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Abstract 

This thesis is primarily concerned with the numerical techniques involved in bifurcation 

analysis, in particular with the software package AUTO developed by Eusebius Doedel 

which performs this analysis on dynamical systems. 

The techniques of AUTO are investigated and applied to a steady state heat equation. 

The chosen equation can be solved by analytical methods for some boundary conditions. 

Initially AUTO was successfully applied to such problems, which have analytical 

solutions confirming its reliability. The software was then used to solve dynamical 

system problems which do not have known analytical solutions. These problems 

necessitated a modification to AUTO for non-autonomous systems. The modified 

version of AUTO was shown to be successful in finding solutions to these problems. 
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1 INTRODUCTION 

1.1 BIFURCATION ANALYSIS 

Bifurcation theory allows the analysis of a system (or model) with a control parameter 

which is fixed (in any single instance) but can vary depending on the system which is 

been modelled. For example, if the load on a vertical beam is greater than a certain 

amount, the beam will buckle causing a deflection (see figure 1.1). At the point of 

buckling, the solution structure changed. There is a solution branch where there is 

buckling, and a solution branch where there is none. The solution branch has bifurcated 

into two branches. The control parameter (A) for this system is the load on the beam. 

It is fixed for any particular set of physical parameters, but if varied, the solution 

structure may change. This system could have many other variable parameters (for 

example the elasticity modulus of the beam); however if only one parameter is varied 

at a time then its effects may be seen without other parameter variation influencing the 

results. This is the technique used in bifurcation analysis. 

DEFLECTION 

(+) 

0--------------'-----------

(-) 

A oc Load 

Deflecting 
Branch 

Non­
deflecting 
Branch 

Figure 1.1: A bifurcation Graph for the load on a beam 

! 
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The control parameter for a system is usually called the distinguishing parameter, 

principle parameter , or the bifurcating parameter, and will be denoted by A. As the 

previous example has shown, changing A changes the structure of the solution set. 

BIFURCATION POINTS 

Bifurcation analysis is the process of finding critical values of A which change the 

solution structure. A bifurcation graph is generated to aid this task. A bifurcation 

graph plots A against some norm of the solution (see figure 1.2). Solutions to the 

system are represented on this graph as curves or branches, where a branch is defined 

as a curve which can be parameterised by a single parameter. If, in a small 

neighbourhood of A, there is a point A0 at which the number of solutions change (in 

every small neighbourhood), then this point is described as a bifurcation point. These 

points are important as a change in the number of solutions indicates a change in the 

state of the system. 

The system will be defined as: 

(1.1) F(u,:>..) =0 

where u = [u1 , l½_ , ••. , un]1 , A is a scalar and F = [F 1, F2, ••• , F0 ]
1 is a system of 

equations. 
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The Jacobian operator Fu for this system is defined as: 

aF1 aF1 aF1 

Bu1 auz aun 

BF2 aF2 BF2 
(1.2) F = u 

au1 auz aun 

aF aFn aFn n 
au1 auz aun 

This system has a solution set: 

(1.3) 

for a particular value of A. A point A0 is a bifurcation point if S).. * 0, and there is 
0 

a u0 ES).. such that, for all sufficiently small neighbourhoods 
0 

there are two distinct solutions (u1 , AJ and (u2 , Ax)E UxV (see reference [3]). That 

is there is more than one solution of x for a particular value of A. 
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A bifurcation point on a solution branch can be sub-divided into one of two categories, 

a limit point and a branching point (see figure 1.2). 

llull 

x = limit point 

o= branching point 

Figure 1.2: A Bifurcation Diagram 
Limit point: 

This is when the solution curve folds back on itself. 

A limit point (A0 , u0) is defined to be a bifurcation point which has solutions 

(A0, u0) in the neighbourhood UxV such that : 

or 

Branching Point: 

This can be defined as a bifurcation point which is not a limit point. 

Note that any single branch can be parameterised using a single parameter t, giving a 

solution space { (u(t), A(t)) I a < t < b } . So an alternative definition of a limit point 

is a point ( u(t0), A(t0) ) such that A1 (t0) = 0. 



