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ABSTRACT-

Corrosion occurs in response to the availability of water, oxygen and other agents 

at metal surfaces. The rate of corrosion depends critically upon the 

concentrations of these agents. At a metal surface protected by a paint layer, 

these concentrations are governed by diffusion through the paint film and by 

adsorption onto the metal surface in competition with polymer molecules of the 

adherent paint film. A mathematical model is developed for this problem and its 

behaviour and evolution in time is analysed. 

The conceptual basis of this model is different from others in that it combines 

equations of diffusive processes with equations of paint film adherence 

(competitive adsorption) at the metal surface. The corrosion process is 

considered to arise through boundary conditions for the diffusion equations with 

rates governed by variables described in the competitive adsorption equations. 

The nonlinearity of these competitive adsorption equations is the key to 

describing long periods of protective action provided by paint films, with 

negligible corrosion of the metal substrate, followed by the sudden onset of 

rapidly accelerating corrosion and the consequent accumulation of corrosion 

product (rust) . Concomitant loss of competitive adsorption (adhesion) by the 

paint film is a typical end result. 

Electrochemical activity of the metal substrate is evaluated as a corrosion current. 

This is determined by concentrations of water and oxygen in the internal 

environment, and by chemical activity in the adsorbed layer. The mechanism of 

corrosion of a painted metal surface is theorised to occur through active sites not 

covered by adsorbed polymer, water or oxygen. 
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Numerical simulations were done using a detailed computer algorithm developed 

specifically for this purpose. These simulations give insight into the model's 

behaviour and aid determination of simplified constitutive relationships which lead 

to a simplified model which allows easy determination of the thresholds for the 

onset of rapid corrosion. 

It turns out that the diffusion of water and oxygen through the paint film is 

normally very quick. The rate determining step is directly related to the 

competition between water, oxygen and coating polymer adherent to the metal 

surface, and coating polymer adherent to corrosion product . Once zinc (or any 

other metal) ions approach saturation in solution at the metal surface, the coating 

polymer approaches saturation with zinc and loses competitive adsorption onto 

the metal surface. Crystallinity of the adsorbed polymer declines and chemical 

activity coefficients in the adsorbed layer are reduced. Concentrations of water 

and oxygen in the adsorbed layer increase and metal active sites are exposed. The 

result is a surge in the rate of corrosion leading to the rapid formation of 

corrosion product. This in turn leads to enhanced degradation and free corrosion 

of the metal surface. 
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1 .  INTRODUCTION 

1 . 1  BACKGROUND 

A number of authors have studied corrosion of painted metal surfaces. Mayne 

( 1 957), Cherry and Mayne ( 1 96 1 ), Maitland and Mayne ( 1 962 ), Cherry and 

Mayne ( 1 965), and Cherry ( 1 974) concluded that ionic resistance rather than 

diffusion of water and oxygen was the rate limiting process of corrosion. 

Guruviah ( 1 970) challenged Mayne's conclusions, and proposed that oxygen may 

be rate determining. Kresse ( 1 973) found that water was rate determining and 

not oxygen or ions. 

Haagen and Funke ( 1 975)  found that in general the water permeability of coatings 

was sufficiently great to supply all the water necessary for corrosion to proceed at 

the coating metal interface. However this was not always the case for oxygen 

where the permeation rate for oxygen may be lower than is needed for the 

corrosion process. Experimental data was compared for permeabilities of water, 

oxygen and ions which supported their case. They wrote "the permeability of 

anions such as cr and (S04f is extremely low, so that underfilm corrosion 

caused by them must be due to contamination of the surface prior to coating and 

not to their diffusion through the film." They noted also that "the observation 

that cathodic blisters are highly alkaline provides strong evidence that paint films 

are impermeable also to hydroxyl ions". Nguyen et al . ( 1 996) would reason later 

that mass diffusion of electrolyte may occur through tortuous transmembrane 

pores in a coating represented as an impermeable slab. 

Parker and Gerhart ( 1967), Funke and Haagen ( 1 978), and Funke ( 1 979, 1985)  

found that corrosion protection depended upon adhesion. Floyd et al . ( 1 983)  

found that water permeabilities and ionic conductance best predicted corrosion 

performance of a range of coatings (although oxygen permeability was not 

considered and some conflicting results were noted). Leidheiser ( 1 983) 
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considered eight aspects of coatings corrosion performance, and found that 

cathodic delamination was generally the critical factor. Deslouis et at. ( 1 993) and 

Hoffmann et at. ( 1 993) found that specific adsorption of organic surfactants and 

organophosphates (respectively) inhibited corrosion. Leng et at. ( 1 993) 

considered adsorbed electrolyte layers and found that corrosion depended upon 

both adsorbed electrolyte layer thickness and organic inhibitor concentration. 

2 

Nguyen et at. ( 1 994) used FTIR-MIR (Fourier Transform Infra Red - Multiple 

Internal Reflection) spectroscopy to determine water uptake of coated substrates. 
vf { They supposed that a substrate surface may consist sorption sites and inferred D 

I 
that both water and polymer may adsorb onto these sites. They found 

experimentally that water entered the interfacial region where typically it 

displaced adsorbed polymer resulting in polymer disbondment . For Alkyd and 

Epoxy coatings on Germanium and Silicon they found an initial rapid uptake 

occurring in a period of about 1 0  hours, followed by a slow secondary uptake 

occurring over periods of hundreds of hours. It was noted that after the 

exposures to water the coatings had lost most of their bond strength to the 

substrates. They concluded that water sorption at the coating-substrate interface 

was the critical factor for coating performance. Exposure to water resulted in 

water adsorption at the interface which caused disbondment of the coating which 

they argued would then lead to corrosion of metallic substrates. 

Wettech ( 1 96 1 )  considered oxygen and rusting, and Fitzwater ( 1 98 1 )  considered 

permeability of coatings to oxygen, water and ions in the rusting process. Katz 

and Munk ( 1 969), Anderton ( 1 970), Boxall et at. ( 1 970), Yasheen ( 1 970), 

Althal et at. ( 1 990), Hendricks and Balik ( 1 990), and Xiao et at. ( 1 990) studied 

permeability properties of coatings. Ulfvarson and Khullar ( 1 97 1 )  and 

Fialkiewicz and Szandorowski ( 1 974) studied ion exchange properties and 

Rothwell ( 1 969) studied electrical resistance of coatings in relation to their 

corrosion protection, and Funke ( 1 967) and Gowers and Scantlebury ( 1 987) 

studied adhesion. Burgess et at. ( 1 98 1 )  considered paint and polymer design as 



factors affecting corrosion, Kumins ( 1 980) considered polymer physics, Thomas 

( 1 992) considered barrier properties, and Sekine et aI . ,  ( 1 992) considered 

frequency at maximum phase angle, and Bellucci and Nicodemo ( 1 993) 

considered water transport in terms of Electrochemical Impedance Spectroscopy. 

A number of mathematical models have been proposed to account for aspects of 

coatings behaviour. Diffusion of various substances has been studied and 

modelled by many authors (Crank, 1 979). A good example of this approach is 

the work by Perera and Heertjes ( 1 97 1  a-f) who modelled diffusion through paint 

films and water cluster formation. Bagda ( 1 988) modelled water transport in 

coatings to obtain diffusion coefficients. The Mathematics in Industry Group 

( 1 984) considered models of diffusion through paint films and blister growth.  

Nguyen et al . ( 1 99 1 )  considered blister formation to depend on diffusion in the 

paint - metal interface on a two dimensional basis. Rosen and Martin ( 1 99 1 )  

modelled water uptake of coatings with sorption isotherms, and Ohno et al . 

( 1 992) studied diffusion and adhesion. Barnett et aI . ,  ( 1 984) proposed an RC 

(Resistance-Capacitance) equivalent circuit to describe diffusion of water, and 

Lang et al ( 1 992) discussed a more complex RC equivalent circuit model . 

Nguyen et al . ( 1 996) presented a cathodic blistering and delamination model 

based on multi-step degradation and mass diffusion of electrolyte through an 

impermeable slab punctured by tortuous transmembrane pores. 

In contrast to diffusion processes, relatively few attempts have been made to 

model corrosion processes and i t  is only in the last few years that attention has 

turned to this problem on a theoretical level . Only a few studies have considered 

models combining corrosion processes with diffusion (eg Tang and Song 1 993) 

and these ideas have not yet been applied to metal surfaces protected by 

polymeric coatings. Electrochemical theory and the general chemistry of 

corrosion have been known for some time and Boulton and Wright ( 1 979), 

Chilton ( 1 969), Evans ( 1 950), and Uhlig ( 1 948) have described the general 

principles of corrosion. Evans ( 1 950) proposed a number of semi - empirical 
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models to account for corrosion of various metals under a variety of conditions. 

De Chialvo et al . ( 1 988) studied the corrosion and passivity of copper in 

electrolyte solution. 

Tang and Song ( 1 993) proposed an adsorption electrochemical system for 

organic surfactants to model corrosion potential . They considered organic 

inhibitors which adsorb onto metal surfaces to form a protective layer which 

retards the action of corrosively active species toward the metal . The adsorption

desorption reaction was expressed as an equation. From this they used 

electrochemical kinetics to infer the adsorption and desorption currents based on 

the rate constants of the adsorption and desorption equation. Rate constants for 

adsorption and desorption were based on an Arrhenius type law, and they 

supposed that the adsorption current included a dependence upon a surface 

coverage fraction of the form ( I -B). They derived expressions for adsorption and 

desorption currents from which was derived an expression for the electrochemical 

potential voltage. Experimental results were compared with numerical results 

from the mathematical model . They found that their model can "represent well 

the Potentiostatic-Galvanostatic response characteristics of passive systems with 

adsorption" . 

However, most of the work in this area has been to develop empirical models of 

coated and uncoated metals which predict corrosion rates or concentrations on 

the basis of environmental factors . Ailor ( 1 982) gives a detailed summary of 

these models. Spence et al . ( 1 992) develop and evaluate a comprehensive model 

of this type for uncoated galvanised steel structures. They use an empirical linear 

zinc corrosion function combined with a competing mechanism for dissolution of 

corrosion product . 

The studies indicated above attempting to determine what limits the rate of 

corrosion of painted metal surfaces (eg diffusion of water, of oxygen, of ions, etc) 

have typically approached the problem by comparing diffusion fluxes with 
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corrosion rates. A common technique is to measure the flux of water diffusing 

through a prepared free film of the coating under consideration, generally using 

high differential partial pressures. Invariably the fluxes of water or oxygen are 

found to be greater than required to support observed corrosion rates. In fact it is 

usually found that diffusion fluxes are comparable or greater than those required 

to support maximum corrosion rates occurring on uncoated metal surfaces. 

Variations of the diffusion approach have proposed the presence and diffusion of 

ions as empirical factors which control corrosion. 

The most consistent result of these studies has been that diffusion alone does not 

generally appear to limit corrosion rates. Floyd et al . ( 1 983) considered 

multivariate statistical analysis of various parameters and found partial correlation 

between diffusion and corrosion resistance. The correlation improved when 

coating resistance was included as a second variable in the multivariate analysis .  

But while some correlation was found between permeability to water and 

corrosion rate, the water vapour transmissions quoted exceeded in all cases the 

fluxes involved in freely corroding uncoated steel . 

Recent studies have approached the problem by focussing on the substrate surface 

and the substrate-coating interface. Some researchers have looked at adsorption of 

organic molecules onto the substrate, for example Deslouis et al . ( 1 993), Hu and 

Do ( 1 995), MOller ( 1 995); and others at the quantity of water or electrolyte sorbed 

at the substrate-coating interface, for example Nguyen et al . ( 1 994) and Nguyen et 

al . ( 1 995). Song and Cao ( 1 990) and Tang and Song ( 1 993) combined organic 

molecule adsorption dynamics with electrochemical corrosion theory to model 

pitting corrosion processes. 

While these approaches provide vital insights into corrosion processes they 

address only a part of the problem. We believe that the problem to be addressed 

consists of two major parts: diffusion through a polymer (paint) film; and 

competitive adsorption of polymer and corrosive species onto a metallic 
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substrate. We derive corrosion activity from the state of competitive adsorption 

on the substrate .  Additionally these two parts must be coupled together to 

produce a coherent system. 

1 .2 ADSORPTION AND CORROSION 

Painted metal surfaces exhibit interaction between paint and metal substrate. One 

aspect of this interaction is the generation of adhesion. The adsorption (ie 

physisorption) and in some cases chemical reaction and chemisorption, of paint 

film polymer molecules onto a metal creates adhesion (Bikerman, 1 967; 

Voyutskii and Vakula, 1 963 ; Brewis and Briggs, 1 98 1 ;  Allen, 1 993). In practice 

even very clean metal substrates contain a certain amount of metal oxide due to 

reaction of the metal surface with atmospheric oxygen and moisture. Coating's  

polymers have been shown to adsorb onto various metal oxide surfaces (Franklin 

et a\. ,  1 970; Hegedus and Kamel, 1 993d; Idogawa and Shimizu, 1 993 ; Sato, 

1 990; Sato, 1 993) .  

Additionally interactions of polymer molecules with substrates produces 

modification of the polymer's  natural conformation. Leger et aI . ,  1 992 found a 

drastic slowing down of the polymer chains in the immediate vicinity of a solid 

surface. Deng and Schreiber, 1 99 1 ;  Russell, 199 1 ;  and Vogel and Shen, 1 99 1  

found that the nature of the interface governed the orientation and conformation 

of polymers adjacent to the interface .  Hegedus and Kamel, 1 993c found that the 

adsorbed polymer layer thickness varied with the nature of the interaction. Long 

range restriction of polymer segment mobility is also revealed by nuclear magnetic 

resonance effects, glass transition changes, alteration in mechanical properties, 

and by decrease in capacity for vapour and solvent uptake (Kumins, 1 980; 

Kumins and Kwei, 1 968; Lara and Schreiber, 1 99 1 ;  Kumins et a\. ,  1 994) . 

Boczar et aI . ,  1 993 showed that polymer interdiffusion occurs during film 

formation and during film aging and annealing, and that polymer composition 
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plays a large role in controlling rates of interdiffusion and hence in the resultant 

interfacial polymer configuration. 

The extent and magnitude of segment mobility restriction influences the barrier 

resistance to, and diffusion and chemical potential of, diffusant molecules in this 

adsorbed polymer layer (Hegedus and Kamel, 1 993b,d; Kumins et aI. ,  1 994). 

Additionally, the presence of diffusant molecules such as water leads to some 

desorption of polymer from the metal surface as both compete for adsorption 

sites. If previously adsorbed polymer cannot be easily displaced by a water 

molecule, the metal (iron, zinc, or whatever) corrosion rate should be less, since 

the sites susceptible to corrosion would be better protected by the more strongly 

adhering polymer molecules (Kumins, 1 980; Tang and Song, 1 993) .  

The corrosion process is treated in electrochemical theory as two chemical half 

reactions occurring at anodic and cathodic sites on the metal surface (Boulton and 

Wright, 1 979) . The electrical current associated with the chemical reaction is 

carried by electrons and ions. Typically electrons move in the metal while ions 

move in an adsorbed electrolyte solution. The result is a circuit connecting 

cathodic and anodic sites, with the energy required to maintain the process being 

derived from the oxidation of neutral atoms of the substrate metal (Chilton, 

1 969). 

In a corrosion event, the first step is considered to be the production of a free 

electron and its transfer to an active cathodic site. Hydrogen and oxygen 

dissolved in the adsorbed electrolyte solution are common oxidising agents in 

corrosion processes. The cathodic reaction typically involves the formation of an 

hydroxyl ion with the consumption of an electron. An hydroxyl ion generated at 

an active cathodic site moves through the adsorbed electrolyte solution (under the 

influence of an electric field and a chemical potential gradient) to an anodic site 

(Evans, 1 950). 
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The hydroxyl ion associates with a metal ion at the anodic site to form a solvated 

metal hydroxide molecule and the departing metal ions leave a cavity in the metal 

surface (Ailor, 1 982). Typically this occurs in a saturated electrolyte solution so 

that the metal hydroxide produced will tend to supersaturate the solution and 

promote recrystallisation (Tyrrell, 1 984). The result is the formation or growth of 

corrosion product adjacent to the metal surface or at the margins of the 

electrolyte solution (Anderson and Rubin, 1 98 1 ;  Haruyama, 1 990; Gvirtzman 

and Gorelick, 1 99 1 ;  Hillner et aI. ,  1 992; Forcada and Mate, 1 993) .  

The effect of adsorbed polymer molecules is twofold. First, the attachment of a 

polymer molecule to an active metal site acts as a physical barrier to water and 

oxygen and ions and thus protects the active site from chemical reaction. Second, 

the presence of polymer with restricted segment mobility due to adsorption, raises 

the chemical potential within the adsorbed layer (Tang and Song, 1 993). 

Generally, when adsorbed on a surface, polymers achieve a crystalline state 

(dependent upon the nature of the polymer and the surface and on the strength of 

adsorption) and according to J A Barrie in 'Water in Polymers' p264 in ' Diffusion 

in Polymers' 1 968 Crank and Park editors: "It is generally accepted that where 

well-defined crystallites are formed these are inaccessible to water". This leads to 

reduced equilibrium concentrations of water, oxygen and ions in the adsorbed 

layer, which reduces the rate of formation of hydroxy Is and results in a reduced 

rate of corrosion (Kumins, 1 980). 

Typically, polymer molecules compete with water molecules for adsorption onto 

a metal surface. In addition, water molecules associate with polymer molecules, 

and polymer molecules associate with corrosion product . A common initial state 

is one where there is negligible corrosion product, so that initially a painted metal 

surface has mainly adsorbed polymer molecules attached, and relatively few 

competing water molecules. I n  consequence, the initial corrosion rate is very 

low. As the system evolves and corrosion product accumulates, polymer 

attachments to the metal surface are compromised by associations of polymer 
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molecules with corrosion product . As more active metal sites are exposed and 

polymer segment restriction in the adsorbed layer is compromised by desorption 

from the metal surface and bonding with corrosion products, more water is able 

to diffuse to and accumulate on the metal surface, leading to an accelerating rate 

of corrosion (Kumins, 1 980). 

1 .3 DIFFUSION 

Paint films consist of polymeric binders together with pigments and various low 

molecular weight additives. At temperatures of interest, molecules in a paint film 

binder are normally in motion at frequencies of about 1 THz (Kumins, 1 980). 

Statistical fluctuations in this motion produce decompressions when polymer 

segments within a local group move away from each other at the same time. 

When polymer segments move toward each other at the same time a compression 

occurs. Within a paint film there is some characteristic mean spatial distribution 

and density of polymer molecules. Deviations below this concentration are 

decompressions and deviations above compressions. 

On a microscopic scale the chemical potential of diffusant or wandering molecules 

within the paint film medium is related to the local polymer matrix density -

decompressions corresponding to lower chemical potential and compressions to 

higher potential. As decompressions and compressions dissipate and regenerate, 

diffusant molecules experience fluctuating magnitudes and gradients of chemical 

potential. This is a non equilibrium system at microscopic scales which leads to 

microscopic random diffusion as diffusant molecules are continually pushed from 

compressions and pulled by decompressions from fluctuating regions of higher to 

lower chemical potential . The magnitude and extent of this microscopic motion 

affects molecular mobilities and bulk diffusivities. 

The effect of an external concentration differential across a polymer film is to 

create a gradient of chemical potential through the paint film. This gradient 
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superimposes a drift velocity component onto the microscopic random motion 

and leads to macroscopic bulk diffusion or drift of diffusant molecules through 

the paint film as they saltate down the chemical potential gradient (Akbar, 1 992) . 

If an external concentration differential is not sustained a new state of 

macroscopic thermodynamic equilibrium will eventually be reached, where again 

microscopic motion occurs due to microscopic non equilibrium thermodynamics. 

Agents or influences which increase the rate, magnitude or extent of statistical 

fluctuations of density and energy, or which render polymer segments more 

mobile, increase the mobility and therefore increase the capacity for bulk diffusion 

of, for example, corrosively active molecules (Hegedus and Kamel, 1 993 a, b, d). 

Structural entities such as cross links, crystalline domains, or embedded 

macroscopic particles (pigments) are associated with reduced diffusant molecule 

mobilities and lower rates of diffusion resulting from decreased rates, magnitudes, 

or extents of statistical fluctuations or restrictions in polymer segment mobilities 

(Crank and Park, 1 968; Rowland, 1 980; Coughlin et aI . ,  1 990). 

Additionally, there may be some interaction and temporary binding between 

diffusant molecules (primarily ions) and paint films. The holes and voids arising 

from statistical fluctuations within the polymer matrix (which constitute free 

volume) are not necessarily neutral . Polymer or mineral functional groups 

adjacent to some holes may interact with a diffusant molecule and act to capture 

or trap the molecule within such erstwhile holes. This interaction may affect both 

capture and escape and significantly modify the overall course of diffusion 

through a paint film (McNabb and Foster, 1 963 ; Wu et aI. , 1 990). 
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2 MODEL DESCRIPTION 

2.1 INTRODUCTION 

While there is some uncertainty as to whether it is oxygen or water which is the 

most significant factor in the corrosion process, it is generally accepted that both 

are important. In practice ions (such as sulphate, chloride, and sodium) are 

usually present, and will also diffuse through the paint film, adsorb onto the metal 

surface, and modify the corrosion process and rate. These factors are included in 

a comprehensive formulation of the model . However we will omit them initially 

and produce a formulation which aims to account for the essential behaviour of a 

painted metal surface. The model can be extended to include additional molecular 

and ionic species as required. 

We will describe our model in terms of a coated zinc substrate where zinc ions 

and zinc corrosion product (primarily zinc hydroxides) are produced in the 

corrosion reaction. In addition to water and oxygen we include zinc as a diffusing 

species (the adaptation of the model to other substrates such as iron is straight 

forward). We thus describe the diffusion of three species: water, oxygen, and 

zinc with concentrations U(x, t). W(x, t) mol m-3, and Zrv{x, t) mol ratio in 

water. We suppose that only ionised zinc will diffuse to any significant extent. 

The painted metal surface is modelled as a slab bounded by parallel planes at x=o 

and x=!. We suppose that the geometry is effectively one dimensional with all 

diffusive transport parallel to the x direction. We assume that all diffusing 

substances enter and leave the slab through its plane faces. A schematic diagram 

is shown infigure 1. 
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Figure 1 

The chemical potential of a substance was first defined by Willard Gibbs in 1 928  

as the amount by which the capacity of  a phase for doing work (other than work 

of expansion) is increased per mole of the substance added for an infinitesimal 

addition at constant entropy and volume. In general (in the absence of other 

potential fields ) any substance tends to pass from regions of higher to regions of 

lower chemical potential. Chemical equilibrium between phases of a system 

through which each substance can freely pass, results when each substance has 

the same value for its chemical potential in each phase. Consequently, differences 

in chemical potential may be regarded as the driving force for all diffusion 

processes (Denbigh, 1 96 1 ). 

The chemical potential for ideal (ie weakly interacting) substances can be 

calculated from statistical thermodynamics. It is found that the chemical potential 

!-Ii for the /h pure substance relative to some standard state of chemical potential 

!-Ii * (eg pure substance i) is given by (Reif, 1 965) 

!-Ii - 1-'/ = RT III Xi .. Xi = mole fraction 

F or real systems (ie non ideal substances) activity coefficients "Ii are introduced 

(Denbigh, 1 96 1 ;  Robinson and Stokes, 1 959): 

I-'i - I-'i * = RT In nXi 
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where the equation is taken as the definition of J'i. In general every substance in 
each phase has some unique activity coefficient J'i depending upon various 
factors such as the concentration of itself and other substances, temperature, and 
possibly the prior history and geometry of the system (Fava, 1 980). 

We represent activities as a product of an activity coefficient and the physical 
concentration (for example activity aj =y;C; for the j'h substance). In the external 
environment we take the activity as unity so that the activity and the 
concentration are equal . In the paint film however the activity coefficient is 
effectively about 50 for a typical paint film. Consequently there are concentration 
discontinuities at x=o and x=/ and additionally we represent the effect of an 
adsorbed boundary layer with resistance at x=O through activity coefficients at 
x=O which may differ from those effective in O<x< I. Crank and Park in 
'Diffusion in Polymers' 1 968 give some discussion of this effect in pages 3 98 and 
3 52 .  Crank in 'The Mathematics of Diffusion' pp 4 1 ,  and 1 95-200 discusses the 
effect of a surface skin, and Carslaw and Jaeger in 'Conduction of Heat in Solids' 
p23 discuss the case of transfer between two media of different conductivities. 
Rosen and Martin in ' Sorption of Moisture on Epoxy and Alkyd Free Films and 
Coated Panels '  p9 1 state that "surface resistance contributes significantly to the 
movement of moisture in the films" and provide some estimates of the magnitude 
of the effect. 

In the external environment we represent activities as equal to concentrations 
with symbols V"(t), Wet), (mol m-3) and Zw·(t) (mol ratio in water) and with 
saturation values of Vo·, Wo·, Zoo (since the activity coefficients are 
approximately unity). Further we take the external environment as the reference 
for chemical potential and relate all activities to this frame of reference, In the 

paint film, O<x</, we represent activities as YuV(x, t), YwW(x, t), and y:ZwCx, t) 

(and physical concentrations as Vex, t), W(x, t), (mol m-3) and ZwCx, t) (mol 
ratio in water) and saturation values as y,/Vo=Vo·, YwWtr=Wo· and YzZrFZo·, 
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At the boundary on x=O we represent activities as yu··r./·(t), yw··W·(t), and 

We describe this graphically in figure 2a and 2b for the case of water W. 

Surface 
density 
of water 
attached 
to metal 

r negligible � thickness 

W 

• W" 

Figure 2a 
concentrations 

------�.--+--------------------------�------__7 X � Paint film 

Surface 
density 
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metal adsorbed 

surface layer 
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* * nl'" Yw yy 

x=! 
paint 

surface 

Figure 2b 
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metal adsorbed 

surface layer 
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paint 

surface 
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The bulk paint film ( O<x<l) may not be internally in a state of thermodynamic 
equilibrium due to capacity effects, transport time lags, and fluxes into and out of 
the film. However we assume that the boundary layers at x=/ and x=o are so thin 
that any capacitance effects in these layers are negligible. We assume also that 
any fluxes from one side of these boundary layers are instantaneously transmitted 
to the other. 

Consequently we make the assumption that the boundary layers at x=/ and x=o 
are in thermodynamic equilibrium with adjacent environments. So at x=/ we 
assume that the top of the paint film is always in thermodynamic equilibrium with 
the external environment . We shall assume that morphology of the outer 
boundary layer does not change with time, so that the spatial discontinuity in 
activity and concentration remains constant . 

The surface concentrations of species adsorbed on the metal surface arise out of a 
system of adsorption-competition equations we shall describe shortly. We 
hypothesise that the adsorbed concentrations arise as a consequence of the 
competitive adsorption described in the model, and the concentrations of species 
present in the boundary layer described as the adsorbed layer. At x=o we assume 
that species present in the adsorbed layer are always in thermodynamic 
equilibrium with species in the adjacent paint film. 

We introduce dimensionless variables 11, W, and z defined as follows: 

W YwW w- - - --
- Wo - Wo' 
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z - -� - _rz_� _ rzZwrwW = rzZwrwW _ ZwW - Zo - ZoO - rzZor wWa Zo·Wo· ZoWo 

Iron (and other metallic) substrates are also of great practical interest. Corrosion 
reactions similar to those on zinc occur on iron. However the chemistry is more 
complex and corrosion processes on rusty surfaces can occur in the absence of 
oxygen, where oxygen is supplied by reduction ofy-FeOOH to Fe(OH)2 and 
Fe304 (Hoffmann and Stratmann, 1 993) .  Because of this added complexity with 
iron chemistry, zinc was chosen as the substrate to demonstrate the essential 
behaviour of the model . 

Some diffusing molecules may become temporarily bound: removed from the 
diffusing population, and added to the population of bound or trapped molecules. 
We will develop the model for an ideally simple paint film where polymer traps 
are the only significant binding sites. Often minerals (Si02, CaC03 etc. )  are 
present in paint films and their surfaces may provide additional binding sites. 
Pigment surfaces will also adsorb polymer, water, and oxygen molecules and 
influence polymer packing and diffusion in the surrounding polymer matrix 
(Dasgupta, 1 99 1 ;  Kobayashi et aI. ,  1 992; Hegedus and Kamel, 1 993d; Hulden 
and Kronberg, 1 994; Muller, 1 995).  The model formulation can be readily 
extended to include these factors and we aim to demonstrate later that there is 
qualitative agreement between the simplified model and the more comprehensive 
formulation .  We suppose that polymer molecules are represented by equivalent 
functional units each containing one binding site, and that these functional units 
may exist in one of four states: bound to a water molecule, bound to a zinc 
molecule, bound to an active site on the metal surface (only at x=O ), or free. In 
the bulk paint film we consider only three states and set P}..t{x, 1)=0. The three 
states in the bulk film are described by concentrations Pw(x, t). Pix, t). and PAx, 
t) mol m-3, and represented in dimensionless form as pw = Pw/P o. pz = Pz/P o. 
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and PI = PIP o· In the adsorbed layer we consider four states P�t), Pz(t), Pu(t), 
and P/t) mol m-2 represented in dimensionless form as qw = Pu/ Po, qz = P7/' Po, 
qm = PM/ Po, and CJt = PI Po. Po mol m-3 represents the total volume 

concentration of polymer functional groups, and Po mol m-2 represents the total 

concentration of polymer functional groups available to the metal surface .  We 
shall assume that these available groups are provided by polymers present in the 
adsorbed layer. 

A painted metal surface is typically covered with a chemically adsorbed 
(chemisorbed) monolayer of water, oxygen and polymer molecules. In the 
absence of a paint film additional multiple layers of molecules, principally water, 
may become physically adsorbed (physisorbed) onto the chemisorbed layer. 
Chemisorption is characterised by enthalpies of adsorption of order 1 00 kJ mol-I, 
while physisorption arises from longer range and weaker interactions (such as 
Van der Waals forces) with enthalpies typically up to 20 kJ mol- 1 (Mittal, 1 975; 
Gregg and Sing, 1 982) . 

The surface of a metal is believed to consist of terraces, ledges, dislocations, and 
other defects on an atomic scale (Atkins, 1 978; Crommie et aI . ,  1 993) . Defect 
edges and corners, and surface electric potential anomalies are hypothesised to be 
sites of greatest chemical and electrical corrosion activity. It is expected that 
there may be anodic and cathodic sites on the metal surface, but we do not 
distinguish these in the present version of the model, nor do we allow that some 
molecules may adsorb preferentially on one site rather than another. 

As outlined above in section 1 . 3 we model the interface of a painted metal surface 
(figure 3) as discrete corrosively active sites with oxygen and water molecules, 
and polymer functional units competing for adsorption. Consequently active sites 
are modelled to exist in one of four states: attached to an adsorbed water 
molecule, or oxygen molecule, or polymer functional unit, or free. The active site 
states are described by surface concentrations Mfl....t), Mu(t), Mp(t). and �(t) 
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(mol m-2) represented in dimensionless form by mw = MwlMo. mu = MMo. mp 
= MMo. and mf = M/Mo respectively. Mo mol m-2 represents the total 
concentration of active sites on the metal surface, which we shall consider 
constant . 

x=/ 

x=o 

Model representation 
External environment 

Polymeric coating 

Metal substrate 

Adsorbed 
Layer 

Zn 
anode 

active site 

Figure 3 

Independent variables for the model are x and t. Paint film thickness / is 
typically of order 1 00 microns ( 1 0-4 m), with a range usually of about 1 0  microns 
minimum (although specialist primer coatings may be 1 micron or less) to Imm 
maximum (and again some specialist coatings may be 1 0  mm or more). We use 
/=5xI0-5m (50 microns) as a typical film thickness. Coated metal surface 
lifetimes vary considerably depending upon the type of coating (and metal) and 
upon the service environment . We refer to ' lifetime' as the time during which the 
metal is protected from significant corrosion. The notion of' significant 
corrosion' is potentially a difficult issue to define. In practice coating lifetime is 
relatively easy to define because failure occurs rapidly: the transition from 
protection to gross failure and free corrosion typically occurs in a time very short 
compared to the total useful lifetime of the system. We will find later that the 
model produces this behaviour, and a convenient measure is the onset of 
accumulation of solid corrosion product. Dimensionless independent variables 
are defined as x=x// where O:s;x::;l for the model and r=Dw/ll where 0::;7<00. 
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2.2 MODEL CONCEPTION 

The metal surface is modelled as a collection of sorption sites of which some 
characteristic proportion are corrosively active. Diffusing species (water and 
oxygen), and polymer functional groups, are considered to compete for 
adsorption onto these sorption sites. Our motivation for using this approach is to 
attempt a formulation which accounts for the chemical activities of species and to 
relate activities within the paint film to those in the adsorbed layer (which we 
suppose is of molecular dimensions) . We speculate that there is some difference 
in activity coefficients between the bulk paint film and the adsorbed layer. 
Additionally we expect that the activity coefficients in the adsorbed layer will 
change with the state of the adsorbed layer. 

Rather than attempting to estimate the activity coefficients directly we instead 
attempt to model the state of the adsorbed layer and use the thesis that adsorbed 
polymer assumes crystalline properties. We relate the activity coefficients to the 
proportion of polymer adsorbed onto the metal surface on the basis that this 
provides a simple (albeit crude) estimate of the adsorbed layer's morphology and 
degree of crystallinity. We attempt to depict the appearance of this crystalline 
layer concept infigure -I. 

Figure 4 
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We theorise that the corrosive activity of the metal substrate is governed by the 
quantities of water and oxygen present in the adsorbed layer. We model sorption 
sites in states mu, mw, mp, and mf in a competitive adsorption model in an attempt 
to describe the dynamic state of the adsorbed layer. The state of the adsorbed 
layer is taken to define the activities of species within the layer, so that we obtain 
estimates of the physical concentrations of water and oxygen which we suppose 
to be the values determining the rate of corrosion. 

As we discuss later, one of the reasons for using this approach is that it allows us 
to relate model parameters to experimental corrosion rates. External 
concentrations of water and oxygen are typically readily measurable quantities. 
We also considered an alternative formulation where the corrosive activity of the 
metal substrate was related to expressions involving adsorbed quantities such as 
mu and mw. We shall discuss later the implications and consequences of these 
formulations. 

The formulations differ in their implied corrosion mechanisms. The implied 
mechanism, in the formulation we have adopted, is attack of exposed active sites 
mf by corrosively active species present in the adsorbed layer. We discuss in 
section 2 .3  water uptake and corrosion and propose that corrosion is mediated 
principally by dissolved oxygen which may undergo cathodic reduction with the 
formation of hydroxyl ions (Boulton and Wright, 1 979). We speculate that 
hydroxyl ions are present in the adsorbed layer in concentration proportional to 
the concentrations of water and oxygen, and make an assumption that the paint 
film itself regulates the effective pH. Effectively we assume that the hydroxyl ion 
mol ratio in water is constant. In a more comprehensive formulation of the 
model hydroxyl ions would be included as diffusing and reactive species. But we 
aim to show that water and oxygen may account for the basic phenomena we aim 
to represent (seefigure 5). 
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We do not attempt to directly model the atomic and molecular details of the 
corrosion process. The main consideration is that there appears to be insufficient 
information available from the literature with which to develop a model on such a 
fundamental level . Instead we attempt a formulation where concentrations of 
reactants are modelled. We deduce expressions for corrosion rates from basic 
electrochemical dynamics and relate these expressions to observed corrosion 
rates. The logical consequence of this formulation are shown in figure 5.  

We employ the least number of reacting species thought viable in formulating this 
model. Additional species which might be included in a more comprehensive 
formulation include hydroxyl, carbonate, hydrogen, sulphate, and chloride ions. 
Only water and oxygen, and zinc ions, are modelled on the reasoning that these 
could account for the essential corrosion behaviour of coated metal surfaces. 

Free ox)'gen in 
bulk paint film 

Metal substrate 

Figure 5 

Adsorbed 
layer 

'- IActive site 

In the alternative formulation, where corrosion is mediated through adsorbed 
species (mu and mw) , the implied corrosion mechanism is the direct reaction of 
adsorbed oxygen or water molecules with active substrate sites. We suppose that 
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while bound to an active site on the metal surface an adsorbed water or oxygen 
molecule might occasionally become reactive and produce a corrosion event . It is 
unclear what the trigger for such a corrosion event might be.  

Physically however, this version of the formulation seems to lack features 
common to chemical kinetics. In particular, chemical reactions generally involve 
some initial potential energy barrier which is usually overcome by thermal kinetic 
energy. We note that corrosion does not significantly occur at temperatures 
below about ooe, and in general corrosion rates do increase with increasing 
temperature (Slunder and Boyd, 1 97 1 ) . Water and oxygen (and hydroxyl) 
molecules in the adsorbed layer are in thermal motion and the kinetic energy of a 
portion of the population is thought to be sufficient to overcome a potential 
energy barrier to reaction. 

In a further variation of this formulation we suppose that reaction might occur 
promptly upon initial adsorption of water or oxygen. This argument would 
overcome the objections raised earlier involving the kinetic energy of reactant 
molecules and potential energy barriers. However we realised that this concept is 
effectively the same as the first formulation since reaction is mediated through 
exposed metal active sites mI With our original theory that the local supply of 
water and oxygen is rate limiting, the reaction rate should then be proportional to 
the concentrations of available reactants (water and oxygen). 

We conclude from this reasoning that the first formulation outlined above is more 
plausible, where corrosion occurs in response to the local concentrations of water 
and oxygen. 
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2.3 WATER UPTAKE AND CORROSION 

Water uptake by the film is controlled by free water from the environment 
entering the paint film through the outer face. 

At the base of the paint film the model proposes an adhesion layer of structured 
polymer, forming an interface between the paint film and the metal surface. This 
interface is the arena for corrosion reactions. Some water (and oxygen), after 
diffusing through the paint film, will accumulate in the adsorbed layer (Nguyen et 
ai . ,  1 994) and compete with polymer for adsorption onto the metal surface. 
Corrosion of the metal substrate occurs in proportion to the concentrations of 
adsorbed water and oxygen adjacent to the metal substrate. Some corrosion 
product is generated, and a proportional amount of water and oxygen is 
consumed in the chemical reaction. We consider the early history of a painted 
surface where the paint film is still strongly adherent: corrosion rates are small, 
fluxes of water and oxygen involved in the corrosion reaction are small, and the 
generation of corrosion product is very slow. 

In general terms corrosion is considered to consist of two half reactions which are 

supposed to occur at an active site's anode and cathode (Figure 6) . The anodic 
process is represented as 

and the cathodic process as 

A t/sorbed 
Layer 

Metal 
Substrate 

Zn(metal) � Zn ++(aqueous) + 2e-

Zn(OH)z 
t" . . . . . . . . .  . .  

