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Abstract

A comprehensive geographical study and reporting system is presented. Animal disease
data from both Thailand and New Zealand were explored and analysed using spatial
analysis methods. The particular technique used depended on the form of the data, aim
of the investigation and the epidemiology of the disease of interest. Results and
methods from some of these analyses were then included in the development of a

simple geographical disease reporting and analysis system for Thailand

A number of methods were used to investigate the presence of temporal clustering,
spatial clustering and spatio-temporal clustering of foot and mouth disease (FMD)
reporting data in Thailand during January 1995 to May 1997. Temporal clustering in
the time series of individual districts and individual provinces was found in many
districts and provinces. Some of these provinces also showed the evidence of unimodal
patterns. Spatial clustering was detected both at the district and province level. Space-

time clustering was found at the district level.

An exploratory analytical approach was used to investigate spatial clustering of bovine
leukaemia virus (BLV) infection in New Zealand dairy herds. Two spatial clusters of
BLV positive herds were detected in the Bay of Plenty area (p =0.001) and in the
northern part of the South Island (p = 0.082). We recommend that further investigations

be conducted to define possible reasons for the presence of these observed clusters.

The geographical pattemns of FMD were described and risk maps of FMD outbreak
occurrence in Thailand were developed using logistic regression and classification tree
models (CART). The potential impact of spatial autocorrelation on the logistic
regression models was assessed. CART models incorporating cost-sensitivity were
constructed to develop sets of decision rules for the likelihood of FMD outbreak
occurrence. Receiver-operating characteristic (ROC) curves were used to quantify and
compare the value of the different models for production of risk maps and to provide a
method for decision makers allowing them to optimise sensitivity and specificity of

binary decision critera.

A simple geographical disease reporting and analysis system for Thailand was
developed using the GIS software ArcView 3.1®, the database management software

Microsoft Access 97% and the spatial cluster analysis software SaTScan® version 2.1.3.
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The programming language Avenue™ which is part of ArcView 3.1 was used bind the
different components using a common user interface. The system allows quick and easy
production of custom maps for routine reporting as the system is largely automated and

requires only basic computer skills from the operator.
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CHAPTER 1.

General Introduction

Epidemiology is concerned with identifying patterns in the distribution of disease in
populations, using these patterns to identify causes of the disease, and then to develop
appropriate strategies for control or eradication of the disease. Patterns in the
occurrence of a disease may be detected by categorising afflicted and un-afflicted
individuals according to measurements made for a group of variables. Using this
approach patterns appear when the causes of disease are distributed unevenly as
reflected in these vanables (Rothman, 1990). The spatial distribution of a disease can
be studied if the vanables being investigated have locational attributes. Recent
developments in data management software and statistical methodology have made the
interpretation of spatial aspects of disease information much more accessible to

veterinary epidemiologists.

Spatial Data Analysis

Different methods are used in spatial data analysis depending on the type of spatial data
being analysed: point patterns, geographical data, and lattice or areal data (Pfeiffer, es
al.,, 1994). Spatial data analysis can be broadly categorised according to the following

general categories: visualisation, exploration and modelling (Bailey and Gatrell, 1995).

Spatial data visualisation

The visual display of spatial phenomena provides a very effective descriptive analytical
tool. Visualising spatial data does really mean mapping. Mapping techniques come in
various forms and are useful for different kinds of spatial data. Three important
characteristics of maps include: 1) Are they based on point locations or region
locations? 2) Do they show regular or irregular patterns? 3) Is the variable being
mapped continuous or discrete? (Hertz-Picciotto, 1998) Visual map displays can

provide basic information for generating hypotheses. However, choices of map type



and scaling used for data values can lead to misleading conclusions being drawn from
the display and can suggest the development of inappropriate hypotheses. The advances
in GIS software development and modemn data-capture technology allow the
investigator to create maps and explore spatial patterns and relationships quickly and

interactively.

Spatial data exploration

Exploratory analysis of spatial data is used to assist in the development of hypotheses,
or search for previously unseen processes. Exploratory techniques represent an
intermediate process where the distinction between visualisation and exploration is not
as well defined as between spatial data exploration and modelling. The dividing line
between visualisation and exploration depends on the extent of data manipulation
which the analytical method requires, while the specification or restrictions of the
model are used to distinguish between exploration and modelling. Simple analytical

models can be used in this exploratory analytical phase.

Spatial data modelling

Specific types of hypotheses are formally tested or evaluated using statistical models. It
focuses upon the development of spatial models. Since the characteristics of spatial
data often express some degree of spatial correlation, modelling of spatial data has to
incorporate the possibility of these correlations into the models. In turn, these models
provide alternative hypotheses against the null hypothesis of absence of spatial

dependence or autocorrelation.

Application of Geographical Reporting and Analysis Systems

in Animal Disease Control

A list of the suggested major components of animal health and productivity information
systems for veterinary services in developing countries has been compiled as part of a
an FAO expert consultation on the need for information systems aimed at strengthening
veterinary services in developing countries (FAO, 1993). Specific elements within each
of the four major components of an animal disease information system are listed in

Table 1. Various comments were made in the report particularly with respect to spatial
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aspects. The report recommended that during the process of data collection and
reporting special consideration should be given to the accuracy of spatial referencing of
disease and production data as well as environmental characteristics (geography,

rainfall etc.) of the geographical area.

Table 1 The four major components of an animal health information system.

Major components Elements

1. Data collection * Livestock demographics
* Disease specific monitoring
* Laboratory diagnostic data

* Animal movement data

2. Data management * Processing
* Analysis
* Interpretation

* Svnthesis

3. Information distribution = Routine disease reports
*  Specific disease reports

* International disease reports

4. Utilisation * Feedback to data suppliers
* Monitoring use of information
* Monitoring progress of the disease

* Monitoring progress of the control
or eradication program

Once a geographical reference has been added to the data incorporated in the
information system, a geographic information system (GIS) can be used for spatial data
management and presentation, and thereby the spatial aspect of animal health can be
incorporated in the reporting and analysis of animal health data. Spatial analysis and
GIS are often considered as integrated procedures or systems. Haining (1994)
concluded that GIS provides a data management tool which may result in statistical

spatial data analysis becoming more accessible to the investigator.

As part of epidemiological field studies, GIS is used for the visual display of
geographical patterns and for spatial analysis. In disease surveillance, GIS can be used

at the most basic level to generate up-to-date maps of the spatial pattemns of disease



occurrence and at the more advanced level as part of sophisticated animal disease

information systems (Pfeiffer, ez al., 1994).

The power and flexibility of a GIS can provide a useful tool when working towards the
objective of animal health improvement by providing better information to decision-
makers. Knowledge of the geographical component of disease distribution has the
ability to enhance most of the functions of an animal health information system and to

provide entirely new areas of functionality.

The objective of this thesis was to develop a simple animal health information system
for use in Thailand based on geographical and animal disease data. Specific emphasis
was placed on developing a cluster detection component for this system. These
analyses were conducted using disease surveillance data for Foot and Mouth Disease
(FMD) occurrence recorded in Thailand between January 1995 to May 1997 and data
on Enzootic Bovine Leucosis (EBL) herd infection status of dairy cattle herds for 1997-
1998 from New Zealand. Using spatial data analysis and GIS, the spatial patterns of
both diseases were investigated using spatial data visualisation and exploration
techniques (chapters 2 and 3). Models of the spatial distribution of FMD were
constructed in order to predict the occurrence of FMD outbreaks in Thailand (chapter
4). Since information distribution is one of the major objectives of animal health
information systems, production of tailored reports is one of the most important
activities. A simple geographical reporting system was developed using Avenue, the
ArcView ® programming language (chapter 5). The system 1s aimed at producing
reports of observed as well as predicted geographical patterns and performing spatial

cluster detection.
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CHAPTER 2.

Spatial and Temporal Analysis for Detection of

Clustering of Disease Occurrence

Introduction

Disease clustering

A disease cluster is an aggregation of cases in space, in time or in space-time. They
occur when more cases appear in a particular place and time than would be usually
expected. Knox (1988) considers a cluster as ‘a bounded group of occurrences related
to each other through some social or biological mechanism, or having a common
relationship with some other event or circumstance’. One might want to enquire
whether cases of a particular disease appear at excessivelv high frequency in certain
years or one might suspect that certain forms of illness are more common amongst
animals which are raised in certain areas, perhaps because of environmental factors
peculiar to these places. Another type of disease cluster is the space-time cluster which
occurs when pairs of cases are relatively close together in space as well as in time.
Clusters are of interest for at least two reasons. Firstly, cluster investigations can yield
insights into disease epidemiology. Secondly, and perhaps more importantly, cluster
investigations are one of the main tasks of public health agencies as their detection as

part of disease surveillance will lead to specific investigations (Jacquez, 1996).

Types of space -time patterns
As mentioned above, disease events occurring in space and time may exhibit three

types of patterns; clustering in time, clustering in space, and clustering in space-time.

These patterns occasionally arise due to chance but often are the result of a space-time

process. The possible types of pattern can be used to construct a classification matrix of



eight possible types (see Table 2) which can help to focus one’s thinking regarding the

type of pattern thought to underlie a suspected cluster.

Table 2. Classification matrix of possible combinations of types of clustering of
disease occurrence

Clustered in Clustered in Space-time
time space clustering

no no no

no no yes

no yes no

no yes yes

yes no no

yes no yes

yes yes no

yes yes yes

Units of analysis
The method to be used in an analysis of space and/or time clustering depends of the
type of data to be analysed, point or area data. Point patterns are generated from data
where the location of every case 1s being recorded. Typically this location will already
involve some level of aggregation in that the occurrence of a disease in animals kept in
a particular paddock on a farm is recorded using the coordinates of the farm centroid,
instead of using the actual paddock boundaries. Typically, geographical data collected
as part of disease surveillance programs is recorded using certain administrative units,
such as district or provinces, which can presented spatially as area data. In the current
analysis, data was recorded at the district level and therefore methods for analyses of

area data were used.

Clustering in time
Temporal clustering without presence of spatial aggregation indicates that the incidence
of disease fluctuates over time in a similar pattern in different places. It means that
individual cases of disease occur closely together in time, as 1s often the case with

infectious diseases. Cyclical clustering suggests the association between the presence of



an environmental risk factor occurring at cyclical intervals and the aetiology of the
disease. Variability in time is more revealing over shorter than over longer time
intervals, since with short intervals less factors will influence variability such as
seasonal swings in disease frequency which point to seasonally varying environmental
factors. On the other hand, secular variation over long periods may be explained by a
wide variety of factors that change with time, including such diverse possibilities as
changes in diagnostic practice and changes in gene pool, and may therefore be more

difficult to account for correctly (Rothman, 1987).

A rather simple approach to many problems of this sort is to divide the time period into
equal intervals, to express the incidence risk in each interval as a proportion and to test
the significance of the difference between these proportions by standard 2 x n
contingency table methods. It may be sensible to concentrate attention on the maximum
of the various case counts, on the grounds that occasional clustering may affect only
one or two of the time intervals. Time clustering can be investigated in a single time
series or as simultaneous clustering in several time series. Multiple time series arise
when disease rates or counts are recorded for several areas at a time. The fundamental

question 1s to determine whether time clustering occurs in most or all of the time series.

Several methods have been developed to detect clustering based on different null
hypotheses. Time clustering methods include the Ederer-Myer-Mantel test (Ederer,
1964), the empty cell test (Grimson, 1993), Larsen’s test (Larsen, 1973), the 0-1 matrix
test (Dat, 1982), Grimson’s test for time clustering (Grimson, 1989), the Scan test
(Wallenstein, 1980;1987), the Chen test (Chen, 1979), the Texas test (Hardy, 1990), the
Poisson test (Edmonds, 1981), the Sets test (Chen, 1986), the Cusum test (Weatherall,
1976; Hill, 1968) and the Edward’s test (Edwards, 1961). Several modifications of
these tests have been developed (Tango, 1984; Wallenstein 1980; Hewitt, 1971; Roger,
1977, Cave, 1975).

Clustering in space

Space clustering represents geographic variation in event occurrence. The study of
space clusters amounts to comparing disease occurrence in difference places. Spatial
clustering occurring over a short time span can be the result of infectiousness. An
infectious disease that propagates through a population results in a contagious spatial

pattern. ‘Contagion’ can also be applied to the spatial clustering of disease, whether or
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not being infectious. Ecologists sometimes use ‘over-dispersion’ to refer to this type of

spatial clustering in a population.

Virtually every disease varies in occurrence from one place to another, resulting from
the geographic variation that exists for all causes of disease, environmental and genetic.
Spatial clusters can be explained by a multitude of possible factors, their number
depending on the geographic distances taken into consideration. On a local scale,
geographic variability within communities or small regions can focus attention on a
narrow range of possible causal explanations and seemingly facilitate identification of
factors that cause diseases or other underlying causes such as inadequate farm
management or public health utilities. However, there are often numerous factors that
vary in a similar pattern, requiring many possibilities to be eliminated before real

etiologic insight is attained.

Although clustering is usually considered in terms of local high rates, the occurrence of
foci of particularly low local rates or ‘negative clusters’ also has etiological
significance. The statistical methods to be described were developed primarily to
analyse and test for positive clustering. Their application and ability to test for negative

clusters has not been explored (Marshall, 1991).
Two mechanisms of spatial clustering that are of epidemiological interest are:

- a locally elevated risk so that the population in the locality is, independently,

subjected to greater risk than elsewhere and

- spatial interaction, i.e. local high rates of transmission from animal to animal

of an infective agent or a genetic abnormality

Statistical testing for clustering is generally aimed at describing a general tendency for
clustering to occur and, if so, where. The latter issue deals with whether clusters occur
in specific areas or not, e.g. near suspected environmental hazards. Testing for
‘significance’ of a cluster may in itself be viewed as being of little value unless
accompanied by a meaningful statistic saying something about the pattern of disease
occurrence. It will usually be convenient to subdivide the total population into

administrative areas containing quite different numbers of individuals.

Many test statistics are of the form ‘ I'=2; J; x; y;” where x;; and y j are measures of
similarity, or separation, of observational units / and j. Units are often geographical

areas but they may also be individuals. Testing can be done by permutation tests or
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point pattern analyses, without knowledge of population densities based on distance
measures (Mantel, 1967; Ross, 1990; Kulldorff and Nagarwalla, 1995) or case-control
status as in the nearest-neighbour-based Cuzick and Edwards’ test (Cuzick and
Edwards, 1990). Many adjacency statistics are also T-type statistics with a binary
indicator of adjacency; x;; and y j;, a measure of concordance of rates or Poisson p-
values in areas / and j in the Ohno test (Ohno, 1979), Grimson’s test for space
clustering (Grimson, 1991), Moran’s I (Cliff, 1981) and Moran’s I adjusted for
population size (Oden, 1995).

Localised disease clustering near putative environmental hazards is a topical and
sensitive issue with many methodological problems. These include the danger of
making inferences from data used to generate the hypothesis, the difficulty of defining
a null hypothesis, lack of statistical power, the arbitrary nature of statistical boundaries,
the extent of the study area and the presence of extra-poisson variation. Although the
chance occurrence of local clusters i1s to be expected and is sometimes used to play
down the importance of observed clusters, the fact that the cluster and hazard coincide
cannot be overlooked. A variety of methods based on distance of cases or areas from a
source have been proposed (Marshall, 1991) as well as the increase in Poisson intensity

with distance from sources (Lawson, 1988).

Space-time clustering

Space-time interaction arises when nearby cases occur at about the same time. Space-
time aggregation, in which the disease rate varies with both time and place, is often
extremely revealing, since explanations for such clusters are restricted to the limited set
of factors that vary in the same specific pattern as the disease. Environmental agents
that move from place to place or suddenly appear in specific locations, such as
infectious organisms, toxic chemicals, or new drugs with local popularity cause space-
time clustering. Many epidemiological investigations of clusters are of interest because
the space-time pattern of cases may reflect risk factors and exposures underlying the

disease.

