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Parentage analysis is concerned with the estimation of a sample’s 

pedigree structure, which is often essential knowledge for estimating 

population parameters of animal species, such as reproductive success. 

While it is often easy to relate one parent to an offspring simply by 

observation, the second parent remains frequently unknown. Parentage 

analysis uses genotypic data to estimate the pedigree, which then allows 

inferring the desired parameters. There are several software applications 

available for parentage analysis, one of which is MasterBayes, an 

extension to the statistical software package R. MasterBayes makes use 

of behavioural, phenotypic, spatial and genetic data, providing a Bayesian 

approach to simultaneously estimate pedigree and population parameters 

of interest, allowing for a range of covariate models.  MasterBayes 

however assumes the sample to be a randomly collected from the 

population of interest. Often however, collected data will come from nests 

or otherwise from groups that are likely to contain siblings. If siblings are 

present, the assumption of a random population sample is not met 

anymore and as a result, the parameter variance will be underestimated. 

This thesis presents four methods to adjust MasterBayes’ parameter 

estimate to the presence of siblings, all of which are based on the 

pedigree structure, as estimated by MasterBayes. One approach, denoted 

as DEP, provides a Bayesian estimate, similar to MasterBayes’ approach, 

but incorporating the presence of siblings. Three further approaches, 

denoted as W1, W2 and W3, apply importance sampling to re-weight 

parameter estimates obtained from MasterBayes and DEP. Though fully 

satisfying adjustment of the estimate’s variance is only achieved at nearly 

perfect pedigree assignment, the presented methods do improve 

MasterBayes’ parameter estimation in the presence of siblings 

considerably, when the pedigree is uncertain. DEP and W3 show to be the 

most successful adjustment methods, providing comparatively accurate, 

Abstract 



 
ii 

though yet underestimated variances for small family sizes. W3 is the 

superior approach when the pedigree is highly uncertain, whereas DEP 

becomes superior when about half of all parental assignments are correct. 

Large family sizes introduce to all approaches a tendency to 

underestimate the parameter variance, the degree of underestimation 

depending on the certainty of pedigree. Additionally, the importance 

sampling schemes provide at large uncertainty of pedigree comparatively 

good estimates of the parameter’s expected values, where the non 

importance sampling approaches severely fail. 
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1.1 Introduction to Parentage Analysis 

1. Introduction 

Determining the pedigree structure in a population is often of interest in biology and 

may be essential in drawing further inferences. Knowledge of the pedigree allows 

inferring population parameters such as fertility of certain population groups. While it 

is mostly possible to tell one parent of an offspring (in mammal species usually the 

mother) simply by observation, it is generally impossible to determine both parents in 

polygamous species. Parentage analysis approaches the problem of finding the 

pedigree structure by means of genetic analyses. Typically, the genotype of offspring 

and candidate parents is extracted at highly polymorphic microsatellite loci and then 

examined to estimate relational probabilities. 

A likelihood-based approach to parental analysis is presented by Marshall et al. 

(1998) and realized in the software package CERVUS. Based on offspring’s and 

candidate parent’s genotypes (if available including the genotype of known parents), 

CERVUS tests the hypothesis of the proposed parent being the true parent against 

the hypothesis of not being the true parent. The likelihoods are the product of the 

likelihood at each examined locus, leading to the likelihood ratio between an 

offspring’s two most likely parents. The ratio is presented in the natural logarithm and 

hence a score of zero indicates that the proposed parents are equally likely to be the 

true parent, whereas a positive score increases the chance of the proposed parent 

being the true one, or decreases respectively. Parentage for tested offspring is then 

assigned for the most likely parent if a pre-determined level of confidence is reached 

and otherwise is left unassigned. For further parameter analysis, the most likely 

mother and father are used. Those parameter inferences however will be separate 

from the pedigree estimation, using classical statistical methods, and therefore will 

not incorporate the uncertainty about the parental assignments but treat the assigned 

parents as true parents. This is, treating the assigned parents as true parents and 

base all following analysis on this assumption. 
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In a further approach, Emery et al. (2000) provide a Bayesian method to infer the 

number of parents and relationships within nest-structured samples. From knowledge 

of offspring’s genotypes in a nest, it reconstructs parental genotypes participating in 

the nest, specifically from egg strings of veined squid, and so provides the pedigree 

structure, but also is able to include known parents’ genotypes, if applicable, into the 

analysis. The approach samples from the posterior of pedigree structure by means of 

Monte Carlo Markov Chains (MCMC) and is realized in a more flexible form for 

general parentage problems than the paper specifies in the package PARENTAGE 

[Wilson (2001)], which provides a tool in analysing the problem of inferring the 

number of parents and the relationship within samples. 

Jones et al. (2007) present a further Bayesian approach to estimate reproductive 

success simultaneously with parentage in the presence of siblings and half siblings, 

hence incorporating within-nest relatedness rather than treating offspring as a random 

sample. The paper adds the idea of jointly estimating parentage along with 

demographic parameters. 

Hadfield (2006) provides a Bayesian joint inference procedure that is computationally 

realized in the library MasterBayes [Hadfield (2008b)] for the statistical software 

package R [R Development Core Team (2008)]. Allowing a range of covariate 

models, MasterBayes jointly estimates parentage and population parameter(s) of 

interest by simultaneously making use of behavioural, phenotypic, spatial and genetic 

data in a Bayesian framework via MCMC and hence the uncertainty of parentage is 

incorporated to the estimate. We will denote the MasterBayes approach in later 

references with the abbreviation MB. MasterBayes assumes a random sample from 

the studied population and thereby that there are no relations between the sampled 

offspring beyond what is expected by chance. We will frequently use the term 

“independence” to express this assumption. 

Often however a sample will not meet the requirements of a randomly collected 

sample. We may for example collect samples from nests (several sampled offspring 

per nest) where offspring from the same nest are likely to be siblings, or sample from 

other groups that are likely to contain siblings. This is frequently the most efficient and 
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cheapest and hence most economic way to collect data. If siblings are present in the 

sample, MasterBayes’ assumption of independence (and hence a random population 

sample) is violated. 

Under independent assumptions, one parent with say three sampled offspring is 

counted three times, whereas it would be more appropriate to count it indeed as one 

parent (hence unique parent). The following example illustrates the counting 

differences in the case of estimating mothers. 

Following the fish example in Jones et al. (2007), assume a simplified sample 

collected from two nests. Each nest has one father but several participating females. 

Females are divided into two age groups. We are interested in the fraction of mothers 

belonging to age class 2. 

Independent versus Unique Mothers – A Counting Example 

Nest 1  Nest 2 
Offspring Father Mother Age  Offspring Father Mother Age 

O1 F1 M1 1  O7 F2 M4 1 
O2 F1 M1 1  O8 F2 M4 1 
O3 F1 M2 2  O9 F2 M4 1 
O4 F1 M2 2  O10 F2 M5 2 
O5 F1 M2 2  O11 F2 M5 2 
O6 F1 M3 1  O12 F2 M6 1 

     O13 F2 M7 2 
 
Figure 1.1.1 - Nest Structure 

In this example, MasterBayes’ counts each offspring’s mother according to the 

assumption of independence by her age class, which leads to: 

 

 m1 = 7   m2

 

 = 6 

where m1 is the counted number of mothers belonging to age class 1 and m2

 

 is the 

number of counted mothers belonging age class 2. 
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The probability λ indep

 

 to find (by independent counting) a mother from age class 2 in 

the sample is: 

 indepλ  = 
totm

m2
         Equation 1.01 

     with mtot = m1 + m2

 

   Equation 1.02 

Each mother represents a Bernoulli draw and hence the variance of λ indep

 

 over both 

nests is: 

 Var(λ indep
tot

indepindep

m
)1( λλ −

) =       Equation 1.03 

 

This independent counting scheme obviously ignores the fact that there are many 

siblings present in the sample and hence the number of unique mothers is actually 

less than mtot

Counting the unique mothers in each age class instead, we get: 

. 

 

 um1 = 4  um2

 

 = 3 

where um1 is the counted number of unique mothers belonging to age class 1 and 

um2 is the number of counted unique mothers belonging to age class 2. The 

dependent counting approach using unique mothers acknowledges that one mating 

event produces several siblings. 
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The probability λdep

 

 to find (by counting unique mothers) a mother from age class 2 in 

the sample is: 

 depλ  = 
totum

um2
         Equation 1.04 

     with umtot = um1 + um2

 

   Equation 1.05 

Here the variance of λdep

 

 over both nests is: 

 Var(λdep
tot

depdep

um
)1( λλ −

) =        Equation 1.06 

  

In this example, we get the probability and variance for age class 2 as: 

 

 indepλ  = 0.4615   depλ  = 0.4286 

 Var(λ indep) = 0.0191   Var(λdep

 

) = 0.0350 

Though both age class 2 probability estimates are similar, their variances differ 

substantially. Thus, the assumption of independence within MasterBayes’ framework 

leads to misjudgement of the parental presence for samples including siblings. As a 

result, the parameter estimate is though likely to provide a reasonable age class 2 

probability, the estimate’s variance however will be severely underestimated. 

Inferences to the population may be compromised since MB’s variance estimate 

appears deceptively good. 

The aim of this project is to adjust MasterBayes’ parameter estimates for the 

presence of siblings. This is done on the simple example of estimating the parameter 

of reproductive success of two age groups (more specifically, the fraction of mothers 

belonging to one age group), which is in its aim identical to Jones et al. (2007). 

Beyond this specific application however, MasterBayes allows for more complicated 

covariate models, which can be adjusted for nest samples in a similar fashion. 
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In the process, we simulate nesting populations where the nest’s fathers are assumed 

to be known and the mother remains to be estimated. Samples taken from nests will 

include siblings (unless sampling only one offspring from each nest, which would 

however be very uneconomic and furthermore equivalent to independent 

assumptions) and therefore provide an excellent example for the presence-of-siblings 

situation. Several approaches will be introduced which are to adjust the MasterBayes 

estimation procedure by accounting for siblings, as well as three importance sampling 

schemes that re-weight MasterBayes estimates to construct a posterior distribution 

based on a sibling model. 

 

1.2 Introduction to Genetics 

To understand how parentage analysis is able to determine parentage based on data 

extracted from sampled genotypes, a short introduction to genetics is necessary. See 

for example Hartl & Clark (1997). 

Genes are, simplified speaking, the physical entity that is transmitted from parents to 

offspring and influences hereditary traits. Physically speaking, genes are code in the 

“hardware” of base pairs in regions along a molecule of DNA (deoxyribonucleic acid) 

that is shaped in the famous form of a right-handed double helix, connected by those 

base pairs. The actual gene consists of a specified region of base pairs along the 

DNA. 

The DNA is wrapped up in microscopic bodies called chromosomes, of which several 

exist in sets to cover all genes, depending on species. Humans for example possess 

46 chromosomes; the DNA molecule in the largest human chromosome consists of 

230 Million base pairs. Higher species generally not only possess one set of 

chromosomes, but cells host two copies of each chromosome. Thus covering the 

same incomplete range of genes twice, the genetic content however does differ in 

each copy. Species with a double set of chromosomes are called diploid. 

Diploid offspring inherit one set of chromosomes from the mother and the other set 

from the father. Sexual cells that transfer the genotype from parent to offspring carry 



 
7 

only one set of chromosomes (haploid) and hence discard one set of the diploid 

parental chromosomes, before delivering the remaining set to the offspring. By fusion 

of mothers and fathers cells, the offspring receives each parent’s transmitted set and 

hence becomes diploid. 

The location of a gene along the DNA in chromosomes is referred to as the locus 

(plural: loci) of the gene. A gene can be present in different coding and hence hold 

different information. This information influences the organism’s phenotype (physical 

features). For example, a gene governing human eye colour can be present in 

several different colours, blue, grey, brown, etc. Those different possibilities of how 

the gene coding expresses the organism’s features are the alleles. In terms of eye 

colour, blue is one allele, while grey is another allele, etc. The percentage in which an 

allele is present in the population is the allele frequency. 

When analyzing the genotype, one is not dealing with the total of all genes of an 

organism, since this is a massive amount of data, but rather with small, manageable 

and, for the task adequate amount of loci. In parentage analysis, the analyst would 

typically look at highly polymorphic microsatellites. Those are generally co-dominant 

(the allele information in both chromosomes will be realized in the phentotype, 

whereas dominant alleles can obscure non-dominant ones) and possess a relatively 

large amount of alleles. 

