Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

METAL COCRDINATION STUDIES

<u>CF</u> SULPHUR IIGANDS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Fhilosophy in Chemistry at Massey University.

NIGEL GRANT LARSEN 1979

ACKNCWIEDGEMENTS

The author is indebted to:

Drs. E.N. Baker and A.N. Prodie for their supervision and encouragement.

Drs. E.W. Ainscough and P. Anderson for many useful discussions.

Dr K.I. Frown, Chemistry Division, D.S.I.K., Fetone, for forwarding X-ray crystallographic data for [Cu(tbmpH)Er₂]₂, and for the use of the four-circle X-ray diffractometer.

Dr M. Weiner, The City College of the City University of New York, for recording and forwarding photoelectron spectroscopic data.

Mr A.A. Trow and Lr F.L. Jolley for recording nmr spectra.

Frcfessor R. Hodges for mass spectra.

Dr G.A. Bowmaker, Department of Chemistry, University of Auckland, for the use of the interferometer.

Ircfessor A.D. Campbell of Ctago University for microanalyses.

Eelinda Taylor, for typing this work. The award of a University Grants Committee Postgraduate Scholarship is gratefully acknowledged.

AESTRACT

Transition metal complexes of ligands containing thioether sulphur have been investigated. Section I, concentrates on Cu(II) complexes, and to a lesser extent Cu(I) complexes, of mixed sulphur-nitrogen ligands. Some complexes of Co(II) and the d^{ℓ} metal ions, Ni(II), Id(II) and It(II), have also been included. In Section II, complexes of the Group VIF metals (Cr(C), Fo(C), N(C)) are discussed.

SECTION I

All of the complexes have been investigated using infrared and electronic spectroscopy, with electronic spectra for some of the Cu(II) complexes also being recorded at SCK. The Cu(II) complexes have also been studied using electron spin resonance (esr) spectroscopy. For a variety of solvents at 77K, esr has been especially useful in revealing the complex behaviour of some of the compounds.

i) <u>Complexes of 2-(3,3-dimethyl-2-thiabutyl)pyridine (tbmp)</u>

The ligand has been used to prepare the Cu(II) complexes, $Cu(tbmp)_{n}X_{2}$ (n=1, X=Cl⁻, Br⁻; n=2, X=BF₄⁻, ClO₄⁻, Cl⁻, Er⁻), $[Cu(tbmp)_{2}X]BF_{4}$ (X=Cl⁻, Er⁻), and the Cu(I) complexes, $Cu(tbmp)_{n}Br$ (n=1,2) and Cu(tbmpH)X₂ (X=Cl⁻, Er⁻).

Crystallographic studies are reported for Cu(tbmp)Pr₂, Cu(tbmp)₂Er and Cu(tbmpH)Er₂.

 $Cu(tbmp)Br_2$ crystallizes as discrete, non-centrosymmetric dibromo-bridged dimers ($[Cu(tbmp)Pr_2]_2$), in which each Cu(II)centre has a distorted tetragonal pyramidal environment. The tetrahedrally distorted basal plane of each Cu(II) centre consists of one thioether sulphur ligand, (mean Cu(II)-S = 2.352(6) Å), one pyridyl nitrogen (mean Cu(II)-N = 2.06(2) Å) and two bromide ions [one terminal (mean Cu(II)-Br = 2.372(3) Å) and one bridging (mean Cu(II)-Er = 2.415(3) Å)]. The apex of each tetragonal pyramid is formed by a long bond to the bridging, basal bromide ion (mean Cu(II)-Er = 2.902(4) Å) of the second Cu(II) centre.

In monomeric, distorted tetrahedral $Cu(tbmp)_2 Br$, each Cu(I) ion is bound by a terminal tromine (Cu(I)-Fr = 2.426(2) Å), two thicether sulphur atoms (mean Cu(I)-S = 2.331(4) Å) and a pyridyl nitrogen (Cu(I)-N = 2.11(1) Å).

 $Cu(tbmpH)Br_2$ forms centrosymmetric dimers ($[Cu(tbmpH)Br_2]_2$), in which the distorted tetrahedral Cu(I) centres are bridged by two bromide ions (mean Cu(I)-Br = 2.597(1) Å). The two remaining coordinating positions of each Cu(I) ion are occupied by a terminal bromide ion (Cu(I)-Br = 2.363(1) Å) and a sulphur-bound (Cu(I)-S = 2.276 (2) Å) tbmpH⁺ cation.

The structural data for these and related complexes are used in attempting to understand the nature of Cu(I) and Cu(II) interactions with biologically relevant ligands.

