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Abstract 

In this thesis we study the theory of Riemannian manifolds: these are smooth 

manifolds equipped with Riemannian metrics, which allow one to measure geometric 

quantities such as distances and angles. 

The main objectives are: 

(i) to introduce some of the main ideas of Riemannian geometry, ·,,c geometry of 

curved spaces. 

(ii) to present the basic concepts of Riemannian geometry such as Riemannian 

connections, geodesics, curvature (which describes the most important geometric 

features of universes) and Jacobi fields (which provide the relationship between 

geodesics and curvature). 

(iii) to show how we can generalize the notion of Gaussian curvature for surfaces to 

the notion of sectional curvature for Riemannian manifolds using the second 

fundamental form associated with an isometric immersion. Finally we compute the 

sectional curvatures of our model Riemannian manifolds - Euclidean spaces, spheres 

and hyperbolic spaces. 
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Chapter 0 

Introduction 

0.1 The Evolution of Riemannian Geometry 

Geometry is the branch of mathematics that deals with the relationships, properties 

and measurements of solids, surfaces, lines and angles. It also considers spatial 

relationships, the theory of space and figures in space. The name comes from Greek 

words meaning, "land" and "to measure". Geometry was first used by the Egyptians to 

measure lands. Later it was highly developed by the great Greek mathematicians. 

About 300 B.C, Euclid was a Greek mathematician. Elements of Euclid is a 

scientific work containing the foundations of ancient mathematics: elementary 

geometry, number theory, algebra, the general theory of proportion and a method for 

the determination of areas and volumes. The geometry based on the assumptions of 

Euclid and dealing with the study of plane and solid or space geometry is called 

Euclidean geometry. In the 19th century, new kinds of geometry, called Non

Euclidean geometry, were created. Any kind of geometry not based upon Euclid's 

assumptions is called Non-Euclidean geometry. E.g:- Differential geometry (Surface 

geometry), Hyperbolic geometry, Riemannian geometry, etc. Classical differential 

geometry consisted of the study of curves and surfaces (embedded in three

dimensional Euclidean space) by means of the differential and integral calculus. 



The founders of Non-Euclidean geometry were Gauss, Riemann, Bolyai and 

Lobachevski. All of them investigated the possibilities of changing Euclid's parallel 

postulate, which said that one and only one line parallel to a given line could be 

drawn through a point outside that line. Until the 19th century, this was accepted as a 

" self -evident truth ". The replacement of this postulate led to new geometries. In the 

early part of the 19th century, Carl Friedrich Gauss (1777-1855) was considered to be 

one of the most original mathematicians living in Germany. He was a pioneer in Non

Euclidean geometry, statistics and probability. He developed the theory of functions 

and the geometry of curved surfaces. Gauss defined a notion of curvature (Gaussian 

curvature) for surfaces, which measures the amount that the surface deviates from its 

tangent plane at each point on the surface. 

Towards the end of his life (1855) Gauss was fortunate to have an excellent 

student, Gerg Friedrich Riemann (1826-1866), who was the founder of Riemannian 

geometry. Riemann' s life was short but marvelously creative. He took up the ideas of 

Gauss. On June 10th in 1854, he delivered his inaugural lecture, entitled " On the 

Hypotheses that lie at the foundations of geometry ". Several vital concepts of modern 

mathematics appeared for the first time from his lecture. In particular, he 

1. Introduced the concept of a manifold. 

2. Explained how different metric relations could be defined on a manifold. 

3. Extended Gauss's notion of curvature of a surfac.' to hig:1er dimensioml manifolds. 

The concepts of Riemannian geometry played an important role in the formulation of 

the general theory of relativity. Riemannian geometry is a special geometry, the 

geometry of curved spaces, associated with differentiable manifolds and has many 

applications to Physics. During the closing decades of the 19th century, Levi-civita 

( 1873-1941 ), took up the ideas of Riemann and contributed the concept of parallel 

displacement or parallel transport, which plays an important role in Riemannian 

geometry. 

0.2 Generalization of Surface Theory to Riemannian 
Geometry 

Surface is one of the basic concepts in geometry. The definitions of a surface in 

various fields of geometry differ substantially. In elementary geometry, one considers 

planes, multifaceted surfaces, as well as certain curved surfaces (for example, 
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spheres). Each curved surface is defined in a special way, very often as a set of points 

or lines. The general concept of surface is only explained, not defined, in elementary 

geometry: one says that a surface is the boundary of a body, or the trace of a moving 

line, etc. In analytic and algebraic geometry, a surface is considered as a set of points 

the coordinates of which satisfy equations of a particular form. In three-dimensional 

Euclidean space, 9\ 3
, a surface is obtained by deforming pieces of the plane and 

arranging them in such a way that the resulting figure has no sharp points, edges, or 

self-intersection. We must require that a surface be smooth and two-dimensional, so 

that the usual notions of calculus can be extended to it. A surface is defined by means 

of the concept of a surface patch, which is a homeomorphic image of a square in 9\ 3
• 

A surface is understood to be a connected set, which is the union of surface patches 

(for example, a sphere is the union of two hemispheres, which are surface patches). 

Usually, a surface is specified in 9\ 3 by a vector function 

r = r(x(u , v), y(u , v), z(u , v)), where O $ u, v $ 1. 

The first example of a manifold, is a regular surface in 9\ 3
. 

0.2.1 Definition 

A subset S c 9\ 3 is a regular su,face, if, for every point p E S , there exists a 

neighborhood V of pin 9\ 3 and a mapping x: U c9\ 2
-? V n S of an open set Uc 9\ 2 

onto V n S, such that: 

(a) x is a differentiable homeomorphism; 

(b) The differential (dx\ : 9\ 2 ~ 9\ 3 is injective for all q E U 

The mapping xis called a parametrization of Sat p. The neighborhood V n S of p in S 

is called a coordinate neighborhood. 

A major defect of the definition of regular surface is its dependence on 9\ 3
. This 

situation gradually became clear to the mathematicians of 19th century. Riemann drew 

the correct conclusion, which says that there must exist a geometrical theory of 

surfaces completely independent of 9\ 3
• His idea was to replace the dot product by a 

arbitrary inner product on each tangent plane of S. He observed that all the notions of 

the intrinsic geometry (for example, Gaussian curvature) only depended on the choice 

of an inner product on each tangent plane of S. Next we will introduce the notion of 

abstract surface which is an outgrowth of the definition of the regular surface. 
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Historically, it took a long time to appear due to the fact that the fundamental role of 

the change of parameters in the definition of a surface in 9\ 3 was not clearly 

understood. 

0.2.2 Definition 

An abstract su,face (differentiable manifold of dimension 2) is a set S together with a 

family of one-to-one mappings xa: U a ~ S of open sets U a c 9\ 2 into S such that 

(i) U a Xa (U a)= S. 

(ii) For each pair a,~ with xa (U a) n x~ (U ~) = W ::;; <)>, we have that 

x~1 (W), x;1 (W) are open sets in 9\ 2
, and x~1 ox~, x;1 o xa are 

differentiable mappings. 

The pair (U a, xa) with p E xa (U a) is called a parametrization of S around p. 

xa (U a) is called a coordinate neighborhood at p. The family { U a, xa } is called a 

differentiable structure for S. 

Shifting then from surfaces in 9\ 3 to abstract surfaces and, from the dot product to 

arbitrary inner products, we get the following definition. 

0.2.3 Definition 

A geometric su,face is an abstract surface furnished with an inner product ( , ), on 

each of its tangent planes. This inner product is required to be differentiable in the 

sense that if V and W are differentiable vector fields on S then (V, W) is a 

differentiable real-valued function on S. 

We emphasize that each tangent plane TPS of S has its own inner product. An 

assignment of inner products to tangent planes as in the above definition is called a 

geometric structure (or metric tensor or "ds 2
") on S. We emphasize that the same 

surface furnished with two different geometric structures gives rise to two different 

geometric surfaces. 

If we look back to the definition of abstract surface, we see that the number 2 has 

played no essential role. Thus, we can extend that definition to an arbitrary n and this 

may be useful in future. 
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0.2.4 Definition 

A differentiable manifold of dimension n is a set M and a family of injective 

mappings xa: U a c 9tn ~ M of open sets U a of 9tn into M such that 

(II) For any pair a, ~ with xa (U a) n x~ (U ~) = W "# <I>, the sets x~1 (W), xt (W) are 

open sets in 9t n and the mappings x~1 ox~, xi1 o xa are differentiable. 

(III) The family { (U a, xa) } is maximal relative to the conditions (I) and (II). 

The pair (U a, xa) with p E xa (U a) is called a parametrization of M around p . 

xa (U a) is called a coordinate neighborhood at p . A family { (U a, x
0

) } satisfying (I) 

and (II) is called a differentiable structure on M 

For example, curves are one-dimensional manifolds because every point of a curve 

can be located by a single parameter. Also surfaces are two-dimensional manifolds 

since for each piece of a surface, every point can be located by surface coordinates. 

Generalizing, we say that an n-dimensional manifold is a set, such that on every piece, 

of it, we can locate points by using n coordinates. 

0.2.S The metric coefficients of the surface 

Gauss presented the most important formula in surface geometry m 1827. This 

appeared in his paper " General investigation of curved surface ". 

(1) 

It expresses the distance between two infinitesimally close points on the surface in 

terms of surface coordinates u1, u2 • He considered that the geometry of a surface is 

Euclidean in infinitesimal neighborhoods. Thus, a surface can be regarded as an 

infinite collection of Euclidean spaces that are smoothly joined together. Another way 

of thinking about this is to regard the surface as the envelope of its tangent planes. 

The proof of this formula for a surface in 9l 3 is briefly as follows . 

Let p be any point on the surface and ( u 1 , u 2 ) be the surface coordinates of p . Let s 

be the value of arc length. 

Then the rectangular Cartesian coordinates of p are ( x(u1, u2 ), y(u 1, u 2 ), z(u1, u2 ) ). 
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So (a) 

We know that (ds) 2 = (dx) 2 + (dy)2 + (dz) 2 (Pythagorean formula) 

Substituting from ( a), (b) and ( c ), 

2 dx dx 2 dy dy ? dz dz 
(ds) = (-du 1 +-du2 ) + (-du 1 +-du2 )-+ (-du 1 +-du2 )

2 

dU 1 dU 2 dU 1 dU 2 dU 1 du2 

Simplifying the terms in brackets and taking, 

al 
1 
= ( dX ) 2 + ( dy ) 2 + ( dZ )2 

dU 1 dU 1 dU1 

The expression ( 1) appearing on the right hand side of the equation is called the first 

fundamental form and a 11 , a 12 , a 22 are called the metric coefficients. They vary from 

point to point as one moves across the surface. But in the Euclidean plane we can 

choose coordinates so that the metric coefficients are constants. 

Consider a horizontal plane lying in three-dimensional Euclidean space. 

The equation of this plane is z = constant. We can choose the coordinates 

u1 = x, u 2 = y on the plane. 

dX dX dy dy dZ dZ 
Then - = 1,-= 0,- = 0,- = 1,-= 0,- = 0. Therefore, we can show that 

du 1 dU2 dU 1 dU2 dU 1 dU2 

a11 = 1, a 12 = 0, a22 = 1 . That is, the metric coefficients are constant for the plane. 

Therefore ds 2 = dui1 + dui. (from (1)) 

Consider the sphere with radius r, centered at the origin. Let 0 and </J be surface 

coordinates (except at the poles) of any point p, where u1 = 0,u2 = </J. The Cartesian 

coordinates of p can be expressed in terms of 0 and </J as 
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x = rcos(/Jcos0 

y = rcos(/Jsin 0 

z = rsin(/J, where O ::; 0 < 2Jr, -rr/2( </J ( rr/2 

Taking partial derivatives of the functions in these expressions, 

dx A. . _0 - = - r cos 'I' sm u, ae 

dy = rcos(/Jcos0 , ae 

~=0 ae ' 

dx . A. 
0 - =-rsm'l'cos 

d</J 

dy = -r sin </J sin 0 
d</J 

dz - = rcos(/J 
d(/J 

Substituting these expressions into equations (a), (b), (c) and using the trigonometric 

identity sin 2 0+cos 2 0=1 , then a 11 =r 2 cos 2 (/J, a 12 =O,a22 =r 2
. 

Hence~ equation ( 1) becomes 

ds 2 = r 2 cos 2 (/Jd0 2 + r 2d</J 2
. 

This is the expression for the square of the length of an infinitesimal line element on 

the sphere. It is clear that the metric coefficient a 11 varies with ¢. 

0.2.6 Generalization of metric coefficients of surfaces to Riemannian 

space 

Generalizing the formula which Gauss obtained and extending it to n-dimensional 

manifolds, Riemann explained some basic concepts of a n-dimensional manifold. 

Consider a point p in an n-dimensional manifold and let ui, u2 , ••• , un be its 

coordinates. Take a seco9,d point q whose coordinates u1 +dui,u2 +du2 , ••• ,un +dun 

differ only infinitesimally from those of p. Riemann suggested that the square of the 

length ds of the line element joining p to q is given by 
n 

ds
2 =Lg ij du;du j. 

i,j=I 
(2) 

where g ij are functions of ui, u2 , • • • , un . This directly generalizes the formula (1) Gauss 

obtained for the line element of a surface. The expression on the right hand side of the 

equation (2) is a quadratic form in the variables dui,du 2 , ••. ,dun, where ds 2 is positive 

unless q and p coincide. Therefore the quadratic form is said to be positive definite. 
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Using the expression (2) for determining length, he defined a Riemannian metric (see 

the definition in chapter 1) on the differentiable manifold. It provides the ability to 

calculate the length of paths in the manifold, and angles between tangent vectors in 

the same tangent space of the manifold. A manifold furnished with a Riemannian 

metric is called a Riemannian manifold or a Riemannian space. 

For an example, in an n-dimensional Euclidean space, the square of the length of a 

line segment is given by the Pythagorean formula. 

ds 2 = dxt +dxi + ... +dx~ , (3) 

where x 1 , x2 , ... , xn are rectangular Cartesian coordinates. It is clear that (3) is a special 

case of (2) with g 11 = 1, g 22 = 1, .. . , g nn = 1. Thus, Euclidean space is a special case of 

Riemannian space. Riemann called Euclidean spaces flat. A Riemannian space is 

locally Euclidean which means that an infinitesimal neighborhood of a point appears 

to be Euclidean. Just as the surface can be regarded as the envelope of its tangent 

planes, we may think of a Riemannian space as a collection of Euclidean spaces. We 

may say that a Riemannian space is infinitesimally flat or locally Euclidean. 

0.2.7 Generalizing Gaussian curvature into Riemannian Geometry 

In 1760, L. Euler described the curvature of a surface in space by two numbers at each 

point, called the principal curvatures. He defined the principal curvatures k1 and k2 

of a surface by considering the curvature of curves, kn , obtained by intersecting the 

surface with planes normal to the surface at an arbitrary point and taking k1 = max kn 

and k 2 = min kn. But at the time of Gauss, it was not clear that the principal 

curvatures would be an adequate definition of curvature. Gauss was the first to realize 

that surfaces have an intrinsic metric geometry that is independent of the surrounding 

space. More precisely, a property of surfaces in 9\ 3 is called intrinsic if it is preserved 

by isometries. Even though the principal curvatures are not intrinsic, Gauss made the 

surprising discovery in 1827, that the product of the principal curvatures, now called 

the Gaussian curvature, is intrinsic. Gauss was amazed by his wonderful results and 

then named the theorem as Theorema Egregium, which is in colloquial American 

English can be translated roughly as "Totally Awesome Theorem". To get an idea of 

what Gaussian curvature tells us about surfaces, let's look at few examples. Simplest 

of all is the plane, which has both principal curvatures equal to zero and therefore has 
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constant Gaussian curvature equal to zero. Another simple example is a sphere of 

radius r. Any normal planes intersect the sphere in great circles, which have radius r 

and therefore curvatures are ±1/r (sign depends on whether we choose the outward 

pointing or inward pointing normal). Thus the principal curvatures are both equal to 

±l!r, and the Gaussian curvature is equal to 1/r2 and always positive on the sphere. 

The model spaces of surface theory are the surfaces with constant Gaussian 

curvature. We have discussed two of them: the Euclidean plane 9\ 2 and the sphere of 

radius r. The third model is a surface of constant negative curvature, which is not so 

easy to visualize. Let's just mention that the upper half plane { (x, y): y > O} with the 

Riemannian metric g = R2(dx2 + dy2)!y2 has constant negative curvature -1 / R2
, 

where R is a constant. In the special case R = I the curvature is - I. This is called the 

hyperbolic plane. 

Here again generalizing the ideas of Gauss, Riemann defined the intrinsic 

geometry of a Riemannian space. Just as the notion of Gaussian curvature he thought 

that Riemannin curvature is a measure of the degree to which a Riemannian space 

differs from Euclidean space. In Euclidean space, he considered that the Riemannian 

curvature is zero everywhere. As with the surfaces, the basic geometric invariant is 

curvature. But the curvature becomes much more complicated quantity in higher 

dimensions because a manifold may curve in so many directions. The curvature can 

vary from point to point, but there are important special cases in which Riemann 's 

measure is constant across the entire space. As with the surfaces, the model spaces of 

Riemannian geometry are the manifolds with constant sectional curvature (see chapter 

3). In the end of the chapter 5, we introduce three classes of highly symmetric model 

Riemannian manifolds:- Euclidean spaces, spheres, and hyperbolic spaces. All most 

all of the properties of Riemannian geometry are related to the curvature. Therefore as 

in surface geometry, we can say that the curvature was the main source to develop 

Riemannian geometry. 

The main objective of this thesis is to discuss more details about the curvature 

of the Riemannian manifold. 
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Chapter 1 

Preliminaries and Notations 

As stated in chapter 0, this thesis is mainly concerned with the curvature of a 

Riemannian manifold. Therefore we need to know the basic definitions, results 

(without proofs) and notations in Riemannian geometry. The purpose of this chapter 

is to familiarize the reader with the basic language of Riemannian geometry as a 

review and to provide a quick reference. Further details can be found in the following 

sources: [DC 1], [DC 2] and [JML]. 

1.1 Tangent space (T pM) 

Let M be a differentiable manifold with dimension n. A differentiable function 

a: (-E,E) c ~ ~ M is called a (differentiable) curve in M, where ~ is the set of all 

real numbers. Suppose that a(O) = p E M and let O be the set of functions on M that 

are differentiable at p. 

The tangent vector to the curve a at t = 0 is a function a' (0): 0 ~ ~ given by 

d 
a' (O)f = -(f O a.)i _

0
, dt ,_ jE 0 . 
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A tangent vector at pis the tangent vector at t = 0 of some curve a: (-E,E) ~ M with 

a(O) = p. The set of all tangent vectors to M at p will be denoted by T pM. 

If we choose a parametrization x: U c ~ n ~Mn around p = x(0) with 

x(x, , ... , xn) = q E x(U), we can express the function f and the curve a in this 

paramerization by 

fox(q)=f(xi, ... ,xn),where (xp···,xn)EU and 

x-' o a(t) = (x1 (t), ... , xn (t)), where t E (-£, £) . 

Then a(t) = x(x1 (t), ... , xn (t)) 

f O a(t) = f(x, (t), ... ,xn (t)) 

a 1 (0)f = !!_Cf O a)i _
0 dt (-

Therefore 

d 
=-(f(x,(t), ... ,xn(t))l _o 

dt (-

= tx: (O)(aa J f 
1=l x, 0 

In other words, the vector a1 (0) can be expressed in the parametrization x by 

a 1 (0) = f x: (O)(~J 
i=l dX; 0 

(1) 

It is clear that ( ~ J 1s the tangent vector at p of the coordinate curve 
dX; 

0 

x; ~ x(0, ... ,x;,···,0). It follows from (1) that the set TpM forms a vector space of 

dimension n with an associated basis {(~] , ... ,(~] } . Then the vector space 
ax, O dxn O 

T pM is called the tangent space of M at p. 

Using the idea of the tangent space, we can define the differential of a differentiable 

mapping. 
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1.2 Proposition 

Let M ( and M ; be differentiable manifolds and let <p : M I ~ M 2 be a 

differentiable mapping. For every p e M I and for each v E TP M 1 , choose a 

differentiable curve a : (-£,£) ~MI with a(O) = p, a ' (0) = v. Take ~ = <p o a. The 

mapping dcpP:TPM 1 ~T~<PlM 2 given by dcp P(v)=~' (O) is a linear mapping that 

does not depend on the choice of a. (Proof, see [DC 2]). The mapping d<p Pis called 

the differential of <p at p. 

