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Abstract

In this thesis we study the theory of Riemannian manifolds: these are smooth
manifolds equipped with Riemannian metrics, which allow one to measure geometric
quantities such as distances and angles.

The main objectives are:

(i) to introduce some of the main ideas of Riemannian geometry, i..c geometry of
curved spaces.

(ii) to present the basic concepts of Riemannian geometry such as Riemannian
connections, geodesics, curvature (which describes the most important geometric
features of universes) and Jacobi fields (which provide the relationship between
geodesics and curvature).

(iii) to show how we can generalize the notion of Gaussian curvature for surfaces to
the notion of sectional curvature for Riemannian manifolds using the second
fundamental form associated with an isometric immersion. Finally we compute the
sectional curvatures of our model Riemannian manifolds - Euclidean spaces, spheres

and hyperbolic spaces.
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Chapter 0

Introduction

0.1 The Evolution of Riemannian Geometry

Geometry is the branch of mathematics that deals with the relationships, properties
and measurements of solids, surfaces, lines and angles. It also considers spatial
relationships, the theory of space and figures in space. The name comes from Greek
words meaning, "land" and "to measure". Geometry was first used by the Egyptians to
measure lands. Later it was highly developed by the great Greek mathematicians.
About 300 B.C. Euclid was a Greek mathematician. Elements of Euclid is a
scientific work containing the foundations of ancient mathematics: elementary
geometry, number theory, algebra, the general theory of proportion and a method for
the determination of areas and volumes. The geometry based on the assumptions of
Euclid and dealing with the study of plane and solid or space geometry is called
Euclidean geometry. In the 19" century, new kinds of geometry, called Non-
Euclidean geometry, were created. Any kind of geometry not based upon Euclid’s
assumptions is called Non-Euclidean geometry. E.g:- Differential geometry (Surface
geometry), Hyperbolic geometry, Riemannian geometry, etc. Classical differential
geometry consisted of the study of curves and surfaces (embedded in three-

dimensional Euclidean space) by means of the differential and integral calculus.



The founders of Non-Euclidean geometry were Gauss, Riemann, Bolyai and
Lobachevski. All of them investigated the possibilities of changing Euclid’s parallel
postulate, which said that one and only one line parallel to a given line could be
drawn through a point outside that line. Until the 19™ century, this was accepted as a
" self -evident truth ". The replacement of this postulate led to new geometries. In the
early part of the 19™ century, Carl Friedrich Gauss (1777-1855) was considered to be
one of the most original mathematicians living in Germany. He was a pioneer in Non-
Euclidean geometry, statistics and probability. He developed the theory of functions
and the geometry of curved surfaces. Gauss defined a notion of curvature (Gaussian
curvature) for surfaces, which measures the amount that the surface deviates from its
tangent plane at each point on the surface.

Towards the end of his life (1855) Gauss was fortunate to have an excellent
student, Gerg Friedrich Riemann (1826-1866), who was the founder of Riemannian
geometry. Riemann’s life was short but marvelously creative. He took up the ideas of
Gauss. On June 10™ in 1854, he delivered his inaugural lecture, entitled " On the
Hypotheses that lie at the foundations of geometry ". Several vital concepts of modern
mathematics appeared for the first time from his lecture. In particular, he

1. Introduced the concept of a manifold.

[3°]

. Explained how different metric relations could be defined on a manifold.

3. Extended Gauss's notion of curvature of a surfac - to hig:ier dimension~! manifolds.
The concepts of Riemannian geometry played an important role in the formulation of
the general theory of relativity. Riemannian geometry is a special geometry, the
geometry of curved spaces, associated with differentiable manifolds and has many
applications to Physics. During the closing decades of the 19" century, Levi-civita
(1873-1941), took up the ideas of Riemann and contributed the concept of parallel

displacement or parallel transport, which plays an important role in Riemannian

geometry.

0.2 Generalization of Surface Theory to Riemannian
Geometry

Surface is one of the basic concepts in geometry. The definitions of a surface in
various fields of geometry differ substantially. In elementary geometry, one considers

planes, multifaceted surfaces, as well as certain curved surfaces (for example,



spheres). Each curved surface is defined in a special way, very often as a set of points
or lines. The general concept of surface is only explained, not defined, in elementary
geometry: one says that a surface is the boundary of a body, or the trace of a moving
line, etc. In analytic and algebraic geometry, a surface is considered as a set of points
the coordinates of which satisfy equations of a particular form. In three-dimensional
Euclidean space, R, a surface is obtained by deforming pieces of the plane and
arranging them in such a way that the resulting figure has no sharp points, edges, or
self-intersection. We must require that a surface be smooth and two-dimensional, so
that the usual notions of calculus can be extended to it. A surface is defined by means
of the concept of a surface patch, which is a homeomorphic image of a square in R°.
A surface is understood to be a connected set, which is the union of surface patches
(for example, a sphere is the union of two hemispheres, which are surface patches).
Usually, a surface is specified in R* by a vector function

r=r(x(u,v), y(u,v),z(u,v)), where 0 S u, v< 1.

The first example of a manifold, is a regular surface in R°.

0.2.1 Definition

A subset S cR® is a regular surface, if, for every point pe S,there exists a

neighborhood V of p in ®* and a mapping x: U cR*— V A S of an open set U < R*
onto VN §, such that:
(a) x is a differentiable homeomorphism;

(b) The differential (dx)q:%3—> R* isinjective forallge U

The mapping x is called a parametrization of S at p. The neighborhood VA Sofpin §
is called a coordinate neighborhood.

A major defect of the definition of regular surface is its dependence on R*. This
situation gradually became clear to the mathematicians of 19" century. Riemann drew
the correct conclusion, which says that there must exist a geometrical theory of
surfaces completely independent of R*. His idea was to replace the dot product by a
arbitrary inner product on each tangent plane of S. He observed that all the notions of
the intrinsic geometry (for example, Gaussian curvature) only depended on the choice
of an inner product on each tangent plane of S. Next we will introduce the notion of

abstract surface which is an outgrowth of the definition of the regular surface.



Historically, it took a long time to appear due to the fact that the fundamental role of

the change of parameters in the definition of a surface in R* was not clearly

understood.

0.2.2 Definition

An abstract surface (differentiable manifold of dimension 2) is a set S together with a

family of one-to-one mappings x,: U, — S of open sets U, < R’into S such that
@ |, xU,)=Ss.
(ii) For each pair o, B with x, (U,) N x;(Uy) =W # ¢, we have that
x, (W), x;' (W) are open sets in R, and x;'o xﬁ,x[;] o x, are

differentiable mappings.
The pair (U,,x,) with pe x, (U,) is called a parametrization of S around p.
x,(U,) is called a coordinate neighborhood at p. The family {U_,x,} is called a
differentiable structure for S.

Shifting then from surfaces in R* to abstract surfaces and, from the dot product to

arbitrary inner products, we get the following definition.

0.2.3 Definition

A geometric surface is an abstract surface furnished with an inner product ( , ), on
each of its tangent planes. This inner product is required to be differentiable in the

sense that if V and W are differentiable vector fields on S then (VW) is a
differentiable real-valued function on S.

We emphasize that each tangent plane 7,,§ of § has its own inner product. An

assignment of inner products to tangent planes as in the above definition is called a

geometric structure (or metric tensor or “ds’”

) on S. We emphasize that the same
surface furnished with two different geometric structures gives rise to two different
geometric surfaces.

If we look back to the definition of abstract surface, we see that the number 2 has
played no essential role. Thus, we can extend that definition to an arbitrary » and this

may be useful in future.



0.2.4 Definition

A differentiable manifold of dimension n is a set M and a family of injective

mappings x, : U, € R"— M of open sets U, of R" into M such that

O U, xU,) =M

(II) For any pair o, B withx, (U ) Nxy(Up) = W # &, the sets x;‘ (W),x[;I (W) are
open sets in R" and the mappings x' o Xg > Xp ' o x, are differentiable.

(IIT) The family { (U, x,) } is maximal relative to the conditions (I) and (II).

The pair (U,,x,) with p € x, (U,) 1is called a parametrization of M around p.

x,(U,) is called a coordinate neighborhood at p. A family { (U_,x,) } satisfying (I)

and (II) is called a differentiable structure on M

For example, curves are one-dimensional manifolds because every point of a curve
can be located by a single parameter. Also surfaces are two-dimensional manifolds
since for each piece of a surface, every point can be located by surface coordinates.
Generalizing, we say that an n-dimensional manifold is a set, such that on every piece,

of it, we can locate points by using n coordinates.

0.2.5 The metric coefficients of the surface

Gauss presented the most important formula in surface geometry in 1827. This
appeared in his paper " General investigation of curved surface ".

ds’ =a,,du +2a,,du,du, + a,,du; (1)

It expresses the distance between two infinitesimally close points on the surface in
terms of surface coordinates u,,u,. He considered that the geometry of a surface is
Euclidean in infinitesimal neighborhoods. Thus, a surface can be regarded as an
infinite collection of Euclidean spaces that are smoothly joined together. Another way

of thinking about this is to regard the surface as the envelope of its tangent planes.

The proof of this formula for a surface in R* is brleﬂy as follows.
Let p be any point on the surface and (u,, u, ) be the surface coordinates of p. Let §
be the value of arc length.

Then the rectangular Cartesian coordinates of p are (x(u,,u,), y(u,,u,), z(u,,u,) ).



So dx = a—uldul +Edu2 (a)
9y dy
dy=——du du,
a ou, Y e, ou, ®)
dz dz
—d —du,
dz= 5 ¥ o, u (c)

We know that (ds)* = (dx)* + (dy)* +(d2)? (Pythagorean formula)
Substituting from (a), (b) and (c),

5 ox ox 5 ady ay 2. ., 0Z 0z 3
ds)” =(—du, + —du,)” +(—du, +—d —du, +——du,)"
(ds) (Bu, u, +8u: u,) +(Bu1 u +au2 u,) +(au1 u, +au2 U, )

Simplifying the terms in brackets and taking,

_ ax 2 a}’ 2 aZ 2
0 _(au,) +(8u1) +(8u,)

dx ox dy dy dz 0z
A, = + * =day

ou, du, du, du, du, du,

ox ., oy .2 9z .,
aﬂ"(au,) +(8u7) +(au2}

So, ds’=a,du +2a,du,du,+a,,du; . Hence the result.

The expression (1) appearing on the right hand side of the equation is called the first
fundamental form and a,,, a,,, a,, are called the metric coefficients. They vary from
point to point as one moves across the surface. But in the Euclidean plane we can
choose coordinates so that the metric coefficients are constants.

Consider a horizontal plane lying in three-dimensional Euclidean space.

The equation of this plane is z = constant. We can choose the coordinates

u, = x,u, =y on the plane.

Then ox =1 ox =0 oy =0, % =] 9% =0, 0z = 0. Therefore, we can show that

ou, Ou, Ou, Ou,  Ou du,

a, =l,a, =0,a,, =1. That is, the metric coefficients are constant for the plane.
Therefore ds’ =du,2 +du22. (from (1))

Consider the sphere with radius r, centered at the origin. Let @ and ¢ be surface
coordinates (except at the poles) of any point p, where u, =6,u, = ¢ . The Cartesian

coordinates of p can be expressed in terms of € and ¢ as



X =rcos¢cosd
y =rcos@sin@
z=rsing, where 050 <27, -w/2{ (w2

Taking partial derivatives of the functions in these expressions,

ﬁ:—roowsinzﬁ, g—;=~rsin¢cosﬁ
%:rcosq‘)cosﬂ, %:—rsinqﬁsinﬁ
g_;= 0, 3—;=rcos¢

Substituting these expressions into equations (a), (b), (c¢) and using the trigonometric
identity sin® @ +cos’@ =1, then a,, =r’cos* @, a, =0,a,, =r>.
Hence, equation (1) becomes
ds* =r*cos* ¢d* +r’do*.
This is the expression for the square of the length of an infinitesimal line element on

the sphere. It is clear that the metric coefficient a,, varies with ¢@.

0.2.6 Generalization of metric coefficients of surfaces to Riemannian
space

Generalizing the formula which Gauss obtained and extending it to n-dimensional
manifolds, Riemann explained some basic concepts of a n-dimensional manifold.
Consider a point p 1n an n-dimensional manifold and let wu,,u,,...u, be its
coordinates. Take a second point g whose coordinates u, +du,,u, +du,,...,u, +du,

differ only infinitesimally from those of p. Riemann suggested that the square of the

length ds of the line element joining p to g is given by

d52 = Zgl]du;.duj. (2)

ij=l

where g ; are functions of u,,u,,...,u,. This directly generalizes the formula (1) Gauss
obtained for the line element of a surface. The expression on the right hand side of the
equation (2) is a quadratic form in the variables du,,du,,...,du,, where ds’ is positive

unless g and p coincide. Therefore the quadratic form is said to be positive definite.



Using the expression (2) for determining length, he defined a Riemannian metric (see
the definition in chapter 1) on the differentiable manifold. It provides the ability to
calculate the length of paths in the manifold, and angles between tangent vectors in
the same tangent space of the manifold. A manifold furnished with a Riemannian
metric is called a Riemannian manifold or a Riemannian space.

For an example, in an n-dimensional Euclidean space, the square of the length of a
line segment is given by the Pythagorean formula.

ds® =dx! +dx; +..+dx} , (3)
where x,,x,,...,x, are rectangular Cartesian coordinates. It is clear that (3) is a special

case of (2) with g,, =1,8, =1.....g,, =1. Thus, Euclidean space is a special case of

Riemannian space. Riemann called Euclidean spaces flat. A Riemannian space is
locally Euclidean which means that an infinitesimal neighborhood of a point appears
to be Euclidean. Just as the surface can be regarded as the envelope of its tangent
planes, we may think of a Riemannian space as a collection of Euclidean spaces. We

may say that a Riemannian space is infinitesimally flat or locally Euclidean.

0.2.7 Generalizing Gaussian curvature into Riemannian Geometry
In 1760, L. Euler described the curvature of a surface in space by two numbers at each

point, called the principal curvatures. He defined the principal curvatures k, and &,
of a surface by considering the curvature of curves, k, , obtained by intersecting the
surface with planes normal to the surface at an arbitrary point and taking k, = maxk,
and k, =mink,. But at the time of Gauss, it was not clear that the principal

curvatures would be an adequate definition of curvature. Gauss was the first to realize
that surfaces have an intrinsic metric geometry that is independent of the surrounding
space. More precisely, a property of surfaces in R* is called intrinsic if it is preserved
by isometries. Even though the principal curvatures are not intrinsic, Gauss made the
surprising discovery in 1827, that the product of the principal curvatures, now called
the Gaussian curvature, is intrinsic. Gauss was amazed by his wonderful results and
then named the theorem as Theorema Egregium, which is in colloquial American
English can be translated roughly as "Totally Awesome Theorem". To get an idea of
what Gaussian curvature tells us about surfaces, let’s look at few examples. Simplest

of all is the plane, which has both principal curvatures equal to zero and therefore has



constant Gaussian curvature equal to zero. Another simple example is a sphere of
radius r. Any normal planes intersect the sphere in great circles, which have radius r
and therefore curvatures are *1/r (sign depends on whether we choose the outward
pointing or inward pointing normal). Thus the principal curvatures are both equal to
+1/r, and the Gaussian curvature is equal to 1/7* and always positive on the sphere.

The model spaces of surface theory are the surfaces with constant Gaussian
curvature. We have discussed two of them: the Euclidean plane %’and the sphere of
radius r. The third model is a surface of constant negative curvature, which is not so
easy to visualize. Let’s just mention that the upper half plane {(x, y): y > 0} with the
Riemannian metric ¢ = R*(dx* + dy*)/y* has constant negative curvature —1/R?,
where R is a constant. In the special case R = 1 the curvature is —1. This is called the
hyperbolic plane.

Here again generalizing the ideas of Gauss, Riemann defined the intrinsic
geometry of a Riemannian space. Just as the notion of Gaussian curvature he thought
that Riemannin curvature is a measure of the degree to which a Riemannian space
differs from Euclidean space. In Euclidean space, he considered that the Riemannian
curvature is zero everywhere. As with the surfaces, the basic geometric invariant is
curvature. But the curvature becomes much more complicated quantity in higher
dimensions because a manifold may curve in so many directions. The curvature can
vary from point to point, but there are important special cases in which Riemann’s
measure is constant across the entire space. As with the surfaces, the model spaces of
Riemannian geometry are the manifolds with constant sectional curvature (see chapter
3). In the end of the chapter 5, we introduce three classes of highly symmetric model
Riemannian manifolds:- Euclidean spaces, spheres, and hyperbolic spaces. All most
all of the properties of Riemannian geometry are related to the curvature. Therefore as
in surface geometry, we can say that the curvature was the main source to develop
Riemannian geometry.

The main objective of this thesis is to discuss more details about the curvature

of the Riemannian manifold.



Chapter 1

Preliminaries and Notations

As stated in chapter 0, this thesis is mainly concerned with the curvature of a
Riemannian manifold. Therefore we need to know the basic definitions, results
(without proofs) and notations in Riemannian geometry. The purpose of this chapter
is to familiarize the reader with the basic language of Riemannian geometry as a
review and to provide a quick reference. Further details can be found in the following

sources: [DC 1], [DC 2] and [JML].
1.1 Tangent space (T,M)

Let M be a differentiable manifold with dimension n. A differentiable function
o:(—e,e)c R —> M is called a (differentiable) curve in M, where R is the set of all
real numbers. Suppose that o(0) = pe M and let D be the set of functions on M that
are differentiable at p.

The tangent vector to the curve o at 1 =0 is a function o/ (0): D — R given by

@/ (0)f =2(f o0 fe D.

1=0?

10



A tangent vector at p is the tangent vector at 7 = 0 of some curve o (-€,€) = M with
o(0) = p. The set of all tangent vectors to M at p will be denoted by T,M.

If we choose a parametrization x:U c R"—> M "around p=x(0) with
x(x,,....x,)=q€ x(U), we can express the function f and the curve o in this
paramerization by

[ ox(q) = f(x,,....,x,) , where (x,,....,x,)eU and
xoot) = (x,(2),..., x, (1)), where t € (—&,€).
Then o) = x(x,(2),..., x, (1))

fea()=f(x(),..x,(1))

Therefore o’ (0)f =d%~(f oar) _,

n ; af‘\
= (0) =—
gx,( )(Bx

rJo

n / i
_Ex (0)[ = f

In other words, the vector o’ (0) can be expressed in the parametrization x by

n 0
"(0) = "(0) — 1
o/ (0) éx,( )[3&-]0 (1)

; 0 ; :
It is clear that [— is the tangent vector at p of the coordinate curve
X
0

x; = x(0,...,x;,...,0). It follows from (1) that the set 7,M forms a vector space of

d

dimension n with an associated basis i graey| ——
ox, ) | ox,

] } Then the vector space
0

T,M is called the rangent space of M at p.

Using the idea of the tangent space, we can define the differential of a differentiable

mapping.