The spectroscopic data suggests that the $Cu(tbmp)_2X_2$ complexes are <u>cis</u>-octahedral in the solid state, whereas the $[Cu(tbmp)_2X]BF_4$ complexes are tetragonal pyramidal.

An unstable deep blue species is formed by the addition of t-butyl thiolate to $Cu(thmp)_2X_2$, where X is ClC_4 or BF_4 . The displacement of thmp (by pyridine) from $Cu(thmp)_2X_2$ (X = Cl⁻, BF_4) is also discussed.

With Co(II) and Ni(II), the <u>cis</u>-octahedral $M(tbmp)_2X_2$ (X=Cl⁻, Br⁻) and $M(tbmp)_2(ClC_4)_2.nH_2C$ (n = 1,2) complexes have been characterized. The nature of paramagnetic metal ion $[\Sigma=Cu(II), Co(II)]$ interactions with thmp under hydrophobic conditions are investigated using ¹H nmr spectroscopy.

ii) <u>Complexes of 2-ethylthioethylamine</u> (etea)

The tetragonal complexes $Cu(etea)X_2$ (X=Cl⁻, Br⁻), $Cu(etea)_2X_2$ (X=BF₄⁻, ClC₄⁻, Cl⁻, Br⁻) and [Cu(etea)_2Cl]EF₄ have been characterized and the displacement of etea from $Cu(etea)_2(ClC_4)_2$ (by pyridine), is discussed.

iii) <u>Complexes of 2-methylthio-2-imidazoline</u> (mti)

In the reactions of mti with M(II), the tetragonal complexes $Cu(mti)_4X_2$ (X = BF₄⁻, Cl⁻, Br⁻) were successfully synthesized, together with a tetrahedral complex, $Co(mti)_3Cl_2$. In the latter, one mti molecule appears to remain uncomplexed.

With $Cu(mti)_4 (BF_4)_2$, the ligand is not displaced by an excess of pyridine. A ¹H nmr line broadening experiment provides good evidence for Cu(II) binding to mti via its non-protonated nitrogen.

iv) Complexes of 2-(3, 3-dimethyl-2-thiabutyl)quinoline (tbmg)

With this ligand, the pseudotetrahedral Cu(II) complexes, Cu(tbmq)X₂ (X = Cl⁻, Br⁻) and the Cu(I) complexes, Cu(tbmq)Br, Cu(tbmqH)Br₂ and Cu(tbmq)₂ClO₄, were synthesized. In contrast to tbmp and etea, tbmq does not form the sixcoordinate complexes, Cu(tbmq)₂X₂ (X = Cl⁻, Br⁻).

v) <u>Complexes of 3-(2-methylthiophenylimino)camphor</u> (1)

Although I is susceptible to hydrolysis, the successful isolation and characterization of the pseudo-tetrahedral $CuL(ClO_4)_2$.acetone.xH₂O (x = C,2) complexes was achieved from acetone solutions. A ¹H nmr line broadening experiment indicates that Cu(II)/S(thioether) interactions take place under hydrophobic conditions.

vi) <u>Complexes of 1,2-bis(pentafluorophenylthio)ethane (fpte)</u> and ethylthiopentafluorobenzene (C₆F₅SEt)

In order to determine the effects of the electronegative pentafluorcphenyl substituents, the spectroscopic data for <u>cis</u>-FtCl₂fpte, <u>cis</u>-FdCl₂fpte and <u>trans</u>-FtCl₂(C₆F₅SEt)₂ are compared with the data for some related thioether ligand complexes. The results can be explained by a comparison of the ionisation potentials of the sulphur lone-pair electrons of fpte (as determined by photoelectron spectroscopy) with those of 3,4-bis(alkylthio)toluene (alkyl = methyl, ethyl) and <u>meta</u>- and <u>para</u>-bis(methylthio)benzene.

SECTION II

All of the carbonyl complexes in this Section have been characterized by infrared and electronic spectroscopy and in most cases, ¹H nmr spectroscopy.

i) <u>Complexes of 3,4-bis(methylthio)toluene (bmtt) and</u> <u>3,4-bis(ethylthio)toluene</u> (bett)

The bridged-ligand complexes, $[M(CC)_5]_2$ bmtt and $[M(CO)_5]_2$ bett (M=Cr, W), and the chelated-ligand complexes, $M(CO)_4$ bmtt and $M(CC)_4$ bett (M=Cr, No, W) were characterized in this study. On the basis of force constant calculations and electronic spectra, it is apparent that for aryl thioether ligands such as bmtt and bett, the sulphur atom acts as a poorer σ -donor and, in general, a better Π -acceptor than it does in aliphatic thioether ligands. A similar conclusion is reached for C_6F_5 SEt (see above), with which unstable $M(CC)_5C_6F_5$ SEt (M=Cr, W) complexes were synthesized.