Space-time clustering of disease outbreaks is defined as the occurrence of a pattern of
cases of disease that are closer together in time and distance than could be expected if
the only underlying mechanism governing the distribution of the disease were random

allocation (Grimson, 1979). It is important to define appropriate units of space and time
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before examining the data in detail. The resolution or level of aggregation of the units is
likely to strongly influence the outcome of the analysis; for example, clusters that occur
within a year may be missed if the study unit is one month. Similarly, clusters within a
farm-block may be missed if the unit of study is a county. Clusters may remain
undetected if the resolution chosen for the unit of study is too large or too small. In the
absence of knowledge of the aetiology of the disease, it is difficult to select an
appropriate statistic of clustering which will yield sufficient power. The payoff from
clustering research comes from the specific hypotheses that emerge to explain the|
observed pattern of excess occurrence. If the research is limited to a specific cluster,
with only a few cases and a small relative increase in disease frequency, the prospectsf

of useful etiologic information are dimmer.

A variety of tests for space-time clustering of disease have been developed. Some of
the statistical methods require the computation of distances between each possible pair
of cases (Knox, 1964; David, 1966; Mantel, 1967), or require labelling objects in
space-time as adjacency areas and high-risk cells (Grimson, 1981; Symons, 1983), or
use nearest neighbour measures (Jacquez, 1994; Cuzick and Edwards, 1990). The
statistical power of different methods for detection of space-time clustering has been
investigated by a number of researchers (Chen, 1984, Wartenberg and Greenberg,
1990; Oden, 1996). Lack of statistical sensitivity was suggested as the main cause of

the low rate of space-time interaction found in cluster studies.

The purpose of this paper was to investigate whether there was clustering of Foot-and-
Mouth-Disease occurrence in time, space or space-time in Thailand (Jan 1995 - May
1997) and to explore the use of different statistical methods for analysing disease

clustering..

Materials and Methods

Foot-and-mouth-disease (FMD) reporting data for Thailand from January 1995 to May
1997 was analysed based on the levels of aggregation used by The Department of

Livestock Development: district, province, region, and country. A total of 113 .
outbreaks of FMD were reported during this time period. Each outbreak was reported at
the district level including the following information: month, FMD type (Type O, Asial
and untyped), species affected, the number of new cases and the district where the

outbreak occurred. Data was stored in Microsoft Access 97 and analysed using the
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statistical software packages Stat!® (Biomedware, Ann Arbor, Michigan, USA) and
SaTScan version 2.1.3 (National Cancer Institute, Bethesda, Maryland, USA).
Geographical data was located using the GIS software ArcView® for Windows version
3.1 (Environmental Systems Research Institute, Redlands, California, USA). A p value

of 0.05 or less was considered significant in all statistical analyses.

Recognising the relatively poor statistical power, one approach is to look at the
similarities and differences of the methods and take into account which properties of
the data they emphasise. Previous publications have presented a four-stage typology of
cluster methods. The stages are 1) data type, 2) transformation type, 3) summary
statistic and 4) reference methods (Wartenberg and Greenberg, 1993). According to
these steps, the choice of the appropriate method still depends on the context of the
study and the specific features of interest. Decision rules are necessary to determine
whether perceived clusters of disease cases constitute actual clusters, or merely clumps
in an overall pattern consistent with random distribution of cases. Hence, statistical
techniques are used to distinguish the presence of clusters of cases from random

allocation.

Methods for detection of clustering in time

Temporal cluster analysis was conducted using three methods: the scan method,
Larsen’s method, and the empty cells method. During the current analysis these
techniques are applied to case counts for single time series and for several time series
simultaneously. Cases were arranged for analysis according to FMD virus type using a
total of 29 time cells (monthly from Jan 95 - May 97) aggregated at the province and
district level. These methods detect clustering in time under the hypothesis that FMD
cases are allocated at random amongst the time cells of each time series within a
selected level of spatial aggregation (whole country, province or district). After
aggregating cases by virus type into province and district time series, the data over this

time period for virus type Asial for two provinces looks as shown below:

29 manthly time intervals Province

ojo|jojofofje|lofr|ofl0o|jof{2rjoflofo|OfofO0O|JOfO|O|OfO|O|O|O|8(|O|O| Chicngrai

0lofo|8|0|24|/0|12{0|0|0jOfjO|O|O|OfO|OfOfO|O|O|O|O|O|O|O|O]/O |Nakbomsawan
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Scan statistic
The scan statistic, a test for temporal clustering in a single time series, evaluates
whether an apparent cluster of disease in time is due to chance. This method is designed
to detect sudden temporal clustering of disease in a defined population. All cases of a
disease in the study area are arrayed on a time line according to date of event. An
interval or “window” of fixed length is then defined based on the expected duration of
the epidemic. The statistic employs a ‘moving window’ and finds the maximum
number of cases revealed through the window as it scans or slides over the entire time
period. The test statistic is based on comparing the maximum number of cases in the
interval, and its expectation. The test is most sensitive to clustering when the scanning
window has the same width as natural clusters in the data (Wallenstein, 1987). The
interval width of the scanning window for this study was set to 2 months, as this is the
expected duration of FMD epidemic outbreaks and the data was limited to a resolution

monthly time units.

Larsen’s method
Larsen’s test statistic K is sensitive to a unimodal clustering of occupied cells which
occurs when occupied time cells tend to occur in a sequence. Unimodal clustering will
cause K to be smaller than its expectation. Multiple clustering or uniformity (cluster
avoidance) will cause KX to be larger than its expectation. This module provides two
tests for temporal clustering: within the individual selected level of spatial aggregation
using a z-score and across all levels of spatial aggregation simultaneously using an
overall z-score. Negative z-scores suggest unimodal-clustering, z-scores near zero are
consistent with the null hypothesis, and positive z-scores arise under uniformity and

multiple clusters. We used Larsen’s method to consider the following questions:

- Within a district or province area, do time cells occupied with FMD cases tend to
occur in a sequence?

- Is there an unusual pattern over time (29 months) which may not necessarily be

the same for different district or province areas?

Empty cells method
The empty cells test is based on E, the number of empty cells or columns (time
interval) in a sequence of consecutive time interval. Consideration of the statistic £ is

appropriate for rare data or if one or more of the time periods have several cases while
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other time periods have none. If the observed value of £ is significantly larger, the
cases tend to cluster within relatively few columns (Grimson, 1993). To use this test,
the number of cases must be small enough so that the expectation of the number of
empty cells is greater than 1. We used the table of the maximum number of cases
supported by the empty cells test provided in the manual of Stat! to determine whether
this data can be analysed using the empty cells approach. The limitation of the
maximum number of cases with 29 time cells 1s 95. All time series for provinces and
districts have cases less than 95, so we proceeded to use this test for the province and

district time series but not for the whole country series.

Methods for detection of clustering in space

Moran’s I with adjustment for population density (Ipop)

Spatial cluster analysis for this study was performed using Moran’s / adjusted for
population size. This test was modified from Moran’s / to adjust for spatial variation in
the underlying population density. /,,, 1s large under two clustering scenarios. First,
when cases cluster within areas and second, when areas with many cases are adjacent.
The range of /,,, depends on population size, and it is useful to standardise Zpop (/p0p ).
Ipop 1s more powerful than Moran’s I (/) because / takes into account only the similarity
in rates of neighbouring areas, while /,,, considers also the variance in rates across
areas. Adjusting Moran’s | is better suited to test the hypothesis of no spatial
autocorrelation than other descriptors of spatial autocorrelation (Oden, 1995) as shown
in studies of fox rabies in England and childhood leukaemia in North Humberside,
England (Oden et al, 1996). Judging by the results derived from simulations, the
statistical power of the /,,, test higher when compared with Cuzick-Edwards’ test,
Moran’s /, Grimson’s method using normal approximation or Poisson approximation
(Oden er al, 1996). For the above reasons and given the availability of animal
population statistics, we used the /,,, test for our FMD reporting data. Sixty-seven of 76
provinces and 593 of 844 districts were used to construct a connection matrix required
for the calculation. The southern and eastern regions of Thailand which are declared

FMD-free zones were excluded from the analysis.

The null hypothesis assumes that the probability of FMD cases of specific virus types
occurring in a province or district 1s given by the proportion of the total animal

population in that spatial unit.
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Spatial scan statistic
The spatial scan statistic (Kulldorff, 1997) allows statistical inference with respect to
the presence of spatial clustering as well as identification of the locations of any

clusters.

This method generates for each location in the dataset a set of circles (=windows) with
ever-increasing radius from zero to some upper limit throughout the study region. It
performs a likelihood ratio test comparing on disease risk within and outside the circles.
The null hypothesis distribution of the likelihood ratio is obtained on the basis of Monte
Carlo replications. The ‘most likely’ cluster is defined by the highest value for a
significant likelihood ratio statistic in the dataset. Other statisticallv significant clusters

are also identified as ‘secondary’ clusters.

With the availability of animal population statistics for individual districts, the number
of cases in each census area is assumed to be Poisson distributed. Under the null
hypothesis, the expected number of cases in each area is proportional to the population
size in that area. The method can scan for clusters of geographical size between zero
and an upper limit defined by the investigator. This maximum is expressed as a
percentage of the total population at risk, and the recommended maximum window size
1s 50% (Kulldorff and Nagarwalla, 1995). The test statistic was calculated based on 999

random replications.

Methods for detection of space-time clustering

Analysis of space-time clustering for this study was done using the two most widely
adopted tests measuring the proximity of case pairs in space and time: the Knox test
and the Mantel test. Other test used in this study were the & nearest neighbour test (k-
NN) and the space-time scan statistic. Three independent methods were used because
the power of techniques for space-time clustering is reported as being low. All these
methods require space and time distance matrices for statistical calculations. In this
study, centroids of district areas were used instead of the exact location of disease

outbreaks.

Knox’s test

The Knox method quantifies space-time interaction based on critical space and time

distances. The test statistic, X, 1s a count of the number of pairs of cases that are
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separated by less than the critical space and time distances. The criteria for defining
closeness in space or time are judgmental and will depend upon the characteristics of
the disease of interest, and the population at risk. Each of the n (n-1)/2 pairs can be
classified as being close or far apart in time and close or far apart in space to form a 2 x
2 contingency table. Then the method tests the observed number of close pairs against
an expected null distribution of Poisson deviates generated using permutation
techniques. Pairs of cases will be near to one another when space-time interaction is
present, and the test statistic will be large (Knox, 1964). The statistical significance is
obtained through calculation of the proportion of the values in the upper right tail of the
null distribution (i.e. probability of values equal or greater than the observed test

statistic under the null hypothesis).

In the present study, 2 months were chosen as the critical temporal distance as an
epidemic of FMD outbreaks would be expected to transmit from outbreak to outbreak
at intervals of not more than two months. If the data would have been available at
weekly intervals, smaller critical time distances more closely reflecting the biology of
the infection process could have been used. The chosen critical distance in space was
systematically varied to identify values maximising Knox’s X.  This allowed
determining the spatial extent of disease clusters. Strictly, the critical distance should
have been selected beforehand based on current understanding of FMD epidemiology,

and not changed during the investigation.

Mantel method

The Mantel regression method uses the actual time and space distances between all
possible pairs of outbreaks. It is not necessary to categorise the data as with Knox’s
test. For all case-case pairs, a graphical representation of the data can be produced by
plotting the temporal distance against the spatial difference. The test statistic is
calculated as the sum of the products of time and space distances for all case-case pairs.
A null hypothesis distribution representing expected values for the test statistic
assuming independence of space and time distances is calculated using a permutation
approach. To generate the distribution, locations of cases are kept constant but the
times are being randomly selected, and every time a value of the expected test statistic
under space-time independence is recalculated. The statistical significance is estimated

as was done with Knox’s test through calculation of the proportion of the values in the
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upper right tail of the null distribution (i.e. probability of values equal or greater than

the observed test statistic under the null hypothesis).

Various transformations of the time/space distance values can be used to emphasise
particular sections of the value distributions. For a contagious disease we expect short
space and time distances to be correlated, but not the large distances. To emphasise the
importance of the smaller distances Mantel recommends the use of the reciprocal
transformation (d'=1/(C + d)) for the onginal values. To prevent an infinite reciprocal
in cases of short distances in time or space it may be necessary to add a constant before
taking a reciprocal. The reciprocal transformation will increase the small distances and

reduce the large distances (Mantel, 1967).

One difficulty with Mantel’s approach is the need to specify values for constants in the
expressions for time and distance separation. Therefore, various constants for the space
distance were used to identify the appropriate selection for this study but keeping the

constant value for the time matrix at 1.

Space-time scan statistic
The space-time scan statistic is defined exactly the same as the purely spatial scan
statistic. However, this method uses a cylindrical window with a circular geographic
base and with height corresponding to time. The cylindrical window is then moved for
each possible geographical location and size as well as any possible time period. The
maximum temporal extent of potential clusters can be as large as the length of a time

interval but should not be more than 90 percent of the study period (Kulldorff, 1997).

k-nearest neighbour method (k-NN)
The k nearest neighbour test for space-time interaction analyses the association between
space and time distances of cases. Instead of using the actual values, the data is
assessed according to whether individual cases are first, second and k4 nearest
neighbours in both space and time. The test statistic, Ji , is the count of the number case
pairs that are k nearest neighbours. The statistic A Jx is the difference in nearest
neighbours between the statistics Jy and Jy.;. Probability values are calculated by
comparing the observed Jx and A Ji to their reference distributions obtained from
permuting the space-time nearest neighbour matrices. The P, describes how likely the
observed A Jx is under the null hypothesis of no association between the spatial and

temporal nearest neighbour relationships.
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The A Jx and their associated P, may be used to diagnose the space-time scale of the
cluster process using an experiment-wise error. Given a desired type [ error of a, the

l/m

experiment-wise error rate, o', 1s a'=1-(1-a)™ , m is the number of k levels to be
inspected. Significant space-time interaction occurs at those & where py less than o'. If
the experiment-wise error approach identifies significant interaction at any k level, it
suggests that the observed events tend to reoccur in the same area at that & time scale.

The Stat! software allows 10 levels for .

The statistical significance of space-time interaction across several levels of & can be
addressed by combining probabilities using three methods: Bonferroni, Simes, and
centroid distance. We report results of the centroid distance approach because it is
considered to have greater statistical power than the Bonferroni or Simes techniques

(Jacquez, 1996).

Results

Clustering in time

A window width of 2 month intervals was selected for the scan method to determine
whether the sum of FMD cases in any 2 adjacent time intervals is excessively large in
the study area. With the empty cell method, we wish to determine the probability of
obtaining a number of cells without any cases of FMD greater than or equal to the exact
number of empty cells (no FMD cases). Finally, we used Larsen’s method to answer
whether the time cells occupied with FMD cases tend to occur in a sequence or have an
unusual pattern over time within a district or province area. The results for these three
methods applied to the time series of provinces and districts with the infection of Foot

and Mouth Disease type O, Asial and untyped are presented in Table 3-9.

