Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Neotyphodium lolii endophyte improves drought tolerance in perennial ryegrass (Lolium perenne. L) through broadly adjusting its metabolism

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (PhD)

in

Microbiology and Genetics

At Massey University, Manawatū,

New Zealand.

Yanfei Zhou

2014

Abstract

Perennial ryegrass (*Lolium perenne*) is a widely used pasture grass that is frequently infected by *Neotyphodium lolii* endophyte. The presence of *N. lolii* enhances grass resistance to several biotic and abiotic stresses such as insect, herbivory and drought. Recent studies suggest the effect of *N. lolii* on ryegrass drought tolerance varies between grass genotypes. However, little is known about the molecular basis of how endophytes improve grass drought tolerance, why this effect varies among grass genotypes, or how the endophytes themselves respond to drought stress. This knowledge will not only increase our knowledge of beneficial plant-microbe interactions, but will also guide better use of endophytes, such as selection of specific endophyte - cultivar combinations for growth in arid areas.

In this study, a real time PCR method that can accurately quantify *N. lolii* DNA concentration in grass tissue was developed for monitoring endophyte growth under drought. The effect of *N. lolii* on growth of 16 perennial ryegrass cultivars under drought was assessed, and a pair of endophyte-infected grasses showing distinct survival ability and performance under severe drought stress was selected. The transcriptome profiles of these two endophyte-infected grasses, as well as their clonal endophyte-free grasses, were analyzed using high-throughput RNA sequencing. The expression of endophyte and grass genes responsive to drought was analyzed simultaneously using different bioinformatic tools.

The results demonstrated that *N. lolii* enhanced the growth of perennial ryegrass under drought, but the effect varied between cultivars. On the molecular level, endophytes living in both drought-tolerant and drought-sensitive grasses responded to drought in similar ways, including increased expression of endophyte genes related to scavenging of reactive oxygen species (ROS), DNA replication and the cell cycle, and also reduced expression of genes involved in alkaloids biosynthesis. The presence of endophytes also led to enhanced grass tolerance that was associated with broad adjustments in the plant metabolism. This included up regulation of grass genes involved in chloroplast maintenance and protection, osmotic adjustment and ROS scavenging capability. The extent of these endophyte-associated effects was greater in the drought tolerant grass genotype than in the drought sensitive genotype.

This work highlights the role of fungal endophytes in grass drought stress tolerance and provides a comprehensive insight into the mechanisms involved.

Firstly, I would like to thank my chief supervisor Associate Professor Rosie Bradshaw, who feels like family, for her excellent supervision over these years. I am very grateful for your patience, openness and encouragement. Thanks to my co-supervisors, Dr Jan Schmid and Dr Richard Johnson for your advice and guidance in all aspects of this project. I am also thankful to Dr David Hume for your support and feedback throughout the whole project.

I would like to thank Associate Professor Murray Cox for his help on RNA seq data analysis, and to Dr Pierre-Yves Dupont and Elsa Guillot for their Python training.

Thanks to intern student Coline Mei for her help in the glasshouse. I could not finish the huge preliminary screening work without your help.

I would like to acknowledge all the Fungal Jungle lab members, Carole, Shuguang, Rebecca, Melissa, Pranav, Kabir, Malin and Kutay for their kind help in the lab and wonderful discussions.

I very much appreciate the input into this project from many other people in AgResearch, especially Jimmy, Wayne, Marty, Jana, Anouck and Wade.

To my lovely friends, Jianyu, Maggie, Pok, Karren, Jessie, Wesley, Ronan, Jinping, Jun, Xiao and Susanna. Thanks for your help and happiness that you brought into my life.

Finally, my deepest thanks go to my family. Mum and Dad, thanks for your understanding, caring and encouragement. Without your love I would not become who I am today. To my wife, Yanping Wei, a thank you is far too small for the enormous gratitude I owe to you. You let me pursue my dream and gave birth to our daughter alone in China. You looked after our family and picked me up at bad times. You make me feel like the luckiest man in the world. Special thanks to my daughter, Linger Zhou, for making my life so joyful.