Reactivity studies are reported for $[W(CC)_5]_2$ bett and the mass spectra of $[W(CC)_5]_2$ bmtt and the $M(CC)_4$ bmtt (N=Cr, No, W) complexes are discussed.

¹³C nmr spectra were recorded for $["(CO)_5]_2$ bmtt, $M(CO)_4$ bett (N=Cr, W), Cr(CO)_4bmtt and the ligands. The ¹³CO chemical shifts for $["(CC)_5]_2$ bmtt and the $W(CO)_5$ I complexes of phosphorus and nitrogen ligands are correlated with their Cotton-Fraihanzel carbonyl force constants.

ii) <u>Complexes of 2-ethylthioethylamine (etea) and</u>

2-(3,3-dimethyl-2-thiabutyl)pyridine (tbmp)

Both the bridged-ligand $[N(CC)_5]_2$ etea (N=Cr,W) and the chelated-ligand $N(CC)_4$ etea (N=Cr, No, W) complexes were characterized for etea. However, only the chelatedligand complexes were isolated and characterized for tbmp.

¹³C nmr spectra for etea, $Cr(CC)_4$ etea and $Mo(CC)_4$ etea (the carbonyl complexes showing two distinct <u>trans</u>-¹³CO resonances) and reactivity studies for $[W(CC)_5]_2$ etea and $W(CC)_4$ etea, are also discussed.

iii) <u>Complexes of 2-methylthioaniline (mta), 2-methylmercapto-</u> benzimidazole (mmbi) and 2-methylthio-2-imidazoline (mti)

The combined spectroscopic data for the N(CC)₅L complexes of these ligands, shows that mmbi and mti prefer to bind to the zero-valent Group VIB metals via one of their nitrogen donors. Cn the other hand, mta prefers to bind via the thioether sulphur.

Although the complexes of mta could not be isolated in an analytically pure form, good evidence for their identities was provided by their infrared and mass spectra and the observed replacement of mta from %(CC)₅mta, by triphenylphosphite.

CONTENTS

GEN	ELAL INTROD	UCTICN	t
SEC Pd(. Sulj	FICK I Com II) and Ft(phur.	plexes of Cu(II), Cu(I), Co(II), Ni(II), II) with Ligands Containing Thicether	
		Introduction to Section I	3
<u>1</u>	Dimeric Cop 2-thiabuty1 dimethy1-2-	pper(II) Complexes of 2-(3,3-dimethyl- l)pyridine. Introduction Crystal Structure of Eis[dibromo(2-(3,3- -thiabutyl)pyridine)copper(II)] Spectroscopic Results and Discussion Experimental Syntheses	8 10 28 47 52
2	Bis [2-(3,3- Complexes.	-dimethyl-2-thiabutyl)pyridine] Copper(II) Introduction Spectroscopic Results and Discussion Interaction of Thicls with Cu(tbmp) ₂ X ₂ Reactivity Studies Paramagnetic ¹ H nmr Jine Breadening Syntheses	54 57 82 84 86 90
<u>3</u>	Copper(I) (pyridine an pyridinium dimethyl-2- 2-(3,3-dime	Complexes of 2-(3,3-dimethyl-2-thiabutyl)- and the 2-(3,3-dimethyl-2-thiabutyl)- Cation. Introduction General Chemistry Crystal Structure of Bromo-bis[2-(3,3- -thiabutyl)pyridine]copper(I) Crystal structure of Bis[dibromo(1-H- ethyl-2-thiabutyl)pyridine)copper(I)] Spectroscopic Results and Discussion Experimental Syntheses	93 96 97 104 108 117 121
<u>4</u>	Bis [2-(3,3- Cobalt(II) Experiment	-dimethyl-2-thiabutyl)pyridine] and Mickel(II) Complexes. Introduction Spectroscopic Results and Discussion Paramagnetic ¹ H nmr Jine Broadening	123 124 139
		Syntheses	141
5	M(II) Comp Cu(II)) and Co(II)).	<pre>lexes of 2-ethylthioethylamine (M(II)= d 2-methylthio-2-imidazoline (M(II)=Cu(II), Introduction Spectroscopic Results and Discussion Reactivity Studies Faramagnetic ¹H nmr Line Broadening</pre>	144 146 173 175
	and of function of	Syntheses	177

