
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

REAL WORLD EVALUATION OF
ASPECT-ORIENTED SOFTWARE

DEVELOPMENT

A thesis submitted in partial fu lfilment of the requ irements for

the degree of Master of Science in Computer Science at

Massey University, Palmerston orth, New Zealand

CHRISTOPHER MARK ELGAR

2006

11

Abstract

Software development has improved over the past decade with the rise in the pop­

ularity of the Object-Oriented (00) development approach. However , software

projects continue to grow in complexity and continue to have alarmingly low rates

of success.

Aspect-Oriented Programming (AOP) is touted to be one solution to this soft­

ware development problem. It shows promise of reducing programming complexity,

making software more flexible and more amenable to change. The central concept

introduced by AOP is the aspect. An aspect is used to modularise crosscutting

concerns in a similar fashion to the way classes modularise business concerns. A

crosscutting concern cannot be modularised in approaches such as 00 because the

code to realise the concern must be spread throughout the module (e.g. a tracing

concern is implemented by adding code to every method in a system) . AOP also

introduces join points, pointcuts, and advice which are used with aspects to capture

crosscutting concerns so they can be localised in a modular unit.

00 took approximately 20 years to become a mainstream development approach.

AOP was only invented in 1997. This project considers whether AOP is ready for

commercial adoption. This requires analysis of the AOP implementations available,

tool support, design processes, testing tools, standards, and support infrastructure.

Only when AOP is evaluated across all these criteria can it be established whether

it is ready to be used in commercial projects. Moreover, if companies are to invest

time and money into adopting AOP, they must be aware of the benefits and risks

associated with its adoption. This project attempts to quantify the potential benefits

in adopting AOP, as well as identifying areas of risk.

SolNet Solutions Ltd, an Information Technology (IT) company in Wellington,

New Zealand, is used in this study as a target environment for integration of aspects

into a commercial development process. SolNet is in the business of delivering large

scale enterprise Java applications. To assist in this process they have developed a

Common Services Architecture (CSA) containing components that can be reused to

reduce risk and cost to clients. However, the CSA is complicated and SolNet have

lll

identified aspects as a potential solution to decrease the complexity.

Aspects were found to bring substantial improvement to the Service Layer of

SolNet applications, including substantial reductions in complexity and size. This

reduces the cost and time of development, as well as the risk associated with the

projects. Moreover, the CSA was used in a more consistent fashion making the

system easier to understand and maintain, and several crosscutting concerns were

modularised as part of a reusable aspect library which could eventually form part

of their CSA.

It was found that AOP is approaching commercial readiness. However, more

work is needed on defining standards for aspect languages and modelling of design

elements. The current solutions in this area are commercially viable, but would

greatly benefit from a standardised approach. Aspect systems can be difficult to

test and the effect of the weaving process on Java serialisation requires further

investigation.

IV

Acknowledgements

I wish to acknowledge my supervisors Dr. Jens Dietrich (Massey University) and

Shane Griggs (SolNet Solutions Ltd) for their time, support, and ideas during this

project. Without them, this project would not have been so successful.

Thank you to Technology New Zealand for their financial support of this project

through the Technology in Industry Fellowship (TIF).

To all the staff I have been involved with at SolNet Solutions thank you for

your time and feedback as I tried out ideas which will hopefully make their way

into your everyday work! In particular, Peter Abbott and Antony Binns for their

support when deploying and working with some complex systems, Simon Brierley

for embracing AOP and taking it into a real project , and all the Senior Developers

and Architects who were interviewed to find out more about how SolNet operates.

Thank you to my parents and relatives for their support during the preparation of

this thesis. In particular, your proof reading and comments were greatly appreciated.

To anyone I have missed, apologies, and thank you for your contributions!

V

Vl

Table of contents

ABSTRACT

ACKNOWLEDGEMENTS

1 I TRODUCTION
1.1 The Software Development Problem .
1.2 Aspect-Oriented Programming .

1.2.1 Object-Oriented Programming .
1.3 SolNet Solutions Ltd

1.3.1 Company Profile
1.3.2 Current Development Environment
1.3 .3 Motivation for AOP Assessment .

1.4 Project Objective and Scope
1.5 Overview of Thesis

2 AOP OVERVIEW
2.1 Introduction .
2.2 Important AOP Concepts and Terminology.

2.2.1 Concerns.
2.2.2 Scattering and Tangling
2.2 .3 Crosscutting Concerns
2.2.4 Aspect .
2.2.5 Join Point
2.2.6 Pointcut
2.2. 7 Advice .
2.2.8 Intertype Declaration .
2.2.9 Weaving ...
2.2.10 Obliviousness
2.2.11 Dynamic and Static Crosscutting

2.3 AOP System Overview
2.4 Summary . .

3 APPROACHES TO AOP
3.1 Introduction . . .
3.2 Establishing Criteria for Framework Evaluations .
3.3 Framework Evaluations .

3.3.1 Vendor Backing
3.3.2 License .
3.3.3 User Base ...
3.3.4 Support ..
3.3.5 Training Resources

Vll

lll

V

1
1
1
2
3
3
3
3
4
5

7
7
7
7
7
8
8
8
8
8
9
9
9
9
9

10

11
11
12
14
15
15
16
16
17

Documentation
Tool Support

3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14
3.3.15
3.3.16
3.3.17
3.3.18
3.3.19
3.3.20
3.3.21
3.3.22
3.3.23

Aspect Language
Composition Language
Static Pointcut Checking .
Weave Times
Standards Adherence .
Framework Integration
Join Point Model . . .
Types of Advice
Contextual Information .
Intertype Declarations
Java Language Level Support
JVM Support
Advice Ordering
Aspect Lifecycle Models
Pointcut Language . . .
Ease of Adoption

3.3.24 Environment Requirements
3.3.25 Build Overhead
3.3.26 Runtime Performance .
3.3.27 Debuggability . .
3.3.28 Testability
3.3.29 Aspect Libraries.
3.3.30 Compatibility . .
3.3.31 Other

3.4 Language Choice - SolNet Solutions .
3.5 Alternatives to AOP

3.5.1 EJB 3.0
3.5.2 Servlet Filters
3.5.3 Composition Filters and Hyperslices
3.5.4 Choosing an Approach

3.6 Summary

4 TOOL SUPPORT
4.1 Introduction
4.2 Build Tools

4.2.1 ANT Integration
4.2.2 Maven Integration

4.3 Integrated Development Environments
4.3. 1 Eclipse
4.3.2 NetBeans and JBuilder .
4.3.3 IntelliJ IDEA
4.3.4 JDeveloper

4.4 Testing
4.5 Debuggers . . .
4.6 Documentation
4. 7 Code Metrics
4.8 Visual Design
4.9 Summary ..

Vlll

18
18
19
19
20
20
21
21
21
22
22
22
22
23
23
23
24
24
25
25
25
26
26
26
27
27
28
28
29
29
29
30
30

31
31
31
31
32
33
33
36
37
37
37
38
39
39
40
41

5 ASPECT-ORIENTED DESIGN
5.1 Introduction
5.2 Aspect-Oriented Design Approaches .

5.2.1 Use Case Approach .. .
5.2.2 Theme/UML
5.2.3 General UML Extension
5.2.4 Model-Based Approach .
5.2.5 UML Structural and Behavioural Diagrams

5.3 Fitting with SolNct Solutions
5.4 Aspect-Oriented Design Patterns and Idioms ..

5.4.1 Refactoring 00 patterns using Aspects .
5.4.2 Aspect-Oriented Patterns
5.4.3 AspectJ Idioms

5.5 Summary

6 TESTI G
6.1 Introduction
6.2 Testing Elements
6.3 Aspect Testing Challenges
6.4 AOP Testing Approaches .

6.4.1 Data Flow Testing
6.4.2 Test Adequacy
6.4.3 Test Generation .
6.4.4 Unit Testing Aspects
6.4.5 State Based Testing .
6.4.6 Fault Based Testing.
6.4. 7 Traditional Testing Techniques

6.5 AOP Testing Frameworks
6.6 Summary

7 METRICS
7.1 Introduction .
7.2 Motivation for Metrics
7.3 Traditional Metrics ..
7.4 Aspect-Oriented Metrics
7.5 Summary

8 AOP STANDARDS
8.1 Introduction . .
8.2 Motivation for Standards
8.3 Candidates for Standardisation
8.4 Current Standards Efforts . .
8.5 AOP Alliance

8.5.1 Goals of the AOP Alliance .
8.5.2 AOP Alliance Components API
8.5.3 AOP Alliance Interoperability
8.5.4 Future of the AOP Alliance

8.6 Potential Standardisation Paths
8. 7 Framework Interoperability
8.8 JVM Support
8.9 Summary

IX

43
43
44
44
47
49
50
50
52
54
54
56
58
59

61
61
62
63
64
64
65
66
66
67
68
68
70
73

75
75
75
76
79
79

81
81
81
83
84
85
85
86
89
91
92
93
94
95

9 INTEGRATING ASPECTS INTO A SOLNET
SOLUTIONS PROJECT
9.1 Introduction
9.2 SolNet Development Frameworks

9.2.1 Application Structure ...
9.2.2 Common Services Architecture
9.2.3 Incident Reporting Framework .
9.2.4 Business Object Framework
9.2.5 Transaction Handling .

9.3 NZQA - SPER Project
9.3.1 General Architecture
9.3.2 Identifying Potential Aspects
9.3.3 Aspect Design and Implementation
9.3.4 Integrating Aspects into the Build Process
9.3.5 Project Testing
9.3.6 Metrics

9.4 NZQA Project - EOS .
9.5 Benefits and Tradeoffs

9.5.1 Benefits
9.5.2 Tradeoffs

9.6 Aspects Future at SolNet .
9.7 Summary

10 CONCLUSION
10.1 Introduction .
10.2 Summary of Findings
10.3 Applicability of Results in other Environments .
10.4 Future Work .
10.5 Summary

GLOSSARY

APPENDICES

A FRAMEWORK EXAMPLES
A. l Introduction
A.2 Example Application Class .
A.3 AspectJ . . .
A.4 Aspect Werkz . . .
A.5 JBoss AOP
A.6 Spring Framework .
A.7 Dynaop .
A.8 Summary

B EXTENDED CODE LISTINGS

C ASPECT CODE LISTINGS
C. l Base Aspects .
C.2 SPER Aspects .
C.3 EOS Aspects .

X

97
97
97
97
98
98
98
99
99

. 102

. 103

. 105

. 112

. 113

. 117

. 123

. 125

. 125

. 126

. 126

. 127

129
. 129
. 129
. 130
. 131
. 132

143

148

149
. 149
. 149
. 150
. 151
. 153
. 155
. 160
. 161

163

169
. 169
. 187
. 199

List of Figures

2.1 AOP System Diagram 10

4.1 AJDT Screenshot .. 35
4.2 JBossIDE Screenshot 36
4.3 UML Notation for Enterprise Architect 41

5.1 Use Case Slice . . . 45
5.2 Use Case Aspect Representation . 46
5.3 Theme/UML Crosscutting Theme . 48
5.4 UML Class Diagram 51
5.5 State Diagram - Tangled Model 52
5.6 State Diagram - Separate Concerns 53

8.1 AOP Alliance Join Point Hierarchy 87
8.2 AOP Alliance Advice Hierarchy 88

9.1 SolNet Incident Reporting Framework . 99
9.2 NZQA Applications . . 101
9.3 SPER Layered Architecture . 102
9.4 Basic Aspect Diagram . 108

Xl

Xll

List of Tables

9.1 SPER Metrics . 118

Xlll

XIV

Listings

5.1 Singleton Aspect
5.2 Make class implement Singleton
6.1 Proposed example aUnit code
6.2 JMock style aUnit code . . .
6.3 Aspect Annotations
8.1 AOPAllianceAdapter Aspect .
8.2 MyMethodinterceptor Aspect
8.3 MyAOPAllianceAdapter Aspect
9.1 General Service Bean method structure
9.2 Enrolment Fees Method - Before Refactoring .
9.3 Enrolment Fees Method - After Refactoring
9.4 Single Aspect Approach
9.5 Base Service Wrapper Aspect
9.6 begin(String comment) Aspect Example
9. 7 Service Wrapper Base Aspect
9.8 Service Wrapper Sub Aspect .
9.9 SPER ANT aspect properties
9.10 AspectJ compilation task .
9.11 EOS Service Method .
A. l Hello World Base Class
A.2 AspectJ Tracing
A.3 AspectJ Output
A.4 AspectWerkz Tracing .
A.5 Aspect Werkz Configuration File
A.6 AspectWerkz Output ..
A. 7 JBoss Tracing
A.8 JBoss Configuration File
A.9 JBoss Output
A.10 Spring Hello World Interface
A.11 Spring Hello World Class .
A.12 Spring Tracing
A.13 Spring Configuration File .
A.14 Spring Output
A.15 Dynaop Application Launcher
A.16 Dynaop Tracing
A.17 Dynaop Configuration File
A.18 Dynaop Output
B. l Decompiled Service Bean .
B.2 Example aUnit Test Aspect
C. l Service Wrapper Base Aspect
C.2 Exception Handler Base Aspect

xv

56
56
71
71
72
90
90
91

. 103

. 107

. 107

. 108

. 109

. 110

. 111

. 111

. 113

. 114

. 124

. 149

. 150

. 150

. 151

. 152

. 152

. 153

. 154

. 154

. 155

. 156

. 157

. 158

. 159

. 160

. 161

. 161

. 161

. 163

. 165

. 169

. 171

C.3 Transaction Rollback Base Aspect 173
C.4 Service Wrapper Base Aspect - External Interface 174
C.5 Custom Exception Handler (External Interface) Base Aspect . 176
C.6 Transaction Rollback (External Interface) Base Aspect . 177
C. 7 Base Tracing Aspect . 178
C.8 Base JDK Tracing . . . 180
C.9 Base Log4j Tracing . . . 182
C.10 Pertype JDK Tracing . . 185
C.11 Pertype Log4j Tracing . 186
C.12 Sper Service Wrapper . . 187
C.13 Sper Exception Handler . 189
C.14 Sper Transaction Rollback . 190
C.15 SXI Service Wrapper . . . 191
C.16 SXI Exception Handler . . 192
C.17 Sper Aspect Precedence . 194
C.18 Sper Pointcuts. 195
C.19 SXI Pointcuts 197
C.20 EOS Service Wrapper. . . 199
C.21 EOS Exception Handler . 200
C.22 EOS Aspect Precedence . 201
C.23 EOS Pointcuts . 202
C.24 EOS Tracing 203

XVl

CHAPTER 1

INTRODUCTION

1.1 The Software D evelopment Problem

Software development has long been prone to spectacular project failure rates that

would be unacceptable in any other professional discipline. The 1994 Chaos Report

from The Standish Group showed that just 16% of projects were successful. Of those

unsuccessful projects 31 % were never completed and 53% had problems such as cost

or time overruns and missing functionality (The Standish Group 1994). An example

of a high profile project failure in New Zealand was the Integrated National Crime

Information System (INCIS). This ambitious project suffered numerous time delays

and cost overruns before it was eventually abandoned with only a small portion of

the system in operation (Small 2000).

We believe many project failures can be attributed to the sheer size and com­

plexity of software system developments and the inability of traditional development

methodologies to cope with this. Object-Oriented (00) technology has become the

major development methodology helping to reduce complexity with new concepts

such as inheritance, abstraction, and polymorphism (Boner, Vasseur & Dahlstedt

2005a). The latest Chaos Report in 2003 shows a substantial improvement since

1995 with 34% of projects categorised as successful and only 15% of projects fail­

ing. However, 51 % of projects still have some problems (The Standish Group 2003).

Despite the advances made in recent years, professionals continue to strive to find

ways to improve project success rates.

In this thesis, Aspect-Oriented Programming (AOP) is presented as a develop­

ment approach which has the potential to reduce software complexity and increase

software project success.

1.2 Aspect-Oriented Programming

Aspect-Oriented Programming is a relatively new programming paradigm invented

at the Xerox Palo Alto Research Center (Xerox-PARC) in the mid nineties by Gregor

1

2

Kiczales and his research team. It attempts to reduce program complexity using the

notion of separating crosscutting concerns from the core program concerns (Kiczales,

Lamping, Mendhekar, Maeda, Lopes, Loingtier & Irwin 1997). This is considered to

be one of the most promising approaches to reducing program complexity, and was

ranked in the 10 emerging technologies that will change the world by Massachusetts

Institute of Technology's (MIT) Technology Review (van der Werff 2001).

AOP adds the concept of an aspect for the purposes of designing and imple­

menting crosscutting concerns. Aspects complement the more familiar concepts of

procedures and objects found in the Structured and 00 paradigms (Kiczales 2005).

AOP is not a replacement for these other paradigms, but rather complements them

with a new modularisation technique. Core program concerns can be implemented

using traditional modularisation techniques and crosscutting concerns using aspects.

1.2.1 Object-Oriented Programming

Although aspects can be used with other programming paradigms such as Struc­

tured Programming, most implementations available are based around current 00

languages. The reasons why the 00 paradigm is not suitable for all problems faced

in modularising code and how aspects complement this technology to solve these

problems is discussed. 00 was designed to model real-world domain entities and

their behaviour as objects. However , there are many elements of a design that must

be intermixed with these objects which are incongruent with the object 's original

intent. AOP addresses this problem by allowing behaviour to be added to objects

in a non-intrusive, modularised fashion (Glover 2004).

A good example is a banking system with an 'Account' class containing a 'with­

draw' method. Being a banking system there are many things that must happen

before and after the 'withdraw' method modifies the account's balance such as secu­

rity checks, auditing, transaction handling, and persistency. All these extra concerns

are not directly part of the main concern of withdrawing funds from an account,

but they must be coded with the logic for withdrawing money to ensure the sys­

tem meets its non-functional requirements. Clearly these extra concerns will require

more code than the actual withdrawal of money, and concerns such as transaction

handling will be spread across multiple classes making it difficult to maintain and

evolve. With AOP it is possible to remove these concerns from the core classes and

modularise them as aspects . This will make the system easier to design, code, test,

and maintain.

Although the concepts of AOP are not inherently linked to any particular 00

3

language, most of the current mainstream implementations are based around the

Java language. This is probably attributable to the strong Java open source com­

munity rather than any inherent features of the Java language itself since other

languages are having implementations developed such as Python, PHP, C#, Ruby,

Perl , and Lisp (Wikipedia 2005a). Moreover, AOP implementations based on Java

have received strong vendor support from groups such as IBM, BEA Systems, Xerox,

and JBoss.

1.3 SolNet Solutions Ltd

1.3.1 Company Profile

SolNet Solutions is an Information Technology (IT) company based in Wellington

and Auckland, New Zealand, with approximately 125 staff. Their core business is

the delivery of J2EE solutions for large enterprise systems.

1.3.2 Current Development Environment

SolNet have invested substantisl t.imp a.nd money into their existing development

processes and tools to enable them to produce high quality, reliable systems, as

cheaply and timely as possible. SolNet has developed a set of standard reusable

components that can be used in typical J2EE projects. These components enable

them to significantly reduce the cost and risk involved in conducting J2EE projects.

This set of components is referred to as the Common Services Architecture (CSA).

1.3.3 Motivation for AOP Assessment

SolNet's current infrastructure (CSA) is complicated and relies on individual devel­

opers being familiar with the components available and how to correctly use them.

SolNet are continually looking for ways to reduce the complexity and make their

CSA easier for developers to use and more reusable across different types of projects.

They would also like to increase flexibility such as having the ability to easily change

the components used in a project. For example, changing from EJB Persistency to

Hibernate by plugging in a different aspect.

Senior development staff at SolNet have recognised that AOP has potential to

simplify their CSA and make it more accessible to different projects. SolNet Solu­

tions entered into this Technology in Industry Fellowship (TIF) project to have an

assessment undertaken of AOP technology and how it fitted into their development

4

lifecycle and to assess the potential benefits it could produce in their commercial

environment .

1.4 Project Objective and Scope

There is a substantial amount of research being conducted on AOP, and tools are

continually being developed. However , the availability of tools does not necessar­

ily mean that AOP is ready to be used commercially (in the real world). To be

used commercially there must also be availability of training resources, books, qual­

ity assurance tools, integrated development environments, patterns, diagramming

techniques, and support infrastructure. Furthermore, the technologies must meet

non-functional requirements such as scalability, fault tolerance, and openness.

In this thesis AOP is examined over several of these areas to try and establish

its readiness for commercial adoption. Moreover, we try to quantify the commercial

benefits of AOP by refactoring a real world project to measure the benefits as a

result of using an AOP approach. In doing so we can identify areas where SolNet

can benefit from AOP and assess the risks and affect on different areas of their

development process.

The objective of this thesis is to show how Aspect-Oriented Software Develop­

ment can be integrated into a real-world environment at SolNet Solutions with the

ultimate goal of assessing the readiness of aspects for use in a commercial environ­

ment.

The areas investigated are:

• Approaches to Aspect-Oriented Programming.

• Tool support for Aspect-Oriented development.

• Fitting aspects into the design process.

• Aspect-Oriented standards.

• Testing aspects.

• Metrics for evaluating aspect software.

• Refactoring a real-world project to use AOP.

• Measuring the risks and benefits of using AOP with respect to the refactored

project.

5

Prior to starting this project it was estimated that aspects could reduce the total

cost of ownership for SolNet projects by 6%. In this thesis we try to quantify the

benefits of AOP and evaluate them against this hypothesis. However, this may not

be possible because of the limited historical data available from SolNet to provide

a baseline for comparison.

The results obtained are reported in the context of the SolNet Solutions ' en­

vironment. However, this environment is considered to be representative of many

J2EE development companies. It is believed that other companies face similar prob­

lems and would have comparable benefits and risks in adopting an Aspect-Oriented

approach. Therefore, it is inferred that the results obtained will be applicable to

other commercial environments.

Due to the rapidly changing nature of the Aspect-Oriented community, certain

limitations were realised when making some assessments. These were made from a

practical perspective to enable the work to be completed despite changes happening

concurrently with the technologies being evaluated. This was most critical when

evaluating the different AOP approaches and tool support. During these two phases

the major implementations cont inually released new versions and features as well as

fixing bugs. To continually update and incorporate the new information would have

been an endless task. For this reason the current version at the time of conducting

the work was evaluated. Some upcoming features are mentioned, but they are not

evaluated.

There are many different approaches similar to aspects for achieving separation

of concerns such as Composition Filters (Aksit 2001), Hyperslices (Tarr & Ossher

2001) , and Subjects (Wikipedia 2005b). However , these approaches are outside the

scope of this thesis and are only briefly examined.

1. 5 Overview of Thesis

This chapter has introduced the objectives and scope of this thesis. In the re­

maining chapters findings from applying aspects at different places in the software

development lifecycle are discussed.

Chapter 2 reviews AOP concepts and terminology for unfamiliar readers.

The different techniques used for AOP are explored in Chapter 3. This com­

pares and contrasts the most popular implementations available. One of the more

experimental implementations is examined to see what motivates the development

of the smaller frameworks and how their approach differs from the mainstream im­

plementations.

6

The motivation for Aspect-Oriented tool support is explored in Chapter 4. This

includes design, build, development, testing, documentation, and quality assurance

tools. The quality of the current tools is assessed and the need for improved tools

is identified.

In Chapter 5 the various notations developed to guide the design of Aspect­

Oriented software are reviewed, in particular some extensions to the de facto stan­

dard Unified Modelling Language (UML) are considered. The use of a notation

based on standard UML extensions is proposed. Finally, it is discussed how this

notation can be integrated with SolNet Solution's design techniques.

Test driven development has become an important approach for developing qual­

ity software. In Chapter 6 the techniques available for testing Aspect-Oriented

software are assessed.

To enable us to assess whether our Aspect-Oriented refactoring of a SolNet

project has made any improvements, a set of objective, quantitative measurements

is required for evaluating AO solutions. In Chapter 7 the use of traditional metrics

is proposed. The potential to use new Aspect-Oriented metrics is discussed.

Chapter 8 explores the standards that have been developed for AOP. It then

makes recommendations for future standardisation paths to make AOP easier to

adopt.

The major goal of this project is to assess the benefits and risks to SolNet

Solutions in adopting AOP. Chapter 9 shows the integration of AOP into two real

projects which SolNet is undertaking with the New Zealand Qualifications Authority

(NZQA). A qualitative and quantitative analysis of the benefits and risks in using

AOP for these projects is presented. Finally, further possibilities for utilising AOP

at SolNet Solutions are discussed.

Chapter 10 presents a summary of findings from this project and recommenda­

tions for future work. The applicability of the findings to environments outside of

SolNet Solutions is discussed.

CHAPTER 2

AOP OVERVIEW

2 .1 Introduction

This short chapter is intended to give a brief overview of AOP concepts to unfamiliar

readers. Readers famili ar with AOP concepts may choose to omit this chapter.

2.2 Important AOP Concepts and Terminology

AOP introduces several new concepts which allow modularisation of crosscutting

concerns. The terminology is usually consistent between different AOP approaches

for major concepts. However, each implementation may introduce new terms, or

have alternative names for the same concepts. It is these differences and the un­

usual choices of terminology that can cause confusion for new users. The concepts

described here are considered by the author to be the core concepts which are imple­

mentation independent and are based on definitions used by Filman , Elrad, Clarke

& Ak§it (2005).

2.2.1 Concerns

Engineering processes have many things about which they care. These things are

called concerns and may range from high level requirements to low level implemen­

tation issues. There are different categories of concerns. However , AOP is usually

directed at systematic behaviour such as 'all failed login attempts will be logged' .

2.2.2 Scattering and Tangling

When a concern is implemented it often needs to be realised in multiple places in

the code base and is considered to be scattered. The concern may be implemented

in a method or a class with another concern, these are considered to be tangled.

A simple example is logging. Logging messages are required in numerous places so

the concern has been scattered. Logging messages will also be tangled with other

7

8

concerns such as withdrawing money from bank accounts, even though this is not

the key objective of the withdrawal method. These terms are quite distinct but are

interconnected and are associated with crosscutting concerns.

2.2.3 Crosscutting Concerns

A crosscutting concern is any concern whose implementation must be scattered

throughout the rest of the system's implementation. In 00 systems these are con­

cerns that can not be localised as a method or class but are instead implemented

in methods or classes that involve other concerns. Prime examples are logging, se­

curity, persistency, concurrency, and error handling. AOP aims to modularise these

concerns.

2.2.4 Aspect

An aspect is the unit of modularity for Aspect-Oriented (AO) software. Aspects are

units designed to implement crosscutting concerns in a modular fashion. It is very

similar to the concept of a class in 00, but instead of containing core concerns, an

aspect contains crosscutting concerns.

2.2.5 Join Point

A join point is some identifiable place in the execution or structure of a program

where additional behaviour can be attached. A particular AOP implementation will

have a join point model defining what join points are available. Common examples

are method calls, constructor calls, and field accesses.

2.2.6 Pointcut

A pointcut describes a set of join points. A programmer can specify that behav­

iour should be applied to all join points specified by the pointcut without explicit

knowledge of each join point . This provides a layer of abstraction between the spec­

ification of the join points where behaviour must be applied and the use of these

join points.

2.2. 7 Advice

Advice is the behaviour to execute at a join point. Most AOP implementations

provide the means to run advice before, after, or instead of a join point. Advice is

9

oblivious since there is no explicit reference at the join point to show that it will be

run.

2.2.8 Intertype Declaration

It is possible to change the static structure of a program using intertype declarations

(also commonly referred to as introductions) . The modifications normally available

are adding methods or fields to a class, and adding a parent class or interface to a

class.

2.2.9 Weaving

Weaving is the process of combining the core functionality with the aspects to pro­

duce the fully functional system. Weaving can occur at various times (pre-compiler

time, compile time, post-compile t ime, load time, and run time).

2.2.10 Obliviousness

Obliviousness means that by examining the base code, a programmer cannot tell

that the aspect code will execute (i. e. it is transparent). Obliviousness is desirable

as it allows for greater separation of concerns since it is possible to reason about a

body of code free of the aspect code. This is in contrast to non-aspect approaches

where explicit calls are made to subprograms to implement the functionality. Obliv­

iousness was considered one of the most important properties of aspect programs

when compared with other approaches of achieving crosscutting modularity. How­

ever, it also has some practical disadvantages which means less emphasis is placed

on it in practice (Sullivan, Griswold, Song & Cai 2005).

2.2.11 Dynamic and Static Crosscutting

Dynamic crosscutting occurs when changes to a program's execution are made using

AOP, where as static crosscutting refers to changes made to the static structure of

the system using intertype declarations.

2.3 AOP System Overview

Figure 2.1 shows the general structure of an AO system. Of particular note is the

separation of t he core and crosscutting concerns into different units. The core units

are implemented using traditional units such as classes and the crosscutting concerns

10

Core
Modules

WCtVCC ,_ ___,C'.ompl
Syst1:1n

Figure 2.1: AOP System Diagram

are implemented using aspects. The core units now contain the fundamental logic

of the system. The aspects contain both the logic to implement the crosscutting

concerns and the rules of where to apply this logic. These units are passed to a

weaver which takes the rules from the aspects and applies the crosscutting logic to

the appropriate places in the core units. The output from the weaver is the fully

functional system. Of important note is the resulting system functions are the same

as a system that is coded using traditional approaches, but increased modularity

has been achieved during the development process.

2.4 Summary

This chapter provides a brief introduction to AOP concepts and terminology for

inexperienced readers. In the next chapter a criteria is proposed for choosing an

AOP framework and an evaluation performed on several popular implementations.

CHAPTER 3

APPROACHES TO AOP

3.1 Introduction

There are many Aspect-Oriented programming languages emerging. Some of these

implementations are well established with large user bases, while others are much

smaller and specialised to a particular environment. AOP presents many challenges

for adoption with many new concepts and techniques that must be mastered by

developers. This is often equated to the challenges faced when programmers moved

from Procedural Programming to Object-Oriented Programming. The problem is,

developers often feel overwhelmed by the number of choices available and have litt le

idea of the similari t ies and differences between the frameworks. Moreover, they do

not know what criteria to judge frameworks on, and what features are strictly AO ,

and what have been added specifically for that framework. This situation is further

escalated by the differences in terminology used by frameworks.

In this chapter a set of criteria to evaluate frameworks is established. This is

used to evaluate four of the leading frameworks: AspectJ 1 , Aspect Werkz2 , JBoss

AOP3
, and the Spring Framework4

. In addition to this, the approach taken by the

smaller Dynaop5 framework is evaluated. The frameworks chosen are limited to

those based around the Java programming language. This is because AOP is most

mature in this area and because SolNet Solutions is a Java development house. There

are frameworks available for languages such as PHP, Python, and C# (Wikipedia

2005a).

1 http: //www.aspectj.org

2http://aspectwerkz.codehaus.org

3http://www.jboss.com/products/aop

4http://www.springframework.org

5https://dynaop.dev.java.net

11

12

3.2 Establishing Criteria for Framework Evalua-

tions

There are numerous criteria that frameworks may be evaluated against. In this

section the key elements are identified which should be used when choosing a frame­

work. This criteria is not only concerned with technical capabilities, but also those

supplementary issues that are often more important to companies such as technical

support and licensing arrangements. This list is very extensive and provides broad

coverage that should satisfy most adopters when comparing the approaches. There

are many other factors that are more general to AOP that are not considered. These

items have been grouped into three general categories consisting of:

• Support Infrastructure

- Vendor Backing - Who is driving the development of the framework? Are

they reputable? This could be a vital factor in whether the framework is

successful in the long term.

License - What requirements must be met to use this framework? Is the

source code available? Can it be changed and distributed? What are the

liability issues when distributing the framework to clients?

User Base - Provides an indication of the maturity of the framework. A

framework with a larger user base is likely to identify bugs quicker.

Support - What support mediums are available? Is there paid commercial

support available? How long does it take for bugs to be fixed?

Training Resources - How can developers quickly become familiar with

the language? Are the resources high quality? Freely available?

Documentation - Is this kept up to date? Is it comprehensive?

Tool Support - What is available to support developers in deploying high

quality aspect applications?

• Language Properties

Aspect Language - How are aspects written?

Composition Language - How is it specified where aspects should be

applied?

Static Pointcut Checking - Are the pointcuts statically checked or are

problems identified at runtime?

13

Weave Times - What weave times are supported? Does the language

support multiple weave times? Can aspects be deployed or undeployed

at runtime? This could be important for flexibility and different uses of

AOP.

Standards Adherence - What AOP standards does this framework adhere

to? Standards increase the ability to change frameworks and promote

interoperability.

Framework Integration - Can aspects developed for other frameworks be

used?

Join Point Model - How expressive is the framework? This influences t he

types of aspects that can be developed. A fine grained approach may be

more complicated and produce aspects that are more tightly coupled to

the core concern's implementation (fault tolerance when changes occur is

decreased) than a coarse approach. However, it also increases flexibility

and the range of aspects that can be developed.

Types of Advice - Is there a single interceptor or advice for sp cific scenar­

ios? Many people believe more specific advice types make development

less prone to errors.

Contextual Information - What information is available to advice?

Intertype Declarations - Can the static structure of a class be changed?

To what extent?

Java Language Level Support - What versions are supported? In par­

ticular, is J ava 5 supported? J ava 5 introduces new possibilities for se­

lecting join points based on annotations. These have the advantage over

J avaDoc comments of being compiler checked. Annotations also increase

the visibility of aspects.

JVM Support - Does this approach have JVM weaving support?

Advice Ordering - Can advice be ordered to ensure they are applied in

the correct order for the application? This is important when multiple

advice interact with the same join point.

Aspect Lifecycle Models - When are aspects instantiated and how long

do they exist?

Pointcut Language - How are program elements identified? (e.g. Regular

Expressions or Annotations)

14

• Adoption Issues

- Ease of Adoption - Does this framework require many changes to existing

tools and practices?

Environment Requirements - Does this framework require a particular

application server or context to execute?

Build Overhead - Is the build and deployment time significantly affected?

Runtime Performance - How does this framework affect the performance

of an application?

Debuggability - Are special tools required or are standard debuggers OK?

Testability - Are frameworks available that help verify program correct­

ness?

Aspect Libraries - Are libraries available which support standard uses of

AOP? Development time and risk can be greatly reduced by using well

developed components.

Compatibility - Any compatibility issues? Does this framework maintain

the SerialUID used by the Java serialisation process? This could be

important when using EJBs or RMI.

• Other - Any other notable elements for the particular framework?

Note: This criteria contains points that are specific to Java based frameworks.

There may be similar issues that could be considered when working with alternative

languages.

3.3 Framework Evaluations

In this section the criteria discussed above are applied in the evaluation of five

frameworks. The frameworks chosen are among the most well known and used

frameworks for Java based AOP. The version of the framework evaluated is the

most current at the time of evaluation. This has not been updated as new versions

have been released and new features added. The frameworks and versions chosen

are:

• AspectJ 1.5Ml.

• AspectWerkz 2.0RC3.

15

• JBoss AOP 1.1.

• Spring Framework 1.2.

• Dynaop 1.0 beta.

Each point from the above criteria is presented as a separate section to allow

comparison of the frameworks on each point. Finally, an approach will be recom­

mended for use at SolNet Solutions and details of upcoming features in the chosen

approach are discussed.

3.3.1 Vendor Backing

AspectJ was originally a Xerox-PARC project, but was later transferred to the

Eclipse Foundation where it is backed by IBM. Many of the development staff con­

tributing to AspectJ are employed by IBM. IBM has shown strong support for

AspectJ and has used it in projects such as Web Sphere. For these reasons AspectJ

is likely to be well supported in the foreseeable future.

BEA Systems has been the major backer of the AspectWerkz project. Similarly

to AspectJ , key contributors to the framework have been employed by BEA. How­

ever , with the merger of AspectJ a.11J A~JJectWerkz in early 2005 the AspectWerkz

framework is no longer developed , although limited support is still available. BEA

are now associated with the AspectJ 5 project.

JBoss AOP and Spring have no large vendor backing. Their AOP components are

both elements of large development projects that have much community support.

Both frameworks have developed commercial spin offs from the project offering

enhanced support and training but these are not of the same scale as IBM and

BEA.

Dynaop has no vendor support and is maintained by a small open source devel­

opment team.

AspectJ 5 is obviously the framework that has the backing of key commercial

entities and is likely to be the most stable in the future. However , Spring and JBoss

AOP are both part of popular frameworks that are likely to enjoy long term success.

3.3.2 License

All the frameworks evaluated make it clear that using and distributing their frame­

works is acceptable. However, if the framework is modified then the relevant license

must be followed. AspectWerkz, JBoss AOP, and Dynaop all use the Lesser Gen­

eral Public License (LGPL), where as AspectJ uses the Common Public License and

16

Spring the Apache License. Some of these licenses require any changes be released

to the community. Of most importance will be license requirements indemnifying

developers of any liability when releasing the software with a commercial project. It

is recommended that developers check their company's policies on the use of open

source software and seek professional legal advice on the implications of the relevant

license.

