
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



 

 

 

Estimation and Identifiability for a 

Dynamic Model of Maternal Nutrition and 

Fetal Growth in Sheep 
 

 

 

A thesis presented in partial fulfilment of the requirements for the degree of 

Master of Applied Statistics 

 

at Massey University, Albany, New Zealand 

 

 

 

Leiyan Wang 

2012 



 

 

 

  



 

i 
 

Abstract 

The optimal maternal nutrition intake is extremely important in the second half of pregnancy 

for fetal development in mammals. It affects the health and wellbeing of the offspring. The 

purpose of this study was to determine the optimal daily nutrition intake for sheep during the 

second half of their pregnancy, to achieve a pre-determined desirable birth weight for lambs. 

By achieving the optimal birth weight, the postnatal development of the animals is likely to 

be improved.  

In this study, pregnant sheep carrying singletons or twins were considered. There were two 

levels of nutrition, low and high. Various dynamic mathematical models were proposed to 

obtain the optimal daily nutrition intake. The model parameters were estimated by weighted 

least-squares. Bootstrap simulations were used to check the reliability of each estimated 

parameter. Finally, the optimal daily nutrition intake was obtained by solving the boundary 

value problems, with pre-determined parameter values.  

The results suggested that the optimal daily nutrition intake for sheep in the second half of 

their pregnancy was a constant. For the particular breed of sheep, with target weight 6.5 kg 

for singletons, the optimal nutrition intake was 1.36 kg of dry matter per day. For twins, with 

a target weight of 12 kg, the optimal nutrition intake was 1.93 kg of dry matter per day. In 

addition, a comprehensive and generic ‘black-box’ algorithm was produced using the 

software MATLAB. It could return the optimal daily nutrition intake for any type of 

mammals given a time series of fetal weight and maternal nutrition.  
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Chapter 1 

1. Introduction 
 

1.1 Background 

Pregnancy is one of the most important events in the lifetime of female mammals. It is a part 

of the reproduction process. Reproduction plays a vital role to maintain the species. 

Pregnancy refers to fertilising and developing one or more embryos or fetuses in the uterus of 

a female mammal (Kiataramkul et al. 2011). A key factor for fetal growth is the nutrient 

supply to the fetus (Harding & Johnston, 1995).  

The relationship between fetal growth and maternal nutrition intake during pregnancy is 

crucial. The pregnancy success, and the offspring’s lifetime health and productivity, can be 

determined by this relationship (Redmer, Wallace & Reynolds, 2004). Some animal studies 

showed that high nutrition intake during early pregnancy led to reduced fetal size (Godfrey et 

al. 1996); Parr et al. (1987) suggested that overfeeding in early stage of pregnancy reduced 

pregnancy rate in sheep. However, undernutrition would also impact the fetal growth, and 

usually resulted in low birth weight (Harding & Johnston, 1995). The possibility of early 

mortality and later morbidity is increased by low birth weight of the offspring (Osrin, 2000). 

In addition, Wu et al. (2004) suggested that placental-fetal blood flows would be reduced by 

either maternal overnutrition or undernutrition. It would inhibit growth of the fetus. They also 

stated that suboptimal nutrition intake during pregnancy remains a problem for many species 

globally.  

Furthermore, the last third of pregnancy accounts for ninety per cent of fetal growth for sheep. 

This is approximately from 90 days of gestation to 145 days (Redmer, Wallace & Reynolds, 

2004). Therefore, the maternal nutrition intake in the later stage of gestation is extremely 

important to health and wellbeing of the offspring.  
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1.2 Description of data 

The datasets used for this study are extracted from two journal articles written by Rattray et al. 

(1974a, 1974b).  Both of the articles are concerned with the same experiment. The figure 1 

from Rattray et al. (1974b) shows the relationship between the fetal weight (kg) and day of 

gestation in sheep. We read off the data points from this plot. The table 6 from Rattray et al. 

(1974a) provides us the summary statistics of daily nutrition intake (gram Dry Matter/day) 

with approximate day of gestation at 70, 100, 125 and 140 days. There are two levels of 

nutrition intake, level low and high, for pregnant sheep in the experiment after day 70 of 

gestation. The datasets associated with the pregnant sheep carrying singletons and twins in 

the second half of their pregnancy are considered. Thus, we have two sets of experimental 

data which are available in this study. 

 

 

1.3 Objective of this study 

In this study, we consider the fetal development in the second half of pregnancy, from day 70 

to day 147 (birth time). The birth weight of the lambs is an important indicator to show how 

healthy both the pregnant sheep and her offspring are. The ultimate goal is to find the optimal 

daily nutrition intake for sheep during the second half of their pregnancy, in order to achieve 

the pre-determined desirable birth weight for the lambs, and also with the minimum total 

nutrition intake.  

In addition, we need to produce a ‘black-box’ algorithm. It is a very comprehensive algorithm, 

which requires minimum human intervention. It is also a generic algorithm, which can be 

used for most mammals. This algorithm should be designed for people without sophisticated 

statistical or mathematical background. As long as the people collect enough data of relevant 

time, fetal weight and daily nutrition intake for a specific mammal, the algorithm can provide 

them the optimal daily nutrition intake for this kind of animal.  
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1.4 Thesis outline 

The thesis has been structured into the following chapters. In chapter 2, we will present some 

basic knowledge from the literature on the topics of least squares estimation, identifiability, 

bootstrap resampling and boundary value problems. In chapter 3, the dynamic system of the 

original model will be introduced, and we will discuss each of the model parameters. The 

methodology of the parameter estimation will also be outlined. The detailed results and 

discussion on the parameter estimation of the original full model and alternative models will 

be shown in chapter 4. The results of bootstrap simulations will be discussed in chapter 5. In 

chapter 6, we will present the optimal numerical solutions for this study. The chapter 7 will 

summarise the main findings of this study, and we will also outline the future research 

direction.  
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Chapter 2 

2. Literature Review 

In this chapter, we present some basic knowledge from the literature on the topics of least 

squares estimation, identifiability, bootstrap resampling and boundary value problems. These 

topics will be discussed briefly in the following sections.  

2.1 Least squares estimation 

After the stages of model definition and data collection, the next step is to estimate the 

parameters of the model based on the data we have got. This process is referred to as model 

fitting or parameter estimation (Chatterjee & Hadi, 2006). It can also be visualised as a study 

of inverse problems (Zhang, 1997). The most common method for parameter estimation is 

the least squares method. 

The history of the least squares method can be traced to 1795. This method was invented by 

Karl Friedrich Gauss, who formulated the basic concept and applied it in astronomical 

computations (Gibbs, 2011). It has been widely applied in estimating unknown parameters, as 

well as solving some technique problems. Identifying the parameters from a dynamic system 

by using the least squares method has received considerable attentions in recent decades and 

is widely used.  

The optimisation criterion of the least squares method is to set a ‘cost’ or ‘loss’ function, 

which needs to be minimised. In the least squares estimation, the function to be minimised is 

the sum-of-squares of residuals (Gibbs, 2011). 

The form of general model is (Seber & Wild, 1988) 

𝑦𝑖 = 𝑓(𝑋𝑖;  𝜃∗) + 𝜀𝑖    (𝑖 = 1,2, … ,𝑛),                                        (2.1) 

where E[𝜀𝑖]=0,  𝑋𝑖 is a vector, and the true value of 𝜃∗ of 𝜃 is known to belong to Θ. It is 

also noted that 𝜃 is a vector of parameters, while Θ is a parameter vector set. The least-

squares estimate of 𝜃∗, denoted by 𝜃�, minimises the error sum of squares 

𝑆(𝜃) = ∑ [𝑦𝑖 − 𝑓(𝑋𝑖;  𝜃)]2𝑛
𝑖=1 .                                                     (2.2) 
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When each 𝑓(𝑋𝑖;  𝜃) is differentiable with respect to 𝜃, and 𝜃� is in the interior of Θ, 𝜃� will 

satisfy 

�𝜕𝑆(𝜃)
𝜕𝜃𝑟

�
𝜃�

= 0       (𝑟 = 1,2, … 𝑝)                                                      (2.3) 

In this way, we can easily calculate the least squares estimate of the unknown parameters 

from equation (2.3). 

Johnson & Faunt (1992) stated that there are six inherent assumptions related to the 

parameter estimation by least squares method. Thus we assume that 

• All of the experimental errors can be attributed to the dependent variables; 

• The experimental errors of the data follow a Normal distribution; 

• There is no systematic error in the data; 

• The function form 𝑓(𝑋𝑖;  𝜃) is correct; 

• There should be sufficient data points available to provide a good sampling of the 

experimental errors; 

• The observations are independent of each other. 

In addition, the constant variance is another important assumption related to the ordinary least 

squares. If this assumption is violated, we cannot achieve accurate estimation of the unknown 

parameters, and the values may be unreliable.  

The generalised least squares (GLS) estimator can provide a better solution to handle the 

problem of heteroscedasticity. GLS estimators have some excellent attributes, namely they 

are unbiased, consistent, efficient and also asymptotically normal. The weighted least squares 

(WLS) is a special case of GLS.  

WLS is a way of accommodating non-constant variance, in order to get precise estimates of 

the model parameters. However, it is assumed that we know the weights exactly, which is a 

disadvantage. In real applications, it is hard to fulfil this assumption.  

A form of the GLS is (Seber & Wild, 1988) shown in equation (2.4). 

𝑠(𝜃) = [𝑦 − 𝑓(𝜃)]′𝑉−1[𝑦 − 𝑓(𝜃)]                                               (2.4) 

where V is a known positive definite matrix. 
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Generally, the optimal weights are proportional to the reciprocal of the variance for the 

observations. It can be expressed as  𝑉 ∝  1
𝜎2

 . The ordinary least-squares is a special case of 

the GLS, where 𝑉 = 𝐼𝑛 (Seber & Wild, 1988). WLS is the special case where V is a diagonal 

matrix. In other words, the errors are independent but non-constant. In GLS, the errors may 

be correlated as well.  

Minimising the objective function 𝑠(𝜃) in equation (2.4), we can get the GLS estimate, 

denoted as 𝜃�𝐺 .  As we discussed earlier, the GLS estimate is unbiased and efficient. Hence, 

the GLS estimates 𝜃�𝐺  is called the best linear unbiased estimate (BLUE) (Gibbs, 2011).  

 

 

2.2 Identifiability 

In recent decades, parameter identifiability has received considerable attention in the problem 

of building mathematical models of systems biology. The mathematical models are usually 

associated with dynamic systems, especially using ordinary differential equations (ODE) to 

describe the systems (Raue et al., 2011). The process of parameter estimation of this kind of 

model faces challenges, since the internal behaviour of biological or physiological systems 

are only partially observable. Most of the model parameters are measured indirectly by 

parameter estimation (Saccomani, 2004). 

Jacquez (1990) stated that model specification refers to using the differential equations to 

show the processes occurring in the biological or physiological systems. The general dynamic 

models can be shown as follows (Miao et al., 2011): 

𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡),𝑢(𝑡),𝜃),                             (2.5) 

𝑦(𝑡) = ℎ(𝑥(𝑡),𝑢(𝑡),𝜃),                                 (2.6) 

where 𝑥(𝑡) is a vector of dependent variables; 𝑦(𝑡) is the measurement; 𝑢(𝑡) is the known 

system input vector; and 𝜃 is the parameter vector. 

The equation (2.5) is the ODE model. For the problem of parameter estimation, the parameter 

θ is unknown, and needs to be estimated based on the experimental data.  
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The concept of identifiability has been defined by Miao et al (2011, P5) and refers to the 

dynamic system given by equation (2.5) and (2.6)  

‘is identifiable if θ can be uniquely determined from the given system input u(t) and the 

measurable system output y(t); otherwise, it is said to be unidentifiable’.  

In the literature, there are some relevant concepts related to the idea of identifiability. Ljung 

and Glad (1994) introduced the concepts of global identifiability and local identifiability.  

Others distinguish between structural identifiability and practical identifiability (Bellman & 

Astrom, 1970).  

The difference between global and local identifiability is based on the parameter space of θ. 

The identifiability can be expressed as  𝑦(𝑢,𝜃1) = 𝑦(𝑢,𝜃2) if and only if θ1 = θ2, with any 

admissible input 𝑢(𝑡). If it is considered as globally identifiable, any two parameter vectors 

θ1 and θ2 should be in the parameter space Θ. However, if this condition holds only for any θ 

within an open neighbourhood of some point θ* in the parameter space, then it can be 

considered as locally identifiable (Miao et al., 2011). 

The structural and practical identifiability has been defined by Chis, Banga and Balsa-Canto 

(2011, P1) as follows: 

‘Structural identifiability is a theoretical property of the model structure depending only 

on the system dynamics, the observation and stimuli function. Practical identifiability is 

intimately related to the experimental data and the experimental noise’. 

There are three main categories of identifiability techniques used for general ODE models, 

which are structural identifiability analysis, practical identifiability analysis, and sensitivity-

based identifiability analysis (Miao et al., 2011). 

The structural identifiability technique is used to evaluate the identifiability of theoretical 

model structure. It can be done without any experimental data. Thus it is called prior 

identifiability analysis. There are two assumptions related to structural identifiability analysis. 

The first assumption is the absolute accuracy of model structure; the second assumption is no 

measurement error. However, those two assumptions are hardly ever fulfilled in practice. 

Generally, there are four techniques used in determining the structural identifiability. These 

techniques are  

• Power series expansion and similarity transformation 

• Direct test 
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• Differential algebra 

• Implicit function theorem 

Both model error and measurement error are considered in practical identifiability analysis. It 

is also known as posterior identifiability analysis. If the model is determined as structural 

non-identifiable, there is no need to conduct the practical identifiability analysis, since the 

structural non-identifiability must imply the practical non-identifiability. If the model is 

diagnosed as structural identifiable, then further analysis is required to examine the further 

propriety of the model. That is, it is necessary to conduct a practical identifiability analysis. 

For this, we require initial values for each parameter. Generally, there are two techniques 

available to determine the practical identifiability. There techniques are  

• Monte Carlo simulation 

• Correlation Matrix 

Sensitivity-based analysis is another technique of identifiability analysis. To some extent, it is 

similar to structural identifiability analysis. It does not require actual experimental data. In 

addition, it does not account for model uncertainty and measurement error. However, the 

major difference between sensitivity-based analysis and structural identifiability analysis is 

that there is no requirement for model structure information. The sensitivity-based analysis is 

similar to practical identifiability analysis in terms of requiring pre-determined values for the 

parameters. The sensitivity-based analysis can be considered as a technique between the 

structural identifiability analysis and practical identifiability analysis. The structural 

identifiability analysis may not be successful for dealing with highly dimensional ODEs or 

complicated ODEs. Since the structural identifiability is unknown, the practical identifiability 

analysis may be not reliable. In this case, the sensitivity-based analysis can handle this kind 

of tough situation. Generally, there are four techniques considered as sensitivity-based 

analysis, which are 

• Correlation Method 

• Tuning importance method and Principal Component Analysis (PCA) 

• Orthogonal method 

• Eigenvalue method 

The consequence of non-identifiability of the model is that it is not possible to obtain a 

reliable estimation of the parameters. In this case, we cannot utilise the model to do further 
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prediction and analysis of the dynamic system (Miao et al., 2011). Raue et al. (2011) 

suggested two ways to resolve the issue of non-identifiability. The first method is to refine 

the experimental design, in order to get more experimental data based on suitable 

experimental conditions. The second method is model reduction. In this way, the dynamic 

models can be reduced, and the model simplified. The size of the model can be altered based 

on the information available from experimental data. In addition, Chis, Banga and Balsa-

Canto (2011) suggested fixing the values of some parameters. Those fixed parameters should 

be ones that are less relevant to the model prediction. These three methods can help to 

remedy the problem of non-identifiability. 

 

 

2.3 Bootstrap resampling 

Bootstrap is a resampling procedure, which is a method to resample data from the original 

dataset with replacement (Chernick, 1999). Efron and Tibshirani (1986) stated that bootstrap 

is a general methodology to get an estimation of the accuracy of a parameter. This technique 

is simple to implement. The bootstrap simulations can be used for almost any conceivable 

problems. Once we program the bootstrap procedures, then the computer will do all the work 

for us. However, it is computationally intensive. Usually, it takes at least a thousand bootstrap 

replications to get the estimator (Chernick, 1999). Initially, the idea of bootstrap resampling 

was used to calculate valid confidence limits for population parameters. It also has been 

widely used for hypothesis testing (Manly, 2007).  

The formal definition of (non-parametric) bootstrap is defined as follows (Chernick, 1999, 

P7):   

Given a sample of 𝑛 independent identically distributed random vectors X1, X2, …, Xn 

and a real-valued estimator θ(X1, X2, …, Xn) (denoted by 𝜃� ) of the distribution 

parameter θ, a procedure (the bootstrap) to assess the accuracy of 𝜃� is defined in terms 

of the empirical distribution function Fn . This empirical distribution function assigns 

probability mass 1/n to each observed value of the random vectors Xi  for i=1,2,…, n.  

There are three types of bootstrap resampling methods, which are non-parametric, parametric, 

and semi-parametric. Their properties will be discussed briefly (Carpenter and Bithell, 2000). 
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The non-parametric resampling method does not require assumptions associated with the 

model for, or the distribution of, the data. The general procedures can be described in three 

steps as follows: 

1. Generate a sample with replacement from original sample, with original sample size 

of n. 

2. Compute θ*, the parameter we are interested based on bootstrap sample. 

3. Repeat steps 1 and 2, 𝑘 times to obtain an estimate of the bootstrap distribution. 

The value of 𝑘 is dependent on the situations. Chernick (1999) stated 𝑘 is recommended to be 

at least 100 for estimating standard errors. For the confidence interval or hypothesis testing, 

the value of 𝑘 should be at least 1000. 

