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Abstract: Monitoring and management of plant water status over the critical period between flow-
ering and veraison, plays a significant role in producing grapes of premium quality. Hyperspectral 
spectroscopy has been widely studied in precision farming, including for the prediction of grape-
vine water status. However, these studies were presented based on various combinations of trans-
formed spectral data, feature selection methods, and regression models. To evaluate the perfor-
mance of different modeling pipelines for estimating grapevine water status, a study spanning the 
critical period was carried out in two commercial vineyards at Martinborough, New Zealand. The 
modeling used six hyperspectral data groups (raw reflectance, first derivative reflectance, second 
derivative reflectance, continuum removal variables, simple ratio indices, and vegetation indices), 
two variable selection methods (Spearman correlation and recursive feature elimination based on 
cross-validation), an ensemble of selected variables, and three regression models (partial least 
squares regression, random forest regression, and support vector regression). Stem water potential 
(used as a proxy for vine water status) was measured by a pressure bomb. Hyperspectral reflectance 
was undertaken by a handheld spectroradiometer. The results show that the best predictive perfor-
mance was achieved by applying partial least squares regression to simple ratio indices (R2 = 0.85; 
RMSE = 110 kPa). Models trained with an ensemble of selected variables comprising multicombi-
nation of transformed data and variable selection approaches outperformed those fitted using sin-
gle combinations. Although larger data sizes are needed for further testing, this study compares 38 
modeling pipelines and presents the best combination of procedures for estimating vine water sta-
tus. This may lead to the provision of rapid estimation of vine water status in a nondestructive 
manner and highlights the possibility of applying hyperspectral data to precision irrigation in vineyards. 

Keywords: hyperspectral; grapevine water status; derivative; continuum removal; partial least 
squares regression; random forest regression; support vector regression; recursive feature  
elimination; ensemble 
 

1. Introduction 
Grapevine (Vitis spp.) is considered one of the most important berry crops in the 

world, due to its commercial derivative—wine. The market price of this product is defined 
by the quality of harvested berries, and water management applied during the growing 
season has a significant effect on this quality [1]. Inadequate water inputs can harm berry 
quality as the production of some quality-specific flavor precursors is compromised [2]. 
Excessive irrigation can result in high vigor and strong vegetative growth, further delay-
ing ripening and generating undesirable flavors in the wine [3]. Hence, maintaining 
grapevine water status (GWS) within a specific range is critical to quality management, 
and thus, the growers’ profit. Nevertheless, studies have shown vines in a single block 
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exhibit a significant variation of GWS even if they receive the same amount of irrigation [4]. 
This variability becomes more prominent under nonirrigated conditions commonly en-
countered in viticulture [5], and this potentially leads to increasing variability in berry 
composition across the vineyard. Most viticulturists use soil moisture sensors and pres-
sure chambers to characterize the dynamics of GWS throughout different growing stages [6]. 
These measurements provide viticulturists a reference to help guide management strate-
gies that ensure grape quality. However, soil moisture sensors obtain only localized soil 
moisture values and often fail to reveal the variability of soil water status at depth and 
spatially, due to soil heterogeneity [7]. The pressure chamber, despite providing direct 
information regarding GWS, is destructive, labor-intensive, and time-consuming. Sam-
pling surveys by pressure chambers do not accurately show spatial and temporal varia-
tion in moisture conditions across vines, making it challenging to use in irrigation sched-
uling, unless high-density sampling is undertaken [8]. In this context, remote sensing is a 
potentially promising method that can be used in a nondestructive and timely manner for 
GWS optimization. 

The theoretical basis of applying remote sensing to assessing GWS is attributed to the 
interaction between leaf water content and the spectral information contained in visible 
(VIS), near-infrared (NIR), and shortwave infrared (SWIR) regions of the electromagnetic 
spectrum [9]. In the VIS spectrum, the reflectance response is a cumulative effect of water 
deficit on the content of leaf pigments and the process of photosynthesis [10]. In the NIR 
to SWIR spectrum, a partial response is due to the internal structure of the leaf resulting 
from reduced water content [11]. The rest of the response originates from four water ab-
sorption bands centering at around 970, 1200, 1450, and 1940 nm [12]. The reflectance in 
the SWIR region is also determined by nitrogen and various forms of carbon (i.e., lignin 
and cellulose) in leaves [13,14]. The spectral signatures, the variation of reflectance by 
wavelengths, can be received either by multispectral or by hyperspectral sensors. Hyper-
spectral data, characterized by thousands of bands around 1 nm bandwidth over 350–2500 
nm [15], can provide further insights into the relationship between spectral information 
and a target parameter of interest. Several successful studies have been reported applying 
hyperspectral techniques to assessing GWS [15–18]. To better extract relevant spectral in-
formation, it is essential to investigate the full spectrum instead of certain regions [19,20]. 

Nevertheless, when using full-spectrum hyperspectral data, problems related to high 
dimensionality and multicollinearity occur. These characteristics may violate some as-
sumptions of statistics, for instance, the assumption of independence between variables 
[21]. Models trained with such data tend to overfit and become less accurate in prediction 
capability [22]. Overfitting occurs when the regression model learns the training set too 
well, but generalizes poorly using the test set. These issues also limit the transferability 
and interpretability of the models, making it difficult to identify the important relation-
ship between predictors and responses. To minimize this disturbance and enhance the 
sensitivity of hyperspectral data to target indicators, various preprocessing or transfor-
mation approaches have been used to address these issues [23]. These include using spe-
cific bands to form new indices (vegetation indices [16]), removing background interfer-
ence to compare spectral characteristics (continuum removal [24]), or taking the derivative 
of the reflectance to amplify signals [25]. In addition, variable selection is a method com-
monly employed to decrease the complexity and the size of the datasets [26]. This process 
selects a subset of variables that optimally describes the relationship between input data 
and target indicators. Therefore, subsequent modeling can be improved by avoiding over-
fitting, and a better generalization is obtained by removing noise and irrelevant variables 
from the dataset [27]. Another efficient way to decrease complexity is feature extraction 
which creates an independently new set of variables based on the input variables to min-
imize the issue of dimensionality [28]. 

Hyperspectral measurement records reflectance at thousands of wavelengths, and 
each wavelength-based recording (variable) contains only a fragment of the information 
available in the entire spectrum. Significant information may be lost if just a few variables 
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are utilized. In the study of Romero et al. [29], the modeling performance was enhanced 
after taking all variables as inputs instead of using a subset of them. The use of multivar-
iate regression models and machine learning algorithms showed promise in exploiting 
the full information contained in hyperspectral data and searching the complex patterns 
between reflectance and crop water status. These methods include partial least squares 
regression [30], random forest regression [31], and support vector machines [32]. Moreo-
ver, it has been recently reported that the advantages of increasing prediction accuracy of 
hyperspectral-based studies by combining different methods [33]. This ensemble ap-
proach has been implemented by combining different algorithms or techniques for mod-
eling [34,35] and for variable selection [36,37]. The performance of the ensemble method 
was demonstrated to be generally better and more robust than a single method alone.  

