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Abstract 

In apples colour is a major quality parameter used by consumers to determine 

apple maturity. A full understanding of the nature of the relationship between 

storage conditions and apple fruit colour change would be of advantage in 

formulating models to predict how changes to handling systems would affect fruit 

colour. While much is known in a general way about how environmental 

conditions affect colour change, little information is available to characterise the 

nature of the relationships between temperature, oxygen and carbon dioxide. 

The postharvest change in colour was measured for two export apple cultivars; 

Cox's Orange Pippin and Granny Smith. Previous research on these and other 

apple cultivars has determined that colour change is from green to yellow. The 

colour of Cox's Orange Pippin and Granny Smith apples were measured by 

subjective and objective methods during experiments to investigate the effect of 

temperature and atmosphere composition on colour change. The objective 

methods used were: chlorophyll extraction and colour using a Minolta 

chromameter. The subjective method was colour matching for Granny Smith 

using the NZAPMB maturity colour charts. When related to changes in 

chlorophyll, the principal skin pigment, the colour parameters used had non-linear 

relationships. Lightness, hue angle and colour chart score all reflect pigment 

changes occurring as apples change colour from green to yellow. Lightness 

values were the least variable followed by hue angle then colour chart score. All 

methods used showed more sensitivity to changes in chlorophyll content when 

chlorophyll content was low compared to when chlorophyll content was high. 

The objective measurements were highly correlated with the subjective 

measurements and the conclusion was that the use of hue angle or lightness to 

follow colour change in the skin of Granny Smith and Cox's Orange Pippin 

apples is an accurate indirect measure of chlorophyll and other pigments. 

The rate constant of colour change (k), measured using a declining exponential 

function, from green to yellow, at eleven temperatures over two seasons, two 
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harvests per season and several growers was investigated in order to 

characterise the relationship between yellowing and temperature. All the 

methods of colour measurement used had the same relationship with 

temperature which was described by a modified form of the Arrenhius equation. 

Re-worked published data also fitted the modified Arrenhius equation. The 

modified Arrenhius equation was used to generate k for the various colour 

parameters measured (chlorophyll, hue angle, lightness and colour charts score). 

The value of k, as a function of temperature, increases slowly between 0°C and 

6°C (the lag phase), increases exponentially between 6°C and 20°C and reaches 

a maximum at 25.3°C for Cox's Orange Pippin and 23.5°C for Granny Smith 

before declining. Pattern of response to temperature was the same for each 

cultivar although Granny Smith yellowed more slowly than Cox's Orange Pippin. 

For Cox's Orange Pippin apples more variation was accounted for by differences 

between growers than years or harvests within a year. For Granny Smith fruit 

most variation was accounted for by differences between years. 

Sixteen atmospheres were used each year for Cox's Orange Pippin and Granny 

Smith apples from one harvest in order to characterise the relationship between 

yellowing and oxygen or carbon dioxide. Cox's Orange Pippin and Granny Smith 

apples differ in their response to oxygen. For Cox's Orange Pippin the value of 

k as a function of oxygen level increased slowly from 0% to 6% and thereafter 

increased exponentially from 6% to 19%. This function may be sigmoidal as the 

k values increase slows above 17% oxygen. The relationship for Granny Smith 

was poorly defined by this function, k values increased slowly as the oxygen 

level rose. This could be due to a fundamental physiological or biochemical 

difference between these two cultivars. Each cultivar had a similar response to 

carbon dioxide, described by a declining exponential function, with the 

relationship for Granny Smith being better defined than for Cox's Orange Pippin. 

The relationship of carbon dioxide with colour change was poorly defined as the 

effects of oxygen on colour change were not removed from the analysis. 
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Oxygen appears to have a greater influence on colour change than carbon 

dioxide. Atmospheres for Cox's Orange Pippin apples were not scrubbed for 

carbon dioxide in 1989 but were in 1990. The pattern of response to oxygen in 

the absence of levels of carbon dioxide above 1 % in the atmosphere did not alter 

the sigmoidal relationship found. This may be evidence that the effect on 

yellowing by oxygen and carbon dioxide is by separate processes. Ethylene 

levels in the atmosphere appeared to have little effect on the rate of yellowing in 

all the atmospheres studied. The carbon dioxide and oxygen functions were 

combined into a single equation for use as a predictive model. 