The parametric resampling requires the assumption of a model distribution. Thus, the 

bootstrap resampling is under the particular model distribution. The procedure is shown 

below: 

1. Let 𝜃�  be the estimate of the parameter θ from the original dataset. Sample m 

observations from the particular known distribution with attributes of 𝜃�. 

2. Compute θ*, the parameter we are interested based on bootstrap sample. 

3. Repeat steps 1 and 2, 𝑘  times to obtain an estimate of the parametric bootstrap 

distribution. 

Lastly, the semi-parametric resampling method combines the features of both non-parametric 

and parametric resampling methods. It uses non-parametric resampling of the residuals from 

the fitted parametric model (Carpenter and Bithell, 2000). The generic procedure is described 

below: 

Let us suppose we have two vectors y= (y1,..., yn) and x= (x1,…,xn), then we fit the model  

𝑦 = 𝑔(𝛽,𝑋) + 𝑟                                 (2.7) 

getting estimates 𝛽̂ of the parameters β, and a set of residuals ri, i=1,2,...,n. 

1. Adjust the residuals of the model (2.7), r = (r1,...,rn), to make them have 

approximately equal variances and means, denoted 𝑟̃ = (r1� , . . . , r𝑛� ). 
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2. Sample with replacement from the set of adjusted residuals(𝑟1� , . . . , 𝑟𝑛�), to obtain a set 

of bootstrap errors, 𝑟∗ = (𝑟1∗� , . . . , 𝑟𝑛∗� ). 

3. Then bootstrap the data 𝑦∗ = (𝑦1∗, … ,𝑦𝑛∗) with model, 𝑦∗ = 𝑔�𝛽̂,𝑋� + 𝑟∗. 

4. Fit the model 𝑦∗ = 𝑔(𝛽,𝑋), to get the bootstrap estimate 𝛽̂∗. 

5. Repeat the steps 2-4, 𝑘 times to obtain the bootstrap distribution. 

There is an important assumption underlying to this semi-parametric bootstrap method. It 

requires the adjusted residuals  𝑟̃𝑖 independently and identically distributed (i.i.d.). 

Two common methods used for bootstrap confidence interval are standard bootstrap 

confidence limits, and simple percentile confidence limits (Manly, 2007). We introduce those 

two methods briefly here. 

The simplest method for getting the confidence limit is the standard bootstrap method. It uses 

the estimate of parameter θ from original dataset, and the bootstrap standard deviation of 

estimates of parameter θ to formulate the confidence limit (Manly, 2007). It can be shown as 

𝜃� ± 𝑍𝛼/2 ∗ 𝜎𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝                                   (2.8) 

Note that 𝑍𝛼/2 is the z-score from the normal distribution with significance level of α.  

In this method, it requires three underlying assumptions. Firstly, 𝜃� has to be approximately 

normally distributed. Secondly, 𝜃�  has to be an unbiased estimator. Thirdly, bootstrap 

resampling method gives a good approximation to bootstrap standard deviation, 𝜎𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝. 

The advantage of this method is that it is simple to implement, and the result is quite accurate. 

It works well for estimating the sample median. However, if the parameter of interest has 

some constraints, such as the parameter θ has to be positive, then the confidence interval may 

include some unexpected value (Carpenter and Bithell, 2000). 

The obvious way to get a confidence interval is the simple percentile confidence limits. 

Estimate the parameter of interest, 𝜃�, from each bootstrapping dataset. We can see that the 

bootstrap estimate 𝜃�∗ can form a bootstrap distribution, and then sorting bootstrapped 𝜃�∗ in 

ascending order. Finally take the central 100(1- α) % of this bootstrap distribution as its 

100(1- α) % confidence interval (Chernick, 1999). This method is very simple, and it is quite 

generic. It can be applied to almost any statistic (Carpenter and Bithell, 2000). However, 
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Chernick (1999) stated that this method does not work well for small samples, especially for 

asymmetric distributions.  

 

 

2.4 Boundary value problems 

Boundary value problems (BVP) are widely applied in physics, mathematics, optimisation 

and control process (Ha, 2000).  Boundary value problems have been defined as a set of 

ordinary differential equations with dependent variable or its derivatives specified at more 

than one point (Zill, 2009). Two-point boundary value problems are quite common. Usually, 

the first boundary condition is the starting value of the independent variable, and the other 

boundary condition is the final value of the independent variable (Ha, 2000).  In order to 

solve the differential equations with boundary value problems, the boundary conditions must 

be satisfied by the solutions.  

The general form of boundary value problems can be shown as follows (Ascher & Russell, 

1981) 

𝑥̇ = 𝑓�𝑡, 𝑥(𝑡)�,        𝑎 ≤ 𝑡 ≤ 𝑏,                    (2.9) 

𝑔�𝑥(𝑎),𝑥(𝑏)� = 0                                     (2.10) 

where x, f and g should have n components;  𝑥̇ is defined as 𝑑𝑥
𝑑𝑡

 . In addition, f and g can be 

nonlinear functions.   

The feature of boundary value problems is that they usually cannot be solved analytically (Ha, 

2000). The difficulties of solving it analytically may be due to inappropriate boundary 

conditions, irregular regions, or coefficients of variables. In these cases, alternative numerical 

solutions are needed. With the development of technology, the accessibility of computers is 

extensive. The numerical methods can be completed by machine computation with cheap cost 

(Powers, 2010). In addition, the boundary value problems can have one solution, or infinite 

solutions, or even no solutions (Zill, 2009).  Due to this problem, it is necessary to provide an 

initial guess of desirable solution for computation (Shampine, Kierzenka & Reichelt, 2000).  



 

13 
 

The common techniques used to solve the boundary value problems are the finite difference 

method, and shooting method (Zill, 2009). Both methods will be discussed briefly.  

The finite difference method is considered as a numerical solution. It adopts the finite 

difference equations to approximate the solution to differential equations. The finite 

difference approximation is based on Taylor series expansion.  

Let us set ℎ = 𝑡 − 𝑎, centered at point a, and then the function x(t) can be expressed as (Zill, 

2009) 

𝑥(𝑡) = 𝑥(𝑎) + 𝑥 ̇ (𝑎) ℎ
1!

+ 𝑥̈(𝑎) ℎ
2

2!
+ 𝑥⃛(𝑎) ℎ

3

3!
+ ⋯,            (2.11) 

If h is small, and we can ignore the terms involving h2 and higher order, then we get the 

following approximations to the first derivative of function (2.11): 

𝑥̇ ≈ 1
ℎ

[𝑥(𝑡+ ℎ) − 𝑥(𝑡)]                                                 (2.12) 

𝑥̇ ≈ 1
ℎ

[𝑥(𝑡) − 𝑥(𝑡 − ℎ)]                                                 (2.13) 

and also 

𝑥̇ ≈ 1
2ℎ

[𝑥(𝑡+ ℎ) − 𝑥(𝑡 − ℎ)]                                          (2.14) 

If we ignore the terms involving h3 and higher order, and then we can get the approximation 

to the second derivative  

𝑥̈ ≈ 1
ℎ2 [𝑥(𝑡+ ℎ) − 2𝑥(𝑡) + 𝑥(𝑡 − ℎ)]                           (2.15) 

Based on the theory of finite difference approximation described above, let us consider a 

linear second order boundary value problem, shown as below 

𝑥̈ + 𝑃(𝑡)𝑥̇ + 𝑄(𝑡)𝑥 = 𝑓(𝑡),          𝑥(𝑎) = 𝛼, 𝑥(𝑏) = 𝛽.      (2.16) 

Suppose 𝑡0(= 𝑎) < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛−1 < 𝑡𝑛(= 𝑏),  

Let 𝑡𝑖 = 𝑎 + 𝑖ℎ, where 𝑖 = 1, 2, . . . ,𝑛;   ℎ = (𝑏 − 𝑎)/𝑛. 

Substitute the central difference approximations (2.14) and (2.15) into equation (2.16). Then 

after simplifying the equation, we can get 
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�1 + ℎ
2
𝑃(𝑡𝑖)� 𝑥(𝑡𝑖+1) + �−2 + ℎ2𝑄(𝑡𝑖)�𝑥(𝑡𝑖) + �1 − ℎ

2
𝑃(𝑡𝑖)� 𝑥(𝑡𝑖−1) = ℎ2𝑓(𝑡𝑖)      (2.17) 

Finally, the equation (2.17) provides us the numerical solution to the boundary value 

problems, with an approximation to the differential equation. This illustrates the process of 

finite difference method to solve the boundary value problems. 

The other numerical technique for solving the boundary value problems is the shooting 

method. This method converts the boundary value problems into the initial value problem 

(Zill, 2009). Let us consider an example of boundary value problems: 

𝑥̈ = 𝑓(𝑡,𝑥, 𝑥̇),         𝑥(𝑎) = 𝛼,    𝑥(𝑏) = 𝛽.                              (2.18) 

It can be reformed as initial value problem 

𝑥̈ = 𝑓(𝑡,𝑥, 𝑥̇),            𝑥(𝑎) = 𝛼, 𝑥̇(𝑎) = 𝑠                               (2.19)  

The value of 𝑠 in equation (2.19) is unknown. We simply have an initial guess of 𝑠, and try to 

find the numerical approximation β* for the value of x(b). We repeat this process with 

different initial guesses of 𝑠, until β* satisfies the given value 𝑥(𝑏) = 𝛽, and also with a 

predetermined tolerance level. This method uses the approach of trial-and-error to get the 

appropriate value of  𝑠 , in order to solve the boundary value problems numerically by 

shooting the boundary conditions, 𝑥(𝑏) = 𝛽 as a target.  

There is an underlying assumption related to this numerical method. It is assumed that the 

boundary value problems should have a solution (Zill, 2009). In addition, the shooting 

method is a general approach to solve the boundary value problems. This method applies 

widely in differential equations. However, the shooting method may fail to converge in some 

cases. This may be due to sensitive initial conditions (Ha, 2000). 
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Chapter 3 

3. Parameter Estimation 
 

3.1 Background 

Kiataramkul et al. (2011) developed a model of biological systems with ordinary differential 

equations. The model is to describe an optimal control problem based on Pontryagin’s 

Maximum Principle. The ultimate goal of this model is to figure out the optimal daily 

nutrition intake for pregnant sheep with a pre-determined desirable birth weight of lambs. 

The model consists of four ordinary differential equations shown as below: 

𝑥̇ = 𝑟𝑢𝑥
𝑢+𝐿

�1 − 𝑥
𝑘0+

𝑎𝑦
𝑦+𝐿0

�                                                                                 (3.1) 

𝑦̇ = 𝑢 − 𝑏𝑦                                                                                                     (3.2) 

𝑢̇ =

(𝑢+𝐿)

⎣
⎢
⎢
⎢
⎡ 𝑏𝐿�𝑘0+

𝑎𝑦
𝑦+𝐿0

���𝑘0+
𝑎𝑦

𝑦+𝐿0
�−𝑥�(𝑦+𝐿0)2

−(𝜆2+1)�
𝑎𝑥𝐿0�𝑏𝐿𝑦+𝑢2�

+𝑏𝐿�𝑘0+
𝑎𝑦

𝑦+𝐿0
���𝑘0+

𝑎𝑦
𝑦+𝐿0

�−𝑥�(𝑦+𝐿0)2�⎦
⎥
⎥
⎥
⎤

2𝐿�𝑘0+
𝑎𝑦

𝑦+𝐿0
���𝑘0+

𝑎𝑦
𝑦+𝐿0

�−𝑥�(𝜆2+1)(𝑦+𝐿0)2
                          (3.3) 

𝜆̇2 = 𝑎𝐿0𝑢𝑥(𝑢+𝐿)(𝜆2+1)

𝐿�𝑘0+
𝑎𝑦

𝑦+𝐿0
���𝑘0+

𝑎𝑦
𝑦+𝐿0

�−𝑥�(𝑦+𝐿0)2
+ 𝑏𝜆2                                              (3.4) 

where 𝑥(𝑡) is the fetal weight in kilograms (kg) at time point t;  

𝑦(𝑡) is the cumulative nutrition intake by the pregnant ewe in kg at time point t;  

𝑢(𝑡) is the daily nutrition intake in kg.day-1 at time point t;  

𝜆2(𝑡) is an adjoint equation based on Pontryagin’s Maximum Principle to achieve the 

condition of optimisation. 

 

Kiataramkul et al. (2011) showed that the logistic model can fit experimental data well to 

describe the fetal development in the second half of pregnancy. The logistic model can be 

expressed in the form of an ODE as 
𝑑𝑥
𝑑𝑡

= 𝑟𝑥 �1 − 𝑥
𝑘
�                                                 (3.5) 
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where r (> 0) is the growth rate of the fetus; 

           k (> 0) is the mythical ‘carrying capacity’.  

The equation (3.5) can be solved by separating the variables, and then we can get 

𝑥(𝑡) = 𝑥0𝑘
𝑥0+(𝑘−𝑥0)𝑒−𝑟𝑡

 ,                                    (3.6) 

with initial condition 𝑥(𝑡0) = 𝑥0; where 𝑥0 is the initial fetal weight at the starting time point 

𝑡0. 

Generally speaking, the ‘carrying capacity’ is always greater than initial fetal weight        

(𝑘 >  𝑥0). The equation (3.6) suggests that the fetal weight is asymptotically approaching to 

the ‘carrying capacity’ (𝑘) as the time goes to infinity. In reality, the time (t) never goes to 

infinity, as the lamb will be born within the specific maternal period. Thus the fetal weight 

never reaches the ‘carrying capacity’. The ‘carrying capacity’ can be considered as the 

‘mythical limit to growth’.  

The physiological meaning on the rest of parameters in the model system will be discussed 

briefly. The equation (3.5) has been modified to apply the concept of Michaelis-Menten to 

describe the model systems explicitly (Kiataramkul et al., 2011). 

The first modification is to multiply the term 𝑢
𝑢+𝐿

 to the growth rate r, and then it becomes  
𝑟𝑢
𝑢+𝐿

 , where u represents the daily nutrition intake. The parameter L is the Michaelis constant 

(Raaijmakers, 1987). In this case, the parameter r refers to the maximum per unit mass 

growth rate; and the parameter L refers to the value of nutrition intake at which the per unit 

mass growth rate is half of the maximum. Thus the Michaelis-Menten equation 𝑟𝑢
𝑢+𝐿

  suggests 

that the growth rate is dependent on the nutrition intake. If there is no nutrition intake (u=0), 

then there is no fetal growth.  

The second modification is to replace the ‘carrying capacity’ k with (𝑘0 + 𝑎𝑦
𝑦+𝐿0

). The term 

𝑎𝑦
𝑦+𝐿0

 is also in the form of a Michaelis-Menten equation. The function y(t) refers to a 

cumulative nutrition intake. The function y(t) in the form of ODE is shown in equation (3.2). 

It can be solved analytically, as  𝑦(𝑡) = ∫ 𝑒−𝑏(𝑡−𝑠)𝑢(𝑠)𝑑𝑠𝑡
0  . The cumulative intake would be 

suitably discounted according to the history (Kiataramkul et al., 2011). Thus the parameter b 
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is the discount factor, which indicates that the cumulative intake 𝑦(𝑡) is more influenced by 

the recent past than by the distant past.  

The Michaelis-Menten factor 𝑦
𝑦+𝐿0

 is associated with parameter a. The parameter a refers to a 

factor which influencing the ‘carrying capacity’ on historical intake. To some extent, it 

suggests that the history of nutrition intake may have an effect on ‘mythical limit to growth’ 

of fetus. The parameter L0 refers to the value of cumulative intake at which the influencing 

factor is half of its maximum.  

In summary, the ‘carrying capacity’ k has two components. The parameter k0 represents the 

basic component; and Michaelis-Menten term 𝑎𝑦
𝑦+𝐿0

 represents the addition component which 

depends on the historical intake.  

 

 

3.2 Methodology 

At the stage of parameter estimation, we just need to focus on the equations (3.1) and (3.2) to 

determine the unknown parameters associated with this dynamic system. Those two 

equations are sufficient to estimate the unknown parameters, with initial conditions 𝑥(𝑡0) =

𝑥0, and 𝑦(𝑡0) = 0; where 𝑡0 is the starting time point of the second half of pregnancy for 

sheep. In addition, we assume the function u(t) is known. In this system, the seven unknown 

parameters are r, L, a, k0, L0, b, and x0. The constraint on those unknown parameters is that all 

should be positive.  

We use least-squares to estimate those unknown parameters. The error sum of squares, 

∑ [𝑥𝑖 − 𝑓(𝑥𝑖;  𝑝)]2𝑛
𝑖=1 , is the only criterion to assess the model fitting with experimental data. 

(Here 𝑝 stands for the parameter vector). The smaller the value of sum of squares of errors 

(SSE), the better the model fits.  

We use the computer software MATLAB to conduct all the computation and analysis. The 

built-in function ‘fminsearch’ is used to determine the optimal value of those unknown 

parameters with the best fit. The built-in function ‘fminsearch’ adopts the Nelder-Mead 

method. This technique minimises an objective function in a multi-dimensional space. It is a 
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widely used direct search method for an unconstrained optimisation process (MathWork, 

2012). In this case, the least-squares SSE is used as our objective function. In addition, the 

initial guesses of each parameter need to be provided. The function ‘fminsearch’ will find the 

optimal value of each parameter to achieve the best model fit.  

As discussed previously, the unknown parameters should be positive. However, the function 

‘fminsearch’ uses an unconstrained optimisation process. We fix this conflict by conducting 

an appropriate transformation of those parameters. The exponential transformation ensures 

that the entire term after transformation always stays positive. In this case, we transform all 

the unknown parameters except x0. The parameter x0 represents the initial fetal weight at the 

start of the second half of pregnancy (t0). The experimental data of fetal weight, at close to 

the time point t0, are always positive. So we can ensure that x0 always stays positive without 

any form of transformation.  