3.3.3 User Base

It is difficult to obtain an accurate measure of the user base of any of the frameworks.

Download information is often not available and does not necessarily imply that

the framework has been adopted. Furthermore, AOP is included in the Spring

Framework but may not be a feature used. In this section the relative size of the user

base is inferred from the traffic on the mailing lists and forums of the frameworks.

AspectJ experiences the highest traffic with approximately twenty five to thirty

messages per week. This is similar to the level of AspectWerkz before the merger.

Since this time AspectWerkz traffic has substantially declined. The AOP section

of the Spring Framework has twenty to twenty five messages per week, and JBoss

AOP ten messages per week. Dynaop has had no traffic in 2005.

It was expected that Spring would have lower traffic than JBoss AOP, however

Spring has experienced much growth in recent times as developers look for alterna­

tive approaches to enterprise software development.

3.3.4 Support

AspectJ offers support through their user's mailing list. Questions are answered

by members of the community as well as the key contributors to the development

of AspectJ. This list is well frequented and questions are quickly answered. Issues

with AspectJ are quickly identified and fixed. Alternatively, bug reports can be

searched and new problems filed. Unfortunately, there is no commercial support

option available. AspectWerkz operates in a similar fashion but its mailing list

traffic has been significantly reduced since the AspectJ merger.

Both Spring and JBoss AOP offer forum, mailing list, and bug report options.

However, they also offer paid commercial support. Spring does this through Inter­

face21, a company formed by many of the experts behind Spring. JBoss offers extra

support documentation and a priority help service.

Dynaop operates a mailing list, forum, and bug tracker. However, these all have

very low traffic.

17

The commercial support options give JBoss and Spring the edge. However,

AspectJ's support is satisfactory it just does not guarantee a response or give priority

to any party.

3.3.5 Training Resources

Training resources are not only important for current staff but also enable recruit­

ment of staff who are familiar with the technology. In this section books, training

courses, web articles, and university courses are considered.

AspectJ has a huge volume of resources available in all the above areas. At

least five books dedicated to AspectJ development have been published since 2003.

These nicely complement the plethora of high quality online articles and examples

available including publications by IBM. Training courses and workshops are avail­

able through several consulting groups including Aspect Mentor and New Aspects

of Software. These involve intensive courses with substantial cost. Many university

graduates are being introduced to AOP in postgraduate courses particularly using

AspectJ.

While Aspect Werkz is limited to online articles, many of these are excellent.

Several excellent books have been published on the Spring Framework. However ,

it should be noted that there is limited coverage of AOP in many of these books.

However , use of Spring AOP is closely coupled to the Spring Framework so having

a good book covering many topics would be essential. Several training courses are

available, including an intensive four day course which covers Spring AOP as a core

element. Furthermore, many freely available articles are available on the Internet.

One book has been released for JBoss that is known to cover AOP. It is the official

guide to JBoss released by the JBoss Group. This is a very extensive publication

that should be considered by anyone serious about JBoss AOP and the use of the

JBoss Application Server. JBoss Group and several independent consulting groups

offer courses on JBoss, with one particular course offering extensive AOP coverage

as part of a five day course. Once again, extensive online articles are available.

Dynaop has very limited articles available on its use.

Of all these frameworks AspectJ has the advantage with extensive resources in

all the areas examined. Of particular importance is its use in the teaching of AOP

concepts by many of the universities offering AOP courses. Spring and JBoss AOP

both offer plenty of resources for commercial users.

18

3.3.6 Documentation

The core documentation should be the first place that users check, but for this to

occur it is essential that it is current and extensive in its coverage.

The AspectJ documentation is excellent. Its coverage includes AOP concepts,

language features, and supporting tools. The material is extensive and includes

plenty of examples. Furthermore, when errors are identified they are quickly fixed.

Example projects are released which are also covered in the documentation. JavaDocs

for AspectJ are available for users wanting more knowledge of the underlying As­

pectJ framework.

AspectWerkz is well documented with extensive coverage and examples. JavaDocs

are provided. It is unlikely that this documentation will continue to be maintained

as no there will be no further development.

The Spring Framework has extensive documentation. However, some informa­

tion was missing such as AspectJ /Spring integration. There are lots of examples

and coverage of most topics. Unfortunately, many advanced features are not docu­

mented and can only be found by examining the example projects and Spring test

cases.

JBoss's freely available documentation is well maintained including a program­

mer's guide, JavaDocs, tutorials, wiki, tool support, and contributed aspects. The

examples provided are good and sample projects are available.

The manual distributed with Dynaop contains many examples but lacks exten­

sive coverage and is best described as minimal. Example projects are provided.

All the frameworks have adequate documentation, but AspectJ is the most ex­

tensive and well maintained. Dynaop is the only framework to lack the resources

required for commercial development.

3.3. 7 Tool Support

Tools which assist developers in producing high quality applications are necessary

when working with aspect software. This is made necessary because of the invisible

nature that AOP can bring to software development.

AspectJ has IDE support available for JDeveloper and Eclipse. The Eclipse

plug-in is the best IDE plug-in available and offers extensive support for working

with AspectJ. The JDeveloper plug-in is less mature and offers basic support. IDE

support is also available for older versions of AspectJ with NetBeans and JBuilder,

however these plug-ins are now obsolete. Build tool plug-ins are available for Maven

and ANT to support the automated build process. The basic tools distributed with

19

AspectJ include a command line compiler and a visual aspect browser. Finally, a

documentation tool is distributed which is similar to JavaDoc. Unfortunately, this

tool is not available with the latest AspectJ versions.

An Eclipse plug-in is available for working with AspectWerkz. However, As­

pectWerkz uses plain J ava so it , like the other frameworks evaluated , does not

require as much IDE support as AspectJ . A T and Maven build integration are

also available.

Spring does not require any specialised tools other than letting the framework

instantiate objects. However , it would still be useful to have some AOP support.

JBoss AOP has an excellent Eclipse plug-in available which offers support close

to that of AspectJ. However , this plug-in is less mature and st able than the AspectJ

plug-in. JBoss AOP distributes an A T task t o support building of software but

does not include Maven support.

No tool support is available for dynaop.

Once again, AspectJ 's maturity comes through with its extensive tool support .

3.3.8 Aspect Language

There are different approaches to v: .::- iting aspects . AspectJ extends the J ava lan­

guage with a new compilation unit in an aj file called an a pect which is similar

to a class . This approach clearly different iates aspects from normal classes which

are used in all the other approaches. The other approaches either implement an

interface, use a standard method signature style, or use any J ava method for advice

within a class.

Once again it i fe lt that the AspectJ approach is cleaner. However , it is these

language extensions which also make AspectJ more invasive when integrating it

with tools and build processes. F\irthermore, developers must learn new language

elements and syntax.

3.3. 9 Composition Language

The composition language used to apply aspects to a program can be specified in

several ways. AspectJ uses new code elements called pointcuts . It is possible to

configure the aspects used in a build with a list file. Aspect Werkz allows configura­

tion using JavaDoc annotations, J ava 5 annotations, or XML. Configuration is done

using an aop.xml file. This approach increases flexibility and allows developers to

choose the most appropriate choice for the aspect being used (e.g. XML may be

appropriate for tracing and annotations for transactions). Spring uses XML config-

20

uration. JBoss uses the same approach as Aspect Werkz and Dynaop uses a Bean

Script configuration file.

The AspectJ approach is simple and keeps aspects in code but this reduces the

ability to externally configure aspects. XML configuration allows late binding of

aspects just before an application is deployed. The approach of Aspect Werkz and

JBoss is preferred as it gives the most flexibility depending on the type of aspect

being deployed.

3.3.10 Static Pointcut Checking

The static checking of pointcuts ensures that problems are detected at compile time

rather than as runtime errors. Only AspectJ is statically checked. However, not all

pointcuts can be statically determined and delaying the determination of join points

can offer advantages.

3.3.11 Weave Times

The weaving of an aspect application can occur at different times depending on the

framework. This can affect the performance of the application and the flexibility in

the deployment of aspects.

AspectJ supports compile, post-compile, and load-time weaving. These options

depend on the aspects being used. For example, an exception handling aspect may

be an integral part of the application and not having it available at compile time

can result in compilation errors. On the other hand, a tracing aspect may be best

deployed at load time depending on the application configuration required.

AspectWerkz uses normal Java compilation combined with a post-compile build

step called offiine weaving. Alternatively, aspects can be woven at load or run

time. Aspect Werkz allows hot deployment and undeployment of aspects allowing

configuration changes on running systems.

The Spring Framework uses runtime weaving using dynamic proxies. This also

supports runtime configuration changes.

JBoss AOP offers the same options as AspectWerkz and Dynaop supports run­

time weaving.

The ability to hot deploy aspects and use normal compilation steps gives the

other frameworks an advantage over AspectJ. However, this flexibility does not

come without a price as is shown by the runtime performance of these frameworks.

21

3.3.12 Standards Adherence

AOP standards increase the ability for interoperability of aspects between frame­

works. The only current standard is the AOP Alliance. This has only been im­

plemented partially by both Dynaop and Spring. None of the other frameworks

implement this standard.

3.3.13 Framework Integration

The ability to make use of aspects developed for one framework with another is

important when developers may not be certain which framework they will eventually

adopt or a client may have specific requirements that force use of a framework that

the aspects were not originally developed for .

AspectWerkz offers an Extensible Aspect Container which can run aspects from

AspectJ, Spring, Dynaop, JAC, and any AOP Alliance aspects. This is the most

extensive support for alternative aspect use available from any of the frameworks.

However, there is no known support for AspectWerkz aspects with other fr ameworks.

Adrian Colyer from the AspectJ team has shown the use of AOP Alliance aspects

with AspectJ using a special adapter aspect to manage the framework differences.

It is thought that aspects developed by some of the other frameworks could also be

handled in a similar fashion. AspectJ has opened up many of its APis to encourage

other frameworks to increase their support.

The Spring Framework can use AOP Alliance aspects and has focused on in­

creasing integration with AspectJ. In particular it is possible to configure AspectJ

aspects using Spring dependency injection. Adrian Colyer has joined the Spring

team to increase AspectJ support including use of AspectJ aspects without the

AspectJ compiler.

3.3.14 Join Point Model

The join points that can be advised by a framework influence the types of aspects

that can be developed.

AspectJ, JBoss AOP, and AspectWerkz all offer fine grained approaches includ­

ing method, constructor, and field accesses. They also offer dynamic pointcuts that

depend on the control flow of the application although this is more limited in JBoss

AOP. Spring and Dynaop both offer more limited join point access which consists

only of method invocations. However, this is the most commonly used join point.

Of the frameworks AspectJ and JBoss AOP offer the most extensive join point

22

access.

3.3.15 Types of Advice

The most general form of advice is the around advice which allows behaviour to be

added before, after, or instead of a join point. This is offered by all the frameworks

often in the form of an interceptor. However, many experts argue that having more

specific advice types reduces the risk of errors being introduced. AspectJ, Spring,

and Aspect Werkz therefore both offer before, and after advice types in addition to

around advice.

3.3.16 Contextual Information

All the frameworks offer similar access to contextual information at a join point

including arguments, the executing object , and the join point object (e.g. a Method

object). The method with which the information is accessed is the major differ­

ence. AspectJ introduces a new keyword 'thisJoinPoint' which is similar to 'this' .

'thisJoinPoint' can be directly accessed to retrieve the contextual information. The

other frameworks take an alternative approach where some sort of object is passed

as a parameter to the advice method which contains the contextual information.

Either of these approaches is equally acceptable and simple to use.

3.3.1 7 Intertype Declarations

All the frameworks offer the ability to change the structure of a class to a similar

degree. However, where as AspectJ allows direct addition of methods, fields , in­

terfaces, or parent classes to another class, the other approaches all use mixins. A

mixin involves writing another class containing the items that should be introduced

to a class and adding the mixin class to the class being modified. The AspectJ

approach is recommended as simpler and more natural.

3.3.18 Java Language Level Support

With the recent addition of Java 5 it is interesting to know what support is offered

for different language levels. Depending on the language features desired certain

Java versions must be used. For example, Java 5 annotations can only be used

with Java 5, but JBoss AOP and AspectWerkz both offer alternatives which can be

used with previous Java versions using JavaDoc comments. AspectJ, AspectWerkz,

23

Spring, and JBoss AOP all support Java 1.3-1.5. Dynaop is only known to support

Java 1.4, although 1.5 is most likely supported.

All the frameworks support similar Java versions, however it is yet to be seen

what support will be provided for working with Java 5 language elements such as

generics in pointcut expressions.

3.3.19 JVM Support

None of the frameworks evaluated offer any specific Java Virtual Machine (JVM)

support for weaving. However, an experimental version of the BEA JRockit JVM

has been developed with an aspect weaving API. A modified version of AspectJ 5

was developed using this API for weaving instead of byte code manipulation. This

highlighted some problems that were faced in adding JVM support as well as the

problems that could be solved. This will be an exciting feature to watch for in the

future , but to be successful it must go through the Java standard's process.

3.3.20 Advice Ordering

It is important when multiple pieces of advice must be applied to a join point

that they are executed in the correct order if they have any dependencies. All

the frameworks have some rules which decide how advice should be applied . In

AspectWerkz, Spring, JBoss AOP, and Dynaop this is determined by the order

aspects are specified in the relevant configuration files. However , AspectJ requires

that explicit precedence rules be specified if aspect ordering is required.

3.3.21 Aspect Lifecycle Models

The lifecycle of an aspect determines when it is created and when it is destroyed.

Some aspects are shared by all objects where as other aspects are specifically created

for a single object.

All the frameworks support the basic Singleton lifecycle where a single aspect

is shared by all objects in the system. However, AspectJ can also create an aspect

instance for each target object, each type of object an aspect advises, and for each

control flow. AspectWerkz supports per type and per instance. Spring supports per

class and per instance. JBoss AOP supports per type, per instance, and per join

point. Finally, Qynaop supports per proxy.

Aspect Werkz, AspectJ, and JBoss AOP offer the most powerful Aspect lifecycle

models.

24

3.3.22 Pointcut Language

There are many ways to determine the join points that should be selected. This

could be regular expressions, wild cards, XPath6 , Java 5 Annotations, JavaDoc

Annotations, or objects. JBoss AOP, AspectJ, and AspectWerkz all use wild card

type patterns. These type patterns can select annotations which allow aspects to

easily pick the correct places to apply behaviour rather than the weaker join point

signature methods traditionally used. However, having to annotate methods can

also be time consuming and difficult to maintain if large numbers of join points are

required. Spring and Dynaop both support the use of regular expressions which

have similar properties to the use of wild cards. Spring does not make join points a

language feature so it is possible to write custom join point classes.

The languages to specify join points are one of the major weaknesses of AOP

as they often rely on naming conventions. Although annotations do help, they

can require extensive addition of annotations resulting in minimal improvement

from making method calls from the relevant join points. This is one area where

AOP could benefit from a new approach, although it is not clear how this could be

achieved.

3.3.23 Ease of Adoption

All the approaches are relatively easy to adopt. However, AspectJ is the most

invasive as it requires new tool support such as IDE plug-ins and changes to the build

process. However, this can be offset by the quality of the tools and documentation

available to support it. On the other hand, the other approaches are generally less

invasive and can operate with minimal impact. However, having quality tools and

documentation available increases the ability to easily adopt an approach. JBoss and

Spring both perform relatively well with documentation. Spring is more invasive as

it requires the Spring Framework be used to manage advised objects. This approach

is only recommended if the Spring Framework is also adopted. Dynaop is considered

difficult to adopt due to poor documentation and lack of tool support and little in the

way of support infrastructure. Its future is also uncertain with little development

apparent which appears to plague smaller frameworks after their initial releases.

Aspect Werkz is simple to adopt and offers some tool support but it does not have

a long term future with the merger with AspectJ.

6http://www.w3.org/TR/xpath

25

3.3.24 Environment Requirements

Some AOP environments are general purpose and can be applied with any appli­

cation, where as others are integrated into some larger framework with which they

must be applied. Spring and Dynaop are the prime candidates as objects that are

advised must be managed by the frameworks. JBoss AOP has strong ties to the

JBoss Application Server but can be run independently of it. All the other frame­

works are free of environment concerns.

3.3.25 Build Overhead

The weaving process can add overhead to a build and deploy process through the

addition of extra steps. Of all the approaches the only one to affect the build process

is AspectJ. The AspectJ compiler is usually used instead of the javac compiler.

Unfortunately, this compiler often requires complete rebuilds whenever pointcuts

are updated which can slow the compilation process. The addition of an incremental

compiler has helped to reduce the builds required. The other approaches use normal

Java compilation followed by some post-compilation step such as an aspect compiler ,

load time weaver, or run time weaver. This allows aspects to be less intrusive on

the build process but it can affect the load time and/ or runtime performance or the

application.

3.3.26 Runtime Performance

Many commercial applications have performance critical elements so it is vital that

the use of AOP does not significantly affect the performance of the application when

compared with the hand coded version. The results from the Aspect Werkz bench­

marks are used to compare the relative performance of the applications (Vasseur

2004). It should be noted that the overhead each framework produces depends on

the type of advice being executed. In this comparison the simple before advice is

used as it is representative of the relative performance over many of the advice types.

AspectJ and AspectWerkz display equal performance with a 15ns overhead. This

is far better than the other frameworks which all apply proxy approaches which are

well known to be slower. JBoss AOP comes in at 145ns, followed by Spring with

275ns, and Dynaop at 320ns. It should be noted that all these values are very small

overheads; however there is a large relative performance differential between the

approaches. When other advice types are considered AspectJ is likely to be faster

than Aspect Werkz by a small margin.

26

3.3.27 Debuggability

Debugging aspect software can be expected to pose new problems due to the weav­

ing process. Fortunately, it has been found that most frameworks support normal

debugging and with certain practices have minimal impact .

AspectJ is compatible with any JSR-45 compatible debugger which supports

classes with multiple source files. This is certainly the case with t he AspectJ plug­

in for Eclipse and most of the latest IDE versions should support this JSR. The

other frameworks all support normal Java debugging. However , it can be necessary

to set debug points in the aspects otherwise stepping may unexpectedly pass over

them.

3.3.28 Testability

Testing of aspect software is discussed more extensively in Chapter 6. However, in

this section the properties of aspect languages which influence their ability to be

tested using current testing techniques is considered.

AspectJ is difficult to test since new compilation units are produced by the weav­

ing process which are difficult to unit test since the weaving makes them strongly

dependent on the context to which they are woven. This is due to aspects lacking

an independent identity. However, a new tool called a Unit is under development

which aims to making testing of aspects as simple as current JUnit testing by hiding

the framework details. Some traditional testing can be performed but this does not

bring the benefits of separation of concerns to testing.

The other approaches all use normal Java classes. This allows unit testing to

a certain extent. Unfortunately, the need for contextual objects which are difficult

to create outside the frameworks can produce a hindrance (e.g. objects contain­

ing contextual information). This results in similar problems to AspectJ since the

framework is needed to perform weaving into an application before testing can be

easily performed.

Testing is one of the most difficult and critical areas that needs to be addressed

with aspect software.

3.3.29 Aspect Libraries

Standard aspect libraries are useful to reduce development time and risk in a similar

fashion to the libraries distributed with Java.

Both Spring and JBoss AOP both distribute aspect libraries. The Spring aspects

27

are not directly used but provide declarative services such as object pooling and

transaction management. On the other hand, JBoss provides many aspects which

can be configured for use in a particular environment. This is the most extensive

aspect library available and is well documented.

3.3.30 Compatibility

It is important that AOP is compatible with other technologies being used in devel­

oping an application. In this section the issue of Java serialisation is identified as

one possible compatibility issue.

The built in Java serialisation mechanism depends on a field attached to classes

called the SerialUID. The serialisation process is used for Java Remote Method

Invocation (RMI) and EJB passivation and activation. This makes it important

that this field is maintained. However, since aspects can alter the structure of a

class it is possible that there could be problems with this.

It is known that AspectJ can change the SerialUID of classes in the generated

class files. This is very important and developers working with AspectJ should con­

sider the impact of this. It is hoped that future AspectJ versions will avoid this

problem. It is thought that the problems are more likely to influence long term per­

sistency than short term persistency of objects. This requires further investigation

as it could be critical to many uses of aspects.

Spring and Dynaop fully support serialisation of Java objects so must maintain

this field correctly. It is not known if AspectWerkz and JBoss AOP maintain this

field. It is likely that JBoss AOP does and AspectWerkz may not but this would

require further investigation.

3.3.31 Ot her

This section briefly mentions some notable features of the various frameworks that

may be important but do not fit into the above areas.

AspectJ and JBoss AOP both support the declaration of custom compiler warn­

ings and errors. This allows aspects to be written which ensure that certain coding

practices are followed.

AspectJ supports a process called exception softening which allows compiler

warnings for checked exceptions to be suppressed when its known that an aspect

will handle an exception. It also supports privileged aspects which allow the private

members of classes to be advised.

28

AspectWerkz has been merged with AspectJ which means many features from

AspectWerkz will be included in future AspectJ versions. Furthermore, AspectWerkz

is unlikely to have any further development.

Appendix A shows an example of how aspects are written usmg each of the

frameworks discussed.

3.4 Language Choice - SolNet Solutions

Choosing a language to use at SolNet Solutions is not an easy task as the different

frameworks have many advantages and disadvantages. Furthermore, an increased

understanding of SolNet's future direction and their architecture is required. One

possibility is SolNet could adopt the Spring Framework which would make Spring

AOP a likely choice. However, with the current environment it is felt that AspectJ

offers the most comprehensive solution. This is driven by the tools to support

developers, documentation, training resources, and language features such as ability

to advise non-public members. These are required for some of the uses of AOP in

later chapters. It is interesting to note that many of the reasons for adopting this

language came down to infrastructural issues rather than functional requirements

since many of the frameworks offer similar functionality.

Several issues that should be considered further by SolNet when using AspectJ

are testing and serialisation of objects. In particular AspectJ may cause issues with

the use of EJB in development projects. It is noted that no issues were discovered

when working with EJBs in Chapter 9 but this does require urgent review.

It is also noted that AspectJ has many enhancements being developed for release

in AspectJ 5 as a result of Java 5 being released and the merger with AspectWerkz.

The features include selection of join points based on new Java features such as

annotations and generics, enhanced load time weaving, aspect libraries, and the

ability to write plain Java aspects using annotations. In particular, the last point

gives increased flexibility to AspectJ and should reduce the need for new tools

required for adoption.

3.5 Alternatives to AOP

There are various approaches that could be considered competitors to AOP. In this

section four alterative approaches are discussed and their ability to be used instead

of AOP is assessed.

29

3.5.1 EJB 3.0

JSR 220 is currently working on the next version of the EJB component model,

more commonly known as EJB 37
. EJB 3 promises a simplified programming model

and a move towards use of POJOs. To achieve this , JSR 175 annotations are used

extensively for specifying container behaviour, service injection, object/ relational

mapping, and can replace XML deployment descriptors. Furthermore, interceptors

can be used to intercept calls to business methods or lifecycle call back events in

session and message driven beans. Any number of interceptor classes can be defined

for a bean and their order specified. The interceptors are stateless, but state can be

carried across multiple invocations using a context object.

This approach is a step towards the model achieved with AOP. However , the

capability of aspects far exceeds the limited capabilities of interceptors in EJB 3.

Furthermore, this approach is only available to session and message driven beans

further reducing its capability. The model achieved is similar to that available in

Spring. This approach will satisfy the need for many users but is not as flexible,

portable, or reusable as a more general AOP approach.

3.5.2 Servlet Filters

Servlet Filters8 provide a simple AOP like technology similar to that achieved with

EJB 3. These filters allow transparent injection of services and pre-processing of

servlet requests. However , this is very limited and only applies to web requests

lacking the power and flexibility required for many users who deal with business

objects.

3.5.3 Composition Filters and Hyperslices

Composition Filters and Hyperslices/ Multidimensional Separation of Concerns (MD­

SOC) both promote alternative modularisation technologies to achieve separation

of concerns. However , both these approaches have been static since 2001 and are

not recommended.

7http: //jcp.org/en/ jsr/ det ail?id=220

8 http://java.sun.com/ products/servlet/Filters .html

30

3.5.4 Choosing an Approach

AOP may not be the correct approach in all circumstances. It seems to have won the

battle of the alternative modularisation technologies with Composition Filters and

Hyperslices not going any further. However, techniques such as EJB 3 and Servlet

Filters both offer solutions in a limited context which may be useful. Using the cor­

rect tool for particular jobs is of importance. For this reason, it is recommended that

servlet filters be used for many pre-processing tasks associated with web requests

rather than using AOP interception. In similar fashion if only the limited features

of EJB 3 interception are required then it makes sense to use this approach rather

than introducing an AOP framework. However, it should be carefully considered

whether AOP's flexibility is required when making these decisions.

3.6 Summary

In this chapter a criteria has been proposed for the evaluation of aspect frameworks.

This considers three general categories covering support infrastructure, language

features, and adoption issues. Each of these categories are subdivided into key

points.

The criteria proposed are used in the evaluation of five frameworks and the

AspectJ framework is proposed for use at SolNet Solutions. This framework choice is

used for our work with SolNet projects and is used throughout this thesis. Upcoming

features of AspectJ are also discussed. These are largely driven by the addition of

Java 5 and the merger with AspectWerkz. This merger brings many of AspectWerkz

advantages (and those of other frameworks) to AspectJ, making it by far the most

flexible framework with a suburb support infrastructure in place which was not as

robust with AspectWerkz.

Two areas that have been identified as requiring further work are the serialisation

of Java objects, in particular with AspectJ, and the testing of aspect frameworks.

Finally, alternative technologies which offer some AOP like approaches are dis­

cussed and recommendations are made as to when these can offer better solutions

than aspects.

CHAPTER 4

TOOL SUPPORT

4.1 Introduction

Aspects introduce a new dimension to software development which brings many

benefits. However, with this added dimension there are new areas where developers

need tool support. In this chapter the tools available for building, developing, test­

ing, quality assurance, debugging, and visual design of aspect software are analysed.

Recommendations of suitable tools are made and areas where new tools are required

are identified.

4.2 Build Tools

Build tools such as Make1 , A T 2
, and Maven3 are used by developers to automate

the large number of steps that a typical project must go through when it is built

and deployed. Some common steps are removing files from previous builds, copying

libraries to the appropriate places, compiling code, running tests, and producing a

deployable file. To fit into the build processes of many organisations, the ability

to use aspects with these tools is essential. In this section the integration of two

popular build tools used in Java development, A T and Maven, are analysed with

AspectJ, Aspect Werkz, Spring, and JBoss AOP.

4.2.1 ANT Integration

A T tasks are included with AspectJ releases, ensuring they contain the latest

compiler features. An incremental compiler is available to allow developers to avoid

complete rebuilds. Integration has been improved in recent times with the addition

1 http: //www.gnu.org/software/make

2http://ant.apache.org

3http://maven.apache.org

31

32

of an adapter task which replaces normal javac compilation with AspectJ compila­

tion. The tasks available are fully featured, highly mature, well documented, and

user friendly. Furthermore, ANT is used by SolN et to manage the build process

making this support necessary for future aspect integration.

AspectWerkz can be used with ANT to perform offl.ine weaving (i.e. post-compile

weaving step). This can be achieved using the normal javac task to compile all the

classes and then either a standard ANT task to execute the AspectWerkz weaver

or the special task distributed with AspectWerkz. It is preferred to use the As­

pect Werkz task since it has all the necessary features to execute the weaver appro­

priately and is simpler to use. Furthermore, it is well documented.

JBoss distribute an ANT task for post compilation of aspects. Similarly to

AspectWerkz, javac is used to compile the classes and then the JBoss task is executed

to perform weaving. This task is well documented and easy to use.

No special support is required for working with Spring AOP. Normal compilation

1s performed using javac. This is due to Spring managing the creation and the

weaving of objects using proxies at runtime.

It is clear from the discussion above that ANT provides excellent support for

working with any of the four major frameworks. This fits well with SolNet 's and

many other companies use of ANT as their primary build tool.

4. 2. 2 Maven Integration

An increasingly popular alternative to ANT is the Maven build tool because of its

improved support for project management. However, Maven has not been in use as

long as ANT so therefore is not as mature and well documented. Maven is likely

in the long term to supersede ANT as the de facto standard Java build tool. It

has been investigated by SolNet as a replacement for ANT, but this is not likely to

happen in the short term.

Maven provides support for AspectJ compilation. However , the documentation

available is minimal making it more difficult to work with than the ANT tasks.

Furthermore, since the tasks are maintained independently of the AspectJ project

it is anticipated that new features will not be available immediately.

Support for AspectWerkz is available in Maven 1.0 but was dropped in version

2.0 because AspectWerkz was merged with AspectJ. The support in version 1.0 was

extensive but poorly documented.

No specific Maven support is available for either JBoss AOP or the Spring Frame­

work.

33

Additional work is required to improve the documentation of Maven's AOP

support to better enable assessment of its AOP build capabilities. It is expected

that frameworks may release their own Maven plug-ins or work more closely with

those groups providing them as Maven 's popularity increases. It should also be

noted that it is possible to execute ANT tasks from Maven using the antrun plug­

in. This provides developers with the opportunity to use Maven when tasks are only

available for A T . However , this solution retains a dependency on the use of ANT

so it would be desirable to have pure Maven tasks developed.

4.3 Integrated Development Environments

Integrated Development Environments (IDEs) provide a range of development tools

in one localised environment such as code editors, build tools, and debuggers. IDEs

are one of the most important development support tools due to the invisible nature

and development style changes aspects bring. This can be effectively bridged with

appropriate tools to make aspects less transparent, particularly by showing where

crosscutting occurs.

This section examines the integration of the leading AOP implementations with

the commonly used IDE's Eclipse, IntelliJ IDEA, JDeveloper , JBuilder , and Net­

Beans. Of particular interest is the support the IDE's provide for working with

aspects including help in writing pointcuts, checking where advice is applied, de­

bugging, and code completion.

4 .3.1 Eclipse

Eclipse appears to be the de facto standard IDE for working with Aspect-Oriented

software. It provides some support for all the major frameworks through plug-ins.

This is a result of open source collaboration to produce the necessary support instead

of waiting for vendors to add support to their products. This is in contrast to most

commercial products which are waiting to see how AOP progresses before adding

tool support.

AspectJ

The AspectJ Development Tools Project (AJDT) is an Eclipse Foundation project

which adds tool support to Eclipse for working with AspectJ software. This plug-in

is well developed, mature, well documented, and stable. It continues to evolve with

regular feature enhancements, bug fixes, and support for the latest AspectJ features.

34

In fact, the AJDT releases generally follow the AspectJ releases by only a day or

two due to the project's collaborative nature. Some key features are:

• Syntax highlighting of aspects .

• AspectJ project creation wizard.

• New aspect wizard.

• Generation of ajdoc (Only with AspectJ 1.0) for documentation of aspects

similar to JavaDoc.

• Full AspectJ compiler settings.

• Add or remove aspects from builds.

• Outline view shows advice types and pointcuts.

• Crosscutting markers and navigation - Allows viewing of where advice is being

applied and to navigate between advice and advised members.

• Aspect Visualiser - High level graphical view of aspect crosscutting.

• Run configuration for aspect programs including addition of required libraries

to the classpath.

• Debugging support ensures its just like debugging a regular Java application.

A screenshot of the AJDT plug-in support is shown in Figure 4.1. This shows the

cross references view, gutter markers on methods and advice, and advised members

in the context menu.

There are some currently known bugs that will be resolved in future releases of

AJDT (e.g. non-functioning code completion and aspect refactoring behaviour is

missing). Furthermore, when working on large projects it is necessary to disable the

automatic builds to avoid lockups each time an action is performed.

This is an excellent tool that provides leading edge support for AspectJ devel­

opment. This is the recommended tool for any AspectJ development project.

JBoss AOP

The JBossIDE brings JBoss AOP support to the Eclipse platform. However, it lacks

the maturity and stability of AJDT. It offers numerous features including support

for the writing of pointcuts which is missing in AJDT. The features include:

-~~1?6<bg,t. t.!" • 1 =r.,-1;-[~ &c~et aJ ~', = o ~,•ma..==--===--==--=....::::::=~·-o t~Ouh ~', __ _
,. B l:i, • •••

···Q~
CJ AsoKU.b"ar-y
U"~t'4.t:nr y2
Cl .u,i:

0C0'."l"JCt:J

CJ<~tyl
CJel(i:epbori

Q~tior,Testt-r
I 0Ex~110f\Tcs!erl

Ore'let:::
Ore~t"Cdo5e-t'll.ri
OSolr<el.4.s::JKIDemoAoo
CJ 5olrie1.As:;,e,:~.b1¥-,
Q'Soint"!f>r~I

•-• 5M(aE)il!Ct:l:

tJ s:,er;,,9Ni
'L:JTtsl

- ·itj. Testrf -L' ,r:
- ID (W.&.Jtpacl<6qe)

• lJ U:,:CO~.,JJ
• J.. Tes:c:'as.)ltV•

~W..J\ESV'i:em..b .. ,Jd;u.c
• i-r "'9f:CTJ!H_ll:8-C:Y.u:qer

l!f_,b,.ddap-~IM'S

(:J:t<Ste1<Ce:lto'\

IJ "'"'

- 0 Tnl011Ss
- ,. trelrodO

- ~ 6d\.•sitdbv
,. Exce:,~.beforeQ: exceotlOr.5 . .

~abl ic cl ass ! e.?! t.Cl a.5!1 (

"· - --· . •· ···· ..
Tog.i'1!:Sre11q)ont

~~&tal,;ooot

Breakoor l Prooer11es ..

Addeookmtvt ...
Add T1cir. ...

Prefeu,i.:n ...

Ctr1-J

v , !lullF01.nce::f~ce p~1.::.n { r,,

cp~:.:::n O ;

Figure 4.1: AJDT Screenshot

laz '8.
-Gr~~

~ m!h>dO

35

• Project wizard to create AOP projects. This automatically adds the jboss­

aop.xml file and runtime libraries.

• No markers in the aspects , but classes that are advised have gutter markers.

These can be navigated and viewed by using the quick fix feature (Ctrl + 1).

This is a hidden feature that could be improved with increased visibility.

• An Aspect ,fanager provides a graphical view of t he aspects, bindings, point­

cuts, and interceptors in the jboss-aop .xml fil e.

• The Advised Member's view shows the aspects advising a class and its mem­

bers.

• A run configuration automatically adds t he configuration files and libraries

required for JBoss AOP.

• Wizards for creating bindings, writing pointcuts , and adding advice or inter­

ceptors to a method.

A screenshot of the JBossIDE support is shown in Figure 4.2. This shows the

aspect manager , advised members view, popup quick fix advice view, and gutter

markers on advised members.

Overall this provides excellent support but has some hidden features and can

be unstable. In particular it was found that restarts were required to register some

changes to the XML file or other updates made. Furthermore, white space in the

workspace path resulted in errors with unrelated messages. This is a good tool that

will continue to develop and provide support for JBoss AOP development

36

al'IZl··l·l·l·· l·aiii;:::========:::::o~ri 10Hdolntrr(2Ptor,,ava r.-1'"- _____ o_ .. Ef'-c:r~OJh tJ."'1·•-.··~··-:.:), ..
package !lz .ac.ca!lsey.jbc .s.sao p .P..elloWorld; ,I] pactaqe nz.a.c.ma.s:.sey .jbossa.op.H~lloWorld; ~ "'

i £6 m.ac.~v.j)ossaop
vptlblic cla.ss ~elloWorld i import or9.jJ::09 .s.ao p . jo1. npo int. I:1vocation; 8 G. ~\VOnd

I V

i
pablic std.tic voi d ma.l.c{St.rinq {) arg!I) (

new H'el l oWorld O .!layH!! llo I) ;

~ V pablic HelloWorldij {

i

r
.super{);

public void !lay·HeJ.lo O {

Sy .st.~ . cue- .p:1.n~lo ("Hello ") ;

~ Go m Inte-~tor'Helolnt!!r'c.eptor' (6ecutt}
B R~Jnfie

vptlbl.ic cla9, Mell o i nte rceptor i!lplements Ori; . Jb o s :

public St ring get.Nair.e l) {
,:-etnrn th1s.getCla.!1!1 O .Qe 'CName O ;

<O v public Obj ec t. invoke (Invocation arc;O) throws :

Sysce:n . ou::: . pri.ntln I "!'!aha"' J ;

retorn a rgO. invo ~ Next. (I;

--~-
:i~~ ···0·~ = l1

! G., A.5p1eets

1
- -... enclin,gs

H ~ call{p.bk voe:! m.ac.lflaSSey.j;)osSb09.lidoWood.HdloWorld•>sa~lo0)
~ nz.ac..~ y.j)oswop.~WOfld.Hl!fiolntel"crpt:>1"

r[~i}f]i~E~::S:§s~~~:"~~:::~0

)······

!-l • C HeftoWorldQ
'!;» Hdlointecc,tu

~ • sa)tteloO
'!;a, Hdlornteceptcr

Figure 4.2: JBossIDE Screenshot

v ,;

• S ITlllH'l(Slfr,oO)
•C 11eloWcri:l0 ·-

Spring Framework

A general Spring Framework plug-in exists which provides support for configuration

of Spring Beans. However, no AOP support exists.