A large number of possible alleles provide a high level of diversity and therefore 

greater power to distinguish between individuals. On a locus with few alleles, one 

would by chance find the same allele on many individuals, while a locus with many 

alleles will show the same allele in fewer individuals. 

Since an organism’s locus contains characteristics on two chromosomes, two pieces 

of information (bits) are present on an individual’s locus. We do know the parental 

genotype, but we do not know which bit is discarded during the transfer to the 

offspring. Consequently, four possible combinations exist, of how a father and a 

mother can pass their total four bits on to their offspring’s two bits. 

This is the key to parentage analysis. The parental combinations of allele on each 

locus are compared with the offspring’s combination on the same locus. The 
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likelihood of being related is determined by how often the offspring’s locus information 

can be found in the proposed parental 4-bit combination. 

In the example below the offspring’s locus is assumed to contain the allele “a” on 

each chromosome. We propose a female that contains the alleles “a” and “b” on both 

of her chromosomes on the same locus as well as a male that contains the alleles “a” 

and “c”. We then determine the likelihood that the female and the male are the 

offspring’s parents. 

Fig. 1.2.1 shows that one locus only 

allows for limited permutations of 

likelihoods, namely 0, 0.25, 0.5 0.75 

and 1. The likelihood of finding the 

genetic information in the offspring, 

given the examined father and mother 

is denoted as p(G|M,F). 

In the example illustrated in Fig 1.2.1, 

of the four possible combinations of 

parental bits, only one (“a” “a”, 

shaded) matches the offspring’s locus 

characteristic. One match out of four possible combinations yields a likelihood of 

p(G|M,F) = 0.25 for this specific locus. 

The overall parental likelihood over several examined loci is obtained by multiplying 

each locus’ likelihood: 

 

 p(G|M,F)All Loci ( )∏
=

r

i
i FMGp

1

),|( =       Equation 1.07 

 

with r loci, p(Gi

Note that we wish to genotype independent (unlinked) loci, since dependence 

between examined would result in a decreased exclusion power, because knowledge 

|M,F) denoting the likelihood at the i’th examined locus. 

Figure 1.2.1 - Likelihood Determination 
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of a locus would also give information about a linked locus, which would decrease the 

amount of information, that this linked locus can introduce to the analysis. 

It is clear that the likelihood is not on an absolute scale, but a relative likelihood that 

allows comparison with other potential parents. It is important to note that the 

likelihood p(G|M,F) = 0.25  in the above case does not

It is further clear that one locus has limited power to determine parentage, which 

depends on the number of alleles that are present in the specific locus. It is easy to 

see that the greater the number of allele present on the locus, the more informative a 

match becomes. With increasing number of alleles on a locus, the chance decreases 

that high likelihoods for actually unrelated individuals occur. If for example, there are 

only two alleles possible, many adults are expected to produce high likelihoods even 

if not being related to the offspring, while their number will drop, as the number of 

possible alleles increases. Therefore, highly polymorphic (containing many alleles) 

microsatellites are preferred. 

 mean that 0.25 is the actual 

probability that this is the parent’s offspring, but just the likelihood given of finding the 

offspring’s locus information given the proposed parents. 

The exclusion power however not only depends on the number of possible alleles, but 

also on the percentage with which an allele is present in the population (the allele 

frequency). Here we prefer ideally equifrequent alleles, or at least low frequencies for 

each allele present on the locus, because an allele with a high frequency would 

dominate in presence. For example, a 4-allele locus with frequencies 0.97, 0.1, 0.1 

and 0.1 would provide a lower exclusion power than a locus with 2 equifrequent 

alleles, since 97% of all examined chromosomes would show the same allele and 

thus would be indistinguishable. 

A genetic markers ability to exclude a given relationship between offspring and 

potential parents is expressed as exclusion probability [Gerber et. al (2000)]. We can 

exclude a candidate parent to be an offspring’s true parent when its likelihood = 0. In 

order to determine parentage reliably, large exclusion probability is desired. 

For co-dominant markers (as used in this project) three different approaches to 

determine exclusion probability exist, depending on available knowledge of pedigree 
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and goal. Single parent exclusion (assigning one parent to an offspring, the other 

parent remains unknown), paternity or maternity exclusion (assigning one parent to 

an offspring, the other parent is known) and parent pair exclusion (assigning both 

parents to an offspring and hence both are unknown). 

As it will be described in chapter 2.1, fathers are assumed to be known in this project, 

while mothers remain to be estimated, therefore the appropriate approach is 

maternity exclusion. Jamieson & Taylor (1997) provide the maternity exclusion 

probability PM

 

 for a co-dominant locus: 

 PM 32
2
25432 3232221 aaaaaaa +−−++− =      Equation 1.08 

 

The ak

 

 are calculated as: 

 ak ∑
=

m

i

k
ip

1
 =          Equation 1.09 

 

where m is the number of different alleles on the locus, ip  is the frequency of each 

allele and index k allows for powers. 

Exclusion probability can be increased either by examining loci with more allele, or by 

increasing the number of examined loci. The general overall maternal exclusion 

probability PM,tot

 

 when examining k independent (unlinked) loci is calculated as: 

 PM,tot ( )∏
=

−−
k

i
iMP

1
,11 =         Equation 1.10 

 

where PM,i

 

 is the maternal exclusion probability (equation1.08) at the i’th locus. 
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2.1 Sample Simulation 

2. Methodology 

When using real life data, sampled from actual populations, the pedigree and the true 

underlying distribution parameters remain unknown, which makes it virtually 

impossible to assess the accuracy of the analysis. 

To verify the validity of the methods, we simulate population samples that provide 

known population parameters that the results of the analysis of the simulated sample 

can be checked against. Because the simulated samples are created according to 

pre-determined parameters, the true values of estimation are either known, or can be 

derived from the exact knowledge of the population parameters. 

Therefore the simulation delivers the data to be analyzed that would be otherwise 

gathered from a real sample, but also provides knowledge of the true parentage and 

population parameters, which can be compared to the analyses results and so allows 

to assess the methods’ estimation accuracy (which will however not reflect the part of 

estimated variance that is due to the uncertainty of parentage). Thus, simulated 

samples provide a powerful tool in assessing the ability of the analysis procedure. 

The inadequacy of assumptions in MasterBayes’ approach (denoted as MB) which 

we intend to correct is introduced by the presence of siblings in the sample. Note 

however that, if one was sure that the sample does not contain more siblings than 

one could expect from a random sample of a population, there was no need for 

adjustment. Consequently, the desired simulation procedure has to create samples 

that contain siblings. We choose the reproductive behaviour of fish to serve as a 

model, based on which the samples analyzed in this study will be simulated. 

Cottus bairdi, the fish species modelled in Jones et al. 2007, is a ployamorous nest 

breeding species. A male usually guards his nests, not sharing nests with other 

males, while females only deposit their eggs in it. In the sample simulation, we 

assume one male per nest, who will be all the nest-offspring’s father. Note that this is 

an idealization, since this assumption ignores the possibility of cuckolding fathers. 
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Though MasterBayes is able to incorporate cuckolding parents in its analysis, we 

ignore this possibility in this project for reasons of simplicity: We are only concerned 

with providing methods to adjust MB estimates, not however in validating the 

procedure itself. Similarly, we ignore occurrence of mutation or typing error. 

The following describes how the simulated sample is created. It is important to 

emphasis, that this is not a simulated population (since a further possibility could be, 

to simulate a population, from which a sample may be collected)! The idea of the 

approach is to characterize the underlying population by probability distributions, 

according to which the simulated sample will be drawn. 

Simulation Procedure 

We define a number of nests to serve as sample. To each nest, we assign a male by 

a random draw with replacement from the pool of all available males. Since the males 

are drawn with replacement, any male can be assigned to several nests, each nest 

however has only one assigned male. The latter guarantees that every nest sample 

holds offspring that share the same father and therefore are at least half-siblings. 

Though fatherhood can be determined from the pedigree knowledge provided by the 

sample, this assumption also provides for practical (non-simulated) purposes the 

knowledge of a nest’s true father by taking the nest-guarding male as the exclusive 

father of the guarded nest’s offspring. Each offspring’s mother however remains to be 

estimated by MasterBayes. 

Note that the constellation of known father and unknown mother is somewhat 

different to most mammal species, where one would usually know the offspring’s 

mother, while the father would be subject to estimation. Here mammals’ offspring are 

mostly taken care of by their mother and hence motherhood can be easily 

determined. The analysis principle however does not depend on genders; the 

approach is equivalent for any animal species where one parent is known. 

Since we are modelling a ployamorous species, it is likely that not only one, but 

several females deposit their eggs in any given nest and hence a nest might consist 

of half and full siblings. In the simulation of the sample, the number of females 
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participating in a nest is governed by a Poisson (θ) distribution for which we choose a 

parameter θ = 2.87. The Poisson distribution is truncated at zero in order to avoid 

nests with no participating females. The truncation at zero causes the mean number 

of mothers we expect per nest not

 

 to be θ = 2.87, but rather: 

 θ

θ
−−

=







eNest

MothersE
1

#  = 3.043      Equation 2.01 

 

The simulation so far has modelled a nest structure, where all offspring are at least 

half-siblings, sharing the same father and the participation of several mothers 

introduces groups of full-siblings. The number of sampled offspring per nest will be 

denoted as family size. 

Note that until here only the number of participating females in each nest is 

determined, but not yet the assignment of specific female individuals (and hence age 

classes). Each nest-participating female is so far only a placeholder that yet has to be 

assigned an actual female. 

While population parameters concerning the paternal assignments are somewhat 

unimportant, since male parameters are not the subject of estimation, we are 

interested in how well we can adjust MB’s estimation of female parameters in the 

presence of siblings. As the parameter of interest, we choose the reproductive 

success of females depending on their age (fraction of unique mothers belonging to 

examined age), where age is divided into two classes, for example old versus young, 

and hence is a binary variable. Each age class’s presence in the sample is specified. 

We choose to estimate and adjust the reproductive success of age class 2, though 

one could just as well choose age class 1. 

The simulated samples used during this test series consist of 900 adults, divided into 

57% (513) females and 43% (387) males. 70% (359) of all females are assigned age 

class 1, and hence 30% (154) to age class 2. Since not the MasterBayes procedure 

itself, but the adjustment to presence of siblings is tested, no unsampled parents are 

assumed to be present and therefore each offspring’s true parents are present in the 
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sample. 30 sample nests are created, in which a certain amount of offspring (family 

size) are placed (all of which are part of the sample). The family size varies 

throughout the analysis. 

As the parameter to estimate, we determine age class 2 females to gain maternity in 

42.16% within the population and hence the female age class 2 parameter λPop

In the simulation, this is realized by assigning specific mothers from each age class to 

the place-holding number of females in nests that was determined by the zero 

truncated Poisson (2.87) as explained above. We fill the place-holders for mothers by 

assigning a random age 2 female with probability λ

 is set 

to 0.4216, i.e. the fraction of reproducing females in age class 2 (in the population). 

Pop

Note that age class 2 assignment with probability λ

 = 0.4216, and an age class 1 

female otherwise. A female may gain maternity in several nests. 

Pop is equivalent to λPop being the 

true underlying population parameter. The actual number of mothers in each age 

class realized in each sample will be somewhat close to λPop

λ

, but will however not 

quite turn out as such, because it is a probabilistic assignment (moving from 

population to sample). 

Pop governs the population age 2 assignment, the estimation however is done on a 

population sample and yields therefore, at best λ, the age class 2 parameter that is 

actually realized in the sample. Sufficiently increasing the number of sampled nests 

would cause λ to converge to λPop

We will estimate the sample age 2 parameter λ (the percentage of females in age 

class 2 that gain maternity), denoting the estimate as 

. 

λ̂ . The true value of λ as 

realized in each sample can be calculated from the known, and hence not in real life 

applicable, number of sampled unique mothers by equation 1.04. 