The exponential transformation can be expressed generally as 

𝑝 =  𝑒𝑥𝑝 (𝑃). 

where p = original parameter, and P = new parameter.  

In this way, the new parameter, P, is unconstrained. It can take on a real value. After 

exponential transformation, the entire term exp(P) is restricted to be positive values.  This 

means that if new parameter (P) is normal, then the original parameter (p) will be log-normal. 

That means there is a difference in interpretation of the two model parameterisations.  

Those new parameters are denoted as R, Lt, A, k1, Lt0, and B, corresponding to the original 

parameters r, L, a, k0, L0 and b respectively. The equations (3.1) and (3.2) are modified to 

accommodate the property of unconstrained parameters with transformation, shown in the 

equations (3.7) and (3.8). 

𝑥̇ = 𝑒𝑅𝑢𝑥
𝑢+𝑒𝐿𝑡

�1 − 𝑥

𝑒𝑘1+ 𝑒𝐴𝑦
𝑦+𝑒𝐿𝑡0

�                                                                               (3.7) 

𝑦̇ = 𝑢 − 𝑒𝐵𝑦                                                                                                         (3.8) 
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In the next chapter, firstly we will show the results of parameter estimation with the equations 

(3.7) and (3.8) as our full model, and also with initial conditions 𝑥(𝑡0) = 𝑥0, and 𝑦(𝑡0) = 0. 

Secondly, we will also discuss some results of parameter estimation on the modified models. 
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Chapter 4 

4. Results and Discussion  

In this chapter, we are going to present the results of parameter estimation in the full model 

and alternative models. We will also introduce and discuss the alternative models with details. 

The results of each model will be discussed to assess the reliability of those estimated 

parameters.  

4.1 Grouped data – ordinary least squares 

The available datasets from Rattray’s studies are associated with two groups of nutritional 

schemes (1974a, 1974b), which are low and high levels. Initially, we continued the work on 

parameter estimation based on the full model developed by Kiataramkul et al. (2011). We set 

the starting time point t0 as day 70, based on the experiments in Rattray et al. (1974a, 1974b). 

After day 70 of gestation, the pregnant sheep were assigned into two different levels of 

nutrition. Day 70 is roughly close to the beginning of the second half of their pregnancy. 

Thus, day 70 has been considered as the starting time point for this study.  

The available information related to the nutrition intake for those pregnant sheep is very 

limited. The data points of nutrition intake are only available at approximately 70, 100, 125 

and 140 days of gestation (Rattray, 1974a).  

The function of daily nutrition intake, u(t), for each high and low level of nutrition can be 

modelled with a quadratic fit or a cubic fit separately. The fits are shown in plots (figure 4.1 – 

4.4) of those models. We will discuss the suitability of the functions of daily nutrition intake 

for singletons and twins. 
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Figure 4. 1:   u(t) function with quadratic fitting for singletons 

 

Figure 4. 2:   u(t) function with cubic fitting for singletons 

For the quadratic fitting with singletons (figure 4.1), we notice that low nutrition group has 

mean slightly higher than that of high level for period from day 70 to day 95 of gestation. 

After day 95 of gestation, it is quite obvious that the fitting for high nutrition is higher than 

that of low level. It seems the function of daily nutrition intake with quadratic fitting for 

singleton is reasonable. 

However, for the cubic fitting with singletons (figure 4.2), we notice that from day 70 to day 

105 of gestation, low nutrition group is obviously higher than that of high level. For the rest 

of the period, the fitting for high level of nutrition is much higher than that of low level. In 
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this case, it does not really make sense for the period from day 70 to day105 of gestation, 

since the fitting for the high nutritional group is definitely lower than that of low nutritional 

group. This may due to the overfitting with limited nutritional data points available by using 

the cubic model. Hence we should not adopt the function of daily nutrition intake with cubic 

fitting for singletons. 

 

 

Figure 4. 3:   u(t) function with quadratic fitting for twins 

 

 

Figure 4. 4:   u(t) function with cubic fitting for twins 
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The figure 4.3 and 4.4 show the function of daily nutrition intake with quadratic and cubic 

fitting for twins respectively. Both of these fits seem to be reasonable, since the fitting for 

high level of nutrition intake is always higher than that of low level of nutrition intake at most 

of the time. In this case, the function of daily nutrition intake with both of quadratic and cubic 

fitting will be considered to estimate the unknown parameters. We can justify the suitability 

of the fitting base on the results of parameter estimation in later sections.  

The process flow chart is used to illustrate the process of parameter estimation for the full 

model, shown in equation (3.1) and (3.2). 

 

 

 

 

 

 

 

Figure 4.5 the process flow chart for parameter estimation of full model. 

The process flow chart shows that the daily nutrition intake function should be modelled for 

low and high level separately. We should solve those four ODEs simultaneously with 

corresponding low and high level of nutrition intake. It is important to assume that those four 

ODEs share the same set of parameters. Using the criteria of ordinary least squares fit, we can 

get the minimum value of SSE for high and low level of nutrition separately. Finally, we sum 

them up to get the overall SSE value to assess the entire model fitting.  
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Figure 4. 5:   The process flow chart for parameter estimation of full model 
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4.1.1 Full model 

The equations (3.7) and (3.8) show the expression of the full model with appropriate 

transformation of parameters. The various initial guesses of each parameter are provided to 

estimate the final optimal value of each parameter.  

 

4.1.1.1 Singletons 

The quadratic fitting is used to model the function of daily nutrition intake for singletons. 

Table 4.1 shows the final optimal value of each parameter based on various initial guesses 

provided.  

 (1)  (2)  (3)  (4)  (5)  (6)  (7)  

Par Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final 

R -2.5 -2.5854 -2.3 -2.5775 -2.0 -2.5681 -2.3 -2.5681 -2.3 -2.5681 -2.4 -2.5681 -2.6 -2.5681 

Lt -2.0 -0.9612 -1.5 -0.9118 -0.5 -0.8456 -1.8 -0.8456 -0.8 -0.8456 -1.3 -0.8459 -2.0 -0.8456 

A 0.5 0.5709 0.2 0.1326 0.8 -11.113 0.5 -11.7502 0.3 -1.6364 0.9 -2.3302 2.0 -14.595 

k1 2.0 2.2551 1.5 2.3035 1.2 2.3498 2.3 2.3498 2.1 2.3311 1.8 2.3406 0.8 2.3498 

Lt0 0.2 0.3876 0.5 0.5611 0.3 -0.8055 0.3 6.7732 -0.3 -11.145 -0.5 -2.4653 -0.1 -0.7220 

B 0.2 0.3032 0.5 0.6591 0.3 -0.1710 0.3 0.0485 -0.3 0.4298 -0.5 -1.2878 -0.1 -0.0595 

X0 0.2 0.1888 0.23 0.1893 0.18 0.1907 0.18 0.1907 0.22 0.1907 0.15 0.1907 0.2 0.1907 

SSE  1.5950  1.5908  1.5860  1.5860  1.5860  1.5861  1.5860 

Table 4. 1:   Parameter estimation for full model of singletons 

The global minimum SSE was not always reached. It depended on the starting values. In this 

case, the global minimum of SSE seems to be reached in four out of seven different sets of 

initial guesses. The lowest SSE is 1.5860 in this case. The sets of initial guesses (3), (4), (5) 

and (7) achieve the global minimum of SSE. The results of sets (3), (4) and (7) show that the 

final optimal value of parameter R, Lt and x0 are always fixed at -2.5681, -0.8456 and 0.1907 

respectively. Hence those parameters can be considered as identifiable. However, the final 

values of the other parameters show large variation.  

From those sets which reached the global minimum of SSE, we notice that the parameter of A 

or Lt0 have quite large negative final optimal values. If we transform parameter A or Lt0 into 

the original scale of a and L0, their values are approximately close to zero.  

If the value of original parameter a is close to zero, then the Michaelis-Menten term, 𝑎𝑦
𝑦+𝐿0

 , 

will disappear. In this case, the parameter b and L0 will be unrelated to the model. It reduces 
to the simplified model  𝑥̇ = 𝑟𝑢𝑥

𝑢+𝐿
(1 − 𝑥

𝑘0
). 
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If the value of original parameter L0 is close to zero, the function of y will disappear. In this 

case, the parameter b is unrelated. The whole denominator becomes (k0+a), and it suggests 

that fetal development does not depend on the cumulative intake. The denominator (k0+a) 

turns to be the ‘carrying capacity’ of k. It is still equivalent to the simplified model.  

In conclusion, when fitting the full model with Rattray’s singletons data, it suggests that 

dropping some parameters is necessary to improve the fitting for the model. It is necessary to 

simplify the full model to achieve adequate fitting. 

 

4.1.1.2 Twins (function of u(t) with quadratic fitting) 

The quadratic fitting is used to model the function of daily nutrition intake for twins in this 

section. Five different sets of initial guesses are provided to evaluate final optimal value of 

each parameter. Results are shown in table 4.2. 

Par (1) Initial Final (2) Initial Final (3) Initial Final (4) Initial Final (5) Initial Final 

R -2.5 -2.5813 -2.4 -2.5813 -2.3 -2.5813 -2.4 -2.5813 -2.3 -2.5813 

Lt -2.0 -175.0004 -2.0 -151.0593 -1.8 -18.9212 -1.7 -75.5282 -1.3 -24.3360 

A 0.5 -28.6264 -2.0 -26.3898 1.2 -15.0530 -1.5 -7.8879 -1.3 2.5741 

k1 2.0 2.5763 2.3 2.5763 2.1 2.5763 2.5 2.5763 2.3 -3.5250 

Lt0 0.2 -2.3285 -0.1 6.7920 -0.1 -0.5831 -0.5 28.2331 -0.3 -14.6114 

B 0.2 -0.3797 -0.1 -0.4806 -0.1 -0.6986 -0.5 -24.6529 0.3 -138.4681 

X0 0.3 0.2470 0.3 0.2470 0.3 0.2470 0.25 0.2470 0.32 0.2470 

SSE  12.0593  12.0593  12.0593  12.0593  12.0593 

Table 4. 2:   Parameter estimation for full model of twins (quadratic fitting of nutritional function) 

From the five different sets of initial guesses provided, we notice that the same value of SSE 

(12.0593) has been achieved. This suggests that global minimum of SSE value is achieved 

with different initial guesses.  

Examining the output carefully, we notice that the parameters R and x0 always achieve the 

same final optimal values, and hence those parameters are identifiable. In addition, the 

parameters Lt0 and A show large variation, however, they all show large negative values. In 

this case, the parameter L and a in original scale will be very close to zero.  

When the parameter a is zero, the Michaelis-Menten term 𝑎𝑦
𝑦+𝐿0

  will disappear. It makes the 

parameter b and L0 unrelated to the model, and changes the model to one dimension. In 

addition, when the parameter L is zero, the nutrition intake function u(t), will be unity. In this 
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way, the model becomes simple logistic model in original scale, i.e. 𝑥̇ = 𝑟𝑥 �1 − 𝑥
𝑘0
�. This 

suggests that the fetal development is unrelated to the daily nutrition intake based on this 

model. This is not physiologically reasonable, so we are then forced to seek better models 

that show a relation to nutrition. The alternative models should have a simpler model 

structure than that of the full model. 

 

4.1.1.3 Twins (function of u(t) with cubic fitting) 

The cubic fitting is used to model the function of daily nutrition intake for twins in this 

section. Various sets of initial guesses are provided to evaluate final optimal value of each 

parameter. Results are shown in table 4.3. 

 
(1)  (2)  (3)  (4)  (5)  (6)  

Par Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final 

R -2.3 -2.6773 -2.5 -2.6776 -2.4 -2.6785 -2.3 -2.6762 -2.3 -2.6752 -2.4 -2.6778 

Lt -1.8 -36.2340 -2.0 -11.1197 -2.1 -8.0677 -1.5 -6.9051 0.5 -4.2906 -1.7 -6.2956 

A 1.2 2.8387 0.5 2.1317 0.6 2.2170 1.5 1.9898 0.5 2.5379 1.0 2.2817 

k1 2.1 -3.3153 2.0 2.2217 2.1 2.1261 2.2 2.3893 2.2 1.5061 2.2 2.0337 

Lt0 -0.1 -1.8305 0.2 -0.2035 0.15 0.2237 -0.1 0.0886 -0.1 0.5112 -0.2 -0.4615 

B -0.1 0.0012 0.2 -0.3511 0.15 -0.9816 -0.1 -0.0248 -0.1 -1.9886 -0.2 -0.4744 

X0 0.3 0.3036 0.3 0.3043 0.31 0.3049 0.3 0.3043 0.3 0.3105 0.28 0.3051 

SSE  6.1383  6.1713  6.1758  6.1869  6.2171    6.1648 

Table 4. 3:   Parameter estimation for full model of twins (cubic fitting of nutritional function) 

The output above shows that final values of SSE are all different based on those six different 

sets of initial guesses. It suggests that we cannot guarantee to get global minimum of SSE 

based on those initial guesses. The output indicates that final optimal value of each parameter 

is heavily dependent on the initial guesses provided. If we change the initial guess slightly for 

the parameter, it leads to the final optimal values being changed accordingly.  

In this case, we cannot get a unique value of each parameter based on different sets of initial 

guesses. This suggests that our model is non-identifiable. We cannot actually estimate a 

reliable value of any parameter.  
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4.1.2 Cut-down model 

The non-identifiability of full model for twins with cubic fitting of nutrition intake may be 

due to the complicated model structure. Raue et al. (2011) suggested simplifying the model 

structure to resolve the problem. We can assume that there is no effect of cumulative nutrition 

intake on the fetal development. We can ignore the equation (3.2), the ODE function of 

cumulative nutrition intake from the full model. In this way, the Michaelis-Menten term, 
𝑎𝑦
𝑦+𝐿0

 , would be unrelated to the equation (3.1). Hence the full model has been reduced to a 

one-dimensional model. The ‘cut-down’ model shows in equation (4.1).  

𝑥̇ = 𝑟𝑢𝑥
𝑢+𝐿

�1 − 𝑥
𝑘0
�                                                             (4.1) 

The parameter k0 in equation (4.1) represents the whole ‘carrying capacity’ in the cut-down 

model. The simplified model reduces the number of unknown parameters. It may help us to 

determine the value of each parameter uniquely.   

There are only four unknown parameters in the cut-down model. These unknown parameters 

are r, L, k0 and initial fetal weight x0. As discussed in previous chapter, we have to transform 

the parameters r, L and k0 to address the positive constraints on those parameters for 

estimation. The cut-down model with appropriate transformation is shown in equation (4.2) 

𝑥̇ = 𝑒𝑅𝑢𝑥
𝑢+𝑒𝐿𝑡

�1 − 𝑥
𝑒𝑘1
�                                                 (4.2) 

The parameter estimation for the cut-down model is based on the equation (4.2). The 

following sections show the results of parameter estimation for singletons and twins based on 

the cut-down model. 

 

4.1.2.1 Singletons 

The quadratic fitting is used to model the function of daily nutrition intake for singletons. 

Table 4.4 shows the final optimal value of each parameter based on four different sets of 

initial guesses provided.  
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Par (1) Initial Final (2) Initial Final (3) Initial Final (4) Initial Final 

R -2.4 -2.5681 -2.8 -2.5681 -2.2 -2.5681 -1.5 -2.5681 

Lt -2.3 -0.8458 0.5 -0.8456 -1.5 -0.8456 -0.5 -0.8456 

k1 2.2 2.3498 1.8 2.3498 2.0 2.3498 1.5 2.3498 

X0 0.14 0.1907 0.18 0.1907 0.17 0.1907 0.23 0.1907 

SSE  1.5860  1.5860  1.5860  1.5860 

Table 4. 4:   Parameter estimation for cut-down model of singletons 

The table 4.4 shows that the final optimal values are identical based on those four different 

sets of initial guesses. In this case, we are quite confident to conclude that we get the best 

fitting for the model, and also estimate the unique value of each parameter. Thus, this model 

is fully identifiable.  

The final optimal value of parameter R, Lt, k1 and x0 are -2.5681, -0.8458, 2.3498 and 0.1907 

respectively. Those optimal values are consistent with the final value from the full model of 

singletons (section 4.1.1.1). This verifies that the cut-down model works well for singletons.  

 

4.1.2.2 Twins (function of u(t) with quadratic fitting) 

The quadratic fitting is used to model the function of daily nutrition intake for twins in this 

section. Three different sets of initial guesses are provided to evaluate final optimal value of 

each parameter. Results are shown in table 4.5. 

Par (1) Initial Final (2) Initial Final (3) Initial Final 

R -2.4 -2.5813 -2.2 -2.5813 -2.0 -2.5813 

Lt -2.3 -34.0443 -1.5 -34.7323 0.5 -34.8373 

k1 2.2 2.5763 2.0 2.5763 1.5 2.5763 

X0 0.14 0.2470 0.23 0.2470 0.3 0.2470 

SSE  12.0594  12.0594  12.0594 

Table 4. 5:   Parameter estimation for cut-down model of twins (quadratic fitting of nutritional function) 

The table 4.5 shows that the final SSE value is identical for those three different sets of initial 

guesses. The final values of the parameter Lt have some variation. However, they show really 

large negative values. If the final values of the parameter Lt are expressed in the original 

scale, they would all be effectively zero. Thus, the variation would be gone, in terms of 

expressing in the original scale. The rest of the parameters show that their final values are 

quite stable. This suggests that the model is identifiable.  
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In addition, since the parameter L in the original scale shows zero, this indicates that the 

function of daily nutrition intake would disappear. This suggests that there is no significant 

nutrition effect on fetal growth in this model.  