5 

Other conditions for bifurcation points can be found by introducing the Implicit 

Function Theorem: 

Theorem 1.1: The Implicit Function Theorem (see [12], Page 78) 

If 

(i) F is continuously differentiable and 

(ii) Fu has a continuous inverse at a point Cua, Aa) in solution space (1.3) 

then for the neighbourhoods: 

U = { UxE 9Z11 I llux - uall ( £ } and V = { AxE 9Z I IIAx - Aall ( 8}: 

(a) Fu has a bounded inverse for all points (ux, Ax) E UxV. 

(b) for all fixed AxE V, the equation F(ux, Ax) = 0 has a unique solution 

UXEU. ■ 

This implies that, when Fu is non-singular, there are no bifurcation points. So a 

necessary (but not sufficient) condition for a bifurcation point is that Fu is singular. 

If Theorem 1.1 holds then a branch B of solutions can be defined: 

(1.4) B = {(u(A), A) la<}. <b, F(u().), A)=O}, where a,bEfil 

The solution (0,A) is called the trivial branch. This happens when F(0,A)=0 for all 

values of A (i.e u(A)=0). 

Theorem 1.2: (see [12] page 79) 

If the trivial branch exists and \i=0 is an eigenvalue of the Jacobian F "' then 

if \i is an eigenvalue of odd multiplicity, A0 is a branching point from the 

trivial branch, 

i.e. A0= 0 is a root of det(FJO) - A0I ) = 0 which is of odd multiplicity 

(where FJ0) is the Jacobian evaluated at u=0). 

Note: \i and A are different variables. 

■ 
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This is a sufficient condition for a bifurcation point. Note that if the multiplicity of the 

eigenvalue is not odd then it is still not known whether the point is a bifurcation point. 

If the trivial solution does not exist, or bifurcation points from other branches are 

wanted, then Theorem 1.2 cannot be applied. So this theorem only locates bifurcation 

points which are on the trivial branch. To find bifurcation points from other branches, 

the system has to be converted into this form by linearisation: 

If a solution branch (U = u(A), A) is known then equation (1. 1) can be 

linearised such that: 

(1.5) H(h, µ) =F(U+h, µ) =0 

where h is a vector [h 1, h2, •• h0Y, and µ = A is the new bifurcation parameter 

(it is given a different symbol as A is fixed by the solution branch U). 

H(O, µ) = 0, for all µ, so Theorem 1.2 can be used to find bifurcation points. 

A bifurcation point µ0=g(U) in system H can be related back to F by 

substituting µ0 with A and solving A=g(U) for A. 

Note that this requires an existing solution branch U. 

Example 1.1: 

Define F to be the system: 

2 3 
/ 2(ul'u2,).) = u1 u2 - u1 - ).u2 =0 

This system has the trivial solution branch (Ll, A)= (0,0,a), aE 9\. But does it have any 

other branches? The implicit function theorem can be used to find possible bifurcation 

points along this branch. 
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The Jacobian Fu along the trivial branch is: 

This is singular when the determinant is zero, i.e when A=0. So by Theorem 1.1 A=0 

is a possible bifurcation point. At that point Fu has a zero eigenvalue of multiplicity 

2, which is even, so that Theorem 1.2 does not prove whether it is a bifurcation point 

or not. 

However if some algebraic manipulation is done on the system, one finds that 

{ (a, 0, A) , a > 0} is not a solution and also { (0, b, A), b > 0} is not a solution so 

non-trivial solutions only exist if u1, u2 :;t:Q, Eliminating A gives: 

which has only the trivial solution. So as there are no non-trivial solutions, A=0 is not 

a bifurcation point. • 

Example 1.2: 

Define F to be: 

This system has the trivial solution branch. The Jacobian Fu is: 

The trivial branch (0,0,a) has a possible bifurcation point when A=0. 
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Fu(0) has an eigenvalue of multiplicity 2 at that point, which is even, so Theorem 1.2 

does not prove whether it is a bifurcation point or not. Clearly A=u1 and A=½, are non­

trivial solutions. So solution branches (a,0,a) (0,a,a) and (a,a,a) exist for a E 9\, and 

(0,0,0) is a bifurcation point. Fu is not singular along any of the non-trivial branches, 

so by Theorem 1.1, there are no new bifurcation points coming off these branches. The 

bifurcation graph for this system is shown in figure 1.3. 