It is important to note that λ represents the fraction of mothers belonging to age group 

2 in the sample, which however is not the actual reproductive success of age class 2, 

because it does not pay respect to the number of females of each age class in the 

sample. To illustrate this, note that λPop = 0.4216 will lead to approximately 42% of all 

mothers being age class 2 and hence approximately 58% of all mothers will be age 
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class 1. We however chose the presence of age class 2 females to be 30% of all 

females and hence the actual reproductive success of age class 2 is actually greater 

than age class 1. 

Since the scope of this project is to adjust MB estimates and all samples are 

simulated with equal population parameters, the estimates λ̂  are comparable for all 

scenarios and hence suitable for assessing adjustment success. 

The simulated sample now has fathers and mothers assigned to offspring. Offspring’s 

genotypes are constructed from known parental genotype, where the diploid 

haplotypes of adults are constructed according to specified number of allele present 

and their frequency at each locus, as shown below. Note that the number of 

examined loci varies throughout the analysis. Parental genotypes are passed on to 

offspring by transferring one of both haploids from each parent to the offspring and 

hence the offspring’s genotype will consist of half of its mother’s and half of the 

father’s genotype. 

Adult genotypes are constructed using equal settings for each examined locus. We 

use m = 5 alleles, each allele with frequency pi

Though we will mostly refer to the number of the examined loci when assessing the 

quality of estimates at certain scenarios, the locus references are only valid for the 

specific loci settings of this project. Generalisations beyond the project-specific can 

however be made by referring to the maternal exclusion probabilities that each 

scenario provides by its number of examined loci and their definitions. 

 = 0.2. Thus, adult genotypes remain 

fixed throughout the different runs of simulations. Loci are unlinked and hence 

independent from each other (any given locus’ properties do not influence any other 

locus’ properties). As a result, every locus provides an equal maternal exclusion 

probability. Note that the overall exclusion probability reflects the knowledge of the 

genotype. 

Equation 1.08 provides the maternal exclusion probability PM = 0.6352 for each locus 

in the simulated sample. Further, we can calculate and plot (Fig. 2.1.1) the overall 

maternity exclusion probabilities PM,tot (equation 1.10) depending on the number of 

examined loci as far as this project is concerned. 
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The knowledge of having an offspring’s true mother in the sample and the number of 

total females present in the sample (513) allows to calculate via exclusion probability 

the number of females (# Non Excl Fem) for any given offspring that, additionally to 

the true mother, are on average feasible for the offspring (based on genetic data). 

With equation 1.10 we can calculate this number as: 

 

 # Non Excl Fem = (1 - PM,tot) * ftot

 

      Equation 2.02 

where ftot

From the number of feasible non-excludable females, we can obtain the expected 

maternal assignment success-rate (the rate of correctly assigned mothers) given the 

examined loci by: 

 = 513 is the total number of females in the sample. 

 

 Assignment Success-Rate = 
1)(#

1
+FemExclNon

    Equation 2.03 

 

where (+ 1) accounts for the true mother. 

Note that the so obtained success-rates are naïve estimates, since they are based on 

exclusion only and hence assume that each of the non-excluded females has an 

equal chance to be the true mother. The approach by MCMC however is expected to 

achieve higher success-rates, because the non-excluded females yet differ in their 

likelihoods, which leads to a better-than-random maternal assignment. 

Fig. 2.1.1 on the following page shows for each independent locus in the analysis the 

numbers of non-excluded females in the table as well as maternity exclusion probabilities 

and the naïve maternal assignment success-rates plotted versus the number of 

independent loci. 
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Maternal Exclusion Probabilities and Assignment Success-Rates 
by # Independent Loci
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Fig. 2.1.1 - Number of Non-Excluded Females, Exclusion Probabilities and Naïve Success-Rates 

 

2.2 Introduction to MasterBayes 

MasterBayes [Hadfield (2008b)] is a software extension of the statistical package R 

[R Development Core Team (2008)]. MasterBayes depends on several further R 

extensions, namely the packages coda [Plummer et. al. (2008)], genetics [Warnes 

(2008)], gtools [Warnes (2008)] and kinship [Atkinson & Thereneau (2008)]. 

MasterBayes applies MCMC to integrate over uncertainty in pedigree configurations 

estimated from molecular markers and phenotypic data. Emphasis is put on the 

marginal distribution of parameters that relate phenotypic data to the pedigree. All 

computation is done in compiled C++ for efficiency. 

Population parameters are estimated by a Bayesian MCMC approach, as described 

in the following chapters. MasterBayes allows to fit a range of log-linear covariate 

models [Hadfield (2008)] that can be written in the general case as: 

 

 ...)()(
,

11xO
ji eP β∝          Equation 2.04 

 

where )(
,
O
jiP  is the probability that proposed parents i and j are the true parents of 

offspring O and β is the vector of associated parameter(s). Any number of covariates 

# # 
Independent Non Excl 

Loci Fem 
1 187.142 
2 68.270 
3 24.905 
4 9.085 
5 3.314 
6 1.209 
7 0.441 
8 0.161 
9 0.059 

10 0.021 
11 0.008 
12 0.003 
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x may be included with regard to proposed mother, father or both. Possible 

expressions may be continuous variables [eg.: β1*xk], sums [eg.: β1(xi + xj)], 

differences [eg.: β1(xi - xO)], absolute differences [eg.: β1(|xi – xj|)], distances [eg.: 

β1
22 )()( OjOj longlonglatlat −+−  if x are coordinates] between mates or mates and 

offspring, and more. For further details on available covariate models, see Hadfield 

(2008). 

An adequate model for this project, where the aim is to estimate and adjust for 

maternal age classes with two categorical levels (age 1, age 2), is provided by: 

 

 )()(
,

1 ieP O
ji

δβ∝          Equation 2.05 

 

where δ i

MasterBayes estimates the age class 2 parameter within the framework of a logistic 

model and expresses it as parameter 

 takes the value 1 if mother i’s age class is 2, and 0 otherwise. Index i 

denotes females. Since paternity is assumed to be known, index j, which refers to 

males, is redundant in the model. 

β̂ , which is the logarithm of age class 2 vs age 

class 1: 

 

 β̂e  = 

1

1

2

2

f
m

f
m

         Equation 2.06 

 

where m1 is the number of age class 1 mothers, counted according to the 

independent scheme, and m2 the number of age class 2 mothers respectively. Note 

that independent counting in the presence of siblings introduces the underestimation 

of the parameter variance (refer to chapter 1.1, section Independent versus Unique 

Mothers – A Counting Example) that we intend to correct. f1 is the number of age 

class 1 females and f2 is the number of age class 2 females in the sample. 
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By inclusion of f1 and f2 β̂,  accounts for imbalanced presence of each age group. As 

mentioned in chapter 2.1, we will work with the probability estimate λ̂ . The logit 

transformation allows to convert β̂  to λ̂  by:  

 

indepλ̂   =
β

β

ˆ

ˆ

eC
e
+

        Equation 2.07 

     with C = 
2

1

f
f

    Equation 2.08 

 

where the constant C accounts for the number of females in each age class, hence 

the imbalance of age class presence. 

Since independent counting is applied by MasterBayes, the age 2 parameter estimate 

is denoted as indepλ̂ . 

Vice versa indepλ̂  can be re-transformed to β̂  by: 

 

β̂  = 










−
C

indep

indep

λ
λ

ˆ1

ˆ
ln          Equation 2.09 

 

Not that the procedure is easily applicable to estimate the parameter for age class 1 

instead or, if maternity is known instead of paternity, estimate male age parameters. 

The following chapters 2.2.1 and 2.2.2 will show in detail, how indepλ̂  and maternal 

assignments are estimated. 

 

2.2.1 MCMC Parental Assignment Estimation via Gibbs Sampler in MasterBayes 

Mothers are assigned to offspring via Gibbs sampling [S. Geman, D. Geman. (1984)]. 

For each offspring, the Gibbs sampler generates a candidate mother Mp

indepλ̂

 conditional 

on  from the pool of m available females in the sample. 
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The probability p )ˆ|( indeppM λ  of a female to become an offspring’s candidate mother is 

calculated for every female in the sample, the actual candidate mother is then 

assigned according to her probability p )ˆ|( indeppM λ . 

p )ˆ|( i n d e ppM λ  is obtained using Bayes Theorem as: 

 

   ),ˆ|( GMP indepp λ  = 
( )∑

=

m

i
indepii

indeppp

MpMGp

MpMGp

1
)ˆ|(*)ˆ,|(

)ˆ|(*)ˆ,|(

λλ

λλ
 1 ≤ p ≤ m Equation 2.10 

 

where the sum in the denominator over all m females in the sample provides the 

normalizing constant. 

The components )ˆ,|( λMGp  and p )ˆ|( indepM λ  are obtained as follows: 

)ˆ,|( λMGp  

This is equivalent to the likelihood of the parental combination p(G|M,F)All Loci

λ̂

 

(equation 1.07), which we however will denote as p(G|M, ) for convenience of 

display. Therefore p(G|M,F)All Loci λ̂ = p(G|M, ). We can make this simplification in 

notation because within this project’s framework we treat the fathers as known. 

Though we still look at the likelihood of the examined genetic data, given the 

examined females and males, the fathers are known and hence the changes over 

parental combination introduced to p(G|M, λ̂ ) are due to proposal of mothers only 

and hence the female genetic part. 

Typically, several loci are examined in this fashion, where the accuracy of parentage 

exclusion increases with the number of loci. 
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p )ˆ|( indepM λ  

The probability p )ˆ|( indepM λ  is the best guess without knowledge of genetic data, what 

the probability of a female given her age class is, to be the offspring’s true mother. 

Knowledge of a female’s age group and her age group’s reproductive success allows 

to give the probability as the chance of the female being the true mother is as good as 

the chance of any other female from the same age group. Both age groups however 

differ in their probability of providing the true mother, according to indepλ̂ . 

Being provided with indepλ̂ , a female belonging to age class 1 has a non-genetic 

probability of being the true mother: 

 

p )ˆ|( )1( indepclassageM λ  = 
1

ˆ1
f

indepλ−
       Equation 2.11 

 

A female belonging to age class 2 has the non-genetic probability of being the true 

mother: 

 

p )ˆ|( )2 indepclassageM λ  = 
2

ˆ

f
indepλ

      Equation 2.12 

 

The first MCMC iteration provides an estimate indepλ̂ , which updates p )ˆ|( indepM λ  in the 

second iteration. The second iteration’s estimate indepλ̂  again updates p )ˆ|( indepM λ  in the 

third iteration, and so on. 

Note that MasterBayes assigns candidate parents conditional on indepλ̂ . This links 

successive iterations by a somewhat weak bond that nevertheless influences the 

maternal assignments. Since indepλ̂  is obtained under independent counting, the 

assignment of mothers depends on MasterBayes’ independent assumptions. 
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Adjustment techniques for sibling structure introduced later, use maternal 

assignments and hence still will suffer in quality, because each iteration’s parental 

assignments are influenced by independent assumptions through p )ˆ|( indepM λ . 

 

2.2.2 MasterBayes Age 2 Parameter Estimate (MB) 

This original MasterBayes approach we will denote with the abbreviation MB. 

Being provided with the estimated maternal assignments, the number of estimated 

mothers of each age class can be easily obtained by counting. Since the iterations’ 

assignments come from sample data, inferences to the age parameter of the 

population need to incorporate a more sophisticated statistical approach. 

MasterBayes uses Bayes Theorem to make inferences to the population via the 

Metropolis-Hastings scheme [Hastings (1970)]. The idea behind the Metropolis-

Hastings scheme is to propose in every iteration a parameter estimate pindep,λ̂  and 

compare it with the previously accepted parameter estimate cindep,λ̂ , making a decision, 

whether to accept or reject the proposal. 

The reasoning of the Bayesian approach is that the maternal age class 2 

assignments observed in the sample are generated by the underlying true age class 2 

probability λPop

indepλ̂

. Bayes Theorem allows by incorporating a prior to infer the posterior 

distribution, which is the underlying age class 2 probability  (under independent 

assumptions) given the observed data, denoted p ),|ˆ( ,2, Gm iiindepλ , where index i 

indicates the iteration. 

Since the normalizing constant is difficult to obtain, the posterior is modeled up to a 

constant of proportionality as: 
 

p ),|ˆ( ,2, Gm iiindepλ ∝  p( iindep,λ̂ ) * p(m2,i iindep,λ̂| ,G)    Equation 2.13 

 

       posterior            prior          likelihood 
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The likelihood

iindep,λ̂

 term represents the knowledge we gain from observing the sample. 