PAGE

				PAGE
<u>6</u>	Copper quinoli	Comj ne a	plexes of 2-(3,3-dimethyl-2-thiabutyl)- and 3-(2-methylthiophenylimino)camphor. Introduction Spectroscopic Results and Discussion Faramagnetic ¹ H nmr Line Broadening	182 183
	Experin	nent	Syntheses	192 194
7	Platinu 1,2-bis Flatinu benzene	um(II s(per um(II	[) and Falladium(II) Complexes of ntafluorophenylthio)ethane and a [) Complex of Ethylthiopentafluoro-	
	DellZelle	- ,	Introduction Spectroscopic Results and Discussion Analysis of the Electronegativity Effects Syntheses	198 199 205 207
Арре	endices	I II IV V	Ligand Syntheses, Preparations and Reactivity Studies Ceneral Synthesis of Complexes Experimental Details for Reactivity Studies Instruments and Recording of Spectra Solvents Miscellaneous Reactions Unsuccessful Reaction Attempts Studies on Cu(tbmp) ₂ X ₂ Melts Structure Factor Tables	210 216 218 220 221 223 224 225
SECI Mo((<u>CION II</u> D), W(C))) wi	Complexes of the Group VIB Metals (Cr(C), ith Ligands Containing Thioether Sulphur.	
			Introduction to Section II	239
<u>1</u>	Bridged toluene	l-lig e and	yand Complexes of 3,4-bis(methylthio)- 1 3,4-bis(ethylthio)toluene. Introduction Spectroscopic Results and Discussion Reactivity Studies Mass Spectra	243 244 260 265
2	Chelate	ed-li e (al	gand Complexes of 3,4-bis(alkylthio)- lkyl=methyl, ethyl). Introduction Spectroscopic Results and Discussion Mass Spectra Syntheses	267 268 281 283
<u>3</u>	Complex Sulphur	kes (r-Ni	of Monodentate and Bidentate trogen Donor Ligands. Introduction Spectroscopic Results and Discussion Reactivity Studies Mass Spectra Syntheses	289 290 310 315 317

PAGE

GENERAL DISCUSSION AND CONCLUSIONS

	Thioether Interactions with Zero-valent	
Metals.	The Dele of Sterie Interpotions in the	326
Complexes of	f tbmp, tbmq, I, etea and mti.	336
	Thioether interactions with Cu(I) and Cu(II).	341
	Flexibility of Cu S(thioether) Interactions.	345
	Structural Changes in Copper Froteins. The Crisin of the 600 nm. Absorption	345
in "Model" (Complexes and the "Blue" Froteins.	347
Appendices 1	I Ligand Syntheses	351
	Methylation of bmtt	353
	II General Synthesis of Carbonyl Complexes Characterization of Unstable C _c F ₅ SEt	354
	Complexes	355
	Experimental Details for Reactivity Studies	355
	III Instruments and Recording of Spectra	358
	Solvents	359
i.	IV Miscellaneous Reactions	360
1	V Force Constant Calculations for Carbonyl	
	Complexes	362

BIBLICGRAPHY

363

<u>tbmp</u>

<u>tbmq</u>

<u>bmtt</u>

mti

THIS WORK

tbmp	=	2-(3,3-dimethyl-2-thiabutyl)pyridine	
tbmpH+	=	2-(3,3-dimethyl-2-thiabutyl)pyridinium c	ation
etea	=	2-ethylthioethylamine	
mti		2-methylthio-2-imidazoline	
tbmq	=	2-(3,3-dimethyl-2-thiabutyl)quinoline	
tbmqH ⁺ is anal	ogoı	us to $tbmpH^{\dagger}$ (above)	
I	=3-	-(2-methylthiophenylimino)camphor	
fpte	=	1,2-bis(pentafluorophenylthio)ethane	
C ₆ F ₅ SEt	=	ethyl thi openta fluorobenzene	
bmtt	=	3,4-bis(methylthio)toluene	
bett	=	3,4-bis(ethylthio)toluene	
mta	=	2-methylthioaniline	
mmbi	=	2-methylmercaptobenzimidazole.	
		LITERATURE DATA	

A) <u>SECTICN I</u>

CHAPTER 1

dmen	=	N,N-dimethylethylenediamine
🗙 -pic	=	2-methylpyridine (🗙 -picoline)
tmen	=	N, N, N', N'-tetramethylethylenediamine
maep	=	2-(2-methylaminoethyl)pyridine
dth	=	2,5-dithiahexane
BBTE	=	5,8-dithiadodecane
pdto	=	1,8-bis(2-pyridyl)-3,6-dithiaoctane
EEE	=	1,8-diamino-3,6-dithiaoctane
1-MeIm	=	1-methylimidazole
I,o	=	3,4-bis(2-aminoethylthio)toluene
L ¹	=	N-(2-methylthiophenyl)(2-pyridyl)methylenimine