Zn .. . . . . . .  . 
anode 

OH
.... r . . · . . · · · 

.' 
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Figure 6 
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The corrosion of zinc is believed to consist of two reaction pathways: 

Reaction 1 

Zn + H20 + O2 B Zn++ + 2e- + H20 + O2 B Zn++ + 20H- + 0 B Zn(OHh + 0 (2 . 3 . 1 )  

Zn + H20 + 0 B Zn++ + 2e- + H20 + 0 B Zn++ + 20K B Zn(OHh (2 . 3 . 2) 

with an associated chemical rate equation R: 

where R([Zn++]) is the net rate of formation of Zn++. 

and 
Reaction 2 

Zn + 2H20 B Zn ++ + 2e- +2H20 B Zn ++ + 20K + H2 

with associated chemical rate equation R: 

(2 . 3 . 3 )  

(2 .3 .4) 

(2 . 3 . 5 )  

Both Reaction 1 and Reaction 2, in the absence o f  external electric potentials and 
competing electrochemical processes, are driven by the electrochemical potential of 
zinc oxidation. In theory the reactions are reversible, but in practice the reverse 
reaction does not occur. Initially Zn++ generated is largely taken up by polymer 
(which maintains low solution Zn++ concentrations) and gradually modifies the 
polymer matrix, its morphology and its adsorption to the metal substrate. 
Hydrogen generated will rapidly diffuse away. Eventually excess Zn++ generated 
when the local electrolyte medium is saturated will cause precipitation of zinc 
corrosion product at the margins of the active site, which we expect will impair the 
accuracy of our modelled corrosion rates. However we theorise that for the early 
history of the modelled system the corrosion rates are dominated by polymer and 
competitive adsorption effects so that equation 2 .3 . 5  is effectively 



where we have dropped the term containing hydrogen on the basis that hydrogen 
will rapidly disperse and the concentration will be small so that the term is 
negligible. Additionally [Zn] is essentially constant so 

R([Zn++ ]) = P3[HzO]z = Jzz 

Water (H20) exists in equilibrium with its dissociation products which we 
represent as 

with rate equation R: 

We suppose that the paint film includes a metal primer with a composition which 
incorporates a buffering mechanism (Resene proprietary information) which 
maintains pH:::::: 1 0  so 

[H+] = ( 1 0-10 mol rl ) = 1 0-7 mol m-3 

and R([OR]) is supposed zero so 

Reaction 1 becomes 

1 0-1 1 [H 0] 
[OH- ] = 2 = 1 0-4 [H 0] mol m-3 

1 0-7 2 

where we have again dropped the second term which is considered minor on the 
basis that any Zn ++ generated may readily diffuse laterally and precipitate remotely 
at the margins of active sites. Additionally [Off] is buffered approximately 
constant . Finally we prefer a simpler expression and prefer to overestimate the 
actual reaction rate. 

We suppose that the corrosion fluxJz is the sum of these two processes 
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(2. 3 . 7) 

(2 . 3 . 8) 

(2. 3 . 9) 

(2 .3 . 1 0) 

(2. 3 . 1 1 ) 
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Zinc corrodes in distilled water in the absence of oxygen at a rate of about 0.002 

inches per year = 1 . 1  x l  0-5 g m-2 S-1 (Uhlig, 1 948) .  

1 1  1 0-5 -2 -1 2 . X g m s -7 -2 - 1  
/Z2(0) = P3 [H2 0] = 65 = 1 .7 x 1 0  mol m s 

[H20] = 5 . 6x l 04 mol m-3 for liquid water 

1 .7 X 1 0-7 
-1 7 -1 4 -1 P3 = (5.6 x 1 04 )2 = 5.4 x l 0 mol m s 

Zinc corrosion with oxygen and water occurs at a significantly faster rate (Uhlig, 
1 948) of about 0 .04 inches per year = 2x 1 0-4 g m-2 S-1 = 3 . 1  x l  0-6 mol m-2 S-I . The 
oxygen saturation level in distilled water is about 0 .3  mol m-3 and 
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(2 . 3 . 14) 

(2 . 3 . 1 5) 

/Z(O) = /ZI(O) + /Z2(0) = PI [Hz 0] [02 ]1/
2 

+ pJH20]2 = 3 . 1  X 1 0-6 mol m-2 S-1 (2 . 3 . 1 6) 

3 . 1  X 1 0-6 - 1 .7 X 1 0-7 _\ \  -1 12 5/ 2 -\ PI = 4 r;::;; = 9.6 x 1 0  mol m s (2 . 3 . 1 7) 
5.6 x l 0  x vO.3 

In general the first term in eq 2. 3 . 1 6  dominates; but the second term may become 
significant in response to transients and in coating systems where the film is 
sufficiently thick and impermeable to act as a partial barrier to oxygen transport 
to the metal surface. Additionally oxygen may be rate limiting when some 
corrosion occurs, with the result that both terms may be significant . 

The concentrations [H20] and [02] must now be defined and the model designed 
so that these concentrations arise as a consequence of processes occurring in the 
model as a whole. We relate [H20] and [02] to concentrations of water and 
oxygen in the adsorbed layer. With currently available information, this 
formulation allows us to relate corrosion rates to concentrations on the basis of 
experimental results. Experimental validation of the model is important . Once 
the viability of the model is established it is hoped that new experimental data 



relating corrosion rates to surface concentrations of water and oxygen underneath 
paint films may become available which will allow a more sophisticated 
formulation of the model to be tested. 

In order to determine the concentrations of water and oxygen at x=O we must 
design an expression relating the concentrations to the chemical activities 
(effectively the chemical potentials since we will assume constant temperature). 
We have argued previously, on the basis of results reported in the literature, that 
the state of the adsorbed layer plays a critical role in determining the chemical 
potentials of substances present in each phase. Indeed the basis for this thesis is 
the hypothesis that adsorbed polymer of paint films on metal substrates changes 
state to become more crystalline. In this change of state we find that physical 
concentrations may vary according to the chemical activities of the substances 
present. 

We shall assume that the polymer changes morphology immediately in response 
to dynamic effects arising in the competitive adsorption processes, and we shall 
also assume that concentrations mol m-3 of water and oxygen in the adsorbed 
layer respond immediately to changes in chemical activity so as to maintain 
equilibrium of chemical potential between the adsorbed layer and the adjacent 
bulk paint film . The basis for these assumptions is that we are primarily 
concerned with the initial history of the model . Corrosion rates are initially small 
and changes to the adsorbed layer and polymer morphology are small and 
gradual . Our thesis is that the time to failure is governed primarily by the initial 
state of the adsorbed layer and these gradual processes. 

The simplest and most direct method of representing this effect of state upon 
chemical activity is to relate the concentration to the proportion of polymer 
adsorbed onto the metal surface .  We model the dependence of activity between 

r (Mo - Mp) the adsorbed layer and the bulk paint film as -----7.- = for water and 
rw Mo 
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Yu (Mo - Mp) 
--..- = 

M for oxygen. Next we equate activity in the bulk paint film to 
Yu 0 

activity in the adsorbed layer. 

From this we obtain 

Yw (Mo - Mp) [H20] = -• •  W(x = O, t ) = W(x = 0, 1)  mol m-3 
Yw Mo 

Similarly for oxygen 

and 
Yu ·· [H20] = Yu "U·· (I) = YuU(x = 0, 1)  
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(2 .3 . 1 8) 

(2 .3 . 1 9) 

where Mp and U( x, I) will arise out of the adsorption - competition equations, and the 
diffusion equations respectively, which we will describe later. 

Putting eq 2 . 3 . 1 8  and 2 . 3 . 1 9  into 2 .3 . 1 3  we obtain 

j, = 9.6 x 1 cr"[ (A4;� M,) r II{x = Ut)U"' (x = Ut) + i 4 x 1 cr"[ (A4;� Mp) J W(x = Ut) 

It is difficult to directly relate experimentally observed corrosion rates (Guruviah, 
1 970; Haagen and Funke, 1 975;  Rosen and Martin, 1 99 1 ; Ailor, 1 982; Slunder 
and Boyd, 1 97 1 ;  Evans, 1 950; and Uhlig, 1 948) and reported parameters such 
as relative humidity to modelled parameters such as the water and oxygen 
concentrations adjacent to the metal surface. In fact this difficulty was recognised 
at an early stage and provided some of the stimulus to formulate the model as it 
now stands. We incorporate competitive adsorption of polymer, water and 
oxygen in a system designed to model the effective concentrations of water and 
oxygen at the metal surface. The measurable parameters are the concentrations 
of oxygen and water in the bulk medium external to, and in thermodynamic 
equilibrium with, the adsorbed polymer layer. 

(2 .3 .20) 



A test of the adsorption model considers a bare metal surface with oxygen and 
water competing for adsorption. In this case there is no discontinuity of activity 
since no adsorbed polymer is present. The driving force of adsorption is the 
concentrations of water and oxygen in the external bulk medium. From equations 
2 . 3 . 1 8  and 2 .3 . 1 9  we find 

and 

[H20] = W" (t} = W(x = O,t) 
[02 ] = U" (t} = U(x = O, t) 

, , 
fz = PI WUl/2 + P3 W2 

Additionally water and oxygen will adsorb onto the metal surface with 
concentrations Mw and Mu. We calculate these values from the adsorption 
competition model we introduce in the next section. See chapter 5 .7  for a 
discussion of a special case arising from this aspect of the model . The values of 
Mw and Mil arising from the adsorption competition model correspond to 
generalised Langmuir adsorption isotherms. We find reasonable agreement with 
experimentally reported sorption isotherms on metal surfaces (Rosen and Martin, 
1 99 1 ;  Valenzuela and Myers, 1 989). This relates calculated corrosion rates/z 
and external bulk media concentrations �and U* with experimental corrosion 
rates and reported concentrations of water and oxygen. 

We suppose that the total zinc corrosion product concentration Zr.·· mol m-2 at 
x=O is made up of a component 'i == Z,:·w'''/Wo•• mol ratio solvated in the 

water present in the adsorbed polymer layer, a solid component Zc mol m-2 and a 
polymer bound component pz mol m-2. 

Zr.·· = k3 '3- + Zc T 'Pz 

where k3 is some characteristic thickness associated with the adsorbed layer. 

For zinc corrosion product in solution at x=O we suppose there is one source term 
which represents the creation of corrosion product '3.' according to equation 
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(2 . 3 .23) 
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2 . 3 . 20 .  We suppose there are two sink terms: one arising from the uptake of 

corrosion product by polymer to form 'Pz> and the other resulting from the 

diffusion of zinc away from the adsorbed layer at x=O. A conservation equation 

(eq 2 . 3 .25)  is formulated which equates the rate of change of zinc corrosion 

product with its rate of creation/z, its removal to polymer bound zinc 'Pz mol m-2 

and loss due to diffusion. 

Further we assume 

1 )  that Zc is only created (and exists) when Z,:· = Zw··(saturatiOn) and 

2) Zc = 0 when Zw·· < Zw··(saruration) .  

Equation 2 . 3 .25  can be written as two equations: 

. .  . ... 
Z'" = Z", (saturation), Zc 2:: 0 

In non-dimensional form this is : 

for z < w, Zc = 0 
oz 
iJx x=o 

and for z = w, Zc 2:: 0 
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3 1  

(2 . 3 .29) 

where : x =xl I and r = Dwll t, 
u = VIVo , W = WIWo , Z = ZwWIWoZo = �/Zo, Zc = Z/ZcO, q: = PzIPo, mp = MplMo 

d. = k3DW d. = pJV�/2 

'f'3 ID , 'f'4 D 

2.4 ADSORPTION - COMPETITION 

Z z 

The basic hypothesis of this model is that a metal surface consists of a specific 

density of discrete sorption sites of size comparable to molecules considered in 

this model (water, oxygen, and polymer) . A characteristic proportion of these 

sites are supposed corrosively active. When a polymer functional unit is adsorbed 

onto an active site, we suppose that the active site is made unreactive. In 

particular we consider certain chemical entities present in paint film polymers to 

adsorb competitively with oxygen and water onto active sites. Examples of 

adsorbable groups are -COOH, -OH, -NH; and a polymer functional unit is an 

equivalent mass of polymer containing one adsorbable group. Additionally (and 

in explicit detail in a more sophisticated formulation of the model) polymer 

functional groups may interact with other species to form more complex 

functional groups. For example zinc chromate may complex with polymer 

hydroxyl groups. In principle we could model both active sites and polymer 

functional groups as distribution functions. However this information is currently 

not readily available, and we assume that all active sites are identical and 

independent as are all polymer functional units. Finally we assume that each 

active site or polymer functional unit has the ability to adsorb only one molecule. 

These assumptions describe the basis for Langmuir adsorption isotherms. 



On a plane surface there are approximately 1 0 19 surface atoms per square metre. 

We suppose that a fraction cr of these are corrosively active� that adsorption 

occurs on all sites ( 1 0 19); and that all sites have equal adsorption energy. In 

actuality there will be a distribution of adsorption types and energies, and the 

surface will have some roughness and porosity. But we use as a first 

approximation 

Mo = 1 .7 x 1 0-' mol m-2 

F or water the rate of increase of adsorbed water is proportional to the collision 

rate of water molecules with the surface, the collision cross section, and the 

surface remaining uncovered (Mf) . We estimate these factors in a simplistic 

thumb nail sketch fashion based on ideal gas dynamics 

[dMw l NET NW 2 (M o - M p ) 10 W (Mo - Mp ) --J = - - -- 7fd Mf = 1 0  - Mf dt + 2mn VWo Mo Wa Mo 

where k is Boltzmann's constant ( 1 . 3 8x 1 0-23 J KI), T is degrees Kelvin (3000K), 

m is the molecular mass ( 1 8/6x 1 023 g), NW/VWo is the water molecule number 

density per cubic metre ( 1  06x6x 1 0231 1 8  = 3 x 1 028 m-\ and mI is the collision 

cross section (nx(5 x 1 0-lo/ = 8x l O-19 m2) .  

The factor (Mo-Mp)/Mo relates activity within the adsorbed layer to that outside, 

and we assume that the adsorbed layer is in thermodynamjc equilibrium with the 

adjacent bulk paint film. In reality we expect the adsorbed layer to exhibit a 

continuous variation from its ultimate crystalline state on the metal surface to 

being almost amorphous at the internal boundary within the paint film at about 

x=1 00 nm. We are interested here only in the state of the adsorbed layer 

immediately adjacent to the metal . Our reasoning is that this is where activities of 

water and oxygen relevant to the corrosion process are pertinent, rather than 

activities at the inner face or some average applicable to the entire adsorbed layer. 

Additionally we are unsure how the polymer crystallinity, and hence activities of 

water and oxygen in the layer, may vary with position within the layer. 
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We suppose that the rate of decrease of adsorbed water follows an Arrhenius type 

law of the form w,-ElRTMw where v is the molecular thermal vibration rate 

(typically around 1 014 Hz), E is the energy of adsorption (around 60 kJ morl) ,  

and R is the gas constant (8 .3 J morl Kl ) 

gIvmg 

[dMw ]  = -1 04M dt w 

dMw W (Mo - Mp )  -;Jt = r1 fro Mo Mf - r2MW 

where r, = 1 0 10, r2 = 1 04 and which we write in nondimensional form as 

7; = B1 [a1 ( 1 - mp)wmf - mw] 
where: , =  Dn1lt, w = WIWo , mf = MJMo ,  mw = MwlMo, mp = MplMo 

3 3  

(2 .4 .3)  

(2 .4 .4) 

(2 .4 .5) 

In a more precise formulation we should account for the fact that typically multiple layers of 

water etc accumulate on the surface. We would accommodate this in a multilayer model 

with rate equations governing each layer (and there may be hundreds of layers to account 

for :  Ailor, 1 982). However we adopt a simple monolayer approach on the basis that : 

1 )  the model is designed to account for the early history of a painted metal surface with less 

importance placed on the model 's  accuracy at late times (when multilayers are expected to 

dominate) and 

2) adsorbed polymer is believed to inhibit the formation of multiple layers of adsorbed 

water. 

Similarly for oxygen 

(2 .4.6) 



where m=32/6x l 023 g, and NUlVUo =PUlkTUo = 2x 1 04UlkTUo = 4. 8 x 1 024UIUo, 

'3 = 1 07, '4 = 1 04, and which we write as 

where 

:u = 82 [a2 ( I - mp )umf - mu ] 
'3 ' P 

mu = MuIMo , 11 = UIUo , a2 = - , 82 = _4_ r4 Dw 

F or the rate of increase of adsorbed polymer 

I dJvfp l {kT 1 0� Pf N  2 
L dt J+ = vZ;;; 1 02 PoV JTd Mf 

where m = 1 05/6x l 023 g. We suppose that a typical polymer functional unit has 

equivalent weight about 1 00 so that there are 1 05/ 1 00= 1 03 functional units per 

molecule in our model polymer (with molecular weight about 1 0\ PjVIPoV = 

1 06x6x l 023/ 1 05 = 6x 1 024 molecules m-3 . 

We allow that polymer molecules may vibrate and move within some radius of 

gyration related to the polymer size. Some small motion on an atomic scale is 

necessary to account for adsorption and desorption dynamics. However we 

assume that polymer molecules cannot diffuse within the paint film. Polymer 

molecules located initially in the adsorbed layer are assumed to be locked within 

the polymer matrix and to remain within the adsorbed layer indefinitely. 

Consequently we make no assumption of thermodynamic equilibrium for polymer 

species such as Pf in the model . 

Concentrations of species such as Pf are instead determined by the coupled 

competitive adsorption equations we are describing. We suppose that the 

effective pressure of polymer causing adsorption is proportional to the fraction PI 
remaining free. Then 

dMp iZ';. -- = r� - Mf - r6Mp dt Po 
where '5 = 1 08, 1"6 = 60, and we take E � 70 kJ mOrl . 
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We write this as 

where mp = Mp/Mo, rP L) _ _ 6_ U3 -
Dw 

mf = MJMo , Cf! = P/Po, 

Finally a conservation relation exists for Mp, Mil', Mu, and Mf : 

Mp + Mw + Mu + Mf = Mo 

In dimensionless form this is 

We suppose that for the polymer - water interaction the adsorbed polymer layer 

acts like a rigid surface where 1 02/ 1  05 = 1 0-3 collisions of water molecules from 

the bulk paint film onto the adsorbed layer are with polymer functional units. The 

rate of increase of Pw is calculated as 

and 

d �f' W dt = 1'9 Wo Pf - rlO �J' 

where we estimate 1'9 = 1 07, I'}O = 6x l 08, E ::::: 30 kJ morl and write in 

nondimensional form as 

where q", = PwlPo, qf= PJPo, W = WIWo , 1'9 a = -� 1" 10 
r /2 (J. _ _ 1_0 _ 5 - D JJ' 

Similarly for the polymer - zinc ion reaction we model the rate of increase off'z as 
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We suppose that it is the initial history of the adsorbed layer and the polymer -

zinc ion interaction which is most important in determining the behaviour of the 

model and time to failure. Zinc ion concentrations in the bulk film and the 

adsorbed layer will be assumed initially zero. We argue that significant 

concentrations of zinc ion only arise after the adsorbed layer has degraded and 

reverted to a state equivalent to that of the bulk polymer. 

Ideally we might formulate zinc ion and electrolyte mobility according to the 

approach used by Nguyen et al . ( 1 996) where they considered mass diffusion of 

electrolyte through an impermeable slab (the paint film) punctured by tortuous 

transmembrane pores. We might include also lateral diffusion of ions and 

electrolyte on the metal surface (for example Nguyen et al . ,  1 99 1 ). Instead of 

adapting the kinetic theory of gas dynamics to the development of our model we 

might properly consider quantum mechanical principles and use Fermi-Dirac and 

Bose-Einstein distributions rather than the classical Maxwell distribution 

introduced in eq 2.4 .2 .  However with our assumptions of initially low zinc ion 

concentrations and thin adsorption boundary layer we suppose that any zinc ions 

created will first move to the bulk paint film at x=O. We suppose that there is 

initially a large activity gradient forcing this transport, and secondly that if any 

collisions should occur along the way, only 1 0-3 of them (see eq 2.4 . 1 3 ) are likely 

to be with polymer functional units .  From there it follows that zinc ions either 

diffuse out through the bulk paint film according to a set of diffusion equations 

we describe later; or collide with, and become bound to, a polymer functional 

group of the polymer in the adsorbed layer according to the ideas described above 

for Pw. 

In dimensional form 

d � WZw 
dt = r7 WoZo P;- - r8 � 

assuming E :::::: 70 kJ morl , and with r7 = 1 07, r8 = 1 02 . 

In dimensionless form this is 
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where z = ZrvW/WoZo = �/Zo, qz = "Pz/"Po, qf= "Pj"Po, 
r. 12 e = _8_ 4 D w 

We suppose that an adsorbed layer is about 1 00 run = 1 0-7 m thick, and the 

polymer density 1 06 g m-3 which gives 

"PM and Mp are related by: 

in dimensionless form: 

and 

"Po = 1 0-3 mol m-2 

"Pw + "Pz + "PM + "Pf="Po 

in dimensionless form: 

2.5 DIFFUSION-GENERAL 

Suppose diffusant molecules in a paint film exist in two states, free and trapped, 

of concentrations C and kcPc; where yc is the corresponding activity coefficient, 

and ,LIe the chemical potential. 

The net flux of free particles across any surface S is 

ffDcC 
RT 

V/-lc · n dS 
s 

where the current density of free particles Jy is given by the product of diffusant 

D 
velocity - R� V /-le and concentration C (Robinson and Stokes, 1 959; Neogi, 

1 983 a, b; Thomas and Windle, 1 982). 

DeC Je = -
RT 

V/-le 

Expression 2 . 5 . 2, is Fick's first equation (Jc = -Dc VC adapted from Fourier's 

equation for heat conduction) incorporating non-ideal solution thermodynamics 
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(Neogi et aI . ,  1 986). The assumption here is that the gradient V Pc is the driving 

force of diffusion - the force experienced by diffusant molecules is proportional to 

the gradient of the chemical potential. 

We have outlined in the introduction above a plausible scenario accounting for 

diffusion in a paint film. To properly quantity this conceptual model, a 

formulation of transport mechanisms in terms of thermodynamic influences and 

elastic stresses and strains in the film is required. A number of authors have 

developed various new transport models using these concepts (Carbonell and 

Sarti, 1 990; Durning and Tabor, 1 986; Herman and Edwards, 1 990; Jou et 

aI . ,  1 99 1 ;  Kim and N eogi, 1 984; Larche and Cahn, 1 973 ; Larche and Cahn, 

1 978; Morro et aI . ,  1 990; Neogi et aI . ,  1 986; Neogi, 1 983 ; Oncone and 

Astarita, 1 987) .  Others have adapted and extended existing formulations to 

include elements of mechanics or thermodynamics (Camera-Roda and Sarti ,  1 990; 

Durning et aI . ,  1 985 ;  Durning and Russel, 1 985 ;  Durning, 1 985 ;  Gostoli and 

Sarti, 1 982; Gostoli and Sarti, 1 983 ; Lasky et aI . ,  1 988;  Petropoulos and 

Roussis, 1 978; Petropoulos, 1 984; Sarti et aI . ,  1 986; Thomas and Windle, 1 982; 

Tsay and McHugh, 1 990). 

In general terms, the fundamental aspects of all diffusion models are described by 

the Maxwell - Cattaneo equation and this can be approximated by Fick's laws. 

Some authors have studied the correspondence between Fick's equations and the 

more general formulations of diffusion, and found that it is only in special 

circumstances that the Fickian formulation is incorrect (Durning and Tabor, 

1 986; Jou et aI . ,  1 99 1 ;  Kim and Neogi, 1 984; Larche and Cahn, 1 982; Neogi et 

aI . ,  1 986; Neogi, 1 983;  Thomas and Windle, 1 98 1 ;  Vrentas and Duda, 1 977). 

Consequently, we will follow McNabb and Foster ( 1 973) and Wu et al . ( 1 990), 

and adopt Fick's laws alluded to above, while at the same time, incorporating 

trapping sites to account for delayed uptake and desorption of diffusing ions and 

molecules, known to occur in paint films (Boxall et aI . ,  1 972; Brown and Park, 

1 970; Fialkiewicz and Szandorowski, 1 974; Funke, 1967; Guruviah, 1 970; 
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Katz and Munk, 1 969; Kresse, 1 973 ;  Kumins, 1 980; Rosen and Martin, 1 99 1 ;  

Ulfvarson and Khullar, 1 97 1 ). While our approach may not be 

thermodynamically rigorous or account for all the anomalous behaviour that can 

arise in paint films; it should provide a starting point for assessing the relative 

significance of some aspects of the transport and corrosion phenomena associated 

with paint films on metal surfaces. 

Fick's second law is essentially the principle of mass conservation, and when a 

diffusing substance is interacting with trapped phases, the masses of all phases 

must be incorporated in the conservation equation. Consider an element of 

volume V enclosed by a surface S. The total mass Q of diffusant and trapped 

particles in V at any time is given by, 

Q = Iff (C + kcPc )dV 
v 

If we assume the diffusing molecules are conserved (ie don't take part in chemical 

reactions with other diffusing ingredients within the paint film), a conservation 

equation is obtained by equating the rate of change of Q to the net flux of 

particles across the closed surface S; 
{} Q = If DeC 'VIle · n dS {} t s R T  

Using the divergence theorem and equations 2 . 5 . 3 ,  2 . 5 .4, we  find 

and since this equation is valid for any volume V, in the paint film region, 

{} C {} Pc (DeC ) - + k -- = 'V . --'Vll {} t e {} t RT r C 

A second equation governing these two ingredients describes the rates of 

exchange of molecules between the free and bound populations. Suppose there 

are two rate constants (assuming one significant bound population): '1 

describing the rate of capture of free particles, and: 1"2 describing the rate of 
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escape of bound particles back into the diffusing stream. Then the rate of 

increase of Pc i s  given by, 

where 

The derivation of the rate equation 2 . 5 . 7  is based on the assumption that the rate 

of capture of diffusing molecules at each point of the medium is proportional to 

the neighbourhood concentration of diffusing molecules and to the number of 

unoccupied trapping sites per unit volume near the point, while the release rate at 

the same point is just proportional to the population density or concentration of 

the trapped phase. 

2.6 DIFFUSION EQUATIONS 

We suppose that the paint film is a slab bounded by two parallel planes at x=o and 

x=/ (the base and top of the film respectively). The slab is supposed thin and the 

medium homogeneous, so that effectively, the geometry is one dimensional with 

diffusive transport exclusively parallel to the x direction, with all diffusing 

substances entering and leaving the slab through its plane faces. 

Oxygen diffusion is believed to occur essentially independently of any trapping 

dynamics. While some trapping probably does exist, Fickian diffusion provides an 

adequate representation of oxygen diffusion (Guruviah, 1 970; Haagen and 

Funke, 1 975 ;  Kumins and Kwei, 1 968; Xiao et aI . ,  1 990). We assume that the 

paint film is fully cured and that no further reaction occurs with oxygen. Note 

that some polymers cure by oxidative crosslinking, for example alkyd paints, and 

the reaction may proceed gradually for months and years. However we shall 
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assume that any residual reaction with oxygen from this source is negligible. The 

concentration U(x. t) mol m-3 of oxygen is described by a linear diffusion equation 

Unlike atmospheric oxygen, water has a greater interaction with paint films 

(Bellucci and Nicodemo, 1 993 ; Boxall et aI . ,  1 972; Brown and Park, 1 970; 

Funke, 1 967; Kumins and Kwei, 1 968; Kunin, 1 972; Perera and Heertjes, a-e 

1 97 1 ;  Rowland, 1 980; Yasheen and Ashton, 1 978) .  Some of this interaction is 

associated with plasticisation and swelling. Additionally certain paint films are 

found to accumulate a dispersed water phase near water saturation of the film 

(Cherry and Mayne, 1 962; Maitland and Mayne, 1 962; Perera and Heertjes, a-e 

1 97 1 ) . This dispersed water phase (when it exists) is seen microscopically to 

consist of discrete unconnected vesicles of water. 

Initially some controversy existed as to whether or not 'pores' existed in paint 

films (below Critical Pigment Volume Concentration) . Some early work 

concluded that pores did not exist . Krypton gas absorption indicated that pores in 

paint films were non existent or of molecular dimensions; and electron 

microscope studies failed to detect any evidence of pores. It was theorised that if 

pores did exist and if gases were passed through them the diffusion should obey 

Graham's  Law of Diffusion In neither dry nor wet films was Graham's  Law 

obeyed and this was considered strong evidence for the absence of pores. Cherry 

and Mayne summarised these findings in 1 96 1 .  However other experiments 

employing electrolytic and e1ectroendosmotic techniques concluded that pores did 

exist . 

Cherry and Mayne, 1 96 1 ,  and Maitland and Mayne, 1962, explained that these 

seemingly contradictory results arose from pores of atomic or molecular 

dimensions which could swell and become macroscopic under certain conditions. 
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Typically pores exist in the form of molecular size polymer structures (or polymer 

functional groups as discussed above) . When the film was dry or saturated with 

water these molecular pores remained of molecular dimensions and were too 

small to significantly influence the process of diffusion through the bulk polymer 

film. Under the influence of electric fields and electrolyte solutions the functional 

groups associated with the pores become ionised and may exchange ions with the 

electrolyte solution. This combined with the plasticising effect of water on some 

polymers, can in certain paints result in inflated pores which in extreme cases 

appear as visible electrolyte filled vesicles. 

Maitland and Mayne, 1 962, discussed "fast" and "slow" changes in electrolytic 

resistance of paint films in electrolyte solutions. The fast change was due to 

sorption of water from the surrounding solution and resulted in equilibrium in 

times of order 1 0  minutes for the paint films studied. The slow change was due 

to ion exchange between ionogenic groups within the polymer matrix (functional 

groups such as -COOH) and ions in the external electrolyte .  Temperature was 

found to have a profound effect on the rates of exchange; at elevated 

temperatures such as 60°C equilibrium was attained in the order of 1 0  hours, 

compared to weeks at room temperature. 

Kunin, 1 972, showed that at low electrolyte concentrations ( 1 0-3 M) ion exchange 

is rate limited by diffusion of ions through the bulk polymer matrix. At high 

concentrations (0. 1 M) a part icle diffusion mechanism is generally accepted. One 

version of this is Jenny's  Contact Exchange Theory where it is postulated that 

ions in the polymer matrix can oscillate some finite distance and may be 

considered as occupying an oscillation volume. Ion transfer or exchange will 

occur whenever two oscillation volumes overlap. Both bulk diffusion and particle 

diffusion processes occur at intermediate concentrations . 

Crank and Park, 1 968, discuss diffusion of water in a variety of polymer systems 

and show that varying polymer chemistry and composition results in a spectrum 
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of diffusion characteristics. Although most cases are to a good first 

approximation represented by Fickian diffusion, anomalous response to transients 

can occur. Additionally changes in the polymer matrix itself (resulting from 

sorption of ions for example) can produce further anomalous behaviour on longer 

time scales. 

We suppose that sorption and transport of water in paint films is represented by a 

combination of Fickian diffusion and Langmuir sorption dynamics. Diffusing 

water is denoted by W(x. t) mol m-3, and sorbed water by P(x. t) mol m-3 . 

Polymer functional groups are considered the primary agents for sorbing water 

molecules, so total water in the paint film is the sum of W and Pw, which satisfy 

the system of equations 

o�v W ---at = r) Wa PI - r2 �v 
The units chosen for W and Pw (mol m-3) make k,= 1 .  We estimate r, = 1 07 and 

r2 = 6x  1 08 in a similar fashion to the rate constants for Langmuir adsorption onto 

the metal surface (equation 2 .4 . 1 4) 

We will ignore for now explicit ion exchange effects as we concentrate on the 

films early history, but incorporate the effect of adsorbed zinc which modifies the 

polymer matrix with a conservation equation 

Pw + Pz + Pf = pt o(x. t) 

and 

pt o(x. t) = Po + ZwW/Wo = Po + '? 

where Zrr{x. t) is mol ratio in water. Zw has been combined with the total 

polymer functional group concentration Po on the basis that zinc has a strong 

interaction with polymer functional groups (in fact much stronger than has water) 

and will form associations with these groups which result in modified functional 

units .  From the work of Maitland and Mayne 1 962 and Cherry and Mayne 1 96 1  
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it is clear that the presence of additional ionogenic material within the polymer 

matrix has a strong influence on paint film properties. 

Again unlike oxygen, zinc has a strong interaction with polymer films (Kunin, 

1 972) . As with water, we suppose that the sorption and transport of water in 

paint films is described by a combination of Fickian diffusion and Langmuir 

sorption dynamics. Diffusing zinc is denoted by Zlf{X. t) mol ratio in water and 

adsorbed zinc by Pz(x, t) mol m-3, so total zinc is the sum of Zw and Pz. ZInC IS 

assumed to satisfy the system of equations 

8Pz W Zw 
-- = 1' --P - r P 8t 3 W. Z f 4 Z 

o 0 

We have supposed that unlike the paint-metal interface the bulk polymer does not 

allow significant corrosion product Zc mol m-3 to accumulate, and that whatever 

zinc corrosion product exceeds the solubility level is taken up by polymer or by 

zinc modified polymer functional groups according to expressions 2 .6 .7 and 

2 .6 . 8 .  The units chosen for � = ZwW/Wo (mol ratio in water) and Pz (mol m-3) 

make k2 = 1 .  As before we estimate 1'3 = 1 07 and 1'4 = 1 02 in a similar fashion to 

the rate constants for equation 2 .4 . 1 7  

2.7 BOUNDARY CONDITIONS 

We suppose that the painted metal surface modelled is subject to constant oxygen 

concentration at x = I 

which in dimensionless form is 
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u(x= l , r) = 1 

and that the water concentration at x = I is some function of time such as may 

correspond to typical atmospheric weather conditions 

which in dimensionless form is 

w(x= 1 , r) = wo( r) 

Typically zinc corrosion product diffusing to the surface will be removed by 

conversion to other species such as zinc carbonate or be washed away by rain 

water so that 

Z(x = l,t) = O 

which in dimensionless form is 

z(x= l ,  r) = 0 

At the base of the paint film (x=O) we suppose that gradient conditions apply such 

that the fluxes of zinc, water and oxygen involved in the corrosion reaction are 

related to the gradients at x=O. We now develop the equations in non 

dimensional form. 

From eq. 2 . 3 .28  

for z < w, Zc = 0 
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OZ 
iJx (2 . 7 .4)  

x=o 
and 

for z = w, Zc � 0 

�: = -¢�( �; + K7 ;;) + ¢4K6 [( I - mpy
fl 

wu "Z 
+ as ( l - mpr w Z ] (2 . 7 . 5 )  

x=o 

From eq 2 . 3 . 2, 2 . 3 . 4  and 2 . 3 .20 we find 



Ow 
i7x x-o 

i7u 
and -

i7x x=o 

= 9\ [(1 - mpy
l2 

wu l12 + 2aa ( l - mpr W 2 ] 

( yl2 
= tA l - mp WlI 1I2 
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where we assume for eq 2 .7 .6 that the corrosion flux (eq 2 . 3 . 1 3 ) results in the consumption 

of one mole water and one half mole oxygen (according to eq 2 . 3 .2) plus 2 moles water 

(according to eq 2 . 3 .4) for each mole of zinc. For eq 2 .7 .7 we assume only reaction 1 
(equation 2 . 3 .2) is operative and equate the gradient of oxygen at x=0 to the flux of oxygen 

due to the corrosion reaction/z/ . 

2.8 DISCUSSION OF DIFFUSION AND ADSORPTION EQUATIONS 

In general, the diffusion coefficients D are functions of the local diffusant 

concentrations (Fava, 1 980), and in more sophisticated formulations of diffusion 

theory may be multicomponent, have geometric dependence and be functions of 

other state variables describing the paint film (Cussler, 1 976; Shi and Vincent, 

1 993) . Similarly, in formulations involving activity coefficients, the i' may be 

taken as functions of local diffusant concentrations and other variables. 

Some tabulated values of D and r exist (Valenzuela and Myers, 1 989), as do 

some published experimental results (Perera and Heertjes, 1 97 1  a-e; Bode, 

1 990), showing a dependence on concentration. However, if we assume as a first 

approximation that both D and r are constants then expressions 2 .6 . 1 ,  2 .6 .2 and 

2 .6 .7 become 

i7U i72U 
- - D i7t - U iJx2 (2 . 8 . 1 ) 



o OZw 
ot [W + k) Pw ] = Dw 8xz 

o [ ] OZ -;  at -;+ kzPz = Dz 8xz 

in nondimensional form these are 

and 

011 OZ1l - - D -or - ) ox2 

o ( ) OZw 
or w t K)P .... 

= ox2 

°Pw ( 
) or = 86 a6wPr - Pw 

o ( ) OZz 
or z t K2Pz = D2 ox2 

o P: ( 
) or  = 87 a7zPf - P: 
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where x =xiI, r= Dwt112, D, = DulDw, 11 = U/Uo, W = WIWo, Z = ZwWIWoZo = -;IZo, 

,. 12 
L) 1 2  
°6 - D ' 

II' 

lfwe consider primarily the early history of the painted metal surface so that the 

polymer matrix is unaffected by ion any exchange and no zinc corrosion product 

has accumulated, and suppose that only slowly varying functions w(x= I ,  r) on the 

paint film surface are considered then the transport of water through the film 

becomes effectively a Fickian diffusion process where effects of trapping become 



negligible. In a simplified version of the model we might ignore eq 2 .6 .3 and 

write for transport of w 

ow &w 

and eq 2 .6 . 5 becomes 

In general we expect that diffusion will not much limit the entry of water and 

oxygen, so that in a further simplification expressions 2 .7 .6 and 2 .7.7 might be 

approximated by zero gradient conditions on x = 0 when we consider the early 

history of the system (when corrosive fluxes are very small) so 

Ow 
ox = 0  

x=o 

011 

ox = 0 
x=o 

Following this speculation that the paint film does not provide an effective barrier 

to oxygen (or water) we might make a further simplification and suppose that in 

general/z, of expression 2 . 3 . 1 3  dominates and 
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2.8 INITIAL CONDITIONS 

A typical starting point of the model is, at 't = 0: 

11 = 0, ° � x � 1 

w = 0, ° � x  � 1 

Z = 0, ° � x � I 

Zc = 0, x = ° 

mw = 0, mu = 0, mp = 1 

qw = 0, qz = ° 

pw = 0, pz = ° 
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3 MODEL SUMMARY 

Independent variables are taken as: x =xl/ and r = Dwt/ /2 

The dependent variables are defined by: . 11 = VlUo , w = W/Wo , 

z = ZwW/WoZo = �/Zo, Pf = PIPo ,  pw = PwlPo , pz = Pz/Po 

CJr =  P/Po ,  qw = Pw/Po ,  qu = Pu/Po ,  qz = 'Pz/Po ,  qm = PA/PO , 

mf = MIMo ,  mw = MnlMo , mu = Mu/Mo ,  mp = Mp/Mo , Zc = Z/Zco 

Dimensionless parameters are defined by: D, = Du/Dw , D2 = Dz/Dw 

kl Po k2 PO Mo Zo Po Wo _ Po 
KI = Wa , K2 = ---Z;' K3 = Po , K4 = Po ' K = 

ZOk3 ' K6 = 
Zo , K7 ZcO 

'I '3 ,� '7 '9 'I I 'i3 P2Wa al = - ,  a2 = - , a3 = -,  a4 = -,  a � = - ,  a 6 = - ,  a 7 = - , a 8 - P U 1 12 r2 r4 '6 '8 'io '1 2 'I.t I 0 

At x = 0, r > 0 

��w = 81 [al ( l - mp)wmf - m,, ] 

:u = 82 [a2 ( 1 - mp ) lfml - mu ] 
dm ( 

) d: = � a3qjmf - mp 

mp + mw + mu + mj = 1 

dq_ ( 
) d; = 84 a.tzqj - q: 

dqw ( 
) dr 

= � a�wqj - q". 

qm = K3mp 

qw + qz + qm + qf = 1 
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In 0 <x < 1 ,  r >0 

Boundary conditions: 

X = o, r > O 

for z < W, Zc = ° 

for z = w, Zc � 0 

At x = 1 ,  r >  ° 

Initial conditions: 

£711 £1211 - = D 
£7r 

J 
£7X2 

�(W + K P ) =  £12w 
£7r J w 8x2 

pz + Pw + PI = 1 + K4Z 

£711 
£7X x=o 

11 = 1 
w = wo( r) 
z = O  

At r =  0 mw = 0, mu = 0, mp = 1 , qw = 0, qm = 0, q: = 0, 

p .... = 0, p: = 0, 11 = 0, W = 0, Z = 0, Zc = 0 
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NOMENCLATURE 

x 
x = -

I 

Dwt 
' = -2

-
I 

U 
U(X, ,) = 

Uo 

W 
W(X, ,) = -Wo 

x is distance outward from the metal surface through the coating in 

metres and I is the coating thickness. 