Some studies have been shown to achieve high accuracies in estimating plant water 
status, using hyperspectral reflectance [15,30,38–40]. However, few studies have com-
pared the accuracy of modeling performance, based on different, pipelines in terms of 
multicombination of data transformation methods, variable selection approaches, and 
multivariate regression models. Besides, the ensemble technique, to our knowledge, has 
never been tested for its potential in the domain of hyperspectral data—GWS estimation. 
This study aims to (i) evaluate the performance of various modeling pipelines composed 
of six transformation data groups, two variable selection approaches, and three multivar-
iate regression models; (ii) examine the modeling performance after applying ensemble 
techniques in terms of using collective variables from different combinations of trans-
formed data groups and variable selection methods as inputs. 

2. Materials and Methods 
2.1. The Context of the Study Vineyards 

The study vineyards are located at Martinborough in the Greater Wellington Region 
in New Zealand (NZ). Both vineyards are sited on a complex of young soils overlying 
gravels, developed from sedimentary alluvium associated with the nearby Ruamahanga 
and Huangarua Rivers (Figure 1). The vineyards are two commercial vineyards owned by 
Palliser Estate and are named Wharekauhau and Pencarrow. Our study areas in these two 
vineyards are 6.6 and 6.7 ha, respectively. Chardonnay, Pinot Noir, and Sauvignon Blanc 
dominate the cultivars in both vineyards. Among them, Pinot Noir is noteworthy for be-
ing flavor-rich under controlled water deficit conditions. However, severe water stress is 
detrimental to the yield. Accordingly, Pinot Noir was chosen as the target cultivar in this 
study, due to its requirement for relatively precise irrigation management. The Pinot Noir 
vines were planted in the vineyards in 1998–2000, grafted on rootstock 101-14, and trained 
with two-cane vertical shoot positioning. Inter- and intra-row planting space is 2.2 × 1.7 
m for Wharekauhau and 2.2 × 1.8 m for Pencarrow. The annual growth cycle of grapevine 
in NZ comprises budburst, shoot growth, and flowering (September–November), fruit set 
and veraison (December–February) followed by berry development and harvesting 
(March–May). Cultivation practices, such as shoot thinning, bud rubbing, and leaf pluck-
ing, are regularly conducted from October to December during the growing season. Irri-
gation is usually not required before flowering. From flowering to veraison, as the man-
agement of GWS in this timeframe is the most critical determinant to the final berry qual-
ity, irrigation is usually determined using the measurement of a pressure chamber. 
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Figure 1. Location of study vineyards. 

2.2. Study Period 
The trials reported in this paper took place from late November 2020 to early Febru-

ary 2021 to match the most critical period for GWS management. The measurement dates, 
that avoided rain days, were 27 November 2020, 4 December 2020, 14 January 2021, and 
22 January 2021 at Wharekauhau, and 4 December 2020, 14 January 2021, 22 January 2021, 
and 1 February 2021 at Pencarrow.  

During the study period, the daily mean temperature varied from 10 to 24 °C, and 
daily accumulated rainfall ranged between 0 and 30 mm at the vineyards (Figure 2). From 
flowering in late November 2020, several rainfall events occurred in Martinborough, with 
a maximum daily accumulated rainfall of 30 mm on 10 December. Due to adequate rain-
fall in late November, the two vineyards were not irrigated in the study period (late No-
vember 2020 through to early February 2021) when GWS was a moderate water deficit, 
desirable for berry quality. At Palliser Estate, the GWS of Pinot Noir during the critical 
period is expected to keep close to −1300 kPa.  

Martinborough 

Wharekauhau 

Pencarrow 

Huangarua River Ruamahanga River 
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Figure 2. Average daily temperature (red line) and accumulated daily rainfall (blue bars) recorded 
by the weather station at Palliser Estate between 27 November 2019 and 1 February 2021. 

2.3. Measurement of Vine Stem Water Potential 
Stem water potential (Ψstem) was chosen as a proxy for GWS. As Ψ refers to the 

suction or the negative pressure, it is usually lower in plants compared to that in soils to 
enable the absorption of water. The plants naturally maintain a decreasing gradient of Ψ 
along different parts of the canopy to preserve constant water flow from roots to leaves, 
later transpiring through the stomata. Ψstem has been expressed as a comprehensive in-
dicator for early water deficit in vines during the day [41]. On each measurement date, 
several healthy vines were sampled in grids to account for the variability across the vine-
yards, with two mature and fully expanded leaves from the middle part of the canopy. 
The mature and fully expanded leaves are more representative of the status of canopies. 
A pressure chamber model 610 (MPS, Albany, NY, USA) was employed between the 
hours of 12:00 and 15:00 to assess Ψstem. Prior to the measurement, the sampled leaves 
were covered with sealable plastic bags for around 1 h. In this way, transpiration is 
stopped when the equilibrium of water potential between leaf and stem is attained, which 
makes this leaf-scale measurement more representative of the canopy conditions. When 
using the pressure chamber, the pressure is applied onto the scion, which is equal and 
opposite to the suction in the scion, until the sap is extruded. Therefore, the higher the 
reading, the more dehydrated the vine is. The two measurements per vine were averaged 
to represent the canopy water status. A total of 85 separate canopies were surveyed in the 
two vineyards (Figure 3; Table 1). 

Table 1. The number of surveyed canopies on each measurement date. 

 Measurement Data 

Vineyard 27 November 
2020 

4 December 
2020 

14 January  
2021 

22 January  
2021 

1 February  
2021 

Wharekauhau 11 8 8 8 - 
Pencarrow - 10 11 11 18 
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Figure 3. Surveyed canopies (blue points) in Wharekauhau (a) and Pencarrow (b) vineyards. 

2.4. Acquisition of Spectral Data and Preprocessing 
Hyperspectral reflectance data were collected by an ASD FieldSpec 4 Hi-Res NG 

Spectroradiometer (Malvern Panalytical Ltd., Malvern, UK) equipped with a leaf clip and 
contact probe (touching the surface of the leaf when measuring), providing controlled il-
lumination throughout the field measurements. A white panel ceramic, referencing tile 
was used for calibrating and referencing the spectrum during the field survey, which was 
carried out each time before collecting the reflectance data of the next canopy. The reflec-
tance was calculated as the ratio of the optical energy from a sample to the optical energy 
from the reference panel. The spectral range covers 350–2500 nm with a sampling interval 
of 1.4 nm between 350–1000 nm and 1.1 nm between 1001–2500 nm. These intervals were 
then interpolated to 1 nm, resulting in 2151 values for every spectral measurement.  