11



1.2 Proposition

Let M" and M be differentiable manifolds and let @:M, - M, be a
differentiable mapping. For every pe M, and for each veT,M,, choose a
differentiable curve o :(-g,&) > M, with a(0)= p,a'(0)=v. Take B=@oo. The
mapping d¢,:TM,—T,, M, given by do, (v)= B'(0) is a linear mapping that
does not depend on the choice of o (Proof, see [DC 2]). The mapping d¢,is called

the differential of @ at p.

1.3 Definition
Let M, and M, be differentiable manifolds. A mapping @:M, - M, is a

diffeomorphism, if it is differentiable, bijective, and its inverse, ¢, is differentiable.

1.4 Definition

Let M "and N"be differentiable manifolds. A differentiable mapping ¢ : M — N is
said to be an immersion if do,:T,M —T,, N is injective for all pe M . If, in
addition, ¢ is a homeomorphism onto@®(M)c N, where @(M) has the subspace

topology induced from N, we say that @ is an embedding. If M — N and the inclusion

i:M < N is an embedding, we say that M is a submanifold of N.

1.5 The tangent bundle
Let M" be a differentiable manifold and let TM = {(p,v); p € M,v € T,M }. The set

TM with a differentiable structure of dimension 2n is called the tangent bundle of M.

1.6 Definition

A vector field X on a differentiable manifold M is a correspondence that associates to

each point pe M a vector X(p)€ T,M. In terms of mappings, X is a mapping of M

into the tangent bundle 7M. The vector field is differentiable if the mapping
X :M — TM is a differentiable mapping.

12



Considering a parametrization x: U cR" — M , we can write

0
e (2)

X(p)=Y a,(p)
i=l

. . J . . . .
where each o,: U — R is a function on U and a—, i =1,...,n is the basis associated
X.

I

with the parameterization x. Therefore from (2) we can say that X(p) is differentiable

if and only if the «,’s are differentiable functions for all parametrization. It is

convenient to think of a vector field as a mapping, X: D — F from the set D of
differentiable functions on M to the set of functions on M, defined in the following

way

(Xf)(p) = za,(p)%(p) , forall fe D.
i=1 i

1.7 Lemma

Let X and Y be differentiable vector fields on a differentiable manifold M. Then there
exists a unique vector field Z such that, forall fe D, Zf = (XY -YX)f.

The vector field Z is called the bracket [X,Y]= XY —YX of X and Y. It is clear that Z

is differentiable.

There are well-known properties of the bracket.

1.8 Proposition
If X, Y and Z are differentiable vector fields on M, and a, b are real numbers, and f, g
are differentiable functions, then:

(@ [X.Y]=-Y,X]

(b) [aX +bY,Z]=al[X,Z]+blY,Z]

(c) [[X,Y)LZ]1+[[Y.Z].X]+[[Z,X1.Y]=0 (Jacobi identity)

(d) [fX.gY]= fg[X.Y]+ fX(g)Y - gY(f)X.

(Proof, see [DC 2])

13



1.9 Definition

A Riemannian metric on a differentiable manifold M is a correspondence which

associates to each p of M an inner product ( , ),, which is a symmetric, bilinear,

positive definite form, on the tangent space T,M. If x: U < R" — M is a system of

coordinates around p, with x(x,,...,x,) =¢g€ x(U) and ai(q) — dxq(O,...,l,...,O) , then
5 IX.

13

(ai (q),ga——(q)) , = 8;(X,....x,) 1s a differentiable function on U.
b, b,

It is possible to delete the index p in the function { , ) , whenever there is no chance
of confusion. The function g,(=g ) is called the local representation of the

Riemannian metric in the coordinate system x: U cR" — M.

1.10 Example

The almost trivial example is M = R" with ~—a—=e, = (ks )i:40) . The: metric 18

dx,
given by (e;.e;) = 0,. Therefore R" is called Euclidean space of dimension n and

the Riemannian geometry of this space is metric Euclidean geometry.

1.11 Definition
Let M and N be Riemannian manifolds. A diffeomorphism f: M — N is called an
isometry if: (u,v) ,= (df, (u),dfp(v))f(p) forallpe M,and u,ve T,M.

1.12 Definition

A differentiable mapping ¢: I — M of an open interval ] ¢ R into a differentiable
manifold M is called a (parametrized) curve. A vector field V along a curve c: I - M
is a differentiable mapping that associates to every fe€ [ a tangent vector

V(t)eT,,,M. To say that V is differentiable means that for any differentiable

function f on M, the function ¢ — V(#)f is a differentiable function on I. The vector
field, dc(di} denoted by —Z—j is called velocity field (or tangent vector field) of the
t

curve.

14



Chapter 2

Connections

2.1 Introduction

Before defining curvature on Riemannian manifolds, we need to study geodesics, the
Riemannian generalizations of straight lines. A curve in Euclidean space is a straight
line if and only if its acceleration is identically zero. This is the property that we
choose to take as a defining property of geodesics on a Riemannian manifold. To
make sense of this idea, we are going to introduce a new object on manifolds, called a
connection. We give a rather general definition of a connection, called affine
connection, in terms of directional derivatives of sections of the tangent bundles.
After deriving some basic properties of connections, we show how to use them to
differentiate vector fields along curves, to define geodesics and parallel transport of

vector fields.

2.2 Affine Connections
2.2.1 Definition
Let us indicate by RX(M )the set of vector fields of class C”on M and by D(M) the

ring of real valued functions of class C~defined on M. An affine connection V on a
differentiable manifold M is a mapping

V: R(IM)XR(M) - R(M),
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which is denoted by (X, Y') — VY and which satisfies the following properties:
DV xovZ= fVxZ+gV,Z
MV, ¥Y+2Z)=V,Y+V,Z
)V ()= fV, Y+ X(f)Y,whereX, Y, Ze R(M) and f, g€ DM).

2.2.2 Proposition

Let M be a differentiable manifold with an affine connection V. There exists a unique

correspondence, which associates to a vector field V along the differentiable curve
DV 2 _
c¢:1 - M another vector field — along c, called the covariant derivative of V
r

along c, such that:

DV D
(a) 2(1/ +W)= ~—+—W , where W is a vector field along c.
dt dt dt

(b) ?—(ﬂ/) = jiv + f%, where fis a differentiable function on /.
1 1 t

(c) If Vis induced by a vector field Y € R(M ), that is, V(1) = Y(c(2)),

1%
then DT =V, Y, where Y(c(t) e T, M.
; a

The notion of covariant derivative has many important consequences.

2.2.3 Remark

Let M" be a differentiable manifold and p € M. Choose a system of coordinates

(x,4...,x, ) about p and write X =ixl.X'., where X, =i and i,...,i is a
1=l axl axt axn

basis in T,M. Let (x,(¢)....,x,(¢)) be the local expression of c(t), t € I. Then we can

express the field, V=Evaj , where v/ =v/(r) and X, =% =X ;(c(1)).

J=1 J

Taking the covariant derivative of V along c,

DV & a'vi] s, . DX;
AN — K.+ E v’ L. (usin of proposition 2.2.2 1
ar Fl[ a | & s (using (b) of proposition ) (D
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By using (c) of proposition 2.2.2 and (i) of definition 2.2.1,

%:V%Xj(c(t))
g Vg[%]x.x’(dm
s
Then from (1), -Q:i= y ddv:Xj +i2%vjv"fxf ()

This differential equation provides the following results.

2.2.4 Example

Let M be Riemannian manifold and let p be a fixed point of M. Consider a constant
curve ¢: I — M given by ¢(r) = p, for all t € I. Let V be a vector field along ¢ (that is,

V is a differentiable mapping of / into 7,M ). Then we can show that L d = #¥

dt dr

Proof:

Let M be Riemannian manifold with dimension n. Take ¢(f) = p = (x,,...,x, ), where

X,,..., X, are constants, since c(f) is a constant curve.

Therefore % =0,wherei=1,....n
t

Substituting into equation (2),

DV _$odvl, _av
& Sdr 7 d

17



Hence the result. That is, the covariant derivative coincides with the usual derivative

of Vif Vis a vector field along a constant curve.

2.2.5 Definition

Let M be a differentiable manifold with an affine connection V. A vector field V along

curve c: [ — M with % =0, forall € /s called a parallel vector field.
t

2.2.6 Proposition

Let M be a differentiable manifold with an affine connection V. Let ¢: I — M be a

differentiable curve in M and let V, be a vector tangent to M at c(t,).t, € /

(ie.V,eT

«;yM ). Then there exists a unique parallel vector field V along ¢, such that

V(t,)=V,. The vector field V(r) is called the parallel transport of the vector V(z,)

along c.

2.2.7 Remark
If V(1) is a parallel vector field then % =0.

From equation (2), we have

Z X +22—wv X;=0. (3)

Jj=1 i=1

Weput V, X, = ZI"‘X where T} are differentiable functions on M and are called

the coefficients of the connection V or Christoffel symbols of the connection.

Then from equation (3),

18



i B, +3 3TV STIX,) =0

Jj=1 i=l

z i _,lrk =0

j=1 J.k

Replacing j with k in the first term, we can obtain

n k
SISy i Sipkly 0
| Ot d

i /]
Since the X, ’s are linearly independent in 7,,M, we have

av* DITE dx,
e I’ —=0, k=1.. 4
dt Ej‘ T dr “
This is the system of n differential equations in v (1), which gives a unique solution

satisfying the initial conditions v*(t,) =v, . It then follows that, if V exists, it is

unique.

2.3 Riemannian Connection

Among all possible metric connections, the most important is the Riemannian
connection (sometimes called the Levi-Civita connection) which is given by the
fundamental theorem of Riemannian geometry. Before that we need to know the

following definitions.

2.3.1 Definition

Let M be a differentiable manifold with an affine connection V and a Riemannian
metric { , ). A connection is said to be compatible with the metric ( , ), when for any
smooth curve ¢ and any pair of parallel vector fields P and Q along ¢, we have

(P,Q) = constant.

19



This definition shows that if V is compatible with ( , ) then we are able to

differentiate the inner product by the usual "product rule".

2.3.2 Proposition

Let M be a Riemannian manifold. A connection V on M is compatible with a metric if
and only if for any vector fields V and W along the differentiable curve ¢: I — M we

have

d DV DW
— (VW) =(— W) +(V,—), tel 5
= BE (5)

2.3.3 Corollary

A connection V on a Riemannian manifold M is compatible with the metric if and

onlyif X(¥,Z)=(V,Y,Z)+(¥,V,Z), forallX, Y, Ze R(M). (6)

2.3.4 Definition
An affine connection V on a smooth manifold is said to be symmetric when

V,Y-V, X =[X,Y], forall X,Ye R(M).

2.3.5 Remark

If V is symmetric then 1",;‘ = l"j‘,

Since, for an arbitrary function f,

[X,.X,)f =(X,X,~X,X,)f, (from 1.7 lemma)
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A A i
ox; ox; ox; ox

= [X,,X;]1=0, for arbitrary function f

Therefore V, X; -V, X, =0.

That is (I k = rk )X = 0 ) since X ; ‘s are llnearly independent.
if Ji k k
k=1

l}

k k
So 1"} =1“j.,.

We are now in a position to state the fundamental theorem of Riemannian geometry.
If we are going to use geodesics and covariant derivatives as tools for studying
Riemannian geometry, it is evident that we need a way to single out a particular
connection on a Riemannian manifold that = is determined by the metric. We
describe two properties that determine a unique connection on any Riemannian

manifold.

2.3.6 Theorem. ( Levi-Civita )

Given a Riemannian manifold M, there exists a unique affine connection V on M

satisfying the following conditions:
(a) V is symmetric.
(b) V is compatible with the Riemannian metric. (Proof, see [DC 2] )

Then V is called the Levi- Civita (or Riemannian) connection on M.
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2.3.7 Remark: Calculating the Christoffel symbols of the Riemannian

connection in terms of the metric coefficients.
Take X, Y, Z € R(M).

If V is compatible then

X(Y,Z)=(V,Y,Z)+(Y,V,Z) (7)
Similarly,  Y{(Z,X)=(V,Z,X)+(Z,V,X) (8)
Z(X.Yy=(V,X.Y)+(X,V,Y) 9)

Adding (7) and (8) and subtracting (9), then using the symmetry of V, we have
XX, ZY+Y(Z,X)-Z(X,Y)= (Y, [X,ZD) +(X.,[Y,.ZD +(V,Y.Z)+(Z,V , X)
Subtracting and adding the term (V, X,Z) in the right hand side,

XY, Z)+WZ, X)-Z{X, Y= (LIX, ZD # (XX ZD + (Z X Y]+ 2(Z,V, X)

Toldig el s, el =gl SR, s
ox, ox; ox

k
Xr.(XJ.,Xk)+XJ(X,(,X,.)-Xk(X[.,Xj)=2(Xk,VXJXr) (10)
Since V is symmetric, [X,Z]=[X,,X,] =0, similarly [Y,Z] =0and [X,Y]=0.

Taking <X;"Xj>=gfj’ (XpXk)=gjk and (Xk’X:') = 8

From equation (10),

1|98, Odg, 98,
X, .Vy X)) == e
XV X z{ax,. S, B

]

" 1|02 odg, 98;| . -
X,EF.’.X S R S TN X:EI".*.X
& ot Y 2{ ox, ox; ox, el -
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- 1 (98, 0g, 9g;
I“f —— J ki_ iy 11
2.Tit z{ax,. T ax,c} N

i

Multiplying equation (11) by the inverse matrix g*” and noting that z gyg =8
k=1

=1

. 1|9g; 08 g,
r km _ 1 k  O8ki 8 | ,km
2 Tigug 2{ ox, ox; ox, £

Summing over &,

3 km _l ik agk;‘_agff ke
; (Zgug ) > :.{Bx. +8x }g

08, 98, 98;| .
1-* Bm _ Jk ki i km
z Z{ ox, " ox, ox, }g

i

]n agj. agl ag; k - .
I'=— i ¥ T =1,ifm=1) (12

This formula provides the ability to compute the Christoffel symbols of the

Riemannian connection in any coordinate.
For example, in Euclidean space all g, ’s are constant. Then we have I’ =0.

Hence from equation (2),

V
e— Z = . Therefore the covariant derivative
dr dt

coincides with the usual derivative in Euclidean space. In Riemannian space the
covariant derivative differs from the usual derivative by terms which involve the

Christoffel symbols.
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2.3.8 Example

Consider the upper half plane R’ ={(x,y)e R*;y>0} with the metric
81 =8n= —1;, g1, = 0, (the metric of Lobatchevski’s non Euclidean geometry). We
y

can show that the Christoffel symbols of the Riemannian connection are

1 1
ITI = rzzz = 1«212 =0, r=21 T 1—-!:2 = rzzz G
¥ y

Proof: Considering equation (11),

- 1|0g . 08 agi‘ 4y
My =l 2R 0. 3L oherel i k=12
Ig; FR 2{ ox, dx; ox; g

1

1 ag ik ag ! ag..
1".]. +r2 = — £ i ki _ ij
i 8k i 8 k2 2{ dx; ox, dx,

J

Taking z'=j=k=1and X=X, X% =Y,

1[dg, og, OJg
1-111811 +r121312 = E{ a; + 8; 5 8;

nli =0, since g,, =0 and %:0, where g,, =—
x ¥

Similarly, when i=1, j=2, k=2 =T);=0

fesfl, 428, i ssfhes

i=1, j=1, k=2 =T} 5 similarly others.
s

On any Riemannian manifold, we will always use the Riemannian connection from

now on without further comment.
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2.4 Geodesics

Having defined the covariant differentiation along curves, we can now introduce the

notion of a geodesic as a curve with zero acceleration.

2.4.1 Definition
Let M be a manifold with a Riemannian connection V, and y be a curve in M. The

acceleration of 7y is the vector field EDt_ﬂ along V. A curve 7 is called a geodesic with

dt

respect to V if its acceleration is zero.

2.4.2 Remark

dy d D dy d
dy dvy _, Ddv dyy_

If v:[a.b] - M is a geodesic, then —(
dt dt dr dt dt

This implies that (ﬂ,ﬂ) = Constant.= 2 =h” (t)| = Constant (c)
dt dt dt

That is, the length of the tangent vector is constant. We assume that |'y’(t)1 =c#0,

that is, we exclude the geodesics which reduce to points. The arc length s of v, starting

from a fixed origin, say t =1, is given by
rldy
s(t)= ||—dt=c(t—t,).
;[\d’t =l

When ¢ = 1, the parameter is actually arc length and "y’ (t)\z 1. In this case we say

that the geodesic Y is normalized. Now we are going to determine the local equations

satisfied by a geodesic y in a system of coordinates (U,x)about y(,)on M. In U,

v(@®) = (x,(0),..., x, (1)) will be a geodesic if and only if %% =0;
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where

ﬂ= dx, (t) dx, (1)
dt da " dr |

. dx,
Using equation (4) of remark 2.2.7 and taking v* = ﬂ;—"— and v’ = T’
t t

]

2y, o, dx; dx,
9% 3+ Zi®i g, where k=1,...n. (13)
dtu i,j=1 d! d!

Next we will discuss a geodesic frame which will also be useful in future situations

2.4.3 Example: Geodesic frame

Let M be a Riemannian manifold of dimension n and let p € M. It can be shown
that there exists a neighborhood U < M of p and n vector fields E,,..,.E, € R(U),
orthonormal at each point of U, such that, at p, V; E;(p)=0. Such a family E, of

vector fields is called a (local) geodesic frame at p, where i, j= 1,...,n.

Proof:  We prove one special case.

d ) d

Consider the special case in which E, =—, E, =—and E; =—. i, j, k= 1,...,n.
% ox, X
For any choices of the indices i and j, we can expand V. E; in terms of the same

frame.
VE.EFEI?EW
m=]

n

where T =%Z{E,.(EI,E,:)+EJ(E“E,.)—Ek(E,.,Ej)}gk”’and (from equation (12))

k=1
(Ej.E.) =8> \E,E)=g, and (E.,E;)=g;.
But each term of the right hand side vanishes at each point of U, since E,’s are
orthonormal at p.
Therefore Iy =0.

Hence V. E;(p)=0.

Using a geodesic frame next we are going to obtain the expressions of the gradient of

a function on M as a vector field and divergence of a vector field on M as a function.
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2.4.4 Example

. Let X € R(M)and f € D(M). Define the divergence of X as a function div X: M - R
given by div X(p) = trace of the linear mapping Y(p) -V, X(p), p € M, and the
gradient of f as a vector field grad f on M defined by (grad f(p), v ) = df ,(v), where

peE Mand ve TpM. Let E,,i=1,...,n be a geodesic frame at p € M. We can show

n

that, grad f(p) = Z(E,. (f)E;)(p) and div X(p) = ZH:E,. (f.) (p), where X = if,-El..
i= i=l

i=1

Proof:
We know that grad f(p) is vector field on M at p, therefore grad f(p) can be expressed

in terms of basis E, ... E, at p.
grad fip) = 3 grad fip), E)E,(p)
But (grad fip).E,) = df,,(E,) = E,(f)(p)
Therefore grad fip)= i( E.(f)E,)(p). Hence the result.