This knowledge from the sample can be expressed by the parental assignments 

conditional on  that are provided by the Gibbs step, as shown in the previous 

section. The likelihood is modeled by a binomial distribution with probability iindep,λ̂ , 

mtot,i draws and m2,i

 

 successes: 

p(m2,i iindep,λ̂| ,G) = ii m
iindep

m
iindep

i

itot

m
m

,1,2 )ˆ1(ˆ
,,

,2

, λλ −







    Equation 2.14 

 

The prior iindep,λ̂ p( )  is realized by a draw from a uniform (0,1) distribution, by proposing 

a candidate age class 2 estimate 
pindep,λ̂ . The proposed parameter estimate pindep,λ̂  is 

compared with the current age class 2 parameter estimate cindep,λ̂  that was accepted in 

the previous iteration (and hence cindep,λ̂  = 1,
ˆ

−iindepλ ) in the Hastings Ratio (HR). 

Because the parental assignments are equal in numerator and denominator, the 

normalizing constant is equal and hence cancels out of HR. As a result, HR can be 

written as equality: 

 

 HR = 
)ˆˆ(
)ˆˆ(

*
),|ˆ(
),|ˆ(

,,

,,

,2,

,2,

pindepcindep

cindeppindep

icindep

ipindep

p
p

Gmp
Gmp

λλ
λλ

λ
λ

→

→
    Equation 2.15 

  

 likelihood ratio    ratio of proposal densities 

 

where the ratio of proposal densities (see more details below in section HR < 1) in 

two directions ( pindep,λ̂  to cindep,λ̂  and vice versa) evaluates to 1, since the proposal is 

symmetric and thus numerator and denominator are equal. This special case of the 

Metropolis-Hastings scheme is also known as Metropolis algorithm. 

Using equation 2.13 and the fact that the ratio of proposal densities evaluates to 1, 

we can rewrite HR as: 
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 HR = 
),ˆ|(*)ˆ(
),ˆ|(*)ˆ(

,,2,

,,2,

Gmpp
Gmpp

cindepicindep

pindepipindep

λλ
λλ

      Equation 2.16 

 

Proposed p )ˆ( , pindepλ  and current p )ˆ( ,cindepλ  priors are both uniform (0,1), from which it 

follows that p( pindep,λ̂ ) = p( cindep,λ̂ ), and hence the ratio of priors evaluates to 1.  Thus, 

HR simplifies to only comparing the likelihoods: 

 

 HR = 
),ˆ|(
),ˆ|(

,,2

,,2

Gmp
Gmp

cindepi

pindepi

λ
λ

       Equation 2.17 

 

which can be written with equation 2.14 as: 

 

 HR = 
ii

ii

m
cindep

m
cindep

m
pindep

m
pindep

,1,2

,1,2

)1(

)1(

,,

,,

λλ

λλ

−

−
       Equation 2.18 

 

HR provides a comparative measure, which age class 2 parameter ( pindep,λ̂  or cindep,λ̂ ) is 

more likely to be the true parameter given the maternal assignments obtained from 

the sample. Depending on the value of HR, the Metropolis-Hastings scheme either 

accepts pindep,λ̂  to become the iteration’s parameter estimate iindep,λ̂ , or rejects it and 

keeps cindep,λ̂  as the iteration’s parameter estimate iindep,λ̂ . The decision rules whether or 

not to accept pindep,λ̂  are summarized below. 

pindep,λ̂

HR ≥ 1 

 is more than, or at least as likely to be the true parameter as cindep,λ̂ is. The 

Metropolis-Hastings algorithm accepts the proposal and sets pindep,λ̂  = iindep,λ̂ . 

Therefore, whenever the algorithm finds an equally or more likely proposal, it will 

accept it. 
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pindep,λ̂

HR < 1 

 is less likely to be the true parameter than cindep,λ̂ . It is however not impossible 

that pindep,λ̂  is the true parameter. Consider that, if the algorithm would strictly reject 

proposals for HR < 1, it would stop moving once it draws the proposal with the 

highest probability and thus pay no respect to this possibility.  

The Metropolis-Hastings scheme copes with this issue by drawing a random value x 

from the uniform (0,1) proposal distribution. Note that technically x is also generated 

for HR ≥ 1, since however xmax = 1, the draw can be ignored because HR ≥ 1 is larger 

than xmax

If x < HR, 

 = 1 and hence equivalent to accepting the proposal without a draw. 

pindep,λ̂  is accepted, though being less likely the true estimate than cindep,λ̂  and 

hence the iteration’s parameter estimate is set to pindep,λ̂ = iindep,λ̂ . Thus, the algorithm is 

still able to move, even if the current estimate cindep,λ̂  is the more likely estimate. 

If x > HR, pindep,λ̂  is rejected and hence the current estimate cindep,λ̂  is set to be the 

iteration’s parameter estimate by cindep,λ̂ = iindep,λ̂ . This is equivalent to keeping the 

previous iterations parameter estimate, since the current estimate was previously 

introduced by 1,
ˆ

−iindepλ  = cindep,λ̂ . 

HR < 1 not only provides the information that the proposal is less likely than the 

current estimate, but the value of HR also reflects, how much less likely the proposal 

is. Therefore, slightly less likely proposals will be accepted more often than much less 

likely proposals and thus the probabilistic character is maintained. 

The more loci are examined in the analysis, the greater the exclusion power of 

maternal assignments and hence the less variation we expect in the maternal 

assignments. As a result, we expect fewer accepted proposals, the more loci we 

examine in the analysis. The constancy with which parameter estimates are accepted 

over the course of the MCMC is a measure for how likely they are, to be the true 

parameter. 
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1. Initialize MCMC by drawing a parameter estimate 

Reviewing the Metropolis-Hastings Algorithm Steps 

1,
ˆ

−iindepλ  from a uniform (0,1) 

2. Gibbs step. Generate candidate parents for each offspring conditional on 

1,
ˆ

−iindepλ  

3. Set the former parameter estimate as current parameter estimate 

1,
ˆ

−iindepλ  = cindep,λ̂  

4. Draw proposal estimate pindep,λ̂  from a uniform (0,1) 

5. Calculate HR 

6. If HR ≥ 1 then pindep,λ̂ = iindep,λ̂  

 If HR < 1 then draw x from proposal uniform (0,1) 

  If x < HR then pindep,λ̂ = iindep,λ̂  

  If x > HR, then cindep,λ̂ = iindep,λ̂  

7. Index i = i + 1 

8. Repeat steps 2 to 8 until convergence. 

 

The posterior distribution of the age class 2 parameter estimate p ),|ˆ( ,2, Gm iiindepλ  

consists of all iindep,λ̂  collected by the chain, which could for example be visualised by 

plotting in a histogram. Note that MasterBayes works in the framework of an 

exponential model (equation 2.05), and hence iindep,λ̂  are converted into iβ̂  (equation 

2.09) and stored. In this project, we will however refer to iindep,λ̂  only. 

The age class 2 estimate can be summarized by expected value and variance of the 

posterior. 
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We get the posterior expected value as sample mean: 

 

 EMB ),|ˆ( 2 Gmindepλ   = ( )∑
=

n

i
iindepn 1
,

ˆ1 λ        Equation 2.19 

 

and the posterior variance as sample variance: 

 

 VarMB ),|ˆ( 2 Gmindepλ  = ( )
2

1
2, ),|ˆ(ˆ

1
1 ∑

=

−
−

n

i
indepMBiindep GmE

n
λλ   Equation 2.20 

 

where n is the number of MCMC iterations. 

It is clear that more iterations will produce more iindep,λ̂  draws and hence the posterior 

will increase in resolution with increasing number of iterations. 

 

2.3 Dependent Estimation Approach (DEP) 

This approach we will denote with the abbreviation DEP. 

The idea behind the dependent estimation approach is, to construct each iteration’s 

posterior distribution from the maternal assignments estimated by the Gibbs sampler, 

followed by combining the iteration wise posteriors to the final age class 2 parameter 

posterior estimate. 

Unlike MB, which builds the posterior on the basis of counting the independent 

number of mothers, the DEP approach constructs the posteriors from the number of 

unique mothers and thus includes the presence of siblings in its assumptions. 

Note however that maternal assignments are influenced by independent 

assumptions, as described in chapter 2.2.1, which compromises the dependent 

assumption to a certain extent. 
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Analogous to equation 2.14 we get the dependent likelihood, counting unique 

mothers as: 

Constructing the DEP Posterior 

 

p(um2,i idep,λ̂| ,G) = ii um
idep

um
idep

i

itot

um
um

,1,2 )ˆ1(ˆ
,

,
,

,2

, λλ −







    Equation 2.21 

 

The DEP posterior is obtained analogous to equation 2.13, using dependent 

equivalents, however. Note that the following is based on the same principals as the 

MB approach, though different in appearance. 

The prior p( idep,λ̂ ) obtained from a uniform (0,1) distribution is equivalent to a beta(α = 

1, β = 1) distribution.  A beta (1,1) distribution is a conjugate prior for the binomial 

distribution (the likelihood term), leading to a beta-distributed posterior [Gelman et al. 

(2004)] as follows: 

 

p ),|ˆ( ,2, Gum iidepλ  
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)ˆ1(ˆ
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1
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umumB

ii um
idep

um
idep

++

−
∝

−+−+

βα
λλ βα

)1,1(
)ˆ1(ˆ

,1,2

,
,1,2

ii

um
idep

um
dep

umumB

ii

++

−
=

λλ   Equation 2.22 

 

where B(α + um2,i, β + um1,i

 

) is the beta function: 

 ),( ,1,2 ii umumB ++ βα  = 
)(
)()(

,1,2

,1,2

ii

ii

umum
umum

+++Γ
+Γ+Γ

βα
βα

   Equation 2.23 

 

After transforming into the general notation of a beta distribution by taking  

αdist,dep,i = α + um2,i and βdist,dep,i = β + um1,i

 

 we get each iteration’s posterior as: 

pi ( )Gum iidep ,|ˆ
.2,λ  1

,
1

,
,,,,

,,,, ,,,, )ˆ1(ˆ
)()(
)( −−

−
ΓΓ

+Γ
∝ idepdistidepdist

idepidep
idepdistidepdist

idepdistidepdist βα
λλ

βα
βα   Equation 2.24 
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Since α = 1 and β = 1, the beta posteriors distribution parameters αdist,dep,i and 

βdist,dep,i

 

 can be expressed in numbers unique mothers counted in each iteration’s 

maternal assignments for each age class as: 

um2,i = αdist,dep,i - 1 => αdist,dep,i = um2,i

um

 + 1    Equation 2.25 

1,i = βdist,dep,i - 1 => βdist,dep,i = um1,i

 

 + 1    Equation 2.26 

where um1,i is the number of unique age group 1 mothers, um2,i

  

 is the number of 

unique age group 2 mothers in the i’th iteration. Expected value and variance are 

obtained for each iteration from the well known beta distribution as: 

EDEP,i ( )Gum iidep ,|ˆ
,2,λ  = 

2
1

,

,2

+
+

itot

i

um
um        Equation 2.27 

 

VarDEP,i ( )Gum iidep ,|ˆ
,2,λ  = 

)3()2(
)1)(1(

,
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,
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++
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itotitot

ii

umum
umum     Equation 2.28 

 

We combine the iteration-wise mean and variance to obtain the overall posterior 

mean and variance. 

The overall expected value is constructed by taking the average over all iterations 

expected values: 

  

EDEP ( )Gumdep ,|ˆ
2λ  = ( )∑

=

n

i
iidepiDEP GumE

n 1
,2,, ),|ˆ(1 λ      Equation 2.29 

 

The overall DEP posterior variance has not only to account for each iteration’s 

posterior variances, but also for the change in location of the posteriors between 

iterations. This is somewhat different to the MB approach, which accounts for 

variances and location change the draws accepted by Metropolis-Hastings over the 

course of the MCMC. Note however that an equivalent to the MB approach for DEP 

could be realized by drawing values idep,λ̂  from each iteration’s posterior. Vice versa 
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MasterBayes could abandon the Metropolis-Hastings scheme and draw each 

iteration’s estimate from the posterior constructed from the estimated mothers 

delivered by the Gibbs Sampler. 