To ensure comparability, the spectral data were obtained during the same timeframe 
as Ψstem data measurements. Two leaves per vine, from the same vine used for collecting 
Ψstem, were selected with similar criteria and positions in the canopies. Measurements 
were undertaken on the left side and right side of the adaxial surface of each leaf, while avoid-
ing leaf veins, spots, and holes to ensure representative sampling. Five repetitive readings 
were made at each measuring point, with a total of 20 readings collected per canopy. 

Signal instability (noise) was observed at both edges of the electromagnetic spectrum 
(<400 and >2400 nm), so the reflectance data in these regions were not used for analysis. 
Each reading was processed using ViewSpec Pro 6.2 software (Analytical Spectral De-
vices, Inc., Boulder, CO, USA). Splice correction was applied to all the spectra to adjust 
the mismatches in the visible-near infrared and shortwave infrared two regions. This was 
achieved by calculating a bias value to help match the shortwave infrared one region at 
the splice points. These corrected spectra were exported as ASCII text files, and then they 
were averaged to obtain the mean spectral signatures for the 85 canopies. 

2.5. Data Transformation 
The raw reflectance (the mean hyperspectral signatures of the 85 canopies) were 

transformed into five feature groups: (i) First derivative, (ii) second derivative, (iii) con-
tinuum removal, (iv) simple ratio indices, and (v) vegetation indices. 

  

(a) (b) 
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2.5.1. First (1D) and Second (2D) Derivative 
Derivative transformations can capture sudden changes over the spectrum and elim-

inate noise in the baselines [42]. 1D preprocessing was shown to acquire promising results 
of modeling leaf water status [43,44]. These transformations were processed using the 
ViewSpec Pro 6.2 software with a derivative gap of 3, and then exported as ASCII text 
files, similar to the raw reflectance data. 1D transformation provides the slope of the tan-
gent line of reflectance at a certain wavelength, and 2D indicates the degree to which the 
slope at a wavelength is changing. There are 2001 variables (corresponding to 2001 wave-
lengths) in each of the 1D and 2D groups. 

2.5.2. Continuum Removal (CR) 
CR transformation was used to normalize the spectrum to a common baseline. The 

continuum refers to background absorption. The difference between the measured spec-
trum and the continuum after transformation was calculated by dividing the raw reflec-
tance values by the corresponding reflectance values of the continuum. This process can 
highlight absorption characteristics [24], and it is useful for providing other perspectives 
of hyperspectral signatures other than pure reflectance intensity [45]. The target bands in 
this study were determined to be centered at 670, 970, 1175, 1440, and 1925 nm (Table 2), 
due to their direct and indirect relationships to water absorption features [12]. This pre-
processing was carried out using “FeaturesConvexHullQuotient” from the pysptools li-
brary in Python 3.9 to extract several absorption features, including absorption depth, ab-
sorption area, continuum slope, width at half maximum of band depth (FWHM), and po-
sition of wavelength with minimum reflectance in each of the target bands. This pro-
cessing produced 25 variables (five target bands × five absorption features per band). 

Table 2. Spectral intervals for continuum removal variables. 

Band (nm) Bandwidth Central Wavelength (nm) 
560–750 190 670 

900–1060 160 970 
1080–1250 170 1175 
1280–1660 380 1440 
1830–2210 380 1925 

2.5.3. Simple Ratio Indices (SI) 
A study showed that simple ratio indices (SI) using all possible pairwise-band com-

binations, of reflectance over the entire spectrum, outperformed vegetation indices for 
predicting the water status of rice [30]. Therefore, in this study, all the possible pairwise-
band combinations over 400–2400 nm were used to compute SI (2,001,000 variables in to-
tal) using Visual Basic for Applications (VBA) in Excel 2019. 

2.5.4. Vegetation Indices (VIs) 
The most widely used method to extract information from the electromagnetic spec-

trum is to compute vegetation indices based on the reflectance at certain wavelengths 
[17,46]. These indices were designed to enhance spectral features sensitive to target pa-
rameters. However, these indices, calibrated based on several databases, utilize only spe-
cific regions of the spectrum. It has been reported that they may not be suitable when 
applied to other datasets [47]. Eleven water status-related vegetation indices in Table 3 
were calculated for the purpose of comparing Ψstem estimation fitted with multivariable 
(raw reflectance, 1D, 2D, CR, and SI) and univariable (VI). The modeling using multivar-
iable as inputs was computed based on multivariable models (partial least square regres-
sion, random forest regression, support vector regression), and using univariable as in-
puts was computed based on linear regression. 
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Table 3. Vegetation indices used in this study. 

Vegetation Indices Acronym Formula Reference 
Normalized difference vegetation 

index 
NDVI (R800−R675)/(R800 + R675) [48] 

Moisture stress index MSI R1600/R820 [49] 
Photochemical reflectance index PRI (R531−R570)/(R531 + R570) [50] 

Water index WI R900/R970 [51] 
Normalized water difference index NDWI (R860-R1240)/(R860 + R1240) [52] 

Simple ratio water index SRWI R860/R1240 [53] 
Floating position water band index FWBI R900/min(R930–980) [54] 

Maximum Difference Water Index MDWI 
max(R1500–1750) − min(R1500–

1750)/max(R1500–1750) + 
min(R1500–1750) 

[55] 

Simple ratio index (1300, 1450) SI1300, 1450 R1300/R1450 [56] 
Double difference index DDI 2*R1530-R1005-R2055 [57] 

Normalized water balance index NWBI (R1500−R538)/(R1500 + R538) [58] 
Note: R refers to the reflectance value at a given wavelength. 

2.6. Modeling Pipeline 
The total samples (n = 85) were split into training (n = 59) and test (n = 26) sets using 

a 70/30 ratio. The split was carried out and stratified according to the date of measurement, 
to ensure that both training and test sets have corresponding percentages, of samples from 
each date of measurement. The same composition of samples for the training and test sets 
was used all the way through this study to ensure comparability. Due to the limited size 
of training sets, validation was implemented for modeling training by applying 10-fold 
cross-validation to the training set. It randomly splits the training set into k groups, each 
of approximately equal size. For each recursion, k-1 groups made up the new training set 
to fit the model, while one group served as the validation set for evaluating performance. 
Subsequently, the average performance of the algorithm was then calculated. The test da-
taset was set aside during variable selection and model training and was not used until 
the evaluation of modeling performance. The splitting process was undertaken using 
“train_test_split” from the sklearn package in Python 3.9. A total of 38 modeling pipelines 
were developed for Ψstem modeling (Table 4). 