 

4.1.2.3 Twins (function of u(t) with cubic fitting) 

The cubic fitting is used to model the function of daily nutrition intake for twins in this 

section. Four different sets of initial guesses are provided to evaluate final optimal value of 

each parameter. Results are shown in table 4.6. 

Par (1) Initial Final (2) Initial Final (3) Initial Final (4) Initial Final 

R -2.4 -2.6403 -2.2 -2.6403 -2.0 -2.6403 -2.8 -2.6403 

Lt -2.3 -2.3540 -1.5 -2.3540 0.5 -2.3540 -0.2 -2.3540 

k1 2.2 2.7361 2.0 2.7361 1.5 2.7361 2.1 2.7361 

X0 0.14 0.3287 0.23 0.3287 0.3 0.3287 0.3 0.3287 

SSE  6.9175  6.9175  6.9175  6.9175 

Table 4. 6:   Parameter estimation for cut-down model of twins (cubic fitting of nutritional function) 

The table 4.6 shows that the final value of each parameter and the final value of SSE are 

identical based on different sets of initial guesses used. The final optimal value of parameter 

R, Lt, k1 and x0 are -2.6403, -2.3540, 2.7361 and 0.3287 respectively. The final value of each 

parameter is unique, which suggests that the model is identifiable.  

In this model, the final value of SSE is 6.9175, which is much smaller than that of quadratic 

fitting with the function of daily nutrition intake (SSE = 12.0594) for twins. This suggests 

that the model with cubic fitting of u(t) function fits the data better. Recall that the cubic 

model interpolated the actual u(t) data means, whereas the quadratic model was a rougher 

approximation. So this illustrates that the more and better data we have on nutrition intake, 

the more likely we are to be able to find a relationship between nutrition intake and birth 

weight.  

In addition, the parameter Lt is -2.3540, which would be 0.0950 in original scale of parameter 

L. The parameter L is positive, which indicates that fetal growth still depends on the nutrition 

intake in this model.  

In other words, the cut-down model for twins with cubic fitting of nutrition intake function 

fits the data better than that of quadratic fitting. The model with cubic fitting indicates that 

the model parameters are identifiable, and there is the nutritional effect on fetal development. 
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The further analysis is required on this model to determine the optimal daily nutrition intake 

for sheep. 

 

4.1.3 Hybrid model 

In this section, we make some modifications from both full model and cut-down model which 

is named as the ‘hybrid model’. This is because it is somewhat of a compromise between the 

cut-down model and the full model proposed in Kiataramkul et al. (2011). 

𝑥̇ = 𝑟𝑢𝑥
𝑢+𝐿

(1 − 𝑥
𝑎𝑢

𝑢+𝐿0

)                                                         (4.3) 

The equation (4.3) shows that hybrid model is simplified from the full model and is shown in 

one dimension. The cumulative intake function, y(t), is no longer required in hybrid model. 

This is because the full model is too complicated and leads to either non-identifiability of 

model parameters, or forcing the parameters a or L0 to be zero. Dropping the cumulative 

intake function y(t) may improve the model identifiability.  

In the cut-down model, the parameter k0 is simply representing the ‘carrying capacity’, which 

suggests that ‘carrying capacity’ does not dependent on other factors. However, in the hybrid 

model we assume that there is a nutritional effect on ‘carrying capacity’. We use a Michaelis-

Menten term 𝑎𝑢
𝑢+𝐿0

 to represent the ‘carrying capacity’ effect. In this way, the cut-down model 

becomes the special case of the hybrid model, when L0 equals zero.  

The equation (4.4) shows the expression of the hybrid model with appropriate transformation 

of parameters. Various initial guesses of each parameter are provided to estimate final 

optimal value of each parameter. The detailed results on singletons and twins are shown 

below. 

𝑥̇ = 𝑒𝑅𝑢𝑥
𝑢+𝑒𝐿𝑡

(1 − 𝑥
𝑒𝐴𝑢

𝑢+𝑒𝐿𝑡0

)                                                         (4.4) 
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4.1.3.1 Singletons 

The quadratic fitting is used to model the function of daily nutrition intake for singletons. 

Table 4.7 shows the final optimal value of each parameter based on the seven different sets of 

initial guesses provided. 

 (1)  (2)  (3)  (4)  (5)  (6)  (7)  

Par Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final 

R -2.5 -2.7335 -2.6 -2.5681 -2.7 -2.6253 -2.4 -2.6690 -2.3 -2.5681 -2.3 -2.5742 -2.6 -1.5681 

Lt 0.5 -2.2961 0.2 -0.8456 0.3 -1.2821 0.1 -1.6376 0.1 -0.8456 -0.1 -0.8817 -0.2 -0.8456 

A 2.2 2.7515 2.5 2.3498 2.4 2.4763 2.5 2.5717 2.5 2.3498 2.5 2.3601 2.3 2.3498 

Lt0 0.2 -0.0724 0.1 -31.0332 0.3 -1.2024 0.1 -0.6691 0.1 -31.624 0.3 -3.8296 0.5 -30.747 

X0 0.23 0.1911 0.22 0.1907 0.21 0.1837 0.22 0.1843 0.22 0.1907 0.21 0.1902 0.2 0.1907 

SSE  1.7849  1.5680  1.6349  1.6833  1.5860  1.5884  1.5860 

Table 4. 7:   Parameter estimation for hybrid model of singletons 

The table 4.7 shows that there are three sets of initial guesses, the sets (2), (5) and (7), which 

achieved the global minimum value of SSE at 1.5860 for the optimal estimation of final 

values. The final optimal values of parameter Lt0 showed slightly variation, those values are 

all around -31. Expressing the final value of parameter Lt0 in original scale, it would be very 

close to zero.  The parameters of this model can be considered as identifiable, since all the 

parameters can be estimated uniquely in original scale.   

Let us consider this model in original scale, which shows in equation (4.3). The parameter L0 

has been determined as zero based on experimental data for singletons. In this way, the daily 

nutrition intake function of u(t) would be unity. This leads to parameter a representing the 

whole ‘carrying capacity’. Thus, this hybrid model is equivalent to the cut-down model. It 

also verifies that the cut-down model fits experimental data the best for singletons.  

 

4.1.3.2 Twins (function of u(t) with quadratic fitting) 

Again, the quadratic fitting is used to model the function of daily nutrition intake for twins in 

this section. The final optimal value of each parameter based on the four different sets of 

initial guesses provided. 
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Par (1) Initial Final (2) Initial Final (3) Initial Final (4) Initial Final 

R -2.6 -2.5813 -2.5 -2.5813 -2.3 2.5813 -2.2 -2.5813 

Lt -0.2 -35.1555 -2.0 -33.7157 -1.1 -540.7616 -0.7 -36.0109 

A 2.3 2.5763 2.2 2.5763 2.5 2.5763 1.8 2.5763 

Lt0 0.5 -45.3756 -0.2 -56.4319 0.1 -34.6158 -1.5 -192.4345 

X0 0.3 0.2470 0.28 0.2470 0.33 0.2470 0.27 0.2470 

SSE  12.0594  12.0594  12.0594  12.0594 

Table 4. 8:   Parameter estimation for hybrid model of twins (quadratic fitting of nutritional function) 

The final values of SSE are identical at 12.0594, which suggest that the model is suitable for 

parameter estimation. The parameters Lt and Lt0 are both shown large negative values, and 

also associated with some variation. It indicates that the parameters L and L0 would be both 

very close to zero in original scale. This results in the function u(t) will be unity, and suggests 

that there is no nutrition effects in this model.  

 

4.1.3.3 Twins (function of u(t) with cubic fitting) 

The cubic fitting is used to model the function of daily nutrition intake for twins. Table 4.9 

shows the final optimal value of each parameter based on the four different sets of initial 

guesses provided. 

Par (1) Initial Final (2) Initial Final (3) Initial Final (4) Initial Final 

R -2.6 -2.6758 -2.5 -2.6758 -2.3 -2.6758 -2.2 -2.6758 

Lt -0.2 -32.3958 -2.0 -33.3321 -1.1 -59.9554 -0.7 -33.0983 

A 2.3 2.8385 2.2 2.8385 2.5 2.8385 1.8 2.8385 

Lt0 0.5 -1.8342 -0.5 -1.8342 0.1 -1.8342 -1.5 -1.8342 

X0 0.3 0.3022 0.28 0.3022 0.33 0.3022 0.27 0.3022 

SSE  6.1307  6.1307  6.1307  6.1307 

Table 4. 9:   Parameter estimation for hybrid model of twins (cubic fitting of nutritional function) 

The table 4.9 shows the four different sets of initial guesses lead to the same final value of 

SSE at 6.1307. This suggests that the global minimum of SSE is reached, to provide the best 

fitting of the model with experimental data. The final values of parameter Lt in those four 

different sets of estimations are all large negative values. It indicates that parameter L in 

original scale is close to zero. Thus, all those parameters in the model are identifiable in the 

original scale.  

As L=0, the function of daily nutrition intake associated with the growth rate r would be 

eliminated. Then the model would be simplified as equation (4.5) in the original scale. 



 

33 
 

𝑥̇ = 𝑟𝑥(1 − 𝑥
𝑎𝑢

𝑢+𝐿0

)                                                         (4.5) 

The equation (4.5) shows that the ‘carrying capacity’ still has the nutritional effects. We can 

do further analysis on this model to determine the optimal daily nutrition intake in a later 

chapter. 

Comparing quadratic fitting with cubic fitting of nutrition intake function in this hybrid 

model for twins, the value of SSE for cubic fitting is 6.1307 which is smaller than that of 

quadratic fitting (SSE = 12.0594). This indicates that the cubic fitting of the nutrition intake 

in this hybrid model shows the better fitting to experimental data.  

 

4.1.4 Summary 

As discussed in previous sections, we can conclude that the best candidate model for 

singletons is the cut-down model. The results suggest that the parameter L0 can be forced to 

zero for the rest of the proposed models. This verifies that the cut-down model seems to be 

the most appropriate model for singletons. The biological interpretation is that, for singletons, 

the growth rate depends on the daily nutrition, but the final ‘mythical carrying capacity’ does 

not.  

The appropriate candidate models for twins are the cut-down model and hybrid model, and 

both of the models are associated with cubic fitting for the nutrition intake data. The results 

of parameter estimation show that only those two models are identifiable with our 

experimental data. The final values of SSE are 6.9175 and 6.1307 for cut-down model and 

hybrid model respectively. This suggests that the hybrid model for twins has a slightly better 

model fitting than that of the cut-down model. However, those two models have different 

model structures. The cut-down model has the same biological interpretation as for singletons, 

but with different parameters. The hybrid model, which fits better, has the biological 

interpretation that the growth rate r does not depend on daily nutrition but that for twins the 

‘mythical carrying capacity’ is constrained. For example, the total weight of twins cannot 

grow as big as the total weight of two singletons could. 

At the current stage, we are unsure about which model for twins will give us the optimal 

solution of daily nutrition intake for pregnant sheep. Hence further analysis will be conducted 

on both of those two candidate models. 
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4.2 Model diagnostics – ordinary least-squares 

In this section, we will examine the fitting for those candidate models. The model diagnostics 

primarily focus on examining residuals. Checking the pattern of residuals carefully can tell us 

whether the model assumptions are reasonable and our choice of model is appropriate.   

Residuals can be considered as elements of variation unexplained by the fitted model. 

Generally speaking, we expect the residuals to be normally and independently distributed, 

and also with a mean of zero and some constant variance. Violation of those assumptions 

usually indicates that the residuals contain some structure that is not accounted for in the 

fitted model. Then improvement of model fitting is required.  

The graphic method is an excellent way to examine residuals. Generally, the common 

diagnostic tools include the plot of residuals versus fitted values and Quantile-Quantile plot 

(QQ plot).  

Ideally, the residuals versus fitted values plot should show the residuals spread randomly 

around zero, regardless of the size of the fitted value. However, it is quite common to see that 

residual values increase as the size of the fitted value increases. The residual cloud looks like 

a ‘funnel’ shaped pattern with the larger end toward larger fitted values. This pattern suggests 

that the model has non-constant variance. The constant variance is one of the important 

assumptions of the ordinary least-squares method. If this assumption is violated, the results 

based on ordinary least-squares are not efficient.  

A QQ plot is an excellent way to see whether the data deviates from normal distribution. It is 

similar to a probability plot. It shows the quantiles of the residuals against the quantiles of 

theoretical normal distribution. There is a complementary 45-degree reference line. The 

greater the departure from this reference line, the greater the evidence for the conclusion that 

the residuals are far from a normal distribution.  

In the following sections, we are going to examine the diagnostic plots for each candidate 

model to assess the appropriateness of the model fitting.  
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4.2.1 Singletons – cut-down model  

 

Figure 4. 6:   Residuals vs. Fitted values (singletons – cut-down model) 

The Figure 4.6 shows the residuals versus fitted values plot for the cut-down model of 

singletons. It seems that the residuals spread wider as the size of fitted value increases, 

especially for fitted values larger than 3. This indicates the variance is non-constant in this 

model. It also suggests that the ordinary least-squares fit seems to be inappropriate as the 

assumption of constant variance is violated.  

 

Figure 4. 7:   QQ plot (singletons – cut-down model) 
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The figure 4.7 shows the QQ plot for the cut-down model of singletons. It shows that the 

middle points seem to be quite close to the reference line. However, some points near two 

ends deviate a lot from the reference line. This challenges the assumption of normality.  

The diagnostic plots in this section suggest that the ordinary least-squares fit for the cut-down 

of singletons seems to be inappropriate. The assumptions of constant variance and normal 

distribution seem to be violated. The model fitting based on ordinary least-squares is 

inadequate. As a consequence, the estimated values of parameters are not able to be trusted.  

 

4.2.2 Twins – cut-down model 

 

Figure 4. 8:   Residuals vs. Fitted values (twins – cut-down model) 

The figure 4.8 shows the plot of residuals versus fitted values for the cut-down model of 

twins. It shows obviously that the variance increases as the size of the fitted value increases. 

The residual cloud forms a ‘funnel’ shaped pattern with the larger end toward the larger fitted 

values. This pattern illustrates clearly there is non-constant variance in this model. This 

suggests that the ordinary least-squares is inadequate.  
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Figure 4. 9:   QQ plot (twins – cut-down model) 

The figure 4.9 shows the QQ plot for cut-down model of twins. It shows that the majority of 

the points lie close to the reference line. Just a few points at two ends show some deviation 

from the reference line. It indicates that the assumption of normality may still hold.  

 

4.2.3 Twins – hybrid model 

 

Figure 4. 10: Residuals vs. Fitted values (twins – hybrid model) 
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indicates that the assumption of constant variance is violated. The estimation of parameter 

values based on ordinary least-squares fit is not reliable.  

 

Figure 4. 11: QQ plot (twins – hybrid model) 

The figure 4.11 shows the QQ plot for hybrid model of twins. It shows that the majority of 

the middle points seem to be quite close to the reference line. A few points around two ends 

are quite far from the reference line. This illustrates that the normality assumption seems to 

be violated.  

 

4.2.4 Summary 

The model diagnostic plots presented in this section are used to assess the adequacy of model 

fitting for candidate models. The plots above show that the assumption of constant variance is 

violated for all of the candidate models. The assumption of normality is challenged for most 

of those models. The estimation of parameters based on ordinary least-squares is not reliable 

in this case, as the assumption of constant variance is violated. Hence an improvement in the 

model fitting is required to produce accurate and reliable values of the parameters.  
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4.3 Model Improvement – Weighted Least-squares 

The model diagnostics in previous sections show that the model fitting based on ordinary 

least-squares are not adequate. The major problem is the non-constant variance. This 

indicates that an improvement to the objective function is required. The weighted least-

squares (WLS) criterion should be used to stabilise the variance.  

Generally speaking, the objective function of weighted least-squares can be expressed in 

equation (4.6) below. 

𝑠 = ∑ 𝑤𝑖 [𝑥𝑖 − 𝑥�𝑖]2𝑛
𝑖=1  .                                                              (4.6) 

where 𝑤𝑖 is the weight, which help to stabilise the variance; 

           𝑥𝑖 is the value of observation; and  

           𝑥�𝑖 is the fitted value from the model; and 

           s represents the objective function. 

We use different regimes of weighted least-squares criteria for modelling the singletons and 

twins data to stabilise their variance.  We will discuss the weights for singletons and twins 

separately in the following sections. 

 

4.3.1 Singletons 

The weighted least-squares criterion is used for modelling singletons data. The objective 

function for singletons data is expressed in equation (4.7) below.  

𝑠 = ∑ �𝑥𝑖−𝑥𝚤�
�𝑥𝚤�

�
2

𝑛
𝑖                                                                  (4.7) 

We can arrange the expression of equation (4.7). It can be shown as ∑ [ 1
𝑥�𝑖

 (𝑥𝑖 − 𝑥�𝑖)2]𝑛
𝑖=1 . 

Comparing this expression with the general form in equation (4.6), we notice that the weight 

for this objective function is 1
𝑥�𝑖

. Since the weight function is proportional to 1
𝑣𝑎𝑟(𝑥𝚤� )

 . This 

assumption means that we are supposing the standard deviation of residuals increases 

proportionally to �𝑥𝚤�  , the square root of the fitted values. We use this weighted least-squares 

objective function to estimate the value of parameters for each model with singletons data.  
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4.3.1.1 Full model 

The quadratic fitting is used to model the function of daily nutrition intake for singletons. The 

result of final optimal value of each parameter based on ten different sets of initial guesses 

provided. The results are shown in table 4.10. 