For the second part, taking the covariant derivative of X in the direction E, at p.

Ve X(p) =V (3 fE)P)
i=l
= iVE; (f.E)(p) (using (i1) of definition 2.2.1)
=l
= i‘(ﬁ.’v’EJ E, +E (f,)E,)(p) (using (iii) of definition 2.2.1)
i=1

Vs, X(p)= Z(E;' (fOE)Np), (sinceV'_&_.J E,(p)=0in a geodesic frame).
i=1
Considering VEJX(P) withj=1,....,n.

Ve X(p)=E,(iXP)E\(P)+.cccvvrrniunenens +E,(f,)(P)E,(p)

* - -

Ve X (D) = E,(f)(P)E, (D) +wevvvereenrescen +E,(f,)(P)E,(p).
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Then from the definition of the divergence, div X(p) = trace of this linear mapping

div X(P) = E,(£,)(P)+ eoveerrverrrrrrrrrere +E,(£,)(p)

divX(p) = i E.(f,)(p) . Hence the result.

=1

If M =R", with coordinates (x,,...,x,) and aiz(O,...,I,...,O)=e‘ then we can
X

conclude that grad f =Z§J—c-e,. and div X(p) =Z%~, where X =2f,.ei.
i=1 OX i=l

i i=] i

. . d W .
Since, taking E, =e, =—— and substituting into above expressions we can get the
X

1

answer. Again we have the same argument that the grad f and the divergence of X on

M generalize to the Euclidean space, which are familiar in applied mathematics.

2.4.5 Example

Let M be a Riemannian manifold. Define an operator A: D(M) — D(M) (the
Laplacian of M) by

Af =div grad f, fe DM).

Let E, be a geodesic frameat pe M, i=1,...,n=dim M.

Then using example 2.4.4, we have Af(p) = ¥ E.(E,(f))(p)-

Since grad f(p) =i(E,- ()E)(p) = iE,-(f)(P)E.-(P)

i=]

So div grad fip) = Y, E,(E,(/ )()= A(p).

i=l

As above example if M = R". A coincides with the usual laplacian, namely,

n 2
Af = Z‘ng: . (since E, =a%)

i
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Also we can prove that the following property.

Alfog)=foAg + go Af+ 2 (gradf, grad g), where g € DM’
and fog denotes the product of the functions.
Proof:
Using the expression above Af(p) = 2 E.(E.(f))(p) and replacing fby f g,
i=1

Afog)p) = D E(E (f = ))p). (12)
=1

Considering the right hand side and using the property of the directional derivative,
E{E(f°8)}(p)=E{E(f(p)eg(p)+ f(p)eE (g(p))}
=E.(E.(f(p))og(p)+E(E(g(p))e f(P)+2E,(f(p))°E (g(p))
Then substituting into equation (14),

A(fo8)(p) =i{E,-(E.- (f(P))eg(p)+E(E (g(p))e f(p)+2E,(f(p))°E (g(p))}

=)o Y E(E (NP +p)o 3, E,(E()(p)+

n

2N E.(f(p)°E,(g(p))

=l

Then using (grad fip), grad g(p)) =Y E.(f(p)) > E;(g(p)),

=1

Afp) =Y E,(E,(f))(p) and Ag(p) = E,(E,(8))(p)
=] i=1

So A(fo 8)(p) =f(p) o Ag(p) + g(p) o Af(p) + 2(grad f(p), grad g(p)).

= A(fog) =folAg + goAf+2(gradf, grad g).
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Chapter 3

Curvature

3.1 Introduction

The notion of curvature in a Riemannin manifold generalizes the notion of Gaussian
curvature of a surface, which was introduced by Riemann. He assumed that the
curvature of Euclidean space is zero and the curvature of Riemannian manifold is the
amount that a Riemannian manifold deviates from Euclidean space and introduced the

idea of the curvature in a rather geometric manner as follows.

Using the way of defining the principal curvatures of a surface in R°, he
introduced the idea of cutting out curves by intersecting our manifold with planes. He
thought that the geodesics (curves that are the shortest paths between nearby points)
are the best tools for this purpose. The brief method of calculating curvature is given
here. Let p be a point of a Riemannian manifold M. The most fundamental fact about
geodesics is that given any point p € M and any vector v tangent to M at p, there is a
unique geodesic starting at p with initial tangent vector v. Let o be a two-dimensional
subspace of the tangent space to M at p. Consider all the geodesics through p whose
initial vectors lie in the selected plane o It turns out that near p these determine a

two-dimensional submanifold S, of M, which has a Riemannian metric induced from

M. Calculate the Gaussian curvature of S at p. This gives a number, denoted by
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K(p,0), called the sectional curvature of M at p associated with the plane o. Again it is
a natural generalization of the Gaussian curvature of surfaces. It is clear that if
M =R", K(p,0) =0, for all p and c. But Riemann did not explain a way to calculate

the curvature starting with the metric of M, which was done a few years later by
Christoffel.

3.2 Curvature

This section presents a definition of the Riemannian curvature tensor as a geometrical
object characterizing the deviation of the Riemannian space from Euclidean space. It
allows us to compute the sectional curvatures. The behavior of geodesics of
Riemannian space is largely determined by its curvature tensor. Similarly to the
Gaussian curvature of a surface, the curvature tensor of a Riemannian space M at p,
which is a generalization of the Gaussian curvature, determines the properties of the
space M in a neighborhood of the point p. Moreover, the curvature tensor gives rich

information about the global properties of the Riemannian space and its topology.

3.2.1 Definition

The curvature tensor R of a Riemannian manifold M is a correspondence it associates

amapping R(X,Y): X(M)— RX(M) with each pair of vectors X, Y € R(M) given by
RX.Y)Z=V ,V,Z-V,V,Z+V,,wZ, ZeRM) (1)
where V is the Riemannian connecton of M.
We can show that if M is Euclidean space, R",thenR(X,Y)Z =0, X,Y,Ze X(M)
Let Z= (z,,...,z,) be the natural coordinates of R", we obtain,
VyZ=(X(z),--X(z,))
Differentiating in the direction of Y,
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V,VyZ=(¥X(z),..YX(z,))
Similarly V,V,Z=(XY(z),..,XY(z,))
We know VixnZ =(X,Y1(z),...[X,Y](z,))
= (XY -YX)(,)s....,(XY = YX)(z,))-

Substituting into equation (1), R(X,Y)Z = 0.Therefore we are now able to think of R

as a way of measuring how much M deviates from being Euclidean space.

Now we are going to state the properties of the curvature tensor without giving

proofs, (for the proofs see [DC 2]).

3.2.2 Proposition

The curvature tensor R of a Riemannian manifold has the following properties:

(a) Ris bilinear in X(M )X X(M), that is,
R(fX, +X,.Y,) = fR(X,.Y,) + gR(X,.Y,),
R(X,,fY, +gY,) = fR(X,.Y)) + gR(X,.1,),
f,g€e DM), X,,X,.Y,.Y, € R(M)

(b) For any X, Y € R(M), the curvature operator R(X,Y): X(M) = R(M) is

linear, that is,

R(X.Y)Z+W)=R(X,Y)Z+R(X.,Y)W,

RX.NfZ=RX.Y)Z, fe DM, Z WeRM)

From now on, we shall write (R(X,Y)Z,T)=R(X,Y,Z,T)=(X,Y,Z,T). The

curvature tensor on a Riemannian manifold has a number of symmetries.
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3.2.3 Proposition (Symmetries of the curvature tensor)
The curvature tensor has the following symmetries forall X, Y, Z, T € R(M).
(a (X,Y,Z2,T)=-(Y,X.,Z,T)
(b) (X,Y,Z,T)=—(X,Y.,T,Z)
(&) (X,¥,Z2.T)=(2,T.X,Y)
@ X,Y,Z,T)+(,Z,X,T)+(Z,X,Y,T)=0.

The symmetry expressed in (d) is called the algebraic Bianchi identity.

3.2.4 Remark

It is convenient to express above identities using a coordinate system (U,x) based at

the point p € M in terms of components with respect to any basis.

. 0 .
Let us indicate, as usual, —=X,, i =1,....n
X -

14

We put, R(X,,X )X, = ZR;&X:. Thus Rék are the components of the curvature R.

=1

To express R;k in terms of the coefficients I'; of the Riemannian connection,

wewrite R(X,, X)X, =V, V, X, -V, V, X, +V; , X,

Then R(X,.,Xj)Xk=Vx:erXk—erVxle (since [X;,X;]1=0).

Taking VX, =Zﬂixf and V, X, =ZT§,‘X;
= (=1

R(X,. X )X, =V QTaX)-Yy, QO TuX)),
I=1 =1
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Then using the linear property of the Riemannian connection,
R(X,, X )X, = Z{V LX)~V TL XD
Using (iii) property of definition 2.2.1,
= !z:l“{(xj(lj.; )X, + T Vy X)) = (X ()X, + TV, X))}

Taking X =i, X =ai, Vi X, =YTiX, asd V, X, =Y DI X,
X; ' 5=1 ' s=1

a

- {(a%(r;;)xﬁr,iz X)( (T’)X,+ijZEjXS)}
j s=1 el

I=1

Replacing [ by s in the first and third terms,

n a n
RIXu X%, =Z{§(1‘;)+Zl“,-if,-‘, ()= 2
s=1 j 1=l

Taking R(X,.X )X, zR,ﬂ

S a 5 z 5 a 5 C 5
ZRU‘X, g Z{g;(l"m )+ 2T i 2TLTX,
s=1 ; i=1 X 1=1
Since X ’s are linearly independent, then

d

rﬂc (1"5 )+Zrai a_xl

(r;k = z rj‘k rsi
i=1

This gives the components of the curvature tensor in terms of the Christoffel symbols

of the connection.

Put {ROX . X )X, X )= <ZR,,kX;,X> ZR,,kgf, = Ry Whre g, ={ X X, )

34



Therefore, (X,,X;,X,,X,)=R;,. Then we can write the identities of proposition

3.2.3 as:

(1) R, =-R

Jiks
(i) Ry =—Ry
) Ry =Ry

(ivv R, +R, +R. =0.

ijks Jkis kijs

3.3 Sectional Curvature

The Riemannian curvature tensor, R, is fairly complicated. Therefore we now define a
simple real valued function which completely determines R. Before that we consider

the following proposition.

3.3.1 Proposition

Let o c T,M be a two-dimensional subspace of the tangent space T,M andx,y € &

be two linearly independent vectors. Then K(x,y) :M does not depend on

1):;\ y|

the choice of the vectors x, y € o, where |x A y|2 = |.vr,\1|y\2 —{x, "

Proof:

Using the symmetry and linearity properties of the curvature tensor in the right hand
side of the above definition, we can replace the basis {x, y} of o from any other basis

by iterating the following elementary transformations:
(@) {x,y} = {yx}

(b) {x,y} = {Ax,y}
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(©) {x,y} = {x+Ay,y}

It is easy to see that K(x, y) is invariant by such transformations.

L%,y %)

(a) K(yvt)"‘ 2
|y A

_x },,x,’y) (from (a) and (b) proposition 3.2.3)
easf

=K(x,y)

(Ax, y,Ax, y)

(b) Consider K(Ax,y) = >
‘X.xz\ ¥y

- M (from (a) and (b) proposition 3.2.2)
k‘]x A y]"

=K(x,y)

Similarly we can prove the other result.

3.3.2 Definition

Given a point pe M and a two-dimensional subspace o C T,M , the real number

K(x,y) = K(p,o), where {x, y} is any basis of o, is called the sectional curvature of

oatp.

The sectional curvature has interesting geometrical interpretations. The following

lemma shows that the sectional curvatures completely determine the curvature tensor.
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3.3.3 Lemma

Let V be a vector space of dimension > 2, provided with an inner product { , ). Let

R:VxVxV =V and R':VxXVXxV —>V be tri-linear mappings such that

conditions (a), (b), (c) and (d) of proposition 3.2.3 are satisfied by
(¥, 2, ) =R(x, y, 2, 1) ={R(x, y)z, t ),
(x,3,:2,1)'= R'(x,5,2,0) =(R' (x,y)2,1) .

If x, y are two linearly independent vectors, we may write,

(x° }!9xs3") : Kf(o.) =

(%,5,%, %)

K(o)= , where o is the two-dimensional

el

A

subspace generated by x and y.
If forall o ¢ V. K(6)=K'(6),then R(x, y,z. 1) =R'(x, y, 2.1) . (Proof, see [DC 2])

The Riemannian manifolds that have constant sectional curvature, which means that
the sectional curvatures are the same for all planes at all points, played a fundamental

role in the development of Riemannian geometry. The following lemma shows how

the constant sectional curvature is related to the curvature tensors R and R’.

3.3.4 Lemma

Let M be a Riemannian Manifold and p a point of M. Define a tri-linear mapping

R :T,M xT,M XT,M —T,M by
(R'(X,Y)W,Z) =(X ,WXY,Z)—(Y,WXX,Z), forall X, Y, Z, We T,M .

Then M has constant sectional curvature equal to K, if and only if

RO Y W Z)= KOR" (X.,Y,W,Z), where R is the curvature of M.
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Proof:

Let K(p,o) be the sectional curvature of M at p associated with the two-dimensional

subspace c c T, M .
Take K(p,0) = K,= constant and set (R'(X,Y)W,Z)=(X,Y,W,Z)'

We can show that R’ satisfies the proposition 3.2.3.
We are given that (X,Y,W,Z) =(X,WXY,Z)—(Y,WXX,Z) (2)
Similarly, Y. W,X,Z) =¥, XXW,Z)—(W,XXY,Z)

W,X,Y,Z) =(W,YXX,Z)—(X,YXW,Z)
Adding all these three equations,
(X.Y.W.Z)+ (Y, W.X,Z)" +(W.X.Y.Z)' =0, this proves the property (d).

- (Y, X,W.Z) =—({Y WXX,Z)—(X,WXY,Z)}=(X,Y,W,Z), property (b).
Similarly we can prove the other identities.
Using the equation (2) and replacing Wby X and Z by Y,
(X,Y,X,Y) =(X,XXY.Y)—(X,T)?
=|x x|’ 3)

We know that the definition of the sectional curvature,

TX XY
K(p.0)= K, =20
X AY|
Therefore (X,Y,X,Y)=K,|X AY[

Then from equation (3), (X,Y,X.,Y)=K,(X,Y,X,Y)
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Using lemma 3.3.3, we can say that(X,Y,W,Z) =K0(X,Y,W,Z)’, forall X, Y, W, Z.
Thatis, R(X,Y,W,2Z) = KOR"(X,Y,W,Z). Hence the result.
To prove the converse, assume that R(X .Y, X.Y) = KOR’ (X,Y,X.Y)
(XX X)=K,(XT.X¥F)
=K,|X AY[" (using (3)

Therefore K| :w = K(p,0), which implies that M has constant sectional

]XAYA

curvature equal to K.

3.3.5 Corollary

Let M be Riemannian manifold of dimension n and p be a point of M. Let

{e,,....e, } be an orthonormal basis of TPM . Define R,Ijhr = (R(e;.,ej)ek,e;) , where i, j,
k, I = 1,..n. Then K(p,6)=K, for all ¢ < T,M, if and only
if, R, = K,(6,0,~0,0,) where §,=1if i =jand §,=0 if i# j. In other

words, K(p.0) = K, forall cc T,M ifand only if R, =R, = K, for all i #j, and

iz} yji

R;;; =0 in other cases.

Proof:

From lemma 3.3.4, R(X,Y,W,Z)=K,R (X,Y,W,2Z)

Replacing X, Y, W, Z by e¢,,e;,¢,,¢, respectively,
R(e;.e;.¢€..¢) = KOR’(ei,ej,ek,e;)»

where R'(e;.e;.e,.¢) =(e; e, Xe;.e,) — (e, e, Xeie,) = 6,0, — 6,0,
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Therefore R, = R(e;.e;,e,.¢,) = Ko(8,8,—8,8,).

Then R, =K,=-R

iy

if k=i I=jandforalli#j

iji *

We are now taking a Lie group G as the manifold, and obtaining expression for the
curvature and sectional curvature in terms of left invariant vector fields. Before that,

we need some preliminary facts about Lie groups.

A Lie group is a group G with a differentiable structure such that
the mapping GXG — G given by (x,y) = xy~',x,ye G is differentiable. It follows

that translations from the left L and translations from right R, given by
L, :G-G,L.(y)=xy;
R, :G — G,R (y)= yx; are diffeomorphims.

We say that a Riemannian metric on G is left invariant if

(u,v), ={d(L,),u,d(L,) V), forallx,ye G, u,veT,G.

That is, a Riemannian metric on G is left invariant if L_is an isometry. Also we say
that a differentiable vector field X on a Lie group G is left invariant if dL X = X for

all x € G. In other words, if ( , ) is left invariant metric tensor on G, then (X.Y) is

constant for X,Y € R(G). (see [BO 2])

Similarly, we can define a right invariant Riemannian metric. A Riemannian metric
on G, which is both right and left invariant is, said to be bi-invarant. If G has a bi-

invariant metric, the inner product that determines on X(G) satisfies the following

relation:
Forany U, V, X € R(G), (U,X1,V)=—U,[X,V]). (proof see [DC 2])

Using all properties mentioned above, we will prove an important formula in terms of

Riemannian connection.
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3.3.6 Example

If X, Y, Z € X(G), left invariant vector fields on G with a bi-invariant metric ( , )

then V, X =0, for all X € R(G), where V is the Riemannian connection on G.

Proof:

Using remark 2.3.7,

AZ,V, X)=XY,Z)+Y(Z,X)-Z{X,Y)-(X,Z),Y)-(X,Y),Z)-(Y,Z],X)
Replacing Y by X and using the fact that the metric is left invariant,
(Z,V,X)=(Z,X],X) (inner product is constant so X(¥,Z) =0, similarly others)
Using the fact that the bi-invariance of (, ) implies that
(Z,V,X)=—Z,[X,X])=0 (the property of the bracket, [X, X] =0)

It follows that V, X =0, for all X € R(G), since Z is arbitrary vector field on G.

Similarly, V,Y=0,V,Z=0, forall Y,Ze R(G).

3.3.7 Example

Let G be a Lie group with a bi-invariant metric ( , ). Let X, ¥, Z € X(G) be unit left

invariant vector fields on G. Then we can prove that the following expressions.

(a) VXY=%[X,Y]

®) R(X,V)Z =%[{X.Y],21

(c) If X and Y are orthonormal, the sectional curvature K(0) of G with respect to the

plane o generated by X and Y is given by K(0) = %[[X YT’

41



Proof:
(a) V,Z=0,forall Ze X(G).
Let Z=fX + gY, where f, g € D(G).
Then, V .. (X +2Y)=0
= 'V, X+ gV, Y+ gV, X+¢g*V,Y=0
= V,Y+V, X =0,since V, X =0,V,Y =0 and fg # 0.

i VXY;V,,X N

0

= VXY—%VXY+%V,,X =0

= V. ¥ —%[X,Y] =0. Hence the result.
b) RX,V)Z=V,V,Z-V,V,Z+V, ,Z

= Vy(%[X,Z]) -V, (%[Y,Z]) +%[[X,Y],Z] (using the result of (a))
=%[Y.[X,Z]]—%[X,[Y,Z]H—%[[X,Y],Z] (using ())

:—%[[X,Z],YH:}[[Y,Z],X]+%[[X,Y],Z] (using the property of

the bracket, [Y,[X,Z]]=-[[X,Z].Y] and [X.[Y.Z]]=-[[Y.Z],X])
RX.Y)Z = -JI[[Z,XI.Y]+%[[Y.Z],X]+%[[X.Y],Z] (since [X,Z]=—{Z,X])
Using the Jacobi identity, [[X,Y1],Z]+[[Y,Z], X ]+[(Z,X1,Y] =0.