If we view the parent assignments at each iteration as multiple imputations of missing 

variables, Meng (1994) provides a way of combining the within and between iteration 

variances. We construct the DEP final posterior variance from the variance of 

expected values (between component) and the posterior variances in each iteration 

(within component). 

The within imputation component KW  is calculated by averaging the posterior 

variances (equation 2.28) of all iterations: 
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The between imputation component BK is calculated by obtaining the sample 

variance across the expected values EDEP,i ( )Gum iidep ,|ˆ
,2,λ  of all iterations: 
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The overall MCMC estimated posterior variance is then calculated by: 

 

 VarDEP ( )Gumdep ,|ˆ
2λ  = DEPKDEPK B

n
nU ,,

1+
+     Equation 2.32 

 

Though this method avoids direct use of iindep,λ̂ , the independence assumption still 

influences it through the parental assignments sampled by the Gibbs Sampler, where 

successive iteration’s parental assignments are linked by the p ),ˆ|( GM indepλ  term.  
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2.4 Analytical Derivation of the True Dependent Parameters from Simulation Data 
(TRUE) 

This approach we will denote with the abbreviation TRUE. 

The TRUE approach analytically constructs the posterior distribution analogous to 

DEP, using the known

The TRUE approach however provides a tool to validate the success of adjustment 

approaches applied on simulated samples. Note that the knowledge of pedigree 

eliminates the need of repeated sampling and thus is simply constructed from the 

numbers of unique mothers in each age group. 

 parentage structure of the simulation though. Therefore, the 

TRUE approach is not of practical relevance as an adjustment method, since the 

parentage structure is either not known, or if known the parameters would be 

estimated easily by classical methods and hence make the MCMC approach 

redundant. 

Analogous to equation 2.24 TRUE posterior has pdf: 

 

p ),|ˆ( ,2 Gum simdepλ  1

,,

,, ,
1,

)1(
)()(
)( −−
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+Γ

∝
−

simdist
simdist

depdep
simdistsimdist

simdistsimdist βλλ
βα
βα α   Equation 2.33 

 

with parameters: 

 

 um2,sim = αdist,sim - 1 => αdist,sim = um2,sim

um

 + 1    Equation 2.34 

1,sim = βdist,sim - 1 => βdist,sim = um1,sim

 

 + 1    Equation 2.35 

where λdep is the dependent age class 2 parameter, um1,sim is the number of unique 

age group 1 mothers, um2,sim is the number of unique age group 2 mothers in the 

sample and mtot,sim is the sum of both. 
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Expected value and variance of the TRUE posterior are obtained by: 

  

ETRUE(λdep|um2,sim
2
1

,

,2

+
+

simtot

sim

um
um,G) =       Equation 2.36 
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simtotsimtot

simsim

umum
umum,G) =    Equation 2.37 

 

Those are the true population parameters, which will provide the guideline to evaluate 

the MCMC adjustment approaches. 

It is however important to note that the TRUE approach delivers results from the 

known distribution and thus does not reflect any uncertainty about maternal 

assignments. Any successful estimating technique should ideally either deliver 

greater variances than the TRUE approach does (thereby reflecting uncertainty in 

maternal assignments), or at best delivers an equal variance (when all mothers are 

correctly assigned and hence there remains no uncertainty in maternal assignments). 

As a result, the TRUE approach does not deliver posterior variances that are accurate 

for every tested scenario, but rather supplies a lower bound for the estimate’s 

variance that should be approached with increasing accuracy of maternal 

assignments. 

 

2.5 Importance Sampling Schemes 

Importance sampling is a technique to approximate a distribution from which either no 

direct draws can be made, or are difficult to make. We want to evaluate an integral of 

the form: 

 

 ∫
x

dxxfxq )()(         Equation 2.38 
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where f(x) may be an expensive or impossible to find density [Hörmann & Leydold 

(2005)]. The key to approximation is to find an importance sampling or proposal 

density g(x) that is cheaper or possible to draw from. Sampling from g(x) instead, 

allows evaluation of the integral as: 

 

 ∫
x

dxxgxwxq )()()(         Equation 2.39 

 

where w(x) is the weight function: 

 

 )(xw  = 
)(
)(

xg
xf          Equation 2.40 

 

which supplies the weights assigned to each iteration of the MCMC.  

Approximate proportionality of f(x) and g(x) is desirable, since otherwise greatly 

differing weights are obtained and hence a few observations dominate the sample 

[Monahan, J. F. (2001)]. See more details in chapter 3.1.5. 

In this project, the idea behind importance sampling is to adjust age class 2 estimates 

for the presence of siblings by weighting each of the MCMC iterations according to 

the proposed importance sampling schemes and thus assigning more weight to 

iterations that the schemes deem to be “better” and less weight to those the schemes 

deem to be “worse”. 

The adjusted age class 2 parameter and hence its expected value and variance are 

then provided by the importance sampled posterior. Three importance sampling 

schemes are proposed. 
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2.5.1 Importance-Sampling on MB (W1) 

This approach we will denote with the abbreviation W1. 

The W1 importance sampling approach re-weights the MB age 2 parameter estimates 

iindep,λ̂  by the posteriors MB [g(x) = ),|ˆ( ,2, Gmp iiindepλ ] and DEP [f(x) = ),|ˆ( ,2, Gump iiindepλ ], 

obtained in each iteration. Thus, W1 re-weights the MB approach by the DEP 

approach. 

Each iteration’s weights are obtained as: 
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λ
λ

= =       Equation 2.41 

 

which, after applying equations 2.13, 2.14 and 2.24, simplifies to: 
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−− − λλ =      Equation 2.42 

 

We fit the weights in a comparable scale by standardizing: 
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,1 =         Equation 2.43 

 

The importance sampling process weights q(x) = iindep,λ̂  and hence expected value of 

the W1 importance sampled age class 2 parameter expected value is obtained by: 
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For obtaining the age class 2 parameter variance BK,W1

 

, we have to consider each 

iteration’s weight and further account for the standardization of the weights by 

multiplying with the number of iterations (n). 
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Preferably, we want the variability in weights to be small (have similar weights). Since 

we cannot alter the weights and have to work with what we get though, we can 

merely take their variability into account. Because the weights may differ 

considerably, they add extra variability and thus the number of iterations may be a 

poor measure for sample size. Meng (1993) provides a simple remedy to account for 

variability in weights that leads to the overall W1 age class 2 parameter’s variance: 
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where     ( )∑
=

−
−

=
n

i
iW nw

n
s

1

2

,1
2

1 1
1

1
  Equation 2.47 

 

 

2.5.2 Importance-Sampling on Draws from Dependent Posterior (W2) 

This approach we will denote with the abbreviation W2. 

Different to W1, where we re-weighted iindep,λ̂ , the W2 scheme re-weights dependent 

estimates idep,λ̂ . Each iteration’s idep,λ̂  are obtained by draws from the corresponding 

DEP posteriors (equation 2.24) that are constructed from each iteration’s numbers of 

unique mothers. 

The weight function re-weights ),|ˆ(*),ˆ|( ,2,,,2 GumpGmp iidepiindepi λλ , which is a joint 

density of dependent estimates and independent parent assignments, to obtain 



 
36 

p )|,,ˆ( ,2, Gum iidepλ , the joint density of dependent estimates and maternal assignments. 

Incorporating dependent assumptions in the sampling distribution g(x) appears more 

consistent with the dependent assignment of siblings and thus is expected to improve 

the importance sampling process. The weighting function is: 
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where the numerator p )|,,ˆ( ,2, Gum iidepλ  is a joint density and hence can be rewritten as 

)ˆ(*),ˆ|( ,,2 depidepi pGump λλ . Since the prior on )ˆ( depp λ  is a uniform(0,1) distribution, the 

marginal density evaluates to )ˆ( depp λ  = 1, which simplifies the weighting function to: 
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Using equations 2.21, 2.14 and 2.24, we can express the weight function as: 
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where it is easy to see that the dependent likelihood terms cancel and the weighting 

function simplifies to: 
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The weights W2,i are standardized to w2,i

 

 analogous to equation 2.43. 
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The W2 importance sampled age class 2 parameter’s expected value is obtained by: 
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The weighted age class 2 parameter’s variance is obtained analogous to W1, using 

dependent equivalents for BK,W2 and weights w2,i for s2
W2
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2.5.3 Rao-Blackwellized Importance-Sampling on Dependent Posterior (W3) 

This approach we will denote with the abbreviation W3. 

W3 goes one step further than W2 by eliminating the need for sampling idep,λ̂ . The 

scheme instead weights each iteration’s DEP posterior expected value 

EDEP,i ( )Gumidep ,|ˆ
2,λ  (equation 2.27). Note that idep,λ̂  is not observed, but rather depends 

on the maternal assignments estimated in each iteration and hence W3 provides a 

Rao-Blackwellized estimator for the age class 2 parameter. 

The weight function is: 
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From Bayes Theorem we know that p )(*),|( 2 depdep pGum λλ = p ),|( 2 Gumdepλ , the DEP beta 

posterior. 
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Thus, using equation 2.24 we get: 
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which solves to: 
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The weights W3,i are standardized analogous to equation 2.43 to w3,i

The W3 importance sampled age class 2 parameter expected value is obtained by: 

. 
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Unlike schemes W1 and W2, where the importance sampled posterior draws were 

weighted, scheme W3 provides a similar environment like DEP (chapter 2.3), where 

the age class 2 parameter’s variance has to account for each iteration’s posterior 

variance (within component), as well as the variance of the expected values over 

iterations (between component). Also here we look at the maternal assignments at 

each iteration as multiple imputations of missing variables and hence apply Meng 

(1994) to combine the within and between iteration variances. 

The within-imputation variability is given by UK,W3

 

: 
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using the DEP age class 2 parameter variance VarDEP,i ),|ˆ( ,2, Gum iidepλ  (equation 2.28). 



 
39 

The between-imputation variability is given by BK,W3
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Analogous to equation 2.47, using weights w3,i however, we account for the extra 

variability caused by the weights via s2
W3

The overall age class 2 parameter’s variance is calculated as: 
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2.6 Overview of Methods 

In the previous chapters four methods were introduced that aim to improve the 

estimates provided by the independent MasterBayes (MB) approach.  

1. Dependent Estimation Approach (DEP)      Chapter 2.3 

The approach constructs the dependent posterior, using estimated 

maternal assignments. 

2. Importance-Sampling on MB (W1)      Chapter 2.5.1 

The W1 scheme re-weights MB estimated iindep,λ̂  based on likelihoods 

obtained by independent assumptions and dependent parental 

assignments. 

3. Importance-Sampling on Draws from Dependent Posterior (W2)  Chapter 2.5.2 

The W2 scheme provides a sampling distribution that is more consistent 

with the dependent assignment of siblings, re-weighting idep,λ̂ . 
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4. Rao-Blackwellized Importance-Sampling on Dependent Posterior (W3) Chapter 2.5.3 

The W3 scheme progresses from W2 by eliminate the need for 

sampling idep,λ̂  and Rao-Blackwellizing the weighted estimate. 

Chapter 2.4 additionally provides a method (TRUE) to extract the true estimate 

parameters from the simulated samples, paying however no respect to uncertainty in 

maternal assignments, which cannot be avoided in an estimation process. Though 

not applicable in real life, this approach is substantially important to assess the quality 

of each of the above methods.  
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3.1 MCMC Settings and Verification 

3. Analysis and Discussion 

The following chapters describe test set-up and some MCMC diagnostics. 

 

3.1.1 Set-Up of Scenarios 

To evaluate the effectiveness of the developed methods, several population samples 

with varying numbers of examined loci and family sizes were simulated and analyzed. 

The number of examined loci was chosen between 3 and 12. Scenarios using 12 

examined loci provide nearly completely correct maternal assignments. Therefore 

using more than 12 loci would not considerably increase the assignment quality. 

Family size is given by the numbers of offspring, which are sampled from each nest. 

Since offspring were sampled from 30 different nests (refer to chapter 2.1, section 

Simulation Procedure), a total of 30 * family size offspring were present in each 

scenario’s sample. Family size was varied between 3 and 20 offspring. 