9.00 

7.00 

5.00 

3.00 

1.00 

- 1. 0 0 --+-r-..---r---,--.-.----.--.--,---r-,r-r---,,--,-r-,--r-,---r--r--r--r-,--,--.--r--.-----r--,--,--,--,-..,.....-r--, 

-1.00 1.00 3.00 5.00 

I\ 
Figure 1.3: Bifurcation diagram for Example 1.2 

II 
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Example 1.3: 

Define F to be: 

This system has the trivial branch as a solution. 

For points along this branch, the Jacobian Fu becomes: 

[
16-}. o l 

0 12-}. 

This is singular when A=16 and A=12 where the nullspace is one-dimensional. So by 

Theorem 1.2 these points are bifurcation points. As A has values both before and after 

these points (in their respective neighbourhoods) and also by Theorem 1.2, they can be 

sub-categorised as branching points (using the definition of a branching point defined 

earlier). 

The branches can be found analytically and are: 

To find bifurcation points along non-trivial branches, the system needs to be linearised 

about each solution branch by defining the system: H(h,µ) = F(U+h, µ), where U is a 

non-trivial solution branch u(A). The Jacobian Hh along the solution branch (h=O) is: 

(1.6) 
2 2 

12 +27U2 + 18U1 -µ 
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For the first branch ua (inserting it in the system H and making µ=A) the determinant 

is zero when: 

16 + 24Ui(A) =A, and 12 + 27Ui(A) =A (as Ui(A)=O) 

This corresponds to A=12 and A=9.6. The first point is the existing bifurcation point 

from the trivial solution. The second point is not in the range of the solution space (of 

A> 12). So by theorem 1. 1, there are no more bifurcation points along this branch. 

The second branch ub makes the determinant zero when A=l6 and when A=24. The 

first eigenvalue is the point where this branch connects to the trivial solution. The 

second point is a possible bifurcation point. By theorem 1.2, A=24 is a branching point 

from the branch ub. 

This new branch is: 

I±~ (A -9.6) 
21.6 ' 

±~ (A-24) 
54 

t 

It is more difficult to find branching points from this branch as U1 and U2 are both not 

zero. 
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So the analysis stops here, and a bifurcation graph of the results can be seen in figure 

1.4. 

4.00 

3.00 

2.00 

1.00 

0.00 

- 1 . 0 0 -t--..---,----,---.--,--,-.---r--.-,--,--.--,---,--,--.--,,-----r---,-,-----.-~-r--r----,--, 

0.00 25.00 50.00 75.00 100.00 125.00 

I\ 
Figure 1.4: Bifurcation diagram for example 1.3 

• 
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NORMS 

Bifurcation graphs require a single value from a vector of many solution values to plot 

against the distinguishing parameter A. The most commonly used value is the 

Euclidean norm: 

llull2=vu~+u;+ ... +u;, where u=[u1 Uz ... unr 

If a particular variable ua is of interest, then llull = lu) can be used. If a bound is 

wanted on the variables the 00-norm (llulU can be used where: 

llull= = max{lu; I : i = l, ... , n }. 

Each definition will give a different bifurcation diagram. Some may not show 

bifurcation points, or may show branching points which do not exist. 

For example, the point u=(l ,2) has the same Euclidean norm and oo-norm as the point 

u=(2, 1) , so the two solutions from different branches will appear to be intersecting on 

a bifurcation graph. However the norm llull= lu 11 will graph the two points differently. 

Another example considers the curves u1 = (A, A+ 1) and L½ = (1-A, A+ 1) which intersect 

when A=½. llull= =A+ 1 for all positive A on both solution curves. A bifurcation graph 

of A versus llull~ will show an intersection of the two curves at all values of A greater 

than zero. This problem is due to the difference between the dimension of the 

bifurcation graph, which is 2-dimensional, and the dimension of the system which it 

graphs. These two examples show that care must be taken when choosing a norm to 

ensure the solution curve is represented clearly on its bifurcation graph. 
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SYSTEMS OF DIFFERENTIAL EQUATIONS 

The previous analysis is for algebraic systems of the form F(u,A)=O. Now consider the 

situation when the model is a system of differential equations. i.e. F(D(u),A)=O where 

D(u) is a nxn matrix of all the derivatives of u with respect to t, where u is a vector of 

independent variables, and t is a vector of dependent variables. 