Table 4. The list of modeling pipelines. 

No Feature Group Variable Source Regression Model 
1 Raw reflectance Full set PLSR 
2 1D reflectance Full set PLSR 
3 2D reflectance Full set PLSR 
4 CR variables Full set PLSR 
5 SI Full set PLSR 
6 Raw reflectance Full set RFR 
7 1D reflectance Full set RFR 
8 2D reflectance Full set RFR 
9 CR variables Full set RFR 

10 SI Full set RFR 
11 Raw reflectance Spearman correlation-selected variables RFR 
12 1D reflectance Spearman correlation-selected variables RFR 
13 2D reflectance Spearman correlation-selected variables RFR 
14 CR variables Spearman correlation-selected variables RFR 
15 SI Spearman correlation-selected variables RFR 
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16 Raw reflectance RFECV-selected variables RFR 
17 1D reflectance RFECV-selected variables RFR 
18 2D reflectance RFECV-selected variables RFR 
19 CR variables RFECV-selected variables RFR 
20 SI RFECV-selected variables RFR 
21 Raw reflectance Full set SVR 
22 1D reflectance Full set SVR 
23 2D reflectance Full set SVR 
24 CR variables Full set SVR 
25 SI Full set SVR 
26 Raw reflectance Spearman correlation-selected variables SVR 
27 1D reflectance Spearman correlation-selected variables SVR 
28 2D reflectance Spearman correlation-selected variables SVR 
29 CR variables Spearman correlation-selected variables SVR 
30 SI Spearman correlation-selected variables SVR 
31 Raw reflectance RFECV-selected variables SVR 
32 1D reflectance RFECV-selected variables SVR 
33 2D reflectance RFECV-selected variables SVR 
34 CR variables RFECV-selected variables SVR 
35 SI RFECV-selected variables SVR 
36 - Ensemble of selected variables RFR 
37 - Ensemble of selected variables SVR 
38 VI Single variable LR 

Note: “No” refers to the assigned number of each pipeline, “1D” refers to the first derivative, “2D” 
refers to the second derivative, “CR” refers to continuum removal, “SI” refers to simple ratio indi-
ces, “VI” refers to vegetation indices, “RFECV” refers to recursive feature elimination based on 
cross-validation, “PLSR” refers to partial least squares regression, “RFR” refers to random forest 
regression, “SVR” refers to support vector regression, and “LR” refers to linear regression. 

2.7. Variable Selection 
Since hyperspectral information is a high dimensional dataset, variable selection as-

sists in reducing the number of variables to the most significant ones, preventing overfit-
ting and improve the prediction performance of the regression models [59]. In this study, 
Spearman correlation and recursive feature elimination based on cross-validation were cho-
sen for variable selection for the five feature groups (raw reflectance, 1D, 2D, CR, and SI). 

2.7.1. Spearman Correlation 
Spearman correlation was used to determine the strength and direction of the mon-

otonic relationship between ranked response (the Ψstem of each vine) and ranked predic-
tor variables (the spectral data at each wavelength). With this monotonic relationship, the 
paired variables tend to change together, but not necessarily at a constant rate. This 
method was used to detect nonlinear relationships, and there is no requirement for the 
variables to be normally distributed. The Spearman correlation coefficient varies between 
+1 and −1. The closer to ±1, the stronger the monotonic relationship. Variables with coef-
ficients higher than 0.6 were selected in this study. This correlation was implemented us-
ing “spearmanr” from the scipy library in Python 3.9. 

2.7.2. Recursive Feature Elimination Based on Cross-Validation (RFECV) 
RFECV performs variable elimination by repetitively constructing the wrapped 

model and identifying the least ranked variable after each iteration. The least ranked var-
iable is then discarded, and the model is reconstructed using the remaining variables. For 
SI, 1% of total variables instead of the least one ranked variable was removed at each iter-
ation in this study, due to computational capacity. The process is recursively repeated on 
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a smaller and smaller set of variables until a specified criterion has been reached. RFECV 
was employed, due to its effect of reducing correlation between predictor variables [60], 
and, to our knowledge, this method has not been investigated for GWS estimation using 
hyperspectral data. In this study, the criterion was set to use 10-fold cross-validation to 
automatically determine the best number of variables according to the value of the coeffi-
cient of determination (R2). This step was implemented using “RFECV” from the sklearn 
library in Python 3.9. Random forest regression and linear support vector regression were 
used as wrapped algorithms to rank variables based on their attributes of feature im-
portance and coefficient, respectively. 

2.7.3. The Ensemble of Selected Variables 
An ensemble of multimethods improved the result of modeling by overcoming the 

potential problem of a single technique [33]. In this study, various subsets of variables 
were selected by Spearman correlation and RFECV for each feature group, further feeding 
the models to compare the estimation accuracy. The variables in every feature group that 
was selected as inputs for random forest regression and support vector regression, with 
the best performance, were merged to form the ensemble of selected variables. This new 
set of variables was used to fit the regression models and then be evaluated for their effect 
on modeling performance. 

2.8. Regression Models 
Partial least squares regression (PLSR), random forest regression (RFR), and support 

vector regression (SVR) were applied to estimate Ψstem based on hyperspectral reflec-
tance. They were implemented using “PLSRegression”, “RandomForestRegressor”, and 
“SVR” from the sklearn library in Python 3.9, respectively. As the performance of regres-
sion models is influenced by their parameters (also called hyperparameters), it is neces-
sary to tune the hyperparameters beforehand to prevent overfitting. This enables the re-
gression algorithms to exploit their potential. Grid searching with 10-fold cross-valida-
tion, based on the R2 value, was used to search for the best combination of hyperparame-
ters. A list of tuned parameters and their ranges for each algorithm is displayed in Table 
5. The combination of hyperparameters contributing to the models with the highest R2 
values was considered as optimized. These parameters would then be used for later eval-
uation of model performance on the test set. This technique was carried out using 
“GridSearchCV” from the sklearn library in Python 3.9. For PLSR, the variable extraction 
processing goes along with modeling, so PLSR used the transformed datasets directly 
without carrying out any variable selection beforehand. For RFR and SVR, they were 
trained either with the full set of variables or with selected variables. 

Table 5. The tuned hyperparameters and their ranges for each regression model. 