This project was supported by the Chinese Scholarship Council and the Lincoln Bioprotection CoRE, with funding from Massey University Research Fund.

Table of Contents

Ab	stract	.i	
Ac	Acknowledgementsiii		
Tal	ble of Contents	v	
Lis	t of Figures	ci	
Lis	t of Tablesx	v	
1	Introduction	1	
	1.1 Plant-microbe symbioses	2	
	1.2 Perennial ryegrass - <i>Neotyphodium lolii</i> association	2	
	1.2.1 Effects of <i>Neotyphodium lolii</i> on its host	2	
	1.2.2 Taxonomy and life cycle of <i>Neotyphodium lolii</i>	3	
	1.2.3 Secondary metabolites of <i>Neotyphodium lolii</i>	5	
	1.2.4 Selected fungal endophytes1	0	
	1.3 Endophyte detection and quantification1	0	
	1.4 Response of plants to drought stress	2	
	1.4.1 General considerations	2	
	1.4.2 Stress perception and signalling1	2	
	1.4.3 Transcriptional responses to drought stress1	3	
	1.4.4 Metabolic responses to drought stress1	4	
	1.5 The role of microbes in plant drought tolerance1	5	
	1.5.1 Plant growth promoting rhizobacteria1	5	
	1.5.2 Root colonizing fungi1	6	
	1.5.3 <i>Epichloë</i> and <i>Neotyphodium</i> endophytes1	9	
	1.6 Transcriptome profiling of plant-microbe symbioses	0	
	1.7 Aims and objectives2	3	
2	Material and Methods2	5	
	2.1 Biological material2	6	
	2.2 DNA isolation	8	

2.3 DNA manipulation	
2.3.1 Quantification	
2.3.2 Agarose gel electrophoresis	29
2.3.3 Agarose gel purification	
2.3.4 PCR product purification	29
2.4 PCR amplification	29
2.4.1 Standard PCR	
2.4.2 High fidelity PCR	30
2.4.3 Real time PCR	
2.4.3.1 Primer and probe design	30
2.4.3.2 Cycling conditions	30
2.4.3.3 Standard curves	31
2.4.3.4 Colour compensation	31
2.4.3.5 Calculation	31
2.4.3.6 Primer/probe specificity, efficiency and reliability evaluation	ation32
2.4.3.7 Evaluation of a dual $ltmG/TB1$ assay on quantification of	f
endophyte concentration	32
2.4.3.8 Evaluation of <i>ltmJ</i> and <i>perA</i> primer/probes on detecting	
contaminating endophytes in seed	34
2.5 RNA isolation and manipulation	34
2.5.1 RNA isolation	34
2.5.2 RNA quality check	35
2.5.2.1 Formaldehyde gel	35
2.5.2.2 Bioanalyzer	
2.5.3 Reverse Transcription	35
2.6 Endophyte presence determination using Immunoblotting	35
2.7 Endophyte detection using aniline blue	36
2.8 Endophyte biovolume measurement	
2.9 Clonal endophyte-free ryegrass generation	37