 (1)  (2)  (3)  (4)  (5)  
Par Initial Final Initial Final Initial Final Initial Final Initial Final 
R -2.5 -2.5587 -2.6 -2.5600 -2.4 -2.5632 -2.3 -2.5587 -2.6 -2.5594 
Lt -2.0 -1.1388 -2.0 -1.1462 -2.4 -1.1727 -2.3 -1.1353 -1.4 -1.1434 
A 0.5 1.4003 2.0 1.5326 1.4 2.3621 1.3 1.6985 1.9 1.6094 
K1 2.0 1.9551 0.8 1.8494 1.4 -1.4014 1.3 1.6797 2.3 1.7845 
Lt0 0.2 0.4351 -0.1 -0.1469 -0.3 -0.1475 -0.3 -0.3243 0.3 0.3886 
B 0.2 -0.3060 -0.1 -0.0720 -0.2 -1.2244 -0.3 -0.2940 -0.6 -0.7437 
X0 0.2 0.1659 0.2 0.1659 0.22 0.1662 0.23 0.1661 0.17 0.1660 
SSE  0.5753  0.5755  0.5759  0.5756  0.5755 
 (6)  (7)  (8)  (9)  (10)  
Par Initial Final Initial Final Initial Final Initial Final Initial Final 
R -2.3 -2.5595 -2.3 -2.5594 -2.3 -2.5601 -2.4 -2.5594 -2.4 -2.5600 
Lt -1.8 -1.1444 -1.7 -1.1454 -1.5 -1.1483 -1.9 -1.1409 -2.2 -1.1453 
A 1.8 1.3800 1.7 1.3518 1.6 1.4658 1.9 1.7335 2.1 1.5990 
K1 2.4 1.9815 2.2 2.0197 2.1 1.9097 1.4 1.6465 1.2 1.7886 
Lt0 0.2 0.3941 0.3 0.6043 0.1 0.1119 -0.2 -0.1946 -0.2 -0.2818 
B -0.2 -0.1146 -0.3 -0.0881 -0.1 -0.1279 -0.3 -0.4440 -0.1 -0.0926 
X0 0.21 0.1659 0.22 0.1658 0.15 0.1659 0.19 0.1661 0.19 0.1660 
SSE  0.5752  0.5751  0.5753  0.5756  0.5755 

Table 4. 10: Parameter estimation for full model of singletons with WLS 

The final values of SSE show that there is some variation. The smallest final value of SSE is 

0.5751, which is from set (7). Based on the ten different sets of initial guesses, we cannot 

always reach the smallest final value of SSE. When we changed the value of initial guesses 

slightly, the final optimal value and final value of SSE being changed accordingly. This 

suggests that the full model is not stable for estimating the value of each parameter uniquely. 

In this case, we can conclude that the full model for singleton is non-identifiable. We are 

unable to estimate the reliable value of each parameter. 
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4.3.1.2 Cut-down model 

The quadratic fitting is used to model the function of daily nutrition intake for singletons. The 

result of final optimal value of each parameter based on four different sets of initial guesses 

provided. The results are shown in table 4.11. 

Par (1) Initial Final (2) Initial Final (3) Initial Final (4) Initial Final 

R -2.3 -2.5203 -2.4 -2.5203 -2.2 -2.5203 -1.5 -2.5203 

Lt -1.5 -0.8657 -2.3 -0.8657 -1.5 -0.8656 -0.5 -0.8657 

k1 1.5 2.2775 2.2 2.2775 2.0 2.2774 1.5 2.2775 

X0 0.11 0.1695 0.14 0.1695 0.17 0.1695 0.23 0.1695 

SSE  0.5792  0.5792  0.5792  0.5792 

Table 4. 11: Parameter estimation for cut-down model of singletons with WLS 

The results in table 4.11 show that the final values of each parameter and SSE are almost 

identical. The slight difference related to parameter Lt and k1 in set (3), which may due to the 

rounding error. In this case, we are quite confident that we can estimate the parameter value 

uniquely. Therefore, we can conclude that the cut-down model for singletons is identifiable. 

We can obtain the precise estimated value for each parameter.   

 

4.3.1.3 Hybrid model 

The quadratic fitting is used to model the function of daily nutrition intake for singletons. 

Table 4.12 shows the final optimal value of each parameter based on eight different sets of 

initial guesses provided.  

Par (1) Initial Final (2) Initial Final (3) Initial Final (4) Initial Final 

R -2.5 -2.6676 -2.3 -2.5585 -2.6 -2.5466 -2.4 -2.5585 

Lt 0.5 -2.4126 0.1 -1.1288 -0.2 -1.0445 0.4 -1.1288 

A 2.2 2.6622 2.5 2.3632 2.3 2.3383 2.4 2.3632 

Lt0 0.2 -0.0506 0.1 -1.6454 0.5 -1.9875 0.4 -1.6453 

X0 0.23 0.1608 0.22 0.1662 0.20 0.1670 0.14 0.1662 

SSE  0.6007  0.5760  0.5763  0.5760 

Par (5) Initial Final (6) Initial Final (7) Initial Final (8) Initial Final 

R -2.3 -2.5746 -2.4 -2.6465 -2.4 -2.5585 -2.5 -2.5585 

Lt 0.3 -1.2559 0.3 -2.0365 0.2 -1.1288 0.1 -1.1288 

A 2.3 2.4005 2.3 2.5940 2.1 2.3632 2.0 2.3632 

Lt0 -0.2 -1.2742 0.1 -0.2708 0.2 -1.6454 0.1 -1.6454 

X0 0.21 0.1651 0.21 0.1615 0.18 0.1662 0.17 0.1662 

SSE  0.5765  0.5919  0.5760  0.5760 

Table 4. 12: Parameter estimation for hybrid model of singletons with WLS 
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The results in table 4.12 show that the global minimum value of final SSE seems to be 

achieved at 0.5760 based on sets of initial guesses (2), (4), (7) and (8). For those sets of initial 

guesses which reach the global minimum of SSE, the final value of each parameter is almost 

identical. The final value of parameter Lt0 has slight variation in set (4), which may due to the 

rounding error during the computation. In this case, the model parameters can be uniquely 

estimated. We can conclude this model is identifiable.   

 

4.3.2 Twins 

A different weighted least-squares criterion is used to estimate the model parameters for 

twins. This is because Figures 4.8 and 4.10 showed the standard deviation of residuals 

increasing much more than in Figure 4.6.  

The weighted least-squares criterion is expressed in equation (4.8). 

𝑠 = ∑ �𝑥𝑖
𝑥𝚤�
− 1�

2
𝑛
𝑖=1                                                                             (4.8) 

We can arrange the equation (4.8) to form it in a generic format, as ∑ [ 1
𝑥𝚤�
2 (𝑥𝑖 − 𝑥𝚤�)2𝑛

𝑖=1 ]. In 

this format, we can clearly see that the weight is 1
𝑥𝚤�
2 . In other words we are modelling the 

standard deviation of residuals as increasing proportionally with 𝑥𝚤�  . We used this weighted 

least-squares criterion as our objective function for optimising the parameters.  

As discussed in the previous section, we notice that the cubic fitting for daily nutrition intake 

function performs better in parameter estimation. In the following sections, we will present 

the results of parameter estimation for twins associated with cubic fitting for modelling daily 

nutrition intake.  

 

4.3.2.1 Full model 

The cubic fitting is used to model the function of daily nutrition intake for twins. Table 4.13 

shows the final optimal value of each parameter based on ten different sets of initial guesses 

provided.  
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 (1)  (2)  (3)  (4)  (5)  
Par Initial Final Initial Final Initial Final Initial Final Initial Final 
R -2.5 -2.6037 -2.3 -2.6040 -2.3 -2.6042 -2.4 -2.6040 -2.5 -2.6030 
Lt -2.0 -3.2437 -1.8 -3.2361 0.5 -3.2136 -1.7 -3.2264 -1.5 -3.2346 
A 0.5 1.2706 1.2 1.3187 0.5 1.8967 1.0 1.4210 1.5 1.4093 
K1 2.0 2.5267 2.1 2.4771 2.2 2.1571 2.2 2.4297 2.5 2.5526 
Lt0 0.2 0.2938 -0.1 -0.0715 -0.1 -0.8697 -0.2 -0.2733 -0.5 1.4140 
B 0.2 0.1068 -0.1 -0.1836 -0.1 -0.6658 -0.2 -0.3511 -0.5 -0.3375 
X0 0.3 0.2764 0.3 0.2764 0.3 0.2766 0.28 0.2765 0.25 0.2763 
SSE  0.1720  0.1720  0.1718  0.1719  0.1721 
 (6)  (7)  (8)  (9)  (10)  
Par Initial Final Initial Final Initial Final Initial Final Initial Final 
R -2.4 -2.6039 -2.3 -2.6038 -2.5 -2.6040 -2.4 -2.6039 -2.3 -2.6038 
Lt -1.3 -3.2391 -2.4 -3.2311 -2.3 -3.2255 -2.2 -3.2312 -1.2 -3.2375 
A 2.1 1.2729 0.4 1.3082 1.4 1.4317 1.3 1.3349 2.3 1.2669 
K1 1.5 2.5031 2.5 2.4797 2.1 2.4246 2.0 2.4679 1.4 2.5072 
Lt0 -0.1 -0.0914 -0.4 -0.3314 -0.3 -0.3888 -0.2 -0.1868 -0.1 -0.0035 
B -0.1 0.1195 -0.5 0.0888 -0.3 -0.2692 -0.2 -0.1582 0.2 0.0820 
X0 0.26 0.2764 0.32 0.2764 0.31 0.2765 0.30 0.2764 0.27 0.2764 
SSE  0.1720  0.1720  0.1719  0.1720  0.1720 

Table 4. 13: Parameter estimation for full model of twins with WLS 

The results above show the final optimal value of each parameter for full model of twins. The 

final value of SSE shows that it has some variation. The smallest value of final SSE is 0.1718 

from set (3). We change the initial guesses slightly to assess how robust the final value of 

each parameter. The output shows that we fail to obtain the same SSE value of 0.1718 again 

in the other nine different sets of initial guesses. The final parameter values also vary. In this 

case, we are unable to conclude that the global minimum value of SSE is reached. If we take 

more trials, we may find an even lower value of SSE. This suggests that the full model for 

twins is unstable. In other words, the model is non-identifiable for parameter estimation. We 

cannot actually estimate the value of each parameter confidently.  

 

4.3.2.2 Cut-down model 

The cubic fitting is used to model the function of daily nutrition intake for twins. Table 4.14 

shows the final optimal value of each parameter based on four different sets of initial guesses 

provided.  
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Par (1) Initial Final (2) Initial Final (3) Initial Final (4) Initial Final 

R -2.4 -2.5746 -2.2 -2.5746 -2.0 -2.5746 -2.8 -2.5746 

Lt -2.3 -2.5645 -1.5 -2.5645 0.5 -2.5646 -0.2 -2.5645 

k1 2.2 2.6491 2.0 2.6491 1.5 2.6491 2.1 2.6491 

X0 0.14 0.2757 0.23 0.2757 0.3 0.2757 0.3 0.2757 

SSE  0.1772  0.1772  0.1772  0.1772 

Table 4. 14: Parameter estimation for cut-down model of twins with WLS 

The results in table 4.14 show that the final value of SSE is stabilised at 0.1772. After 

examining the optimal value of parameters, we expect some rounding error related to 

parameter Lt in set (3), the other parameters are identical. In this case, we are really confident 

to conclude that this model is identifiable. We can estimate the reliable value of each 

parameter uniquely.  

 

4.3.2.3 Hybrid model 

The cubic fitting is used to model the function of daily nutrition intake for twins. Table 4.15 

shows the final optimal value of each parameter based on eight different sets of initial 

guesses provided.  

Par (1) Initial Final (2) Initial Final (3) Initial Final (4) Initial Final 

R -2.6 -2.5746 -2.5 -2.6045 -2.3 -3.0201 -2.2 -2.5746 

Lt -0.2 -2.5645 -2 -3.2274 -1.1 -2.1388 -0.7 -2.5645 

A 2.3 2.6491 2.2 2.7230 2.5 19.7952 1.8 2.6491 

Lt0 0.5 -28.8547 -0.5 -2.5932 0.1 -0.1945 -1.5 -115.2839 

X0 0.3 0.2757 0.28 0.2765 0.33 0.5427 0.27 0.2757 

SSE  0.1772  0.1717  1.2934  0.1772 

Par (5) Initial Final (6) Initial Final (7) Initial Final (8) Initial Final 

R -2.4 -2.6045 -2.7 -2.6045 -2.5 -2.6358 -2.6 -2.6045 

Lt -1.5 -3.2274 -0.8 -3.2274 -2.8 -126.3831 -1.0 -3.2274 

A 1.5 2.7230 2.1 2.7230 2.7 2.7827 1.8 2.7230 

Lt0 -1.2 -2.5932 -2.2 -2.5932 0.4 -1.9476 -1.8 -2.5932 

X0 0.25 0.2765 0.29 0.2765 0.22 0.2773 0.28 0.2765 

SSE  0.1717  0.1717  0.1768  0.1717 

Table 4. 15: Parameter estimation for hybrid model of twins with WLS 

The results in table 4.15 show that the smallest final value of SSE is at 0.1717. With these ten 

different sets of initial guesses, we obtained that the same smallest value of SSE four times. 

This suggests that the global minimum of SSE value has been reached, and the optimal value 

of each parameter has been obtained. It indicates the model is identifiable, and each 

parameter value is reliable.  
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4.4 Model Diagnostics – Weighted Least-squares 

In this section, we will present the model diagnostic plots base on the objective function of 

weighted least-squares. For each model, we will show the plot of modified residuals versus 

fitted values to assess the assumption of constant variance. As well as the QQ normal plot to 

assess the normality of the residuals. 

4.4.1 Singletons – cut-down model 

 

Figure 4. 12: Modified residuals vs. fitted values (singletons – cut-down model - WLS) 

The figure 4.12 shows that the plot of modified residuals versus fitted values. Modified 

residuals, also known as weighted residuals, are defined as �𝑤𝑖(𝑥𝑖 − 𝑥𝚤�) where 𝑤𝑖  is the 

weight. We notice that the modified residuals spread constantly around zero. There is no 

obvious pattern associated with those modified residuals. This indicates that the weighted 

least-squares fixed the problem of heteroscedasticity. It also suggests that the cut-down 

model fitting is adequate for singletons with weighted least-squares.  
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Figure 4. 13: QQ plot (singletons – cutdown model - WLS) 

The figure 4.13 shows the QQ plot of the cut-down model for singletons. It shows that most 

of the residuals lie very close to the line. The modified residuals seem to be approximately 

normally distributed. The assumption of normality seems to be reasonable.   

 

4.4.2 Singletons – hybrid model 

 

Figure 4. 14: Modified residuals vs. fitted values (singletons – hybrid model - WLS) 
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The figure 4.14 shows the modified residuals versus fitted values of the hybrid model for 

singletons with weighted least-squares fit. It does not show any obvious patterns. The 

variance spread constantly. It indicates that the hybrid model fitting is adequate for singletons 

with weighted least-squares fit.  

 

 

Figure 4. 15: QQ plot (singleton – hybrid model - WLS) 

The figure 4.15 shows the QQ plot of the hybrid model for singletons. It shows that the 

majority of the modified residuals are very close to the reference line. The assumption of 

normality seems to be appropriate.  
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4.4.3 Twins – cut-down model 

 

Figure 4. 16: Modified residuals vs. fitted values (twins – cut-down model - WLS) 

The figure 4.16 shows the modified residuals versus fitted values plot of the cut-down model 

for twins. It shows that the modified residuals are spread constantly. It does not show any 

obvious patterns. The normality assumption seems to be reasonable. 

 

Figure 4. 17: QQ plot (twins – cutdown model - WLS) 

The figure 4.17 shows the QQ plot of cut-down model of twins. There are few points at the 

upper quantile which have deviated a bit from the reference line. The majority of the points 
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lie very close to the reference line. This suggests that the assumption of normality seems to 

be reasonable.  

 

4.4.4 Twins – hybrid model 

 

Figure 4. 18: Modified residuals vs. Fitted values (twins – hybrid model - WLS) 

The figure 4.18 shows the modified residuals against fitted values plot of the hybrid model 

for twins. It shows that the modified residuals spread quite constant around zero. The 

assumption of constant variance seems to be appropriate.  
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Figure 4. 19: QQ plot (twins – hybrid model - WLS) 

The figure 4.19 shows the QQ plot of hybrid model for twins. The plot shows that the 

residuals are approximately normally distributed. The normality assumption seems to be 

appropriate.  

 

 

4.5 Summary 

In this chapter, we presented the results about the parameter estimation for our full model, 

and also some alternative models, such as the cut-down model and the hybrid model. We 

used appropriate model fitting to represent the daily nutrition intake function. The results 

show that the daily nutrition intake function with quadratic fitting is appropriate for 

singletons, and cubic fitting is appropriate for twins. 

The weighted least-squares method is used as our objective function to optimise the 

parameters for each model. The weighted least-squares criterion is used to fix the problem of 

heteroscedasticity. It helps to achieve an adequate model fit. 

The results suggest that the structure of the full model is too complicated. We cannot 

successfully estimate the unique parameters for the full model. In this case, we conclude that 
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the full model for both singletons and twins is non-identifiable. We failed to estimate reliable 

parameters based on this model for this reason. 

We improved the models by simplifying the model structure. The alternative cut-down model 

can achieve the model identifiability with any initial guesses used. This suggests that the cut-

down model is very stable. It always achieves the global minimum value of SSE to get the 

optimal value of parameters with the best model fitting.  

Another alternative model is the hybrid model. This model seems to achieve the model 

identifiability as well. However, we have to choose the initial guesses very carefully for this 

model to achieve the model identifiability. Not all the initial guesses can help the model to 

reach the global minimum value of SSE. This suggests that the model is identifiable, but not 

as stable as the cut-down model. In addition, we noticed that the model fitting for the hybrid 

model is slightly better than that of the cut-down model. 