Fig. 3.1.1.1 below shows all loci/ family size combinations that were simulated and 

analyzed during this project, as well as the total number of offspring present in each 

scenario’s sample. 
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Fig. 3.1.1.1 - Examined Combinations and Number of Offspring 
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3.1.2 Burn-In and its Sufficiency 

As described in chapter 2.2.1, the Gibbs Sampler assigns candidate parents 

conditional on indepλ̂ . After initiation, the Markov chain is likely to wander through 

parameter space, accepting unlikely proposals of indepλ̂  until it approaches 

convergence around the best estimate. Because the proposal of candidate mothers is 

conditional on indepλ̂ , the maternal assignments are influenced by this, which again 

influences the acceptance of indepλ̂ . The chain needs to run a certain number of 

iterations to produce better indepλ̂  estimates and maternal assignments. Once the chain 

arrives, we say the chain has converged. 

Since the parameter estimates and maternal assignments obtained before 

convergence are of low quality, it is common practice to discard those from the 

analysis and construct the final posterior only of estimates that were obtained after 

the chain’s convergence. Those discarded iterations are referred to as burn-in. 

The determination of the burn-in sufficiency, and hence the number iterations needed 

to convergence, is a difficult problem. There is no known method to pre-determine the 

burn-in length. Further one can never verify with absolute certainty that the chain has 

converged, since the chain may have converged around a local maximum. We test 

burn-in sufficiency by setting a burn-in according to guesswork and then check the 

post burn-in results for consistency. 

In the following test, the burn-in was set to discarding the first 3,000 MCMC iterations. 

The MCMC was run for 3,000 post burn-in iterations. Those were split up into the first 

100 post burn-in iterations and the succeeding 2,900 iterations. For both, the 

maternal assignment success-rates (see next chapter 3.1.3) were obtained. The idea 

behind testing for convergence is that if the maternal assignment success-rates of 

both groups are similar, it seems that the chain has arrived and remains at the high 

probability mothers and hence has converged. The possibility though, that the chain 

has only converged around a local maximum and might wander further in future 

iterations, can never be excluded. 
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The following table shows the success-rates of the first 100 post-burn-in and the 

succeeding 2,900 iterations of randomly chosen loci/family size combinations: 

Number of Family Size Success-Rate Success-Rate Difference examined Loci 100 2,900 
3 3 0.039 0.056 0.0170 
4 20 0.133 0.134 0.0012 
5 4 0.265 0.272 0.0070 
6 16 0.474 0.473 0.0004 
7 12 0.753 0.753 0.0007 
8 5 0.867 0.864 0.0030 

12 9 0.999 0.999 0.0001 
Figure 3.1.2.1 - Burn-In Success-Rates 
 

The difference between the first 100 post-burn-in iterations and the succeeding 2,900 

post-burn-in iterations appear to decrease, the more loci are examined. This 

observation fits reasonably to what would be expected, since the success-rates 

themselves strongly depend on the number of examined loci and hence fewer 

examined loci would show greater variability. 

Conclusive, all scenarios provide comparable success-rates for the first 100 and the 

succeeding 2,900 post burn-in iterations and thus it appears relatively safe to assume 

that a burn-in of 3,000 iterations is sufficient to make the MCMC converge at maternal 

assignments. This is however neither a guarantee of actual convergence. We may 

call it educated guesswork. 

Based on this finding, all analysis was undertaken with a 3,000 iterations burn-in. 

 

3.1.3 Maternal Assignment Success-Rate 

It is of interest to see how well the Gibbs sampler captures maternal assignments in 

each scenario, since the quality of those is essential to the quality of the estimates. 

Note that since fathers are known, it is only of interest to assess the quality of 

maternal assignments. 

Maternal uncertainty is ideally expected to result in a wider age class 2 parameter 

estimated variance, by adding the uncertainty of maternity (a greater variety of 

plausible maternal assignments across iterations results in a greater overall 
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variance). The higher the achieved success-rate though, the closer the age class 2 

parameter estimates of successfully adjusted approaches should approach the TRUE 

variance (see however this chapter’s section Family Size Effect on Unique Mothers 

below), whereas we expect the MB approach to underestimate the age class 2 

parameter variance (see chapter 1.1, section Independent versus Unique Mothers – 

A Counting Example). 

Note that in the MB approach a misassigned mother still has a certain chance to 

belong to the same age class than the true mother. In the case of equal age classes 

of misassigned and true mothers, the MB age class 2 parameter estimate would not 

change, since the approach would still count the same total numbers in each age 

class. In reality, however, the chance of a misassigned mother to be assigned an age 

class depends on the age balance in the sample. 

The issue of miss-assignments is more complex for counting unique mothers. For 

details, see this chapter’s section Family Size Effect on Unique Mothers below. 

From all scenarios analysed in this project, the maternal success-rates were obtained 

and plotted in Fig. 3.1.3.1 on the next page. The combinations vary the number of 

examined loci as well as family size. The maternal assignment success-rates are 

given as the percentages of correctly assigned mothers. These percentages include 

all iterations and hence are an average over the whole course of the MCMC. The 

maternal assignment success-rates are plotted bold. 

The naïve maternal success-rates found in chapter 2.1 are plotted thin in 

corresponding colours and line types. 

The graph shows clearly, that increasing the number of examined loci improves the 

maternal assignment success. Fewer loci result in lower power and thus, the fewer 

loci examined, the lower is the expected maternal assignment success-rate. 

Family size has no visible effect on the assignment success, nor is it expected to. 

 



 
45 

 
 Figure 3.1.3.1 - Family Size Mean Maternal Assignment Success-Rate 

The Gibbs sampler assigns mothers notably better than the naïve success-rate, 

based on maternal exclusion only (see chapter 1.2) predicts. Note however that the 

largest differences between MCMC success-rate and naive success-rate are 

observed at assignment success-rates of around 0.5. The differences get smaller the 

closer the assignment success gets to either total assignment success (1), or random 

assignment (
totf

1 ). 

Approaching total success by naïve maternal exclusion leaves less opportunity for the 

Gibbs sampler to improve by the advantage of likelihood, since better-than-full 

assignment success cannot be achieved. On the other hand, the Gibbs sampler’s 

likelihood advantage shows only small improvements for very bad assignment 

successes, since here maternal assignment cannot be worse than random. 

The Gibbs sampler’s advantage of likelihood shows up most efficient against the 

naïve approach at medium assignment success. 

At 12 examined loci, the Gibbs sampler approaches nearly fully correct assignment. 

Though the candidate mothers are generated conditional on indepλ̂  and hence under 
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independent assumptions, the genetic exclusion power provided by 12 loci is 

overwhelming against the independent influence. 

It is important to note that, though the maternal assignment success-rates remain 

constant over family size, increasing family size has a negative impact on the 

estimation of unique mothers. The assignment success-rate provides information 

about how many mothers are correctly assigned to offspring. With increasing family 

size, the samples hold more offspring for each unique mother (since the number of 

females participating in a nest is held constant, as shown in chapter 2.1, equation 

2.01). 

Family Size Effect on Unique Mothers 

In the independent case, a miss-assignment would only lead to a different assigned 

mother, the total number of independent mothers however would not change. 

A miss-assignment in the dependent case on the other hand would lead to the 

introduction of a new, but false unique mother. If the misassigned unique mother is 

already present as mother (say we missassign a mother to an offspring, but the 

misassigned mother has actually offspring in another sampled family), the total 

number of unique mothers present in the sample will not increase. If the misassigned 

mother is not already present as mother of another sampled offspring, the miss-

assignment increases the total number of unique mothers. Generally, we would 

expect the latter case happening more often, since usually a sample would consist of 

much more females than mothers. 

With larger family size (and hence more offspring of each unique mother) the chance 

of misassignment remains the same for each offspring, but the chance of introducing 

false unique mothers increases. The following example illustrates this. 

Assume a maternal assignment success-rate of 0.75 and hence a misassignment-

rate of 0.25. For illustrative simplification, we ignore the possibility that a false 

assigned unique mother is already present as a unique mother, but rather assume 

that a misassignment will introduce an additional false unique mother. For a unique 

mother of 4 offspring we would expect 1 misassignment, which would result in the 
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introduction of 1 false unique mother. For a unique mother of 20 offspring however, 

we would expect 5 misassignments that would result in the introduction of 5 false 

unique mothers. We see that for equal assignment success-rates larger family size 

introduces more false unique mothers. 

We also expected more false unique mothers, the fewer loci we examine simply for 

the reason of lower maternal assignment success. 

Estimating more unique mothers than actually are present will cause the posterior 

variance to be underestimated, by the same mechanisms that cause the independent 

approach to underestimates the posterior variance (as shown in chapter 1.1, section 

Independent versus Unique Mothers – A Counting Example). 

Note that though uncertainty of maternal assignments should result in increased 

parameter variance, the introduction of false unique mothers causes the opposite by 

decreasing the parameter variance. Increased uncertainty of maternal assignments is 

a proper effect, reflecting our state of knowledge of the pedigree, decreased variance 

by introduction of false unique mothers however does not reflect any real knowledge 

we have about the sample, but introduces a bias. 

We cannot determine, how much influence each of those effect has on the estimated 

variance, which is a serious limitation to the technique. For any variance result, it 

would be difficult to tell, which part of the estimated variance is due to parameter 

variance (in the simulations supplied by TRUE, but not applicable in real life), which 

part is due to pedigree uncertainty and how much variance reduction is introduced by 

false unique mothers. 

 

3.1.4 Thinning Interval  

MasterBayes allows to specify a thinning interval, which is not to record every iindep,λ̂  

and corresponding parental assignments, but rather recording only every zth estimate 

(and hence thinning = z). Thinning is not a necessity from the theoretical point of 

view, but practically available computer memory and hence data storage problems 

might dictate the use of thinning. 
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The Markov chain’s moving speed in parameter space influences the iterations 

needed until convergence is achieved. Slow travel is indicated by high 

autocorrelation, since the new proposals depend on the current state. If the chain was 

to run indefinitely, every region would have the same influence on the result; 

practically however, the needed data storage space might run out before 

convergence is achieved. 

Alternatively to record a given number of successive iterations, one can use a 

thinning and thereby record only every zth

The thinned MCMC covers the same parameter space than the un-thinned MCMC, by 

demanding far less data storage capacity (by discarding iterations). The effective 

iterations that the analysis is based on are related to the actual number of iterations 

that the MCMC runs through by: 

 iteration’s results and discards all iterations 

in between. Since then no longer successive MCMC iterations are recorded, the 

autocorrelation will decrease and hence the recorded iterations will depend less on 

the previous iteration. High autocorrelation is undesirable, since the stronger the 

dependence on the previous value is, the less “fresh” information is supplied by the 

new iteration. 

 

 Effective Iterations = 
Thinning

1  * MCMC Iterations   Equation 3.01 

 

where Effective Iterations are the number of iterations that are recorded, Thinning is 

the thinning interval and MCMC Iterations the number of actual iterations that the 

Markov chain travels. 

Assessing convergence is generally a problem for which no absolute solution exists. 

One can be more confident about convergence the longer the result appears to settle 

at the same value, though this is no solid proof of actual convergence. Thus, when 

using the term convergence we mean that the results appear to have settled at a 
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parameter estimate, we can however never be quite sure that this would not change if 

we were to run the chain longer. 

A test was undertaken on the MB estimated combination of 7 examined loci and 

family size 3, having 30 nests in total. Two MCMC’s were run, the first run was close 

to the upper limit of RAM capacity (2GB RAM on Windows Vista) by running 100,000 

iterations without thinning hence also 100,000 effective iterations. The second run 

also used 100,000 MCMC iterations but was run with Thinning = 20 (recording every 

20th

We look at the variance of the estimate 

 iteration) and hence 5,000 effective iterations. 

indepλ̂ , as assessed at different running length 

of the Markov chains. The dotted line shows the TRUE variance, obtained from 

knowledge of the actual maternal structure in the sample. 

 

   
Figure3.1.4.1 - 7 Loci/Family Size 3: Posterior Variance Development over Iterations 

Neither of both runs looks perfectly converged, both appear to show a slight upwards 

trend. Thus it appears that also the burn-in did not deliver full convergence. 

The un-thinned run appears to get steady (in the sense of calming down and from 

there on still showing an upwards trend) at around 10,000 iterations. 