1 ²	=	bis(N,N-dimethylacetamido)thioether
L ³	=	1,4,8,11-tetrathiacyclotetradecane
I ⁴	=	2-methylthioethylamine
1 ⁵	=	[3,3'-ethylenedithiobis(o-phenyleneimino-
		methylidyne)bis(pentane-2,4-dionato)] ²⁻
r _e	=	tricyclo[17.5.5.5 ^{7,13}]tetraaza-1,7,13,19-dioxa-
		4,16-tetrathia-10,22,27,32-tetratriacontane
1 ⁷	=	1-oxa-4,13-dithia-7,10-diazacyclopentadecane
dmaep	=	2-(2-dimethylaminoethyl)pyridine
aep	=	2-(2-aminoethyl)pyridine
amp	=	2-aminomethylpyridine
pib	=	\mathbb{N}, \mathbb{N}' -tetramethylenebis(2-pyridinaldimine)
tu	=	thiourea
dip	=	2,2'-bipyridyl
tren	Ξ	tris(2-aminoethane)amine
bipy	н	2,2'-bipyridyl
tctd	=	1,4,8,11-tetrathiacyclotetradecane
F ₆ acac	=	[1,1,1,5,5,5-hexafluoro-2,4-pentanedionato]
		CHAPTER 2
trenNe ₆	Ξ	hexamethyl N-substituted tris(2-aminoethane)amine
trienR ₆	=	hexaalkyl N-substituted 1,4,7,10-tetraazadecane
en	Ħ	1,2-diaminoethane (ethylenediamine)
		CHAFTER 3
dto	=	3,6-dithiaoctane
14-ane-S ₄	=	1,4,8,11-tetrathiacyclotetradecane
py2S2	=	bis(2-pyridyl)disulphide
py2 ^{Et2S2}	=	bis[2-(2-pyridyl)ethyl]disulphide
pea	=	[2-(2-pyridyl)ethyl] bis[2-(ethylthio)ethyl]amine

tal-i-(3 ^H 7	=	N-(2-thenylidene)isopropylamine
C8H8		=	cyclooctatetraene
DPFA		=	bis(diphenylphosphino)acetylene
tal-CH3	3	=	N-(2-thenylidene)methylamine
$(Me_2N)_2$	Et2S2	=	bis[2-(N,N-dimethylamino)ethyl]disulphide
			CHAPTER 4
Hpymt		=	pyrimidine-2-thione
mmp		=	2-methylthiomethylpyridine
NSSN		=	1,6-bis(2-pyridyl)-2,5-dithiahexane
mmtq		=	2-methyl-8-methylthioguinoline
А		=	1, E-bis(2-pyridyl)-3, 6-dithiaoctane
,			CHAPTER 6
N-R-sal		=	[N-salicylidenealkylaminato]
I ¹		1	N,N'-(1,7,7-trimethylbicyclo[2,2,1] heptane-
			2,3-diylidene)dianiline
			CHAPTER 7
dmedt		=	1,2-bis(methylthio)ethylene
dnxdt		=	2-methyl-4,5-bis(n-butylthio)toluene
dbedt		=	1,2-bis(benzylthio)ethylene
dmmnt		=	1,2-bis(methylthio)ethylene dinitrile
SN		=	1,2-bis(2-aminophenylthio)ethane
dpd		=	1,12-bis(phenylthio)dodecane
pms		=	phenylmethylsulphide
p-bmtb		=	1,4-bis(methylthio)benzene
B)	SECTION	II	
			CHAPTER 1
dmpe		=	1,2-bis(dimethylphosphino)ethane
o-bmtb		=	1,2-bis(methylthio)benzene
pte		=	1,2-bis(phenylthio)ethane

	benzyime inyisuiphide
11	1,3-bis(methylthio)benzene
=	3,8-dithiadecane
=	2,2,7,7-tetramethyl-3,6-dithiaoctane
=	1,2-bis(p-nitrophenylthio)ethane
=	1,12-diaminododecane
=	2,9-dithiadecane
	CHAFTER 2
=	1,2-bis(diphenylphosphino)ethane
=	1,2-tetrakis(methylthio)ethylene
=	1,2-tetrakis(ethylthio)ethylene
=	N, N, N', N'-tetramethylethylenediamine
=	1,2-bis(p-dimethylaminophenylthio)ethane
=	1,2-bis(p-methoxyphenylthic)ethane
=	$\mathbb{N}, \mathbb{N}, \mathbb{N}', \mathbb{N}'$ -tetramethylethylenediamine
=	trimethylenediamine
	CHAFTER 3
Ξ	benzimidazole

