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Abstract

Under the Resource Management Act (1991) New Zealand dairy farmers are required to
dispose of dairy-farm effluent in such a manner as to have no adverse etfect on the
receiving environment. This study investigated the land treatment of pond treated
effluent to short rotation forestry (SRF). The study involved both field trials and
modelling work to assess sustainability of these systems in terms of nitrogen leaching to

groundwater.

A lysimeter study investigated 3 SRF species, 2 evergreen species of Eucalypts
(Fucalyptus saligna, E. nitens) and a deciduous willow (Salix kinuyanagi) in the
treatment of dairy farm effluent. Trees were grown in lysimeters (1.8 m diameter, 1.0 m
depth) to enable measurement of water and nitrogen balances. A bare-soil treatment was
used as a control. The application of dairy-farm oxidation-pond effluent totaled 218 g N
lysimeter” (equivalent to 872 kg N ha™') over 2 irrigation seasons (December 1995-June
1996 and September 1996-April 1997). Effluent was applied weekly during the
irrigation seasons at a rate of 21 mm week ™. No effluent was applied during the winter

period.

The drainage period of the £. nitens was shorter than that of the S. kinuyanagi, and rates
of leaching were respectively lower. Both these treatments leached for shorter periods
than £. saligna. Leaching of the bare-soil treatment was consistently high throughout
the experiment. Water use through evapotranspiration was found to have a large impact

on drainage volume and timing.
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The trees were shown to improve eftluent treatment because high evapotranspiration
rates reduced the volume of leachate passing beyond the root zone. Further, uptake of
nitrogen by the trees reduced the quantities of nitrogen available for leaching. In this
study both £. nitens and S. kinuyanagi were more suitable for land treatment than the
other 2 treatments evaluated. The low nitrogen concentration in the leachate under the S.
kinuyanagi is the key criterion which determines the suitability of this tree species for
land treatment of effluent. The low total loading of nitrogen to the groundwater of the F.
nitens treatments is the key criterion in determining k. nitens suitability. Although the
nitrogen concentrations in the leachate of the tree treatments were generally less than
the bare soil treatments, they were still greater than the New Zealand drinking water
standard (NZDWS) of 11.3 mg NOs™-N, during certain periods of the experiment. From
the lysimeter experiment it was concluded that the leachate nitrogen concentrations

might have been reduced if the amount of nitrogen applied in the effluent was reduced.

Total production of above-ground biomass in the 2.5 years, based on the stocking rate of
4000 stems ha’ was equivalent to 15.6, 30.6, and 21.3 Mg ha yr' for E. saligna, E.
nitens, and S. kinuyanagi respectively. Although scaling up biomass estimates from
small plot trials and particularly lysimeters introduces associated errors, the estimates

fell within the ranges measured elsewhere in New Zealand.

The lysimeter study was complemented by the modelling of the water and nitrogen
balances of SRF land treatment systems. Ultimately, the aim of the model was to
investigate the effect of changes in management practices on sustainability in terms of
nitrogen leaching of SRF systems treating dairy-shed eftfluent. The model selected for

this purpose was a lumped parameter model (LPM). The water and nitrogen balances of
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the bare soil and /. nitens treatments were simulated with the model to determine the
applicability of an LPM scheme to predict system behaviour. The model predicted, with
broad agreement, the measured water and nitrogen balances of the lysimeter
experiment. The model was then used to simulate the behaviour of a SRF plantation
receiving dairy-shed effluent at a rate of 200 kg N ha'! yr' over 27 years. This
simulation predicted the occurrence of high nitrate concentrations in the leachate. This
would be a limiting factor for the long term sustainability of such a system. A
sensitivity analysis of the model was used to reveal the important parameters of water
movement and nitrogen cycling that effect both nitrogen concentration and quantity in
the leachate moving below the root zone. Water movement was most sensitive to root
zone depth, effective rainfall, available water and crop water use. The nitrogen fate
parameters with greatest effect on leachate nitrogen concentration and quantity were
denitrification activity and volatilisation. Plant growth parameters of light utilisation
efficiency, maximum leaf nitrogen concentration and specific leaf area strongly eftected
leachate nitrogen concentration and quantity. Mineralisation rates of the soil humus and
the senescence rates of plant material also impacted on quantity and concentration of

nitrogen leaching.

The model’s applicability as a decision support tool was demonstrated by examining the
impact of various effluent loading rates on the leachate concentration and quantity.
Based on leachate nitrate concentrations being on average lower than the NZDWS, the
key finding was that the sustainable loading rate for the simulated system was found to

be around 75 kg N ha yr™".



The major finding of both the lysimeter experiment and the modelling study was the
high nitrogen concentrations leaching from SRF dairy-shed effluent treatment systems.
The LPM model clearly provides a platform from which to investigate many other
possible scenarios of management to minimise the leaching of the high concentrations

of nitrogen into the ground water.
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