1.3 Definition 

Let M I and M 2 be differentiable manifolds. A mappmg <p: M 1 ~ M 2 is a 

diffeomorphism, if it is differentiable, bijective, and its inverse, <p- 1
, is differentiable. 

1.4 Definition 

Let M m and N n be differentiable manifolds. A differentiable mapping rp : M ~ N is 

said to be an immersion if dcp P : TPM ~ T~<Pl N is injective for all p E M . If, in 

addition, cp is a homeomorphism onto cp(M ) c N , where cp(M) has the subspace 

topology induced from N, we say that cp is an embedding. If M c N and the inclusion 

i : M c N is an embedding, we say that M is a submanifold of N. 

1.5 The tangent bundle 

Let M n be a differentiable manifold and let TM= { (p, v); p E M, v E TPM } . The set 

TM with a differentiable structure of dimension 2n is called the tangent bundle of M . 

1.6 Definition 

A vector field X on a differentiable manifold Mis a correspondence that associates to 

each point p e M a vector X (p) E TPM . In terms of mappings, Xis a mapping of M 

into the tangent bundle TM. The vector field is differentiable if the mapping 

X : M ~ TM is a differentiable mapping. 
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Considering a parametrization x: U c9\n ~ M , we can write 

n d 
X(p)= ~a;(P)ax;, (2) 

where each a : U ~ 9\ is a function on U and _i_ , i = 1, ... ,n is the basis associated 
I dX; 

with the parameterization x. Therefore from (2) we can say that X(p) is differentiable 

if and only if the <X; 's are differentiable functions for all parametrization. It is 

convenient to think of a vector field as a mapping, X: 0 ~ F from the set O of 

differentiable functions on M to the set of functions on M, defined in the following 

way 

n dj 
(Xf)(p) = L<X;(p)-(p), for allf E 0. 

i=I dX; 

1.7 Lemma 

Let X and Y be differentiable vector fields on a differentiable manifold M. Then there 

exists a unique vector field Z such that, for all f E 0 , Zf = (XY -YX)f. 

The vector field Z is called the bracket [X, Y] = XY - YX of X and Y. It is clear that Z 

is differentiable. 

There are well-known properties of the bracket. 

1.8 Proposition 

If X, Y and Z are differentiable vector fields on M, and a, b are real numbers, and J, g 

are differentiable functions, then: 

(a) [X ,Y] = -[Y, X] 

(b) [aX +bY,Z] = a[X,Z]+b[Y,Z] 

(c) [[X,Y],Z]+[[Y,Z],X]+[[Z,X],Y]=O (Jacobi identity) 

(d) [JX ,gY] = fg[X ,Y]+ jX(g)Y -gY(f)X. 

(Proof, see [DC 2]) 
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1.9 Definition 

A Riemannian metric on a differentiable manifold M is a correspondence which 

associates to each p of M an inner product ( , )p, which is a symmetric, bilinear, 

positive definite form, on the tangent space TpM. If x: Uc ~n--"? Mis a system of 

coordinates around p , with x(x1 , • • • , xn) = q E x(U) and J_(q) = dxq (0, ... ,1, ... ,0), then 
. ax 

I 

(_i_(q),~(q))q = gij(xi,···,xn) is a differentiable function on U. 
ch. ax . 

I J 

It is possible to delete the index p in the function ( , ) P whenever there is no chance 

of confusion. The function g ij ( = g F ) is called the local representation of the 

Riemannian metric in the coordinate system x: U c~n--"? M. 

1.10 Example 

The almost trivial example is M = ~ n with J_ = e; = (0, ... ,1, ... ,0). The metric is 
OX; 

given by (e;,ei) = bij . Therefore ~ n is called Euclidean space of dimension n and 

the Riemannian geometry of this space is metric Euclidean geometry. 

1.11 Definition 

Let M and N be Riemannian manifolds. A diffeomorphism f M --"? N is called an 

isometry if: (u, v) P = (df,, (u ),df/v)) f<P> for all p E M, and u, v E TpM. 

1.12 Definition 

A differentiable mapping c: I --"? M of an open interval / c ~ into a differentiable 

manifold M is called a (parametrized) curve. A vector field V along a curve c: I --"? M 

is a differentiable mapping that associates to every t e / a tangent vector 

V (t) E Tc<r>M . To say that V is differentiable means that for any differentiable 

function f on M, the function t --"? V(t)f is a differentiable function on /. The vector 

field, dc(!!...J, denoted by de, is called velocity field (or tangent vector field) of the 
dt dt 

curve. 
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Chapter 2 

Connections 

2.1 Introduction 

Before defining curvature on Riemannian manifolds, we need to study geodesics, the 

Riemannian generalizations of straight lines. A curve in Euclidean space is a straight 

line if and only if its acceleration is identically zero. This is the property that we 

choose to take as a defining property of geodesics on a Riemannian manifold. To 

make sense of this idea, we are going to introduce a new object on manifolds, called a 

connection. We give a rather general definition of a connection, called affine 

connection, in terms of directional derivatives of sections of the tangent bundles. 

After deriving some basic properties of connections, we show how to use them to 

differentiate vector fields along curves, to define geodesics and parallel transport of 

vector fields. 

2.2 Affine Connections 

2.2.1 Definition 

Let us indicate by ~(M)the set of vector fields of class c - on Mand by D(M) the 

ring of real valued functions of class c-defined on M. An affine connection V on a 

differentiable manifold M is a mapping 

V: ~(M)x~(M) ~ ~(M), 
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which is denoted by ( X, Y) ~ v' x Y and which satisfies the following properties: 

(i)v' JX+gYZ= fv xZ+gv'yZ 

(ii) v' X (Y + Z) = v' X y + V X z 

(iii) v' x (JY) = fv x Y + X (f)Y, where X, Y, Z E ~(M) and f, g E O(M). 

2.2.2 Proposition 

Let M be a differentiable manifold with an affine connection v'. There exists a unique 

correspondence, which associates to a vector field V along the differentiable curve 

c: / ~ M another vector field DV along c, called the covariant derivative of V 
dt 

along c, such that: 

D DV DW . 
( a) -(V + W) = --+ -- , where W 1s a vector field along c. 

dt dt dt 

(b) D (JV)= df V + f DV, where f is a differentiable function on/. 
dt dt dt 

(c) If Vis induced by a vector field YE ~(M) , that is, V(t) = Y(c(t)), 

DV 
then - = v' dcy, where Y(c(t)) E TcuJM. 

dt -
dt 

The notion of covariant derivative has many important consequences. 

2.2.3 Remark 

Let Mn be a differentiable manifold and p E M. Choose a system of coordinates 

(xi,···,xn)about p and write X =I.x;X;, where X; =-1_ and {-1_, ... ,~} is a 
i=I dX; dX1 dXn 

basis in T ,,M. Let (x1 (t), ... , xn (t)) be the local expression of c(t), t E /. Then we can 

~ . . . a 
express the field, V = L.. v 1 Xi , where v1 = v 1 (t) and Xi = - = X /c(t)) . 

j=I dXj 

Taking the covariant derivative of V along c, 

L.. £.J (using (b) of proposition 2.2.2) DV --~(dvi }1· +~vi DXi, 
dt j=I dt j=I dt 

(1) 
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By using (c) of proposition 2.2.2 and (i) of definition 2.2.1, 

DX 
--

1 =VdcXj(c(t)) 
dt -

dr 

= -' x . n (dx. f ~ dt X; 1 

Then from (1), (2) 

This differential equation provides the following results. 

2.2.4 Example 

Let M be Riemannian manifold and let p be a fixed point of M. Consider a constant 

curve c: I~ M given by c(t) = p, for all t E I. Let V be a vector field along c (that is, 

Vis a differentiable mapping of I into TPM ). Then we can show that DV = dV . 
dt dt 

Proof: 

Let M be Riemannian manifold with dimension n. Take c(t) = p = (x, , ... , xn), where 

x, , ... , xn are constants, since c(t) is a constant curve. 

dx . 
Therefore -' = 0 , where i = l, ... ,n. 

dt 

Substituting into equation (2), 

DV n dvj dV 
-=L-Xj=-. 

dt j=I dt dt 
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Hence the result. That is, the covariant derivative coincides with the usual derivative 

of V if Vis a vector field along a constant curve. 

2.2.5 Definition 

Let M be a differentiable manifold with an affine connection V. A vector field V along 

curve c: / """"7 M with DV = 0, for all t E / is called a parallel vector field. 
dt 

2.2.6 Proposition 

Let M be a differentiable manifold with an affine connection V'. Let c: / """"7 M be a 

differentiable curve in M and let V0 be a vector tangent to M at c(t0 ),t0 E / 

(i.e. V0 E Tc(rol M ). Then there exists a unique parallel vector field V along c, such that 

V (t0 ) = V0 • The vector field V(t) is called the parallel transport of the vector V (t0 ) 

along c. 

2.2. 7 Remark 

If V(t) is a parallel vector field then DV = 0. 
dt 

From equation (2), we have 

i dv j xj + ii dx;vjV X; xj =0. 
j=l dt j =l i=l dt 

n 

(3) 

We put V x; X j = Lr; X k, where r; are differentiable functions on M and are called 
k=l 

the coefficients of the connection V or Christoffel symbols of the connection. 

Then from equation (3), 
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~ dv j x """dx; irk 0 £..i-- i+L..-v ii Xk= 
j =I dt i.j.k dt 

Replacingj with kin the first term, we can obtain 

Since the X k's are linearly independent in T pM, we have 

dvk I j r k dx; = o k i + V .. , = , ... ,n 
dt · · I) dt 

1,) 

(4) 

This is the system of n differential equations in vk (t), which gives a unique solution 

satisfying the initial conditions vk (t0 ) = vi . It then follows that, if V exists, it is 

umque. 

2.3 Riemannian Connection 

Among all possible metric connections, the most important is the Riemannian 

connection (sometimes called the Levi-Civita connection) which is given by the 

fundamental theorem of Riemannian geometry. Before that we need to know the 

following definitions. 

2.3.1 Definition 

Let M be a differentiable manifold with an affine connection V and a Riemannian 

metric ( , ). A connection is said to be compatible with the metric ( , ), when for any 

smooth curve c and any pair of parallel vector fields P and Q along c, we have 

(P,Q) = constant. 
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This definition shows that if V is compatible with ( , ) then we are able to 

differentiate the inner product by the usual "product rule". 

2.3.2 Proposition 

Let M be a Riemannian manifold. A connection V on M is compatible with a metric if 

and only if for any vector fields V and W along the differentiable curve c: I~ M we 

have 

!!._(VW)=(DVW)+(VDW ) tEI 
dt , dt , , dt , (5) 

2.3.3 Corollary 

A connection V on a Riemannian manifold M is compatible with the metric if and 

only if X(Y,Z)= (V xY,Z) + (Y,VxZ), forallX, Y, ZE~(M ). (6) 

2.3.4 Definition 

An affine connection V on a smooth manifold is said to be symmetric when 

V xY-V yX = [X,Y], for all X, YE ~(M ). 

2.3.S Remark 

If V is symmetric then rt = rJ; . 

Since, for an arbitrary function!, 
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( 
a a a a } [X .,X .]J= ------

1 
1 ax. ax . ax ax. 

I J ) I 

- ( a1 ~ -~ a1 ]-o ax. ax . ax . ax. 
I J ) I 

==> [X;, X i ] = 0, for arbitrary function f 

Therefore v' x x }. - v' x X ; = 0. 
' I 

n 

That is L (rt - rf )X k = 0, since X k's are linearly independent. 
k=l 

We are now in a position to state the fundamental theorem of Riemannian geometry. 

If we are going to use geodesics and covariant derivatives as tools for studying 

Riemannian geometry, it is evident that we need a way to single out a particular 

connection on a Riemannian manifold that · is determined by the metric. We 

describe two properties that detennine a unique connection on any Riemannian 

manifold. 

2.3.6 Theorem. ( Levi-Civita ) 

Given a Riemannian manifold M, there exists a unique affine connection v' on M 

satisfying the following conditions: 

(a) v' is symmetric. 

(b) v' is compatible with the Riemannian metric. (Proof, see [DC 2] ) 

Then v' is called the Levi- Civita ( or Riemannian) connection on M. 
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2.3. 7 Remark: Calculating the Christoffel symbols of the Riemannian 

connection in terms of the metric coefficients. 

Take X, Y, Z E ~ (M). 

If v' is compatible then 

X(Y,Z)= (v' xY, Z)+(Y,v' xZ) (7) 

Similarly, Y(Z,X) =(V rZ,X) +(Z, VyX) (8) 

(9) 

Adding (7) and (8) and subtracting (9), then using the symmetry of V, we have 

X (Y,Z) +Y(Z , X)-Z(X ,Y) = (Y,[X ,Z]) +(X ,[Y,Z]) + (V xY, Z) + (Z , V rX) 

Subtracting and adding the term (V r X, Z) in the right hand side, 

X (Y, Z) + Y(Z, X)-Z(X ,Y) = (Y,[X ,Z]) +(X ,[Y,Z]) + (Z,[X, Y]) + 2 (Z, V rX) 

Takino X = X =l_ Y = X =~and Z = X,. =~ 
0 I -:\ , -:\ ' ") 

ox; oxj oxk 

X; ( X j, X k) + X j ( X k, X;) - X k ( X;, X j) = 2 ( X k , V x 
1 
X;) ( 10) 

Since V is symmetric, [X, Z] = [X;, X k] = 0, similarly [Y, Z] = 0 and [X , Y] = 0. 

From equation (10), 
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(11) 

n 

Multiplying equation ( 11) by the inverse matrix g km and noting that Lg kt g km = 8~ 
k=l 

Summing over k, 

"' r / (' km) _ ~ Jk g ki I} km 
n n 1 n{og . a ag .. } 

£..i ij £..igklg -- £..i --+----- g 
l=I k=l 2 k=l OX; ax j axk 

~r18m _ 1 ~{og jk og ki ogij} km 
£_, .. I - - £_, --+----- g 
l=l lj 2 k=l OX; ax j axk 

r m _ 1 ~{og jk ogki og ij } km ( . 0m -I ·f - l) (12) .. - - £..i --+ -- - -- g smce 1 - , 1 m -
I} 2 k=I OX; ax j axk 

This formula provides the ability to compute the Christoffel symbols of the 

Riemannian connection in any coordinate. 

For example, in Euclidean space all g ij 's are constant. Then we have r;7 = 0 . 

Hence from equation (2), 

DV n dvk dV --= :I--X k = - . Therefore the covariant derivative 
dt k=I dt dt 

coincides with the usual derivative in Euclidean space. In Riemannian space the 

covariant derivative differs from the usual derivative by terms which involve the 

Christoffel symbols. 
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2.3.8 Example 

Consider the upper half plane 9t! = { (x, y) E 9t 2
; y > O} with the metric 

I 
g 11 = g

22 
=-

2 
, g 12 = 0, (the metric of Lobatchevski's non Euclidean geometry). We 

y 

can show that the Christoffel symbols of the Riemannian connection are 

2 I 
r1 1 =-, 

y 

I 2 1 
r1 2 = r 22 =--

Y 

Proof: Considering equation ( 11 ), 

f 1 1 { ag jk ag ki ag ij } . . L.rij gkl = - --+----- , where l,j, k= 1, 2 . 
/=I 2 dX; dX j dXk 

Taking i = j = k = 1 and x1 = x, x2 = y, 

1 • dgl l 1 
r l I = Q , SlilCe g 2l = Q and -- = Q , Where g 11 = - 2 dx y 

Similarly, when i = I , j = 2, k = 2 

i = I, j = 2, k = 1 
I 1 

=} r 12 =--
Y 

2 1 
i = 1, j = I , k = 2 =} r11 = -, similarly others. 

y 

On any Riemannian manifold, we will always use the Riemannian connection from 

now on without further comment. · 

' , - . 
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2.4 Geodesics 

Having defined the covariant differentiation along curves, we can now introduce the 

notion of a geodesic as a curve with zero acceleration. 

2.4.1 Definition 

Let M be a manifold with a Riemannian connection V, and 'Y be a curve in M. The 

acceleration of r is the vector field D d"f along y. A curve r is called a geodesic with 
dt dt 

respect to V if its acceleration is zero. 

2.4.2 Remark 

If 'Y: [a ,b] ~ M is a geodesic, then !!:_ ( d"f , d"f ) = 2( D d"f , d"f ) = o. 
dt dt dt dt dt dt 

This implies that ( d'Y , d"f ) = Constant.~ [~ != Ir' (t)I = Constant (c) 
dt dt dtl 

That is, the length of the tangent vector is constant. We assume that Ir' (t)I = c * 0, 

that is, we exclude the geodesics which reduce to points. The arc length s of y, starting 

from a fixed origin, say t = t0 , is given by 

s(t) = J[!:r~ = c(t-to)-
to 

When c = 1, the parameter is actually arc length and Ir' (t)I = 1. In this case we say 

that the geodesic r is normalized. Now we are going to determine the local equations 

satisfied by a geodesic y in a system of coordinates (U, x) about rCto) on M. In U, 

r(t) = (x
1 
(t), ... , xn (t)) will be a geodesic if and only if D d"f = 0, 

dt dt 
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where dy = (dx1 (t) , ... , dxn (t) J· 
dt dt dt 

Using equation (4) of remark 2.2.7 and taking vk = dxk and vj = dxj , 
dt dt 

d
2
xk ~ k dxj dx; _ 

--2- + LJ rij -- - o, 
dt i,j=l dt dt 

where k = l, .. . ,n. (13) 

Next we will discuss a geodesic frame which will also be useful in future situations 

2.4.3 Example: Geodesic frame 

Let M be a Riemannian manifold of dimension n and let p E M. It can be shown 

that there exists a neighborhood U c M of p and n vector fields Ei, ... , En E ~(U), 

orthonormal at each point of U, such that, at p, V E;E j( p) = 0. Such a family E; of 

vector fields is called a (local) geodesic frame at p , where i, j = l, ... ,n . 

Proof: We prove one special case. 

Consider the special case in which E; = ]_ , E j 
dX; 

=~and Ek = ~- i, j, k = l, .. . ,n. 
ax j axk 

For any choices of the indices i and j, we can expand V E; E j in terms of the same 

frame. 

n 

V E,Ej= Ir;Em, 
m=l 

But each term of the right hand side vanishes at each point of U, since E; 's are 

orthonormal at p. 

Therefore r; = 0 . 

Hence V E;E/p) = 0. 

Using a geodesic frame next we are going to obtain the expressions of the gradient of 

a function on Mas a vector field and divergence of a vector field on Mas a function. 
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2.4.4 Example 

Let XE ~(M) andf E O(M). Define the divergence of X as a function div X: M---? 9\ 

given by div X(p) = trace of the linear mapping Y(p) ---? V yX (p), p E M, and the 

gradient off as a vector field grad f on M defined by (grad f(p ), v ) = df P ( v ), where 

p E Mand v E TPM. Let E;, i = 1, ... ,n be a geodesic frame at p E M. We can show 

n n n 
that, gradf(p) = 2)E;(J)E;)(p) and div X(p) = 2,.E;(J;) (p), whereX = 2,.J;E;. 

i=I i=I i=I 

Proof: 

We know that grad f(p) is vector field on M at p, therefore grad f(p) can be expressed 

in terms of basis E1 , ••• , En at p. 

n 

gradf(p) = 2.. ( gradf(p), E)E;(p) 
i=I 

But (gradf(p),E) = dfP( E;) = E;(J)(p) 

n 

Therefore grad f(p) = 2.. ( E; (f) E; )( p) . Hence the result. 
i=I 

For the second part, taking the covariant derivative of X in the direction E; at p. 

n 

V £ X(p) = V £ (" fE;)(p) 
J J £... 

i=I 

n 

= 2.. V £ , (fE; )(p) (using (ii) of definition 2.2.1) 
i=I 

n 

= 2,.(J;V EjE; +E/f;)E;)(p) (using (iii) of definition 2.2.1) 
i=I 

n 

V EjX(p) = 2,.(E/f )E;)(p), (since V EjE;(p) = Oin a geodesic frame). 
i=I 

Considering VE X(p) withj = 1, ... ,n. 
J 

y1 £, X (p) = El (f1 )(p)EI (p) + ................. . +El (fn )(p)En (p) 

y1 £. X(p) = En (f1 )(p)EI (p) + .................... +En (JJ(p)En (p) · 
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Then from the definition of the divergence, div X(p) = trace of this linear mapping 

divX(p) = E 1(f1 )(p)+ .... ... .... ..... ..... ... +En(fn)(p) 

n 

div X(p) = LE;(f;)(p). Hence the result. 
i=I 

a 
If M =~n, with coordinates (x1 , ••• ,x" ) and - = (0, ... ,1, ... ,0) = e; then we can 

dX; 

n dj n df n 

conclude that gradf = L-=-e; and div X(p) = I - ' , where X = L f ;e;. 
i=I dX; i=I dX; i=I 

Since, talcing E; = e; = _i_ and substituting into above expressions we can get the 
dX; 

answer. Again we have the same argument that the grad f and the divergence of X on 

M generalize to the Euclidean space, which are familiar in applied mathematics. 