In conclusion, both of the alternative cut-down model and hybrid model seem to be 

reasonable, and can achieve the model identifiability. We will do further analysis base on 

those two models in the following chapters, and then justify the suitability of each model. 
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Chapter 5 

5. Bootstrap Simulations 

The bootstrap resampling is to resample the data with replacement from the original dataset. 

This method can test the reliability of the estimated parameters. In addition, this technique is 

very easy to implement. We program the bootstrap procedures, and the simulations will be 

done by the computer.  

In this chapter, we will discuss the technique used for bootstrap simulations. The detailed 

procedures will be discussed in the methodology section. The results and relevant plots will 

be shown in the results section. 

 

5.1 Methodology 

In this study, our original datasets for singletons and twins are both from Rattray’s 

experiments (1974a, 1974b). We estimated the unknown parameters based on those datasets. 

In this way, we can only get one estimated value for each parameter in the model. Due to the 

limited number of datasets available, we cannot test the reliability of the estimation. A key 

thing is that the estimation method inserts a system of differential equations between the data 

and the parameter estimates. The system does not have a solution in closed form. Therefore 

(except in the case of the cut-down model) it is not possible to get an analytical formula for 

the standard error based on the variation in the data. However, the bootstrap simulations 

provide us a way to estimate the accuracy of each estimated parameter. The detailed process 

will be described in the following sections. 

Firstly, we create 5000 pseudo datasets based on the original one by using bootstrap 

resampling. The bootstrap resampling refers to sampling with replacement from the original 

dataset. The size of pseudo datasets should be the same as the original one. In addition, we 

adopt non-parametric resampling, which does not require assumptions associated with the 

distribution of the data. In our case, the fetal weight is always associated with a 

corresponding time point. Thus we have to make sure that we resample the paired data for 

fetal weight and corresponding time point. 
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Secondly, we estimate each parameter for the model based on every single simulated dataset. 

In this way, we can get 5000 estimated values for each parameter. Based on those simulations, 

we can construct a sampling distribution for each parameter. 

Thirdly, we adopt the simple percentile confidence limits to construct the 95% confidence 

interval for each parameter. We sort those 5000 estimated values of each bootstrapped 

parameter in ascending order. Then the central 95% of the bootstrap distribution is taken as 

being a 95% confidence interval for each parameter. In our example, we take the 126th and 

4875th of ordered estimated parameter values as the lower and upper confidence limits 

respectively.  

Lastly, we assess the accuracy of the estimated parameters from the original dataset. If the 

original parameter estimate sits near the centre of the 95% bootstrapped confidence interval, 

this gives some assurance that the estimation method is unbiased and reliable. 

 

 

5.2 Results 

In this section, we will show and discuss the results on two preferred models from the 

previous chapter. Those two preferred models are cut-down model and hybrid model. Both of 

those two models are associated with datasets of singletons and twins. The histogram of each 

parameter will be provided. The histograms are the main results for this section, as they show 

the bootstrapped distribution of each parameter. We label the upper and lower limit for each 

parameter, as well as the bootstrapped mean and bootstrapped standard deviation. In addition, 

we will discuss the results on each model. 
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5.2.1 Cut-down model for singletons  
 

 
Figure 5. 1:   Histogram of parameter R of cut-down model for 
singletons 

 
Figure 5. 2:   Histogram of parameter Lt of cut-down model 
for singletons 

 

 
Figure 5. 3:   Histogram of parameter k1 of cut-down model for 
singletons 

 
Figure 5. 4:   Histogram of parameter x0 of cut-down model 
for singletons 

Figure 5.1 to figure 5.4 show the bootstrapped distributions of each parameter for the cut-

down model applied to singletons. We notice that bootstrapped distribution of each parameter 

seems to be approximately a normal distribution. The estimated parameter values based on 

the original dataset for the cut-down model applied to singletons are -2.5203, -0.8657, 2.2775 

and 0.1695 for the parameter R, Lt, k1 and x0 respectively. These estimated values all sit near 

the centre of the 95% confidence interval. In addition, the bootstrapped mean of each 

parameter is very close to the estimated value based on original dataset. In this way, we are 
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reassured that the parameter estimation method for the original dataset is very reliable for the 

cut-down model of singletons.  

 

5.2.2 Hybrid model for singletons 

 

 
Figure 5. 5:   Histogram of parameter R of hybrid model for 
singletons 

 
Figure 5. 6:   Histogram of parameter Lt of hybrid model for 
singletons 

 

 
Figure 5. 7:   Histogram of parameter A of hybrid model for 
singletons 

 
Figure 5. 8:   Histogram of parameter Lt0 of hybrid model 
for singletons 
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Figure 5. 9:   Histogram of parameter x0 of hybrid model for 
singletons 

 
Figure 5. 10: Plot of bootstrapped parameter Lt versus 
bootstrapped parameter Lt0 of hybrid model for singletons 

The figure 5.5 to figure 5.9 show the bootstrapped distributions of each parameter for the 

hybrid model applied to singletons. The bootstrapped distribution for parameter R and x0 

seem to be normally distributed. It shows a highly right-skewed shape for bootstrapped 

parameter A.  

However, the bootstrapped distribution of parameter Lt and Lt0 show a bimodal distribution. 

It shows the primary mode is around -1 and secondary mode is around -33 for parameter Lt. 

For parameter Lt0, the primary and secondary modes are around 0 and -30 respectively. The 

values of the secondary modes for both of these bootstrapped parameters are very close to 

zero in the original scale. The bootstrapped standard deviations for those two parameters are 

quite large, which indicate a large variation for the bootstrapped value for these two 

parameters with 5000 simulations. The estimated parameter values based on the original 

dataset for the hybrid model applied to singletons are -1.1288 and -1.6454 for the parameter 

Lt and Lt0 respectively. Although these estimated values sit well within the 95% confidence 

interval, this model still seems to be unstable based on the results of bootstrapped simulations.  

The figure 5.10 shows the plot of bootstrapped parameter Lt versus bootstrapped parameter 

Lt0. This plot is used to investigate the relationship between those two bootstrapped values. 

There are some points clustered at the top right corner that show reasonable values for both of 

the bootstrapped parameters. The rest of two clustered points show that one of the two 

bootstrapped parameter value is zero in original scale. This indicates that the hybrid model 

applied to singletons is unstable by bootstrapped simulations. In some cases, it forces one of 
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the parameters Lt or Lt0 to be zero in their original scales, in order to eliminate one of them 

from the model.  

 

5.2.3 Cut-down model for twins 

 

 
Figure 5. 11: Histogram of parameter R of cut-down model for 
twins 

 
Figure 5. 12: Histogram of parameter Lt of cut-down model 
for twins 

 

 
Figure 5. 13: Histogram of parameter k1 of cut-down model for 
twins 

 
Figure 5. 14: Histogram of parameter x0 of cut-down model 
for twins 

The figure 5.11 to figure 5.14 show the bootstrapped distributions of each parameter for the 

cut-down model applied to twins. The bootstrapped distribution of parameter Lt is slightly 

left-skewed. The rest of the bootstrapped parameters are approximately normally distributed. 

-2.75 -2.7 -2.65 -2.6 -2.55 -2.5 -2.45 -2.4 -2.35
0

50

100

150

200

250

300

350

400

Value of parameter R (in transformed scale)

Fr
eq

ue
nc

y

Histogram of parameter R: Bootstrap resampling for Rattray Twins (cut-down model)

Rm = -2.5744, Rs = 0.0333

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5
0

50

100

150

200

250

300

350

400

450

500

Value of parameter Lt (in transformed scale)

Fr
eq

ue
nc

y

Histogram of parameter Lt: Bootstrap resampling for Rattray Twins (cut-down model)

Ltm = -2.5873, Lts = 0.2668

2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9
0

50

100

150

200

250

300

350

Value of parameter k1 (in transformed scale)

Fr
eq

ue
nc

y

Histogram of parameter k1: Bootstrap resampling for Rattray Twins (cut-down model)

k1m =  2.6505, k1s = 0.0387

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
0

50

100

150

200

250

300

350

400

Value of parameter x0 (in original scale)

Fr
eq

ue
nc

y

Histogram of parameter x0: Bootstrap resampling for Rattray Twins (cut-down model)

x0m = 0.2758, x0s = 0.0179



 

58 
 

The estimated parameter values based on the original dataset for the cut-down model applied 

to twins are -2.5746, -2.5645, 2.6491 and 0.2757 for the parameter R, Lt, k1 and x0 

respectively. These estimated values of each parameter are very close to each of the 

bootstrapped means. In addition, the each estimated parameter value sits near the centre of 

the 95% confidence interval. This indicates that the parameter estimation method for the 

original dataset is very reliable for the cut-down model of twins. 

 

5.2.4 Hybrid model for twins 

 

 
Figure 5. 15: Histogram of parameter R of hybrid model for 
twins 

 
Figure 5. 16: Histogram of parameter Lt of hybrid model for 
twins 
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Figure 5. 17: Histogram of parameter A of hybrid model for 
twins 

 
Figure 5. 18: Histogram of parameter Lt0 of hybrid model 
for twins 

 

 
Figure 5. 19: Histogram of parameter x0 of hybrid model for 
twins 

 
Figure 5. 20: Plot of bootstrapped parameter Lt versus 
bootstrapped parameter Lt0 of hybrid model for twins 
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the original dataset for the hybrid model applied to twins are -2.6045, 2.7203 and 0.2765 for 

the parameter R, A and x0 respectively. We also noticed that the bootstrapped mean for these 

parameters are very close to the estimated value based on original dataset.  

However, the bootstrapped distribution for the other two parameters Lt and Lt0 have showed a 

bimodal distribution. The figure 5.20 shows the detailed relationship between those two 
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indicates that the model forces one of those two parameters to be zero in original scale, in 

order to eliminate one parameter from the model in some cases. 

 

 

5.3 Summary 

In this chapter, we present the results of bootstrap simulations for the cut-down model and the 

hybrid model. The results are for both singletons and twins data. The histogram is used to 

show the bootstrapped distribution of each parameter. It gives us an overall view to justify 

how reliable is each estimated parameter, as well as how stable our models are. 

The results suggest that the cut-down model is very stable for both singletons and twins data. 

The bootstrapped distribution of each parameter seems to be normally distributed. In addition, 

the bootstrapped mean is very close to our estimated value of each parameter. This suggests 

that the parameters from cut-down model are reliable.  

However, the results suggest that the hybrid model is quite unstable for both singletons and 

twins data. The bootstrapped distribution for parameter Lt and Lt0 show the bimodal trend. 

The bootstrapped standard deviation is very large for those two parameters. This indicates the 

model parameter is not that reliable for the parameter Lt and Lt0. With the bootstrapped 

datasets, in some cases, the hybrid model tried to eliminate one of the parameters Lt or Lt0.  

The results from the 5000 bootstrap simulations show that the cut-down model seems to be 

more stable than that of the hybrid model. This indicates that the cut-down model gives 

reliable estimates for its parameters. 
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Chapter 6 

6. Optimal solutions 

In this chapter, we will present the optimal solutions of daily nutrition intake for the pregnant 

sheep during the second half of their pregnancy, with pre-determined desirable birth weight. 

The detailed methodology will be discussed.  

The whole dynamic system and pre-determined parameter values will be used in order to find 

the optimal solutions. The optimal control problem will convert to the boundary value 

problem. The boundary conditions for this problem are the initial fetal weight (x0) at the start 

of the second half of pregnancy (t0), and also the birth weight (xb) at the birth time (tb). The 

boundary conditions can be expressed in equation (6.1). 

𝑥(𝑡0) = 𝑥0 , and  𝑥(𝑡𝑏) = 𝑥𝑏.                                         (6.1) 

Our aim is to solve the ordinary differential equation of daily nutrition intake with those 

boundary conditions to get the optimal solution, which is defined as nutrition intake at the 

second half of pregnancy (𝑡0 < 𝑡 < 𝑡𝑏). The derivative function for daily nutrition intake is 

denoted as 𝑢̇. The original full model has been modified to form the cut-down model and the 

hybrid model to achieve identifiability of model parameters. The corresponding dynamic 

model system has been changed accordingly.  

The optimal solutions can be estimated based on the following three steps. Firstly, we need to 

develop an expression for the ODE function of daily nutrition intake (𝑢̇) based on each 

alternative model. Secondly, we set the desirable birth weight for each model as a boundary 

condition. Finally, using the estimated value of each parameter, we solve the model system 

with boundary conditions.  

The Matlab built-in function ‘bvp4c’ is used to solve the dynamic systems with boundary 

conditions. The detailed results of optimal solutions will be shown in the following sections. 
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6.1 Cut-down model 

Kiataramkul et al. (2011) proved a theorem that if 𝑥̇ = 𝑓(𝑡, 𝑥,𝑢) = 𝑓1(𝑥) ∙ 𝑓2(𝑢) is separable 

and 𝑔 is not a function of 𝑥, where 𝑔 = 𝑔(𝑡,𝑢) comes from 𝐽{𝑢} =  ∫ 𝑔[𝑡,𝑢(𝑡)]𝑑𝑡𝑡𝑏
𝑡0

, then           

𝑢̇ = 𝐺(𝑡, 𝑥, 𝑢) ≡ 0 (where 𝐽{𝑢} is the objective function that should be minimised). Thus the 

variable u is a constant. 

The cut-down model is expressed as 𝑥̇ = 𝑟𝑢𝑥
𝑢+𝐿

�1 − 𝑥
𝑘0
�. In this case, the function of u is 

separable, based on above theorem we can confirm that the variable u is a constant.  The 

dynamic system for the cut-down model shows in equation (6.2) and (6.3). 

𝑥̇ = 𝑟𝑢𝑥
𝑢+𝐿

�1 − 𝑥
𝑘0
�                              (6.2) 

 𝑢̇ = 0                                                (6.3) 

We set the desirable birth weight as one of the boundary condition, and the other boundary 

condition is predetermined by x0 based on the data. The numerical solutions are obtained by 

solving the boundary value problem with this dynamic system.  

Alternatively, this dynamic system can be solved analytically. The ODE involving 𝑥̇ can be 

solved by treating variable u as a constant.  

Since 𝑑𝑥
𝑑𝑡

= 𝑟𝑢𝑥
𝑢+𝐿

�1 − 𝑥
𝑘0
� = 𝑟𝑢𝑥

𝑢+𝐿
�𝑘0− 𝑥

𝑘0
� , then we can separate the variables x and t, and 

integral on both sides. 

∫ 1
𝑟𝑢𝑥
𝑢+𝐿�

𝑘0− 𝑥
𝑘0

�
𝑑𝑥 = ∫1𝑑𝑡 , and solving both sides we can get  

1
𝑟𝑢
𝑢+𝐿

∫ 1
𝑥

+ 1
𝑘0− 𝑥

𝑑𝑥 = 𝑡 + 𝑐1 , 

1
𝑟𝑢
𝑢+𝐿

∙ ln � 𝑥
𝑘0− 𝑥

� =  𝑡 + 𝑐1 ,   for  0 < 𝑥 < 𝑘0 

ln � 𝑥
𝑘0− 𝑥

� = 𝑡 𝑟𝑢
𝑢+𝐿

+ 𝑐2 , and then we obtain 

𝑥
𝑘0− 𝑥

= 𝑐3𝑒
𝑟𝑢𝑡
𝑢+𝐿                                            (6.4) 
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where 𝑐1, 𝑐2 and 𝑐3 are all arbitrary constants.  

With initial condition 𝑥(𝑡0) = 𝑥0 , let us assume that 𝑡0 = 0 , and so we get 𝑥(0) = 𝑥0 . 

Substituting the initial condition into equation (6.4), we get 𝑐3 = 𝑥0
𝑘0− 𝑥0

 . 

Then the equation (6.4) becomes 

𝑥
𝑘0− 𝑥

=  𝑥0
𝑘0− 𝑥0

 𝑒
𝑟𝑢𝑡
𝑢+𝐿 , 

After re-arranging the expression, finally we obtain  𝑥(𝑡) = 𝑘0𝑥0

𝑥0+(𝑘0− 𝑥0)𝑒−( 𝑟𝑢𝑡𝑢+𝐿)
 .  

Let us set the birth weight of the lambs, which is denoted as 𝑥𝑏  (𝑥𝑏 = 𝑥(𝑡𝑏) ). After 

simplifying we get the analytical solution as 

𝑢 =
ln�

𝑥𝑏(𝑘0− 𝑥0)
𝑥0(𝑘0− 𝑥𝑏)�∙𝐿

𝑟𝑡+ln�
𝑥0�𝑘0− 𝑥𝑏�
𝑥𝑏(𝑘0− 𝑥0)�

                                            (6.5) 

where t is the period of the second half of the pregnancy, 𝑡 = 𝑡𝑏 − 𝑡0 = 147 − 70 = 77 days. 

 

6.1.1 Singletons 

Pre-determined birth 

weight [xb]  (kg) 

Optimal daily nutrition 

intake [u]  (kg/day) 

6.0 1.1219 

6.5 1.3566 

7.0 1.7063 

7.5 2.3060 

8.0 3.6496 

8.5 10.1973 
Table 6. 1:   The optimal solution for the cut-down model of singletons 
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The table 6.1 shows the results of pre-determined birth weight for singleton lamb and with 

corresponding optimal nutrition intake. For the cut-down model, we have set various pre-

determined birth weights for lambs to examine the corresponding optimal solutions. With 

increasing the pre-determined birth weight, the corresponding optimal daily nutrition intake 

increases accordingly.  