The solution space is: 

{ (u(t),A) I uE~Jr, tE9\Tn, AE9\}, 

For each value of A, there exists one or more vector fields u(t) of solutions. 

The definitions for bifurcation points, limit points and branching points can still be 

applied to this system by defining a fixed point u=u(t) which must satisfy the 

definitions for all values of tE 9\Tn . 

Theorems 1.1 and 1.2 are not easily applied to F as the Jacobian F,. is undefined. 

There is an analytical method for transforming a D.E. system into an algebraic system 

using an appropriate Green's integral, in which case the theorems can be used. This 

method will not be covered in any detail other than to say that it is very difficult to do 

for all systems except very simple ones. (see Gomez' thesis [5] and [9]), and then one 

still needs to find the function H from (1.5). 
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The existing norms can be applied at any fixed point u (usually the maximum). If there 

is only one dependent variable t defined over a fixed range [0,71, then there is another 

norm which can be applied: 

!lull={½ 
T 

f[ u1 (t)
2 + uz(t)2 + ... + un(t)2}dt 

0 

This gives a Euclidean-type norm which encompasses the value for u over the whole 

interval, rather than just a single value, so all points have an 'effect' on the norm. 

To make use of these theorems, one needs analytical solutions, which are only found 

in a very small subset of non-linear systems. Solution branches can be determined 

numerically, and Chapter 2 presents methods for doing this. 
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1.2 COMBUSTION MODELS 

Cellulosic materials such as wood chips (or shavings or sawdust), hay or bagasse are 

stored in large piles under conditions which may vary in temperature and humidity. 

Under certain conditions, the material spontaneously combusts, possibly causing 

substantial damage. 

For inert isotropic bodies obeying the Arrhenius Law the Fourier heat balance equation 

becomes ( see [7] and [ 11]): 

(-E) ar 
k'il2T+qaA.e RT =C- in the region rEOs:m3, t>O at 

with boundary conditions: 

ar ~ 
k- + h(T-T) = 0 on an (assuming Newtonian Cooling) an a 

ar =0 when x. =0 'efi a ' I xi 

where T(x,t) is the absolute temperature of a body at position vector x and time t, k is 

the thermal conductivity, and q, a, and A are exothermicity/unit mass, density and 

frequency factors respectively. E is the activation energy of the oxidation reaction, C 

is the specific heat capacity, and R is the gas constant. 'il2T is the Laplacian operator. 

In the boundary conditions, h is the heat transfer coefficient, and Ta is the absolute 

ambient temperature. 

The first boundary condition ensures that the temperature at the surface of the reactant 

is equal to the ambient temperature minus the effects of Newtonian cooling at the 

surface. In a symmetrically heated system, it is assumed that the temperature gradient 

at the centre is zero, resulting in the second boundary condition. 



The steady state model for this system is: 

k'\/2T+qaA.)-ffi.) =O 
ar ~ 

k- + h(T-Ta) =O on boundary an an 
dT =0 when x.=0 Vi dx. , I 

I 
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This system in symmetrical shapes can be converted to the dimensionless form (see [7] 

and [11]): 

(1.7) 

d2u j du u 
-+-- +).,(ao)e =0 
dr 2 r dr 

du du . -(0) =0, -(1) +Brn(l) =0 
dr dr 

E(T-T) f 
where u = --- is the dimensionless temperature excess, r =- is a 

RT2 ao 
a 

dimensionless length-scale (same for objects of any size) in the interval [0,1], with a0 

representing an appropriate characteristic length such as the half-width of the body, 

Bi = harJk ( > 0) is the surface heat transfer coefficient (denoted as the Biot number), 

and 'A is the Frank-Kamenetskii parameter [1] given by: 