Then R(X.Y)Z = %[[X ,Y],Z]. Hence the result.
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(RX,V)X,Y)
X Y[’

(c) Weknow, K(o)=
K(0) =(R(X.Y)X.Y) (since X and ¥ are orthonormal,|X A ¥|'= 1)
K(©) = (GUIX.YLXLY)  (using part ()

But (V,V,r.Y)=(V, (%[X,Y]),Y) (using part ()

=<&[x,[x,}'n,1’> (using part (a))

Using the property of bracket [X,[X,Y]]=-[[X,Y],X],

—i({[x,Y],X],n @

Also we know that (Y,Y)=1 (since Y is a unit vector on G)
Taking the covariant derivative in the direction of X,
X({T.,Y)=0=(V,YY)=0.

Again taking the covariant derivative in the direction of X,

X(V,Y.Y)=0,= (V,V,Y.)+(V,Y.V,Y)=0

But (V,Y,V,Y) :%([X,Y],[X,Y]) =%|[X,Y]|2 (using part (a))
Therefore (V,V,Y,Y) = -%i[X,Yli2

Then, from (4) ([[X,¥],X1,¥) =[[X, Y]’

= K(0)= %|[X : Y]|2. Hence the result.
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Therefore, the sectional curvature K(o) of a Lie group with bi-invariant metric is non-

negative and is zero if and only if o is generated by vectors X, ¥ which commute, that

is, such that [X,Y]=0.

3.4 Tensors on Riemannian Manifolds

An extensive technical theory of Riemannian geometry is built up using tensors;
indeed, Riemannian metrics themselves are tensors. The notion of curvature can be
expressed in terms of a tensor. The idea of a tensor is a natural generalization of the
idea of a vector field. Tensors can be differentiated covariantly as vector fields. Thus
we begin with the basic definitions and properties of tensors on a Riemannian

manifold.

3.4.1 Definition
A tensor T of order r on a Riemannian manifold, M, is a multilinear mapping

T: X(M)X...... X R(M)— DM).

This means that given Y,.....Y, € X(M), T(Y,.....Y,), is a differentiable function on M,

and that 7 is linear in each argument, that is,

T e JX # 8V VYT o X s YN 8T (Bscns Vs Ko

r

forall X, Y e R(M)and f, g € DIM).

3.4.2 Example
The curvature tensor, R: R(M)x R(M)x XR(M)xX(M) — D(M), is defined by

R(X,Y,Z,W)=(R(X,Y)Z,W), forall X,Y,Z We R(M).
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. . d .
Here R is a tensor of order 4, whose components in the frame {X, =—} associated
X

]

with the system of coordinates ( x, ) are

R(X,-,XJ-,X;‘,X;)=RJM'

3.4.3 Example

The metric tensor G: R(M)XRX(M) — D(M) is defined by G(X,Y)=(X,Y), where
X, Y e X(M)and G is a tensor of order 2.

Taking X =le.X' and Y=2y}.X}.,
i=l j=l

G(X,Y)= ZZx,yj(}(X{,X})

=1 j=1

Therefore using the given definition, it is clear that the components of G in the frame

{X.} are the coefficients g, of the Riemannian metric in the given system of

coordinates.

3.4.4 Definition

Let T be a tensor of order r. The covariant differential VT of T is a tensor of order

(r+1) given by
VT, oo Yo Z) S 2o Y N =TV s YY) =i = T i Yo Vg X s s

where Y,,....Y,,Z € R(M). For each Z € R(M), the covariant derivative of the tensor

T relative to Z,V,T , is a tensor of order r given by V,T(Y,,....Y,) = YT (Y, exX s L)

Using this definition, we will show that the covariant differential of the metric tensor

of a Riemannian manifold is the zero tensor.
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3.4.5 Example

Let M be a Riemannian manifold and G be the metric tensor defined

byG(X,Y)=(X,Y). Then the covariant differential of the metric tensor is the zero

tensor, forall X, Y, Ze X(M).
Proof:
G is atensor of order 2. Therefore by definition VG is a tensor of order 3.

Then using the definition of the covariant differential of the metric tensor G, we can

write
VG(X.Y,Z)=Z(G(X,Y))-G(V,X,Y)-G(X,V,Y) (5)
Using the definition of the metric tensor, we have
G(X.,Y)=(X,Y)

GV X.Y)=(V,X.Y)

G(X,V,Y)=(X,V,Y), foral X,Y,ZV, X,V ,Y e R(M).
Then substituting into equation (5),

VG(X,Y,Z)=2Z{(X,Y)-{V,X.Y)-(X,V,Y)

But Z(X.,Y)=(V,X.,Y)+(X,V,Y),since V is the Riemannian connection.
VG(X.,Y,Z)=(V, X, Y)+{X,V,Y)—(V,X,Y)—(X,V,Y)=0.

Hence the result.

3.4.6 Remark

Now we will consider a vector field as a special case of a tensor and show that the

covariant derivative of the tensor is a generalization of the covariant derivative of the
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vector field. For various reasons, it is convenient to identify the vector field
X € X(M) with the tensor X : X(M)— D(M) given by X(Y)=(X,Y), for all

Y € R(M),where M is the Riemannian manifold.
The covariant derivative of the tensor X relative to the vector field Z € X(M) is
V,X¥)=VX(¥,Z) (from definition 3.4.4)
=Z(X(Y))-X(V,Y) (from definition 3.4.4)
V,X(¥Y)=Z(X,Y)-(X,V,Y) (sinceX(Y)=(X,Y))
Since V is the Riemannian connection
Then V., XX)=(V, X, Y)+(X,V,Y)—-(X,V,Y) = (V,X,Y).

Hence we can conclude that the tensor V,X can be identified with the vector field
V,X. This shows that the covariant derivative of a tensor is a generalization of the

covariant derivative of the vector field.

3.4.7 Examples related to tensors on Riemannian manifolds
3.4.7.1 Example

Lety: [0, ] — M be a geodesic and let X € X(M ) be such that X(y(0)) = 0. Then we

can show that V\H (R(Y ., X)Y)(0)= (R ,X")Y )O0), where X' = %

Proof:

As defined in example 3.4.2, R is a tensor of order 4. The covariant differential VR of

R is a tensor of order 5 given by

VR(X,Y,ZW,U)= URX,Y,ZW))-R(V,X,Y,ZW)-R(X,V,Y,ZW)-

R(X.Y,V,Z,W) - R(X,Y,Z,V,W)
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For each U € R(M), the covariant derivative V,R of R relative to U is a tensor of

order 4 given by

V,R(X,Y,ZW)=VR(X,Y,Z W,U) (usingdefinition3.4.4)
TakingX=7y,Y=X,Z=vy ,W=Z and U= v/,
So V,R(Y.X,Y.Z)=VR(Y',X.Y.Z,Y)
=Y R(Y.X, ¥, D)-RV Y. X.Y.2)-R(Y,V X ¥, 2Z) -
RY XV ¥ 2 ~ RO X vV 4 Z)
But we know that y is a geodesic, therefore V Y,y’= 0 so then
V.RY.XY.Z)=Y R(Y.X.¥.2)-RY.V X.,Y.Z)-R(Y . X, ¥,V ,Z) (6)
But we have, Y (R(Y . X, Y'.2) = Y(R(Y,X)Y,Z) (using tensor notation).
Taking the covariant derivative in the direction of 'y” ;
YR(Y. X, ¥.2) =V, (R, X)Y),.2)+(R(Y', X)V' .V, Z).

Then substituting into equation (6),
V,ROLXY.2)=(V, R, X)Y),Z) -R(Y, V,X.¥ .Z) ()
Also we know that VT,R(y' ,X,Y',2Z) is a tensor of order 4. This can be written as
VT,R(Y',X,Y’,Z) = VfR(Y’,Z,y’,X) (using (c) of proposition 3.2.3).
=(V Y,R('y’ ,Z)Y',X) (using tensor notation).
Evaluating at 1 = 0, V fR(‘y",X ,Y',Z)(0)=0. Since, we are given that X(y(0)) = 0.

Therefore the left-hand side of the equation is zero at 1 = 0.
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Substituting into equation (7) and evaluating at 7 = 0,

(V, (R X)Y).Z)O) -R(Y.V X .Y .D(0)=0
V., (RO X)Y).Z)(0) -(R(Y'.V X )Y, 2)(0) =0
(V, (R(Y.X)Y).Z)(0) =(R(Y .V, X)Y'. 2)(0)
v, RY.X)Y)O0) =RV, X)Y)0). forallZe R(M)

V_(R(Y.X)Y)0)= (R(Y', X")¥')(0), since X' =%= V_ X . Hence the result.

3.4.7.2 Example (Locally symmetric spaces)

Let M be a Riemannian manifold. M is locally symmetric space if VR = 0, where R is
the curvature tensor of M. (The geometric significance of this condition is given in
exercise 14 of chapter (8) of [DC 2].) We can prove that the following properties in

locally symmetric space using tensors.

(a) Let y: [0, I) = M be a geodesic of M. Let X, Y, Z be parallel vector fields along 7.
Then R(X,Y)Z is parallel field along 7.

(b) If M is locally symmetric connected and has dimension two, then M has constant

sectional curvature.
(c) IIf M has constant sectional curvature then M is locally symmetric space.
Proof:
(a) Take X=X(y(1)), Y=Y(Y1), and Z=Z(Y(¢))

Then V X = 0,V L o,V 4Z =0, since X, Y, Z are parallel vector fields along .

We need to prove that %(R(X,Y)Z) =0 or Vg (R(X,Y)Z)=0.
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Let U(y(1)) be any vector field along 7.

VRX,Y,Z,UY®) =Y (RX, Y, Z U)) - R(V,X,Y,Z, U)-RX,V ,Y,Z,U)-
R(X, Y,V),Z,U)—R(X, ¥y Z,VfU) (8)
Using the fact that X, Y and Z are parallel vector fields, Vf X= O,V_‘,Y = O,VY,Z =0
Consider R( V}, X. Y Z. Uy=—RY. V?, X.ZU (using (a) of proposition 3.2.3)
=-R(Z, U, Y,Vy, X) (using (c) of proposition 3.2.3)
=—(R(Z,U)Y,VT.X) =0 (since V_f,X:O)
Similarly we can show that R(X,VY.Y,Z, U) =0and R(X, Y, Vf Z,)=0.

Then from equation (8)

VR(X,Y,Z UY ) = Y (R(X,Y,Z,U)-RX, Y,ZV_U)
= ¥ (R(X,Y)Z,U)-(R(X,Y)Z, V ,U) (using tensor notation)
= (V_R(X,Y)Z,U) +(R(X,Y)Z,V_U)-(R(X,Y)Z,V_U)
= (V_R(X,Y)Z,U) 9)

We know that if M is locally symmetric space then VR = 0.

Then from (9), (VfR(X,Y)Z,U) =0
Which implies that V ?JR(X ,Y)Z =0, forall Ue X(M).

Hence R(X ,Y)Z is a parallel field along 7.
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(b) Let p € M and ¥(0) = p. Assume that M has dimension two. Then T,M has

dimension 2.

Let {e;,e,} be a orthonormal basis of 7,M and e,(r) be the parallel transport of e,

along v, for i = 1,2. Therefore erl (1) = O,Vy, e,(t)=0
Using definition 3.4.4 and the fact thate, (1),e,(¢) are parallel vector fields,
VR(e, (1),e,(),e,(2),e, (), Y (1) = Y (1)(R(e, (¢), €, (1), ¢, (1), €, (2)))
=7 (t){R(e, (t),e,(t))e, (t),e, (1)) (tensor notation)

VR(e, (1), e, (1). €, (1), e, (). Y (1) =(V _, (R(e, (1), €, (1))e, (1), €, (1)) + (R(e, (1).€, (1))e, (1), V €, (1))

=(V ¢ (Re,(1),e;(0))e, (), e, (1)) (since V’Y,e;2 (1=0)
But M is locally symmetric space, then VR(e, (1), e, (1), e, (1), e, (1), Y (@)=0
Therefore (V y (R(e,(1),e,(1))e, (1), e,(1))=0 (10)
Let K(r) be the sectional curvat:re of M at Y(1).

R(e,(2),e,(1),e,(1),e,(1))

e, (1) A e,(r) 2

K@) =

Then K(1)=R(e,(1),e,(t),€,(),e,(1))  (since |e, ()| =Lle, ()| =1)

= (R(e,(1),e,(1))e, (1),e,(2)) (using tensor notation)

Differentiating both sides with respect to ¢,
K'(0=(V_, (R(e,(t).e,(1)e, (1), €, (D)) +(R(e, (1), €, (0))e, (1).V &, (1))

Using equation (10) and V /€2 {)=0

So K'(t)=0. Thus K() is constant. Hence the result.
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(c) If M has constant sectional curvature K, then using lemma 3.3.4,
RX,Y,W,2)= (RX, )W, Z) = K, (X, WXY, Z) - (Y, WXX, Z)) (11)
Take VRIX, Y, W,Z, T)=T(RX, Y, W, 2)) -R(V.X .Y, W,2)- RX,V,Y W, 2) -
RX,Y,V,W,Z)-R(X,Y,W,V,Z) (from definition 3.4.4) (12)
Consider T(R(X, Y, W, 2)) = T(K, (X, W)Y, 2) — (Y, WXX, Z))) (from (11))
T(RX, Y, W, 2)) = K, {T(X, WXY, Z)) - TY, WXX, Z))}
TRX.YW.Z) = K, {(V; X .W) +(X,V,W)XY,2Z) +(X, W(V,Y .Z(Y, V;Z))

(VY W)+ (Y. VW)X, 2) - (Y, W)V X .2) +(X, V:Z ))}

Using (11), we can write

RV X, Y, W,Z)=(R(V,.X NW,2) =K,V X ,WXY,Z) - (Y, W(V.X,2))
ROV, Y, W, Z) = (R, VY )W, 2) =K, (X, WXV, ¥ .Z) —(V,¥ WX X, 2))
RX, Y,V,W,2) = (RX.Y)V,W 2) =K, (X,V,W XY, Z) = (¥,V ;W XX, 2))
RX, Y, W,V,Z)=(RX.)W,V,Z ) =K, (X, WY,V ,Z)— (Y, W) X,V ,Z))

Substituting all these relations into (12), VR(X, Y, W, Z, T) = 0.

Hence if M has constant sectional curvature then M is locally symmetric space.
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Chapter 4

Jacobi Fields

4.1 Introduction

A good part of the study of Riemannian geometry consists of understanding the
relationship between geodesics and curvature. A basic tool for this is Jacobi fields
which are vector fields along geodesics on manifolds. Before defining Jacobi fields,
we need to study the collective behavior of geodesics. For this, we introduce the
exponential map of an open set in the tangent bundle to the manifold, which is a way
of collecting all of the geodesics of the manifold into a unique differentiable mapping.
The exponential map provides a map from the tangent space of any given point of the
manifold to the manifold itself, in which lines spreading from the origin of the tangent
space are mapped to geodesics in the manifold. The properties of the exponential map
are useful to the further study of Riemannian geometry. Using the exponential map,
we next introduce Jacobi fields, which are vector fields along geodesics, defined by
means of a differential equation. We then introduce the notion of conjugate points,

which are pairs of points along a geodesic where some Jacobi field vanishes.
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4.2 The Exponential Map

4.2.1 Definition

Let M be a smooth Riemannian manifold. The exponential map, exp,,, at a point p in
M maps the tangent space 7,M into M by sending a vector v in 7,M to the point in M

a distance |v| along the geodesic from p in the direction v.

Thatis, exp,: T,M — M is defined by exp, (v) =7, (1), where vy, denotes the unique

geodesic of M with initial velocity v.

We also write exp, (v) as exp, (v) = exp(p,v) = Y(1, p,v), for fixed p, where (p,v) is
a point of TM(tangent bundle). Then as (p,v) is a point of TM, the change of notation

to exp(p,v) shows exp as a mapping from a region of 7M to M.

Using the fact that the homogeneity of a geodesic, that is, if the geodesic (7, p, u) is

defined on the interval (-8, §), & > 0, then the geodesic Y(z, p, au), a € R, a > 0, is
defined on the interval (_—S,é) and Y(at, p, u) = Y(t, p, au), and taking r = 1, a = ||
a a

and u = i, we can write, T(|v|, p,i) =v(1, p,v). Roughly, it says that the point, one

v i
unit along the geodesic through p with initial velocity v is also the point, |v| units
Vv
i

exponential map depends on the existence and uniqueness of a geodesic through p

along the geodesic through p with initial velocity — . Therefore the definition of the

with initial velocity v. One consequence of the homogeneity condition is that y(1, p,v)

is only guaranteed to be well defined for v near zero in 7,M , so expis only defined

on an open subset of 7 ,M .

ILet UcIM be an open set. Then the map exp:U —=M given by

v

exp(p,v)=exp,(v) =7y p,v) =Y ,p,l—:‘), where (p,v)e U, 1is called the

exponential map on U.
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Geometrically, exp, (v) is a point of M obtained by going out the length equal to

[vl, starting from p, along a geodesic which passes through p with velocity equal to

= Ifv=0then exp,(0) = p. In most of the applications, we shall use the restriction

M

of exp to an open subset of the tangent space 7T,M .
exp,: B.(0) cT,M - M,

where B, (0) is an open ball with center at the origin 0 of TPM and of radius €.

4.2.2 Remark
Suppose that there exists a unique geodesic y: [0,1] = M such that ¥(0) = p, Y/ (0) = v.

Then the point Y(1) € M will be denoted by exp,, (v). The geodesic can be described

by the following formula.
¥(1) = exp, (v)
=y(1, p,v),

and Y1) =¥t p, v)

=7v(1,p,tv)  (using the homogeneity of a geodesic)
So Y1) = exp, (tv)
This is the parametric equation for the unique geodesic with Y(0) = p, ¥ (0) = v.