SECTION I

Figure		Page
1	Structure of [Cu(tbmp)Br ₂] ₂ .	11
2a,b	Electronic Spectra - [Cu(tbmp)X2]2 Dimers.	30
2c	Ligand Field Maxima of 5-Coordinate Cu(II) Complexes.	31
3	ESR Spectra - [Cu(tbmp)X ₂] ₂ Dimers.	40
4	Far-IR Spectra - $[Cu(tbmp)X_2]_2$ Dimers.	45
5	Possible Structure, as Indicated by Fatterson Vectors.	49
6	Possible Structures for $Cu(tbmp)_2X_2$ and $[Cu(tbmp)_2X]BF_A$	
	Complexes.	55
7	Electronic Spectra - $Cu(tbmp)_2 Br_2$ and $[Cu(tbmp)_2 Br] BF_4$.	59
8	Electronic Spectra - $[Cu(tbmp)_2X]BF_4$ Complexes at 9CK.	64
9	ESR Spectra - Cu(tbmp) ₂ X ₂ Complexes.	68
10	Far-IR Spectrum - Cu(tbmp)2Cl2.	78
11	Electronic Spectrum (9CK) - Addition of t-Bus to	
	$Cu(tbmp)_{2}(ClC_{4})_{2}$ in Methanol.	83
12	Electronic Spectra - Addition of pyridine to Cu(tbmp) ₂ Cl ₂	. 85
1 3a	¹ H nmr - Addition of Cu(II) to tbmp.	87
1 3b	¹ H nmr - Addition of Co(II) to 2-methylpyridine.	88
14	Relationships Between $Cu(tbmp)_Br$ (n = 1,2) and	94
	[Cu(tbmpH)Br ₂] ₂ .	95
15	Structure of Cu(tbmp)_Br.	98
16	Structure of [Cu(tbmpH)Br].	105
17	IR Spectra - Cu(I) Complexes and Pyridinium Salts.	109
18	Spin-Allowed Transitions for O. Co(II) and Ni(II).	124
19	Electronic Spectra - $Co(tbmp)_X$ Complexes.	126
20	Electronic Spectra - Ni(tbmp) X. Complexes.	132
21	IR Spectra - V. Modes, M(tbmp)_(ClC,)nH_O Complexes.	137
22	¹ H nmr - Addition of Co(II) to tbmp.	140
23	Electronic Spectra - Cu(etea)Bra.	147
24	Electronic Spectra - $Co(mti)_Cl_a$ and $Co(\ll -pic)_Cl_a$.	152
25a	Electronic Spectra - Cu(etea) (BF,).	153
25b	Suggested Structures for Cu(etea) X _o (X=ClC, BF,).	154
26	ESR Spectra - Cu(etea) X ₂ Complexes.	158
27	Cu(II) Species Formed in Presence of Excess etea.	160
28	ESR Spectra - Cu(mti), X2 Complexes.	166
	4	

IIST CF FICURES (Cont'd)