Aspect Werkz

AspectWerkz can be used either with or without a plug-in. Without a plug-in,

ANT is used to automate the build process. However , features such as crosscutting

identification are missing. Debugging could be performed using the regular J ava

debugger provided that breakpoints are set in the aspect classes. If breakpoints are

not set in the aspect classes then they cannot always be correctly 'stepped into'

from the advised code.

It is preferable to use AspectWerkz with the plug-in despite it only being a beta

release. However , with the AspectJ merger this is unlikely to be further developed.

Nevertheless, this plug-in provides support for viewing and navigating crosscutt ing

relationships and configuring weaving. This is only a rudimentary plug-in but it

provides some of the most important support for developers.

4.3.2 N etBeans and JB uilder

An AspectJ plug-in was developed for NetBeans and JBuilder as an open source

project . Unfortunately, this has become inactive as developer's interests have moved

to other projects. This plug-in does not function with the latest NetBeans/ JBuilder

37

and AspectJ versions. It provided support such as viewing and navigating cross­

cutting relationships and setting compiler options. This is a rudimentary plug-in

which needs a vendor sponsored replacement to bring AOP back to the NetBeans

and JBuilder development environments.

It is possible to configure NetBeans without a plug-in to use Aspect Werkz , but

this provides no specialist AOP support. This is likely to be possible with most IDEs

and aspect frameworks, but more development support is needed for developers to

effectively work with aspects.

4.3.3 lntelliJ IDEA

Support for AspectJ was built into IDEA but later disabled. It is possible to re­

enable this support but it did not function correctly for our tests. Forums postings

indicate many users have experienced similar problems. Contact with the IntelliJ

help desk indicates that support may be improved in upcoming releases, but this

was yet to be confirmed.

4.3.4 JDeveloper

An open source plug-in is being developed for Oracle JDeveloper which intends to

bring t he same support as AJDT does for Eclipse. However, the releases for this

are well behind the current AspectJ versions and the support provided is inferior to

AJDT. It is a good rudimentary plug-in for viewing and navigating aspect crosscut­

t ing relationships. Furthermore, compiler options and configuration are available.

It is hoped this plug-in will continue to develop and not meet the fate of others such

as t he etBeans plug-in. With aspects increasingly popular it is vital that IDE

support grows out of Eclipse and into other IDEs.

4.4 Testing

Support for unit testing of aspects depends on the framework being tested. AspectJ

poses the most problems due to its extensions to J ava to facilitate aspects. Unfortu­

nately, testing theory for aspect software is still evolving so production ready tools

are yet to be developed. Some tools have been developed to complement research in

this area. However , none of these tools were available for download and evaluation.

These testing techniques and tools are discussed further in Chapter 6.

Fortunately there is a tool being developed to allow testing of aspects created

38

using AspectJ called aUnit4 . However, since this tool is currently a 0.1 release it

lacks the maturity necessary to be used in most environments. It was found to only

support a subset of the advice types available in AspectJ meaning it could not be

used without modification for testing of SolNet projects. Moreover, attempts to

modify the tool to support some of the missing features were unsuccessful.

Overall, this tool is not currently recommended for use until a newer version is

released. This is scheduled for early 2006 when an extensive update is expected

to bring much needed functionality and reliability. This tool shows considerable

promise, but the release was too immature for an effective evaluation.

4.5 Debuggers

Debugger support can be complicated by the addition of aspects to a system. Once

the code has been woven the classes being debugged no longer match back to cor­

responding source code of that particular class. This can make debugging more

difficult and cause unexpected results. Debugging can often work with some pure

Java frameworks when breakpoints are set in the aspect classes themselves. Trying

to 'step into' an aspect that does not have a breakpoint set generally fails. For this

reason it is necessary to have some debugger support to ensure a smooth debugging

process.

The only tool to offer extensive debugger support is AspectJ with the Eclipse

AJDT plug-in. This supports debugging through aspect code and hides the under­

lying AspectJ framework. This support makes the debugging of AspectJ programs

akin to debugging normal Java. This support is made possible by JSR 45 for de­

bugging which allows a class to have multiple source files. This should be supported

in most of the latest debuggers and IDEs.

Unfortunately, no other specialist debugger support has been encountered for

other languages. The other languages are not as significantly affected as AspectJ,

but nevertheless do require some extra support. This is an area where further work

is required. Moreover, it would be interesting to evaluate the AJDT debugger when

remotely debugging EJB's in a container.

4 http://www.aunit.org

39

4.6 Documentation

Java has an effective documentation tool in the form of JavaDoc. It would be ideal

if a similar tool could be used to document Aspect-Oriented software.

It has been found that J avaDoc could continue to be used for AOP languages that

use normal J ava classes such as Spring, JBoss AOP, and AspectWerkz. However ,

it should be noted that the documentation appears like a class rather than as an

aspect. Therefore , it is considered necessary to provide a new tool or possibly a

doclet that could account for aspects. Furthermore, it may be desirable to allow

aspects crosscutting nature to be navigat ed as hyperlinks in a similar way to class

references in J avaDocs.

AspectJ introduced a tool called ajdoc in version 1.0. This tool provides similar

documentation for aspects as that produced by JavaDoc. Unfortunately, this tool

has not been updated for the latest versions of AspectJ . It appears that this is still

on t he agenda for future development ; it has fallen in priority as AspectJ 5 was

being developed.

Overall , t here are possibilit ies for some documentation of aspects, but this area

needs significant development.

4. 7 Code M etrics

Code metric tools are important to allow evaluation of software in a quantitative

fashion. Although many metrics exist for 00 software that are still applicable to

Aspect-Oriented software, t here is also a need for metrics to measure the new types

of coupling t hat result from using aspects. Several metrics have been proposed for

Aspect-Oriented software and will be discussed further in Section 7.4.

At this st age the only tool available is an open source project being developed

as part of an MSc project titled the AOP Metrics Suite5
. It includes measures that

have been altered to incorporat e aspects from the 00 metrics suite proposed by

Chidamber & Kemerer (1994), as well as package dependency metrics such as those

used in JDepend6
. The documentation for metrics used in this suite is adequate,

but some of the metrics are yet to be implemented. Furthermore, the tool is only

executable as an ANT t ask. This is suitable for SolNet's purposes, but further

support for standalone execution are needed to allow easy use. The tool supports

output of the results to both XML and Excel allowing easy analysis.

5http://aopmetrics.tigris.org

6http://www.clarkware.com/ software/ JDepend.html

40

The tool is still very immature (draft release) and would not execute on any of

the projects tried due to AspectJ or ANT version incompatibility that could not be

resolved. It is difficult to assess the correctness of the metrics the tool produces,

but the source code is available if users wish to verify it. The tool lacks support

for any complexity measures which are used extensively in the assessment of SolNet

projects in Chapter 9.

This is obviously an area where tool support will evolve as metrics become avail­

able and more stable.

4.8 Visual Design

There is currently limited tool support available for visual design of Aspect-Oriented

systems. There have been systems developed for research projects but none of these

were available. It is not surprising that support is limited when it is considered that

a standard development notation has yet to be agreed upon. Because of this, most

books published using AO notations have relied on general drawing tools such as

Microsoft Visio. This is fine for drawing the diagrams, but lacks the ability to use

automated design checks, reverse engineering, code generation, and round tripping

tools that are bundled with CASE tools. However, it should be remembered that

most CASE tools should contain support for specifying a UML profile and may also

include support for custom scripts that can perform tasks such as code generation.

If a company decides to settle on a standard approach that can make use of these

facilities then their existing tools will still be supported.

Rational Rose7 provides the necessary support to define a UML profile for using

aspects. Moreover, it provides rose script which can be used to automate some code

generation from design elements. This approach is shown by Zakaria, Hosny & Zeid

(2002) with AspectJ as a target language.

Rhapsody8 provides similar support to Rational Rose and has been used by

Elrad, Aldawud & Bader (2005) to generate code from aspect UML models including

state charts.

Finally, Enterprise Architect9 provides similar support to Rational Rose and

Rhapsody. Furthermore, it is possible to define a profile and export it as UML so it

can be easily distributed to a team using aspects. Enterprise Architect has adopted

7http: //www-306.ibm.com/software/rationa1/

8http://www.ilogix.com/sublevel.aspx?id=53

9http://www.sparxsystems.eom.au/products/ea.html

41

«aspect»
Thing Observing

observers: Vector= new Vector()

+ addObservel(t :Thin 9, o :Thin1;10bserve r~: void
+ removeObservel(t :Thin9, o :Thin90bserver~: void
~ urdateObserve~t :Thin9 , o :Thin90bserver~ : void

advice

+ atte n'.t : Thing)
o:J, an g es(t)

pointcut

~ change~t :Thing)
target(t) U-. c,al l(void Thing .s,;,f'(int))

Figure 4.3: UML Notation for Enterprise Architect

a notation for AspectJ (Figure 4.3) allowing some support out of the box including

reverse engineering. However, the notation used is not considered an ideal solution,

but it is acceptable and when used consistently by a team will be constructive. This

is the tool used by SolNet Solutions, making this support attractive.

4.9 Summary

This section has examined the tools available to support software engineers in the

development of Aspect-Oriented software. It has been found that tool support

is still developing in many areas. However , the areas that are better established

in relation to the implementation of the software are reasonably well developed

such as build tools and IDEs. It is vital that more IDE support is developed and

that build tools such as Maven increase their support . Of most importance is the

development of tools for design and testing of systems. Metrics tools are important

and developing but are not as vital as these two other tools. Furthermore, debuggers

and documentation tools also require some extensions to be more useful.

Overall, the basic tools exist to support AOP at a commercial level, but addi­

tional work is necessary to increase the breadth and quality of the tools.

In the next chapter the design of aspect systems is examined .

42

CHAPTER 5

ASPECT-ORIENTED DESIGN

5.1 Introduction

So far AOP has been discussed as an implementation technology. However, to inte­

grate AOP into a software development methodology its impact on other areas such

as requirements gathering, analysis , design, and testing must be considered. This

holistic approach is referred to as Aspect-Oriented Software Development (AOSD)

and allows the separation of crosscutting concerns to be realised throughout the

development process (Jacobson & g 2004, Araujo, Baniassad, Clements, Moreira,

Rashid & Tekinerdogan 2005).

In this chapter the focus is on the design stages of the process, in particular

how aspects can be visually modelled using UML. There have been many proposals

in this area (Han, Kniesel & Cremers 2005, Cottenier, Berg & Elrad 2005, Pawlak

& Younessi 2004, Clement, Harley, Colyer & Webster 2004, Katara & Mikkonen

2002 , Zakaria et al. 2002, Basch & Sanchez 2003 , Cole, Piveta & Sampaio 2004, von

Flach Chavez, Garcia, Kulesza, Anna & Lucena 2005, Kande, Kienzle & Strhmeier

2002 , Stein, Hanenberg & Unland 2002a, Stein, Hanenberg & Unland 2002 c, Stein,

Hanenberg & Unland 2002b, Stein, Hanenberg & Unland 2003 , Clemente, Hernan­

dez , Herrero, Murillo & Sanchez 2005). A selection of the best approaches are

considered in this chapter (Suzuki & Yamamoto 1999, Jacobson 2003, Jacobson &

Ng 2004, Clarke & Baniassad 2005, Clarke & Walker 2005, Baniassad 2003, Banias­

sad & Clarke 2004, Clarke & Walker 2002 , Aldawud , Elrad & Bader 2003, Aldawud,

Elrad & Bader 2001, Elrad et al. 2005, Rausch, Rumpe & Cornel Klein 2003, Astea­

suain, Contreras, Estvez & Fillottrani 2004). Recommendations are made on using

one of these approaches within SolNet Solutions.

The notion of Aspect-Oriented design patterns and idioms is also considered.

Design patterns and idioms are beginning to emerge as aspect best practices are

formed. Both design patterns and Aspect-Oriented design are still immature ele­

ments of the Aspect-Oriented development lifecycle.

43

44

5.2 Aspect-Oriented Design Approaches

Without an aspect design approach programmers are given an 00 specification and

design which they implement. However, since the design does not allow specification

of aspects they must follow a translation process and redesign to use aspects. In

doing so, the implementation does not match the design and there could be new

errors introduced through poorly informed design changes. In this section several

design approaches are presented which tackle this problem by allowing specifica­

tion of aspects in the design ensuring the programmer can implement directly from

specification to code elements. Moreover, this is an important area since many pro­

fessionals consider the system design to be the most significant element contributing

to the success of a system (Clarke & Baniassad 2005).

5.2.1 Use Case Approach

Ivar Jacobson has suggested that use cases are a natural approach for taking aspect

software from the initial requirements gathering through to testing (Jacobson 2003,

Jacobson & Ng 2004). Jacobson is the inventor of the use case and one of the fathers

of UML and the Rational Unified Process (Jacobson 2005). Use cases are one of the

most commonly used methods to capture user requirements and are used to drive

software development (referred to as Use Case Driven Development). Use cases are

separate when specified, but when use cases are realised they get tangled as use cases

become intermixed across implementation classes. This is mainly because there was

no implementation technology available that could keep use cases separate at the

implementation phase, so it made sense to tangle the use cases at the realisation

stage to ensure that the design could be easily implemented. Moreover, this meant

that UML was not built with explicit support for keeping use cases separate during

this phase. For example, the use case extend relationship has no mapping for use

case realisation.

Jacobson proposes that use case slices are added to UML to allow support for

the use case extension mechanism. This new feature would allow use cases to be

kept separate right through to implementation, testing, and maintenance.

A use case slice collates parts of classes and operations that are specific to a

particular use case and groups them in a single model. Figure 5.1 1 shows an example

of a use case slice. Notice that each use case is represented by a use case slice which

contains a few elements from the various implementation classes. The composition

1Diagram reprinted from Jacobson & Ng (2004)

0
Reserve
Room

Customer

-Chcdc Out
Cw.tomcr

Rcscrve Room -t

heck l n Customer -t

Check Out C\Jstomer

ID
Exten$ioos of class bebl,ior

specdic to use<&SC rcalwatioo

[J

-
CustomcJ Suiff Reserve Ched:

Scra:n Screc:n Room In

Figure 5.1: Use Case Slice

----,-1-1 I ,I

Check Resc:rvatioo
Out

Room

45

of the use case can then be performed by the particular implementation technology

(i.e. it is not dependent on a particular A0P approach). The superposit ion of all

the use case slices is the entire design model.

There are two types of use cases which benefit in different ways from this ap­

proach. The first is peer use cases which have no relationship between each other

but their realisations are tangled . Peer use cases benefit since attributes and meth­

ods from the realisation classes are identified that are specific to each particular

use case, allowing them to be maintained separately. The portions of each class

contained in a use case slice are called a class extension and represent those parts

of the class required to implement the use case. The merging of all class extensions

using intertype declarations produces the complete system.

The UML extend relationship allows an extension use case to add behaviour to

another use case at an extension point. However, this cannot be implemented using

00 so have only been used as named places in a control flow where another use case

flow should be added. A0P techniques such as pointcuts and join points combined

with advice allow these to finally be realised to their potential in the implementation

phase.

Finally, Jacobson proposes a use case module which contains all artifacts specific

to a use case over the entire lifecycle. This allows use case modules to be developed

separately and concurrently (with some coordination work) and gives one place to

look for information on any use case and its path through the lifecycle (traceability

from requirements to implementation) . Furthermore, the implementation of use

46

I
<<-use case sUce»
Reserve Room

✓,---- ,

\ \ ' .;,, ___ ,
Reserve Room

ReserveRoomHandter

Operations
make Reservation()

«aspect»
ReserveRoom

C1ass Extensions

Room

Op rations
updateAvaUability()

Figure 5.2: Use Case Aspect Representation

cases across iterations can be prioritised to allow the most important functionality

to be designed and implemented first .

However, this approach does require some changes to UML to support new arti­

facts such as aspect and use case module. Jacobson has produced a comprehensive

book (Jacobson & Ng 2004) which guides developers through this approach and

details the required elements and how they can be mapped to AspectJ (they can be

mapped to other languages too). Furthermore, who better than one of the fathers of

UML to drive a change to UML to incorporate features needed to support aspects?

Figure 5.22 shows an example of an aspect in Jacobson's notation containing a single

class extension and a pointcut.

The use case approach has the major advantage of being widely used making

many developers and designers familiar with its use. It therefore makes sense to

build on this approach rather than replace it. However, we should be sure that a

replacement would not produce a more appropriate approach for a new technology.

Furthermore, this approach seems to assume that aspects will be incorporated well

beyond infrastructural concerns. Instead aspects are used to produce malleable

software that can be composed using aspect technology. For many this is beyond

what they intend to use aspects for, particularly in the early stages of adoption.

It is not clear how little of this approach could be applied and still be effective for

adopters wishing to start at a higher level. If it is not suitable for these less invasive

uses of AOP, then it makes it more likely that adopters will use a different approach

and never realise the potential this approach brings to the building of very versatile

and easily changeable software.

2Diagram reprinted from Jacobson & Ng (2004)

47

5.2.2 Theme/UML

A completely new approach to software development with aspects is Theme/UML

proposed by Siobhan Clarke (Clarke & Baniassad 2005, Clarke & Walker 2005, Ba­

niassad 2003, Baniassad & Clarke 2004, Clarke & Walker 2002). The Theme/UML

approach is used to identify and model aspects from a set of requirements using

a symmetrical approach. A symmetrical approach modularises both the core and

aspects which represent some piece of separate functionality which when combined

form the functionality of the whole system. In contrast an asymmetric approach

considers aspects as being separate from the core program. Aspects are treated like

events which are triggered when appropriate events are dispatched from the core

program. This works well when aspects are executed at many places in the system

(such as infrastructure aspects).

The most central concept is the theme, which is an encapsulation of a concern.

This makes a theme more general than an aspect, since themes represent some piece

of functionality or aspect from the system. The two key components to the theme

approach are Theme/Doc and Theme/UML.

Theme/Doc is a set of heuristics which help in the analysis of software require­

ments to identify themes and determine whether they should be modelled as an

aspect. This is referred to as theme and aspect identification. A Theme/ Doc tool

provides graphical views of the relationships between requirements and themes.

Theme/UML provides a means to write themes as UML. Each theme has a

separate design model which allows it to be independently designed regardless of

whether it crosscuts or overlaps another theme. All the classes and methods that

are pertinent to a concern are designed within the theme. Most of the UML used is

standard's compliant. However , some new elements have been introduced for mod­

elling the parameterisation of the behaviour that is triggered by a base theme. A

composition relationship is introduced to identify the parts of a theme that are re­

lated and that should be composed. Figure 5.33 shows a crosscutting theme (aspect)

using the Theme/ UML notation.

The Theme approach can be used with different lifecycle models such as water­

fall and iterative. Using it with an agile approach is not as easy, but with correct

selection of diagrams and appropriate updating of diagrams it can be applied effec­

tively.

This approach gives excellent traceability between requirements and implemen­

tation, making the mapping from design to code easy for developers. This avoids the

3Diagram reprinted from Clarke & Baniassad (2005)

48

«theme>) i - 1
I

Sypchronize 1 <SynchronizedCLass, _write(..), _read(..)>, 1------'-------------
Collab_SynchronlzeAeadPattem

:SynchronizedClass
i

read(..) wa!tWriter() ..
wait()

incrementReaders()

_read(..)

docrementReaden~()

Colfab_SynchronizeWritePattem
:Synchronized-Class

I
write(.•) waltWr'lteReaders()

wait{)

increme ntWri1ers()

_write ..)

decrementW riters()

' ------- -- - - - - -- -- ---- -~

SynchronizedClass

#activeReaders : Int
activeWriters : int

waltWriterReaders() {concurr&nt}
waitWrlter() {concurrent]
wait() {concurrent)
- lncremontReaders()
• decrementReaders{)
• incremenlWrlter&()
• decrementWrlters()
+ write(..)
• _wrtte(..)
+ read{ .. }
- _read(..)

Figure 5.3: Theme/ UML Crosscutting Theme

49

problems of ad hoc redesigns to incorporate aspects by developers and gives more

opportunity to identify domain specific aspects, rather than the smaller number of

general purpose aspects that are typically applied using ad hoc approaches. Clarke

& Walker (2005) show how to map from themes to Hyper/ J and AspectJ showing

the language independence of the approach. Furthermore, they show abstract as­

pects in AspectJ allow the creation of highly reusable aspects from reusable t hemes

by separating the crosscutting specification (advice) from the composit ion specifi­

cation (pointcuts) using abstract pointcuts. However , dynamic pointcuts such as

cflow in AspectJ are missing from Theme.

Overall , this approach should be easily applied by UML designers, but it requires

more changes in the process than the use case driven approach . In particular a new

means of specifying system functionality / requirements with Theme/Doc instead of

the de facto standard use case would discourage many potential adopters. Moreover ,

there is a need for further tool support to allow automatic code generation and design

round tripping.

5.2 .3 General UML Extension

Suzuki & Yamamoto (1999) proposP. ,:in P.x t.P.nsion to the UML meta-model to incor­

porate aspects. Additionally, they propose an XML aspect description language to

allow CASE tools to share aspect model information.

Aspects and woven classes are added to the UML meta-model and the existing re­

alize relationship is reused for modelling aspect/class relationships. The ((aspect))

stereotype is used on a class box to represent an aspect , with attributes represent­

ing weave definitions (pointcuts) and operations weave declarations (advice). A

((weave)) stereotype is added to operations which model advice. A model of the

woven structure of the application can be developed. Classes in this model that

have been crosscut by an aspect have the ((wovenclass)) stereotype.

Asteasuain et al. (2004) identifies some key points from this approach including:

• It hinders separate development since aspects have explicit references to ob­

jects.

• Learnability and user friendliness is reduced since addit ion of new elements

requires considerable attention to behaviour.

• There are no clear composition rules which reduces understandability.

• Rich and expressive models can be built resulting in a high degree of reusability

of aspect designs.

50

• Good traceability.

It is felt this approach has the advantage of being compatible with existing CASE

tools and requires only a minimal level of effort to be introduced. In particular it

can be helpful when aspects are being used for infrastructural purposes. However,

it is also felt that as aspects become more prevalent a technique which has more

support for separate development will be more suitable.

5.2.4 Model-Based Approach

Many applications follow a model-based development approach where models are

produced at different levels of abstraction and mappings for transformations be­

tween the different levels are defined. Rausch et al. (2003) proposes a model-based

approach which provides a merger of the implementation of a requirements model

with a predefined aspect implementation. This is a reusable framework. Currently

many of the infrastructural use cases for using AOP are associated with the desire to

connect an application to a framework in a transparent manner. This approach helps

with the design of this by making aspects visible in the model allowing reasoning

before implementation.

New stereotypes ((callJ oinPoint)) , ((aspect)) , and ((advice)) are intro­

duced along with ((introduction)) on classes for modelling intertype declarations.

Both structural and behavioural diagrams are used. The connections between the

framework and the application are made using some constraint language such as

OCL and the ((aspectBindings)) stereotype.

Rausch et al. (2003) has left the development of a full UML profile for this

approach as future work. This approach lacks tool support and the use of OCL

makes it complex for specifying constraints. However, this approach could be useful

when aspects are being used for infrastructural purposes.

5.2.5 UML Structural and Behavioural Diagrams

An approach which makes use of standard UML extension mechanisms for the spec­

ification of aspects is proposed using both structural and behavioural diagrams (Al­

dawud et al. 2003, Aldawud et al. 2001, Elrad et al. 2005). They produce a full UML

profile which tailors UML to the AOP domain using stereotypes, tagged values, and

constraints. The aim is to produce reusable design components and to automate

code generation and round tripping to keep design and implementation consistent.

Aspects are modelled using the ((aspect)) stereotype to ensure reusability.

Synchronous aspects control the behaviour of another class, where as asynchronous

51

tAetaOass Packll~
AOSD Profile Packaae I

S chedufingAspect I «crosscut»
BoundedBuffer l -noOfwriters : in1 I

i

<<er isscut> ~
~reActival!on0 void

I
I
' ~os1Activation0 void ' I

l
«(synchronous) Aspect» ' I Enor _Handler i

~UTQ:void I ' I I

+GETQ:int I «crosscut>> i

' ·;
/, +Assert0 void I

SyncronizationAspect I I i
-noOFilems : int I ~<{asynchronous) Aspect»1

I I
~reActivationQ:void I <<crosscut»

«er sscut> ~ostActival ionQ.void
I

«(synchronous) Aspect» I

Figure 5.4: UML Class Diagram

aspects have no impact on a base class. This is controlled using a tagged value.

A ((crosscut)) stereotype is used to represent relationships between classes and

pre/ post activation operation stereotypes are used for advice. In Figure 5.44 a basic

scenario is presented showing the representation of aspects, pointcuts, advice, and

a basic relationship with a class.

So far this approach is similar to that shown in Section 5.2.3, however this

approach goes further by making extensive use of state charts for behavioural mod­

elling. State charts are designed for use in modelling intra-object behaviour. How­

ever, this approach shows that some of the advanced mechanisms available can be

used to give a full behavioural specification for crosscutting behaviour. AOSD is

supported by the extracting of the hardwiring of transition conditions making de­

signs reusable. Furthermore, the approach is semantic preserving between design

and implementation. Rose script has been used to generate AspectJ skeletons from

the specification.

The event notification mechanism and use of concurrent states allows implicit

weaving to be performed using broadcasting techniques. This results in loose cou­

pling and extensibility. Furthermore, since concerns are modelled separately, re­

quirements can be effortlessly traced to design elements and implementation. Round

tripping is also performed to allow the model to be kept consistent with the code.

4 Diagram reprinted from Elrad et al. (2005)

52

Putlprintf(.. ERROR: Bufferi$FUU ..)

FULL
Gm

,a Put
._ · ········ ~ · Partlaf

[Number_or_tt•n\$ = MAX] --- •• ----.-----'

1J Put

! (Nu:mber _of _Items • O]

·"lllt-,11(------• "'-r- ------
Empty

G1ttlprintf("ERROR:8ufferisEMPTYj

Figure 5.5: State Diagram - Tangled Model

Figures 5.55 and 5.66 show the use of state charts with a tangled model and with

separation of concerns using this approach respectively.

We believe this is the most desirable of the simpler , less invasive approaches. It

has many points similar with Suzuki's model, but with the addition of state charts

to allow extensive behavioural modelling. This allows for fuller specifications when

needed. Moreover , the ability to use standard CASE tools and code generation

facilities make it ideal for early adopters.

5.3 Fitting with SolNet Solutions

SolNet Solutions uses a use case driven development approach. This involves full

specification of use cases which are then realised as class diagrams. Depending on

the criticality and risk associated with the component and the client 's requirements

there can be further state and behavioural modelling. Some projects take an agile

5Diagram reprinted from Elrad et al. (2005)

6Diagram reprinted from Elrad et al. (2005)

(___ , -
I Sc .,.,.,;,gASf""']

! (haveWr'te, s ,
I

PUT/noOWrit Trs++;evPut

o-.(liJLE)
i. GET /no0Frea4rs-++ :evGet

' (h;;..-1:neadN")

•

1nchr cn!z;;r onAs;:>e{;I

&-(i.:mp.ry)
get.[noOfitemS::1)A,oOFitems-;GET

(Pa~1a1)
put[noOfitems=-MAX)lnoOFitems++: PUT

t
(fu 11)

---------- , --------------

' \
1

j
I

I
l
I
l .

---· -· ------------- -- ----- - -- --- --- --- -- ------- ·

I

"--·-..

evPUT evNoMoreReaders

L~---~:--· _ • (oe?d1ng)

evDone/ l evGET

; --- -----·- -- ---------✓
I;

put get

(Consume) (Produce]

Figure 5.6: State Diagram - Separate Concerns

53

approach where development can be virtually performed from the use case specifi­

cation with minimal modelling.

It would seem likely that the most advantageous approach for SolNet to use

would be Jacobson 's use case techniques. However, it should also be considered

that aspects will most likely only be used for infrastructural purposes in the near

future making this approach too demanding. Furthermore, it requires changes to

tools to support the new UML features proposed. The Theme approach also suffers

from similar problems, but is further complicated by the change to Theme/ Doc

instead of use cases. In many ways these two approaches share many similarities

in the types of elements they capture and artifacts produced. If aspects are to be

used more extensively both of these approaches are well developed and have useful

book resources to guide their usage. We consider them to be the two ultimate

solutions, but feel the technology is in advance of what most companies will be

willing to adopt at this early stage. Moreover, tool support is yet to be developed

for these approaches and there is unlikely to be a formal UML Profile or change to

the specification adopted by OMG in the short term. This is essential for a UML

notation to be adopted.

Alternatively, either of Suzuki's or Elrad's approaches to the use of UML exten­

sions could be readily applied since they provide the ability to give some representa-

54

tion of aspects in the design, but do not require the same level of specification and

intrusiveness as found in the use case and Theme approaches. It is likely that many

early users would be satisfied with modelling aspects on this level. If aspect use

becomes more extensive then the design may have to start using something which

allows greater separation of concerns and traceability such as Theme or use cases.

Elrad's approach is preferred since it offers more resources such as a book chapter

and several papers, as well as behavioural specification with state charts. Moreover,

it has been successfully used in the generation of code and round tripping of the

design.

We do not view the model-based approach as a likely solution due to its lack of

extensibility to other areas outside of pure framework aspect specification.

At this stage it seems likely that more techniques will continue to be developed

and developers will need to choose and consistently apply a technique that suits

their requirements. It is a big improvement to have some modelling of aspects at

the design stage, and like the introduction of aspects performing this as a staged

approach may give further time for staff development and familiarity with the tech­

nology to increase. Ultimately, we hope to see AOP used to its full potential using

the more sophisticated techniques of Jacobson or Clarke. These techniques show

great promise in producing more flexible and extensible software than has been pos­

sible in an 00 world. However, in the meantime Elrad's approach is recommended

as a short to mid-term solution for SolNet Solutions in specifying aspects.

5.4 Aspect-Oriented Design Patterns and Idioms

With new design methodologies comes the need for design best practices. Design

patterns can be used to capture best practices for Aspect-Oriented software in a

similar manner to their use in 00. Two classes of design patterns are presented

in this section. Firstly, the refactoring of existing design patterns using aspects to

make them less invasive and more reusable is discussed. Then a new class of patterns

that have been proposed for writing aspect software is presented. Finally, idioms for

AspectJ development are considered. An idiom is more language specific and has a

smaller scope than a design pattern.

5.4.1 Refactoring 00 patterns using Aspects

Design patterns present a solution to a recurring problem in some context. The

work of Gamma, Helm, Johnson & Vlissides (1994) in producing the Gang of Four

55

(GOF) pattern catalogue is regarded as the key movement towards developers (de­

liberately) using patterns in software. However, many 00 patterns exhibit crosscut­

ting behaviour such as affecting multiple classes and being difficult and invasive to

reuse (Lesiecki 2005a). Furthermore, it can be difficult for developers to identify the

use of patterns in a system making tools for design recovery necessary (Dietrich &

Elgar 2005). Hannemann & Kiczales (2002) present the original work in refactoring

of GOF patterns with AspectJ. In comparing the Java and AspectJ solutions of the

twenty three GOF patterns they found they could remove code level dependencies

from participants in seventeen patterns. Twelve patterns were refactored to the

point where they were reusable and could be included in a library. Most patterns

were improved either by reducing the number of participants or having different

participants. In some cases the code was simply moved from the participant to the

aspect . This work is used as the basis for work by Miles (2004) to show how AspectJ

can improve the Creational Patterns Singleton, Prototype, Abstract Factory, Fac­

tory Method, and Builder. Miles finds that pattern mechanics are modularised and

less intrusive on business logic making the code cleaner and easier to understand.

Moreover , the freedom to use inheritance relationships in J ava is improved since

there is less need to inherit from abstract base classes (classes can only inherit from

one class in Java).

A simplified example of the Singleton pattern implemented using aspects shows

how a pattern can be refactored. The first step is to define a tag7 interface Singleton.

An aspect can be used to capture all calls to constructors of any class implementing

the Singleton interface and either return the existing object or a new object if this is

the first constructor call. This is highlighted in Listing 5.1 which uses a Hashtable

to store Singleton objects and an around advice to return the correct object instead

of calling the constructor. The Singleton interface is defined as part of the same

aspect for modularity. Finally, an aspect is used to make classes that need to be

Singletons implement the Singleton interface as in Listing 5.2. This is now a pattern

that can be easily reused by implementing an aspect to make the necessary classes

implement Singleton. Furthermore, it is possible to use a class as a Singleton in

one project and not in another project simply by including or excluding it from the

aspect. This allows more reuse prospects for business classes which is also noted by

Lesiecki when refactoring the Decorator, Observer, and Adapter patterns (Lesiecki

2005a, Lesiecki 2005b). Developers can simply identify use of patterns and more

easily maintain classes without the aid of design recovery tools reducing the risk of

7 A tag interface doesn 't contain any members - it is used to signal a property of its implementers

56

Listing 5.1: Singleton Aspect

I I Library aspect implementing the Singleton Pattern
public aspect SingletonAspect {

}

II Interface for classes that are Singletons
public interface Singleton{}

II Store the single instance for each class
I I that is a Singleton
private Hash table singletons = new Hash table();

II Pick out constructor calls to classes
I I implementing Singleton
pointcut singles() : call(Singleton+.new(..));

II Intercept calls to Singleton class constructors
II and return the single instance of the class
Object around(Object obj) : singles() && this (obj) {

}

Class clazz = obj. get Class();
if (singletons. get (clazz) = null) {

singletons. put (clazz , proceed (obj));
}
return singletons. get (clazz);

Listing 5.2: Make class implement Singleton

II Application specific aspect to make any classes that must
I I be Singletons implement the Singleton interface
public aspect MySingletonAspect {

}

declare par en ts: MyClass implements
SingletonAspect. Singleton;

damaging software flexibility through ill informed changes.

5.4.2 Aspect-Oriented Patterns

AOP opens the opportunity for a new class of patterns associated with the use of as­

pect software. Laddad (2003) has proposed several new patterns for aspect software.

There are few patterns yet to emerge, but as aspects become more prominent more

patterns will no doubt be discovered and documented much like the progression of

00 patterns in the decade since the publishing of the GOF catalogue (Gamma et

al. 1994). A brief summary of the patterns presented by Laddad and how they could

be applied at SolN et is presented.

57

Worker Object Creation Pattern

A worker object is used to encapsulate a method in an object so it can be passed

around, stored, and invoked. It is commonly implemented in Java by implementing

Runnable and having the run() method delegate the method call to the worker

method. It is heavily used in implementing Swing applications since all methods

that change or access the state of Swing components need to be wrapped in worker

objects and passed to the event queue to be executed8
. As a result of having to

wrap methods in worker objects the code becomes polluted and difficult to read

and maintain. The worker object pattern presents a solution which involves making

normal method calls which are intercepted by an aspect and wrapped in worker

objects. Laddad presents t his solution using a Swing example t hat greatly simplifies

the code required to correctly write a Swing GUI. These Swing aspects could be

useful for SolNet applications that require the use of desktop or applet solutions

instead of web interfaces.

Exception Introduction Pattern

Aspects can introduce new checked exceptions when implementing crosscutt ing be­

haviour. These exceptions may not be part of the original set of checked exceptions

that can be handled by a method. The exception introduction pattern presents

a method of dealing with this situation in a way that ensures the application can

still be compiled and behaves as expected when the new exception is encountered.

This pattern was initially used when implementing exception handling in the SPER

project in Chapter 9. However, this was later replaced by a more suitable solution

for the problem context. Nevertheless this is a very useful pattern which could be

applied to SolNet projects to enable handling of framework exceptions.

Wormhole Pattern

Often there is contextual information which must be passed from a caller to a callee

through a set of methods in a control flow resulting in API pollution. The wormhole

pattern solves this by allowing contextual information to be passed directly from

the caller to the callee without polluting intermediate APis with extra parameters.

8This is required since Swing components are not thread safe

58

Participant Pattern

The participant pattern allows classes to opt into using an aspect to implement

behaviour based on some characteristic it possesses such as 'method executes slowly'

which cannot be otherwise easily identified based on naming patterns and is best

associated with a class. However, this pattern is most likely to have been rendered

obsolete with the addition of JSR 175 annotations in Java 5.

5.4.3 AspectJ Idioms

This is a brief introduction to some idioms that have been presented for AspectJ.

These are 'programming tips' which can help avoid common errors when writing

AspectJ aspects and solve common programming problems.