This implies that ¥(0) = exp ,(0)=p and (1) = exp, ().
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4.2.3 Proposition

Given p € M, there exists an € > 0 such that exp,:B.(0) c T M — M, is a

diffeomorphism of B, (0) onto an open subset of M.
Proof:

Let (dexp 0 be the differential of the function exp , evaluated at 7= 0. Now we are

going to show that (dexp,), is the identity map.

d
(dexp,),(v) = E(CXP p(”’))L:{,

d
=< (. p, D)

=Y (t.p.v)

= v'(0)

Hence (dexp,), is the identity map of 7,M , and it follows from the inverse

function theorem [DC 1, page 131] that exp, is a local diffeomorphism on a

neighborhood of 0.
We shall use the following notation.

exp,: T,M - M

(dexp,), :T,(T,M) —>T, M).

xpﬁv(

Where v e T,M and T,(T,M) is a tangent space of T,Mat (p,v). fTwe T (T, M)

then (dexp,) we T, ,(

M).
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4.3 The Jacobi Equation

Let M be a Riemannian manifold and let pe M. Let s — v(s), s € (-€,€), be a

parameterized curve in 7,M such that v(0) = v and v'(0) = w.

Consider the parameterized surface,

fA-M, A={(s);0<t<1, -e<s<e}givenby
ft, s) =exp, tv(s) .

The mapping f is differentiable, and the curves 1 — fi(r) = f(1,5)= exp, 1v(s) are

geodesics, where f(7) (= exp " tv) are functions of 7 (each fixed s).

Consider the curve s — tv(s) of 7,M and the tangent vector to this curve at s =0 is

i(ﬂ’(s))} _=n'(0)=tw (since v/ (0)=w)
ds e

Then we can say thattw € T, (TPM) .Thatis,weT, (T,M). (since v(0) = v)

Therefore (dexp 2 )n (TW) € T, M

xXp, ()

Thatis, (dexp,),(w)eT, M (since Y(7) = exp ,(tv))

¥(r)

Hence (dexp,), (tw) is a vector field along the geodesic Y(r) = exp p(rv), 0<r< 1.
Consider f@,s)=exp  (v(s))

Differentiating both sides with respect to s,

of )
g(f ,8) =(dexp, ) (g(fv(é‘)))

=(dexp,) e (V' (5))

of

Evaluating at s = 0, —
ds

(1.0) = (d exp,) ., (1 (0))
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f (: 0) = (dexp,), (tw) (since v'(0) = wand v(0) =v)

Therefore g—f(r,{)) is a vector field along y(r) and which is the tangent vector to the
5

curve fi(s) at s = 0, where fi(s) (=exp ’ tv(s)) are functions of s (each fixed f).

of

Let g(r,O) =(dexp,), (tw)=J(1). (D

2
It can be shown that J() satisfies the Jacobi equation % +R(Y (1), J@®)Y (t)=0.
t

Since 7y is a geodesic, B_Dtgl =0, forall (z,s), where y(r) = f,(t) =exp, (v).
t
Differentiating with respect to s,
D( D of
—| —=— [=0, 2
as[a: ot J @)

Using the following lemma, we can show that this result can be linked with the
curvature R.

Lemma ([DC 2], page 98)

Lt fi A R>* > Mbea parameterized surface and let (s,7) be the usual coordinates

of R?. Let V = V(s,¢) be a vector field along f. For each (s,),it is possible to

define R f f as follows.
ds ot

9t ds s ot ds ' ot
of

Now we replace V by x
t

BD. BDy o {af o

DD DD _ [af of \of

dt ds ot Os ot ot ds’ ot |ot
DDy _ o o8
ot ds ot (as or ot (using equation (2)).  (3)

Again considering the following lemma ([DC 2] page 68), which says that if M is a
differentiable manifold with a symmetric connection and £ AcR* > M is a
parameterized surface then:

Ddf _Def

ds ot Ot ds
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Substituting into (3),

DD o F\F _,
ot ot s ds ' ot |ot
DDY L FNF o i )
3 Ot s T R{ 3 3 ] e 0, (using (a) of proposition 3.2.3)
: b j ;
Evaluating at (¢,0), F-FR(—Y ®),J ()Y (t)=0. @
Since 'Y(t) = expp(rv)

=exp, (1v(0)) (since v(0) =v)
= f(,0)

Then Y ()= g—{ (2,0)

Equation (4) is called the Jacobi equation and J(z) is an example of a Jacobi field.

4.3.1 Definition

Let v: [0,a]— M be a geodesic in M. A vector field J along 7y is said to be a Jacobi

field if it satisfies the Jacobi equation (4), for all r € [0,a].

4.3.2 Remark

We can show that there are two trivial Jacobi fields along any geodesic which are
Y (1) and 1y (2).
Proof:

Let J(t)=7'(t). Then % = % (Y'(t)) =0. (since yis a geodesic)

Also R(Y' (0, 0))Y () =R(Y' (.Y )Y (1) =0
Hence  Y'(t)satisfies (4). Thereforey'(t) is a Jacobi field. Similarly taking
J(t) =1y (), we can show that #y'(¢) is also a Jacobi field. The first field (Y (¢)) has
zero derivative and is not equal to zero for all 7. The second field (ry' (1)) is zero if
and only if 7 =0 and #y'(¢)# O for all # # 0. Therefore for the second field we cannot

consider the case where Jacobi fields vanish for ¢ # 0. In order to avoid these facts, we

shall consider Jacobi fields along 7y that are normal to ¥’ ().
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That is, J@),Y (1) =0.
We can also show that J(0) = 0.

From equation (1), J () =(d exp, ), w

So J(0)=(dexp,),0=0. (from, proposition 4.2.3,(d exp , ), is the identity map)

4.3.3 Example

Let v: [0,a] — M be a geodesic in M and J(¢) be a Jacobi field along y with J(0) = 0,
(J'(0),Y' (1)) =0. Then (J(),Y (¢)) =0forall t € [0,a].

Proof:

Since (1) is a geodesic, Y"(¢) =0, where Y'(1) = dg(y" (2)).
t

Consider %(J(:),y’ (1) =T @)Y @) +{J ).y (t)), where J’(r)=%.

Then %(J(r),v’ (0)y=(J'(1),Y (@), (since y'(t)=0) (5)

G d .- , o D*J
Similarly, E(J (),Y () ={J"(@),Y (1)) , where J"(¢)= " (6)

Since J(t) is a Jacobi field and using the Jacobi equation,

-

Dy
dt?

+ R(Y (1), J ()Y (t)=0.

Taking the inner product with ¥’ (z),
J7@), Y () + (RCY (1), J@)Y (1),Y' 1)) =0

Using part (c) of proposition 3.2.3 and definition 3.2.1,
(ROY (@), J@)Y @0,Y' @) = RCY' (), Y @)Y (0),J@))=0
Then, (J(2),Y (1)) =0

Using (6), %(]’(r),y" ()= 0= (J'(1),Y (1)) = constant.
But we are given that {(J'(0),Y’(0)) = 0. Therefore {(J'(2),Y' (1)) =0.
From (5), %(1(:),7’ (1)) =0,= (J(),Y (t)) = constant.

But J(0) = 0, so {J(0),Y'(0))=0,

Therefore, (J(t),y (t)) =0, for all t € [0,a]. Hence the result.



4.3.4 Remark
We can also show that a Jacobi field J along the geodesic, 7y, with J(0) = O can be

written as J (1) =(dexp,) ,  (tJ'(0)), for all 7 € [0,a].

7' (0
Proof:
We have J(1)=(d exp, ), (tw) (from (1))

DJ(t) D
Then ———==—((d (tw
y, 7 ((dexp,), (tw))
£ d f li ity of th d
—E;(r( exp,),(w)) (from linearity of the operator dexp )
D
=(dexp,), (w)+ t;((a‘ exp, ), (W)
. B DJ(0) _ . i i ;
Evaluating at t = 0, e (dexp,)o(w) =w (since (dexp, ), is the identity map)
= J'(0)=w.

Also we know () =exp ,(tv) , where 'y" (0) =v. (from remark 4.2.2)

Substituting into (1), J(r)=(dexp,)_, &/ ’(0)) . Hence the result.

7' (0)

4.4 Jacobi Fields on Manifolds of Constant Curvature
4.4.1 Example

Let M be a Riemannian manifold of constant sectional curvature K, and let

v:[0,I1— M be a normalized geodesic on M and J be a Jacobi field along 7y, normal

2

J o ET=0 and

to ¥/ (r) . We can show that the Jacobi equation can be written as 7
1

J(©) = sin(WKw(ONK,  if K>0,
= tw(1), if K=0,
= sinh(W-K)w(t)N-K, ifK <O,
is a solution of the Jacobi equation with initial conditions J(0) = 0, J'(0) = w(0),

where w(?) is a parallel field along y with (Y’ (¢),w(2)) =0 and |w(?)| = 1.
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Proof:
Using lemma 3.3.4 and replacing X by ¥'(¢), Y by J(t), Wby ¥'(¢) and Z by T, where
T is a arbitrary vector field along 7y.

RO @, J)Y 0.T) = K{Y' 0,7 ©OXI@.T) = I @), OXY (0).T)}, where
R is the curvature tensor of M.

(R(Y (,J@) Y (1), T) = K{J(@), T ), since (Y (2),Y' (1)) =1and {J(1),Y (1)) =0
Therefore R(7Y' (1),J(8)) Y (t) = KJ(2), for all vector fields T along ¥.

D*J (1)

dt?

Then from the Jacobi equation, + KJ(t)= 0. Then it is easy to verify that

above given solutions do satisfy this differential equation.

4.5 Conjugate Points
4.5.1 Definition

If v is a geodesic segment joining p, g € M, g is said to be conjugate to p along v if
there exists a Jacobi field J along y vanishing at p and g but not identically zero. The

maximum number of such linearly independent fields is called the multiplicity of the

conjugate point g. We can observe that if g is conjugate to p then p is conjugate to g.

4.5.2 Example

Let S2={xeR";: =1}

In this example we assume the fact that the sectional curvatures of §" are equal to 1.
The Jacobi field on S” given example 4.4.1 is J(7) = sin(f)w(t). Then J(0) = J(1) = 0.
Therefore, along any geodesic y which is a great circle of S”, the antipodal point y(r)

of ¥(0) is conjugate to y(0).

4.5.3 Example

Let b < 0 and let M be a manifold with constant negative sectional curvature equal to

b. Let y:[0,a] > M be a normalized geodesic, and let ve Tm. (M) such that

(v,¥'(a)) =0 and |v| = 1. Since M has negative curvature, y(a) is not conjugate to Y(0)
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(see, example 4.5.5). We can show that the Jacobi field J along Yy determined by
J(0) =0, J(a) = vis given by

J()= Sinhify = B)wis) , where w(z) is the parallel transport of the vector
sinh(av/—b)

w(0) =ﬁ along v. u, =(d expp);;( NI where u, is considered as a vector in
0

T, M by the identification T, oM =T

¥(0) w“(o)

(T, M).

(0)
Proof:
From example 4.4.1, the Jacobi field J, along y satisfying J,(0) =0,

7 (0)=w(0) =12,
o
Using remark 4.3.4 and replacing by a,

Ji(a)=(dexp,) /., (aw(0))

sinh(z4/= b)w(?) A
J-b '

is given by J, (1) =

=(dexp,), (%’[J (since w(0) = ﬁi_\)
=2 €XP,) . o) (o) (8)
| '

But we are given that u, = (d expp);:,{m(v) = (dexp,), (o) =v=1J(a)

al(a)

|”0‘

From (8), J,(a)=

Using the theorem in [PMM], which says that if two points f,and ¢, are not conjugate,

then for arbitrary vectors ve T,

)Mand uel

-~ M , there exists one and only one

Jacobi field, such that J(¢,) =v,J(¢,) = u, we can conclude that

al (1)

|“0|

J, @)= , forall 0<t<a.

Substituting into (7),
sinh(tv/=b)w(t) _ aJ (1)
J-b |

li| sinh (2= B)w(t) a5
av-b

= J@)=
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But we are given that J(a) =v= |J(a)|=|v| =1

Therefore from (9),
|J( )| |u0|smh(a\/_ )]w(a)|
a-b
. @ - ﬁ% (since |w(r)| = 1)

sinh(z+/= b)w(z)
sinh(av/—b)

Substituting into (9), J(@) = . Hence the result.

4.5.4 Definition

The set of (first) conjugate points to the point pe M, for all the geodesics that start at
p, is called the conjugate locus of p and denoted by C(p).

For example, on S", C(p) = {—p}, for all p.

4.5.5 Example

Let M be a Riemannian manifold with non positive sectional curvature. Then the
conjugate locus C(p) is empty, for all p.

Proof:

Assume that there exists a non trivial Jacobi field, J(r), along the geodesic

v:[0,a] > M with Y(0) = p, J(0) = J(a) = 0. Let K(p,0) be the sectional curvature of
M at p with respect to the plane,o, generated by ' (1) and J(7),

(ROY' (1), J ()Y (1), (1))

where K(p,0)= : and (Y (1),J())=0.
W ®) A J@)
But K(p,0) £ 0, s0 (R(Y (1), J ()Y (1), J (1)) <0 (10)
Using the Jacobi equation and taking the inner product with J,
iy dJ O 1) +RY O, IO ©, 1) =0

Therefore & dm) J@)=0  (using (10)) (11)
Consider (21D ypy (D IO Joy+ <m(r) DI,

dt  dt dt



i DJ(1) D*J (1) DJ (r) .

7 a J@) =( 7 J (@) + ’ (using (11))
i DJ (1) S

= dt " dt =0

Take T(t) = (DJ(I) ,J() = T(0)=0, T(a) =0. (since J(0)=J(a)=0)

Hence i) cannot be positive for all 7 € [0,a].
!

It means that 7(¢) = constant for all 7 € [0,a].

DJ(t)

That is, (1) = T(0) = T(a) = 0 =T()=( %

,J(@) =0. (12)

)

Conside

,J (1)) =0 (using (12))

Therefore (J(¢), J(t)) = constant, = |J (r)l2 = constant.

= [J@['=0 (since [J(0)|" =|J(a)'=0)
= J(t) =0, forallte [0,a]
This contradicts the fact that J is a non zero Jacobi field along the geodesic y with

J(0) = J(a) = 0. No non-trivial Jacobi fields. That is, the conjugate locus C(p) is
empty.

4.5.6 Example. Jacobi fields and conjugate points on locally

symmetric spaces

Let v: [0,00) = M be a geodesic in a locally symmetric space M and let v = y'(0) be

its velocity at p = ¥(0). Define a linear transformation K, :7,M — T,M by
K,(x)=R(v,x)v, where xe T .M

Then we can prove that the following properties are true in a locally symmetric space.

(a) K, is self adjoint.
(b) Choosing an orthonormal basis {e,,...,e,} of T,M that diagonalizes K, that is,
K (e)=Le, i=l,...n
and extending the ¢, to fields along y by parallel transport, then

K Yo (e;(2)) = A.e, (1), for all £, where A, does not depend on 7.
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(c) Let J(2) =zx,.(t)ei (t) be a Jacobi field along y. Then the Jacobi equation is

=1

2

) d°x, -
equivalent to the system, r = +A,x, =0, i=1,...n
t

(d) The conjugate points of p along 7y are given by y(mk / \/Z ), where k is a positive

integer and A, is a positive eigenvalue of K, .

Proof:
(a) (K, (x),y)=(R(v,x)v,y), forallx,yeT M.
=(v,x,v,y) (from tensor notation) (13)
and (x,K, () =(x.R(v,y))
=(R(v, y)v,x)
=(v, ¥V, x)

=(0, X, % ¥) (using part(c) of proposition 3.2.3)
(K,(x),y) =(x,K,(y) (using (13))

That is, K is self adjoint.

(b) Let Y (t)=a, (e )+ ... +o,(t)e,(t), where {e (f)....e,(1)} is an

orthonormal basis of T,,,\M .

Taking covariant derivative of ¥/ (¢) in the direction of ¥'(¢),

; |
L AL e e (6 mmnnss +al (e, (t)
dr
Since ¢, (¢)’s are parallel vector fields so Palt) =i 2l h
= o (£)e; (1) + eorevereernn +a’(t)e, (1)=0, (since yis a geodesic)

= a)(t)=0,.,0,(f)=0. (since ¢,(¢)’s are linearly independent )
= o, (t)= constant,...,0, (f) = constant

Take o,(t)=a, .  o,() = o,, where ¢, ,...,0, are constants.
Therefore, 'y’ (1) = o8, (D) F svmsvness +0,e,(t)

Using the definition of K (x)= R(v, x)v, we can write

K, (e,(0) = R(Y' (0,e,t)Y ).
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KY’(!) (e, () = R(Z}O‘,kek (2),e; (0); e, (1)

= > 0,0 R(e, (1),e,(t)e; (1) (using the linearity of R)
k.j

Taking the covariant derivative in the direction of v (@),

DK, (e (1) @& DR(e, (1),¢,(1))e, (1
_._i_‘c;t——_— o & )a't Ll , (since @, ,0;’s are constants)
k.

=0 (since, in a locally symmetric space, from example 3 4.7.2 (a))

Therefore KY, (I)(ei(t)) is a parallel vector field along v. That is, K, (e ()) is the

Y (1)

parallel transport of K, = (e, (0)) along Y.

¥ (0)
= K, (@0)=K,(e) =Ae;, where e, =¢,(0).

Therefore Ky,(o) (e;(0)) = A, (0)e, (0)

That is, Kfm (e,(2)) =A,(t)e,(t) forall t. (since Kfm (e,(1))1s a parallel vector field)

Taking the inner product with e, (),
(K, (e:(0)),€,(0) = (A (D)e, (1), €, (1))
= A, (1){e; (1),e,(1))
=%:(1) (14)
Taking the directional derivative of (14) in the direction of Y' (1),
Y XK, (6, (D), e,0) =Y (R, (1)

= N.(t)=0 (since K, (e, (t)) and e,(t) are parallel fields)

Y
= A, (1) = constant. That is, A, (r) does not depend on 1.

Therefore K s (e, (1)) = A.e (1), for all . Hence the result.

(©) Take J(r)= ix,.(t)ei ) (15)
=]

Taking the covariant derivative in the direction of Y (),

D:; ® _ Z dx‘f)g,, (t) (since ¢, (t)’s are parallel vector fields)
z i=l

Again taking the covariant derivative in the direction of Y (),
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D*J(t) &d’x, (1)
dr? 'é dr? %)

Consider R(Y' (1), J ()Y (t) = R(Y (1), Y. x,(1)e, ()Y (¢) (using (15))

i=l

= Zx (R(Y (t),e,(2))y (t) (from linearity of R)
i=l
_ Zx (K ., (e,(t)) (from the definition of K, )

= i x;(t)\e,(t) (from part (b))

Using the Jacobi equation,

n 2

z ddtfi e (t)+ z"le. (HAe()=0
P

=1

i=l

« dzx,.
Z(FM’“‘ (1) },. (t)=0

9

= dd f" +A,x,(1)=0,i=1,....n (sincee,(t)’s are linearly independent)
r2

2

d’x.
(d) Using —L+A,x,(f) =0,
dr”
The auxiliary equationis r* +A, =0. w

The general solution is x,(1)= A cos(\/l_‘.r) + B sin(\[l_‘.r ), where A and B are
constants, where A, > 0.