We found evidence of temporal clustering for all types of virus infections in the whole
country and for some provinces. There was unimodal clustering of FMD infection with
virus type O in Nakhonsawan, Ubonbratchathani and Uttaradit province, with type
Asial in Chiengrai, Sukothai and Uttaradit province, and in Roiet province with
untyped virus. Unimodal patterns were seen with the outbreaks of FMD type Asial and
untyped virus for the time series aggregated for the whole country. (Table 1 and

Figure 1). Provinces that had too few cases and were therefore classified as out of range
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were excluded from the whole country analysis. There was evidence of unimodal
temporal clustering for all types of virus across provinces. (Tables 4 to 6 and Figures 2

to 3)

In the district time series, evidence of clustering in time was seen for most of the
districts studied, but it was not possible to identify unimodal clustering in individual
districts. When looking for temporal clustering across all districts simultaneously, we
found that all FMD virus types demonstrated temporal clustering. Patterns of unimodal
clustering were seen for the outbreaks of virus type O and type Asial in the time series
of 3 and 4 districts, respectively. All time series of outbreaks with untyped virus were

excluded from the analysis (Tables 7 to 9).
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Table 3. Results from analysis of temporal clustering using a single time series
representing FMD outbreak occurrence Type O, Type Asial, and untyped
virus aggregated for the whole country. The results from Larsen’s test
for multiple time series analysis is presented by overall p-value

Virus type p-values for different methods
Scan method  Larsen’s method Clustering
Type O <0.001 p=0.69 (Z=0.51) v i
Type Asial <0.001 p=0.01 (Z=-2.26) Unimodal
Untyped virus <0.001 p<0.001 (Z=-3.71) Unimodal
Overall - P<0.01 (Z=-3.57) Unimodal

Figure 1. Temporal pattern of FMD cases aggregated for the whole country by
virus type between Jan 1995 and May 1997
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Table 4. Result of analysis of temporal clustering for the time series of individual
provinces with Foot and Mouth Disease type O infection

Province p-values for different methods
Scan Larsen’s method ~ Empty cell Clustering
method method
Chiengmai <0.001 Out of range <0.001 v
Chiengrai <0.001 p=0.55(2=0.12) <0.001 v
Kalasin <0.001 p=044(Z=-0.15) <0.001 v
Kanchanaburi <0.001 Out of range <0.001 v
Lampang <0.001 p=0.06(Z=-1.55) <0.001 v
Lopburi 0.01 Out of range <0.0] v
Maehongsom 0.13 Out of range Too few cases X
Mahasarakham <0.001 p=043(Z=-0.16) <0.001 v
Nakhonratchasima <0.001 Out of range <0001 v
Nakhonsawan <0.001 p=0.05(Z=-1.60) <0.001 v
unimodal
Nongkhai <0.001 p=0.72(Z=0.60) <0.001 v
Phitsanuloke <0.001  p=0.18(Z=-0.89) <0.001 v
Phrae <0.001 Out of range <0.001 v
Roiet <0.001 Out of range <0.001 v
Sakonnakhon 0.01 Out of range <0.0] v
Sisaket 0.13 Out of range Too few cases X
Sukhothai <0.001 Out of range <0.001 v
Tak <0.001  p=0.18(Z=-0.89) <0.001 v
Ubonratchathani <0.001 p<0.05(Z=-2.78) <0001 v
unimodal
Udonthani <0.001 p=013(Z=-1.12) <0.001 v
Uthaithani 0.64 p=085(Z=1.04) <001 v
Uttaradit <0001  p=002(Z=-215) <0.001 v
unimodal
Yasothon <0.001 Out of range <0.001 v
Overall - P<0.01 (Z =-3.07) p<0.001 v

unimodal
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Table S. Results from analysis of temporal clustering of the time series of

individual provinces with Foot and Mouth Disease type Asial infection.

Province p-values for different methods
Scan method Larsen’s method — Empty cell Clustering
method
Burirum <0.001 Out of range <0.001 v
Chiengmai <0.001 Out of range <0.001 v
Chiengrai <0.001 p 0.03(Z=-191) <0.001 v
unimodal
Kampangphet <0.001 p 0.09 (Z =-1.34) <0.001 v
Lamphun <0.01 Out of range <0.001 v
Loei <0.001 Out of range <0.001 v
Maehongsomn <0.001 Out of range <0.001 v
Mukdahan <0.001 p0.15(Z=-1.04) <0.001 v
Nakhonratchasima Too few cases Out of range Too few cases X
Nakhonsawan 0.64 p 0.18 (Z = -0 89) <0.01 v
Nan 0.05 p0.15(Z=-1.04) <0.01 v
Nongkhai <0.001 p 0.17(Z =-0.96) <0.001 v
Phetchabun <0.001 Out of range <0.001 v
Phrae 0.01 Out of range <0.01 v
Sakonnakhon <0.001 Out of range <0.001 v
Sukhothai <0.001 p<0.01(Z=-254) <0.001 v
unimodal
Tak <0.001 Out of range <0.001 v
Ubonratchathani <0.001 Out of range <0.001 4
Udonthani <0.001 p 056 (Z=0.16) <0.001 v
Uttaradit <0.001 p 0.04 (Z=-1.76) <0.001 v
unimodal
Overall - p<0.001 p<0.001 v
(Z2=-3.93) unimodal
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Table 6. Results from analysis of temporal clustering for the time series of
individual provinces with Koot and Mouth Disease untyped virus

infection
Province p-values for different methods
Scan Larsen’s method ~ Empty cell Clustering
method method
Burirum <0.001 p0.12(Z=-191) <0.001 v
Chiengmai 0.13 Out of range Too few cases X
Kalasin <0.001 Out of range <0.001 v
Lampang <0.001 p0.18 (Z=-0.89) <0.001 v
Lamphun <0.01 p0.15(Z=-1.04) <0.001 v
Maehongsom <0.001 p0.12(Z=-1.19) <0.001 v
Mahasarakham Too few cases Out of range Too few cases X
Nakhonratchasima 0.13 Out of range Too few cases X
Phetchabun <0.001 Out of range <0.001 v
Phitsanuloke <0.001 p0.15(Z=-1.04) < 0.001 v
Phrae <0.001 Out of range <0.001 v
Roiet <0.001 p 0.04(Z=-1.76) <0.001 v
unimodal
Sakonnakhon <0.001 p0.33(Z =-0.45) <0.001 v
Sunn <0.001 p 0.50 (Z=0.00) <0.001 v
Tak <0.001 Out of range <0.001 v
Udonthani 0.01 Out of range <0.01 v
Overall - p <0.01 p <0.001 v
(Z=-2.66) unimodal




Figure 2. Temporal pattern of FMD cases with virus type O in three provinces
with unimodal clustering
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Figure 3. Temporal pattern of FMD cases with virus type Asial in three provinces
with unimodal clustering
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Table 7. Results from analysis of temporal clustering in the time series of individual districts with Foot and Mouth Disease type Asial

infection
Province District p-values for different methods
Scan method  Larsen's method — Empty cell method Clustering
Chiengmai Maeaie <0.001 Out of range <0.001 4
Chiengrai Chiengkhong Too few cases Out of range Too few cascs
Maefaluang <0.001 Out of range <0.001 %
Maesaluea <0.001 Out of range <0.001 v
Padact Too few cascs Out of range Too few cascs X
Kalasin RongKham <0.001 Out of range <0.001 v
Yangtalat <0.001 Out of range <0.001 v
Kanchanaburi Nongprau <0.001 Out of range <0.001 v
Lampang Maetha <0.001 p 0.09 (Z=-1.34) <0.001 v
Sopprap <0.01 Out of range <0.001 v
Thoen Too few cascs Out of range Too few cases X
Lopburi Srabot 0.01 Out of range <0.01 4
Maehongsom Pai 0.13 Out of range Too few cases X
Mahasarakham Chiangyun 0.13 Out of range Too few cascs X
Kosumpisai <0.001 Out of range < 0.001 v
Nachuak <0.001 Out of range <0.001 v
Nakhonratchasima Nonthai <0.001 Out of range <0.001 v
Nakhonsawan Nongbua <0.00] Out of range <0.001 v
Phaisali <0.001 Out of range <0.001 v
Phayuhakhili <0.001 Out of range <0.001 v



Province

Nongkhai
Phitsanuloke
Phrac

Roiet
Sakonnakhon
Sisaket
Sukhothai

Tak

Ubonratchathani

Udonthani

Uthatithani

Uttaradit

District

Phonphisat

Sacka

MuangPhitsanuloke

Nakonthai
Song
Changhan
Phangkon
Namkreng
Bandanlanhoi
Popphra
Thasongyang
Dctudom
Kutkhaopun
L.aosuakok
Muangsamsib
Tansum
Kudjub
Kunpawapi
Nongvucosor
Nongkhayang
Thapthan
Nampad

Scan method

013
<0.001
<0.001
<0.001
<0.001
<0.001

0.01

0.13
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Too few cases
<0.001
<0.001
<0.001
<0.001

0.13

0.13
<0.001

p-values for different methods

Larsen's method

Out of range
Out of range
Out of range
Out of range
Out of range
Out of range
Out of range
Out ofrange
Out of range
Out of range
Out of range
Out of range
Out of range
p 0.09 (Z=-1.34)
Out of range
Out of range
Out of range
Out of range
Out of range
Out of range
Out of range

Out of range

Empty cell method

Too few cascs
<0.001
<0.001
<0.001
<0.001
<0.001
<001

Too few cascs
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Too few cascs
<0001
<0.001
<0.001
<0.001

Too few cases

Too few cases

<0.001

Clustering

X

v
v
v

<«

<
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Province District

p-values for different methods
Scan method  Larsen’s method — Ismpty cell method Clustering

Phichai <0000 Ouoframge <000l 2
Thongsankan <0.001 Out of range <0.001 v
Tron <0.001 p 0.07 (Z=-1.44) <0.001 v
Yasothon Patiu Too few cases Out of range Too few cases X
Overall - P <0.01 p <0.001 v

(Z=-238) unimodal




Table 8. Results from analysis of temporal clustering in the time series of individual districts with Foot and Mouth Disease type Asial

infection
Province District p-values for different methods
Scan method Larsen’s method fimpty cell Clustering
method
E;En—' 777777777 - an[:lm_vmal - < (),()-()VI Out of range <0001 v
Chicngmai Fang <0.001 Out of range <0.001 v
Chiengrai Chiengkhong 0.13 Out of rangc Too few cascs X
Thoeng <0.001 p 0.0899 (Z=-1.34) <0.001 v
Wiengpapao <0.001 Out of range <0.001 v
Kampangphet saingam <0.001 p 0.09 (Z=-1.34) <0.001 v
Lamphun Banhong <0.01 Out of range <0.001 v
Loei Nahaco <0.001 Out of range <0.001 v
Machongsormn Macsaricng <0.001 Out of range <0.001 v
Mukdahan Dontan Too few cascs Out of range Too few cascs X
Khamcha-I <0.001 Out of range <0.001 v
Nakhonratchasima Chokchai Too few cascs Out of range Too few cascs X
Nakhonsawan Krokphra 0.13 QOut of range Too few cases X
Phaisali 0.13 Out of range Too few cases X
Nan Namun 0.01 Out of range <0.01 4
Santisuk Too few cascs Out of range Too few cascs X
Nongkhai Phonphisai 0.13 Out of range Too few cascs X
Sichiangmai <0.001 Out of range <0001 v
Srakai <0.001 Out of rangc <0.001 v



Province

District p-values for different methods
Scan method Larsen's method Lmpty cell Clustering
method

Phetchabun Nongphai Too few cases Out of range Too few cascs X
Sithep <0.001 Out of range <0.001 4

Phrae Rongkwang 0.01 Out of range <0.0] v
Sakonnakhon Phangkon <0.001 Out of range <0.001 v
Sukhothai Khilimat <0.001 p 0.09 (Z=-134) <0.001 v
Kongkrailat <0.001 Out of range <0.001 v

Thungsaliam <0.001 p 0.12 (Z=-1.19) <0.001 v

Tak Macramad <0.001 Out of range <0.001 v
Ubonratchathani Sirinthon <0.001 Out of range <0.001 v
Udonthani Kudjub <0.001 Out of range <0.001 v
Phen <0.001 Out of range <0.001 v

Sangkom 0.13 Out of range Too few cascs X

Uttaradit Phichai <0.01 Out of range <0.001 v
Thongsankan <0.001 Out of range <0.001 v

Tron 0.01 Out of range 0.0012 4

Overall - p<0.0l p <0.001 4

(Z2=-261) unimodal
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Table 9. Results from analysis of temporal clustering in the time series of individual districts with Foot and Mouth Disease untyped

virus infection

Province

Burirum

Chiengmai

Kalasin

Lampang

Lamphun

Machongsorn

Mahasarakham

Nakhonratchasima

Phetchabun

Phitsanuloke

Phrae

Roiet

Roret

Sakonnakhon

Tr\rlong-;kvi’
Prakhonchai
Wicnghang
RongKham

Hangchat

MuangLampang

Lac
Macta

Maclanoi

Phayakkhaphumoisai

Pratai
Chondaen
Phrompiram
Wangthong
Sungmen
Chicngkwan
Kasetwisai
Ponsai

Kutbak

District

p-values for different methods

Scan method  Larsen’s method

Too fC\\: cnsés
<0.001
0.13
<0.001
<0.001
0.13
<0.001
<0.001
<0.001
Too few cases
0.13
<0.001
Too few cases
<0001
<0.001
<0.001
<0.001
Too few cascs

<0.001

Out of range
Out of range
Out of range
Out of range
Out of range
Out of range
Out of range
Out of range
Out of range
Out of rangc
Out of range
Out of range
Out of rangc
Out of range
Out of range
Out of range
Out of range
Out of range

Out of range

fsmpry cell
method

< 0‘()()1'
<0.00]
Too few cascs
<0.001
<0.001
Too few cascs
<0.001
<0.001
<0.001
<0.001
Too few cascs
<0.001
<0.001
<0.001
<0001
<0.001
<0.001
<0.001
<0.001

Clustering

AN NN D S U N N N N N U SN

<

AN
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Province

Surin

Tak
Udonthani

District

Scan method [arsen's method

Sawangdandin

Kabchocng

Thatum

Popphra

Thungfon
Ovecrall

<6.00| |
<0.001
<0.01
<0.001

<0.001

Out of-' 7rangc
Out of range
Out of range
Out of range

Out of range

p-values for different methods

Empty cell

method

Clustering

<0.001
<0.001
<0.001
<0.001
<0.001

p < 0.001

<X N X < < X
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Clustering in space

The Moran’s / adjusted for population density (/,,,) had p-values of less than 0.001 for all
virus types using data aggregated at the district as well as the province level (Tables 10 and

11). This indicates that foot-and-mouth-disease outbreaks in Thailand during the study period

tended to occur clustered in space (Figures 4 and 5).

The results from analyses using the spatial scan statistic also showed evidence of spatial
clustering of all FMD cases based on data aggregated at the district level (p=0.001). Table 12
shows the results of this analysis and the information for each detected cluster, including the
radius of the estimated circle corresponding to the likely cluster location and the relative risk

for districts within the cluster, compared with districts in the remainder of the study area.

Table 10. Results from analysis of spatial clustering using Moran’s I adjusted for
population density (I;,p) using province as the unit of aggregation

Randomization

Virus type Bep' B % within % among  assumption
z-score  p
‘Allcases 148 0.0 59.35 © 4065 29735  <0.001
Types
Type O 1.74 0.00 79.94 20.06 167.65 <0.001
Type Asial 2.55 0.00 81.16 18.84 169.05 <0.001

Untyped 232 000 89.70 10.30 86.36 <0.001

Table 11. Results from analysis of spatial clustering with Moran’s I adjusted for
population density (I,,) using district as the unit of aggregation

Randomization

Virus type lsa E[l] % within % among assumption
z-score  p
Allcases 574 000 8463 1537 41797 <0001
Types
Type O 11.44 0.00 88.20 11.80 392.54 <0.001
Type Asial 13.00 0.00 100.00 0.00 314.33 <0.001

Untyped 28.15 0.00 92.13 7.87 381.63 <0.001
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Figure 4. Map of foot-and-mouth-disease cumulative incidence using province a:
unit of aggregation
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Figure S. Map of foot-and-mouth-disease cumulative incidence using district as the unit
of aggregation
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Table 12. Results from analysis of spatial clustering using the spatial scan statistic for

all FMD cases using district level as the unit of aggregation and a maximum
spatial cluster size of 50%

Cluster group Districts Radius* Population Cases Expected RR* p value

included*  (km.) n n n

Most likely cluster

1 2 17 26,105 73 231 31.62 0.001

Secondary clusters

2 3 27.1 41,712 64 4.1 1561 0.001
3 1 0 8,690 35 0.71 49.07 0.001
4 1 0 8,273 36 0.99 36.38 0.001
5 2 28.25 13,205 35 1.15 30.34 0.001
6 1 0 10,921 30 1.10 27.17 0.001
7 42 251.8 541,703 147 49 09 299 0.001
8 8 19.6 64,255 60 8.32 7.21 0.001
9 1 0 12,204 26 1.01 25.72 0.001
10 7 18.08 82,867 55 8.77 6.27 0.001
11 4 19.26 60,011 50 7.82 6.40 0.001
12 4 32.83 42,049 41 5.03 8.16 0.001
13 1 0 14,520 19 0.81 23.36 0.001
14 1 0 16,445 24 2.00 12.02 0.001
15 1 0 5,594 15 0.55 27.32 .0001
16 1 0 19,354 24 249 9.65 0.001
17 1 0 38,632 25 287 8.70 0.001
18 5 38.63 95,615 39 11.48 3.40 0.001
19 1 0 21,080 17 2.80 6.08 0.001
20 3 17.51 37,040 12 2.60 4.61 0.045

* District included = number of districts included in that potential cluster;
* Radius size = radius of the circle corresponding to that potential cluster;

* RR = Relative risk for district(s) within the cluster compared with districts in the remainder of that pre-

defined area.
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Clustering in space-time
We found no indication of space-time clustering when using Knox’s method for any of the
FMD virus types using the critical distances of 20, 30 and 50 km in space and 2 months in

time. The results of Knox’s test including observed and expected frequencies are shown in

Table 13.