Dw is the diffusion coefficient m2s-1 for water and t is time (seconds). 

U is the oxygen concentration in mol m-3 and Uo is the internal 

saturation oxygen content. rJ (I) is the external oxygen concentration 

(taken as atmospheric oxygen, Uo·) and U"(t) is the oxygen 

concentration in the adsorbed layer. 

W is the water concentration in mol m-3 and Wo is the internal saturation 

water content. Wet) is the external water concentration (taken as liquid 

water Wo
·
, or some wetting function Wo

·
(t» and W·

(t) is the 

concentration of water in the adsorbed layer. 

Wo is the internal non dimensional wetting function at x= 1 driven by 

some external wetting function Wo"{t) 

Z .. is the zinc ion (zinc is used in this application but the model may 

readily be adapted to other metals) concentration in mol ratio of 

water (i .e .  relative to the water content of the coating), Zo is the 

saturation zinc ion concentration. Zw
·
(t) is the external concentrat ion of 

zinc ion, which we shall take as zero, and Zo
· is the saturation 

concentration of zinc hydroxide in water. Zw··(t) is the concentration of 

zinc ion in the adsorbed layer, and Zo·· is the saturation value. 

Ze is the solid zinc corrosion product (initially zinc Hydroxide) at the 

coating-metal interface in mol m-2 Zeo is an arbitrary reference 

concentration in mol m-2 intended to represent a state of light corrosion. 
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Dw , Du , Dz Diffusion coefficients for water, oxygen, and zinc ion respectively m2 S-I .  

PI is the concentration of free (unassociated) polymer functional groups 

in mol m-3 and Po is the total concentration of polymer functional groups. 

Pw is the concentration of polymer functional groups associated with 

water in mol m-3 

Pz is the concentration of polymer functional groups associated with 

zinc ions in mol m-3 . 

PI is the concentration of free polymer functional groups on the metal 

surface in mol m-2 and Po is the total surface concentration of free 

polymer functional groups. 

( ) f1v Pw is the surface concentration of polymer functional groups associated 
q 

... 
r = 

Pro with water in mol m-2 . 

'P. Pz is the surface concentration of polymer functional groups associated 
q_ ( r) = .-L � Pro with zinc ions in mol m-2 . 

q ( r) = PM PM is the surface concentration of polymer functional groups associated 
m Pro with metal active sites on the metal surface in mol m-2. 

m ( r) = M F MF is the surface concentration of free (unassociated) metal active sites 
f Mo on the metal in mol m-2 and Mo is the total concentration of metal active 

sites. 

Mw Mw is the surface concentration of metal active sites associated with m ( r) = -W 
Mo water on the metal in mol m-2 . 

( Mu Mu is the surface concentration of metal active sites associated with m r) = -U M o oxygen on the metal in mol m-2 
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( M w Mw is the surface concentration of metal active sites associated with m r) = -W Mo water on the metal in mol m-2 . 

( M p Mp is the surface concentration of metal active sites associated with m r) = -P Mo polymer functional groups on the metal in mol m-2 . 

Table of parameters : 
al=1 06 81= 1 07 

a2= 1 03 �= 1 07 

a3= 1 . 67x  1 06 �=6x l 04 
a4= 1 05 84= 1 05 
as= I . 7x l O-2 85=6x l 01 l 

£16= 1 . 7x l O-2 86=6x l 01 1 

a7= 1 05 (h= 1 05 

as=8. 9x 1 0-2 

Table of constants : 
r,= 1 0 10 rr= 1 07 

1'2= 1 04 rs= I 02 
1'3= 1 07 1'r l 07 
1'4= 1 04 rJo=6x 1 OS 
1"5= 1 OS 1"1 /= 1 0  7 

r?60 rl2=6x 1 OS 

PJ=9.6x l 0- 1 1  P2=5 .4x l 0- 17 

k,= 1 0-7 1= 1 0-4 m 

Table 1 
¢1=2. 7x l O-3 Kl= 1 . 8 x  1 0-2 
¢2=9 .5  K2= 1 05 
�= 1 0  K3=8. 5 x l O-2 

¢4=27 14= 1 0-5 

¢s= l OS Ks=2x 1 Os 

K6=5.6x l 06 
K7=2x l 0-2 

Table 2 
1'/3= 1 0 7 

1'14= 1 02 
Po=2x 1 0-4 mol m-2 

Mo= 1 .  7x 1 0-5 mol m-2 

Wo·=5 .6x 1 04 mol m-3 

Uo'=8 mol m-3 

kJ=l 

D)=1  

D2= 1 0-4 

Z '  1 0-2 I -3 0 = mo m 

Zco= 1 0-2 mol m-2 

po= 1 03 mol m-3 
D - 1 0- 1 1 2 - 1 I.r m s 

D - 1 0- 1 1 2 - 1 n- m s 

Dz= 1 0- 1 5 m2 S- 1  

k]= 1 
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4. REVIEW OF MODEL DEVELOPMENT 

4. 1 PREFACE 

While there was some confusion in the literature as to whether it  was diffusion of 

oxygen, or of water, or of various ions, or some combination that was most 

important, the common feature of all models and theories was that diffusion was 

the controlling factor in corrosion protection provided by coatings. It was 

unknown whether or not trapping and absorption within the film had much effect 

on diffusive processes in paint films, but it was well known, for example, that this 

process has a dramatic effect on diffusion of hydrogen in steel (McNabb and 

Foster, 1 963) .  There has been speculation that boundary layer effects might also 

account for some of the observed protective action of coatings, but again the 

evidence was largely speculative and limited to particular coatings or experimental 

methods (eg Rosen and Martin, 1 99 1 ) .  

Following this background only diffusion was considered i n  the initial development 

of the model . The paint film was modelled as a thin slab with specified 

concentrations of water, oxygen, and metal corrosion products (eg. zinc hydroxide 

etc) at the outer boundary. The boundary conditions at the metal surface posed 

some difficulty. We quickly eliminated simple diffusion with zero gradient 

conditions because if this applied the concentrations of water and oxygen within 

the film should reach saturation in times of order 1 hour. The metal substrate 

should corrode freely as concentrations of water and oxygen approached the levels 

of the external environment . 

Possibly diffusion of water or oxygen was rate limiting. If this were the case some 

gradient must exist within the paint film and be related to the diffusion coefficient 

of water or oxygen. It seemed that diffusion of oxygen might be rate limiting in 

some special cases (polymers with very small diffusion coefficients) but this 

couldn't be a general explanation. Many coatings with relative large diffusion 
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coefficients are known to effectively inhibit corrosion, and diffusion in these cases 

cannot explain the observed low corrosion rates. 

A succession of increasingly complex diffusion models was considered. Properties 

such as boundary layers, trapping, and discontinuous activity functions were 

modelled. Eventually it was concluded that none of these diffusion models was 

capable of describing the general corrosion protective action of paint films. 

However one preliminary model, based on activity step functions, appeared to have 

the potential to provide a general explanation. Development of this model led to 

the concept of competitively adsorbed polymer competing for adsorption onto 

corrosively active sites on the metal surface. 

Preliminary analysis of the diffusion-adsorption type of model confirmed that it 

could potentially account for the corrosion protection of paint films observed in 

practice. The model was developed further and reformulated several times. A 

major revision and re-derivation was made following a reformulation of the 

estimated and calculated parameters. 

4.2 OXYGEN DIFFUSION RATE LIMITING 

We supposed that oxygen diffusion is rate limiting. The flux of oxygen is 

au Fu = -Du &- = 8 X 1 0-7 mol 05- 1 m-1 

where we use Ua = 8 mol m-3, Du = 1 0-1 1  m2 S-l and suppose the film thickness is 

1 0-4 m .  

Assuming that the dominant corrosion reaction is 

Zn + H20 + lh02 � Zn(OH)2 

then the rate of corrosion is 

4x 1 0-7 mol S-1 m-2 = 3 x I 0-5 g S- l m-2 = O. I mm per year. 

This rate of corrosion is physically possible but it corresponds to about 1 0% of the 

maximum possible rate of corrosion of bare metal immersed in oxygenated water. 
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While this represents some protective action it does not account for protection 

provided by the majority of coatings (which have diffusion constants around the 

value used in this calculation) . 

In practice many coatings achieve a useful service lifetime of several years which 

requires that the rate of corrosion be less than 1 0-7 g S- I m-2 . In this case the flux of 

oxygen consumed in the corrosion reaction must be so small that it generates 

negligible gradient which in turn results in oxygen levels at the interface near their 

saturation values. But this would create maximum corrosion. Consequently this 

model can at best apply only to special cases where the diffusion constant is small 

and the coating offers only poor protection. 

4.3 WATER DIFFUSION RATE LIMITING 

We next supposed that diffusion of water was rate determining. The flux of water 

IS 
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oW F;" = -Dw & = 5.6 X 1 0-3 mol S-1 m-2 (4 . 3 . 1 )  

where we use Wo=5 .6x l 04 mol m3, Dw= l O-1 I m2 S·1 and suppose the film thickness as 

before is 1 0-4 m. From this we calculate the flux of corrosion product as 

Fz = 5.6 x 1 0-3 mol m-2 S-1 = 0.36 g m-2 S-1 (4. 3 . 2) 

But this exceeds even the maximum rate of corrosion of uncoated metal so this 

model also cannot generally explain observed corrosion rates. 

4.4 BOUNDARY LAYER RESISTANCE 

Having eliminated the basic diffusion based models from contention as a basis for 

our model of painted metal surfaces we next considered boundary layer resistance 

effects. In this variation of the preceding models we supposed that there were very 

thin layers (less than 1 0-6 m) on either side of the paint film: one at the air interface 



and the other at the paint-metal interface. The diffusion coefficients in these thin 

layers may be one or two orders of magnitude greater than in the bulk paint film. 

Using analogous reasoning to that applied above, and supposing Du= 1 0- 13 l\\'1 s �  

interfacial layer thickness �1 0-6m, and that the two interfacial layers account for 

all the diffusive resistance then 

8 molm-3 F = 1 0-1 3 X = 8 X 1 0-7 mol S-I m-2 u 2 x 1 0-6 
So that the same conclusions as arrived at above apply here: this variation of the 

model is also incapable of accounting for general corrosion behaviour of painted 

metal surfaces. 

4.5 ACTIVITY STEP FUNCTIONS 

Next we considered thermodynamic potentials and began development of a two 

stage paint film. The bulk of the paint film was modelled along the lines described 

above and we included trapping of some species to account for diffusive delays on 

short time scales. We supposed that there was an interfacial layer between the 

paint film and the metal surface where the polymer was adsorbed onto the metal 

surface. From reports in the literature we recognised that this relatively thin 

interfacial layer could have physical properties quite different from the bulk film; 

Tang and Song ( 1 993) and Nguyen et al . ( 1 994). When strongly adherent the 

adsorbed layer may act as a crystalline solid where the thermodynamic activity 

coefficients of water and oxygen may be much larger than in the bulk paint film. 

As the thermodynamic potentials are generally in equilibrium between paint film 

and adsorbed layer, the discontinuity in activity coefficients could lead to 

discontinuities in physical concentrations (mol m-3) of water and oxygen. It was 

realised that physical concentrations of water and oxygen could be sufficiently low 

in a crystalline polymer structure to account for the observed corrosion rates of 

coated metal surfaces. Even when the bulk paint film had reached saturation in 

oxygen and water, the adsorbed polymer layer could maintain lower physical 
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concentrations on the metal surface - providing that the adsorbed layer remained 

tightly adherent and substantially crystalline. 

It was found experimentally that an initially crystalline adsorbed layer will degrade 

upon exposure to water and corrosion product. The experimental manifestation of 

this degradation is loss of adhesion, blistering, accumulation of corrosion product, 

and changes in polymer conformation. Accompanying degradation are changes in 

activity coefficients. 

Initial attempts to calculate and model the activity coefficients in the adsorbed layer 

proved problematic and led to a profusion of variables, constants and equations. 

To simplify the model we supposed that the activity coefficients might be 

approximated by step functions which took initially some large constant value, and 

then at some critical state in the adsorbed layer's evolution, would swing to values 

near 1 to represent the degraded layer. The problem was to determine at which 

point in the system's  evolution the activity coefficients changed from one value to 

the other. The initial values corresponded to extremely low rates of corrosion 

(metal effectively protected by a paint film), while the subsequent value 

corresponded to high rates of corrosion with minimal protection of the metal 

surface (comparable to the situation in 4 .2  above). 

We then explored various models of activity coefficients but found that great 

complexity resulted from even the simplest models and additionally the physical 

basis for these models was difficult to substantiate. The step function concept 

remained attractive and further work was done on trying to derive a plausible step 

time from the state of existing variables. The best measure seemed to be the 

concentration or quantity of corrosion product accumulated. When the 

concentration of corrosion product reached some critical value we set the step 

functions to their alternative values. The problem remaining was that we could not 

readily justify the model. We could choose step conditions which produced the 

sorts of time scales for corrosion that were expected from experiment but there 

was an element of having externally fixed the result by the choice of step 
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conditions. The worry was that the model did not itself produce a mechanism to 

determine the step time and step condition. 

4.6 COMPETITIVE ADSORPTION 

Our initial research had shown that in steady state conditions (such as immersion) 

diffusion was not the corrosion rate limiting mechanism. Diffusion times through 

paint films are usually in the range of one minute to one hour. Consequently 

trapping effects and diffusive time lags in non-linear diffusion will only have 

significant effect on these relatively short time scales. Painted metal surfaces 

typically display resistance to corrosion on time scales of days to years. In 

intermittent wetting the periods of wetness are generally longer than one hour, yet 

the rate of corrosion is typically kept at very low values even when the film is 

saturated with water and oxygen. 

Experiments have been conducted on steel coupons enclosed in free standing, non 

adherent, paint film pockets which were stored in a humidity chamber and 

subsequently tested for corrosion; �osen and Martin ( 1 99 1 ), and unpublished 

Resene Paints Ltd experimental result� More corrosion was found to occur with 

detached films than with adherent films where the coupons are painted directly. 

One explanation for these results depends on the polymer layer adjacent to the 

metal surface being crystalline. When adsorbed onto the rigid metal surface, 

normally mobile polymer molecules become "frozen" and exhibit significantly 

different physical properties compared to polymer in the bulk paint film. Leger et 

al ( 1 992) showed that polymers in an adsorbed layer on a solid surface were 

significantly slowed down compared to polymer molecules in the surrounding 

solution. Thermodynamic activity coefficients in crystalline solids are typically 

greater than in solutions or rubbery-amorphous polymers. Consequently it is 

arguable that concentrations of reactive molecules in a crystalline layer immediately 

adjacent to a metal surface may be substantially lower than the concentrations in 
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the adjoining bulk polymer (refer Figure 2). Lower concentrations of reactants at 

the metal surface will directly lower the rate of corrosion, reduce the ionic 

conductivity of the layer adsorbed onto the metal; and lower initial corrosion rates 

will reduce the rate of degradation of the adsorbed crystalline layer and prolong the 

systems time in a low corrosion regime. 

A second (related) explanation arises from a novel conception of a metal surface. 

Traditionally it is conceived that a plane metal surface is more or less uniformly 

reactive to corrosively active species. In an attempt to account for the observed 

distribution of corrosion cells and pits in real corroding metal surfaces we 

proposed that the metal surface was not uniformly reactive. Instead we envisaged 

the surface composed of a more or less random distribution of discrete highly 

reactive sites of roughly atomic dimensions. In fact the size and degree of 

reactivity are almost certainly not constants but distributions which are 

characteristic of each particular piece of metal. We assumed as a first approach 

that we could describe a corrosively active surface as randomly scattered ' mean 

activity' ' mean size' active sites. When corrosion occurs it is believed to occur at 

an active site while the adjacent surface is passive. The passivity of the 

surrounding surface is speculated to arise from both inherent low reactivity, and 

from a shielding effect produced by intense activity at a nearby active site. This 

shielding is supposed to occur through diffusive depletion of corrosively active 

species in the vicinity of an active site, and possibly also through changes in the 

local electric potentials due to electrochemical processes at the active site. We 

speculated that the surfaces atomic topography (impurities, grain boundaries, 

dislocations, etc . )  would govern a location's activity. Crommie et al . ( 1 993) 

suggest some insight into the possible origins of active sites. 

During the course of research into waterborne metal primers at Resene Paints 

Limited it was noticed in 1 989 that freshly painted metal surfaces (mild steel, 

Aluminium and galvanised steel) exhibited unusual activity at discrek sites. 

Polymer was found to adsorb rapidly at specific sites on particular pieces of metal. 

When the process was interrupted before complete film formation had occurred, 
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and the panel gently cleaned, it was found that discrete, localised, areas of 

adsorbed polymer remained. When the panels were cured and recoated it was 

found that very little further activity remained. We hypothesised first that the 

original active sites corresponded to corrosively active sites. Second we 

hypothesised that the presence of bound (adsorbed) polymer on and around the 

active site inhibited ionic conduction and corrosion at the metal-polymer interface. 

Additionally we expect the strongly adsorbed polymer to possess significant 

crystallinity which results in low concentrations of reactants (water and oxygen) in 

contact with the metal active site. When the treated panels were subjected to more 

severe cleaning (scraping and scrubbing) it was found that a) more activity 

remained and b) additional sites appeared. We speculated from this that layers of 

adsorbed polymer could be physically removed, and that mechanical damage and 

change to the metal surface could alter reactivity. 

From these observations (and the failure to otherwise explain observed corrosion 

rates) we formed the concept of competitive adsorption onto corrosively active 

sites. Basically, when polymer is adsorbed onto an active site, the site is passivated 

and inactivated. But when the site is unprotected by adsorbed polymer it i s  

corrosively active. The competition equations were set up on the principles of 

multicomponent Langmuir adsorption isotherms. Initially we considered multilayer 

multicomponent adsorption. Multiple layers of water readily form on bare metal 

surfaces and adsorption isotherms are well documented . However little is reported 

concerning the adsorption isotherms of water etc. where it competes for adsorption 

with other species and in the presence of adsorbed polymer. We expect that up to 

the onset of rapid corrosion the metal surface is dominated by adsorbed polymer 

and hence there must be less than a mono-layer of adsorbed water. In the region 

of interest an assumption of single layers of adsorbed species should be 

satisfactory . 

To account for the effects of the adsorbed layer's  crystallinity on the 

thermodynamic activities of water and oxygen within the layer we made two 

assumptions. First that water and oxygen inside the layer were in thermodynamic 
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equilibrium with concentrations outside the layer. This is reasonable providing the 

bulk paint film effectively dominates the diffusion behaviour of the system, and that 

the adsorbed layer is thin so that it 's physical capacity is small compared to that of 

the adjacent paint film and metal surface. Secondly we supposed that the layer's  

crystallinity was related to the value of Mp (the quantity of metal surface covered 

by adsorbed polymer). When Mp is large the crystallinity is also high, and the 

volume concentrations of water and oxygen are smaller than those in equilibrium 

outside the layer. We modelled this as 

Where W· and U" are the molar volume concentrations of water and oxygen 

inside the adsorbed layer and W and U are the concentrations outside the layer, and 

Mo is the total metal adsorption capacity. We selected this model over other 

variations because it displayed two desirable features. When polymer adsorption 

approaches Mo we expect maximal crystallinity, and W· and U· should become 

smaller than W and U. When Mp becomes small W· and U·· should approach the 

values for W and U. 

4.7 CORROSION FLUX FORMULATION 

The original aim was to calculate electrochemical processes directly and model 

the corrosion flux on electrochemical current density. From the corrosion 

reaction equations (eq 2 . 3 .2, 2 . 3 .4) and tables of standard electrode potentials we 

calculated an electrochemical potential for the corrosion cell depicted infigllre 6. 
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Then using the Nernst equation 

(4 .7 . 1 )  

and Butler-Volmer equation 

.+ ( M ) . +{ r -z+a7]Fl  r zJ l - a)7]Fll J � ,net = Je eXIt 
RT J- ex1 RT Jf 

(Atkins, Physical Chemistry, 1 978) we calculated current densities for the 

corrosion reaction related to the concentrations of the reactants. This is a common 

approach for electrodes in solution. But in the case of a painted metal surface the 

presence of the adsorbed polymer added a complication which seemed difficult to 

deal with. Specifically, adherent polymer added a resistance component to the 

electrochemical calculations. As discussed above there were difficulties and 

(4 .7 .2) 

uncertainties in determining what the physical concentrations of water and oxygen 

were at the metal surface under an adsorbed polymer layer, particularly in the 

systems' early life when water concentrations were surmised to be low. With the 

electrochemical calculations the additional uncertainties of accounting for the effect 

of surface resistance in the adsorbed layer seemed insurmountable. The resistance 

presumably varies with water and dissolved ion content, and concentration of 

corrosion product; we expected also that the resistance would vary with the 

proportion of polymer remaining adherent as corrosion progressed . Some models 

were constructed but they could not be satisfactorily justified . 

Next we reviewed the literature on modelling of corrosion fluxes. From a selection 

of sources - Spence ( 1 992), Ailor ( 1 982), Chilton ( 1 969), Evans ( 1 950) we found 

only empirical approaches which were based typically on either linear models 

(constant corrosion rate) or Poisson models (logarithmic corrosion rate) . The 

main aim of the reported models was to predict corrosion rates for various 

exposure conditions of bare metal surface. 



Finally a direct chemical kinetics approach was attempted. Basic chemical 

reactions were written (for example eqns. 2 . 3 .2 , 2 . 3 .4) and from the molecular 

ratios of reactants we derived a series of chemical rate equations. Using these rate 

equations we could relate rates of corrosion to physical concentrations of reactants 

on the metal surface (ie. in the adsorbed polymer layer). Additionally we could 

relate these rates of corrosion to fluxes of reactants consumed in the corrosion 

reaction. It still remained to determine what the physical concentrations were but 

we could demonstrate reasonable agreement with calculated corrosion rates and 

available published and experimental information. 

4.8 CORROSION RATE EQUATIONS 

Initially we formulated the corrosion rate equations as a system of ordinary 

differential equations which attempted to account independently for the rates of 

formation and removal of every species present (Zn++, Zn(OHt, Off, O2, H20, H2, 

H+, C03-, etc . ) .  This led to some dubious assumptions and it was realised that we 

did not have sufficient information available to create a model on this level. The 

specific details of atomic reactions and molecular processes involved in the 

corrosion process were not sufficiently well understood - or even known. 

Eventually we adopted a more pragmatic approach to the treatment of reaction 

rates and formulated rate equations based on the overall chemical reactions (Frost 

and Pearson, 1 960) . In general there is no guarantee that this will yield the correct 

form of rate equation; however some justification is found when the theoretical 

rates agree reasonably well with the reported rates at various concentrations of 

reactants. While we do not know what the detailed atomic and molecular steps in 

the corrosion process are, the agreement found with this rate model indicates it is a 

satisfactory starting point .  One of the desirable features of directly modelling the 

corrosion reaction kinetics is that we relate corrosion flux directly to physical 

concentrations of reactants in the ( crystalline) adsorbed layer. 
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One assumption made was that the pH at the interface remained constant . Some 

stretching of the concept of pH is required: In a solution pH has obvious meaning; 

but in surface systems which are substantially solid state (adsorbed polymer) the 

notion of pH applies only to the extent that water is present . After some trial and 

error we adopted a system where pH is calculated on a scale based on the physical 

concentration of water. 

4.9 BOUNDARY CONDITIONS 

Various boundary conditions have been used during the course of development . 

The outer boundary has generally been set at specified fixed concentrations or 

specified functions of time. The intention is to ultimately specify external 

concentrations as functions of time which represent mean weather conditions and 

times of wetness found in real atmospheric exposures. 

The metal-paint film boundary was originally set with gradient conditions. First we 

used zero gradient conditions for water and oxygen; then for zinc various fixed 

concentrations and later flux conservation equations. When a two layer paint film 

model was adopted the governing equations for the layer adjacent to the metal 

became ordinary differential equations, and the focus on boundary conditions 

moved to the interface between the adsorbed layer and the bulk paint film. 

Boundary conditions between the bulk paint film and adsorbed layer have mostly 

been gradient types based on conservation of water, oxygen and corroding species 

(zinc) molecules. We assumed that the adsorbed layer did not have significant 

capacitance and that fluxes of water and oxygen across the boundary were related 

to their consumption in the corrosion reaction based on equations 2 . 3 . 2  and 2 .3 .4 .  

The form of the flux equations has varied as  the modelling of the corrosion flux has 

developed . Ultimately rather awkward boundary equations have developed in an 
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attempt to better account for physical processes. It is likely however that simpler 

conditions (eg. zero gradients for water and oxygen) will be found to provide 

satisfactory approximations for certain stages of the modelled systems evolution. 

It is anticipated that the numerical solutions of the model will confirm this and 

allow simplifications which will aid the analytical analysis of the model . The case 

for the zinc boundary conditions is more complex since zinc corrosion product is 

generated on the metal surface and a gradient condition including a source term 

seems natural . There is however a possibility that the zinc corrosion product 

concentration rapidly rises to saturation on the metal surface. In which case 

further simplification could be made. Some analytical work was done on this (see 

later) and again it is anticipated that the numerical calculations will help clarify the 

type of boundary condition required, and the conditions under which they apply. 

4 . 10  PARAMETER ESTIMATION 

Estimation of parameters has been particularly difficult. In the early stages of 

model development the qualitative behaviour of the model was sufficient to 

determine that a particular model could not account for observed paint film 

behaviour. The parameters were of secondary importance, and their approximate 

values were easily accessible from the literature and from experiment . 

The model has progressed through a number of generations in the pursuit of model 

behaviour which agrees with experimental observation. Parts of the model have 

remained substantially intact from the first stages along with associated parameters 

ego Diffusion equations and coefficients. In developing the model to describe 

competitive adsorption we found that relevant experimental data was very hard to 

come by and at best only comparative data was available. 
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In the construction of the competitive adsorption portion of the model we have 

used parameter concepts such as rates of adsorption and desorption in a semi solid 

state system. While these have an immediate physical and conceptual significance 

they are not readily amenable to experimental determination and measurement . 

The parameters involved in the corrosion flux equations have similarly been 

difficult to quantify. But reported experimental corrosion rates under various 

conditions have allowed parameters to be estimated for the corrosion equations we 

derived. Where reported or experimental data has not been available we have 

resorted to estimation from physical principles. These parameters in particular 

require further experimental investigation. Further, it is believed that variation of 

the parameters through optimisation of polymer and paint film physical properties 

will allow improvement in paint film performance over metal surfaces. 

4.1 1 CORROSION PRODUCT SATURATION ON THE METAL SURFACE 

It was believed from an early stage that the time for corrosion product to reach 

saturation on the painted metal surface must represent a significant milestone in the 

model 's  (and the painted metal surface's) evolution. We reasoned that if the levels 

of corrosion product remained low on the metal surface then they must also remain 

low throughout the entire paint film. The diffusion coefficient for corrosion 

product is typically small and we deduced that the rate of corrosion must also 

remain low while concentrations throughout the film were low. A corollary is that 

the time for corrosion product to reach saturation serves as a measure of the paint 

film's performance: the longer it takes for saturation to occur the "better" the 

paint film. While a painted surface may still perform satisfactorily with corrosion 

product at saturation on the metal surface we expect that low corrosion product 

levels guarantee good performance. Consequently we looked for surface 
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saturation times and hoped to demonstrate that the model could accommodate 
saturation times ranging from seconds to months. 

At an intermediate stage in the model 's development we determined the time for 
corrosion product saturation as follows: 

Exploratory Model equations: 

Note that the nomenclature, variables and parameters used in this section are not 
exactly the same as those derived earlier, and then analysed later. 

O<x<l 
oU iJU - - D 
ol - u (}x2 

� (W + �v) = DIV iJ� vI (}x 

( x > 0. PAl = 0) 

1=0: U = 0. W = 0. Z = 0. R" = 0. Pz = 0. Mu = 0. 
Air" = 0. Mp = Mpo ::::: 1 

1>0, x=/: 

1>0, x=O: 

U = L W = f(t)  = 1 .  Z = ° 

OU 
Du (}x = O. lMuMw 

x = o  

oW 
Dw (}x 

= 0. 1  MuMw 
x = o 
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for 2 < 1 

At x=O, (>0: 

Mu + Mw + Mp + MJ = 1 

PM = 17 Mp 

We have omitted activity coefficients and the derivation of this preliminary version 
of the model . Equation 4 . 1 1 . 9  is shown in simplified form; in the original version 
of the model we considered that the equation took one of two forms depending 
upon the value of Z. For 2= 1 we used an alternate form of eq 4 . 1 1 . 9 and 
introduced another variable to describe the thickness of an accumulated corrosion 
product layer at x=o between the metal surface and the adsorbed layer of paint 
film. A number of constants and parameters have been omitted or absorbed into 
simplified parameters, approximated, or omitted altogether. 

Non-dimensionalised formulation: 
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(4. 1 1 . 9) 

(4. 1 1 . 1 0) 

(4 . 1 1 . 1 1 ) 

(4 . 1 1 . 1 2) 

(4 . 1 1 . 1 3 ) 

(4 . 1 1 . 1 4) 

Set r = 1 0-7 t and x = 1 04x. We will use original estimates of parameters, and where 
appropriate adapt the current estimates of parameters to this earlier version of the 
model . In the process some weak links of definition and derivation will arise, but 
we believe this exercise demonstrates a useful conclusion derived from the model 
during the process of its formulation. We use the following parameter estimates 



(which in some cases differ dimensionally and quantitatively from those derived 
later): 

D - 1 0- 1 1  2 - 1 
u - m s 

Drv = 1 0-1 1  m2 S-I  

Dz = 1 0-1 5 m2 S-1 

1 =  1 0-4 m 

77 = 1 0-2 

Table 3 
rl = 1 0  7 
r2 = 1 08 

r3 = 1 07 
r4 = 1 04 

I' = 1 08 
7 

4 0U 0 2U 
1 0- - = --

or ox2 

o 0 2W 1 0-4 or (W + �v) = ox2 

o 0 2Z 
or (Z + Pz) =  o x2 

o�v 1 0- 16 -- = 1 O-2 W�. - �I' Or 
oP l O-1 1 __ z = 1 03 ZP - P or f z 

oU  
= 1 06 Mu Mw o x  .<=0 

oW 
= 1 06 Mu MII' ox =0 

oZ 
= 1 01 1 Mu Mw oX X;O 

1 0-3 dMw = 1 0 1 2 WMf - Mw dr 
dM 1 0-3 __ u = 1 09 UM . - M dr J u 

r� = 1 0  -4 

r'l = 1 0  5 

rIO = 1 0-4 

rl l  = 1 08 

1'12 = 1 0-7 

7 1  

(4 . 1 1 . 1 5) 

( 4. 1 1 . 1 6) 

( 4. 1 1 . 1 7) 

(4 . 1 1 . 1 8) 

(4 . 1 1 . 1 9) 

(4 . 1 1 . 20) 

(4. 1 1 . 2 1 )  

(4. 1 1 . 22) 

(4. 1 1 . 23 )  

( 4 . 1 1 . 24) 



d!vfp = 1 015 P M  - M 
dr f f p 

Mu + Mw + Mp +Mf = 1 

PM + Pw + ?z + Pf = 1 

PM = 1] Mp 

Model Approximation: 

Next we produced an approximation of the model . From eqns 4 . 1 1 . 1 5  and . 1 6  we 
deduced that U and W obey constant gradient conditions. Equations 4 .  1 1 . 1 8, 1 9, 
23, and 24 are assumed to be approximated by algebraic expressions. We suppose 
that equation 4. 1 1 .25  is the 'governing equation' on the basis that estimates of the 
derivative magnitude indicate d!vfp/dr is typically greater than the other derivatives. 

from eq 4 . 1 l . 26 

and 

from eq 4 . 1 1 . 25 

from eq 4 . 1 1 . 27 

and 

�v = 1 0-2 Pf 
Pz = 1 03 ZPf 

Mil' = 1 01 2 1fJ\1f = 1 01 2 Mf 

Mu = 1 09UMf = 1 09 Mf 

( 1 012 + 1 09 + I)Mf = 1 - Mp 

Mf ::::: 1 O- 1 2 ( 1 - Mp) 
dMp 3 ( ) ---;;-;- = 1 0 Pf I - Mp - Mp 

( 1  + 1 0-2 + 103 z) Pf = 1 - 1] M p 

dMp _ 
dr 

1 - 1] M P = p 
f 1.0 1 + 1 03Z  
1 03 ( 1 - M p )( 1 - 1] M p ) 

1 .0 1 - 1 03 Z  - M p 
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(4 . 1 1 . 25)  

(4. 1 1 . 26) 

(4. 1 1 .27) 

(4. 1 1 . 28) 

(4. 1 1 . 29) 

(4 . 1 1 . 30) 

(4 . 1 1 . 3 1 )  

(4 . 1 1 . 32) 

(4 . 1 1 . 33 )  

( 4. 1 1 . 34) 

(4. 1 1 . 3 5 ) 

(4 . 1 1 . 36) 

(4 . 1 1 . 3 7) 

(4. 1 1 . 3 8) 



from eq 4. 1 1 . 22 
8Z 

8x x=o 
= 1 01 1 M M - 108 (I _ M )2 U W - P 

Write 1 -Mp = e and suppose e «  1 0-3 then 

dMp de 1 03 (0.99 + 1]e)e -- = - - =  + e - l  dr dr 1 03 Z + 1 

To a first approximation, and assuming 1] « 1 ,  
de 

=> 

and 

- = 1 dr 
I - Mp = r 

8Z 

ox x=o 

from eqns 4. 1 1 . 30 and 37 

from eq 4. 1 1 . 1 7 

1 03 Z( 1 - 1] M p ) Z 

Pz = 1 .0 1 +  1 03 Z ::::: -Z-+-1-0--3 

8 8 ( Z ) �Z - (Z + p ) = - Z +  = -Or z Or Z + 1 0-3 ox2 

Equations 4 . 1 1 .43 and 45 together with Z(x= l )  = 0 form an approximation of 
the model on scales of t = 1 07 s and x = 1 0-4 m: 

c ( Z ) �Z 
- Z + - -

Or Z + 1 0-3 - ox2 

oZ 

ox .<=0 

Z(x = 1 ) = 0 
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( 4. 1 1 . 39) 

(4 . 1 1 .40) 

(4 . 1 1 .4 1 )  

(4. 1 1 .42) 

(4 . 1 1 .43) 

(4. 1 1 .44) 

(4 . 1 1 . 45) 

( 4. 1 1 . 46) 

(4. 1 1 .47) 

(4 . 1 1 .48) 



Corrosion Saturation Times:  

Our aim is to find an expression for Z at  x=0 and determine the time required for 
Z to rise from zero to unity (saturation) . Two cases are of immediate interest : 
First where Z < 1 0-3 and we look for the time for Z to reach 1 0-3, and second 
where Z >  1 0-3 and we look for the time for Z to reach 1 (saturation). 

Case 1 :  Z < 1 0-3 

put a1- = Z ,  f3y = x ,  yt = " and s = 1 0-3 

oZ a 01- as iJ1-
- - - - - - --Or - Y ot - /32 oy2 

oZ a 01 8 2 2 - - = - -- = 1 0 y t  
ox /3 oy 

Set y =  1 ,  then /3 =  ElI2 = 1 0-312 and a = 1 08/3 gIvmg 

where we use a modified condition of l' = 0 as y � 00. 

Setting () = y/'Vl and 1 = t512V( B) we find a similarity solution: 

1 5 
v" + - () v ' - - v = O  2 2 

v ' (O) = - } 
v(oo) = 0 

We wish to find v(O). Using Laplace Transforms eq 4 . 1 1 . 53 becomes 
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(4. 1 1 .49) 

(4. 1 l . 50) 

(4. 1 1 . 5 1 )  

(4. 1 l . 52) 

(4. 1 1 . 53 )  

(4. 1 1 . 54) 
(4 . 1 l . 55)  



with integrating factor 

and 

and 

and 

Jp 6 - 2 1 ,  _ 2 5 2 1 5  2 1 5  .-1 ) q e q dq = - - p e P - -p3e-P --pe-P - -5 erF,p 
00 2 4 8 1 6  

C = 0 in eq 4 .  1 1 .  58 .  

( )  { I  5 15 1 5J1i eP2 } { I  2 2 } 
v P = vo - + -2 3 + -4 , + 6 eljc(p) - -2 + -� + -6 p p p 8p P P P 

( )  { 5y2 5y4 1 5J1i L- l (ep2 erfc(p)J} ( y3 Y') v y  = v 1 + - + - +-- - y + - + -
o 4 32 8 p6 3 60 { 5y2 5y4 1 5  (y' Y2 ) } ( y3 /) v(y) = v 1 + - + - + - - * e-T - y + - + -o 4 32 8 5! 3 60 

�� * e-r: = �! {y' 5 erf(f) - 1 0y4 (1 - e-�) - 1 O(2ye-� - 2# et!(f))y3 
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(4. 1 1 . 56) 

(4. 1 1 . 57) 

(4. 1 1 . 58) 

(4. 1 1 . 59) 

( 4. 1 1 . 60) 

(4. 1 1 .6 1 )  

( 4. 1 1 . 62) 

(4. 1 1 .63) 

(4 . 1 1 . 64) 

+ 1 O[(2y2 + 8)e-� - 8 �2 - 5[(2/ 1 2y)e-� - 1 2# erf(f)] (4. 1 1 . 3 5) 

_ [_ 2y4 + 1 6y2 + 64]e-X: - 64} 

As Y � 00 ,  v(y) � 0 provided 

v y3 / 
6� 5 (/ + 20y3 + 60Y) = Y + 3 + 60 (4. 1 1 . 67) 



and 

At x = O  

2 ( 9y2 y4) 1 6  ( y3 i) v(y) = e-li 1 + - + - -- - er/c(l...) y + - + -1 6  3 2  I SJ7i 2 3 60 

Il Il � 1 6  
Z = l OT l' = l OT ( I'  -

I SJ7i 
Therefore time for Z to reach 1 0-3 i s  

1 3  1 55 "l' ( 2 
t = 1 0-3 · 1 0-T • �) = (5.25) i  = 1.9 x 1 0-4 

T = 1 .9x l 03 seconds = 30 minutes. 

Case 2: Z >  10-3 

put a1' = Z :::::> a = 1 08 and 

with similarity solution as before. 

At x = O  8 8 � 1 6  . Z = 1 0  l' = l O t - -- and time for Z to reach 1 IS 
1 55 

( 8 I S5)� oj 
t =  1 . 1 0 . � = 7.7 x l 0-

T = 7 .7 X 1 03 seconds = 2 hours. 
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(4. 1 1 . 68) 

(4. 1 1 . 69) 

(4. 1 1 . 70) 

(4. 1 1 . 7 1 )  

(4. 1 1 . 72) 

(4. 1 1 . 73 ) 

(4 . 1 1 . 74) 



We deduce from these results that, under these conditions, corrosion product 
reaches saturation at the metal-paint film interface in relatively short time. 

