestone.creator.repos url

=> ResponseBody_milestone.creator.repos_url=not -exist (2430.0/112.0)

ResponseBody milestone.creator.site admin

=> ResponseBody_milestone.creator.site_admin=not -exist (2430.0/112.0)

ResponseBody milestone.creator.starred url

=> ResponseBody_milestone.creator.starred_url=not -exist (2430.0/112.0)

ResponseBody milestone.creator.subscriptions url

=> ResponseBody_milestone.creator.subscriptions_url=not -exist (2430.0/112.0)

ResponseBody milestone.creator.type

=> ResponseBody_milestone.creator.type=not -exist (2430.0/112.0)

ResponseBody milestone.creator.url

=> ResponseBody_milestone.creator.url=not -exist (2430.0/112.0)

220

ResponseBody milestone.due on

=> ResponseBody_milestone.due_on=not -exist (2430.0/112.0)

ResponseBody milestone.open issues

=> ResponseBody_milestone.open_issues=not -exist (2430.0/112.0)

ResponseBody milestone.state

=> ResponseBody_milestone.state=not -exist (2430.0/112.0)

ResponseBody state

(ImmediatelyPreviousStatusCode = 201) and

(HasValidRequestPayload = true) => ResponseBody_state=closed (173.0/0.0)

(RequestMethod = GET) and

(HasSuccessfulUpdateOperationOccurredBefore = true) and

(ImmediatelyPreviousStatusCode = 200) and

(ImmediatelyPreviousMethod = PATCH) => ResponseBody_state=closed (22.0/0.0)

(RequestMethod = GET) and

(HasSuccessfulUpdateOperationOccurredBefore = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_state=closed (11.0/3.0)

(RequestMethod = GET) and

(HasSuccessfulUpdateOperationOccurredBefore = true) and

(HasImmediatePreviousTransactionSucceeded = false) and

(HasSuccessfulReadOperationOccurredBefore = false) => ResponseBody_state=closed

(16.0/7.0)

(RequestMethod = GET) and

(HasSuccessfulUpdateOperationOccurredBefore = true) and

(ImmediatelyPreviousMethod = DELETE) => ResponseBody_state=closed (4.0/1.0)

(RequestMethod = POST) and

(HasValidRequestPayload = true) and

(HasAuthorisationToken = true) => ResponseBody_state=open (354.0/0.0)

(RequestMethod = GET) and

(HasSuccessfulCreateOperationOccurredBefore = true) => ResponseBody_state=open

(143.0/14.0)

=> ResponseBody_state=not -exist (1707.0/0.0)

ResponseBody user.site admin

(HasValidRequestPayload = true) and

(HasAuthorisationToken = true) and

(RequestMethod = POST) => ResponseBody_user.site_admin=false (354.0/0.0)

(ImmediatelyPreviousStatusCode = 201) and

(HasValidRequestPayload = true) => ResponseBody_user.site_admin=false (173.0/0.0)

(RequestMethod = GET) and

(HasSuccessfulCreateOperationOccurredBefore = true) => ResponseBody_user.

site_admin=false (196.0/0.0)

=> ResponseBody_user.site_admin=not -exist (1707.0/0.0)

ResponseBody user.type

(HasValidRequestPayload = true) and

(HasAuthorisationToken = true) and

(RequestMethod = POST) => ResponseBody_user.type=User (354.0/0.0)

(ImmediatelyPreviousStatusCode = 201) and

221

(HasValidRequestPayload = true) => ResponseBody_user.type=User (173.0/0.0)

(RequestMethod = GET) and

(HasSuccessfulCreateOperationOccurredBefore = true) => ResponseBody_user.type=

User (196.0/0.0)

=> ResponseBody_user.type=not -exist (1707.0/0.0)

C.2.2 Rules from RIPPER on Twitter

ResponseStatusCode

(RequestUriPathToken3 = update.json) => ResponseStatusCode =200 (867.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false) =>

ResponseStatusCode =200 (648.0/0.0)

=> ResponseStatusCode =404 (24538.0/0.0)

ResponseHeader status

(RequestUriPathToken3 = update.json) => ResponseHeader_status =200 OK (867.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false) =>

ResponseHeader_status =200 OK (648.0/0.0)

=> ResponseHeader_status =404 Not Found (24538.0/0.0)

ResponseHeader x-rate-limit-limit

(RequestMethod = GET) => ResponseHeader_x -rate -limit -limit =900 (5608.0/0.0)

=> ResponseHeader_x -rate -limit -limit=not -exist (20445.0/0.0)

ResponseBody contributors

(RequestUriPathToken3 = update.json) => ResponseBody_contributors=null

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_contributors=null (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_contributors=null (101.0/0.0)

=> ResponseBody_contributors=not -exist (24538.0/0.0)

ResponseBody coordinates

(RequestUriPathToken3 = update.json) => ResponseBody_coordinates=null (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_coordinates=null (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_coordinates=null (101.0/0.0)

=> ResponseBody_coordinates=not -exist (24538.0/0.0)

ResponseBody entities.hashtags

(RequestUriPathToken3 = update.json) => ResponseBody_entities.hashtags =[]

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_entities.hashtags =[] (547.0/0.0)

222

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_entities.hashtags =[]

(101.0/0.0)

=> ResponseBody_entities.hashtags=not -exist (24538.0/0.0)

ResponseBody entities.symbols

(RequestUriPathToken3 = update.json) => ResponseBody_entities.symbols =[]

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_entities.symbols =[] (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_entities.symbols =[] (101.0/0.0)

=> ResponseBody_entities.symbols=not -exist (24538.0/0.0)

ResponseBody entities.urls

(RequestUriPathToken3 = update.json) => ResponseBody_entities.urls =[] (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_entities.urls =[] (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_entities.urls =[] (101.0/0.0)

=> ResponseBody_entities.urls=not -exist (24538.0/0.0)

ResponseBody entities.user mentions

(RequestUriPathToken3 = update.json) => ResponseBody_entities.user_mentions =[]

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_entities.user_mentions =[] (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_entities.user_mentions =[]

(101.0/0.0)

=> ResponseBody_entities.user_mentions=not -exist (24538.0/0.0)

ResponseBody errors.code

(RequestUriPathToken3 = update.json) => ResponseBody_errors.code=not -exist

(867.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false) =>

ResponseBody_errors.code=not -exist (648.0/0.0)

=> ResponseBody_errors.code =144 (24538.0/0.0)

ResponseBody errors.message

(RequestUriPathToken3 = update.json) => ResponseBody_errors.message=not -exist

(867.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false) =>

ResponseBody_errors.message=not -exist (648.0/0.0)

=> ResponseBody_errors.message=No status found with that ID. (24538.0/0.0)

223

ResponseBody favorite count

(RequestUriPathToken3 = update.json) => ResponseBody_favorite_count =0 (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_favorite_count =0 (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_favorite_count =0 (101.0/0.0)

=> ResponseBody_favorite_count=not -exist (24538.0/0.0)

ResponseBody favorited

(RequestUriPathToken3 = update.json) => ResponseBody_favorited=false (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_favorited=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_favorited=false (101.0/0.0)

=> ResponseBody_favorited=not -exist (24538.0/0.0)

ResponseBody geo

(RequestUriPathToken3 = update.json) => ResponseBody_geo=null (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_geo=null (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_geo=null (101.0/0.0)

=> ResponseBody_geo=not -exist (24538.0/0.0)

ResponseBody in reply to screen name

(RequestUriPathToken3 = update.json) => ResponseBody_in_reply_to_screen_name=null

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_in_reply_to_screen_name=null (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_in_reply_to_screen_name=null

(101.0/0.0)

=> ResponseBody_in_reply_to_screen_name=not -exist (24538.0/0.0)

ResponseBody in reply to status id

(RequestUriPathToken3 = update.json) => ResponseBody_in_reply_to_status_id=null

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_in_reply_to_status_id=null (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_in_reply_to_status_id=null

(101.0/0.0)

=> ResponseBody_in_reply_to_status_id=not -exist (24538.0/0.0)

ResponseBody in reply to status id str

(RequestUriPathToken3 = update.json) => ResponseBody_in_reply_to_status_id_str=

null (867.0/0.0)

224

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_in_reply_to_status_id_str=null (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_in_reply_to_status_id_str=null

(101.0/0.0)

=> ResponseBody_in_reply_to_status_id_str=not -exist (24538.0/0.0)

ResponseBody in reply to user id

(RequestUriPathToken3 = update.json) => ResponseBody_in_reply_to_user_id=null

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_in_reply_to_user_id=null (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_in_reply_to_user_id=null

(101.0/0.0)

=> ResponseBody_in_reply_to_user_id=not -exist (24538.0/0.0)

ResponseBody in reply to user id str

(RequestUriPathToken3 = update.json) => ResponseBody_in_reply_to_user_id_str=null

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_in_reply_to_user_id_str=null (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_in_reply_to_user_id_str=null

(101.0/0.0)

=> ResponseBody_in_reply_to_user_id_str=not -exist (24538.0/0.0)

ResponseBody is quote status

(RequestUriPathToken3 = update.json) => ResponseBody_is_quote_status=false

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_is_quote_status=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_is_quote_status=false

(101.0/0.0)

=> ResponseBody_is_quote_status=not -exist (24538.0/0.0)

ResponseBody place

(RequestUriPathToken3 = update.json) => ResponseBody_place=null (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_place=null (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_place=null (101.0/0.0)

=> ResponseBody_place=not -exist (24538.0/0.0)

ResponseBody retweet count

(RequestUriPathToken3 = update.json) => ResponseBody_retweet_count =0 (867.0/0.0)

225

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_retweet_count =0 (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_retweet_count =0 (101.0/0.0)

=> ResponseBody_retweet_count=not -exist (24538.0/0.0)

ResponseBody retweeted

(RequestUriPathToken3 = update.json) => ResponseBody_retweeted=false (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_retweeted=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_retweeted=false (101.0/0.0)

=> ResponseBody_retweeted=not -exist (24538.0/0.0)

ResponseBody truncated

(RequestUriPathToken3 = update.json) => ResponseBody_truncated=false (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_truncated=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_truncated=false (101.0/0.0)

=> ResponseBody_truncated=not -exist (24538.0/0.0)

ResponseBody user.contributors enabled

(RequestUriPathToken3 = update.json) => ResponseBody_user.contributors_enabled=

false (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.contributors_enabled=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.contributors_enabled=false

(101.0/0.0)

=> ResponseBody_user.contributors_enabled=not -exist (24538.0/0.0)

ResponseBody user.created at

(RequestUriPathToken3 = update.json) => ResponseBody_user.created_at=Wed Mar 07

09 :41:33 +0000 2012 (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.created_at=Wed Mar 07 09 :41:33 +0000 2012 (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.created_at=Wed Mar 07 09

:41:33 +0000 2012 (101.0/0.0)

=> ResponseBody_user.created_at=not -exist (24538.0/0.0)

ResponseBody user.default profile

(RequestUriPathToken3 = update.json) => ResponseBody_user.default_profile=false

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.default_profile=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

226

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.default_profile=false

(101.0/0.0)

=> ResponseBody_user.default_profile=not -exist (24538.0/0.0)

ResponseBody user.default profile image

(RequestUriPathToken3 = update.json) => ResponseBody_user.default_profile_image=

false (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.default_profile_image=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.default_profile_image=

false (101.0/0.0)

=> ResponseBody_user.default_profile_image=not -exist (24538.0/0.0)

ResponseBody user.favourites count

(RequestUriPathToken3 = update.json) => ResponseBody_user.favourites_count =64

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.favourites_count =64 (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.favourites_count =64

(101.0/0.0)

=> ResponseBody_user.favourites_count=not -exist (24538.0/0.0)

ResponseBody user.follow request sent

(RequestUriPathToken3 = update.json) => ResponseBody_user.follow_request_sent=

false (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.follow_request_sent=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.follow_request_sent=false

(101.0/0.0)

=> ResponseBody_user.follow_request_sent=not -exist (24538.0/0.0)

ResponseBody user.followers count

(RequestUriPathToken3 = update.json) => ResponseBody_user.followers_count =185

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.followers_count =185 (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.followers_count =185

(101.0/0.0)

=> ResponseBody_user.followers_count=not -exist (24538.0/0.0)

ResponseBody user.following

(RequestUriPathToken3 = update.json) => ResponseBody_user.following=false

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.following=false (547.0/0.0)

227

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.following=false

(101.0/0.0)

=> ResponseBody_user.following=not -exist (24538.0/0.0)

ResponseBody user.friends count

(RequestUriPathToken3 = update.json) => ResponseBody_user.friends_count =249

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.friends_count =249 (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.friends_count =249

(101.0/0.0)

=> ResponseBody_user.friends_count=not -exist (24538.0/0.0)

ResponseBody user.geo enabled

(RequestUriPathToken3 = update.json) => ResponseBody_user.geo_enabled=true

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.geo_enabled=true (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.geo_enabled=true

(101.0/0.0)

=> ResponseBody_user.geo_enabled=not -exist (24538.0/0.0)

ResponseBody user.has extended profile

(RequestUriPathToken3 = update.json) => ResponseBody_user.has_extended_profile=

false (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.has_extended_profile=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.has_extended_profile=false

(101.0/0.0)

=> ResponseBody_user.has_extended_profile=not -exist (24538.0/0.0)

ResponseBody user.id

(RequestUriPathToken3 = update.json) => ResponseBody_user.id =517417816

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.id =517417816 (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.id =517417816 (101.0/0.0)

=> ResponseBody_user.id=not -exist (24538.0/0.0)

ResponseBody user.id str

(RequestUriPathToken3 = update.json) => ResponseBody_user.id_str =517417816

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.id_str =517417816 (547.0/0.0)

228

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.id_str =517417816

(101.0/0.0)

=> ResponseBody_user.id_str=not -exist (24538.0/0.0)

ResponseBody user.is translation enabled

(RequestUriPathToken3 = update.json) => ResponseBody_user.is_translation_enabled=

false (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.is_translation_enabled=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.is_translation_enabled=

false (101.0/0.0)

=> ResponseBody_user.is_translation_enabled=not -exist (24538.0/0.0)

ResponseBody user.is translator

(RequestUriPathToken3 = update.json) => ResponseBody_user.is_translator=false

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.is_translator=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.is_translator=false

(101.0/0.0)

=> ResponseBody_user.is_translator=not -exist (24538.0/0.0)

ResponseBody user.lang

(RequestUriPathToken3 = update.json) => ResponseBody_user.lang=en (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.lang=en (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.lang=en (101.0/0.0)

=> ResponseBody_user.lang=not -exist (24538.0/0.0)

ResponseBody user.listed count

(RequestUriPathToken3 = update.json) => ResponseBody_user.listed_count =3

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.listed_count =3 (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.listed_count =3 (101.0/0.0)

=> ResponseBody_user.listed_count=not -exist (24538.0/0.0)

ResponseBody user.location

(RequestUriPathToken3 = update.json) => ResponseBody_user.location=Kurunegala

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.location=Kurunegala (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

229

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.location=Kurunegala

(101.0/0.0)

=> ResponseBody_user.location=not -exist (24538.0/0.0)

ResponseBody user.name

(RequestUriPathToken3 = update.json) => ResponseBody_user.name=Thilini Bhagya

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.name=Thilini Bhagya (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.name=Thilini Bhagya

(101.0/0.0)

=> ResponseBody_user.name=not -exist (24538.0/0.0)

ResponseBody user.notifications

(RequestUriPathToken3 = update.json) => ResponseBody_user.notifications=false

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.notifications=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.notifications=false

(101.0/0.0)

=> ResponseBody_user.notifications=not -exist (24538.0/0.0)

ResponseBody user.profile background color

(RequestUriPathToken3 = update.json) => ResponseBody_user.

profile_background_color =1A1B1F (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.profile_background_color =1 A1B1F (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.profile_background_color =1

A1B1F (101.0/0.0)

=> ResponseBody_user.profile_background_color=not -exist (24538.0/0.0)

ResponseBody user.profile background image url

(RequestUriPathToken3 = update.json) => ResponseBody_user.

profile_background_image_url=http: //abs.twimg.com/images/themes/theme9/bg.gif

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.profile_background_image_url=http: //abs.twimg.com/images/

themes/theme9/bg.gif (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.

profile_background_image_url=http: //abs.twimg.com/images/themes/theme9/bg.gif

(101.0/0.0)

=> ResponseBody_user.profile_background_image_url=not -exist (24538.0/0.0)

ResponseBody user.profile background image url https

(RequestUriPathToken3 = update.json) => ResponseBody_user.

profile_background_image_url_https=https: //abs.twimg.com/images/themes/theme9

/bg.gif (867.0/0.0)

230

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.profile_background_image_url_https=https: //abs.twimg.com/

images/themes/theme9/bg.gif (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.

profile_background_image_url_https=https: //abs.twimg.com/images/themes/theme9

/bg.gif (101.0/0.0)

=> ResponseBody_user.profile_background_image_url_https=not -exist (24538.0/0.0)

ResponseBody user.profile background tile

(RequestUriPathToken3 = update.json) => ResponseBody_user.profile_background_tile

=false (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.profile_background_tile=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.profile_background_tile=

false (101.0/0.0)

=> ResponseBody_user.profile_background_tile=not -exist (24538.0/0.0)

ResponseBody user.profile banner url

(RequestUriPathToken3 = update.json) => ResponseBody_user.profile_banner_url=

https: //pbs.twimg.com/profile_banners /517417816/1399047954 (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.profile_banner_url=https: //pbs.twimg.com/profile_banners