The Mantel method also did not show clustering in space - time for any of the virus types (see

Table 14).

Evidence of significant space-time clustering for all FMD virus types was found using the
space-time scan statistic (see Table 15 ). The units of spatial aggregation used in this analysis

were district levels.

The results of the k-nearest neighbour method shown in Table 16 indicate significant space-
time interaction for all FMD virus types with a combined p-value of the centroid distance of
less than 0.01. On examination of the AJy and the Py using an experiment-wise error of 0.05
to determine the space-time scale of the FMD cluster process, no significant space-time
interaction was indicated at any of the k levels (px not less than a’). The result agrees with the
Knox and Mantel tests suggesting that none of the FMD virus types was clustered in space-

time.
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Table 13. Results from analysis of time-space clustering of FMD cases using the Knox
method with critical time of 2 months and spatial aggregation at the district

level
FMD Critical Observed Expected  pvalue
cases space pairs pairs
distance
(Km.) 7
All cases 20 6 4.45 0.28
30 14 9.22 0.10
50 31 26.71 0.22
Type O 20 1 0.72 0.54
30 2 202 0.63
50 4 592 0.86
_'I_'ype Asial 20 - 0 078 1 ¥OO_7 -
30 2 11555 048
50 3 3.57 072
Untyped 20 0 0.54 ;00 B
30 0 0.72 1.00
50 1 2.16 0.93

Table 14. Result from analysis of time-space clustering of FMD cases using the Mantel
method after reciprocal transformation of the distances and addition of
various constants to the space distance with spatial aggregation at the district

level.

FMD cases Constant ~ Mantel R p value

All cases 1 0.01 0.14
1,000 0.01 0.14
10,000 0.01 0.28

Type O 1 -0.01 0.53
1,000 -0.01 0.57
10,000 -0.03 0.88

Type Asial 1 -0.03 0.78
1,000 -0.03 0.79
10,000 -0.02 0.68

Untyped 1 -0.04 0.83
1,000 -0.04 0.86
10,000 -0.03 0.66
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Table 15. Results from analysis of time-space clustering of all FMD cases with the
space-time scan statistic based on a maximum spatial and temporal cluster
size of S0% of the total population using data aggregated at the district level

Cluster group Districts Radius* Time frame* Population Cases Expected RR* p

included* (km.) (month) n n n value
Most likely

cluster 7 38 80 01/95 - 09/95 127,996 111 3.30 33.64 0.001
Secondary

clusters 29 84.10 01/95 - 11/95 391,656 150 13.45 11.16  0.001

2

3 1 0 10/96 - 10/96 8,190 30 0.03 1139.81  0.001

4 1 0 01/95 - 01/95 8,273 30 0.03 862.55 0.001

5 1 0.00 10/95 - 10/95 10,921 30 0 04 773.103 0001

6 3 21.80 02/95 - 08/95 64,255 60 2.00 30.01 0.001

7 42 2402 09/95 - 12/95 521,982 76 6.50 11.69 0.001

8 1 6.00 04/95 - 05/95 7,001 24 006 37.040 0.001

9 1 0.00 06/95 - 06/95 19,3544 24 0.08 28382 0.001

10 1 0.00 05/95 - 05/95 5,594 15 0.02 77719 0.001

* District included = number of districts included in that potential cluster;
* Radius size = radius of the circle corresponding to that potential cluster;

* Time frame = time interval corresponding to that potential cluster;
* RR = Relative Risk for district(s) within the cluster compared with districts in the remainder of that pre-

defined area.
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Table 16. Results from analysis of time-space clustering of FMD cases in individual districts using K nearest neighbour analysis spatial
aggregation at the district level

FMD cases

All cases

Type O

Type Asial

Untyped virus

Jk

Pk
Ay

el

J
Pl
Al
P(AJ)
S
PJ,
Al

P

J
PJx
Ay

P

0.10

0
1.00

1.00

0.33

0.98

0.99

13
0.53

0.79
0.60

0.39

0.58
41

0.92

30
0.89
21

055

29
0.68
16
0.73
26
0.27
17
0.19

4

169

0.48
79

0.41

54
0.93
24

0.76

53
0.72
24
0.66
E 47
0.28
21

)

237

0.98
68

1.00

89
0.93
35
0.69
81
0.89
28

0.85

74

27
031

318

1.00
81

0.98

129
0.81
40
0.22
108
0.98
27
092
105
018
31
0.56

434

1.00
116
0.56
178
0.82
49
0.60
151
0.94
43
0.34
144
0.10
39
0.34

554
1.00
120

0.96

219
0.98
41
0.97

191

095
40

0.68

175
0.17
31
0.84

 Overall

9 10 p

707 83 <00l
0.99 0.89

153 156 <0.01
0.02 0.06

74 30 008
0.96 0.99

55 56 0.52

0.43 0.84
‘246 2973 o 032 -
0.68 0.59

55 47 0.54

0.06 0.36
206 244 038
0.28 0.13

31 38 0.95

0.84 0.48
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Discussion

Disease clustering can be broadly defined as any excess of disease occurrence. Research
into disease clustering, especially with regard to space and time, has often been
accompanied by specialised methods. However, the main methodologic tools are based on
the comparison of disease rates, and the utility of a particular comparison of disease rates

depends on the range of the possible explanations for each investigation (Rothman, 1987).

In this study, foot-and-mouth-disease reporting data for Thailand from January 1995 to May

1997 was investigated for detection of temporal or spatial or spatio-temporal clustering

Temporal clustering

The analysis of the temporal pattern using the whole country, as well as individual
provinces and districts as the level of aggregation, based on the scan method and the empty
cells test, indicates that foot and mouth disease in Thailand did not occur randomly during
the 29 months under consideration. Statistical significance based on the scan method
supports clustering of FMD within the 2-month scanning window fitted for the studied
distance unit. The p-value of the scan method is a measure of the probability of observing
equal or more than the maximum number of FMD cases in the specified time window.
However, p-values for individual time series cannot be combined to vield an overall p-value
since the method only allows testing single time series. Changes in population size during
the time period included in the analysis can result in bias and may produce type I errors. If
the total number of cases is small, as would be the case if fewer than 10 outbreaks were
observed in one province or district, the scan statistic may have insufficient statistical power

to detect temporal clustering of disease in a population (Wallenstein, 1980).

These problems can be avoided by using the empty cells test. The empty cells method 1s
sensitive to clustering in the presence of time intervals containing sequences of zeros. Under
the null hypothesis of randomness of cases among the time cells, the significance of the test
i1s determined by the probability of obtaining a number of empty cells (in this case
corresponding to no reports of FMD) greater than or equal to the expected value for the
number of empty cells. The overall p value is combined as a continuity-corrected chi-square
with one degree of freedom. This analysis provided evidence for temporal clustering of

FMD cases (based on p < 0.05) at district, province and country levels of aggregation, with
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the exception of provinces and districts where there were too few cases to allow any

inference to be made (Tables 3 to 8).

Larsen's method reported 'out of range' analysis results for all but 3 districts for virus type O
and 4 districts for virus type Asial (Tables 6 to 8) where there was evidence of unimodal
clustering (based on significant z scores). 'Out of range’ was due to having cases fewer than
2 occupying intervals in that district. Although the test had limited value for detecting
temporal clustering at the district level, it had worthwhile application at the province level
and for the whole country (Table 2-5 and Fig. 1-3). The total z score is not biased by
differences in population size across time series, but it can be influenced by population
shifts over the time period as in the case of highly transient animal populations. Since the K
(Larsen’s test) statistic specifically addresses unimodal temporal clustering only, it may not
be used to detect multiple clusters or to distinguish true clustering from population shift

effects (Larsen, 1973).

Spatial clustering

The value of the test statistic (I*,,) of the adjusted Moran's I test was used as a measure of
the significance of the spatial clustering of outbreaks, both within and between provinces
and districts, respectively. In general, the test has good power although geographic
aggregation causes loss of resolution when applied to area-based data. The test examines
spatial patterns of regional outbreaks (not exact locations) and also takes high variance of
those disease occurrences into account. The adjusted Moran's / is powerful and robust and

can be relied on to detect any pattern of disease clustering (Oden et al, 1996).

The space scan statistic produced the same result with evidence of statistically significant
spatial clustering of all FMD cases using districts as the aggregation unit. This method also
detected locations of ‘most likely' and 'secondary’ cluster groups. The spatial scan statistic 1s
based on a likelihood ratio. In our study, the objective was the detection of clusters of any
size and anywhere in the study area. Therefore, the maximum spatial size was set to S0
percent of the total population at risk, which allowed the system to define clusters of both

small and large sizes without any pre-selection bias in terms of cluster size (Kulldorff and

Nagarwalla, 1995)
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Space-time clustering

We were unable to detect any space-time interaction in the FMD outbreaks in Thailand
between January 1995 and July 1997 with the Knox and Mantel methods. However, the
space-time scan statistic and the 4 nearest neighbour methods did detect space-time
clustering when all virus types were considered together. The implications of these various

test results are considered later in this discussion.

The level of aggregation represented by the units of time and space are an important
consideration when investigating space-time clustering. Clusters may go undetected if the
unit 1s too large or too small. For this study, the data limited us to one-month time units,
which is generally unsuitable for most infectious diseases. The most appropriate time unit
for FMD 1is daily intervals since the incubation period of Foot and Mouth disease 1is
generally within a range of 2-14 days (Donaldson, 1990). Furthermore, the location of
outbreaks was not precisely defined. This forces us to use central points of districts as
locations of outbreaks. These data limitations are likely to have adversely affected our

ability to detect space-time interaction in this study.

Inherent limitations of statistical procedures and statistical power are acknowledged as the
most important issues affecting the outcome of space-time cluster studies. The Knox test
needs a critical space and time distance to define cluster units, and for infectious disease, the
geographic critical distance should reflect the average distance between 2 outbreaks where
there are common factors involved in initiating outbreaks. In general, critical distances are

selected with due regard to the particular disease being investigated.

The Mantel test uses transformed data in the space and time distance matrices but there are
some inherent difficulties in that process that need to be taken into account. Although
addition of a constant to the distance prior to transformation helps to minimise the effects of
zeros or extremely short distances, the results of any analysis are unavoidably affected to
some extent by the particular transformations and constants chosen for addition to the time
and space distances. A particular problem for selecting a constant for addition arises when
the logarithmic transformation is applied to data in which zero values occur. If the constants
chosen are too small, the region near zero will be unduly expanded with resulting loss in
power for detecting clustering. The constant should, in some way, be commensurate with
the anticipated possible or probable distance in time or space between related cases (Mantel,
1967)
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Statistical power in the context of this discussion is essentially the ability of a method to
detect or identify true clusters (true positives). The paired distance approach (Knox and
Mantel methods) is sensitive primarily to time-space clustering and insensitive to clustering
which is purely spatial or purely temporal (Mantel, 1967). If we consider a district where a
high frequency of outbreaks (within spatial clustering) regularly occurs either due to high
disease incidence rates or a high density of population, then outbreaks within that district
will tend to be close together in space but no closer to one another in time than they are to

outbreaks outside the district.

Altematively, let us consider a sub-interval in time in which disease incidence rates rise
everywhere throughout the area of interest (temporal clustering). Outbreaks in the district
will be close together in time, but as their spatial distribution is unaffected, they will be no
closer to each other in space than they are to cases arising outside the time sub-interval. In
such circumstances the k-nearest neighbour method which uses the interaction of space and
time nearest neighbour relationship is more appropriate for detecting that type of chain of
infection. Chen er al. (1984) compared the Mantel method and the Knox method for
detecting simultaneous clustering in space and time of Hodgkin’s disease and found
similarity in their insensitivity to simulated patterns. Wartenberg and Greenberg (1990) also
reported low power with the Mantel method for small numbers of cases increasing with
greater number of cases for his hot-spot model. McAuliffe and Afifi (1984) compared an
approach using nearest neighbour distance with the Knox and Mantel methods in their
investigation of space-time cluster detection procedures. They argued that the nearest
neighbour approach is superior because the user is not required to specify either critical
distance or a constant for the inverse distance transformation. Later, Jacquez (1993)
described a k nearest neighbour statistic that was sensitive to the pattern of cases expected in
the presence of space-time clustering and compared it’s power with the Knox and Mantel
tests. He suggested the £-NN has superior statistical power relative to the Knox and Mantel

tests for the following reasons.

1. The Mantel and Knox tests are subjective because they require the selection of
data transformations, constants, and critical distances prior to the analysis, whereas the -
NN test does not require prior parameter specification and the levels of & inspected do not

alter the value of the test statistic.

2. Unlike the Knox test, the A-NN test does not use critical distance or other

parameters for assessing geographic proximity.
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3. Unlike Mantel’s test, the k&-NN test does not rely on a linear model. It uses instead
the intersection of a space and time nearest neighbour relationship, which is intuitively

appropriate for detecting a contagious process.

4. Because it 1s the sum of the products of the space and time distances, large space
and time distances unduly influence Mantel’s statistic. The k-NN test is sensitive only to an
excess of cases that are near in both space and time as it uses a nearest neighbour
relationship. Paired cases separated by large space and time distance do not enter into the

calculation of the test statistic.

5. The £NN test has greater statistical power under realistic and simulated
heterogeneous population density distributions while the Knox and Mantel tests have

limited statistical power when population density varies.

The above reasons provide a number of possible explanations why space-time clustering
was not detected the Mantel and Knox tests, but with the k nearest neighbour test in the

current investigation.

The space-time scan statistic uses the same method of detection of cluster in the study area
as does the spatial scan statistic. It is an extension of the latter, with time incorporated in the
scanning process as another dimension. Without any pre-selection of size of spatial and
temporal clusters the system was allowed to detect any space-time clusters of any size. The
locations of likely space-time clusters were identified. However, the results for these
detected clusters should be interpreted taking into account epidemiological knowledge

about FMD as well as the quality of the underlying data.

In comparison, both the £-NN method and the space-time scan statistic were the most
powerful methods for detecting time-space clustering in this dataset. The space-time scan
statistic has the additional advantage over the A-NN method that it also identifies the actual
locations of the clusters, and generates relative risks as parameters which can be easily
interpreted by epidemiologists. The concepts behind the space-time scan statistic are also

much more easily to understand than they are in the case of the £-NN statistic.

Miscellaneous issues

With any of these statistics, confounding should be considered when analysing and
interpreting the results. Confounding can arise from influences as simple as a change in

population density, or it can involve patterns of other factors such as age and breed. Since
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risk may vary dramatically at different levels of these variables, corresponding changes in
true incidence rates may be expected that are not always attributable to external factors.
Amongst the spatial clustering methods, clearly Moran’s / adjusted for population density
and the spatial scan statistic are most appropriate if dealing with area type data as in the
current case, because both can take into account any spatial variation in the underlying
populations at risk. The spatial and the space-time scan statistic have the additional
advantage over the other methods that they allow incorporating further confounding factors

through stratified analyses.

The level of aggregation of locational data can bring biases to the analysis associated with
the modifiable areal unit problem (MAUP). The MAUP is in reality composed of two
closely related problems: the scale and the aggregation problem. The scale problem is the
variation in the results that can be obtained when data from one set of areal units are
aggregated into fewer or larger units for analysis purposes. The scale problem arises from
the uncertainty about the number of areas needed for a particular study. The latter problem
results from the use of altermative unit analyses when the number of units is held constant.
The aggregation problem arises because of uncertainty about how the data are to be
aggregated to form a given number of zones or clusters in a study. The problems relate to
the difficult statistical problems of identifying the nature of the underlying relationships
implicit in an aggregate level study (Openshaw, 1984). As in our study, the nature of the
administrative areas can also create difficulties. Their boundaries may be drawn according
to demographic features that are directly or indirectly related to disease, thereby introducing
selection effect confounding. Further difficulties arise if variables in the analysis do not
share the same administrative zones. Boundaries may cut through genuine clusters of
disease and thereby mask them. It is therefore preferable if the data is always collected at
the highest spatial and temporal resolution possible. This means cases of disease should be
recorded using farm or village locations and the date of occurrence. The investigator then

has more control over the selection of appropriate levels of aggregation.