Regression Model Hyperparameter Range 
Partial least squares  

regression 
Number of components 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Random forest regression 

The number of variables to be con-
sidered for the best split 

“auto”, “sqrt”, “log2” 

The maximum depth of the tree 1 or 2 
The number of trees in the forest 500 

Support vector  
regression 

The used kernel type “linear”, “poly”, “rbf”,  
“sigmoid” 

Kernel coefficient “scale”, “auto” 

Regularization parameter 
0.01, 0.05, 0.1, 0.5, 1, 5, 

10, 50, 100 
The width of the epsilon-tube 0.1, 0.3, 0.5, 0.7, 0.9 
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Notes: “Auto” refers to the total number of variables, “sqrt” refers to the squares root of the total 
number of variables, “log2” refers to the binary logarithm of the total number of variables, “poly” 
refers to polynomial, “rbf” refers to radial basis function, “scale” refers to the use of 1/(total num-
ber of the variable × variance of the variables) as the kernel coefficient, and “auto” refers to the use 
of 1/(total number of variable) as the kernel coefficient. 

2.8.1. Partial Least Squares Regression (PLSR) 
PLSR carries out dimensional reduction through generating independent compo-

nents which linearly integrate the maximum variance in the predictor variables under the 
supervision of response variables [61]. It then performs least squares regression on these 
components with the response variables. This technique is useful in addressing datasets 
with problems associated with multicollinearity and high dimensionality, and preventing 
overfitting [36]. Both predictor and response variables were scaled during modeling. 
PLSR evaluates the significance of each variable by calculating the variable importance of 
projection (VIP) [62]. The higher the VIP value of a variable, the more important the cor-
responding spectral data is to the PLSR. 

2.8.2. Random Forest Regression (RFR) 
RFR is an ensemble learning algorithm that contains a large set of regression trees 

[63]. It uses different bagged samples (from the training set with replacement) to fit those 
regression trees, and at each node, the trees perform binary splitting using a subset of the 
input variables. The variable determined for splitting is based on the degree of reduction 
in the residual sum of squares. The final predicted value of a sample is computed by av-
eraging the prediction of all regression trees. RFR can be used to model nonlinear rela-
tionships between variables. It performs well when building on a limited number of sam-
ples with a large number of variables, and it has been observed in literature to be robust 
despite the introduction of noise and bias to the data [26]. 

2.8.3. Support Vector Regression (SVR) 
SVR is an extension of the support vector machines specifically designed for regres-

sion problems [64]. It calculates a hyperplane in multidimensional space that encompasses 
the maximum number of samples within the decision boundary lines. It contains kernel 
functions that transform input space, to required high-dimensional space, and is, thus, 
able to deal with nonlinearity. Support vector machines processing has proven to be ro-
bust when addressing high dimensional datasets for classification problems [65]. It is less 
prone to overfitting and has a relatively high generalized performance [32], even with a 
limited number of samples [66]. In this study, all predictor variables were standardized to 
have the same scale before SVR processing. 

2.9. Modeling Performance Evaluation 
To compare the performance of regression models for evaluating the impacts of data 

transformation techniques, variable selection approaches, and regression models, the co-
efficient of determination (R2) and root mean square error (RMSE) values were computed 
by applying the trained models with optimized hyperparameters on the test set. 
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2.9.1. Coefficient of Determination (R2) 
R2 values range between 0 and 1 to indicate the extent to which the responses can be 

explained by the predictors. An R2 value near 1 indicates that most of the variance in the 
response variables is explained by the model, and values nearer 0 indicate that the model 
explains little of the variance in the responses. The R2 value was computed as follows: 

𝑅𝑅2 = 1 − �
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)𝑛𝑛
𝑖𝑖=1

2

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

� (1) 

where n is the number of samples used to fit the model, 𝑦𝑦𝑖𝑖 is the measured value of re-
sponse of the ith sample, 𝑦𝑦� is the mean response value, and 𝑦𝑦�𝑖𝑖 is the estimated value of 
response of the ith sample from the regression model. 

2.9.2. Root Mean Square Error (RMSE) 
The RMSE was used to quantify the extent to which the estimated response value for 

a given sample matches its measured response value. The value of the RMSE is small if 
the estimated values are close to the measured values of responses and are large if the 
estimated and measured responses differ substantially. The RMSE was computed as fol-
lows: 

   RMSE =  �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (2) 

where n is the number of samples used to fit the model, 𝑦𝑦𝑖𝑖 is the measured value of the 
response of the ith sample, and 𝑦𝑦�𝑖𝑖 is the estimated value of the response of the ith sample 
using the regression model. 

3. Results 
3.1. Variation in Vine Water Potential 

Each vineyard was visited four times, from flowering through to veraison until net-
ting the vines to protect from birds. This timeframe is the most critical in terms of the 
effects of GWS on berry quality before harvest. The underlying premise is that precise 
monitoring of GWS in this period is essential to produce grapes with premium quality. 
Figure 4 displays the variation of stem water potential (Ψstem) collected from different 
canopies over the five field survey days, and the distribution of the measurements on each 
date. There were no irrigation events during the field surveys, due to the adequate rainfall 
from late November to early December (Figure 4). As the recorded Ψstem is equal and 
opposite to the GWS, the effect of heavy rainfall was reflected by the high GWS observed 
at the initial survey. The subsequently increasing Ψstem values resulted from no irriga-
tion plus little precipitation indicate the impact of water deficit gradually accumulating in 
the canopy as the survey proceeded from flowering to veraison. In terms of the full dataset, 
the collected leaf samples show a range of Ψstem values from 310 to 1344 kPa (Table 6). The 
frequency histogram in Figure 5 reveals the distribution of collected Ψstem values, and 
the class number was determined by the square root of the total sample number. 
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Figure 4. Boxplot of stem water potential (Ψstem) values for the full set of samples collected at 
Wharekauhau (n = 35) and Pencarrow (n = 50) vineyard. 

Table 6. Descriptive statistics of Ψstem (kPa) of all the observations (n = 85). 

 Total Sample Size Mean Standard Deviation Maximum Minimum 
Ψstem (kPa) 85 752 277 1344 310 

 
Figure 5. Distribution of Ψstem (kPa) for all the samples (n = 85). The dataset is not normally dis-
tributed. 

3.2. Variation in Hyperspectral Data 
The raw reflectance in Figure 6a portrays typical reflectance patterns of healthy veg-

etation: Moderate reflectance at around 500–600 nm, due to the reflection of green light, 
strong reflectance at around 750–1300 nm, due to the healthy internal structure of leaves, 
two weak water absorption regions at around 970 and 1200 nm (NIR region), as well as 
two strong water absorption regions at around 1450 and 1900 nm (SWIR region). Reflec-
tance differences at specific wavelengths over the full spectrum between samples will po-
tentially enable us to estimate GWS for each observation. The spectral regions with evi-
dent dispersion of derivative curves may also be potentially linked to the vine’s hydration 
state, involving 400–800, 1300–1500, 1700, and 1900 nm for the first derivative reflectance, 
as well as 400–600, 700–1300, 1500–1900, and 2000–2400 nm for the second derivative re-
flectance (Figure 6b,c). 
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Figure 6. Raw hyperspectral signatures (a) and their first (b) and second (c) derivatives for all samples (n = 85). 