Figure		Tage
29a	IR Spectra - ClO_4^- and $BF_4^- \vee_3 Modes$.	171
29b	Resonance Structures for Substituted Imidazolines.	172
30	¹ H nmr - Addition of Cu(II) to mti.	176
31	Electronic Spectra - Cu(tbmq)X ₂ Complexes.	184
32	ESR Spectra - $Cul(ClO_4)_2$.	189
33	¹ H nmr - Addition of Cu(II) to I.	193
34	Far-IR Spectra - <u>cis</u> -NCl ₂ fpte Complexes.	200
35	Froposed <u>trans</u> -Structure for FtCl ₂ (C ₆ F ₅ SEt) ₂ . <u>SECTION II</u>	201
1	3,4-bis(methylthio)toluene and 3,4-bis(ethylthio)-	
	toluene.	241
2	M(CC) ₅ L Carbonyl-Stretching Modes.	244
3	IR Spectra – $[M(CC)_5]_2$ bmtt Complexes.	245
4	M-Ligand and M-CO Bonding Schemes.	248
5	N.O. Diagram for N(CC) L Complexes.	252
6	Electronic Spectra – $[N(CC)_5]_2$ bett Complexes.	254
7	IR Spectra - [W(CC) ₅] ₂ bett Reactivity Studies.	261
8	cis-M(CO) ₄ L ₂ Carbonyl-Stretching Modes.	268
9	IR Spectra - N(CC) ₄ L ₂ Complexes.	269
10a	13 C nmr - Cr(CC) ₄ bmtt.	276
10b,c	¹³ CO Chemical Shifts <u>vs</u> . CO Force Constants,	
	[W(CC) ₅] _n L Complexes.	277
11	Postulated Structures for Cr(CC) ₂ I ⁺ Ions in Mass Spectra.	282
12	Bridged-ligand Complexes of etea.	290
13	13 C nmr - Cr(CO) _A etea.	299
14	¹ H nmr - Aryl Frotons of mmbi.	303
15	IR Spectra - Reflux $[V(CO)_5]_2$ etea With Excess P(CPh) ₃ .	312
16	IR Spectra - Reflux $W(CO)_4$ étea With Excess $P(OPh)_3$.	314
	IIST_CF_TABLES	
	SECTION I	
Table		Page
1	Stability Constant Data.	7
2	Summary of Results - $[Cu(tbmp)X_2]_2$ Dimers.	9
3a	Structural Details for [Cu(tbmp)Br2]2.	12
3Ъ	Atomic Displacements from Basal Planes.	17
3c,d	Atomic Coordinates and Thermal Farameters for	
	[Cu(tbmp)Br ₂] ₂ .	14

LIST CF TABLES (Cont'd)

Table		Pag
4a	Crystallographic Data; Bromc-bridged, Dimeric Cu(II)	
	Complexes.	23
4b,c	Cu(II)-S(thioether) and Cu(II)-N(pyridyl) Bondlength	
	Data.	26
5a	Electronic Spectra, [Cu(tbmp)X2]2 Complexes.	32
5Ъ	Electronic Spectra of 5-Coordinate Cu(II) Complexes.	33
5c	C.T. Assignments for $[Cu(tbmp)X_2]_2$ and $[Cu(PETE)X_2]_2$.	33
6	ESR Spectra, [Cu(tbmp)X2] Complexes.	43
7a	Crystal Data for [Cu(tbmp)Er2]2.	47
7Ъ	Data Collection for [Cu(tbmp)Br2]2.	48
7c	Nean least-Squares Flane Equations.	51
8	Miscellaneous Thysical Data (Chapter 1).	53
9	Summary of Results - Cu(tbmp)2X2 Complexes.	56
1 C	Electronic Spectra - $Cu(tbmp)_2 X_2$ and $[Cu(tbmp)_2 X] BF_4$	
	Complexes.	60
11	Electronic Spectra at SCK.	65
12	ESR Spectra - $Cu(ttmp)_2X_2$ and $[Cu(tbmp)_2X]BF_4$	
	Complexes.	73
1 3a	Some Far-IR Data for Cu(II) Complexes.	79
13b,c	IR Spectra - tbmp/Cu(II) Complexes.	80
14	Miscellaneous Fhysical Data (Chapter 2).	92
15a	Structural Details for Cu(tbmp)_Br.	100
15b.c	Atomic Coordinates and Thermal Farameters for	
	Cu(tbmp)_Br.	101
16	Cu(I)-S(thioether) and $Cu(I)-N(pyridyl)$ Bond Data.	103
17	Structural Details for [Cu(tbmpH)Br].	106
18a,b	IR Spectra, Cu(I) Complexes.	111
19	Electronic Spectra, Cu(I) Complexes.	114
2Ca	Crystal Data for Cu(tbmp) 2 Br.	117
2СЪ	Data Collection for Cu(tbmp), Br.	118
20c	Mean Least-Souares Flane Equations.	120
21	Miscellaneous Physical Data (Chapter 3).	122
22a	Reflectance Spectra, Co(II) Complexes.	127
22b	Electronic Spectra, Co(II) Complexes in MeOH.	128
22c	Electronic Spectra, T, Co(II) Complexes.	129
23a	Electronic Spectra, NiN ₂ S ₂ X ₂ Complexes.	133
2 3Ъ	Estimated Dq and B for Ni(II) Complexes.	134
	-	

e

<u> IIST CF TAFIES</u> (Cent'd)