In the last line, we set the desirable birth weight for the lambs extremely high, at 8.5 kg, 

which is quite impossible to achieve in reality. The corresponding daily nutrition intake is 

10.2 kg/day. Of course, the optimal solution is unrealistic when there is an unreasonable pre-

determined birth weight.  

Based on our original dataset, we consider the reasonable birth weight for lambs is around 6.5 

kg. The optimal daily nutrition intake associated with that birth weight stays constant at 1.36 

kg/day. This optimal value seems to be reasonable. The experiments from Rattray (1974) 

suggested that the daily nutrition intake for the maintenance level of singletons is around 1.2 

kg/day. The optimal value we estimated is a bit higher than this maintenance level. This 

suggests that the pregnant sheep carrying singletons should eat a bit more in the second half 

of gestation to give birth to a healthy offspring with desirable birth weight.  

 

6.1.2 Twins 

 

Pre-determined birth 

weight [xb]  (kg) 

Optimal daily 

nutrition intake [u]  

(kg/day) 

11.0 0.5725 

11.5 0.8690 

11.8 1.2872 

11.9 1.5420 

12.0 1.9309 
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12.1 2.5987 

12.2 4.0174 

12.3 9.0964 

12.4 -30.7373 

12.5 -5.5892 

12.6 -3.0328 

12.7 -2.0595 

12.8 -1.5453 
Table 6. 2:   The optimal solution for the cut-down model of twins 

The table 6.2 shows the results of pre-determined birth weight for lambs and with 

corresponding optimal nutrition intake for the cut-down model of twins. We notice that when 

the pre-determined birth weight is larger than 12.3 kg, the corresponding optimal nutrition 

intake is a negative value. The negative value of daily nutrition intake does not make sense 

for any solutions. For those negative values of daily nutrition intake, we fail to solve it with 

Matlab function ‘bvp4c’. Those can only be solved analytically.  

The reasonable total birth weight for twins based on our original dataset is supposed to be 12 

kg. The corresponding optimal daily nutrition intake is 1.93 kg/day. Comparing this value 

with the solution of singletons, it suggests that in order to achieve the desirable birth weight, 

the pregnant sheep carrying twins must eat more than if they are carrying a singleton. This 

matches our expectation in real life. Thus we think the optimal solution of daily nutrition 

intake is 1.93 kg/day for twins, and 12 kg birth weight seems to be reasonable. 
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6.2 Hybrid model 

Kiataramkul et al. (2011) developed a formula, which can be used to generate the algorithm 

for the function of optimal daily nutrition intake with a one dimensional dynamic system. The 

formula is shown in equation (6.6). 

 

𝑢̇ = 𝑔𝑥𝑓𝑢2−𝑔𝑢𝑥𝑓𝑓𝑢−𝑔𝑢𝑓𝑥𝑓𝑢+𝑔𝑢𝑓𝑢𝑥𝑓
𝑔𝑢𝑢𝑓𝑢−𝑔𝑢𝑓𝑢𝑢 

                                (6.6) 

where the partial derivatives are denoted as 

𝑔𝑥 = 𝜕𝑔
𝜕𝑥

;  𝑔𝑢𝑥 = 𝜕2𝑔
𝜕𝑢𝜕𝑥

;  𝑔𝑢 = 𝜕𝑔
𝜕𝑢

;  𝑔𝑢𝑢 = 𝜕2𝑔
𝜕2𝑢

;  𝑓𝑢 = 𝜕𝑓
𝜕𝑢

;  𝑓𝑥 = 𝜕𝑓
𝜕𝑥

;  𝑓𝑢𝑥 = 𝜕2𝑓
𝜕𝑢𝜕𝑥

; 𝑓𝑢𝑢 = 𝜕2𝑓
𝜕2𝑢

; 

In our case,  

𝑔�𝑡, 𝑥(𝑡),𝑢(𝑡)� = 𝑢 ; 

𝑓�𝑡, 𝑥(𝑡),𝑢(𝑡)� = 𝑟𝑢𝑥
𝑢+𝐿

(1 − 𝑥
𝑎𝑢

𝑢+𝐿0

)  . 

 

We obtain the partial derivative for each component, as shown below: 

𝑔𝑥 = 𝑔𝑢𝑥 =  𝑔𝑢𝑢 = 0;  𝑔𝑢 = 1; 

𝑓𝑥 = −𝑟(2𝐿0𝑥−𝑎𝑢+2𝑢𝑥 )
𝑎(𝐿+𝑢)

;  𝑓𝑢 = 𝐿0𝑟𝑥2+𝐿𝑟𝑥(𝑎−𝑥)
𝑎(𝐿+𝑢)2

; 

𝑓𝑢𝑥 = 2𝐿0𝑟𝑥+𝐿𝑟(𝑎−2𝑥)
𝑎(𝐿+𝑢)2

;      𝑓𝑢𝑢 = −2𝐿0𝑟𝑥2+2𝐿𝑟𝑥(𝑎−𝑥)
𝑎(𝐿+𝑢)3

 . 

 

Finally, based on the formula in equation (6.6), we can get the ODE for the function of 

optimal nutrition intake in equation (6.7). 

𝑢̇ =  𝐿0𝑟𝑥(𝐿+𝑢)
2(𝐿𝑎−𝐿𝑥+𝐿0𝑥)

                                                     (6.7) 

With appropriate boundary conditions, we can solve the dynamic system to get the optimal 

solution of daily nutrition intake for the hybrid model of both singleton and twins. The 

detailed results are shown in the following sections. 
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6.2.1 Singletons 

 

Pre-determined birth 

weight [xb]  (kg) 

Optimal daily nutrition intake [u]  (kg/day) 

𝑢(𝑡0) 𝑢(𝑡𝑏) 

6.0 0.9845 1.6047 

6.5 1.1888  2.0043 

7.0 1.4796 2.5873 

7.5 1.9355 3.5221 

8.0  2.7723 5.2721 

8.5  4.8736 9.7391 
Table 6. 3:   The optimal solution for the hybrid model of singletons 

The table 6.3 shows the optimal solution of daily nutrition intake with various pre-determined 

birth weights for the hybrid model of singletons. The notation 𝑢(𝑡0)  shows the optimal 

nutrition intake at the start of the second half of pregnancy, while the notation 𝑢(𝑡𝑏) shows 

the optimal nutrition intake at the birth time.  

The figure 6.1 - 6.6 show the corresponding plots of optimal solutions. We notice that the 

curve of optimal nutrition intake is monotonically increasing for each of the pre-determined 

birth weight. With desirable birth weight of 6.5 kg, the corresponding optimal nutrition intake 

is from 1.2 kg/day to 2.0 kg/day during the second half of pregnancy. This seems to be 

reasonable for singletons. However, there is no evidence so far to support the monotonically 

increasing trend of nutrition intake during the second half of pregnancy. Hence the result of 

optimal nutrition intake for the hybrid model of singletons is not that convincing. 
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Figure 6. 1:   Optimal solution for the hybrid model of 
singletons (xb=6.0 kg) 

 
Figure 6. 2:   Optimal solution for the hybrid model of 
singletons (xb=6.5 kg) 

 

 
Figure 6. 3:   Optimal solution for the hybrid model of 
singletons (xb=7.0 kg) 

 
Figure 6. 4:   Optimal solution for the hybrid model of 
singletons (xb=7.5 kg) 
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Figure 6. 5:   Optimal solution for the hybrid model of 
singletons (xb=8.0 kg) 

 
Figure 6. 6:   Optimal solution for the hybrid model of 
singletons (xb=8.5 kg) 

 

 

6.2.2 Twins  

Pre-determined birth 

weight [xb]  (kg) 

Optimal daily nutrition intake [u]  (kg/day) 

𝑢(𝑡0) 𝑢(𝑡𝑏) 

11.0 0.3605 1.0782 

11.5 0.4990 1.5322 

12.0 0.7918 2.4975 

12.2 1.0289 3.2811 

12.5 1.8512 6.0021 
Table 6. 4:   The optimal solution for the hybrid model of twins 

The table 6.4 summarises the optimal nutrition intake for hybrid model of twins with various 

pre-determined birth weight. The corresponding plots are shown in figure 6.7 – 6.11. The 

plots suggest that the optimal nutrition intake for twins is monotonically increasing during the 

second half of pregnancy. The desirable total birth weight for twins is 12.0 kg, and the 

corresponding optimal solution is between 0.79 kg/day and 2.50 kg/day. The maintenance 

level of nutrition intake for twins is around 1.26 kg/day from Rattray’s experiments (1974). 

However, the optimal nutrition intake at the start of the second half of pregnancy seems to be 
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a bit low at 0.79 kg/day. The monotonically increasing trend of optimal nutrition intake 

during the second half of pregnancy also makes the optimal solution seem to be unconvincing.  

 

 
Figure 6. 7:   Optimal solution for the hybrid model of twins 
(xb=11.0 kg) 

 
Figure 6. 8:   Optimal solution for the hybrid model of twins 
(xb=11.5 kg) 

 

 
Figure 6. 9:   Optimal solution for the hybrid model of twins 
(xb=12.0 kg) 

 
Figure 6. 10: Optimal solution for the hybrid model of twins 
(xb=12.2 kg) 
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Figure 6. 11: Optimal solution for the hybrid model of twins 
(xb=12.5 kg) 

 

 

6.3 Simulations for optimal daily nutrition intakes 

Previous sections suggest that the cut-down model provides reasonable optimal daily 

nutrition intakes for pregnant sheep carrying both singletons and twins. In this section, we 

will present the simulations for the optimal daily nutrition intakes based on the cut-down 

model. 

The analytical formula for calculating the optimal daily nutrition intake based on the cut-

down model was shown in equation (6.5). As we discussed previously in chapter 5, we did 

bootstrap simulations to test the reliability of each model parameter. We had 5000 

bootstrapped values for each model parameter. Then we substituted these bootstrapped 

parameter values in the equation (6.5), with desirable birth weight of 6.5 kg for singletons, 

and 12 kg for twins, to get simulated optimal daily nutrition intakes. The distributions of 

simulated optimal daily nutrition intakes for singletons and twins are shown in figure 6.12 

and 6.13. 
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Figure 6. 12: Histogram of bootstrapped daily nutrition intake for singletons 

The figure 6.12 shows the distribution of bootstrapped daily nutrition intake for singletons. It 

shows two obviously outliers, one is at -10.97 and the other is at 3.21. As we discussed 

previously, the feasible value of the optimal nutrition intake for pregnant sheep should be 

strictly positive. Adopting the simple percentile method to obtain the 95% confidence interval, 

the upper and lower confidence limits are 1.55 and 1.14 kg/day respectively. The optimal 

nutrition intake based on the original dataset is 1.39 kg/day, which is very close to the centre 

of the confidence interval. This suggests that the optimal daily nutrition intake of 1.39 kg/day 

for singletons is reliable and unbiased.  
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Figure 6. 13: Histogram of bootstrapped daily nutrition intake for twins (after removing one extreme outlier) 

The figure 6.13 shows the histogram of bootstrapped daily nutrition intake for twins after 

removing one extreme outlier (-88245). It shows a small proportion of values outside the 

feasible range of daily nutrition intake. The daily nutrition intake should be strictly positive. 

Based on some animal science literature, we believe that the optimal daily intake should be 

less than 3 kg/day for twins. In this case, the non-feasible daily nutrition intake may due to 

the sensitivity of the analytical formula. Based on this analytical formula, the optimal 

solution is heavily dependent on the parameter values, as well as the desirable birth weight. 

As we known, the sample size of the original dataset for twins is quite small, which is around 

20 data points for low and high nutrition each. This may lead to the simulated daily nutrition 

intakes having a large variation based on the bootstrapped parameters. Thus, it does not give 

a sensible confidence interval.  

The figure 6.14 shows the histogram of bootstrapped daily nutrition intake for twins with 

feasible range between 0 and 3 kg/day. We truncate the non-feasible simulated daily nutrition 

intakes at both ends. The histogram shows a right-skewed distribution. Seventy per cent of 

the 5000 simulated daily nutrition intakes are in the feasible range. This indicates that future 

work needs to be done on finding a better method for estimating confidence intervals for 

optimal daily nutrition intakes. At the moment about the best we can do is state that, based on 

quantiles of the bootstrapped estimates, a 50% confidence interval for the optimal daily 

intake is between 1.23 and 2.47 kg/day.  
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Figure 6. 14: Histogram of bootstrapped daily nutrition intake for twins with feasible range between 0 and 3 kg/day 

 

 

6.4 Summary 

In this chapter, we discussed the optimal daily nutrition intake function during the second 

half of pregnancy for sheep, according to the cut-down model and the hybrid model. We also 

illustrated the process for obtaining the optimal solutions step by step.  

The results suggest that the cut-down model provides the appropriate solutions of constant 

optimal daily nutrition intake during the second half of pregnancy for sheep. The simulations 

indicate that the cut-down model is more applicable for the datasets of singletons than those 

for twins. The optimal solutions are summarised in table 6.5. With pre-determined desirable 

birth weight for singletons and twins, namely 6.5 kg and 12.0 kg respectively, the 

corresponding optimal daily nutrition intake is 1.36 kg/day and 1.93 kg/day for singleton and 

twins accordingly.  

Those optimal solutions do not contradict the maintenance level of nutrition intake provided 

by literature. The maintenance level of nutrition intake from Rattray’s experiments (1974) is 

1.21 kg/day and 1.26 kg/day for singleton and twins respectively. Our optimal solutions 

suggest that the pregnant sheep have more nutrition intake in late gestation than in early 

gestation. In addition, it also indicates that the pregnant sheep carrying twins need a higher 
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level of nutrition intake than those carrying singletons. Those explanations seem to agree 

with common sense.  

However, an important point worth noting is that the drop in sheep intake close to the time of 

birth is generally due to restriction of the rumen by the growing fetus, and twins cause more 

restriction than singletons.  This means our model is a simplification of the biology, but with 

this proviso we believe the optimal results in table 6.5 provide us the feasible and plausible 

solutions.  

 

Type Pre-determined birth 

weight [xb]  (kg) 

Optimal daily nutrition 

intake [u]  (kg/day) 

Singleton 6.5 1.36 

Twins 12.0 1.93 
Table 6. 5:   Summary of the best optimal solutions 
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Chapter 7 

7. Conclusions and Future Study 

This chapter focuses on conclusions for this study. A process has been developed for 

estimating the parameters for a dynamic optimal control model. The goal was to estimate the 

optimal daily nutrition intake for pregnant sheep during the second half of pregnancy. To 

achieve this goal, the software MATLAB was used to produce a comprehensive ‘black-box’ 

algorithm. The algorithm provides us the optimal solutions from the dynamic model applied 

to real data.  In the following sections, we will summarise the main results, and also make 

some recommendations for the future research. 

 

7.1 Conclusions 

The ultimate goal of this study was to obtain the optimal daily nutrition intake for pregnant 

sheep during the second half of pregnancy, and with pre-determined desirable birth weight of 

offspring. The processes of achieving the primary objective of this study can be summarised 

into two steps. Firstly, estimation of model parameters; and secondly, obtaining optimal 

numerical solutions.  

The results from parameter estimation suggest that weighted least-squares provides an 

adequate objective function for optimisation of model parameters. However, as in our 

example, different weights may be needed for modelling the datasets of singletons and twins 

to achieve the best model fitting for each.  

We failed to estimate accurate values of the parameters from the original full model, since the 

dynamic model structure was so complicated, with too many unknown model parameters. 

The full model was non-identifiable for both singletons and twins data. The structure of the 

full model had been simplified to form alternative cut-down and hybrid models to achieve the 

model identifiability. The cut-down model could always achieve model identifiability with 

any initial guesses provided. However, the hybrid model could achieve the model 

identifiability only when the initial guesses are carefully chosen.  
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In addition, five-thousand bootstrap simulations were used to verify that the cut-down model 

was more stable than the hybrid model. Each estimated parameter value from the cut-down 

model sat well within the 95% bootstrapped confidence interval. Moreover, the bootstrapped 

mean was very close to the estimated value of each parameter. Hence we confidently 

conclude that the estimated parameters from the cut-down model are reliable, by contrast 

with the hybrid model. 

The whole dynamic system of the cut-down model and estimated parameter values were used 

to obtain the optimal daily nutrition intake to achieve the target birth weight. The result 

suggested that the appropriate daily nutrition intake function for the cut-down model is a 

constant. With appropriate boundary conditions, we can estimate the optimal daily nutrition 

intake for pregnant sheep carrying singletons or twins during the second half of pregnancy. 

The results indicate that with pre-determined desirable birth weights 6.5 kg and 12.0 kg for 

singletons and twins respectively, the corresponding optimal daily nutrition intakes are 1.36 

kg/day and 1.93 kg/day for singletons and twins accordingly.  

Those optimal solutions do not contradict the maintenance level of nutrition intake suggested 

by the animal science literature. In addition, the optimal solutions suggest that the pregnant 

sheep carrying twins should have more nutrition intake than those carrying singletons, which 

meets our expectation with common sense. Thus we believe that those optimal solutions are 

convincing.  

 

 

7.2 Future Research Direction 

As discussed previously in the thesis, the datasets used for this study are from the animal 

science literature. We have limited data points available for nutrition intake. In addition, we 

had to read off the data points associated with fetal weight, and corresponding time points, 

from a plot. To some extent, this may affect the accuracy of the results. Collecting more time 

series data points with corresponding fetal weight and especially nutrition intakes may 

provide more accurate and reliable results. 

Parameter estimation for the fetal weight model was done by conditioning on the assumed 

polynomial model for nutrition intake. This ignores the errors in nutrition intake and the 
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polynomial assumption is strong one. Future work could consider simultaneously modelling 

the nutrition intake and the fetal growth. In addition, low-order natural spines, or even linear 

interpolation, might work better than using polynomial model for nutrition intake.  