Conclusion

It is important to choose the most appropriate method of analysis for any disease cluster
investigation, and that usually involves consideration of a range of cluster scenarios and an
evaluation of various methods. This places considerable responsibility on the investigator

who needs to have a thorough understanding of the data and the epidemiology of the disease
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of interest. A range of analytical methods should be applied with due consideration of their
strengths and weakness in relation to the disease process before deciding on the final

method of choice.

Considerable attention must be paid to confounding. Since its presence may lead to false
positive and false negative results. Although it is a complex and difficult issue to address, it

1s an important component of the interpretation of cluster studies.

There are some issues for the study of foot-and-mouth-disease clustering in Thailand which
we were unable to take into account in our studies such as animal movement across the
borders between Thailand and neighbouring countries, as well as movement within
Thailand, or the effect that livestock markets have on the epidemiology of this disease.
Despite these difficulties we are confident in our conclusions that FMD outbreaks in
Thailand during January 1995 to May 1997 demonstrated a unimodal pattern of temporal

and spatial clustering.
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CHAPTER 3.

Detection of Spatial Clustering of

Enzootic Bovine Leucosis in New Zealand

Abstract

In 1996, the New Zealand dairy industry commenced a program aimed at the
eradication of Enzootic Bovine Leucosis (EBL) from the national herd. A series of
studies has been conducted in order to provide important information on the
epidemiology of this disease. This information has been included in the design and the

continued refinement of the eradication program.

In this paper, the occurrence of EBL in New Zealand dairy cattle herds was analysed
for the presence of spatial clustering. Kemel smoothing was used to generate a surface
expressing prevalence of positive herds in the country from point locations of cattle
herds. The spatial scan statistic was applied for statistical hypothesis testing of the

presence of clustering as well as for indicating the locations of likely clusters.

Two spatial clusters of positive herds were detected: one consisting of 498 herds in the
Bay of Plenty area (p =0.001) and one of 83 herds in the northem part of the South
Island (p = 0.082).

Further investigations are required to determine if there are identifiable factors

associated with the observed clustering of EBL positive herds in New Zealand.

Introduction

EBL is the most important of the bovine neoplastic diseases caused by Bovine
Leukaemia Virus (BLV) (Ferrer, 1980). Although EBL has not caused significant
economic losses to the New Zealand dairy industry, it is possible that the disease may
restrict the access of New Zealand’s dairy products to important markets in the future.

In order to prevent the economic impact of such restrictions in the future, the need to
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eradicate this disease from the national herd dairy industry has become more and more
apparent. The presence of EBL in New Zealand has been recognised for some time and
the disease was surveyed in 1979 (Hilbink and Penrose, 1993). A recent study based on
the serological examination of random milk samples from individual cows from 1700
herds (11.3% of all dairy herds) revealed that approximately 6.5% of herds were
infected with BLV, while regional herd prevalence varied significantly from 2.5 to 10%
(Burton et al., 1997).

In 1996, the New Zealand Dairy Board initiated an industry-funded programme to
eradicate BLV from the country. As part of the programme, a series of epidemiological
studies were undertaken to determine the incidence and prevalence of the disease and to
identify risk factors associated with the occurrence and spread of EBL. In the present
study, techniques of spatial analysis have been used to determine if the distribution of
EBL-positive dairy herds in New Zealand is random or clustered. If clusters can be
identified, it may be possible to refine the control programme by targeting these areas.
In addition, identification of these areas may provide the opportunity to initiate focused
studies on the risk factors that may influence the distribution of the disease. As much of
the aetiology of EBL in New Zealand is as yet unclear, an exploratory analytical

approach had to be adopted for this investigation.

Material and Methods

Classification of EBL status

As part of the EBL control scheme, all dairy herds supplying milk to a factory are
screened annually using an ELISA testing protocol. Cattle in herds that return positive
bulk milk tests and that participate in the Livestock Improvement Corporation’s (LIC)
herd testing programme are subjected to individual milk tests. Where individual milk
samples indicate infection, the animals that returned a positive test are blood-sampled
and serum is collected for serology to confirm their infection status. If the bulk milk
test is negative, milk samples are pooled in groups of about 20 for further testing. If a
pooled sample tests positive, the individuals contributing to the pool are tested
individually. In herds that do not herd test, custom milk samples or blood samples are

collected from each animal. Herds are declared free of BLV after the whole herd tests
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negative for 3 consecutive years on bulk milk and aggregated production test samples
(Hayes, 1998).

Data

The data used in the analyses was supplied by the New Zealand Dairy Industry EBL
Control Scheme. For each farm involved in the scheme, the EBL status and the X-Y co-
ordinates based on the New Zealand metric map grid coordinate system were provided
farm’s centroid. Table 17 presents the number of herds in each of the different EBL
status categories in the testing period 1997-1998 from the total of 14,301 herds with a

co-ordinate reference included in the data set.

Following the definition of the EBL control scheme, only blood test positive herds
(866/14,301) were considered as EBL-positive herds in this analysis. Subsequent use of
the term “positive herd” refers to these 866 herds specifically. The point locations of all

dairy herds and all positive herds are presented in Figure 6.



54

Figure 6. Map of herd locations. The map on the left shows locations of all 14,301 herds included in the EBL Control Scheme. The map on the
right shows locations of EBL positive herds in the testing period 1997-1998.
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Table 17. Herd status according to EBL testing scheme for 14,301 dairy cattle
herds in New Zealand in the testing period 1997-1998 (herds without
locational coordinate reference were excluded).

EBL Status N
Blood positive 866
EBL free 842
Individual milk positive 142
Negative year | 5,452
Negative year 2 4,231
New location 193
Pool milk positive 108
Provisionally negative * 107
Suspect * 454
Untested 124
Vat negative 1,782
Total 14,301

* Provisionally negative: seroconversion of EBL titre from positive to negative;

* Suspect: herds introduced cattle from the positive herd or other suspected herds.

Analytical methods

Kernel smoothing

The goal of kernel smoothing of point patterns is to describe variation in the density of
events across a study area. It results in a smooth map of density values where the
density at each location reflects the concentration of points in the surrounding area

(Bailey and Gatrell 1995).

Kemel smoothing can be thought of as a three-dimensional floating mathematical
function that moves across an area. At each location defined by a suitably chosen fine
grid, it estimates the density of points within a circle of a given radius (bandwidth),
whereby the influence of individual points is weighted according to there distance from
the centre of the circle (Figure 7). It is therefore critical to choose the appropriate
bandwidth for the process being studied as well as the best probability distribution that

will determine the distance weighting of observations.
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Figure 7. Kernel estimation (from Bailey and Gatrell, 1995)
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There 1s no steadfast rule for determining bandwidth, although if inappropriate, it may
result in misleading density values and maps that are either too smooth or too spiky in
appearance. For example, if the bandwidth is too large it will over-smooth the data and
only very broad trends will be visible, whereas if the bandwidth 1s too small, localised
variation will be maintained and interpretation will be more difficult. Choosing the
correct bandwidth is crucially important to density estimation (Silverman, 1986). Often
a subjective judgement i1s made. Silverman suggests that this might be desirable if the
purpose of the investigation is to explore the data in order to develop possible

hypotheses, as is the case in the current study.

Ratio of kernels

In order to interpret the kernel smoothed density map of occurrence of EBL herds, it
was necessary to take into account any spatial heterogeneity in the density of the
population at risk 1.e. all the New Zealand dairy herds included in this analysis. Kemnel
density maps were therefore estimated for the positive herds as well as for the
population at risk. Instead of a purely visual comparison between the two maps, the
ratio of the two kernel estimates was then used to generate a map expressing the
prevalence of BLV infection. Following the recommendation by Bailey and Gatrell
(1995) a larger bandwidth was deliberately chosen for the kernel density estimates of
the population at risk than would be normally appropriate if one were just interested in
an estimate of the population density alone. This provides a surface that will be ‘over

smooth’, and less sensitive to small-scale variation.
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Statistical spatial cluster analysis
There are a wide variety of statistical methods for detecting spatial clusters (Marshall,
1991; Jacquez, 1993). The spatial scan statistic (Kulldorff and Nagarwalla, 1995) was
used as it allows statistical inference with respect to the presence of spatial clustering as

well as identification of the locations of any clusters.

This method generates for each location in the data set a set of circles (or windows)
with ever-increasing radius. It performs a likelihood ratio test based on case numbers
within and outside the circles. The null hypothesis distribution of the likelihood ratio 1s
obtained on the basis of Monte Carlo replications. The ‘most likely™ cluster is defined
by the highest value for a significant likelihood ratio statistic in the data set. Other
statistically significant clusters are also identified as ‘secondary’ clusters. To limit the
analysis to detection of biologically sensible cluster sizes, it was decided to use a
maximum window size of 10% of the total population. The test statistic was calculated

based on 999 random replications.

Geographical characteristics and variation in dairy cattle herd density were used to
divide the country into 5 separate study areas for analysis purposes based on
geographical and herd density considerations. Each area was analysed separately. The
extent of each region 1s summarised in Table 18. A map of the regions is shown in

Figure 8.

Table 18. Characteristics of the study areas used in the analysis.

Study  Region X, Y coordinates of study areas Number of herds
area top right and bottom left corner (EBL positive
herds)
1 Northland (6760000,2770000),(6480000,2450000) 1,782 (87)
2 Bay of Plenty (6470000,2900000),(6280000,2640000) 6,599 (388)
3 Taranaki (6260000,2660000),(6150000,2570000) 2,415 (46)
4 Wellington- (6160000,2830000),(5970000,2670000) 1,338 (77)
Wairarapa
5 Southland (5500000,2340000),(5390000,2090000) 711 (85)
Software

Data was stored using the database management software Microsoft Access 97

(Microsoft Corporation, Redmond, WA, U.S.A.) and analysed statistically using
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SaTScan® version 2.1.3 (National Cancer Institute, Bethesda, Maryland, U.S.A.). The
geographic analysis system ArcView 3.1® in combination with the add-in Spatial
Analyst (both Environmental Systems Research Institute., Redlands, Califorma,

U.S.A.) was used to generate the maps and perform the kemel density smoothing using.



Figure 8. Map of the location of the S study regions within New Zealand
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Results

Visual analysis of the spatial pattern of herd density and EBL

prevalence

Using the kernel smoothing technique, density maps were generated using different
bandwidths including the default used by the ArcView software as shown in Figures 9
to 12. Bandwidth values of 10 km (Figure 9), 15 km (Figure 10), 20 km (Figure 11) and
28.6 km (Figure 12) were used. The last value was automatically calculated by
ArcView whereas the others were considered to provide a reasonable compromise with
respect to providing a pattern that had too many spikes or was too smooth. From these
density maps, spatial patterns of herd prevalence were generated on the basis of the
ratio between the density of EBL positive herds and total herds (Figure 13-14). The
prevalence maps using the same bandwidth for both positive and all herds were
compared with the prevalence maps that used a larger bandwidth for all herds than used

for the total herds in order to compare the effect of variation in relative bandwidth.

Statistical analysis of spatial clustering of EBL positive herds

From the five study areas for which separate analyses were conducted, a significant
spatial cluster could only be identified within the Bay of Plenty region. The ‘most
likely’ cluster consists of 498 herds with 65 EBL positive herds and has a radius of 47.8
km. The overall relative risk for this cluster is estimated as 2.2 (p = 0.001). Results are

summarized in Table 19.

Study areas were then re-aggregated into two large areas, representing the South Island
and the North Island of New Zealand, and the analyses were repeated for these two data
sets. The same cluster in the Bay of Plenty region was confirmed at a slightly higher
likelihood ratio and overall relative risk of 25.5 and 2.6 respectively (p = 0.001). In
addition, in the South Island data set another cluster of infected herds with a radius of
101 km was identified in the north. The overall relative risk for this cluster was
estimated as 2.4 (p = 0.08). The results of these analyses are presented in Table 20.

Maps showing the locations of these two clusters are presented in Figure 15 and 16.



Figure 9. Kernel density maps for all herds (left) and EBL positive herds (right) locations based on a bandwidth of 10 km
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Figure 10. Kernel density maps for all herd (left) and EBL positive herd (right) locations based on a bandwidth of15 km
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Figure 11. Kernel density maps of all (left) and EBL. positive (richt) herd locations using a1 bandwidth of 20 km
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Figure 12. Kernel density maps of all herd (left) and EBL positive (right) herd locations based on a bandwidth of 28.7 km (ArcView default)
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Figure 13. EBL prevalence maps based on ratios of kernel density maps for EBL positive herds and all herds using bandwidths of 20 km for both
(left) and 20 km for EBL positives and 22 km for all herds (right)
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Figure 14. EBL prevalence maps based on the ratio of kernel density maps of EBL positive and all herds using a bandwidth of 28 km for both (left)
and 28 km for EBL positives and 30 km for all herds (right)
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Table 19. Statistics generated by the spatial scan statistic for identified ‘most
likely’ clusters of EBL positive herds in each of the five study regions in
New Zealand

Study ‘Most likely’ cluster
7€M Radius size* Total herds Cases Expected LLR* RR* p value
(km.) n n n A
1 2.1 10 5 0.5 8.5 10.2 0.18
2 47.8 498 65 29.3 19.5 2.2 0.001
3 0.8 2 2 0.04 7.96 52.5 0.18
4 03 2 2 0.1 5.7 17.4 0.67
5 13.4 14 7 1.7 6.3 42 0.59

* Radius size = radius of the circle corresponding to that potential cluster;
* LLR = log likelihood ratio;
* RR = Relative Risk for herds within the cluster compared with herds in the remainder of that pre-

defined area.

Table 20. Statistics generated by the spatial scan statistic for the ‘most likely’
clusters of EBL positive herds in the North and South Island of New

Zealand
Study Most likely cluster
region Radius size* Total herds Cases Expected LLR* RR* p value
(km.) n n n A
North Island 478 498 65 249 25.5 26 0.001
South Island 101.6 83 25 10.3 9.6 2.4 0.08

* Radius size = radius of the circle corresponding to that potential cluster;
* LLR = log likelihood ratio;

* RR = Relative Risk for herds within the cluster compared with herds in the remainder of that pre-
defined area.
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Figure 1S5. Locations of farms forming part of the significant ‘most likely’ cluster
of EBL positive herds in the Bay of Plenty region of the North Island of
New Zealand
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Figure 16. Locations of farms forming part of the ‘most likely’ cluster of EBL
positive herds in the northern part of the South Island of New Zealand.
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Discussion

Visualization of herd density and EBL prevalence using kernel density

estimation

The point location maps of all and infected herds in Figure 6 clearly show the spatial
heterogeneity of the distribution of both EBL positive as well as all dairy herds in New
Zealand. Yet, it is difficult to identify any patterns within dense clusters of overlaying
points. Using kemnel density estimation it is possible to generate a smooth surface map.
The influence of the choice of bandwidth on the appearance of the resulting smoothed
map is shown in Figures 9 to 12. With bandwidths of 10 and 15 km, the resulting maps
show many spikes resulting from high estimated density values. Increasing the
bandwidth to 20 km resulted in a smooth map that still reflected the detail of local as
well as large scale variation. Using the largest bandwidth estimated by the ArcView
software, a very smooth map was generated which does not show local variation of
population but offers a general impression of the overall distribution of EBL positive
herd occurrence. This shows that the choice of bandwidth for kernel density estimation
is a largely subjective process and that it has a strong influence of the resulting map
presentations. Therefore, a decision with respect to bandwidth should consider whether
the focus of the investigation is on large or small scale processes, or both. In this study,
our emphasis was more on local processes and thus the application of a narrower
bandwidth was appropriate. At the same time care had to be taken to ensure that the
bandwidth chosen was not too small as this would result in data noise dominating the

density estimates.