/517417816/1399047954 (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.profile_banner_url=https:

//pbs.twimg.com/profile_banners /517417816/1399047954 (101.0/0.0)

=> ResponseBody_user.profile_banner_url=not -exist (24538.0/0.0)

ResponseBody user.profile image url

(RequestUriPathToken3 = update.json) => ResponseBody_user.profile_image_url=http:

//pbs.twimg.com/profile_images /950100192048562176/ LKr7Ay21_normal.jpg

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.profile_image_url=http://pbs.twimg.com/profile_images

/950100192048562176/ LKr7Ay21_normal.jpg (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.profile_image_url=http: //

pbs.twimg.com/profile_images /950100192048562176/ LKr7Ay21_normal.jpg

(101.0/0.0)

=> ResponseBody_user.profile_image_url=not -exist (24538.0/0.0)

ResponseBody user.profile image url https

(RequestUriPathToken3 = update.json) => ResponseBody_user.profile_image_url_https

=https: //pbs.twimg.com/profile_images /950100192048562176/ LKr7Ay21_normal.jpg

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.profile_image_url_https=https: //pbs.twimg.com/

profile_images /950100192048562176/ LKr7Ay21_normal.jpg (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

231

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.profile_image_url_https=

https: //pbs.twimg.com/profile_images /950100192048562176/ LKr7Ay21_normal.jpg

(101.0/0.0)

=> ResponseBody_user.profile_image_url_https=not -exist (24538.0/0.0)

ResponseBody user.profile link color

(RequestUriPathToken3 = update.json) => ResponseBody_user.profile_link_color =3

E4547 (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.profile_link_color =3E4547 (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.profile_link_color =3 E4547

(101.0/0.0)

=> ResponseBody_user.profile_link_color=not -exist (24538.0/0.0)

ResponseBody user.profile sidebar border color

(RequestUriPathToken3 = update.json) => ResponseBody_user.

profile_sidebar_border_color=FFFFFF (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.profile_sidebar_border_color=FFFFFF (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.

profile_sidebar_border_color=FFFFFF (101.0/0.0)

=> ResponseBody_user.profile_sidebar_border_color=not -exist (24538.0/0.0)

ResponseBody user.profile sidebar fill color

(RequestUriPathToken3 = update.json) => ResponseBody_user.

profile_sidebar_fill_color =252429 (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.profile_sidebar_fill_color =252429 (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.profile_sidebar_fill_color

=252429 (101.0/0.0)

=> ResponseBody_user.profile_sidebar_fill_color=not -exist (24538.0/0.0)

ResponseBody user.profile text color

(RequestUriPathToken3 = update.json) => ResponseBody_user.profile_text_color

=666666 (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.profile_text_color =666666 (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.profile_text_color =666666

(101.0/0.0)

=> ResponseBody_user.profile_text_color=not -exist (24538.0/0.0)

ResponseBody user.profile use background image

(RequestUriPathToken3 = update.json) => ResponseBody_user.

profile_use_background_image=true (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.profile_use_background_image=true (547.0/0.0)

232

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.

profile_use_background_image=true (101.0/0.0)

=> ResponseBody_user.profile_use_background_image=not -exist (24538.0/0.0)

ResponseBody user.protected

(RequestUriPathToken3 = update.json) => ResponseBody_user.protected=false

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.protected=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.protected=false

(101.0/0.0)

=> ResponseBody_user.protected=not -exist (24538.0/0.0)

ResponseBody user.screen name

(RequestUriPathToken3 = update.json) => ResponseBody_user.screen_name=bhagyasl

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.screen_name=bhagyasl (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.screen_name=bhagyasl

(101.0/0.0)

=> ResponseBody_user.screen_name=not -exist (24538.0/0.0)

ResponseBody user.time zone

(RequestUriPathToken3 = update.json) => ResponseBody_user.time_zone=null

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.time_zone=null (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.time_zone=null (101.0/0.0)

=> ResponseBody_user.time_zone=not -exist (24538.0/0.0)

ResponseBody user.translator type

(RequestUriPathToken3 = update.json) => ResponseBody_user.translator_type=none

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.translator_type=none (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.translator_type=none

(101.0/0.0)

=> ResponseBody_user.translator_type=not -exist (24538.0/0.0)

ResponseBody user.url

(RequestUriPathToken3 = update.json) => ResponseBody_user.url=http://t.co/

sQduiwqJiy (867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.url=http://t.co/sQduiwqJiy (547.0/0.0)

233

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.url=http: //t.co/sQduiwqJiy

(101.0/0.0)

=> ResponseBody_user.url=not -exist (24538.0/0.0)

ResponseBody user.utc offset

(RequestUriPathToken3 = update.json) => ResponseBody_user.utc_offset=null

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.utc_offset=null (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.utc_offset=null

(101.0/0.0)

=> ResponseBody_user.utc_offset=not -exist (24538.0/0.0)

ResponseBody user.verified

(RequestUriPathToken3 = update.json) => ResponseBody_user.verified=false

(867.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_user.verified=false (547.0/0.0)

(HasImmediatePreviousTransactionSucceeded = true) and

(ImmediatelyPreviousMethod = GET) => ResponseBody_user.verified=false (101.0/0.0)

=> ResponseBody_user.verified=not -exist (24538.0/0.0)

C.2.3 Rules from RIPPER on Google Tasks

ResponseStatusCode

(RequestMethod = DELETE) and

(HasSuccessfulDeleteOperationOccurredBefore = false) => ResponseStatusCode =204

(606.0/0.0)

(HasSuccessfulDeleteOperationOccurredBefore = true) => ResponseStatusCode =404

(1482.0/4.0)

=> ResponseStatusCode =200 (2614.0/7.0)

ResponseHeader Accept-Ranges

(ImmediatelyPreviousResponseStatusCode = 200) and

(HasRequestPayload = false) => ResponseHeader_Accept -Ranges=not -exist

(1606.0/3.0)

(ImmediatelyPreviousResponseStatusCode = 503) and

(HasSuccessfulDeleteOperationOccurredBefore = false) => ResponseHeader_Accept -

Ranges=not -exist (6.0/1.0)

=> ResponseHeader_Accept -Ranges=none (3090.0/0.0)

ResponseHeader Cache-Control

(RequestMethod = GET) and

(HasSuccessfulDeleteOperationOccurredBefore = false) => ResponseHeader_Cache -

Control=private , max -age=0, must -revalidate , no-transform (1005.0/3.0)

(HasSuccessfulDeleteOperationOccurredBefore = true) => ResponseHeader_Cache -

Control=private , max -age=0 (1482.0/0.0)

234

=> ResponseHeader_Cache -Control=no -cache , no-store , max -age=0, must -revalidate

(2215.0/4.0)

ResponseHeader Content-Type

(RequestMethod = DELETE) and

(HasSuccessfulDeleteOperationOccurredBefore = false) => ResponseHeader_Content -

Type=not -exist (606.0/0.0)

=> ResponseHeader_Content -Type=application/json; charset=UTF -8 (4096.0/0.0)

ResponseHeader Transfer-Encoding

(RequestMethod = POST) => ResponseHeader_Pragma=no-cache (1124.0/0.0)

(HasSuccessfulDeleteOperationOccurredBefore = false) and

(RequestMethod = DELETE) => ResponseHeader_Pragma=no-cache (606.0/0.0)

(RequestMethod = PATCH) and

(HasSuccessfulDeleteOperationOccurredBefore = false) => ResponseHeader_Pragma=no-

cache (485.0/4.0)

=> ResponseHeader_Pragma=not -exist (2487.0/0.0)

ResponseHeader Vary

(ImmediatelyPreviousResponseStatusCode = 200) and

(HasRequestPayload = false) => ResponseHeader_Vary=X-Origin (1606.0/3.0)

(ImmediatelyPreviousResponseStatusCode = 503) and

(HasRequestPayload = false) and (HasSuccessfulDeleteOperationOccurredBefore =

false) => ResponseHeader_Vary=X-Origin (5.0/0.0)

=> ResponseHeader_Vary=Origin ,Accept -Encoding (3091.0/0.0)

ResponseHeader X-Content-Type-Options

(RequestMethod = DELETE) and

(HasSuccessfulDeleteOperationOccurredBefore = false) => ResponseHeader_X -Content -

Type -Options=not -exist (606.0/0.0)

=> ResponseHeader_X -Content -Type -Options=nosniff (4096.0/0.0)

ResponseHeader X-Frame-Options

(RequestMethod = DELETE) and

(HasSuccessfulDeleteOperationOccurredBefore = false) => ResponseHeader_X -Frame -

Options=not -exist (606.0/0.0)

=> ResponseHeader_X -Frame -Options=SAMEORIGIN (4096.0/0.0)

ResponseHeader X-XSS-Protection

(RequestMethod = DELETE) and

(HasSuccessfulDeleteOperationOccurredBefore = false) => ResponseHeader_X -XSS -

Protection=not -exist (606.0/0.0)

=> ResponseHeader_X -XSS -Protection =1; mode=block (4096.0/0.0)

ResponseBody error.code

(HasSuccessfulDeleteOperationOccurredBefore = true) => ResponseBody_error.code

=404 (1482.0/4.0)

=> ResponseBody_error.code=not -exist (3220.0/7.0)

235

ResponseBody error.errors.domain

(HasSuccessfulDeleteOperationOccurredBefore = true) => ResponseBody_error.errors.

domain=global (1482.0/0.0)

=> ResponseBody_error.errors.domain=not -exist (3220.0/7.0)

ResponseBody error.errors.message

(HasSuccessfulDeleteOperationOccurredBefore = true) => ResponseBody_error.errors.

message=NotFound (1482.0/4.0)

=> ResponseBody_error.errors.message=not -exist (3220.0/7.0)

ResponseBody error.errors.reason

(HasSuccessfulDeleteOperationOccurredBefore = true) => ResponseBody_error.errors.

reason=notFound (1482.0/4.0)

=> ResponseBody_error.errors.reason=not -exist (3220.0/7.0)

ResponseBody error.message

(HasSuccessfulDeleteOperationOccurredBefore = true) => ResponseBody_error.message

=NotFound (1482.0/4.0)

=> ResponseBody_error.message=not -exist (3220.0/7.0)

ResponseBody kind

(HasSuccessfulDeleteOperationOccurredBefore = true) => ResponseBody_kind=not -

exist (1482.0/0.0)

(RequestMethod = DELETE) => ResponseBody_kind=not -exist (606.0/0.0)

=> ResponseBody_kind=tasks#taskList (2614.0/7.0)

C.2.4 Rules from RIPPER on Slack

ResponseHeader x-slack-router

=> ResponseHeader_x -slack -router=p (5243.0/1975.0)

ResponseBody channel

(HasSuccessfulDeleteOperationOccurredBefore = false) and

(RequestUriPathToken2 = chat.postMessage) => ResponseBody_channel=CCGRWTRKQ

(1152.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_channel=CCGRWTRKQ (726.0/0.0)

(HasSuccessfulDeleteOperationOccurredBefore = false) and

(HasImmediatePreviousTransactionSucceeded = true) => ResponseBody_channel=

CCGRWTRKQ (235.0/0.0)

=> ResponseBody_channel=not -exist (3130.0/1.0)

ResponseBody error

(HasSuccessfulDeleteOperationOccurredBefore = false) and

(RequestUriPathToken2 = chat.postMessage) => ResponseBody_error=not -exist

(1152.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) =>

ResponseBody_error=not -exist (726.0/0.0)

236

(HasSuccessfulDeleteOperationOccurredBefore = false) and

(HasImmediatePreviousTransactionSucceeded = true) => ResponseBody_error=not -exist

(235.0/0.0)

=> ResponseBody_error=message_not_found (3130.0/1.0)

ResponseBody message.bot id

(RequestUriPathToken2 = chat.postMessage) => ResponseBody_message.bot_id=

BCEPNCQDN (1152.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) and

(RequestUriPathToken2 = chat.update) => ResponseBody_message.bot_id=BCEPNCQDN

(224.0/0.0)

(HasSuccessfulDeleteOperationOccurredBefore = false) and

(RequestUriPathToken2 = chat.update) and

(HasImmediatePreviousTransactionSucceeded = true) => ResponseBody_message.bot_id=

BCEPNCQDN (11.0/0.0)

=> ResponseBody_message.bot_id=not -exist (3856.0/1.0)

ResponseBody message.edited.user

(HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = true) and

(HasImmediatePreviousTransactionSucceeded = true) and

(RequestUriPathToken2 = chat.update) => ResponseBody_message.edited.user=

UC8J6APLN (11.0/0.0)

=> ResponseBody_message.edited.user=not -exist (5232.0/0.0)

ResponseBody message.type

(RequestUriPathToken2 = chat.postMessage) => ResponseBody_message.type=message

(1152.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) and

(RequestUriPathToken2 = chat.update) => ResponseBody_message.type=message

(224.0/0.0)

(HasSuccessfulDeleteOperationOccurredBefore = false) and

(RequestUriPathToken2 = chat.update) and

(HasImmediatePreviousTransactionSucceeded = true) => ResponseBody_message.type=

message (11.0/0.0)

=> ResponseBody_message.type=not -exist (3856.0/1.0)

ResponseBody message.user

(RequestUriPathToken2 = chat.postMessage) => ResponseBody_message.user=UC8J6APLN

(1152.0/0.0)

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) and

(RequestUriPathToken2 = chat.update) => ResponseBody_message.user=UC8J6APLN

(224.0/0.0)

(HasSuccessfulDeleteOperationOccurredBefore = false) and

(RequestUriPathToken2 = chat.update) and

(HasImmediatePreviousTransactionSucceeded = true) => ResponseBody_message.user=

UC8J6APLN (11.0/0.0)

=> ResponseBody_message.user=not -exist (3856.0/1.0)

ResponseBody ok

(RequestUriPathToken2 = chat.postMessage) => ResponseBody_message.user=UC8J6APLN

(1152.0/0.0)

237

(HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = true) and

(RequestUriPathToken2 = chat.update) => ResponseBody_message.user=UC8J6APLN

(224.0/0.0)

(HasSuccessfulDeleteOperationOccurredBefore = false) and

(RequestUriPathToken2 = chat.update) and

(HasImmediatePreviousTransactionSucceeded = true) => ResponseBody_message.user=

UC8J6APLN (11.0/0.0)

=> ResponseBody_message.user=not -exist (3856.0/1.0)

238

C.3 Sample PART Rulesets

C.3.1 Rules from PART on GHTraffic

ResponseStatusCode

HasSuccessfulCreateOperationOccurredBefore = false AND

HasValidRequestPayload = false AND

HasRequestPayload = false AND

RequestMethod = HEAD: 404 (171.0)

HasSuccessfulCreateOperationOccurredBefore = false AND

HasValidRequestPayload = true AND

RequestMethod = POST AND

HasAuthorisationToken = true: 201 (354.0)

HasSuccessfulCreateOperationOccurredBefore = false AND

HasRequestPayload = false AND

RequestMethod = GET: 404 (161.0/10.0)

HasSuccessfulCreateOperationOccurredBefore = false AND

HasValidRequestPayload = true: 404 (275.0)

HasAuthorisationToken = false: 401 (280.0)

RequestUriPathToken6 = lock AND

HasSuccessfulCreateOperationOccurredBefore = false: 404 (232.0)

RequestUriPathToken6 = lock: 204 (191.0)

HasSuccessfulCreateOperationOccurredBefore = false AND

HasRequestPayload = true: 400 (138.0)

HasRequestPayload = false AND

HasSuccessfulCreateOperationOccurredBefore = true AND

RequestMethod = GET: 200 (196.0)

HasValidRequestPayload = true: 200 (173.0)

HasRequestPayload = false AND

RequestMethod = HEAD: 200 (103.0)

HasRequestPayload = true: 400 (100.0)

: 422 (56.0)

ResponseHeader Cache-Control

RequestUriPathToken6 = lock: not -exist (615.0)

HasAuthorisationToken = true AND

HasValidRequestPayload = true AND

RequestMethod = POST: private , max -age=60 (354.0)

HasSuccessfulCreateOperationOccurredBefore = false: not -exist (760.0)

HasAuthorisationToken = true AND

RequestMethod = GET: private , max -age=60 (196.0)

HasValidRequestPayload = false AND

RequestMethod = PATCH: not -exist (229.0)

: private , max -age=60 (276.0)

ResponseHeader Vary

RequestUriPathToken6 = lock: not -exist (615.0)

HasAuthorisationToken = true AND

239

HasValidRequestPayload = true AND

RequestMethod = POST: Accept , Authorization , Cookie (354.0)

HasSuccessfulCreateOperationOccurredBefore = false: not -exist (760.0)

HasAuthorisationToken = true AND

RequestMethod = GET: Accept , Authorization , Cookie (196.0)

HasValidRequestPayload = false AND

RequestMethod = PATCH: not -exist (229.0)

: Accept , Authorization , Cookie (276.0)

ResponseHeader X-Accepted-OAuth-Scopes

HasAuthorisationToken = false: not -exist (402.0)

HasSuccessfulCreateOperationOccurredBefore = true AND

RequestMethod = GET: public_repo , repo (196.0)

HasValidRequestPayload = true AND

RequestMethod = POST: public_repo , repo (354.0)

HasSuccessfulCreateOperationOccurredBefore = false: repo (870.0)

RequestUriPathToken6 = lock: public_repo , repo (191.0)

HasValidRequestPayload = true: public_repo , repo (173.0)

RequestMethod = PATCH: repo (141.0)