When 7 =0, J(0) = 0. Therefore x,(0)=0 =A=0.
x,(t)= Bsin(4/A, 1)
Let y(t,) be the conjugate point of y(0). That is, J(¢,) =0, where 7,#0.
Therefore x,(z,) =0 (using (15))
=5 sin(\/k_,- t,) =0  (from the general solution of the auxiliary equation)

\/l_‘.ro =kn, k=1,...,n, where k# 0, since if k =0 then 7,=0.

km km
Thus,t, =—=. So Y(t,) = ){—] Hence the result.
w/;\; -\DL "
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Chapter 5

Riemannian Submanifolds

5.1 Introduction

In this chapter, we shall consider the immersion of a manifold M into a Riemannian

manifold (ﬁ E ), and examine the structures on M induced from the given structure

on M . This is a natural generalization of the study of surfaces in Euclidean three-
dimensional space with properties induced from the Euclidean metric, which was the
origin of the classical theory of surfaces. We first develop the basic concepts of the
theory of Riemannian submanifolds and then define a tensor field called the second
fundamental form, which measures the way a submanifold curves within the ambient
manifold. We next prove the fundamental relationships between the intrinsic and
extrinsic geometries of a submanifold: The Gauss formula relates the Riemannian
connection on the submanifold to that of the ambient manifold, and the Gauss
equation involving the second fundamental form relates their curvatures. Using these
facts, we focus on the special case of hypersurfaces in R™"', and show how the
second fundamental form is related to the principal curvatures and Gaussian
curvature. Finally we compute the sectional curvatures of our model Riemannian

manifolds- Euclidean spaces, spheres, and hyperbolic spaces.
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5.2 The Second Fundamental Form

5.2.1 Definitions

Suppose (ﬁ ,E} is a Riemannian manifold of dimension m = n + k, M is a manifold
of dimension n, let ff M — M be an immersion. If M is given the induced
Riemannian metric g such that g(u.v), =§(dfp (w).df ,(V)) 4,y for all p € M, and
U,VE TPM , then f is said to be an isometric immersion of M into M.

If in addition f is injective, so that M is an immersed submanifold of M , then M is

said to be a Riemannian submanifold of M . In all of these situations, M is called the

ambient manifold.

At each p € M, the ambient tangent space TPM splits as an orthogonal direct sum
IM=TM®(TM)",

where (T,M )™ is the normal space at p with respect to the inner product Eon TPM.

Ifve Tpﬂ_d_,p € M, we can write, v=v" +v", where v/ € T,M and v" e (T,M)".

v’ and v" are called the tangential and normal components of v respectively.

Consider the following example.

5.2.2 Example
As defined before, assume that M has the metric induced by f. Let pe M and
U < M be a neighborhood of p such that f{U) < M is a submanifold of M. Further
suppose that X, Y and Z are differentiable vector fields on f{U) which can be extended
to differentiable vector fields on an open set of M.

Define (V, Y)(p)=tangential component of (VxY) p),

whereV is the Riemannian connection of M. Then we can prove that V is the

Riemannian connection of M.
Proof:

We know that V is the Riemannian connection on M . Therefore from the Levi-
Civita Theorem it suffices to show that V is symmetric and compatible with the

Riemannian metric induced by f.
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To see that V is symmetric, we use the symmetry of V and the fact that [X.,Y] is

tangent to M.
V,Y-V,X =(VxY)" —(VyX)",at p. (using the given definition)
= (VxY-VyX),at p.
= [X.,Y]" (using the symmetry of V)
= [X.,Y] = V is symmetric.
To prove compatibility, we use the compatibility of V and evaluate at points of M
X(Y.Z)=(VxY,2)+(¥, VxZ)
=((Vx¥)", 2)+(¥, (VxZ)"),at p, where ¥, Ze T, M.
=(V,Y.,2)+(Y, V,Z) (using the given definition)

Therefore V is compatible. Hence V is the Riemannian connection on M.

5.2.3 Remark

Our first main task is to compare the Riemannian connection of M with that of M .

The starting point for doing so is the orthogonal decomposition of sections of the

ambient tangent bundle over M, HT:»M , into tangential and orthogonal components
peM

as above.

If X, Y are vector fields in X(M ), we can extend them to vector fields on M , apply

the ambient covariant derivative operator V, and then decompose at points of M to
get
V¥ =(Va¥) +(VaD)". 1)

Next we consider the following definition.

5.2.4 Definition

The second fundamental tensor form B is a bilinear symmetric

mapping B :TPM xTPM — (1",,M’)l defined by B(X,Y)=VxY-V,Y, (2)
where (T,M )* is the normal bundle of M in M and V and V are the Riemannian

connections of M and M respectively.
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Using equations (1), (2) and the fact that (ﬁx Y) = Vo ts
we can also conclude that B(X.Y)= (ﬁxY)N - N(E)

That is, B(X,Y) is a vector field on M normal to M. It is easy to prove that B(X,Y)

does not depend on the extensions X, Y. Therefore we can use the same letter to
denote both a vector field or function on M and its extension to M. It is also easy to

show that B(X,Y) is bilinear and symmetric. This formula, which relates the

Riemannian connection on the submanifold to that of the ambient manifold is called

the Gauss formula. Because Gauss first obtained this formula for surfaces embedded

in Euclidean space :t*. Now we are in a position to define the second quadratic form.

5.2.5 Definition
Let pe M and ne (T,M)". The mapping H,: T,M xT,M — R given by

H, (x,y)={(B(x,y)M), x,y€ I,M, is a symmetric bilinear form.
(since B(x,y) is symmetric and bilinear.) The quadratic form [I, (x)=H, (x,x) is
called the second fundamental form of f at p along the normal vector 1, where fis an

isometric immersion of M intoM. We can show that the bilinear mapping H, is
associated to a linear self-adjoint operator S, :7,M —T,M by

(8, (x), ) = H, (x,y) =(B(x.y),n)-
Since (S, (x),y) =(B(x,y),n) =(B(y,x),m) =(S, (¥),x).

Considering the following example, we can show that if S, is a tensor of order 2 and

symmetric then the tensor V S is symmetric, for all ve R(M).

5.2.6 Example

——m=n+k

Letf: M"> M be an isometric immersion and let S, : TM — TM be the

operator associated with the second fundamental form of f along the normal field 7.

Consider S, as a tensor of order 2 given by S, (X.Y)=(S, (X),Y),
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where X, Y € R(M ). We can observe that if the operator S, 18 self-adjoint then the
tensor Sn 1s symmetric, that is, Sq(X,Y) = Sn (Y,X), and the tensor \?’L.S1r1 1S

symmetric, for all ve X(M).

Proof:

Since S, is self-adjoint, (S, (X),Y) =(S, (¥),X) 3)
S,(X.Y)=§,(Y,X). Thatis, § is symmetric.

Differentiating (3) in the direction of v,

(V (S, (XN.T)+(5,(X),V.7) =(V XS, MN+(X, V.5, &

S, 1is atensor of order 2. Therefore the covariant differential V.S A of § . 1s a tensor of

order 3.

VS, XYv)=v(§, (X, 1)- S,(V,X,¥)-§,(X, V.Y) (from definition 3.4.4)
=v(S,(X),Y) —=(§,(V,X),Y)—(S,(X),V.Y ). (property of S, )

Since V is the Riemannian connection on M,
VS, (X.Yv) = (V, (S, (X)), Y) +(S,(X),V,¥) (S, (V,X ), Y) ~(S,(),V.¥)
= (V, (8, (X),Y) -(§5,(V.X), Y)
= (V,(S,(X)),Y) =(V,X,S (¥)) (sinceS, is self-adjoint )
But VS, (X.Y,y)= (V,S,)(X.Y) (from definition 3.4.4)
(V.S NX,Y) =LV, (§5,(X)),Y) —(V, X5 (Y))
Similarly (V,S,)¥.X)=(V,(S,(¥),X) (V. Y,5, (X)).

Subtracting these two equations and substituting into (4),
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(V.S)X.Y) = (V,§)¥.X)
= V.S, is symmetric.

The following proposition shows that the linear operator associated with the second
fundamental form can be used to evaluate covariant derivatives of normal vector

fields.

5.2.7 Proposition

Letpe M,xe T ,Mandn € (TPM)*. Let N be a local extension of n normal to M.

Then S, (x) = —(V.m)"

Proof: Let ye T M and X, Y be local extensions of x, y respectively, which are

tangent to M.

We have (S, (x),y) =(B(x,y),m) (from definition 5.2.5)
=(B(X.Y),N)(p)
= (va -V, ,Y,N)(p) (usingthe Gauss formula)
= (va,N)(p) (sinceV,Y e R(M)isnormalto N )
We know that (N,Y)=0, :

Taking derivative in the direction of X,

X{N.Y)=0,
(VxN,Y)+(VxY,N)=0, . (since V is the Riemannian connection on M )
Therefore (S, (x),y)=— (VxN,Y)(p)
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(S, (%), ==V, 5 =~T.n)7,y) (since (V.m)*,y)=0)

This is true forallye T,M . So S, (x) = - V)’

5.2.8 Hypersurfaces in Euclidean Space

Now we specialize the preceding considerations to the case in which the codimension
of the immersion is one. That is, f: M " — _ATH; AAM) cM iscalleda hypersurface
in M". At any point p € M, we have seen that the shape operator S, is a self-
adjoint linear transformation on the tangent space 7,M . From elementary linear
algebra, any such operator has real eigenvalues, A,,...,A, , and there is an orthonormal
basis of eigenvectors {e,,....,e,}of T,M so that S,(e)=Mhe, i =1,.,n In this
situation, at each point of M there are exactly two unit normal vectors. If M is
orientable, we can use an orientation to pick out a unique normal. Let n € (T, M
[n| = 1. Then {e,,....e,,n} is a basis for Tpﬁ. The eigenvalues of §, are called the

principal curvatures of M at p, and the corresponding unit eigenvectors are called the

principal directions. Det(S,)= A,....A, is called the Gauss Kronecker curvature of

Mand (A, +...+A,)/n is called the mean curvature of M.

Next we are going to define a new operator, Hess f, acting on a tangent space of the

hypersurface.

5.2.9 Example

Lat £ M™ R be a differentiable function. Define the Hessian, Hess f, of f at
PE M as the linear operator Hess f : TPH—>T pH, (Hess fiY = Vv (grad f),

Yedi, M, where V is the Riemannian connection of M. Letabea regular value of
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fand let M" cM"™ be the hypersurface inM defined by M ={pe M:f(p)=a}.

Then we can prove that the following properties.
(a) The Laplacian Afis given by
Af = trace(Hess f)
(b) If X, Y € R(M ), then
((Hess )Y, X) = (Y, (Hess /)X)
(¢) The mean curvature H of M cM is given by
nH = —div(grad f/| grad f]).
Proof:

(a) We know from example 2.4.5, Af =div grad f, fe D(ﬁ) ., where grad f is a

vector field on M and D(EJ—) is the set of real valued functions on M.
Define the divergence of grad f as a function div grad f : M >R given by
div grad f(p) = trace of the linear mapping ¥Y(p) — Vy (grad f)(p)

But we are given that, Hess f: Y(p) — Vv (grad f)(p)

Therefore div grad f = trace(Hess f) = Af= trace(Hess f).
(b) Using the gradient of f as a vector field grad f on M defined by
(gradf, X) = df(X) = X(f) , where X € TPE

Taking the directional derivative in the direction of ¥,

Y{grad f, X ) = YX(f)

(Vy(gradf), X ) +(gradf, V+X ) = (YX)()
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Interchanging X and Y,
(Vx (gradf), Y) +{(gradf, Vx¥) = (XV)(f)
Subtracting these two equations,
(Vv(gradf),X) =(Vx (grad ), Y) +{gradf, V+X =Vx¥) = (X)(f) = (XY)(f)
(Vy(gradf),X) —(Vx (gradf). Y) +{gradf, [Y.X])=[Y.X1()  (5)
And also [Y, X 1€ X(M), then (gradf, [Y,X]) = [Y,X](f)
Substituting into (5),
(Vy(gradf),X )= (Vx (gradf), ¥)
{(Hess )Y, X) = (Y, (Hess )X) = Hess fis self-adjoint.

We can also show that Hess f determines a symmetric bilinear form on 7, M, pE M
givenby (Hess f)(X,Y)=((Hessf)X,Y), whereX,Ye T, M.

={(Hess )Y, X) (since Hess fis self-adjoint )

= (Hess f)(Y,X)
Therefore Hess fis symmetric.

Consider (Hess f)(aX, +bX,,Y,) ={((Hess f)(aX, +bX,).Y,), where a, b € D(E/x‘_)

and X,,X,,Y,eT,M.
We know that (Hess f)(aX, +bX,) = Vax,+tx, (grad f)

= aﬁx, (grad f) + bﬁx2 (grad f)

=a(Hess f) X,+ b(Hess f) X,
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Therefore, (Hess f)(aX, +bX,.Y,) ={a(Hess ) X,+ b(Hess ) X,.Y,)
=a({(Hess ) X,,Y,)+ b {(Hess ) X,.Y)
= a(Hess f)( X,,Y,) + b(Hess f)( X,.Y})
Similarly, (Hessf)(X,,aY, +bY,)=a(Hessf)( X,,Y,)+b(Hess f)( X,,Y,)
Therefore Hess fis a symmetric bilinear form on Tpﬂ.

(c) Take an orthonormal frame E,,....E,,E,, = grad f /|grad f] = 1 in a neighborhood

n+l =

of pe Min M , where lgrad fi # 0.
Since |grad fI* = (grad f(p), grad f(p)) = df(grad f(p)), p eM.
But f(p) = a and a is a regular value of f, therefore df,(grad f(p)) # 0.

Consider S,: T,M — T,M as before. .

The mean curvature H of M = lz‘(Sn(Ei ) E;)
n g

From proposition 5.2.7, (S, (E,).E;)= - (VEN.E,)

Therefore nH = —Z(V_E,-T]:E;)

=1
We have (n.n) =1

Taking the covariant derivative in the direction of E,,,,
E.Mn =0 =(Ve,nm=0

Then nH= =Y (Ven,E)— (V.1

i=1
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n+l
nH ==Y (Ven,E,) (sincen= E,;)

i=]

= —div-n = —div.- (grad fl|grad f)).

A hypersurface with mean curvature identically equal to zero is called

minimal.

Using the following theorem, we are now going to generalize the famous Theorem

Egregium of Gauss, which says that the Gaussian curvature of M’ < R’is an

invariant under isometries.

5.2.10 Theorem

Let p € M and let x, y be orthonormal vectors in 7,M . That sxyelMc Tpﬂ.

Let K(x, v) and K(x, v) be the sectional curvatures of M and }E, respectively, in the

plane generated by x and y. Then
— 2
K(x,y) —K(x,y) = (B(x,x),B(y,y)) —|B(x,y)

Proof:

Let X, Y be local extensions of x and y respectively which are tangent to M.
K(x, ) = (R(X,¥)X,Y)(p) (from proposition 3.3.1 and |xa y|" =1)

And  K(x,y)= (R(X,Y)X,Y)(p)

SoK(x,y) —K(x,y) =(V,V, X -V, V,X -(VyVxX-VxVyX), Y )p)+

(V[X.Y}X —leﬂX > Y)(P)
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VienX = (VanX) + VunX)"  (since VinX € T,M)

VienX =V nX =(VienX)" (since (Ve X) = Viy X))
Taking the inner product with Y at p,
(VixnX =V X, V) ={(VunX)" , 1=0
Therefore, K(x, y)—f(x,y) = VeV e X =N N X -V VX 4 ViVeX, Y )(p).
Let E,.....E, be the local orthonormal fields which are normal to M,

where k = dim M — dim M.
k
B(X.Y)=Y (B(X.Y),E)E, (since B(X,Y) is normal to M)
i=1

(B(X.,Y), E)=Hg(X.Y) (using the definition of second fundamental form)

Write HE’(X,Y):HI(X,Y)

k
So BIX.Y¥)y=) H(X.FIE

i=]

Using the Gauss formula and replacing Y by X,

B(X,X)=VxX-V,X
- £
Therefore VxX =) H, (X,X)E +V,X (6)

Differentiating (6) in the direction of Y,
i k —_ =
ViVxX =) {H (X, X)VyE, +Y(H,(X,X)E,}+VyV X ,atp
i=1

Taking the inner product with Y,
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i k e -
(VeViX.Y)=Y H(X,XXVrE, ) +{ViV X,Y), atp (7

=1
Since (E, .Y)=0, atp
Taking the covariant derivative in the direction of Y,
(VyY,E)+(Y,.VyE)=0
(B(Y.)+V Y E,) +(Yﬁy E)=0  (using the Gauss formula )
(B(Y.Y),E)+(Y, VyE,)=0 (since V,Y € R(M), then (V,Y, E,)=0)
Therefore (—V_yE,.,Y) == H . (Y,Y)
Also taking the Gauss formula and replacing X by Yand Y by VX,
BV VX )y= ViV, X -V, V, X

Taking the inner product with Y,

B,V X)Y)p)=(VyV, X =V, V, X.Y)(p)
Then, (VyV,X -V, V,X,Y)p)=0  (since B(Y,V, X ) is normal to Y at p)

Substituting above two results into (7),

(VyVxX.Y)=-Y H.(X,X)H,(Y.Y)+(V,V, X ,Y), atp

=l

— R
Similarly, (VxVyX,Y)=-Y H(X,Y)H,(X,Y)+{V,V,X Y), atp

i=1
— n k
Therefore K(x,y)- K(x,y) = 3 H,(X,X)H,(Y.Y) - Y H,(X.Y)H (X.Y),atp

i=1 =1

= (B(X,X),B(Y.Y))(p)—(B(X.Y),B(X,Y))(p)
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K(x,y)- K(x,y) = {B(x,x), B(y,y)) - {B(x,y), B(x,y))

= (B(x,x).B(y.y)) ~|B(x.y)| (8)

5.2.11 Remark

In the case of a hypersurface f: M " — ﬁm, this theorem leads to a very important

expression. Letpe Mandne (T,M)".
8, (&) =Nggi =1,
(S,(e).e;)= H,(e.e;) = (Ble,e;),M), where ¢,.e, e T, M .
Then (Me.e;) = H (e,e;)= (Ble.e;).m
Therefore, B(e;.e;)=(Ae;.e; )M
=0, if i#j

=AM, if i=j

Then from (8), replace x by e;and yby e, i #j

K(e,.e;) —._K-(et.,ej)=(B(e£.,ej),B(ej,ej)) —|B(€;,€j)|2

If M =M ?, a Riemannian manifold with dimension two, and M = ®°,
then K(e;,e;)=AA; (sincein Euclidean space K =0) 9)

Hence the equation (9) tells that the Gaussian curvature coincides with the sectional

curvature of the surface and implies the famous theorem Egregium of Gauss.
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5.3 The Fundamental Equations

The Gauss, Ricci and Codazzi’s equations are the fundamental equations of the
isometric immersion. The Gauss equation relates the curvature tensors of the tangent
bundle with the second fundamental form of the immersion. Theorem 5.2.10 is a
special case of the Gauss equation. The Ricci equation relates the curvature tensors of
the normal bundle with the second fundamental form of the immersion. The codazzi’s
equation relates the curvature tensor of the vector bundle with the covariant

derivative of the second fundamental form considered as a tensor.