Laddad (2003) presents solutions to infinite recursion (caused by aspects advising

themselves) by excluding an aspect from its pointcut definitions. Additionally he

presents methods to nullify advice and the use of empty pointcut definitions which

are useful when extending base aspects where no join points match in the specific

system. All these idioms have been used in implementing aspects for SolNet projects

in Chapter 9.

Hanenberg & Schmidmeier (2003) present the most comprehensive set of idioms

encountered which cover those presented by Laddad (with different names) as well

as several additional idioms. Some of the idioms we have used are Template Advice,

Abstract Pointcut, and Composite Pointcut. They also specify the Pointcut Method,

Container Introduction, Marker Interface, Chained Advice, and Advised Creation

Method.

The Abstract Pointcut is extensively used when writing base aspects. In this

idiom advice is written to act on the join points of an abstract pointcut. This

abstract pointcut is overridden in the sub aspects to provide the real set of join

points in the application.

The Composite Pointcut is used to split up a complicated pointcut into several

easily understood pieces which are combined to provide the full definition. This has

been used when specifying pointcuts in the SPER application to make the pointcuts

more reusable.

Template Advice is used to allow some behaviour to be changed depending on

the join point that is being executed. It was used in the EOS application (See

Chapter 9) to account for variability in exception handling policies.

These idioms have been useful in solving AspectJ specific problems when im­

plementing aspects for SolNet projects. These can help to form best practices for

59

future SolNet work. Furthermore, additional idioms may be formed for company

coding standards and no doubt new idioms will be created as aspects become more

prevalent.

5.5 Summary

This chapter has investigated the effect of aspects on the design phase of software

development. In particular it was found that separating requirements at the design

phase can bring the benefits of aspects in the implementation phase into the design

phase. Applying aspects earlier in the design phase helps to ensure consistency

between the design and implementation by avoiding ad hoc redesigns by developers.

Moreover, it promotes traceability from requirements to implementation.

There are many design notations that can be applied when using aspects, of

which five have been presented. Of these we believe Jacobson's approach has the

longest term potential for Sol et, but it requires a bigger investment in the use of

aspect technology than they are likely to make in the short term. Therefore, Elrad 's

approach is recommended for development in the short term. This should be easily

grasped by the Business Analysts and Developers alike. Tools should be unaffected

and potential for code generat ion and round tripping can be further explored.

One of the first questions faced when presenting AOP to SolNet developers was

how AOP affects patterns. Patterns are an important part of the development best

practice at SolNet where they make use of classic patterns such as the Abstract

Factory (Gamma et al. 1994), and J2EE patterns such as Business Delegate and

Service Locator (Alur , Crupi & Malks 2001). We have shown that aspects can help

to simplify and make design patterns more reusable , as well as opening opportunities

for a new range of patterns associated with the use of aspects. In particular, the

ability to refactor existing patterns to make them reusable and the base code more

reusable presents another opportunity to increase flexibility of SolNet frameworks

and reduce development effort.

Finally idioms used with AspectJ and how these have been applied in SolNet

projects were discussed. These idioms solve very specific design problems but al­

low more effective and productive use of AspectJ. Furthermore, they assist in the

development of more reusable and flexible aspects.

60

CHAPTER 6

TESTING

6.1 Introduction

Aspects introduce new challenges when verifying program correctness. However,

it is only recently that testing has received attention from the aspect development

community. The early focus on testing looked at how aspects could be used to aid

testing of software rather than testing of aspect software. Aspects were used to write

test cases by allowing specification of system invariants and substitution of mock

objects (Isberg 2002, Monk & Hall 2002). This is a distinct act from the testing

of the correctness of software that realises functionality using aspects . Moreover, it

may be desirable to test aspects independently so they can be included in reusable

aspect libraries or sold as off the shelf components (COTS).

The other element that should be considered is validation. Recall that verifica­

t ion is checking the program built work correctly, where as validation ensures the

correct program has been built (Pressman 2001). In fact, aspects should make this

task easier than before since requirements can be traced directly to implementation

elements and verified with test cases (Jacobson & Ng 2004). This was difficult with

traditional approaches because requirements tended to be spread across multiple

implementation units making direct traceability and testing of a requirement diffi­

cult. Validation testing is not explored any further as the focus of this chapter is

verification techniques.

In this chapter various approaches and tools that have been proposed for perform­

ing testing (Lopes & Ngo 2005, Xie, Zhao, Marinov & Notkin 2005, Souter, Shep­

herd & Pollock 2003, Mortensen & Alexander 2005, Xu, Xu & Nygard 2005, Zhao

2003, Zhao 2002, Alexander , Bieman & Andrews 2004, Ceccato, Tonella & Ricca

2005, Lesiecki 2005c) are discussed. Testing challenges introduced by aspects are

identified and how these can be resolved is discussed. Similar problems are encoun­

tered to those faced when testing 00 software as well as new challenges specific

to AO software. Introducing tests on separate units can bring the advantages of

AOP to the testing phase. Tests are decomposed to specific requirements improving

61

62

traceability and making detection of causes of errors easier to determine. Further­

more maintenance time and costs can be reduced as tests only need to be updated

and rerun on the concerns being modified rather than the whole application (Souter

et al. 2003).

Finally, performance testing of aspects has been identified as an important qual­

ity assurance requirement . The techniques examined in this chapter do not consider

performance testing as we believe that existing techniques can still be used to ensure

that aspects do not introduce unacceptable overheads into an application. The sepa­

ration achieved using aspects can make bottlenecks in applications easier to identify

since performance can be tested on individual components including aspects.

6.2 Testing Elements

The first question faced when testing Aspect-Oriented software is what should be

tested? We believe there are several distinct elements that need to be tested de­

pending on the phase of the software development. These elements are:

• Pointcut matching - Verifying the strength of the pointcut (too weak matches

too many places, too strong matches too few places) (integration testing).

• Advice - Does what it is suppose to do (unit testing).

• Advice interaction - Particularly the effect of different advice orderings (inte­

gration testing).

• Advice/System interaction - Effect of the advice on the base system (integra­

tion testing).

These are the new elements that we believe must be tested. However , it must

be remembered that Aspect-Oriented languages such as AspectJ are a superset of

their respective base languages such as Java. This means every Java program is a

valid AspectJ program. Therefore, Aspect-Oriented programs have the same faults

as Object-Oriented programs, but they can also have additional sources of program

faults. We think the elements above are the key new elements that need to be

verified to ensure aspect software behaves correctly. This is similar to the fault

model for AOP proposed by Alexander et al. (2004). These faults are:

• Incorrect pointcut strength (Too many, or too few join points are selected by

a pointcut).

63

• Incorrect aspect precedence (Aspects are not applied to a join point in the

correct order).

• Failure to establish expected post conditions (Aspects make changes to the

execution of a join point which does not meet the post conditions specified by

the original developer).

• Failure to preserve state invariants (Changes are made to an objects state by

an aspect that violate established invariants).

• Incorrect focus of control flow (Some join points should only be selected during

certain execution sequences).

• Incorrect changes in control dependencies (Around advice can change the con­

trol flow of a join point).

• Incorrect changes in exceptional flows (Advice throwing exceptions or handling

exceptions cause implicit control flow changes).

• Failures due to intertype declarations (The control sequences could be changed

for code that depends on the structure of a class such as what parent classes

or interfaces it has).

• Incorrect changes in polymorphic calls (Method introductions which override

a super class method can modify expected system behaviour).

This is a more comprehensive fault model for AOP, however we believe many of

these errors can be picked up through detection of traditional 00 faults (e.g. state

invariants). From a minimalistic approach we believe that aspects could be verified

using a two step approach. The first is the unit testing of the aspect logic, and the

2nd is the normal integration testing of the aspects with the system. However , this is

unlikely to bring about as many of the benefits of using AO throughout the lifecycle

and may make faults harder to detect. Therefore, in this chapter several approaches

that have been proposed to support the testing of Aspect-Oriented software are

presented.

6.3 A spect Testing Challenges

Aspects present additional challenges to testing, in fact some authors have said

current aspect languages are impossible to test (Lopes & Ngo 2005). However, we

believe that although aspects can be harder to test than classes, there are techniques

64

that can effectively deal with aspects. The major challenges in testing aspects come

from:

• Aspects do not have a separate identity (they are bound to some context)

(Alexander et al. 2004, Lopes & Ngo 2005).

• Aspects are tightly bound to the woven context (changes in classes propagate

into aspects) (Alexander et al. 2004, Lopes & Ngo 2005).

• The control and data dependencies are not obvious (Alexander et al. 2004).

• Emergent Behaviour - Fault may be from class, aspect, or a side effect of the

weave order (Alexander et al. 2004).

• Cannot easily verify pointcuts (Colyer 2004).

In our experience, the major challenge faced when unit testing aspects is the

tight binding of an aspect to its context. The ability to easily substitute objects to

represent contextual objects would make the testing of aspects simpler. At this time

the simplest way to achieve this is to weave the aspects into a dummy application.

The ability to isolate aspects and advice at a lower level, and the avoidance of

weaving when unit testing would be advantageous.

Secondly, it has been found that verifying pointcut strength is difficult and in­

volves a tedious manual examination process. We question if this can be made

easier by considering different specification languages. For example naming pat­

terns can easily capture unexpected points , where as a structured language such as

annotations may improve the ability to write correct pointcuts and verify them.

6.4 AOP Testing Approaches

This section looks at the various approaches that have been proposed for testing

AO software. This is still an area where research is evolving and little in the way of

best practice has been developed. The practicality of these approaches, tool support

available, fit with existing practices, and challenges faced are discussed.

6.4.1 Data Flow Testing

An approach has been suggested to use data flow based testing of aspects and classes

affected by aspects in (Zhao 2003, Zhao 2002). Data flow testing tests how values

associated with variables can effect program execution. Three levels of testing are

65

proposed: inter-module, intra-module, and intra-aspect/class. A control flow graph

is used to calculate the def-use pairs used for data flow testing. It is claimed that

aspects acting on a class must be considered when unit testing a class. However ,

we believe that since this is a unit test, it should be possible to test the class

independently of the aspect s in the same way we would test a class free of other

services such as a dat abase (normally using mock objects). This allows verification

of the base logic rather than the extra concerns that must also be applied. There

may be sit uations where this is not possible because the aspects are required to

implement t he basic functionality of the class and removing them will cause problems

(e .g. using AspectJ to implement checked exception handling). Intra-module testing

only looks at individual uni ts such as advice, an int roduction, or a method. Inter­

module testing tests the public modules and some of the modules they call directly

or indirectly. Intra-Aspect/Class testing tests the interactions of mult iple modules

in an aspect when called in a random sequence. There are plans to implement tool

support . The tool will gather control and dataflow information to generate t he test

cases.

6.4.2 Test Adequacy

Mortensen & Alexander (2005) have proposed an approach usmg mutation and

coverage testing to ensure that AspectJ programs have been suitably tested. Fault

based test ing is used in combination with coverage and mutation testing to ensure

the adequate coverage of faults . Mutation testing involves inj ecting faults to see if

the tests can detect the error. Coverage testing of the woven program uses statement

and branch coverage, and def-use pairs. There are different coverage criteria that

are necessary depending on the environment being tested (factors such as control

changes and dat a dependencies of the aspect) . Mutations applied include pointcut

strengthening, pointcut weakening, and precedence changes. The mutations are

current ly made manually, but there are plans to develop an automated approach.

We believe this approach is useful to assess whether appropriat e tests have been

produced. However , there are concerns about the need to make changes to the

pointcuts used in the application without tool support to automate these steps, in­

cluding the necessary reversals. Moreover, it is uncertain whether incorrect pointcut

strength would be easily detected since errors made in specifying the pointcut may

also be replicated in tests.

66

6.4.3 Test Generation

Xie et al. (2005) proposes Wrasp, a framework to automatically generate tests for

AspectJ programs. Wrasp generates wrapper classes which enable AspectJ programs

to have tests generated using standard Java tools such as JTest1 . JTest generates

tests automatically from Java byte code. Wrasp provides wrapper classes to allow

this tool to work taking into account weaving issues. However, some situations cur­

rently cannot be dealt with such as context classes like JoinPoint from the AspectJ

framework and the AroundClosure class used for around advice. There are plans to

produce mock objects to allow these to be handled in the future. Xie, Zhao, Marinov

& Notkin (2004) have also proposed Aspectra for the detection of redundant tests

for AspectJ programs which could be used in conjunction with Wrasp.

It is certainly useful to automate the generation of tests and to be able to use

existing tools. However, we question whether this tool can effectively deal with the

new faults created by the use of AspectJ programs such as pointcut strength. It

would seem reasonable to assume this framework could be changed to work with

different aspect languages in a similar way so the general techniques may be portable.

6.4.4 Unit Testing Aspects

The Java Aspect Mark-up Language (JAML) provides a means to write aspects

using plain Java for logic and XML for aspect bindings (Lopes & Ngo 2005). JAML

aspects are easy to unit test using the proposed JamlUnit, an extension of the

Java testing tool JU nit2
. Testing of aspects with languages such as AspectJ is

problematic because of the tight coupling between the woven context and the aspect

behaviour. This makes traditional testing methods inappropriate and unit testing

impossible (aspects do not have independent identity). This challenge is a result of

the language design not the crosscutting concepts. However, JamlUnit only tests

the logic of aspects, not the bindings. Helper classes are provided to enable regular

JUnit tests to be written for aspect code. This research has also found that most

aspects implement orthogonal concerns which become library aspects, yet there has

been no way to ensure that these are correct. There are still challenges with this

approach such as selecting appropriate mock objects and creating execution context.

Issue is taken with several aspects of this approach. Firstly, there are many

aspect languages that allow separation of the logic and bindings using XML or

1 http://www.parasoft.com/jsp /products/home.jsp ?product=Jtest

2http://www.junit.org

67

annotations, so many of the claims about current aspect languages only really apply

to AspectJ. Secondly, their claim that AspectJ aspects cannot be tested is quite

false as will be shown in Section 6.4. 7. It is quite possible to use delegation with

AspectJ to achieve the same logical structure as JAML. This paper quite clearly

identifies that aspect testing faces the same problems as normal Java programs such

as creation of context and mock objects. We do not believe it is necessary to adopt

a new aspect language solely for the purpose of allowing testing of aspects. All the

aspect languages we have applied traditional unit tests to had problems related to

the need to provide appropriate mock objects and context. New testing frameworks

and techniques can solve these problems and better tackle the faults introduced by

aspect programs rather than focusing solely on allowing use of existing techniques

and ignoring the new sources of program faults.

6.4.5 State Based Testing

An alternative to the data flow testing approach is to use state based testing. Xu

et al. (2005) uses Aspectual State Modeis (ASM) which are an extension of the

testable FREE (Flattened Regular Expression) state model (Binder 2000). The

ASM allows the capture of impact of aspects on the state model of classes. FREE is

used to model the base elements of the program and ASM introduces elements that

model crosscutting elements and their relationships. This approach only considers

join points, advice, and pointcuts rather than the more complex elements such as

aspect composition, aspect inheritance, and introductions. Since the base classes

are unaware of the extra states introduced by aspects the testing must exercise

these states as well . However, this approach can use Transition Tree-Based testing

to generate tests directly from the ASM. This is a huge advantage for automation.

However, these tests should be complemented by tests for unintended behaviour of

aspects since this only generates tests for expected behaviour. This testing approach

can reveal 00 faults as well as aspect faults like incorrect pointcut strength and

failure to preserve state invariants. Like all state based testing this suffers from

'state explosion'.

Although this approach has the ability to generate tests it does require extensive

state modelling to be performed prior to this. This would only fit in well to an

environment that performs state modelling as part of the design process. This

could fit well with the aspect design process described by Elrad et al. (2005).

68

6.4.6 Fault Based Testing

Ceccato et al. (2005) discusses how a combination of new and old testing techniques

can be used to ensure that both traditional 00 faults and those new AOP faults

proposed by Alexander et al. (2004) can be tested. Coverage testing is extended

to expose weak pointcuts (too many join points) by detecting traversal of incorrect

branches by aspects. Traditional testing techniques should expose strong pointcuts

(too few join points) by detecting missing behaviour. Post conditions and invariants

should still be detectable with unit tests. Branch coverage testing of the base code

should detect static crosscutting problems and changes in control flow. However,

two faults that require new techniques are composition order and dynamic pointcuts.

If weaving order matters then dominance constraints should be specified otherwise

errors could occur. Different composition orders can be tested, but the best approach

is to test just those that differ by at least one data dependency from any other test.

It is not possible to test all dynamic pointcuts (could be infinite) so the k-limiting

approach used in path coverage criteria is applied. However, these approaches do

not consider how to test aspects in isolation or how to decide which code needs to

be tested on changes. For this purpose they suggest an incremental AOP testing

approach.

This approach covers the problems that needed to be tested, but as was men­

tioned does not cover unit testing of aspects which is particularly desirable when

developing reusable aspect libraries.

6.4. 7 Traditional Testing Techniques

The approaches above mainly use theoretical approaches for testing of aspect soft­

ware. Many of these techniques (or slight variations) underpin or influence the way

testing is conducted using many of today's tools. However, the techniques described

so far offer limited maturity and tool support making them unsuitable for commer­

cial development. This section discusses patterns that have been proposed to allow

testing of AspectJ programs using traditional tools. These techniques are not per­

fect, but they use many of today's commonly used tools to allow effective testing

of aspects. As testing matures these techniques can be replaced by more adequate

tools, but in the meantime these could be considered best practice when undertaking

commercial development. The techniques described here are proposed by Lesiecki

(2005c) to take advantage of aspects making testing of crosscutting behaviour easier

since the behaviour is now modularised (cannot unit test without a unit). The tests

cover both the functionality (advice) and specification (pointcuts).

69

Integration Tests

Integration tests can be written as normal JUnit tests. These tests check both the

specification and functionality are correct. However, it requires experience to write

tests that will detect aspect misbehaviour.

Visualisation Tools

Visualisation tools such as AJDT can be used to visualise and verify that aspects

are being applied in the appropriate places. Unfortunately, this process cannot be

automated and aspects with large numbers of matches throughout a system can

be hard to manually verify. It is thought to be more difficult to find unintended

matches than missing matches using this technique.

Crosscutting Comparison Tool

AJDT also offers a tool to capture the set of currently advised join points. These

can be used to periodically check where changes have occurred. This can help to

detect when new join points have been inadvertently advised or removed. If a large

number of changes occur then this method can be difficult to manually work with .

Delegation

One of the major problems faced in unit testing a pects is they are not easily instan­

tiated without being woven into some context. One approach to solve this problem

is to delegate the aspect logic to a class. This doesn 't work well when per object

instantiation or contextual information is required , but it does provide a way to unit

test many aspects.

Mock Objects

Mock objects can be used to check whether advice is being triggered in appropriate

places. The mock objects can detect whether they have had advice triggered and

this can be used to verify pointcut strength. JMock3 is commonly used for mock

objects and can be applied for this purpose.

3http: //www.jmock.org

70

Mock Targets

Mock targets can be used to substitute those objects that would be used in a pro­

duction system. This allows library aspects to be tested with a context, but in­

dependent of an actual system. There are a few approaches that can be used to

seamlessly perform this:

• Extend an abstract aspect and provide pointcuts to test the mock targets.

• Write mock targets to match pointcuts in the aspect.

This technique can also be used to verify more complex pointcuts such as As­

pectJ 's cflow.

6.5 AOP Testing Frameworks

Techniques that can be used to test Aspect-Oriented software have been presented

along with patterns which allow use of current tools such as JUnit and JMock.

When using these tools for testing Aspect-Oriented software we are working around

some of the testing problems by performing extra work. We would like to have a

similar framework to those used in testing Object-Oriented software (e.g. JU nit) for

testing Aspect-Oriented software. One such tool is aUnit4 which is being developed

by Russell Miles as part of his MSc. Adrian Colyer proposed aUnit in November

2004 for unit testing aspects in isolation on the AspectJ mailing list. The tool was

to address problems faced such as (Colyer 2004):

• Cannot easily unit test aspects in isolation from a program.

• Cannot easily check pointcuts match all and only the join points wanted.

• Cannot easily test an advice body in isolation.

The objective is to write tests without needing to create packages and having

to weave and run external classes just to perform testing. aUnit is an extension

of JUnit based on the xUnit5 architecture. It works by allowing a programmer to

specify a sequence of join points that can be played back to the aspect. aUnit can

check how the aspect responds to these join points to verify correctness. Contextual

information can be supplied as either real or mock objects just like normal test cases.

Some early problems identified with the aUnit vision are:

4http://www.aunit.org

5http://sourceforge.net/projects/xunit

Listing 6. 1: Proposed example aUnit code

public vo id testCallMatching () {

}

II define the join points to test
S t ring [] j p s = new S t r i n g [] (

) ;

{"ca l l(void Account.doFoo() &.&,

within (org. xyz . abc)"}

II get an instance of the aspect being tested
X x = X. aspectOf () ;
I I run the aspect against the join points
playBack (jps, x);
II check the results
assertlnvoked(x, "before", "l");

Listing 6.2: JMock style aUnit code

II specify the join point and conditions using
II API calls with the required values as parameters
joinPoint = new Call() . to(Account. cl ass, "doFoo")

. with (i nt (ss)). from (Facade . class)

. under (SomePreviousJ oinPoin t)

. will (return Value ("Foo done!");

• Testing around advice t hat uses proceed is difficult.

• Representing cflow.

• Context passing.

• Aspects with perXXX instantiation models.

• Making code paths as close as possible to the real deployment situations.

71

Listing 6.1 shows an example of a proposed aUnit test case. In this listing join

points are specified using strings (as in aspects). A reference is obtained to the

aspect and this is passed along with the join points to the framework to playback

the sequence. It finishes by checking that the correct invocations occurred. One

problem with this approach is the ability to make consistent mistakes when speci­

fying pointcuts since they are specified in the same way as in an aspect. Another

approach could be using Java code as in Listing 6.2 or a scripting language (Lesiecki

2004). This approach is similar to that used in JMock.

So far the proposed nature of aUnit has been addressed. The 0.1 release of

April 2005 is now assessed. When developing this release of the framework several

72

Listing 6.3: Aspect Annotations

II Aspects being tested using aUnit must have the
I I TestableA sp ect annotation
@TestableAspect
public aspect TestAspect {

}

I I each advice being tested must be named using the
II TestableAdvice annotation so it can be identified
I I by the a Unit framework (advice don't have names)
@TestableAdvice (" uniqueid")
before() : somePointcut () {

}

practical issues when working with the AspectJ framework were encountered that

affect the ability to conduct tests.

The first issue is advice cannot be named in AspectJ. Tests shouldn't depend on

the ordering in the source code so it is necessary to find a way to identify advice.

This was solved by introducing annotations (making it Java 5 dependent). AspectJ

5 will provide another way to solve this problem with the introduction of a new

reflection API (thus bypassing the need to use standard Java reflection). An Aspect

class will be available with methods such as getAdvice() and getDeclaredAdvice()

(as in java.lang.Class).

The annotation @TestableAspect must be added to the aspect definition, and

the @TestableAdvice to each piece of advice that will be tested. Listing 6.3 shows

an example. Notice the use of annotations to name an advice as "uniqueid".

Secondly, instantiating join points are being investigated further as this 1s a

challenging task due to the need to create different contexts. One possible solution

is the use of XML configuration for specifying join points.

The 0.1 release was primarily about providing a tool supporting the concept

exploration for unit testing aspects since this area lacks theoretical foundations and

is still developing. The eventual aim is to merge the project with the AspectJ or

AJDT project trees.

This release was found to be too immature for commercial work, however its use

with a SolNet project is shown as part of Chapter 9.

73

6.6 Sum mary

This chapter has examined the verification and validation of aspect systems. It is

asserted that validation is made easier using aspects since there is direct traceability

between requirements and implementation units allowing tests to be decomposed for

each unit.

The challenges in testing aspects are discussed. A simplistic approach to testing

aspects is proposed using current techniques, but it is acknowledged that it is not

satisfactory because it does not realise the benefits of using aspects in the earlier

lifecycle phases . This motivates the exploration of new and more sophisticated as­

pect testing approaches. These approaches show much promise but lack examples

of practical application and tool support necessary to adopt them in a commercial

environment. Moreover, some of them make the testing process too complex. How­

ever, we have presented an approach that uses current frameworks and a set of best

practices to effectively test aspects . This is the approach we currently recommend.

A specialised aspect testing framework is a lso presented. This tool is currently too

immature but promises to provide an effective testing framework for the future.

Finally, the need for performance testing of aspects and the potential benefits in

identifying bottlenecks in applications is briefly discussed.

74

CHAPTER 7

METRICS

7 .1 Introduction

It would be useful to have a quantitative comparison of Aspect-Oriented and Object­

Oriented software. This allows comparative statements regarding the productivity

and quality of the solutions. However , a suitable metrics suite is required to ensure

that fair and accurate measurements can be made. In this chapter a selection of

existing Object-Oriented and Aspect-Oriented metrics are examined and a suitable

set is proposed to be used in the evaluation of SolNet proj ects in Chapter 9. Our

selection aims to provide a small and balanced set rather than a comprehensive

analysis of the software as recommended by Wiegers (1999). New metrics are not

proposed, but it is argued why certain metrics are relevant and others are not to

our study of SolNet software.

7 .2 Motivation for Metrics

Measurement is fundamental to any engineering discipline as it allows us to gain

insight by providing a mechanism for objective evaluation. Software metrics are

measurements made related to computer software in areas such as software process,

estimation, quality control, and productivity assessment. Quantitative measure­

ments can be t aken and compared with past averages (in-house or external) to

determine if improvements have been made, or to pinpoint problems . They are

important to ensure that judgement is not based solely on subjective evaluations

(Pressman 2001) .

According to the IEEE Standard Glossary of Software Engineering Terms (IEEE

Software Engineering Standards 1990) a metric is defined as:

a quantitative measure of the degree to which a system, component, or

process possesses a given attribute.

Some measurements may be taken directly, where as some measurements can

75

76

only be made indirectly. Indirect measurements are harder to make and include

properties such as maintainability and reliability.

This study is mainly concerned with the use of quality and productivity measures

as opposed to those used for other tasks such as project estimation. Many of these

quality measures will need to be made indirectly.

7 .3 Traditional Metrics

Traditional metrics is considered to cover those metrics that have been used with

Procedural and Object-Oriented software. Many of the metrics shown have been

applied to both classes of software and we argue that some of these measurements

will also have relevance when assessing Aspect-Oriented software.

Two classes of commonly applied metrics are size-oriented and function-oriented

metrics. Size-oriented metrics use the lines of code (LOC) to normalise quality or

productivity metrics (e.g. errors/KLOC). Function-oriented metrics use a measure

of functionality for normalisation (Pressman 2001).

Size-oriented metrics are a simple measure that can be applied to any project

but they have received much opposition due to their programming language specific

nature, penalising short well designed programs, and they don't easily accommodate

non-procedural languages (Pressman 2001). However, if the metric is being used

in-house with clear methods to make LOC measurements and are used to make

comparisons between the same languages then they could be considered a viable

approach (Jones 1994) .

Function Points are used to provide a technology independent measure of the

systems functionality based on five classes of general system characteristics (exter­

nal inputs, external outputs, external inquiries, internal logical files, and external

interface files). Being a technology independent measure the number of function

points stays constant and the only variable is the amount of effort required to de­

liver a set of function points. Typical values for different languages such as Java

are available or in-house values could be applied. However, no data is available for

AspectJ. Function points require trained, experienced personnel to be performed

accurately (Longstreet 1992, Software Composition Technologies 1997).

Halstead metrics were developed to measure a module's complexity directly from

source code placing an emphasis on computational complexity as determined by the

operators and operands in the module (VanDoren 1997). The JHawk Metric tool

(Virtual Machinery 2005) provides several flavours of the Halstead metrics including:

77

• Halstead Length - Calculated from the operator and operand occurrences.

• Halstead Effort - Estimated mental effort to develop the code.

• Halstead Bugs - Estimated number of errors in the code.

Another measurement of complexity that is generally better accepted than the

Halstead metrics is Cyclomatic Complexity (McCabe 1976) . Cyclomatic Complexity

provides a quantitative measurement of the logical complexity of a program. This is

based on the number of independent paths through the program. Cyclomatic Com­

plexity is independent of the physical program size and complexity and depends only

on the decision structure of the program. A low Cyclomatic Complexity indicates a

program is more understandable and more amenable to modifications at lower risk

than more complex programs (VanDoren 2000). It is the most widely used of the

static software metrics (VanDoren 2000) .

According to Jones (1994) LOC and Halstead metrics are invalid under certain

conditions (such as comparisons between languages) and should not be used . In

fact , LOC is one of the most widely used metrics despite being one of the most

imprecise metrics ever used in Science/Engineering disciplines. However, under our

condit ions of use it does not suffer from these limitations as we are not really consid­

ering different programming languages . Jones (1994) also says that complexity and

function point metrics are useful since excessive complexity raises defect potential

and reduces productivity. Function points are also free of the economic distortions

of LOC measures. No function point data was available for AspectJ (used in our

refactoring project) and expertise in applying function points was not available. For

these reasons, the application of function points was not considered further. It would

be interesting to see productivity measures for AspectJ such as LOC/ FP compared

with those of J ava and other 00 languages.

How metrics can be applied to projects must be investigated. For instance, an

AspectJ program consists of a primary decomposition containing Java code and

crosscutting behaviour provided by aspects. The aspects will be woven into the

primary decomposition to produce an equivalent Java program. So, from the pri­

mary programmer's perspective the complexity may decrease because of the code

injection, yet the fully woven program is of equal or greater complexity to the orig­

inal. We believe it is appropriate to consider the base program independent of the

aspects when using standard metrics as this is what they are designed to measure.

By considering this increased level of abstraction we are making a valid assump­

tion like we do when working with different level languages such as assembler and

78

Java (which both end up as equivalent machine level instructions). It is clear that

aspects create new associations and new elements of complexity that may need to

be considered. However, how can we compare these new associations and make

comparative measures against a program that doesn't use aspects? It is shown by

Ceccato & Tonella (2004) that decreases in one area of the program were often com­

pensated for with increases in new relations as a result of aspects being added. The

question is which measure should be increased at the expense of the other? The

answer to this question is likely to depend on the context to which aspects are being

applied. In our study aspects implement infrastructural concerns that crosscut a

number of components in a consistent way. The nature of infrastructure aspects

allows them to be abstracted from a particular project and be reused at no cost .

This 'free' nature allows us to disregard aspects when analysing the base program.

In this situation we believe aspect relationships are better than the relationships

being removed. However, this may not be true in all situations.

When considering just the base program, it would be expected that complexity

would decrease from the programmer's point of view. If the assumption is made

that obliviousness applies then it would seem valid to measure the complexity solely

on the base program. If this principle doesn 't apply then it may not be a valid

comparison. This would be determined by the type of aspect (e.g. an aspect that

provides tracing to all public methods would not require any expertise from the base

programmer. Other aspects may require the programmer to consider their existence

in the way they program. The extent to which this occurs would likely be the

deciding factor). This is backed up by Zhang & Jacobsen (2003) who states changes

can be measured independent of the primary program since aspects are maintained

separately. The complexity of the program is the sum of the aspect and primary

program. However, this is managed by the compiler not the architect. Zhang &

Jacobsen (2003) also predict that AOP should reduce Cyclomatic Complexity as

crosscutting elements are removed, and size should be reduced.

Based on the above arguments the traditional metrics of LOC, Halstead Effort ,

and Cyclomatic Complexity will be used to evaluate SolNet projects. These metrics

should give a reasonable coverage of the effort required to develop aspect applica­

tions and the complexity (indication of time to understand, number of bugs, and

maintainability) when compared with the Object-Oriented application.

The next section discusses metrics that have been developed for use with Aspect­

Oriented software.

79

7 .4 Aspect-Oriented Metrics

There has been some research into new metrics for aspect software. Some of these

metrics are not entirely new, but extensions of old metrics to incorporate Aspect­

Oriented features (e.g. including intertype declarations when evaluating the depth

of the inheritance tree or number of methods in a class). It is well known that

aspects introduce new couplings between aspects and the principal decomposition

so there are also new metrics to account for these relationships.

Ceccato & Torrella (2004) propose a metrics suite that extends the commonly

used 00 metrics suite of Chidamber & Kemerer (1994). This suite was designed

to investigate the advantages and disadvantages of using AOP. In particular they

consider the implicit coupling between aspects and the principal decomposition.

Many of the existing metrics are easily adapted by unifying classes and aspects, and

methods and advice. Additionally minor adaptions are made for static crosscutting.

However, they also recognise the need for specific measures for aspects. The metrics

suite includes: Weighted Operations in Module, Depth of Inheritance Tree, Lack of

Cohesion in Operations, Coupling on Advice Execution, and Coupling of Method

Call. They have developed a tool to support collection of these metrics, and these

metrics are also used by the AOP 'v1etrics tool (Stochmialek 2005). In their small

example they find that improvements in one metric as a result of applying AOP

were at the detriment of another metric. A decision must be reached as to which

one of these properties is more desirable.

Another metrics suite to measure aspect coupling is proposed by Zhao (2004).

Since coupling is often used to indicate better maintainability, reliability, and reusabil­

ity they have focused on metrics measuring the couplings between aspects and

classes.

We don't believe that the metrics available for Aspect-Oriented software are

mature enough, or provide compelling reasons to be applied in our study. We use

similar metrics to those applied by Zhang & Jacobsen (2003) and have used similar

reasoning in motivating their relevance.

7.5 Summary

This chapter shows that there are existing metrics that can be used to make valid

comparisons between different aspect programs and between aspect and 00 pro­

grams. There are certain assumptions required when making these comparisons.

However, for companies making in-house comparisons these assumptions are likely

80

to be fair. It would be an interesting area for future work to evaluate the use of

function point metrics with aspect software. Aspect software creates new associa­

tions and couplings that should be measured. However, we question the usefulness

of these comparisons against traditional implementations where these relationships

do not exist and decisions must be made as to what type of relationship is more

desirable. When evaluations are being made between aspect systems these new

measurements will be important.

CHAPTER 8

AOP STANDARDS

8.1 Introduction

In this chapter standards related to AOP frameworks used for implementing Aspect­

Oriented software are investigated. This includes the motivation for standards, in­

vestigation of current standards, and recommendations for potential standards. This

chapter does not investigate standards across the rest of the software development

lifecycle. Chapter 5 examines the design phase of the lifecycle including possible

extensions to the UML standard for aspect modelling.

8.2 Motivation for Standards

There are many AOP frameworks available for implementing Aspect-Oriented soft­

ware in a Java environment such as AspectJ , JBoss AOP, Spring, AspectWerkz,

N anning1 , and Dynaop. It is easy for new users of aspect technology to be over­

whelmed by the large number of frameworks available and the differences and sim­

ilarities between them (See Chapter 3 for a comparison of the major frameworks).

Unfortunately, each of these frameworks uses its own aspect representations and

syntax. Although there are some common elements, there are enough differences

to be frustrating to developers. This reduces the ability of users to easily switch

between frameworks, and also the ability to take aspects developed for use in one

framework to another (very useful for reusable aspect libraries). Moreover, the

frameworks offer many of the same features, although in slightly different ways and

often with different terminology or semantics. Therefore, it would make sense to

develop a standard to reduce the needless differences between frameworks (Kiczales

2003).

In computing, standards are often considered to be synonymous wit h interop­

erability. However, standards are a formal protocol adopted by a group, where as

1 http: //nanning.codehaus.org

81

82

interoperability is less formal and only requires the ability of one system to be able

to access features or resources of another (Shirky 2001). Interoperability can be

achieved without a standard by groups developing their own compatibility layers.

Standards can also help achieve other design goals such as avoiding vendor lock-in,

promoting reuse, and sharing knowledge. These goals are all positive motivators

for forming standards for AOP. However, it must also be established as to whether

standards are needed to achieve these goals, or if they can be achieved via other

means such as frameworks providing their own compatibility layers.

We believe a standard can help achieve the following for AOP:

• Writing aspects once that can be used with other AOP implementations (in­

teroperability and reuse).

• Developers can concentrate on learning one technology regardless of the final

deployment technology (avoid vendor lock-in).

• Good aspects written on one platform become available to others (sharing

know ledge and reuse).

• Better tool support - no need for custom plug-ins for each tool (reuse).

In early 2005 the two largest frameworks , AspectJ and AspectWerkz, merged.

This merger has the potential to produce a de facto standard AOP implementation

for Java (Almaer 2005). However , other major implementations such as JBoss AOP

and the Spring Framework have strong ties to their respective environments ensuring

they will not be rendered obsolete in the near future. Moreover, there are also

smaller frameworks competing in niche areas such as Dynaop and Nanning. Some

of these smaller frameworks take different approaches to that of the mainstream

frameworks such as the use of semantic pointcuts in the JAC framework (Pawlak

2005b). These frameworks could be the popular implementations of tomorrow and

provide new ideas to continue to innovate AOP. This leads us to the question of

whether it is too early to standardise. Standardising early could mean innovative

ideas are missed that could make AOP a more popular and proficient technology,

but failure to standardise or doing so too late creates more challenges for developing

a user base (Shirky 2001) .