2 ( R~) 
aoqaA.e 0 

,\(ao) = ----

k( :; ] 
The value for 'A is crucial. Solutions only exist for certain values of 'A. The maximum 

value of 'A occurs at the point where the substance will combust spontaneously. 
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In physical terms if, for a given ambient temperature the substance radius is larger than 

a critical size, then there are no steady states for temperature in the substance, and it 

will combust spontaneously over time. This critical value for A is denoted by Acrit· 

d 2u j du . 
-- + -- 1s the Laplacian !iu for Class A geometries in dimension j+ 1. i.e. 
dr 2 r dr 

geometries which have a single unit of measurement. 

EXAMPLES 

An infinite Slab (j=O): 

d 2u -+Aeu=O 
dr 2 

An infinite Cylinder (j=l) 

d 2u l du u 
-+--+;l.,e =0 
dr 2 r dr 

A Sphere (j=2): 

&u 2 au u 
-+--+;l.,e =0 
ar 2 r ar 

·It'.•• 
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There exists a well known analytical general solution to equation (1.7) when J=0 (see 

[7]): 

(1.8) 

where A and C are constants. C must be zero to satisfy the first boundary condition. 

The norm, which will be plotted in the bifurcation diagram against A, is the maximum 

value of u over 0srsl denoted by umax• Over this range the maximum value of u occurs 

when r = 0, so the norm umax is: 

um== u0 = u (0) = ln (A) 

An implicit solution relating u0 to A, for A > 0 is found by replacing ln(A) by the norm 

u0, and using the other boundary condition: 

(l.
9) ln(A) aln(2a2) -21ncosh(a)- 2" ~(a), where a" g and A>O. 

When A=O, u is the trivial solution u(r)=0 for all r. As u0 and A are unique for each 

value of a, the solution curve can be parameterised by a, giving a branch (u0(a),A(a)) 

of solutions. 



The solution when Bi = 1 is plotted in figure 1.5. 

15.00 

10.00 

5.00 

0.00 
0.00 0.05 0.10 0.15 

I\ 
0.20 0.25 

Figure 1.5: Bifurcation graph of system (1.7) with J=O and Bi=l. 

The maximum value of A is at a limit point, Acrit= 0.270671. 
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0.30 

By the definition of a limit point (see section 1. 1), a limit point is a point when 

A'(a) = 0, or equivalently d(ln).) =0. Also as the entire solution space is parameterised 
da 

by one parameter, there are no other branches, and therefore no branching points. 
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This gives an implicit equation for the co-ordinates of the limit point, for any given 

Biot number Bi: 

(1.10) . a crit sinh( a crit) cosh( a en,) + a !nt 
B1 =-----------

[l - a crittanh( a crit)] cosh2
( a crit) 

where acrit is the value of a when it is a limit point, from which the corresponding 

values (u0\rit and Acrit can be attained by using (1.9). 

A singular solution of ( 1. 10) occurs when the denominator is zero and Bi = co. This 

is called the Frank-Kamenetskii boundary condition, and corresponds to perfect heat 

transfer at the surface of the object. The last term of (1.9) becomes zero when Bi = co, 

and A can be defined explicitly in terms of u0: 

The limit point (when ~-A =0 ) is 0.87846. 
LJ.i,lo 

A general solution also exists for equation (1.7) when J=l (the infinite cylinder): 

(1.11) u(r) =ln[S:(l +Ar
2)2] 

where A is a constant of integration. Similar analysis may be used on this to give an 

implicit equation for A and u0 . From (1.11), u0= um•x= ln(8A/A) and introducing G = A 

results in: 

ln().)=1,J BG ]-[ 4G ] where G=}:_eu0 

~1 (G+ 1)2 Bi(G+ 1) ' 8 



The limit point ( (u0\rit' Acrit) occurs when d(lnA) =0, and results in the implicit 
dG 

equation: 

4G. 
Bi= cnt 

2 
(1-Gcnt) 

When Bi=00 , an explicit solution for A in terms u0 exists: 

and Acrit is 2. 
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A general solution for }=2 (or more generally for j:;i={Q or 1} ) has not been found. 