The EBL herd prevalence map produced on the basis of the ratio of kernel density
estimates for EBL positive herds and all dairy cattle herds as the population at risk does
provide a useful visual representation of spatial variation in disease occurrence
particularly at the regional level. For example, in Northland herd prevalence is
consistently less than 5% whereas in the Bay of Plenty region it varies between S and
15%. These figures are within the range reported by the New Zealand Dairy Industry
EBL Control Scheme (Hayes, unpublished paper). Figures 13 and 14 demonstrate how

local variation can be masked by increasing bandwidth.
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On the basis of the visual inspection of EBL herd prevalence maps it was possible to
tentatively identify potential clusters on the basis of observed local peaks in EBL
prevalence. However, estimates produced by this technique where data is sparse may be
unreliable. Estimation of confidence limits could be used to highlight these areas.
Bailey and Gatrell (1995) suggest using a larger bandwidth to ensure a reasonable size
denominator. Adaptive kemel estimation allows for local adjustment of bandwidth
which does preserve detail in high density areas and smoothes out spurious noise in

sparse data areas (see the right maps of Figure 13 and 14).

This analysis has shown that examination of kernel density maps represents a useful
step in the search for clusters which often begins as an 'exploratory spatial analysis'
without any prior assumptions or specific hypotheses. However, it should not be seen

as an end in itself (Rushton and Lolonis, 1996).

Statistical of spatial clustering of EBL positive herds

The only significant cluster detected in this analysis consists of 498 herds in the Bay of
Plenty area. Another possible cluster was identified in the northern part of the South
Island. Both clusters have estimated risks for EBL positive herd status that are 2.5 times
greater than that of the area outside the cluster. In the case of the Bay of Plenty cluster
1t 1s Interesting to note that it 1s on a relatively narrow strip of coastal land, and in
comparison with the one in the South Island, it is relatively compact. While it is not
possible to develop any causal hypotheses on the basis of these results, it would appear
worthwhile to follow up these findings with a more in-depth investigation of affected
herds in both areas, but particularly in the case of the Bay of Plenty cluster. The cluster
in the South Island was significant at the p=0.08 level and, therefore, may be due to

chance.

Cluster investigations involving the use of statistical methods are easy to conduct, yet
they are often difficult to interpret. The results can be used to guide further
investigations, but it should be kept in mind that failure to identify clusters in the data
does not necessarily mean that they are not there, because the techniques are known to
have limited statistical power. The objectivity resulting from the use of a statistical
analysis approach such as the spatial scan statistic without involving a post-hoc
hypothesis generation will make it possible though that the use of resources for more

in-depth investigations can be more easily justified (Kulldorff and Nagarwalla, 1995).
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The analytical approach described in this paper provides a general framework for the
detection of spatial clusters in animal populations. Both, kernel density maps of disease
risk and the spatial scan statistic could become part of a disease surveillance system
which would allow identification of unusual occurrences of high disease density. It
does not provide information about etiological or causal mechanisms of the underlying
disease process, but rather can indicate areas that should be examined more closely

through specific epidemiological investigations.
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CHAPTER 4.

Spatial Logistic Regression and Classification -Tree
Models for the Development of Risk Maps of Foot-and-

Mouth-Disease Outbreak Occurrence in Thailand

Abstract

If the spatial distribution of disease outbreaks can be predicted with acceptable
accuracy, then intervention programmes can be targeted at the most appropriate areas,
and control operations can be designed to maximise effectiveness. In this study, logistic
regression and classification tree models were used to develop predictive models of the
geographical patterns of foot-and-mouth-disease. The potential importance of spatial
autocorrelation was assessed through a comparison of different logistic regression
models. The model that appeared to take best account of spatial dependence included
an indicator variable for occurrence of disease outbreaks in neighbouring areas.
Receiver-operating characteristic (ROC) curves were used to describe the predictive
accuracy of the model for production of risk maps. Classification tree based models
were constructed to develop sets of decision rules for FMD outbreak occurrence. We
compared a number of classification tree models (CART) which were based on
different cost-sensitivity weightings for false-positive and false-negative model
predictions. The classification tree model based on giving false negatives 5 times the
weight of false positives was also used to generate a risk map. The sensitivity and
specificity of the classification trees were 89% and 45%, respectively. The predictive
accuracy of risk maps produced using CART and the logistic model was compared and
their value 1n designing FMD control programme was discussed. It was shown that
ROC curves are useful for choosing appropriate cut-off points for decision criteria that

allow the effectiveness of control and eradication programmes to be maximised.
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Introduction

Foot-and-mouth disease (FMD) is an economically important viral disease of cloven-
footed animals that is endemic throughout Asia, Africa, and most of South America.
The economic consequences of FMD outbreaks are severe in that importation of
livestock and livestock products from areas that are not free from FMD is banned by
many countries. A National Foot-and-Mouth Disease Control and Eradication Project
has been established in Thailand with the objective to eradicate the disease from the

country.

Epidemiological studies of factors related to disease outbreaks, patterns of disease
occurrence and factors influencing the spread of the disease are given a high priority in
this project and the information gained aids the planning and implementation of new

and existing control and eradication programmes.

Modelling of spatial data

In recent years, analytical methods for identifying geographic disease patterns have
been extensively employed by epidemiologists to test epidemiological hypotheses
about cause-effect relationships. Geographical information systems (GIS) are used to
produce maps and, more recently, such systems also allow the exploration of spatial
patterns through dynamic linking of windows. From the spatial analytical perspective,
there are great advantages to be had from linking statistical and mathematical models to

disease surveillance databases and from data display capabilities of GIS programmes.

General concepts of spatial data

A basic property of data with a locational component is that a set of values, {x;}, are
likely to be related over space and this idea underlies the concept of the region in
geography, graphically described by various authors (Cliff, 1981). Tobler (1970) refers
to "the first law of geography: everything is related to everything else, but near things
are more related than distant things". Stephan (1934) writes, "data of geographic units

are tied together like bunches of grapes, not separate like balls in an urn".

Heterogeneity 1n a spatial context means that the parameters describing the data vary

from place to place. Non-stationarity, or spatial heterogeneity, occurs when the process
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observed in a window (or kemel) changes systematically as a result of either the

presence of a trend in the data or a change in the variance.

If the distribution function of the stochastic process remains unchanged when distance
changes by an arbitrary amount then the process is stationary and spatially
homogeneous. That is, space-homogeneity is restricted to a function of the distance
between the elements of the distribution in question. Spatial dependence or spatial
autocorrelation 1s a special case of spatial homogeneity. It implies that the data for
particular spatial units are related and similar to data for other close spatial units in a

spatially identifiable way (Fotheringham and Rogerson, 1993).

Hypotheses about patterns, or estimation of relationships, may be tested using statistical
models of the relevant data, for instance between some measure of disease incidence
and social and/or environmental covariates. Although we may test and search for
spatial autocorrelation in data, the detection of spatial patterns is often not an end in
itself. Instead, interest focuses upon the development of spatial models. It should
always be kept in mind that the models could not be drawn from the classical statistical
models that assume independence of events. For a number of reasons, disease incidence
in one zone is likely to be spatially correlated with that in neighbouring zones.
Essentially, spatial models provide alternative hypotheses against which the null
hypothesis of no spatial autocorrelation can be tested, thus enabling comparison of the

performance of the tests against selected alternatives.

Indeed, 1t may be appropriate to fit a regression model and then examine the residuals
for spatial dependence, or to fit the model which incorporates both regression and
spatial autocorrelation. The presence of spatial autocorrelation may be attributable
either to trends (or gradients) in the data or to interactions, and if gradients are
suspected then a regression model is appropriate. Thus, significant autocorrelation in
the original data does not imply one model rather than the other. The choice of model
must involve the scientific judgement of the investigator and careful testing of the

assumptions.

As mentioned earlier about the basic concept of geography, neighbouring areas tend to
have similar conditions, and if available covariates do not fully reflect the conditions
then the residuals from a fitted model will exhibit spatial autocorrelation. Furthermore,

quite apart from the environment, the probability of occurrence of FMD in one area
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might not be independent from the ones in neighbouring areas because infectious
diseases tend to cluster as a result of the occurrence of risk factors. This then will
generate spatial autocorrelation that can not be modelled satisfactorily by
environmental covariates. By using models that allow for spatial autocorrelation, we
would hope for fewer covariates in an empirical model for occurrence, and perhaps
obtain a better indication of which covariates influence the distribution or occurrence of

the disease under investigation.

There is an important need to examine the regression residuals for autocorrelation and
not the original data. The presence of autocorrelation leads to biased estimates of the
residual variance and inefficient estimates of the regression coefficients. Therefore a
check for autocorrelation in the residuals should always be applied and remedial action
taken when necessary. A test of autocorrelation will tell whether a given model is
adequate, or whether a different form is required. There is no need to completely
remove spatial autocorrelation as such, but allowances should be made for it so that
valid estimation procedures can be adopted. Typical measures for expressing the
autocorrelation include parameters of wvariables or error terms in spatially
autoregressive systems such as Moran's / statistic, Geary's ¢ statistic, semi-variogram

models, or spatial adaptive filter parameters.

Logistic regression modelling of spatial data

Logistic regression has been applied to the modelling of spatial data, especially as part
of environmental and ecological studies (Bian and West, 1997;Austin, et al., 1996). In
recent years, reducing spatial data to its dimensionality for logistic-regression analysis
has had veterinary application to the incidence of livestock disease, or the distribution
of vectors capable of carrying disease (Norman, et al., 1996; Duchateau, e al., 1997).
However these latter studies ignored model dependence on either unmeasured
covariates or intrinsic spatial autocorrelation. Pfeiffer, e al. (1997) on the other hand
produced a predictive model for the occurrence of theileriosis outbreaks in Zimbabwe,
taking into account spatial autocorrelation based on inclusion of an indicator variable

representing local regions as a random effect.
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Classification tree modelling

The basic purpose of generating a classification tree model (also called classification or
regression trees) can be to produce an accurate set of decision rules for classification of
future cases or to understand the predictive structure of the problem (exploratory data

analysis) or both as 1s often the case (Breiman, er al., 1984).

To predict systematically the class of any object, four elements are needed for the entire

tree construction (Breiman, ez al., 1984):
e A set of questions which must be formed to generate a set of data splits.

e A goodness of split criterion that can be evaluated for any split of any node. The
split selection procedure can be thought of as a repeated attempt to minimise overall

tree impurity.

e A stop-splitting rule which can be based on two methods: deciding not to divide a
set of cases any further (stopping), or removing retrospectively some of the

structure built up by recursive partitioning (pruning).

e A rule for assigning every terminal node to a class. For any set of assignment rules,
the re-substitution estimate of the probability of misclassification is calculated for a

case falling into a node.

During the analysis, the program determines at each step for each variable a cut point
which optimally splits the population into classes and it then selects the best performing
variable. It then takes the resulting sub-populations and repeats the process on each of
them until no further partitioning is warranted Tree diagrams produce logical
classification rules that can be easily interpreted, communicated, and discussed. The

method has also been used extensively in the medical domain.

In general, classifier learning has focused on minimum error classification. It aims to
minimise the number of incorrect predictors or classifications made by classifiers. This
kind of learning method ignores the differences between different types of incorrect
prediction and in particular their costs that are often very relevant in real world
applications. The cost of incorrect predictions can be more important than the number
of incorrect predictions in medical and financial areas. In medical diagnosis, for
example, the costs of false negative diagnoses are usually considered to be much higher

than those of false positives. Breiman er al. (1984) describe two methods of
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incorporating variable misclassification costs into the process of tree induction. These
methods adapt the test selection criterion in the tree growing process. A number of
studies on this issue have been done (Tan, 1993; Tumey, 1995; Webb, er al., 1996;
Ting, 1997; 1998). For FMD the cost of not predicting an actual outbreak (false
negative) is far higher than predicting an outbreak where none does in fact occur (false
positive). The differential weightings of false negative and false positive predictions

were taken into account in the analyses reported here.

Study aims

The aim of this study was to produce misk-maps' for FMD occurrence for the northem
and western parts of Thailand using statistical models based on geographically

referenced data.

Material and Methods

Study area

The Kingdom of Thailand, covering an area of 514,000 square kilometres, lies in the
heart of Southeast Asia and shares borders with Myanmar to the west and north, Laos
to the northeast, Cambodia to the east and Malaysia to the south. The country has four
distinct areas: the mountainous North, the fertile Central Plains, the semi-arid plateau of
the Northeast, and the peninsular South. It contains 76 provinces (changwat), 844

districts (amphoe), and 6,404 sub-districts (tambon).

The area considered here comprised 67 provinces, and their associated 590 districts and
did not include the FMD free zones in the southemn part (region 8 and 9 of Department
of Livestock Development (DLD) Regions) and the eastern region (DLD region 2) of
Thailand (Figure 17).

Data layers

Geographical data

All coverages used in this study were originally captured in vector format to represent
geographical features at a scale of 1:250,000. They were converted into raster-based

format for the analyses because of more convenient data storage and manipulation and
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easler programming for analyses. In a raster-based map, cell size 1s best determined
based on areal dimensions which are considered to provide an adequate representation
of the data. The original data were stored at the district level with the exception of the
soclo-economic themes which were summarised at the sub-district level. All layers
were converted to raster format resulting in a total of 661 cells each representing an
area of 25 x 25 kilometres. The geographical data sources that were available for this
study and their characteristics are listed in Table 21. Figure 18 presents two examples

of raster format maps.

FMD outbreak location data

Routine surveillance disease reporting data for foot-and-mouth-disease in Thailand
from January 1995 to May 1997 were used 1n this analysis. A total of 113 outbreaks of
FMD occurred during the period. Each record of an outbreak was recorded at a spatial
aggregation at the district level and included the following information: month/year,
FMD virus type (Type O, Asial and untyped), species affected, number of cases and
district. The exact location of disease outbreaks was not available, so the number of
outbreaks within each district was aggregated for the reporting period. As the resolution
of the district level was considered to crude, random coordinate locations were
generated for each outbreak within the corresponding district boundaries using the
ArcView Avenue programming language. The outbreak locations were then aggregated

into the cells of the raster cell layer.
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Figure 17. Map of administrative boundaries showing area included in this study
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Table 21. Characteristics of geographical and attribute data in the study area..

Geographical Coverage Description
data set (feature name
ype)
Administrative Amphoe A total of 590 amphoes or districts (excluding districts in
(Polygon) Boundaries Bangkok and districts in region 2, 8, and 9)
Topography Elevation Elevation level at 100 meter contour intervals

(Polygon, Arc)

Environmental
(Polygon, Point)

Forestry (Polygon)

Agricultural
(Polygon)

Infrastructure (Arc)

Rural socio-
economic (Polygon)

Spatial surface

Streams and
rivers

Annual rainfall

30 -year average
monthly rainfall

Forest

Land use

Transportation
and routes

Human

Neighbourhood
and distance
surface

Classification for type of stream grouped into 3 classes
Major river or canal
Perennial stream

Intermittent stream, irrigation canal, man-made canal,
manmade reservoir, perennial lake, intermittent man-made
canal, intermittent lake

Average annual rainfall measured in millimetres

30-year average monthly rainfall from weather recording
station summarised in 3 seasons, summer, rainy, and cool
season. *

Forest area (Forest Reserve, National Park, Wildlife
Sanctuary) and no forest area

Major land use grouped into 4 classes
Agricultural land type 1

Agricultural land type 2

Forest land

Miscellaneous (Golf course and recreation area, industrial
land, urban and built up land, water body)

Type of transportation features grouped into 3 classes
Two or more lanes wide
One lane wide

Loose surface in fair or dry weather, cart track, footpath,
trail, and railroads

Socio-economic information as the attribute data at the
tambon or sub-district level focuses on rural Thailand,
widely grouped into 6 groups according to these kinds of
factors

Animal movement

Farmer education

Public relations

Occupations of households

Livestock

from factors

Neighbourhood and distance analysis

associated with outbreaks. ®

a -: surface based on interpolation from weather recording station data using the kriging technique in
ArcView® Spatial Analyst .
e using neighbourhood analysis and distance mapping using ArcView® Spatial Analyst
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Figure 18. Raster maps for elevation and rainfall in the study area
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Statistical analysis

Assessment of spatial clustering

Cuzick and Edwards (1990) proposed a case-control spatial clustering test to take
covariates into account by selecting controls to mimic the spatial distribution of the
unaffected population at risk. In the current study, Cuzick and Edwards’ test was used
to test for the presence of clustering or spatial autocorrelation of the locations of FMD
outbreaks and non-outbreaks by assigning them to cases and controls, respectively.
Case locations were assigned the co-ordinates of the centre of a grid cell in which an
outbreak occurred. An equal number of control locations was randomly selected from

the remaining cells using the same method for assignment of co-ordinates.