From a commercial perspective standardisation opens the path for an aspect

component market. Vendors can sell standard aspects which implement a partic­

ular concern. Companies can purchase these off the shelf (COTS) and reuse them

in their projects. This requires components that can be deployed in different AOP

83

environments and the ability to specify how the component should be integrated

with the particular system. Moreover, standards should mitigate the risk in pur­

chasing these components since they can still be used if a particular vendor or A0P

implementation disappears (e.g. bankrupt). This reduction in risk spreads to other

areas of adopting the technology as standards imply increased maturity and stability

providing greater confidence for businesses to invest in the technology.

Now that the need for standards has been motivated, the remainder of this

chapter will look at current standards efforts, potential standardisation paths, and

how some frameworks are currently trying to achieve some of these goals without

implementing standards.

8.3 Candidates for Standardisation

Since there are few standards available for A0P a list is formed of potential candi­

dates for standardisation. These are not intended to be standards, but a road map

to where standards could be formed and what they could potentially contain. We

are certain that A0P will undergo a major standardisation in the future but at this

point in time competing frameworks provide the necessary innovation to continue

to advance A0P into the mainstream of software development.

The most obvious place to start standardisation is the join point model. This is

crucial if fr ameworks are to fully inter-operate and make use of each other's aspects.

Most frameworks expose similar join points with only a small number of variations

so the core elements should be easy to standardise. However , alternative approaches

like the semantic pointcuts of the JAC framework should also be considered as a

potential future model. Also, frameworks such as Spring expose a reduced number

of join points to prevent breaking 00 principles such as encapsulation and data

hiding (e .g. Spring does not allow advising of field accesses). We believe it would be

better to have a full join point model as part of the standard, but some frameworks

may only partially implement the standard (similar to what happens in SQL).

It would be ideal if advice could be standardised. This is another necessary step

in moving aspects from one framework to another. However, there are challenges

here when approaches such as AspectJ have extended the Java language. A stan­

dard here would need to make a choice as to whether standard Java will be used

or language extensions. J ava 5 annotations add new possibilities to avoid language

extensions (e.g. AspectJ 5 will include support for pure Java aspects using anno­

tations). Advice is so similar to a method that if a standard Java approach was to

be taken then this would enable the most cross platform support and would be the

84

least intrusive option.

Configuration of aspects is often left to each framework. Some approaches are

XML, Annotations, and AspectJ pointcuts. This is acceptable because when as­

pects are moved between applications they need to be reconfigured for the specific

environment. However, it could still be useful to standardise the languages used,

particularly the patterns used to match code elements.

e .g . execution(**(..)) in AspectJ and

execution(**->*(..))in JBoss ADP are equivalent.

These minor differences are totally unnecessary and should be eliminated. Most

frameworks are using AspectJ 's style so this would be a sensible choice for the basis

of any future work.

A general area that could be standardised is the terminology used by AOP frame­

works. The core terminology is currently quite stable, but there are still some small

differences between frameworks. An example would be Introductions and Intertype

Declarations which both refer to the static modification of a class. Different choices

of terminology are one of the biggest hindrances to new users of aspects.

Standardising these areas would still allow different frameworks the ability to

do different things 'under the hood' in terms of weave times, tool support , and

runtime efficiency improvements. Widely adopted standards in terms of join points,

pointcut expression languages, and advice have yet to evolve. This seems to be

a major hindrance to AOP because there are many implementations out there,

each doing their own thing. Of the four implementations with a significant user

base (AOSD.NET 2005), Spring, AspectJ, and AspectWerkz have large numbers of

similarities in comparison to JBoss AOP which has its own pointcut language and

semantics.

Weaving tools could be standardised by incorporating AOP into the Java Virtual

Machine. This would allow very efficient AOP implementations to be created as

many of the overheads currently introduced by AOP tools will be removed. Many

of the current weaknesses in AOP can be solved with this support. This is discussed

further in Section 8.8.

8.4 Current Standards Efforts

There have only been two attempts to standardise AOP thus far. One of these was

the AOPI (AOP Interfaces) project started by Renauld Pawlak in April 2003, and

the AOP Alliance started in March 2003. The AOPI was merged into the AOP

85

Alliance in June 2003 leaving the AOP Alliance as the only major standards effort.

In 2004 Bill Burke (JBoss) revealed a major effort that was going to be launched

involving the majority of the big names in AOP (Burke 2005). Unfortunately, for

reasons unknown, this never eventuated. Therefore, in the next section the focus

will be solely on the AOP Alliance's standard.

8.5 AOP Alliance

The AOP Alliance2 is the only major standards effort thus far for AOP. The AOP

Alliance is self-described as a group of people interested in Java and AOP who col­

laborated to try and form some standards (AOP Alliance 2003). This group consists

of many high profile people from the AOP community who have worked together

to produce a set of interfaces to allow interoperability between implementations.

Unfortunately, this group seems to have focused largely on dynamic proxy issues

resulting in a standard that is only really applicable to certain types of implementa­

tion (i.e. proxy based interception). Of the four major frameworks only Spring has

implemented the interfaces, and even then, only partially. However , smaller frame­

works such as JAC and Dynaop have adopted the interfaces (Pawlak 2005b, Lee

2005) . Version 1.0 of the standard was released in March 2004. This is the only

release and the project has been inactive since.

8.5.1 Goals of the AOP Alliance

The current problem is AOP tools are designed for use in a particular environment .

This is often because of the need to use a weaver to modify classes. Weavers are

well fitted to an environment, but when used elsewhere they are liable to cause

problems. The AOP Alliance believes it is useful to have an implementation specific

to the particular problem being solved, however they want to have a core language

that is shared by all these implementations (Pawlak 2003). This would allow:

• Reuse of existing AOP components.

• Simplify reuse by having a common API.

• Simplify adaption of existing AOP components for a given target environment.

• Simplify IDE/ tool integration.

2http://aopalliance.sourceforge.net

86

The AOP Alliance decided to focus on issues outside of weaving logic and config­

uration logic since they are too tightly coupled to the particular AOP implementa­

tion. The goals of the AOP Alliance are similar to what we have proposed and they

have tackled similar areas. However, we believe that weaving should be a goal for

standardisation as this would remove many of the current problems faced by AOP

implementations and tools.

8.5.2 AOP Alliance Components API

This section looks at the structure of the AOP Alliance interfaces including an

analysis of its strengths and weaknesses. Recommendations for improvements are

made. The AOP Alliance interfaces are separated into three distinct APis.

Reflection and Program Instrumentation APis

The reflection API allows location and identification of pertinent code fragments

(e.g. Fields or Methods). It also provides access to information associated with the

code fragments such as meta data (the AOP Alliance has a basic key / value meta data

API which predates annotations). This API is used to give flexibility beyond that

provided by the standard reflection packages which might not always be available

depending on when weaving is performed (e.g. preload time). The API allows

access to classes, members (fields or methods), code, and program units. It also

has corresponding locators for these units such as ClassLocator. This API provides

comprehensive access to a program to allow modification using the instrumentation

API's.

The instrumentation interfaces provide useful methods for making program mod­

ifications at certain join points. Modifications available are add after code, add be­

fore code, add interface, add meta data, set super class, add around code, add field,

add method, create class, and undo (remove instrumentation). This is a comprehen­

sive set of program modifications and does not appear to lack any features available

in the major frameworks. It is not clear whether this API would be useful for more

advance functionality (e.g. dynamic pointcuts like cflow and cflowbelow used in As­

pectJ). Dynamic features would need to be supported in any future standard that

is to be successful.

87

JoinPoint

/\ /\

I I
FleldAccess Invocation

L\.. L\..

I I
Constructor Method
Invocation Invocation

Figure 8.1: AOP Alliance Join Point Hierarchy

Interception API

The interception framework is based around an invocation join point model. The

join point model consists of field accesses, constructor invocations, and method

invocations. This hierarchy is described in Figure 8.1. The key problem here is the

small number of join points exposed. This may be testament to the proxy focus

taken by the AOP Alliance. Instantly this cuts down the ability for AOP Alliance

aspects to be fully compatible with AspectJ, AspectWerkz, and JBoss AOP which

all have far richer join point models.

The advantage of this approach is that most frameworks can support this as a

minimum join point set as these join points are also the most commonly used. Ex­

amples of join points not available are exception handlers and dynamic control flow

which are both supported by AspectJ and JBoss AOP. The Spring Framework does

not support FieldAccess so only partially implements the AOP Alliance interfaces.

The join point model also contains access to some contextual information. Avail­

able to all join points is access to the object containing the join point, and the join

point object (e.g. the method object). The method and constructor invocations

provide further access to the arguments of the method or constructor being called.

Finally, a proceed method is used to invoke the next interceptor in the chain (or the

actual join point if all interceptors have been executed).

The second part of the interceptor API is the advice model shown in Figure 8.2.

There is an interceptor for each of the runtime events described by the join point

model. At this stage there are:

• Methodlnterceptor - has an invoke(Methodlnvocation) method.

88

Advice

D.

Interceptor

I
AfA

I
Constructor Ntethod Field
Interceptor I nte.rceptor Interceptor

Figure 8.2: AOP Alliance Advice Hierarchy

• Constructorlnterceptor - has a construct(Constructorlnvocation) method.

• Fieldlnterceptor - has a method for set(FieldAccess) and get(FieldAccess).

There are several advantages and disadvantages to this type of model. Firstly, a

separate interceptor class must be created for each piece of advice, unless runtime

checks are made to determine which method/field/constructor has been invoked.

This does not make sense when a concern needs to be realised as multiple pieces of

advice that are best grouped in a single aspect. Typing information is lost using

interceptors, adding further risk of incorrect advices being written and problems not

being detected until runtime. Furthermore, there is only an around advice when

using interceptors. This is also risky as it requires the programmer to remember to

make calls to the proceed method to ensure execution of the next interceptor in the

chain. Having a before and after semantic is important for this reason. The major

advantages are the simplicity and use of pure Java to write advice.

General AOP API

Finally they define a general AOP APL This consists of a tag interface Advice. One

possible implementation is the Interception APL There is currently discussion on

adding an Annotation API as an alternative implementation (Pawlak 2005a).

89

8.5.3 AOP Alliance Interoperability

Aspects written using the AOP Alliance interfaces can be plugged into any other

implementation that also implement these interfaces. This is a key goal of introduc­

ing AOP standards. The AOP Alliance interfaces focus on interception of method

and constructor invocations, as well as field access. All their types of advice are in­

terceptors . There is no notion of before and after advice, instead a call to proceed()

is required to execute the next advice or the actual join point . However , this is the

approach taken by several frameworks, many of whom have implemented the AOP

Alliance interfaces.

It would seem that AOP Alliance aspects and AspectJ are incompatible. This is

actually only true in one direction. The project lead from AspectJ (Adrian Colyer)

has shown how to write an AspectJ adapter aspect which allows AOP Alliance

aspects to be used with AspectJ. Listing 8.1 shows this adapter aspect . By extend­

ing the adapter aspect, specifying which AOP Alliance aspects to use and the join

points to apply it to, AOP Alliance aspects can be used in AspectJ. Unfortunately,

if aspects have been written using AspectJ, configuration for use with other frame­

works is impossible unless specific support has been added by the framework such as

that available in the Spring Framework (Johnson, Hoeller, Arendsen, Sampaleanu,

Harrop , Risberg, Davison, Kopylenko, Pollack, Templier & Vervaet 2005).

Listing 8.2 shows an AOP Alliance aspect MyMethodinterceptor (implements

Methodinterceptor). This interceptor contains no references to show where it should

be applied. This is normally defined somewhere by the implementation language

the aspect is being applied to (often XML configuration files). In AspectJ this is

carried out using pointcuts, but since they know nothing about how to use this

aspect directly, it is necessary to extend the base aspect AOPAllianceAdapter to

provide the pointcuts and a reference to the AOPAlliance aspect to use. This is

shown in Listing 8.3.

This example has served multiple purposes. Firstly, it highlights how to write an

AOP Alliance aspect. Secondly, it shows how these aspects are free of connections

to the platform which specifies how the aspect is used in its own proprietary way.

Thirdly, it shows how a framework can provide an interoperability layer between

itself and another framework to allow use of another framework 's aspects.

Currently AOP Alliance aspects can be plugged into Spring, Nanning, Dynaop,

and AspectWerkz. It is also shown that they can be easily used with AspectJ. JBoss

AOP has chosen not to implement the AOP Alliance APis because they do not fit

into their development model. However, they believe their architecture could allow

90

Listing 8.1: AOPAllianceAdapter Aspect

// Library aspect which allows AOP Alliance Method Interceptor
// aspects to be used within AspectJ (Adapted from Adrian
// Colyer' s version)
public abstract aspect AOP AllianceAdapter {

}

// sub-aspects use this to specify the AOP Alliance Method
// Interceptor to use
protected abstract Methodln terceptor getMethodin terceptor () ;

// sub-aspects use this to specify where to apply the AOP
// Alliance aspect in their specific application
protected abstract pointcut targetJoinPoint;

// method interceptors should only be triggered at method
// execution join points
pointcut methodExecution () : execution (* * (..)) ;

//invoke method interceptor at target execution join points
Object around() : targetJ oinPoint () && methodExecution () {

MethodinvocationClosure mic = new
Methodln vocationClosure (thisJ oinPoint) {

public Object execute() { return proceed(); }
}
Methodlnterceptor mlnt = getMethodinterceptor () ;
if (mint != null) {

try { return mint.invoke(mic); }
catch (Throw able t) { throw new SoftException (t) ; }

} else {

}
}

return proceed();

Listing 8.2: MyMethodinterceptor Aspect

// A very simple AOP Alliance Method Interceptor which logs
// a methods entry and exit
public class MyMethodinterceptor implements Methodlnterceptor {

}

public Object invoke (Methodlnvocation jp) throws Throwable {
System.out.println("About to invoke:"+

}

jp. getMethod () . getName ());
Object ret = jp . proceed() ;
System . out. println (" Completed invocation of : " +

jp .getMethod() .getName());
return ret ;

Listing 8.3: MyAOPAllianceAdapter Aspect

I I App lie a ti on spec if i c aspect to configure and apply an AOP
II Alliance Method Int erceptor using the Aspect]
II AOPAllianceAdapter
public aspect MyAOPAllianceAdapter extends AOPAllianceAdapter {

}

private Methodlnterceptor myMethodlnterceptor = null;

II Provides the AOP Alliance Method Interceptor to be used
II to the super aspect
protected Methodln terceptor getMethodln terceptor () {

}

if (my Methodln terceptor = null) my Methodln terceptor
new My Methodln terceptor () ;

return myMethodlnterceptor;

II specifies the join points where this interceptor should
II be applied in this application
pointcut targetJoinPoint() : within(org.xyz .. *);

91

AOP Alliance interceptors to be 'plugged in ' using their interceptor factories (Burke

2004). The major problem is the AOP Alliance aspects are not fully supported by

the major frameworks because it was not developed in a way that supported their

development models. This is a barrier that will need to be overcome if any standard

is to be widely adopted.

8.5.4 Future of the AOP Alliance

The AOP Alliance is inactive. In August 2005 a major discussion began on their

mailing list as to whether the project could continue to develop. Renauld Pawlak

discussed about how he, like many others had lost interest in the AOP Alliance and

become occupied with alternative projects. This is always a problem with groups

formed in the open source community. This initiated a discussion on the possibility

of adding a new area to the standard using the new Java 5 annotations. The

disadvantage is that JBoss AOP, AspectWerkz, and AspectJ 5 have already carried

out their own work using annotations. Developing a standard without agreement

from these groups would be pointless. The AOP Alliance doesn't have enough power

with the major frameworks to achieve its goals. This leads to further discussion in

Section 8.6 as to where standardisation could go.

92

8.6 Potential Standardisation Paths

There are many potential paths that could be followed to produce standards for

AOP. This section proposes the four options that we believe currently exist for

forming a standard:

• JCP / JSR - add AOP to the Java language/Virtual Machine Support.

• Standard's groups, such as the Object Management Group (OMG) - stan­

dardise AOP at a higher level than Java. This would probably also result in

standards for UML and Model Driven Development for AOP. At this stage

the OMG is not doing any work in this area.

• Community Standard - this is similar to what the AOP Alliance set out to

achieve. However, there is some conflict between some groups that could

possibly make this a hard task to complete. This approach could result in an

applicable and widely adopted standard if a consensus can be reached that is

acceptable to the major players and smaller frameworks.

• De facto Standard - Users select a platform which becomes the standard

through share popularity. The new AspectJ 5 is heading confidently in this di­

rection. However, JBoss AOP and Spring have close ties to their environments

which will help them remain popular.

We believe that a JSR is the best option for an AOP standard for the Java

language to succeed. Currently there is no JSR in progress, which is surprising

since IBM, BEA, and JBoss have the power to achieve this. Bob Bickel from JBoss

has said they wanted AOP to become a standard feature of Java, and IBM have also

backed the need for a standard (LaMonica 2003). There is also a prototype JRockit

JVM with native AOP support. This results in more efficient weaving and memory

usage. It would be possible to extend the Java language with a JCP for AOP, but

this could also be achieved using other approaches such as annotations.

AOP has been developing over the past few years and many new ideas have

been experimented with. It is getting to the stage where the frameworks are getting

closer and closer in ability. At this point, we believe things appear stable enough for

efforts to be best concentrated on a single framework. This would allow more work

on making aspects accessible to the general population and building reusable aspect

libraries. There is also a move towards other areas outside of AOP such as early

aspects and testing which could also benefit from a standard development approach.

93

8. 7 Framework Interoperability

While no standards have been adopted by all the frameworks, there have still been

some efforts to promote interoperability. In this section compatibility layers that

exist between the frameworks are discussed. For small numbers of frameworks the

approaches described here are acceptable. However, there is a need to be aware of the

n2 problem. This occurs when each framework is required to write a compatibility

layer for each of the others. For small n this is acceptable, but as n increases

this becomes unwieldy. Until a standard is developed this is the most appropriate

approach to ensure that aspects can be reused within different frameworks.

The biggest effort has come from AspectWerkz in the form of an extensible

aspect container. The aspect container was designed to allow aspects from different

platforms to be plugged in and used with Aspect Werkz. This container supports

Spring, AOP Alliance, and AspectJ aspects. The idea is to share the common

elements from each of the frameworks and have a custom extension that is plugged

in to handle the framework specific details (Boner & Vasseur 2005). The container

could easily support other frameworks such as JBoss AOP if the necessary plug-in

was developed. The container was slightly slower at running aspects from other

languages than native support but the ability to plug-in different aspects should

outweigh this concern in many environments. It should be noted that Aspect \,Verkz

has now merged with AspectJ so this will not be developed fur ther.

Adrian Colyer has shown how AspectJ can use AOP Alliance using an adaptor

aspect written in AspectJ to configure where the aspect should be applied and make

the necessary translations. This is discussed in Section 8.5.3. We believe this could

be applied to some of the other pure Java frameworks such as Spring and JBoss

AOP in a similar way.

JBoss AOP does not have any compatibility layers for using other frameworks,

and the other frameworks do not support JBoss aspects. It is possible to use the

Aspect Werkz container if a plug-in is written to allow it , but this has not been

pursued. JBoss does not appear to have good relationships with the other AOP

frameworks as they continue to work in the opposite direction producing proprietary

solutions.

Spring has support for AOP Alliance aspects that do not have field accesses. Ad­

ditionally it has made steps towards achieving some interoperability with AspectJ.

AspectJ aspects can be configured using Spring's dependency injection and config­

uration of J avabean properties. Aspects can be instantiated using a Spring factory

method instantiation model which was added to allow this integration. In Septem-

94

ber 2005, Adrian Colyer announced he was joining Spring to bring closer integration

between the two projects. In particular Spring will adopt the AspectJ pointcut lan­

guage and be able to parse AspectJ annotations. The AspectJ weaver and compiler

will not be required; instead Spring's proxy based model can be used. It is this

type of step between AspectJ and another major framework that appears to suggest

AspectJ will continue to become the de facto standard AOP implementation.

8 .8 JVM Support

We believe that ultimately AOP needs to be incorporated into the JVM. This would

produce clear APis for adding aspectual behaviour at runtime. Furthermore it would

remove any overheads currently associated with using AOP since the framework will

remove unnecessary code. This standard could be produced in one or two phases.

The first phase would be the actual virtual machine API used by aspect frameworks

to modify the code. The second phase could be a change to the Java language

to incorporate aspects as first class citizens. This would ultimately turn Java into

an Aspect-Oriented language allowing compilers, debuggers, etc to work as they

do for current native Java code. Of these two changes the addition of support to

the JVM is seen as the most crucial since this will define what it is possible to do

with aspects and what cannot be done. Frameworks can stop developing competing

APis for manipulating code and concentrate on taking their aspect representation

and applying it to the code using the APL

There is currently an experimental version of the BEA JRockit JVM with native

support for AOP (Boner et al. 2005a, Boner, Vasseur & Dahlstedt 2005b). This was

developed to address issues with current byte code manipulation techniques such as:

• Inefficient instrumentation - can be very CPU intensive and consume signifi­

cant memory.

• Double bookkeeping - need to build up a database of information to allow

the weaver to make necessary join point matches. This information is already

gathered by the JVM to support the reflection API but is not available to the

weaver.

• Runtime byte code changing using the Hotswap API adds complexity.

• Multiple agents a problem - precedence issues, changes conflicting, and undo­

ing changes made by another agent all cause significant problems.

95

• Cannot intercept reflective calls.

It is believed that these problems can be addressed using JVM weaving. The

JRockit team have implemented a prototype subscription based API for AOP sup­

port. This solves the above problems since the JVM already has the information

available for weaving from forming the reflective database. Moreover, the JVM has

bookkeeping information on which methods call others to support the Hotswap API.

This would allow advice to be easily dispatched before a matching join point without

byte code modification. Since the JVM can just dispatch advice as it is matched

it becomes easy to add more advice to join points transparently and at linear cost.

However, JVM support is not without its problems. There are some current se­

mantics that will be difficult to address at the JVM level such as the initialization

pointcut in AspectJ (all constructor invocations leading to the initialisation of an

instance) and the need to support JVMs without support would be costly. A JSR

would be an ideal solut ion to the final point and we believe this is the path AOP

standards for J ava should take.

8.9 Summary

At this stage a clear move towards AOP standards has not occurred. This may be

positive since AOP is still evolving as different frameworks and ideas are being tried

and innovation cont inues to be strong. However, the longer it takes to cement these

ideas and move them into the mainstream, the slower adoption will be. We believe

that AOP will be standardised t hrough t he J ava Community Process to add native

virtual machine support and a standard way of writing aspects. With AspectJ and

Aspect Werkz merging IBM and BEA may be seen combining to lead a JSR for

AOP. A community standard can be capable of producing an excellent standard.

However, this is unlikely as too many different players need to be satisfied and an

agreement is unlikely to be reached .

Ultimately standards could help drive the formation of an off the shelf aspect

component market and reduce the risk to businesses adopting aspects .

This chapter has focused on standards at the implementation stage of the soft­

ware development lifecycle. However , having standard processes to help govern

software development through the entire lifecycle will also be necessary. This has

been explored in more detail in Chapter 5 which examines how aspects are identified

and designed before implementation.

96

CHAPTER 9

INTEGRATING ASPECTS INTO A SOLNET

SOLUTIONS PROJECT

9.1 Introduction

The major objective of this proj ect was to apply aspects to a real world project .

This allows assessment of the benefits AOP can bring to a complex environment

in conjunction with enterprise technologies. This chapter explores the process used

to aspectise a Sol et Solut ion 's project and the results obtained by comparing an

aspect and non-aspect version of the systems under examination.

9.2 SolNet Development Frameworks

This section gives a brief overview of some of the technologies used in SolNet devel­

opment proj ects. The aim is to provide enough information to enable the reader to

increase their underst anding of t he material referred to throughout the remainder

of this chapter.

9.2.1 Application Structure

Many applications developed by SolNet are web applications built using the Model­

View-Controller (MVC) pattern, implemented using the Struts framework (The

Apache Software Foundation 2000). In the model there is a service and domain

layer built using Enterprise JavaBeans (EJBs) (Sun Microsystems 2005) . The Ser­

vice layer consists of EJB Session Beans and the Domain layer contains EJB Entity

beans. The Entity beans are made persistent using EJB Container Persistence to a

Sybase relational database.

97

98

9.2.2 Common Services Architecture

The Common Services Architecture (CSA) provides development support with the

following (Griggs 2005):

• Support components for development.

• Service components/modules.

• Build tools.

• Deployment and development support.

• Process information.

• Documentation - design, developer 's guides.

• Application and environment setup.

When CSA is referred to, unless otherwise stated, the reference is to the com­

ponent libraries it provides.

9.2.3 Incident Reporting Framework

The SolNet Incident Reporting Framework (part of the CSA) provides base classes

for exceptions to inherit from and a reporting framework for instances of those sub­

classes. Figure 9.1 provides a simplified diagram of the exception classes. The idea

is each application creates specific exceptions through the extension of BusinessEx­

ception. In addition to creating these exceptions, developers also provide a XML file

with information used in the production of error messages. Some exceptions that will

be encountered come from frameworks such as the EJB components. An example

of this is javax.ejb.FinderException. The Incident Reporting framework provides a

wrapper class (ReportableFinderException) used to convert FinderException from

a checked exception to an unchecked exception. This also allows Finder Exception to

be reported through the framework. This is performed similarly for other common

framework specific exceptions.

9.2.4 Business Object Framework

The Business Object Framework (BOF) provides base classes for inter-application

interfaces. The base class of most importance is ServiceBaseBean used in the service

layer of the application. The ServiceBaseBean is a standard EJB stateless Session

99

Exception uinterface>t RuntimeException
Reportable

I\ I\

1 r I
ReportableExceptlon ReportableRuntlmeExceptloo

f
~usinessException ReportableFinderException

Appllcatlon
Specific

8usinessException

Figure 9.1: SolNet Incident Reporting Framework

Bean. However, this class eases the development tasks required to construct a Ses­

sion Bean. As part of the base class there are methods called begin() and end ().

These 'hook methods' allow services such as security and audit ing to be easily per­

formed . Developers need to make calls to these methods from each service method

(i. e. public methods in Service Beans) they create.

9.2.5 Transaction Handling

EJB container transaction handling is extensively used by Sol et applications.

Transactions are automatically rolled back by the EJB container if an exception is

encountered that is a subclass of RuntimeException. However, checked exceptions

(such as Business Exceptions) require the developer to notify the EJB container if

the transaction needs to be rolled back. This is executed by getting a reference to

the context and calling the setRollbackOnly() method.

9.3 NZQA - SPER Project

The New Zealand Qualifications Authority (NZQA) is a Crown Entity that was

established to ensure the quality of and to coordinate national qualifications in

New Zealand. NZQA is currently undertaking the eQA (Electronic Qualifications

Authority) project in association with its development partner SolNet Solutions.

100

This is a project to replace legacy Information Technology (IT) applications with

web centric solutions.

The SPER (Students, Processing, Entries, and Results) application allows NZQA

to collect learner information (e.g. student enrolment and results) from providers.

It also provides services such as record of learnings, awarding qualifications, and

invoicing for services provided. SPER is the target system of this study. However,

because of its dependencies on several other systems they will only be briefly men­

tioned. These other systems include eQA applications, NZQA legacy systems, and

external systems. These systems have dependencies with SPER:

• Exams - The Exam's system facilitates NZQA's management of exams includ­

ing which exams are available, where and when they will be sat, who is sitting

them, the marker, and the materials used and their distribution. SPER makes

information available to Exams for processing through direct database access.

• QUAL - The Qualification's system provides a single repository of information

for all national qualifications and standards, as well as rules for qualification

verification. It supports quality assurance and the registration of new /revised

qualifications. SPER and QUAL communicate through the QUAL-SPER in­

terface using RMI and Data Transfer Objects (DTOs).

• Contacts - The source of all provider and contact information. SPER accesses

information from the Contact's database.

• Other NZQA systems used include finance and website systems. External

systems such as school management systems and the National Student Index

(NSI) maintained by the Ministry of Education (MoE) must also be interfaced

with by SPER.

The relationships between the eQA applications as described above are shown

as Figure 9.21
. There are many different forms of communication between the

systems such as direct database access, manual batch files, and Java Remote Method

Invocation (RMI). We are most concerned with the SPER External Interface (SXI)

which presents access to SPER's functionality via RMI to other systems using the

Facade pattern (Gamma et al. 1994).

SPER was selected because of its relative maturity and size when compared to

some of the other SolNet projects. Initially the EOS (Educational Organisation

System) was selected. However, this was a proof of concept (POC) project that was

1 Figure reprinted SolNet Solutions/NZQA Design Documentation

Legacy appllcatlons

Accredltatlo
NZOAweb

NZQA
{rrethOd=direct {nethod::;d1rect Website

DB access.read- «pull» DE: a~~~:}read-
«pull» : only} {execution=real- : ,

{exerution=real• time} «push» : ····--·---,-·-----'
time} : , 1 {method =Per1, 1

i ' {execution=batch}' DB scnpt} t {method:::Per1/
1
-- - --- - - - - -- - -- - - - - - -,----- - '- - - - -- -- -- -- - -- - - - - -' : DB scnpt}

/.-------------------.,..: _.'------,, «push» {exerution=batch}

e.QA

- - ~ ull» 1method=RMI access}

c::::J (e~ru1,on=manua1.reaH1me} i
«pull» :

«push»
{execution=batch}
{transport=file system.

____ content=file} __ _

Finance

···2I=J
E8} _('.'.'~ '!1~.=-~~~c-~:sl , : , «push»

{execut1on;ree1-t1me} : ; : : : {execution=batch}
1 1 ,

1
1 {transport=file system

I I I I I

E8
- {metho~<~~~>~ccess~ :

1

'~ V - · - · - · - ~~~t~n~~fi~e! • • • - -- - - - - · - - - •

---;,;s
'

{execuhon=real-llm: SPER '::-=-_':"~-~ = = = = = = = = = =, - -- - - -: «pull»

1 «puShll ,
1

{8)80Jt1on =
~-------------~• -----~---~I/ {execution= : : batdl}

batd'l) , 1 {l:r1J1sport=HTTPS,

Providen1

«push» ,
transp:irt;manua1.:

content;flle}

,------------- ~
'

School management system

«push»
{execution= :
real-time} :

'

{transport;rsync.
content;f1le)

MoE

'
*

{transport:::HTTP
1

S,conlenl=XML} '0--+-------1

conten l=XML}

NSI

Interfaces on components represent the passive side of the interaction;
the interfaces waft for data or queries from an external system.

Figure 9.2: NZQA Applications

101

102

Batch Manager

Batch Manager

Presentation LaP------i B O~• .. ··~· l_:_J --~
Service Layer

B ~"""M• G E:J !
l Merge Request

'
Domain LaP-----i

E::J l_:_J Qualifications

B ~ Organlsaticns
I

Batch Processing I

Figure 9.3: SPER Layered Architecture

CSA

not at a level of maturity where it could be used to reliably assess the impact of

using aspects. In fact, it was initially used but because of the difficulty in reliably

deploying the system, it wasn 't feasible to continue. Moreover, it was still too small

to give an indication as to the usefulness of aspects. EOS could be the first eQA

system to be developed with aspects, pending approval. This will be discussed

further in Section 9.4.

9.3.1 General Architecture

The SPER application is far from trivial. It is made up of approximately 115,000

lines of code spread across 1,022 classes. It is a J2EE application built using tech­

nologies such as EJBs and Struts in a layered fashion. The layered architecture is

shown as Figure 9.32
.

The SPER application is a Model View Controller (MVC) based web applica­

tion implemented using the Struts framework. The presentation layer consists of

Java Server Pages (JSPs), backed by Struts actions. The Service Layer consists

of ServiceBeans (Session Beans) which allow use of common EJB services such as

transactions. Most of the logic is delegated to Plain Old Java Objects (POJOs).

The domain layer contains the Entity Beans used to manage persistent objects. The

CSA provides core services such as auditing and security components which crosscut

the application throughout the presentation, service, and domain layers. Factories

are used to make naming service lookups between the various layers transparent.

2F igure reprinted SolNet Solutions/NZQA Design Documentation

Listing 9.1: General Service Bean method structure

II typical service method in a SolNet Service Bean
public void doService () {

try {

}

II start service wrapping
begin();
II perform business logi c

catch (BusinessException e) {
II transaction rollback

}

get Session Context(). setRollbackOnly ();
throw e;

I I exception handling
catch (Find e r Exception e) {

throw new R eportabl eF ind e rException (e);
}
catch (...) {}
finally {

}
}

II end service wrapping
end() ;

9.3.2 Identifying Potential Aspects

103

Due to the scale of the eQA applications there was a reliance on information from

senior development staff at SolNet to identify an area of the system where attention

could be focused on identifying aspects. It was decided to focus on the service layer

as this was known to include code that could be potentially aspectised. By focusing

on this layer the study was restricted to a much smaller code base from the full

115,000 lines of code available. Additionally it was considered to be an area that

could bring benefits at lower risk, providing a natural path to have aspects integrated

into future projects. Furthermore, it is generally recommended that aspects should

be phased into use so developers can become familiar with the technology before

applying it to critical and higher risk sections of code (Laddad 2003).

A code inspection process was used to identify similarities and differences in the

code used for the classes in the service layer in order to identify aspects. It soon

became very clear that there was a very common structure to the methods in the

Service Beans. This is shown in Listing 9.1.

Three distinct services have been identified from this listing that are being per­

formed in addition to the core logic of the bean. These are:

• Service Wrapping- This is the name used to describe the calls made to begin()

104

and end(). These methods perform common operations such as security checks

and auditing. Potentially these services could be added into separate aspects,

but at this stage the calls to these methods are made.

• Exception Handling - This involves capturing exceptions of certain types and

converting them to another type.

• Transaction Handling - Checked exceptions must signal to the container that a

rollback must occur. Runtime exceptions are automatically rolled back by the

container. This normally involves capturing the checked exception, signalling

the rollback, and re-throwing the exception.

In the next section the design of these services is explored and an argument

formed as to whether they should be implemented as a single aspect, or separate

aspects for each distinct service.

Having identified these potential aspects it was necessary to evaluate the degree

to which the SPER project follows this structure. Service wrapping was the easiest

of the three to evaluate as it was necessary to perform this for all public non-static

methods. There was one exception to this in the project and this was when a public

method delegated its work to another public method with different parameters. Fur­

thermore, there is an alternative form of service wrapping that uses the begin(String

comment) method which allows a custom audit comment to be made. This is rarely

used except for external interfaces with other systems. However, exception han­

dling and transaction handling were not as straight forward to evaluate. Exception

handling presented numerous scenarios, however further analysis showed many of

these could be refactored, allowing these options to be collapsed into fewer states.

One common scenario highlighting the refactoring of code to collapse the number

of options when dealing with a particular exception is:

• Catching a Finder Exception (checked exception), rolling back, and re throwing

the exception. The caller then catches and re throws this exception as a

ReportableFinder Exception (unchecked exception).

• Catching a Finder Exception, rolling back, and throwing a ReportableFind­

er Exception.

• Catching a Finder Exception and throwing a ReportableFinder Exception

An astute reader may notice that these can be made equivalent. The 2nd and 3rd

choices are identical since the container automatically invokes a rollback for runtime

105

exceptions (ReportableFinderException). The first option can be refactored to one

of the other two options by moving the responsibility for handling the conversion of

the Finder Exception to a ReportableFinder Exception to the service method. This

leads us to collapse all of these scenarios into the third option. This can be seen

similarly with the CreateException/ ReportableCreateException.

Most other cases of exception handling involve rolling back ReportableExcep­

tions or their subclasses. However, there are a few remaining exceptions to these

rules. There are two scenarios to be considered. The first is that developers have

incorrectly used the incident reporting framework (which all business exceptions

should subclass) or the method has some special exception handling logic that must

be applied to it. It would seem that these two scenarios can explain the remaining

differences. The worst of these scenarios are catch all exception handlers which re­

throw a new runtime exception. This tends to be a definite sign of bad design (bad

smell). In the following design these scenarios are taken into consideration, but we

believe that aspects will force better design to avoid these issues on other projects.

The final question that must be resolved is whether there could be scenarios

where checked exceptions are thrown and a transaction rollback should not occur.

This has not identified, but a design may have to take this scenario into account.

A further area where a design should take account of variation in the use of these

services is the service wrapping calls to begin(). There is a version of begin() that

takes a String parameter used as a comment. This comment is used for custom

audit comments and is used extensively in the SPER External Interface. This form

can be used from any of the service bean methods, but is rarely used. However , we

must allow it to be handled gracefully in the design.