The temperature function, the modified Arrenhius equation, and the atmosphere 

functions were combined into one equation to which different environmental 

values were added. The use of such a model and other practical applications for 

the information gathered for this thesis are discussed and a chart drawn 

comparing the hue angle, lightness and colour chart score to chlorophyll level. 
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Chapter 1. 

Introduction 

Fruit colour along with size, shape, freedom from rot and defects is used by 

consumers to assess the worth of fruit on sale. In the case of apples colour is a 

major quality parameter (Wills et al 1981) determining, in the eyes of the 

consumer, eating quality. To the consumer different cultivars of apples have 

different colour criteria, with redness ·being important in red skinned cultivars and 

yellowness important in green and red/green skinned cultivars. Additionally apple 

fruit quality has a different meaning to consumers of apples than to growers, 

handlers or retailers (Hedrick 1920). More sophisticated means of measuring 

fruit quality than by eye alone such as assessing fruit firmness and sweetness 

are not possible by apple consumers in retail outlets. A full understanding of the 

nature of the relationship between apple fruit colour change and methods used to 

maintain fruit quality would give apple marketers and handlers an advantage in 

prediction of how changes to handling systems would affect fruit colour. This is 

especially important for producers of high quality apples such as New Zealand 

growers in maintaining high quality standards. 

Postharvest storage technologies such as storage at low temperatures and 

controlled or modified atmospheres are used extensively by the apple industry in 

New Zealand due to the large distances fruit are transported to export markets. 

The influence of the above storage technologies on apple colour change is well 

documented but the nature of the relationship is poorly defined. Specific 

quantitative information is scarce despite many publications mentioning the effect 

of various storage treatments on fruit colour. 

In this thesis the changes in apple colour discussed are from green to yellow as 

earlier research has shown that production of red pigments depends on UV light 
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(Arakawa et al 1985, Chalmers et al 1973) and once harvested and placed into 

storage the red colour of fruit changes little compared to chlorophyll (Goldschmidt 

1980). Change in colour from green to yellow for apples is result of chlorophyll 

breakdown with carotenoid biosynthesis playing a minor role (Gorski and Creasy 

1977, Knee 1980a). Breakdown of chlorophyll represents the most conspicuous 

of a number of symptoms which together constitute the deteriorative process, 

known as senescence, that ends the functional life of plant cells (Ceppi et al 

1987). In leaves and fruit, senescence involves many physical and metabolic 

processes including loss of structural integrity and progressive lessening of 

photosynthesis with increasing failure of synthetic chloroplast function. For 

example in tree leaves the saturating level of light intensity rises from 7000 lux in 

young leaves to about 21000 lux in fully expanded leaves and reduces to 8000 

lux with increasing age (Richardson 1957). Chlorophyll content and 

photosynthetic rate do not necessarily follow one another closely. Even in the 

rapid senescence of seedling leaves, photosynthetic decline is not ascribable to 

chlorophyll loss, as the enzyme ribulose bisphosphate carboxylase/oxygenase 

(RUBISCO) is rapidly broken down in senescing leaves (Bathgate et al 1985). 

These events are accompanied by a colour change, usually from green to yellow 

(Thimann 1980), but non-yellowing mutant grasses are known in which 

chlorophyll is retained throughout senescence (Osborne and Cheah 1982). 

Degradation of chlorophylls in aging plants is linked to changes both in 

chlorophylls themselves and other plant pigments (Hendry et al 1987). In millet, 

chlorophyll a and b concentrations decrease by about 83% while the 

concentration of carotenoids remain stable during senescence (Embry and 

Nothnagel 1988). Timing of leaf or fruit senescence appears to be controlled by 

extrinsic and intrinsic factors, the response being determined by events taking 

place in other parts of the plant and by genetic constitution of the leaf and the 

fruit. Disassembly of cell organelles is thought to be polygenically regulated, 

depending on a complex of tightly co-ordinated intracellular enzymatic agents 

(Ceppi et al 1987, Thomas and Stoddart 1980). 
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In recent years biochemical studies on chlorophyll catabolism have concentrated 

on the following lines of enquiry: 

(i) Enzymatic. 

(a) Chlorophyllase (EC 3.1.1.14) (Terpstra 1981, Shimokawa 1982). 

Upsurge in chlorophyllase activity is found in ethylene treated citrus fruit 

and in senescing leaves (Sabater and Rodriguez 1978). 

(b) Oxidative and peroxidative enzyme systems (Huff 1982, Martinoia et al 

1982). 