: public_repo , repo (103.0)

ResponseHeader X-OAuth-Scopes

HasAuthorisationToken = true: public_repo (2028.0)

: not -exist (402.0)

ResponseBody assignee.site admin

: not -exist (2430.0/116.0)

ResponseBody assignee.type

ResponseBody_assignee.type

ResponseBody assignee.site admin

: not -exist (2430.0/95.0)

ResponseBody assignees.type

: not -exist (2430.0/95.0)

ResponseBody closed by.avatar url

: not -exist (2430.0/8.0)

ResponseBody closed by.events url

: not -exist (2430.0/8.0)

ResponseBody closed by.followers url

: not -exist (2430.0/8.0)

240

ResponseBody closed by.following url

: not -exist (2430.0/8.0)

ResponseBody closed by.gists url

: not -exist (2430.0/8.0)

ResponseBody closed by.html url

: not -exist (2430.0/8.0)

ResponseBody closed by.id

: not -exist (2430.0/8.0)

ResponseBody closed by.login

: not -exist (2430.0/8.0)

ResponseBody closed by.organizations url

: not -exist (2430.0/8.0)

ResponseBody closed by.received events url

: not -exist (2430.0/8.0)

ResponseBody closed by.repos url

: not -exist (2430.0/8.0)

ResponseBody closed by.site admin

: not -exist (2430.0/8.0)

ResponseBody closed by.starred url

: not -exist (2430.0/8.0)

ResponseBody closed by.subscriptions url

: not -exist (2430.0/8.0)

ResponseBody closed by.type

: not -exist (2430.0/8.0)

ResponseBody closed by.url

: not -exist (2430.0/8.0)

ResponseBody documentation url

HasAuthorisationToken = true AND

HasSuccessfulCreateOperationOccurredBefore = true AND

RequestMethod = GET: not -exist (196.0)

HasAuthorisationToken = true AND

HasSuccessfulCreateOperationOccurredBefore = true AND

RequestUriPathToken6 = lock: not -exist (191.0)

241

HasAuthorisationToken = true AND

RequestUriPathToken6 = not -exist AND

RequestMethod = POST AND

HasValidRequestPayload = true: not -exist (354.0)

HasSuccessfulCreateOperationOccurredBefore = false AND

RequestMethod = POST: https: // developer.github.com/v3/issues /#create -an -issue

(275.0)

HasAuthorisationToken = true AND

HasSuccessfulCreateOperationOccurredBefore = false AND

RequestMethod = HEAD: not -exist (171.0)

HasSuccessfulCreateOperationOccurredBefore = false: https: // developer.github.com/

v3 (546.0/10.0)

RequestUriPathToken6 = lock AND

RequestMethod = PUT: https: // developer.github.com/v3/issues /#lock -an-issue

(128.0)

RequestUriPathToken6 = not -exist AND

HasValidRequestPayload = false AND

RequestMethod = PATCH: https: // developer.github.com/v3/issues /#edit -an-issue

(229.0)

RequestUriPathToken6 = not -exist: not -exist (276.0)

: https: // developer.github.com/v3/issues /#unlock -an-issue (64.0)

ResponseBody locked

HasValidRequestPayload = false AND

RequestMethod = PUT: not -exist (394.0)

HasValidRequestPayload = false AND

HasSuccessfulCreateOperationOccurredBefore = false: not -exist (594.0)

HasAuthorisationToken = true AND

RequestMethod = POST: false (354.0)

RequestMethod = PATCH AND

HasValidRequestPayload = false: not -exist (229.0)

HasSuccessfulCreateOperationOccurredBefore = false: not -exist (275.0)

RequestMethod = GET: false (196.0)

HasRequestPayload = false: not -exist (215.0)

: false (173.0)

ResponseBody message

HasAuthorisationToken = false AND

HasValidRequestPayload = false: Requires authentication (280.0)

HasSuccessfulCreateOperationOccurredBefore = true AND

HasRequestPayload = false AND

RequestMethod = GET: not -exist (196.0)

HasSuccessfulCreateOperationOccurredBefore = true AND

HasRequestPayload = false AND

RequestMethod = PUT: not -exist (143.0)

HasSuccessfulCreateOperationOccurredBefore = true AND

HasRequestPayload = false AND

RequestMethod = HEAD: not -exist (103.0)

HasSuccessfulCreateOperationOccurredBefore = true AND

HasValidRequestPayload = true: not -exist (173.0)

HasSuccessfulCreateOperationOccurredBefore = true AND

242

RequestMethod = PATCH AND

HasRequestPayload = true: Problems parsing JSON (100.0)

RequestMethod = HEAD: not -exist (171.0)

HasValidRequestPayload = true AND

RequestMethod = POST AND

HasAuthorisationToken = true: not -exist (354.0)

HasSuccessfulCreateOperationOccurredBefore = false AND

HasRequestPayload = false AND

RequestMethod = GET: Not Found (161.0/10.0)

HasSuccessfulCreateOperationOccurredBefore = false AND

HasValidRequestPayload = true: Not Found (275.0)

RequestUriPathToken6 = lock AND

HasSuccessfulCreateOperationOccurredBefore = false: Not Found (232.0)

RequestUriPathToken6 = not -exist AND

HasRequestPayload = true: Problems parsing JSON (138.0)

RequestUriPathToken6 = not -exist: Invalid request (56.0)

: not -exist (48.0)

ResponseBody milestone.creator.avatar url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.events url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.followers url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.following url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.gists url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.html url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.id

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.login

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.organizations url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.received events url

: not -exist (2430.0/112.0)

243

ResponseBody milestone.creator.repos url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.site admin

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.starred url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.subscriptions url

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.type

: not -exist (2430.0/112.0)

ResponseBody milestone.creator.url

: not -exist (2430.0/112.0)

ResponseBody milestone.due on

: not -exist (2430.0/112.0)

ResponseBody milestone.open issues

: not -exist (2430.0/112.0)

ResponseBody milestone.state

: not -exist (2430.0/112.0)

ResponseBody state

RequestBody_state = not -exist AND

HasValidRequestPayload = false AND

RequestMethod = PUT: not -exist (394.0)

RequestBody_state = closed AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (173.0)

RequestBody_state = closed AND

HasValidRequestPayload = true: closed (173.0)

HasValidRequestPayload = false AND

HasSuccessfulCreateOperationOccurredBefore = false: not -exist (594.0)

HasAuthorisationToken = true AND

RequestMethod = POST: open (354.0)

RequestMethod = PATCH: not -exist (209.0)

RequestMethod = POST: not -exist (122.0)

RequestMethod = DELETE: not -exist (112.0)

RequestMethod = HEAD: not -exist (103.0)

HasSuccessfulUpdateOperationOccurredBefore = false: open (84.0/2.0)

ImmediatelyPreviousStatusCode = 200 AND

244

HasSuccessfulReadOperationOccurredBefore = false: closed (22.0)

ImmediatelyPreviousMethod = PUT: open (51.0/11.0)

ImmediatelyPreviousMethod = GET: closed (11.0/3.0)

HasSuccessfulReadOperationOccurredBefore = true: open (18.0/6.0)

: closed (10.0/3.0)

ResponseBody user.site admin

HasValidRequestPayload = false AND

RequestMethod = PUT: not -exist (394.0)

HasValidRequestPayload = false AND

HasSuccessfulCreateOperationOccurredBefore = false: not -exist (594.0)

HasAuthorisationToken = true AND

RequestMethod = POST: false (354.0)

RequestMethod = PATCH AND

HasValidRequestPayload = false: not -exist (229.0)

HasSuccessfulCreateOperationOccurredBefore = false: not -exist (275.0)

RequestMethod = GET: false (196.0)

HasRequestPayload = false: not -exist (215.0)

: false (173.0)

ResponseBody user.type

HasValidRequestPayload = false AND

RequestMethod = PUT: not -exist (394.0)

HasValidRequestPayload = false AND

HasSuccessfulCreateOperationOccurredBefore = false: not -exist (594.0)

HasAuthorisationToken = true AND

RequestMethod = POST: User (354.0)

RequestMethod = PATCH AND

HasValidRequestPayload = false: not -exist (229.0)

HasSuccessfulCreateOperationOccurredBefore = false: not -exist (275.0)

RequestMethod = GET: User (196.0)

HasRequestPayload = false: not -exist (215.0)

: User (173.0)

C.3.2 Rules from PART on Twitter

ResponseStatusCode

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: 404 (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 200

(1515.0)

ResponseHeader status

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

245

HasImmediatePreviousTransactionSucceeded = false: 404 Not Found (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 200 OK

(1515.0)

ResponseHeader x-rate-limit-limit

RequestMethod = POST: not -exist (20445.0)

: 900 (5608.0)

ResponseBody contributors

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: null

(1515.0)

: not -exist (513.0)

ResponseBody coordinates

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: null

(1515.0)

: not -exist (513.0)

ResponseBody entities.hashtags

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: [] (1515.0)

: not -exist (513.0)

ResponseBody entities.symbols

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: [] (1515.0)

: not -exist (513.0)

ResponseBody entities.urls

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: [] (1515.0)

: not -exist (513.0)

246

ResponseBody entities.user mentions

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: [] (1515.0)

: not -exist (513.0)

ResponseBody errors.code

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: 144 (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: not -exist

(1515.0)

: 144 (513.0)

ResponseBody errors.message

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: No status found with that ID.

(24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: not -exist

(1515.0)

: No status found with that ID. (513.0)

ResponseBody favorite count

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 0 (1515.0)

: not -exist (513.0)

ResponseBody favorited

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

ResponseBody geo

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: null

(1515.0)

: not -exist (513.0)

247

ResponseBody in reply to screen name

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: null

(1515.0)

: not -exist (513.0)

ResponseBody in reply to status id

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: null

(1515.0)

: not -exist (513.0)

ResponseBody in reply to status id str

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: null

(1515.0)

: not -exist (513.0)

ResponseBody in reply to user id

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: null

(1515.0)

: not -exist (513.0)

ResponseBody in reply to user id str

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: null

(1515.0)

: not -exist (513.0)

ResponseBody is quote status

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

248

ResponseBody place

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: null

(1515.0)

: not -exist (513.0)

ResponseBody retweet count

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 0 (1515.0)

: not -exist (513.0)

ResponseBody retweeted

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

ResponseBody truncated

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

ResponseBody user.contributors enabled

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

ResponseBody user.created at

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: Wed Mar 07

09 :41:33 +0000 2012 (1515.0)

: not -exist (513.0)

249

ResponseBody user.default profile

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

ResponseBody user.default profile image

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

ResponseBody user.favourites count

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 64 (1515.0)

: not -exist (513.0)

ResponseBody user.follow request sent

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

ResponseBody user.followers count

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 185

(1515.0)

: not -exist (513.0)

ResponseBody user.following

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

250

ResponseBody user.friends count

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 249

(1515.0)

: not -exist (513.0)

ResponseBody user.geo enabled

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: true

(1515.0)

: not -exist (513.0)

ResponseBody user.has extended profile

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

ResponseBody user.id

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 517417816

(1515.0)

: not -exist (513.0)

ResponseBody user.id str

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 517417816

(1515.0)

: not -exist (513.0)

ResponseBody user.is translation enabled

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

251

ResponseBody user.is translator

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

ResponseBody user.lang

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: en (1515.0)

: not -exist (513.0)

ResponseBody user.listed count

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 3 (1515.0)

: not -exist (513.0)

ResponseBody user.location

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: Kurunegala

(1515.0)

: not -exist (513.0)

ResponseBody user.name

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: Thilini

Bhagya (1515.0)

: not -exist (513.0)

ResponseBody user.notifications

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

252

ResponseBody user.profile background color

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 1A1B1F

(1515.0)

: not -exist (513.0)

ResponseBody user.profile background image url

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: http://abs.

twimg.com/images/themes/theme9/bg.gif (1515.0)

: not -exist (513.0)

ResponseBody user.profile background image url https

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: https: //abs

.twimg.com/images/themes/theme9/bg.gif (1515.0)

: not -exist (513.0)

ResponseBody user.profile background tile

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

ResponseBody user.profile banner url

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: https: //pbs

.twimg.com/profile_banners /517417816/1399047954 (1515.0)

: not -exist (513.0)

ResponseBody user.profile image url

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: http://pbs.

twimg.com/profile_images /950100192048562176/ LKr7Ay21_normal.jpg (1515.0)

: not -exist (513.0)

253

ResponseBody user.profile image url https

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: https: //pbs

.twimg.com/profile_images /950100192048562176/ LKr7Ay21_normal.jpg (1515.0)

: not -exist (513.0)

ResponseBody user.profile link color

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 3E4547

(1515.0)

: not -exist (513.0)

ResponseBody user.profile sidebar border color

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: FFFFFF

(1515.0)

: not -exist (513.0)

ResponseBody user.profile sidebar fill color

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 252429

(1515.0)

: not -exist (513.0)

ResponseBody user.profile text color

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: 666666

(1515.0)

: not -exist (513.0)

ResponseBody user.profile use background image

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: true

(1515.0)

: not -exist (513.0)

254

ResponseBody user.protected

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

ResponseBody user.screen name

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: bhagyasl

(1515.0)

: not -exist (513.0)

ResponseBody user.time zone

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: null

(1515.0)

: not -exist (513.0)

ResponseBody user.translator type

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: none

(1515.0)

: not -exist (513.0)

ResponseBody user.url

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: http://t.co

/sQduiwqJiy (1515.0)

: not -exist (513.0)

ResponseBody user.utc offset

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: null

(1515.0)

: not -exist (513.0)

255

ResponseBody user.verified

RequestHeader_Content -Type = not -exist AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasImmediatePreviousTransactionSucceeded = false: not -exist (24025.0)

HasURLInImmediatelyPreviousTransactionContainsATokenToDelete = false: false

(1515.0)

: not -exist (513.0)

C.3.3 Rules from PART on Google Tasks

ResponseStatusCode

HasSuccessfulDeleteOperationOccurredBefore = true: 404 (1482.0/4.0)

RequestMethod = POST: 200 (1124.0)

RequestMethod = GET: 200 (1005.0/3.0)

RequestMethod = DELETE: 204 (606.0)

: 200 (485.0/4.0)

ResponseHeader Accept-Ranges

HasRequestPayload = true: none (2206.0)

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (1611.0/3.0)

: none (885.0)

ResponseHeader Cache-Control

HasSuccessfulDeleteOperationOccurredBefore = true: private , max -age=0 (1482.0)

RequestMethod = POST: no -cache , no-store , max -age=0, must -revalidate (1124.0)

RequestMethod = GET: private , max -age=0, must -revalidate , no-transform

(1005.0/3.0)

: no-cache , no -store , max -age=0, must -revalidate (1091.0/4.0)

ResponseHeader Content-Type

RequestMethod = GET: application/json; charset=UTF -8 (1367.0)

HasRequestPayload = true: application/json; charset=UTF -8 (2206.0)

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (606.0)

: application/json; charset=UTF -8 (523.0)

ResponseHeader Pragma

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (1482.0)

RequestMethod = POST: no -cache (1124.0)

RequestMethod = GET: not -exist (1005.0)

: no-cache (1091.0/4.0)

256

ResponseHeader Transfer-Encoding

HasRequestPayload = true: chunked (2206.0)

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (1611.0/3.0)

: chunked (885.0)

ResponseHeader Vary

HasRequestPayload = true: Origin ,Accept -Encoding (2206.0)

HasSuccessfulDeleteOperationOccurredBefore = false: X-Origin (1611.0/3.0)

: Origin ,Accept -Encoding (885.0)

ResponseHeader X-Content-Type-Options

RequestMethod = GET: nosniff (1367.0)

HasRequestPayload = true: nosniff (2206.0)

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (606.0)

: nosniff (523.0)

ResponseHeader X-Frame-Options

RequestMethod = GET: SAMEORIGIN (1367.0)

HasRequestPayload = true: SAMEORIGIN (2206.0)

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (606.0)

: SAMEORIGIN (523.0)

ResponseHeader X-XSS-Protection

RequestMethod = GET: 1; mode=block (1367.0)

HasRequestPayload = true: 1; mode=block (2206.0)

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (606.0)

: 1; mode=block (523.0)

ResponseBody error.code

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (3220.0/7.0)

: 404 (1482.0/4.0)

ResponseBody error.errors.domain

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (3220.0/7.0)

: global (1482.0)

ResponseBody error.errors.message

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (3220.0/7.0)

: NotFound (1482.0/4.0)

257

ResponseBody error.errors.reason

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (3220.0/7.0)

: notFound (1482.0/4.0)

ResponseBody error.message

HasSuccessfulDeleteOperationOccurredBefore = false: not -exist (3220.0/7.0)

: NotFound (1482.0/4.0)

ResponseBody kind

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (1482.0)

RequestMethod = POST: tasks#taskList (1124.0)

RequestMethod = GET: tasks#taskList (1005.0/3.0)

RequestMethod = DELETE: not -exist (606.0)

: tasks#taskList (485.0/4.0)

C.3.4 Rules from PART on Slack

ResponseHeader x-slack-router

: p (5243.0/1975.0)

ResponseBody channel

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (2648.0)

HasImmediatePreviousTransactionSucceeded = false AND

RequestUriPathToken2 = chat.postMessage: CCGRWTRKQ (1152.0)

HasImmediatePreviousTransactionSucceeded = true: CCGRWTRKQ (961.0)

: not -exist (482.0/1.0)

ResponseBody error

HasSuccessfulDeleteOperationOccurredBefore = true: message_not_found (2648.0)