Ricatti Equation: 

Next we return to equation 4 . 1 1 . 38 and employ the result found above that 
Z � 1 ;  so that we obtain a Ricatti equation: 

�p = 0.99( 1 - M p )( I - 1JM p ) - M p 
= ao + a)Mp + a2M/ 
= a2M/ - a2 ( pt + pJMp + a2 Pt P2 
= a2 (Mp - pt )(Mp - pz ) 

PI = 0. 4965 ;::: 0 . 5  

Suppose that PI = 0 . 5  i s  a particular solution of eq 4 . 1 1 . 75  then a more general 
solution is 

= 

M -I 
P = PI + OJ 

C (P2 -pJea,(� -pl l r + 1 
P2 -PI 

cp (p -P )ea,(P2 -Pi l r  +P M = + OJ-I == I 2 1 2 
P PI 

C(P2 -PI )eU2 (� -pl l r + 1 

At r =  0 Mp =Mpo and 
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(4 . 1 1 .75)  

(4 . 1 1 . 76) 

(4. 1 1 . 77) 

(4. 1 1 . 78) 

(4. 1 1 . 79) 

(4 . 1 1 . 80) 

(4 . 1 1 . 8 1 )  



Mpo � 1 so 

c = 
P2 - Mpo 

( P2 - PI )(Mpo - PI ) 

M = PI (P2 _ 1)eQ2(Pl -Pl ) r + P2 ( 1 - PI ) 
P (P2 _ 1)eQ2<Pl -Pl ) r + ( 1 - PI ) 

To a reasonable approximation c = 2 and 

Mp = 0.5( I + e-2 r ) 

Consequently Mp has a decay time of order r =  0 .5 

T = 5 x 1 06 seconds = 60 days. 

Mean Action Time 

We supposed that a painted metal surface was considered to have failed when a 
substantial portion of the originally adsorbed polymer had become detached .  The 
measure of adsorbed polymer is Mp , where Mp = 1 represents complete coverage 
of the metal surface with adsorbed polymer, and Mp = 0 represents total 
detachment . 

Define the mean action time for a dynamical process fit) as: 

It j (t )dt 
T = --;0..--__ 

If (t)dt o 

(See McNabb and Wake, 1 99 1 )  

From equation 4 . 1 1 . 75 

substitute 

dMp _ -- - a1 ( Mp - PI )(Mp - Pl ) 
d r  

u = Mp - PI 
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(4. l 1 . 82) 

(4. 1 1 . 83 )  

(4. 1 1 . 84) 

(4 . 1 1 . 85) 

(4. 1 1 . 86) 

(4. 1 1 . 87) 



with lI(t=O) = lIO 

Mean Action Time 

so 

fat i, dt 
�Z->t) = 

f
cc 
li dt o 

= 
tul: - fo;' dt 

1 
f
cc 

= - lIdt 
110 0 

1 fcc i, 
= - dt 

110 0 a2 (1I - k) 

1 k 
= -- I n -

a2l/0 k - 110 

T = _l- ln P2 - PI 
( 2->1 ) a 1I P - Po - 11 1 0 1 0 
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(4. 1 l . 88) 

(4. 1 l . 89) 

(4. 1 1 . 90) 

gIVing T = O.5r = 5 x 1 06 seconds 60 days, which is consistent with the result 

obtained from the Ricatti equation. 

Conclusions: 

The results obtained above from equations 4. 1 1 . 1  to 4 . 1 1 . 1 4, and parameter 

values in Table 3, suggested that the model was capable of representing real 



painted metal surfaces. With our original estimates of parameter values we found 

times for failure which corresponded to real life scenarios, and with variations in  

parameter values both shorter and longer times could be accommodated. 

We then reviewed the model formulation and in particular re-derived our 

parameter estimates and reorganised the arguments and assumptions. Following 

this review the definitions of some parameters changed greatly, dimensionality 

changed, associated equations changed, and some values were revised by orders 

of magnitude. Two areas of the model were significantly altered. The equations 

describing the adsorbed layer were expanded to accommodate the effect of 

association between polymer functional groups and either water, corrosion 

product, or the metal surface. The belief is that initially there is typically some 

excess of polymer functional groups which remain unassociated (and provide the 

driving "pressure" for polymer attachment), while a minority associated with 

water molecules or adsorb onto the metal surface. As the corrosion process 

proceeds (slowly at first) there is gradual creation of corrosion product, which is 

taken up by polymer functional groups. Initially this has no significant effect on 

the state of the system, but eventually the polymer becomes saturated and a 

surplus of corrosion product arises. Our hypothesis is that this leads to a rapid 

desorption of polymer from the metal surface and an attendant large increase in 

the rate of generation of corrosion product. 

The other area of revision was in the boundary conditions between the adsorbed 

layer and the bulk paint film. In reviewing the chemical processes involved (as far 

as they are known) we believed a more complex gradient condition was a better 

representation of the physical processes involved. While simpler conditions may 

also be satisfactory approximations, we aim to show that these arise as 

approximations of the general model . 
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5. SPECIAL CASES 

5. 1 INTRODUCTION 

In certain cases the model exhibits steady state, or almost steady state, behaviour. 

While the special cases may not correspond to situations of much physical 

interest, they do allow us to isolate essential elements of the model's behaviour. 

Additionally these steady and quasi-steady states allow calculation of limiting 

values. These values are useful for comparison with numeric calculations, and 

also give us some idea of how quickly certain processes might occur. 

5.2 DRY FILM 

In this case we suppose that water concentration is everywhere zero. The main 

consequence of this is that no corrosion can occur (equations 3 . 2 1  and 3 . 22). 

Additionally certain variables become fixed quantities: 

w=o, mw=O 

We suppose that diffusive equilibrium has been reached within the paint film so 

that concentrations of oxygen are constant : 11= 1 in O<x< 1 

Concentrations of adsorbed species on the metal surface must also be constant. 

In fact we notice that there are only two species competing for adsorption onto 

the metal surface: polymer, as mp (and qp), and oxygen as mil ' 

mp = a3qJmJ = a3(1 - K3mp)mJ 

I - mp = mu + mJ = [a2( 1 - mp) + 1]mJ 

8 1  

(5 .2 . 1 )  

(5 .2 .2) 

(5 .2 . 3 )  

(5 .2 .4) 



a3( 1 - K3mp)( 1 -mp) 
mp = 

( ) 1 + a2 1 - mp 

2 1 + a2 + � (1 + K3) a3 mp - mp + = 0  a2 + a3K3 a2 + a3K3 

mp=O . 999999357= 1 -6.432x 1 0-7, 

From this we see that essentially all the metal surface is covered with adsorbed 

polymer, and that only a small proportion of the surface interacts with oxygen. 

5.3 CORROSIONLESS SUBSTRATE 

/z=0 
and z=0, q;=O, Pz=O, and we suppose u= 1 ,  w= 1 in O<x< l 

We suppose here that the substrate is inert so that no corrosion can occur. In 

equations 3 . 1 9, 3 . 20, 3 .2 1 ,  and 3 .22 the parameters (/>1 ,  ¢2, ¢3, ¢4, and ¢5 are all 

zero, so that the boundary conditions are zero gradient conditions. Consequently 

z(x)=O; and pz=O from eq 3 . 1 7  and q.=O from eq 3 .9 . 

We suppose that water and oxygen have diffused through the film and reached 

equilibrium within the paint film. Additionally we suppose that competitive 

adsorption has reached equilibrium in the adsorbed layer at x=0. 

m.., = a1 ( 1 - mp)mr 

mu = a2 ( I - mp)mr 
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(5 .2 . 5 ) 

(5 .2 . 6) 

(5 .2 . 7) 

(5 . 3 . 1 )  

(5 .3 .2) 

(5 . 3 . 3 )  



1 - mp = m.,., + mu + mf = [a \ ( 1 - mp) + a2 ( 1 - mp) + l]mf 
I - m  p mf = 1 + (a1 + az )( I - mp ) 

a3 ( 1 - K3mp) ( 1 - mp) m = ------'::---......:....:.--'---,--'--'------:--::-p ( 1 + a 5 ) [ 1 + ( a \ + a z )( 1 - m p)] 
a3 ( 1 + KJ + ( 1 + as )( I + a\ + az ) a3 m 2 - m +  = 0  p a ) K3 + ( I + as ) (a\ + aJ p a) K) + ( l + as )(a \  + aJ 

mp=0.999998092=1 - 1 . 908x 1 0-6, m;=6. 557x lO-7, mw= 1 .25x 1 0-6, mu= 1 . 25 x l O-9 

q;=0.897, qw=0 .0 1 79, Pf(.FO)=0.98, pw(x=o)=0.0 1 96 

As with the dry film case we see that effectively all the metal surface is covered 

with adsorbed polymer. We notice however that mu is about three times larger 

and that mw contributes to most of the reduction in mp. 

5.4 CORROSIONLESS SUBSTRATE WITHOUT OXYGEN 

In a variation of the preceding case we suppose that oxygen is everywhere zero, 

and use the same assumptions of equilibrium. 

iz=o, 11=0, mu=O 
and z=0, q:=O, p:=O, and we suppose w= l 
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(5 . 3 .4) 

(5 . 3 . 5) 

( 5 . 3 . 6) 

(5 . 3 . 7) 

(5 . 3 .8) 

( 5 . 3 . 9) 

(5 . 3 . 10) 

(SA. l )  



l - K m 3 p qf = 1 + a , 

I - mp = m..., + mf = [a 1 ( 1 - mp) + 1]mf 
I - m  

m - p 
f - l + al ( l - mp ) 

a3 ( 1 - K3mp) ( 1 - mp) m = p ( 1 + a, ) [ 1 + a1 ( I - mp )] 
a3( 1 + K3 ) + ( 1 + a, )( I + aJ a3 m 2 - m + = 0  p a3K3 + a1 ( 1 + a, ) p a3K3 + a1 ( 1 + a,) 

mp=0.999998095= 1 - 1 .9048 x l 0-6, m.F6.557x l O-7, mw= 1 .249x l O-6 
q.F0. 897, qw=0 .0 1 79, p.F0.98, Pw=0.0 1 96 

The removal of oxygen has little effect on the equilibrium values of adsorbed 

polymer and water. The metal surface remains substantially covered with 

adsorbed polymer. 

5.5 POLYMERLESS SYSTEM 

In this case we suppose that there is  no available polymer for adsorption onto the 

substrate, and no available polymer for interacting with either water molecules or 

zinc corrosion product (either at x=0 or in O<x< 1 ) :  

W e  are particularly interested i n  determining how quickly z rises from zero at 'FO 

to reach saturation at z=1 . To best demonstrate this limiting case we suppose that 
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(5 .4 .2) 

(5 .4 . 3 )  

(5 .4 .4) 

(5 .4 .5) 

(5 .4 .6) 

(5 .4 .7) 

(5 .4 .8) 

(5 .4 .9) 



diffusion of water and oxygen has occurred and that the corrosion process is 

initially inhibited. So  we first consider only water and oxygen and determine their 

concentrations with the boundary condition set at values which will apply when 

corrosIOn occurs. 

8 211 
-- = 0 � u = ax + b  &2 
U(X = 1) = 1 � 11 = 1 - a( l - x) 

u(O) = I -a, and we require 0 � a � 1 
8 2w -2- = 0 � w = ex + d & 
w(x = n = 1 � w = 1 - e( 1 - x) 

w(O) = l -e, and we require 0 � e � 1 
8u l 112 
& x=o 

= a = ¢l WUl12 = ¢/1 - e)( l - a) 

�t
o 
� c � ¢, ( WlI'" + 2a,w' ) � ¢, [< I - c)( l - a) '" + 2a.O - cl' ]  

e = 2 .7x lO-3 [( l -e)( l -a) 1 /2 + 0 .02 ( l -e)2] � 2 .7x l O-3 ( l -e)( 1 -a)112 = 2 .7x l O-4 a 

a = q>z( 1 _e)( I _a) 1 /2 � q>z( l -2.7 x l O-4 a)( l _a)1/2 � q>z( I _a)1 /2 

a2 +q>z2a + q>z2 � 0  � a � O.990 1 95 and e � 2 .7x l 0-4 

Numeric calculation gives a = 0 .990 1 89 and e = 3 .2x 1 0-4 

and u(O) = 1 -a = 9. 8 1 1 x l O-3 w(O) = l -e = 0 .99968 

\IV hich suggests that diffusion of oxygen to the substrate may be the limiting 

process in this special case. Further, in coating systems where the adsorption of 

polymer is weak but the paint film may offer some barrier properties, we see that 

restriction of oxygen diffusion (and possibly water with appropriate parameter 

values) is probably the main mechanism of paint film protection. 
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(5 . 5 .2) 
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(5 . 5 .8)  
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We next suppose that generation of corrosion product begins and that i nitially z=0. 
We seek to determine how long it takes for z to reach saturation under these 

conditions. 

z = 0 at x = 1 

8 z l dz [ ] dz 7 -- = -¢ -+ ¢  K WlI112 + a  w2 = - 1 0- + 16 x l O 
ex 3 d, 4 6 8 d, x=o 

set � = 6.25 x 1 0-9 Z and ( =  rID2 = 1 0-7 t 

Use Laplace Transforms 

dt; 3 2 - 1 -- = - 10- q t; + - at x = O  
dx qZ 

t; = 0 at x = 1 

dZ ( 2 -
dx2 - q t; = 0 

t; = Aeqx - Be-qx 

from eq 5 . 5 . 1 4  B = Ae2q � ( =  Aeqx - Ae2qe-qx 
from eq 5 . 5 . 1 3  

dl; = _ Aq( eqx + eq( Z-X» ) 1 = - 1 0-3 q2 A( eqx - eq( I-x) ) 1 ._ + � 
dx x=o .< -0 q x=o 
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(5 . 5 . 1 0) 

(5 . S . 1 1 ) 

(5 . 5 . 1 2) 

(5 . 5 . 1 3) 

( S . 5 . 1 4) 

(5 . 5 . 1 5) 

(5 . 5 . 1 6) 

(5 . 5 . 1 7) 

(5 . 5 . 1 8) 

(S . S . 1 9) 



first term (11=0): 

� _� 
x 

� 
_(2-X)1 ( 1 + 1 03 (2 - x)) (2 - x) ( = 2 -e 4. _ 1O-3( 1 + 1 03 x)e,fc I. - 2 -e 4. + 3 erfc Jt . . .  

7r 2", e 7r 1 0  2 e 

((x = O. e) � 2t _ 1 0-3+ . . .  

(�6. 25 x I 0-9 in r-( 1 O-3+6 .25x I 0-9)2x7tl4 = 7 .85 x I 0-7 which is z�1 in t = 8 

seconds. 

We note that the metal surface is effectively covered with water. While the chosen 

conditions and assumptions may be artificial it seems clear that z rapidly increases 

and reaches saturation in very short t ime. In comparison with the previous special 

cases we see that the state of the adsorbed layer is also radically different . Where 

polymer is available it initially dominates the metal surface. Consequently we 

expect from equations 3 .  1 9  to 3 .22 that the initial rate of corrosion will be 

exceedingly small, and that z will only very slowly increase initially. 

Clearly when the polymer is either absent, or becomes bound up with corrosion 

product, the reactivity of the metal substrate is significantly greater. Where 

polymer is initially present the factor ( l -mp) is of the order 1 0-6, but without 

polymer this factor approaches unity. Consequently the fluxes of corrosion 

product and reactants are expected to change by roughly six orders of magnitude 

during the degradation process. 

We believe that various paint film polymers differ significantly in both their 

effectiveness of competitive adsorption (relative to water and oxygen) and in their 

initial (substrate) surface density 'Po. This together with a wide range of diffusion 

coefficients for water, oxygen, and ions helps to explain the diversity of paint film 

behaviour noted in the literature (section 1 . 1 ) . 
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5.6 ADSORBED POLYMER AND THIN PAINT FILM 

We suppose the paint film so thin that itS trapping capacity is negligible, that 

transport across the film occurs instantaneously, and that water, oxygen and zinc 

are in diffusive equilibrium. Effectively the system consists of adsorbed polymer 

on a metal substrate with a thin film of paint offering some static barrier resistance 

resulting in constant fluxes of water, oxygen and zinc ions. We suppose external 

concentrations of water and oxygen are given by u(x=l )= l ,  and w(x= l )= 1 . 

Our interest here is to determine what the ultimate corrosion rate is after initial 

processes have occurred and the metal surface has lost all protection from 

adsorbed polymer. We allow that the paint film may offer some barrier 

properties. 

We suppose that the film is in a state of equilibrium. Consequently equations 

5 . 5 . 2  and 5 . 5 .4 apply. 

11 = 1 - a(1 - x) w = 1 - c(1 - x) 

Additionally we suppose that z has reached saturation at x=0. 

From 3 .22 

(}2Z 
--2 = 0 => z = ex + f ex 
z(x = 1) = 0 => z = e( 1 - x) 

z(x = 0) = I => z = 1 - x 

which gives an actual corrosion rate of 
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For equations 3 . 5  to 3 . 1 2  we have: 

mw = lZt ( 1 -m p )0 - c)m f 

mu = a2 (1 - mp)(l - a)mf 

A = 1 + lZt ( I - c) + a2 0 - a) 
B = 1 + a4 + a� ( 1 - c) 

1 

A K3m f 2 + (a3 - K3 + AB)m f - B = 0 

- (a3 - � + AB) + �r(a
-

3
-

-
--

K
-
3
-
+
-
AB
--

)�2-
+
--

4
-
AB
--

K
-
3 m = ::::: 9.9998 X 1 0-7 f 2A K 3 

q�9.99989x l 0-6, mp::::: 1 . 7x I O-5, m".:::::0 .99998, mu:::::9 .8 1 x l 0-6, q�0.99998, 

q� 1 .7x l O-7 

As with the case without polymer the metal surface is practically covered with 

adsorbed water. Some residual polymer attachment remains but it is too little to 

have any effect on the corrosion rate. We note that the values for mw, and mu are 

similar to the case without polymer. 

In equation 5 .6 .6 the rate of corrosion is about 1 7% of the free and unrestricted 

rate. The paint film does provide some protection but not enough to usefully 

protect the metal . We note also that the predicted rate is a constant . 
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5.7 BARE METAL SUBSTRATE 

In  this case we suppose that polymer is absent altogether. We ignore diffusive 

processes and consider only substrate competition between water and oxygen. 

We are interested in determining equilibrium surface adsorbed concentrations mw 
and mil. and in determining the resultant rate of corrosion. 

From equations 3 . 5 , 3 .6, and 3 . 8  we find 

We suppose that this special case represents a metal surface immersed in 

oxygenated distilled water. We further suppose that z has reached saturation at 

x=0 and that corrosion product Zc accumulates at x=0 and is unable to diffuse 

away. These assumptions are somewhat artificial but are believed to approximate 

the basic corrosion experiment of measuring corrosion of a metal coupon 

immersed in a container of oxygenated water. 

11 = 1 where Uo = 0 .3 mol m-3 is the saturation concentration of oxygen in water, 

and w = 1 where Wo is liquid water where we use these expressions because there 

is no paint film and hence no internal concentrations. 

We obtain 

a ( m .... = ---'-----
l + a( + a2 
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and 

From eq 3 . 22 we find 

which in dimensional form gives 

If the model conditions are varied to allow oxygen at atmospheric concentrations, 

such as may occur in a humidity cabinet, we find that the corrosion rate becomes 

1 . 7x l O-5 mol m-2 sol 
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6. NUMERICAL MODELLING 

6. 1 PREFACE 

One of the aims of this project was to use the model to identify physical properties 

of paint films which might be varied by polymer chemical engineering or paint 

formulation design to produce paints which provided better corrosion protection to 

metal substrates. To achieve this we need to determine how the model behaves 

and which parameters particularly affect the protective lifetime Tc of a coating. 

With this information it is intended that model polymers be developed and 

synthesised which embody these design parameters and perform better than 

existing polymers. 

While some special cases could be determined, and the effects of some parameters 

gauged, we have not found a general analytic solution for the complete model . It 

was expected that the model should have various simplified or reduced forms 

which might apply to particular regimes. It was further expected that these 

reduced models would allow exact solution which would allow some estimation of 

parameter values to best achieve large Tc values. It was clear that some model 

differential equations were dispensable, for example eq 3 . 6  and 3 . 1 0 . It was also 

clear that diffusion was not generally the rate controlling process so eq 3 . 1 3 -3 . 1 8  

could be approximated by steady state expressions. But there remained several 

competitive adsorption equations (eq 3 . 5 ,  3 . 7, 3 . 9) and the boundary conditions 

3 . 1 9 - 3 .22 which have so far resisted explicit solution. It was hoped that 

significant simplification of the model could also be made, but again it has been 

difficult to determine what elements are minor and to justify omissions. 

A computer programme (see appendix) was written by Dr Stephen White to 

numerically solve the diffusion-adsorption model . The aim was twofold: First the 

full model could be explored in all it ' s  complexity, including variable external water 

concentrations. From this it is intended to fine tune polymer design properties to 
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maximise Te. Additionally the numerical solutions could be used to test various 

modifications to the model, and to assist in the determination of simplified 

constitutive relationships. 

6.2 NUMERICAL METHODS 

(Adapted from "A Diffusion-Reaction Model for Corrosion of Metal Substrates 

Protected by Polymeric Coatings" Van Dyk, et at. Article to be submitted 

January 1 997 for proposed publication in "Maths and Computer Modelling") 

Equations (3 . 1 3) to (3 . 1 8) together with the boundary conditions given in 

equations (3 . 1 9) to (3 .22) are a set of coupled ODEs (2), PDEs (3) and (possibly 

non-linear) algebraic equations (4). In order to solve this system we define a 

regular finite difference grid in x with N points and a corresponding 

dimensionless gridsize h= l/(N-l ) . 

A finite difference approximation to equations (3 . 1 3 ), (3 . 1 4) and (3 . 1 6) is 

obtained by replacing x derivatives by a central difference approximation 

11;+1 - 211; + 1I;_1 
h2 

This reduces the numerical problem to the solution of a mixture of ODEs and 

algebraic equations. 
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Let Hi = U(Xi ), Wi = W(Xi ), Zi = z(xi ) and Pwj = Pw(xj ) ' and Pz; = pz (xj ) .  

Define the components of vector Y to  be 

Y =  

which we summarise as: 

y(S(i - 1) + 1) = 11, 

Y( I) = u\ (t) 

Y(2) = wl (t) - KIP)t) 

Y(3) = z\ (t) - K2P/t) 

Y(4) = PWI (t) 

yes) = PzI (t) 

Y(6) = 1I2 (t) 

Y(S(N - 1) +4) = Pwn(t) 

Y(S(N - 1) + 5) = pzJt) 

Y(SN + I) = mw(/) 
Y(SN + 2) = mu (I) 
Y(SN + 3) = m/I) 
Y(SN + 4) = zc (t) 

y (s Ci - 1 ) + 2 )  = (w ; - K J  p,., ) 
V(S(i - 1) + 3) = (z, - K2PJ 
V(S(i - 1) + 4) = P.,. 

y(S(i - 1) + 5) = Prj 
Y(SN + 1) = m." 
Y(SN + 2) = mil 
Y(SN + 3) = mp 
Y(SN +4) = z  c 

The system of equat ions to be integrated can now be written as 

elY 
- = f(Y) 
dl 

where the elements of the vector f(Y) are defined as: 
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i = 1 · · ·  N 

f = ((YS(i -! )-3 - 2YS( i- !h2 + YS(i - l )+7 ) + KI (YS(i-! )-1 - 2Ys(i-!)+4 + YS(i-1 >+9)) 
S(i-!)+2 h2 
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i = 1 · · ·  N 

f = ((YS(i- ! )-2 - 2YS(i- ! )+3 + YS(i-!h8 ) + K2 (YSU-I )  - 2YS(i- I >+s + YsJ) 
S(i - l )+3 h2 

i = 1 · · ·  N 

fS(i- ! )+4 = B6 (a6(YS( i-!h2 + K1YS(i- ! )+4)P/ - Pw} i = 1 · · · N - 1 

fS( i-! )+S = B7( a7(Y'(i-! )+3 + K1YS(i-! J+s)p/ - P! } i = I · · · N - I  

fSN+ I  = � (� ( 1 - YSN+J(YS(N-I )+2 + K1YS(N-I l+J( I - YSN+1 - YSN+2 - YSN+3) - YSN+1 ) 

f5N+2 = B2 (a2 (1 - YSN+3)YS(N-I )+1 ( 1 - YSN+1 - Y5N+2 - YSN+3) - YSN+2 ) 

fSN+3 = � (a3( 1 - YS(N -I l+4 - YS(N-O+S - K3Y5N+3)(1 - YSN+1 - YSN+2 - YSN+3) - YW+3 ) 

Boundary conditions given in equations (3 . 1 9) to (3 . 22) can be written in a 

similar fashion. 

We can now use the Crank-Nicholson scheme to discretise equation (6 .2 . 3 )  10 

time as 

Equation (6 . 2 .4) is a non-linear system of equations and is solved using a 

Newton-Raphson iteration. 

(6 .2 .4) 



NUMERICAL RESULTS 

6.3. 1 COMPARISON WITH SPECIAL CASES 

The first issue to explore is the correspondence of the numerical model results 

with special case results. We compare the results of section 5 with numerically 

calculated results. I n  table 4- the calculated results from section 5 .2  for a dry film 

are compared with numerically calculated results. 

Table 4 (dry film) 

analytic numerical 
mp=0.999999357=1 -6 .43x 1 0-7 mp=I -6. 54x l 0-7 

mr6.43 x l 0-7 mr6.54x l O-7 

mu=4 . 1 3 x l O-lo mu=4 .27x l 0-lo 

Next we compare the results of the case of a corrosionless substrate (section 5 . 3 )  

with the numeric results i n  table 5. 

Table 5 (corrosionless substrate) 

analytic numerical 

mp=O. 999998092= 1 - 1 .  908x 1 0-6 mp= I - 1 . 98 x I 0-6 
mr6.56x 1 0-7 mr6.65 x l 0-7 
mw= I . 25x l O-6 m ... = )  .32x l O-6 
mu= 1 . 25x l O-9 mu=1 . 32x l O-9 

q;=0. 897 qrO.9O 

qw=O. O I 79 Qw=O.O I 5  

Prrx=orO .98 PHr=OrO.984 

pw(.r -m=O. ° 1 96 Pw(.r=0I=O.O I 6 
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Next the case of a corrosionless substrate without oxygen is compared. The 

results of section 5 .4  are compared with numeric results in table b. 

Table 6 (corrosionless substrate without oxveen) 

analytic numerical 
mp=0.999998092=1 - 1 . 905x l O-6 mp= 1 - 1 .98x l O-6 

mr6.56x l O-7 mr6.65x 1 0-7 

mw= 1 . 25 x 1 0-6 mw= 1 .32x 1 0  -6 

qrO. 897 qrO.9O 

qw=0 .0 1 79 q,..=0.0 1 5  

p[(x=o)=0 .98 P/fx=o)=0.984 

pw(x=O)=O. 0 1 96 pw(x=o)=0.0 1 6  

The special case of steady state corrosion offers another comparison with 

numerical results. In section 5 .6  we considered the case of a thin film in diffusive 

equilibrium where adsorbed polymer had been completely degraded by corrosion 

product . An expression for dZc/dt was obtained (equation 5 .6 .6), and found to 

give 2 . 8x l O-6 mol m-2 so l . From numeric calculations we obtain 1 . 8 x l O-6 mol m-2 

- 1 S . 

6.3.2 TIME Tc TO ONSET OF CORROSION 

The next issue to be resolved is: can the model account for paint protective 

lifetimes up to and beyond a few years? The answer to this question is shown in 

figure 7. One of the parameters, aJ, is varied from 1 05 to 2x  1 06. In the process 

we see that the time 1� to onset of corrosion (2.,>0) ranges from about 2x 1 02 

seconds to about 1 09 seconds. For aJ up to about 1 . 1  x I  06 Tc is limited by 
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diffusion. The competitive adsorption of polymer in this region is so weak that 

polymer is displaced by water (and oxygen) almost as quickly as water can diffuse 

into the paint film and arrive at the metal surface. 

-� "C C 0 (J QJ � --QJ 
E 

� 

Figure 7 

Time (T  c )  to onset of Corrosion vs parameter a3 
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parameter a3 

But for a3 larger than about 1 . 1  x l  06 we see that there is a dramatic increase in 

Te. Significantly the diffusive influx of water no longer results in prompt failure. 

In fact the equilibrated concentrations of water and oxygen in the paint film very 

closely approximate constant values with zero gradients. It appears that mp is 

closely related to the protective potential of the paint film. When mp is close to 

unity the corrosion rate is greatly restricted and the systems protective lifetime 

remains long. From numerical results it is found that mp larger than about 0.999 

results in useful protective action. We interpret this to mean that with 99.9% or 
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more of the metal surface covered by adsorbed polymer the resulting rate of 

corrosion is near zero. 

We see also that small variations in the relative strength of polymer adsorption in  

the region of a3= 1 . 1  xl  06 result in large changes in the time for z.c>0. This 

behaviour is a consequence of the nonlinearity of these competitive adsorption 

equations. Where competitive adsorption of one species dominates, the model's  

behaviour is governed largely by the dominant species. For example infigure 7 

uptake of water governs behaviour for a3 less than about 1 . 1  x 1 06, while for a3 
greater than about 1 . 5 x 1 06 uptake of corrosion product by polymer seems to 

govern behaviour. In  between these two regimes the model 's  behaviour depends 

sensitively upon the relative adsorptions of water and polymer. 

6.3.3 MODEL BEHAVIOUR 

The next issue to resolve is: does the model 's  behaviour correspond with reality? 

A characteristic of real paint film failures is that invariably the paint film provides 

good protection for some initial period. After this period of protection rapid 

degradation occurs, the metal substrate begins to rust vigorously, and the paint 

film itself blisters, cracks and flakes off. We have not found any diffusion limited 

model capable of demonstrating this type of behaviour. The model presented 

here (summarised in section 3) demonstrates exactly this sort of behaviour with 

an initial, and possibly long, period of protection followed by sudden degradation 

of the adsorbed layer resulting in rapid corrosion and rusting. A typical graph of 

corrosion product is shown infigure 8. We use aT I . I 29x  1 06 along with 

standard values for the other parameters indicated in table 3 .  The numeric model 

used is based on equations 3 . 5  to 3 . 24 .  
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Figure 8 
Plot of z c (solid corrosion product at x =0) against time 
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We see that up to about l .  3 5 X 1 05 seconds no corrosion product accumulates. In 

fact the small quantities of zinc ions that are produced are promptly absorbed by 

the polymer and a small proportion diffuse away from the metal surface towards 

the paint film surface .  Once degradation of the adsorbed layer occurs we see that 

there is an initial rapid burst of corrosion, followed by a steady accumulation at a 

constant rate (which corresponds with the result of equation 5 . 6 .6) .  

The initial burst of corrosion results from the sudden change of state of the 

adsorbed layer, in combination with a delay in the diffusive response of the paint 

film. At the onset of rapid corrosion the concentrations of water and oxygen near 

the metal surface are close to their saturation values, and there is only a small 

concentration gradient within the paint film. Corrosion increases so suddenly that 

there is insufficient t ime for diffusive equilibrium to be maintained . Consequently 

there is a brief period where the concentrations of water and oxygen at x=0 exceed 

their equilibrium values. Once diffusive equilibrium is re-established and the 

diffusive fluxes of water and oxygen are in equilibrium with their consumption in 

the corrosion reaction, we see that corrosion occurs at a constant rate. 
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Figure 9 
Plot of m p (metal surface covered witb polymer) against time 
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The corresponding behaviour ofmp is shown infigllre 9. I nitially there is only very 

slight reduction in mp and its value remains near one throughout the protective 

lifetime of the paint film. At about 1 . 3 5x l 05 seconds there is sudden and 

catastrophic failure. Infigure 10 an enlargement of the initial behaviour ofmp is 

shown. The first stage up to about 1 x 1 03 seconds corresponds to the 

establishment of diffusive equilibrium as water enters the paint film from the 

external environment . 

From about 1 x l  03 to about 1 x l  05 there is a very slow decrease in mp as soluble 

corrosion product is taken up and immobilised by polymer. During this phase the 

polymer maintains protection of the metal substrate: the great majority of the 

metal surface remains covered with adsorbed polymer, and there remains some 

excess of polymer. As this excess of polymer is consumed a point is reached 

where there is insufficient polymer remaining to maintain significant adsorption of 

polymer on to the metal surface. This corresponds to the time around 1 x 1 05 

seconds infigllre 10.  As polymer coverage decreases there is an accelerating 

increase in the rate of corrosion which acts to further degrade the polymer. The 

result is rapid desorption of polymer, accompanied by a sudden increase in the rate 

of corrosion. 
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Figure 10 
Plot of m p (metal surface covered with polymer) against time 
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Infigure 9 we see that when degradation of the adsorbed layer is completed there 

is a residual small attachment of polymer to the metal surface, which in this case is 

about 1 . 1 x l O·s for times above about 1 . 3 5 x l Os . The great majority of polymer is 

bound to corrosion product, while small proportions are bound to water and 

adsorbed onto active sites on the metal surface. 

Infigure 11 we plot Cfj, qw, qz, and z against time. We see that up to about 

T=2x  1 03 seconds there is a steep increase in qw, qz, and z as diffusive equilibrium 

is established and oxygen 11 and water w reach values near unity at x=0. From 

about 1 03 to about l OS seconds we see a more gradual increase in qz and z as the 

corrosion process develops. Note that qw reaches a maximum at about 2x 1 03 

seconds and then decreases, as Cfj also steadily decreases. Initially Cfj is near unity 

at approximately 1 -qm : almost all the polymer is in the form of free and unbound 

polymer functional groups. A small proportion is bound to water, and some 

characteristic proportion is bound to active groups on the metal surface 

(proportional to mp, see equation 3 . 1 1 ) . 

The proportion of free polymer q[ steadily decreases as corrosion proceeds from 0 

up to about l OS seconds. During this time the adsorbed layer maintains protection 

of the metal surface, but is steadily degrading as corrosion product is taken up. 

Initially this has no significant effect but beyond some critical point there remains 

insufficient free polymer available to produce effective competitive adsorption of 

polymer to the metal substrate. The result is a great surge in the rate of corrosion. 
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The quantity qz of polymer bound to corrosion product rapidly reaches saturation 

as does z the amount of soluble corrosion product. At the same time there is a 

steep fall in  qf and in qw and we note that these changes correspond to similar 

changes in other variables such as mp as shown in figures 9 and 10. 

Figure 11 
Plot of q w ,  Z ,  q l: , and q f against t ime 

1 .0E+O 1 .0E+1 1 .0E+2 1.0E+3 1.0E+4 1 .0E+5 1.0E+6 
1 E+OO 

1E-01 

1E-02 

1 E-03 /' -e- qf 
1 E-04 

1 E-05 -"" qw 
1E-06 

1E-07 -9- qz 
1E-08 

1E-09 

1E-10 

1E-1 1 

Time (seconds) 

InJigure 12 mp, m\\", mu, and mf are plotted against time. We see that mf is 

almost constant; in fact n1J rises very slightly from about 9 .7x l O·7 to about 

1 . 0x 1 0-6; mf is the proportion of metal surface free and unassociated with any 

adsorbed species. We interpret first the near constancy to mean that there is little 

change in the effective total pressure of species competing for adsorption. 

Additionally the small value for mf indicates that water, oxygen and polymer 

effectively create a high pressure: the metal surface is always densely covered with 

adsorbed species: initially mostly polymer mp, and ultimately mostly water mw. 
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The small decrease in ml is produced by the removal of free polymer CJr due to 

uptake of corrosion product by polymer (equations 3 . 7  and 3 .9). 

We see that mw and mu rise initially quite steeply up to about 2 x 1 03 seconds as 

diffusive equilibrium is established. From about 2x 1 03 to about I x l  05 seconds mw 
and n1u are very nearly constant which we contrast with qz and z over the same 

range where there is an increase of 2 to 3 orders of magnitude (figure J J) .  

At about 1 .  3 5 X 1 05 seconds there is a sudden change in the model 's state. The 

proportion of adsorbed polymer mp drops to a small value while the proportion of 

adsorbed water m .... increases roughly in proportion to approach unity. The 

proportion of metal surface covered by oxygen mu also increases but here (with our 

estimated parameters) remains at relatively low levels compared to water mw. 

Figure 12 
Plot of m p , m w ,  m u , and m I against time 
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The behaviour of water w and oxygen 11 at x=0 is shown infigure 13. We see that 

saturation occurs at about 1 . 0 x l 03 seconds for both w and u. From about 1 . 0 x 1 03 
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to about 1 . 3 5x 1 05 seconds a state of diffusive equilibrium is maintained and w and 

11 are maintained very close to unity (saturation). Diffusion of water and oxygen 

are evidently not factors governing the models behaviour in this range nor factors 

affecting the degradation of the adsorbed layer at x=0 over this same range. For 

times greater than about 1 .  3 5 x I  05 seconds we see that water w remains near 

saturation, but oxygen 11 drops to about 1 . 1  x I  0-2. From this we conclude that the 

rate of oxygen consumption in the corrosion reaction is such that a significant 

gradient of oxygen occurs in the paint film which acts as the rate limiting process 

on this ultimate stage where steady state rusting (corrosion) ensues. 

Figure 13 
Plot of HI and u at x=O against time 
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The behaviour described above is typical of painted metal surfaces. Additionally 

the possibility of oxygen (or water) diffusion being ultimately rate limiting agrees 

with many reports in the literature. Adhesion of the paint film to the metal surface 

and polymer interactions with ions have also been shown in the literature to be 
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factors in paint performance. We conclude that this model does represent the 

behaviour of real painted metal surfaces. 

As with the real world we attempt to simulate with this model, there i s  a rich 

variety of behaviours. It has not proven possible to explore all of these variations. 

While we are hopeful that the model will continue to show interesting and useful 

parallels to real painted metal surfaces, the proof must await future study. In 

particular the model 's  response to periodic wetting functions has yet to be 

explored and compared with actual weather and exposure data from specific 

physical sites. 

Also it has not been possible to study the effect of varying every parameter, nor to 

explore all the interactions arising from various changes to parameters and model 

composition. We have seen that some parameters, for example a,3, can produce 

dramatic change in the model behaviour even with relatively small changes in  

value. When the effects of periodic wetting are included we expect that diffusive 

processes and transient effects will considerably add to the richness of the model's  

behaviour. 

From the rather brief review of numerical results covered in this section we next 

explore the behaviour of some analytic approximations arising out of reductions of 

the full model . These reduced models are intended to approximate the full model 

in certain regions of operation. 
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7. REDUCED MODEL 

7.1  PREFACE 

Our aim in formulating the model was to produce as comprehensive a formulation 

as possible, subject to remaining within the bounds of plausibility and capturing 

what was judged to be the essential elements of the problem. One major handicap 

was that there was not much knowledge available on models (of this type) for 

painted metal surfaces. A second difficulty was that we could not determine 

whether or not the model corresponded to reality until the model was formulated 

and tested. Consequently we employed a principle of "include every element 

which may be relevant". 

We realised that the resultant model may not be analytically solvable, and may 

contain some redundant features. The hope was that we could study the full model 

and deduce what the key equations were and subsequently construct a reduced 

model which embodied the essential elements of the full model but without the 

excessive detail . One basis for this hope was that it was noted from other projects 

in modelling physical problems that invariably the behaviour of a system of 

equations, in some range of condit ions, was governed by one or two differential 

equations. The remaining differential equations are usually found to be 

satisfactorily approximated by algebraic equations. 