7 Loci/Family Size 3: Posterior Variance Development over Iterations 
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Steadiness (again in the sense of calming, yet not converging) happens for the 

thinned MCMC at about 2,000 effective iterations (40,000 MCMC iterations). 

The thinned run uses comparatively little memory, whereas the un-thinned run is 

close to the limit the computer can handle. Additionally the thinned run provides a 

steady (yet not converged) chain at less than a quarter of effective iterations than the 

un-thinned run provides (keeping in mind however that the MCMC of both 

approaches are equally long). 

Though neither MCMC converges, we receive from the thinned MCMC a similar 

picture as from the un-thinned MCMC, however using far less memory. 

Both runs do underestimate the TRUE variance, which is however expected, since 

MB is the independent approach that this project intends to improve. All following 

MCMCs will be conducted with a thinning interval of thinning = 20. 

 

3.1.5 Importance Sampling Weights Distribution and Expected Sample Size 

The importance sampling approaches W1, W2 and W3 introduce an additional source 

of potential quality loss by the weighting process. Large density differences in the 

densities of the weighting function may lead to large weights for only a few 

observations, which then will dominate the sample [Monahan, J. F. (2001)]. We desire 

approximately uniform weights. 

Though the weights are supposed to be different, the case of few extremely 

dominating weights is undesirable since conclusions will be based on few 

observations, while the vast part of the MCMC is practically discarded. 

Note that if all sampled maternal assignments are of low probability under the target 

distribution, this would lead to approximately uniform weights, simply by the fact that 

all assignments are equally bad. In this case, we would not have sampled the 

distribution we intended to sample from, the weights obtained would however appear 

much like the desired weights. Therefore, obtaining approximately uniform weights is 

not a guarantee for successful importance sampling. 
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Fig. 3.1.5.1 below shows an acceptable standardized W1 weights distribution, 

obtained from a combination of 7 loci/ family size 4

   

 with a maternal assignment 

success-rate of 71.73%: 

 
Figure 3.1.5.1 - 7 Loci/Family Size 4: Standardized Weights Distribution 

The large amount of weights is crowded close to zero, those weights are near to 

being meaningless for the importance sampled result. There is however a cloud of 

larger weights, that mainly count for the result. One weight at about 7,500 iterations 

peaks out to about 0.018. Thus, since the weights are standardized, 1.8% of the 

parameter estimate is due to this particular iteration. 

The occurrence of large weights is due to chance, since it depends on how well 

proposal and sampling density correspond, the chances do depend however on the 

number of examined loci and family size. The fewer the examined loci, the more we 

expect to find few dominating weights. Since the exclusion probability drops and 

hence parental assignments go worse, we expect to find greater differences between 

f(x) and g(x) that will lead to few observations dominating the sample. 

Increasing family size increases the risk of large weights since, though every offspring 

has the same chance to have a mother misassigned, every additional offspring 

provides a further chance to introduce a false unique mother. Thus, despite the 

percentage of miss-assignments remains constant with increasing family size, a 
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greater absolute number of miss-assignments does impact on unique mothers and 

hence the estimated sibling structure (see chapter 3.1.3, section Family Size Effect 

on Unique Mothers). 

The problem of large weights is strongly connected to the concept of expected 

sample size (ESS). Since importance-sampling assigns more weight to some 

iterations and less weight to others, the sample size cannot be regarded as the 

number of iterations anymore. Hesterberg (1995) suggests the ESS: 

 

 ESS =  
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1        Equation 3.02 

 

If for example the importance sample is dominated by few large weights, this is 

equivalent to having only few observations and thus the ESS will be small. 

Fig. 3.1.5.2 on the following page shows the development of ESS over effective 

iterations in the same W1 importance sample (7 loci/ family size 4) that Fig. 3.1.5.1 

above shows the weights. 

    
Figure 3.1.5.2 - 7 Loci/Family Size 4: Expected Sample Size Development 
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The ESS is steadily increasing, though not with the same rate as the iterations do, 

which indicates that many iterations produce small weights and thus correspond to 

the weights being near meaningless. There are two major breaks in this tendency, 

corresponding with large weights in fig. 3.1.5.1. The first at about 1,500 iterations is 

caused by two comparatively large weights in this region. The second, larger, break 

at about 7,500 iterations is caused by the largest weight, plus a couple of relatively 

large weights in the same area. 

This illustrates nicely the effects of large weights on the ESS hence ESS gives a 

numeric indicator of samples containing dominating weights. 

Fig. 3.1.5.3 on the next page shows W1 of the 5 loci/ family size 3

  

 scenario, where 

indeed a dominating weight is present. 

 
Figure 3.1.5.3 - 5 Loci/Family Size 3: Standardized Weights Distribution 

At around 2,000 iterations an extremely large weight appears, accounting for more 

than half of the total standardized weight (≈ 0.67). This observations weights more 

than the sum of all remaining MCMC iterations. The ESS development over iterations 

shows for this scenario: 
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Figure 3.1.5.4 - 5 Loci/Family Size 5: Effective Sample Size Development 

The ESS first increases slow but steadily, breaks down at 2,000 iterations, 

corresponding to the large weight observed in fig. 3.1.5.3. From there on the ESS 

increases very slowly, being dominated by the single large weight, finishing at the 

equivalent of around only two observations. 

The importance sampling schemes aim to deliver large weights for “good” maternal 

assignments, as determined by the importance sampling schemes, and thereby 

increase their corresponding iterations’ influence whereas “bad” maternal 

assignments are down-weighted. 

With an increasing number of examined loci, the maternal assignments are expected 

to find “good” maternal assignments more often, simply because the power to 

estimate the true mother (and thus exclude wrong mothers) does increase with more 

genetic information.  

Therefore, more examined loci increase the chance of receiving large ESS. 

Increasing family size on the other hand increases the number of estimable, but yet 

false maternal combinations and thus decreases the chance of finding “good” 

maternal combinations. Therefore, smaller family sizes increase the chance of 

receiving large ESS. 
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The longer the MCMC is running, the more “good” combinations are expected to be 

found. Scenarios running comparable MCMC lengths are expected to deliver lower 

ESS (and hence dominating weights) with lesser examined loci and greater family 

size. 

Equal scenarios running varying MCMC lengths are expected to deliver greater ESS 

(and hence more homogenous weights), the longer the MCMC runs, since more 

iterations with “good” maternal assignments are expected to be found. 

A chain showing low ESS may have been stopped, before more “good” maternal 

assignments were found that caused more similar high weights. Because running 

time and available computer memory are limiting factors, the length of the MCMC 

may not be subject to free choice.  

Fig. 3.1.5.5 on the next page gives the ESS of all three weighting approaches 

analyzed for 4, 8 and 12 examined loci versus family size (between 7.000 and 13.000 

effective iterations). 

In fig. 3.1.5.5 we see that the ESS changes drastically over the scenarios, depending 

on number of examined loci and family size. Since the ESS decreases quickly, all 

graphs are represented in a linear scaled plot (left), as well as in a logarithmic scaled 

plot (right). The fast decay with increasing number of examined loci makes it 

necessary to plot the linear scaled graphs for each number of loci on different scales. 

The logarithmic plots however allow to plot all presented scenarios on the same scale 

and thus are directly comparable for each number of loci. 

4 examined loci show consistently low ESS between 1 and ≈ 20, W2 making an 

exception at family size 7, going up to ≈ 50. Only family size 3 appears to yield larger 

ESS for W1 (≈ 60) and W2 (≈ 95). Generally, there appears to be only a slight 

tendency for the ESS to decrease with increasing family size. As the ESS however 

cannot go below 1, greater family sizes cannot decrease the ESS considerably, since 

all importance-sampling schemes are already very low. 
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Figure 3.1.5.5 - Expected Sample Sizes 

4 Loci 

8 Loci 

12 Loci 

3   4    5    6   7          9              12                   16                   20 3   4    5    6   7          9              12                    16                   20 

3   4    5    6   7          9              12                   16                   20 3   4    5    6    7           9              12                    16                    20 

3    4    5    6    7         9               12                    16                   20 3   4    5    6   7          9                12                   16                    20 



 
57 

 

8 examined loci show decreasing ESS tendency with increasing family size. Note that 

the scale is now larger on the ESS linear axis. W1 shows ESS ≈ 1,600 in the family 

size 3 scenario and is much greater than W2 and W3. W1 however drops faster than 

W2 and W3, arriving at similar ESS for all importance-sampling schemes at family 

size 9. 

12 examined loci

Each plot shows the decrease of ESS by increasing family size. The logarithmic plots 

give a comparative picture of ESS behaviour depending on examined loci. We see 

that increasing number of examined loci do increase the ESS substantially. 

Increasing the number of examined loci also appears to allow greater family sizes, 

before W1 drops to comparable ESS to W2 and W3. W2 and W3 appear to behave 

very similar to each other, which is not surprising giving the fact that both schemes 

are closely related to each other. 

 again demand a larger scale of the linear graph, showing W1 at an 

ESS of nearly 5,000 in the family size 3 scenario. Also here, W1 is quickly 

decreasing, meeting W2 and W3 however now at family size 12. Note the unusual 

low ESS for W2 and W3 at 4, 5 and 6 examined loci. Here we seem to face a flux 

where 3 lower than expected ESS are obtained in successive family sizes. 

Large ESS enlarges our trust in the results of each weighting scheme, it remains 

however merely an observation. Further, the ESS does not indicate any superiority of 

one weighting scheme over another, since for each scheme, we apply different 

methods and hence comparison of schemes based on ESS would be faulty. 

  

3.2 Results 

The running times of each loci/family size scenario ranged between one and three 

days (Windows Vista, 2.0 GHz, 2GB RAM), depending on thinning interval, number of 

iterations, number of examined loci and family size. Besides the running time of the 

MCMC itself, additional algorithms, written to extract and arrange the data to a 

workable format, occupied a large amount of the total running time. To evaluate the 
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adjustment success of all approaches, we will look separately first at the age class 2 

parameter estimate’s expected values and then at the variances. 

 

3.2.1 Adjusted Expected Value 

The estimation the age class 2 parameter’s expected value itself is of secondary 

interest, since MasterBayes’ independent assumption is not expected to yield a large 

location change in the parameter estimate, but rather to underestimate the variance. 

Fig. 3.2.1.1 on the next page shows however considerable improvement of estimating 

the parameter, when only little genetic information is available. 

Note that the actual in each sample realized value of the age class 2 paramneter λ 

does vary, since each scenario is based on a new sample from the population. λPop is 

the underlying age class 2 parameter in all scenarios. Since we sample from the 

population, each sample’s λ will differ within the range of variability from λPop

Consequently, we do not look out for the actual expected values of λ that each 

method yields, but rather the differences of applied methods to the TRUE approach.

 (refer to 

chapter 2.1, section Simulation Procedure). TRUE gives λ that is actually realized in 

each sample. 
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Figure 3.2.1.1 - Parameter Estimate 
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Clearly, increasing the number of examined loci leads to decreasing spread of the 

estimating schemes around the TRUE expected value. At 12 loci we achieve almost 

fully identical results, showing mainly MB to disagree slightly. 

The most interesting results are achieved at lower numbers of loci. 

At 4 loci we find that MB and DEP (hence the non importance sampling schemes) 

show to fail badly at family sizes 4 and 6, whereas all importance-sampling 

approaches appear to cope well and remain relatively close to the TRUE expected 

value. For greater family sizes, the expected value of MB and DEP show no clear 

inferiority to importance-sampling approaches. All importance sampling approaches 

behave similar over the whole range of tested family sizes, at low family sizes rather 

overestimating the expected value and at large family sizes rather underestimating. 

The scenarios using 3 examined loci, and hence less genetic information, show MB 

and DEP behaving over the whole range of family size unreliable. Family sizes 12 

and 16 come relatively close to the TRUE expected value, which may be however just 

happen by chance. We find MB and DEP expected values over the whole possible 

range of probability, from almost 0 to nearly 1. Again all importance-sampling 

approaches estimate the expected value comparatively well, with the exception of 

family size 5, where every approach fails badly to estimate the expected value. 

For large numbers of examined loci all methods converge to deliver very similar 

results, when genetic information however does not allow for nearly full correct 

maternal assignment, the importance sampling schemes appear to be considerably 

superior to non importance sampling schemes. 