HasImmediatePreviousTransactionSucceeded = false AND

RequestUriPathToken2 = chat.postMessage: not -exist (1152.0)

HasImmediatePreviousTransactionSucceeded = true: not -exist (961.0)

: message_not_found (482.0/1.0)

ResponseBody message.bot id

HasImmediatePreviousTransaction = true AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (2648.0)

RequestHeader_Content -Type = application/x-www -form -urlencoded AND

RequestUriPathToken2 = chat.postMessage: BCEPNCQDN (1152.0)

RequestUriPathToken2 = chat.delete: not -exist (983.0)

HasImmediatePreviousTransactionSucceeded = true: BCEPNCQDN (235.0)

: not -exist (225.0/1.0)

258

ResponseBody message.edited.user

HasURLInImmediatelyPreviousTransactionContainsATokenToUpdate = false: not -exist

(3766.0)

HasImmediatePreviousTransactionSucceeded = false: not -exist (1242.0)

RequestUriPathToken2 = chat.delete: not -exist (224.0)

: UC8J6APLN (11.0)

ResponseBody message.type

HasImmediatePreviousTransaction = true AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (2648.0)

RequestHeader_Content -Type = application/x-www -form -urlencoded AND

RequestUriPathToken2 = chat.postMessage: message (1152.0)

RequestUriPathToken2 = chat.delete: not -exist (983.0)

HasImmediatePreviousTransactionSucceeded = true: message (235.0)

: not -exist (225.0/1.0)

ResponseBody message.user

HasImmediatePreviousTransaction = true AND

HasURLInImmediatelyPreviousTransactionContainsATokenToCreate = false AND

HasSuccessfulDeleteOperationOccurredBefore = true: not -exist (2648.0)

RequestHeader_Content -Type = application/x-www -form -urlencoded AND

RequestUriPathToken2 = chat.postMessage: UC8J6APLN (1152.0)

RequestUriPathToken2 = chat.delete: not -exist (983.0)

HasImmediatePreviousTransactionSucceeded = true: UC8J6APLN (235.0)

: not -exist (225.0/1.0)

ResponseBody ok

HasSuccessfulDeleteOperationOccurredBefore = true: false (2648.0)

HasImmediatePreviousTransactionSucceeded = false AND

RequestUriPathToken2 = chat.postMessage: true (1152.0)

HasImmediatePreviousTransactionSucceeded = true: true (961.0)

: false (482.0/1.0)

259

C.4 Sample OCEL Class Expressions

C.4.1 Class Expressions from OCEL on GHTraffic

ResponseStatusCode 200

(RequestHeader_HasValidRequestPayload_true or

(RequestUriPathToken6_not -exist and

(not (RequestMethod_PATCH)))) and

(isPrecededBy some ResponseStatusCode_201)

ResponseStatusCode 204

RequestHeader_HasAuthorisationToken_true and

RequestUriPathToken6_lock and

(isPrecededBy some ResponseStatusCode_201)

ResponseStatusCode 400

RequestHeader_HasAuthorisationToken_true and

RequestHeader_HasRequestPayload_true and

RequestHeader_HasValidRequestPayload_false

ResponseStatusCode 401

RequestHeader_HasAuthorisationToken_false

ResponseStatusCode 404

RequestHeader_HasAuthorisationToken_true and

((RequestBody_state_closed and

(hasPrevious some ResponseHeader_Vary_not -exist)) or

(RequestHeader_Content -Type_not -exist and

(not (RequestMethod_PATCH))))

ResponseStatusCode 422

RequestHeader_HasRequestPayload_false and

RequestMethod_PATCH

ResponseHeader Cache-Control max-age

(RequestHeader_HasValidRequestPayload_true or

(RequestUriPathToken6_not -exist and

(not (RequestMethod_PATCH)))) and

(isPrecededBy some ResponseStatusCode_201)

ResponseHeader Cache-Control not-exist

(RequestHeader_HasValidRequestPayload_false and

(not (RequestMethod_HEAD))) or

(hasPrevious some (RequestUriPathToken6_not -exist and

ResponseHeader_Vary_not -exist))

ResponseHeader Vary accept

(RequestHeader_HasValidRequestPayload_true or

(RequestUriPathToken6_not -exist and

(not (RequestMethod_PATCH)))) and

(isPrecededBy some ResponseStatusCode_201)

260

ResponseHeader Vary not-exist

(RequestHeader_HasValidRequestPayload_false and

(not (RequestMethod_HEAD))) or

(hasPrevious some (RequestUriPathToken6_not -exist and

ResponseHeader_Vary_not -exist))

ResponseHeader X-Accepted-OAuth-Scopes not-exist

RequestHeader_HasAuthorisationToken_false

ResponseHeader X-Accepted-OAuth-Scopes accepted-public-repo

RequestHeader_HasAuthorisationToken_true and

(RequestHeader_HasValidRequestPayload_true or

(not (RequestMethod_PATCH))) and

(isPrecededBy some ResponseStatusCode_201)

ResponseHeader X-Accepted-OAuth-Scopes repo

RequestHeader_HasAuthorisationToken_true

ResponseHeader X-OAuth-Scopes not-exist

RequestHeader_HasAuthorisationToken_false

ResponseHeader X-OAuth-Scopes public-repo

RequestHeader_HasAuthorisationToken_true

ResponseBody assignee.site admin false

(RequestHeader_HasValidRequestPayload_true or

RequestMethod_GET) and

(not (RequestUriPathToken6_lock)) and

(isPrecededBy some ResponseBody_assignees.type_User)

ResponseBody assignee.site admin false

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_assignees.type_User)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_assignees.type_User)))

ResponseBody assignee.site admin not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_assignees.type_not -exist)

ResponseBody assignee.type not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_assignees.type_not -exist)

ResponseBody assignee.type User

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_assignees.type_User)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_assignees.type_User)))

261

ResponseBody assignees.site admin false

(not (RequestHeader_HasValidRequestPayload_false)) and

(isPrecededBy some ResponseBody_assignees.type_User)

ResponseBody assignees.site admin not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_assignees.type_not -exist)

ResponseBody assignees.type not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_assignees.type_not -exist)

ResponseBody assignees.type User

(not (RequestHeader_HasValidRequestPayload_false)) and

(isPrecededBy some ResponseBody_assignees.type_User)

ResponseBody locked false

RequestUriPathToken6_not -exist and

(RequestHeader_HasValidRequestPayload_true or

RequestMethod_GET) and

(isPrecededBy some ResponseStatusCode_201)

ResponseBody locked not-exist

RequestHeader_HasValidRequestPayload_false or

(RequestBody_state_closed and

(hasPrevious some ResponseHeader_Vary_not -exist))

ResponseBody milestone.creator.avatar url avatar-v3

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.avatar url not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.events url events-privacy

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.events url not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.followers url followers-cgdecker

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

262

ResponseBody milestone.creator.followers url not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.following url following-cgdecker

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.following url not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.gists url gists-cgdecker

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.gists url not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.html url html-cgdecker

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.html url not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.id 101568

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.id not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.login cgdecker

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

263

ResponseBody milestone.creator.login not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.organizations url not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.organizations url organizations-cgdecker

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.received events url events-cgdecker

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.received events url not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.repos url not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.repos url repos-cgdecker

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.site admin false

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.site admin not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.starred url not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

264

ResponseBody milestone.creator.starred url starred-cgdecker

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.subscriptions url not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.subscriptions url subscriptions-cgdecker

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.type not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.creator.type User

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.url creator-cgdecker

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.creator.url not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.due on not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.due on null

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.open issues 0

(RequestHeader_HasValidRequestPayload_true or

RequestMethod_GET) and

(not (RequestUriPathToken6_lock)) and

(isPrecededBy some ResponseBody_milestone.open_issues_0)

265

ResponseBody milestone.open issues 1

RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.open_issues_1)

ResponseBody milestone.open issues not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody milestone.state closed

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseBody_milestone.state_closed)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_milestone.state_closed)))

ResponseBody milestone.state not-exist

RequestHeader_HasValidRequestPayload_false or

(hasPrevious some ResponseBody_milestone.state_not -exist)

ResponseBody state closed

RequestUriPathToken6_not -exist and

((RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseStatusCode_201)) or

(RequestMethod_GET and

(isPrecededBy some ResponseBody_state_closed)))

ResponseBody state not-exist

RequestHeader_HasValidRequestPayload_false or

(RequestBody_state_closed and

(hasPrevious some ResponseHeader_Vary_not -exist))

ResponseBody state open

RequestMethod_GET and

RequestUriPathToken6_not -exist and

(not (RequestMethod_PATCH)) and

(hasPrevious some (RequestBody_state_not -exist and

(hasPrevious some (not (ResponseBody_state_closed)))))

ResponseBody user.site admin false

(RequestHeader_HasValidRequestPayload_true or

RequestMethod_GET) and

(not (RequestUriPathToken6_lock)) and

(isPrecededBy some ResponseStatusCode_201)

ResponseBody user.site admin not-exist

RequestHeader_HasValidRequestPayload_false or

(RequestBody_state_closed and

(hasPrevious some ResponseHeader_Vary_not -exist))

ResponseBody user.type not-exist

RequestHeader_HasValidRequestPayload_false or

(RequestBody_state_closed and

(hasPrevious some ResponseHeader_Vary_not -exist))

266

ResponseBody user.type User

RequestHeader_HasAuthorisationToken_true and

RequestUriPathToken6_not -exist and

(RequestHeader_HasValidRequestPayload_true or

RequestMethod_GET) and

(isPrecededBy some ResponseStatusCode_201)

ResponseBody message invalid-request

RequestHeader_HasRequestPayload_false and

RequestMethod_PATCH

ResponseBody message not-exist

RequestHeader_HasAuthorisationToken_true and

((RequestHeader_HasRequestPayload_false and

(not (RequestMethod_PATCH))) or

(RequestHeader_HasValidRequestPayload_true and

(isPrecededBy some ResponseStatusCode_201)))

ResponseBody message not-found

RequestHeader_HasAuthorisationToken_true and

(not (RequestMethod_HEAD)) and

(hasPrevious some (ResponseHeader_Vary_not -exist and

(ResponseBody_documentation_url_create -an -issue or

ResponseStatusCode_404)))

ResponseBody message problems-passing-json

RequestHeader_HasAuthorisationToken_true and

RequestHeader_HasRequestPayload_true and

RequestHeader_HasValidRequestPayload_false

ResponseBody message requires-authentication

RequestHeader_HasAuthorisationToken_false

ResponseBody documentation url edit-an-issue

RequestHeader_HasValidRequestPayload_false and

RequestMethod_PATCH

ResponseBody documentation url lock-an-issue

RequestHeader_HasAuthorisationToken_false and

RequestMethod_PUT

ResponseBody documentation url not-exist

RequestHeader_HasAuthorisationToken_true and

(RequestHeader_HasValidRequestPayload_true or

(RequestHeader_HasRequestPayload_false and

(not (RequestMethod_PATCH)))) and

(isPrecededBy some ResponseStatusCode_201)

ResponseBody documentation url unlock-an-issue

RequestHeader_HasAuthorisationToken_false and

RequestMethod_DELETE

267

ResponseBody documentation url v3

(RequestHeader_HasValidRequestPayload_false or

(RequestBody_state_closed and

(hasPrevious some ResponseHeader_Vary_not -exist))) and

(not (RequestMethod_HEAD))

C.4.2 Class Expressions from OCEL on Twitter

ResponseStatusCode 200

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseStatusCode 404

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseHeader status 200OK

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseHeader status 404NotFound

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseHeader x-rate-limit-limit 900

RequestMethod_GET

ResponseHeader x-rate-limit-limit not-exist

RequestMethod_POST

ResponseBody contributors not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody contributors null

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody coordinates not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

268

ResponseBody coordinates null

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody entities.hashtags empty-list

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody entities.hashtags not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody entities.symbols empty-list

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody entities.symbols not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody entities.urls empty-list

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody entities.urls not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody entities.user mentions empty-list

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody entities.user mentions not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody errors.code 144

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

269

ResponseBody errors.code not-exist

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody errors.message no-status-found

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody errors.message not-exist

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody favorite count 0

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody favorite count not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody favorited false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody favorited not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody geo not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody geo null

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody in reply to screen name not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

270

ResponseBody in reply to screen name null

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody in reply to status id not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody in reply to status id null

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody in reply to status id str not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody in reply to status id str null

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody in reply to user id not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody in reply to user id null

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody in reply to user id str not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody in reply to user id str null

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody is quote status false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

271

ResponseBody is quote status not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody place not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody place null

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody retweet count 0

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody retweet count not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody retweeted false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody retweeted not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody truncated false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody truncated not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.contributors enabled false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

272

ResponseBody user.contributors enabled not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.created at not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.created at WedMar0709

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.default profile false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.default profile image false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.default profile image not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.default profile not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.favourites count 64

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.favourites count not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.follow request sent false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

273

ResponseBody user.follow request sent not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.followers count 185

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.followers count not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.following false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.following not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.friends count 249

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.friends count not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.geo enabled not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.geo enabled true

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.has extended profile false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

274

ResponseBody user.has extended profile not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.id 517417816

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.id not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.id str 517417816

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.id str not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.is translation enabled false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.is translation enabled not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.is translator false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.is translator not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.lang en

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

275

ResponseBody user.lang not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.listed count 3

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.listed count not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.location Kurunegala

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.location not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.name not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.name ThiliniBhagya

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.notifications false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.notifications not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile background color 1A1B1F

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

276

ResponseBody user.profile background color not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile background image url http-abc.twimg.com

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.profile background image url https https-abc.twimg.com

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.profile background image url https not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile background image url not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile background tile false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.profile background tile not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile banner url https-pbs.twimg.com-profile-banners

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.profile banner url not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile image url http-pbs.twimg.com-profile-images

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

277

ResponseBody user.profile image url https https-pbs.twimg.com-profile-
images

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.profile image url https not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile image url not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile link color 3E4547

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200

and (not (RequestUriPathToken3_destroy)))))

ResponseBody user.profile link color not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile sidebar border color FFFFFF

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.profile sidebar border color not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile sidebar fill color 252429

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.profile sidebar fill color not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile text color 666666

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

278

ResponseBody user.profile text color not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile use background image not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.profile use background image true

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.protected false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.protected not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.screen name bhagyasl

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.screen name not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.time zone not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.time zone null

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.translator type none

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

279

ResponseBody user.translator type not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.url http-t.co

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.url not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.utc offset not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

ResponseBody user.utc offset null

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.verified false

RequestHeader_Content -Type_form -urlencoded or

(RequestHeader_Content -Type_not -exist and

(hasPrevious some (ResponseStatusCode_200 and

(not (RequestUriPathToken3_destroy)))))

ResponseBody user.verified not-exist

(RequestUriPathToken3_show.json and

(isPrecededBy some ResponseStatusCode_404)) or

(isPrecededBy some RequestUriPathToken3_destroy)

C.4.3 Class Expressions from OCEL on Google Tasks

ResponseStatusCode 200

(not (RequestMethod_DELETE)) and

(hasPrevious some ResponseStatusCode_200)

ResponseStatusCode 204

RequestMethod_DELETE and

(hasPrevious some ResponseStatusCode_200)

ResponseStatusCode 404

isPrecededBy some ResponseStatusCode_204

280

ResponseStatusCode 503

(not (RequestMethod_DELETE)) and

(not (RequestMethod_PATCH)) and

(hasPrevious some (RequestMethod_DELETE and

(hasPrevious some (hasPrevious some (hasPrevious some RequestMethod_PATCH)))))

ResponseHeader Accept-Ranges none

RequestHeader_HasValidRequestPayload_true or

(isPrecededBy some ResponseStatusCode_204)

ResponseHeader Accept-Ranges not-exist

RequestHeader_HasValidRequestPayload_false and

(hasPrevious some ResponseStatusCode_200)

ResponseHeader Alt-Svc quic

ResponseHeader Cache-Control must-revalidate

RequestMethod_GET and

(hasPrevious some ResponseStatusCode_200)

ResponseHeader Cache-Control no-cache

RequestHeader_HasValidRequestPayload_true or

(RequestMethod_DELETE and

(hasPrevious some ResponseStatusCode_200))

ResponseHeader Cache-Control private

isPrecededBy some ResponseStatusCode_204

ResponseHeader Content-Type json

(not (RequestMethod_DELETE)) or

(isPrecededBy some ResponseStatusCode_204)

ResponseHeader Content-Type not-exist

RequestMethod_DELETE and

(hasPrevious some ResponseStatusCode_200)

ResponseHeader Pragma no-cache

RequestHeader_HasValidRequestPayload_true or

(RequestMethod_DELETE and

(hasPrevious some ResponseStatusCode_200))

ResponseHeader Pragma not-exist

RequestMethod_GET or

(isPrecededBy some ResponseHeader_Vary_X -Origin)

ResponseHeader Server GSE

ResponseHeader Transfer-Encoding chunked

RequestHeader_HasValidRequestPayload_true or

(isPrecededBy some ResponseStatusCode_204)

281

ResponseHeader Transfer-Encoding not-exist

RequestHeader_HasValidRequestPayload_false and

(hasPrevious some ResponseStatusCode_200)

ResponseHeader Vary origin

RequestHeader_HasValidRequestPayload_true or

(isPrecededBy some ResponseStatusCode_204)

ResponseHeader Vary X-Origin

RequestHeader_HasValidRequestPayload_false and

(hasPrevious some ResponseStatusCode_200)