Model systems in which thylakoids fortified with linolenic acid rapidly 

degrade chlorophyll (Luthy et al 1984). The presence of an enzyme 

responsible for removal of Mg+ from the tetrapyrrole ring has also been 

investigated (Owens and Falkowski 1982). 

(ii) Biochemical/biophysical changes. 

(a) In vivo spectroscopy of senescing fruit to detect changes in 

biochemical/biophysical pigments associated with ripening and 

senescence (Gross and Ohad 1983). 

(iv) Breakdown products, for example, 132-hydroxychlorophyll a as a 

breakdown intermediate (Schoch et al 1984, Maunders et al 1983). 

Many attempts have been made to identify products of chlorophyll breakdown 

which remain elusive due to rapid disappearance of chlorophyll from senescing 

tissues. A similar lack of knowledge also applies to carotenoids of senescing 

tissue which undergo destruction before, during or after chlorophyll breakdown. 



the following literature review outlines current knowledge and understanding of 

yellowing in plants and fruit in particular. 

1.1 Structure and Location of Chlorophyll 

1.1.1 Chlorophyll Structure 

4 

The structure of chlorophylls a and b are shown in Figure 1 .1. Both chlorophylls 

are derivatives of dihyroporphyrin chelated with a centrally located magnesium 

atom, all contained an isocyclic ring. Chlorophylls are hydrophobic because of 

the C20 mono-unsaturated isoprenoid alcohol, phytol (which is esterified) with its 

double bond in the trans configuration (Schwartz and Lorenzo 1990). Chlorophyll 

is present in chloroplasts complexed with protein but the nature of binding is not 

well understood. Since chlorophylls are readily extracted with organic solvents, 

covalent linkages to other components are not present. Historically, a number of 

generic names for the chlorophylls and their derivatives have been accepted and 

are outlined in Table 1.1. Figure 1.2 indicates the relationship of the chlorophylls 

to their major derivatives. The central Mg atom is easily removed, particularly 

under acidic conditions, being replaced with hydrogen and thus forming the 

pheophytins. 



H 
II H 

CH 
3 

(a) R=Me 

(b) R=CHO 

Figure 1.1 Structure of chlorophylls (Schwartz and Lorenzo 1990). 
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CHLOROPffill---- PHEOPHYTl'i ----- PYROPHEOPHYTI', 

• PHYTOL CHLOROPH\'LLASE • PH\"TOL • PHYTOL 

• ~1t . co2CH3 

CHLOROPffil.LIDE - PHEOPHORBIDE ----- PYROPHEOPHORBIDE 

Phyllins: 
Pheophytins: 

Chlorophyl!ide: 

Chlorophyllase: 

Pheophorbides: 

"Meso" compounds: 

"Pyro" compounds: 

Chlorins e: 

Rhodins g: 

Chlorophyll derivatives containing magnesium 
The magnesium-free derivatives of the 

chlorophylls 
The acid derivative resulting from enzymic or 

chemical hydrolysis of the C7 propionate ester 
The enzyme present in leaves which catalyzes 

hydrolysis of the C7 propionate ester 
The products containing a C7 propionic acid 

resulting from removal of magnesium and hy­
drolysis of the phytyl ester; the corresponding 
7-propionate methyl (or ethyl) ester is, how­
ever, somewhat unsystematically named as 
methyl (or ethyl) pheophorbide 

Derivatives in which the C-2 vinyl group has 
been reduced to ethyl 

Derivatives in which the C-10 carbomethoxy 
group has been replaced by hydrogen 

Derivatives of pheophorbide a resulting from 
cleavage of the isocyc!ic ring; these are usu­
ally given a suoscript number, e.g., chlorine 
e6 specifies a product with six oxygen atoms 
(in three ester groups) 

The corresponding derivatives from pheophor­
bide b 

Table 1.1 Relationship of chlorophyll to some of its derivatives (Schwartz and 

Lorenzo 1990). 
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1.1.2 Organelle Changes 