	2.10 Simple see	quence repeats analysis	38
	2.11 Drought tr	reatment	38
	2.11.1 Gla	asshouse prescreen drought treatment	38
	2.11.2 Ou	tliers validation	39
	2.11.3 Dro	ought treatment of time-course experiment in growth cham	ıber39
	2.11.4 Gro	owth chamber drought treatment for RNA seq assay	40
	2.12 Soil field	capacity measurement	41
	2.13 Physiolog	ical parameter measurements	43
	2.13.1 Ma	ximal photochemical yield	43
	2.13.2 Lea	af relative water content and dry weight measurements	43
	2.13.3 Lea	af osmotic adjustment (LOA) measurements	43
	2.13.4 All	caloids extraction and analyses	44
	2.14 RNA sequ	encing	46
	2.15 RNA seq a	analysis pipeline	46
	2.16 Statistical	analysis	47
3	Real time PCR	method development for endophyte quantification	49
	3.1 Results		50
	3.1.1 Select	tion of target genes for primers and probes	50
	3.1.2 Assay	v specificity, efficiency and reliability	54
	3.1.3 A dua	1 <i>ltmG/TB1</i> assay can estimate relative endophyte levels	58
	3.1.4 Detec	tion of contaminating endophytes in seed	58
	3.2 Discussion.		61
	3.2.1 Assay	specificity, efficiency and reliability	61
	3.2.2 A dua	1 <i>ltmG/TB1</i> assay can estimate relative endophyte levels	61
	3.2.3 Detec	tion of contaminating endophytes in seed	62
	3.3 General Con	nclusion	63
4	Grasses selection	on and drought physiology	65
	4.1 Results		66

	4.1.1 Preliminary screen of the effect of <i>Neotyphodium lolii</i> on perennial
	ryegrass drought tolerance
	4.1.2 Outlier selection and verification70
	4.1.3 Verification of endophyte status of outliers80
	4.1.4 Endophyte influenced perennial ryegrass physiological response to
	drought83
	4.2 Discussion
	4.2.1 The impact of endophyte on improving grass growth under water
	deficit varies between cultivars
	4.2.2 Nine O One outliers are the best choice for a transcriptomics study89
	4.2.3 Endophyte improved drought tolerance of both selected ryegrass
	genotypes but to different extents
	4.3 Limitations and general conclusions
5	Endophyte transcriptome profiling95
	5.1 Results
	5.1.1 General description of RNA-sequencing results
	5.1.2 Gene ontology enrichment analysis on differentially expressed
	endophyte genes under drought100
	5.1.3 Functional annotations of differentially expressed endophyte genes.105
	5.1.4 The effect of drought stress on alkaloids biosynthesis in
	endophytes113
	5.2 Discussion
	5.2.1 Endophytes enhanced reactive oxygen species (ROS) scavenging
	capability under drought stress
	5.2.2 Endophytes elevated expression of growth genes under drought
	stress
	5.2.3 Alkaloid biosynthetic gene expression was reduced under drought124
	5.3 Limitations and general conclusions127
6	Grass transcriptome profiling129

	6.1	Results	30
		6.1.1 General description of RNA-sequencing results	30
		6.1.2 Gene ontology enrichment analysis on endophyte-regulated grass	
		genes13	33
		6.1.3 Functional annotations of endophyte-regulated grass genes	38
	6.2	Discussion15	53
		6.2.1 Endophyte protected grass chloroplasts under drought stress through	
		multiple approaches1	53
		6.2.2 Endophyte enhanced grass osmotic adjustment under drought by	
		adjusting sugar metabolism15	55
		6.2.3 Endophyte effect on grass drought tolerance was more pronounced in	
		drought tolerant than in drought sensitive genotype1	56
	6.3	Limitations and general conclusions	58
7	Gei	neral conclusions16	61
8	Fut	ure work10	55
9	Ap	pendices10	59
10	Puł	lication18	33
11	Ref	erences18	35