ResponseHeader X-Content-Type-Options nosniff

(not (RequestMethod_DELETE)) or

(isPrecededBy some ResponseStatusCode_204)

ResponseHeader X-Content-Type-Options not-exist

RequestMethod_DELETE and

(hasPrevious some ResponseStatusCode_200)

ResponseHeader X-Frame-Options not-exist

RequestMethod_DELETE and

(hasPrevious some ResponseStatusCode_200)

ResponseHeader X-Frame-Options SAMEORIGIN

(not (RequestMethod_DELETE)) or

(isPrecededBy some ResponseStatusCode_204)

ResponseHeader X-XSS-Protection block

(not (RequestMethod_DELETE)) or

(isPrecededBy some ResponseStatusCode_204)

ResponseHeader X-XSS-Protection not-exist

RequestMethod_DELETE and

(hasPrevious some ResponseStatusCode_200)

ResponseBody error.code 404

isPrecededBy some ResponseStatusCode_204

ResponseBody error.code 503

(not (RequestMethod_DELETE)) and

(not (RequestMethod_PATCH)) and

(hasPrevious some (RequestMethod_DELETE and

(hasPrevious some (hasPrevious some (hasPrevious some RequestMethod_PATCH)))))

ResponseBody error.code not-exist

(RequestHeader_Content -Type_json and

(not (RequestMethod_PATCH))) or

(hasPrevious some ResponseStatusCode_200)

282

ResponseBody error.errors.domain global

isPrecededBy some ResponseStatusCode_204

ResponseBody error.errors.domain not-exist

(RequestHeader_Content -Type_json and

(not (RequestMethod_PATCH))) or

(hasPrevious some ResponseStatusCode_200)

ResponseBody error.errors.message BackendError

(not (RequestMethod_DELETE)) and

(not (RequestMethod_PATCH)) and

(hasPrevious some (RequestMethod_DELETE and

(hasPrevious some (hasPrevious some (hasPrevious some RequestMethod_PATCH)))))

ResponseBody error.errors.message not-exist

(RequestMethod_POST and

(not (RequestMethod_PATCH))) or

(hasPrevious some ResponseStatusCode_200)

ResponseBody error.errors.message NotFound

isPrecededBy some ResponseStatusCode_204

ResponseBody error.errors.reason backendError

(not (RequestMethod_DELETE)) and

(not (RequestMethod_PATCH)) and

(hasPrevious some (RequestMethod_DELETE and

(hasPrevious some (hasPrevious some (hasPrevious some RequestMethod_PATCH)))))

ResponseBody error.errors.reason not-exist

(RequestMethod_POST and

(not (RequestMethod_PATCH))) or

(hasPrevious some ResponseStatusCode_200)

ResponseBody error.errors.reason notFound

isPrecededBy some ResponseStatusCode_204

ResponseBody error.message BackendError

(not (RequestMethod_DELETE)) and

(not (RequestMethod_PATCH)) and

(hasPrevious some (RequestMethod_DELETE and

(hasPrevious some (hasPrevious some (hasPrevious some RequestMethod_PATCH)))))

ResponseBody error.message not-exist

(RequestMethod_POST and

(not (RequestMethod_PATCH))) or

(hasPrevious some ResponseStatusCode_200)

ResponseBody error.message NotFound

isPrecededBy some ResponseStatusCode_204

283

C.4.4 Class Expressions from OCEL on Slack

ResponseHeader x-slack-router not-exist

Thing

ResponseHeader x-slack-router p

Thing

ResponseBody channel CCGRWTRKQ

RequestUriPathToken2_chat.postMessage or

((not (RequestUriPathToken2_chat.update)) and

(hasPrevious some ResponseBody_ok_true))

ResponseBody channel not-exist

not (RequestUriPathToken2_chat.postMessage)

ResponseBody error messagenotfound

not (RequestUriPathToken2_chat.postMessage)

ResponseBody error not-exist

RequestUriPathToken2_chat.postMessage or

((not (RequestUriPathToken2_chat.update)) and

(hasPrevious some ResponseBody_ok_true))

ResponseBody message.bot id BCEPNCQDN

RequestHeader_Content -Type_x -www and

(not (RequestUriPathToken2_chat.update))

ResponseBody message.bot id not-exist

(not (RequestUriPathToken2_chat.postMessage))

ResponseBody message.type message

RequestHeader_Content -Type_x -www and

(not (RequestUriPathToken2_chat.update))

ResponseBody message.type not-exist

not (RequestUriPathToken2_chat.postMessage)

ResponseBody message.user not-exist

not (RequestUriPathToken2_chat.postMessage)

ResponseBody message.user UC8J6APLN

RequestHeader_Content -Type_x -www and

(not (RequestUriPathToken2_chat.update))

ResponseBody ok false

not (RequestUriPathToken2_chat.postMessage)

284

ResponseBody ok true

RequestUriPathToken2_chat.postMessage or

((not (RequestUriPathToken2_chat.update)) and

(hasPrevious some ResponseBody_ok_true))

285

C
.5

2
-F

o
ld

C
ro

ss
V

a
li
d
a
ti

o
n

o
f

A
tt

ri
b
u
te

-B
a
se

d
L

e
a
rn

in
g

A
lg

o
ri

th
m

s

C
.5

.1
2
-F

o
ld

C
ro

ss
V

a
li

d
a
ti

o
n

R
e
su

lt
s

o
n

G
H

T
ra

ffi
c

T
a
rg

e
t

C
4
.5

R
IP

P
E
R

P
A

R
T

A
c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

L
e
a
v
e
s

S
iz

e
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s

R
e
sp

o
n
se

S
ta

tu
sC

o
d
e

0
.9

8
5
8

0
.9

9
4
8

0
.8

8
9
3

3
8

5
1

0
.9

8
5
8

0
.9

9
4
8

0
.8

8
9
3

9
0
.9

8
5
8

0
.9

9
4
8

0
.8

8
9
3

2
3

R
e
sp

o
n
se

H
e
a
d
e
r

C
a
c
h
e
-C

o
n
tr

o
l

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
6

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8

R
e
sp

o
n
se

H
e
a
d
e
r

V
a
ry

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
6

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8

R
e
sp

o
n
se

H
e
a
d
e
r

X
-A

c
c
e
p
te

d
-O

A
u
th

-S
c
o
p

e
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
5

2
1

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

7
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

7

R
e
sp

o
n
se

H
e
a
d
e
r

X
-O

A
u
th

-S
c
o
p

e
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2

R
e
sp

o
n
se

B
o
d
y

a
ss

ig
n
e
e
.s

it
e

a
d
m

in
0
.9

6
3
4

0
.4

8
1
5

0
.5

0
0
0

1
1

0
.9

6
3
4

0
.4

8
1
5

0
.5

0
0
0

1
0
.9

6
3
4

0
.4

8
1
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

a
ss

ig
n
e
e
.t

y
p

e
0
.9

6
3
4

0
.4

8
1
5

0
.5

0
0
0

1
1

0
.9

6
3
4

0
.4

8
1
5

0
.5

0
0
0

1
0
.9

6
3
4

0
.4

8
1
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

a
ss

ig
n
e
e
s.

si
te

a
d
m

in
0
.9

8
2
5

0
.4

9
1
5

0
.5

0
0
0

1
1

0
.9

8
2
5

0
.4

9
1
5

0
.5

0
0
0

1
0
.9

8
2
5

0
.4

9
1
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

a
ss

ig
n
e
e
s.

ty
p

e
0
.9

8
2
5

0
.4

9
1
5

0
.5

0
0
0

1
1

0
.9

8
2
5

0
.4

9
1
5

0
.5

0
0
0

1
0
.9

8
2
5

0
.4

9
1
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.a

v
a
ta

r
u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.e

v
e
n
ts

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.f

o
ll
o
w

e
rs

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.f

o
ll
o
w

in
g

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.g

is
ts

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.h

tm
l

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.i
d

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.l
o
g
in

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.o

rg
a
n
iz

a
ti

o
n
s

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.r

e
c
e
iv

e
d

e
v
e
n
ts

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.r

e
p

o
s

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.s

it
e

a
d
m

in
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.s

ta
rr

e
d

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.s

u
b
sc

ri
p
ti

o
n
s

u
rl

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.t

y
p

e
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

c
lo

se
d

b
y
.u

rl
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
1

0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1
0
.9

9
9
8

0
.2

5
0
0

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

d
o
c
u
m

e
n
ta

ti
o
n

u
rl

0
.9

8
5
6

0
.9

8
9
7

0
.9

9
3
7

3
4

4
3

0
.9

8
4
0

0
.8

2
1
7

0
.9

9
3
3

1
7

0
.9

8
5
6

0
.9

8
9
7

0
.9

9
3
7

2
3

R
e
sp

o
n
se

B
o
d
y

lo
c
k
e
d

0
.9

9
9
9

0
.6

6
6
3

0
.6

6
6
7

1
6

2
3

0
.9

9
9
9

0
.6

6
6
3

0
.6

6
6
7

4
0
.9

9
9
9

0
.6

6
6
3

0
.6

6
6
7

8

R
e
sp

o
n
se

B
o
d
y

m
e
ss

a
g
e

0
.9

8
5
5

0
.9

4
3
3

0
.8

6
0
2

3
2

4
3

0
.9

8
5
5

0
.8

6
0
2

0
.8

6
0
2

1
0

0
.9

8
5
5

0
.9

4
3
3

0
.8

6
0
2

2
4

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
a
v
a
ta

r
u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
2

0
.4

0
5
0

0
.3

3
4
0

1
0
.9

6
5
2

0
.4

0
5
0

0
.3

3
4
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
e
v
e
n
ts

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
fo

ll
o
w

e
rs

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
fo

ll
o
w

in
g

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
g
is

ts
u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

C
o
n
ti

n
u
e
d

o
n

n
e
x
t

p
a
g
e

286

T
a
b
le

C
.1

–
c
o
n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

T
a
rg

e
t

C
4
.5

R
IP

P
E
R

P
A

R
T

A
c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

L
e
a
v
e
s

S
iz

e
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
h
tm

l
u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
id

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
lo

g
in

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
o
rg

a
n
iz

a
ti

o
n
s

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
re

c
e
iv

e
d

e
v
e
n
ts

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
re

p
o
s

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
si

te
a
d
m

in
0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
st

a
rr

e
d

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
su

b
sc

ri
p
ti

o
n
s

u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
ty

p
e

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.c

re
a
to

r.
u
rl

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.d

u
e

o
n

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1
0
.9

6
5
4

0
.4

8
2
5

0
.5

0
0
0

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.o

p
e
n

is
su

e
s

0
.9

6
5
4

0
.2

4
1
3

0
.2

5
0
0

1
1

0
.9

6
5
4

0
.2

4
1
3

0
.2

5
0
0

1
0
.9

6
5
4

0
.2

4
1
3

0
.2

4
1
2

1

R
e
sp

o
n
se

B
o
d
y

m
il
e
st

o
n
e
.s

ta
te

0
.9

6
5
4

0
.3

2
1
7

0
.3

3
3
3

1
1

0
.9

6
5
4

0
.4

8
2
5

0
.3

3
3
3

1
0
.9

6
5
4

0
.3

2
1
7

0
.2

5
0
0

1

R
e
sp

o
n
se

B
o
d
y

st
a
te

0
.9

7
9
0

0
.9

3
5
0

0
.9

2
7
3

1
3

2
1

0
.9

7
9
0

0
.9

3
5
0

0
.9

2
7
3

5
0
.9

7
8
7

0
.9

3
1
7

0
.9

2
6
0

1
4

R
e
sp

o
n
se

B
o
d
y

u
se

r.
si

te
a
d
m

in
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
6

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8

R
e
sp

o
n
se

B
o
d
y

u
se

r.
ty

p
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
6

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8

M
e
a
n

0
.9

8
3
3

0
.4

5
0
1

0
.4

5
1
7

5
.0

6
0
0

6
.7

2
0
0

0
.9

8
3
3

0
.5

0
1
5

0
.5

0
5
1

2
.2

2
0
0

0
.9

8
3
3

0
.5

0
3
2

0
.5

0
3
2

3
.4

4
0
0

S
ta

n
d
a
rd

D
e
v
ia

ti
o
n

0
.0

1
6
4

0
.2

8
2
6

0
.2

7
4
1

9
.1

0
3
5

1
2
.4

6
7
2

0
.0

1
6
4

0
.2

5
8
6

0
.2

6
1
5

2
.9

9
1
8

0
.0

1
6
4

0
.2

6
7
6

0
.2

6
3
1

5
.8

0
3
4

287

C
.5

.2
2
-F

o
ld

C
ro

ss
V

a
li

d
a
ti

o
n

R
e
su

lt
s

o
n

T
w

it
te

r

T
a
rg

e
t

C
4
.5

R
IP

P
E
R

P
A

R
T

A
c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

L
e
a
v
e
s

S
iz

e
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s

R
e
sp

o
n
se

S
ta

tu
sC

o
d
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

H
e
a
d
e
r

st
a
tu

s
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

H
e
a
d
e
r

x
-r

a
te

-l
im

it
-l

im
it

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2

R
e
sp

o
n
se

B
o
d
y

c
o
n
tr

ib
u
to

rs
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

c
o
o
rd

in
a
te

s
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

e
n
ti

ti
e
s.

h
a
sh

ta
g
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

e
n
ti

ti
e
s.

sy
m

b
o
ls

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

e
n
ti

ti
e
s.

u
rl

s
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

e
n
ti

ti
e
s.

u
se

r
m

e
n
ti

o
n
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

e
rr

o
rs

.c
o
d
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

e
rr

o
rs

.m
e
ss

a
g
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

fa
v
o
ri

te
c
o
u
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

fa
v
o
ri

te
d

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

g
e
o

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

in
re

p
ly

to
sc

re
e
n

n
a
m

e
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

in
re

p
ly

to
st

a
tu

s
id

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

in
re

p
ly

to
st

a
tu

s
id

st
r

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

in
re

p
ly

to
u
se

r
id

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

in
re

p
ly

to
u
se

r
id

st
r

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

is
q
u
o
te

st
a
tu

s
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

p
la

c
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

re
tw

e
e
t

c
o
u
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

re
tw

e
e
te

d
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

tr
u
n
c
a
te

d
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
c
o
n
tr

ib
u
to

rs
e
n
a
b
le

d
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
c
re

a
te

d
a
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
d
e
fa

u
lt

p
ro

fi
le

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
d
e
fa

u
lt

p
ro

fi
le

im
a
g
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
fa

v
o
u
ri

te
s

c
o
u
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
fo

ll
o
w

re
q
u
e
st

se
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
fo

ll
o
w

e
rs

c
o
u
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
fo

ll
o
w

in
g

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
fr

ie
n
d
s

c
o
u
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
g
e
o

e
n
a
b
le

d
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
h
a
s

e
x
te

n
d
e
d

p
ro

fi
le

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
id

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
id

st
r

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

C
o
n
ti

n
u
e
d

o
n

n
e
x
t

p
a
g
e

288

T
a
b
le

C
.2

–
c
o
n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

T
a
rg

e
t

C
4
.5

R
IP

P
E
R

P
A

R
T

A
c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

L
e
a
v
e
s

S
iz

e
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s

R
e
sp

o
n
se

B
o
d
y

u
se

r.
is

tr
a
n
sl

a
ti

o
n

e
n
a
b
le

d
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
is

tr
a
n
sl

a
to

r
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
la

n
g

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
li
st

e
d

c
o
u
n
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
lo

c
a
ti

o
n

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
n
a
m

e
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
n
o
ti

fi
c
a
ti

o
n
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

b
a
c
k
g
ro

u
n
d

c
o
lo

r
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

b
a
c
k
g
ro

u
n
d

im
a
g
e

u
rl

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

b
a
c
k
g
ro

u
n
d

im
a
g
e

u
rl

h
tt

p
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

b
a
c
k
g
ro

u
n
d

ti
le

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

b
a
n
n
e
r

u
rl

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

im
a
g
e

u
rl

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

im
a
g
e

u
rl

h
tt

p
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

li
n
k

c
o
lo

r
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

si
d
e
b
a
r

b
o
rd

e
r

c
o
lo

r
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

si
d
e
b
a
r

fi
ll

c
o
lo

r
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

te
x
t

c
o
lo

r
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

fi
le

u
se

b
a
c
k
g
ro

u
n
d

im
a
g
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
p
ro

te
c
te

d
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
sc

re
e
n

n
a
m

e
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
ti

m
e

z
o
n
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
tr

a
n
sl

a
to

r
ty

p
e

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
u
rl

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
u
tc

o
ff

se
t

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

R
e
sp

o
n
se

B
o
d
y

u
se

r.
v
e
ri

fi
e
d

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

6
1
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3

M
e
a
n

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
.9

3
6
5

9
.8

8
8
9

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

3
.9

3
6
5

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
.9

8
4
1

S
ta

n
d
a
rd

D
e
v
ia

ti
o
n

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.5

0
4
0

0
.8

8
1
9

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.3

0
4
4

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.1

2
6
0

289

C
.5

.3
2
-F

o
ld

C
ro

ss
V

a
li

d
a
ti

o
n

R
e
su

lt
s

o
n

G
o
o
g
le

T
a
sk

s

T
a
rg

e
t

C
4
.5

R
IP

P
E
R

P
A

R
T

A
c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

L
e
a
v
e
s

S
iz

e
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s

R
e
sp

o
n
se

S
ta

tu
sC

o
d
e

0
.9

9
7
7

0
.7

4
8
5

0
.7

5
0
0

5
7

0
.9

9
7
7

0
.7

4
8
5

0
.7

5
0
0

3
0
.9

9
7
7

0
.7

4
8
5

0
.7

5
0
0

5

R
e
sp

o
n
se

H
e
a
d
e
r

A
c
c
e
p
t-

R
a
n
g
e
s

0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
5

3
5

0
.9

9
8
3

0
.9

9
8
0

0
.9

9
8
5

3
0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
5

3

R
e
sp

o
n
se

H
e
a
d
e
r

C
a
c
h
e
-C

o
n
tr

o
l

0
.9

9
8
5

0
.9

9
8
3

0
.9

9
8
3

5
7

0
.9

9
8
3

0
.9

9
8
3

0
.9

9
8
0

3
0
.9

9
8
5

0
.9

9
8
3

0
.9

9
8
3

4

R
e
sp

o
n
se

H
e
a
d
e
r

C
o
n
te

n
t-

T
y
p

e
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
7

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

H
e
a
d
e
r

P
ra

g
m

a
0
.9

9
9
1

0
.9

9
9
0

0
.9

9
9
0

5
7

0
.9

9
8
9

0
.9

9
9
0

0
.9

9
9
0

4
0
.9

9
9
1

0
.9

9
9
0

0
.9

9
9
0

4

R
e
sp

o
n
se

H
e
a
d
e
r

T
ra

n
sf

e
r-

E
n
c
o
d
in

g
0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
5

3
5

0
.9

9
8
5

0
.9

9
8
0

0
.9

9
9
0

3
0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
5

3

R
e
sp

o
n
se

H
e
a
d
e
r

V
a
ry

0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
5

3
5

0
.9

9
8
3

0
.9

9
8
0

0
.9

9
8
5

3
0
.9

9
9
4

0
.9

9
9
0

0
.9

9
9
5

3

R
e
sp

o
n
se

H
e
a
d
e
r

X
-C

o
n
te

n
t-

T
y
p

e
-O

p
ti

o
n
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
7

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

H
e
a
d
e
r

X
-F

ra
m

e
-O

p
ti

o
n
s

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
7

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

H
e
a
d
e
r

X
-X

S
S
-P

ro
te

c
ti

o
n

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
7

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

B
o
d
y

e
rr

o
r.