2.4.5 Example 

Let M be a Riemannian manifold. Define an operator L\: D(M) ~ D(M) (the 

Laplacian of M) by 

L\f = div grad f, Je O(M). 

Let E; be a geodesic frame at p EM, i = l , ... ,n = dim M. 

n 

Then using example 2.4.4, we have t1f(p) = L,.E;(E;( f))(p). 
i=I 

n n 

Since gradf(p) = L (E;(J)E;)(p) = L E;(J)(p)E;(p) 
i=l i=I 

n 

So div gradf(p) = L E;(E; (f))(p) = t1f(p). 
i=I 

As above example if M = ~". L\ coincides with the usual laplacian, namely, 

(since E; = _i_) 
dX; 
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Also we can prove that the following property. 

/:J.(J o g) = f o /:J.g +go !:J.f + 2 (grad f, grad g), where g E D(M'_ 

and / 0 g denotes the product of the functions. 

Proof: 

n 

Using the expression above !:J.f(p) = 'IEJE;(f))(p) and replacingfby f 0 g, 
i=l 

n 

l:J.(fog)(p) = LE;(E;(J o g))(p). (14) 
i=l 

Considering the right hand side and using the property of the directional derivative, 

E; {E;(f o g) }(p) = E; {E;(J (p)) o g(p) + f(p) o E; (g(p))} 

= E; (E; (f (p))) o g(p) + E; (E;(g(p))) o j(p) + 2E; (f (p)) o E; (g(p )) 

Then substituting into equation (14), 

n 

/:J.(f o g)(p) = L {£; (E; (j(p))) o g(p) + E; (E; (g(p))) of (p) + 2£; (j(p)) o E; (g(p )) } 
i=l 

n n 

=g(p)o 2,.E;(E;(f))(p) +j(p) o 2,.E;(E;(g))( p)+ 
i=l i=l 

n 

2 L E;(f (p)) 0 E; (g(p)) 
i=l 

n 

Then using (gradf(p), grad g(p)) = LE;(f(p)) o E;(g(p)), 
i=l 

n n 

!:J.f(p) = LE;(E;(f))(p) and !:J.g(p) = 2,.E;(E;(g))(p) 
~I i~ 

So /:J.(fog)(p) = f(p)o/:J.g(p) + g(p)ol:J.f(p) + 2(gradf(p), grad g(p)). 

=> /:J.(jog) =Jo/:J.g+go/:J.f+2(gradf, gradg). 
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Chapter 3 

Curvature 

3.1 Introduction 

The notion of curvature in a Riemannin manifold generalizes the notion of Gaussian 

curvature of a surface, which was introduced by Riemann. He assumed that the 

curvature of Euclidean space is zero and the curvature of Riemannian manifold is the 

amount that a Riemannian manifold deviates from Euclidean space and introduced the 

idea of the curvature in a rather geometric manner as follows . 

Using the way of defining the principal curvatures of a surface in 9\ 3
, he 

introduced the idea of cutting out curves by intersecting our manifold with planes. He 

thought that the geodesics (curves that are the shortest paths between nearby points) 

are the best tools for this purpose. The brief method of calculating curvature is given 

here. Let p be a point of a Riemannian manifold M. The most fundamental fact about 

geodesics is that given any point p E M and any vector v tangent to M at p , there is a 

unique geodesic starting at p with initial tangent vector v. Let crbe a two-dimensional 

subspace of the tangent space to M at p. Consider all the geodesics through p whose 

initial vectors lie in the selected plane a: It turns out that near p these determine a 

two-dimensional submanifold S" of M, which has a Riemannian metric induced from 

M. Calculate the Gaussian curvature of Ser at p. This gives a number, denoted by 
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K(p,d), called the sectional curvature of Mat p associated with the plane a. Again it is 

a natural generalization of the Gaussian curvature of surfaces. It is clear that if 

M = 9tn, K(p,d) = 0, for all p and a. But Riemann did not explain a way to calculate 

the curvature starting with the metric of M, which was done a few years later by 

Christoffel. 

3.2 Curvature 

This section presents a definition of the Riemannian curvature tensor as a geometrical 

object characterizing the deviation of the Riemannian space from Euclidean space. It 

allows us to compute the sectional curvatures. The behavior of geodesics of 

Riemannian space is largely determined by its curvature tensor. Similarly to the 

Gaussian curvature of a surface, the curvature tensor of a Riemannian space Mat p , 

which is a generalization of the Gaussian curvature, determines the properties of the 

space Min a neighborhood of the point p. Moreover, the curvature tensor gives rich 

information about the global properties of the Riemannian space and its topology. 

3.2.1 Definition 

The curvature tensor R of a Riemannian manifold M is a correspondence it associates 

a mapping R(X, Y): N(M) --t N(M) with each pair of vectors X, YE N(M) given by 

R(X ,Y)Z = Vy V xZ -V XV yZ + v[X.Y]z, Z E N(M) (1) 

where Vis the Riemannian connecton of M. 

We can show that if Mis Euclidean space, 9tn, thenR(X ,Y)Z = 0, X, Y, Z E N(M) 

Let Z = (z 1 , •• • , zn) be the natural coordinates of 9tn, we obtain, 

Differentiating in the direction of Y, 
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V r V xZ = (YX (z1 ), ••• ,YX(zn )) 

Similarly V x V yZ = (XY(z1 ), ••• , XY(zn )) 

We know v[x .nZ = ([X,Y](z,), ... ,[X,Y]CzJ) 

= ((XY-YX)(z1), ••• ,(XY-YX)(zn)). 

Substituting into equation (1), R(X, Y)Z = 0. Therefore we are now able to think of R 

as a way of measuring how much M deviates from being Euclidean space. 

Now we are going to state the properties of the curvature tensor without giving 

proofs, (for the proofs see [DC 2]). 

3.2.2 Proposition 

The curvature tensor R of a Riemannian manifold has the following properties: 

(a) R is bilinear in N(M)x N(M), that is, 

(b) For any X, Y E N(M), the curvature operator R(X ,Y): N(M) -? N(M) 1s 

linear, that is, 

R(X ,Y)(Z + W) = R(X,Y)Z +R(X ,Y)W, 

R(X,Y)fZ = JR(X,Y)Z, jE O(M), Z, WE N(M) 

From now on, we shall write (R(X ,Y)Z,T) = R(X ,Y,Z,T) = (X ,Y,Z,T). The 

curvature tensor on a Riernannian manifold has a number of symmetries. 
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3.2.3 Proposition (Symmetries of the curvature tensor) 

The curvature tensor has the following symmetries for all X, Y, Z, TE ~(M ). 

(a) (X,Y,Z,T)=-(Y,X ,Z ,T) 

(b) (X ,Y,Z,T) = -(X ,Y,T,Z) 

(c) (X,Y,Z ,T) = (Z,T,X,Y) 

(d) (X ,Y,Z,T) + (Y,Z, X ,T) + (Z, X ,Y,T ) = 0. 

The symmetry expressed in (d) is called the algebraic Bianchi identity. 

3.2.4 Remark 

It is convenient to express above identities using a coordinate system (V, x) based at 

the point p E Min terms of components with respect to any basis. 

Let us indicate, as usual , ~ = X ;, i = l , .. . ,n. 
d X; 

n 

We put, R(X;, X j )X k = I, R~k X 1 • Thus R~k are the components of the curvature R. 
l=l 

To express R~k in terms of the coefficients r;; of the Riemannian connection, 

we write R(X .,XJ)Xk = V XV X x k -V X V X xk + v [X-x .]xk 
l J I I J I' } 

Then R(X;,x 1.)Xk = v xv x xk -V xv x x k 
J I I J 

(since [X ;, X)=O). 

n n 

Taking V x,Xk = I,r;~ X1 and V x j Xk = I,rJk X 1 
l=l /=I 

n n 

R c xi , x j ) x k = v x j ( I. r/k x 1 ) - v x. c I. r ;k x 1 ) , 

/=I 1=1 
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Then using the linear property of the Riemannian connection, 

n 

R(X;,Xj)Xk = L,{V x/r;~X1)-V x;(rjkX 1)} 

i=l 

Using (iii) property of definition 2.2.1, 

n 

= L { ex j(r;~ )X1 + ri~ v x
1 
x 1 )-(X;(rjk )X1 + r;k v x;x1)} 

l=I 

Replacing l by s in the first and third terms, 

n 

Taking R(X;,X j )X k = I,Rtk X s, 

s=I 

Since X s 's are linearly independent, then 

This gives the components of the curvature tensor in terms of the Christoffel symbols 

of the connection. 

n n 

Put (R(X;,X j)Xk,xs> = (I,Rtkxi'xs> = I,Rtkgls = Rijks' where g/s = (XI ,XS). 
l=l l=l 
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Therefore, (X;, X j, X k, X s ) = R ijks . Then we can write the identities of proposition 

3.2.3 as: 

(ii) R ;j1cs = -Rijsk 

(iii) R ij1cs = R 1cs;j 

(iv) R;j1cs + R jkis + Rkijs = 0. 

3.3 Sectional Curvature 

The Riemannian curvature tensor, R, is fairly complicated. Therefore we now define a 

simple real valued function which completely determines R. Before that we consider 

the following proposition. 

3.3.1 Proposition 

Let a c TPM be a two-dimensional subspace of the tangent space TPM and x, y E a 

be two linearly independent vectors . Then K (x, y) = (x, y,x, ;) does not depend on 
Ix I\ YI-

the choice of the vectors x, y E a, where Ix A yl
2 = lxl

2 
lyl

2 
- (x, y) 2 . 

Proof: 

Using the symmetry and linearity properties of the curvature tensor in the right hand 

side of the above definition, we can replace the basis { x, y } of a from any other basis 

by iterating the following elementary transformations: 

(a) {x,y}-? {y,x} 

(b) { X, y} -? { AX, y } 
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(c) {x,y} ~ {x+Ay, y } 

It is easy to see that K(x, y) is invariant by such transformations. 

(a) K ( x) = (y,x, y, x) 
y, I 1

2 
YAX 

(x,y,x,y) f ( . . ( rom a) and (b) proposition 3.2.3) 
Ix A Yl2 

= K(x, y) 

(b) C ·ct K ("I-- ) _ (AX,y,AX,y) ons1 er JU, y -
2 IAX ;\ YI 

)}(x,y,x,y) f .. = ---- ( rom (a) and (b) proposition 3.2.2) 
)} Ix" Yl 2 

= K(x,y) 

Similarly we can prove the other result. 

3.3.2 Definition 

Given a point p E M and a two-dimensional subspace a c TPM , the real number 

K(x,y) = K(p,cr) , where {x, y} is any basis of a , is called the sectional curvature of 

aatp. 

The sectional curvature has interesting geometrical interpretations. The following 

lemma shows that the sectional curvatures completely determine the curvature tensor. 
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3.3.3 Lemma 

Let V be a vector space of dimension ~ 2, provided with an inner product ( , ). Let 

R : V x V x V --"""7 V and R 1 
: V x V x V --"""7 V be tri-linear mappings such that 

conditions (a), (b), (c) and (d) of proposition 3.2.3 are satisfied by 

(x, y, z, t) = R(x, y, z, t) = (R(x, y)z, t ), 

(x, y, z,t) 1 = R1 (x, y, z,t) = (R\x, y)z,t) . 

If x, y are two linearly independent vectors, we may write, 

K(cr) = (x,y,x,;), K 1 (cr) = (x,y,x,;7)
1

, where a-is the two-dimensional 
Ix J\ YI Ix J\ YI 

subspace generated by x and y. 

If for all o- c V, K(cr) = K ' (cr), then R(x, y, z, t) =R' (x,y,z,t). (Proof, see [DC 2]) 

The Riemannian manifolds that have constant sectional curvature, which means that 

the sectional curvatures are the same for all planes at all points, played a fundamental 

role in the development of Riemannian geometry. The following lemma shows how 

the constant sectional curvature is related to the curvature tensors Rand R 1
• 

3.3.4 Lemma 

Let M be a Riemannian Manifold and p a point of M. Define a tri-linear mapping 

R': TPM xTPM xTPM --"""7 TPM by 

(R 1(X,Y)W,Z)=(X,W)(Y,Z)-(Y,W)(X,Z), forallX, Y,Z, We TPM . 

Then M has constant sectional curvature equal to K 0 if and only if 

R(X ,Y, W,Z) = K0R 1 (X ,Y,W,Z), where R is the curvature of M. 
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Proof: 

Let K(p ,d) be the sectional curvature of M at p associated with the two-dimensional 

subspace a c T,, M . 

Take K(p,a) = K 0 = constant and set (R ' (X ,Y)W,Z) = (X ,Y, W,Z )1 

We can show that R1 satisfies the proposition 3.2.3. 

Weare given that (X,Y ,W ,Z )' =(X ,W)(Y,Z)-(Y,W)(X ,Z) (2) 

Similarly, (Y,W, X ,Z ) ' = (Y, X )(W, Z)- (W,X)(Y,Z) 

(W , X , Y,Z ) ' = (W, Y)( X ,Z)- (X ,Y)(W,Z) 

Adding all these three equations, 

(X ,Y, W ,Z )1 + (Y, W ,X , Z)' + (W,X ,Y,Z )1 = 0, this proves the property (d). 

- (Y, X ,W,Z )' =-{(Y,W)( X ,Z ) - (X,W)(Y,Z) } = (X ,Y,W,Z ) 1
, property (b). 

Similarly we can prove the other identities. 

Using the equation (2) and replacing W by X and Z by Y, 

(X ,Y , X , Y) ' = (X ,X )(Y,Y) - (X ,Y) 2 

We know that the definition of the sectional curvature, 

Therefore 

K( a ) = K = (X ,Y,X ,Y) 
p , o I 12 X AY 

Then from equation (3), (X , Y, X , Y) = K0 (X, Y, X, Y) 1 
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Using lemma 3.3.3, we can say that(X ,Y,W,Z) =K0 (X ,Y, W,Z) 1
, for all X, Y, W, Z. 

That is, R(X,Y, W,Z) = K 0 R1 (X ,Y,W,Z). Hence the result. 

To prove the converse, assume thatR(X ,Y,X ,Y) = K 0R1 (X ,Y,X ,Y) 

(X ,Y,X,Y) = K 0 (X ,Y, X ,Y) 1 

= K0 IX A Yl 2 
(using (3)) 

Th c K (X,Y,X,Y) K( ) h. h. 1· h Mh . al ere1ore O = 
2 

= p, a , w 1c imp 1es t at as constant section 
IX AYI 

curvature equal to K O • 

3.3.5 Corollary 

Let M be Riemannian manifold of dimension n and p be a point of M. Let 

{e, , .. . ,en} be an orthonormal basis of TPM . Define Rijkl = (R (e;, e ) ek, e1) , where i , j , 

k, l = I, .. . ,n. Then K(p,cr) = K 0 for all a c TrM , if and only 

if, Rijkl = K 0 (8;k 8 j1 -8il 8 jk ) ,where 8 ij = 1 if i = j and 8ij = 0 if i # j. In other 

words, K(p,OJ = K0 for all ac TPM if and only if R . = -R . = K0 , for all i =t:.;·, and 
l)l} IJJI 

Rijkl = 0 in other cases. 

Proof: 

From lemma 3.3.4, R(X ,Y,W,Z) = K 0R1 (X,Y,W,Z) 

Replacing X, Y, W, Z by e;, e j, e k, e1 respectively, 

where 
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Then R ... = K0 = -R .... , if k = i, l =1· and for all i -:t1· 
1)1) 1))1 

We are now taking a Lie group G as the manifold, and obtaining expression for the 

curvature and sectional curvature in terms of left invariant vector fields. Before that, 

we need some preliminary facts about Lie groups. 

A Lie group is a group G with a differentiable structure such that 

the mapping G x G ~ G given by (x, y) ~ xy - 1 ,x, y E G is differentiable. It follows 

that translations from the left L. and translations from right Rx given by 

Rx : G ~ G, Rx ( y) = yx ; are diffeomorphims. 

We say that a Riemannian metric on G is left invariant if 

That is, a Riemannian metric on G is left invariant if Lx is an isometry. Also we say 

that a differentiable vector field X on a Lie group G is left invariant if dLxX = X for 

all x E G. In other words, if ( , ) is left invariant metric tensor on G, then (X,Y) is 

constant for X,Y E N(G) . (see [BO 2]) 

Similarly, we can define a right invariant Riemannian metric. A Riemannian metric 

on G, which is both right and left invariant is, said to be bi-invarant. If G has a bi

invariant metric, the inner product that determines on N(G) satisfies the following 

relation: 

For any U, V, XE N(G), ([U, X], V) = -(U ,[X, V]). (proof see [DC 2]) 

Using all properties mentioned above, we will prove an important formula in terms of 

Riemannian connection. 
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3.3.6 Example 

If X , Y, Z E ~(G) , left invariant vector fields on G with a bi-invariant metric ( , ) 

then v' x X = 0, for all XE ~(G), where v' is the Riemannian connection on G. 

Proof: 

Using remark 2.3 .7, 

2(Z, v' r X) = X (Y,Z) + Y(Z, X)-Z(X ,Y)- ([X ,Z],Y)-([X ,Y],Z)-([Y,Z], X ) 

Replacing Y by X and using the fact that the metric is left invariant, 

(Z , v' x X ) = ([Z, X], X) (inner product is constant so X (Y,Z) = 0 , similarly others) 

Using the fact that the bi-invariance of ( ,) implies that 

(Z , v' x X) = - (Z,[X , X]) = 0 (the property of the bracket, [X, X] = 0) 

It follows that V x X = 0 , for all XE ~ (G), since Z is arbitrary vector field on G. 

Similarly, v' rY = 0, v' 2 Z = 0, for all Y, Z E ~(G). 

3.3.7 Example 

Let G be a Lie group with a bi-invariant metric ( , ). Let X, Y, Z E ~(G) be unit left 

invariant vector fields on G. Then we can prove that the following expressions. 

1 
(a) v' xY=-[X,Y] 

2 

(b) R(X ,Y)Z = .!.ux ,Y],Z] 
4 

( c) If X and Y are orthonormal, the sectional curvature K( OJ of G with respect to the 

plane (j generated by X and f is given by K( O') = _!_ Ir X , Y]I 
2 

• 
4 
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Proof: 

(a) \7 2 Z=0,forallZE ~(G). 

Let Z = fX + gY, where!, g E O(G). 

Then, \7 <fX+gn (fX + gY) = 0 

==> \7 xY + \7 rX = 0 , since \7 x X = 0, \7 rY = 0 andfg -:t= 0. 

1 
==> \7 x Y - -[X , Y] = 0. Hence the result. 

2 

(b) R(X ,Y)Z = \7 y V x Z - \7 XV yZ + v[ x.r l 

= V r (J_[X ,Z])- \7 x (J_[Y,Z]) +J_ [[X ,Y] ,Z] (using the result of (a)) 
2 2 2 

1 1 1 
= -[Y, [X ,Z]]--[X ,[Y,Z]] +-[[X ,Y] ,Z] (using (a)) 

4 4 2 

1 1 1 
=--[[X,Z],Y]+-[[Y,Z], X]+-[[X,Y],Z] (using the property of 

4 4 2 

the bracket, [Y,[X ,Z]]=-[[X,Z] , Y] and [X,[Y,Z]]=-[[Y,Z],X]) 

R(X,Y)Z= J_[[Z, X] , Y]+J_[[Y,Z],X]+J_[[X,Y],Z] (since [X ,Z]=-[Z, X]) 
4 4 2 

Using the Jacobi identity, [[X, Y],Z] + [[Y,Z], X] + [[Z, X] , Y] = 0. 