3.3. Modeling Performance 
This study used combinations of six feature groups, two variable selection methods, 

an ensemble of selected variables, and three regression models to construct 38 modeling 
pipelines. Specifically, feature groups include raw reflectance, first derivative (1D) reflec-
tance, second derivative (2D) reflectance, continuum removal (CR) variables, simple ratio 
indices (SI), and vegetation indices (VI). Variable selection methods include Spearman 
correlation and recursive feature elimination based on cross-validation (RFECV). Regres-
sion models include partial least squares regression (PLSR), random forest regression 
(RFR), and support vector regression (SVR). The modeling pipelines can be viewed as the 
pipelines without a variable selection component (i.e., pipelines with numbers 1–5, and 
38 in Table 4), and with variable selection components (i.e., pipelines with numbers 6–37 
in Table 4). The model evaluation metrics (i.e., R2 and RMSE) were computed for modeling 
performance evaluation. For pipelines with numbers 6–37 in Table 4, only pipelines with 
the best performance on the test set are presented (Table 7). The results implied by R2 are 
equivalent to those implied by RMSE, as expected, since the best performance of modeling 
is based on the highest value of R2 along with the lowest value of RMSE. Amongst all the 
modeling pipelines (i.e., pipelines with numbers 1–38 in Table 4), the best performance 
occurs when PLSR was trained with SI, resulting in the highest R2 (0.85) and lowest RMSE 
(110 kPa). Its scatter plot, shown in Figure 7, presents the relationship between observed 
and predicted Ψstem. Either Spearman correlation or RFECV results improve the perfor-
mance of RFR and SVR for all feature groups, except for CR variables. Amongst pipelines 
with numbers 6–37 in Table 4, SVR trained with the ensemble of selected variables results 
in the best performance. The modeling performance of Ψstem by VIs is poor, as none of 
the VI resulted in modeling with R2 higher than 0.5. The best performance among all the 
models using VI as input variable was the one regressed with photochemical reflectance 
index (R2 = 0.41; RMSE = 210 kPa). 
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Table 7. Results of modeling performance on the test dataset. 

 Metric 
Partial Least 

Squares  
Regression 

Random  
Forest  

Regression 

Support  
Vector  

Regression 
Feature group     

Raw  
reflectance 

R2 0.81 0.70 0.74 
RMSE 123 152 141 

Variable 
source Full set RFECV RFECV 

First derivative  
reflectance 

R2 0.79 0.70 0.67 
RMSE 127 154 161 

Variable  
source Full set Spearman  

correlation 
Spearman  
correlation 

Second derivative  
reflectance 

R2 0.65 0.71 0.68 
RMSE 166 150 158 

Variable 
source Full set Spearman  

correlation  
Spearman  
correlation 

Continuum  
removal  
variables 

R2 0.70 0.66 0.63 
RMSE 152 162 170 

Variable  
source 

Full set Full set Full set 

Simple ratio  
indices 

R2 0.85 0.67 0.78 
RMSE 110 160 131 

Variable  
source 

Full set RFECV RFECV 

N/A 

R2 N/A 0.68 0.79 
RMSE N/A 159 128 

Variable  
source N/A 

Ensemble of  
selected variables 

Ensemble of  
selected variables 

 
Figure 7. Scatter plots between predicted and observed Ψstem (kPa) simulated on the test set (n = 
26) using the top-performing models—partial least squares regression (PLSR) trained with simple 
ratio indices (SI). The blue line is the regression line, and the red dotted line is the 1:1 line. 
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3.4. Selected Variables and Their Relative Importance 
Figures 8–12 present the variable importance for each of the five feature groups (raw 

reflectance, 1D, 2D, CR, and SI). PLSR uses variable importance in projection (VIP), RFR 
uses variable importance, and SVR uses coefficient to rank the significance for either the 
full set of variables, Spearman correlation-selected variables, or RFECV-selected variables. 
For pipelines with numbers 6–37 in Table 4, the variable importance was only calculated 
and presented for the variable subset used as inputs for the modeling pipelines with the 
best performance on the test set. That is, using SVR to compute variable importance for 
RFECV-selected variables from raw reflectance, using RFR trained to compute variable 
importance for Spearman correlation-selected variables from 1D reflectance, using RFR to 
compute variable importance for Spearman correlation-selected variables from 2D reflec-
tance, using RFR to compute variable importance for the full set of variables of CR varia-
bles, and using SVR to compute variable importance for RFECV-selected variables from 
SI. This computation was based on the training set, and it can help elucidate significant 
regions and wavelengths relevant to Ψstem estimation. 

3.4.1. Raw Reflectance 
When using raw reflectance data, PLSR-based variable importance seems to be dis-

tributed evenly across 400–2400 nm. Although PLSR does not conduct variable selection, 
it calculates VIP for each wavelength to account for their significance in model construc-
tion. VIP values higher than one are generally considered significant. The VIP values for 
raw reflectance data fluctuate around one, with maxima occurring at around 400, 520–630, 
700, 1890, and 2400 nm (Figure 8a). Variables selected by REFCV disperse at around 400–
430, 720, 1049, 1400, 1565–1595, 1890, 2250, and 2370 nm (Figure 8b). Their variable im-
portance computed by SVR indicates the region around 400–430 is the most important. 

(a) (b) 

  
Figure 8. Variable importance for raw reflectance data computed by PLSR (a), and support vector regression (SVR) based 
on variables selected by cross-validated recursive feature elimination (RFECV) (b). 

3.4.2. First Derivative 
The VIP values derived from PLSR for each 1 D variable are more discrete compared 

to that for each raw reflectance variable, with the difference between the highest and low-
est VIP values being larger (Figure 9a). With Spearman correlation, selected variables con-
centrate at around 400, 715–760, 800–1250, 1000–1870, and 2250–2350 nm (Figure 9b). The 
important regions computed by RFR are at around 740, 1220, and 1700 nm. 
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(a) (b) 

  

Figure 9. Variable importance for first derivative reflectance computed by PLSR (a), and random forest regression (RFR) 
based on Spearman correlation-selected variables (b). 