Chapter 3 discusses a numerical approach for solving (1. 7) for any j and Bi. 

THE SHAPE FACTOR 

The examples so far are Class A shapes which have Laplacians which are of the form 

~ d 2u j du . of equation (1.7). The Laplacian v-u = - + -- can also be used to approximate 
dr 2 r dr 

non-Class A geometries. Boddington, Gray and Harvey [ l] developed a technique for 

using (1.7) to model any shape possessing a point of symmetry by defining} as a shape 

factor: 

(1.12) . R; 
J =3- -1 

Rz 
s 
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where Rs is the Seminov radius [1], and R0 is the harmonic root-mean-square radius of 

the body: 

volume l 1 Jf dw Rs= 3 rfi , -
2 

= -
4 

-
2 

where dw is the solid angle subtended at the 
su ace area Ro 1t a 

centre O and a is the radius from O to the edge for given angle co-ordinates. 

3(2a)3 For example, a cube of volume (2a)3 has R8 =-- =a, and 
6(2a)2 

Ro =a j ~J3 = l.19'1a so the shape factor j for a cube of any size (as the a's cancel) 
1+--

7t 

is 3.280 (using (1.12)). 

The harmonic root-mean-square radius RA0 for any unit Class A shape is defined (see 

[ 1]) as: 

~
2 =l(j+l) 

3 

A shape Xis modelled by a Class A shape of radius %(j+ 1 ), where j is defined using Rs 

and R0 from the original shape X. This results in solving a modified version of (1.7) 

which has a new parameter A(R0) (see [1]): 

d2u + j_ du + lu+ 1)-'.(Ro)e u =0 
dr 2 r dr 3 
du du . 
-(0) =O, -(1) +Bzu(l) =0 
dr dr 

This system gives an approximate value of A for shape X. 



A can be found for the unit shape X by scaling A(R0) by R/. 

So (1.7) can model a shape of unit size by: 

1 -> Calculating the shape factor j from (1.12) 

2 -> Solving (1.7) to get solution points (u;, A; ) 

3 -> Scaling A;: 

* 3).,i 
).,.=---

' (i+l)~ 
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Table 1.1 has some more examples of shape factors. RAs is easy to find, but RA0 is not. 

(There is list of formulae of R0 for simple geometries in [1]). 

Table I.I: Example Shape factors 

Geometry RA0 RAS j 

Infinite Slab 3 3 0 

Rectangular Parallelepiped (ratio 1: 10: 10) 1.731 5/2 0.438 

Infinite Cylinder 1.225 3/2 1 

Infinite Square Rod 1.354 3/2 1.444 

Rectangular Parallelepiped (ratio 1: 1: 10) 1.354 10/7 1.694 

Sphere 1 1 2 

Eq uicy linder 1.115 1 2.729 

Cube 1.194 3.280 

Regular Tetrahedron 0.537 0.408 4.178 

Boddington, Gray and Harvey [1] showed that, for convex bodies, the shape parameter 

has values lying between 0 (the infinite slab) and 4.178 (the regular tetrahedron). 
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If N = j + l is defined as the dimension of a sphere, then d
2
B + N- l dB can be thought 

dr 2 r dr 

of as the Laplacian of the N-dimensional sphere in spherical co-ordinates. So, using 

the shape factor j , an object can be modelled as a j+ l dimensional sphere, where j is 

a positive real number. 

RESULTS FOR ARBITRARY; 

A phase plane analysis of (1.7) by Wake [14], has shown that for 1<}<9 , as u 

increases, A converges to A= where : 

(1.14) 
2 

)."'=2(i-l)e Bi 

He also showed that there are an infinite number of solutions to ( 1. 7) when A=A-. 

This implies that the bifurcation curve has a damped oscillation about the line A=A=, 

with amplitude decreasing as u increases. As there are infinitely many oscillations 

about a vertical line, there are also infinitely many limit points. 

No analytical solution to (1.7) has been found for arbitrary j and Bi. The rest of this 

thesis discusses techniques for numerically solving ( 1.7) to generate bifurcation graphs 

for any j or Bi value. The analytical results of this Chapter are used to test the 

accuracy of the numerical results. 