5.3.1 Normal connection and normal curvature of the normal bundle

m=n+

- . . . - ) k
Given an isometric immersion f: M" — M , we have at each p € M,

TPM=(TIJM)T+(TPM)'*, we denote by (T,M)" the normal

space of M in M at p. That is, any vector & € (1'"PM)L is normal to M at p.

The set TM * = H(TPM )* has the structure of a vector bundle over M and is called

peM
the normal bundle of M in M . From now on we shall use Latin letters X ¥ F. e1c. 1o

denote differentiable vector fields tangent to M and Greek letters &, m, C, etc. to

denote differentiable vector fields normal to M.

Given X and 1, v xT can be written as,
Vin=(Vxn) +Vxn)"
Then (ﬁxn)N= vxn + §,(X) (since (ﬁxn)r= - §,(X), from proposition 5.2.7)

Denote (Vxm)" by Vin, and V* is called the normal connection of the

immersion.

Therefore ~ Vin =Vin+ S, (X) (10)

Vin = =S8, (X)+ V3,
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where — S (X) and Vin are the tangential and normal components respectively.

This is called the equation of Weingarten, after the mathematician who first obtained

the equation for surfaces in Euclidean space.

5.3.2 Remark

It is easy to verify that the normal connection V= has all of the properties of a

connection. Thatis, (a) V4. ,n=/Vin+gVin
(b) Vi (€+m)= VyxE+ Vyn
(c) Vi () =f Vyn+X(Hn, where f, g € D(M)
Proof:
(a) We know that V3, .n = V jiaaiM +8, (X +gY) (from (10))
But S, (X +g¥)=- (—V-,x+gyn)T (from proposition 5.2.7)

= —(fVxn+gVyn)"  (from (i) of definition 2.2.1)

—{f(Vxn)"+g(Vim)")

= £S,(X)+gS,(Y)
Then Vi =fVan+gVim +£5,(X)+gS, ()
=AVxn+S,(X)) +g(Vin+S, (1))

=fVyn +gVyn (using (8))

Hence the result.
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(b)Using (8), we can write V% (E+m) =Vx(E+m) + S e (X)
But S, (X)=~(Vx(E+m)
=-(Vx&+Vxn)

=—{(Vx&)" +(Vxn)}

= S XY 8, (X)
So VyE+m=Vx(E+m+5.(X)+S,(X)
=VyE+Vyn+S.(X)+S,(X) (from (ii) of definition 2,2.1)
=ViE+5.(X)+ Van+ S, (X)

=V3&+ Vin (using (8))
Hence the result.

(c) We know that V% () =Vx(fm)+5,(X) (from(8))
But S, (X) =—(Vx(f)" (using proposition 5.2.7)
=—(fVxn+X(Hn)" (from (iii) of definition 2.2.1)
= 5. (X) (since ()" = 0, M is normal to M)
Therefore V% (/) =fVan+X({m +f£S,(X)
=AVxn+5,(X)} +X(M

=fVin+X@fn.

Hence the result.
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As in the case of the tangent bundle, we can introduce the curvature of the normal

bundle which is called the normal curvature, R*, of the immersion and is defined by
RY (X, YM=V;Vin-ViVin+ Vi, m.

Using normal curvature, we will prove the Gauss equation.

5.3.3 Gauss Equation
(R(X,Y)Z,T) = (R(X,Y)Z,T) —(B(Y.T),B(X,Z)) +(B(X,T),B(Y,2)) .
Proof:
R(X.,Y)Z=VyVxZ -VxVyZ+ VixnZ, (using the definition of curvature)
From Gauss formula B(X,Z)=VxZ-V,Z
So VxZ=B(X,Z)+V,Z
Similarly, VyZ=B(Y,Z)+V,Z
VinZ=B((X,Y,Z)+V 4,2
So R(X.Y)Z=Vy(B(X,Z)+V,Z) -Vx(BY,Z)+V,Z)+B((X,Y.Z)+V y ,,Z
RXNZ=Vy(B(X,Z)+ VyV,Z -Vx(B(XY,Z)) -VxV,Z+ B(X,Y1,Z) +
VauZ (I
Using Gauss formula, B(Y,V,Z) =V,V,Z-V,V,Z
So VyV,Z=B(Y,V,Z)+V,V,Z

Similarly VxV,Z=BX,V,Z)+V,V,Z
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And Vr (B(X,2)=(Vr(B(X,Z))" + (Vv (B(X,Z))
Since B(X,Z) is normal to M, then using proposition 5.2.7,
Vy(B(X,Z)=V3(B(X,Z)) = Spx 2 (¥)
Similarly Vx(BY,Z)=Vi(B(Y,Z)) =Sz (X)
Substituting all these results into (11),
E(X,Y)Z =V (B(X,2)) - Suin ey XY+ BINV L)+ V, V,Z - Vi (BY,2)) +
Ssz(X)=BX,V,Z)-V,V,Z+ BUX,Y1,Z)+ Vy y,Z
Since R(X,Y)Z=V,V,Z -V,V,Z+Vy ,Z
E(X,Y)Z =R(X,Y)Z+V;(B(X,Z)) -V (BY,Z)) = SpxzX) + Spiy.z)(X)+
B(Y,V,Z)- BX,V,Z)+ B([X,Y],Z)
Taking the inner product with T, since the normal terms vanish, we get
(RXVZ.T)=(RX.NIZ.T) ~(Spx0)¥) . T) +{S505(X).T)  (12)
But we have (S, (X),Y)=(B(X,Y),n) (from definition 5.2.5)
Replacing n by B(X,Z), Xby Yand Y by T,
(Spxz(¥).T)=(B(Y.T),B(X,Z))
Similarly (S 2 (X).T)=(B(X,T),B(Y,Z))

Substituting these two results into (12),
(R(X,Y)Z,T) =(R(X,Y)Z,T) —=(B(Y.T),B(X,Z)) +(B(X.T),B(Y,Z)).

Hence the result.
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5.3.4 Ricci Equation
(REYME - (R (X, Y)M.E) = (5,5, 1X. ),
where [S,,S;] denotes the operator §, o §; —S; S, .

Proof:

Using the definition of curvature tensor,

REYM=VyVin =VxVim+ Vixrm (13)
From equation (10), ﬁxn=—SH(X)+Vj;n
Taking the covariant derivative in the direction of Y,

ViVin = =VyS, (X)+VyVin (14)

VyVin= (V3 V4 R +(VyVim)? (since VyV+* iNeE R(M))
Using proposition 5.2.7, since V31 is normal to M

VyVin = (¥)+ VyVin

(V‘
Then from (14),

ViVin = =ViS, (X) =S . (¥)+ VyVin (15)

(Vxn)
Using the Gauss formula and replacing X by ¥ and Y by §,(X), since § (X) 1s
tangent to M.

B(Y,S,(X))= V¢S, (X) - VS, (X)
So  ViS,(X) =B(,5,(X))+ VS, (X)
Substituting into (15),

VyVn =—B(,5,(X) =V,8,(X) =S . () + V;Vin

(Vyn)

Similarly, Vx Vi = = B(X,S, () =V 5, (¥) =S 5. (X) + VyVim

Also we know E[x‘nﬂ is tangent to M.
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Then it can be written as, VxyN=(Vixym)™+ (Vixrm)?.
Using proposition 5.2.7 and the notation of the normal connection

Vixrm ==S$,([X,¥]) + Vi ,n
Substituting these three result into equation (13),

R(X.Y)M=-B(,S,(X))-V,S5,(X) =S (V+V;Vin +BX,S,(¥))+

(Vim)

VS, (M) +S }(X)—Vj(V#n S ([X T} + VIJ“X.,,]T]

(Vi
Using the definition of the normal curvature,

= R (XYM =V, 8,(X) + VS, (1) =S g, (N)+ S (X) =S, (X,¥D)

(Vim
+B(X, S, (Y))- B(Y,S,(X))

Taking the inner product with &, where & is normal to M.

(RX,Y)M, &) =(R*(X,Y)M.E) +(BX,S,(¥)).E) —(B(Y.S,(X))E (16)

SinceV,S,(X),V, 8, (¥).S

5 (¥),S s, (X)and S, ([X,Y]) are tangent to M.

(Vi (V¥

Therefore taking the inner product with &, all terms vanish.

Also we know that
(BX.Y)M) = (S, (X).Y) (17)
Replacing Y by S, (¥)and 1 by &,
(B(X.5,(Y)), &) =(S5,(X),S,(¥))
=(S,(8:(X)).Y) (sinceS, is self-adjoint)
(B(Y,S, (X)), &) =(B(S,(X).1).& (since B is symmetric)
= (8,(5,(X),Y)  (from (17))
Then substituting into (16),
(RX,YM, &) = (R*(X,YM.E) +(S, (S (X)).Y)—(S.(5,(X)).1)
= (R(X,Y)N.E) +(S,(S:(X)) - (5, (X)).1)
= (R*(X,Y)N.E) +((8, 08, — S, oS )X.Y)
= (R*(X,Y)M ) +([[S,,5.1X,¥).

Hence the result
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5.3.5 Remark
I {R(X ,Y)n,,§ ) = 0, we say that the normal bundle of the immersion is flar.

Assume that the ambient spaceﬁ has constant sectional curvature equal to K. Then

using lemma 3.3.4,

(RX.YM, &) = K, {{X . nX¥.8) —(¥,nXX,8)}
=0 (since X and Y are orthogonal to 1 and &)

Then from Ricci equation, {(R*(X,Y)n.§ ) =—([S,,5:1X,Y ). It follows that if the

normal bundle is flat then ] [Sn ,Sé]X =0, forallmn, X

5.3.6 Remark

The second fundamental form of the immersion can be considered as a tensor of order

three defined by
B: RIM)XR(M)XRM)* - R

B(X,Yn) = (B(X,Y),n), where X(M )" denotes the space of differentiable

vector fields normal to M.

The covariant derivative of B relative to Z is a tensor of order 3 defined in the same

way as definition 3.4.4.
(V2B)(X,Y,n) = Z(BX.,YM) - B(V, XY, n) — B(X,V,Y,n) - B(X.Y,V2m) (18(2))
Consider B(X,Y,Vzn) =(B(X,Y),Vzn)

=(B(X.Y), (Vzn)" + (V2m)™)

=(B(X,Y),(V2n)") (since B(X,Y) is normal to M)

=(B(X.Y), Vin)=B(X.Y,Vin) (since (V.n)" = Vin)
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Then from (18(a)),

(V2B)(X,Y,m) = Z(BX.Ym)-B(V,X.Y.,1) -B(X.V,Y.n) - B(X.Y,V;n) (18(b)

5.3.7 Codazzi’s Equation
(RX.VZn) = (VyBXX,Z,m) —(VxB)Y,Z,n).

Proof:

Using (18(b)) and replacing Zby X, X by Y and Y by Z,
(VxB)(Y.Z,n)=X(B(Y.Z,n) -B(V,Y,Zn) -B(Y,V,Zn) -B¥,Z,Vyn) (19)
Let X(B(Y,Z,n)=X(B(Y,Z),n)

X(B(Y,ZM)=(V3B(Y,Z),m)+(B(Y,Z),Vyn) (B(Y,Z) and n are normal to M).

Therefore from equation (19),

(VxB)Y,Z,n) = (ViB(Y,2),m) —B(V,Y,Z,M) -B(Y,V,Z,n) (20)
Similarly,
(VyBXX,Z,m) = (ViB(X.Z)n) -B(V,X,Zn) -B(X,V,Z,n) (21)

Consider the expression in the proof of the Gauss equation,
R(X,Y)Z=R(X,Y)Z+V:(B(X,Z)) -V (B(Y,2)) ~Spxzy(Y) + Spp2,(X)

+ B(Y,V,Z2)-B(X,V,Z2)+ B([X,Y],Z)
Taking an inner product with 1,
(R(X,V)Z M) =(V;(BX,Z) M) = (V3 (BA.Z) M) +(BY.,VZ)M) -

(B(X,V,Z) m) +(B(X.Y].Z)n)
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Since RX.Y)Z, Syx 2, (Y) . Spyz (X)are tangent to M and [X,Y] =V, Y -V X
(RX.VZn)y=(V;(B(X.Z)).n) -B(V,X.Z,n) -B(X.V,Z"n)-
(Vi (B(¥.Z) M) —B(V,Y.Z,m) -B(Y.V,Z.n)}
Using equations (20) and (21),
(RX.VZn)= (VyB)XX.ZM) - (VxB)Y.Z.M).

Hence the result.

5.3.8 Remark

If the ambient space has constant sectional curvature, K, then (ﬁ(X ,Y)Z,n) is equal

to zero. Since using lemma 3.3.4,
(RIX,Y)ZM) = Ko{(X,.ZXY ) =Y, ZX X )}
=0 (sincem is normal to X and Y)
(R(X,Y)Z,n)=0

Then from Codazzi’s equation, (vyB)(X,Z,n) - (GxB)(Y,Z,n) =40.

5.3.9 Remark

In the case of hypersurface, that is, the co-dimension of the immersion is one, the

normal component of V21 is zero. Therefore Vin =0.

Since (n,n) =1

Differentiating above inner product in the direction of Z,
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(Van,m) =0
(V)T +(Vz)¥ ,m) =0
(V2m)",my=0 (since (Vz)",n) =0)
This implies that (V—zn)N =0 (since (621‘])” does not belong to tangent space)
Then from equation (19),
(VxB)Y,Z,n) =X(B(Y.Z,n)) —B(V,Y,Z,M) - B(Y,V,Z,n)
= X(B(Y.Z),m) = B(V,Y,Z,n) - B(Y,V,Z,m) (22)
But (B(Y,Z)n)=(S,(Y).Z) (from definition 5.2.5) (23)
Taking the covariant derivative in the direction of X,
X(B(Y.2),n) =X(S,(Y).2)
=(Vx (§,(¥)).Z)) +(S,(¥),V42Z)
Using equation (23) and replacing Y byV , Y,
(B(V,Y.Z)m)=(S5,(V4Y),Z) (sinceV,Y is tangent to M)
Again using equation (23) and replacing Zby V , Z,
(BY,V4Z), m)=(S,(¥),V,Z) (sinceV , Z is tangent to M)
Substituting these results into equation (22),
(VxBYY,Z,m) = (V (S, (). Z) (5, (V) .2)

Similarly, (VyB)XX,Z,1)= (Vy(5,(X)N,Z) -(5,(V,X).D)
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If the ambient space has constant sectional curvature then from remark 5.3.8,
(VxB)(Y.Z.M) = (VyB)(X,Z.n)
Then  (V (S, (¥)).Z) —(S,(V4¥).2) =(V, (S, (X)), Z)) —(S,(V,X).2)
S0 (Vy (S, (WN.Z) =V, (Sy(X).Z)=(S,(V,¥).2) —(S,(V,X).2)
(V (8,() =V, (5, (X)), Z)=(5,(V,¥) =5,(V,X).2)
(Vy (8,() =V, (S, (X)).Z)=(S,(V,¥-V,X).2)
=(S,([X.Y]).2)
Ve (§,(¥) =V, (S, (X)= S,([X.Y]), forallZeR(M).

It is important to note that, in the case of the ambient space having constant sectional
curvature, the Gauss, Codazzi and Ricci equations generalize the local theory of

surfaces.

5.3.10 Connections of conformal metrics on a manifold

Let M be a differentiable manifold. Two Riemannian metrics g and E on M are
conformal if there exists a positive function p: M — R such that E(X,Y) =pgX.Y),

for all X, Y € X(M). Let V be the Riemannian connection of g.

If VxY =V, Y+ SX.Y),

where S(X.Y) = % {(X(WY+Y (W)X — g(X,Y)grad } and grad | is calculated in the
T}

metric g, that is, X() = g(X, grad|l). then we can show that V is the Riemannian

connection of E
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Proof. We are given that VxY = V Y+ S(X,Y)
Similarly VyX =V, X +S(YX)
Subtracting these two equations,
VxY-VyX =V,Y -V,X (since S(X,Y) = S(Y.X))
=X, Y] (since V is symmetric)
Therefore V is symmetric.
Next we are going to show that V is compatible with E
Thatis, X(g(¥.2)=g(VxY,2)+g(¥,VxZ) (24)
Consider the left-hand side of the equation (24),
X(E (Y,2)) = X(ug(Y,Z)) (from the definition of the conformal metrics)
=X(n)gY.2) + nX(g(¥.2))

=X(n)g(Y.2) + p{g(VyY ,2) +g(Y,V,Z))

And also taking the right hand side of the equation (24),

2(VxY,2)+g (V,VxZ) = ng(Vx¥,2) + ngt,VsZ)
= pg(VyY+SX.Y), 2) + ug(Y,Vy Z+5(X.2))
= pg(VyY.2)+ pg(SX.0), 2) + pg(¥, Vo, Z) +

ng(Y, S(X.2))

Comparing these results with equation (24), we can conclude that to prove (24) we

need to show that

X(n)g(¥,2) = p{g(S(X.Y), Z) + g(¥, S(X.Z)) }
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We are given that
1
SX.Y) ~an (XY +Y (W)X —g(X.Y)grad | }
Taking the inner product with Z,

g(S(X.Y) .Z) =i {(X(n)g(Y,2) + Y(n)g(X.Z) - g(X.Y)g(grad , Z)}

Similarly g(S(X,2),Y) =_21LI {(X(n)g(Z.Y) + Z()g(X.Y) - g(X.Z)g(grad . .Y)}

Take Y(u) = g(grad.,Y), and Z(u) = g(grad,2)}

So u{g(S(X,Y), 2) + g(Y, S(X,Z2))}= X(n)g(Y.Z). Hence the result. Vis compatible.

5.3.11 Umbilic Hypersurface

Let (HM , ) be a manifold with a Riemannian metric g and let V be its Riemannian

connection on M .We say an immersion f: M" — M s (totally) umbilic if for all

pe M, the second fundamental form B of f at p satisfies (B(X,Y)n) = A(p)}X.Y),

where A(p) € R, for all X, ¥ € X(M) and for a given unit field | normal to fiM);
here we are using {,) to denote the metric g on M and the metric induced by f on

—n+l "
M.If M has constant sectional curvature then we can show that A does not depend

on p, that is, A is constant.