c
o
d
e

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
3

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2

R
e
sp

o
n
se

B
o
d
y

e
rr

o
r.

e
rr

o
rs

.d
o
m

a
in

0
.9

9
8
5

0
.9

9
9
0

0
.9

9
7
5

2
3

0
.9

9
8
5

0
.9

9
9
0

0
.9

9
7
5

2
0
.9

9
8
5

0
.9

9
9
0

0
.9

9
7
5

2

R
e
sp

o
n
se

B
o
d
y

e
rr

o
r.

e
rr

o
rs

.m
e
ss

a
g
e

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
3

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2

R
e
sp

o
n
se

B
o
d
y

e
rr

o
r.

e
rr

o
rs

.r
e
a
so

n
0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
3

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2

R
e
sp

o
n
se

B
o
d
y

e
rr

o
r.

m
e
ss

a
g
e

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
3

0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2
0
.9

9
7
7

0
.6

6
5
0

0
.6

6
6
7

2

R
e
sp

o
n
se

B
o
d
y

k
in

d
0
.9

9
8
5

0
.9

9
8
5

0
.9

9
8
5

5
7

0
.9

9
8
5

0
.9

9
8
5

0
.9

9
8
5

3
0
.9

9
8
5

0
.9

9
8
5

0
.9

9
8
5

5

M
e
a
n

0
.9

9
8
8

0
.9

0
0
0

0
.9

0
0
5

3
.6

8
7
5

5
.3

7
5
0

0
.9

9
8
6

0
.8

9
9
8

0
.9

0
0
4

2
.5

0
0
0

0
.9

9
8
8

0
.9

0
0
0

0
.9

0
0
5

3
.3

1
2
5

S
ta

n
d
a
rd

D
e
v
ia

ti
o
n

0
.0

0
0
9

0
.1

5
3
2

0
.1

5
2
4

1
.4

0
0
9

1
.8

2
1
2

0
.0

0
0
9

0
.1

5
3
1

0
.1

5
2
3

0
.6

3
2
5

0
.0

0
0
9

0
.1

5
3
2

0
.1

5
2
4

1
.0

7
8
2

290

C
.5

.4
2
-F

o
ld

C
ro

ss
V

a
li

d
a
ti

o
n

R
e
su

lt
s

o
n

S
la

ck

T
a
rg

e
t

C
4
.5

R
IP

P
E
R

P
A

R
T

A
c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

L
e
a
v
e
s

S
iz

e
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s
A

c
c
u
ra

c
y

P
re

c
is
io

n
R

e
c
a
ll

R
u
le

s

R
e
sp

o
n
se

H
e
a
d
e
r

x
-s

la
c
k
-r

o
u
te

r
0
.6

3
5
0

0
.3

1
7
5

0
.5

0
0
0

1
1

0
.6

3
5
0

0
.3

1
7
5

0
.5

0
0
0

1
0
.6

3
4
4

0
.4

7
1
5

0
.9

9
9
0

1

R
e
sp

o
n
se

B
o
d
y

c
h
a
n
n
e
l

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8
1
4

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

B
o
d
y

e
rr

o
r

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8
1
4

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

B
o
d
y

m
e
ss

a
g
e
.b

o
t

id
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5

R
e
sp

o
n
se

B
o
d
y

m
e
ss

a
g
e
.e

d
it

e
d
.u

se
r

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

R
e
sp

o
n
se

B
o
d
y

m
e
ss

a
g
e
.t

y
p

e
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5

R
e
sp

o
n
se

B
o
d
y

m
e
ss

a
g
e
.u

se
r

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

5

R
e
sp

o
n
se

B
o
d
y

o
k

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

8
1
4

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4
1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

4

M
e
a
n

0
.9

5
4
4

0
.9

1
4
7

0
.9

3
7
5

5
.6

2
5
0

9
.3

7
5
0

0
.9

5
4
4

0
.9

1
4
7

0
.9

3
7
5

3
.3

7
5
0

0
.9

5
4
3

0
.9

3
3
9

0
.9

9
9
9

4
.0

0
0
0

S
ta

n
d
a
rd

D
e
v
ia

ti
o
n

0
.1

2
9
0

0
.2

4
1
3

0
.1

7
6
8

2
.3

8
6
8

4
.5

0
2
0

0
.1

2
9
0

0
.2

4
1
3

0
.1

7
6
8

1
.1

8
7
7

0
.1

2
9
3

0
.1

8
6
9

0
.0

0
0
4

1
.3

0
9
3

291

C.6 T-Test Results

T-Test Results Comparing Means Obtained for Predictive Accuracy

Pairs

Dataset Criterion C4.5 - RIPPER C4.5 - PART RIPPER - PART C4.5 - OCEL RIPPER - OCEL PART - OCEL

GHTraffic

t-value 0.00848 0 -0.00848 2.17839 2.17638 2.17839

p-value 0.496627 0.5 0.496627 0.015597 .015674 0.015597

Significant No No No Yes Yes Yes

Twitter t-value 0 0 0 11.59104 11.59104 11.59104

p-value 0.5 0.5 0.5 <.00001 <.00001 <.00001

Significant No No No Yes Yes Yes

Google Tasks t-value 0.68699 0 -0.68699 2.2488 2.22899 2.2488

p-value 0.248682 0.5 0.248682 0.014353 0.015039 0.014353

Significant No No No Yes Yes Yes

Slack t-value 0 0 0 -13.75928 -13.75928 -13.75928

p-value 0.5 0.5 0.5 <.00001 <.00001 <.00001

Significant No No No Yes Yes Yes

T-Test Results Comparing Means Obtained for Precision

Pairs

Dataset Criterion C4.5 - RIPPER C4.5 - PART RIPPER - PART C4.5 - OCEL RIPPER - OCEL PART - OCEL

GHTraffic

t-value 0.00036 0 -0.00036 -12.94095 -12.94273 -12.94095

p-value 0.499857 0.5 0.499857 <.00001 -12.94273 <.00001

Significant No No No Yes Yes Yes

Twitter

t-value 0 0 0 7.77081 7.77081 7.77081

p-value 0.5 0.5 0.5 <.00001 <.00001 <.00001

Significant No No No Yes Yes Yes

Google Tasks

t-value 0.00462 0 -0.00462 0.85041 0.8476 0.85041

p-value 0.498173 0.5 0.498173 0.199462 0.200237 .199462.

Significant No No No No No No

Slack

t-value 0 0 0 -13.77105 -13.77105 -13.77105

p-value 0.5 0.5 0.5 <.00001 <.00001 <.00001

Significant No No No Yes Yes Yes

T-Test Results Comparing Means Obtained for Recall

Pairs

Dataset Criterion C4.5 - RIPPER C4.5 - PART RIPPER - PART C4.5 - OCEL RIPPER - OCEL PART - OCEL

GHTraffic

t-value -0.00176 0 0.00176 -16.95517 -16.94109 -16.95517

p-value -0.00176 0.5 0.00176 <.00001 <.00001 <.00001

Significant No No No Yes Yes Yes

Twitter

t-value 0 0 0 7.77081 7.77081 7.77081

p-value 0.5 0.5 0.5 <.00001 <.00001 <.00001

Significant No No No Yes Yes Yes

Google Tasks

t-value 0.00441 0 -0.00441 0.35745 0.35479 0.35745

p-value 0.498256 0.5 0.498256 0.361088 0.362079 0.361088

Significant No No No No No No

Slack

t-value 0 0 0 -2137.2136 -2137.21356 -2137.2136

p-value 0.5 0.5 0.5 <.00001 <.00001 <.00001

Significant not No No Yes Yes Yes

292

T-Test Results Comparing Means Obtained for Model Size

Pairs

Dataset Criterion C4.5 - RIPPER C4.5 - PART RIPPER - PART C4.5 - OCEL RIPPER - OCEL PART - OCEL

t-value 2.462 1.74405 -1.22665 -1.08149 -8.74435 -5.79662

p-value 0.007782 0.042143 0.111446 0.140733 <.00001 <.00001GHTraffic

Significant Yes Yes No No Yes Yes

t-value 50.6393 61.51829 22.94374 3.11962 -35.96353 -42.84684

p-value <.00001 <.00001 <.00001 0.001049 <.00001 <.00001Twitter

Significant Yes Yes Yes Yes Yes Yes

t-value 5.96515 3.89812 -2.6 -1.38617 -4.13035 -3.3393

p-value <.00001 0.000252 0.007164 0.85749 0.000065 0.000771Google Tasks

Significant Yes Yes Yes No Yes Yes

t-value 3.64486 3.24256 -1 3.86725 -0.20093 0.43369

p-value 0.001326 0.00295 0.167141 0.00048 0.42139 0.334577Slack

Significant Yes Yes No Yes No No

293

Appendix D

List of Publications

Part of this thesis was published in the following peer-reviewed conferences:

1. Bhagya, T., Dietrich, J., Guesgen, H., & Versteeg, S. (2018, July). GHTraffic:
A dataset for reproducible research in service-oriented computing. In 2018
IEEE International Conference on Web Services (ICWS) (pp. 123-130). IEEE.

Presents the GHTraffic dataset described in Chapter 4.

2. Bhagya, T., Dietrich, J., & Guesgen, H. (2019, December). Generating Mock
Skeletons for Lightweight Web-Service Testing. In 2019 26th Asia-Pacific Soft-
ware Engineering Conference (APSEC) (pp. 181-188). IEEE.

Presents the experiments on attribute-based learning algorithms and the results
described in Chapter 5 and Chapter 6.

In addition, the plan is to submit the following journal article on the basis of some
of the other contributions made by this thesis:

3. Bhagya, T., Dietrich, J., & Guesgen, H. Description Logic Class Expression
Learning Applied to HTTP Mock Skeletons Generation. IEEE Transactions on
Services Computing.

Presents the experiments on OCEL description logic learning algorithm and
the results described in Chapter 5 and Chapter 6. There is also a comparison
of the description logic learning results with attribute-based learning outcomes
reported in Paper No. 2.

294

https://ieeexplore.ieee.org/abstract/document/8456340/
https://ieeexplore.ieee.org/abstract/document/8456340/
https://ieeexplore.ieee.org/abstract/document/8456340/
https://ieeexplore.ieee.org/abstract/document/8945647/
https://ieeexplore.ieee.org/abstract/document/8945647/
https://ieeexplore.ieee.org/abstract/document/8945647/

Bibliography

[1] E. Christensen et al., “Web services description language (WSDL) 1.1,”
2001, accessed 16 Aug. 2020. [Online]. Available: https://w3.org/TR/wsdl

[2] D. Box et al., “Simple object access protocol (SOAP) 1.1,” 2000,
accessed 16 Aug. 2020. [Online]. Available: https://w3.org/TR/2000/
NOTE-SOAP-20000508

[3] R. T. Fielding and R. N. Taylor, Architectural styles and the design of
network-based software architectures. University of California, Irvine Doc-
toral dissertation, 2000.

[4] G. Canfora and M. Di Penta, “Testing services and service-centric systems:
Challenges and opportunities,” It Professional, 2006.

[5] S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes, “Mock roles, not ob-
jects,” in Proc. OOPSLA’04. ACM, 2004.

[6] J. Michelsen and J. English, “What is service virtualization?” in Service
Virtualization. Springer, 2012.

[7] ——, Service Virtualization: Reality Is Overrated. Apress, 2012.

[8] “CA Service Virtualization,” accessed 16 Aug. 2020. [Online]. Available:
https://ca.com/us/products/ca-service-virtualization.html

[9] “Parasoft Virtualize,” accessed 16 Aug. 2020. [Online]. Available:
https://parasoft.com/products/virtualize

[10] “Wiremock,” accessed 16 Aug. 2020. [Online]. Available: http://wiremock.
org

[11] “Hoverfly,” accessed 16 Aug. 2020. [Online]. Available: https://hoverfly.io

[12] M. Du, J.-G. Schneider, C. Hine, J. Grundy, and S. Versteeg, “Generating
service models by trace subsequence substitution,” in Proc. QoSA’13, 2013.

[13] M. Du, S. Versteeg, J.-G. Schneider, J. Han, and J. Grundy, “Interaction
traces mining for efficient system responses generation,” ACM SIGSOFT
Software Engineering Notes, 2015.

[14] S. C. Versteeg et al., “Opaque service virtualisation: a practical tool for
emulating endpoint systems,” in Proceedings ICSE ’16. ACM, 2016.

295

https://w3.org/TR/wsdl
https://w3.org/TR/2000/NOTE-SOAP-20000508
https://w3.org/TR/2000/NOTE-SOAP-20000508
https://ca.com/us/products/ca-service-virtualization.html
https://parasoft.com/products/virtualize
http://wiremock.org
http://wiremock.org
https://hoverfly.io

[15] S. Versteeg, M. Du, J. Bird, J.-G. Schneider, J. Grundy, and J. Han, “En-
hanced playback of automated service emulation models using entropy ana-
lysis,” in Proc. CSED’16. IEEE, 2016.

[16] M. A. Hossain, S. Versteeg, J. Han, M. A. Kabir, J. Jiang, and J.-G.
Schneider, “Mining accurate message formats for service apis,” in Proc.
SANER’18. IEEE, 2018.

[17] M. A. Hossain, “Discovering context dependent service models for stateful
service virtualization,” 2020.

[18] H. F. Eniser, A. Sen, and S. O. Polat, “Fancymock: creating virtual services
from transactions,” in Proc. SAC’18, 2018.

[19] H. F. Enişer and A. Sen, “Testing service oriented architectures using stateful
service visualization via machine learning,” in Proc. AST’18, 2018.

[20] ——, “Virtualization of stateful services via machine learning,” Software
Quality Journal, 2019.

[21] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine learning: An
artificial intelligence approach. Springer Science & Business Media, 2013.

[22] A. Holzinger, “From machine learning to explainable ai,” in Proc. DISA’18.
IEEE, 2018.

[23] C. Molnar, G. Casalicchio, and B. Bischl, “Interpretable machine
learning–a brief history, state-of-the-art and challenges,” arXiv preprint
arXiv:2010.09337, 2020.

[24] “Mockito,” accessed 16 Aug. 2020. [Online]. Available: https://site.mockito.
org

[25] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta, “Root
causing flaky tests in a large-scale industrial setting,” in Proc. ISSTA’19,
2019.

[26] J. R. Quinlan, C4.5: programs for machine learning. Elsevier, 2014.

[27] W. W. Cohen, “Fast effective rule induction,” in Machine learning Proc.’95.
Elsevier, 1995.

[28] E. Frank and I. H. Witten, “Generating accurate rule sets without global
optimization,” 1998.

[29] J. Lehmann, Learning OWL class expressions. IOS Press, 2010.

[30] I. H. Witten, E. Frank, and M. A. Hall, Data Mining Practical Machine
Learning Tools and Techniques Third Edition. Morgan Kaufmann, 2017.

[31] C. Zhang, C. Liu, X. Zhang, and G. Almpanidis, “An up-to-date comparison
of state-of-the-art classification algorithms,” Expert Systems with Applica-
tions, 2017.

296

https://site.mockito.org
https://site.mockito.org

[32] J. Lehmann, S. Auer, L. Bühmann, and S. Tramp, “Class expression learning
for ontology engineering,” Journal of Web Semantics, 2011.