1 
Then R(X ,Y)Z =-[[X ,Y],Z]. Hence the result. 

4 
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(c) We know, K(a) = (R(X,Y)X,Y) 

IX /\Yl2 

K(a') = (R(X ,Y)X ,Y) (since X and Y are orthonormal,JX /\ Yj
2 = 1.) 

K( a') = ( _!_ [[X, Y], X], Y) (using part (b )) 
4 

But 
I 

(V x V x Y, Y) = (V x (-[X, Y]), Y) (using part (a)) 
2 

I = (-[X, [X, Y]], Y) (using part (a)) 
4 

Using the property of bracket [X, [X, Y]] = -[[X, Y], X], 

I = --([[X,Y],X],Y) 
4 

Also we know that (Y, Y) = I (since Y is a unit vector on G) 

Taking the covariant derivative in the direction of X, 

X(Y,Y) = 0 ==> (V xY,Y) = 0. 

Again taking the covariant derivative in the direction of X, 

X (V x Y, Y) = 0, ==> (V x V x Y, Y) + (V x Y, V x Y) = 0 

1 1 I 
1
2 But (V x Y, V xY) = -([X, Y], [X, Y]) = - [X ,Y] (using part (a)) 

4 4 

Therefore (V x V xY,Y) = _ _!_j[X ,Y]j2 
4 

Then, from (4) ([[X, Y], X],Y) = j[X ,Y]j2 

==> K(a)=_!_j[X,Y]j2. Hencetheresult. 
4 
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Therefore, the sectional curvature K(d) of a Lie group with bi-invariant metric is non

negative and is zero if and only if ais generated by vectors X, Y which commute, that 

is, such that [X ,Y] = 0. 

3.4 Tensors on Riemannian Manifolds 

An extensive technical theory of Riemannian geometry is built up using tensors; 

indeed, Riemannian metrics themselves are tensors. The notion of curvature can be 

expressed in terms of a tensor. The idea of a tensor is a natural generalization of the 

idea of a vector field. Tensors can be differentiated covariantly as vector fields. Thus 

we begin with the basic definitions and properties of tensors on a Riemannian 

manifold. 

3.4.1 Definition 

A tensor T of order r on a Riemannian manifold, M, is a multilinear mapping 

T: ~(M)x .... . . x~(M)-? O(M). 

This means that given Y1 , ... , Y, E ~(M), T( Y1 , ... , Y,), is a differentiable function on M , 

and that T is linear in each argument, that is, 

T(r'; , ... ,JX + gY, .. . ,Y,) = f['(Y1 , ••• , X , ... ,Y,) + gT(r'; , ... , Y, ... ,Y,), 

for all X, YE ~(M) and f, g E D(M). 

3.4.2 Example 

The curvature tensor, R: ~(M) x ~(M) x ~(M ) x ~(M) -? D(M), is defined by 

R(X ,Y,Z, W) = (R(X ,Y)Z,W), for all X, Y, Z, WE ~(M) . 
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Here R is a tensor of order 4, whose components in the frame { X; = l_} associated 
dX; 

with the system of coordinates ( X;) are 

3.4.3 Example 

The metric tensor G: N(M)x N(M) ~ D(M) is defined by G(X ,Y) = (X ,Y), where 

X, YE N(M ) and G is a tensor of order 2. 

n n 

Taking X = I,x;X; and Y = L yiX i, 
i =I j=I 

n n 

G(X,Y) = LLXiy jG(X;,X) 
r= l ; =I 

Therefore using the given definition, it is clear that the components of Gin the frame 

{X;} are the coefficients g ii of the Riemannian metric in the given system of 

coordinates. 

3.4.4 Definition 

Let T be a tensor of order r. The covariant differential VT of T is a tensor of order 

(r+ 1) given by 

VT(Yi,-··,Yr,Z) = Z(T(¥; , ... ,Yr))-T(V zYi, -·· ,Yr)- ... -T(¥; , ... ,Yr-I' V zYr ), 

where y; , ... ,Yr, Z E N(M). For each Z E N(M), the covariant derivative of the tensor 

T relative to Z, V 2 T, is a tensor of order r given by V 2 T(Yi,· ··,Yr) =VT(¥;, ... , Yr ,Z). 

Using this definition, we will show that the covariant differential of the metric tensor 

of a Riemannian manifold is the zero tensor. 
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3.4.5 Example 

Let M be a Riemannian manifold and G be the metric tensor defined 

by G(X, Y) = (X, Y). Then the covariant differential of the metric tensor is the zero 

tensor, for all X, Y, Z E ~(M). 

Proof: 

G is a tensor of order 2. Therefore by definition VG is a tensor of order 3. 

Then using the definition of the covariant differential of the metric tensor G, we can 

write 

VG(X,Y,Z) = Z(G(X,Y))-G(V 2 X,Y)-G(X,V 2 Y) (5) 

Using the definition of the metric tensor, we have 

G(X ,Y) = (X ,Y) 

G(V 2 X,Y) = (V 2 X , Y) 

Then substituting into equation (5), 

VG(X ,Y,Z) = Z(X ,Y)-(V 2 X ,Y)-(X , V 2 Y) 

But Z (X, Y) = (V 2 X, Y) + (X, V 2 Y) , since V is the Riemannian connection. 

VG( X, Y, Z) = (V 2 X, Y) + (X, V 2 Y) - (V 2 X, Y) - ( X, V 2 Y) = 0. 

Hence the result. 

3.4.6 Remark 

Now we will consider a vector field as a special case of a tensor and show that the 

covariant derivative of the tensor is a generalization of the covariant derivative of the 
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vector field. For various reasons, it is convenient to identify the vector field 

XE ~(M) with the tensor X: ~(M) ~ O(M) given by X(Y) =(X,Y), for all 

YE ~(M), where Mis the Riemannian manifold. 

The covariant derivative of the tensor X relative to the vector field Z E ~ (M) is 

V 2 X(Y) = VX(Y,Z) (from definition 3.4.4) 

= Z(X (Y))- X (V 2 Y) (from definition 3.4.4) 

(since X (Y) = (X , Y)) 

Since V is the Riemannian connection 

Hence we can conciude that the tensor V z X can be identified with the vector field 

V z X. This shows that the covariant derivative of a tensor is a generalization of the 

covariant derivative of the vector field. 

3.4.7 Examples related to tensors on Riemannian manifolds 

3.4.7.1 Example 

Let 'Y: [0, l] ~ M be a geodesic and let XE ~(M) be such that X()'(0)) = 0. Then we 

DX 
can show that V 

1 
(R(y', X)-y' )(0) = (R(-y', X 1 

)"(
1 )(0), where X 1 = - . 

dt 

Proof: 

As defined in example 3.4.2, Risa tensor of order 4. The covariant differential VR of 

Risa tensor of order 5 given by 

VR(X ,Y,Z,W,U) = U(R(X,Y,Z,W))- R(V uX,Y,Z,W) -R(X,V uY,Z,W)-
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For each U E ~(M), the covariant derivative V uR of R relative to U is a tensor of 

order 4 given by 

V uR(X ,Y,Z,W) = VR(X, Y, Z, W, U) (using definition 3.4.4) 

Taking X = y' , Y = X, Z = y1 
, W = Z, and U = y', 

So V 1 R(y' , X,y1 ,Z)=v'R(y1 ,X,y1,Z,y1
) 

=y1 (R(y1 ,X, y1 ,Z))-R(V -; y' ,X,y1 ,Z)-R(y1
, v -/ x ,y' ,Z)-

R( y' , X, V -/ y' , Z) - R(y' , X, y', V -/ Z ) 

But we know that y is a geodesic, therefore V-/ y' = 0 so then 

V Y, R(y1 ,X , y' ,Z)=y' (R(y' , X, y' , Z)-R(y1
, V 

1
x, y' , Z )-R(y' , X, y' , V 1z) (6) 

But we have, y' (R( y' , X, y', Z)) = y' (R(y', X)y', Z) (using tensor notation) . 

Taking the covariant derivative in the direction of y' , 

y' (R( y', X, y' ,Z)) = (V -/ (R(y', X)y' ),Z) + (R( y' , X)y', V r' Z ). 

Then substituting into equation (6), 

V 1R(y1 ,X,y1 ,Z)=(V , (R(y1,X)y1),Z)-R(y1
, V _1 X ,y1 ,Z) (7) 

Y Y r 

Also we know that V-/ R(y1
, X, y', Z) is a tensor of order 4. This can be written as 

V 1 R(y1 ,X,y1 ,Z) = V 1 R(y1,Z,y1 ,X) (using(c)of proposition3.2.3). 

= (V 
1

R(y1 ,Z)y1
, X) (using tensor notation). 

Evaluating at t = 0, V-/ R(y1
, X, y1

, Z)(O) = 0. Since, we are given that X(y(O)) = 0. 

Therefore the left-hand side of the equation is zero at t = 0. 
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Substituting into equation (7) and evaluating at t = 0, 

(V i (R(y' ,X)y'),Z)(O) -R(y', V i X, y', Z)(O) = 0 

(V i (R(y1
, X)y' ),Z)(O) -(R(y' , V l X )y', Z)(O) = 0 

(V / (R(y' ' X )y' ), Z)(O) = (R( y' 'V IX) y' ' Z)(O) 
y y 

V i (R(y' , X )y' )(0) = (R( y' , V i X) y' )(0) , for all Z E ~(M) 

V , (R(y' , X )y' )(0) = (R( y', X ' )y' )(O), since X 1 = DX = V .1 X. Hence the result. 
y dt T 

3.4.7.2 Example (Locally symmetric spaces) 

Let M be a Riemannian manifold. Mis locally symmetric space if VR = 0, where R is 

the curvature tensor of M. (The geometric significance of this condition is given in 

exercise 14 of chapter (8) of [DC 2].) We can prove that the following properties in 

locally symmetric space using tensors. 

(a) Let y. [0, /) ~ M be a geodesic of M. Let X, Y, Z be parallel vector fields along y. 

Then R(X, Y)Z is parallel field along y. 

(b) If Mis locally symmetric connected and has dimension two, then M has constant 

sectional curvature. 

(c) If M has constant sectional curvature then Mis locally symmetric space. 

Proof: 

(a) Take X = X(y(t)), Y = Y('Y(t)), and Z = Z(y(t)) 

Then V -IX = 0, Vi Y = 0, V i Z = 0 , since X, Y, Z are parallel vector fields along y. 

D 
We need to prove that -(R(X ,Y)Z) = 0 or V_1 (R(X ,Y)Z) = 0. 

dt 1 
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Let U("{(t)) be any vector field along y. 

VR(X, Y,Z, U,y1(t)) = y'(R(X, Y,Z, U))-R(V YX, Y,Z, U)-R(X,VYY,Z, U)-

R(X, Y, V 1 Z, U)-R(X, Y, Z, V YU) (8) 

Using the fact that X, Y and Z are parallel vector fields, Vy' X = 0, V r' Y = 0, V Y Z = 0. 

Consider R( V 1 X, Y, Z, U) = - R(Y, V 1 X , Z, U) (using (a) of proposition 3.2.3) 

= - R(Z, U, Y, V Y X) (using (c) of proposition 3.2.3) 

Similarly we can show that R(X, V 1Y,Z, U) = 0 and R(X, Y, V y z, U) = 0. 

Then from equation (8) 

VR(X, Y, Z, U, y' (t)) = y' (R(X ,Y,Z,U))- R(X, Y, Z, V YU) 

= y1(R(X,Y)Z,U)-(R(X,Y)Z, V ,U) (usingtensornotation) 
y 

= (V YR(X,Y)Z,U) +(R(X,Y)Z,V YU)-(R(X,Y)Z, V 1U) 

= (V ,R(X,Y)Z,U) 
y 

(9) 

We know that if Mis locally symmetric space then VR = 0. 

Then from (9), (V YR(X ,Y)Z,U) = 0 

Which implies that V YR(X ,Y)Z = 0, for all U E ~(M). 

Hence R(X, Y)Z is a parallel field along y. 
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(b) Let p E M and 'Y(O) = p. Assume that M has dimension two. Then TPM has 

dimension 2. 

Let {e,, e2 } be a orthonormal basis of TPM and e; (t) be the parallel transport of e; 

along y, for i = 1,2. Therefore V r' e, (t) = 0, V r' e2 (t) = 0 

Using definition 3.4.4 and the fact that e, (t), e2 (t) are parallel vector fields, 

v'R(e1 (t),e 2 (t),e1 (t),e2 (t), y' (t)) = y' (t)(R(e1 (t),e2 (t),e1 (t),e2 (t))) 

= 'Y1 (t)(R(e1 (t),e2 (t))e1 (t), e2 (t)) (tensor notation) 

= (V r' (R(e, (t), e2 (t))e1 (t), e2 (t)) (since V r' e2 (t) = 0) 

But Mis locally symmetric space, then V R(e1 (t ), e2 (t) , e1 (t), e2 (t), y
1 (t )) = 0 

Therefore (V , (R(e 1 (t), e2 (t))e1 (t) , e2 (t)) = 0 
'Y 

Let K(t) be the sectional curvat1.1 re of Mat 'Y(t). 

K(t) = R(e, (t), e2 (t), e1 (t), e2 (t)) 

le, (t) /\ e2 uf 

(10) 

Then K(t) = R(e1 (t), e2 (t), e1 (t), e2 (t)) (since le1 (t)I = I,le2 Ct)!= 1) 

= (R(e, (t),e2 (t))e1 (t),e2 (t)) (using tensor notation) 

Differentiating both sides with respect to t, 

K 1 (t) = (\7 r' (R( e1 (t), e2 (t))e1 (t), e2 (t)) + (R( e1 (t), e2 (t))e, (t), V r' e2 (t)) 

Using equation (10) and V 1 e2 (t) = 0 

So K' (t) = 0. Thus K(t) is constant. Hence the result. 
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(c) If M has constant sectional curvature K0 then using lemma 3.3.4, 

R(X, Y, W, Z) = (R(X, Y)W, Z> = K 0 ((X, W')(Y, Z) - (Y, W')(X, Z)) (11) 

Take VR(X, Y, W, Z, T) = T(R(X, Y, W, Z))-R(V TX ,Y, W, Z)-R(X, V Ty ,W, Z)

R(X, Y, V TW, Z) -R(X, Y, W, V Tz) (from definition 3.4.4) (12) 

Consider T(R(X, Y, W, Z)) = T( K 0 ((X, W')(Y, Z) - (Y, W')(X, Z))) (from (11)) 

T(R(X, Y, W, Z)) = K 0 {T((X, W')(Y, Z))- T((Y, W')(X, Z))} 

T(R(X,Y,W,Z)) = K0 {((VTX ,W')+(X,VTW))(Y,Z)+(X, W')((VTY,Z)(Y, VTZ)) 

-((V Ty ,W') + < Y, V Tw ))(X, Z>- (Y, W)((V TX ,Z) + (X, V Tz ))} 

Using (11), we can write 

R(V TX, Y, W, Z) = (R(V TX ,Y)W, Z) =K0 ((V TX ,W)(Y, Z)- (Y, W')(V TX,Z)) 

R(X, V TY, W, Z) = (R(X, V Ty )W, Z) =K0 ((X, W')(V Ty ,Z)- (V Ty ,lV)( X, Z)) 

R(X, Y, V TW,Z) = (R(X,Y)V TW ,Z) =K0 ((X, V TW )(Y, Z)-(Y, V TW)(X,Z)) 

R(X, Y, W,VTZ)=(R(X,Y)W,VTZ)=K0 ((X, W')(Y,VTZ)-(Y, W)(X,VTZ)) 

Substituting all these relations into (12), VR(X, Y, W, Z, T) = 0. 

Hence if M has constant sectional curvature then Mis locally symmetric space. 
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Chapter 4 

Jacobi Fields 

4.1 Introduction 

A good part of the study of Riemannian geometry consists of understanding the 

relationship between geodesics and curvature. A basic tool for this is Jacobi fields 

which are vector fields along geodesics on manifolds. Before defining Jacobi fields , 

we need to study the collective behavior of geodesics. For this, we introduce the 

exponential map of an open set in the tangent bundle to the manifold, which is a way 

of collecting all of the geodesics of the manifold into a unique differentiable mapping. 

The exponential map provides a map from the tangent space of any given point of the 

manifold to the manifold itself, in which lines spreading from the origin of the tangent 

space are mapped to geodesics in the manifold. The properties of the exponential map 

are useful to the further study of Riemannian geometry. Using the exponential map, 

we next introduce Jacobi fields, which are vector fields along geodesics, defined by 

means of a differential equation. We then introduce the notion of conjugate points, 

which are pairs of points along a geodesic where some Jacobi field vanishes. 
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4.2 The Exponential Map 

4.2.1 Definition 

Let M be a smooth Riemannian manifold. The exponential map, exp P , at a point p in 

M maps the tangent space TPM into M by sending a vector v in TPM to the point in M 

a distance lvl along the geodesic from p in the direction v. 

Thatis, expp: TPM ~Mis defined by expP(v)=yv(l) , where 'Yv denotes the unique 

geodesic of M with initial velocity v. 

We also write exp P (v) as exp P (v) = exp(p, v) = -y(l, p , v) , for fixed p, where ( p, v) is 

a point of TM(tangent bundle). Then as (p , v) is a point of TM, the change of notation 

to exp(p , v) shows exp as a mapping from a region of TM to M. 

Using the fact that the homogeneity of a geodesic, that is, if the geodesic y(_t, p , u) is 

defined on the interval (-8, 8), 8 > 0, then the geodesic y(_t, p, au), a E 9Z , a> 0, is 

defined on the interval (-
8 . ~ ) and y(_at, p, u) = y(_t, p, au), and taking t = 1, a = lvl 

a a 

and u = 
1

:

1

, we can write, Y(lvl, p, 
1

:

1

) = y(l, p, v) . Roughly, it says that the point, one 

unit along the geodesic through p with initial velocity v is also the point, lvl units 

along the geodesic through p with initial velocity 
1

:

1 

. Therefore the definition of the 

exponential map depends on the existence and uniqueness of a geodesic through p 

with initial velocity v. One consequence of the homogeneity condition is that -y(l, p , v) 

is only guaranteed to be well defined for v near zero in TPM , so exp is only defined 

on an open subset of TPM . 

Let U c TM be an open set. Then the map exp : U ~ M given by 

exp(p,v)=expP(v) =-y(l,p,v) =r(lvl,P,
1

:

1

), where (p,v)EU, is 

exponential map on U. 
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Geometrically, exp P (v) is a point of M obtained by going out the length equal to 

lvl, starting from p, along a geodesic which passes through p with velocity equal to 

1

:

1 

. If v = 0 then exp P (0) = p. In most of the applications, we shall use the restriction 

of exp to an open subset of the tangent space TPM . 

where BE (0) is an open ball with center at the origin O of TPM and of radius £. 

4.2.2 Remark 

Suppose that there exists a unique geodesic y. [0,1] ~ M such that y(0) = p, y1 (0) = v. 

Then the point y(l) E M will be denoted by exp P (v). The geodesic can be described 

by the following formula. 

=y(l,p,v), 

and y(t) = y(t, p, v) 

=y(l,p,tv) (using the homogeneity of a geodesic) 

So y(t) = exp P (tv) 

This is the parametric equation for the unique geodesic with y(0) = p, y' (0) = v. 

This implies that y(0) = exp P (0) = p and y( 1) = exp P ( v ). 
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4.2.3 Proposition 

Given p E M, there exists an £ > 0 such that exp P : BE (0) c TPM ~ M, is a 

diffeomorphism of BE (0) onto an open subset of M. 

Proof: 

Let (d exp P ) 0 be the differential of the function exp P evaluated at t = 0. Now we are 

going to show that (d exp P ) 0 is the identity map. 

(dexpP)0 (v) = ~(exp P(tv))j 
dt t=O 

= y' (t, p, v>lr=0 

= y' (0) 

= V. 