The value of a reduced model is that, ideally, it can be solved exactly. From this 

we can see explicitly which parameters govern, for example, the protective lifetime 

Te of a particular case, and determine how they interact together. From this we can 

begin to apply the results of the model to real life and purposefully select and 

engineer polymers and paint film compositions to produce properties which the 

model predicts will result in longer protective lifetimes Te. While those 

experienced in the field of polymer and paint formulation may have some 

understanding and experience of factors which typically lead to better performance 

there is no underlying knowledge of how paint films work. Indeed after more than 
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50 years of research there is still controversy about what the mechanism of 

protection is, and even no clear consensus as to what occurs during the failure 

process. We aim to show that a reduced model exists and that it predicts specific 

variables and factors which include many of those either recognised or suspected of 

playing a part in paint film protective performance. 

7.2 REDUCED MODEL DERIVATION 

We are interested in determining the time to failure Tc of an initially dry painted 

metal surface when immersed continuously in oxygenated water. We suppose the 

system is kept at constant temperature and ignore for now the effect of ions other 

than of corrosion product itself 

Fromfigure 13 we deduce that diffUsion does not much affect Tc, at least in 

regions of interest where for example a3 is larger than about 1 . 1  x 1 06 (refer 

figure 7). Consequently we assume that water and oxygen concentrations in the 

film are approximated by their saturation values. 

1 08 

u(x) = "0 = 1 

w(x) = Wo = 1 

(7.2 . 1 )  

(7.2 .2) 

consequently 

p.,..{x) = a6wOPj = a6Pj (7 .2 .3)  

We specify that corrosion product is washed away from the paint film surface to 

maintain z=0 at  x= 1 .  Additionally we suppose that z is effectively zero 

throughout the film for times of interest . Eventually z will reach saturation at x=0 

and there will develop a gradient of z as it diffuses out through the film; but we are 

here concerned about the initial state of the film where there is negligible corrosion 

product (see for example figure 11 ) .  

(7 .2 .4) 



and consequently 

Since w, u, and z are constant we suppose that the boundary conditions 3 . 1 9  to 

3 .22 are approximated by zero gradient conditions: 

O W  & = 0. 
.<=0 

A U  & = 0. 
x=o 

o z  
= 0  & 

.<=0 

Next we examine equations 3 .9, 3 . 1 0, 3 . 7, 3 . 5 ,  3 .6, and dzldt to deduce which 

equation produces the greatest effect and hence is potentially a 'governing 

equation' .  We plot in figure 14 the derivatives dqz/dt, dq,./dt, dmJdt, dm..Jdt, 

dmJdt, and dzldt against time for the case of best estimates for parameter values 

listed in table 1 ,  in particular a3= 1 .67x 1 06 Infigure 15  we plot the derivative 

dqzfdt, and ()4a4Zq/ (term 1 ), and ()4Qz (term 2) against t ime. For these 

parameter values we find that Tc is about 5 .6x 1 08 seconds ( 1 8  years) and that 

typically dqzfdt is larger than the other derivatives, and much smaller than ()4a4Z�, 

and ()4qz. 

Figure 14 
Plot of dq ,Idt, -dq .. .Idt, -dm p ldt, dm ",Idt, dm u ldt, and dlldt 

against time 
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Figure 15 
Plot of dq z ldt, term 1, and term 2 of eq 7. 2. 7  against time 
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From equation 3 .9 we have 

We find that generally a4Z'l! and qz agree to about the sixth significant 

digit (figure 15) and so we write: 

We then have 

dq_ ( )  
-d - = & q, T -

and look for an expression for li..,qJ in equation 3 . 2 1  where li..,qz) is some function 

of qz, considered to be small compared to the other two terms 

Similarly it is found that the derivative terms are the smallest in equations 3 . 5 ,  

3 .6, 3 .7, and 3 . 1 0  and so these are approximately in  equilibrium. Hence we 

obtain (as quasi-steady states) the equations: 

(7 .2 .7) 

(7 .2 .8) 

(7.2 .9) 



In eq 3 . 2 1  we find that generally, for this particular case of interest, 

and 

and we suppose that 

So that we can write 

From eq 3 . 8  we find 

dz dq, - « K -
d, 5 d, 

dq ¢. K ( )3/2 
_z = � 1 - m W 11 1 /2 d, rA.,K5 P 0 0 

We shall represent mf with a power series expansion in q: for small values of qz: 

1 1 1  

(7.2 . 1 0) 

(7.2 . 1 1 ) 

(7 .2 . 1 2) 

(7 .2 . 1 3) 

(7 .2 . 1 4) 

(7 .2 . 1 5) 

(7 .2 . 1 6) 

(7 .2 . 1 7) 

(7 .2 . 1 8) 

(7 .2 . 1 9) 

To do this we need to solve for mf in terms of qz in equations 7 .2 . 1 0  to 7 .2 . 1 3 ,  3 . 8, 

and 3 . 1 2 . From eq 3 . 1 2  we see that 



Figure 16 
Reduced model qf (equation 7.2.2 1 ), numeric qf and q z 

plotted against time 
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To a reasonably good approximation (seejigure 16) we see that 

(7 . 2 . 2 1 )  

where we use eq 7 .2 .23 for mjD with qz=O. Although eq 7 .2 . 1 2  might be used to 
express mp, along with eq 7 .2 .2 1 and 7 .2 .23 we find that this does not readily lead to a 
useful expression for mp; so instead substitute eq 7 .2 . 20 into eq 3 . 8  to obtain 

and 

0:;( l -K3 -qJ +(l +� +lXz)(l + �) - c(q!) 
mf = 20:;[(� + lXz)(1 +q.) -K3(1 + �  + lXz)] 

(7 .2 .22) 

(7 .2 .23)  



where 

for convenience we introduce the following constants: 

dmf 
and calculate d ' qz 

and 

For our best estimates of parameter values (table 1 ) we calculate the following 

quantities 

1 1 3 

(7 .2 .24) 

(7 . 2 .25) 

(7 .2 .26) 



1 1 4 

dm 
al = __ I = 7 2738 X 1 0-7 

d . 
q Z q,=O 

(7.2 .27) 

and plot the results of linear and quadratic expressions for mf infigure 1 7. 
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Figure 1 7  
Reduced model m f (linear and quadratic expressions) and 

numeric m f plotted against time. 
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As expected eq 7 .2 . 30  produces a better expression for mf and we expect will under 

estimate Te while eq 7 .2 .29 also produces a reasonable approximation for mfwhich we 

will find is useful for producing estimates for Te. We expect that eq 7 .2 .29 will lead to 

over estimates of Te. 



We substitute eq 7 .2 .29 into eq 7 .2 . 1 8  and 7 .2 . 1 7  to obtain a reduced model 

consisting of a single ODE eq 7.2 . 3 1 ,  together with algebraic equations described 

above: 

1 1 5 

(7.2 . 3 1 )  

Equation 7 .2 . 3 1 is plotted as a function of qz against numeric results infigure 18. 

Figure 1 8  
Reduced model dq :Idt (equation7.2.3 1 )  and numeric dq 1.Idt 

plotted against t ime. 
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We write 

and substitute 



and obtain from eq 7 .2 . 3 1 

and 

On integration 

dy _ (AK6 y2 
dr - (AK�(f3. + A)( al + a2t2 ( 1 - Y t2 

Integrate by parts to get 

then substitute y = sec2 e to get 

and so we obtain 

D .. ./ where we have used r = -
/ 2 

F or values of parameters in table I we find that constant = -0.054 when t = 0 

and q: = O. The equation 7 .2 .3 1 has a singularity at qz=/h which is the critical 

value for qz. The time at which q: achieves this value (with vertical tangent) is 

1 1 6 

(7 .2 . 32) 

(7 .2 .33)  

(7 .2 . 34) 

(7 .2 .35)  

(7 .2 . 36) 



the threshold value of the time for the onset of rapid corrosion. We suppose that 

t approaches Tc as qz approaches Ih and calculate Tc = 7. 1 x 1 08 which is 1 27% 

of the numerically computed value of 5 .64 x 1 08 . 

T = 
[3(A + �� JI - arc tan JI} -� ]¢,K,I' (a, + as" 

c D .. (AK6 
In the following chapters we will consider different approaches for estimating the 

threshold time Tc and will compare these results in a discussion of the model. 

1 1 7 

(7 .2 .37) 



8. MODEL SIMPLIFICA nON 

8. 1 INTRODUCTION 

When formulating the model it was not known which terms were important, which 

equations were refinements and which were indispensable, and how the model 

would behave with variations in its formulation. We explore model variations in 

more detail in chapter 1 0 . For the present exercise we wish to state the model in a 

simpler form and develop from this a second reduced model which embodies the 

essential behaviour of the model and which allows analytic solution. 

Of particular interest is the term ( l -mp) in equations 3 . 5  and 3 .6. It is included in 

an attempt to represent the effect of polymer packing on activity coefficients in the 

adsorbed layer. There are various ways to write this effect, as we shall discuss 

later. One method which we considered, and ultimately abandoned, was to model 

the interaction of the adsorbed layer with the bulk paint film in an additional system 

of competition equations. The first issue which we aim to resolve here is: does the 

term make any difference in the model 's  behaviour? If it makes little difference 

then we should simplify our model formulation and remove it, and consequently 

arrive at a simplified mathematical model . 

Another term which was added for completeness was I4Z in equation 3 . 1 8 . In  

theory this term might account for some additional and varying capacity for uptake 

of corrosion product by a polymeric paint film. The intention was to represent 

modification of the film by the absorbed corrosion product . Again the test of the 

value of this term lies in comparing results with and without it . 

We consider the effect of omitting the terms ( I -mp) in equations 3 . 5  and 3 .6, and 

I4Z in equation 3 . 1 8 . The immediate effect is a drastic reduction in the model 's  

protective properties. The simplified model produces a time to failure Tc of about 

4 .48x l 02 seconds, where the failure arises immediately as the uptake of water 

occurs through diffusion into the paint film. This parallels the behaviour of the full 
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model where aJ is small (see for example figure 7).  We find that substantial 

variation of parameters is required to increase Tc in the simplified model to 

approach significant protective lifetime values. 

The parameters indicated in table 1 are the best estimates currently available� there 

is inevitably some uncertainty in these estimates, additionally it is believed that 

there is some range of values which represents the range of properties produced by 

different polymers and paint films. We alter the following parameters to produce a 

corresponding time to failure Tc which matches the case described above injigures 

8 to 13.  We set a,= 1 05, aJ= 1 08, OJ= 1 03 with remaining parameters as estimated 

in table 1 .  

The modified values for a" aJ, and OJ may still lie within the bounds of real 

polymers and paint films. However this simplified reduced model can at best 

account only for a subset of paint types of evidently lower performance. Parameter 

values necessary to model long times to failure Tc are unrealistic. Parameter values 

most likely to correspond to real paint films result in values for Tc in the range 1 03 

to 1 04 seconds which is only slightly greater than the restriction imposed by 

diffusive processes alone. 

8.2 SIMPLIFIED MODEL 

The effect of varying a3 is plotted injigure 19 where we have also changed a, to 

1 05 and OJ to 1 03 . Comparing figure 19 withfigure 7 we see that this change in 

equations 3 . 5  and 3 . 6  has produced a significant effect in the model 's behaviour. 

Additionally we observe that the transition from diffusion limited performance to 

competitive adsorption limited performance shown injigure 7 is absent in this 

reduced simplified model shown injigures 19 and 20. A subsection ofjigure 19 is 

graphed injigllre 20. 
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Figure 1 9  
Time (T  c )  to  onset of  Corrosion vs  parameter a3 
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Infigure 21  we find the same behaviour as infigure 8 for the full model. We 

notice that similar slope is produced (dZjdt=I . 74x I 0-6 mol m-2 s"\ for the data in 

figure 21 and dZc/dt=1 .75x I O"6 mol m"2 s"\ for the data infigure 8) . 

Figure 21 
Plot of z c (solid corrosion product at x =0) against time 
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Next we plot mp against time infigure 22, with an enlargement shown in figure 23. 
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Figure 22 
Plot of m p (metal surface covered with polymer) against time 

5.0E+4 

,." ,.",." 

1 .0E+5 

Timr (seconds) 

( 
(� 
(P 

( 

1 .5E+5 2.0E+5 

1 2 1  



Both pairs of graphs show similar behaviour. There is the same quiescent stage up 

to near Tc where the polymer is gradually accumulating corrosion product as qz 
increases but with mp still near 1 .  Importantly there is the same sudden loss of 

competitive adsorption and drastic increase in the rate of corrosion as the polymer 

saturates with corrosion product and loses competitive adsorption onto metal 

active sites. We observe that mp is held closer to unity when the term ( l -mp) In 

equations 3 . 5  and 3 .6 is  active (figure 10) than when it is omitted (figure 23). 

Figure 23 
Plot of m p (metal surface covered with polymer) against time 
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Infigure 24 we plot the corresponding information as for figure 1 1 .  Again it is 

seen that the two graphs have similar behaviour. 

In comparing figures 10 and 23 we see that the effect of the term ( l -mp) in 

equations 3 . 5  and 3 .6 is to constrain mp at values closer to unity. A corollary of 

this is that z and q: are constrained smaller initially than is the case for the model 

without the term ( l -mp) in equations 3 . 5  and 3 .6 . This difference is evident when 

comparingfigure 2-1 withfigure 1 1 .  In the full model z and q: are smaller and rise 

more steeply. The main difference appears to be a more uniform increase in qz in 

figure 24 where we see Cjz increases steadily from about 1 x l  0-3 at about 1 x 1 03 

seconds to about unity at 1 .  34x 1 05 seconds. In particular the final surge in z at 

about 1 . 3 x 1 05 seconds ranges from 1 0-7 to saturation at unity infigure 11 ,  while z 

ranges from about 1 0-5 to unity infigure 2-1. 

1 22 



Figure 24 
Plot of q w ,  Z ,  q t '  and q, against time 
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Inclusion of the term ( l -mp) in equations 3 . 5  and 3 . 6  is believed necessary to 

represent typical and high performance coatings which have moderate to very 

strong adsorption (i . e . adhesion) to metal substrates, and which provide effective 

protection against corrosion. To achieve long protective lifetimes (greater than 

about 1 06 seconds) with realistic values of parameters the ( 1 -mp) term is 

necessary. But to represent less effective coatings the simplified version appears to 

be realistic. Protective lifetimes up to about 1 06 are achievable with plausible 

variations of model parameter values. 

The term IGtZ in equation 3 . 1 8  does not seem to result in much effect on the 

model ' s  behaviour. The time to failure Tc is  unaffected, and diffusion of water w, 

oxygen 11, and zinc ions z is  not significantly influenced by the term. It is possible 

however that for values of K4 somewhat larger than those estimated the term may 

influence diffusion of zinc ions and water. 

1 23 



Infigure 25 mp, m"" mu, and mf are plotted against time. The behaviour is 

similar to that of figure 12, but there are some important differences. First the 

increase in mf at about 1 . 34x 1 05 seconds is much greater at nearly three orders of 

magnitude than is the case infigure 12. We interpret this larger increase in mf to 

mean that there is effectively a loss of total competitive adsorption pressure as mp 

decreases to about 1 x l  0-2. For times less than Tc= 1 .  34 x l  05 seconds mf is about 

two orders of magnitude smaller infigllre 25 compared tofigure 12, which we 

interpret to mean that there is greater initial coverage of the metal surface. But 

after 1�= 1 .34x I 05 seconds mf is larger by about an order of magnitude which 

means that the ultimate metal surface coverage must be less by a corresponding 

proportion. 

We see that m", and mu rise more quickly to their plateau values at around 5 x 1 02 

seconds compared to around 2 x 1 02 seconds infigure 12. Additionally the plateau 

values for m", and mu are larger by about an order of magnitude indicating that 

there is faster preliminary rate of corrosion than is the case for the full model . This 

is expected since if mp is smaller and mf is smaller there must be more of the metal 

surface covered with adsorbed water mw and adsorbed oxygen mu (by equation 

3 . 8) .  

The drop in mp at about 1 . 34x l 05 seconds is about two orders of magnitude to 

mp=9.9x 1 0-3 in contrast to about five orders of magnitude to mp=1 . 1 xl 0-5 for 

figure 11 .  The final surge in m", and mu is also smaller at about three and one 

order of magnitude versus four and two respectively infigllre 1 1 .  We conclude 

that the omission of the term ( l -mp) in equations 3 . 5  and 3 . 6  results in a version of 

the model with less sensitivity to the state of adsorbed polymer, and consequently 

less extreme effects in response to changes in mp. 

1 24 



Figure 25 
Plot of m p , m 1\1 , m u , and m f against time 
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Infigure 26 we plot water w and oxygen 1I at x=0. We see that as expected this is 

almost identical to figure 13. 

The boundary conditions equations 3 . 1 9  to 3 .22 are also potentially simplified for 

certain ranges of model operation. For example equation 3 . 1 9  could be replaced 

by a zero gradient condition for cases where water diffusion was not rate limiting. 

For times up to about Tc equation 3 .20 could also be replaced by a zero gradient 

condition with little loss of accuracy. 
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Figure 26 

Plot of w and u at x=O against time 
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The term aB( I _mp)
2
w

2 in equations 3 . 1 9  to 3 .22 is also found to be significant only 

in certain cases. When oxygen is present at x=O at greater than about O. l w  the 

term a8( 1 -mp)
2
w

2 is small compared to ( 1 _mp)
3
/
2
u

J
/
2 w and consequently is 

ignorable. 
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9 SIMPLIFIED AND REDUCED MODEL 

9. 1 INTRODUCTION 

In chapter 8 we explored the possibility of a simplified model arising from the 

omission of selected terms. We found that the resulting simplified model retained 

some of the features present in the full model . While this version of the model may 

not have general applicability we suggested that it may still usefully model some 

paint types and situations. It is of interest to develop a reduced model for this 

simplified version of the model. 

9.2 REDUCED SIMPLIFIED MODEL DERIVATION 

First we specify environmental conditions for the reduced model . We are 

interested in determining the time to failure Tc of an initially dry painted metal 

surface when immersed continuously in oxygenated water. We ignore for now the 

effects of ions other than those of corrosion product from the metal itself. We also 

suppose the system is kept at constant temperature, and is not subject to drying nor 

to external electric fields. Finally we suppose that the simplified model discussed in 

section 8 . 1 is a satisfactory approximation to the full model for performances of Tc 

up to about 1 07 seconds (6 months immersion) . 

Fromjigure 26 we see that diffusion does not affect Tc so we assume that water 

and oxygen in the paint film are modelled by constant concentrations at saturation 

u(x) = lfo 
= 1 

consequently 
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(9.2 . 3 )  

We specify that corrosion product is washed away from the paint film surface to  

maintain z=0 at x= 1 .  Additionally we suppose that z i s  effectively zero 

throughout the film for times of interest . Eventually z will reach saturation at x=0 
and there will develop a gradient of z as it diffuses out through the film; but we are 

here concerned about the initial state of the film where there is negligible corrosion 

product (see for example figure 24) . 

and consequently 

Since W, ll, and z are constant we suppose that the boundary conditions 3 . 1 9 to 

3 .22 are approximated by zero gradient conditions: 

aw l = 0  
a li i 

= 0 
a z l = 0 & . & . 
& 

x=O x=O .<=0 

Next we examine equations 3 . 9, 3 . 1 0, 3 .7, 3 . 5 ,  3 .6, and dz/dt to deduce which 

equation produces the greatest effect and hence is potentially a (governing 

equation' . We plot infigure 27 the derivatives dqzfdt, dq,,/dt, dm/dt, dm,./dt, 

dm,/dt, and dz/dt against time for the same case discussed previously in section 

8 . 1 .  For times Tc in the region of interest we find that typically dq;ldt is larger 

than the other derivatives. 

(9 .2 .4) 

(9.2 . 5 )  

(9 .2 .6) 



Figure 2 7  

Plot o f  dq z ldt, -dq .Jdt, -dm pldt, dm wldt, dm ,. Idt, and dv'dt 

against time 
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---4- dzldt 

1E-12 

1E-13 
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Next we plot in figure 28 the derivative dqzldt along with the two terms ()4a4ZCjf 

(term 1 )  and ()4qz (term 2) in eq 9 .2 .7  against time. We find that the terms 

()4a4zqr and ()4q; are typically much larger than the derivative. Typically ()4a4Zqr 

and ()4q; are the same value to about the third digit for the chosen parameter 

values, which contrasts with the case for the full model (figure 15) where the 

terms correspond to about the sixth digit . 
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Figure 28 
Plot of dq .Idt, term 1, and term 2 against time 
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From equation 3 . 9  we have 

and we suppose that 

Time (seconds) 

dq, ( )  
-' = & q 
dr t 

--a- dqzldt 

-- tenn 1 

'In - - tenn 2 jlE!j -----1 

where &(q:) is some function of q:. We have found that generally a4Zq[ and q: 

are equivalent to about the third significant figure so we write: 

and look for an expression for &(qz) in equation 3 .2 1 .  

Equations 3 . 5 , 3 .6, 3 . 7, and 3 . 1 0  are written as 

1 3 0  

(9 .2 .7) 

(9. 2 . 8) 

(9 .2 .9) 



In eq 3 . 2 1  we find that generally, for this particular case of interest, 

and 

and we suppose that 

dz dqz - « K 
dr � dr 

(dz dq_) [( )312 ( )2 ] - tA  dr 
+ K� d; + ¢�K6 I - mp W01l01l2 + ag 1 - mp W02 = 0 

So that we can write 

Substituting from eq 9 . 2 . 1 2  

From eq 3 . 1 1  and 3 . 7  we find 

Using eq 3 . 1 2  we get 

and from eq 3 . 8  

dq ¢. K ( )312 _z = � 1 - a q m W 71 1/2 
dr tAK� 3 f f 0 0 

1 3 1  

(9 .2 . 1 0) 

(9.2 . 1 1 ) 

(9.2 . 1 2) 

(9.2 . 1 3 )  

(9 .2 . 1 4) 

(9 .2 . 1 5) 

(9.2 . 1 6) 

(9 . 2 . 1 7) 

(9 . 2 . 1 8) 

(9 .2 . 1 9) 

(9 .2 .20) 



1 

From eq 9 .2 .20 and eq 9.2 . 2 1  we get 

and write 

where to a first approximation 

and 

l + a� 

The approximation used in eq 9 .2 .24 should be accurate for 

( 
)2 « 1 

� ( 1 -K3) -( 1 + �)( 1 + a1 + lXz) 
For the parameter values used here the expression evaluates to 1 .2x l O-3 
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(9.2 . 2 1 )  

(9 .2 .22) 

(9 . 2 . 24) 

(9 .2 .25) 

(9 .2 .26) 

Substituting eq 9 .2 .24 and 9 .2 .25 into eq 9 .2 . 1 8  we arrive at a reduced model 

consisting of a single ODE eq 9 .2 .27, together with the algebraic equations described 

above: 



1 3 3  

(9.2 .27) 

We compare the reduced model variables lJr and mf against numeric results in 

figures 29 and 30. The correspondence is quite good considering the various 

assumptions made. 
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Figure 29 
Reduced model q, (equation 9.2.24), numeric q, and q z 

plotted against time 
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Figure 30 
Reduced model m f (equation 9.2.25) and numeric m f 

plotted against time. 
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lnfigure 31  we plot the reduced model dqz/dt as a function of qz against time and 

compare results to numeric calculations. 

Figure 31 

Reduced model dq :/df (equation 9.2.27) and numeric 

dq z/df plotted against time. 
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Again the correspondence is quite close. However we want to solve eq 9 .2 .27 in 

order to find qz as a function of time. Equation 9 .2 .27 is readily solved and we 

obtain: 

1 3 5 

(9 .2 .28) 

next we get an expression (eq 9 .2 .29) for Te the effective protective lifetime of 

the metal coating. 

seconds (9.2 .29) 

To compare the reduced model with numeric results we plot qz as a function of t 

infigllre 32 for the reduced and numeric version of the model and compare the 

resultant estimates for Te. We find from numeric calculation Te= 1 .  34x 1 05 and 

from the reduced model Te= 1 .  28 x l  05 so that the reduced model estimates Te to 

96% of the numeric value of the full model (with simplification of omission of the 

term ( l -mp) in eq 3 . 5  and 3 . 6  plus omission of the term K3mp in eq 3 . 1 1 ) . 

We observe that Te depends most strongly upon a3, a, and I(�. We found in 

figure 19 that increasing a3 does increase Te although not with the same 

sensitivity as in the full model (figure 7). Physically increasing a3 and decreasing 

a, corresponds to increasing the competitive adsorption of polymer relative to 

that of water. Keeping K3 small also increases Te which corresponds physically 

to making the proportion of available polymer functional groups large relative to 

the number of metal active sites on the substrate surface. We have estimated 

relatively smaller values for a2 and a5 (table 1 )  and consequently these 

parameters do not much influence Te. However from inspection of eq 9 .2 .29 we 

see that these parameters should be made small to ensure large Te 



Additionally we see that Te is dependent upon the parameters 

Po . 
..c. • f fr  U 1/2 W . Increasmg 'Po (the total SUI lace concentration 0 ee 

PI 0 0 

polymer functional groups) will directly increase Te. Reducing the parameters pi, 
Uo, and Wo will similarly increase Te, where Te depends upon UO-I12 and linearly 

upon the other parameters. 
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Reduced model q :  (equation 9.2.28) and numeric q t 
plotted against time. 
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1 0  MODEL VARIATIONS 

10.1  INTRODUCTION 

Inevitably in a project such as ours decisions and choices must be made along the 

way. Various elements of the model may have been formulated in many ways. 

While we always worked to maintain consistency with the many physical and 

chemical issues involved it was by no means clear what the relevant issues were at 

the time. For every element there was always some justification; but gradually, as 

the project evolved, some larger issues and unifying concepts emerged. These 

considerations have been used to refine the model and have influenced its final 

form. 

One issue in particular that we have dwelled on, and which has strongly coloured 

our development of the model, has been the physics of the adsorbed layer. We 

concluded at an early stage that this area must critically control the behaviour of a 

painted metal surface. While there is still some confusion and contradiction in the 

literature, a trend is developing toward exploration of the adsorbed layer. 

Diffusive resistance may play some role in corrosion protection, especially where 

transients and periodic wetting are involved. But we note that few researchers in 

the last decade seem to be actively pursuing diffusion as the rate controlling 

process. 

Some concepts such as adhesion are still only poorly understood. There are many 

theories and concepts as to how adhesion of polymeric materials to macroscopic 

surfaces arises. There is also significant disagreement; and as with corrosion 

protection by paint films, many researchers have demonstrated that one theory is 

correct while another fails .  A number of the elements of understanding are 

established. For example adsorption isotherms of many substances on to various 

other substances have been studied. There are various reasonably accurate models 

of adsorption of molecules onto solid substrates. For example adsorption of gases 
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on to metals is reasonably well documented and even relatively simple models can 

produce credible agreement with experiment . But adsorption of polymeric 

materials is not yet well understood. Multiple component adsorption of polymers 

and various molecules in a competitive situation does not seem to be very well 

known. 

Corrosion chemistry of metal surfaces has received much attention over the years. 

Many researchers have made fundamental contributions toward better 

understanding of the processes involved. In certain situations the chemistry is 

fairly well defined. For example corrosion rates in solution can be accurately 

determined based on electrode potentials and electrochemical currents. These 

concepts can be applied to microscopic scales and used to model corrosion of pits 

and crevices on metal surfaces. Diffusion of reactants, such as oxygen, from the 

bulk solution to the reaction site are also found to be important factors . 

Increasingly, it seems, researchers are combining elements of electrochemical 

potential theory with competitive adsorption of molecules. Tang and Song ( 1 993) 

used this approach and found quantitative agreement with experiment. Surely this 

is a fruitful direction for further research. The principles of adsorption of 

molecules onto surfaces in gases and liquids are understood well enough to allow 

accurate modelling of adsorbed surface concentrations. Using these modelled 

surface coverages it has proven possible to calculate modifications to corrosion 

currents and potentials. When diffusion of reactants is included rather 

sophisticated models are possible. 

While these approaches are effective in modelling corrosion in solution, it was not 

clear how they could be applied (nor even if they were valid) to the case of 

adherent paint films on metals. In particular we have based our thesis on the 

premise that initially the metal substrate is effectively dry, while the polymeric paint 

film remains adherent . Electrochemical currents in these circumstances seemed 

difficult to reconcile. 
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Adherent paint films may consist of microscopic adhesion defects. Our notion of 

active sites may correspond to these defects. When water from the external 

environment is available it is reasonable to expect that molecules of water will 

accumulate at these defect sites. Conceivable this may be the basis for the "real" 

process of corrosion under paint films. 

Instead we have followed a more macroscopic approach. Rather than modelling 

the active sites themselves (as microscopic corrosion pits) we consider that they 

would in aggregate produce some quantifiable corrosion flux in response to 

available water and oxygen. Consequently we focus on quantifying the 

concentrations of reactants available for corrosion, and on modelling the 

adsorption of polymer in competition with other species. In essence we assume 

that an exposed active site will corrode at some maximal rate in response to 

available reactants (water and oxygen). We suppose that a bare metal surface will 

give a measure of this maximal rate for the aggregate of active sites. 

We adapt chemical kinetics to produce an expression relating the rate of reaction 

to the available concentrations of reactants .  The rate constants are obtained from 

experiment based on corrosion rates at various concentrations of reactants. We 

choose this formulation as it provides a useful means of determining the boundary 

conditions for the diffusion equations with which we use to model the bulk paint 

film. 

With this quick review of some of the choices and considerations made in 

formulating the model we now consider some of the '<What ifs". What if we model 

corrosion as occurring in microscopic corrosion pits? Would the inclusion of an 

intermediate boundary layer between the adsorbed layer and the bulk paint film 

help to quantify concentrations of water and oxygen in the adsorbed layer? How 

can the effect of the physical characteristics of the paint film be accounted for? 
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10.2 ACTIVE SITES AS CORROSION PITS 

For this variation we imagine that a diffusion subsystem would be required . The 

paint film and adsorbed layer as conceived may be satisfactory. But we suppose 

that each exposed active site accumulates water and proceeds to corrode at a rate 

limited by diffusion of oxygen and water in a hemispherical region about the active 

site .  We suppose that corrosion of the active site is in fact rate limited by diffusion 

of reactants from the surrounding medium (the wet paint film). 

External environment 

�__ Water and ox)'gen 

diffusing into film 

and to substrate 

Bulk paint film 
polymer 

Figure 33 

---................... -------- Metal substrate 

Exposed active 
site 

Depletion region where water 

and m:ygen local 
concentrations are low and 
rate limiting for corrosion of 
the active site 

We depict this concept graphically infigure 33. Nguyen et al. ( 1 99 1 )  have in fact 

considered something of this type of system, though without the attempt to include 

corrosion reaction chemistry. It is possible to include the effects of blister 

formation and swelling of the paint film. With this comes the possibility of 
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including in the modelling the paint films mechanical properties and their response 

to the effect of osmotic pressure. 

With the formation of electrolyte blisters on active sites one could properly employ 

the principles of electrochemical potential theory. The rates of corrosion predicted 

should then have good quantitative agreement with experiment . Additionally one 

could include other reacting species such as hydroxyl and hydrogen ions. 

In some cases this is probably closer to reality than is the model we have 

constructed. Blister formation on a macroscopic scale often does precede the final 

stages of paint film breakdown. One could reason that these macroscopic blisters 

grow from the microscopic defects surrounding corroding active sites. While this 

may be a better and more versatile model it is also significantly more complex. We 

theorise that the essential features of corrosion of painted metal surfaces can be 

embodied in the simpler formulation we choose to use. 

10.3 INTERMEDIATE BOUNDARY LAYER 

In this variation we consider an alternative route to determine the actual 

concentrations of reactants available to the corrosion reaction on the metal surface. 

The aim is to model the concentrations of species so that the activities arise as a 

dynamical equilibrium. Suppose that the adsorbed layer is subject to bidirectional 

adsorption processes. The first sorption process is already described by the 

competitive adsorption model . The second arises by considering that the adsorbed 

layer itself may further adsorb water and oxygen from the bulk paint film medium it 

is in contact with. Thus we consider concentrations W and U in the bulk paint film 

at x=O, and quantities W· and if' in the adsorbed layer. The concentrations W· 

and U·· would then be used in the corrosion model . 
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We wish to include the effect of a variable adsorbed layer. We shall suppose that 

water and oxygen uptake occurs in molecular void spaces which result from 

imperfections in polymer packing. When the polymer is densely packed we assume 

the void volume fraction is at a minimum. While for desorbed polymer we suppose 

the void volume fraction is at a maximum. Models of polymer void volume 

fraction are described in the literature (for example Venditti et aI . ,  1 995), and 

Dzugutov, 1 996, has described a universal scaling law applicable to atomic 

diffusion in condensed matter. 

It is unclear how polymer packing, and hence void fraction, varies with adsorption. 

Experimental results demonstrating the effect are certainly convincing, but proven 

models are not yet well known. One approach to this obstacle is to try and adapt 

existing models of void fraction to include a response to the state of adsorption. 

Another approach is to suppose that the void fraction is proportional to the 

fraction of metal surface uncovered by adsorbed polymer. The former prescription 

is probably closer to reality, but we shall use the latter basis to develop our 

concept . The idea is shown graphically infigllre 34. 

External environment 

Metal substrate 

Figure 34 

Adsorbed layer -

bulk polymer 
interface 

Adsorbed layer -
metal interface 



We suppose that uptake and release of water and oxygen by the adsorbed layer are 

governed by expressions analogous to those used to describe adsorption onto the 

metal surface. The assumptions conform to the prescription for Langmuir 

adsorption isotherms. We write 

and 

where we suppose Fa represents the maximum void density fraction, andj(Fa) is 

some function that represents variation in void fraction with the state of polymer 

adsorption. The constants S1 and S3 are rates of adsorption while S2 and S4 are rates 

of desorption from the adsorbed layer. The variables W', W, U-, and U have 

the same meaning as described previously. The variable Ff represents the fraction 

of void space remaining free. 

We shall suppose that 

where Ma is the total metal surface density of available adsorption sites, and Mp is 

the density of sites attached to adsorbed polymer. We find that 
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(Mo - Mp) WFo M • •  s, 0 W = ------------ ( 1 0 . 3 . 5) 
S2 

where we assume quasi-equilibrium between the bulk paint film and the adsorbed 

layer. We find that these expressions are variations (possibly more realistic) of 

those presented in eq 2 . 3 . 1 8  and 2 . 3 . 1 9 . 

In principle this variation provides a better physical basis for the model. If we 

developed the concept in terms of molecular physics, and derived void fraction 

functions from basic principles, we should obtain expressions for eq 1 0 . 3 . 5  and 

1 0 . 3 . 6  which would depend upon basic physical and mechanical properties of the 

paint film. Even if this approach should not much improve the overall accuracy, it 

is of immense value to relate performance to the physical and mechanical 

properties of the polymer and the paint film composition. 

10.4 VARIATION IN CORROSION FLUX FORMULATION 

( 1 0. 3 . 6) 

We have previously adapted basic chemical dynamics to produce an expression 

relating the corrosion flux to the concentrations of reactants.  If we followed the 

variation in section 1 0 . 2  we might use electrochemical potential theory to calculate 

corrosion flux from concentrations of available reactants. 



Alternatively we might attempt a basic atomic model of the corrosion process. If 

we included species such as hydroxyl and hydrogen ions we could then construct a 

variation of the model in which hydroxyl ions for example collided with zinc atoms 

to produce corrosion product on an atomic level . Some dynamic system to 

account for quasi - equilibrium between water, oxygen, hydroxyl, and hydrogen 

would have to be devised . We touched on this concept in section 2.3 : possibly the 

formulation could be expanded to include additional reacting species. In particular 

we could remove the assumption of a pH buffering effect and allow the pH to vary 

in response to the dynamical corrosion process. 

As we theorised previously the probable mode of attack of the metal substrate is 

through exposed active sites with surface density MI We suppose that hydroxyl 

ions in the adsorbed layer have some probability of colliding with an active site 

(based on the density Mf) which depends upon a potential energy barrier to 

reaction and the estimated kinetic energy distribution of the hydroxyl ions. The 

hydroxyl ion concentration would also be a factor in the reaction rate. Additionally 

we must consider the process responsible for the creation of hydroxyl ions. Clearly 

the concentrations of water and oxygen are important, and conceivably these may 

be rate limiting when their concentrations are limited as will be the case in a 

strongly adherent paint film. 

One difficulty with this variation, which we must overcome, is the relation of 

atomic collision rates with experimental corrosion rates. We have already 

stretched ideal gas dynamics probably beyond valid limits in the current 

formulation. We might further extend the notions developed previously to apply 

also to corrosion processes. Presumably the reaction of a hydroxyl ion with a zinc 

atom is effectively instantaneous. We might suppose also that the resultant 

intermediate species (Zn(OHt) was ejected immediately from the atomic matrix 

of the metal surface. 

In this fashion we would arrive at a formulation of the corrosion process based on 

atomic principles. Presumably the corrosion flux expression (eq 2 . 3 . 1 3 ) would 
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depend linearly upon the concentration of hydroxyl ions and the surface exposed to 

attack Mf and so 

However we must still determine the concentrations of water and oxygen present 

in the adsorbed layer in order to determine the hydroxyl ion concentration. 

Additionally we must also account for the changes which occur in the adsorbed 

layer as it degrades and loses crystallinity through loss of adhesion. 

Again this variation is probably closer to reality than is the formulation we have 

developed. If correct it should produce better quantitative agreement with 

experiment . It does however require more parameters and more complexity to 

account for the new species and their interactions with water, oxygen, and zinc. 

We chose our original formulation in the belief that supply of water and oxygen 

was limiting on the atomic scale. We supposed that hydroxyl ions created above 

some equilibrium concentration would react promptly with zinc atoms. 
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1 0.5 VARIATION I N  CORROSION AND ADSORPTION FORMULATION 

In thjs variation we consider a different formulation of the adsorbed layer and 

develop an alternative formulation for the corrosion flux. We begin by considering 

the adsorbed layer to be: very thin, not very dense or crystalline, and to not 

change very much during the evolution of the system. Tills concept differs 

significantly from our original formulation. In the process of developing this idea 

we will find some additional concepts which may usefully be incorporated into a 

second generation of the model . 



This alternative formulation of the adsorbed layer results in several conclusions. 

First the concentrations of water and oxygen (W(x=O,t) and U(x=O,t» in the bulk 

polymer at x=O must be the effective concentrations for the corrosion reaction. If 

the layer is thin and not very dense the mean free path for water and oxygen 

molecules will be sufficiently long so that there is only small probability of diffusing 

molecules colliding with polymer in the adsorbed layer. Instead molecules in the 

bulk paint film at x=O moving perpendicular to the metal surface will often pass 

straight through the layer and collide directly with the metal surface. If the 

adsorbed layer does not change very much as corrosion proceeds and the layer 

loses adsorption to the metal then the activity coefficients for water and oxygen 

must be approximately constant, or at least have a weaker dependence upon Mp 

than we estimated previously. 

Then eq 2 . 3 . 1 8  becomes 
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where r.v
' 

is approximately constant and approximately equal to unity. Similarly eq 

2 . 3 . 1 9  becomes 

Y , 
[Ol ] = -;'U(X = O, f) = Yu V(x = 0, /) 

Yu 

where again Yu ' 
is approximately constant and approximately equal to unity. We 

shall suppose that in fact Yw' 
and Yu ' 

are identically equal to unity. 