9.3.3 Aspect Design and Implementation

In the previous section three key services have been identified that could be turned

into aspects. In this section it is shown how an iterative approach has been applied

to the design and implementation of the relevant aspects . Throughout this process

adaptions have been made and problems identified that have needed to be overcome,

many as a result of the complex environment that the aspects must be integrated

with. These are practical issues that were not considered before this project com­

menced, but they needed to be resolved to ensure a reliable and low risk approach

for future use of aspects in this commercial environment.

In the first iteration the variations of Service Methods in the base project have

been ignored and a single aspect is used to implement all three services. This

106

approach highlighted some key problems. Firstly although the aspect is simple, the

crosscutting concerns cannot evolve and change individually. The idea behind using

aspects is to separate these concerns from the main code into localised unit. This

is achieved to a certain degree, but it seems far better and more reusable if these

concerns are separated. Moreover, the assumption is that these services are applied

to the entire project in the same way. This is clearly incorrect as our analysis shows

and this solution limits our ability to work around the differences in the various

beans. What this approach has given us is the ability to simply test the use of

aspects and see how they integrate with the build process. This is discussed further

in Section 9.3.4. The potential benefit of using aspects is also seen since some

sections of code have been refactored. In Listing 9.2 a method from a Service Bean

is shown before the use of aspects, and then in Listing 9.3 the refactored version

with aspects is shown. The refactored version is simpler. It is easy to identify what

the method is doing without tediously going through auxiliary concerns that are

framework related. The aspect to provide the extra services is similar to that shown

in Listing 9.4. However, note this has been simplified for the purposes of illustrating

this approach. There is a deliberate error with the use of checked exceptions which

can be fixed, but for the purposes of this illustration it is ignored.

The second iteration saw the separation of the various services into an individual

aspect for each service. Now that services are becoming more reusable base aspect

approach is adopted. This means the logic is captured in high level aspects that

can be reused across projects. The sub aspects are used to identify points in the

current application where the services need to be applied. The situation is reflected

in Figure 9.4. An example aspect for service wrapping is shown as Listing 9.5. Note

the use of an abstract pointcut to allow easy specification of the methods where the

calls need to be made. This can now be adapted for each application to take into

account its requirements. Exception handling still suffers from the same problem as

the last example when it is implemented using an around advice similar to Listing

9.4. However, because of the checked exceptions being thrown it requires that all

methods the advice is applied to can handle these. This is not the case, and we know

quite clearly that aspects will be dealing with these appropriately, unfortunately

the compiler does not! To solve this the Exception Introduction Pattern is applied

(Laddad 2003). The idea behind this pattern is to use the exception softening

process to bypass the compiler errors, and then convert the exceptions back to their

original checked exception before they reach the base code. This solution was less

than desirable since it required substantial application specific code to perform the

exception conversion process. This extra code depleted the benefits of using aspects

Listing 9.2: Enrolment Fees Method - Before Refactoring

public void recalculateEnrolmentFees (OID oid) throws
LearnerException , OptimisticConcurrencyException {
try {

begin();

}

II Start of busin ess logic
Enrolment enrolm ent = EjbUti l .getEnrolmentHome()

. findByPrimaryKey (oid);
enro lment. r eca l cu l ateFees ();
II End of busin ess logi c

catch (Finder Ex ce ption e) {
getSessionContext (). setRollbackOnly ();
throw new R eportable Find e rExcept ion (oid,

Enrol m en tServ iceBean. class , e) ;
}
catch (Learner Exception e) {

getSess ionC ontext (). setRollbackOn l y ();
throw e ;

}
catch (OptimisticConcurrencyException l e) {

getSess ionC ontext () . setRo llb ackOn ly ();
throw l e ;

}
finally {

end() ;
}

}

Listing 9.3: Enrolment Fees Method - After Refactoring

public void recalculateEnrolment Fees (OID oid) throws
LearnerException , OptimisticConcurrencyException {
II Only contains busin ess logic!

}

Enrolment en rolment =
Ejb Util. getEnrolmentHome () . findByPrim aryKey (oid);

enrolment. recalculateFees () ;

107

108

Listing 9.4: Single Aspect Approach

II Intercepts service method calls
Object around (ServiceBaseBean bean) : servicemethods () &&

this(obj) {
try {

}

II service wrapping
bean. begin() ;
I I execute service method
proceed (bean) ;

I I handle exceptions
catch (OptimisticConcurrencyException e) {

II rollback transaction

}

bean. getSessionContext (). setRollbackOnly ();
throw e;

catch (...) {}
finally {

}
}

II service wrapping
bean . end () ;

for exception handling so as a result a more appropriate solution was sought. It

became clear that a very simple solution was the use of the after throwing advice

instead of an around advice combined with the Exception Introduction Pattern.

Iteration three saw a restructure of the application to reduce the number of

pointcuts being rewritten in each of the sub aspects. To solve this problem the

approach used by Griswold, Sullivan, Song, Shonle, Tewari, Cai & Rajan (2006) to

add a layer between the base system and the aspects was applied. This approach

is called Crosscutting Programming Interfaces (XPI) and is designed to reduce the

«aspect11- «aspect» «aspect»
ServlceWrappar TransactlonHandler ExceptionHandler

~ L 6

-«aspect» ,{(aspect» «aspect»
SperServiceWrapper SperTransaciionHandler, $perExceptionHandler.

Figure 9.4: Basic Aspect Diagram

Listing 9.5: Base Service Wrapper Aspect

II Bas e aspect to make calls to begin() and
II end(} for Service B ean methods
public privileged aspect ServiceWrapper {

}

II sub aspects define service methods
public abstract pointcut serviceMethods () ;

II make ca lls to begin
before (ServiceBaseBean bean) : serviceMethods ()

&& this (bean) {
bean. begin() ;

}

II make ca lls to end
after (ServiceBaseBean bean) : serviceMethods ()

&&this(bean) {
bean . end () ;

}

109

coupling between the aspects and base code. By taking this approach it is possible

to have changes between the aspects and the base code localised to one aspect where

all the necessary pointcuts are specified. It was also noticed that the aspects were

not being applied in the correct order (through byte code decompilation) so an

aspect was added to control the weaving order. This ensures that service wrapping

is applied first, followed by exception handling, and finally transaction rollbacks.

At this stage there are well modularised concerns and a reasonable amount of

flexibility. It is time to consider how variations in the Service Methods can be dealt

with. The first of these is the use of begin(String comment) instead of begin() for

service wrapping. This is only used a small number of times in the SPER application,

but it must be allowed for when using aspects. Analysis showed that the comments

can be unstructured and may use contextual information. No occurrences were found

that referred to local variables. It was also found that all of these instances must still

make the call to the end() method. The solution to this problem was to introduce a

pointcut to identify the methods that must use the begin(String comment) method.

This allows us to exclude these methods from the call to begin(), but still make the

calls to end() with no modifications. The excluded methods themselves have a piece

of advice added to the sub aspect to implement the call to begin() with the necessary

comment. An example aspect is shown as Listing 9.6. Note that thisJoinPoint is

used to access parameter information needed as part of the comment.

So far the aspects used have been privileged aspects. This means the aspects

can access the private and protected methods and fields of a class despite the J ava

110

Listing 9.6: begin(String comment) Aspect Example

before (ServiceBaseBean bean) : excl udedmethodl () &.& this (bean) {
I I get a parameter from the method which is

}

I I included as part of the audit comment
String nameParam = thisJoinPoint.getArguments(l) ;
bean.begin("Random Comment:"+ nameParam);

access protocols. This is achieved by the automatic weaving of the necessary pub­

lic accessor and mutator methods to allow the aspect access. Advantage has been

taken of this so far in our approach because certain methods of t he ServiceBaseBean

are declared protected (e.g. begin()) that need to be called from the aspects. This

approach is acceptable, but faces challenges in the SolNet build process. The SolNet

build process involves making multiple copies of the libraries used by an application

and placing them into different folders depending on their deployment location (e.g.

WAR). Unfortunately, only one copy of the JAR file gets woven by the AspectJ

compiler. This could result in the system not functioning correctly because the

necessary public accessors and mutators are not available in the particular deploy­

ment environment (e.g. Tomcat and EAServer have their own copy of the JAR file).

There are options to solve this problem. The first is to change the build process so

that only one copy of the JAR file is used, which is woven and then deployed to

all the correct places. This is not a trivial exercise and is outside the project scope

and has little benefit to SolNet as they are currently making changes to their build

process. The second option is to make the necessary methods public so they can

be freely accessed. This is not desirable since it breaks encapsulation. However, it

is a simple approach and with the use of an enforcement aspects3 to ensure that

only authorised accesses to the object are made, this could be a satisfactory solu­

tion. This is likely to be the approach used by SolN et if aspects are used in future

projects. It was not used in this project since it required a new release of the CSA

components which was complicated by versioning issues. The final solution and one

used for this project was to move the aspects into the same package as the CSA

components they access. This works since access is only needed to protected, not

private methods, and each aspect only accesses classes from one package. If this was

not the case then this could not be successful. This may not be desirable since it

more closely couples the classes and aspects.

3 AspectJ allows the use of aspects to specify compiler errors and warnings using pointcuts. One
possible use is to say it is an error to call the method begin() from outside the ServiceBaseBean
hierarchy unless the call is from the Service Wrapper aspect.

111

Listing 9.7: Service Wrapper Base Aspect

public abstract aspect ServiceWrapper {

}

I I method which allows subaspects to make calls to
II begin (String) from a different package
public void begin (ServiceBaseBean bean, String comment) {

bean. begin (comment);
}

Listing 9.8: Service Wrapper Sub Aspect

II Advice for a method that makes a comment to begin()
before (ServiceBaseBean bean) : excludedmethodl () && this (bean) {

String nameParam = thisJoinPoint. getArguments(l);
II delegat e the call to the super aspect
begin (bean, "Random Comment: " + nameParam);

}

The solution to the privileged aspect problem does require a slight redesign to

allow the sub aspects to make the calls to begin(String) without being moved into

the CSA packages (i.e. we would like SPER specific aspects to be located in SPER

packages). For this problem a metlwJ i::; introduced in the base aspect which makes

the call to the bean as in Listing 9. 7 and Listing 9.8.

The final issue is the SPER External Interface (SXI). This allows other systems to

access the SPER system through RMI. Because information is being passed between

different virtual machines some special handling is required for implementing the

concerns. The differences are:

• Exceptions are from a different hierarchy than those for the rest of the SPER

application. This is because nested exceptions cannot be reliably passed from

one JVM to another . Instead a special exception hierarchy is used that con­

verts nested exceptions so they can be passed as a string within the exception.

This implies that a special aspect will be required to handle exceptions so they

are converted to the correct types instead of using the standard exception con­

version process.

• Auditing is normally performed through the use of a call to begin() in ser­

vice methods. However, for the external interface information about the user

accessing the service is not available, so this must be passed as a string to

the external methods. This is then used to make an audit comment with the

begin(String comment) method. This is also best performed using a separate

112

aspect as it affects a large number of methods and is performed in a consistent

manner meaning it can be simply turned into an aspect. This could potentially

be moved into the SPER ServiceWrapping aspect, but it is felt separating it

is better for modularity.

• Transaction rollbacks are normally triggered by ReportableExceptions from

the standard exception hierarchy. Since the exceptions are from another hi­

erarchy, custom code must be written for this purpose. Once again this is

designed as a separate aspect.

We believe that the requirements of the external interface can be appropriately

dealt with using separate aspects for each of the concerns. This highlights how

classes that vary from the standard behaviour can use custom aspects in place of

the standard behaviour.

In this section the iterative approach used to produce a set of reusable library

aspects that meet the requirements of the SPER application and other SolNet ap­

plications of a similar nature has been discussed. See Appendix C for full listings of

the final aspects developed.

9.3.4 Integrating Aspects into the Build Process

SolNet uses ANT to build and deploy its applications. Each project follows a sim­

ilar organisational structure and has a configuration file that allows various build

parameters to be set. These parameters allow the set of build scripts to change

their behaviour according to differences in projects. The build scripts are compli­

cated and took significant time to understand where the changes required to include

aspects in the build scripts should be made.

Due to the complexity of the scripts it was decided to replace the standard javac

task with the corresponding AspectJ compiler task iajc. This required few changes

to the rest of the scripts. A better solution would be to allow a flag to be set depend­

ing on whether the AspectJ or Java compiler should be used. An alternative could

have been to use AspectJ for a post compilation phase or load time weaving. This

is not a viable option since AspectJ's exception softening features are used when in­

corporating exception handling into aspects. Exception softening results in checked

exceptions being wrapped with a runtime exception (org.aspectj.SoftException) so

the standard Java exception checking does not produce errors when aspects are

handling an exception unknown to the base program. It would be good if this prob­

lem could be solved in the future, as load time weaving is an ideal solution that

Listing 9.9: SPER ANT aspect properties

< !- aspectj properties->
< property name="noweave" value=" false" />
< property name=" showweaveinfo" value=" false" />

< !- List jar files that need to be woven - >
< path id=" inpath. path"> ... </ path>

<!- List the jar files that contain binary asp ects ->
<path id=" aspect. path">

<pathelement
path=" 1 i b / ej bj ar / Solnet Aspects -20051012 -032151. jar"/>

</ path>

113

would give SolNet far more flexibility when deploying applications (e.g. adding and

removing services such as logging) .

The AspectJ task added to the build scripts can be configured through the use

of several ANT variables that have been included for this purpose. This allows

specification of which JAR files contain library aspects, which JAR files need to be

woven, and where the source files are located. An example of the options is shown

in Listing 9.9 and the iajc task in Listing 9.10.

It should also be noted that SolNet is developing a new set of build scripts

that contain many enhancements on the current scripts. These were not examined,

however it is known that the compilation process has been considerably changed from

the version we have applied aspects to. The new version uses a custom compilation

task rather than the standard javac task. It is currently unknown how aspects will

be incorporated into these scripts , but there may be a simple solution since this

custom task is based on the Eclipse Java Development Tools (JDT) compiler as is

AspectJ.

9.3.5 Project Testing

SolNet Solutions invest considerable time and money in developing CSA components

which may be reused across many projects in order to reduce development time, cost,

and risk for their clients. Before a component can be accepted into the CSA it must

meet some stringent requirements. The process for developing a new component for

the CSA is:

• Planning Stage - Requirements capture, impact assessment, prioritisation, and

road mapping.

114

Listing 9.10: AspectJ compilation task

<!- Import the Aspect] ANI' tasks ->
<taskdef resource=

"org/ aspectj /tools/ ant/ taskdefs / aspectj Taskdefs . properties"/>

<!- Setup the incremental Aspect compiler with the
options specified in the application specific
variables ->

<preset def name=" core_compile" description=" Compile Source">
<iaJ c debug=" ${javacdebug }"

deprecation=" false"
showWeavelnfo=" ${ showweaveinfo }"
source="$ { j av acsrcve rsion}"
Xnoweave=" $ { no weave}"
i npa th r e f=" inpath . path "
aspectpathref=" aspect . path" />

</ presetdef>

<!- Macro to run the compilation task
<macrodef name=" core_compile_macro ">

<attribute name=" sourceroots" />
<attribute name=" destdir" />
<element name=" classpath2use" />
<sequential>

<mkdir dir="@{ destdir }" />
<core _compile sou rceroot s="@{ sourceroots}"

destdir="@{ destdir }">
<c lass pa th2use />

</ core_compile>
</ sequential>

</ macrodef>

115

• Design - Designed by Common Services Team (CST) in conjunction with other

project teams and clients (if applicable) . The design is reviewed by CST

architects, possibly in conjunction with client architects.

• Implementation - Developed by CST developers. Goes through a code review

for new / high risk components.

• Testing - Full JUnit testing (or similar) in conjunction with test coverage

checks. Metrics and QA tools (e.g. Agitator) should also be applied. Perfor­

mance testing may also be necessary. Note: code coverage and metrics are

new processes that are still being introduced.

• Release - Documentation, developer education, publish to interested parties

(e .g. clients).

• Changes - Must go through a change request procedure for approval.

Several aspects have been developed using the SPER project, with the ultimate

aim of reusing them across SolNet projects as part of the CSA. For these components

to be accepted they will need to go through the process above. Of utmost importance

is the need to have a test suite associated with the aspect component. Unfortunately,

aspects present several challenges when it comes to unit testing as explained in

Chapter 6.

Four techniques have been used to verify the aspects' behaviour: AJDT, byte

code decompilation, unit testing, and scenario testing (limited integration) .

AJDT

Chapter 6 described how the AJDT could be used to verify that aspects are being

applied in the correct places through manual checking using the cross references

view. This approach is used to verify that all the aspects are being applied to the

correct places. Although there were a large number of matches to individual methods

across the sixteen classes, this was found to be a manageable task. In fact, several

errors were found using this technique (e.g. one of the classes was in a different

package structure and was inadvertently missed from the pointcut expressions).

Byte Code Decompilation

AJDT verification did not make it immediately obvious as to whether the order

in which the aspects were been woven was correct. Furthermore, just because the

116

weaving was occurring in the development environment, we wanted to be sure that

the classes that were actually deployed were correctly woven. For this purpose

the DJ Java Decompiler was applied. The class file is input and DJ produces the

corresponding source code. From this it is easy to verify that the weaving was

correct, although it is not the clearest Java code. An example from the SPER

project is shown as Listing B.1 (Appendix B due to size constraints). Notice that

the exception handling code is difficult to follow, but it is clear the concerns have

all been woven in and are correctly ordered. Note: This listing is simplified due to

its complexity and length.

Unit Testing

JUnit was considered for testing of the base aspects. This would have shown how

library aspects could be verified as correct, before using them. However, the easiest

technique when using AspectJ aspects is to test these in classes by delegating the

logic. This was not possible with some of the aspects since they were trivial (hence

testing wasn 't critical) and there was little to delegate. Furthermore, as explained

earlier, most of these aspects were developed as being privileged. If logic was del­

egated then some of the methods and fields necessary to implement the concern

could not be accessed (such as calling begin()). Delegation could be used if the

aspects were refactored into the same package as the classes they were operating

on, but there were still several framework issues that made testing more difficult

than usual. This was due to the need to instantiate the SolNet framework in the

appropriate manner. Furthermore, testing must be performed with dummy beans in

an EJB container. These problems are not limited to aspect testing, but did make

the process more difficult when there was limited verification value (i.e. the aspects

could be inspected to find errors that most unit tests would detect).

The aUnit framework was also trialled. There were several problems with the

base aspects being abstract, therefore it was necessary to provide a dummy sub

aspect for testing purposes. It was also found that some of the AspectJ features

used were not supported by the aUnit framework (e.g. after throwing advice). An

attempt was made to modify the framework to support some of the features required

but this resulted in more problems. An example of a potential aUnit aspect is shown

in Listing B.2 (Appendix B due to size constraints). Of further note was aUnit did

not have support for passing and failing tests, rather it could only print out results

of executing join points. This framework cannot easily be used in an automated

fashion. aUnit is currently too complex and immature for practical use. aUnit is

117

expected to be much improved by a scheduled release for early 2006.

Scenario Testing

This was originally intended to be an integration test using the various test cases

available in the SPER packages. However, the test cases were out of date for the

SPER version being refactored. Because it was not feasible to update all the test

cases it was decided to update one test case to allow testing of a bean's service

method. This was used to ensure that t he correct results were returned, including

an exception scenario. This testing is limited, but it did verify that for a service

method the aspects had been applied correctly. This could not verify if the refac­

toring was correct across all the service methods. Unfortunately, errors could have

been introduced that would not be discovered by these tests. This does not reflect

the use of aspects, but rather the refactoring of a large number of methods not de­

signed to use these aspects. Some inconsistent sections of code required modification

that could have unintentionally been performed incorrectly to account for the new

policies. Despite this, it can be argued that had the original code been written with

aspects in mind, these scenarios would not have been an issue. It is these problems

that aspects should help resolve.

A further stage of testing involved a scenario through the web interface. The

same steps were repeated using both the original and refactored version to ensure

they both produced the same results, including error messages resulting from ex­

ceptions and rollbacks. For the services used, it was found that the aspect version

behaved correctly. Logging was used for verifying elements of these scenarios.

Although the testing regime was not as thorough as originally planned, it did

provide every indication that the aspects were functioning as expected.

9.3.6 Metrics

The refactored version of SPER and the original version were compared using a se­

lection of metrics. In particular McCabes Cyclomatic Complexity (MCC), Number

of Statements (NOS), and Halstead Effort (HE) are used. There are some assump­

tions made in using these measures as detailed in Chapter 7, but we believe them to

be fair. Table 9.1 show the results before and after applying aspects to the service

beans in the SPER application. These will be referred to throughout this section.

Class CC - Original CC - Aspects NOS - Original
ProviderServiceBean 14 14 76
TopScholarServiceBean 2 1 14
BatchManager Bean 31 20 137
CompassionateServiceBean 3 1 14
EnrolmentServiceBean 15 9 64
EntryServiceBean 36 32 206
FinanceServiceBean 51 26 185
LearnerServiceBean 89 61 405
MergeRequestServiceBean 8 4 37
N siServiceBean 5 2 25
PfuServiceBean 2 1 11

Processor Bean 49 39 210
QualificationServiceBean 18 10 76
ReconsiderationServiceBean 13 4 42
ReportServiceBean 10 5 43
SXIServiceBean 177 113 750
Totals 523 342 2295

Table 9.1: SPER Metrics

NOS - Aspects HE - Original
34 1495.52

9 315.48
51 11556.3

7 1087.36
39 12508.8

171 44995.9
68 15560.7

165 39519.3
16 2517.28
13 880.68
6 386.46

124 25488
30 3298.82
14 4525.09
18 3050.05

522 253550
1287 420736

HE - Aspects
267.64

8
1560.27

59.4
7691.49
36890.3
2606.24
12778.9
273.71

20
12

15091.8
183.81
52.24

442.38
169694

247632

f----'
f----'
CX)

119

Project Complexity

It is assumed that since the aspects have been developed as CSA style components

their value is gained for free. This allows us to analyse the base program free of

aspects. This results in large savings in complexity from the point of view of the

developer since this complexity is hidden. Measures such as McCabes Cyclomatic

Complexity do not take into account aspects. Cyclomatic Complexity looks at the

number of paths through a program's execution. For SPER this is greatly reduced

from the programmer 's perspective since tasks such as exception handling have been

removed and placed into aspects. This means the path still exists but is now hidden.

It is acknowledged that aspects will introduce new couplings between aspects and

different control flows that don 't exist in the base program, but since the analysis is

from a developer's point of view this does not need to be considered. This complexity

has been moved away from the developer and into the compiler. The Cyclomatic

Complexity has been reduced by 35%. This indicates the program should be easier

to understand, maintain, and less prone to bugs.

The Halstead Effort provides a measure of the time it takes to understand a

system. Like Cyclomatic Complexity it is also a complexity measure, but it is based

on the operators and operands in thP module. The Halstead Effort was reduced

by approximately 41 %. The approximate time to understand a piece of code can

be found by dividing the Halstead Effort by 18 (Virtual Machinery 2005). This is

a t ime saving of 2. 7 hours for the SPER Service Layer. This should make adding

new developers an easier task, as well as reducing the t ime required by existing

developers for developing and maintaining the code.

These readings provide quantitative evidence to back our observation that the

final system has been greatly reduced in complexity by using aspects. In fact, most of

the service methods became trivial using aspects . This is testament to the methods

being simple before adding aspects, but the simplicity was hidden in the need for

developers to make calls to allow security, transactions, exception handling, and

logging. This code was not complex, but it did have a bad smell to it since so much

code was copied and pasted, yet using standards 00 techniques this is necessary to

make the system function correctly.

Effort Reduction

The NOS is similar to a LOC measure, but it has been normalised so that artifacts

such as white space and comments do not influence the result obtained. NOS is

used to give a measure of the amount of effort that is required to develop a piece of

120

code. A significant reduction in the NOS required to implement the service beans

using aspects instead of traditional 00 technology is shown. The sixteen classes

that were refactored consisted of 2295 statements before aspects were used. After

refactoring they were reduced to 1287 statements. This represents a 44% saving

in boiler plate code. However, there was additional code that was transferred into

aspects. Some of this code is application specific and some is designed for reuse.

This aspect code is incompatible with the JHawk metrics tool so the NOS manually

is estimated manually. It is estimated there are 140 statements in aspects, of which

approximately 50% are reusable. This leaves a total code saving of 38%. This level of

code saving is thought to be achievable for classes used in this context (e.g. Session

Beans from other eQA projects have similar structure). This is not representative

of the code saving possible across the entire project, which would be considerably

less. A result more in line with our expectations was reported by Zhang & Jacobsen

(2003) who experienced a 9% code reduction when refactoring middleware systems.

Project Maintainability

Aspects make software more maintainable because concerns are better modularised.

They also make the code more understandable and reduce its complexity and the

effort required to comprehend a section of code. This is highlighted by a reduction

in the total Cyclomatic Complexity of the refactored classes by 35%. Most of the

methods were trivial once aspects were applied making them easier to understand

and less prone to bugs. This is further backed by a 41 % reduction in the Halstead

Effort. These reductions would also indicate that it would be easier and quicker

for new developers to join a project as the resulting systems are far easier to com­

prehend. However, these measurements do not consider any added complexity in

understanding the aspects, but we believe this is still valid since aspects can be writ­

ten by specialists in an area and do not need to be maintained by all developers.

Moreover, the resulting system may have the same complexity as the original system,

but the reduction in complexity is realised by moving tasks into the compiler/weaver

instead of being performed by the developer.

Consistency

Aspects give the opportunity to ensure certain practices are consistently applied

throughout a system. This not only increases maintainability since it is easy to make

system wide changes to these policies, but it also reduces the time to code, provides

less opportunity for bugs, and makes the system easier to understand. Although

121

there is not a metric for showing this, an example earlier shows how Exception

Handling was performed in an ad hoc manner depending on the developer. Using

aspects this is made consistent, making the application easier to understand. When

the EOS project is discussed another example of this type of practice with logging

will be provided.

Performance Assessment

One question that must be addressed when using AspectJ is what is the performance

cost of using aspects instead of coding the logic directly. Ideally the performance

of an aspect application will be identical or better than its equivalent . In this

section the impact on build time and memory consumption is considered, as well

as the runtime performance impact. The runtime performance is the element we

are most concerned about , but it also the more difficult of the two to assess as

it is more prone to external factors influencing results (e.g. database slowdown,

caching, other machine users/processes, and network load). F\irther isolation would

be required to verify the results obtained. Aspects could have been used to make

these measurements, but we have doubts about the use of aspects to benchmark

aspect performance.

Build Impact

The incorporation of aspects into the build process has previously been discussed.

However , no assessments of the impact on the build process in terms of time and

memory required for an aspect build versus a normal Java application build have

been made. For the purposes of this assessment both clean compiles (when previous

compiled classes are removed) and compiles where the previous compile is retained

are examined. AspectJ has an option to display information about the weaving

taking place. This option was found to delay the build, probably due to screen I/0,

therefore we have performed builds with this option turned off.

The first test was conducted using the SolNet ANT tool to execute a clean

com pile (sant clean com pile) . The total build time was recorded and this process

repeated five times. This test allowed the ANT JVM 512MB of memory using the

ANT _QPTS=-Xrnx512m environment variable. The AspectJ version produced a

median time of thirty three seconds and the Java version a median of twenty nine

seconds. This shows a negligible affect on build time using ANT. However , it should

also be considered that aspects are only being applied to a small portion of the

entire application. Further testing would be required to see how substantially this

122

changes with aspects that crosscut larger numbers of classes and with more aspects.

The second test was operated under the same conditions, but instead of con­

ducting a clean, the existing classes were simply recompiled. This highlights a well

known deficiency with AspectJ that it must rebuild the entire project every time

rather than only updating modified classes. The median for AspectJ was thirty two

seconds and Java eight seconds. The AspectJ compiler does have an incremental

option that allows compiling to only be performed when it is needed. It is not clear

how this would fit into SolNet's build process since it requires the task to stay active

and the user to push a key each time they want to recompile. Perhaps this could

be a separate task to allow developers quick builds when deploys to the application

server are not also required.

The third test evaluates the memory consumption of the AspectJ compiler. It

was clear it was using more memory as the default ANT settings caused Out of

Memory errors when using AspectJ. In this test standard memory options were used

to find the minimum memory that was required when building this project for both

the Java and AspectJ versions. The windows process monitor was used to check the

actual memory usage. The AspectJ version required that the -Xmx option allowed

128MB of memory. The process was found to consume 161MB. On the other hand

the Java version required the -Xmx option to be 64MB and the process consumed

87MB. This highlights the fact that AspectJ uses almost twice as much memory

for builds than the normal javac compiler. For most modern machines this should

be manageable and the standard SolNet environment typically uses at least 1GB of

RAM for development machines. Other areas of the build process often use more

RAM than what this compilation process was consuming, such as the generation of

skeletons for the EJBs. Therefore, this should not be a significant issue.

Runtime Impact

The AspectJ Development Manual states that performance is targeted to be at least

as good as a normal Java application. Anything less should be considered a bug

(Eclipse Foundation 2005). We were interested to see what overhead, if any, the

aspects applied to a service method under two scenarios. The first was a sunny

day scenario and the second is when a transaction requires a rollback due to an

exception being thrown. When considering benchmarks such as (Vasseur 2004) we

believe there should be a small overhead encountered in the first scenario, and a

larger overhead when dealing with exceptions in the second scenario. The impact

of aspects on memory consumption was not considered.

123

Results for the first test were based around a simple query for an item 'Smith'

from the Learner Service using one hundred queries with the total time averaged.

This was repeated ten times and the best and worst times were removed as being

outliers. The final result produced an average time of 79ms for the non-aspect

version and 96ms for the aspect version. However, we also repeated this experiment

with 10000 queries once for each system. This produced results of 85ms and 95ms.

We believe both of these results show that the aspects have introduced minimal

overhead, which is negligible. These results are influenced by many factors such

as machine load, database server, and probably caching. We believe the repetition

and relative comparisons between the systems reduces the risk of this affecting the

results.

Another example was used that results in the system signalling an exception

(InvalidProviderCodeException). This test fails if the exception is not detected.

Otherwise, it is repeated one hundred times. It is expected that the aspect version

will be slower. However , our results for each repetition were identical or within lms

of each other. This difference cannot be explained and further testing is required as

this is in conflict with previous benchmarks. Moreover , all advice from the previous

example should execute in addition to the extra exception handling code meaning

at least the same overhead is expected. Byte code inspection was used to ensure the

correct code was deployed and logging used to verify the paths taken.

9.4 NZQA Project - EOS

The EOS (Education Organisation Systems) project aims to improve the way busi­

ness processes are managed. This project was in a proof of concept (POC) stage

when it was examined. It was the original system that we were to target refactoring

because it was a smaller and a more manageable project. However , it was also in

a state of flux and too immature to effectively evaluate aspects on. Despite this, in

this section the work completed on this project before moving to SPER is presented.

In particular the differences in the project approaches are highlighted and how they

affect the aspects developed is explained. Metric data showing the improvement

in the EOS project by applying aspects in terms of effort rather than complexity

measures is also presented. Because the code shows many similarities to the SPER

project, similar results are achieved when evaluating the effort reduction. It is ex­

pected that complexity would follow a similar pattern because the service layer is

also being refactored in EOS.

The EOS project takes a different approach to many of the existing eQA projects

124

Listing 9.11: EOS Service Method

I I t y p i c a l EOS s er vi c e method
public void sendEmail (String fromEmailAddress, String

toEmailAddress, String status) throws ServiceFailedException {
II logging start

}

if(logger . isDebugEnabled ()) logger . debug (" sendEmail () -
start");

try {

}

II service wrapping
begin () ;
II business logic
N otificationApplicationService. getNewlnstance (). sendEmail (

fromEmailAddress, toEmailAddress, status);
II logging end
if (logger. isDebugEnabled ()) logger. debug (" sendEmail ()

end");

I I exception handling
catch (Exception e) {

}

I I log error - notice developer mistake!
if (logger. isDebugEnabled ()) logger. debug (" sendEmail ()

start");
II convert to ServiceFailedException
throw con vertException (e) ;

finally {

}

II finish service wrapping
end() ;

in order to evaluate new technologies and approaches. For example it is built around

a Service Oriented Architecture (SOA) using web services. The web services are

still backed by beans similar to those used in the other projects. However, the ses­

sion beans do not extend directly from the SolNet framework base classes. Instead

they introduce a Session Facade class which provides services such as an exception

converter. The exception converter is used by the beans to change the checked

exceptions thrown in the service methods to a runtime exception called Service­

FailedException. This is an important difference from the SPER project where

checked business exceptions are used. Moreover, it also means that transaction

handling is no longer required since this will be handled by the container whenever

the runtime exceptions are encountered. One final difference is the extensive use of

logging within the service methods.

In Listing 9.11 a typical service method in the EOS beans is shown. Note that

125

although it looks similar to the SPER project, there are enough differences to require

a slight redesign in some aspects, as well as some new aspects. The services tangled

with the business logic are logging, service wrapping, and exception handling. Ser­

vice wrapping can be performed using the same base aspects as that applied in the

SPER project . Exception handling can make use of the base aspect applied to the

SXI as this allows custom exception handling to be performed. Finally, we require a

new aspect for logging. We make use of an aspect with some modifications presented

on the AspectJ mailing list. The logging aspect is reusable across many projects.

All these aspects use base aspects and some small amounts of code to connect them

with the EOS proj ect . For full code listings refer to Appendix C.

One important benefit highlighted by the EOS project was how copy and paste

coding can result in errors being propagated throughout the system. Although

a relatively minor error, one example was that an incorrect logging message was

propagated through the methods of a couple of the beans. This error could have

been crucial had that information been required for diagnosing an error in a deployed

system. Furthermore, being a non-functional error it would have been more difficult

to detect and easily overlooked. Aspects make this type of error less likely to occur,

and easier to correct should it happen as only one update is needed in one place in

the code base.

We have found that aspects saved approximately eighteen lines of code in every

service method. When aspects are excluded from the equation a 43% saving in LOC

was achieved. When aspect code specific to EOS is included that drops to 27%. This

is still a significant saving and both these results are similar to those achieved in

the SPER project showing t hese results are achievable across SolNet projects, even

when there are project specific differences to account for.

9.5 Benefits and Tradeoffs

Aspects can produce many benefits to the Service layer of SolNet proj ects. In

this section the major benefits are presented, as well as considering some of the

drawbacks of using aspects.

9.5.1 Benefits

Aspects have substantial benefits in terms of reducing the complexity and effort

required to develop the code. This was a result of the code being simpler due

to performing only one task, not several infrastructure tasks in addition to their

126

core logic. This reduction in developer burden is a result of framework code being

removed from developer responsibility and moved to the aspect compiler. It was

shown that it is possible to enforce a consistent policy for tasks such as exception

handling, logging, and transaction rollbacks. Not only are these consistent, they

can be easily maintained in one body of code. Overall aspects can reduce the

development time, reduce the bugs in the code, make the code more maintainable,

and more amenable to changes in requirements.

9.5.2 Tradeoffs

Like all technologies aspects have their risks and associated problems. This project

has highlighted testing as the most substantial area where work is required to pro­

duce a practical solution. Testing theory is still developing and it is not helpful if

it's too difficult and cumbersome to be applied in a commercial environment. Out­

side of this, we see limited IDE support and transparency to developers as minor

issues. Changes to the build process may require some work, but this is transparent

to most developers who still will deploy applications as they currently do. Over­

all these drawbacks are well compensated for by the benefits obtained when using

aspects.

9.6 Aspects Future at SolNet

Following this evaluation of aspects, many of the senior development staff at SolNet

are eager to start using aspects in the development of their projects. At the time of

writing, SolNet was in the process of presenting a proposal to NZQA to start using

aspects in the EOS project. It would appear that aspects have a positive future at

SolN et and really do promise to reduce complexity and improve the development

process. Obviously we have targeted a very specific problem in the SolNet code base,

so finding other areas where SolNet can benefit from using aspects is paramount to

their success. Two potential areas that have been proposed (not officially) are:

• Persistency - The idea would be to develop POJOs for domain objects and

then use an aspect framework to control the persistency of the objects. Cur­

rently it is difficult to change between persistency frameworks, so once one is

selected it must be persevered with unless numerous changes are to be made.

A persistency framework using aspects should allow a less complex way to

switch between frameworks such as EJB Persistency and Hibernate.

127

• POJOs - Currently SolNet makes extensive use of Session and Entity beans

as part of their CSA development framework. Aspects could be applied to

hide the underlying framework such as EJBs. Developers can write POJOs

and then the aspects are used to make the necessary connections with the

framework , such as making classes extend the required session base beans.

The advantage is that developers can write basic objects without concerning

themselves with the underlying implementation details of the framework. This

is closely related to the first option as this also involves a move to POJOs

and using aspects to hide the underlying framework (but more specifically

persistency).

Both of these areas will present challenges that are currently unknown with­

out a full assessment. These are certainly two areas that could greatly reduce the

complexity of the Sol et framework and give more flexibility in meeting client re­

quirements.