Within the three available importance sampling schemes W1, W2 and W3 there 

appears to be none superior over another. Ideally, one would apply all available 

approaches, where consistency of estimates would increase the trust in the result. 

This however is not a failsafe method, as the combination of 3 examined loci and 

family size 5 shows, where estimates are somewhat consistent, but yet far off the 

TRUE expected value. In case of inconsistency, the proposed importance sampling 

schemes provide the more trustable estimate than MB or DEP. 
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Especially at little knowledge of the genotypes, the importance sampling schemes 

provide relatively good estimates of the expected value, whereas MB and DEP both 

badly fail. 

 

3.2.2 Adjusted Variance 

While the expected value of the age class 2 parameter generally does not suffer 

greatly from the assumption of independence, the parameter variance will be 

underestimated, as shown in chapter 1.1, section Independent versus Unique 

Mothers – A Counting Example. 

By adjusting the estimates’ variance for the presence of siblings, we finally approach 

the heart of the project. Figures 3.2.2.1 and 3.2.2.2 show the graphs of the estimated 

variances obtained from the all presented approaches. 

Note that by assessing the variances obtained by the estimation approaches in 

comparison to the TRUE variance, we have to keep in mind that the TRUE approach 

does not reflect maternal uncertainty, since it is based on the actual mothers known 

from the simulation. Uncertainty in parentage thus adds to any estimated variance 

and thus we expect the adjustment approaches to deliver greater variance than the 

TRUE approach. See also chapter 2.4 for comments on this issue. 

Scenarios using 3 examined loci produced extremely large variances for MB and 

DEP, which are not displayable on common gridlines of all loci’s graphs. Thus, the 

following fig. 3.2.2.1 shows the parameter variance plot of 3 loci on a separate grid 

line spacing than fig. 3.2.2.2, the grid lines themselves however are corresponding to 

the same variance in all graphs. 
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Figure 3.2.2.1 - Parameter Variance of 3 Examined Loci 

With 3 examined loci and hence little information of maternity structure (maternal 

assignment success is at around 5%), the original MB approach as well as the DEP 

approach show to be extremely unreliable. There appears to be no systematic bias, the 

variance might be under- or overestimated. Both, MB and DEP, do however roughly 

correspond with each other.   

The importance sampling approaches on the other hand deliver comparatively good 

estimated variances, considering the extreme uncertainty of MB and DEP. W1 

overestimates considerably for small family sizes, but comes close to the TRUE variance 

at 7 loci. W2 only shows similar overestimation at family size 3, but then approaches 

TRUE. W3 goes well along with TRUE for low family sizes 3 and 4, but then drops below 

TRUE at family size 5. 

All approaches appear to yield smaller variances for increasing family sizes. See the 

following fig. 3.2.2.2 for a “magnified” plot of the 3 examined loci scenario. 

The estimated variances of all scenarios (including the 3 loci scenario, which however 

appears incomplete when plotting in common grid line spacing) are plotted in fig. 

3.2.2.2 on the next page in comparable scale. Note however that the grid lines in fig. 

3.2.2.2 correspond with the grid lines in fig. 3.2.2.1 above. 

3       4       5       6       7                 9                         12                                 16                                    20 
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Figure 3.2.2.2 - Parameter Variance 
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As the number of examined loci, and hence the accuracy of maternal assignments, 

increases, the spread of all approaches’ estimated parameter variances narrows 

down, in case of DEP, W2 and W3 to converge to the TRUE approach, in case of MB 

and W1 however underestimating TRUE. At low numbers of examined loci the 

importance sampling schemes provide parameter estimate variances notably closer 

to TRUE than, than MB and DEP.  

Increasing family size on the other hand, results in decreasing estimated parameter 

variances, leading to greater underestimation, the larger the family is. Though the 

maternal assignment success-rates remain about constant for a given number of loci, 

bigger family size results in more misassigned mothers and hence the introduction of 

false unique mothers (as shown in chapter 3.1.3, section Family Size Effect on 

Unique Mothers). This causes the variance to decrease for larger family sizes by the 

same process that causes the MB estimates to underestimate the posterior variance 

(as shown in chapter 1.1, section Independent versus Unique Mothers – A Counting 

Example). 

From 6 loci on to greater numbers of examined loci, the underestimation of the 

parameter variance is comparatively small, for family sizes up to 6. For greater family 

sizes, the underestimation becomes then increasingly severe. Increasing numbers of 

examined loci however reduces the underestimation for larger family sizes. 

The plot of 12 loci

At 12 examined loci we further note that the importance sampling scheme W1 does 

family size 7 on to larger family sizes underestimate the parameter variance, though 

being closer to TRUE than MB. W2 shows only at family size 5 a departure from 

TRUE, but otherwise follows TRUE well. DEP and W3 prove to estimate the posterior 

 illustrates nicely the underestimation of posterior variance of the 

MB approach that we intend to correct. With nearly full maternal assignment success 

and hence only little uncertainty about parentage, all adjustments besides W1 are 

able to identify (almost) all unique mothers and thus the adjustment procedures 

provide an adequate variance. The original MasterBayes MB approach does 

underestimate the TRUE parameter variance. Also here MB shows for increasing 

family sizes increasing differences between the parameter variance and TRUE. 
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variance excellent over the whole range of examined family sizes at 12 loci. Also 

approach W2 provides satisfying results, W1 however fails to adjust MB well. 

Including fewer loci to an analysis increases the uncertainty about the estimated 

maternal structure. The development of estimation accuracy between high maternal 

assignment uncertainty and nearly full knowledge of the maternal structure, which we 

approach at 12 loci scenarios, is the most interesting part, since any estimation of 

population parameters could be done with less effort by classical methods, when the 

pedigree is known (eg. at 12 loci). 

The approach that seems to be least influenced by the assignment success and 

hence knowledge of maternal assignments appears to be the importance sampling 

scheme W3. It provides the most consistent parameter variance estimates over the 

whole range of examined number of loci/family size scenarios. 

W3 approaches TRUE with increasing certainty of maternal assignments, for greater 

uncertainty it tends to underestimate the TRUE variance. Greater uncertainty 

however should be reflected by increased estimate variance, which W3 fails to 

capture, instead showing smaller variance, the greater uncertainty becomes.  

The low ESS (see chapter 3.1.5), not only for W3, but also for W1 and W2, suggests 

that pedigree configurations that may have large genetic likelihood (since exclusion 

power is low, many females that are not related to offspring may yet show 

considerably large likelihood) are ruled out by down-weighting, whereas MB and DEP 

treat all visited configurations equally. We expect more false unique mothers by 

examining few loci (simply by false assignment), which causes the variance to be 

underestimated (see chapter 1.1, section Independent versus Unique Mothers – A 

Counting Example). Uncertainty in pedigree on the other hand causes the variance to 

increase by spreading the parameter estimates over iterations (since bad 

assignments allow worse proposals to be accepted). The importance sampling 

however shows low ESS and thus only few important iterations that count, having 

most iterations ruled out and thereby largely eliminated the mechanism that increases 

the variance by uncertainty of pedigree. Therefore, the importance sampling 

approaches do not properly reflect the uncertainty in pedigree when ESS is low, 
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incorporating the mechanism that decreases the variance, but eliminating the 

mechanism that increases variance. 

The greater the uncertainty of pedigree, the more W3 does underestimate the 

posterior variance, by suppressing the process that increases variance (as indicated 

by decreasing ESS) and supporting the process that decreases variance. It is difficult 

to tell however, how much the variance should be overestimated due to maternal 

assignment uncertainty. 

Though other approaches do occasionally approach TRUE better than W3, they fail in 

showing the same consistence over tested scenarios. Below 6 loci, all approaches 

besides W3 appear to yield large parameter variances at low family sizes and quickly 

decreasing variances when increasing the family size, which they however do not 

deliver in a consistent manner. 

The importance sampling approaches W1 and W2 are less affected by this than MB 

and DEP. W2 is affected at high uncertainty of parentage at small family sizes. It 

shows less consistency than W3, sometimes estimating larger and sometimes 

smaller posterior variance. It however converges nearly fully at 12 loci. 

W1 appears to be the most unreliable importance sampling approach, yet delivering 

relatively good results at low numbers of loci, compared to MB and DEP. At nearly full 

knowledge of pedigree, W1 however still severely underestimates the posterior 

variance. 

From 6 examined loci on to greater numbers of loci, DEP becomes the superior 

parameter variance estimation approach, still like W3 underestimating TRUE, but 

being closer to TRUE than W3 is. One has to keep in mind however, that DEP proved 

to be extremely unreliable at smaller numbers of loci, where W3, though 

underestimating, still showed relatively good consistency. The examined number of 

loci and hence the maternal assignment success determines when DEP becomes 

superior to W3. 

Though we cannot determine the assignment success-rates without knowledge of the 

true pedigree, the naïve assignment success- rates (equation 2.03), presented in 
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chapter 2.1 and compared to actual maternal success-rates in fig. 3.1.3.1, provide an 

by-eye estimate, what maternal success-rates we can expect to achieve in the 

MCMC, that can be calculated from in real life known values. 

Since 6 loci provide a naïve maternal assignment success-rate of 0.45, it appears 

feasible to generally expect the DEP approach to become superior to W3 at about 

this success-rate. This however assumes ideal conditions, such as no typing error, no 

cuckolding fathers, zero mutation rate, no unsampled parents in the sample, etc. 

It is recommendable to run a series of simulations, designed on the studied 

population, to determine the behaviour of all approaches under similar conditions that 

the actual research provides and from there infer, at what maternal naïve success-

rate DEP become superior to W3. 
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Three of the presented approaches to adjust MasterBayes’ parameter estimate’s 

variance to the presence of siblings only succeed satisfyingly, when the pedigree is 

nearly perfectly estimated. Those approaches are DEP, W2 and W3. Increasing 

uncertainty of the pedigree still yields acceptable adjustments to the parameter 

variances for medium pedigree certainty at low family sizes. 

4. Conclusions and Recommendations 

All presented approaches however do improve the parameter’s variance as estimated 

by the original MasterBayes approach. 

While uncertainty in pedigree increases the estimated variance (which is a “justified 

effect”, representing this uncertainty), increasing family sizes does cause the variance 

to underestimated (introduced by false unique mothers, which is a “unjustified effect”, 

since it does not represent improved knowledge of the pedigree or the parameter 

variance). This puts limits to the number of siblings (and hence sample sizes that can 

be taken from a nest) that the presented approaches can reasonably adjust for, 

depending on the desired quality of the estimated variances. Consequently, the 

presented approaches adjust less well for the presence of siblings the more siblings 

are present, resulting in an underestimation of the parameter variance. 

At great uncertainty of the pedigree, importance sampling schemes perform more 

reliable than DEP. Especially W3 provides consistent parameter variance estimates, 

that however do underestimate the true posterior variance the more, the greater the 

uncertainty of pedigree (whereas greater uncertainty in parentage should ideally be 

reflected by increased variance). 

When the pedigree is estimated sufficiently for DEP to deliver consistent parameter 

estimate variances, DEP proves to be the superior scheme to adjust the variance for 

the presence of siblings. At nearly perfect pedigree assignment, W2 and W3 become 

similar successful when approaching total maternal assignment success. The naïve 

assignment success-rate provides a by-eye method to decide whether W3 or DEP is 

the best parameter variance estimator. 
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No approach however satisfyingly adjusts the parameter estimate variance at less 

than perfect maternal assignments, either failing in delivering consistent results, or in 

failing to pay respect to the uncertainty of pedigree by underestimating the 

parameter’s variance, instead of overestimating. 

Though the adjustment success is less than fully satisfactory, all presented 

approaches show considerable improvements to MasterBayes original parameter 

estimate’s variance. 

Beyond the scope of adjusting the estimate’s variance to the presence of siblings, we 

achieve considerable improvements to MasterBayes’ parameter estimate, when 

uncertainty of the pedigree is large and hence knowledge of genotypes and therefore 

pedigree is little. Here all introduced importance-sampling procedures deliver 

expected values for the parameter estimates close to the true sample parameter, 

whereas non-importance sampling approaches MB and DEP fail by delivering 

expected values that span over nearly the full range of probability. 

The importance sampling schemes provide a more reliable method for obtaining the 

expected parameter estimates when the pedigree is uncertain, than MasterBayes 

itself can.
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