In this variation of the model formulation we suppose that the corrosion flux is 

linearly proportional to the availability of exposed active sites Mf We write eq 

1 0 . 5 . 3  instead of eq 2 . 3 .20 for the corrosion flux 

f: = :;1 {9.6 x 1 0-I I W(x = 0, t)UIf2 (X = 0, /) + 5.4 x 1 0-17 W2 (x = O, I)} 
fie 

( 1 0 .5 .2) 

( 1 0 . 5 . 3 )  



where M[cc=M/t-+oo) .  In dimensionless form equations 3 . 1 9, 3 . 20, 3 .2 1 ,  and 3 .22 

become 

x = O, r> O 

for z < w, zc = 0 

for z = w, zc � 0 

oz 
ox x=o 

ou 
ox x=o 

In eq 2 .4 .2  we suppose again that 
y:. = 1 so that eq 2 . 4 . 5  becomes y .... 

Similarly eq 2 .4 .7  becomes 

dmu [ 
] -- = () rY um . - m 

dr 1 ""'2 J u 

We notice that this case is similar to that discussed in chapters 8 and 9. We 

suppose that an equivalent treatment is valid and adapt the derivation used in 

section 9 .2  to find another reduced model . From eq 1 0 . 5 . 6  we find 

and using the same manipulations employed in section 9.2 we obtain 
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Substituting this into eq 1 0. 5 . 1 0  we find 

dqz _ ¢4K6(1 + �  + a2X1 + as) 
d, �Ks(1 - K3 - qJ 

where we have used the result of eq 5 . 7 .4, with an assumption that mp goes to zero 

as polymer adsorption to metal fails beyond Te, to determine mpX)' 

1 
m - ----

fo! - 1 + a1 + � 

Additionally we have employed the same reasoning used previously, that w and u 

are approximated by their saturation values Wo and Uo which we take to be unity. 

From eq 1 0 . 5 . 1 2  we obtain 

where we have taken qz = 0 when , =  0, and defined t = Te when qz = 1 -K3. 

For the parameter values used in section 9.2 we find Te = 5 . 39x 1 03 seconds 

compared to 1 .28x l 05 seconds for the simplified reduced model of section 9.2 .  By 

inspection we observe that the difference is due largely to the effect of the term 

raised to the power of 1 . 5 in eq 9 .2 .29 which arose from our formulation of 

concentrations and chemical activities of water and oxygen in the adsorbed layer. 

Since the parameters used here are already about equal to the limits of plausibility 

for maximising Te we must conclude that our original premise is incomplete. We 

assumed that the adsorbed layer did not contribute to either an increase in chemical 

activity or to a variable activity. We conclude that the adsorbed layer accounts for 

at least some increase in chemical activity coefficients, and probably for variable 

activity coefficients as well. 
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1 1  CONCLUDING REMARKS 

We have found from our model results that most, if not all, of the conflicting 

results in the literature can be accounted for by corrosion resistance conferred 

through several different mechanisms. In some cases diffusive resistance to oxygen 

may indeed be the rate limiting process. Some coating compositions have 

inherently low oxygen and water diffusion coefficients and are typically applied as 

thick films (for example epoxies, vinyls, and chlorinated rubbers). These systems 

are traditionally used for corrosion resistant coatings. 

But in general diffusive resistance alone is unlikely to provide the full story. 

Instead the adsorption of a coating's polymer to the metal substrate is the primary 

factor in the performance of a painted metal surface. We have found that the 

competition for adsorption between polymer, water and oxygen results in a rich 

complexity of behaviour which parallels that of real painted metal surfaces. 

Depending upon the degree and strength of adsorption by the polymer there may 

be more or less water and oxygen available at the metal - coating interface. From 

this results a greater or lesser rate of initial corrosion, and it is this initial rate which 

largely determines the ultimate time to failure. 

The coating's  passivating effect through its adsorption and modification of the 

basic corrosion rate can play a significant role. Additionally the effective diffusion 

coefficients for the various species present, and the polymer's  capacity to absorb 

corrosion product are also potentially important and complicating factors in the 

model ' s  behaviour. 

We have found in results from reduced models, and from the behaviour of the full 

numerical model, that the behaviour of our model depends realistically upon those 

parameters which experience indicates should be relevant . Further, we find that the 

dependencies also correspond to reality in a plausible manner. Although the 

experimental information available is very limited we have found reasonable 
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agreement: for example the model matches reported corrosion rates under various 

conditions, and produces times to failure consistent with experimental evidence. 

Work on this project concludes with more loose ends and new avenues to explore 

than when we started. We attempted to formulate the simplest possible model 

which would account for the diverse behaviour of painted metal surfaces. Some of 

this behaviour has been explored, but there remain many aspects and variations of 

the model which have yet to be investigated. In particular the response to periodic 

wetting (for example simulations of actual weather conditions) remains an issue of 

great interest. The Fortran programme (see Appendix) is written to incorporate 

varying external water concentrations as a function of time. It remains the task of 

subsequent research to explore this aspect of the model ' s  behaviour. . 

We discussed several interesting variations of the model in chapter 1 0 . 

Incorporation of the alternative corrosion flux formulation (section 1 0. 5) and an 

intermediate boundary layer (section 1 0.3)  to better describe variable chemical 

activity in the adsorbed layer are considered to be useful improvements to the 

model . Elaboration of the model to describe active sites as corrosion pits is also an 

intriguing prospect . Another interesting variation is to represent the painted metal 

surface as an ensemble of models so that, for example, every 1 0-6 x l  0-6 metres is 

modelled by an independent model unit with its own set of parameters. Film 

thickness, effective diffusion coefficients, and adsorption coefficients may vary for 

each unit to better represent real paint films. Presumably a particular coating could 

be represented as a specific distribution of unit models. We expect some of the 

unit models to fail much sooner than others. The point of interest is how does the 

aggregated model behave? 

Incorporation and exploration of the model variations described above are 

important for another reason. The variations allow additional description of the 

physical and mechanical properties of paint films. With this extra detail it becomes 

possible to realise one of the original aims of this project and design polymers and 

coatings which embody the physical and mechanical properties calculated to 
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maximise Tc, the coating's  effective protective lifetime. In its current form the 

model addresses physical and chemical properties only through generalised 

parameters. For example diffusion coefficients and polymer functional groups are 

model parameters, but we wish to describe how these parameters arise from more 

basic physical and chemical properties. 

With information on how the model behaves in response to the variation of 

properties such as polymer molecular weight, hardness, density and type of 

functional group, etc. it becomes possible to design and engineer better polymers 

for coatings. Polymers with the required properties can be identified or synthesised 

and compounded into paints. Also, with more detail, paint composition (such as 

pigment volume concentration) can be incorporated into the model so that 

optimum values for this physical parameter of paints can be predicted from the 

model. Real paints incorporating composition and properties identified by the 

model can then be made and evaluated . 
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APPENDIX 
Fortran 90 (Salford FTN90, 1 995) programme to numerically solve 
the model equations 3 . 5  to 3 .24 
Written by Dr. Stephen White, Industrial Research Limited, 
P. O. Box 3 1 3 1 0, Lower Hutt, New Zealand. 

C 
2 C Solve the equations for corrosion under a paint film 
3 C 
4 BLOCK DATA 
5 IMPLICIT NONE 
6 DOUBLE PRECISION k I ,  k2, k3, Du, Dw, Dz 
7 COMMON /PDEI k I ,  k2, k3, Du, Dw, Dz 
8 DOUBLE PRECISION r I ,  r2, r3, r4, r5, r6, r7, r8, r9, r IO, 
9 $ r l 1 ,  r 12, r 1 3, r I4, Alpha, Beta, Eta, Rho 1 ,  Rho2 

10  COMMON /RATESI r I ,  r2, r3, r4, r5, r6 ,  r7, r8, r9, r IO, r l 1 ,  r l 2, 
1 1  $ r l3 ,  r l 4, Alpha, Beta, Eta, Rho I ,  Rho2 
1 2  DOUBLE PRECISION PSO, MO, WO, VO, ZO, ZcO, PO, POS 
1 3  COMMON ISCALEI PSO, MO, WO, VO, ZO, ZCO, PO, POS 
1 4  DATA Du  11 .0D- I 1/, Dw I l .OD- I 1/, Dz  I l .OD-I 51, k I  I l .ODOI, 
1 5  $ k2 I l .ODOI, k3 I l .OD-7/, rI I l .OD9/, r2 I l .OD51, 
16 $ r3 I l .OD7/, 
1 7  $ r4 I 1 .0D4/, r5 I 1 .0D8/, r6 16.0DOI, r7 I l .OD7/, 
18 $ r8 I l .OD2/, 
1 9  $ r9 I l .OD7/, r IO  I 6.0D8/, r l 1 I l .OD7/, r l 2  1 6.0D8/, 
20 $ r 1 3  I l .OD7/, r 14  I l .OD2/, Alpha I l .ODOI, Beta I l .ODOI, 
2 1  $ Eta I l .OD- lI, Rho 1 l9.6D- I 1/, Rho2 15 .4D- I71 
22 DATA PSO 12.0D-4/, MO / 1 .7D-51, WO 15 .4041, VO 18.000/, 
23 $ ZO / l .OD-2/, ZcO / l .OD-2/, PO / l .OD3/, POS I 2 .0D-41 
24 END BLOCK DATA 
25 IMPLICIT NONE 
26 CHARACTER *72 Title 
27 CHARACTER *8 Key 
28 CHARACTER *3 Type 
29 DATA Title I' Jacobian Matrix'/,Key I I Key 'I, Type /' 'I 
30 DOUBLE PRECISION k 1 ,  k2, k3, Du, Dw, Dz 
3 1  DOUBLE PRECISION r I ,  r2, r3 , r4, r5, r6, r7, r8, r9, r IO, 
32  $ r I I ,  r I2, r 1 3, r I4, Alpha, Beta, Eta, Rho l ,  Rho2 
33  DOUBLE PRECISION PSO, MO, WO, VO, ZO, ZcO, PO, POS 
34 COMMON /PDEI k1 ,  k2,  k3,  Du, Ow, Dz 
35 COMMON /RATES/ r I ,  r2, r3, r4, r5, r6, r7, r8, r9, r IO, rI I ,  r 12, 
36 $ rI3, r l4, Alpha, Beta, Eta, Rho l ,  Rho2 
37 COMMON ISCALEI PSO, MO, WO, VO, ZO, ZCO, PO, POS 
38 INTEGER MaxPoints 
39  PARAMETER (MaxPoints = 100) 
40 DOUBLE PRECISION DX 
4 1  INTEGER j ,  Kount, MKount 
42 DOUBLE PRECISION Y(5 * MaxPoints + 4), F(5 * MaxPoints + 4) 
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43 DOUBLE PRECISION YOLD(5 * MaxPoints + 4), Matrix(50+MaxPoints*20) 
44 INTEGER ROW(5*MaxPoints + 6), COL(50+MaxPoints*20), NZ 
45 DOUBLE PRECISION Thickness, Time, DelTime, TOL, StartTime, 
46 $ EndTime, MaxDT, MDT 
47 INTEGER NoPoints, NumberOfPoints, IFAIL, MaxKount, !Print, M 
48 DATA Thickness 1 1 .0D-4/, NumberOfPoints 110/, EndTime 1 1 .0D lO/, 
49 $ DelTime 1 1 .00-4/, StartTime 10.0001 



50 $ MaxKount I 1000000000001, Iprint /200/, MaxDT 11 .0D6/ 
5 1  LOGICAL ILambda, PrecipitationBegun 
52 INTEGER ITest, Suspend, lmax, lGOOD, IFailTol, IFailNeg, 
53 $ IFaiIPos 
54 COMMON IFLAGlILambda, PrecipitationBegun, ITest, Suspend, IMax 
55 PrecipitationBegun = .F ALSE. 
56 DATA IGOOD /0/, Kount /0/, J /0/, M /0/, NZ /01, MKount /0/, 
57 $ IFailTol /2/, IFailNeg 101, IFailPos /0/ 
58 NoPoints = NumberOfPoints 
59 DX = Thickness / (NoPoints - 1 )  
60 Time = StartTime 
6 1  open(20, file='run8.txt') 
62 CALL INITIAL(NoPoints, y) 
63 CALL INITIAL(NoPoints, YOld) 
64 CALL PrintSolution(y, YOld, 5, NoPoints, DelTime) 
65 M = 5 * NoPoints + 4 
66 c CALL CalculateJ(y, YOld, DX, DelTime, NoPoints, 
67 c $ 5 * NoPoints + 4, F, Time, 
68 c $ Matrix, Row, Col, NZ) 
69 c WRITE(6,*), ***** Numerical Jacobian ****** '  
70 c CALL PrintMatrix(Matrix, Row, Col, NZ, 5*NoPoints+4) 
7 1  c CALL SetUpMatrix(y, DX, DelTime, NoPoints, M, Matrix, Row, 
72 c $ Col, NZ) 
73 c WRITE(6, *)' ***** Analytic Jacobian ****** '  
74 c CALL PrintMatrix(Matrix, Row, Col, NZ, 5*NoPoints+4) 
75 MKount = 0 
76 Suspend = 0 
77 DO WHTI..E« Time .LE. EndTime) .AND. (MKount .LT. MaxKount» 
78 c $ .AND. (Suspend .LT. 1 »  
79 CALL SteplnTime(Matrix, Row, Col, Y,  YOld, NoPoints, 
80 $ DX, DeITime, Time, IFAIL) 
8 1  IF(I1ambda) THEN 
82 PrecipitationBegun = .TRUE. 
83 END IF 
84 Time = Time + DelTime 
85 MKount = MKount + 1 
86 MDT = MIN( (Time+ 1 .0D-3)/1 .0D3, MaxDT) 
87 If(MKount.eq. (MKountllprint)*Iprint) THEN 
88 CALL PrintSolution(y, YOld, 5, NoPoints, DelTime) 
89 WRITE(6,*)'Time=', Time, DeITime,MKount,IFail 
90 WRITE(20,'(2( l pe 1 6.8» ' ,  advance='no') Time, DeITime 
9 1  END IF 
92 IF(IF AIL .L T. 0) THEN 
93 Time = Time - DelTime 
94 DelTime = DelTime / 1 . 2DO 
95 write(6,fmt='(a)',advance='no')'-' 
96 DO j = 1 ,  5*NoPoints + 4 
97 Y(j) = YOldU) 
98 END DO 
99 ELSE IF«(IFAIL .LT. 1 8) .AND. 

1 00 $ (DelTime .LT. MDT» THEN 
1 0 1  DelTime = DelTime * 1 .02DO 
102 c WRITE(6,*)'DT increased to ',DeITime,MDT 
1 03 write(6,fmt='(a)',advance='no')'+' 
1 04 END IF 
1 05 DO j = 1 ,  5*NoPoints + 4 

1 06 YOld(j) = Y(j) 
1 07 END DO 
108 END DO 
109 WRITE(6, *)' Time = " Time, DelTime 
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1 10 CALL PrintSolution(y, YOld, 5, NoPoints, DelTime) 
I I I  STOP 
1 12 END 

1 13 SUBROUTINE SetUpMatrix(y, DX, DT, N, M, Matrix, Row, Col, NZ) 
1 14 IMPLICIT NONE 
1 15 C 
1 16 C Set up jacobian matrix in  CSR fonnat 
1 17 C 
1 18 C INPUT: 
1 19 C Y Current solution vector 
120 C DX stepsize in X 
1 2 1  C DT stepsize in time 
122 C N number of points in X direction 
123 C M dimension of Matrix and COL 
124 C OUTPUT: 
125 C Matrix the Jacobian matrix 
126 C Row 
1 27 C Col arrays used for sparse matrix fonnat 
128 C NZ number of non-zeros in Jacobian 
129  C 
130 INTEGER N,  M,  NZ, Row(M), Col(M), L, i 
1 3 1 DOUBLE PRECISION Matrix(M), Y(M) 
1 32  DOUBLE PRECISION U, W,  Z ,  Pw, Pz, Pf, Mw, Mu, Mp, Mf, Lambda 
1 3 3  DOUBLE PRECISION k l ,  k2 ,  k3, Du, Dw, Dz 
134  COMMON IPDEIkI ,  k2, k3 ,  Du, Dw, Dz 
1 35  DOUBLE PRECISION r l ,  r2, r3 , r4, r5, r6, r7, r8, r9, r IO, 
1 36  $ r l l ,  r 1 2, r 1 3 ,  r 1 4, Alpha, Beta, Eta, Rhol ,  Rho2 
1 3 7  COMMON fRATES/rl ,  r2, r3, r4, r5, r6, r7, r8, r9, r IO, r l l ,  r 12, 
138 $ r 1 3 ,  r l 4, Alpha, Beta, Eta, Rho l ,  Rho2 
139  DOUBLE PRECISION PSO, MO, WO, UO, ZO, ZcO, PO, POS 
1 40 COMMON /SCALE/ PSO, MO, WO, UO, ZO, ZCO, PO, POS 
1 4 1  DOUBLE PRECISION DX2, DX, DT, Pm, DZm lDPw, DZml DPz, MOmMp 
142 LOGICAL !Lambda, PrecipitationBegun 
143 INTEGER ITest, Suspend, Imax 
144 COMMON IFLAGlILambda, PrecipitationBegun, ITest, Suspend, !Max 
1 45 DOUBLE PRECISION dfzldMp, dfzldW, dfzldU, dfz2dW, dfz2dMp, 
1 46 $ dZmlDz 
1 47 L = 5 * N 
148 DX2 = DX * DX 
149 U = MAX(Y( I), O.ODO) 
1 50 W = Y(2) 
1 5 1  Pw = Y(3) 
152 Z = Y(4) 
153  pz = Y(5) 
154 Mw = Y(L+ l) 
155  Mu = Y(L+2) 
156 Mp = MIN(Y(L+3), MO) 
1 57 Lambda = Y(L+4) 
158 Pm = Mp 
159  Pf = POS - Pw - pz - Y(L+3) 
160 Mf= MO - Mw - Mu - Y(L+3) 
16 1 Dfz lDMp = -3 .E0I2 .EO*rho l *sqrt«MO-Mp)IMO)*W*sqrt(U)IMO 
162 DFzl DW = rho l *sqrt«M0-Mp)1M0)**3*sqrt(U) 
163 IF(U.GT.O.ODO) THEN 
164 DFzl DU = rho l *sqrt«M0-Mp)1M0)**3*W/sqrt(U)I2 .0 
165 ELSE 
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166 DfzlDU = O.ODO 
167 END IF 
168 Dfz2DW = 2*rho2*«M0-Mp)IMO)**2*W 
169 . Dfz2DMp = -2*rho2*(M0-Mp)IMO**2*W**2 
1 70 NZ = 0 
1 7 1  C 
1 72 C U 
1 73 C 
1 74 Matrix(NZ+ l )  = l .ODO + DT * Du / DX2 + (DTIDX) * DfzlDU 
1 75 Matrix(NZ+2) = + (DTIDX) * Dfz l DW 
1 76 Matrix(NZ+ 3) = - DT * Du / DX2 
1 77 Matrix(NZ+4) = + (DTIDX) * Dfz lDMp 
1 78 COL(NZ+1 )  = 1 
179 COL(NZ+2) = 2 
1 80 COL(NZ+3) = 6 
1 8 1  COL(NZ+4) = L + 3 
1 82 ROW(l )  = NZ + 1 
1 83 NZ = NZ + 4 
1 84 C 
1 85 C W 
186 C 
187 Matrix(NZ+ 1 )  = - DFzl DU 
188 Matrix(NZ+2) = - Dw / DX - DFz lDW - 2.0DO * DFz2DW 
189 Matrix(NZ+3) = Dw / DX 
1 90 Matrix(NZ+4) = - Dfz lDMp - 2.0DO * DFz2DMp 
1 9 1  COL(NZ+1 )  = 1 
1 92 COL(NZ+2) = 2 
1 93 COL(NZ+3) = 7 
1 94 COL(NZ+4) = L+3 
1 95 ROW(2) = NZ + 1 
1 96 NZ = NZ + 4  
1 97 C 
1 98 C Pw 
1 99 C 
200 Matrix(NZ+ 1 )  = -DT * r9 * Pf / WO / 2.0DO ! dJDW 
20 1 Matrix(NZ+2) = 1 .0DO + DT * (r9 * W / WO + rIO) / 2 .0DO ! d/dPw 
202 Matrix(NZ+3) = DT * r9 * W / WO / 2.0DO ! d/dPz 
203 Matrix(NZ+4) = -DT * r9 * W / WO / 2.0DO ! d/dPm 
204 COL(NZ+ l )  = 2 
205 COL(NZ+2) = 3 
206 COL(NZ+3) = 5 
207 COL(NZ+4) = 5 *N + 3 
208 ROW(3) = NZ + 1 
209 NZ = NZ + 4  
2 10 IF( .NOT.ll..ambda) THEN 
2 1 1  Matrix(NZ+ 1 )  = 1 .0DO*Dfz lDU / 2.0DO !dJDU 
2 1 2  Matrix(NZ+2) = 1 .0DO*(Dfz lDW + DFz2DW) / 2.0DO !dJDW 
2 1 3  Matrix(NZ+3) = r7 * (Z / ZO) / 2 .0DO !d!DPw 
2 14 Matrix(NZ+4) = - Dz / DX / 2.0DO - k3 / DT !d!DZ 
2 1 5  $ -r7 * Pf / ZO / 2 .0DO 
2 1 6  Matrix(NZ+5) = (r7 * (Z / ZO) + r8) / 2 .0DO !d!DPz 
2 1 7  Matrix(NZ+6) = Dz * Y(9) / DX / 2.0DO !d!DZ9 
2 1 8  Matrix(NZ+7) = 1 .0DO*(Dfz lDMp + Dfz2DMp) / 2.0DO !d/dMp 
2 1 9  COL(NZ+ l )  = 1 
220 COL(NZ+2) = 2 
22 1 COL(NZ+3) = 3 
222 COL(NZ+4) = 4 
223 COL(NZ+5) = 5 
224 COL(NZ+6) = 9 
225 COL(NZ+7) = L + 3 
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ROW(4) = NZ + 1 
NZ = NZ + 7 

ELSE 
Z = Y(4) 
W = Y(2) 

Matrix(NZ+ 1) = - Z * WO / W**2 
Matrix(NZ+2) = WO / W 
Col(NZ+ 1 )  = 2 
Col(NZ+2) = 4 
Row(4) = NZ+ l 
NZ = NZ + 2  

END IF 

! d / dW 
! d /  dZ 

226 
227 
228 
229 
230 
23 1 
232 
233 
234 
235 
236 
237 
238 
239 
240 
24 1 
242 
243 
244 
245 
246 
247 
248 
249 
250 
25 1  
252 
253 

Matrix(NZ+ 1 )  = DT * r7 * Z / ZO / 2.0 ! d / dPw 

254 C 

Matrix(NZ+2) = - DT * r7 * Pf / ZO / 2 .0DO ! d / DZ 
Matrix(NZ+3) = 1 .0DO + DT * (r7 * Z / ZO + r8) / 2.0DO ! d / dPz 
Matrix(NZ+4) = DT * r7 * Z / ZO / 2 .0 
COL(NZ+ 1) = 3 
COL(NZ+2) = 4 
COL(NZ+ 3) = 5 
COL(NZ+4) = L + 3 
ROW(5) = NZ + 1 
NZ = NZ + 4  
DO i = 2, N - l 

W = Y((i- l )*5 + 2) 
Pw = Y((i- l )*5 + 3)  
Z = Y((i- l)*5 + 4)  
pz = Y((i- l )*5 + 5)  
Pf = PO - Pw - pz + Beta * Z 

255 C U equation 
256 C 
257 Matrix(NZ+ 1 )  = - DT * Du / DX2 / 2.0DO 
258 Matrix(NZ+2) = 1 .0DO + DT * Du / DX2 
259 Matrix(NZ+3) = - DT * Du / DX2 / 2.0DO 
260 C 
26 1 C W equation 
262 C 
263 Matrix(NZ+4) = - DT * Dw / DX2 / 2.0DO 
264 Matrix(NZ+5) = 1 .0DO + DT * Dw / DX2 
265 Matrix(NZ+6) = k l  
266 Matrix(NZ+7) = - DT * Dw / DX2 / 2.0DO 
267 C 
268 C Pw equation 
269 C 
270 Matrix(NZ+8) = - DT * r i l * Pf / WO / 2.0DO ! dldW 
27 1 Matrix(NZ+9) = 1 .0DO + DT * (rl l * W / WO + r l 2) / 2.0DO ! dldPw 
272 Matrix(NZ+ I0) = - Beta * DT * r i l * W / WO / 2.0DO ! dldZ 
273 Matrix(NZ+ 1 1 ) = + DT * r i l * W / WO / 2.0DO ! d / dPz 
274 C 
275 C Z equation 
276 C 
277 
278 
279 
280 
28 1 C 

Matrix(NZ+ 12) = - DT * Dz / DX2 / 2.0DO 
Matrix(NZ+ 13)  = I .ODO + DT * Dz / DX2 
Matrix(NZ+ 14) = k2 
Matrix(NZ+ I 5) = - DT * Dz / DX2 / 2.0DO 

282 C pz equation 
283 C 
284 Matrix(NZ+ 16) = + DT * r l 3  * Z / ZO / 2.0DO ! d / dPw 
285 Matrix(NZ+ 1 7) = - DT * r 1 3  * cPf + Beta * Z)/ ZO / 2.0DO ! d / dZ 
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286 Matrix(NZ+I8) = 1 .000 + OT * (r8 + r7 * z/ZO) / 2.000 ! d / dPz 
287 COL(NZ+I )  = (i- I )*5  - 4 
288 COL(NZ+2) = (i- I)*5 + 1 
289 COL(NZ+3) = (i- I )*5 + 6 
290 ROW«i-I)*5+I )  = NZ + 1 
2 9 1  COL(NZ+4) = (i- I)*5 - 3 
292 COL(NZ+5) = (i- I )*5 + 2 
293 COL(NZ+6) = (i- I)*5 + 3 
294 COL(NZ+7) = (i- I )*5  + 7 
295 ROW«i- I)*5+2) = NZ + 4 
296 COL(NZ+8) = (i- I)*5 + 2 
297 COL(NZ+9) = (i- I)*5 + 3 
298 COL(NZ+l O) = (i- I)*5 + 4 
299 COL(NZ+l l) = (i- I)*5 + 5 
300 ROW«i- I)*5+3) = NZ + 8 
30 1  COL(NZ+ 1 2) = (i- I)*5 - 1 
302 COL(NZ+ 13) = (i- I)*5 + 4 
303 COL(NZ+l 4) = (i- I)*5 + 5 
304 COL(NZ+1 5) = (i- I)*5 + 9 
305 ROW«i-I )*5+4) = NZ + 1 2  
306 COL(NZ+l6) = (i- I )*5 + 3 
307 COL(NZ+ 1 7) = (i- I)*5 + 4 
308 COL(NZ+l 8) = (i- 1)*5 + 5 
309 ROW«i- l)*5+5) = NZ + 16  
3 10 NZ = NZ +  18  
3 1 1  END 00 

3 1 2  U = Y«(N-I )*5 + 1 )  
3 13 W = Y«(N-I )*5 + 2) 

3 14 Pw = Y«(N-I )*5 + 3)  

3 1 5  Z = Y«(N- l )*5 + 4) 
3 16 pz = Y«(N- l )*5 + 5) 
3 17 Pf = PO - Pw - pz + Z 
3 18 C 
3 1 9 C U Boundary condition 
320 C 
32 1 Matrix(NZ+ I)  = 1 .000 
322 COL(NZ+I )  = (N- l )*5 + I 
323 ROW«(N-I)*5 + I )  = NZ + I 
324 NZ = NZ + 1 
325 C 
326 C W Boundary condition 
327 C 
328 Matrix(NZ+ I) = 1 .000 
329 COL(NZ+ I) = (N- l )*5 + 2 
3 30 ROW«(N- I)*5 + 2) = NZ + I 
3 3 1  NZ = NZ +  I 
332  C 
333 C Pw equation 
334 C 
335 Matrix(NZ+ l )  = - OT * r i l * Pf / WO / 2.000 ! dldW 
336 Matrix(NZ+2) = 1 .000 + OT * (r l l * W / WO + r l 2) / 2.000 ! dldPw 
337 Matrix(NZ+3) = - OT * r l 1 * W / WO / 2.000 ! dldZ 
338 Malrix(NZ+4) = OT * r l l * W / WO / 2.000 ! d / dPz 
339 COL(NZ+I )  = (N- I)*5 + 2 
340 COL(NZ+2) = (N- l )*5 + 3 
34 1 COL(NZ+3) = (N- I)*5 + 4 
342 COL(NZ+4) = (N- I)*5 + 5 
343 ROW«(N-I)*5 + 3)  = NZ + 1 
344 NZ = NZ + 4  
345 C 
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346 C Z Boundary conditions 
347 C 
348 Matrix(NZ+l )  = 1 .0DO 
349 COL(NZ+l)  = (N- l )*5 + 4 
350 ROW«N-I)*5 + 4) = NZ + 1 
3 5 1  NZ = NZ + 1 
352 C 
353 C pz equation 
354 C 
355 Matrix(NZ+l )  = + DT * r l 3  * Z I ZO 1 2 .0DO ! d I dPw 
356 Matrix(NZ+2) = - DT * rl3 * (Pf + Z)I ZO 1 2 .0DO ! d I dZ 
357 Matrix(NZ+3) = l .ODO + DT * (r14 + rl3 * ZIZO) 1 2.0DO ! d I dPz 
358 COL(NZ + I )  = (N- l )*5 + 3 
359 COL(NZ + 2) = (N- I )*5 + 4 
360 COL(NZ + 3) = (N- l )*5 + 5 
3 6 1  ROW«N- l)*5 + 5 )  = NZ + 1 
362 NZ = NZ + 3 
363 V = Y( l )  
364 W = Y(2) 
365 Pw = Y(3) 
366 Z = Y(4) 
367 pz = Y(5) 
368 Mp = Y(L+3) ! restore Mp to current value 
369 Pf = POS - Pw - pz - Mp 
370 Mf = MO - Mw - Mu - Mp 
371  C 
372 C Mw equation 
373 C 
374 MOrnMp = MO - Alpha * Mp 
375 Matrix(NZ+I )  = - DT * rl * (MOmMp) * Mf I MO I WO I 2 .0DO ! d I dW 
376 Matrix(NZ+2) = l .ODO + DT * (rl * (W I WO) * (MOrnMp) I MO 
377 $ + r2) 1 2.0DO ! d I dMw 
378 Matrix(NZ+3) = DT * r l  * (W I WO) * (MOmMp) I MO / 2.0DO ! d / dMu 
379 Matrix(NZ+4) = DT * r l  * WIWO * «MOmMp)/MO + 
380 $ Alpha * MflMO)/2.0DO ! d I dMp 
3 8 1  COL(NZ+l )  = 2 
382 COL(NZ+2) = L+ 1 
383 COL(NZ+3) = L+2 
384 COL(NZ+4) = L+3 
385 ROW(N*5 + 1) = NZ+ 1 
386 NZ = NZ + 4  
387 C 
388 C Mu equation 
389 C 
390 Matrix(NZ+ 1) = - DT * r3 * (MOmMp) * Mf I VO I MO 12 .0DO ! d I dU 
3 9 1  Matrix(NZ+2) = DT * r3 * U * (MOmMp) I UO I MO I 2.0DO ! d I dMw 
392 Matrix(NZ+3) = l .ODO + DT * (r3 * (U I UO)*«MOmMp)/MO) 
393 $ + r4) / 2.0DO ! d / dMu 
394 Matrix(NZ+4) = DT * r3 * «U I UO) * (Alpha * Mf / MO + 
395 $ (MOrnMp) I MO» I 2 .0DO ! d I dMp 
396 COL(NZ+ l )  = 1 
397 COL(NZ+2) = L+ 1 
398 COL(NZ+3) = L+2 
399 COL(NZ+4) = L+3 
400 ROW(N*5 + 2) = NZ+ l 
40 1 NZ = NZ + 4 
402 C 
403 C Mp equation 
404 C 
405 Matrix(NZ+ I )  = DT * r5 * Mf I POS I 2 .0DO ! d / dPw 
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406 Matrix(NZ+2) = OT * r5 * Mf / POS / 2.000 I d / dPz 
407 Matrix(NZ+ 3) = OT * r5 * Pf / POS / 2 .000 ! d / dMw 
408 Matrix(NZ+4) = OT * r5 * Pf / POS / 2.000 ! d /  dMu 
409 Matrix(NZ+5) = 1 .000 + OT * (r5 * (Pf + Mf) 
4 10 $ / POS + r6) / 2 .000 ! d / dMp 
4 1 1 COL(NZ+l )  = 3 
4 1 2  COL(NZ+2) = 5 
4 13 COL(NZ+ 3) = L+ 1 
4 14 COL(NZ+4) = L+2 
4 1 5  COL(NZ+5) = L+3 
4 1 6  ROW(N*5 + 3) = NZ+ 1 
4 1 7  NZ = NZ +  5 
4 18 IF(.NOT.ILambda) THEN 
4 19 Matrix(NZ+ 1) = 1 .000 
420 COL(NZ+ l )  = (N*5+4) 
42 1 ROW(N*5 + 4) = NZ+ I 
422 NZ = NZ +  I 
423 ROW(N*5 + 5) = NZ+l 
424 ELSE 
425 Z = Y(4) 
426 Matrix(NZ+ 1) = 1 .000*Ofz l DV / 2 .000 !d!DV 
427 Matrix(NZ+2) = 1 .000*(DfzlDW + OFz20W) / 2 .000 !d!DW 
428 Matrix(NZ+3) = r7 * (Z / ZO) / 2 .000 !d!DPw 
429 Matrix(NZ+4) = - Oz / OX / 2 .000 !d!DZ 
430 $ -r7 * Pf / ZO / 2 .000 
43 1 Matrix(NZ+5) = (r7 * (Z / ZO) + r8) / 2 .000 !d!DPz 
432 Matrix(NZ+6) = Oz / OX / 2 .000 !d!DZ9 
433 Matrix(NZ+7) = 1 .000*(Dfz l DMp + Ofz20Mp) / 2 .000 !d/dMp 
434 Matrix(NZ+8) = - 1 .00 / OT 
435 COL(NZ+ I)  = I 
436 COL(NZ+2) = 2 
437 COL(NZ+3) = 3 
438 COL(NZ+4) = 4 
439 COL(NZ+5) = 5 
440 COL(NZ+6) = 9 
44 1 COL(NZ+7) = L + 3 
442 COL(NZ+8) = L + 4 
443 ROW(N*5+4) = NZ + I 
444 NZ = NZ +  8 
445 ROW(N*5 + 5) = NZ+I 
446 END IF 
447 RETURN 
448 END 

449 SUBROUTINE CalculateF(Y, YOld, OX, OT, N, M, F, Time, IGOOO) 
450 IMPLICIT NONE 
45 1 INTEGER M, N, L, i, j, IGOOD 
452 OOUBLE PRECISION Y(M), YOld(M), F(M), OX, OT, Lambda, 
453 $ Lambdao, Time 
454 OOUBLE PRECISION DX2, V, W, Z, Pf, Pw, Pz, Vo, Wo, Zo, 
455 $ Pfo, Pwo, Pzo, Mw, Mwo, Mu, Muo, Mp, Mpo, Mf, Mfo 
456 OOUBLE PRECISION k l ,  k2, k3, Ou, Dw, Oz 
457 COMMON IPDEIk I ,  k2, k3, Du, Dw, Dz 
458 DOUBLE PRECISION r I ,  r2, r3, r4, r5, r6, r7, rS, r9, r IO, 
459 $ r l l ,  r 1 2, r13, r 14, Alpha, Beta, Eta, Rho l ,  Rh02 
460 COMMON !RATES/rI ,  r2, r3, r4, r5, r6, r7, r8, r9, riO, r I l ,  r I 2, 
46 1 $ r l3 ,  r I4, Alpha, Beta, Eta, Rho l ,  Rh02 
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1 6 1  