Hence (d exp P )0 is the identity map of TPM , and it follows from the inverse 

function theorem [DC 1, page 131] that exp P is a local diffeomorphism on a 

neighborhood of 0. 

We shall use the following notation. 
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4.3 The Jacobi Equation 

Let M be a Riemannian manifold and let pE M. Let s ---? v(s), s E (-£, £), be a 

parameterized curve in TPM such that v(0) = v and v1 (0) = w. 

Consider the parameterized surf ace, 

f: A---? M, A= { (t,s); 0::; t::; 1, -£ < s < £ } given by 

f(t, s) =expP tv(s). 

The mappingfis differentiable, and the curves t ---?fs(t) =f(t,s)= expPtv(s) are 

geodesics, where fs(t) ( = exp P tv) are functions oft ( each fixed s). 

Consider the curves---? tv(s) of TPM and the tangent vector to this curve at s = 0 is 

a 
- (tv(s))I 

O 
= tv 1 (0) = tw (since / (0) = w) OS s= 

Then we can say that tw E Trv<o/TPM). That is, tw E T,..,(TPM ). (since v(0) = v) 

That is, (since 'Y(t) = exp P (tv)) 

Hence (d exp P) rv (tw) is a vector field along the geodesic 'Y(t) = exp P (tv ), 0 ::; t $ 1. 

Consider f (t, s) = exp P (tv(s)) 

Differentiating both sides with respect to s, 

= (d exp P )rv<s/tv
1 
(s)) 

Evaluating at s = 0, aJ I as (t,O) = (d exp P )rv<o/tv (0)) 
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dj (t,0) = (d exp P )rv (tw) (since v 1 (0) =wand v(0) = v) 
dS 

Therefore dj (t,0) is a vector field along y(t) and which is the tangent vector to the 
dS 

curvej,(s) at s = 0, wherej,(s) (=expP tv(s)) are functions of s (each fixed t). 

Let dj (t,0)=(dexpp)rv(tw)=l(t). 
dS 

(1) 

It can be shown that J(t) satisfies the Jacobi equation 
D2J 

-
2 

+ R(y' (t),J(t))y' (t) = 0. 
dt 

Since y is a geodesic, ~ it = 0, for all (t, s), where y(t) = f s (t) = exp P (tv) . 

Differentiating with respect to s, 

D (D dj J=O 
dS dt dt , 

(2) 

Using the following lemma, we can show that this result can be linked with the 

curvature R. 

Lemma ([DC 2], page 98) 

Let f A c 9\ 2 ~ M be a parameterized surface and let (s, t ) be the usual coordinates 

of 9\ 2
. Let V = V(s ,t) be a vector field along f For each (s,t),it is possible to 

define R( dj , dj \, as follows . 
dS dt} 

D !!_ V _ D D V = R( dj dj \, 
dt dS dS dt dS , dt } 

Now we replace V by dj , 
dt 

D D dj _ D D dj = R(df dj ~ 
dt dS dt dS dt dt dS , dt ) dt 

---= R -,- - (usmg equation (2)) D D dj (dj dj Jdj . . 
dt dS dt dS dt dt 

(3) 

Again considering the following lemma ([DC 2] page 68), which says that if M is a 

differentiable manifold with a symmetric connection and f: Ac 9\ 2 ~ M is a 

parameterized surface then: 

Ddj Ddj 
--=--
dS dt dt dS 
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Substituting into (3), 

D D dj _ R( dj dj Jdj = O 
dt dt ds ds ' dt dt 

D D dj + R(df, dj Jdj = O, (using (a) of proposition 3.2.3) 
dt dt ds dt ds dt 

D2J 
Evaluating at (t,O), -

2
-+ R(y1 (t), J (t))y1 (t) = 0. 

dt 

Since y(t) = exp P (tv) 

Then 

= exp P (tv(O)) (since v(O) = v) 

= f (t,O) 

"(I (t) = dj (t,0) 
dt 

(4) 

Equation (4) is called the Jacobi equation and J(t) is an example of a Jacobi field. 

4.3.1 Definition 

Let y: [O,a] ~ M be a geodesic in M. A vector field J along y is said to be a Jacobi 

field if it satisfies the Jacobi equation ( 4 ), for all t E [O, a]. 

4.3.2 Remark 

We can show that there are two trivial Jacobi fields along any geodesic which are 

"(
1 (t) and ty1 (t). 

Proof: 

Let J(t) = "(1 (t). Then DJ = D (y1 (t)) = 0. (since y is a geodesic) 
dt dt 

Also R(y1 (t), J (t))y1 (t) = R(y1 (t), y1 (t))y1 (t) = 0 

Hence y1 (t) satisfies (4). Thereforey1 (t) is a Jacobi field. Similarly taking 

J(t) = ty1 (t), we can show that ty1 (t) is also a Jacobi field. The first field (y1 (t)) has 

zero derivative and is not equal to zero for all t. The second field (ty1 (t)) is zero if 

and only if t = 0 and ty1 (t) * 0 for all t * 0. Therefore for the second field we cannot 

consider the case where Jacobi fields vanish fort* 0. In order to avoid these facts , we 

shall consider Jacobi fields along y that are normal to y1 (t). 
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That is, (J(t), y' (t)) = 0. 

We can also show that J(0) = 0. 

From equation (1), J(t) = (d expp)rvtw 

So J (0) = (d exp P ) 0 0 = 0. (from, proposition 4.2.3, (d exp P ) 0 is the identity map) 

4.3.3 Example 

Let y [0,a] ~ Mbe a geodesic in Mand J(t) be a Jacobi field along ywith J(0) = 0, 

(J 1 (0), y' (t)) = 0 . Then (J (t), y' (t)) = 0 for allt E [O, a]. 

Proof: 

Since y(t) is a geodesic, ''((t ) = 0, where y"(t) = D (y' (t)). 
dt 

Consider !!:._(J(t),y' (t)) =(J(t),y"(t))+(J '(t), y' (t)), where J 1(t)= DJ. 
dt dt 

Then !!:_(J(t), y' (t)) = (J ' (t), y' (t)), (since -y"(t) = 0) 
dt 

(5) 

Similarly, !!:._(J , (t), y' (t)) = (J"(t), y' (t)), where J"(t) = D
2 ! . (6) 

~ ~-

Since J(t) is a Jacobi field and using the Jacobi equation, 

D2J 
-

2
- + R(y' (t),J (t))y' (t) = 0. 

dt 

Taking the inner product with y' (t), 

(J"(t), y' (t)) + (R(y' (t), J (t))y1 (t), y' (t)) = 0 

Using part (c) of proposition 3.2.3 and definition 3.2.1, 

(R(y' (t), J (t))y1 (t), y' (t)) = (R(y' (t), y' (t))y' (t), J (t)) = 0 

Then, (J"(t), y' (t)) = 0 

Using (6), !!:._(J , (t), r' (t)) = 0 => (J' (t), y' (t)) = constant. 
dt 

But we are given that (J' (0), y' (0)) = 0. Therefore (J' (t), y' (t)) = 0. 

From(5), !!:._(J(t),y1 (t)) =0,=> (J(t),y'(t)) =constant. 
dt 

But J(0) = 0, so (J (0), y' (0)) = 0, 

Therefore, (J(t), y' (t)) = 0, for all t E [0,a]. Hence the result. 
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4.3.4 Remark 

We can also show that a Jacobi field J along the geodesic, 'Y, with J(0) = 0 can be 

written as J (t) = (d exp P) r/ <0/tl 
1 (0)), for all t E [0, a]. 

Proof: 

We have J(t)=(dexpp),)tw) 

DJ(t) D 
Then~= dt ((dexpp)rv(tw)) 

(from (1)) 

D 
= -(t(d exp P )rv (w)) (from linearity of the operator d exp P) 

dt 

. DJ(0) 
Evaluatmg at t = 0, -- = (d exp P ) 0 (w) = w (since (d exp P ) 0 is the identity map) 

dt 

:::::} 1 1 (0) = w. 

Also we know "((t) = exp P (tv), where r' (0) = v. (from remark 4.2.2) 

Substituting into ( 1 ), J (t) = ( d exp P) r/ <OJ (tl 1 (0)) . Hence the result. 

4.4 Jacobi Fields on Manifolds of Constant Curvature 

4.4.1 Example 

Let M be a Riemannian manifold of constant sectional curvature K, and let 

'Y : [0,l] -? M be a normalized geodesic on M and J be a Jacobi field along "(, normal 

to "(1 (t). We can show that the Jacobi equation can be written as D
2

; +Kl= 0 and 
dt 

J(t) = sin(rlK)w(t)/--JK, if K> 0, 

= tw(t), if K = 0, 

= sinh(rl-K)w(t)/--J-K, if K < 0, 

is a solution of the Jacobi equation with initial conditions 1(0) = 0, J 1 (0) = w(0), 

where w(t) is a parallel field along 'Y with (r' (t), w(t)) = 0 and lw(t)I = 1. 
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Proof: 

Using lemma 3.3.4 and replacing X by y' (t), Y by J(t), Wby y' (t) and Z by T, where 

Tis a arbitrary vector field along y . 

(R( y' (t),J(t)) y' (t), T> = K { (y' (t), y' (t))(J (t), T) - (J (t), y' (t))( y' (t), T)}, where 

R is the curvature tensor of M. 

(R( y' (t),J(t)) y' (t), T> = K(J(t) , T), since (y' (t), y' (t)) = 1 and (J(t), y' (t)) = 0 

Therefore R( y' (t ), J(t)) y' (t) = KJ(t), for all vector fields T along y. 

Then from the Jacobi equation, D 
2 1?) + Kl (t) = 0. Then it is easy to verify that 
dt 

above given solutions do satisfy this differential equation. 

4.5 Conjugate Points 

4.5.1 Definition 

If y is a geodesic segment joining p, q E M, q is said to be conjugate to p along y if 

there exists a Jacobi field J along y vanishing at p and q but not identically zero. The 

maximum number of such linearly independent fields is called the multiplicity of the 

conjugate point q. We can observe that if q is conjugate top then pis conjugate to q. 

4.5.2 Example 

Let S n = { X E 9\ n ; lxl = 1 } . 

In this example we assume the fact that the sectional curvatures of sn are equal to 1. 

The Jacobi field on Sn given example 4.4.1 is J(t) = sin(t)w(t). Then J(O) = J(rc) = 0. 

Therefore, along any geodesic')' which is a great circle of Sn, the antipodal point y(rc) 

of y(0) is conjugate to y(0). 

4.5.3 Example 

Let b < 0 and let M be a manifold with constant negative sectional curvature equal to 

b. Let 'Y: [0,a] ~ M be a normalized geodesic, and let vE T (M) such that 
y(O) 

(v, y' (a))= 0 and lvl = 1. Since M has negative curvature, y(a) is not conjugate to y(0) 
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(see, example 4.5.5). We can show that the Jacobi field J along y determined by 

J (0) = 0, J(a) = vis given by 

sinh(t-J-b)w(t) . 
J(t) = r-;- , where w(t) 1s the parallel transport of the vector 

sinh(a-v-b) 

Uo I 
w(O) = luol along y. u0 = (d exp P )~co/v) , where u0 is considered as a vector in 

T1<0lM by the identification T1<0lM z T tr!co) (T1<0>M). 

Proof: 

From example 4.4.1, the Jacobi field J 1 along y satisfying J 1 (0) = 0, 

J ' (O) = (O) = u0 . 0 . b J () = sinh(tH)w(t) 
1 w I I ' 1s b1ven y I t r-;-

u0 -v-b 
(7) 

Using remark 4.3.4 and replacing t by a, 

J , (a) = (d exp P) tr! co/aw(O)) 

= (d exp,)""'°' ( lu:1 ) (since w(O) = 
1

::

1 

) 

From (8), 

Using the theorem in [PMM], which says that if two points t0 and t1 are not conjugate, 

then for arbitrary vectors v E Ty<rol M and u E T1<
11 
lM , there exists one and only one 

Jacobi field, such that J (t0 ) = v, J (t,) = u , we can conclude that 

aJ(t) 
J 1 (t) = ~, for all O $ t $ a. 

Substituting into (7), 

sinh(t..,J-h)w(t) 

H = 
al(t) 

~ 
ju0 j sinh(t..,J-h)w(t) 

J(t)= r-;-
a-v-b 
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But we are given that J(a) = v =} ll(a)I = lvl = 1 

Therefore from (9), 

I I 
lu0 lsinh(a-H)jw(a)I 

J (a) = '---'----------,=--'----'- = 1 
a-J-b 

luol H 
=} - =---- (since lw(t)I = 1) 

a sinh(a-H) 

Substituting into (9), 
sinh(t-H)w(t) 

J(t) = r---;- . Hence the result. 
sinh(av-b ) 

4.5.4 Definition 

The set of (first) conjugate points to the point p E M, for all the geodesics that start at 

p, is called the conjugate locus of p and denoted by C(p ). 

For example, on S" , C(p) = {- p}, for all p. 

4.5.5 Example 

Let M be a Riemannian manifold with non positive sectional curvature. Then the 

conjugate locus C(p) is empty, for all p . 

Proof: 

Assume that there exists a non trivial Jacobi field, J(t), along the geodesic 

"I: [0 ,a] ~ M with "/(0) = p , J(0) = J(a) = 0. Let K(p,d) be the sectional curvature of 

Mat p with respect to the plane,a; generated by y1 (t) and J(t), 

where K(p,cr) = (R(y' (t),J(t) )y' (t~,J(t)) and (y' (t ), J(t)) = 0. 

Ir' (t) A J Ct)I 
But K(p,d) $ 0, so (R(y' (t), J(t))y' (t), J(t)) $ 0 

Using the Jacobi equation and taking the inner product with J, 

D2 J(t) 
( 

2 
,J(t)) + (R(y' (t),J(t))y1 (t), J(t)) = 0 

Therefore 

dt 

(D2 J?) ,J(t)) "?. 0 
dt 

(using (10)) 

Consider .!!:_(DJ(t) ,J(t)) = (D
2 

J(t), J(t)) + (DJ(t), DJ(t)) 
dt dt dt 2 dt dt 
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!!:._<DJ(t) ,J(t)) = <D
2
J(t) ,J(t))+IDJ(t)I' ::,o 

dt dt dt 2 dt 
(using (11)) 

!!:._(DJ(t) ,J(t)) ~ 0 
dt dt 

Take T(t) = (DJ(t), J (t)) => T(0) = 0, T(a) = 0. (since J(0) = J(a) = 0) 
dt 

Hence dT(t) cannot be positive for all t E [O, a] . 
dt 

It means that T(t) = constant for all t E [0,a]. 

That is, T(t) = T(O) = T(a) = 0 =>T(t) = (DJ(t) ,J(t)) = 0. 
dt 

Consider !!:._(J(t),J(t)) = 2(DJ(t) ,J(t)) = 0 (using (12)) 
dt dt 

Therefore (J(t) , J(t)) = constant, => jJ (t)j2 = constant. 

(12) 

=> jJ(t)J2=0 (since j1co)j2 =Jl(a)J2 =0) 

=> J(t) = 0, for all t E [0 ,a] 

This contradicts the fact that J is a non zero Jacobi field along the geodesic y with 

1(0) = J(a) = 0. No non-trivial Jacobi fields . That is, the conjugate locus C(p) is 

empty. 

4.5.6 Example. Jacobi fields and conjugate points on locally 

symmetric spaces 

Let y: [0,oo)---? M be a geodesic in a locally symmetric space Mand let v = y' (0) be 

its velocity at p = y(O). Define a linear transformation K " : TPM ---? TPM by 

K)x)=R(v,x)v, where xe TPM 

Then we can prove that the following properties are true in a locally symmetric space. 

(a) Kv isselfadjoint. 

(b) Choosing an orthonormal basis {e1 , ••• ,en} of TPM that diagonalizes Kv, that is, 

and extending the e; to fields along yby parallel transport, then 

K-/c,/e;(t)) = A;e;(t), for all t, where A; does not depend on t. 
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n 

(c) Let J(t) = Lx;(t)e;(t) be a Jacobi field along y. Then the Jacobi equation is 
i=I 

d 2x. 
equivalent to the system, -

2
-' + A;X; = 0, 

dt 
i = l , ... ,n. 

(d) The conjugate points of p along y are given by y(rck / ji:";), where k is a positive 

integer and A; is a positive eigenvalue of K v • 

Proof: 

(a) (Kv(x), y) = (R(v,x)v, y), for all x, y E TPM. 

= (v, x, v, y) (from tensor notation) (13) 

and (x, K '" (y)) = (x, R(v,y)v) 

= (R(v, y)v,x) 

=(v,y,v,x) 

=(v,x,v,y) 

( Kv(x), y) = (x,Kv(y)) 

(using part(c) of proposition 3.2.3) 

(using (13)) 

That is, K ,. is self adjoint. 

orthonormal basis of Tr<rlM . 

Taking covariant derivative of y' (t) in the direction of y' (t), 

Dy' (t) = a ', (t)e, (t) + ........... +a' (t)e (t) 
dt n n 

Since e .(t) 's are parallel vector fields so De;(t) = O,i = 1, ... ,n 
I & 

~ a~ (t)e, (t) + ............. +a: (t)en (t) = 0, (since y is a geodesic) 

~ a ; (t) = 0, ... , a: (t) = 0. (since e; (t) 's are linearly independent ) 

~ a,(t)=constant, ... ,an(t) =constant 

Therefore, y' (t) = a 1e1 (t) + ............ + anen (t) 

Using the definition of K v (x) = R(v, x)v, we can write 

K-.; Cr) (e; (t)) = R(y' (t), e; (t))y1 
(t). 
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n n 

K i<tJ (e;(t)) = R(I,akek(t),e;(t))I,a je/t) 
k=I j=I 

n 

= I,aka jR(e*(t) ,e;(t))e j (t) (usingthelinearityofR) 
k.j 

Taking the covariant derivative in the direction of y' (t) , 

DK1 <
1
/e; (t)) ~ DR(ek(t),e; (t ))e/t) . 

--'------= L.Jaka j _____ ....:....._, (smce a *, a j 's are constants) 
dt k. j dt 

= 0 (since, in a locally symmetric space, from example 3 4.7.2 (a)) 

Therefore K icr/e;(t)) is a parallel vector field along y. That is, K1(r/e;(t) ) is the 

parallel transport of Kico/e;(O)) alongy. 

==> K ico/e;(O))=Kv(e;) =A;e;, where e; =e;(O). 

ThereforeK1c
0
/e;(O)) = A;(O)e;(O) 

That is, K 
1 

cr/e; (t)) = A; (t)e;(t). for all t. (since K i <r> (e; (t)) is a parallel vector field) 

Taking the inner product with e; (t), 

(Kic)e;(t)),e;(t)) = (A;(t)e;(t),e; (t)) 

= A;(t)(e;(t),e; (t)) 

= "- ;(t ) 

Taking the directional derivative of (14) in the direction of y' (t), 

y' (t )(K r<r> (e; (t)),e; (t)) = y' (t)(A; (t)) 

(14) 

==> '}..;;(t)=O (since K 1c
1
/ e;(t)) and e;(t) are parallel fields) 

==> "-; (t) = constant. That is, A; (t) does not depend on t. 

Therefore Kicr/e;(t)) = A;e;(t), for all t. Hence the result. 

n 

(c) Take J(t) = I, x;(t)e;(t) (15) 
i=I 

Taking the covariant derivative in the direction of y' (t), 

DJ(t) n d.x .(t) . 
--= L ' e;(t) (smce e;(t) 's are parallel vector fields) 

dt i=I dt 

Again taking the covariant derivative in the direction of y' (t), 
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n 

Consider R(y1 (t),J(t))y1 (t) = R(y1 (t), LX; (t)e; (t))/ (t) (using (15)) 
i=l 

n 

= LX; (t)R(y1 (t),e;(t))y1 (t) (from linearity of R) 
i=l 

n 

= LX;(t)Kr'c,/e;(t)) (from the definition of Kv) 
i=l 

n 

= LX;(t)A;e;(t) (from part (b)) 
i=l 

Using the Jacobi equation, 

d 2 X; '\ ( ) 0 . 1 
-

2
-+ 11., .x . t = , i = , ... ,n 

dt I I 

(sincee; (t) 's are linearly independent) 

The auxiliary equation is r 2 + A; = 0. w 

The general solution is X; (t) = A cos( At) + B sin( At ), where A and B are 

constants, where A; > 0. 