Nonlinear regression estimates can be severely biased, and attention needs to be given to this 

problem. The problem of bias can also be addressed by constructing a data set using the 

model of interest with known values for the model parameters, adding various degrees of 

noise and showing how well the parameters are recovered.  

In this study, we used different weights for singleton and twin data to perform the parameter 

estimation based on the weighted least-squares. The weights for singletons and twins are  1
𝑥�𝑖

  

and  1
𝑥�𝑖
2 respectively. The weights were determined by the dataset used, as well as the model 

diagnostics. In future studies, the weight can be expressed in a generic form as  1
𝑥�𝑖
𝑝 . For the 

different datasets used, we can always adopt that generic weight. The only thing we need to 

do is to determine the value of power  𝑝. The Breusch-Pagan test (Breusch & Pagan, 1979) 

may be required to assess the adequacy of the choice for value 𝑝, instead of visual checking 

on the plots of model diagnostics. Moreover, the general format of weight can be built into 

our ‘black-box’ algorithm to make it more comprehensive in the future.  

The bootstrapping was certainly useful for investigation the stability of the estimation, 

leading to some useful insights. The ‘semi-parametric’ bootstrap, in which the residuals from 

the fitted model are resampled as described in section 2.3, could be considered in the future 

work. This might be more appropriate as the data are from a planned experiment in which the 

time values were approximately chosen by design. It is well-known that for fitting nonlinear 

models the available values of the predictor variable can be very influential on successful 

parameter estimation. In particular a model postulating an upper asymptote (e.g. logistic 

growth) would require values reasonably close to the asymptote – Figure 1 of Rattray et al. 

(1974b) raises immediate concerns in this regard. It is not surprising then that some of the 

bootstrap datasets will omit the most useful points and seriously degrade the performance.  

The comprehensive ‘black-box’ algorithm is especially developed for obtaining the optimal 

daily nutrition intake for pregnant sheep carrying singletons or twins. However, the algorithm 

is generic and can be easily applied to triplets or higher order multiple births, or with other 

species to achieve a better birth outcome. It is given a time series of weight and maternal 
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nutrition, to estimate the parameters as discussed in Chapter 4, then using these to determine 

the optimal maternal nutrition to obtain a pre-determined birth weight. 
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Appendix 

In this section, we will present the programming codes for the ‘black-box’ algorithm. The 

algorithm was written in Matlab. The logical process and relevant Matlab m.files are shown 

below. 
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Figure A. 1:  The logical process flow chart for Black-box algorithm 
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main.m 
 
%%% main coding %%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Part I 
%%% PARAMETER ESTIMATION 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%clear everything 
clear all 
  
% *** value needed *** 
%providing initial guesses for each unknown parameter 
R=-2.6;Lt=-2.5;k1=2.5;x0=0.3; 
  
%putting those initial guesses in vector 'c' 
c=[R,Lt,k1,x0]; 
  
%changing the default settings 
options = optimset('MaxFunEvals',10000,'MaxIter',10000); 
  
%obtain the final value of each parameter and final SSE 
[c01q sse1q]=fminsearch('SSE01q',c, options); 
[c01c sse1c]=fminsearch('SSE01c',c, options); 
  
%Comparing the model fit (quadric u(t) vs. cubic) with same weight 
%adopt the model parameters with the smaller SSE value 
if sse1q < sse1c 
    c0=c01q; 
else 
    c0=c01c; 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Breusch-Pagan test 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% using pre-determined parameter values 
R=c0(1); Lt=c0(2); k1=c0(3); x0=c0(4); 
  
% *** load dataset *** 
%%%%%%%%%%%%%%%%%%%%%%%%% 
% #Rattray Twins data 
load rtwinH02.mat 
load rtwinL02.mat 
% *** value needed *** 
% define the starting and ending time period.  
% t0=70; tb=147; with 100 equal spaced points 
T=linspace(70,147,100); 
 
%adding an extra data point as the starting point for each level 
%with corresponding datasets 
fwh = rtwinH02(:,2);   
fwh = [x0; fwh]; 
Th= rtwinH02(:,1);  
Th=[70;Th]; 
fwl = rtwinL02(:,2);  
fwl = [x0; fwl]; 
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Tl= rtwinL02(:,1);  
Tl=[70;Tl]; 
  
%define the initial conditions; i.e. x(t0)=x0 
x_int(1) = x0; x_int(2) = x0; 
  
%express model function in an Anonymous Function: modelfun 
%choose the appropriate model 
if sse1q < sse1c 
    modelfun=@(t,x) model01(t,x,R,Lt,k1); 
else 
    modelfun=@(t,x) model02(t,x,R,Lt,k1); 
end 
  
%solve the model function 
%store the solutions in variable 'sol' 
sol=ode45(modelfun,T,x_int); 
 
%obtaining the fitted values with pre-determined time points 
Sxint_h=deval(sol, Th); 
Sxint_l=deval(sol, Tl); 
 
%Weighted Least-squares - weight: 1/xhat 
%calculate modified residuals  
LresidH = (fwh-Sxint_h(1,:)')./sqrt(Sxint_h(1,:)'); 
LresidL = (fwl-Sxint_l(2,:)')./sqrt(Sxint_l(2,:)'); 
 
%calculate SSE for each level 
Lresid_sqH = LresidH.^2;  
Lresid_sqL = LresidL.^2;  
%total SSE  
val = sum(Lresid_sqH)+sum(Lresid_sqL); 
  
%each residual-squares 
res_sq= [Lresid_sqH;Lresid_sqL]; 
  
%each xfit 
xfit= [Sxint_h(1,:)'; Sxint_l(2,:)']; 
  
%regress res_sq vs. xfit 
p=polyfit(xfit,res_sq,1); 
%calculate yhat 
yhat = polyval(p,xfit); 
%calculate ybar 
ybar = mean(res_sq); 
  
%calculate SSRegn 
SSRegn= sum((yhat-ybar).^2); 
  
%calculate sigma_sq 
sigma_sq= val/length(res_sq); 
  
%calculate B-P statistic 
BP= SSRegn/(2*sigma_sq.^2); 
  
%chi-sq statistic: p=0.95, df=1; 
chi_sq= chi2inv(0.95,1); 
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% B-P test (compare BP with chi_sq) 
% if BP<chi_sq, retain H0; it means constant variance 
% if BP>chi_sq, reject H0; it means that the heteroscedasticity exists 
 
if BP < chi_sq 
    c0; 
else  
    [c02q sse2q]=fminsearch('SSE02q',c, options); 
    [c02c sse2c]=fminsearch('SSE02c',c, options); 
    if  sse2q < sse2c 
        c0=c02q; 
    else 
        c0=c02c; 
    end       
end 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Part II 
%%% NUMERICAL SOLUTIONS 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%% 
% solve it analytically 
%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% using pre-determined parameter values 
R=c0(1); Lt=c0(2); k1=c0(3); x0=c0(4); 
  
% *** value needed *** 
% time period: t=tb-t0; 
t=77; 
% *** value needed *** 
% define the desriable birth weight 
xb=12; 
  
% analytical solution 
s=x0*(exp(k1)-xb)/(xb*(exp(k1)-x0)); 
u=-log(s)*exp(Lt)/(exp(R)*t+log(s)); 
  
% display the optimal value of daily nutrition intake 
disp(u); 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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model01.m 

function xdot=model01(t,x,R,Lt,k1) 
%cut-down model for parameter estimation 
%quadratic u(t) function 
%xH=xdot(1); xL=xdot(2); 
 
% *** value needed *** 
% provide available data points for nutrition intake and corresponding time 
% #Rattray Twins data 
t0=[70; 100; 125; 140]; 
ul=[1.262; 1.425; 1.367; 1.648]; 
uh=[1.262; 1.869; 1.944; 1.919]; 
   
% quadratic fitting 
pl = polyfit(t0,ul,2); 
ph = polyfit(t0,uh,2); 
% rounding the coefficients of nutrition intake function to 7dp 
rpl = round(pl*10000000)/10000000;              
rph = round(ph*10000000)/10000000; 
  
% using the rounded coefficient of u(t)  
xdot=[exp(R)*( rph(1)*t^2+ rph(2)*t + rph(3))*x(1)/ ... 
      ((rph(1)*t^2+rph(2)*t+rph(3))+exp(Lt))*(1-x(1) ... 
      /exp(k1)); 
     exp(R)*( rpl(1)*t^2+ rpl(2)*t + rpl(3))*x(2)/ ... 
      (( rpl(1)*t^2+ rpl(2)*t+ rpl(3))+exp(Lt))*(1-x(2) ... 
      /exp(k1))]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

model02.m 

function xdot=model02(t,x,R,Lt,k1) 
%cut-down model for parameter estimation 
%cubic u(t) function 
%xH=xdot(1); xL=xdot(2); 
  
% *** value needed *** 
% provide available data points for nutrition intake and corresponding time 
% #Rattray Twins data 
t0=[70; 100; 125; 140]; 
ul=[1.262; 1.425; 1.367; 1.648]; 
uh=[1.262; 1.869; 1.944; 1.919]; 
  
% cubic fitting 
pl = polyfit(t0,ul,3); 
ph = polyfit(t0,uh,3); 
% rounding the coefficients of nutrition intake function to 7dp 
rpl = round(pl*10000000)/10000000; 
rph = round(ph*10000000)/10000000; 
% using the rounded coefficient of u(t) (6dp) 
xdot=[exp(R)*(rph(1)*t^3+ rph(2)*t^2+ rph(3)*t + rph(4))*x(1)/ ... 
      ((rph(1)*t^3+ rph(2)*t^2+ rph(3)*t + rph(4))+exp(Lt))*(1-x(1) ... 
      /exp(k1)); 
     exp(R)*( rpl(1)*t^3+ rpl(2)*t^2+ rpl(3)*t + rpl(4))*x(2)/ ... 
      (( rpl(1)*t^3+ rpl(2)*t^2+ rpl(3)*t + rpl(4))+exp(Lt))*(1-x(2) ... 
      /exp(k1))];   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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SSE01q.m 

function val= SSE01q(c) 
%objective function for black-box algorithm 
%SSE for cut-down model (weight: 1/xhat ; u(t): quadratic) 
% minimising x(high)and x(low) simultaneously, then sum up their  
% individual SSE. 
  
% define the vector c of unknown parameters 
R=c(1); Lt=c(2); k1=c(3); x0=c(4); 
  
% *** dataset needed *** 
% load available dataset for fetal weight and corresponding time 
% #Rattray Twins data 
load rtwinH02.mat 
load rtwinL02.mat 
% *** value needed *** 
%define the starting and ending time period 
T=linspace(70,147,100); 
%adding an extra data point as the starting point for each level 
%with corresponding datasets 
fwh = rtwinH02(:,2);   
fwh = [x0; fwh]; 
Th= rtwinH02(:,1);  
Th=[70;Th]; 
fwl = rtwinL02(:,2);  
fwl = [x0; fwl]; 
Tl= rtwinL02(:,1);  
Tl=[70;Tl]; 
  
%define the initial conditions; i.e. x(t0)=x0 
x_int(1) = x0; x_int(2) = x0; 
  
%express model function in an Anonymous Function: modelfun 
%model with quadratic fitting u(t) 
modelfun=@(t,x) model01(t,x,R,Lt,k1); 
  
%solve the model function 
%store the solutions in variable 'sol' 
sol=ode45(modelfun,T,x_int); 
  
%obtaining the fitted values with pre-determined time points 
Sxint_h=deval(sol, Th); 
Sxint_l=deval(sol, Tl); 
  
%weight: 1/xhat 
%calculate modified residuals  
LresidH = (fwh-Sxint_h(1,:)')./sqrt(Sxint_h(1,:)'); 
LresidL = (fwl-Sxint_l(2,:)')./sqrt(Sxint_l(2,:)'); 
%calculating SSE 
Lresid_sqH = LresidH.^2;  
Lresid_sqL = LresidL.^2;  
%total SSE (objective function) 
val = sum(Lresid_sqH)+sum(Lresid_sqL); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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SSE01c.m 

function val= SSE01c(c) 
%objective function for black-box algorithm 
%SSE for cut-down model (weight: 1/xhat; u(t): cubic) 
%minimising x(high)and x(low) simultaneously, then get total SSE. 
  
% define the vector c of unknown parameters 
R=c(1); Lt=c(2); k1=c(3); x0=c(4); 
  
% *** dataset needed *** 
% load available dataset for fetal weight and corresponding time 
% #Rattray Twins data 
load rtwinH02.mat 
load rtwinL02.mat 
% *** value needed *** 
%define the starting and ending time period 
T=linspace(70,147,100); 
%adding an extra data point as the starting point for each level 
%with corresponding datasets 
fwh = rtwinH02(:,2);   
fwh = [x0; fwh]; 
Th= rtwinH02(:,1);  
Th=[70;Th]; 
fwl = rtwinL02(:,2);  
fwl = [x0; fwl]; 
Tl= rtwinL02(:,1);  
Tl=[70;Tl]; 
  
%define the initial conditions; i.e. x(t0)=x0 
x_int(1) = x0; x_int(2) = x0; 
  
%express model function in an Anonymous Function: modelfun 
%model with cubic fitting u(t) 
modelfun=@(t,x) model02(t,x,R,Lt,k1); 
  
%solve the model function 
%store the solutions in variable 'sol' 
sol=ode45(modelfun,T,x_int); 
  
%obtaining the fitted values with pre-determined time points 
Sxint_h=deval(sol, Th); 
Sxint_l=deval(sol, Tl); 
  
%weight: 1/xhat 
%calculate modified residuals  
LresidH = (fwh-Sxint_h(1,:)')./sqrt(Sxint_h(1,:)'); 
LresidL = (fwl-Sxint_l(2,:)')./sqrt(Sxint_l(2,:)'); 
%calculating SSE 
Lresid_sqH = LresidH.^2;  
Lresid_sqL = LresidL.^2;  
%total SSE (objective function) 
val = sum(Lresid_sqH)+sum(Lresid_sqL); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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SSE02q.m 

function val= SSE02q(c) 
%objective function for black-box algorithm 
%SSE for cut-down model (weight: 1/(xhat)^2; u(t): quadratic) 
%minimising x(high)and x(low) simultaneously, then obtain total SSE. 
  
% define the vector c of unknown parameters 
R=c(1); Lt=c(2); k1=c(3); x0=c(4); 
  
% *** dataset needed *** 
% load available dataset for fetal weight and corresponding time 
% #Rattray Twins data 
load rtwinH02.mat 
load rtwinL02.mat 
 
% *** value needed *** 
%define the starting and ending time period 
T=linspace(70,147,100); 
  
%adding an extra data point at the starting point for each level 
%with corresponding datasets 
fwh = rtwinH02(:,2);   
fwh = [x0; fwh]; 
Th= rtwinH02(:,1);  
Th=[70;Th]; 
fwl = rtwinL02(:,2);  
fwl = [x0; fwl]; 
Tl= rtwinL02(:,1);  
Tl=[70;Tl]; 
  
%define the initial conditions; i.e. x(t0)=x0 
x_int(1) = x0; x_int(2) = x0; 
  
%express model function in an Anonymous Function: modelfun 
modelfun=@(t,x) model01(t,x,R,Lt,k1); 
  
%solve the model function 
%store the solutions in variable 'sol' 
sol=ode45(modelfun,T,x_int); 
  
%obtaining the fitted values with pre-determined time points 
Sxint_h=deval(sol, Th); 
Sxint_l=deval(sol, Tl); 
  
%weight: 1/xhat^2 
%calculate modified residuals  
LresidH = fwh./Sxint_h(1,:)'-1; 
LresidL = fwl./Sxint_l(2,:)'-1; 
%calculating SSE 
Lresid_sqH = LresidH.^2;  
Lresid_sqL = LresidL.^2;  
%total SSE (objective function) 
val = sum(Lresid_sqH)+sum(Lresid_sqL); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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SSE02c.m 

function val= SSE02c(c) 
%objective function for black-box algorithm 
%SSE for cut-down model (weight: 1/(xhat)^2; u(t): cubic) 
%minimising x(high)and x(low) simultaneously, then obtain total SSE. 
  
% define the vector c of unknown parameters 
R=c(1); Lt=c(2); k1=c(3); x0=c(4); 
  
% *** dataset needed *** 
% load available dataset for fetal weight and corresponding time 
%#Rattray Twins data 
load rtwinH02.mat 
load rtwinL02.mat 
  
% *** value needed *** 
%define the starting and ending time period 
T=linspace(70,147,100); 
  
%adding an extra data point at the starting point for each level 
%with corresponding datasets 
fwh = rtwinH02(:,2);   
fwh = [x0; fwh]; 
Th= rtwinH02(:,1);  
Th=[70;Th]; 
fwl = rtwinL02(:,2);  
fwl = [x0; fwl]; 
Tl= rtwinL02(:,1);  
Tl=[70;Tl]; 
  
%define the initial conditions; i.e. x(t0)=x0 
x_int(1) = x0; x_int(2) = x0; 
  
%express model function in an Anonymous Function: modelfun 
modelfun=@(t,x) model02(t,x,R,Lt,k1); 
  
%solve the model function 
%store the solutions in variable 'sol' 
sol=ode45(modelfun,T,x_int); 
  
%obtaining the fitted values with pre-determined time points 
Sxint_h=deval(sol, Th); 
Sxint_l=deval(sol, Tl); 
  
%Weighted Least-squares 
%weight: 1/xhat^2 
%calculate modified residuals  
LresidH = fwh./Sxint_h(1,:)'-1; 
LresidL = fwl./Sxint_l(2,:)'-1; 
%calculating SSE 
Lresid_sqH = LresidH.^2;  
Lresid_sqL = LresidL.^2;  
%total SSE (objective function) 
val = sum(Lresid_sqH)+sum(Lresid_sqL); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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