[33] C. Collberg and T. A. Proebsting, “Repeatability in computer systems re-
search,” Communications of the ACM, 2016.

[34] R. D. Peng, “Reproducible research in computational science,” Science, 2011.

[35] P. Kruchten, The rational unified process: an introduction. Addison-Wesley
Professional, 2004.

[36] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,” ACM
Transactions on Computer Systems (TOCS), 1984.

[37] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design
and implementation of the sun network filesystem,” in Proc. of the Summer
USENIX conference, 1985.

[38] M. Kong, T. H. Dineen, P. J. Leach, E. A. Martin, N. W. Mishkin, J. N. Pato,
and G. L. Wyant, Network computing system reference manual. Prentice-
Hall, Inc., 1990.

[39] H. W. Lockhart Jr, OSF DCE: guide to developing distributed applications.
McGraw-Hill, Inc., 1994.

[40] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: service-oriented ar-
chitecture best practices. Prentice Hall Professional, 2005.

[41] S. Vinoski, “Corba: integrating diverse applications within distributed het-
erogeneous environments,” IEEE Communications magazine, 1997.

[42] R. Sessions, COM and DCOM: Microsoft’s vision for distributed objects.
John Wiley & Sons, Inc., 1997.

[43] P. E. Chung, Y. Huang, S. Yajnik, D. Liang, J. C. Shih, C.-Y. Wang, and Y.-
M. Wang, “Dcom and corba side by side, step by step, and layer by layer,”
C++ Report, 1998.

[44] B. Downing-Troy, Java RMI: remote method invocation. IDG, 1998.

[45] M. Henning, “The rise and fall of corba,” Queue, 2006.

[46] C. Szyperski, D. Gruntz, and S. Murer, Component software: beyond object-
oriented programming. Pearson Education, 2002.

[47] O. C. F. RFP, “Common business objects and business object facility,” Tech.
Rep., 1996.

[48] V. Matena and M. Hapner, “Enterprise javabeans tm,” Sun Microsystems,
1997.

[49] N. Wang, D. C. Schmidt, and C. O’Ryan, “Overview of the corba compon-
ent model,” in Component-based software engineering: putting the pieces
together, 2001.

297

[50] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau et al.,
“Extensible markup language (xml) 1.0,” 2000.

[51] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, “Web services,” in Web
services. Springer, 2004.

[52] T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y. Hus-
band, K. Januszewski, S. Lee, B. McKee, J. Munter et al., “The universal
description, discovery and integration (uddi) specification,” Rapport tech-
nique, Comit OASIS, 2002.

[53] K. Gottschalk, S. Graham, H. Kreger, and J. Snell, “Introduction to web
services architecture,” IBM systems Journal, 2002.

[54] E. Newcomer and G. Lomow, Understanding SOA with Web services.
Addison-Wesley, 2005.

[55] M. P. Papazoglou, “Service-oriented computing: Concepts, characteristics
and directions,” in Proc. WISE’03. IEEE, 2003.

[56] D. Crockford, “The application/json media type for javascript object nota-
tion (json),” RFC 4627, 2006.

[57] O. Alliance, “Osgi service platform,” Core Specification Release, 2007.

[58] R. S. Hall, K. Pauls, S. McCulloch, and D. Savage, “Osgi in action,” Creating
Modular Applications in Java, 2011.

[59] J. Thönes, “Microservices,” IEEE software, 2015.

[60] S. Newman, Building microservices: designing fine-grained systems. ”
O’Reilly Media, Inc.”, 2015.

[61] H. Haas and A. Brown, “Web services glossary,” W3C Working Group Note
(11 February 2004), 2004.

[62] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and B. A.
Hamilton, “Reference model for service oriented architecture 1.0,” OASIS
standard, 2006.

[63] A. Brown, S. Johnston, and K. Kelly, “Using service-oriented architecture
and component-based development to build web service applications,” Ra-
tional Software Corporation, 2002.

[64] J. Bih, “Service oriented architecture (soa) a new paradigm to implement
dynamic e-business solutions,” ubiquity, 2006.

[65] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing. John
Wiley & Sons, 2011.

[66] B. Beizer, Software testing techniques. Dreamtech Press, 2003.

[67] R. V. Binder, “Testing object-oriented software: a survey,” Software Testing,
Verification and Reliability, 1996.

298

[68] B. Meyer, Object-oriented software construction. Prentice hall New York,
1988.

[69] C. D. Turner and D. J. Robson, “The state-based testing of object-oriented
programs,” in Proc. ICSM’93. IEEE, 1993.

[70] I. Jacobson, Object-oriented software engineering: a use case driven ap-
proach. Pearson Education India, 1993.

[71] M. J. Harrold, J. D. McGregor, and K. J. Fitzpatrick, “Incremental testing
of object-oriented class structures,” in Proc. ICSE’92, 1992.

[72] P. C. Jorgensen and C. Erickson, “Object-oriented integration testing,”
Communications of the ACM, 1994.

[73] G. D. Everett and R. McLeod Jr, Software testing: testing across the entire
software development life cycle. John Wiley & Sons, 2007.

[74] J. S. Hartmann and C. Imoberdorf, “System and method for functional
testing of distributed, component-based software,” 2003.

[75] K. Beck, Test-driven development: by example. Addison-Wesley Profes-
sional, 2003.

[76] ——, Extreme programming explained: embrace change. addison-wesley
professional, 2000.

[77] T. Mackinnon, S. Freeman, and P. Craig, “Endo-testing: unit testing with
mock objects,” 2000.

[78] “EasyMock,” accessed 16 Aug. 2020. [Online]. Available: http://easymock.
org

[79] “Moq,” accessed 16 Aug. 2020. [Online]. Available: https://github.com/
moq/moq

[80] “Mocker,” accessed 16 Aug. 2020. [Online]. Available: https://labix.org/
mocker

[81] J. Bloomberg, “Web services testing: Beyond soap,” ZapThink LLC, Sep,
2002.

[82] “JMeter,” accessed 16 Aug. 2020. [Online]. Available: https://jmeter.
apache.org

[83] “SoapUI,” accessed 16 Aug. 2020. [Online]. Available: https://soapui.org

[84] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Pear-
son Education Limited,, 2016.

[85] A. L. Samuel, “Some studies in machine learning using the game of checkers,”
IBM Journal of research and development, 1959.

299

http://easymock.org
http://easymock.org
https://github.com/moq/moq
https://github.com/moq/moq
https://labix.org/mocker
https://labix.org/mocker
https://jmeter.apache.org
https://jmeter.apache.org
https://soapui.org

[86] B. Kosko, Neural networks and fuzzy systems: A dynamical systems ap-
proach to machine intelligence., 1992, no. QA76. 76. E95 K86.

[87] F. Rosenblatt, “The perceptron: a probabilistic model for information stor-
age and organization in the brain.” Psychological review, 1958.

[88] M. Minsky and S. Papert, “Perceptrons: An essay in computational geo-
metry,” MIT Press., 1969.

[89] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE trans-
actions on information theory, 1967.

[90] P. J. Werbos, “Applications of advances in nonlinear sensitivity analysis,”
in System modeling and optimization. Springer, 1982.

[91] J. R. Quinlan, “Learning efficient classification procedures and their applic-
ation to chess end games,” in Machine learning. Springer, 1983.

[92] T. K. Ho, “Random decision forests,” in Proc. ICDAR’95. IEEE, 1995.

[93] Y. Freund and L. Mason, “The alternating decision tree learning algorithm,”
in icml, 1999.

[94] L. Breiman, Classification and regression trees. Routledge, 2017.

[95] R. S. Michalski, “A theory and methodology of inductive learning,” in Ma-
chine learning. Springer, 1983.

[96] R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac, “The multi-purpose
incremental learning system aq15 and its testing application to three medical
domains,” Proc. AAAI’86, 1986.

[97] P. Clark and R. Boswell, “Rule induction with cn2: Some recent improve-
ments,” in European Working Session on Learning. Springer, 1991.

[98] R. C. Holte, “Very simple classification rules perform well on most commonly
used datasets,” Machine learning, 1993.

[99] R. Kohavi, “The power of decision tables,” in European conference on ma-
chine learning. Springer, 1995.

[100] J. R. Quinlan, “Learning logical definitions from relations,” Machine learn-
ing, 1990.

[101] S. Muggleton, C. Feng et al., Efficient induction of logic programs. Citeseer,
1990.

[102] S. Muggleton, “Inductive logic programming,” New generation computing,
1991.

[103] S. Muggleton and L. De Raedt, “Inductive logic programming: Theory and
methods,” The Journal of Logic Programming, 1994.

[104] A. Srinivasan, “A learning engine for proposing hypotheses (aleph),” 1999.

300

[105] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
1995.

[106] F. V. Jensen et al., An introduction to Bayesian networks. UCL press
London, 1996.

[107] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg, “Fea-
ture hashing for large scale multitask learning,” in Proc. ICML’09, 2009.

[108] M. Hoffman, F. R. Bach, and D. M. Blei, “Online learning for latent dirichlet
allocation,” in advances in neural information processing systems, 2010.

[109] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” Journal of machine learning research,
2011.

[110] L. Breiman, “Random forests,” Machine learning, 2001.

[111] S. Menard, Applied logistic regression analysis. Sage, 2002.

[112] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific
american, 2001.

[113] L. Bühmann, J. Lehmann, and P. Westphal, “Dl-learner a framework for
inductive learning on the semantic web,” Journal of Web Semantics, 2016.

[114] L. Bühmann, J. Lehmann, P. Westphal, and S. Bin, “Dl-learner structured
machine learning on semantic web data,” in Proc. WWW ’18, 2018.

[115] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, 2015.

[116] I. Bratko, B. Cestnik, and I. Kononenko, “Attribute-based learning,” AI
Commun., 1996.

[117] H. Boström, “Covering vs. divide-and-conquer for top-down induction of
logic programs,” in IJCAI, 1995.

[118] J. R. Quinlan, “Generating production rules from decision trees.” in ijcai.
Citeseer, 1987.

[119] ——, “Induction of decision trees,” Machine learning, 1986.

[120] J. Fürnkranz, “Separate-and-conquer rule learning,” Artificial Intelligence
Review, 1999.

[121] R. L. Rivest, “Learning decision lists,” Machine learning, 1987.

[122] J. Fürnkranz and G. Widmer, “Incremental reduced error pruning,” in Ma-
chine Learning Proceedings 1994. Elsevier, 1994.

[123] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten, “The weka data mining software: an update,” ACM SIGKDD explora-
tions newsletter.

301

[124] S.-H. Nienhuys-Cheng and R. De Wolf, Foundations of inductive logic pro-
gramming. Springer Science & Business Media, 1997.

[125] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, D. Nardi et al.,
The description logic handbook: Theory, implementation and applications.
Cambridge university press, 2003.

[126] D. L. McGuinness, F. Van Harmelen et al., “Owl web ontology language
overview,” W3C recommendation, 2004.

[127] B. Motik, P. F. Patel-Schneider, B. Parsia, C. Bock, A. Fokoue, P. Haase,
R. Hoekstra, I. Horrocks, A. Ruttenberg, U. Sattler et al., “Owl 2 web on-
tology language: Structural specification and functional-style syntax,” W3C
recommendation, 2009.

[128] B. L. Richards and R. J. Mooney, “Automated refinement of first-order
horn-clause domain theories,” Machine Learning, 1995.

[129] M. Horridge and P. F. Patel-Schneider, “Manchester syntax for owl 1.1.” in
OWLED (Spring). Citeseer, 2008.

[130] J. Lehmann, “Dl-learner: learning concepts in description logics,” Journal of
Machine Learning Research, 2009.

[131] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical owl-dl reasoner,” Journal of Web Semantics, 2007.

[132] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext transfer protocol–
http/1.0,” 1996.

[133] R. T. Fielding et al., “Hypertext transfer protocol–HTTP/1.1 (RFC2616),”
1999, accessed 16 Aug. 2020. [Online]. Available: https://tools.ietf.org/
html/rfc2616

[134] M. Belshe, R. Peon, and M. Thomson, “Hypertext transfer protocol version
2 (http/2),” 2015.

[135] D. Crocker, “Rfc0822: Standard for the format of arpa internet text mes-
sages,” 1982.

[136] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (mime)
part one: Format of internet message bodies,” 1996.

[137] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering–a sys-
tematic literature review,” Information and software technology, 2009.

[138] M. R. Marri, T. Xie, N. Tillmann, J. De Halleux, and W. Schulte, “An em-
pirical study of testing file-system-dependent software with mock objects,”
in Proc. AST’09.

[139] “Jmock,” accessed 16 Aug. 2020. [Online]. Available: http://jmock.org

302

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
http://jmock.org

[140] S. Mostafa and X. Wang, “An empirical study on the usage of mocking
frameworks in software testing,” in Proc. QSIC’14. IEEE, 2014.

[141] N. Tillmann and W. Schulte, “Unit tests reloaded: Parameterized unit test-
ing with symbolic execution,” IEEE software, 2006.

[142] ——, “Parameterized unit tests,” ACM SIGSOFT Software Engineering
Notes, 2005.

[143] M. Achenbach and K. Ostermann, “Testing object-oriented programs using
dynamic aspects and non-determinism,” in Proc. ECOOP’10, 2010.

[144] N. Tillmann and W. Schulte, “Mock-object generation with behavior,” in
Proc. ASE’06. IEEE, 2006.

[145] S. J. Galler, A. Maller, and F. Wotawa, “Automatically extracting mock ob-
ject behavior from design by contract specification for test data generation,”
in Proc. AST’10, 2010.

[146] M. Islam and C. Csallner, “Generating test cases for programs that are
coded against interfaces and annotations,” ACM Transactions on Software
Engineering and Methodology (TOSEM), 2014.

[147] N. Alshahwan, Y. Jia, K. Lakhotia, G. Fraser, D. Shuler, and P. Tonella,
“Automock: Automated synthesis of a mock environment for test case gen-
eration,” in Proc. Dagstuhl Seminar. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2010.

[148] A. Arcuri, G. Fraser, and R. Just, “Private api access and functional mocking
in automated unit test generation,” in Proc. ICST’17. IEEE, 2017.

[149] H. Samimi, R. Hicks, A. Fogel, and T. Millstein, “Declarative mocking,” in
Proc. ISSTA’13, 2013.

[150] F. Solms and L. Marshall, “Contract-based mocking for services-oriented
development,” in Proc. SAICSIT’16, 2016.

[151] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic test factoring
for java,” in Proc. ASE’05, 2005.

[152] S. Joshi and A. Orso, “Scarpe: A technique and tool for selective capture
and replay of program executions,” in Proc. ICSM’07. IEEE, 2007.

[153] B. Pasternak, S. Tyszberowicz, and A. Yehudai, “Genutest: a unit test and
mock aspect generation tool,” International journal on software tools for
technology transfer, 2009.

[154] S. Mani, V. S. Sinha, S. Sinha, P. Dhoolia, D. Mukherjee, and
S. Chakraborty, “Efficient testing of service-oriented applications using se-
mantic service stubs,” in Proc. ICWS’09. IEEE, 2009.

[155] N. Ashikhmin, G. Radchenko, and A. Tchernykh, “Raml-based mock service
generator for microservice applications testing,” in Russian Supercomputing
Days. Springer, 2017.

303

[156] D. Merkel, “Docker: lightweight linux containers for consistent development
and deployment,” Linux journal, 2014.

[157] H. Reza and D. Van Gilst, “A framework for testing restful web services,”
in Proc. ITNG’10. IEEE, 2010.

[158] A. Soni, V. Ranga, and S. Jadhav, “Mockresta generic approach for auto-
mated mock framework for rest apis generation,” in Inventive Communica-
tion and Computational Technologies. Springer, 2020.

[159] G. V. Hattangadi, “A practitioners approach to successfully implementing
service virtualization,” Infosys White Paper, 2011.

[160] M. Luke and G. Hodgkinson, “Use service virtualization to remove testing
bottlenecks,” IBM White Paper, 2013.

[161] “Key capabilities of a service virtualization solution,” CA Technologies
White Paper, 2014.

[162] D. Subbiah, B. Arulmozhi, and H. Maruthamuthu, “Constraint free testing
using service virtualization,” International Journal of Computer Applica-
tions, 2014.

[163] S. Upadhyay, H. Mukherjee, and A. A. Acharya, “Continuous testing of
service-oriented applications using service virtualization.”

[164] J. C. Bezdek and R. J. Hathaway, “Vat: A tool for visual assessment of
(cluster) tendency,” in Proc. IJCNN’02. IEEE, 2002.

[165] L. Wang and T. Jiang, “On the complexity of multiple sequence alignment,”
Journal of computational biology, 1994.

[166] S. B. Needleman and C. D. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,” Journal
of molecular biology, 1970.

[167] A. W. Biermann and J. A. Feldman, “On the synthesis of finite-state ma-
chines from samples of their behavior,” IEEE transactions on Computers,
1972.

[168] G. Canfora and M. Di Penta, “Service-oriented architectures testing: A sur-
vey,” in Software Engineering. Springer, 2007.

[169] M. Bozkurt, M. Harman, Y. Hassoun et al., “Testing web services: A survey,”
Department of Computer Science, Kings College London, Tech. Rep. TR-
10-01, 2010.

[170] A. Sharma, T. D. Hellmann, and F. Maurer, “Testing of web services-a
systematic mapping,” in Proc. SERVICES’12. IEEE, 2012.

[171] M. Bozkurt, M. Harman, and Y. Hassoun, “Testing and verification in
service-oriented architecture: a survey,” Software Testing, Verification and
Reliability, 2013.

