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Abstract 

Capillary Isoelectric Focusing (CIEF) is a high-resolution technique which can be 

applied to the separation and characterisation of complex biological mixtures such as 

dairy proteins. Although dairy proteins are commonly analysed by traditional gel 

electrophoresis techniques including 2-Dimensional PAGE, CIEF offers the 

advantages of reduced analysis times, the ability to handle smaller sample volumes 

and increased sensitivity with improved separation efficiencies. 

Several methods for capillary isoelectric focusing of dairy proteins have been 

developed herein. For the analysis of soluble whey proteins methods that can be used 

with either UV or mass spectrometry (MS) detection have been set up. For MS 

detection a coaxial sheath flow interface in conjunction with electrospray ionisation 

has been utilised. For analysis of the inherently insoluble casein proteins with UV 

detection denaturing and reducing agents have been introduced into the system. 

Results have shown very close similarities to those obtained by IEF gels. 
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Page 1 

1 Overview 

Capillary lsoelectric Focusing (CIEF) is a technology that has developed in the last 

few years and is a technique whereby proteins and peptides are separated according to 

their isoelectric point (p[); such separations are generally as good as those obtained by 

flat bed isoelectric focusing (IEF) polyacrylamide gel electrophoresis (PAGE). 

Advancements in CIEF technology have been led by the requirements of proteomic 

research for high throughput analysis coupled with limited sample size. Routine 

methods for CIEF involve ultraviolet (UV) detection, but mass spectrometry (MS) 

detection is becoming more popular for many research groups. This is analogous to 

the time consuming method of 2-dimensional IEF/ PAGE in which spots on gels are 

excised, digested with enzyme, and the digests analyzed by high perfonnance liquid 

chromatography-MS (HPLC-MS). CIEF-MS has the capability to reduce analysis 

times considerably and is used for a number of applications. Detection is of intact 

protein rather than hydrolyzed protein, which saves time on database searches. In 

recent years the CIEF-UV method that has traditionally only had applications to water 

soluble protein, has been modified for separation of proteins in denaturing systems. In 

this way proteins that are inherently insoluble can be separated by ClEF. Currently 

there is only one CIEF method within the literature that has a dairy application and 

this is based on the monitoring of glycosylation products of glycomacropeptide 

(GMP) (Tran et al. 2001 ). 

Over the last few years dairy industries around the world have embarked on large­

scale proteomic research, with a view to one or more of the following: 

a.) The discovery of low abundance proteins and peptides that may have potential 

health benefit that could be explored in niche products of the future. 

b.) Understanding expression and co-regulation of milk proteins. 

c.) Acquisition of intellectual property for future strategic use. 

The competitive edge of a dairy company is governed partly by the speed in which 

fundamental research can be translated into a commercial process or product. In this 
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respect it is mandatory to identify new technological areas and analytical techniques 

that may allow large time and cost savings in the commercialization pipeline. 

Capillary electrophoresis (CE) is one such analytical tool as it is rapid, has very good 

detection limits, can be interfaced to MS detection and requires very small sample 

size. 

The aim of this research was to develop new methods in CE analysis that would be 

applicable to a wide variety of dairy-based samples, and could be used as rapid 

screening methods for proteomic applications. The CE mode of CIEF was 

investigated, as sample size in this format is generally 20 times larger than other 

modes of CE, thus enhancing detection sensitivity, and the method is able to separate 

proteins and peptides over a wide range of pl values. The method has the additional 

advantage that pl values can help in the identification of unknown protein. The 

technique is also very rapid and gives very good comparison to the IEF gel format, 

making this technology very much cheaper and less labour intensive to use. 

Bovine dairy proteins are comprised of two main groups, the casein and the whey 

proteins. Caseins make up approximately 80 % of dairy protein and typically occur as 

micelles in milk, being inherently insoluble. Whey proteins on the other hand make up 

the remaining 20 % of protein and tend to be globular water-soluble proteins, while in 

addition there is another group of proteins collectively termed the milk fat globule 

membrane (MFGM) protein that makes up a very small amount (<1 %) of protein in 

milk. Taking these general properties into consideration the overall aim of this thesis 

was to develop methods of CIEF for the different types of dairy protein as follows: 

• Develop methods using UV detection that are simple to run with minimum 

preparation and optimized for: 

o The major whey proteins 

o Casein proteins 

o Fractionated protein samples 

• Compare these methods to IEF flat bed PAGE 

• Develop methods of CIEF-MS for soluble proteins and if possible modify the 

method for insoluble proteins 

• Compare CIEF-MS results to two dimensional PAGE (2D-PAGE) methods 

• Compare CIEF methods to already developed CZE methods where applicable 