When t = 0, J(O) = 0. Therefore X; (0) = 0 ~ A = 0. 

x ; (t) = B sin(.f(t) 

Let y(t0 ) be the conjugate point of -y(0). That is, J (t0 ) = 0, where t0 ct 0. 

Therefore x;(t0 ) = 0 (using (15)) 

~ sin( .f(t0 ) = 0 (from the general solution of the auxiliary equation) 

.f[';t0 = k:Tc, k = 1, . .. ,n, where k ct 0, since if k = 0 then t0 = 0. 

Thus,t0 = J;;- So -y(t0 ) = {;;)-Hence the result. 
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Chapter 5 

Riemannian Submanif olds 

5.1 Introduction 

In this chapter, we shall consider the immersion of a manifold Minto a Riemannian 

manifold ( M , g ), and examine the structures on M induced from the given structure 

on M . This is a natural generalization of the study of surfaces in Euclidean three

dimensional space with properties induced from the Euclidean metric, which was the 

origin of the classical theory of surfaces. We first develop the basic concepts of the 

theory of Riemannian submanifolds and then define a tensor field called the second 

fundamental form, which measures the way a submanifold curves within the ambient 

manifold. We next prove the fundamental relationships between the intrinsic and 

extrinsic geometries of a submanifold: The Gauss formula relates the Riemannian 

connection on the submanifold to that of the ambient manifold, and the Gauss 

equation involving the second fundamental form relates their curvatures. Using these 

facts, we focus on the special case of hypersurfaces in 9t"+1
, and show how the 

second fundamental form is related to the principal curvatures and Gaussian 

curvature. Finally we compute the sectional curvatures of our model Riemannian 

manifolds- Euclidean spaces, spheres, and hyperbolic spaces. 
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5.2 The Second Fundamental Form 

5.2.1 Definitions 

Suppose ( M , g ) is a Riemannian manifold of dimension m = n + k, M is a manifold 

of dimension n, let f: M ~ M be an immersion. If M is given the induced 

Riemannian metric g such that g(u, v) P = g(df/u ),df P (v)) f<Pl , for all p e M, and 

u, v E TPM, then/ is said to be an isometric immersion of Minto M. 

If in addition f is injective, so that Mis an immersed submanifold of M , then M is 

said to be a Riemannian submanifold of M . In all of these situations, M is called the 

ambient manifold. 

At each p e M , the ambient tangent space TP M splits as an orthogonal direct sum 

TPM = TPM © (TPM) .l ' 

where (TPM ).1 is the normal space at p with respect to the inner product g on TP M . 

If v e TPM , p e M, we can write, v = vT + vN , where v7 e TPM and vN E (TPM l . 

vT and v N are called the tangential and normal components of v respectively. 

Consider the following example. 

5.2.2 Example 

As defined before, assume that M has the metric induced by f Let p e M and 

V c M be a neighborhood of p such thatf(V) c M is a submanifold of M. Further 

suppose that X, Y and Z are differentiable vector fields onf(V) which can be extended 

to differentiable vector fields on an open set of M. 

Define (v' x Y)( p) = tangential component of (v' x Y)( p ), 

where v' is the Riemannian connection of M. Then we can prove that v' is the 

Riemannian connection of M. 

Proof: 

We know that v' is the Riemannian connection on M . Therefore from the Levi

Civita Theorem it suffices to show that v' is symmetric and compatible with the 

Riemannian metric induced by f 
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To see that V is symmetric, we use the symmetry of V and the fact that [X ,Y] IS 

tangent to M. 

V x Y - V r X = (V x Y) T - (V r X l, at p. (using the given definition) 

= (V x Y - V r X l, at p. 

= [X ,Y]T (using the symmetry of V) 

= [X ,Y] ~Vis symmetric. 

To prove compatibility, we use the compatibility of V and evaluate at points of M 

X(Y,Z)=(v'xY,Z)+(Y, VxZ) 

= ((V xY)T, Z) + (Y, (V xZl ), atp, where Y, Z E TPM . 

= ( V x Y, Z) + (Y, V x Z) (using the given definition) 

Therefore V is compatible. Hence V is the Riemannian connection on M. 

5.2.3 Remark 

Our first main task is to compare the Riemannian connection of M with that of M . 

The starting point for doing so is the orthogonal decomposition of sections of the 

ambient tangent bundle over M, lJ TP M , into tangential and orthogonal components 
peM 

as above. 

If X, Y are vector fields in ~(M ), we can extend them to vector fields on M , apply 

the ambient covariant derivative operator V, and then decompose at points of M to 

get 

(1) 

Next we consider the following definition. 

5.2.4 Definition 

The second fundamental tensor form B IS a bilinear symmetric 

mappingB:TPMxTPM ~(TPM)J. defined by B(X,Y)=VxY-VxY, (2) 

where (TPMl is the normal bundle of Min M and V and V are the Riemannian 

connections of Mand M respectively. 
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Using equations (1), (2) and the fact that (V x Yl = V xY, 

we can also conclude that B( X , Y ) = (V x Y ) N E ~ (M) 

That is, B(X ,Y) is a vector field on M normal to M. It is easy to prove that B(X ,Y) 

does not depend on the extensions X , Y. Therefore we can use the same letter to 

denote both a vector field or function on M and its extension to M. It is also easy to 

show that B(X , Y) is bilinear and symmetric. This formula, which relates the 

Riemannian connection on the submanifold to that of the ambient manifold is called 

the Gauss formula . Because Gauss first obtained this formula for surfaces embedded 

in Euclidean space 9t 3
• Now we are in a position to define the second quadratic form. 

5.2.5 Definition 

Let p E M and TJ E (TPM ) j_. The mapping H ,, : TPM x TPM ~ 9t given by 

H ,,(x,y) = (B(x,y), TJ), x ,y E TPM, is a symmetric bilinear form. 

(sinceB(x,y) is symmetric and bilinear.) The quadratic form 11 ,,(x) =H,,(x, x ) is 

called the second fundamental f orm of f at p along the normal vector TJ , where f is an 

isometric immersion of M into M. We can show that the bilinear mapping H,, is 

associated to a linear self-adjoint operator S,, : TPM ~ TPM by 

(S,, (x), y) = H ,, (x, y) = (B (x.y) , TJ). 

Since (S,, (x), y) = (B(x, y), TJ) = (B (y, x), TJ) = (S,, (y),x). 

Considering the following example, we can show that if S,, is a tensor of order 2 and 

symmetric then the tensor V vs,, is symmetric, for all v E ~ (M ) . 

5.2.6 Example 

-m=n+k 
Let f: Mn ~ M be an isometric immersion and let S,, : TM ~ TM be the 

operator associated with the second fundamental form off along the normal field TJ. 

Considers,, as a tensor of order 2 given by S,, (X ,Y) = (S,, (X),Y) , 
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where X, Ye ~(M) . We can observe that if the operator STJ is self-adjoint then the 

tensor STJ is symmetric, that is, STJ(X ,Y) =STJ (Y, X ), and the tensor v'VSTJ is 

symmetric, for all v e ~(M) . 

Proof: 

Since STJ is self-adjoint, (STJ (X ), Y) = (STJ (Y), X ) (3) 

Differentiating (3) in the direction of v, 

STJ is a tensor of order 2. Therefore the covariant differential v'STJ of STJ is a tensor of 

order 3. 

Since v' is the Riemannian connection on M, 

v'STJ(X,Y,v) = (v' ,. (STJ(X)),Y)+(STJ(X),v'.f)-(STJ(v' vX), Y) - (STJ(X), v'..f ) 

= (v' v(STJ(X)), Y) - (STJ(v'vX), Y) 

= (v' v (STJ (X )), Y) - (v' vX, STJ (Y)) (since STJ is self-adjoint) 

But v'STJ (X,Y,v) = (v' vSTJ)( X ,Y ) (from definition 3.4.4) 

Similarly 

(v' VSTJ )(X ,Y) = (v' V (STJ (X)), Y) - (v' vx ,STJ (Y)) 

(v' VSTJ)(Y,X) = (v' v(STJ (Y)), X) - (v' .f,STJ(X )). 

Subtracting these two equations and substituting into (4), 
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=> V .,S,, is symmetric. 

The following proposition shows that the linear operator associated with the second 

fundamental form can be used to evaluate covariant derivatives of normal vector 

fields. 

5.2.7 Proposition 

Let p e M, x E TPM and 11 E (TPM ).L. Let N be a local extension of Tl normal to M. 

Proof: Let y E TPM and X, Y be local extensions of x, y respectively, which are 

tangent to M. 

We have (S,, (x), y) = (B(x, y), 11) (from definition 5.2.5) 

= (B(X, Y), N )( p) 

= (V x Y - V x Y, N)(p) (using the Gauss formula) 

= (V x Y, N) ( p) ( since V x Y E N ( M) is normal to N ) 

We know that (N,Y) = 0, : 

Taking derivative in the direction of X, 

X(N,Y)=O, · ' ... 

(V x N, Y) + (V x Y, N) = 0, . (since V is the Riemannian connection on M) 

Therefore (S,,(x),y) = -(V xN,Y)(p) 
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(S
11 

(x), y) = -(V xTI, y) = -((V xT} )T, y) (since (V xT}).L, y) = 0) 

This is true for ally E TPM. So S
11 

(x) = -(V xT})T 

5.2.8 Hypersurfaces in Euclidean Space 

Now we specialize the preceding considerations to the case in which the codimension 

-n+I -
of the immersion is one. That is,f: Mn ~ M ; f(M) cM is called a hypersurface 

-n+I 
in M . At any point p E M, we have seen that the shape operator S

11 
is a self-

adjoint linear transformation on the tangent space TPM . From elementary linear 

algebra, any such operator has real eigenvalues, A-1 , ••• ,An, and there is an orthonormal 

basis of eigenvectors {ep···, en} of TPM so that Sri (e; ) = A;e;, i = l , .. ,n. In this 

situation, at each point of M there are exactly two unit normal vectors. If M is 

orientable, we can use an orientation to pick out a unique normal. Let Tl E (TPM l , 

1111 = 1. Then {ep ···,en,11} is a basis for TPM . The eigenvalues of Sri are called the 

principal curvatures of M at p, and the corresponding unit eigenvectors are called the 

principal directions. Det (Sri )= A1 • ••• An is called the Gauss Kronecker curvature of 

Mand (A-1 + .... +An)/ n is called the mean curvature of M. 

Next we are going to define a new operator, Hess J, acting on a tangent space of the 

hypersurface. 

5.2.9 Example 

-n+I 
Let f: M ~ 9{ be a differentiable function. Define the Hessian, Hess f, off at 

p E M as the linear operator Hess f : TP M ~ TP M , (Hess f)Y = V r (grad j), 

YE TP M, where V is the Riemannian connection of M . Let a be a regular value of 
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-n+I - -
f and let Mn c M be the hypersurface in M defined by M = { p E M : f ( p) = a}. 

Then we can prove that the following properties. 

(a) The Laplacian !:lf is given by 

!:lf = trace(Hess f) 

(b) If X, YE ~(M ), then 

((Hess/) Y, X) = (Y, (Hess/)X) 

(c) The mean curvature Hof M cM is given by 

nH = - div(gradf /I grad fl). 

Proof: 

(a) We know from example 2.4.5, !:lf = div grad f, f E D( M ) , where grad f is a 

vector field on M and D( M ) is the set of real valued functions on M. 

Define the divergence of grad fas a function div grad f: M -"'7 9\ given by 

div gradf(p) = trace of the linear mapping Y(p) -"'7 v' r (gradf)(p) 

But we are given that, Hess/ : Y(p) -"'7 v'r (gradf)(p) 

Therefore div grad f = trace(Hess f) => !:lf = trace(Hess /). 

(b) Using the gradient off as a vector field gradf on M defined by 

(gradf, X) = df(X) = X(f), where XE TPM 

Talcing the directional derivative in the direction of Y, 

Y(grad f , X ) = YX(f) 

(v' y(gradf), X ) + (grad!, v' r X ) = (YX)(/) 

76 



Interchanging X and Y, 

(V x (grad f), Y) + (grad f, V x Y) = (XY)(j) 

Subtracting these two equations, 

(V r (grad!), X) -(V x (grad!) , Y) + (gradf, 'v r X - 'v x Y) = (YX )(f) - (XY)(f) 

(V r (grad!), X ) - (V x (grad!), Y) + (gradf, [Y, X]) = [Y, X](J) (5) 

And also [Y, X] E ~(M ), then (gradf, [Y, X]) = [Y , X](f) 

Substituting into (5), 

(V r (grad f), X) = (V x (grad f) , Y) 

((Hessj)Y, X) = (Y, (Hessj)X) => Hessf is self-adjoint. 

We can also show that Hess f determines a symmetric bilinear form on TP M , p E M 

given by (Hessf)(X,Y)=((Hessf)X, Y), whereX, YE TPM. 

= ((Hessj)Y, )() (since Hessf is self-adjoint) 

= (Hessf)(Y,X) 

Therefore Hess f is symmetric. 

Consider (Hess f)(aX 1 + bX 2 , Yi) = ((Hess f)(aX 1 + bX 2 ), Y1), where a , b E D ( M ) 

and X1>X 2 ,Y1 E TPM. 

= a V x1 (grad!)+ b 'v x2 (grad!) 

= a(Hess j) X 1 + b(Hess f) X 2 
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Therefore, (Hess f)( aX 1 + bX 2 , Y;) = (a(Hess f) X 1 + b(Hess f) X 2 , Y; ) 

= a( (Hess f) X 1 , Y; ) + b ( (Hess f) X 2 , Y; ) 

= a(Hessf)( X 1, Y;) + b(Hessf)( X 2 ,Y;) 

Similarly, (Hess!)( X 1 , aY; + bY2 ) = a(Hessf)( X 1 , Y; ) + b(Hessf)( X1, Yi) 

Therefore Hess f is a symmetric bilinear form on TP M . 

(c) Take an orthonormal frame Ep···, En, En+i = gradf llgradfl = Tl in a neighborhood 

of p E Min M, where !grad.fl -:t:- 0. 

Since lgrad.fl2 = (gradf(p), gradf(p)) = dfp(gradf(p)), p EM. 

Butf(p) = a and a is a regular value of J, therefore dfp(gradf(p)) -:t:- 0. 

The mean curvature H of M = 

From proposition 5.2.7, (Sri (E; ), E;) = - (V £, 11, E;) 

n -

Therefore nH = - L (V £; 11, E;) 
i=I 

We have (11,11) = 1 

Taking the covariant derivative in the direction of E ;+i , 

E i+I (11,11) = 0 ~ ( V £,.111, 11) = 0 

Then 
n - -

nH = - L (VE; 11, E;) - (V £,. 1 11, 11) 
i=I 
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n+I _ 

nH = - L (V £, Tl, E;) (since Tl = E;+i ) 
i=I 

= -divMT) = -divM(gradf/lgradfl). 

A hypersurface with mean curvature identically equal to zero is called 

minimal. 

Using the following theorem, we are now going to generalize the famous Theorem 

Egregium of Gauss, which says that the Gaussian curvature of M 2 c 9\ 3 is an 

invariant under isometries. 

5.2.10 Theorem 

Let p e M and let x, y be orthonormal vectors in TPM . That is x, y e TPM c TP M . 

Let K(x, y) and K(x, y) be the sectional curvatures of M and M, respectively, in the 

plane generated by x and y. Then 

K(x,y) -K(x,y) = (B(x,x), B(y,y))-IB(x,yf 

Proof: 

Let X, Y be local extensions of x and y respectively which are tangent to M. 

K(x, y) = (R(X ,Y)X ,Y)(p)(from proposition 3.3.1 and Ix A yl
2 = 1) 

And K(x, y)= (R(X ,Y)X ,Y)(p) 

SoK(x,y) -K(x,y) =(VrVxX -VxV r X-(Vr V xX-VxVrX ), Y)(p)+ 
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Talcing the inner product with Y at p , 

Therefore, K(x,y)- K(x,y) = ( V rV x X-V xV rX-V rv7 xX + V xV rX, Y )(p). 

Let E1 , ••• ,Ek be the local orthonormal fields which are normal to M , 

where k = dim M - dim M. 

k 

B(X ,Y)= L., (B(X ,Y), E;) E; (since B(X , Y) is normal to M ) 
i=I 

( B(X, Y), E;) = HE, (X, Y) (using the definition of second fundamental form) 

Write HE, (X ,Y) = H ;(X ,Y) 

k 

So B(X, Y )= L.,H;(X, Y )E; 
1=1 

Using the Gauss formula and replacing Y by X, 

k 

Therefore V x X = L.,H; (X,X)E; + V xX (6) 
i=I 

Differentiating (6) in the direction of Y, 

- - k - -
V rVxX = L.,{H;(X,X )V rE; +Y(H;(X,X)E;}+VrV xX, atp 

i=I 

Taking the inner product with Y, 
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- - k - -

(\7 r \7 x X , Y) = LH;(X, X)(\7 rE;,Y) + (\7 r\7 xX ,Y ), atp (7) 
i=l 

Since (E;,Y) = 0, atp 

Taking the covariant derivative in the direction of Y, 

(\7 r Y , E;) + (Y, \7 r E;) = 0 

(B(Y,Y)+ \7 rY, E;) + (Y, \7 r E;) = 0 ( using the Gauss formula ) 

(B(Y,Y), E;) + (Y, 'v r E;) = 0 (since 'v rY E ~(M), then ( 'v yY , E;) = 0) 

Therefore ( 'v r E;, Y ) = - H ; (Y, Y) 

Also taking the Gauss formula and replacing X by Y and Y by 'v x X , 

B(Y, \7 XX ) = y' y y' XX - \7 y 'v XX 

Taking the inner product with Y, 

(B(Y, \7 x X ),Y)(p) = ( 'v rv' x X - V y V x X , Y)(p) 

Then, ( \7 r V x X - 'v r V x X , Y )(p) = 0 (since B(Y, \7 x X) is normal to Y at p) 

Substituting above two results into (7), 

- - n 

( V r'vxX,Y ) = - LH;(X,X)H;(Y,Y)+ ( v'y\7 x X , Y), atp 
i=l 

k 

Similarly, (\7x\7rX,Y)= - LH;(X ,Y)H;(X,Y)+ ( \7 x\7rX, Y ), atp 
i=l 

n k 

Therefore K(x, y)-K(x,y) = LH;(X,X)H;(Y,Y)-LH;(X,Y)H;(X,Y), atp 
i=l i=l 

= (B(X, X),B(Y,Y))(p)-(B(X ,Y),B(X ,Y))(p) 
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K(x,y) -K(x,y) = (B(x,x), B(y,y)) -(B(x, y), B(x,y)) 

= (B(x,x), B(y, y))-jB(x, yf (8) 

5.2.11 Remark 

- n+I 
In the case of a hypersurface f M n~ M , this theorem leads to a very important 

expression. Let p e Mand 11 e (TPM /·. 

S
11 

(e;) = A;e;, i = 1, ... ,n. 

= 0, if i:;: j 

= A;Tl, if i = j 

Then from (8), replace x by e; and y by e i , i:;: j 

If M = M 2
, a Riemannian manifold with dimension two, and M = 9t 3

, 

then K( e;, e i) = A;A i ( since in Euclidean space K = 0 ) (9) 

Hence the equation (9) tells that the Gaussian curvature coincides with the sectional 

curvature of the surface and implies the famous theorem Egregium of Gauss. 
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5.3 The Fundamental Equations 

The Gauss, Ricci and Codazzi 's equations are the fundamental equations of the 

isometric immersion. The Gauss equation relates the curvature tensors of the tangent 

bundle with the second fundamental form of the immersion. Theorem 5.2.10 is a 

special case of the Gauss equation. The Ricci equation relates the curvature tensors of 

the normal bundle with the second fundamental form of the immersion. The codazzi's 

equation relates the curvature tensor of the vector bundle with the covariant 

derivative of the second fundamental form considered as a tensor. 

5.3.1 Normal connection and normal curvature of the normal bundle 

-m=n+k 
Given an isometric immersion f: M n ~ M , we have at each p E M, 

Tr M= (TPM) 7 +(TPM)1- , we denote by (TPM)1. the normal 

space of Min M at p. That is, any vector~ E (TrM ).L is normal to Mat p. 