Differentiation of chloroplasts into chromoplasts is a prominent part of 

senescence in mesophyll cells (Woolhouse 1984). It is an orderly process with 

all the features typical of developmental processes. At the organelle level 

chloroplast and endomembrane systems are susceptible to degradation by 

cytoplasmic agents (Thomas and Stoddart 1980, Hendry et al 1987). In leaf 

chloroplasts loss of plastid integrity is one of the earliest visible features of 

senescence and is presumably the same for fruit. The initial event in the 

sequence appears to be a change in characteristics of the envelope leading to 

separation of inner and outer membranes. Plastid disassembly appears to be 

mediated by agents synthesized in the cytoplasm (Duggelin et al 1988), and 

changes in envelope integrity are viewed as initial events in the transport of 

degradation agents into the chloroplast. Ingress of degrading enzymes may be a 

consequence of the decline or removal of envelope membrane components 

normally preventing access. It is known that enzymes associated with the outer 

surface of mature chloroplasts lose activity rapidly during early senescence 

(Davies et al 1990, Thomas 1977, Thomas and Stoddart 1980). Enzyme and 

structural protein lysis follow rapidly after envelope degradation. Chloroplast 

membrane proteins are rapidly degraded during yellowing. 

Cells become increasingly vacuolated with age, and surviving organelles are 

contained in a diminishing rim of cytoplasm. Changes in permeability of the 

tonoplast membrane, consequent upon degradation, might allow exposure to 

materials which lower cytoplasmic pH thus favouring the operation of hydrolases 

with acidic optima or, alternatively allow transfer of these enzymes from vacuole 

to cytoplasm (Thomas and Stoddart 1980). 

Ultrastructural studies indicate that mitochondria persist in an intact state, except 

for some swelling or distortion of the cristae, throughout senescent breakdown. 

Advancing senescence is paralleled by considerable changes in composition and 

physical state of microsomal membranes (Thomas and Stoddart 1980). Changes 
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in leaf peroxisomes may result in a release of superoxide radicals which may be 

involved in further membrane breakdown (Rio et al 1989). 

It is suggested that chloroplast disintegration involves action of two proteolytic 

systems, one acting on stroma enzymes and extrinsic membrane proteins and 

other degrading intrinsic thylakoid components, including chlorophyll. Thomas et 

al (1985), using a non-yellowing mutant of Festuca pratensis, a meadow fescue, 

found this non-yellowing character to be associated with a marked structural 

stability of chloroplast thylakoid membranes during senescence which was 

reflected in retention of thylakoid proteins and pigment protein complexes and of 

membrane lipids (Davies et al 1990)·. 

1.2 Biochemistry of Yellowing 

1.2.1 Chlorophyll Breakdown 

Though some chlorophyll degradation in leaves may result from photooxidation of 

pigment the fact that mature leaves lose chlorophyll in the dark indicates that 

degradation in vivo is at least partially enzymatic. And treatments that inhibit or 

destroy enzymes such as low temperatures, anaerobic conditions, boiling or 

freezing and desiccation of leaves during incubation greatly reduce chlorophyll 

loss. 

Occurrence of dephytylated forms of chlorophyll in senescent leaves indicates 

that chlorophyllase is responsible for the initial step of chlorophyll degradation. 

Data available suggests that chlorophyllase is located in plastids and thylakoids 

(Hirschfeld and Goldschmidt 1983, Tarasenko et al 1986) and that its activity in 

senescent leaves is correlated with loss of chlorophyll (Sabater and Rodriguez 

1978). The enzyme appears to be present and potentially active in mature 

presenescent leaves. Extraction of chlorophyllase activity requires use of 

acetone powders, detergents or organic solvents (Holden 1961, Schoch and 

Brown 1987) indicating that under natural conditions the enzyme is inactive. 
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Although it is known that chlorophyllase catalyzed conversion of purified 

chlorophyll a does not occur, or occurs only slightly, in the absence of lipids 

(Terpstra and Lambers 1983) it is not clear how the contact between chlorophyll 

molecules, complexed with their apoproteins, and enzymes is achieved in a 

controlled fashion in senescent chloroplasts. 

Rates of destruction for chlorophylls a and b are similar according to Jen and 

McKinney (1970) but other authors (MacKinney and Joslyn 1940, Schwartz and 

Lorenzo 1990, Schwartz and van Elbe 1983) suggest that chlorophyll a is 

destroyed faster than chlorophyll b. For example, chlorophyll a in aqueous 

acetone solution reacts with acid seven to nine times more rapidly than 

chlorophyll b (Figure 1.3). Measurements at various temperatures of chlorophyll 

loss indicate that the rate of chlorophyll degradation follows first order kinetics for 

spinach puree (Holden 1961) and canned kiwifruit (Robertson and Swinburne 

1981 ). 
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puree (Schwartz and Lorenzo 1990). 