Logistic regression analysis

Two types of dependent variable were used in the logistic regression analyses. One was
the presence or absence of at least one FMD outbreak in a grid cell, coded as 1 or 0.
The resulting models are called single cell models. The other type of dependent
variable was the proportion of outbreaks in a 3*3 square grid cell area centred on the

current cell (i.e. first order neighbourhood). These models are named /ocal region
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models and are generated in Minitab version 12 using an event/trials syntax. The
proportion of outbreaks in neighbouring cells was considered as one potentially useful
approach for controlling spatial autocorrelation. It has been described previously by
Besag (1972) and used to estimate an autologistic model. The neighbourhood analysis
function in ArcView® Spatial Analyst was used to derive as a numerator the number of
adjacent cells with FMD outbreaks around each grid cell and also for the denominator
the number of actual neighbouring cells for each grid cell within a 3 x 3 cell area (the

latter was relevant for cells on the border of the mapped area).

The analysis was conducted in two steps. First a univariate analysis was perfonned to
select a subset of variables which statistically significantly associated with the risk of a
cell having at least one outbreak. Using the variables which came out significant in this
step, a multivariate analysis was conducted to identify the best model describing the

outcome variable.

Four different types of logistic regression models were constructed, and in all models
specific consideration was given to potential effects of spatial autocorrelation on the
regression coefficient estimates and their standard error. A stepwise variable selection
process was used to identify the models single cell (model 1) and local region (model
1) including the set of variables providing the best model fit to the data. The level of
statistical significance of the variables was assessed using the likelihood ratio test. At
each step, any variables with a p value > 0.1 for the likelihood ratio test were excluded
from the model. All variables with p values <=0.1 as determined by the univariate
analysis were offered to the model selection process, except for 'total number of

outbreaks in neighbouring cells', which was not offered to the /ocal region model.

The Hosmer-Lemeshow statistic € (Hosmer, 1989) was used to assess goodness-of-fit
for each model. It provides an easily interpretable single value for assessment, with
large values of the test statistic and associated small p-values indicating poor fit. In
addition, receiver operating characteristic (ROC) curves were generated to allow a
graphical comparison of goodness-of-fit between different models, and to generate a

tool for choosing cut-off values for decision criteria.

Assessment of autocorrelation in the residuals

The Moran's index (spatial autocorrelation coefficient) tests the null hypothesis of

randomisation among residuals from the regression models as a single global statistic.



A test for autocorrelation of the model residuals will tell us whether a given model
adequately takes into account spatial autocorrelation and thereby is likely to produce
inefficient and unbiased estimates of regression coefficients (Cliff and Ord, 1981).
High values of Moran's / are indicative of spatial autocorrelation. Moran scatterplots
which show Moran's / statistic as a slope were produced to examine the degree of linear
association of spatial association. This representation allows inspection of the
underlying data values contributing to the global statistic, and therefore facilitates
identification of outliers. It is also possible to show the result as a feature attribute in a
map so that local autocorrelation can be examined for individual map locations. Using
this graphical presentation, four types of spatial association can be distinguished in the
set of paired values (Anselin, 1995). Associations between similar values, high
surrounded by high and small surrounded by small, are interpreted as 'positive’ spatial
association while the other two forms representing dissimilar values (e.g. high

surrounded by small and vice versa) are indicative of 'negative' spatial association.

In addition, variogram analysis was used for assessing the presence of spatial
autocorrelation in the regression model residuals. The variogram is a graphical
representation of the variation between sampling points separated by a given distance
or lag (Isaaks and Srivastava, 1989). A continuous process without spatial
autocorrelation will result in a horizontal line. Variograms which do not reach an upper
bound suggest non-stationarity (Pfeiffer, 1996). In the current analysis estimates were
based on the assumption that the data was isotropic. The lag distance was selected as
10km after inspection of the distribution of value pairings was inspected in order to
have sufficient observations in the different lag categories. The regular and the robust

version of the semivariogram were generated as suggested by Cressie (1993).

Classification tree analysis
A classification tree analysis was conducted using the occurrence of at least one FMD
outbreak in a grid cell as a binary outcome variable. To generate the classification trees,
all significant variables from univariate analysis were introduced into the analysis, with
the exception of the variable 'total number of outbreaks in neighbouring cells' since i1t

was highly correlated with the outcome.

The classification trees were generated using CART as the growing method and the

GINI index as the impurity measure. Stopping rules for all trees were set at 10 for
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maximum tree depth, 50 for the minimum number of cases in parent nodes and 25 for
child nodes, and the minimum change in impurity was set at 0.0001. Ten-fold cross-
validation was used to test the accuracy and stability of the trees. The sensitivity of the
model to variation in misclassification cost of the ratio between false negative and false
positive classifications ranging from 1 to 8 was explored using the two methods,
variable misclassification costs via GINI and choice of prior, suggested by Breiman, et
at. (1984). Prior probabilities were varied to take into account potential mis-

representation of the reporting data with respect to true FMD risk in the study area.

Risk maps
The probability of a FMD outbreak occurring at each location (a cell on the grid) was
estimated using the generated logistic regression and classification tree model equations

and decision rules and then converted into maps of the probability of FMD outbreaks in
Thailand.

The logistic regression model generates a value between 0 and 1 for each record in the
data set or each grid cell, and this value represents the probability of occurrence of

FMD outbreak at that cell given the predictor variable value pattern.

The classification trees were transformed to provide a probability instead of a
classification by using the actual distribution of the grid cells in each leaf of the trees as
the probability of occurrence of a FMD outbreak instead of assigning the leaf entirely

to the most frequently occurring category (Long, ez al., 1993).

Software

The spatial data was manipulated using ArcView® for Windows 3.1, its extensions
Spatial Analyst and 3D Analyst (all three from Environmental Systems Research
Institute, Redlands, Califormia, US.A)) and Microsoft Access 97 (Microsoft
Corporation, Redmond, WA, U.S.A.). Spatial clustering was assessed using the
software Stat! (BioMedware, Ann Arbor, Michigan, U.S.A.). Statistical analyses were
conducted in Minitab 12® (Minitab, State College, PA, U.S.A.) and the ROC curves
were generated in NCSS 97® (NCSS Statistical Software, Kaysville, Utah, U.S.A.). The
classification tree analysis was performed using the software AnswerTree version 1.0
(SPSS, Chicago, Illinois, USA). The analysis of regression residuals using the Moran
scatterplot was performed with SpaceStat 1.8 (Regional Research Institute, West
Virginia University, Morgantown, WV, U.S.A.) and the SpaceStat Extension for
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ArcView (Regional Research Institute, West Virginia University, Morgantown, WV,
USA). Variogram plots for the residuals were done using PROC VARIOGRAM in
SAS for Windows Version 7.0 (SAS Institute, Cary, NC, U.S.A.).

Results

Univariate analysis
All variables were subjected to a univariate analysis using Student’s 7, Mann-Whitney
U, or xz tests to detect differences between outbreak and non-outbreak areas.
Statistically significant differences at p <=0.1 were found for 28 out of the 67 variables

tested (Table 22).

Based on the results of the Cuzick and Edwards’ test, the distribution of FMD
outbreaks showed significant spatial clustering of outbreak cells relative to the spatial
distribution of non-outbreak cells (p < 0.001). These results suggest the presence of

spatial autocorrelation in the dependent variable used in the following models.

Table 22. Variables with statistically significant difference between outbreak and
non-outbreak areas.

Geographical Variables Code Mean  p value*
data set
Environmental 30-year average monthly rainfall in rainy season = AvRainy 8.02 0.04
(mm.)
30-year average monthly rainfall in cool season  AvCool 4.28 0.02
(mm.)
Agricultural Land use Land 0.002
Socio- Farmer education A
economic
Illiteracy level of sub-district Illiterate 0.04 0.08
Public relations °
Proportion of sub-districts with public reading PubRead 0.94 0.07
places ¢
Proportion of sub-districts with public libraries PubLib 0.95 <0.001
Proportion of sub-districts with public news PubNews 0.83 0.08
broadcasts
Occupations of households °
Proportion of households engaged in agriculture HHAgri 0.84 0.008
Proportion of households for which growing rice  HHRice 0.20 0.001

is the main occupation
Proportion of households which cultivate rice RiceOnce 0.65 <0.001
once each year ¢

Proportion of households which cultivate nce  RiceTw 0.02 0.07
twice each year



86

Geographical Variables Code Mean  p value*
data set

Proportion of households for which growing field HHCrop 0.08 0.03

crops is the main occupation

Annual income of households for which growing  Croplnc  46,712.05 0.01

field crops is the main occupation (baht)

Annual income of households for which raising Animallnc 30,448.89  0.002
animals is the main occupation (baht)

Annual income of households with more than one 20cInc 228,587 0.10

occupation (baht) ¢

Livestock
Number of livestock markets LstkMrk 0.16 0.08
Proportion of sub-districts with animal remedy AnimalMed 0.82 <0.001

depot, veterinary volunteers or livestock
development volunteers

No of public shallow or dug wells PubShal 28.51 0.06
Cattle (Beef, dairy, and buffalo) density per km’ CtlDens 2632 0.10
Buffalo density per km’ BufDens 9.16 0.09
Pig density per km’ PigDens 10.01 0.003
Spatial theme  Total number of outbreaks in neighbouring cell SumOtb 252 <0.001
Distance from livestock market (km) DstLvMrk 49.84 <0.001
Distance from water body such as lake, reservoir ~ DstWtr 28.72 0.10
(km)
Distance from transport type 1 (km) DstTransl 838 0.05
Distance from transport type 1 and 2 (km) ° DstTrans12 9.38 0.02
Distance from border to Myanmar (km) DstMynm 264.15 0.08
Distance from border to Laos (km) DstLaos 168.8 <0.001

* - p value from univariate comparisons between outbreak and non-outbreak areas.
¢ -: number of sub-districts with "yes" divided by total number of sub-districts in that district.

d -: number of households with the factor of interest divided by the total number of households in that
district.

e-: variables that were not included in multiple logistic model process because they were considered to be
too highly correlated with other predictors.

Logistic regression analysis

The final single cell logistic regression model called single cell (model 1) contained
four variables: ‘proportion of sub-districts with public news broadcast facilities’,
‘proportion of households for which growing rice is the main occupation’, ‘proportion
of sub-districts with animal remedy depot, veterinary volunteers or livestock
development volunteers’, and ‘total number of outbreaks in neighbouring cells’. To
assess the effect of spatial dependence on the regression coefficients and model fit,
additional analyses were performed in that the variables included in single cell
(model 1) with the exception of 'total number of outbreak in neighbouring cells' were

forced into single cell (model 2) and local region (model 2). The regression coefficients
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for these models expressed as odds ratios are presented in Table 23. Comparison of the
regression coefficient estimates shows that they are broadly similar between the
models. In fact, the 95% confidence limits would overlap for all variables. The final
local region (model 1) was derived from a separate stepwise logistic regression analysis
of the dataset and six variables came into the model as shown in Table 24. From the
parameters included in the single cell (model 1), only the variable 'AnimalMed' was
still present. Tests for significance of the models, Hosmer and Lemeshow’s goodness of
fit, and Moran's / test for spatial autocorrelation of residuals are shown in Table 25. It
appears that the single cell (model 2) produces good fit to the data as does /ocal region
(model 2), but the latter is adversely affected by autocorrelation. On the basis of this
table, one would have to consider both single cell models being the best models.

Variogram plots for the residuals of all models are shown in Figure 19.

In the single cell (model 1), a factor strongly associated with the occurrence of FMD
outbreaks was 'total number of outbreaks in neighbouring cell'. This can be seen as a
factor expressing spatial autocorrelation. It 1s interesting to note that its exclusion in
single cell (model 2) does not have a major effect on the autocorrelation in the
regression residuals. The variables included in single cell (model 1) suggest that while
the districts with a higher number of sub-districts receiving public news broadcasts
were less likely to have an outbreak of FMD in the area, districts containing more
households growing rice as the main occupation as well as those with more sub-
districts having animal medical storehouses or livestock development volunteers were

3.5 and 5 times more likely to have FMD outbreaks, respectively.

In the context of spatial dependence, the result of the examination of standardised
Pearson residuals from the different regression models using Moran's / statistic yielded
a value of -0.035 for the single cell (model 1) and 0.50 for the local region (model 1). 1t
would appear that both single cell models are reasonably adequate while the other two
local region models seem to have a strong spatial dependence in the residuals. This
association was clearly seen from mapping the Moran scatterplot quadrant values as
shown in Figure 20. The positive spatial associations are shown using a red colour
shading and negative associations using a green shading. The map for single cell
(model 1) shows a mix of the positive and negative associations, whereas the one for
local region (model 1) is clearly dominated by positive autocorrelation. The variogram

plots are flat for single cell models except for the steep slope between the first and
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second lag which is largely the result of sparse data. In contrast, the plots for the /ocal
region models (model 1 and 2) do have a more consistent slope up until lag numbers 4
and 9, respectively. This confirms the results of Moran's / in indicating the presence of
autocorrelation in these two models. Therefore, the regression coefficients for the
single cell models are more likely to be unbiased and efficient than the ones for the
local region models. This would have a significant impact on the accuracy of the

probability predictions (Figure 21).

Table 23. Odds ratios with 95% confidence limits (in brackets) of variables in
logistic regression models single cell (models 1, 2) and local region (model

2)
Variables Single cell (model 1)  Single cell (model 2) Local region
(model 2)
PubNews 0.10 (0.03-0.41) 0.13 (0.04-0.48) 0.58 (0.36 - 0.94)
HHRice 3.47 (1.26-9.51) 4.59 (1.82-11.62) 2.27(1.61-3.19)
AnimalMed 5.05 (1.37-18.62) 4.77 (1.53-14.88) 3.61 (2.47-5.29)
SumOtb 1.73 (1.51-1.99) . .

Table 24: Odds ratios with 95% confidence limits (in brackets) for variables
included in final logistic regression model local region (model 2) using
proportion of cells with outbreaks in the local region (9 grid cells) as the
response variable

Variables Local region (model 1)
DstMrk (km) 0.99 (0.99-0.99)
AvRainy 1.14 (1.10-1.17)
AvSummer 8 0.61 (0.50-0.74)
Miscellaneous landuse " 1.62 (1.27-2.07)
Hhanimal | 433 (2.08-8.99)
AnimalMed 1.60 (1.09-2.36)

g - 30-year average monthly rainfall in summer season
h :- compared with agricultural land and forest land as the reference group

1 - proportion of sub-district for which raising animals is the main occupation
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Table 25: Summary table of deviance (G), Hosmer and Lemeshow’s goodness of
fit (¢), and spatial autocorrelation of residuals (Moran's I) for the four
logistic models single cell (models 1, 2) and local region (models 1, 2)

Statistical parameter  Single cell  Single cell Local region Local region
(model 1)  (model 2) (model 1) (model 2)

G 97.32 25.35 257.51 81.93
degrees of freedom 4 6 3

P value 0.000 0.000 0000 0000

---- Hosmer-Lemeshow& 1405 850 284 2L17

degrees of freedom 8 8 8

P value 0.08 0.39 0.94 0.007

Moran's [ -0.04 0.05 0.50 0.37

Figure 19: Omni-directional variograms derived from the residuals of different
logistic models (using a lag distance of 10km)
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Figure 20. Maps showing the quadrants of the Moran scatterplot generated from residuals of different models.
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Figure 21. Maps of the probability of FMD outbreak occurrence based on different logistic models.
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Classification tree analysis

The classification tree analysis where equal weighting was given to false positive and
false negative classifications was unable to generate a tree given the set criteria of node
impurity. After increasing the relative weighting of the costs resulting from false
negatives, subsequent trees produced for different weightings contained the same
variables as well as had the same structure. As intended, adjustments to the
misclassification costs directly affected the misclassification risk, and sensitivity as
well as specificity of the model and the outcome changed to a different FMD outcome
category in some terminal nodes. However, the risks of misclassification become
increasingly higher with increasing cost adjustments. Therefore, the adjusted prior
method was used in combination with cost adjustment in order to reduce the risk of
misclassification. This seemed justified to take account of the fact that the data set was

dominated by observations (i.e. cells) which did not have FMD outbreaks.