9.7 Summary

This chapter has presented the work accomplished to refactor a large real world

system at Sol et Solutions. It has shown how aspects have been designed to remove

an area of problematic code from the system so that it is well modularised , easy to

maintain, and less complex than the original system.

Several practical problems have been identified when testing these aspects which

cannot be easily resolved using the techniques presented in Chapter 6. These prob­

lems were a combination of the deployment environment, SolNet Infrastructure

classes, and AspectJ language. These aspects are difficult to unit test since they

do not have logic that can be delegated to other classes, but in most cases they

were trivial making unit tests less important. Instead, a manual verification process

consisting of use of the AJDT cross references view, byte code decompilation, and

finally some integration tests using JUnit were used. This is an area where fur­

ther work is required. Performance testing has shown that aspects add negligible

overhead. Further work is needed to verify the exception handling results as these

conflict with published benchmarks (Vasseur 2004). Build time is significantly af­

fected by the need to always perform full builds rather than only building classes

that have changed since the last build. The full build time is similar to that achieved

for the normal system.

Aspects have been shown to be applicable to other SolNet projects with similar

128

problems. In particular the EOS project is likely to start using aspects in the near

future. Two areas have been identified where aspects could be extensively applied

to make the SolNet CSA framework more flexible and free developers from many

infrastructure issues.

Ultimately, this chapter has shown that aspects can be applied in a complex real

world environment and produce compelling benefits and cost savings. They have

decreased the complexity of the development framework for developers reducing

the risk of development errors and making it more consistent. This was the major

hypothesis of this thesis.

In the remaining chapter the conclusions and areas for future work are presented.

CHAPTER 10

CONCLUSION

10.1 Introduction

This chapter provides a summary of the findings of this t hesis in relation to the

project goals outlined in Chapter 1. It concludes with recommendations for future

work.

10.2 Sum m ary of Findings

It has been shown using the refactoring of two Sol et Solution's projects that aspects

can reduce the complexity of software. This is important as the high complexity of

software is often cited as one of the major contributors to software proj ect fai lures.

The refactored SPER project had complexity reduction in the Service Layer of 35%

and 41 % as measured using the McCabes Cyclomatic Complexity and Halstead

Effort respectively. Furthermore, both the refactoring of the SolNet SPER and

EOS proj ect's Service Layers showed significant size reductions in excess of 30% by

applying aspects. This reduces the effort required to both develop the software and

for future maintenance.

While refactoring the two SolNet projects a small reusable aspect library was

developed. By using this library to implement infrastructural concerns it was shown

that developers can be sheltered from the complexity of the CSA. Furthermore,

removing these infrastructural concerns from the developer's responsibility helps to

ensure that the CSA is applied consistently throughout projects. This increases

understandability, reduces risk of introducing errors, and makes the software more

maintainable. Finally, it has been shown that there are other areas where SolNet

could benefit from aspects.

It was not possible to measure and quantify the true commercial benefits to

SolNet Solutions in adopting aspects from this project. There are several reasons

for this. Firstly, SolN et did not have historical data available that could be used

in providing a baseline for comparisons. Secondly, the size of the projects under-

129

130

taken by SolNet was prohibitive to the refactoring of an entire project with the

resources available, hence only a small portion of the projects considered were refac­

tored. Thirdly, the code refactored has been significantly improved through the

use of aspects, however, it is not expected that the results obtained are achievable

throughout the system. Therefore, to quantify the benefits solely off this code would

be misleading. The benefits to this section of code have been quantified in terms of

effort reduction. With appropriate data this could have been used to determine the

cost savings in implementing this code using aspects.

The integration of aspects into the SDLC has been considered over many phases.

It was found that outside of the implementation phase aspects are still maturing and

further research is being conducted. Despite this, there is enough maturity in most

areas for aspects to be considered commercially ready. In the early phases there

are many specification languages that can be used. Until one is standardised it will

be unlikely that appropriate tools will be developed to support them. The design

patterns and idioms being documented have proved useful in designing aspects for

SolNet. For implementation there are many options for choosing a development

framework. Any of the four major frameworks could be applied depending on the

business requirements. The criteria provided in Chapter 3 will be useful in making

this choice. Testing provides challenges, but there are methods that can be used until

more appropriate tools and frameworks are developed. Tool support is established

in most areas, but further work is required to increase the breadth and quality of

the tools. A standard for AOP implementations would be useful to reduce needless

differences between the frameworks. Ultimately, this would be best realised as a

JSR providing Java Virtual Machine support.

Overall, it was decided that aspects can and should be adopted in commercial

projects.

10.3 Applicability of Results to other

Environments

The results obtained in this study have been predominantly considered in the SolNet

Solutions' context. This is because it is difficult to verify their applicability in other

environments due to most J2EE software development being closed source commer­

cial systems. However, two particular J2EE development frameworks have emerged

in recent times that show the problems with development complexity faced by Sol­

N et are common and that AOP is an appropriate solution. The two frameworks

are:

131

• EJB 3 (JSR 220) - This specification specifically aims to simplify J2EE devel­

opment. This immediately confirms that other developers face similar prob­

lems to SolNet Solutions with the complexity and cumbersome nature of EJB

development. As was discussed in Chapter 3, EJB 3 places greater empha­

sis on t he use of POJOs and introduces interceptors which allow some basic

aspect like activit ies to be performed. The addit ion of aspect like behaviour

suggests that aspects provide a means to solve many of the problems currently

faced by developers when using EJBs.

• Spring Framework - The Spring Framework has gained a lot of traction with

its promise to simplify J2EE development. POJOs with dependency injection

help to make development less complex and Spring provides an AOP frame­

work to allow services to be transparently injected.

Both of these frameworks attempt to reduce programming complexity in the

J2EE field and do so by moving towards POJOs with transparent inj ection of ad­

ditional services. These frameworks were created to try and solve problems such

as those faced by SolNet Solutions. This enables us to infer that the results ob­

tained are applicable to other environments. It does not infer that all companies

will get the same complexity and code reductions achieved by SolNet. However,

it is thought that most companies will benefit from improved modularity, reduced

complexity, and better productivity as a result of applying aspects.

10.4 Future Work

There are several key areas where future work is required:

• Testing - More work is required to ensure that aspects can be easily tested.

In particular there is a need to help test pointcut correctness and unit testing

of aspects. More investment in frameworks such as aUnit may provide the

necessary solution.

• Design Languages - It is important that a design language is adopted, prefer­

ably an extension of UML. Until a profile is adopted by a group such as the

OMG it will be difficult for CASE tools to be developed to aid the process,

particularly diagramming and code generation.

132

• Benefit Evaluation - A study that uses similar project teams to design, develop,

and maintain a commercial level application using AOP and a traditional

approach should be undertaken to allow further evaluation of the benefits and

risks of AOP than was possible in this study.

• Serialisability- More investigation is needed to establish when AspectJ changes

the SerialUI of a class. This could be critical to enterprise applications which

use technologies such as RMI.

• Standards - A JSR would be useful to establish JVM support for weaving

of aspect applications. This would help move the focus from development of

competing frameworks to the establishment of a commercial aspect component

market.

10.5 Summary

This chapter has presented the findings of this project and made recommendations

for future work. The remainder of this thesis contains a glossary of terms used,

references , and appendices.

References

Aksit, M. (2001), Composition Filters, Available from:

http: //trese.cs.utwente.nl/ oldhtml/ composition_filters/ [15 December 2005].

Aldawud, 0. , Elrad, T. & Bader , A. (2001) , A UML Profile for Aspect Oriented

Modeling, in 'Proceedings of the OOPSLA 2001 Workshop on Aspect Oriented

Programming'.

Aldawud, 0. , Elrad, T. & Bader, A. (2003) , UML Profile for Aspect-Oriented Soft­

ware Development, in 'Proceedings of the Third International Workshop on

Aspect-Oriented Modeling held in conjunction with the International Confer­

ence on Aspect-Oriented Software Development'.

Alexander, R. , Bieman, J . & Andrews, A. (2004), Towards the Systematic Test­

ing of Aspect-Oriented Programs, Technical Report CS-4-105, Department of

Computer Science, Colorado State University, Fort Collins, Colorado, USA.

Almaer , D. (2005), AOP: No more need for a standard in Java space,

http: //www.almaer.com/ blog/archives/000660.html [16 May 2005] .

Alur, D. , Crupi , J . & Malks, D. (2001) , Core J2EE Patterns: Best Practices and

Design Strategies, Prentice Hall/ Sun Microsystems Press.

AOP Alliance (2003), AOP Alliance (Java/J2EE AOP Standards), Available from:

http: //aopalliance.sourceforge.net [18 May 2005].

AOSD.NET (2005) , Tools for Developers, Available from:

http:/ /aosd.net/ wiki/ index.php?title=Tools_for_Developers [28 April 2005].

Araujo, J., Baniassad, E., Clements, P. , Moreira, A., Rashid, A. & Tekinerdogan,

B. (2005), Early Aspects: The Current Landscape, Technical Report COMP-

001-2005, Lancaster University.

Asteasuain, F ., Contreras, B., Estvez, E. & Fillottrani, P. (2004), Evaluation of

UML Extensions for Aspect Oriented Design, in 'Proceedings of JIISIC'04'.

133

134

Baniassad, E. (2003), Theme: Intro, Available from:

http://www.dsg.cs.tcd.ie/index.php?category_id=361 [2 June 2005].

Baniassad, E. & Clarke, S. (2004), Theme: An Approach for Aspect-Oriented Analy­

sis and Design, in 'Proceedings of the 26th International Conference on Software

Engineering (ICSE'04)'.

Basch, M. & Sanchez,

Available from:

A. (2003), Incorporating Aspects into the UML,

http: //whitepapers.zdnet.eo.uk/ 0,39025945,60092638p-

39000629q,00.htm [20 December 2005].

Binder, R. (2000), Testing Object-Oriented Systems: Models, Patterns, and Tools,

Addison-Wesley.

Boner, J. & Vasseur, A. (2005), AspectWerkz Extensible Aspect Container, Avail­

able from: http://aspectwerkz.codehaus.org/extensions.html [15 December

2005].

Boner, J., Vasseur , A. & Dahlstedt, J. (2005a), JRockit JVM Support For AOP, Part

1, Available from: http://dev2dev.bea.com/pub/a/2005/ 08/jvm_aop_1.html

[15 August 2005].

Boner, J., Vasseur, A. & Dahlstedt, J. (2005b), JRockit JVM Support For AOP, Part

2, Available from: http://dev2dev.bea.com/pub/a/2005/08/ jvm_aop_2.html

[15 August 2005].

Burke, B. (2004), The Open Source Pro Circuit, Available from:

http:/ / www.pyrasun.com/mike/ mt/archives/ 2004/ 12/ 02/ 15.21.30/ [18 May

2005] .

Burke, B. (2005), The Server Side: Interview with Bill Burke, Available from:

http://www.theserverside.com/talks/videos/Bil1Burke2/interview.tss?bandwi­

dth=dsl [5 May 2005].

Ceccato, M. & Tonella, P. (2004), Measuring the Effects of Software Aspectization,

in 'Proceedings of the 1st Workshop on Aspect Reverse Engineering (WARE

2004). November, 2004. Delft, The Netherlands.'.

Ceccato, M., Torrella, P. & Ricca, F. (2005), Is AOP code easier or harder to test

than OOP code?, in 'Proceedings of the First Workshop on Testing Aspect­

Oriented Programs (WTAOP 2005) ', Chicago, Illinois.

135

Chidamber, S. R. & Kemerer, C. F. (1994), 'A metrics suite for object-oriented

design', IEEE Transactions on Software Engineering 20(6), 476-493.

Clarke, S. & Baniassad, E. (2005), Aspect-Oriented Analysis and Design: The

Theme Approach, Pearson Education Inc., NY.

Clarke, S. & Walker, R. (2002), Towards a Standard Design Language for AOSD, in

'Proceedings of the 1st International Conference on Aspect-Oriented Software

Development '.

Clarke, S. & Walker , R. (2005), Aspect-Oriented Software Development, Pearson

Education Inc. , NJ, chapter 19, pp. 425- 458.

Clement, A. , Harley, G., Colyer, A. & Webster, M. (2004), Eclipse AspectJ, Addison­

Wesley.

Clemente, P. , Hernandez, J. , Herrero, J. , Murillo, J. & Sanchez, F. (2005), Aspect­

Oriented Software Development, Pearson Education Inc. , NJ, chapter 18,

pp. 407- 423.

Cole, L., Piveta, E. & Sampaia, A. (2004), RUP Based Analysis and Design with

Aspects, in 'Proceedings of the XVIII Brazilian Symposium on Software Engi­

neering - SBES '04'.

Colyer, A. (2004), Announcing aUnit , AspectJ Users Mailing List, 8 November 2004.

Cottenier, T. , Berg, A. V. D. & Elrad, T. (2005), Modeling Aspect-Oriented Compo­

sitions, in 'Proceedings of the 7th International Workshop on Aspect-Oriented

Modeling held in conjunction with the 8th International Conference on Model

Driven Engineering Languages and Systems (MoDELS'05)'.

Dietrich, J. & Elgar, C. (2005), A formal Description of Design Patterns us­

ing OWL, in 'Proceedings of the Australian Software Engineering Conference

(ASWEC'05), IEEE Computer Society' .

Eclipse Foundation (2005), AspectJ Frequently Asked Questions, Available from

http: //www.eclipse.org/aspectj/doc/released/faq.html [23 November 2005].

Elrad, T., Aldawud, 0. & Bader, A. (2005), Aspect-Oriented Software Development,

Pearson Education Inc., NJ, chapter 20, pp. 459- 478.

Filman, R. E., Elrad, T., Clarke, S. & Ak§it, M. (2005), Aspect-Oriented Software

Development, Pearson Education Inc., NJ.

136

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1994), Design Patterns: Ele­

ments of Reusable Object-Oriented Software, Addison-Wesley Professional.

Glover, A. (2004), AOP banishes the tight-coupling blues, Available from:

http://www-128.ibm.com/developerworks/java/library /j-aopsc/ [20 February

2005].

Griggs, S. (2005), CSA, SolNet Solutions Internal Document.

Griswold, W., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y. & Rajan,

H. (2006), 'Modular Software Design with Crosscutting Interfaces', IEEE Soft­

ware, Special Issue on Aspect-Oriented Programming.

Han, Y., Kniesel, G. & Cremers, A. (2005), Towards Visual AspectJ by a Meta

Model and Modeling Notation, in 'Proceedings of the 6th International Work­

shop on Aspect-Oriented Modeling held in conjunction with the 4th Interna­

tional Conference on Aspect-Oriented Software Development (AOSD '05) '.

Hanenberg, S. & Schmidmeier, A. (2003), AspectJ Idioms for Aspect-Oriented Soft­

ware Construction, in 'Proceedings of the 8th European Conference on Pattern

Languages of Programs (EuroPLoP), Irsee, Germany'.

Hannemann, J. & Kiczales , G. (2002), Design Pattern Implementation m Java

and AspectJ, in 'Proceedings of the 17th Annual ACM conference on Object­

Oriented Programming, Systems, Languages, and Applications (OOPSLA'02)',

pp. 161-173.

IEEE Software Engineering Standards (1990). Standard 610.12-1990.

Isberg, W. (2002), 'Get Test-Inoculated!', Soft-

ware Development Magazine. Available from:

http://www.sdmagazine.com/documents/s=7134/sdm0205b/0205b.htm [7

March 2005].

Jacobson, I. (2003), 'Use Cases and Aspects - Working Seamlessly Together', Journal

of Object Technology 2(4), 7- 28.

Jacobson, I. (2005), About Ivar Jacobson, Available from:

http://www.ivarjacobson.com/html/content/about.html [12 January 2006].

J acobson, I. & Ng, P.-W. (2004), Aspect-Oriented Software Development with Use

Cases, Pearson Education Inc., NJ.

137

Johnson, R., Hoeller, J., Arendsen, A. , Sampaleanu, C., Har-

rop, R. , Risberg, T. , Davison, D. , Kopylenko, D. , Pollack, M.,

Templier, T. & Vervaet, E. (2005), Spring - J ava/ J2EE Ap-

plication Framework Reference Documentation, Available from :

http: //static.springframework.org/ spring/ docs/ 1. 2.x/ reference/ index.html

[15 December 2005].

Jones, C. (1994), 'Software Metrics: Good, bad, and missing', IEEE Computer

27(9), 98- 100.

Kande, M., Kienzle , J. & Strhmeier, A. (2002), From AOP to UML - A Bottom-Up

Approach, in ' Proceedings of the Aspect-Oriented Modelling with UML as part

of 1st International Conference on Aspect-Oriented Software Development '.

Katara, M. & Mikkonen, T. (2002), Refinements and Aspects in UML, in 'Proceed­

ings of the Workshop on Aspect-Oriented Modeling with UML'.

Kiczales, G. (2003), Interview with Gregor Kiczales, Available from:

http: //www.theserverside.com/ talks/videos/ Gregor KiczalesText / interview. tss

[8 April 2005] .

Kiczales, G. (2005), 'Once More, From the Top' , Soft-

ware Development Magazine. Available from:

http: //www.sdmagazine.com/ documents/ s=9512 / sdm0502g/ sdm0502g.html

[7 March 2005].

Kiczales , G. , Lamping, J ., Mendhekar, A., Maeda, C., Lopes, C. V. , Loingtier, J .­

M. & Irwin, J . (1997), Aspect-Oriented Programming, in 'Proceedings of the

European Conference on Object-Oriented Programming (ECOOP)', Finland.

Laddad, R. (2003), AspectJ In Action, Manning Publications Co., Greenwich, CT.

LaMonica, M. (2003), IBM, JBoss eye new Java plan, Available from:

http://news.com.com/2100-1007_3-5081831.html [16 May 2005].

Lee, B. (2005), Dynaop, Available from https://dynaop.dev.java.net/ [23 November

2005].

Lesiecki, N. (2004), Announcing aUnit, AspectJ Users Mailing List , 8 November

2004.

138

Lesiecki, N. (2005a) , AOP@Work: Enhance Design Patterns with AspectJ, Partl,

Available from: http://www-128.ibm.com/developerworks/java/library /j-

aopwork5/index.html [17 May 2005].

Lesiecki, N. (2005b), AOP@Work: Enhance Design Patterns with AspectJ, Part2,

Available from: http://www-128.ibm.com/developerworks/java/library/j-

aopwork6/index.html [17 May 2005].

Lesiecki, N. (2005c) , AOP@Work: Unit test your aspects, Avail-

able from: http:/ /www-128.ibm.com/developerworks/java/library /j-

aopworkll/?ca=dgr-lnxw0lAOPtesting [11 November 2005].

Longstreet, D. (1992), Fundamentals of Function Point Analysis, Available from:

http://www.ifpug.com/fpafund.htm [15 August 2005].

Lopes, C. & Ngo, T. (2005), Unit-Testing Aspectual Behavior, in 'Proceedings of

the Workshop on Testing Aspect-Oriented Programs (WTAOP) , held in con­

junction with the 4th International Conference on Aspect-Oriented Software

Development (AOSD05)'.

McCabe, T. (1976), 'A Complexity Measure' , IEEE Transactions on Software En­

gineering SE-2.

Miles, R. (2004), Aspect] Cookbook, O'Reilly.

Monk, S. & Hall, S. (2002), Virtual Mock Objects using AspectJ with JU nit, Avail­

able from: http:/ / www.xprogramming.com/xpmag/virtualMockObjects.htm

[18 February 2005].

Mortensen, M. & Alexander , R. (2005), An Approach for Adequate Testing of As­

pectJ Programs, in 'Proceedings of the 2005 Workshop on Testing Aspect­

Oriented Programs (held in conjunction with AOSD 2005)'.

Pawlak, R. (2003), The AOP Alliance: Why Did We Get In?, Avail-

able from: http: //aopalliance.sourceforge.net/ white_paper/ white_paper.pdf [18

May 2005].

Pawlak, R. (2005a), AOP Alliance Proposal, Available from:

http://sourceforge.net/mailarchive/message.php?msgJd=12755402 [25 August

2005].

Pawlak, R. (2005b), JAC, http://jac.objectweb.org/ [24 November 2005].

139

Pawlak, R. & Younessi, H. (2004) , 'On Getting Use Cases and Aspects to Work

Together' , Journal of Object Technology.

Pressman, R. (2001), Software Engineering: A Practitioner 's Approach 5th Ed,

McGraw-Hill, New York.

Rausch, A., Rumpe, B. & Cornel Klein, L. H. (2003), Aspect-Oriented Framework

Modeling, in 'Proceedings of the 4th AOSD Modeling with UML Workshop

(UML Conference 2003) ' .

Shirky, C. (2001), Interoperability, Not Standards, Available from:

http: //www.openp2p. com/ pub/a/p2p/2001 / 03 / 15/ c1ay Jnterop.html [8

September 2005].

Small, F. (2000), Ministerial Inquiry into I CIS, Available from :

http: //www.justice.govt.nz/ pubs/ reports/2000/ incis_rpt / [12 January 2006].

Software Composition Technologies (1997), Function Point FAQ,

http: / / ourworld.compuserve.com/ homepages/softcomp/ fpfaq.htm [1 De-

cember 2005].

Souter, A., Shepherd, D. & Pollock, L. (2003), Testing with Respect to Concerns,

in ' Proceedings of the 19th IEEE International Conference on Software Main­

tenance (ICSM'03)' .

Stein, D. , Hanenberg, S. & Unland, R. (2002a), A UML-based aspect-oriented design

notation for AspectJ, in 'Proceedings of the 1st International Conference on

Aspect-Oriented Software Development'.

Stein, D. , Hanenberg, S. & Unland, R. (2002b), Designing Aspect-Oriented Cross­

cutting in UML, in 'Proceedings of the AOSD-UML Workshop at AOSD '02 '.

Stein, D., Hanenberg, S. & Unland, R. (2002c), On Representing Join Points in

the UML, in 'Proceedings of the Workshop on Aspect-Oriented Modeling with

UML'.

Stein, D., Hanenberg, S. & Unland, R. (2003), Position Paper on Aspect-Oriented

Modeling: Issues on Representing Crosscutting Features, Available from:

http://lghvww.epfl.ch/ workshops/aosd2003/ papers/Stein-A0Missues.pdf [20

December 2005].

Stochmialek, M. (2005), AOP Metrics, Available from: http://aopmetrics.tigris.org

[8 August 2005].

140

Sullivan, K., Griswold, W., Song, Y. & Cai, Y. (2005), On the criteria to be used in

decomposing systems into aspects, in 'Proceedings of the Joint 10th European

Software Engineering Conference and 13th ACM SIGSOFT Symposium on

the Foundations of Software Engineering (ESEC /FSE 2005, Lisbon, Portugal,

September 5- 9 2005'.

Sun Microsystems (2005), Enterprise J avaBeans Technology, Available from:

http://java.sun.com/products/ejb/ [11 December 2005].

Suzuki, J. & Yamamoto, Y. (1999), Extending UML with Aspects: Aspect Support

in the Design Phase, in 'Proceedings of the 3rd Aspect-Oriented Programming

(AOP) Workshop at ECOOP'99'.

Tarr, P. & Ossher, H. (2001), HyperJ, Available from:

http://www.alphaworks.ibm.com/tech/hyperj [15 December 2005].

The Apache Software Foundation (2000), Apache Struts Project, Available from:

http://struts.apache.org/ [11 December 2005].

The Standish Group (1994), The CHAOS Report, Available from:

http://www.standishgroup.com/sample_research/chaos_l994_1.php [15 De­

cember 2005].

The Standish Group (2003), Latest Standish Group CHAOS Report

Shows Project Success Rates Have Improved by 50%, Available from:

http://www.standishgroup.com/press/artic1e.php?id=2 [15 December 2005].

van der Werff, T. J. (2001), 10 Emerging Technologies That Will Change the World,

Available from: http://www.globalfuture.com/mit-trends2001.htm [4 August

2005].

VanDoren, E. (1997), Halstead Complexity Measures, Available from:

http://www.sei.cmu.edu/ str / descriptions/halstead_body.html [22 August

2005].

VanDoren, E. (2000), Cyclomatic Complexity, Available from:

http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html [22 August

2005].

Vasseur, A. (2004), AOP Benchmark,

http://docs.codehaus.org/display/ AW/ AOP+Benchmark

2005].

Available

[15

from:

December

141

Virtual Machinery (2005) , JHawk Metrics Tool, Available from:

http:/ /www.virtualmachinery.com/jhawkprod.htm [12 August 2005].

von Flach Chavez, C., Garcia, A., Kulesza, U., Anna, C. S. & Lucena, C. (2005),

Taming Heterogeneous Aspects with Crosscutting Interfaces, in 'Proceedings

of the Brazilian Symposium on Software Engineering 2005'.

Wiegers, K. (1999), 'A Software Metrics Primer ', Software Development Magazine.

Wikipedia (2005a), Aspect-Oriented Programming, Available from:

http://en.wikipedia.org/ wiki/ Aspect-oriented_programming [22 November

2005] .

Wikipedia (2005b), Subject-Oriented Programming, Available from:

http://en.wikipedia.org/wiki/Subject-oriented_programming [15 December

2005].

Xie, T. , Zhao, J., Marinov, D. & Notkin, D. (2004), Detecting Redundant Unit

Tests for AspectJ Programs, Technical Report UW-CSE-04-10-03, Department

of Computer Science & Engineering, University of Washington , USA.

Xie, T., Zhao, J., Marinov, D. & Notkin, D. (2005), Automated Test Generation for

AspectJ Programs, in 'Proceedings of the AOSD 2005 Workshop on Testing

Aspect-Oriented Programs (WTAOP'05)' , Chicago, USA.

Xu, D. , Xu , W. & Nygard, K. (2005) , A State-Based Approach to Testing Aspect­

Oriented Programs, in 'Proceedings of the 17th International Conference on

Software Engineering and Knowledge Engineering (SEKE'05)', Taiwan.

Zakaria, A. , Hosny, H. & Zeid, A. (2002), A UML Extension for Modeling Aspect­

Oriented Systems, in 'Proceedings of the Aspect Modeling with UML workshop

at the Fifth International Conference on the Unified Modeling Language - the

Language and its Applications'.

Zhang, C. & Jacobsen, H.-A. (2003), Quantifying Aspects in Middleware Plat­

forms, in 'Proceedings of the Aspect-Oriented Software Development Confer­

ence (AOSD 2003), Boston, MA USA'.

Zhao, J . (2002), Tool Support for Unit Testing of Aspect-Oriented Software, m

'Proceedings of the OOPSLA'2002 Workshop on Tools for Aspect-Oriented

Software Development ', Seattle, WA, USA.

142

Zhao, J. (2003), Data-Flow-Based Unit Testing of Aspect-Oriented Programs, in

'Proceedings of the 27th Annual IEEE International Computer Software and

Applications Conference (COMPSAC'2003), pp.188-197. Dallas, Texas, USA,

November 2003. '.

Zhao, J. (2004), Measuring Coupling in Aspect-Oriented Systems, in 'Proceed­

ings of the 10th International Software Metrics Symposium (METRICS'2004),

Chicago, USA, September 14-16, 2004'.

Glossary

Agitator

AJDT

ANT

AO

AOP

AOP Alliance

AOPI

AOSD

Apache Tomcat

API

ASM

A testing tool being trialled by SolN et

AspectJ Development Tools - Tool support for de­

veloping AspectJ applications in the Eclipse IDE

Another Neat Tool - Used to automate the Java

build process

Aspect-Oriented - An approach to software devel­

opment that uses aspects

Aspect-Oriented Programming - A development

approach which extends traditional modularity

technologies with the aspect. An aspect is used

to modularise crosscutting concerns whose imple­

mentation is traditionally scattered throughout

objects rather than being localised

A group that has released a standard for Aspect­

Oriented programming

Aspect-Oriented Programming Interfaces - A stan­

dards effort for AOP that merged with the AOP

Alliance

Aspect-Oriented Software Development - A full de­

velopment methodology for aspects which incorpo­

rates the benefits of aspects into all phases of the

software development lifecycle

A servlet container released by The Apache Soft­

ware Foundation

Application Program Interface - An interface

which allows a program to access the functionality

of another

Aspectual State Models - An extension of FREE

which allows state based testing of aspect software

143

144

AspectJ

Aspect Werkz

aUnit

Bad Smell

Bean Script

BOF

Boiler Plate Code

Checked Exception

An Aspect-Oriented implementation for Java

which extends the Java language with new con­

cepts for aspects

An Aspect-Oriented implementation for Java

which uses plain Java classes

A testing framework for AspectJ

Signs which indicate bad design

Bean Script is a scripting language for writing dy­

namically interpreted Java

Business Object Framework - A SolNet Solutions

CSA framework to simplify business object devel­

opment

Code that is consistently added to implement in­

frastructural concerns

A Java exception which must be explicitly dealt

with by the developer, otherwise a compiler error

will be signalled

Container Persistence The EJB container manages storage, updates, and

retrievals to Entity Beans

COTS Commercial Off The Shelf - The term used to de­

scribe software components that can be purchased

from component vendors

CSA

CST

DTO

EJB

Entity Bean

Common Services Architecture - A set of compo-

nents and processes that can be reused on projects

Common Services Team - A SolN et team that

works on standardising their development ap­

proach and support infrastructure

Data Transfer Object - A simple object used to

pass data between application layers

Enterprise Java Beans - A component framework

for developing J2EE applications

An EJB used to model persistent objects

EOS

FREE

GOF

GUI

Halstead Metrics

IDE

J2EE

JAC

JAR

javac

JBoss AOP

JCP

JDT

145

Education Organisation System - An eQA appli­

cation

Flattened Regular Expression - A state model used

to model applications which allows state based

testing to be performed

Gang of Four - The name given to group that re­

leased the first 00 pattern book for software de­

velopment. This group consists of Erich Gamma,

Richard Helm, Ralph Johnson, and John Vlissides

Graphical User Interface - The visual interface of

the application which the user interacts with

A set of software complexity measures based on

operator and operand complexity

Iutegn.tLeu Development Environment - A tool for

software development which combines tools such

as code editors , debuggers, and testing frameworks

Java Enterprise Edition - The Java platform used

to develop enterprise applications

Java Aspect Components - A framework for devel­

oping Aspect-Oriented applications in Java

Java Archive - A zip file used to distribute a related

set of Java classes

The standard Java compiler distributed with the

Sun Microsystems 's reference Java implementation

An Aspect-Oriented implementation for Java from

the JBoss Group

Java Community Process - An process used to cre­

ate new Java AP Is or make modifications to exist­

ing APis

Java Development Tools - The compiler and re­

lated tools developed for use in the Eclipse IDE

146

JMock

JSP

JSR

JTest

JUnit

JVM

LOC

Make

MCC

MoE

Nanning

NOS

NSI

OMG

00

POC

POJO

A tool for writing Java tests using mock objects

Java Server Page - A page served over the web

which contains dynamic elements resolved on the

server

Java Specification Request - A formal request for

a new Java APL Proceeds through the J CP

A tool for generating tests from Java byte code

A testing framework for Java

Java Virtual Machine - Executes Java applications

Lines of Code - A simple measure of program size

A tool for building software

McCabes Cyclomatic Complexity - A measure of

software complexity based on the number of paths

through the program

Ministry of Education - A Government depart­

ment that runs the NZ school system

An Aspect-Oriented implementation for Java

Number of Statements - A normalised measure

of program size that accounts for physical layout,

comments, and white space

National Student Index - A database of all stu­

dents in NZ schools

Object Management Group - An industry consor­

tium that promotes standards for object technol­

ogy

Object-Oriented - A development approach where

systems are built from objects

Proof of Concept - An experimental development

project used to try new development techniques

Plain Old Java Object - A simple Java object with

no framework dependencies

QA

RMI

Rose Script

Semantic Pointcuts

Session Bean

SOA

SPER

Spring Framework

Struts

SXI

Sybase EAServer

TIF

UML

147

Quality Assurance - The process of ensuring that

a product meets certain quality criteria

Remote Method Invocation - A J ava protocol for

invoking methods on objects that are remotely lo­

cated

A scripting language for extending Rational Rose

Pointcuts which describe a property of join points

such as methods which modify t he state of an ob­

ject

An EJB used to implement services

Service Oriented Architecture - A way of building

loosely coupled applications using web services

Students , Processing, Entries, and Results - An

eQA application

A fr amework for developing J2EE applications

without EJB. Spring Framework includes an

Aspect-Oriented Programming implementation for

Java

An Apache Software Foundation framework for

building Model-View-Controller Web Applications

SPER eXternal Interface - An EJB Facade which

presents functionality from the SPER application

to other applications

An EJB container released by Sybase Inc.

Technology in Industry Fellowship - A fellow­

ship offered by Technology New Zealand to sup­

port university and business research relationships

which can result in commercial advantage

Unified Modelling Language - A formal language

for modelling software artifacts standardised by

the OMG

148

Unchecked Exception A Java exception which optionally may be handled

by the developer

WAR Web Archive - A zip file used to deploy Java Web

Applications

Web Services

XML

xPath

An open set of protocols and standards used to

exchange data between applications over networks

eXtensible Markup Language - A way of structur­

ing documents and data to allow open exchange of

information

A W3C recommendation for addressing parts of

an XML document

APPENDIX A

FRAMEWORK EXAMPLES

A.1 Introduction

This appendix provides a simple 'Hello World ' example using each of the AOP

Frameworks discussed in Chapter 3.

A.2 Example Application Class

The Java class shown in Listing A.1 is a simple application that prints the message

'Hello There!' to the console. This class requires tracing of its method executions.

This will be demonstrated using Aspcct J , AspectWerkz, JBoss AOP, Spring, and

Dynaop.

Listing A. l: Hello World Base Class

package nz . ac . massey . aop ;

public class HelloWorld {

}

public Hello World() {

super () ;

}

public void sayHello () {

System. out. println (" Hello There!");

}

public static void main (String[] args) {

new Hello World() . say Hello() ;

}

149

150

A.3 AspectJ

AspectJ allows both the aspect logic and configuration to be combined in one unit

as in Listing A.2. The output produced when this application is run is shown in

Listing A.3.

Listing A.2: AspectJ Tracing

package nz. ac. massey. aop. aspectj ;

II Aspect to trace method entries

public aspect AspectJTracing {

}

I I trace execution of methods in the system

public pointcut methodsToTrace () : execution (*

nz. ac. massey. aop. Hello World.* (..));

II advice that executes before the join points

I I captured by methods To Trace

before() : methodsToTrace () {

System.out.println("Entering: "+ thisJoinPoint);

}

I I advice that executes before the Join points

I I captured by methods To Trace

after() : methodsToTrace () {

System.out.println("Exiting: "+ thisJoinPoint);

}

Listing A.3: AspectJ Output

Entering: execution (void

nz. ac. massey. aop. Hello World. main (String[]))

Entering: execution (void nz. ac. massey. aop. Hello World. sayHello ())

Hello There!

Exiting: execution (void nz. ac. massey. aop. Hello World. say Hello ())

Exiting: execution (void

nz. ac. massey. aop. Hello World. main (String[]))

151

A.4 AspectWerkz

AspectWerkz uses a normal Java class to implement the aspect logic as in Listing

A.4. The advice is implemented as normal Java methods which take the join point

being advised as a parameter.

Listing A.4: Aspect Werkz Tracing

package nz. ac. massey . aop. aspectwerkz;

import org. codehaus. aspectwerkz . joinpoint. JoinPoint;

I I Simple tracing aspect using AspectWerkz

public class AspectWerkzTracing {

}

II method to log method entries

public void beforeTrace (JoinPoint joinpoint) {

System.out.println("Entering: "+
joinpoint.getSignature());

}

II m ethod to log method exits

public void afterTrace (JoinPoint joinpoint) {

System.out.println("Exiting: "+
joinpoint. getSignature ());

}

The aspect needs to be connected to the application. This is done using a XML

configuration file such as Listing A.5. Finally, the output from the application is

shown in Listing A.6.

152

Listing A.5: AspectWerkz Configuration File

<aspectwerkz>

<system id=" AspectWerkzTracing">

<package name=" nz. ac. massey. aop. aspectwerkz ">

<!- Identify aspect->

<aspect class=" AspectWerkzTracing">

<!- Pointcut containing methods ->
<point cut name=" methodsToTrace"

expression=" execution (public void

nz. ac . massey. aop. Hello World . * (..)) "/>

<!- Link advice to pointcut ->
<advice name=" beforeTrace" type=" before"

bind-to=" methodsToTrace" />

<advice name=" afterTrace" type=" after"

bind-to=" methodsToTrace" /> ->

</ aspect>

</package>

</system>

</ aspectwerkz>

Listing A.6: Aspect Werkz Output

AspectWerkz - INFO - Pre-processor

org. codehaus. aspectwerkz. transform. AspectWerk

zPreProcessor loaded and initialized

Entering: public static void

nz. ac. massey. aop. Hello World .main(java. lang. String[]

)

Entering: public void nz.ac.massey.aop.HelloWorld.sayHello()

Hello There!