The set TM1. = lI (TPM)1. has the structure of a vector bundle over Mand is called 
pe M 

the normal bundle of Min M . From now on we shall use Latin letters X, Y, Z, etc., to 

denote differentiable vector fields tangent to M and Greek letters ~' Tl , ½, etc. to 

denote differentiable vector fields normal to M. 

Given X and Tl, V xT1 can be written as, 

Then (V xT1l = V xT1 + Sil (X) (since (V xT1? = - Sil (X), from proposition 5.2.7) 

Denote (V x 11) N by V ~ T1 , and V 1. is called the nonnal connection of the 

immersion. 

Therefore (10) 
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where - S
11 

(X) and V; 11 are the tangential and normal components respectively. 

This is called the equation of Weingarten, after the mathematician who first obtained 

the equation for surfaces in Euclidean space. 

5.3.2 Remark 

It is easy to verify that the normal connection V .L has all of the properties of a 

connection. That is, (a) V~+gr1l=f Vi 11+ g V; 11 

(c) V; (fr1) = f v" i 'll + X(/)11 , where/, g E D (M ) 

Proof: 

(a) We know that V 1+gr 11 = V JX+gr 'll +S11 ( jX + gY) (from (10)) 

But (from proposition 5.2. 7) 

(from (i) of definition 2.2.1) 

Then 

= f( V xll + S
11 

(X)) + g( V r ll + S11 (Y)) 

=fVi ll +gv'; n (using(8)) 

Hence the result. 
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(b)Using (8), we can write \7 ; (~ +Tl)= \7 x (~ +Tl) + S cs+ll> (X ) 

But s (;+11iC X ) = - (\7 X ( ~ + 11)? 

= -(\7 x ~ + \7 xll)T 

= -{ (\7 xl;? + (\7 x'Tlf } 

= Ss (X) + S,,(X) 

So \7;(~ +T1)=V x(~+ T1)+Ss(X)+S,,(X) 

= \7 x~ + \7 xll + S; (X) + S,,(X) (from (ii) of definition 2,2.1 ) 

(using (8)) 

Hence the result. 

(c) We know that \7; (frl) = \7 x (frl) + S ftl (X) (from(8)) 

Hence the result. 

(using proposition 5.2.7) 

=-(f\7 xll + X(f)T1) T (from (iii) of definition 2.2.1) 

(since (Tl) T = 0, Tl is normal to M ) 

= f{ \7 x'Tl + S11 (X) } + X(/)Tl 

= JV; T1 + X(/)11. 
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As in the case of the tangent bundle, we can introduce the curvature of the normal 

bundle which is called the normal curvature, R 1. , of the immersion and is defined by 

Using normal curvature, we will prove the Gauss equation. 

5.3.3 Gauss Equation 

(R(X ,Y)Z,T) = (R(X ,Y)Z,T) - (B(Y,T),B(X ,Z)) + (B(X ,T),B(Y,Z)). 

Proof: 

R(X ,Y)Z = V r V x Z -V x V rZ + V rx.nZ , (using the definition of curvature) 

From Gauss formula B(X ,Z) = V x Z-V xZ 

So V xZ =B(X ,Z)+V xZ 

Similarly, VrZ =B(Y,Z ) + V rZ 

Vrx.r1Z =B( [X ,Y],Z) + v [X.Y)z 

So R( X ,Y)Z = V r (B(X ,Z) + V xZ) -V x (B(Y,Z ) + V yZ) +B([X ,Y],Z ) + V rx.nZ 

R (X,Y)Z = V r (B(X ,Z)) + VrV xZ -V x (B(Y,Z)) -V x V rZ + B([X ,Y],Z) + 

Using Gauss formula, B(Y, V x Z) = V r V x Z - V r V x Z 

Similarly VxVrZ=B(X,VyZ)+VxVrZ 
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And Vr (B(X,Z))=(V r(B(X,Z)))N + (Vr(B(X,Z))f 

SinceB( X ,Z ) is normal toM, then using proposition 5.2.7, 

Similarly 

V y (B(X ,Z)) = V; (B(X ,Z)) - s B(X.Z) (Y) 

V X (B(Y,Z)) = Vt (B(Y,Z)) -S B(Y.Z)(X ) 

Substituting all these results into (11), 

R(X ,Y)Z = V; (B(X ,Z )) - S8cx.z>(Y ) + B(Y, V x Z ) + V r V x Z -Vt (B(Y,Z )) + 

R(X,Y)Z =R(X , Y)Z+V; (B(X,Z))-Vt (B(Y,Z))-SB(X.Z) (Y) + SB(Y .Z ) (X) + 

B(Y, V xZ)- B(X, V rZ) + B([X ,Y], Z ) 

Talcing the inner product with T, since the normal terms vanish, we get 

(R(X, Y)Z ,T) = (R(X , Y)Z ,T ) - (S B(X.Z) (Y), T ) + ( S B(Y.Z ) (X) ,T ) ( 12) 

But we have (S.,/X), Y) = (B(X,Y), ri) (from definition 5.2.5) 

Replacing Tl by B(X ,Z), X by Y and fby T, 

< s B(X.Z) (Y) ,T) = (B(Y,T),B( X ,Z)) 

Similarly ( S 8<r.z>(X) ,T) = (B(X ,T),B(Y,Z)) 

Substituting these two results into (12), 

(R(X ,Y)Z,T) =(R(X ,Y)Z,T) -(B(Y,T),B(X ,Z)) + (B(X ,T),B(Y,Z)). 

Hence the result. 
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5.3.4 Ricci Equation 

( R (X,Y)T\,~)-(R.L (X, Y)T\,~) = ([STJ, S~ ]X , Y), 

where [STJ, S~] denotestheoperatorSTJ oS~ -S~ o STJ. 

Proof: 

Using the definition of curvature tensor, 

(13) 

From equation (10), 

Taking the covariant derivative in the direction of Y, 

( 14) 

V r V ~T\ = CV r Vi T\ f + ( V r V i 7J ) N (since V r Vi T\ E ~ (M )) 

Using proposition 5.2.7, since V i T\ is normal to M 

v r V i 11 = - sc.,h/n + v-;v~T\ 

Then from (14), 

V r V xT\ = - V rSTJ (X ) - S<VtTJ/f) + V ~V i T\ (15) 

Using the Gauss formula and replacing X by Y and Y by S TJ ( X) , since S TJ ( X ) 1s 

tangent to M . 

B(Y, STJ (X)) = VrSTJ (X) - V r STJ (X) 

So V r STJ(X) =B(Y, STJ(X))+ v\ S,,(X) 

Substituting into (15), 

Vr V xT\ =-B(Y,STJ (X)) -V rSTJ (X) -S<vt
11
/Y) + V -;Vi T\ 

Similarly, VxVrT\ = -B(X,STJ(f))-V xS11 (Y)-S<v~/X) + V i V~T\ 

Also we know V[x.nT\ is tangent to M . 
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Then it can be written as, V tx.n'Tl= (Vtx.n'Tll + (Vtx.n'Tl)N. 

Using proposition 5 .2. 7 and the notation of the normal connection 

Vtx.nll =-S,, ([X , Y]) + V tx.n'Tl 

Substituting these three result into equation ( 13), 

R (X,Y)T] =-B(Y,S,, (X) )- V rS,, (X) - S<v},,/Y) + V ¢V; ri + B(X, S,, (Y)) + 

V xS,,(Y) +S<v~,,/X) -V; V¢ri -S,, ([X,Y]) + V tx.n'Tl 

Using the definition of the normal curvature, 

= R.l (X' Y)T] - V yS,, (X) + V X s,, (Y) - s (Vh) (Y) + s cv},,,(X ) - s ,, ([X' Y]) 

+ B(X, S,, (Y) )-B(Y, S,, (X)) 

Taking the inner product with~' where~ is normal to M. 

( R (X,Y)T] , ~) = ( R.l (X, Y)Tl ,~) + (B(X, S,, (Y) ),~) - (B(Y, S,, (X) ),~) ( 16) 

Since V rs,, (X) ' V X s,, (Y) 's(Vh) (Y), s (V}T1) (X) ands,, ([X ,Y]) are tangent to M. 

Therefore taking the inner product with ~' all terms vanish. 

Also we know that 

( B(X,Y),Tl) = (S,,(X),Y) 

Replacing Y by S,, (Y) and T] by~' 

(B(X, S,, (Y) ), ~) = ( Sf. (X), S,, (Y)) 

= ( S,, (Sf. (X)) ,Y) (since S,, is self-adjoint) 

(B(Y,S,,(X) ), ~) = (B(S,,(X),Y), ~) (sinceB is symmetric) 

= (Sc:,(S,,(X)), Y) (from (17)) 

Then substituting into ( 16), 

( R (X,Y)T], ~) = ( R.l (X, Y)T] ,~) + ( S,, (Sc:, (X)) ,Y )- (Sc:, (S,, (X)) ,Y) 

= ( R.l (X ,Y)T] ,~) + ( S,, (Sc:, (X)) - Sc:, (S,, (X)) ,Y) 

= ( R.l(X ,Y)T] ,~) + ((S,, o Sc:, -Sc:, o S,, )X,Y) 

= ( R.L(X ,Y)Tl ,~) + ([[S,,,Sc:,]X , Y) . 

Hence the result 
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5.3.S Remark 

If ( R J.. (X , Y),i, .~ ) = 0, we say that the normal bundle of the immersion is flat. 

Assume that the ambient spaceM has constant sectional curvature equal to K 0 • Then 

using lemma 3.3.4, 

( R (X,Y),i, ~) = K0 { (X, ,i)(Y,~) - (Y, T\)(X ,~)} 

= 0 (since X and Y are orthogonal to 11 and ~) 

Then from Ricci equation, ( RJ.. (X, Y)11,~ ) =- ([S,, , S; ]X, Y ). It follows that if the 

normalbundleisflat then : [S,,, S; ]X =0, fora1111,~, X 

5.3.6 Remark 

The second fundamental form of the immersion can be considered as a tensor of order 

three defined by 

B: ~(M)x ~(M)x ~(Ml ~ 9{ 

B(X,Y,T\ ) = (B(X,Y),T\), where ~(M l denotes the space of differentiable 

vector fields normal to M. 

The covariant derivative of B relative to Z is a tensor of order 3 defined in the same 

way as definition 3.4.4. 

(V zB)(X ,Y, 11) = Z(B(X,Y,T\)) -B(V 2 X ,Y,11) -B(X, V 2 Y,T\) -B(X ,Y, V zT\) (18(a)) 

Consider B(X ,Y, V zT)) = ( B(X ,Y), V zll) 

= ( B(X , Y), (V zlll) (since B(X,Y) is normal to M) 
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Then from (18(a)), 

(\7 zB )(X ,Y, Tl)= Z(B(X,Y;r1)- B(\7 2 X ,Y, Tl) - B(X , \7 2 Y, Tl) - B(X ,Y, \7 ~11) (18(b)) 

5.3.7 Codazzi's Equation 

( R (X,Y)Z,Tl) = (VrB)(X ,Z,Tl) - (\7 xB)(Y,Z,Tl) . 

Proof: 

Using (18(b )) and replacing Z by X, X by Y and Y by Z, 

(V x B)(Y,Z ,11) =X (B(Y,Z ,11)) -B(V xY,Z ,Tl ) -B(Y,V xZ ,ll) -B(Y,Z ,V t 11) (19) 

Let X(B(Y,Z,ll))=X(B(Y,Z),ll) 

X(B(Y,Z,ll)) = (Vi B(Y, Z ),ll) + ( B(Y,Z),V i ll) (B(Y,Z) and Tl are normal to M). 

Therefore from equation ( 19), 

(V xB)(Y,Z ,11) = (V~ B(Y,Z);r1) -B(\7 xY,Z ,Tl) -B(Y,\7 x Z,ll) (20) 

Similarly, 

(V r B)(X , Z , Tl) = (V ; B(X, Z);r1) -B(V yX, Z , 11) - B( X , V yZ , 11) (21) 

Consider the expression in the proof of the Gauss equation, 

R(X ,Y)Z =R(X ,Y)Z + V;(B(X ,Z)) -V; (B(Y,Z)) -S8 cx .z>(Y) + S scr.z/X) 

+ B(Y,VxZ)-B(X,VyZ)+ B([X,Y],Z) 

Taking an inner product with Tl, 

( R(X ,Y)Z ,Tl) = ( V;(B(X ,Z)) ,Tl) -(V; (B(Y,Z)) ,Tl) + (B(Y, V xZ),TJ)-

( B(X, \7 yZ) ,Tl) + ( B([X, Y] , Z) , TJ) 

91 



Since R(X,Y)Z , S scx.z) (Y) , S scr.z> (X) are tangent to Mand [X,Y] = V xY - \7 yX 

( R (X,Y)Z,11) = ( \7;(B(X ,Z)) , 11) -B(\7 rX ,z, 11) -B(X , \7 yZ,11)-

{( \7~(B(Y,Z)),11) -B(\7 xY,Z,Tl ) -B(Y,\7 xZ, Tl)} 

Using equations (20) and (21), 

( R (X,Y)Z,T)) = (\7 r B )(X, Z, T)) - (\7 x B )(Y, Z, Tl) . 

Hence the result. 

5.3.8 Remark 

If the ambient space has constant sectional curvature, K 0 , then ( R(X ,Y)Z, 11 ) is equal 

to zero. Since using lemma 3.3.4, 

( R(X, Y)Z, Tl ) = K0 { (X , Z)(Y, 11) - (Y,Z)(X , 11) } 

= 0 (since 11 is normal to X and Y) 

( R(X,Y)Z,T) ) =0 

Then from Codazzi 's equation, (\7 r B )( X, Z , 11) - (V x B )(Y, Z, 11) = 0. 

5.3.9 Remark 

In the case of hypersurface, that is, the co-dimension of the immersion is one, the 

normal component of \7 zT) is zero. Therefore \7~T) = 0. 

Since (T1,T1) = 1 

Differentiating above inner product in the direction of Z, 
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(V ZT\, T\) = 0 

((V zT\? + (V zT\) N, T\) = 0 

((V zT\ )N, T}) = 0 (since (V zT\?, T\) = 0) 

This implies that (V zT\ )N = 0 (since (V zT\ )N does not belong to tangent space) 

Then from equation (19), 

(V x B)(Y,Z ,T\ ) =X(B(Y,Z, T\)) -B(V xY,Z,T\) -B(Y,V xZ ,T\ ) 

=X(B(Y,Z), 11) -B(V xY,Z,T\ ) -B(Y, V xZ ,T\) (22) 

But (B(Y,Z),11) = ( Sri (Y) ,Z ) (from definition 5.2.5) (23) 

Taking the covariant derivative in the direction of X, 

X(B(Y,Z) , T\) = X( Sri (Y) ,Z) 

= (V x<Sri(Y)), Z )) + (Sri(Y), V xZ ) 

Using equation (23) and replacing YbyV xY , 

(B( V x Y ,Z),11) = ( Sri (V x Y) ,Z ) (since V x Y is tangent to M) 

Again using equation (23) and replacing Z by V x Z , 

(since V xZ is tangent to M) 

Substituting these results into equation (22), 

(V x B)(Y,Z , T\) = (V x (Sri (Y)),Z) -(Sri (V xY) ,Z) 

Similarly, (V r B)(X ,z, 11) = (V r (Sri (X )),Z) -(Sri (V yX) ,Z) 
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If the ambient space has constant sectional curvature then from remark 5.3.8, 

(VxB)(Y,Z,T\) = (VrB)(X,Z,T\) 

It is important to note that, in the case of the ambient space having constant sectional 

curvature, the Gauss, Codazzi and Ricci equations generalize the local theory of 

surfaces. 

5.3.10 Connections of conformal metrics on a manifold 

Let M be a differentiable manifold. Two Riemannian metrics g and g on M are 

conformal if there exists a positive function µ : M ~ 91 such that g (X,Y) = µg(X,Y), 

for all X, YE ~(M). Let V be the Riemannian connection of g. 

If V X y = V X y + S(X,Y), 

where S(X,Y) = -
1 

{(X(µ)Y +Y(µ)X - g(X,Y)gradµ} and gradµ is calculated in the 
2µ 

metric g, that is, X(µ) = g(X, gradµ). then we can show that V is the Riemannian 

connection of g. 
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Proof: We are given that V xY = V xY + S(X,Y) 

Similarly V r X = V yX + S(Y .x) 

Subtracting these two equations, 

V x Y-V r X = VxY-VyX (sinceS(X,Y)=S(Y.x)) 

= [X,Y] (since Vis symmetric) 

Therefore V is symmetric. 

Next we are going to show that V is compatible with g . 

That is, X( g (Y,Z)) = g (V x Y , Z) + g (Y, V x Z ) (24) 

Consider the left-hand side of the equation (24), 

X( g (Y,Z)) = X( µ g(Y,Z)) (from the definition of the conformal metrics) 

= X( µ )g(Y,Z) + µX(g(Y,Z)) 

= X( µ )g(Y,Z) + µ {g( V xY ,Z) + g(Y, V xZ )} 

And also taking the right hand side of the equation (24), 

g ( V X y ' Z) + g (Y, V X z ) = µ g( V X y' Z) + µ g(Y, V X z) 

= µg( V xY + S(X,Y), Z) + µ g(Y, V x Z + S(X,Z)) 

= µg(V xY ,Z) + µg(S(X,Y), Z) + µg(Y, V xZ) + 

µg(Y, S(X,Z)) 

Comparing these results with equation (24), we can conclude that to prove (24) we 

need to show that 

X(µ)g(Y,Z) = µ {g(S(X,Y), Z) + g(Y, S(X,Z))} 
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We are given that 

1 
S(X,Y) =- { (X( µ )Y + Y(µ)X - g(X,Y)gradµ} 

2µ 

Taking the inner product with Z, 

1 
g(S(X, Y) ,Z) = - { (X( µ )g( Y,Z) + Y( µ )g(X,Z) - g(X, Y)g(grad µ , Z)} 

2µ 

Similarly g(S(X,Z),Y) =-
1 

{(X(µ)g(Z,Y) + Z(µ)g(X,Y)-g(X,Z)g(gradµ,Y)} 
2µ 

Take Y( µ) = g(grad µ ,Y), and Z( µ) = g(grad µ ,Z)} 

Soµ {g(S(X,Y), Z) + g(Y, S(X,Z))}= X(µ)g(Y,Z). Hence the result. V is compatible. 

5.3.11 Umbilic Hypersurface 

- n+I 
Let ( M , g) be a manifold with a Riemannian metric g and let V be its Riemannian 

- n+I 
connection on M .We say an immersionf Mn """-7 M is (totally) umbilic if for all 

p E M, the second fundamental form B off at p satisfies (B(X,Y),11) = A(p)(X,Y), 

where A(p) E 9\, for all X, YE ~(M) and for a given unit field 11 normal to f(M); 

here we are using ( , ) to denote the metric g on M and the metric induced by f on 

- n+I 
M. If M has constant sectional curvature then we can show that A does not depend 

on p, that is, A is constant. 

Proof: 

Let X, Y, TE ~(M ) 

Decomposing the tangent space of M at p, 
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Consider 

V x 11 = (V x 11? (since (V x 11t = 0 in the hypersurface) 

Then using proposition 5 .2. 7, S Tl ( X) = - V x 11 

So (B(X,Y), 11) = - (V x 11,Y) 

And we are given that (B(X,Y), 11) = A(p)(X,Y) 

Therefore from these two equations, 

- (V x 11 ,Y) = A(p)(X,Y) (25) 

Similarly, - (V T 11 ,Y) = Alp )(T,Y) 

Differentiating equation (25) in the direction of T, 

-T(V x 11 ,Y) = T(Ai.p)(X,Y)) 

- (V T V x 11,Y)- (V x 11 , V Ty) = T(/4(p)) (X,Y) + Alp) ( V TX ,Y) + A(p)( X, V Ty) (26) 

Again taking equation (25) and replacing Y by V Ty E TPM , 

Therefore from equation (26), 

- (VT V x 11,Y) = T(A(p))(X,Y) + Ai.p)(V TX ,Y) 

Similarly - (V x V T11,Y) = X(A(p))(T,Y) + A(p)(V xT ,Y) 

Subtracting these two equations, 

(VT V x Tl - V x V Tll,Y)= X(Ai.p))(T,Y) -T(A(p))(X, Y) + A(p)(V xT -V TX ,Y)Y) 

= X(A(p))(T,Y) - T(A(p))(X,Y) + A(p)([X,71,Y) (27) 
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But [X,T] E TPM , then using (25) and replacing X by [X,T], 

- (V [x.nll ,Y) = A.(p)([X,T],Y) 

Then from (27), 

(R(T .½)11,Y ) = (X(A.(p))T- T(A.(p))X,Y) (from the definition of curvature tensor) 

If M n+i has constant sectional curvature, K O , then 

(R(T .½)11,Y) = K 0 { (T, 11)(X,Y)- (X, 11)(T,Y)} ( from lemma 3.3.4) 

= 0 (since (T, 11) = 0 and (X, 11) = 0 ) 

That is, (X(A.(p))T- T(A.(p))X ,Y) = 0 

That is, X(A.(p))T- T(.:l(p))X = 0, where Y is an arbitrary vector. 