x

Figure 1.1 Neotyphodium lolii life cycle	4
Figure 1.2 Summary of indole-diterpene biosynthesis pathways	7
Figure 1.3 Summary of loline alkaloid-biosynthesis pathway	8
Figure 1.4 Summary of ergot alkaloids biosynthesis pathway	9
Figure 2.1 RNA samples pooling strategy	42
Figure 3.1 Alignment of primer and probe binding positions for endophyte gene	s52
Figure 3.2 Alignment of primer and probe binding positions for the <i>TB1</i> gene	53
Figure 3.3 Standard curves derived from simplex real time PCR reaction	57
Figure 3.4 Correlation between relative endophyte concentration and fungal	
biovolume ratio	59
Figure 3.5 Grass seed contamination standard curves	60
Figure 4.1 Grass dry biomass and total tiller number under drought treatment	68
Figure 4.2 Grass dry biomass and total tiller number under well watered condition	ons.69
Figure 4.3 Dry biomass of endophyte-infected grass after drought and re-watering	ng
treatment	72
Figure 4.4 Grass leaf relative water content	76
Figure 4.5 Grass photosynthesis (PS) II maximum efficiency (Fv/Fm)	77
Figure 4.6 Grass leaf osmotic adjustment	79
Figure 4.7 Grass leaf relative water content	85
Figure 4.8 Grass photosynthesis II maximum efficiency (Fv/Fm)	85
Figure 4.9 Grass leaf osmotic adjustment	87
Figure 4.10 Grass total tiller umber	87
Figure 5.1 Distribution of differentially expressed endophyte genes under droug	ht in
two grass host genotypes	99
Figure 5.2 Biological process gene ontology (GO) terms enriched under drought	t stress
in differentially expressed endophyte genes	101
Figure 5.3 Expression of endophyte genes in gene ontology (GO0000054) categ	ory of
ribosomal subunit export from nucleus under drought	102 <i>xi</i>

Figure 5.4 Expression of endophyte genes in gene ontology (GO0016458) category of
gene silencing under drought103
Figure 5.5 Expression of endophyte genes in gene ontology (GO0006260) category of
DNA replication under drought104
Figure 5.6 Effects of drought stress on the expression of endophyte genes responsive
to hypotonic shock and high osmolarity106
Figure 5.7 Effects of drought stress on the expression of endophyte genes associated
with peroxisome biogenesis107
Figure 5.8 Effects of drought stress on the expression of endophyte genes associated
with peroxisomal proteins biosynthesis108
Figure 5.9 Effects of drought stress on the expression of endophyte genes associated
with DNA replication110
Figure 5.10 Effects of drought stress on the expression of endophyte genes associated
with the cell cycle111
Figure 5.11 Relative endophyte concentrations in two genotypes112
Figure 5.12 Expression changes of endophyte alkaloids biosynthesis genes in
response to drought stress115
Figure 5.13 Endophyte alkaloids concentration changes in response to drought
stress
Figure 5.14 Comparison of endophyte alkaloids concentrations in different host
genotypes120
Figure 6.1 Distribution of differentially expressed grass genes caused by N. lolii
infection132
Figure 6.2 Figure showing biological process gene ontology (GO) terms enriched in
differentially expressed grass genes caused by endophyte infection under
drought stress135
Figure 6.3 Differentially expressed grass genes caused by endophyte infection under
drought organized by over enriched biological process GO categories136
Figure 6.4 Overview of endophyte infection regulated differentially expressed grass

transcripts involved in different metabolic processes under drought
stress
Figure 6.5 Effects of endophyte infection on the expression of grass genes associated
with the glutathione-ascorbate cycle under drought stress141
Figure 6.6 Effects of endophyte infection on the expression of grass genes associated
with photosynthesis under drought stress143
Figure 6.7 Effects of endophyte infection on the expression of grass genes associated
with chlorophyll biosynthesis under drought stress
Figure 6.8 Overview of endophyte infection regulated differentially expressed grass
genes involved in ribosomal protein biosynthesis under drought stress145
Figure 6.9 Effects of endophyte infection on the expression of grass genes associated
with starch and sucrose metabolism under drought stress146
Figure 6.10 Overview of grass differentially expressed genes involved in secondary
metabolism under drought stress149
Figure 6.11 Effects of endophyte infection on the expression of grass genes associated
with mitochondrial electron transport under drought stress150
Figure 6.12 Effects of endophyte infection on the expression of grass genes associated
with wax biosynthetic process under drought stress
Figure 6.13 Effects of endophyte infection on the expression of grass genes associated
with positive gravitropism under drought stress152