3.4.3. Second Derivative 
The important 2 D variables computed based on VIP (Figure 10a) are even more dis-

crete across the entire spectrum compared to those for 1 D reflectance. This implies that 
there are relatively few variables relevant to the variation of Ψstem values in this feature 
group. As the VIP values of several regions are close to zero, the significant spectral re-
gions can be determined more clearly. Interestingly, the evident regions based on VIP 
values are quite similar, to those selected by the Spearman correlation. These regions are 
at around 650–750, 1155, 1370–1420, 1720, and 1870 nm (Figure 10b). It seems the regions 
at around 700 and 1410 were relatively more significant according to the variable im-
portance computed by RFR. 

(a) (b) 

  

Figure 10. Variable importance for second derivative reflectance computed by PLSR (a), and RFR based on Spearman 
correlation-selected variables (b). 

3.4.4. Continuum Removal Features 
With CR variables, both RFR and SVR performed better when using the full set of 

variables. The top five important variables ranked by PLSR and RFR are the same (Figure 
11), including continuum slope of the region centered at 670 nm, continuum slope of the 
region centered at 1925 nm, absorption area of the region centered at 670 nm, full width 
at half maximum of band depth (FWHM) of the region centered at 670 nm, and continuum 
slope of the region centered at 1440 nm. 
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(a) (b) 

  

Figure 11. Variable importance for continuum removal variables computed by PLSR (a), and RFR (b). 

3.4.5. Simple Ratio Indices 
Most of the SI variables make similar contributions to the modeling according to the 

nondrastically different VIP values in the heatmap (Figure 12a). Several important regions 
can be identified based on the strip-like differences of color in the heatmap. They include 
the regions of 500–650, 700–730, 1400, 1700, 1900, and 2000–2400 nm. Some indices only 
play a significant role when formed by the reflectance of adjacent wavelengths, so there 
are evident differences of color in the heatmap close to the 1:1 line, involving 1050–1150, 
1200–1300, and 1800 nm. RFECV-selected variables have similar significance based on ab-
solute coefficient values computed by SVR (Figure 12b). Most of the selected indices are 
built based on the reflectance close to each other by wavelengths, and thus, the colored 
regions go along the 1:1 line. These regions mainly include 400–500, 750–1300, 1500–1850, 
1900–2400 nm. Besides, some strip-like color bars indicate some selected indices are cal-
culated by the ratios of reflectance between 400–600 and 700 nm, 1750–1850 and 1400 nm, 
as well as 2250–2350 and 1900 nm. 

(a) (b) 

  

Figure 12. Variable importance for simple ratio indices computed by PLSR (a) and SVR based on RFECV-selected variables (b). 

4. Discussion 
This study attempts to establish a quantitative correlation between the spectral re-

flectance of vine canopy leaves in the VIS, NIR, and SWIR regions of the spectrum, and 
the Ψstem, which is used as a proxy for GWS. Since this relationship has been reported to 
be affected by numerous factors, including growing conditions, phenological stages [57], 
leaf homogeneity [56], cultivars [67], leaf age [68], and leaf position [69], the study trial 
was set up using the same cultivar with similar age and consistent sampling method through-
out the field sampling to help minimize these factors. However, in situ heterogeneity of soil 
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type and microclimate conditions will influence growth patterns and/or water stress lev-
els within and between grapevines, so sampling was undertaken frequently over the crit-
ical period (late November to early February) to capture sufficient variability for analysis. 
Note that the number of data collected for this study is small (n = 85). In addition, these 
are commercial vineyards subjected to normal management practices, and one of the ob-
jectives of this study was to ensure that the collected data represented vine responses to 
these conditions as much as possible. 

4.1. The Effects of Data Transformation on the Estimation of Grapevine Water Status 
The models fitted using the SI outperformed those regressed with the other trans-

formed data among pipelines with numbers 1–5 and among pipelines with numbers 6–37 
in Table 4. When the input variables were augmented from 2001 reflectance values over 
400–2400 nm to 2,001,000 ratio values, new information was produced, which largely in-
creased the potential of correlation with Ψstem. It is observed 1D, 2D, CR transformations 
do not improve the modeling performance compared to models trained with raw reflec-
tance data among pipelines. One possible reason for the poor performance of pipelines 
with CR preprocessing is that since the five selected spectral regions (560–750, 900–1060, 
1080–1250, 1280–1660, and 1830–2210 nm) did not fully cover the entire study spectrum 
of 400–2400 nm, the rejected regions may have contained sufficient ‘diffuse’ information 
to affect modeling performance when correlating reflectance with Ψstem values. For this 
work, a plant probe with a stable incident angle and light intensity was used in contact 
with leaves to provide standardized survey conditions as described in Section 2.4. It min-
imized the influences, of illumination conditions, angle of the sun, and background inter-
ference on in situ spectral measurements. That is why original reflectance in this study 
can achieve high accuracy of Ψstem estimation, which supports the study of González-
Fernández et al. [43]. 

4.2. Significantly Important Spectral Regions Derived from Variable Selection 
Due to multicollinearity within the hyperspectral reflectance, the removal of noncon-

tributing variables is problematic. However, it is important to remove less informative 
variables to help minimize modeling noise by these variables [70]. It is observed that 
Spearman correlation works better using 1D and 2D reflectance as input variables, and 
RFECV performs better using raw reflectance and SI as input variables. Raw reflectance 
and SI have much higher multicollinearity than 1D and 2D do according to the VIP values 
(Figures 8a, 9a, 10a, and 12a). Since PLSR extracts the shared variance between predictor 
variables, the higher VIP values compared to predictor variables, the less correlation is 
between them. This observation is similar to the findings of Bhadra et al. [71]. However, 
they used Pearson correlation and RFR instead of Spearman correlation and RFECV to 
select variables. The full set of CR variables was selected, because this feature group is not 
highly dimensional, variable elimination may remove some relevant, but diffuse, varia-
bles, and thus, reduce modeling performance. 

The important regions were those bounded by the spectral bands that were deter-
mined by the modeling pipelines with the highest estimation accuracy for each feature 
group. In the VIS spectrum, the important bands identified are 400–430 nm and 650–750 
nm. The 400–430 nm band corresponds to the blue band representing strong absorption 
by chlorophyll-a, chlorophyll-b, and carotenoids (carotenes and xanthophylls). Variations 
in these compounds indicate cumulative effects of water stress, and are, thus, indirectly 
related to variation in GWS, and thus, Ψstem values [46]. The 650–750 nm corresponds to 
red and red edge bands and describes the concentrations [72] and ratios [20] of chloro-
phyll-a and -b, again indicating water stress status. The ranking of CR features indicates 
the absorption band at around 670 nm (slope, area, and full width at half maximum of 
band depth (FWHM)) is significant. These CR variables describe the shape of the absorp-
tion curve within this band. This has been observed in previous studies [73,74], which 
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found that the position and shape of the absorption curve in the red edge band changed, 
due to water stress-induced changes of chlorophyll content in the vine leaves. 