Exiting: public void nz. ac. massey. aop. HelloWorld. sayHello ()

Exiting: public static void

nz. ac. massey. aop. Hello World. main(java. lang. String[])

153

A.5 JBoss AOP

JBoss AOP requires separate aspect logic and configuration similar to that of As­

pect Werkz. However, notice that JBoss AOP uses a single interceptor instead of

separate methods for before and after advice. This requires the use of a proceed()

method to invoke the method being advised. Listing A. 7 shows the aspect class and

Listing A.8 the XML configuration. Finally, Listing A.9 shows the resulting output

from the application.

Listing A. 7: JBoss Tracing

package nz. ac. massey. aop . j boss;

import org.jboss . aop.joinpoint .Methodlnvocation;

II JBoss AOP aspect for tracing

public class JBossTracing {

}

I I advice method

public Object trace (Methodlnvocation invo cation) throws

Throwable {

try {

System.out.println("Entering: " +
in vocation. getMethod ());

II proceed to next advice or actual call

return invocation. invokeNext ();

} finally {

}

}

System.out.println("Exiting: " +
invoc at ion. getMethod ());

154

Listing A.8: JBoss Configuration File

<?xml version=" 1. 0" encoding="UTF-8" standalone=" yes"?>

<aop>

<!- Identify aspect classes->

<aspect class=" nz. ac. massey. aop. j boss. JBossTracing"

scope="PEILVM" />

<!- De clare Pointcut to capture methods to trace ->

<po in tcu t expr=" execution (public *

nz. ac. massey. aop. HelloWorld-> * (..))"

name=" methodsToTrace" />

<!- Link pointcut to advice method->

<bind poin tcu t=" methodsToTrace">

<adv ice aspect= " nz. ac. massey. aop. j boss. JBossTracing "

name=" tr ace"/>

</bind>

</aop>

Listing A.9: JBoss Output

Entering: public static void

nz. ac. massey . aop. Hello World. main (java. lang. String [])

Entering: public void nz. ac. massey . aop. Hello World. sayHello ()

Hello There!

Exiting: public void nz. ac. massey. aop. HelloWorld. sayHello ()

Exiting: public static void

nz. ac. massey. aop. Hello World. main (java. lang . String [])

155

A.6 Spring Framework

The Spring Framework promotes the use of programming to an interface. For this

reason, an interface is created for Hello World to implement as in Listing A.10. It

is possible to advise classes that don't implement an interface but it requires extra

configuration. Further changes are made to the base class to account for the new

interface and changes to the application main method to account for the requirement

that objects are instantiated using the Spring Framework rather than directly. This

class is shown as Listing A.11.

Listing A.10: Spring Hello World Interface

package nz . ac . massey. aop;

II Int erface class for HelloWorld

public interface !Hello World {

public void sayHello () ;

}

156

Listing A.11: Spring Hello World Class

package nz . ac . massey . aop ;

import org. springframework. context . ApplicationContext;

import org. springframework. context. support.*;

II Simple class that creates an object

II and prints out H e llo Th ere ! on the console

public class Hello World implements !Hello World {

}

public Hello World() {

super() ;

}

public void sayHello () {

System. out. prin tln (" Hello There! ");

}

public static void main (String[] args) {

}

II Read the configuration file

ApplicationCon text ctx = new

FileSyst em XmlAppli cat ionContext (" springconfig. xml");

I I Instantiate an object

IHelloWorld hw = (IHelloWorld)

ctx . get B ean (" h e lloworld bean") ;

I I Execute method

hw . say Hello() ;

The Spring aspect is implemented using an AOP Alliance interceptor (Listing

A.12 and the configuration is implemented using XML (Listing A.13). Finally, the

output is shown in Listing A. 14.

Listing A.12: Spring Tracing

package nz. ac. massey. aop. spring;

import org. aopalliance. intercept. Methodlnterceptor;

import org . aopalliance. intercept. Methodlnvocation;

public class SpringTracing implements Methodlnterceptor {

}

I I Advice method

public Object invoke (Methodlnvocation invocation) throws

Throwable {

}

System. out. println ("Entering: " + invocation);

I I execute advis e d m ethod

Object result = invocation. proceed();

System.out.println(" Exiting: " + invocation);

return result;

157

158

Listing A.13: Spring Configuration File

<?xml version=" 1.0" encoding="UTF-8" ?>

<!IXCIYIB beans PUBUC "-//SPRING//DID BEAN//EN''

"http://www. springframework. org/ dtd/ spring-beans. dtd">

<beans>

<!- Bean configuration ->
<bean id=" helloworld bean"

cl ass=" org. springframework. aop. framework. ProxyFactoryBean ">

<property name=" proxylnterfaces">

<value>nz. ac. massey. aop. IHelloWorld</value>

</ property>

<property name=" tar get">

<ref local=" beanTarget" />

</ property>

<property name=" interceptor Na mes">

<list>

<value>SpringTracing</ value>

</ 1 is t >

</ property>

</bean>

<!- Bean Classes - >
<bean id=" bean Target"

c 1 ass=" nz. ac. massey. aop. Hello World"/>

< !- Advisor pointcut definition for around advice->

<bean id=" SpringTracing" class=

"org . springframework. aop. support. RegexpMethodPointcutAdvisor">

<property name=" ad vice">

<ref local=" aroundTracingAdvice" />
</ property>

<property name=" pattern">

<value>.*</ value>

</ property>

</bean>

< !- Advice classes - >
<bean id=" aroundTracingAdvice"

159

class=" nz. ac. massey. aop . sp rin g. SpringTracing" />

</beans>

Listing A.14: Spring Output

Ente rin g: invocation: method 'sayHello ', arguments [] ; target is

of cl ass [nz. ac. massey. aop. Hello World]

H e llo There !

Exiting : invocation: method 'say Hello ', arguments []; target is

of class [nz.ac.massey.aop.HelloWorld]

160

A.7 Dynaop

Dynaop, similarly to Spring, requires that objects are instantiated using the frame­

work. For this reason, a class is added to launch the application in Listing A.15.

Listing A.15: Dynaop Application Launcher

package nz . ac . massey . aop . dynaop ;

import dynaop. Proxy Factory;

import nz . ac . massey. aop. Hello World ;

public class ApplicationLaunch {

}

II main method to launch HelloWorld with dynaop aspects

public static void main (String[] args) {

}

II instantiate HelloWorld using dynaop

Hello World hw = (Hello World)

Proxy Factory. getlnstance (). extend (Hello World. class);

II invoke method that has been advised

hw. say Hello() ;

The tracing aspect is implemented as an interceptor in Listing A.16. Configura­

tion is performed using Bean Script as in Listing A.17. Note this is the shortest and

simplest of the external configuration files . However, the requirement that objects

are instantiated using the framework makes it more invasive. Finally, the output is

shown in Listing A.18.

Listing A.16: Dynaop Tracing

package nz . ac . massey . aop . dynaop ;

import dynaop. Interceptor;

import dynaop. Invocation;

public class DynaopTracing implements Interceptor {

}

public Object intercept (Invocation invocation) throws

Throwable {

}

System.out.println("Entering: "+ invocation.getMethod());

II Call intercepted method

Object result = invocation. proceed();

System. out. println ("Exiting: " + invocation. getMethod ());

return result;

Listing A.17: Dynaop Configuration File

// Apply int e r ce ptor to all methods.

interceptor

) ;

nz. ac. massey. aop. Hello World. class ,

ALLlvIETI:IODS,

new nz. ac . massey. aop. dynaop. DynaopTracing ()

Listing A.18: Dynaop Output

Entering: public void nz. ac. massey. aop . Hello World. say Hello()

Hello There!

Exiting: public void nz. ac. massey. aop. Hello World. sayHello ()

A.8 Summary

161

The tracing example given in these appendices provide a concrete example of the

use of the frameworks.

162

APPENDIX B

EXTENDED CODE LISTINGS

Listing B. l: Decompiled Service Bean

// Partial source from d ec ompilation of the

// TopScholarS ervice B ean by DJ D ec ompiler

// Simplifi e d for r e adability

package nz. govt . nzqa. sper. award. service . impl ;

// imports removed

public class TopS c hol a rS e rvi ce Bea n extends Service B ase B ean

{

II
II

}

// se r vice method

publi c vo id ge nerat e MsdTopSchol arFil e (String year)

throws Msd TopS cholar Fil eException

{

larg e number of n este d try/catch blo c ks for

exception handling (most catch blo c ks r emoved)

try { try { try { try { try { try { try { try { try

{ try { t ry { try { try {

II Call to S e rvic e wrapper begin()

SperServiceWrapper. aspect Of() .

ajc$before$ServiceBean Wrapper$ I $133f7 d 78 (this) ;

// Business Logic

TopScholarFactory . generateMsdTopScholarFile (year);

catc h (Throw able throwable)

{

// Call to Service wrapper end() when

// exception is thrown

SperService Wrapper. aspect Of () .

163

164

}

ajc$after$ServiceBean Wrapper2d46692c4 (this);

throw throwable;

}

II Call to Service wrapper end(} when

II no exception is thrown

SperServiceWrapper. aspect Of().

ajc$after$ServiceBean Wrapper2d46692c4 (this);

return ;

}

I I Exception handling for Create Exception

catch (CreateException createexception {

}

/ I will convert exception to a ReportableCreateException

SperExceptionHandler. aspect Of() .

aj c$ afterThrowing$ ExceptionH andler$1 $ 77f 415ae (

createexcept ion) ;

throw ere a teexception;

II lots of other exception handlers removed

I I Code used to soften exceptions to avoid compiler

I I warnings when aspects deal with the exception

catch (CreateException ere a teexception 1) {

}

if (createexception 1 instanceof RuntimeException)

throw createexceptionl;

else

throw new SoftException (createexcept ionl);

}

165

Listing B.2: Example aUnit Test Aspect

package nz. co. sol net. infrastructure. transactionhandling;

// imports removed

// T ests the advice that rollsback transactions on exceptions

public class TestReportableExc eptionRollback extends TestCase {

}

// Setup environment for tests

protected void set Up() throws Exception {

super. set Up () ;

// Setup and initia lis e Solnet CSA

// Most of this is removed

System. setProperty (" log4j "," lo g4 j. properties");

Initialisation. c h ec kinitialisation (

Initi alisat ion . getCore initi a lis e r s ()

) ;

// specify the steps to be run in the test

public TestStep [] constructSimpleTestSteps () throws Exception

{

TestStep [] steps new Test Step [l] ;

// Create the ' this ' reference

MockServiceBean t hisReference = new MockServiceBean () ;

// Get methodl

Method method! = thisReference. getClass ()

. get Method (" doSomethingl " , new Class [0]) ;

// Create the join points static part using methodl

JoinPoint. StaticPart staticPart

Factory. makeEncSJP (method!) ;

// Specify that there are no arguments to be passed to

methodl

Object [] args new Object [0];

166

}

II Create a join point, specifying the static information,

the target,

I I and the object pointed to by the this reference.

II Target in this case is the same as the thisReference.

J oinPoin t j oinPoin t = Factory. makeJP (sta ticP art ,

thisReference ,

thisReference , args, new

Reportable Crea teExcept ion (new

CreateException ())) ;

J oinPointContext con text = new

JoinPointContext (joinPoint);

I I Regular expression used to control the selection of

appropriate

I I advice blocks to be invoked by the supplied context.

String adviceSelectorExpression = "idl";

II create the aspect

ReportableExceptionRoll back roll backHandler -

(ReportableExceptionRollback)

ConcreteMockReportableExceptionRollback . aspect Of();

II create the test step using the above context and the

aspect

TestStep testStep =
TestStepFactory. createControlledTestStep (

roll backHandler , context , ad viceSelector Expression);

steps [O] test Step;

return steps;

II run the test

public void testAspectWithSimpleTestSpecification ()

{

II Create a test specification

II Get the test steps

}

}

I I Add th e s t e p s t o th e t e s t s p e c if i c a t i o n

II Execute the test specification

II Examine the results of the test steps

167

168

APPENDIX C

ASPECT CODE LISTINGS

C.1 Base Aspects

Listing C.1: Service Wrapper Base Aspect

package nz.co . solnet.infrastructure . bof;

I **
* Provid es a wrapper for S e r vice B ean m ethods that are wrapped

* in be gin /e nd statements. This s hould not be used for

* ex t e rnal interfa ces.

* This a s p ec t must be ex t en d e d with a concrete d ef inition

* of th e serviceBeanMethods () and exclude dS ervice B eanMet hods ()

* po intcut .

* serviceBeanM e thods () should pro vi d e acc e ss to method

* exec ution of all m ethods that c all begin and end.

* exc lud e dS ervi ce B eanMethods () should pro vi d e a ccess to th e

* e x e c u t i o n of a l l m e tho d s t h a t us e th e b e g i n (S t r i n g) f o rm . A l l

* of th ese ex clud e d methods should hav e advi ce in th e subaspect

* to call begin{String) with an appropriate comment . Not e : this

* asp ec t will call end() for excludedMethods that are included

* in the s ervic eB e anMethods ().

* @author Chris Elgar

*I
public abs tract a s p ect ServiceBean Wrapper {

public abstract pointcut serviceBeanMethods () ;

public abs tract pointcut excl udedSe r vice BeanMethods () ;

// A ll ow su b aspects t o make calls f rom di ff erent packag es

protected void b eg i n (Se rv ice B aseB ean bean, St ri ng message) {

bean . begin (message) ;

169

170

}

}

before (ServiceBaseBean bean) : serviceBeanMethods () &&,

this (bean) &&, ! excludedServiceBeanMethods () {

bean. begin() ;

}

after (ServiceBaseBean bean) : serviceBeanMethods () &&,

this (bean) {

bean . end () ;

}

Listing C.2: Exception Handler Base Aspect

package nz . co. solnet. infr ast ructur e . e xceptionh a ndling;

import nz. co . sol n et. infras t ructur e . incid e ntr epo rting . *;

import j avax . e jb . *;

import j a v ax . naming . NamingException;

import nz. co. so ln e t . infr ast ructur e . bof. oids .OID;

import org. a p ache. log4j . Logger;

I**

171

* Enforc e policy to deal with exceptions in s e rvice methods of

* session beans.

*I
public abstract aspect ExceptionHandler {

I I methods to apply h andling to

public abstract pointcut serviceBeanMethods () ;

II soften exceptions that aspect captures

declare soft: Finder Exception: serviceBeanMethods ();

de c l are soft: CreateException: service BeanMet hods ();

declare soft: NamingException: serviceBeanMet h ods ();

declar e soft : RemoveException: serviceBeanMethods () ;

I I Wrap exceptions in a Solnet excep tion

after () throwing (CreateException e) : se rvi ceBeanMethods ()

{

throw new ReportableCreateException (e);

}

after () throwing (R emoveExcept ion e) se rvi ce B eanMethods ()

{

throw new R epo rtabl eR emoveExcept ion (e);

}

after (OID oid) throwing (Finder Exception e)

serviceBeanMethods () &.& args (oid) {

throw new Reportabl eFinderExce ption (oid,

thisJoinPointStaticPart. get Signature()

172

}

}

after () throwing (Finder Exception e)

&& ! args (OID) {

throw new EJBException (e);

}

I I Deal with remaining exceptions

. getDeclaringType () ,

e) ;

serviceBeanMethods ()

after () throwing (Throw able t) : serviceBeanMethods () {

logger. debug (" Checked exception for: " + t) ;

}

if (! (t instanceof Reportable)) {

try {

throw new Exception (t) ;

} catch (Exception e) {

}

}

throw new EJBException (e) ;

Listing C.3: Transaction Rollback Base Aspect

package nz. co. sol net. infrastructure. transactionhandling;

import nz. co. solnet. infrastructure. bof . ServiceBaseBean;

import nz. co. solnet. infrastructure. incidentreporting. *;

import org. apache. log4j . Logger;

II Aspect to rollback all reportable exceptions

II in the solnet framework

public abstract aspect ReportableExceptionRollback {

public abstract pointcut serviceBeanMethods () ;

173

after (ServiceB aseBean bean) throwing (ReportableException e)

: serviceBeanMethods () && this (bean) {

bean. getSessionContext (). setRollbackOnly ();

}

}

174

Listing C.4: Service Wrapper Base Aspect - External Interface

package nz.co.solnet .i nfrastructure. bof;

I**
* Wrapper for ServiceBaseBeans which are external interfaces

* between systems.

* All mutators must call begin with the username as the

* argument

* We follow the rule that this MUST be the last argument of the

* method. All accessors simply call begin().

* The accessors and mutators pointcuts should be method

* execu tions.

* @author Chris Elgar

*I
public abstract aspect ExternallnterfaceServiceBeanWrapper {

II identify methods

public abstract pointcut accessors() ;

public abstract pointcut mutators() ;

I I allow custom handling in sub aspects

protected void begin (ServiceBaseBean bean, String message) {

bean. begin (message) ;

}

I I mutators version of begin

before(ServiceBaseBean bean) : mutators() && this(bean) {

Object [] args = thisJ oinPoint. getArgs () ;

String user = (String) args [args. length -1];

bean. begin (user) ;

}

I I accessors version of begin

before (ServiceBaseBean bean) : accessors () && this (bean) {

bean. begin() ;

}

II all methods call end(}

}

after (ServiceBaseBean bean)

this (bean) {

bean . end() ;

}

175

(accessors() 11 mutators()) &&

176

Listing C.5: Custom Exception Handler (External Interface) Base Aspect

package nz. co. sol net. infrastructure. exceptionhandling;

import nz. co. sol net. infrastructure. bof. ServiceBaseBean;

I I Base class for exception handling that has

I I application specific properies

public abstract aspect CustomExceptionHandler {

}

I I methods to apply handling to

public abstract pointcut serviceBeanMethods () ;

II method with exception handling logic

public abstract void exceptionHandler (ServiceBaseBean bean,

Exception e) ;

II advice to handle exception handling

Object around (ServiceBaseBean bean) : serviceBeanMethods () &&

this (bean) {

}

Object result null;

try {

res u 1 t proceed (bean) ;

}

catch (Exception e) {

exceptionHandler (bean, e) ;

}

return result;

Listing C.6: Transaction Rollback (External Interface) Base Aspect

package nz. co. solnet. infrastructure. transactionhandling;

import nz. co. solnet. infrastructure. bof. ServiceBaseBean;

II Aspect to roll back exceptions on external interfaces

public abstract aspect ExternallnterfaceTransactionRollback {

}

public abstract pointcut serviceBeanMethods () ;

II after all exceptions call rollback

after (ServiceBaseBean bean) throwing (Exception e)

serviceBeanMethods () && this (bean) {

bean. getSessionContext (). setRollbackOnly ();

}

177

178

Listing C. 7: Base Tracing Aspect

package nz.co.solnet.infrastructure.tracing;

import org . as pectj . lang. *;

II Base tracing Aspect from AspectJ Mailing List

I I with minor modifications

public abstract aspect Tracing {

private pointcut staticContext () : ! this (Object) ;

private pointcut nonStaticContext (Object obj) :

this(obj);

private pointcut toStringMethod ()

toString ()) ;

private pointcut excluded ()

within (Tracing+)

11 toStringMethod () ;

pointcut tracedMethod ()

execution (public * * (..))
&.& ! excluded () ;

execution (String

protected abstract pointcut shouldTrace () ;

before (Object obj) : tracedMethod () &.&,

nonStaticContext (obj) &.& should Trace() {

enter (thisJ oinPoint , obj) ;

}

before () : tracedMethod () &.& staticContext () &.&

should Trace() {

enter (thisJ oinPoint) ;

}

after() returning (Object ret)

should Trace() {

tracedMethod () &.&,

exit (thisJ oinPoin tStaticPart , ret);

}

}

after() throwing (Exception ex)

shouldTrace () {

tracedMethod () &&

exception (thisJ oinPoin tS ta ticP art , ex) ;

}

179

protected abstract void ente r (JoinPoint jp, Obj ect obj);

protected abstract void ente r (JoinPoint jp) ;

protected abstract void ex it (JoinPoint . StaticPart sjp,

Object r et);

protected abstract void except ion (JoinPoint . StaticPart

sj p , Exception ex) ;

180

Listing C.8: Base JDK Tracing

package nz.co.solnet.infrastructure.tracing;

import java.util.logging.*;

import org. aspectj . lang. *;

I I Logging using JDKJ .4 from the AspectJ mailing List

I I with minor modifications

public abstract aspect JDK14Tracing extends Tracing {

protected abstract pointcut tracingScope () ;

protected pointcut shouldTrace () : tracingScope () ;

II if(tracingEnabled) 88 tracingScope(};

public final static Level ENABLED = Level .FINER;

public final static Level DISABLED = Level .OFF;

private static boolean tracingEnabled

private Logger logger;

false;

protected void initLogger (String name) {

logger= Logger.getLogger(name);

if (! tracingEnabled) {

tracingEnabled isTracingEnabled (logger) ;

}

}

public static boolean isTracingEnabled () {

return tracingEnabled;

}

private static boolean isTracingEnabled (Logger logger) {

return logger.isLoggable(ENABLED);

}

protected void enter (JoinPoint jp) {

}

if (isTracingEnabled (logger)) {

}

}

Signature signature = jp. getSignature ();

logger. entering (

signature. getDeclaringTypeN ame ()

,s ignature.getName() ,jp.getArgs());

protected void enter (JoinPoint jp , Object obj) {

if (isTracingEnabled (logger)) {

}

}

Signature signature = jp. get Signature();

logger . entering (

signature. getDeclaringTypeName ()

, signature .getName() , jp. getArgs ());

protected void ex it (JoinPoint. StaticPart sjp, Object

r et) {

if (isTracingEnabled (logger)) {

181

Signature signature = s jp. getS ign at ur e ();

lo gge r. ex iting (signature. getDeclaringTypeName ()

, signature. getName () , r et);

}

}

protected void exception (JoinPoint. StaticPart sjp,

Exception ex) {

if (isTracingEnabled (logger)) {

}

}

Signature signature = sjp. getSignature ();

logger .exiting (signature. getDeclaringTypeName ()

, signature. getName () , ex);

182

Listing C.9: Base Log4j Tracing

package nz.co.solnet.infrastructure.tracing;

import org. apache. log4j . *;

import org. aspectj. lang. *;

I I Logging using Log4J from the Aspect] mailing List

I I with minor modifications

public abstract aspect Log4jTracing extends Tracing {

protected abstract pointcut tracingScope ();

protected pointcut shouldTrace () :

if(tracingEnabled) && tracingScope ();

public final static Level ENABLED = Level .DEBUG;

public final static Level DISABLED = Level .OFF;

private static boolean tracingEnabled

private Logger logger;

false;

protected void ini tLogger (String name) {

logger= Logger.getLogger(name);

if (! tracingEnabled) {

tracingEnabled isTracingEnabled (logger);

}

}

protected void ini tLogger (Class clazz) {

logger= Logger.getLogger(clazz);

if (! tracingEnabled) {

tracingEnabled isTracingEnabled (logger);

}

}

public static boolean isTracingEnabled () {

return tracingEnabled;

}

183

private static boolean isTracingEnabled (Logger logger) {

return logger. isEnabledFor (ENABLED) ;

}

protected void enter (JoinPoint jp) {

if (isTracingEnabled (logger)) {

}

}

Signature signature = jp. getSignature ();

logger. debug (signature. getDeclaringTypeN ame ()

+ " " + signature. getName () + " - start");

protected void enter (JoinPoint jp, Object obj) {

if (isTracingEnabled (logger)) {

}

}

Signature signature = jp. getSignature ();

logger. debug (signature. getDeclaringTypeName ()

+" "+ signature.getName() +" - start");

protected void exit (JoinPoint. StaticPart sjp, Object

ret) {

if (isTracingEnabled (logger)) {

}

}

Signature signature = sjp. getSignature ();

logger. debug (signature. getDeclaringTypeName ()

+" " + signature .getName() +" - end");

protected void exception (JoinPoint. StaticPart sjp,

Exception ex) {

if (isTracingEnabled (logger)) {

}

}

Signature signature = sjp. getSignature ();

logger. debug (signature. getDeclaringTypeN ame ()

+ " " + signature. getName () + " - end");

184

}

Listing C.10: Pertype JDK Tracing

package nz.co.solnet.infrastructure.tracing ;

I I Logging using JDKl .4 from the AspectJ mailing L ist

II with minor modifications

II Creates a sep arat e logger for each c lass

public abstract aspect PTWJDK14Tracing extends JDK14Tracing

pertypewithin (*) {

before(): staticinitialization (*) &.& tracingScope () {

185

S tr i n g name = t hi s J o i n P o i n t S t at i c P a r t . get S i g n at u r e ()

}

}

. getDeclar ingT ypeN ame () ;

i n i t L ogge r (name) ;

186

Listing C.11: Pertype Log4j Tracing

package nz.co.solnet.infrastructure . tracing;

I I Logging using Log4J from the AspectJ mailing List

I I with minor modifications

II Creates a separate logg er for each class

public abstract aspect PTWLog4jTracing extends Log4jTracing

pertypewi thin (*) {

}

before(): staticinitialization (*) && tracingScope () {

Class clazz = thisJoinPointStaticPart. getSignature ()

}

. getDeclaringType () ;

initLogger (clazz);

187

C.2 SPER Aspects

Listing C.12: Sper Service Wrapper

package

nz.govt.nzqa.sper. infrastructure.servicewrapper.servicebeans;

import nz. co. solnet. infrastructure. bof. ServiceBeanWrapper;

import nz. govt. nzqa. sper. infrastructure .common. service beans.*;

import nz. co. solnet. infrastructure. bof. ServiceBaseBean;

import nz . co. solnet . infrastructure. bof. oids. OID ;

import nz. govt. nzqa. sper. entry. common. d to. EntryDto ;

import nz. govt. nzqa. sper. l ea rner .common. dto. LearnerDto;

import java.util.List;

I**
* Provide access to sper service beans that are not externa l

* interfaces.

* Provide advice for service methods that make a comment.

* @author Chris Elgar

*I
public aspect SperServiceWrapper extends ServiceBeanWrapper {

public pointcut serviceBeanMethods () :

ServiceBeanPoin tcu ts. serviceBeanMethods () ;

public pointcut exc ludedS e rviceBeanMethods () :

ServiceBeanPoin tcu ts. excl udedS ervice BeanMethods () ;

//Use of begin (String comment)

before (ServiceBaseBean bean) :

}

ServiceBeanPoin tcu ts. excludedMethodl () && this (bean) {

EntryDto entryDto = (EntryDto)

thisJ oinPoint. getArgs () [0];

begin (bean , en tryDto . getReasonForChange ()) ;

//Use of begin (String comment)

before (ServiceBaseBean bean) :

ServiceBeanPoin tcu ts. excludedMethod2 () && this (bean) {

List inputOids = (List) thisJoinPoint.getArgs() [O];

188

}

}

Long batchNumber = (Long) thisJoinPoint. getArgs () [3];

begin (bean, "Processing input record OID " +
inputOids. get (0) + " of batch " + batchNumber);

//Use of begin (String comment)

before (ServiceBaseBean bean) :

}

ServiceBeanPoin tcu ts. excludedMethod3 () && this (bean) {

OID batchOid = (OID) thisJ oinPoint. getArgs () [1];

begin (bean, "Preprocessing learner of batch " +
batchOid) ;

//Use of begin (String comment)

before (ServiceBaseBean bean) :

}

ServiceBeanPoin tcu ts. excludedMethod3 () && this (bean) {

LearnerDto learnerDto = (LearnerDto)

thisJoinPoint. getArgs ()[OJ;

begin (bean, learner D to. get UserComment ()) ;

Listing C.13: Sper Exception Handler

package nz. govt. nzqa . sper. infrastructure . exceptionhandling

. service beans;

import nz. co. solnet. infr astr ucture. exceptionhandling. *;

import nz. govt. nzqa. sper. infrastru ct ur e .common. service beans.*;

import nz. govt. nzqa. qual. qsi . common. exception.*;

import java. io. IOException;

import j av a. rmi. R emoteExcept ion;

I I Link SPER to th e Exception Handl ing aspect

public aspect SperExceptionHandler extends ExceptionHandler {

}

II Application exceptions that are dealt with by aspects

declare soft: Remot eException:

ServiceBeanPoin tcu ts. serviceBeanMethods () ;

declare soft: IOException:

ServiceBeanPoin tcu ts. serviceBeanMet hod s () ;

declare soft: QSIException:

ServiceBeanPoin tcu ts. serviceBeanMet hod s () ;

public pointcut serviceBeanMethods ()

ServiceBeanPoin tcu ts. serviceBeanMethods () ;

189

192

Listing C.16: SXI Exception Handler

package nz. govt. nzqa. sper. infrastructure. exceptionhandling

. service beans;

import nz. govt. nzqa. sper. sxi . exception. SXIException;

import nz. govt. nzqa. sper. sxi . exception.*;

import nz. govt. nzqa. sper. sxi. exception.*;

import nz. co. sol net. infrastructure. bof. helpers.*;

import nz. co. solnet. infrastructure. security·*;

import nz. govt. nzqa. sper. infrastructure .common. service beans.*;

public aspect SXIExceptionHandler {

declare soft : Exception: SXIServicePointcuts. mutators()

11 SXIServicePointcuts. accessors();

Object around () throws SXIException

}

: SXIServicePointcuts. mutators()

11 SXIServicePointcuts. accessors() {

Object result null;

try {

result proceed();

}

catch (Au thorisationException e) {

throw new SXIAuthorisationException (e);

}

catch (OptimisticConcurrencyException e) {

throw new SXIOptimisticConcurrencyException (e);

}

catch (SXIException e) {

throw e;

}

catch (Exception e) {

throw new SXIException (e) ;

}

return result;

193

}

194

Listing C.17: Sper Aspect Precedence

package nz.govt.nzqa.sper.infrastructure.common.servicebeans;

import nz. govt. nzqa. sper. infrastructure. exceptionhandling

. service beans.*;

import nz. govt. nzqa . sper. infrastructure. servicewrapper

. service beans . *;

import nz. govt. nzqa. sper. infrastructure. transactionhandling

.servicebeans .*;

I I Aspect to ensure that we apply aspects to the service beans

II in an appropriate order for SPER

public aspect AspectPrecedence {

}

declare precedence: ExceptionRollback,

SperExceptionHandler,

SperServiceWrapper;

decl a re precedence: SXIServiceTransactionHandling ,

SXIExceptionHandler,

SXIService Wrapper;

Listing C.18: Sper Pointcuts

I**
* Provid es common point cu ts for all users nee ding access to

* the sper service beans.

* @author Chris Elgar

*I
package nz.govt.nzqa.sper.infrastructure.common.servicebeans;

import nz. co. solnet. infrastructure. bof. ServiceBaseBean;

import nz . govt. nzqa. sper. sxi. service. impl. SXIServiceBean;

import nz. govt. nzqa. spe r. learn er . common. d to. LearnerKeysDto ;

import nz. govt . nzqa. sper. learner . common. d to. Learn erDto;

import nz. govt. nzqa. sper. entry. common . dto. EntryDto;

import nz. govt. nzqa. perorg. provider .common. dto. ProviderDto;

import nz. co . solnet. infrastructure. bof. oids .OID ;

import nz. govt. nzqa. sper. common. cod eta ble. Batch Type;

import java. util. List;

public aspect ServiceBeanPointcuts {

public static pointcut serviceBeans ():

(within (nz. govt. nzqa. sper .. *)

11 within (nz. govt. nzqa. perorg . . *))

&.& within (ServiceBaseBean+)

&.& ! within (SXIServiceBean) ;

195

public static pointcut serviceBeanMethods () : serviceBeans ()

&.& execution (public ! static * *. * (..));

public static pointcut excludedServiceBeanMethods ():

excludedMethodl ()

11 excludedMethod2 ()

11 excludedMethod3 ()

11 excludedMethod4 () ;

public static pointcut excludedMethodl () : execution (public

OID saveEntry (EntryDto , OID,OID, boolean));

196

}

public static pointcut excludedMethod2 () : execution (public

void processlnput (List, String, ProviderDto, Long, Batch Type));

public static pointcut excludedMethod3 () : execution (public

void preProcesslnput (List ,OID));

public static point cut excludedMethod4 () : execution (public

LearnerKeysDto saveLearner(LearnerDto, boolean)) ;

Listing C.19: SXI Pointcuts

package nz .govt.nzqa . sper. infrast ructur e . common . se rvi cebea n s;

import java. util. Collection;

import nz. govt. nzqa. sper. sxi . service. impl . SXIServiceBean;

II Pointcuts for SXI interfa ce

public aspect SXIServicePointcuts {

public static pointcut servicemethods ()

accessors() ;

mutators() 11

public static pointcut ejbs () within (SXIServiceBean) ;

public static pointcut mut ators()

&& (

)

ej bs ()

upd atemethods ()

11 savemethods ()

11 stor emethods ()

11 createmethods ()

11 includ edm ut ators ()

&& ! exc lud edmutators ();

public static pointcut accessors() : ejbs ()

&& (getmethods () 11

includedaccessors ())

&& ! excluded accessors() ;

public static pointcut getmethods ()

!static* * . get*(..));

execution (public

public static pointcut incl ud edaccessors ():

execution (public void doQualCheck (. .))

197

11 execution (public

boolean ping()) ;

public static pointcut excludedac cesso r s (): execution(public

void generateLearnerChangeDetailsReport (..));

198

}

public static pointcut updatemethods ()

!static* * . update*(.. ,String));

execution (public

public static pointcut savemethods () execution (public

!static* * . save*(. . ,String)) ;

public static pointcut storemethods () execution (public

!static* *.store*(.. ,String)) ;

public static pointcut createmethods () execution (public

!static* *.create*(.. ,String));

public static pointcut excludedmutators () execution(public

Collection

storeCompassion a teEntries (Collection , String));

public static pointcut incl udedmutators () : execution (public

* withdraw Result (..)) ;

C.3 EOS Aspects

Listing C.20: EOS Service Wrapper

package nz.govt.nzqa.eos.infrastructure.servicewrapping;

import nz. co. sol net. infrastructure. bof . ServiceBeanWrapper;

import nz. govt. nzqa. eos. in fr astr uct ure . common.*;

I I Aspect links EOS to l i b r a r y asp e ct s

II for service wrapping

public aspect EOSServiceWrapper extends ServiceBean Wrapper {

}

public pointcut serviceBeanMethods () :

S e rviceB eanPointcuts. serviceBeanMethods ();

public pointcut excludedServiceBeanMethods () ;

199

200

Listing C.21: EOS Exception Handler

package nz. govt . nzqa. eos. infrastructure. exceptionhandling;

import nz. co. solnet. infrastructure . exceptionhandling. *;

import nz. govt. nzqa . eos. infrastructure .common.*;

import nz. co. sol net. infrastructure. bof. *;

import nz. govt. nzqa. eos. service .common. ejb. *;

I I A s p e ct th at s p e c if i e s th e EOS s p e c if i c

I I exception handling components

public privileged aspect EOSExceptionHandler extends

CustomExceptionHandler {

public pointcut serviceBeanMethods () :

ServiceBeanPoin tcu ts. serviceBeanMethods () ;

public void exceptionHandler (ServiceBaseBean bean , Exception

e) {

EosBaseSessionFacade eosbean (EosBaseSessionFacade)

bean;

throw eosbean. convert Exception (e);

}

}

Listing C.22: EOS Aspect Precedence

package nz . govt. nzqa. eos. infrastructur e .common;

import nz. govt . nzqa. eos. infrastructure. exception handling.* ;

import n z .govt.nzqa.eos .infr ast ru ct ur e.se rvic ew r a ppin g.*;

import nz. govt. n zqa. eos. infr ast ru ct ur e. tracing.*;

II Ensure aspects are applied to EOS

II in the correct order

public aspect AspectPrecedence {

}

d ec l a r e pr ece d e n ce : EOSTracing,

EOSExcept ionH andler ,

EOSServiceWrapper;

201

202

Listing C.23: EOS Pointcuts

package nz .govt.nzqa.eos .infrastructure.cornmon ;

I I Po intcuts for the EOS application

public aspect ServiceBeanPointcuts {

}

public static pointcut eosServiceBeans () :

within(nz.govt.nzqa.eos .se rvice ·*·ejb.bean.*);

public static pointcut serviceBeanMethods () :

eosServiceBeans () && execution (public ! static * * (. .));

Listing C.24: EOS Tracing

package nz.govt.nzqa.eos.infrastructure.tracing;

import nz. co. solnet. infrastructure. tracing. PTWLog4jTracing;

import n z . govt . n z q a . e o s . i n fr as t r u c t u r e . common . * ;

/ / Aspect to link EOS to tracing l i bra r y aspect

public aspect EOSTracing extends PTWLog4jTracing {

}

protected pointcut tracingScope ()

ServiceBeanPoin tcu ts. eosServiceBeans ();

203