304

[172] A. Kumar and M. Singh, “An empirical study on testing of soa based ser-
vices,” International Journal of Information Technology and Computer Sci-
ence, 2015.

[173] G. Saleem, F. Azam, M. U. Younus, N. Ahmed, and L. Yong, “Quality
assurance of web services: A systematic literature review,” in Proc. ICCC’16.
IEEE, 2016.

[174] I. Ghani, W. M. Wan-Kadir, and A. Mustafa, “Comparative evaluation of
state-of-the-art approaches in web service testing,” TEST Engineering &
Management, 2020.

[175] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen, “Wsdl-based automatic test
case generation for web services testing,” in Proc. SOSE’05. IEEE, 2005.

[176] E. Martin, S. Basu, and T. Xie, “Automated robustness testing of web ser-
vices,” in Proc. SOAWS’06. Citeseer, 2006.

[177] H. M. Sneed and S. Huang, “Wsdltest-a tool for testing web services,” in
Proc. WSE’06. IEEE, 2006.

[178] C. Ma, C. Du, T. Zhang, F. Hu, and X. Cai, “Wsdl-based automated test
data generation for web service,” in Proc. CSSE’08. IEEE, 2008.

[179] S. Hanna and M. Munro, “Fault-based web services testing,” in Proc.
ITNG’08. IEEE, 2008.

[180] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “Ws-taxi: A wsdl-
based testing tool for web services,” in Proc. ICST’09. IEEE, 2009.

[181] Y. Li, Z.-a. Sun, and J.-Y. Fang, “Generating an automated test suite by
variable strength combinatorial testing for web services,” Journal of com-
puting and information technology, 2016.

[182] N. El Ioini, A. Sillitti, and G. Succi, “Using rules for web service client side
testing,” in Proc. SERVICES’13. IEEE, 2013.

[183] S. K. Chakrabarti and P. Kumar, “Test-the-rest: An approach to testing
restful web-services,” in Proc. COMPUTATIONWORLD’09. IEEE, 2009.

[184] M. J. Hadley, “Web application description language (wadl),” 2006.

[185] S. K. Chakrabarti and R. Rodriquez, “Connectedness testing of restful web-
services,” in Proc. ISEC’10, 2010.

[186] H. Ed-Douibi, J. L. C. Izquierdo, and J. Cabot, “Automatic generation of
test cases for rest apis: a specification-based approach,” in Proc. EDOC’18.
IEEE, 2018.

[187] T. Fertig and P. Braun, “Model-driven testing of restful apis,” in Proc.
WWW’15, 2015.

[188] P. V. P. Pinheiro, A. T. Endo, and A. Simao, “Model-based testing of restful
web services using uml protocol state machines,” in Proc. SAST’13, 2013.

305

[189] P. Lamela Seijas, H. Li, and S. Thompson, “Towards property-based test-
ing of restful web services,” in Proceedings of the twelfth ACM SIGPLAN
workshop on Erlang, 2013.

[190] S. Karlsson, A. Causevic, and D. Sundmark, “Quickrest: Property-
based test generation of openapi-described restful apis,” arXiv preprint
arXiv:1912.09686, 2019.

[191] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic testing
of restful web apis,” IEEE Transactions on Software Engineering, 2017.

[192] M. Höschele and A. Zeller, “Mining input grammars from dynamic taints,”
in Proc. ASE’16. IEEE, 2016.

[193] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” in Proc. ICSE’19. IEEE, 2019.

[194] A. Arcuri, “Restful api automated test case generation with evomaster,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
2019.

[195] M. Zhang, B. Marculescu, and A. Arcuri, “Resource-based test case gener-
ation for restful web services,” in Proc. GECCO’19, 2019.

[196] V. H. Durelli, R. S. Durelli, S. S. Borges, A. T. Endo, M. M. Eler, D. R.
Dias, and M. P. Guimaraes, “Machine learning applied to software testing:
A systematic mapping study,” IEEE Transactions on Reliability, 2019.

[197] M. Noorian, E. Bagheri, and W. Du, “Machine learning-based software test-
ing: Towards a classification framework.” in SEKE, 2011.

[198] L. C. Briand, “Novel applications of machine learning in software testing,”
in Proc. QSIC’08. IEEE, 2008.

[199] F. Bergadano and D. Gunetti, “Testing by means of inductive program learn-
ing,” ACM Transactions on Software Engineering and Methodology, 1996.

[200] J. Sant, A. Souter, and L. Greenwald, “An exploration of statistical models
for automated test case generation,” in Proc. WODA’05, 2005.

[201] M. A. Ahmed and I. Hermadi, “Ga-based multiple paths test data gener-
ator,” Computers & Operations Research, 2008.

[202] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment for
automatic structural testing,” Information and software technology, 2001.

[203] A. Rosenfeld, O. Kardashov, and O. Zang, “Automation of android applic-
ations functional testing using machine learning activities classification,” in
Proc. MOBILESoft’18, 2018.

[204] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, “Using semi-supervised
clustering to improve regression test selection techniques,” in Proc. ICST’11.
IEEE, 2011.

306

[205] L. C. Briand, Y. Labiche, Z. Bawar, and N. T. Spido, “Using machine learn-
ing to refine category-partition test specifications and test suites,” Informa-
tion and Software Technology, 2009.

[206] L. C. Briand, Y. Labiche, and Z. Bawar, “Using machine learning to refine
black-box test specifications and test suites,” in Proc. QSIC’08. IEEE,
2008.

[207] A. von Mayrhauser, C. Anderson, and R. Mraz, “Using a neural network to
predict test case effectiveness,” in Proc. AESS’95. IEEE, 1995.

[208] R. Gove and J. Faytong, “Identifying infeasible gui test cases using support
vector machines and induced grammars,” in Proc. ICSTW’11. IEEE, 2011.

[209] F. Wang, L.-W. Yao, and J.-H. Wu, “Intelligent test oracle construction for
reactive systems without explicit specifications,” in Proc. DASC’11. IEEE,
2011.

[210] D. Agarwal, D. E. Tamir, M. Last, and A. Kandel, “A comparative study
of artificial neural networks and info-fuzzy networks as automated oracles
in software testing,” IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, 2012.

[211] A. Singhal, A. Bansal et al., “Generation of test oracles using neural network
and decision tree model,” in Proc. CONFLUENCE’14. IEEE, 2014.

[212] M. Vanmali, M. Last, and A. Kandel, “Using a neural network in the software
testing process,” International Journal of Intelligent Systems, 2002.

[213] S. R. Shahamiri, W. M. W. Kadir, and S. Ibrahim, “A single-network ann-
based oracle to verify logical software modules,” in Proc. ICSTE’10. IEEE,
2010.

[214] S. R. Shahamiri, W. M. N. W. Kadir, S. Ibrahim, and S. Z. M. Hashim, “An
automated framework for software test oracle,” Information and Software
Technology, 2011.

[215] S. R. Shahamiri, W. M. Wan-Kadir, S. Ibrahim, and S. Z. M. Hashim, “Arti-
ficial neural networks as multi-networks automated test oracle,” Automated
Software Engineering, 2012.

[216] F. Gholami, N. Attar, H. Haghighi, M. V. Asl, M. Valueian, and S. Mo-
hamadyari, “A classifier-based test oracle for embedded software,” in Proc.
RTEST’18. IEEE, 2018.

[217] A. K. Monsefi, B. Zakeri, S. Samsam, and M. Khashehchi, “Performing soft-
ware test oracle based on deep neural network with fuzzy inference system,”
in Proc. TopHPC’19. Springer, 2019.

[218] F. Hewson, J. Dietrich, and S. Marsland, “Performance regression testing on
the java virtual machine using statistical test oracles,” in Proc. ASWEC’15.
IEEE, 2015.

307

[219] U. Kanewala, J. M. Bieman, and A. Ben-Hur, “Predicting metamorphic
relations for testing scientific software: a machine learning approach using
graph kernels,” Software testing, verification and reliability, 2016.

[220] T. J. Cheatham, J. P. Yoo, and N. J. Wahl, “Software testing: a machine
learning experiment,” in Proc. CSC’95, 1995.

[221] L. C. Briand, Y. Labiche, and X. Liu, “Using machine learning to support
debugging with tarantula,” in Proc. ISSRE’07. IEEE, 2007.

[222] W. E. Wong and Y. Qi, “Bp neural network-based effective fault localiza-
tion,” International Journal of Software Engineering and Knowledge Engin-
eering, 2009.

[223] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning for
input fuzzing,” in Proc. ASE’17. IEEE, 2017.

[224] M. Z. Nasrabadi, S. Parsa, and A. Kalaee, “Format-aware learn&fuzz: Deep
test data generation for efficient fuzzing,” arXiv preprint arXiv:1812.09961,
2018.

[225] Y. Wang, Z. Wu, Q. Wei, and Q. Wang, “Neufuzz: Efficient fuzzing with
deep neural network,” IEEE Access, 2019.

[226] R. Fan and Y. Chang, “Machine learning for black-box fuzzing of network
protocols,” in Proc. ICICS’17. Springer, 2017.

[227] L. Cheng, Y. Zhang, Y. Zhang, C. Wu, Z. Li, Y. Fu, and H. Li, “Optimizing
seed inputs in fuzzing with machine learning,” in Proc. ICSE-Companion’19.
IEEE, 2019.

[228] Z. Hu, J. Shi, Y. Huang, J. Xiong, and X. Bu, “Ganfuzz: a gan-based indus-
trial network protocol fuzzing framework,” in Proc. CF’18, 2018.

[229] C. Cummins, P. Petoumenos, A. Murray, and H. Leather, “Compiler fuzzing
through deep learning,” in Proc. ISSTA’18, 2018.

[230] M. Sablotny, B. S. Jensen, and C. W. Johnson, “Recurrent neural networks
for fuzz testing web browsers,” in Proc. ICISC’18. Springer, 2018.

[231] M. Rajpal, W. Blum, and R. Singh, “Not all bytes are equal: Neural byte
sieve for fuzzing,” arXiv preprint arXiv:1711.04596, 2017.

[232] W. Gong, G. Zhang, and X. Zhou, “Learn to accelerate identifying new test
cases in fuzzing,” in Proc. SpaCCS’18. Springer, 2017.

[233] S. Krishnamurthi and J. Vitek, “The real software crisis: Repeatability as a
core value,” Communications of the ACM, 2015.

[234] “SPECweb2009,” accessed 16 Aug. 2020. [Online]. Available: https:
//spec.org/web2009

[235] W. D. Smith, “TPC-W: Benchmarking an ecommerce solution,” 2000.

308

https://spec.org/web2009
https://spec.org/web2009

[236] “RUBiS: Rice University Bidding System,” 2013, accessed 16 Aug. 2020.
[Online]. Available: http://rubis.ow2.org

[237] “DARPA Intrusion Detection Data Sets,” 2000, accessed 16 Aug. 2020.
[Online]. Available: https://ll.mit.edu/ideval/data

[238] C. Gimnez, A. P. Villegas, and G. Maranon, “CSIC 2010,” 2010.

[239] S. M. Blackburn et al., “The DaCapo benchmarks: Java benchmarking de-
velopment and analysis,” in Proc. OOPSLA’06. ACM, 2006.

[240] E. Tempero et al., “The Qualitas Corpus: A curated collection of Java code
for empirical studies,” in Proc. APSEC’10. IEEE, 2010.

[241] J. Dietrich, H. Schole, L. Sui, and E. Tempero, “XCorpus–An executable
Corpus of Java Programs,” 2017.

[242] S. Bajracharya et al., “Sourcerer: a search engine for open source code sup-
porting structure-based search,” in Proc. OOPSLA ’06. ACM, 2006.

[243] A. Frank, “UCI machine learning repository,” 2010, accessed 16 Aug. 2020.
[Online]. Available: http://archive.ics.uci.edu/ml/index.php

[244] G. Gousios, “The GHTorrent dataset and tool suite,” in Proc. MSR’13,
2013.

[245] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the
pull-based software development model,” in Proceedings ICSE’14. ACM,
2014.

[246] B. Vasilescu, V. Filkov, and A. Serebrenik, “StackOverflow and GitHub:
Associations between software development and crowdsourced knowledge,”
in Proceedings SocialCom’13. ASE/IEEE, 2013.

[247] P. P.-S. Chen, “The entity-relationship model–toward a unified view of
data,” TODS, 1976.

[248] A. Wright, “JSON Schema: A Media Type for Describing JSON Docu-
ments,” Technical Report. Internet Engineering Task Force, Tech. Rep.,
2016.

[249] F. Galiegue and K. Zyp, “JSON Schema: core definitions and terminology
draft-zyp-json-schema-04,” Working Draft, 2013.

[250] K. Boumillion and J. Levy, “Guava,” 2010, accessed 16 Aug. 2020. [Online].
Available: https://github.com/google/guava

[251] “npm,” accessed 16 Aug. 2020. [Online]. Available: https://github.com/
npm/npm

[252] “Rails,” accessed 16 Aug. 2020. [Online]. Available: https://github.com/
rails/rails

309

http://rubis.ow2.org
https://ll.mit.edu/ideval/data
http://archive.ics.uci.edu/ml/index.php
https://github.com/google/guava
https://github.com/npm/npm
https://github.com/npm/npm
https://github.com/rails/rails
https://github.com/rails/rails

[253] “The Moby Project,” accessed 16 Aug. 2020. [Online]. Available:
https://github.com/docker/docker

[254] “The Rust Programming Language,” accessed 16 Aug. 2020. [Online].
Available: https://github.com/rust-lang/rust

[255] “AngularJS,” accessed 16 Aug. 2020. [Online]. Available: https://github.
com/angular/angular.js

[256] “Bootstrap,” accessed 16 Aug. 2020. [Online]. Available: https://github.
com/twbs/bootstrap

[257] “Kubernetes,” accessed 16 Aug. 2020. [Online]. Available: https://github.
com/kubernetes/kubernetes

[258] “Homebrew (Legacy),” accessed 16 Aug. 2020. [Online]. Available:
https://github.com/Homebrew/homebrew

[259] “Symfony,” accessed 16 Aug. 2020. [Online]. Available: https://github.
com/symfony/symfony

[260] “Zenodo,” accessed 16 Aug. 2020. [Online]. Available: https://zenodo.org

[261] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing: Sur-
vey, landscapes and horizons,” IEEE Transactions on Software Engineering,
2020.

[262] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives,
and prospects,” Science, 2015.

[263] A. K. Waljee, P. D. Higgins, and A. G. Singal, “A primer on predictive
models,” Clinical and translational gastroenterology, 2014.

[264] H. Bensusan and A. Kalousis, “Estimating the predictive accuracy of a clas-
sifier,” in European Conference on Machine Learning. Springer, 2001.

[265] A. A. Freitas, “Comprehensible classification models: a position paper,”
ACM SIGKDD explorations newsletter, 2014.

[266] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens, “An
empirical evaluation of the comprehensibility of decision table, tree and rule
based predictive models,” Decision Support Systems, 2011.

[267] Z. C. Lipton, “The mythos of model interpretability: In machine learning,
the concept of interpretability is both important and slippery.” Queue, 2018.

[268] P. H. Westfall and S. S. Young, Resampling-based multiple testing: Examples
and methods for p-value adjustment. John Wiley & Sons, 1993.

[269] G. E. Box, W. H. Hunter, S. Hunter et al., Statistics for experimenters.
John Wiley and sons New York.

[270] D. Semenick, “Tests and measurements: The t-test,” Strength & Condition-
ing Journal, 1990.

310

https://github.com/docker/docker
https://github.com/rust-lang/rust
https://github.com/angular/angular.js
https://github.com/angular/angular.js
https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/Homebrew/homebrew
https://github.com/symfony/symfony
https://github.com/symfony/symfony
https://zenodo.org

[271] Q. Shen and J. Faraway, “An f test for linear models with functional re-
sponses,” Statistica Sinica, 2004.

[272] J. White, A. Yeats, and G. Skipworth, Tables for statisticians. Nelson
Thornes, 1979.

311

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Motivating Example
	Aims and Objectives
	Research Method
	Thesis Overview

	Preliminaries
	Services
	Application Testing
	Symbolic Machine Learning Techniques
	HTTP Protocol
	Summary

	Systematic Literature Review
	Introduction
	Methodology
	Results and Discussion
	Summary

	Data Acquisition
	Introduction
	GHTraffic Dataset
	Twitter, Google Tasks, and Slack Datasets
	Summary

	Experimental Methodology
	Introduction
	Data Preprocessing
	Data Transformation
	Model Construction
	Model Evaluation
	Reproducing Experimental Results
	Summary

	Experimental Results
	Introduction
	Results and Discussion
	Threats to Validity
	Summary

	Conclusions and Future Work
	Summary of Contributions
	Future Work

	HTTP Datasets
	JSON Schemas for GHTraffic Dataset
	Sample Records on GHTraffic Dataset
	Sample Records on Twitter Dataset
	Sample Records on Google Tasks Dataset
	Sample Records on Slack Dataset

	Training Data
	Attributes Summary
	Sample ARFF Files
	Sub-Datasets of GHTraffic, Twitter, and Slack
	Sample OWL Knowledge Bases

	Results
	Sample C4.5 Trees
	Sample RIPPER Rulesets
	Sample PART Rulesets
	Sample OCEL Class Expressions
	2-Fold Cross Validation of Attribute-Based Learning Algorithms
	T-Test Results

	List of Publications
	Bibliography