462 DOUBLE PRECISION PSO, MO, WO, UO, ZO, ZcO, PO, POS 
463 COMMON ISCALEI PSO, MO, WO, UO, ZO, ZCO, PO, POS 
464 LOGICAL ILambda, PreeipitationBegun 
465 INTEGER ITest, Suspend, IMax 
466 COMMON IFLAG/lLambda, PrecipitationBegun, ITest, Suspend, IMax 
467 DOUBLE PRECISION Zw, Zwo, temp I ,  temp2, fz I ,  fz2, Urn I ,  UmIo, Wm I ,  
468 $ Wm I o, Zm I ,  fz Io, fz20, zm I o, Ze, Zeo, MOmMp, 
469 $ MOmMpo 
470 DOUBLE PRECISION WRHS 
47 1 C 
472 C Variables are stored in tlle Y vector as U(i), W(i),Pw(i),Z(i),PZ(i) 
473 C i = l . . .N Mw, Mu, Mp, Ze 
474 DX2 = DX * Dx 
475 L =  5 * N 
476 Mw = Y(L+ I)  
477 Mu = Y(L+2) 
478 Mp = MJN(Y(L+3),MO) 
479 Lambda = Y(L+4) 
480 Mwo = YOld(L+I)  
48 1 Muo = YOld(L+2) 
482 Mpo = MJN(YOId(L+3),MO) 
483 Larnbdao = YOld(L+4) 
484 j = 5  
485 DO i = 2, N - 1 
486 U = Y((i- I)*5 + 1 )  
487 W = Y((i- I)*5 + 2) 
488 Pw = Y((i- I)*5 + 3) 
489 Z = Y((i- I)*5 + 4) 
490 pz = Y((i- I)*5 + 5) 
49 1 Uo = YOld((i-I )*5 + 1 )  
492 Wo = YOld((i- I )*5 + 2) 
493 Pwo = YOld«i- I)*5 + 3) 
494 Zo = YOld((i- I )*5 + 4) 
495 Pzo = YOld«i- l )*5 + 5) 
496 Pf = PO + Beta * Z - Pw - pz 
497 Pfo = PO + Beta * Zo - Pwo - Pzo 
498 C 
499 C U equation 
500 C 
501 j = j + 1 
502 F(j) = Y(j) - YOld(j) - DT * (Y(j+5) - 2.0DO * Y(j) + Y(j-5) 
503 $ + YOld(j+5) - 2 .0DO * YOld(j) + YOld(j-5» *DuJ2.0DOIDX2 
504 j = j + 1 
505 C 
506 C W 
507 C 
508 F(j) = Y(j) - YOld(j) - DT * (Y(j+5) - 2.0DO * Y(j) + Y(j-5) 
509 $ + YOld(j+5) - 2 .0DO * YOld(j) + YOld(j-5» *Dw/2.0DOIDX2 
5 1 0  $ + k l  * (pw - Pwo) 
5 1 1  j = j + 1 
5 1 2  C 
5 1 3 C Pw 
5 1 4  C 
5 1 5  F(j) = (Y(j) - YOld(j» - DT * ( r l l  * (Pf * W + Pfo * Wo) AVO 
5 1 6  $ - (r l 2  * (pw + Pwo))) I 2 .0DO 
5 1 7  j = j + 1 
5 1 8  C 
5 1 9  C Z 
520 C 
52 1 F(j) = Y(j) - YOld(j) - DT * (Y(j+5) - 2.0DO * Y(j) + Y(j-5) 
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522 $ + YOld(j+5) - 2 .0DO * YOld(j) + YOld(j-5» *DzJ2.0DOIDX2 
523 $ + k2 * (pz - pzo) 
524 j = j + 1 
525 C 
526 C pz 
527 C 
528 F(j) = (Y(j) - YOld(j» - DT * ( r13 * (pf*Z/ZO + 
529 $ Pfo*Zo/ZO) - r l 4  * (pz + pzo» / 2 .0DO 
530 END DO 
53 1 i = 1 
532 V = Y((i- l )*5 + I)  
533 W = Y((i- l )*5 + 2) 
534 Pw = Y((i- l )*5  + 3)  
535 Z = Y((i- l )*5  + 4) 
536 pz = Y«i-l )*5 + 5) 
537 Vo = YOld((i- l )*5 + 1 )  
538 Wo = YOld((i- l )*5 + 2) 
539 Pwo = YOld((i- l )*5 + 3) 
540 Zo = YOld((i- l )*5  + 4) 
54 1 Pzo = YOld«i- l )*5 + 5) 
542 Pf = POS - Pw - pz - Y(L+3) ! script P on boundary 
543 Pfo = POS - Pwo - Pzo - YOld(L+3) 
544 IGOOD = O  
545 IF(Pf .L T. O.ODO) THEN 
546 IGOOD = I 
547 RETURN 
548 END IF 
549 Temp i = (MO - Mp) / MO 
550 Temp2 = Tempi * SQRT(Temp l )  
55 1 FZ I = Rho 1 * Temp2 * W * SQRT(U) 
552 FZ2 = Rho2 * (Tempi * W)**2 
553 Vm l = Y(6) - DX * Fz I / Ou 
554 Vm l o  = YOld(6) - OX * Fzl / Du 
555 Wm i = Y(7) - 2.0DO * OX * (fz l + 2 .000 * fz2) / Dw 
556 Wml o  = YOld(7) - 2 .0DO * OX * (fz l + 2 .0DO * fz2) / Dw 
557 Temp I = (MO - Mpo) / MO 
558 Temp2 = TempI * SQRT(TempI )  
559 FZ l o  = Rho I * Temp2 * Wo * SQRT(Uo) 
560 FZ20 = Rho2 * (Temp I * Wo)**2 
56 1 j = 1 
562 C 
563 C The V equation 
564 C 
565 F(j) = Y(j) - YOld(j) - OT * (Y(j+5) - 2.0DO * Y(j) + Vml 
566 $ + YOld(j+5) - 2.000 * YOldO> + Vml o)*Dul2.0DOIDX2 
567 j = j + 1 
568 C 
569 C The W equation 
570 C 
57 1 c F(j) = Yo> - YOld(j) - OT * (Y(j+5) - 2.000 * Yo> + Wm l 
572 c $ + YOld(j+5) - 2 .000 * YOldO> + Wm l o)*Owl2.000IDX2 
573 c $ + k 1 * (pw - Pwo) 
574 F(j) = Ow * (Y(j+5) - Y(j» / OX - FZI - FZ2 * 2.000 
575 j = j + 1 
576 C 
577 C The Pw equation 
578 C 
579 F(j) = Y(j) - YOld(j) - OT * (r9 * (Pf * W / WO + Pfo * Wo / WO) 
580 $ - r IO * (Pw + Pwo» 12.0 
5 8 1  j = j + 1 
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582 C 
583 C The Z equation 
584 C 
585 IF (W .NE. O.ODO) THEN 
586 Zw = Z  * WO / W  
587 ELSE 
588 Zw = O.ODO 
589 END IF 
590 IF«Zw .LT. ZO) .AND . .  NOT. PrecipitationBegun) THEN 
59 1 F(j) = Dz * (Y(j + 5) - Y(j» / DX / 2.0DO 
592 $ + Dz * (yOld(j + 5) - YOld(j» / DX / 2 .0DO 
593 $ - k3 * (Y(j) - YOld(j» / DT 
594 $ + 1 .0DO*(fz l + fz2 + fzlo + fz2o) / 2 .0DO 
595 $ - (r7 * (Z / ZO) * Pf - r8 * pz) / 2.0DO 
596 $ - (r7 * (Zo / ZO) * Pfo - r8 * pzo) / 2 .0DO 
597 j = j + 1 
598 ILambda = .F ALSE. 
599 ELSE 
600 IF(.NOT. ILambda) THEN 
60 1 WRlTE(6, *)' Precipitation begins ' 
602 Suspend = 1 
603 END IF 
604 F(j) = Z * WO / W - ZO ! Equation is Z( I)  = ZO 
605 j = j + 1 
606 ILambda = . TRUE. 
607 END IF 
608 C 
609 C The pz equation 
6 10  C 
6 1 1 F(j) = (Y(j) - YOld(j» - DT * ( r7 * (pf*Z/ZO + 
6 1 2  $ Pfo*Zo/ZO) - r8 * (pz + pzo» / 2.0DO 
6 1 3  j = 5*N+l 
6 1 4  Mw = Y(j) 
6 1 5  Mwo = YOld(j) 
6 16 Mu = Y(j+ l )  
6 1 7  Muo = YOld(j+ 1 )  
6 18 Mp = Y(j+2) 
6 1 9  Mpo = YOld(j+2) 
620 Mf = MO - Mw - Mu - Mp 
62 1 Mfo = MO - Mwo - Muo - Mpo 
622 IF(Mf .L T. O.ODO) THEN 
623 IGOOD = 2 
624 RETIJRN 
625 END IF 
626 IF(Mw .LT. O.ODO) THEN 
627 IGOOD = 3 
628 RETIJRN 
629 END lF 
630 C 
63 1 C The Mw equation 
632 C 
633 MOmMp = MO - Alpha * Mp 
634 MOmMpo = MO - Alpha * Mpo 
635 F(j) = (Mw - Mwo) - DT * (rl * «W/WO) * (MOmMp)*MfIMO 
636 $ + (WoIWO) * (MOmMpo)*MfoIMO) - r2 * (Mw + Mwo» /2.0DO 
637 j = j + 1 
638 C 
639 C The Mu equation 
640 C 
64 1 F(j) = (Mu - Muo) - DT * (r3 * «(U1U0) * (MOmMp)*MfIMO 



642 $ + (U01U0) * (MOmMpo)*Mfo/MO) - r4 * (Mu + Muo» /2.0DO 
643 C 
644 C The Mp equation 
645 C 
646 j = j + 1 
647 F(j) = (Mp - Mpo) - DT * (r5*(pf/POS)*(Mf + Mfo) -
648 $ r6 * (Mp + Mpo» / 2 .0DO 
649 c WRITE(20,'(5D20. 1 3)')Time,Mu,Mf, 
650 c $ DT * (r3 * «(U1U0) * (MOmMp)*MflMO 
65 1 c $ + (U01U0) * (MOmMpo)*Mfo/MO) - r4 * (Mu + Muo» /2.0DO 
652 c $ ,DT * (r5*(Pf/POS)*(Mf + Mfo) -

653 c $ r6 * (Mp + Mpo» / 2 .0DO 
654 j = j + 1 
655 Zc = Y(j) 
656 Zco = YOld(j) 
657 i = 1 
658 V = Y«i- I)*5 + I) 
659 W = Y«i- I)*5 + 2) 
660 Pw = Y«i- I)*5 + 3) 
66 1 Z = Y«i- I)*5 + 4) 
662 pz = Y«i- I)*5 + 5) 
663 Vo = YOld«i- I )*5 + I) 
664 Wo = YOld«i- I)*5 + 2) 
665 Pwo = YOld«i- I)*5 + 3) 
666 Zo = YOld«i- I)*5 + 4) 
667 Pzo = YOld«i- I)*5 + 5) 
668 Pf = POS - Pw - pz - Y(L+3) ! script P on boundary 
669 Pfo = POS - Pwo - Pzo - YOld(L+3) 
670 IF(.NOT. I1ambda) THEN 
67 1 FU) = Y(j) ! Equation is Zc=O 
672 ELSE 
673 Zc = Y(5*N+4) 
674 Zco = YOld(5*N+4) 
675 F(j) = Dz * (Y(9) - Y(4» / DX / 2.0DO 
676 $ + Dz * (YOld(9) - YOld(4» / DX / 2.0DO 
677 $ - (Zc - Zco) / DT 
678 $ + 1 .0DO*(fz l  + fz2 + fz l o  + fz20) / 2.0DO 
679 $ - (r7 * (Z / ZO) * Pf - r8 * pz) / 2.0DO 
680 $ - (r7 * (Zo / ZO) * Pfo - r8 * Pzo) / 2.0DO 
68 1 END IF 
682 i = N 

683 V = Y«i- I )*5 + I) 
684 W = Y«i- I)*5 + 2) 
685 Pw = Y«i- I )*5 + 3) 
686 Z = Y«i- I )*5 + 4) 
687 pz = Y((i- I)*5 + 5) 
688 Vo = YOld«i- l )*5 + 1 )  
689 Wo = YOld«i- l )*5 + 2) 
690 Pwo = YOld«i- I )*5 + 3) 
691  Zo = YOld((i- l )*5 + 4) 
692 Pzo = YOld((i- l )*5 + 5) 
693 Pf = PO + Z - Pw - pz 
694 Pfo = PO + Zo - Pwo - Pzo 
695 F(5*(N-I )+I)  = Y(5*(N- l )+1 )  - VO 
696 F(5*(N-I)+2) = Y(5*(N- I )+2) - WRHS(Time) 
697 j = 5*(N-I)  + 3 
698 FU) = (Y(j) - YOld(j» - DT * ( ri l * (Pf*W/wO + Pfo*Wo/WO) 
699 $ - (r12 * (pw + Pwo» ) / 2.0DO 
700 j = j + 1 
70 1 F(j) = Z 
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702 j = j + I 
703 F(j) = (Y(j) - YOld(j» - DT * ( r l 3  * (pf*z/ZO + 

704 $ Pfo*Zo/ZO) - r l 4  * (Pz + pzo» 1 2 .0DO 
705 RETURN 
706 END 

707 
708 C 
709 C 
7 10 C 
7 1 1  C 
7 1 2  C 
7 1 3  C 
7 1 4  C 
7 1 5  C 
7 16 
7 1 7  
7 1 8  
7 1 9  
720 
72 1 
722 
723 
724 
725 
726 
727 
728 
729 
730 
73 1 
732 
733 
734 
735 
736 
737 
738 
739 
740 
74 1 
742 
743 
744 

SUBROUTINE INITIAL(N, U) 

This routine initialises spatial arrays and assigns initial conditions 

INPUT 
N No of points is x direction 

OUTPUT 
U Initial values for U(x), W(x), Z(x), Pw(x), Pz(x), Mw, Mu, Mp 

IMPLICIT NONE 
INTEGER N 
DOUBLE PRECISION U(*) 
INTEGER i 
DOUBLE PRECISION WRHS 
DOUBLE PRECISION r I ,  r2, r3, r4, r5, r6, r7, r8, r9, r iO, 

$ r l I ,  rI2 ,  r 13 ,  r I4, Alpha, Beta, Eta, Rho l ,  Rho2 
COMMON fRATES/rI ,  r2, r3, r4, r5, r6, r7, r8, r9, r IO, r l l ,  r 12 ,  

$ r 13 ,  r l4, Alpha, Beta, Eta, Rho l ,  Rho2 
DOUBLE PRECISION PSO, MO, WO, UO, ZO, ZcO, PO, POS 
COMMON ISCALE/ PSO, MO, WO, UO, ZO, ZCO, PO, POS 
DO i = 1 ,  5 *N 

U(i) = 0.000 
END DO 
DO i = 1, N 

U((i- I )*5+ 1 )  = O.ODO !U prey UO 
U((i- I )*5+2) = 0.000 ! W  prey WO 
U« i- I )*5+3) = 0.000 !Pw prey 100/6.0 

END DO 
U(3) = 0.000 !PwO script 
U(5*(N- I )  + 1) = UO !U(O) 
U(5*(N- l )  + 2) = WRHS(O.ODO) ! W(O) 
U(5*(N- l )  + 3) = WRHS(O.ODO) * r l l * PO l(rI l + rI 2)/w0 !PO/6 1 = I6 .393 
U(5*N + I )  = 0.000 !Mw 
U(5*N + 2) = 0.000 !Mu 
U(5*N + 3) = MO - 1 .093440- 1 1  !Mp MO - 1 . 1 150-8 
U(5*N + 4) = 0.000 !Pz? 
RETURN 
END 

745 SUBROUTINE PrintSolution(U, UOld, NPDE, NoPoints, DTime) 
746 IMPLICIT NONE 
747 DOUBLE PRECISION U(*), UOld(*) 
748 INTEGER NPDE, NoPoints, i, j,  Suspend, ITest, IMax 
749 LOGICAL ILambda, PrecipitationBegun 
750 DOUBLE PRECISION Pf(NoPoints) 
75 1 DOUBLE PRECISION Pw, Pz, Mf, Z, Mrold, DTime 
752 DOUBLE PRECISION rI, r2, r3, r4, r5, r6, r7, r8, r9, r IO, 

1 65 



753 $ r l l ,  r 12, r l 3, r 14, Alpha, Beta, Eta, RllOI ,  Rho2 
754 COMMON fRATES/rI ,  r2, r3, r4, r5, r6, r7, r8, r9, r IO, r I l ,  r I2, 
755 $ r l3 ,  r I 4, Alpha, Beta, Eta, Rho I ,  Rho2 
756 DOUBLE PRECISION PSO, MO, WO, UO, ZO, ZcO, PO, POS 
757 DOUBLE PRECISION T I ,  T2, T3, T4, T5, T6, T7, T8, T9, 
758 $ T IO, Ti l ,  T I 2, TI3 ,  Mwm, Mum, Mpm,Mfm, 
759 $ DEMw, DEMu, DEMp, DEPz, DEPw, DEZ, DEZc 
760 COMMON ISCALEI PSO, MO, WO, UO, ZO, ZCO, PO, POS 
76 1 COMMON IFLAGlILambda, PrecipitationBegun, ITest, Suspend, IMax 
762 Pw(i) = U((i- I)*5 + 3) 
763 pz(i) = U((i- I )*5 + 5) 
764 Z(i) = U((i- I)*5 + 4) 
765 Mf = MO 
766 MtDld = MO 
767 DO i = 1 , 3 
768 Mf = Mf - U(NoPoints * 5 + i) 
769 MtDld = MtDld - UOld(NoPoints * 5 + i) 
770 END DO 
77 1 Mfm = (Mf + MtDld) 1 2 
772 DO i = 2, NoPoints 
773 Pf(i) = PO + Z(i) - Pw(i) - pz(i) 
774 END DO 
775 Pf( l )  = POS - Pw( l )  - pz( l )  - U(NoPoints * NPDE + 3 )  
776 Mpm = (U(NoPoints * NPDE + 3) + UOld(NoPoints*NPDE + 3» /2 
777 Mwm = (U(NoPoints * NPDE + 1) + UOld(NoPoints*NPDE + 1 » /2 
778 Mum = (U(NoPoints * NPDE + 2) + UOld(NoPoints*NPDE + 2» /2 
779 TI = r l  * U(2) 1 WO * ( l  - Alpha * Mpm 1 MO) * Mfm !Mw 
780 T2 = r2 * Mwm 
781  T3  = r3  * U( l )  1 UO * ( 1  - Alpha * Mpm 1 MO) * Mfm !Mu 
782 T4 = r4 * Mum 
783 T5 = r5 * Pf( l )  1 PSO * Mfm !Mp 
784 T6 = r6 * Mpm 
785 T7 = r7 * (U(4) + UOld(4» 1 2 1 ZO * Pf( l )  !pz 
786 T8 = r8 * (U(5) + UOld(5» 1 2 
787 T9 = r9 * U(2) 1 WO * Pf( l )  !Pw 
788 TIO = rIO * U(3) 
789 DEMw = (U(S*NoPoints+ 1) - UOld(S*NoPoints+ I » IDTime ! dMw/dt 
790 DEMu = (U(S*NoPoints+2) - UOld(S*NoPoints+2» IDTime ! dMu/dt 
79 1 DEMp = (U(5*NoPoints+ 3) - UOld(S*NoPoints+ 3» IDTime ! dMp/dt 
792 DEZc = (U(S*NoPoints+4) - UOld(S*NoPoints+4» IDTime !d.Zc/dt 
793 DEPw = (U(3) - UOld(3» /DTime !dPw/dt 
794 DEZ = (U(4) - UOld(4» IDTime !dzldt 
79S DEPz = (U(5) - UOld(S» /DTime !dPzldt 
796 write(6, *) 
797 write(6,'(4( l pe I 6.9»',advance='no') U( I )/UO,U(2)/wO, 
798 $ MfmIMO, Pf( l )IPSO 
799 write(6, *) 
800 write(6,'(4( I peI6.9» ',advance='no') U(4)/ZO, DEZ, 
80 1 $ U(S*NoPoints+4)/ZO, DEZc 
802 write(6, *) 
803 write(6,'(4( l pe I 6. 9» ',advance='no') MwmIMO,DEMw, T I ,  T2 
804 write(6, *) 
80S write(6,'(4( 1pe I6 .9» ',advance='no') Mum/MO,DEMu, T3, T4 
806 write(6,*) 
807 write(6,'(4( l peI6.9» ',advance='no') MpmIMO,DEMp, TS, T6 
808 write(6, *) 
809 write(6,'(4( 1pe I 6.9»',advance='no') Pz( l )IPOS,DEPz, T7, T8 
8 10 write(6,*) 
8 1 1 write(6,'(4(lpe I6.9»',advance='no') Pw(1 )IPOS,DEPw, T9, TIO  
8 1 2  write(6,*) 

1 66 



8 1 3  
8 14 
8 1 5  
8 16 
8 17 
8 1 8  
8 1 9  
820 
82 1 
822 
823 
824 
825 
826 
827 
828 
829 
830 

c 
c write output to disk file run*.txt 
c 

write(20,'(8( l pe I6 .8» ',advance='no') U( I)fUO,U(2)IWO, 
$ MfmIMO, Pf( I )IPSO, U(4)/ZO, DEZ, 
$ U(5*NoPoints+4)/ZO, DEZc 
write(20,'(4( lpeI6.8» ',advance='no') MwmlMO, DEMw, Tl ,  T2 

write(20,'(4( l pe I 6.8» ',advance='no') Mum/MO, DEMu, T3, T4 
write(20,'(4( lpe I 6.8»)',advance='no') MpmIMO, DEMp, T5, T6 
write(20,'(4(lpe I 6.8» ',advance='no') Pz( l )IPOS, DEPz, T7, T8 
write(20,'(4( l pe I 6.8» ',advance='no') Pw( I )IPOS, DEPw, T9, TlO  

write(20, *) 
c write(6,*) 
c DO j = 1 , 5 
c WRITE(6, *) 
c WRITE(6,*) 
c WRITE(6,'(5( lX, lpe I 4.7» ')(U«i- l )*NPDE + j),i= l ,  NoPoints) 
c END DO 

83 1 c do j = 3, 5 
832 c write(20,'( l x, lpd I 8. 1 O)',advance='no')U(j) 
833 c end do 
834 c WRITE(6,*) 
835 c WRITE(6, *)' ****  Pf ****' 
836 c WRITE(6,'(5( l pe I 4.7» ')(Pf(i),i= l ,  NoPoints) 
837 c WRITE(20,'( l X, lpd I 8. 1 O)')Pf( l )  
838 c WRITE(6, *) 
839 c WRITE(6,'(5( lX,E I4.8» ')(U(NoPoints*NPDE + i)IMO,i= 1 , 4), Mf IMO 
840 c WRITE(6,'(5( IX,E I4 .8))')(UOld(NoPoints*NPDE + i)IMO,i= l ,  4), 
84 1 c $ MfDld / MO 
842 c WRITE(6,'(5( I X,E I4.8» ')«(U(NoPoints*NPDE + i) + 
843 c $ UOld(NoPoints*NPDE + i» / (2 * MO» , 
844 c $ i = 1 , 4), (Mf + MfDld) / (2 * MO) 
845 c WRITE(20,'(3 ( lX, l pdI8 . 1 O» ',advance='no') 
846 c $ (U(NoPoints*NPDE + i)IMO,i= I ,  3)  
847 c write(20,'( lx, l pd I 8. 1 O)') Mf / MO 
848 c WRITE(20,'(5( I X,E I4 .8» ')(UOld(NoPoints*NPDE + i)IMO,i= l ,  4), 
849 c $ MfDld / MO 
850 c WRITE(20,'(5( IX,E I4.8» ')«(U(NoPoints*NPDE + i) + 
85 1 c $ DOld(NoPoints*NPDE + i» / (2 * MO)), 
852 c $ i = 1 , 4), (Mf + MfDld) / (2 * MO) 
853 If(U(NoPoints*NPDE+4) .GT. O.ODO) Then 
854 Suspend = 1 
855 Else 
856 Suspend = ° 
857 End If 
858 RETURN 
859 END 

860 DOUBLE PRECISION FUNCTION WRHS(T) 
86 1 DOUBLE PRECISION T 
862 DOUBLE PRECISION PSO, MO, WO, DO, ZO, ZcO, PO, POS 
863 COMMON /SCALE/ PSO, MO, WO, DO, ZO, ZCO, PO, POS 
864 WRHS = WO ! prev WO 
865 RETURN 
866 END 
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1 68 

867 SUBROUTINE StepInTime(Matrix, Row, Col, Y, YOld, N, DX, DT, 
868 $ Time, IFAIL) 
869 IMPLICIT NONE 
870 DOUBLE PRECISION Matrix(*), Y(*), YOLD(*), DX, DT, F(SOO), Time 
87 1 INTEGER Row(*), Col(*), N, M, NZ, ierr, i, KOUNT, Kyrlov, IF AIL 
872 C 
873 C If no ALLOCATE statement then uncomment the next 1 1  lines 
874 C 
87S c INTEGER MaxPoints, MaxM 
876 c PARAMETER (MaxPoints = SO) 
877 c PARAMETER (MaxM = 2 *(SO + MaxPoints*20» 
878 c DOUBLE PRECISION alu(2*MaxM), wu(2*(5*MaxPoints+4» , 
879 c $ wl(2*(S*MaxPoints+4» , W(2*(S*MaxPoints+4)* IO), 
880 c $ , YO(2*(S*MaxPoints+4» 
8 8 1  c INTEGER jlu(2*MaxM), ju(2*(S*MaxPoints+4» , 
882 c $ jr(2*(5*MaxPoints+4» , jwu(2*(5*MaxPoints+4» 
883 c $ , jwl(2*(5*MaxPoints+4» 
884 C 
885 C And remove the next 2 lines 
886 C 
887 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE : :alu, wu, wi, W, 
888 $ YO 
889 INTEGER, DIMENSION(:), ALLOCATABLE : :jlu, ju, jr, jwu, jwl 
890 DOUBLE PRECISION PSO, MO, WO, UO, ZO, ZcO, PO, POS 
89 1 COMMON ISCALEI PSO, MO, WO, UO, ZO, ZCO, PO, POS 
892 INTEGER ITest, IGOOD, Aitest(20), Suspend, IMax 
893 DOUBLE PRECISION Atest(20) 
894 LOGICAL !Lambda, PrecipitationBegun 
895 COMMON IFLAGlILambda, PrecipitationBegun, ITest, Suspend, IMlL'X 
896 DOUBLE PRECISION TEST, Tol, VecMax 
897 Kyrlov = 1 5  
898 TOL = l .OD-09 
899 TEST = l .ODO 
900 M = 2*(50 + N*20) 
90 1 c WRITE(6, *)' Allocating space M=',M 
902 C 
903 C If not using allocate statement remove next 4 lines 
904 C 
905 ALLOCATE(ALU(2*M), jlu(2*M), ju(2*(5*N+4» , jr(2*(5*N+4» , 
906 $ jwu(2*(S*N+4» , 
907 $ jwl(2*(5*N+4» , wu(2*(5*N+5» , wl(2*(5*N+4» , 
908 $ W(2*(5*N+4)*Kyrlov),YO(2*(5*N+4» ) 
909 C 
9 10 KOUNT = 0 
9 1 1 DO WHILE«TEST .GT. TOL).AND.(KOUNT.LT.30» 
9 1 2  CALL SetUpMatrix(Y, DX, DT, N, M, Matrix, Row, Col, NZ) 
9 13 CALL CalculateF(Y, YOld, DX, DT, N, M, F, Time, IGOOD) 
9 1 4  IF(IGOOD .NE. 0 )  THEN 
9 1 5  WRITE( 6,fmt='(i 1)' ,advance='no') I GOOD 
9 1 6  c WRITE(6,fmt='(i l )') IGOOD 
9 1 7  IFAIL = - I 
9 1 8  DEALLOCATE(ALU, j lu, ju, jr, jwu, jwl, wu, wi, W, YO) 
9 1 9  RETURN 
920 END IF 
92 1 c IF(KOUNT.EQ. l )  THEN 
922 c CALL pltmtps (S*N+4,5*N+4,0,Col,Row,",",",0 , 66) 
923 c CALL PrintMatrix(Matrix, Row, Col, NZ, S*N+4) 
924 C END IF 
925 C WRITE (6, *)'***  F ***',(F(i),i= 1 ,5*N+4) 
926 CALL ilut(5*N+4, Matrix, Col, Row, 20, l .OD-5,  alu, 



927 $ jlu, ju, 2*M, wu, wI, jr, jwl, jwu, ierr) 
928 IF(ierr .ne.O) THEN 
929 write(6, *)' ilut ierr =',ierr 
930 IF(ierr .GT. 0) THEN 
93 1 WRITE( 6, '( 1 Oi4 )')(Col(i), i=Row(ierr),Row(ierr+ 1 )- 1 )  
932 WRITE(6,'(6G 1 2.4)')(Matrix(i),i=Row(ierr),Row(ierr+ 1 )-1 )  
933 END IF 
934 IFAIL = - 1 
935 RETURN 
936 END IF 
937 YD = O.ODO 
938 CALL pgmres(5*N+4, Kyrlov, F, YD, VV, l .D-6,  1 00, - 1 ,  Matrix, 
939 $ Col, Row, alu, jlu, ju, ierr) 
940 IF(ierr .ne.O) THEN 
94 1 write(6, *)' pgrnres ierr =',ierr 
942 IF(ierr .GT. 0) THEN 
943 WRITE(6, '( 1 Oi4)')(Col(i),i=Row(i),Row(i+ 1 )- 1 )  
944 WRITE(6,'(6GI 2.4)')(Matrix(i),i=Row(i),Row(i+l )- I )  
945 END IF 
946 IFAIL = -1 
947 END IF 
948 TEST = VecMax(YD,Y,5*N+4) 
949 DO i = 1, 5*N + 4 
950 Y(i) = Y(i) - YD(i) 
95 1 END DO 
952 Kount = Kount + 1 
953 Aitest(Kount) = itest 
954 Atest(Kount) = test 
955 c WRITE(6,'(a,2i4,4d I 2.4)')'TEST =',Kount,itest,TEST,Y(5*N+3), 
956 c $ MO, TOL 
957 END DO 
958 IF(KOUNr.GE.29) THEN 
959 !FAIL = - 1 
960 c DO i = 1 ,  10 
96 1 c WRITE(6,'(i4,e 1 3 .6)')Aitest(i), Atest(i), Tol 
962 c END DO 
963 c WRITE(6,*)' *****  Analytic Jacobian * ***** '  
964 c CALL PrintMatrix(Matrix, Row, Col, NZ, N*5+4) 
965 c CALL CalcuJateJ(Y, YOld, DX, DT, N, 5*N+4, F, Time, 
966 c $ Matrix, Row, Col, NZ) 
967 c WRITE(6,*)' *****  Numerical Jacobian ****** '  
968 c CALL PrintMatrix(Matrix, Row, Col, NZ, 5*N+4) 
969 c WRITE(6,'(a,2i4,3d I 2.4)')'TEST =',Kount,itest,TEST, Y(5*N+3),MO 
970 ELSE 
97 1 IFAIL = KOUNT 
972 END IF 
973 C 
974 C Remove following statement if not using allocate 
975 C 
976 DEALLOCATE(ALU, jlu, ju, jr, jwu, jwl, wu, wl,VV,YD) 
977 RETURN 
978 END 
979 c ----------------------------------------------------------------------c 
980 c S P A  R S K I  T c 
98 1 c----------------------------------------------------------------------c 
982 c ITERATIVE SOLVERS MODULE c 
983 c----------------------------------------------------------------------c 
984 c contents: (May 7, 1 990) c 
985 c----------

986 c 
c 

c 
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987 
988 
989 
990 
99 1 
992 
993 
994 
995 
996 
997 
998 

999 
1 000 

c pgmres : preconditioned GMRES solver c 
c ilut : incomplete LU factorization with dual truncation strategy c 
c iluO : simple lLU(O) preconditioning c 
c rniluO : MILU(O) preconditioning c 
c ope : routine for matrix-by-vector product c 
c lusolO : forward followed by backward triangular solve (precond.) c 
c bsort2 : bubble sort routine used by ilut. c 
c c 
c Note: all preconditioners are preprocessors to pgmres. c 
c usage: call preconditioner then call pgmres. c 
c c 
c----------------------------------------------------------------------c 

subroutine pgmres (n, im, rhs, sol, vv, eps, maxits, iout, 
* aa, ja, ia, alu, jlu, ju, ierr) 

100 1 c-----------------------------------------------------------------------

1002 implicit real*8 (a-h,o-z) 
1003 integer n, im, maxits, iout, ierr, ja(*), ia(n+ 1) ,  jlu(*), ju(n) 
1004 real *8 vv(n, *), rhs(n), sol(n), aa(*), alu(*), eps 
1 00 5 c----------------------------------------------------------------------* 
1006 
1 007 
1008 
1009 
10 10  
10 1 1  
1 0 1 2  
1 0 1 3  
1 0 1 4  
1 0 1 5  
1 0 1 6  
1 0 1 7  
1 0 1 8  
1 0 1 9  
1020 
102 1 
1022 
1023 
1024 
1025 
1026 
1027 
1028 
1029 
1030 
103 1  
1032 
1033 
1034 
1035 
1036 
1037 
1038 
1039 
1040 
104 1  
1042 

c 
c 
c 

* 
***  ILUT - Preconditioned GMRES ***  

* 
c----------------------------------------------------------------------* 

* 

c This is a simple version of the ILUT preconditioned GMRES algorithm. * 
c The ILUT preconditioner uses a dual strategy for dropping elements * 
c instead of the usual level of-fill-in approach. See details in ILUT * 
c subroutine documentation. PGMRES uses the L and U matrices generated * 
c from the subroutine ILUT to precondition the GMRES algoritlun. * 
c The preconditioning is applied to the right. The stopping criterion * 
c utilized is based simply on reducing the residual nonn by epsilon. * 
c This preconditioning is more reliable than iluO but requires more * 
c storage. It seems to be much less prone to difficulties related to * 
c strong nonsynunetries in the matrix. We recommend using a nonzero tol * 
c (tol=.005 or .00 1 usually give good results) in ILUT. Use a large * 
c \fil whenever possible (e.g. \fil = 5 to 1 0). The higher \fil the * 
c more reliable the code is. Efficiency may also be much improved. * 
c Note that lfil=n and tol=O.O in ILUT will yield the same factors as * 
c Gaussian elimination without pivoting. * 
c * 
c lLU(O) and MILU(O) are also provided for comparison purposes * 
c USAGE: first call ILUT or ILUO or MILUO to set up preconditioner and * 
c then call pgmres. * 
c----------------------------------------------------------------------* 
c Coded by Y. Saad - This version dated May, 7 ,  1 990. 
c----------------------------------------------------------------------* 
c parameters * 
c----------- * 

c on entry: * 
c========== 
c * 

* 

c n == integer. The dimension of the matrix. * 
c illl == size of krylov subspace: should not exceed 50 in this 
c version (can be reset by changing parameter command for 
c kmax below) * 
c rhs == real vector of length n containing the right hand side. 
c Destroyed on return.  * 

* 

* 
* 

* 
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1043 
1044 
1045 
1046 
1047 
1048 
1049 
1050 
105 1 
1052 
1053 
1054 
1055 
1056 
1057 
1058 
1059 
1060 
106 1  
1062 
1063 
1064 
1065 
1066 
1067 
1068 
1069 
1 070 
107 1  
1072 
1073 
1074 
1075 
1076 
1077 
1078 
1079 
1080 
108 1  
1082 
1083 
1084 
1085 
1086 
1087 
1088 
1089 
1090 
109 1 
1092 
1093 
1094 
1095 
1096 
1097 
1098 
1099 
1 100 
1 10 1  
1 102 

c sol == real vector of length n containing an initial guess to the * 
c solution on input. approximate solution on output * 
c eps == tolerance for stopping criterion. process is stopped * 
c as soon as ( 1 1 . 11 is the euclidean nonn): * 
c II current residuallllilinitial residuall1 <= eps * 
c maxits== maximum number of iterations allowed * 
c iout == output unit number number for printing intennediate results * 
c if (iout .Ie. 0) nothing is printed out. * 
c * 
c aa, ja, . * 
c ia == the input matrix in compressed sparse row fonnat: * 
c aa(l :nnz) = nonzero elements of A stored row-wise in order * 
c ja( l :nnz) = corresponding column indices. * 
c ia( 1 :  n+ 1 )  = pointer to beginning of each row in aa and ja. * 
c here nnz = number of nonzero elements in A = ia( n+ 1 )-ia( 1) * 
c * 
c alujlu== A matrix stored in Modified Sparse Row fonnat containing * 
c the L and U factors, as computed by subroutine ilut. * 
c 
c ju 
c 
c 
c 

* 
== integer array of length n containing tlle pointers to 

the beginning of each row of U in alu, jlu as computed 
by subroutine ILUT. * 

* 
c on return: * 
c========== * 

* 
* 

c sol == contains an approximate solution (upon successful return). * 
c ierr == integer. Error message with the following meaning. * 
c ierr = 0 --> successful return. * 
c ierr = 1 --> convergence not achieved in itmax iterations. * 
c ierr =- 1 --> the initial guess seems to be tlle exact * 
c solution (initial residual computed was zero) * 
c * 
c----------------------------------------------------------------------* 
c * 
c work arrays: * 
c============= * 
c vv == work array of length n x (im+ 1) (used to store the Arnoh * 
c basis) * 
c----------------------------------------------------------------------* 
c subroutines called : * 
c ope : matrix by vector multiplication delivers y=ax, given x * 
c lusolO : combined forward and backward solves (preconditioning ope.) * 
c BLAS2 routines. * 
c----------------------------------------------------------------------* 

parameter (kmax=50) 
real*8 hh(kmax+ 1 ,kmax), c(kmax), s(kmax), rs(kmax+ 1 ),t 

c-------------------------------------------------------------

c arnoldi size should not exceed kmax=50 in this version . .  
c to reset modify paramter kmax accordingly. 
c-------------------------------------------------------------

daL:1 epsmac/l .d- 16/ 
n l  = n + 1 
its = 0 

c-------------------------------------------------------------

c outer loop starts here . .  
c-------------- compute initial residual vector -------------

call ope (n, sol, vv, aa, ja, ia) 
d0 2 I j= l ,n 

vv(j, I) = rhs(j) - vv(j, 1 )  
2 1  continue 
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1 1  03 c-----------------------------------------------------------
1 104 20 ro = sqrt( ddot(n, vv, 1 ,  vv, 1 )  ) 
1 105 if (iout .gt. 0 .and. its .eq. 0) 
1 106 * write(iout, 1 99) its, ro 
1 107 if (ro .eq. O.OdO) goto 999 
1 108 t = l .OdOI ro 
1 109 do 2 10 j= 1, n 
1 1 10 vv(j, I ) = vv(j, I )*t 
1 1 1 1  2 10 continue 
1 1 12 if (its .eq. 0) eps l =eps*ro 
1 1 13 c * *  initialize l -st term of rhs of hessenberg system . .  
1 1 14 rs( l )  = ro 
1 1 15 i = O  
1 1 16 4 i=i+ l 
1 1 17 its = its + 1 
1 1 18 i l  = i + 1 
1 1 1 9  call 1usolO (n, vv( l ,i), rhs, alu, jlu, ju) 
1 120 call ope (n, rhs, vv( l ,i 1), aa, ja, ia) 
1 12 1  c-----------------------------------------

1 122 c modified gram - schmidt. .. 
1 123 c-----------------------------------------

1 124 do 55 j= l ,  i 
1 1 25 t = ddot(n, vv( l j), l ,vv( l ,i l ), 1 )  
1 1 26 hh(j,i) = t 
1 1 27 call daxpy(n, -t, vv( l j), I, vv( l , i l ), 1 )  
1 1 28 55 continue 
1 129 t =  sqrt(ddot(n, vv( l ,i l ), 1 ,  vv( l ,i l ), 1» 
1 130 hh(i l , i) = t 
1 1 3 1  if ( t .eq. O.OdO) go to 58  
1 132 t = l .OdO/t 
1 133  do 57 k= l ,n  
1 134 vv(k,i I )  = vv(k,i 1)*t 
1 135  57 continue 
1 136  c 
1 137 c done with modified gram schimd and amoldi step . .  
1 138 c now update factorization of hh 
1 1 39  c 
1 1 40 58 if (i .eq. I) goto 1 2 1  
1 14 1  c--------perform previous transfonnations on i-th column of h 
1 142 do 66 k=2,i 
1 143 k l  = k- I 
1 144 t = hh(k l ,i) 
1 145 hh(k l ,i) = c(k I)*t + s(k l )*hh(k,i) 
1 146 hh(k,i) = -s(k l )*t + c(k l )*hh(k,i) 
1 147 66 continue 
1 1 48 1 2 1  gam = sqrt(hh(i,i)**2 + hh(i I , i)**2) 
1 149 c 
1 150 c if gamma is zero then any small value will do . . .  
1 1 5 1  c will affect only residual estimate 
1 1 52 c 
1 1 53 if (gam .eq. O.OdO) gam = epsmac 
1 1 54 c 
1 1 55 c get next plane rotation 
1 1 56 c 
1 1 57 c(i) = hh(i,i)/gam 
1 1 58 s(i) = hh(i l , i)/gam 
1 1 59 rs(i 1) = -s(i)*rs(i) 
1 160 rs(i) = c(i)*rs(i) 
1 16 1  c 
1 162 c detennine residual nonn and test for convergence-
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1 163 
1 164 
1 165 
1 166 
1 167 
1 168 
1 169 
1 170 
1 17 1  
1 172 
1 173 
1 174 
1 175 
1 176 
1 177 
1 178 
1 179 
1 180 
1 18 1  
1 1 82 
1 183 
l l 84 
l l85 
l l 86 
1 1 87 
1 1 88 
1 1 89 
1 1 90 
1 1 9 1  
1 192 
1 193 
1 194 
1 1 95 

c 
hh(i,i) = c(i)*hh(i,i) + s(i)*hh(i l ,i) 
ro = abs(rs(i l »  

c 1 3 1  fonnat( l h  ,2eI4.4) 
if (iout .gt. 0) 

c 

* write(iout, 1 99) its, ro 
if (i .It. im .and. (ro .gt. eps l »  goto 4 

c now compute solution. first solve upper triangular system. 
c 

rs(i) = rs(i)/hh(i,i) 
do 30 ii=2,i 

k=i-ii+ l 
k l  = k+ l 
t=rs(k) 
do 40 j=k l ,i 

t = t-hh(kj)*rs(j) 
40 continue 

rs(k) = tlhh(k,k) 
30 continue 

c 
c fonn l inear combination of v(*, i)'s to get solution 
c 

t = rs( l )  
do 1 5  k= l ,  n 

rhs(k) = vv(k, I )* t 
1 5  continue 

do 16 j=2, i 
t = rs(j) 
do 1 6 1  k= l ,  n 

rhs(k) = rhs(k)+t*vv(kj) 
1 6 1  continue 
16 continue 

1 1 96 c 
1 1 97 c call preconditioner. 
1 1 98 c 
1 1 99 call 1usolO (n, rhs, rhs, alu, jlu, ju) 
1200 do 1 7  k= 1 ,  n 
1 20 1  sol(k) = sol(k) + rhs(k) 
1 202 17 continue 
1 203 c 
1 204 c restart outer loop when necessary 
1 205 c 
1 206 if (ro . Ie. eps l )  go to 990 
1 207 if (its .gt .  maxits) goto 99 1 
1 208 c 
1 209 c else compute residual vector and continue . .  
1 2 10 c 
1 2 1 1  do 24 j= l ,i 
1 2 1 2  jj = i I-j+ 1 

1 2 1 3 rs(jj- l )  = -s(jj- l )*rs(jj) 
1 2 14 rs(jj) = c(jj- l )* rs(jj) 
1 2 1 5  2 4  continue 
1 2 1 6 do 25 j= 1 , i l  
1 2 1 7 t = rs(j) 
1 2 1 8  if (j .eq. 1 )  t = t-l .OdO 
1 2 1 9 call daxpy (n, t, vv( l j), 1 ,  vv, 1 )  
1 220 25 continue 
1 22 1  1 99 fonnatC its =', i4, ' res. nonn =', d20.6) 
1 222 c restart outer loop. 
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1 223 
1 224 
1 225 
1 226 
1 227 
1 228 
1 229 
1 230 
1 23 1  
1 232 
1 233 
1 234 

1 235 
1 236 
1 237 
1 238 
1 239 
1240 
124 1  
1 242 
1 243 
1244 
1 245 
1 246 
1 247 

goto 20 
990 ierr = 0 

return 
9 9 1  ierr = 1 

return 
999 continue 

ierr = - 1 
return 

c-----------------end of pgrnres --------------------------------------
c-----------------------------------------------------------------------

end 
c-----------------------------------------------------------------------

subroutine ilut (n,aja,ia,lfil,tol,alujluju,iwk, 
* wu,wljrjwljwu,ierr) 

c-----------------------------------------------------------------------

implicit real*8  (a-h,o-z) 
real*8  a(*), alu(*), wu(*), wl(*), tol 
integer ja(*),ia(*)jlu(*)ju(*)jr(*), jwu(*), 

* jwl(*), n, lfil, iwk, ierr 
c----------------------------------------------------------------------* 
c ***  ILUT preconditioner ***  * 
c 
c 
c 
c 

* 
incomplete LV factorization with dual truncation mechanism 
VERSION 2 : sorting done for both L and U.  * 

* 
1 248 c ----------------------------------------------------------------------* 
1 249 c---- coded by Youcef Saad May, 5, 1 990. ------------------------------* 
1 250 c---- Dual drop-off strategy works as follows. * 

* 

* 

125 1  
1252 
1 253 
1254 
1255 
1256 
1257 
1258 
1 259 
1 260 
126 1  
1262 
1263 
1 264 
1 265 
1 266 
1 267 
1 268 
1 269 
1 270 
1271  
1 272 
1 273 
1 274 
1 275 
1 276 
1277 
1 278 

c 
c 
c 
c 
c 
c 
c 
c 
c 

1 )  Theresholding in L and V as set by tol . Any element whose size* 
is less than some tolerance (relative to the norm of current * 

c 

row in u) is dropped. * 
* 

2) Keeping only the largest lenlO+lfil elements in L and the * 
largest lenuO+lfil elements in V, where lenlO=initial number * 
of nonzero elements in a given row of lower part of A * 
and lenluO is silnilarly defined. * 

* 
c Flexibility: one can use tol=O to get a strategy based on keeping the* 
c largest elements in each row of L and V. Taking tol . ne. 0 but lfil=n* 
c will give the usual threshold strategy (however, fi ll-in is then * 
c impredictible). * 
c * 
c----------------------------------------------------------------------* 
c PARAMETERS 
c-----------

c 
c on entry: 
c========== 
c n = integer. The dimension of the matrix A. 
c 
c aja,ia = matrix stored in Compressed Sparse Row format. 
c 
c lfil = integer. The fill-in parameter. Each row of L and 
c each row of V will have a maximum of lfil elements 
c in addition to the original number of nonzero elements. 
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1 279 
1 280 
1 2 8 1  

c 
c 
c 

Thus storage can be detennined beforehand. 
lfil must be .ge. O .  