Appendix Figures

Appendix 2.1: Command lines used in RNA sequencing data analysis
Appendix 5.1 Mapping results of each sample used in RNA sequencing171
Appendix 6.1: Gene ontology IDs for each category described in Figures 6.6 and 6.7
Figure S6.1. Heat map showing the fold change of grass antioxidant enzyme encoding
gene expression caused by endophyte infection175 <i>xiii</i>

List of Tables

Table 2.1 Grasses used in real time PCR evaluation
Table 2.2 Fungi used in endophyte primer specificity evaluation
Table 3.1 Target genes and oligonucleotide primers and probes used for real time
PCR
Table 3.2 TaqMan primer/probe specificity
Table 4.1 Ability of outliers to survive severe drought stress 73
Table 4.2 Grass total tiller number
Table 4.3 Endophyte strain test using specific TaqMan primer/probe sets
Table 4.4 SSR (simple sequence repeat) endophyte genotyping results
Table 5.1 General description of RNA-sequencing results 98
Table 5.2 Number and proportion of differentially expressed endophyte genes
Table 5.3 Expression level (RPMK value) of endophyte alkaloids biosynthesis genes
under control and drought conditions11
Table 5.4 Alkaloid concentrations of perennial ryegrass plants grown under control
and drought conditions117
Table 6.1 Number and proportion of endophyte-induced differently expressed grass
genes

Appendix tables along with a digital copy of the thesis are in the attached CD-ROM.

- Table S5.1 Over enriched endophyte genes in gene ontology (GO) category of ribosomal subunit export from nucleus (GO0000054) under drought.
- Table S5.2 Over enriched endophyte genes in gene ontology (GO) category of gene silencing (GO0016458) under drought.
- Table S5.3 Over enriched endophyte genes in gene ontology (GO) category of DNA replication (GO0006260) under drought.

- Table S6.1 Endophyte infection regulated differentially expressed grass genes under drought stress associated with photosynthesis in drought tolerant genotype.
- Table S6.2 Endophyte infection regulated differentially expressed grass genes under drought stress associated with photosynthesis in drought sensitive genotype.
- Table S6.3 Endophyte infection regulated differentially expressed grass genes under drought stress associated with tetrapyrrole biosynthesis in drought tolerant genotype.
- Table S6.4 Endophyte infection regulated differentially expressed grass genes under drought stress associated with tetrapyrrole biosynthesis in drought sensitive genotype.
- Table S6.5 Endophyte infection regulated differentially expressed grass genes under drought stress associated with ribosomal protein in drought tolerant genotype.
- Table S6.6 Endophyte infection regulated differentially expressed grass genes under drought stress associated with ribosomal protein in drought sensitive genotype.
- Table S6.7 Endophyte infection regulated differentially expressed grass genes under drought stress associated with sucrose metabolism in drought tolerant genotype.
- Table S6.8 Endophyte infection regulated differentially expressed grass genes under drought stress associated with sucrose metabolism in drought sensitive genotype.
- Table S6.9 Endophyte infection regulated differentially expressed grass genes under drought stress associated with starch metabolism in drought tolerant genotype.

xvi

- Table S6.10 Endophyte infection regulated differentially expressed grass genes under drought stress associated with starch metabolism in drought sensitive genotype.
- Table S6.11 Endophyte infection regulated differentially expressed grass genes under drought stress associated with carotenoids biosynthesis in drought tolerant genotype.
- Table S6.12 Endophyte infection regulated differentially expressed grass genes under drought stress associated with carotenoids biosynthesis in drought sensitive genotype.
- Table S6.13 Endophyte infection regulated differentially expressed grass genes under drought stress associated with anthocyanins biosynthesis in drought tolerant genotype.
- Table S6.14 Endophyte infection regulated differentially expressed grass genes under drought stress associated with anthocyanins biosynthesis in drought sensitive genotype.
- Table S6.15 Endophyte infection regulated differentially expressed grass genes under drought stress associated with mitochondrial electron transport in drought tolerant genotype.
- Table S6.16 Endophyte infection regulated differentially expressed grass genes under drought stress associated with mitochondrial electron transport in drought sensitive genotype.