In the NIR spectrum, the important bands determined are 800–1250 nm. Within this 
band, there is a partial reflectance response to two weak water absorption bands at 970 
and 1200 nm [75]. Variation of reflectance in this band can also be related to changes in 
internal leaf structure resulting from dehydration [76] and the decomposition of celluloses 
and proteins, due to water stress [13]. 

In the SWIR spectrum, the important bands identified are 1370–1420, 1500–1595, 
1700–1720, 1850–1890, 2050–2370 nm. Reflectance responses in the SWIR spectrum are 
partially determined by dry leaf matter (i.e., lignin, cellulose, and protein), but mainly by 
two strong water absorption features centered at 1400 and 1940 nm [12]. Extra considera-
tion should be given when using water absorption bands (1400 and 1940 nm) to estimate 
plant water status. The spectral reflectance acquired in this study was a contact measure-
ment using a leaf clip and contact probe with artificial illumination. However, if GWS is 
estimated by airborne or space-borne data, the reflectance at 1400 and 1940 nm would 
become useless because the solar energy, as source illumination, is largely absorbed by 
atmospheric water vapor before reaching the surface of the earth. As dry leaf matter re-
mains relatively constant under low water deficit regimes, water content is considered the 
dominant factor influencing the SWIR spectrum from 1300 to 2500 nm. However, as water 
stress increases and leaf water content declines, the effect of dry leaf matter on spectral 
reflectance becomes more apparent [14]. Disregarding the water absorption regions (1400 
and 1940 nm), the remaining bands in the SWIR spectrum agree well with the findings of 
[10] (1520–1540 nm) and [77–79] (1650–1850 and 2000–2270 nm). For the CR feature group, 
bands (1280–1660, and 1830–2210 nm) were selected based on their continuum slope. This 
was calculated based on the ratio of the reflectance difference to the bandwidth. As the 
bandwidth was predetermined, the significance of continuum slope can be attributed to 
reflectance difference and suggests the potential to use reflectance differences as variables 
for estimating Ψstem. 

The ensemble of selected variables in this study includes RFECV-selected variables 
from raw reflectance, Spearman correlation-selected variables from 1D reflectance, Spear-
man correlation-selected variables from 2D reflectance, full set of CR variables, and 
RFECV-selected variables from SI. This method, although not resulting in evident im-
provement of estimation accuracy, generated the highest R2 of 0.79 and lowest RMSE of 
128 on the test set among pipelines 6–37 in Table 4. This proves the benefit offered by 
ensemble technique beyond what can be achieved by a single combination of a data trans-
formation technique and a variable selection method, which was proposed by Feilhauer 
et al. [36]. 

4.3. The Performance of Regression Models 
Although previous studies have stated that the NIR-SWIR spectrum is more suitable 

for water status estimation [58,80], this paper suggests that statistically significant wave-
lengths correlated with Ψstem variation span several spectral regions over the entire spec-
trum, when different transformed datasets are used as inputs, in the modeling pipelines 
employed by this study. The poor performance of VI also implies the limitation of using 
the reflectance given at two to three wavelengths. This was in agreement with the study 
of Feilhauer et al. [36], which stated the spectral features related to biochemical indicators 
were dispersed across multiple bands, and thus, needed to be considered collectively. 
Therefore, the multivariate techniques that were utilized in this study attempted to make 
the best use of the entire hyperspectral spectrum instead of focusing on conventional in-
dices derived from reflectance at two or three wavelengths. The advantage of this way has 
been demonstrated by Romero et al. [29]. PLSR, RFR, and SVR were regressed with either 
the entire spectrum or a subset of this spectrum. Despite the high dimensionality and mul-
ticollinearity inherent in hyperspectral data, PLSR can reduce this complexity down to a 
few independent variables and attained the best accuracy for Ψstem estimation. One 
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explanation is that PLSR can effectively integrate the shared variance of both directly and 
indirectly relevant bands, as explained in Section 4.2. This capability has also been ob-
served by several studies using the same technique to estimate crop water status from 
hyperspectral data [30,80–82]. Since PLSR simulates a linear relationship, this suggests 
that there is a linear relationship between the extracted information from important bands 
and Ψstem values for all the feature groups except 2D reflectance. One possible explana-
tion is that its relationship with Ψstem may not be best described by a linear model, such 
as PLSR. Since RFR and SVR are able, to simulate nonlinearity, this may be the reason 
why these two models can outperform PLSR when using 2D reflectance as the input da-
taset. Reduced variable size resulting from variable selection improves the performance 
of RFR and SVR for most of the feature groups except for CR variables. RFR and SVR were 
reported to show robustness on high-dimensional data [26,31,66]. However, this study 
demonstrates the advantages of variable selection in terms of increasing model perfor-
mance by RFR and SVR. This may be attributed to the decreased collinearity in the re-
duced input data. SVR has been found (in other studies [32]) to suffer from multicolline-
arity when fitted using the full-spectrum datasets, with improved performance when the 
most informative bands were used as input data instead. 

5. Conclusions 
This study investigated the relationship between stem water potential (Ψstem) and 

leaf-scale hyperspectral reflectance (400–2400 nm) collected between late November 2020 
and early February 2021 from two New Zealand vineyards using 38 modeling pipelines. 
These pipelines show that partial least squares regression trained with simple ratio indices 
based on the entire spectrum provided the best Ψstem predictions (R2 = 0.85; RMSE = 110 
kPa), significantly outperforming the linear regression using classical vegetation index as 
an input variable. Additional results reveal the benefit of increasing accuracy at Ψstem 
prediction using an ensemble of selected variables composed of multicombination of 
transformed data and variable selection methods. The above-mentioned outcomes can be 
used to tailor an automatic data processing and modeling pipeline to estimate Ψstem. 
Accordingly, if sufficient hyperspectral measurements are undertaken, this will provide 
a means of delivering a rapid and nondestructive estimation of Ψstem, and thus, grape-
vine water status. Information on individual grapevine water status should enable vine-
yards to tailor irrigation on a per vine basis rather than a per block status, which is the 
general practice at present. This would enable better control of the desirable traits in the 
grape berries, that are affected by water content. This would improve wine quality, and 
therefore, the price achieved. Due to the limited data size obtained in this study, future 
studies can potentially focus on validating these pipelines using more samples collected 
from different growing stages and years. Extra consideration should be taken when using 
airborne or space-borne imaging for estimation, because of water absorption bands. However, 
more research is required to be carried out, and this study has proved a concept of estimating 
grapevine water status using a ground-based hyperspectral spectroradiometer. 
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