1 282 c iwk = integer. The minimum length of arrays alu and j lu 
1 283 c 
1 284 c On return: 
1 285 c=========== 
1 286 c 
1 287 c alujlu = matrix stored in Modified Sparse Row (MSR) format containing 
1 288 c the L and U factors together. The diagonal (stored in  
1 289 c alu( l :n) ) is inverted. Each i-th row of the alujlu matrix 
1 290 c contains the i-th row of L (excluding the diagonal entry== l )  
1 2 9 1  c followed by the i-th row of U. 
1 292 c 
1 293 c ju = integer array of length n containing the pointers to 
1 294 c the beginning of each row of U in the matrix alujlu. 
1 295 c 
1 296 c ierr = integer. Error message with the following meaning. 
1 297 c ierr = 0 --> successful return. 
1298 c ierr .gt. 0 --> zero pivot encountered at step number ierr. 
1 299 c ierr = - 1 --> Error. input matrix may be wrong. 
1 300 c (The elimination process has generated a 
1301  c row in L or U whose length is .gt. n.) 
1 302 c ierr = -2 --> The matrix L overflows the array al. 
1 303 c ierr = -3 --> The matrix U overflows the array alu. 
1 304 c ierr = -4 --> I llegal value for lfil. 
1 305 c ierr = -5 --> zero pivot encountered. 
1 306 c 
1 307 c work arrays: 
1 308 c============= 
1 309 c jrjwujwl = integer work arrays of length n. 
1 3 1 0  c wu, wi = real work arrays of length n+ 1, and n resp. 
1 3 1 1  c 
1 3 1 2  c Notes: 
1 3 1 3  c ------

1 3 14 c A must have all nonzero diagonal elements. 
1 3 1 5  c-----------------------------------------------------------------------

1 3 16 if (lfil .It. 0) goto 998 
1 3 17 c-------------------------------

1 3 1 8  c initialize juO (points to next element to be added to aluj\u) 
1 3 1 9 c and pointer. 
1 320 c 
1 3 2 1  juO = n+2 
1322 jlu( l )  = juO 
1323 c 
1 324 c integer double pointer array. 
1 325 c 
1 3 26 do 1 j= l ,  n 
1 327 jrU) = 0 
1328 continue 
1 329 c-----------------------------------------------------------------------

1 330 c beginning of main loop. 
1 3  3 1  c-----------------------------------------------------------------------

1332 do 500 ii  = 1 ,  n 
1 333  j 1 = ia(ii) 
1 334 j2 = ia(ii+ l )  - 1 
1335  lenu = 0 
1 336 lenl = 0 
1 337 tnonn = O.OdO 
1338 do 50 1 k=j l j2 
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1 339  
1 340 
1 34 1  
1 342 
1 343 
1 344 
1 345 
1 346 
1 347 
1 348 
1 349 
1 350 
1 3 5 1  
1 352 
1 353 
1 354 
1 355 
1 356 
1 357 
1 358 
1359 
1 360 
1 36 1  
1 362 
1 363 
1 364 
1 365 
1 366 
1 367 
1 368 

50 1 

c 

tnonn = tnonn+abs(a(k)) 
continue 

tnonn = tnormlreal(j2-j 1+ 1 )  

c··· unpack L·part and V·part of row of A i n  arrays wi, wu •• 
c 

do 1 70 j = j 1 , j2 
k = ja(j) 
t = a(j) 

c if (abs(t) .It. tol*tnonn) goto 1 70 
if (abs(t) .It . tol*tnonn .and. k .ne. ii) goto 1 70 
if (k .It. ii) then 

lent = lenl+ 1 
jwl(lenl) = k 
wl(lenl) = t 
jr(k) = lent 

else 
lenu = lenu+ 1 
jwu(lenu) = k 
wu(lenu) = t 
jr(k) = lenu 

end if 
1 70 continue 

c tnonn = O.OdO 
c do 1 7 1  k=j I j2 
c tnoml = tnonn + abs(a(k)) 
c 1 7 1  continue 
c 
c tnonn = tnormlreal(j2-j 1+ I )  

lenlO = lenl 
1 369 lenuO = lenu 
1 370 jj = 0 
1 3 7 1  nl = O 
13  72 c···------------------·---·--·-------------------------.-----.------
1 373 c·---·--····-·-··------ eliminate previous rows --------------------

1 374 c-------------------------------------------------------------------

1375 1 50 jj = jj+ l  
1 376 if (jj .gt. lenl) goto 1 60 
1377 c-------------------------------------------------------------------

1 378 c in order to do the elimination in the correct order we need to 
1 379 c exchange the current row number with the one that has 
1 380 c smallest column number, among jjjj+ 1 ,  . . .  ,lenl. 
13 8 1  c-------------------------------------------------------------------

1 382 jrow = jwl(jj) 
1 383 k = jj 
1 384 c 
1 385 c determine smallest column index 
1386 c 
1 387 do 1 5 1  j=jj+ l ,lenl 
1 388 if (jwl(j) . It. jrow) then 
1389 jrow = jwl(j) 
1 390 k = j 
1 3 9 1  endif 
1 392 1 5 1  continue 
1 393 c 
1 394 c exchange in jwI 
1 395 
1 3 96 
1 397 
1 398 

c 
j = jwI(jj) 
jwl(jj) = jrow 
jwl(k) = j 
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1 399 c 
1400 c exchange injr 
1 40 1  c 
1 402 jr(jrow) = .ii 
1 403 jrG) = k 
1 404 c 
1 405 c exchange in wI 
1 406 c 
1 407 s = wl(k) 
1 408 wl(k) = wl(jj) 
1 409 wl(jj) = s 
1 4 10 c 
1 4 1 1  if (jrow .ge. ii) goto 1 60 
1 4 1 2  c---------get the multiplier for row to be eliminated: jrow 
1 4 1 3  fact = wl(jj)*alu(jrow) 
1 4 14 jr(jrow) = 0 
1 4 1 5  if  (abs(fact)*wu(n+2-jrow) . Ie. tol*tnorm) goto 1 50 
1 4 1 6  c-------------------------------------------------------------------
1 4 1 7  c------------ combine current row and row jrow ---------------------
1 4 1 8  c-------------------------------------------------------------------

1 4 1 9  do 203 k = ju(jrow), jlu(jrow+ I )- 1 
1 420 s = fact*alu(k) 
142 1 j = jlu(k) 
1422 jpos = jr(j) 
1423 c 
1424 c if  fill-in element and small disregard: 
1425 c 
1426 if (abs(s) . It . tol*tnorm .and. jpos .eq. 0) goto 203 
1 427 if (j .ge. ii) then 
1428 c 
1429 c dealing with upper part. 
1430 c 
143 1 if (jpos .eq. 0) then 
1 4 3 2  c this is a fill-in element 
1433 lenu = lenu+ 1 
1434 if (Ienu .gt .  n) goto 995 
1435 jwu(lenu) = j 
1436 jr(j) = lenu 
1 437 wu(lenu) = - s 
1 438 else 
1439 c no fill-in element --

1 440 wu(jpos) = wu(jpos) - s 
144 1  endif 
1442 else 
1443 c 
1444 c dealing with lower part. 
1445 c 
1 446 if (jpos .eq. 0) then 
1447 c this is a fill-in element 
1 448 len I = lenl+ I 
1449 if (Ienl .gt . n) goto 995 
1 450 jwl(lenl) = j 
1 45 1  jr(j) = lent 
1452 wl(JenJ) = - s 
1453 else 
1454 c no fill-in element --

1 455 wl(jpos) = wl(jpos) - s 
1456 endif 
1 457 end if 
1 458 203 continue 
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1 459 nl = nl+l 
1 460 wl(nl) = fact 
1 46 1  jwl(nl) = jrow 
1 462 goto 1 50 
1 463 c----------------------------------------------------------

1 464 c------------ update I-matrix -----------------------------

1 465 c----------------------------------------------------------

1 466 160 len = minO(nl,lenlO+IfiI) 
1 467 call bsort2 (wljwl,nl , len) 
1 468 c 
1 469 do 204 k= l ,  len 
1 470 if (juO .gt. iwk) goto 996 
1 47 1  alu(juO) = wl(k) 
1 472 jlu(juO) = jwl(k) 
1 473 juO = juO+l 
1 474 204 continue 
1 475 c 
1 476 c save pointer to beginning of row i i  of U 
1477 c 
1 478 ju(ii) = juO 
1479 c 
1480 c reset double-pointer jr to zero (L-part - except first 
148 1  c ii- I elements which have already been reset) 
1 482 c 
1 483 do 306 k= ii, lenl 
1484 jr(jwl(k» = 0 
1 485 306 continue 
1 486 c 
1487 c 
1488 c be sure that the diagonal element is first in w, jw 
1 489 c 
1 490 idiag = 0 
1 49 1  idiag = jr(ii) 
1 492 if (idiag .eq. 0) goto 900 
1 493 c 
1494 if (idiag .ne. I) then 
1 495 s = wu( l )  
1496 wu(j) = wu(idiag) 
1497 wu(idiag) = s 
1498 c 
1499 j = jwu( l )  
1 500 jwu( l) = j"ro(idiag) 
1 50 1  jwu(idiag) = j 
1 502 c 
1 503 endif 
1 504 
1 505 
1 506 

c 
len = minO(lenu,lenuO+lfil) 
call bsort2 (wu(2), jwu(2), lenu- l ,len) 

1 507 c----------------------------------------------------------

1 508 c------------ update u-matrix -----------------------------

1 509 c----------------------------------------------------------

1 5 10 t = O.OdO 
1 5 1 1 do 302 k=2, len 
1 5 12 if (juO .gt. iwk) goto 997 

1 5 1 3  jlu(juO) = jwu(k) 

1 5 14 alu(juO) = wU(k) 
1 5 1 5  t = t+ abs(wu(k» 
1 5 16 juO = juO+ 1 
1 5 1 7  302 continue 
1 5 1 8  c 
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---------------------

1 5 1 9  e save norm in wu (backwards). Norm is in  fact average abs value 
1 520 e 
1 52 1  wu(n+2-ii) = t / real(len+ 1 )  
1 522 e 
1 523 e store inverse of diagonal element of u 
1 524 e 
1 525 if (wu( l )  .eq. 0.0) goto 999 
1 526 e 
1 527 alu(ii) = 1 .0dO/ wu( l )  
1 528 e 
1 529 e update pointer to beginning of next row of U. 
1 530 e 
153 1 
1 532 e 

jlu(ii+ 1 )  = juO 

1 533  e reset double-pointer jr to zero (U-part) 
1 534 e 
1535 do 308 k= I ,  lenu 
1 536 jr(jwu(k)) = 0 
1 537 308 continue 
1 538 e-----------------------------------------------------------------------
1 539 e end main loop 
1540 e-----------------------------------------------------------------------
1 54 1  500 continue 
1 542 ierr = 0 
1543 return 
1544 e 
1545 e zero pivot : 
1 546 e 
1 547 900 ierr = ii 
1 548 return 
1 549 e 
1550 e incomprehensible error. Matrix must be wrong. 
155 1 e 
1 552 995 ierr = - 1 
1 553 return 
1 554 c 
1 555 e insufficient storage in L. 
1556 c 
1 557 996 ierr = -2 
1 558 
1 559 e 

return 

1560 c insufficient storage in U. 
1 56 1  c 
1 562 997 ierr = -3 
1 563 return 
1564 c 
1 565 c illega1 lfil entered. 
1 566 e 
1 567 998 ierr = -4 
1568 return 
1569 c 
1570 c zero pivot encountered 
1 57 1  e 
1 572 999 ierr = -5 
1573 return 
1 574 c---------------- end of ilut -----------------------------------------

1575 c -----------------------------------------------------------------------
1 576 end 
1 577 e----------------------------------------------------------------------
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1 578 subroutine iluO (n, a, ja, ia, alu, jlu, ju, iw, ierr) 
1 579 implicit real*8 (a-h,o-z) 
1580 real*8 a(*), alu(*) 
1 5 8 1  integer ja(*), ia(*), ju(*), jlu(*), iw(*) 
1 582 c------------------ right preconditioner ------------------------------* 
1 583 c * * *  ilu(O) preconditioner. ***  * 
1 5  84 c----------------------------------------------------------------------* 
1 585 c Note that this has been coded in such a way that it can be used 
1 586 c with pgrnres. Normally, since the data structure of a, ja, ia is 
1 587 c the same as that of a, ja, ia, savings can be made. In fact with 
1 588 c some definitions (not correct for general sparse matrices) all we 
1 589 c need in addition to a, ja, ia is an additional diagonal. 
1 590 c IluO is not recommended for serious problems. It is only provided 
1 5 9 1  c here for comparison purposes. 
1 592 c -----------------------------------------------------------------------

1 593 c 
1 594 c on entry: 
1 595 c---------

1 596 c n = dimension of matrix 
1 597 c a, ja, 
1 598 c ia = original matrix in compressed sparse row storage. 
1 599 c 
1600 c on return: 
160 1  c-----------

1602 c alujlu = matrix stored in Modified Sparse Row (MSR) fonnat containing 
1603 c the L and V factors together. The diagonal (stored in 
1604 c alu( l :n» is inverted. Each i-th row of the alujlu matrix 
1 605 c contains the i-th row of L (excluding the diagonal entry= l )  
1606 c followed by the i-th row of U. 
1607 c 
1608 c ju = pointer to the diagonal elements in alu, jlu. 
1609 c 
1 6 10 c ierr = integer indicating error code on return 
16 1 1 c ierr = 0 --> nornlal return 
16 1 2  c ierr = k --> code encountered a zero pivot at step k. 
1 6 1 3  c work arrays: 
1 6 1 4  c-------------

1 6 1 5  c iw = integer work array of length n. 
1 6 16 c------------

1 6 1 7  c IMPORTANT 
1 6 1 8  c-----------

1 6 1 9  c i t  is assumed that the the elements i n  the input matrix are stored 
1 620 c in such a way that in each row the lower part comes first and 
162 1 c then the upper part. To get the correct ILV factorization, it is 
1622 c also necessary to have the elements of L sorted by increasing 
1623 c column number. It may therefore be necessary to sort the 
1624 c elements of a, ja, ia prior to calling iluO. This can be 
1625 c achieved by transposing the matrix twice using csrcsc. 
1626 c 
1 627 c -----------------------------------------------------------------------

1 628 juO = n+2 
1629 jlu( l )  = juO 
1630 c 
163 1 c initialize work vector to zero's 
1632 
1 633 
1634 

c 
do 3 1  i= l ,  n 

iw(i) = 0 
1635 3 1  continue 
1 636 c 
1637 c main loop 
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1638 c 
1639 do 500 i i  = 1 ,  n 
1640 js = juO 
164 1 c 
1642 c generating row number ii ofL and U. 
1643 c 
1644 do 100 j=ia(ii),ia(ii+ l )-1 
1645 c 
1646 c copy row ii of a, ja, ia into row ii of a1u, jlu (L/U) matrix. 
1647 c 
1648 jcol = jaG) 
1649 if (jcol .eq. ii) then 
1650 alu(ii) = a(j) 
165 1 iw(jcol) = ii 
1652 ju(ii) = juO 
1653 else 
1 654 a1u(juO) = a(j) 
1 655 jlu(juO) = ja(j) 
1656 iw(jcol) = juO 
1 657 juO = juO+ 1 
1658 endif 

1 00 continue 1659 
1660 
166 1  
1662 
1663 
1664 
1665 
1666 
1667 
1668 
1669 
1670 
167 1 
1672 
1673 
1674 
1675 
1676 
1677 
1678 

jlu(ii+ 1 )  = juO 
jf = juO- l 
jm = ju(ii)- 1 

c 
c exit if diagonal element is reached. 
c 

do 1 50 j=js, jm 
jrow = jlu(j) 
tl = alu(j)*alu(jrow) 
alu(j) = tl 

c 
c perfonn linear combination 
c 

do 1 40 jj = ju(jrow), jlu(jrow+ 1 )- 1 
jw = iW(jlu(jj» 
if (jw . ne. 0) alu(jw) = alu(jw) - tl*alu(jj) 

1 40 continue 

c 
1 50 continue 

1679 c invert and store diagonal element. 
1680 c 
168 1 if (a1u(ii) . eq. O .OdO) go to 600 
1682 a1u(ii) = 1 .0dO/a1u(ii) 
1683 c 
1684 c reset pointer iw to zero 
1 685 c 
1686 iw(ii) = 0 
1687 do i = js, jf 
1 688 iw(jlu(i» = 0 
1689 end do 
1690 500 continue 
169 1 ierr = 0 
1692 
1693 c 

return 

1694 c zero pivot : 
1695 c 
1696 600 ierr = ii 
1697 c 

1 8 1  



1698 
1699 
1 700 
1 70 1  
1 702 

return 
c------ end of iluO ------------------------------------------------
c----------------------------------------------------------------------

end 
c----------------------------------------------------------------------

subroutine miluO (n, a, ja, ia, alu, j lu, ju, iw, ierr) 
implicit real*8 (a-h,o-z) 
real*8 a(*), alu(*) 

integer ja(*), ia(*), ju(*), jlu(*), iw(*) 

c----------------------------------------------------------------------* 
c ***  simple milu(O) preconditioner. ***  
c----------------------------------------------------------------------* 

* 

1 703 
1 704 
1 705 
1 706 
1 707 
1 708 
1 709 
1 7 10 
1 7 1 1 
1 7 1 2  
1 7 1 3 
1 7 1 4  
1 7 1 5 
1 7 16 
1 7 1 7  
1 7 1 8  
1 7 1 9  
1720 
172 1  

c Note that this has been coded in such a way that i t  can be  used 
c with pgmres. Nonnally, since the data structure of a, ja, ia is 
c the same as that of a, ja, ia, savings can be made. In fact with 
c some definitions (not correct for general sparse matrices) all we 
c need in addition to a, ja, ia is an additional diagonal. 
c IluO is not recommended for serious problems. It is only provided 
c here for comparison purposes. 
c-----------------------------------------------------------------------

c 
c on entry: 
c----------

c n  = dimension of matrix 
1722 c a, ja, 
1723 c ia = original matrix in compressed sparse row storage. 
1724 c 
1 725 c on retUnI: 
1726 c----------

1727 c alujlu = matrix stored in Modified Sparse Row (MSR) fonnat containing 
1728 c the L and V factors together. The diagonal (stored in 
1729 c alu( l :n» ) is inverted. Each i-th row of the alujlu matrix 
1730 c contains the i-th row of L (excluding the diagonal entry= 1 )  
173 1 c followed by the i-th row of V. 
1 732 c 
1733  
1734 
1735 
1 736 

c ju 
c 
c ierr 
c 

= pointer to the diagonal elements in alu, jlu. 

= integer indicating error code on relunI 
ierr = 0 --> normal retUnI 

1737 c ierr = k --> code encountered a zero pivot at step k. 
1738 c work arrays: 
1739 c-------------

1740 c iw = integer work array of length n. 
174 1  c------------

1 742 c Note (IMPORTANT): 
1743 c-----------

1 744 C it is assumed that the the elements in the input matrix are ordered 
1745 c in such a way that in each row the lower part comes first and 
1746 c then the upper part. To get the correct ILV factorization, it is 
1747 c also necessary to have the elements of L ordered by increasing 
1748 c column number. It may therefore be necessary to sort the 
1749 c elements of a, ja, ia prior to calling miluO. This can be 
1 750 c achieved by transposing the matrix twice using csrcsc. 
17  5 1  c-----------------------------------------------------------

1752 juO = n+2 
1 753 jlu( l )  = juO 
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1 754 
1 755 
1 756 
1 757 
1 758 
1 759 
1 760 
1 76 1  
1 762 
1 763 
1 764 
1 765 
1 766 
1 767 
1 768 
1 769 
1 770 
1771  
1 772 
1 773 
1 774 
1775 
1776 
1777 
1 778 
1779 
1 780 
1781  
1782 
1783 
1784 
1785 
1786 
1787 
1788 
1789 
1790 
1791 
1792 
1793 
1794 
1795 
1796 
1797 
1798 
1799 
1800 
1 80 1  
1 802 
1803 
180� 
1805 
1806 
1807 
1 808 
1809 
18 10  
1 8 1 1 

c initialize work vector to zero's 
do i= I ,  n 

iw(i) = 0 
end do 

c 
c-------------- MAIN LOOP ----------------------------------
c 

c 

do 500 ii = I ,  n 
js = juO 

c generating row number ii or L and U. 
c 

do 100 j=ia(ii),ia(ii+l )- 1 
c 
c copy row ii of a, ja, ia into row ii of alu, jlu (LIU) matrix. 
c 

jcol = ja(j) 
if (jcol .eq. ii) then 

alu(ii) = a(j) 
iw(jcol) = ii 
ju(ii) = juO 

else 

endif 
1 00 continue 

alu(juO) = a(j) 
jlu(juO) = ja(j) 
iw(jcol) = juO 
juO = juO+ l 

jlu(ii+ 1 )  = juO 
jf= juO- l 
jm = ju(ii)- 1 

c s accumulates fill-in values 
s = O.OdO 
do 1 50 j=js, jm 

jrow = jlu(j) 
tl = alu(j)*alu(jrow) 
alu(j) = tl 

c-----------------------perform linear combination -------
do 1 40 jj = ju(jrow), jlu(j row+ 1 )- 1 

jw = iw(jlu(jj» 
if (jw . ne. 0) then 

1 40 continue 
1 50 continue 

alu(jw) = alu(jw) - tl*alu(jj) 
else 

s = s + tl*alu(jj) 
endif 

c----------------------- invert and store diagonal element. 
alu(ii) = alu(ii)-s 
if (alu(ii) .eq. O.OdO) goto 600 
alu(ii) = 1 .0dO/alu(ii) 

c----------------------- reset pointer iw to zero 

iw(ii) = 0 
do i = js, jf 

iw(jlu(i» = 0 
end do 

500 continue 
ierr = 0 

18 12  return 
1 8 1 3  c zero pivot : 
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1 8 14 600 ierr = i i  
1 8 1 5  return 
1 8 1 6  e------- end of miluO --------------------------------------------------

1 8 1 7  e-----------------------------------------------------------------------
1 8 18 end 
1 8 1 9  e----------------------------------------------------------------------

1 820 subroutine ope (n, x, y, a, ja, ia) 
1 82 1  real*8 x(n), yen), a(*) 
1 822 integer n, k l ,  k2, ja(*), ia(n+l )  
1 823 e-----------------------------------------------------------------------
1 824 e sparse matrix * vector multiplication 
1 82 5 e-----------------------------------------------------------------------
1 826 do 100 i= l ,n 
1 827 kl = ia(i) 
1 828 k2 = ia(i+ 1) - 1 
1 829 y(i) = O.OdO 
1 830 do k=k l ,  k2 
1 83 1 y(i) = y(i) + a(k) * x(ja(k» 
1 832 end do 
1 833 1 00 continue 
1 834 return 
1835 e----------------- end of ope ------------------------------------------

1 836 e-----------------------------------------------------------------------
1 837 end 
1 83 8 e-----------------------------------------------------------------------

1 839 subroutine lusolO (n ,  y, x ,  alu, jlu, ju) 
1 840 real*8 x(n), yen), alu(*) 
184 1  integer n, jlu(*), ju(*) 
1 842 e-----------------------------------------------------------------------
1 843 c 
1 844 e performs a forward followed by a backward solve 
1 845 e for LU matrix as produced by lLUT 
1 846 e 
1 84 7 e-----------------------------------------------------------------------
1 848 e local variables 
1 849 e 
1 850 integer i,k 
1 85 1 e 
1852 e forward solve 
1 853 e 
1 854 do 40 i = 1, n 
1855 xCi) = y(i) 
1 856 do 4 1  k=jlu(i)ju(i)-1 
1 857 xCi) = xCi) - alu(k)* x(jlu(k» 
1 858 4 1  continue 
1 859 40 continue 
1 860 e 
1 86 1  e backward solve. 
1 862 e 
1 863 do 90 i = n, I ,  - I 
1 864 do 9 1  k=ju(i)jlu(i+ l )- 1 
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1 865 x(i) = x(i) - alu(k)*x(jlu(k» 
1 866 9 1  continue 
1 867 x(i) = alu(i)*x(i) 
1 868 90 continue 
1 869 c 
1 870 return 
1 87 1  c----------------end of lusolO -----------------------------------------

1 872 c-----------------------------------------------------------------------

1 873 end 
1 87 4 c-----------------------------------------------------------------------

1 875 subroutine bsort2 (w, ind, n, ncut) 
1 876 integer n, ncut, ind(*) 
1 877 real*8 w(*) 
1 878 c-----------------------------------------------------------------------

1 879 c simple bubble sort for getting the ncut largest 
1 880 c elements in modulus, in array w. ind is sorted accordingly. 
188 1 c (Ought to be replaced by a more efficient sort especially 
1882 c if ncut is not that small). 
1 883 c----------------------------------------------------------------------

1 884 c local variables 
1 885 logical test 
1 886 integer i ,  j, iswp 
1 887 real*8 wswp 
1888 c 
1 889 i = 1 
1 890 test = .false. 
1 89 1  do 2 j  = n- l , i ,- 1 
1 892 if (abs(w(j+!» .gt. abs(w(j» ) then 
1 893 c---- swap-------------------------------------------

1 894 wswp = w(j) 
1 895 w(j) = w(j+ l )  
1 896 w(j+ 1) = wswp 
1897 c---- reorder original ind array accordingly --------

1 898 iswp = ind(j) 
1 899 ind(j) = ind(j+l )  
1 900 ind(j+!) = iswp 
1901  c---- set indicator that sequence is  still unsorted--

1 902 test = . true. 
1903 endif 
1 904 2 continue 
1 905 i = i+ 1 
1 906 if (test .and. i .Ie. ncut) go to 1 
1 907 c 
1 908 return 
1909 c-----------------end of bsort2 ----------------------------------------

1 9 1  0 c-----------------------------------------------------------------------

1 9 1 1 end 

1 9 1 2  subroutine daxpy(n,t,x,indx,y,indy) 
1 9 1 3  real * 8  x(*), y(*), t 
1 9 14 c-------------------------------------------------------------------

1 9 1 5  c does the following operation 
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1 9 16 c Y <--- Y + t * x ,  (replace by the bias routine daxpy ) 
1 9 17 c indx and indy are supposed to be one here 
1 9 1 8  c-------------------------------------------------------------------

1 9 1 9  do 1 k= l , n  
1 920 y(k) = y(k) + x(k)*t 
1 92 1  1 continue 
1 922 return 
1 923 c-------------- end of daxpy ----------------------------------------

1 924 end 
1 925 function ddot(n,x,ix,y,iy) 
1 926 real*8 ddot, x(*), y(*), t 
1 92 7 c-------------------------------------------------------------------

1 928 c computes the inner product t=(x,y) -- replace by bias routine . .  
1 92 9 c-------------------------------------------------------------------

1 930 t = O.OdO 
1 93 1  do l O j= l ,n 
1 932 t = t + x(j)*y(j) 
1 93 3  10  continue 
1 934 ddot=t 
1 935 return 
1 936 c* * * * * * *  end of ddot * * * * * * * * * * * * * * ********* * * * * * * ** * * * * * * * * * * * *  
1 937 end 

1 938 DOUBLE PRECISION FUNCTION VecMax(YD,Y,N) 
1939  DOUBLE PRECISION YD(N), Y(N), TEST 
1940 INTEGER N, IMax, ITest, Suspend 
194 1  LOGICAL ILambda, PrecipitationBegun 
1 942 COMMON IFLAG/ILambda, PrecipitationBegun, ITest, Suspend, IMax 
1 943 VecMax = O.ODO 
1944 DO i = 1, N 
1 945 TEST = ABS(YD(I) / MAX( l .D-6, ABS(Y(I» » 
1946 IF(VecMax .L T. TEST) THEN 
1 947 VecMax = TEST 
1 948 IMax = i 
1 949 END IF 
1 950 END DO 
195 1  RETURN 
1952 END 

1 953 subroutine pltmtps (nrow,ncol,modeja,ia,title,key,type, 
1954 job, iounit) 
1 955 c-----------------------------------------------------------------------

1 956 c this subroutine creates a 'PS' file for plotting tlle pattern of 
1957 c a sparse matrix stored in general sparse fonnat. It can be used 
1 958 c for inserting matrix plots in a text. The size of the plot can be 
1959 c 7 in  x 7 in  or  5 in x 5in . .  
1 960 c 
1 96 1  c Adapted from pltmt in module INOUT by Paul Frederickson. March, 1 990 
1 962 c + slight modifications by Y. Saad. 
1 963 c-----------------------------------------------------------------------

1 964 c nrow = number of rows in matrix 
1 965 c 
1 966 c ncol = number of columns in matrix 
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1 967 c 
1 968 c mode = integer indicating whether the matrix is stored 
1 969 c row-wise (mode = 0) or column-wise (mode= l )  
1 970 c 
1 97 1  c ja = column indices of nonzero elements when matrix is 
1 972 c stored rowise. Row indices if stores column-wise. 
1 973 c ia = integer array of containing the pointers to the 
1 974 c beginning of the columns in arrays a, ja. 
1 975 c 
1 976 c title = character*72 = title of matrix test ( character a*72 ) . 
1 977 c key = character*8 = key of matrix 
1 978 c type = character*3 = type of matrix. 
1 979 c 
1 980 c job = integer. tells pltmt whether or not to reduce the plot. 
1 98 1  c if enabled then the standard size of 7in will be 
1 982 c replaced by a 5in plot. 
1 983 c job = 0 :  do not reduce 
1 984 c job = 1 :  reduce plot to 5 inches. 
1 985 c 
1 986 c iounit = logical unit number where to write the matrix into. 
1 987 c 
1 988 c-----------------------------------------------------------------------

1989 c notes: 1) Plots square as well as rectangular matrices. 
1990 c 2) Does not writer a caption yet. 
199 1  c 3) No bounding box put in yet 
1 992 c-----------------------------------------------------------------------

1 993 integer ja(*), ia(*) 
1 994 character key*8,title*72,type*3 
1995 real delta 
1 996 c-------

1 997 n = ncol 
1 998 if (mode .eq. 0) n = nrow 
1999 nnz = ia(n+ l )  - ia( l )  
2000 maxdim = maxO (nrow, ncol) 
200 1 m = 1 + maxdim 
2002 c keep tlils test as in old pltmt (for future changes). 
2003 if (modUob, 10) .eq. 1) then 
2004 delta = 72*5 .0/(2.0+maxdim) 
2005 else 
2006 delta = 72*7.0/(2.0+maxdim) 
2007 endif 
2008 c-------

2009 write(iounit,'(A)')'%!PS-Aodbe' 
20 10 write(iounit,'(A)')' gsave 50 -500 translate' 
20 1 1  write(iounit, *) delta, delta, , scale' 
20 12 write(iounit, *) , 0 .25 setlinewidth' 
20 13  c-------

20 14 if (modUob, 10) .eq. 1 )  then 
20 1 5  write (iounit, * )  , 2 3  5 5  translate' 
20 16 else 
20 17 write (iounit, *) , 2 35  translate' 
20 18 endif 
20 19  c-------

2020 write(iounit, *) , newpath' 
202 1 write(iounit, *) 0,0,' moveto' 
2022 write(ioullit, *) m,O,' lineto' 
2023 write(iounit, *) m,m,' Iineto' 
2024 write(iounit, *) O,m,' Iineto' 
2025 write(iounit, *) , closepath stroke' 
2026 write(iounit, *) , 1 1 translate' 
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2027 
2028 
2029 
2030 
203 1 
2032 
2033 
2034 
2035 
2036 
2037 
2038 
2039 
2040 
204 1 
2042 
2043 
2044 
2045 
2046 
2047 
2048 
2049 
2050 
205 1 
2052 
2053 
2054 
2055 
2056 
2057 
2058 
2059 
2060 
206 1 
2062 
2063 

2064 
2065 
2066 
2067 
2068 
2069 
2070 
207 1 
2072 
2073 
2074 
2075 

c 

write(iounit, *) I 0.5 setIinewidth' 
write(iounit, *) I Ip {moveto 0 -.25 rmoveto I 
write(iounit, *) I 0 .50 rlineto stroke} def' 

c----------- plotting loop ---------------------------------------------

c 
do 1 ii= l ,  n 

istart = ia(ii) 
i last = ia(ii+l )- 1 
if (mode .ne. 0) then 

do 2 k=istart, ilast 
write(iounit, *) ii-I ,  nrow-ja(k), I p' 

2 continue 
else 

c y = xnrow - real(ii) 
do 3 k=istart, ilast 

c x = real(ja(k)- I )  
write(iounit, *) ja(k)-I ,  nrow-ii, I p' 

3 continue 
endif 

1 continue 
c-----------------------------------------------------------------------

c 

c 

write(iounit, *)' showpage grestore' 
return 

c quit if caption not desired. 
c if ( (job/l O) . ne. 1 )  return 
c 
c write(iounit, 1 27) key, type, title 
c write(iounit, 1 30) nrow,ncol,nnz 
c 127 format('.sp 4'1' . 1 1  7i'I' .ps 12'1' .po 0.7i'I'.ce 3'/, 
c * 'Matrix: ',a8,', Type: ',a3,1,a7 1 )  
1 30 format('Dimension: ',i4,' x ',i4,' Nonzero elements: ' ,i5) 

c return 
c---------------- end of pltmt -----------------------------------------

end 

SUBROUTINE PrintMatrix(Matrix, Row, Col, NZ, N) 
DOUBLE PRECISION Matrix(NZ) 
INTEGER Row(*), Col(*) 
INTEGER !, J 

WRITE(6,'(20I3)')(Row(i),i = I ,N+ I )  
WRITE(6,'(20I3)')(Col(i),i = I ,NZ) 
DO I = I ,  N 

WRITE(6,'( 10(2X,I4,6X» ')(Col(J),J=Row(I),Row(I+ I )-I ),Row(i) 
WRITE(6,'( lOG 1 2.4)')(Matrix(J),J=Row(l),Row(I+ 1 )-1 )  

END DO 
RETURN 
END 
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2076 SUBROUTINE CalculateJ(y, YOld, DX, DT, N, M, F, Time, 
2077 $ Matrix, Row, Col, NZ) 
2078 INTEGER N, M, ROW(*), COL(*), lGOOD 
2079 DOUBLE PRECISION Y(M), YOLD(M), F(M), DX, DT, Time 
2080 DOUBLE PRECISION Temp(M), FTemp(M), DFjDxi, Matrix(*) 
208 1 CALL CalculateF(y, YOld, DX, DT, N, M, F, Time, IGOOD) 
2082 NZ = 0 
2083 DO j = 1 ,  M 
2084 ROW(j) = NZ + 1 
2085 DO i = 1, M 
2086 Temp = Y 
2087 Temp(i) = Y(i) + I .D-8 
2088 CALL CalculateF(Temp, YOld, DX, DT, N, M, FTemp,Time,IGOOD) 
2089 DFjDxi = (FTemp(j) - F(j» / I .D-8 
2090 IF(DFjDxi .NE. O.ODO) THEN 
209 1 Matrix(NZ+ 1 )  = DFjDxi 
2092 COL(NZ+ l )  = i 
2093 NZ = NZ + 1 
2094 END IF 
2095 END DO 
2096 END DO 
2097 RETURN 
2098 END 
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