(since X(A.(p))T- T(A.(p))X E TPN and YE TPN ) 

Because T and X can be chosen to be linearly independent, this implies that X(A.(p)) is 

equal to zero, for all XE ~(N ) ; therefore).,= constant. 

5.3.12 Remark 

If we change the metric g to a metric g = µg, conformal to g, where V is the 

Riemannian connection of g, the immersion f: N " ~ ( M n+i , g ), continues being 

. . . - - 11 -2t..µ +11(µ) -
umb1hc, that 1s (V x 11, Y) g =- A(X, Y) g , then g ( V x ( C) ,Y) C g (X,Y). 

vµ 2µvµ 
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Proof: 

v' x ( .jµ) = X ( l )11 + l V x 11 (from (iii) of definition 2.2.1) 

Talcing an inner product with Y, 

- - T\ 1 - - -
g(v'x( .Jµ ),Y) = .Jµ g(v'xT\ ,Y) (since g(f\ ,Y)=O) (28) 

Using the formula in 5.3.10 and replacing Yby T\ , since Y, T\ E TPM 

V xT\ = V x 'Tl+ S(X,T\), where V and V are Riemannian connections of g and 

g respectively. 

Substituting into the equation (28), 

1 - -
= .Jµ { g ( V X 11 ,Y) + g (S(X,T\),Y) } 

Consider S(X,T\) =-
1 

{ (X(µ )T\ + T\(µ)X - g(X, T\ )grad µ } 
2µ 

(29) 

So S(X,T\) =-
1 

{ (X( µ )11 + 11 ( µ )X} (since g(X, 11) = 0, Xis orthogonal to 11) 
2µ 

-
Talcing the inner product with Yusing g , 

- 1 - -
g (S(X,11), Y) = 

2
µ {(X(µ )g (T\,Y) +11(µ )g (X,Y)} 
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- 1 -
g (S(X,T\),Y) = 

2
µ T\(µ) g (X,Y) (since g (T\,Y) = µg(T\,Y) = 0) 

Next consider g ( V x T\ ,Y) = µg(V x T\ ,Y) (using the definition of conformal metric) 

= -Aµg(X,Y) (from (25) for being umbilic) 

= -Ag (X,Y) 

Then from equation (29), 

- - T\ 1 - 1 1 -
g (\7 x ( C) ,Y) = C (-Ag (X,Y)) + C -T\(µ) g (X,Y) 

"µ "µ "µ 2µ 

= - 2Aµ + T\(µ) -(X Y) 
2µ.Jµ g ' . 

Hence the result. 

5.4. Spaces of Constant Curvature 

5.4.1 Introduction 

Among the Riemannian manifolds, those with constant sectional curvature are the 

simplest. We can now compute the sectional curvature of our three families of model 

spaces of Riemannian geometry:- Euclidean space, spheres, and hyperbolic spaces. 

5.4.2 Euclidean space 

The simplest and most important model Riemannian manifold is of course Euclidean 

space, 9tn. Since we have shown that the curvature tensor of 9tn is identically zero 

in Euclidean space, clearly all-sectional curvatures are zero. This is obvious 

geometrically, since each two-dimensional section is actually a plane, which has zero 

Gaussian curvature. 
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5.4.3 Spheres 

Our second model space is the sphere of radius r in 9tn+I , denoted by S; , with the 

metric induced from the Euclidean space 9tn+i. When r = I, this is simply called the 

Unit Sphere sn in 9tn+I. 

5.4.3.1 Curvature of S0 

Let sn = {xE 9tn+I; lxl = 1} be the unit sphere in 9tn+I. As in the case of surfaces (see 

[DC 1], page 136-137) we define the Gauss spherical mapping as follows . 

Let Mn cM =9tn+I be an n-dimensional hypersurface with the metric induced from 

Euclidean space and N be a smooth unit normal vector field along M. At each point 

p E M, NP E TP (9tn+i) can be thought of as a unit vector in 9tn+I and therefore as a 

point in Sn. Thus each choice of normal vector field defines a smooth map 

N : M ~ S n , called the Gauss map of M. 

It is clear that the Gauss map is differentiable. The differential dN P of N at p E M is a 

linear map from TPM to TN<Pl sn. By parallel translating the normal vector N along 

Mat p to the vector field ON(p) along sn at 0, where O is the origin in 9tn+I, we can 

observe that TPM parallel translates to TN<Plsn.Therefore we can identify dN P as a 

linear map on TPM itself. 

The linear map dN P : TPM ~ TPM as follows. For each parametrized curve c(t) in M 

with c(O) = p and c' (0) = v, we consider the parametrized curve No c(t) = N(t) in the 

sphere sn. 

d -
Then dNP(v) = -(N ° c(t))j _

0
= V vN 

dt /-

We have (N,N) = 1 

Talcing the covariant derivative in the direction of v, 
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So V vN = (V vN)T = -ST] (v), (from proposition 5.2.7) 

where Tl E (TPM) N and N is a local extension of Tl normal to M. 

Therefore dN P (v) = - STJ (v), it follows that - STJ is the derivative of the Gauss map. 

We orient Sn by the inward pointing unit normal N(x) = - x E 9tn+I, lxl= 1. 

That is, N(c(t)) = -c(t) ~ dNq(c 1 (t)) = -c1 (t), where q = c(t) = x. This implies 

that dN q is the negative of the identity map of TqM . It follows that STJ has all of its 

eigenvalues equal to 1. Then using the expression in remark 5.2.11, 

K(e;, e) -K(e; ,e) = A). j, where K(e; ,e j) = 0 in Euclidean space. 

Therefore K(e;,e) = 1, for all i , j = 1, ... , n. 

That is, all sectional curvatures of Sn are equal to 1. Hence the sectional curvature of 

the unit Sphere Sn C 9tn+I is a constant equal to 1. 

5.4.4 Hyperbolic space 

To describe the model space of constant sectional curvature equal to -1, we can give 

the following example. 

Consider the half space of ':Rn given by 

H n = { ( X1 , ... , xn) E 9tn ; xn > 0} and introduce the metric on H n' 

() .. 
gi/xi, ... ,xn)=-f, where Hn is simply connected and complete. The metric on Hn 

xn 

is conformal to the usual metric of Euclidean space 9tn, since is a positiye 
x2 

n 
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differentiable function on H n • Then H n is called the hyperbolic space of dimension 

n. Write gij = F 2
8ij to denote the inverse matrix of g ij, where F 2 = x;, then 

Take log F = f and differentiate both sides with respect to x j • 

1 aF aJ 
--=-

aF = Ff 
ax . J 

J 

W . oik 
e can wnte g;k = -

2 F 

Differentiating with respect to x j , 

ag ik =<> _i__(_l ) = 0 (-.2_ aF) = _2~!-
ax . ,k ax . F 2 ,k F 3 ax . F 2 1 

J J J 

(30) 

To calculate the coefficients of the curvature, first we have to find out the Christoffel 

symbols, 

[' k _ l ~{agjm agmi agij } mk (f · (12) f k 2 3 7) .. - - £... --+ -- - -- g rom equation o remar . . 
'l 2 m ax; ax j axm 

Using the equation (30), 

1 -28 .k +. -28k.f . 28 .. fk 
r.k = _ { ( 1 1 

' ) + ( ' 1 
) + ( '1 

) } F 2 if m = k. 
I) 2 p2 p2 F 2 , 
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If all three indices are distinct then r; = 0. 

If two indices are equal and i =t- j then either k = i and ri = - f j or k = j and r J = - J; . 

If i = j and k ~ i then r ;; = fk . This can be written as r ;{ = Jj if i =t- j . 

Therefore, if two indices are equal and i :f- j then r~ = - f j, r;; = f j, r ;; = - f. 

If all three indices are equal then r~ = - J; , where i = j = k. 

Using remark 3.2.4, we have 

(31) 

We also have from remark 3.2.4, 

(32) 

Consider the first summation, 

I,r;~r}i = I,r;~r}i + ri:rf + rJri 
I /;ti./;t j 

= I,-J/ +(-f;)(-f;)+ f/-f) 
/;ti./;tj 

= Ii -1/ + 1/ - 1f 
/;ti,l;tj 

Consider the second summation, 

(since rt = 0, if l * i, l :f- j) 
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o . ofj o . 
And we know that -r.1 = - = f .. and -f'1. = - + .. 

0 II O 11 0 1• J II 

~ x i ~ 

Substituting into equation (32), 

'"'i.l"' i 

o o 
Then the sectional curvature with respect to the plane generated by - - 1s 

OX; ' oxj 

where 
o 
-=X 
OX; I 

and ~=X ox J 
J 

(X ;, X ) = g;; = ) 2 = IXJ, similarly Ix J = ) 2 

Therefore Ix; I\ X i 12 
= ; 4 , K ii = Riiii F

4 

are orthogonal, smce 

. 2 
K ii = Rt; F (from equation (3 1)) 

= (L, - J/ + f / + f f + f ii + f;;) F 2 

I 

In the case of F 2 =x~, logF=log xn= f 

Taking the derivative of f with respect to xn , then f n = -
1
- . 

xn 

Consider the case if i :t n, j :t n. Then J; = 0, Ji = 0, (since f is a function of xn) 

Therefore !;; = 0, f ii = 0 , where i , j = 1 .. . ,n-1. 

2 2 1 2 
So K ii =-fn F =--2 F =-1. 

xn 
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Similarly if i = n, j ::/= n, then Knj = -1. 

And also if i ::t= j , j = n, then Kin = -1. 

Then we can conclude that the sectional curvature of H n is a constant equal to -1. 

5.5 Riemannian Submersion 

A Riemannian submersion has been defined somewhat differently to the way of 

defining a Riemannian immersion. 

5.5.1 Definition 

- n+k =m 
Suppose M and M smooth manifolds. A differentiable mapping f: M -? M n 1s 

called a submersion if f is surjective, and for all p E M , df- : T- M -? T - M has 
p p f(p) 

rank n. In this case, for all p EM, the fiber f -1 (p) = FP 

M. 

is a submanifold of 

If M has a Riemannian metric g , at each point p E M , the tangent space T- M 
p 

decomposes into direct sum T- M = (T- M l + (T- M )" , where (T- M ) h and 
p p p p 

(T-M) v denote the subspaces of horizontal and vertical vectors respectively. 
p 

A vector X E (T- M) h c T- M is called horizontal if it is orthogonal to the fibre. If 
p p 

XE ~(M), the horizontal lift X of X is the horizontal field defined by 

df-(X(p)) = X(f(p)) = X(p). The horizontal lift of a vector field X on Mis the 
p 

unique vector field X on M which is horizontal and projects onto X. 
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A vector T\ E (T- M) v c T- M is called vertical if it is tangent to the fiber, where 
p p 

(T-Mr = Ker df = {T\ E (T-M) I df-(T\) = O}. Let g be a Riemannian metric on M. 
p p p 

The mapping f is said to be a Riemannian submersion if 

g(X ,Y) = g(df-(X),df-(Y)). 
p p 

5.5.2 Connection of a Riemannian submersion 

Let V and V be the Riemannian connections of Mand M recpectively. Then we can 

find a relationship between the connections in terns of a vertical vector. That is, if 

X ,Y are horizontal lift of X and Y respectively, where X and Y are tangent to M, then 

- - - I 
Vx Y = (V xY) +-[X ,Yr, where [X ,Yr is the vertical component of [X ,Y]. 

2 

Proof: 

LetX, Y, Z E ~(M). Let TE ~(M) be a vertical field. 

Let X, Y and Z be horizontal lifts of X, Y and Z respectively. 

Consider (T, [X, Y]) = (T, Vx Y - Vr X) 

= (T, Vx y > - (T, Vr X > 

= (T,(VxYr )- (T,(Vr xr) 

That is, (T,(VxYr-(Vr xr) = (T,[X,Yr) (33) 

We know that ( X ,1) = 0. 

Taking the covariant derivative in the direction of Y, 

Y(X,T)=O 
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(Vr X ,I)+ (X , VrT)= 0 

((Vr X f ,T) +(X , (VrT)h )=O (since ( (Vr X/,T)=O, (X ,(Vr Xf )=O) 

==> ( (Vr X f ,T) = 0 ( since Tis a vertical field , then (VrT )h = 0.) 

Similarly ( (Vx Y f ,T) = 0 

Adding these two results, 

( (Vr X)" ,T) + ( (Vx Yf ,T) = 0 

( (Vx Y)" + (Vr Xf ,7) = 0 

Adding the equations (33) and (34), 

2( (Vx Yf ,T) = ([X ,Y]" ,T ) 

(v' x Y)" = _!_ [X ,rr , for all TE (T- M f 
2 p 

- 1 - -
= V xY + - [X ,Yr . Hence the result 

2 

5.5.3 Curvature of a Riemannian submersion 

(34) 

Let Rand R be the curvature tensors of Mand M respectively. Then we can find the 

relationship between R and R in terms of vertical vectors as in the case of the 

Riemannian immersion. Using that relationship, we then find a result between the 

sectional curvatures of M and M. 
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(a) (R(X,Y)Z,W) = (R(X,Y)Z,W)-_!_([X,zr ,[Y,wr) + 
4 

¾<rY,zr .rx,wr> -½<(z,wr .rx,Yr> 

(b) K(oj = K(CJ')+ ! !rx,Yf ~ K(CJ'), where (J' is the plane generated by the 

orthonormal vectors X, YE ~ (M ) and CJ' is the plane genarated by X , Y . 

Proof 

( a) First we show that X (Y , Z) = X (Y, Z) 

Consider X(Y,Z) = (Vx Y,Z) +(Y, Vx Z) 

= ((VxY/ ,z) + (Y , (Vx Z)h) 

Using the definition of Riemannian submersion, 

= ( df- (V xY ), df- (Z ) ) + ( df-(Y) ,df- (V xZ) ) 
p p p p 

= ( V x Y ,Z) + (Y, V x Z) (from the definition of horizontal lift) 

Then X(Y,Z)=X(Y,Z) 

Replacing Y by Vr Zand Z by W , we have 

- - - 1 --
From 5.5.2 we know that Vr Z = VyZ +-[Y,Zf, and 

2 
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-- -- 1--
VxW =V xW +-[X,Wt 

2 

Substituting into equation (35), 

- - - - - 1 -- -- 1 --
(VxVrZ ,W) + (VyZ +-[Y,zt, V xW +-[X,Wt) = (V X VyZ ,itJ + 

2 2 

(since (VyZ ,[X ,wt)= 0 and (V xW ,[Y,Zt) = 0) 

Using the definition of the Riemannian submersion, 

Substituting into the above expression, 

---- 1 -- --
(VxVr z, W) =--([Y,zt ,[x,wt) + (V XV yZ ,W) 

4 

Similarly, 

---- 1 -- --
(VrVx z, W) =--([X ,zt ,[Y, wt)+ (Vy V xZ ,W) 

4 

We can show that ([T, X ], Y) = 0, where Tis a vertical field. 

Since ([T, X ], Y) = (VT X - VxT, Y) 

(A) 

(B) 

= ((VT X)h, Y) - ( (VxT)h, Y) ( Y is a horizontal vector field) 
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So ([T, X ], Y) = 0 

Hence ( VrX ,Y)=(VxT,Y) 

Also we have (Y, T) = 0 

Differentiating in the direction of X , 

X (Y,T) = 0 

( Vx Y,1)+ ( Y, VxT ) =O 

That is, ( VxT , Y) =- ( Vx Y, T) 

Combining (36) and (37), we have 

Consider ( V1x.yj Z, W) = ( V1x.rt+1x.rt Z , W ) 

= ( V 1x.YJh Z, W) + ( Vix.r t Z , W ) 

Using the definition of Riemannian submersion and equation (38) 

( V1x.yj Z , W) = ( df;;(V1x.nZ),dfj/W) ) + ( V1x.r1V z, W ) 

= ( V1x.nZ, w >+ ( Vix.rt z , w) 

= (V1x.nz,w >- (CVzw )\[X ,rr > 

- - I --
From 5.5.2 we know (VzWf =- [Z, wr 

2 

Therefore from equation (39), 
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- - - 1 -- --
(v\x,yjZ, W) = (~\x.nZ,W )-( 

2 
[Z,Wr ,[X ,Yr) (C) 

Using the definitions of the curvature tensor and the equations (A), (B) and (C), 

(R(X ,Y)Z, w > = (V r Vx z, w )- (VxVr z, W) + (V[x,yjZ, W), 

(R(X ,Y)Z,W) = (V r V xZ,W)-(V x VyZ ,W) +(Vlx.nZ,W) 

----- 1 -- -- 1 -- --
(R(X,Y)Z,W > =(R(x ,nz,w)--([x,zr ,[r,wr> + -([r,zr ,[x,wr>-

4 4 

Hence the result. 

1 -- --
-([z,wr ,[x,rr). 
2 

(b) Let K (a) and K(a) be the sectional curvatures of Mand M respectively. 

where X and Y are orthonormal, therefore Ix A Yl 2 
= 1 and Ix A if =1. 

Considering part (a), 

<Rcx,Y)x,Y> = <Rcx,nx,r>-I<[x,:rr ,[x ,:rr> 
4 

K(a) = K(d) - ! j[X ,Yr\
2 

Hence the result. 
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Chapter 6 

Conclusion 

In this thesis we have progressed from the familiar notion of surface in 9\ 3 to the 

general notion of manifold. Now we are in a position to reverse this process. An n

dimensional manifold Mis a space that is locally like the Euclidean space, 9\n. Every 

manifold has a calculus consisting of differentiable functions , tangent vectors, vector 

fields , mappings, etc. The simplest manifold of dimension n is 9\" itself. A two

dimensional manifold is called a surface, which generalizes the Euclidean plane by 

replacing the dot product on tangent vectors, by arbitrary inner products. 

In Riemannian geometry, the length of a curve is a geometric notion of 

intrinsic distance directly generalizing the familiar Euclidean distance in the plane. In 

chapter 4, we defined that the geodesics are curves with acceleration zero. Geodesics 

are not only the straightest curves but also the shortest curves. This generalizes the 

simple Euclidean rule, which says that a straight line is the shortest distance between 

two points. Geodesics in an arbitrary surface generalize the straight lines in Euclidean 

geometry. 

In chapter 2, we described two properties that determined a unique 

connection on any Riemannian manifold called Riemannian connection. Then we 

computed Christoffel symbols of the Riemannian connection and observed that those 

symbols are zero in Euclidean space. Next we proved that the covariant derivative 

coincides with the usual derivative in Euclidean space. In Riemannian space the 

covariant derivative differs from the usual derivative by terms which involve the 

Christoffel symbols. 
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In chapter 5, we focused on the special case of hypersurfaces in 9t n+i and 

showed how the second fundamental form is related to the principal curvatures and 

Gaussian curvature. We proved a generalization of the theorem Egregium of Gauss. 

This allowed us to relate the notion of curvature in Riemannian manifolds to the 

classical concept of Gaussian curvature for surfaces. 

Finally we computed the sectional curvatures of our model Riemannian 

manifolds. The sectional curvatures of Euclidean space, unit sphere, Sn , and 

hyperbolic space are 0, 1 and -1 respectively. Comparing with the Gaussian curvature 

of model spaces of surf aces we can conclude that the model spaces of Riemannian 

manifolds are the natural generalization of the model spaces of surfaces. Concerning 

all above results we can conclude that Euclidean space is a special case of 

Riemannian space. 
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