Table		Fage
24	IR Spectra, Co(II) and Ni(II) Complexes.	138
25	Miscellaneous Fhysical Data (Chapter 4).	143
26	Summary of Results - Cu(etea) X2 Complexes (n=1,2).	145
27a	Electronic Spectra - etea/Cu(II) Complexes.	148
27b,c	Electronic Spectra - mti/Cu(II) Ccmplexes and	
	Co(mti) ₂ Cl ₂ resp.	150
27d	Electronic Spectra of etea Complexes at 90K.	156
28a,b	ESR Spectra, etea and mti Complexes resp.	163
29	IR Spectra, etea and mti Complexes.	169
30	Electronic Spectra - Addition of pyridine to	
	$Cu(mti)_{A}(BF_{A})_{2}$.	174
31	Miscellaneous Physical Data (Chapter 5).	181
32	Electronic Spectra, tbmq and L Complexes.	184
33a	ESR Spectra, tbmg and I Complexes.	187
330	ESR Spectra, Distorted T _d Cu(II) Complexes.	187
34a	IR Spectra, tbmq Complexes.	191
34b	IR Spectra, of $CuL(ClO_4)_2$.acetone.xH ₂ O.	192
35	Miscellaneous Physical Data (Chapter 6).	197
36	IR Spectra; Pt(II), Pd(II) Thioether Complexes.	199
37	Electronic Spectra, Pt(II) and Pd(II) Complexes.	202
38	Ionisation Fotentials for Dithioether Ligands.	204
39	Niscellaneous Physical Data (Chapter 7).	209
40	Ligand Froperties and Analytical Results.	213
	SECTION II	
1	Group VIB Metal Carbonyl Complexes of Thioether	
	Ligands.	240
2	Complexes of Sulphur-Nitrogen Donors.	242
3	$\mathbf{v}(\text{CO})$ Absorptions for $\left[\mathbb{M}(\text{CC})_{5}\right]_{n}$ L Complexes.	245
4	Cotton-Kraihanzel Force Constants, [M(CO)] _n I	
	Complexes (n=1,2).	250
5a	Electronic Spectra for [Cr(CC) ₅] ₂ L Complexes	255
	(L=bmtt, bett).	
5b	Electronic Spectra for [W(CC) ₅] ₂ L Complexes	255
	(L=bmtt, bett).	
6a, b	$1e \rightarrow 2a_1$ C.T. Transitions; $[N(CC)_5]_2 L$ Complexes.	256
7	H nmr Data, [M(CO) ₅] ₂ L Complexes of bmtt, bett.	259
8	'H nmr Spectrum, Reflux [W(CO) ₅] ₂ bett With PPh ₃ .	264

.

<u>LIST OF TABLES</u> (Cont'd)

Table		Page
9a	$\mathbf{v}(\text{CO})$ Absorptions for $\mathbb{M}(\text{CC})_4 \mathbb{I}_2$ Complexes.	270
9Ъ	Cotton-Kraihanzel Force Constants, N(CC)412	
	Complexes.	270
1Ca	Electronic Spectra for M(CO) ₄ I ₂ Ccmplexes.	273
1Cb	Electronic Spectra; lowest Energy Maxima,	
	M(CC) ₄ I ₂ Complexes.	273
11a	¹³ CO Chemical Shifts.	276
11b	¹³ C Chemical Shifts of bmtt, bett and Complexes.	279
12	¹ H nmr Data, $\mathbb{N}(\mathbb{CC})_{4}\mathbb{I}_{2}$. Complexes of bmtt, bett.	281
13	Miscellaneous Physical Data (Chapters 1 and 2).	288
14a	$\mathbf{v}(\text{CC})$ Absorptions for $\left[\mathbb{N}(\text{CC})_{c}\right]_{n}$ L Complexes.	291
14b	$\mathbf{V}(CO)$ Absorptions for $\mathbb{N}(CC)_4 \mathbb{I}_2$ Complexes	291
15	Cotton-Kraihanzel Force Constants, [N(CC) ₅] _n L	
	Complexes.	293
16a,b	IR Spectra, $\mathbf{V}(NH)$ and Heterocyclic King Absorptions.	297
17a,b	¹³ C Chemical Shifts, etea and N(CC) ₄ etea.	300
17c	5 C Chemical Shifts for $\mathbb{N}(\mathbb{CO})_{4}$ etea.	301
18a,b	H nmr Data, Complexes of etea, mta, mmbi,	
c,d,e	mti and tbmp.	302
1ºa	Electro ic Spectra - $[Cr(CO)_5]_n L$ Complexes.	307
19b	Electronic Spectra - $[W(CO)_5]_n I$ Complexes.	308
19c	Electronic Spectrum of No(CC) ₅ mta.	308
20	Electronic Spectra for $M(CO)_4 I_2$ Complexes.	309
21	Miscellaneous Physical Data (Chapter 3).	325
22	Structural Data for Cr(C) Complexes.	334
23	Ligand Properties and Analytical Results.	352