Proof :

Let X,Y, Te R(M)

Decomposing the tangent space of M at p,

T,M =T,M + (T,M)*, wherene (I,M)*cT,M so X,Y,T,ne T,M
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Consider v,n=V,n) +V, " (since V,me TPIJ-)
Ven=(V )" (since (V,m)" = 0 in the hypersurface)
Then using proposition 5.2.7, S (X)= -V n
So  (BE.Y).M)=—(V,n.9

And we are given that (B(X,Y), ) = A(p)}X.Y)

Therefore from these two equations,
—(Vn.) = Ap)X.Y) (25)
Similarly, (V1) = ApXT.Y)
Differentiating equation (25) in the direction of 7,
—T(Vyn.Y) = T(Ap)XX.Y))
(V. V. N=(V,n,V,Y) = T(Ap)) X.V) + Ap) (VX .T) + ApX X, V,Y) (26)
Again taking equation (25) and replacing Yby V.Y e T M,
—(Vyn.V;Y) = ApX X, V1)

Therefore from equation (26),

—(V;Vn.Y) = T(AUp)XX.Y) + Ap) V. X .Y)
Similarly —(V4 V. ,Y) =X(AP)XT.Y) + ApXV,T.Y)
Subtracting these two equations,

(VoV =V, V. Y) = X(ApXTY) -TAPXX, Y) + ApXV T -V, X .1)Y)

= X(AUp)XT.Y) - TAPKX.Y) + ApXIX,T1.Y) (27)
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But [X,T] € T,M , then using (25) and replacing X by [X,T],

—(Vixrn.Y) = ApXX.TL.Y)
Then from (27),
(V.V,n=-V,Vn+V N7 =XAUp)KTY) - T(Ap)XX.Y)
(R(T.XM.,Y ) = (X(Ap)T — T(A(p))X.,Y) (from the definition of curvature tensor)

If M ™" has constant sectional curvature, K, then

(R(T.XM.Y) =K, {T.nXX.Y) — (X,nXT.Y)} (from lemma3.3.4)
=0 (since (T,m)=0and (X,n)=0)
That is, (X(A(p)T - T(A(p))X.Y)=0
That is, X(A(p))T — T(A(p))X = 0, where Y is an arbitrary vector.

(since X(Ap)T-T(Up))X € T,N and Ye T,N)

Because T and X can be chosen to be linearly independent, this implies that X(A(p)) is

equal to zero, for all X € X(N) ; therefore A = constant.

5.3.12 Remark

If we change the metric g to a metricE: ng, conformal to g, where V is the
Riemannian connection of E, the immersion i N"— (M™,g), continues being

n —-2Au+n(W) =
).Y)= g X.Y).
N 21y

umbilic, that is (V ,1,¥),=-MX,Y), , then g (Va (
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Proof:

V(L

¥ -

Taking an inner product with Y,

Y=X( Y xM (from (iii) of definition 2.2.1)

= 1 S it
g(VX( )3 N=X(—=) g +—=g(Vi, D
Wriatd A

g(Vx(\/—) Y) = \/L—l g(Vxn.Y) (since g(m,})=0) (28)

Using the formula in 5.3.10 and replacing ¥ by n, since ¥, n € T .M

ﬁxﬂ = V,n+ S(X,n), where V and V are Riemannian connections of g and

g respectively.

Substituting into the equation (28),

e 1 iy
g (Vx lu),Y) =& V., n+SEn).Y)

1 - —
.‘H,[,

. 1
Consider S(X,n) =E {(X(um + (WX - g(X, n)grad 1 }

So S(X,n) =2L {(X(p)m +n(u)X} (since g(X, n) =0, X is orthogonal to 1))
L

Taking the inner product with ¥ usingE ,

2 (SN =—21; ((X(1) 2 M) + 1) 2 KD}
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2 (SXM).Y) =$n(u)§(X,Y) (since g (n.Y) = ig(n.¥ ) = 0)

Next consider g (V xN.Y) =ng(Vyn.,Y) (using the definition of conformal metric)

= -AMLgX,Y) (from (25) for being umbilic)

~-Ag (X.Y)

Then from equation (29),

E(%(%),Y) =~j;(—1§(x,n) +:/% in(u)"é(x,n

=2 +n(W) —
— 8 X.)Y).
2uu

Hence the result.

5.4. Spaces of Constant Curvature

5.4.1 Introduction

Among the Riemannian manifolds, those with constant sectional curvature are the
simplest. We can now compute the sectional curvature of our three families of model

spaces of Riemannian geometry:- Euclidean space, spheres, and hyperbolic spaces.

5.4.2 Euclidean space

The simplest and most important model Riemannian manifold is of course Euclidean
space, R". Since we have shown that the curvature tensor of R” is identically zero
in Euclidean space, clearly all-sectional curvatures are zero. This is obvious

geometrically, since each two-dimensional section is actually a plane, which has zero

Gaussian curvature.
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5.4.3 Spheres

Our second model space is the sphere of radius  in R"™", denoted by S”, with the

metric induced from the Euclidean space R"*"'. When r = 1, this is simply called the

unit sphere S” in R"*.

5.4.3.1 Curvature of S"

Let S"= {xe R™'; |x| = 1} be the unit sphere in R"*'. As in the case of surfaces (see

[DC 1], page 136-137) we define the Gauss spherical mapping as follows.

Let M"cM =R"" be an n-dimensional hypersurface with the metric induced from
Euclidean space and N be a smooth unit normal vector field along M. At each point

peM, N € 7, (R™') can be thought of as a unit vector in R and therefore as a

point in S". Thus each choice of normal vector field defines a smooth map

N:M — §", called the Gauss map of M.

It is clear that the Gauss map is differentiable. The differential dN ,of Natp € Mis a
linear map from 7,M to T S". By parallel translating the normal vector N along

M at p to the vector field ON(p) along S” at O, where O is the origin inR""', we can

observe that 7,M parallel translates to T, S".Therefore we can identify dN , as a

linear map on 7,M itself.

The linear map dN ,:T,M — T,M as follows. For each parametrized curve c(f) in M
with ¢(0) = p and ¢’ (0)= v, we consider the parametrized curve N oc(t) = N(f) in the

sphere S".

d —
Then dN ,(v)= -E;(Noc(r))L:O: V.N
We have (N,N)=1

Taking the covariant derivative in the direction of v,
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where 1 € (TPM)N and N is a local extension of 1 normal to M.
Therefore dN , (V) = =8, (v), it follows that —§, is the derivative of the Gauss map.

We orient S” by the inward pointing unit normal N(x) =—xe R"", |x= 1.

That is, N(c(t)) = —c(t) = dN . (c'(2)) = =c'(t), where q = c(f) = x. This implies
that dN, is the negative of the identity map of 7 M . It follows that §, has all of its

eigenvalues equal to 1. Then using the expression in remark 5.2.11,
K(e.e;) —E(e,.,ej)z LA, where E(e,.,e;.) =0 in Euclidean space.
Therefore K(ei.,ej) =l foralli, j=1,... 0.

That is, all sectional curvatures of §” are equal to 1. Hence the sectional curvature of

the unit sphere S” < R™ is a constant equal to 1.

5.4.4 Hyperbolic space

To describe the model space of constant sectional curvature equal to —1, we can give

the following example.
Consider the half space of R" given by

H"={(x,...x,)€ R"; x, >0} and introduce the metricon H",

al"
g; (X5, X, )=—5, where H" is simply connected and complete. The metric on H"

n

is conformal to the usual metric of Euclidean space R", since — is a positive

n
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differentiable function on H". Then H" is called the hyperbolic space of dimension

n. Write g’=F 28!-} to denote the inverse matrix of g;, where F ’= xf, then

g;8" =(8;)".

Take log F = f and differentiate both sides with respect to x; .

10F _ o
Faxj axj
= f,
oF
e B
= axj. f"
We can write g, = Sy
Ea= F:

Differentiating with respect to x ,

0g., J 1 2 OF 8
=% =5, —(—)=98,(——)=-2-"2LFf 30
ox, ”‘ax,f(Fz) «CF7 3 ) Fr 40)

To calculate the coefficients of the curvature, first we have to find out the Christoffel

symbols,

) dg.
I; = I z{ S ag"" - }g™ (from equation (12) of remark 2.3.7)
ox, a X ox,,

3 3,
’ —Zl =y g"" -=LIF,, (since g™ =F?5,,)

j m

Using the equation (30),
1, =28, f; —28,:f; 28,f,
I = Sl I+ I iEm=k

=‘"8J-kfs “akffj +8g‘fk
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If all three indices are distinct then F,f =0.
If two indices are equal and i # j then either k=i and I, =—f, ork=jand I/ =-f,.
Ifi=jand k#ithen I; = f,. This can be written as I/ = f, if i #}.

Therefore, if two indices are equal and i # j then I, =—f,,I/ = f; Rj =—f.

If all three indices are equal then I, =—f,, where i =j=k.

Using remark 3.2.4, we have

w Zng& ZRW 2

BBl t. Bi=} 31)

ijif iji Fz ?
We also have from remark 3.2.4,

arf oI’/
R *Em‘,ﬂ ZF,,FJ a; , (32)
55 i

where I; = f, if I#i, Ti=-f, ifl#]
Consider the first summation,

21‘ I} = Y LTI+ 400

il i il i i
IETNE ]

= D~ fP R+ (-f)

[#i 1%

= Z_ff2+-r-i2_fj2

I#il2j
Consider the second summation,
21‘;1“,{ L) +TiT) =—f}+ f? (sinceT; =0,ifl #i,l # j)

Jit i
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o,
A A T = T =, i 2] =

ox, ; . ax ox.

Substituting into equation (32),

Ri= Y- +f+ T

[#id#

R,;',—Z P+ fl+f+f

Then the sectional curvature with respect to the plane generated by aa
X,
i J d
=——————, where —=X, and ——=X; are orthogonal,
IXr A X}.] ox; 0x;

S,
(X;'?Xj>= g!}. =F{{2—=0, lfl-?‘-'_}

(X.-'-X,')=g,'; =

;2 =‘X,-‘2, similarly |Xf-|2 B

Therefore |X,. A Xir

ifif

:-F%-, K = K F4
K, R,j,F‘ (from equation (31))
=(Z_f£2+j‘|'2+fj2+f_;j+fii)F2
{

In the case of F> =x},logF =log x,= f

Taking the derivative of f with respectto x,, then f, = 3 ;

n

J

18

ox,

since

Consider the case if i # n, j # n. Then f, =0, f; =0, (since fis a function of x, )

Therefore f, =0,fﬂ. =0, where i, j=1...,n-1.

1
— 22
So Kﬁﬁ—an ——x—z

n

F*=-1.
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Similarly if i = n, j # n, then K,u. =-1.
And alsoif i # j, j=n,then K, =-1.

Then we can conclude that the sectional curvature of H" is a constant equal to —1.

5.5 Riemannian Submersion

A Riemannian submersion has been defined somewhat differently to the way of

defining a Riemannian immersion.

5.5.1 Definition

—n+k=m

Suppose M and M smooth manifolds. A differentiable mapping f: M > M" is
called a submersion if f is surjective, and for all pe M, df-:T-M —T,~M has
rank 7. In this case, for all pe M , the fiber f~'(p) = F, is a submanifold of
M.

If M has a Riemannian metric g , at each point ;e M , the tangent space T;H
decomposes into direct sum T;E:(T—pﬁ)" +(T;ﬂ)", where (T;E)“r and

(T; M)* denote the subspaces of horizontal and vertical vectors respectively.

A vector X € (T-PE‘_)" & T;_ﬁ is called horizontal if it is orthogonal to the fibre. If

X € R(M),the horizontal lift X of X is the horizontal field defined by

df-(X(p))= X (f(p)) = X (p). The horizontal lift of a vector field X on M is the

unique vector field X on M which is horizontal and projects onto X.
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A vector ne (T;E)" (o T—pﬁ is called vertical if it is tangent to the fiber, where

(T;-}l})" = Ker df ={ne (T;ﬁ) ”df; (m) =0}. Let g be a Riemannian metric on M.

The mapping f is saild to be a Riemannian submersion  if

8(X.Y) = g(df-(X).df-(Y)).

5.5.2 Connection of a Riemannian submersion

Let V and V be the Riemannian connections of M and M recpectively. Then we can

find a relationship between the connections in tems of a vertical vector. That is, if

X.Y are horizontal lift of X and ¥ respectively, where X and Y are tangent to M, then

<|

Y = (V,Y) +%[X,Y]”, where [X,Y]" is the vertical component of [X,Y].
Proof:

LetX. Y. Ze R(M). Let T € X(M) be a vertical field.

Let X,Y and Z be horizontal lifts of X, ¥ and Z respectively.

Consider (T,[X,Y])=(T, VxY -Vi X )

=(T,(VxY)")—(T,(V¥X)*)  (since Te (T;M)")
That is, (T, (V¥ ¥)" - (V7 X)) =(T,[X,¥]") (33)
We know that (X ,7) =0.

Taking the covariant derivative in the direction of Y :

Y{(X,T)=0
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(Vi X Ty +(X ,V¥T)=0
(V7 X)*.T) +(X ,(V3T)") =0 (since (V7 X)",T)=0,(X ,(Vs X)") =0)
= ((ﬁ?f)“,'f) =0 (since T is a vertical field, then (_Y?FT)" =/0.)
Similarly ((VxY)*.T)=0
Adding these two results,
(V¥ X)',T)+((VxY)"',T)=0
((VzY)'+ (ViX)',)=0 (34)
Adding the equations (33) and (34),

2A(VxY)",TYy=([X,Y]',T)

[?, ?]". Hence the result

5.5.3 Curvature of a Riemannian submersion

Let Rand R be the curvature tensors of M and M respectively. Then we can find the

relationship between R and R in terms of vertical vectors as in the case of the

Riemannian immersion. Using that relationship, we then find a result between the

sectional curvatures of M and M.
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(a) (R(X,Y)Z,W )= (R(X,Y)Z,W) —-} ([X,Z]',[Y,.WT) +
L(EZ1 XWT) (20X

(b) K(0) = K(o)+ % Ix. ?]|2 > K(o), where o is the plane generated by the
orthonormal vectors X, Y € X(M) and o is the plane genarated by -}-(',?

Proof:

(a) First we show that X(Y,Z)=X(Y,Z)
Consider E(I_’,f) = (ﬁ? ?, E) + (?,ﬁ} E)

(V)" Z)+(Y,(VxZ)")

(VY. Z)+(Y,V,Z)

Using the definition of Riemannian submersion,

=(df-(V,Y), df- (2)) +(df; (V). df> (V 2))
=(V,Y.Z)+(Y,V,Z) (from the definition of horizontal lift)
Then X{Y.,Z)=X({Y,Z)

Replacing ?by ViZand Z by W, we have

>

(VZZ W)=X(V,Z W)

(VXViZ, WY+(V3Z, VW )=(V,V,Z W +(V,Z,V,W) (35

From 5.5.2 we know that V5 Z = V,Z+ ['I"—,_Z—]V , and
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Substituting into equation (335),

(VzV3Z W)+ (V,,2+5[Y,Z1".wa +E[x,w1">=<vxv,,z,m+

(V,Z,V W)

(ViViZ. W) +(V,Z,V W >+%([?,E]” WY =(V.V,Z W)+

(VyZ.V, W)
(since (V,Z ,[X,W]")=0and(V,W .[Y.Z]')=0)
Using the definition of the Riemannian submersion,
(V,Z VW)= dfs (V,Z).df, (VW) =(V,Z,V, W)
Substituting into the above expression,
(%%E,W)?%qi"jr’,[Y,W]">+<va,,z,m (A)
Similarly,
(V¥VRZ W) == (K21 W) +(V,V,Z.W) ®B)

We can show that ([T,_f ],?} =0, where T is a vertical field.
Since ([T,X1,Y)=(VrX -VzT.Y)

=((VrX)".Y)=((VzT)",Y) (Y isa horizontal vector field)
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So (T.X1Y)=0 (since (V7 X)"=0, (VxT)" =0)
Hence (ﬁff,?):(ﬁ?i‘”,?) (36)
Also we have (Y,T) =0

Differentiating in the direction of x .

X({Y.,T)=0

Thatis, (V¥T, ¥Y)=-(VxY,T) (37)
Combining (36) and (37), we have
(V:X,Y)=—(ViY,T) (38)

Consider (VEr Z W) =(Vixrrsxir Z,W)

N |

(VxR Z.W)+(VFi+ Z,W)

Using the definition of Riemannian submersion and equation (38)

(VERZ W) =(dfs (Vg 2):dfs W) +(Viwir Z,W)
AV ZW )+ (Vi Z,W)
=(VignZ.W)=(VZW,[X,YT)
=(ViunZW)—(VZW)'[X,YT") (39)
(Z.W]

From 5.5.2 we know (VzW)’ =%

Therefore from equation (39),
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— — 1 e —y
(ViznzZ.W) =(V[x.nZ,W>—(E [Z,W]".[X.Y]") ©

Using the definitions of the curvature tensor and the equations (A), (B) and (C),

(RX.YZWY=(ViVZZ,W)—(VZV3Z W) +(VIRZ.W),
(RX,V)ZW)=(V,V, ZW)~(V V., ZW)+(V ,,,Z,W)

(RX.DZW) =<R(X,Y)z,W>—§<[?,§r‘ W)+ %(tﬁ]" XY -
%([ZW]“,[?,?}‘).

Hence the result.

(b) Let K(o) and _KT(E') be the sectional curvatures of M and M respectively.

RENXY) g REDXT)
‘X AY

=

Then K(0) =

2

where X and Y are orthonormal, therefore 1X A Y|3= 1 and P? Aﬂ-.:i.

Considering part (a),

K@=k -2 [X.77]

s K(0).

K(0)=K(0)+ % ][?,?] g

Hence the result.
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Chapter 6

Conclusion

In this thesis we have progressed from the familiar notion of surface in R* to the
general notion of manifold. Now we are in a position to reverse this process. An n-
dimensional manifold M is a space that is locally like the Euclidean space, R". Every
manifold has a calculus consisting of differentiable functions, tangent vectors, vector
fields, mappings, etc. The simplest manifold of dimension n is R" itself. A two-
dimensional manifold is called a surface, which generalizes the Euclidean plane by
replacing the dot product on tangent vectors, by arbitrary inner products.

In Riemannian geometry, the length of a curve is a geometric notion of
intrinsic distance directly generalizing the familiar Euclidean distance in the plane. In
chapter 4, we defined that the geodesics are curves with acceleration zero. Geodesics
are not only the straightest curves but also the shortest curves. This generalizes the
simple Euclidean rule, which says that a straight line is the shortest distance between
two points. Geodesics in an arbitrary surface generalize the straight lines in Euclidean
geometry.

In chapter 2, we described two properties that determined a unique
connection on any Riemannian manifold called Riemannian connection. Then we
computed Christoffel symbols of the Riemannian connection and observed that those
symbols are zero in Euclidean space. Next we proved that the covariant derivative
coincides with the usual derivative in Euclidean space. In Riemannian space the
covariant derivative differs from the usual derivative by terms which involve the

Christoffel symbols.
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In chapter 5, we focused on the special case of hypersurfaces in R"*"' and
showed how the second fundamental form is related to the principal curvatures and
Gaussian curvature. We proved a generalization of the theorem Egregium of Gauss.
This allowed us to relate the notion of curvature in Riemannian manifolds to the
classical concept of Gaussian curvature for surfaces.

Finally we computed the sectional curvatures of our model Riemannian

manifolds. The sectional curvatures of Euclidean space, unit sphere, S", and

hyperbolic space are 0, 1 and -1 respectively. Comparing with the Gaussian curvature
of model spaces of surfaces we can conclude that the model spaces of Riemannian
manifolds are the natural generalization of the model spaces of surfaces. Concerning
all above results we can conclude that Euclidean space is a special case of

Riemannian space.
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