Starting from the classification tree with equally weighted mis-classification cost, we
explored the effect of adjusting prior probabilities in addition to mis-classification cost
in the subsequent trees. Adjusting prior probabilities also directly affected the
misclassification risk and therefore sensitivity and specificity of resulting tree models.
Keeping the same tree structure, the model showed increasing sensitivity at the expense
of specificity as the misclassification cost of false negatives relative to false positives
increased. The misclassification risk for the subsequent trees was increased, but not as
high as without adjusted prior. Tree size and the variables that came into the model
were changed following cost adjustments as set out in Table 26. The ranking in this
table is based on the purity gains resulting from introducing a particular variable to the

tree. Summaries of all tree models are listed in Table 27.

The impurity function used to select splits relates closely to the relative risk where low
impurity implies a high relative risk (Zhang, er al., 1996). Resubstituted relative risks
(RRR) were estimated for each factor in the tree at each split. The first three vanables
that were included in the default tree and all the following trees after prior adjustment
for cost were ‘distance from the border of Laos’ (DstLaos), ‘proportion of sub-districts
with public news broadcasts’, and ‘proportion of households for which growing field
crops 1is the main occupation’. The RRR for the first split of the DstLaos factor at less
than or equal 267.64 km was (87/483)/(7/178) = 4.58 compared to the group where



distance was greater than 267.6 km. The RRR for the splits of other variables are listed
in Table 28.

The models need to reflect a requirement of control schemes for a conservative
approach in the prediction of possible risk areas so that none are missed. It was
therefore decided to weight the sensitivity of the model as high as 90 %, leaving 10%
for specificity. The tree model with the cost of false negatives at 5 times the cost of
false positives was chosen as the best model. The sensitivity and specificity of this tree
were 89% and 45%, respectively. The model gave an overall misclassification risk of
35% and a risk of 39% following cross-validation indicating good accuracy and
stability of the tree. The best classification tree model incorporating cost-sensitive
adjustments in which the cost of false negatives were 5 times that of false positives is
shown in Figure 22 and correct classification percentages for root, intermediate, and

terminal nodes are presented in Table 28.

Table 26. Ranking of variables for different levels of cost adjustment (1-1 indicates
equal weighting for false negative and false positive, 2-1 indicates the
cost of a false negative to be set at 2x that of a false positive)

Variable Treel 1 Tree2 ] Tree3 1 Tree4 1 Tree5 | Tree6 1 Tree7 I Tree8 I

Cost adjusted 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1
(FN : FP)
DstLaos 1 1 1 1 1 1 1 1
PubNews 2 2 2 3 3 3 3 3
HHCrop 3 3 3 2 2 2 2 2
BuffaloDens - - - - 2 2 2 -
DstLvMrk - - - 3 3 3 - -
DstTransl - - - - B 3 3 3 -
AvRainny - - - - - - 3 K5
PubShallow - - = 5 - . - 4
AgrOccu 4 4 - & - - “

* wvariable was used for two splits.



Table 27. Summary data for classification trees with cost-sensitive ad justments (1-1 indicates equal weighting for false negative and false
positive, 2-1 indicates the cost of a false negative to be set at 2x that of a false positive)

Summary Treel 1 Tree 2 1 Tree 3 1 Tree 4 1 Tree 5 1 Tree 6 1 Tree 7 1 Tree8 1
Cost adjusted (FN : FP) 1:1 2:1 3:1 4:1 5:1 6.1 7:1 8:1
Priors adjusted 0.86:0.14 0.75:0.25 0.67:0.33 0.60:0.40 - 0.55:0.45 0.50: 0.50 0.46: 0.54 0.43: 0.57

(non-outbreak: outbreak)

Resulting tree

Number of nodes 7 9 9 9 13 13 13 13
Number of levels in the tree 3 4 4 3 3 3 3 4
Number of terminal nodes 4 S 5 5 7 7 7 7

Misclassification rate

Risk estimate 0.14 023 0.30 0.36 0.35 0.33 0.32 0.27

s.e. of risk 0.01 0.01 0.01 0.01 0.02 0.03 0.02 0.03
s Uy U S ———

Risk estimate 0.14 0.27 0.36 0.45 0.39 0.51 0.48 0.41

SE of risk 0.00 0.01 0.02 0.02 0.03 0.03 0.03 0.03
Sensitivity (95% Cl) o 0.17(0.09-0.25)  0.17 (0.09-0.25) 0.15(0.08-022) 089 (0.83-0.96) 097 (0.93-1.00) 090 (0.84-096) 097 (0.93-1.00)
Specificity (95% CI) I 0.96 (0.95-0.98)  0.96 (0.95-0.98)  0.97(0.96-0.99)  0.45 (0.41-0.49) 038 (0.34-042) 0.42(0.38-0.46)  0.42 (0.38-0.46)

s.e. = standard error
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Figure 22. Classification tree model (tree 5_1) incorporating cost-sensitive
adjustment (cost of false negatives is S times that of false positives).
Ellipse shaped nodes indicate prediction of no outbreak. Star nodes indicate
prediction of an outbreak. Within each node, the actual observed numbers of
grid cells with and without outbreaks are shown. Terminal nodes are
distinguished by shading.
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Table 28. Node statistics for preferred classification tree tree 5_1

Node Node type Qutcome category % Correctly RRR
classified classify
A Root node No outbreak 85.78 4.58
B Intermediate node Outbreak 18.01 2.77
C Intermediate node No outbreak 96.07 0.00
D Intermediate node Outbreak 21.31 2.45
E Intermediate node No outbreak 92.31 5.31
G Intermediate node No outbreak 91.03 -
H Terminal node Outbreak 46 67 -
1 Terminal node Outbreak 19.05 -
J Terminal node Outbreak 18.75 -
K Terminal node No outbreak 96.47 -
F Terminal node No outbreak 100 -
L Terminal node No outbreak 84.78 -
M Terminal node No outbreak 100 -
ROC analysis

ROC curves for two logistic regression models and the preferred classification tree
model tree 5 1 were produced using the estimated sensitivity and 1-specificity value:
(Figure 23). The area under the ROC curve (AUC) for the single cell (model 1) wa:
0.79, 0.64 for the single cell (model 2) and 0.70 for the classification tree model ¢re:
5_1. Given the lower AUC value, the logistic regression single cell (model 2) was nol
used for risk mapping purposes. It becomes clear from inspection of the curves that tc
achieve acceptable sensitivity levels such as 90% the percent false positive prediction:

could easily rise to 40%.
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Figure 23. ROC curves for logistic regression and classification tree models
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Risk maps

The probabilities (p) of FMD outbreaks produced from the single cell (model 1) and the
classification tree (tree 5 1) were used to generate risk-maps' demonstrating how the
risk of disease varies in space (Figure 24 and Figure 25). Separate maps based on the
upper and lower 95% confidence limits were produced to indicate the accuracy of the
predictions. The areas in those maps depicted in red were predicted to experience
outbreaks of FMD when cut-off values for the models were set at 0.5 for the logistic

model and 0.18 for the classification tree. The latter cut-off was different as a reflection

of the prior cost adjustment.
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Figure 24. Three-dimensional risk map showing predicted risk of FMD outbreak occurrence based on logistic regression single cell (model 1)
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Figure 25. Map of predicted probability of FMD outbreak occurrence based on the preferred classification tree-based model tree 5_1 (incl. 95%
CI maps)
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Discussion

It is important to be able to predict the distribution of disease in order that preventive
programmes can be targeted at the most important areas and control operations can be
designed and executed to achieve optimal cost-effectiveness. Methods for prediction of
disease outbreaks on a spatial scale or geographical patterns in disease distribution have
been used in the study of theileriosis (Duchateau, er al., 1997; Pfeiffer, et al., 1997),
bovine anaplasmosis and babesiosis (Perez, er al., 1994), distribution of insect vectors
of disease (Williams, er al., 1992), and some other parasitic zoonoses (Mott, et al,,
1995). However, amongst these modelling approaches only Pfeiffer et al’s models took

spatial autocorrelation into account.

In the study reported here, the presence of spatial autocorrelation in the outcome
variable FMD occurrence was confirmed with the Cuzick and Edwards’ test. During
the regression modelling spatial dependence was taken account of by introducing
variables into the modelling process that represented the relationship with respect to
FMD risk between any grid cell and its immediate neighbours. The variable was either
used as predictor or a dependent variable. Comparisons of the Moran's / statistic and
the variogram graphs derived from the residuals of the different logistic regression
models suggest that with this particular data controlling for spatial autocorrelation
through inclusion of incidence in the local region as defined by a 3*3 grid cell square
does not reduce the effect of spatial autocorrelation in contrast to the analysis reported
by Pfeiffer, er al. (1997) for theileriosis. On the contrary, the use of /ocal region as a
response variable did result in an increase of the spatial dependence in the residuals
compared with the standard model as shown in Table 25: Summary table of deviance
(G), Hosmer and Lemeshow’s goodness of fit (¢), and spatial autocorrelation of
residuals (Moran's I) for the four logistic models single cell (models 1, 2) and local

region (models 1, 2)
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Statistical parameter  Single cell  Single cell  Local region Local region
(model 1)  (model 2) (model 1) (model 2)

G 97.32 25.35 257.51 81.93
degrees of freedom 4 6 3

P value 0.000 0.000 0.000 0.000

""" Hosmer-Lemeshow& 1405 850 28 2117

degrees of freedom 8 8 8

P value 0.08 0.39 0.94 0.007

Moran’s [ -0.04 0.05 0.50 0.37

Figure 19: Omni-directional variograms derived from the residuals of different
logistic models (using a lag distance of 10km)
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, when mapping the quadrants of the Moran scatterplot of the residuals (Figure 20) as

well as in the variogram plots for the residuals in Figure 19.

Although the single cell (model 1) did not to have good overall fit as indicated by a low

p value for the Hosmer-Lemeshow statistic €, a comparison of the areas under the ROC

curve suggests that this model produced the best prediction of the outcome variable.

The assessment of autocorrelation in the residuals indicated that it did not appear to be

adversely affected by the spatial dependence or spatial autocorrelation in the dependent
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variable. The predicted probabilities from this model were used to generate a risk —map

of predicted probabilities of FMD outbreak occurrence.

The most important risk factors associated with the occurrence of FMD outbreaks over
the study area based on the spatial logistic regression model single cell (model 1) were
‘proportion of sub-districts with public news broadcasts’, ‘proportion of households for
which growing rice is the main occupation’, ‘proportion of sub-districts with animal
remedy depot, veterinary volunteers or livestock development volunteers’, and ‘total
number of outbreaks in neighbouring cells’. The last factor has no practical value when
using the model to devise control strategies. But its inclusion in the model can be seen
as reflecting clustering or contagiousness of disease. It should be noted that this
variable expressing the risk in the neighbourhood as a count was better able to control
for the spatial dependence in the residuals of the model than inclusion of a variable
expressing the local risk of outbreaks occurring in the immediate neighbourhood as a
proportion. The latter variable had been used as dependent variable in local region
model 2. As Bailey and Gatrell (1995) suggested, if a variate interaction model helps us
to understand the behaviour of the process and provides us with insights as to possible
explanations for this behaviour then the modelling will have achieved its objective. In
this particular case the findings lead us to suspect that some of the other predictor

variables must have explained some of the spatial autocorrelation.

A factor that was sparing for outbreaks in the study area of Thailand was having a high
proportion of sub-districts with public news broadcasts. Public news broadcasts have a
strong public relations content including the activities of "The National Foot-and-
Mouth Disease Control and Eradication Project”. Livestock farmers, livestock
vendors, the agribusiness industry, officials and governmental agencies, as well as
those who are responsible for implementing the project are kept informed of the
necessity to control and eradicate the disease through mass media communication such
as radio, television, printed material and other audio-visual aids. This study indicates
that those public relation activities may have had a positive impact on the control of the
disease. It is also possible though that it may have been confounded with closeness to
the borders of Myanmar and Laos which i1s where FMD infection is suspected to have

been introduced from.

Livestock development in Thailand is often promoted with regard to its potential for

increasing the country's domestic consumption and export trade. However, in rural
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areas cattle and buffalo still have an important role as draught animals for rice
cultivation as well as for meat and milk production. It is not surprising that the areas
that have a larger proportion of households for which growing rice is the main
occupation tended to have a relatively high occurrence of FMD outbreaks. The study
indicates that these farmers are a risk group that the government should specifically
target in the control scheme. While the use of draught animals may explain the
association between FMD and rice growing, it is also possible that the association was
purely a reflection of poor data quality. The disease data used in this study was based
on routine monthly disease reports. There is a definite possibility that disease
occurrence was underreported. In particular, some of the areas that were never reported
as having FMD outbreaks may in fact have had outbreaks. Because of the importance
of draught animals, farmers in the rice growing areas look after their cattle and
buffaloes well. When these animals become sick, they usually report and ask for help
from veterinarians, the head of the village or livestock development volunteers. This
will result in a reporting bias, as in other areas of the country livestock is less relevant

to farmers, who may, therefore, be less likely to report cases of FMD.

Another risk factor associated with the occurrence of FMD in Thailand is ‘proportion
of sub-districts with animal medical storehouses or livestock development volunteers’.
This variable was included in the single cell and the local region models and had
particularly high odd ratios in the single cell models. As discussed above, this factor
could also be an indicator of reporting bias. The better the animal health infrastructure,

the more likely 1t 1s that any outbreaks will be reported.

A number of other variables shown in the results of the univariate analysis may be
“biologically relevant” risk factors for the occurrence of FMD although not statistically
significant. For example, the number of public wells in an outbreak area is significantly
higher than in an area without disease outbreak. Distance to the next livestock market,
to the next main road, and from the border to Laos all were significantly shorter for
areas with outbreaks when compared with those not having any reported outbreaks.
Although these factors were not included in the logistic regression models, some of

them became part of the classification tree models.

It was not possible to compare the performance of variables introduced into the logistic
regression model with their performance when introduced into the classification tree

model in the present study as different initial variables were included in the models
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generated by these methods. The wvariable ‘total number of outbreaks in the
neighbouring cell” which was included in the logistic regression model and which
strongly affected the coefficients of the other variables in the model was not selected in

the classification tree models.

The objective of this study was not to compare the performance of these methods.
However, there are some interesting points that have been discussed in many studies

between these two methods.

Performance of logistic regression and classification tree models with respect to their
ability to correctly classify cases has been compared in a number of papers. Long et al.
(1993) studied the performance of both methods in the medical domain, while the
methods were performed fairly similar the logistic regression method was slightly
better than the classification tree. A similar conclusion was drawn by Stark (1998) who
offered a number of suggestions on the way in which the results of the logistic
regression model should be interpreted. Hadom e al. (1992) looked at the performance
with respect to sensitivity and specificity using ROC curves derived from logistic
regression, a series of CART models generated by varying the misclassification cost
specifications and some other method. These authors found the performance of the
logistic model to be marginally superior to that of other models. All of the above
authors agree that both the classification tree and the logistic regression methods are

very dependent on the quality of the underlying data.

Classification tree analysis does not provide a specific method for modelling the spatial
dependence of data. As its methodology is very robust and does not require the
assumption that contributing observations are independent, the derived classification
trees will not be adversely affected by the presence of spatial autocorrelation in the
data. Classification tree analysis offers an excellent method for efficiently developing
production rules for geographically-orientated decision support systems. Classification
trees provide detailed insight into the data structure as well as between-variable
relationships. Compared with logistic regression it excels in detecting local complex
data structure while logistic excels in detecting linear and global structure. Users can
incorporate differential weightings to optimise tree structure with respect to differential
mis-classification costs. The classification tree is easy both to explain and to interpret
because the decision rules developed involve binary judgements which are intuitively

easier to understand than equations based on a sequence of odds ratio estimates
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generated by logistic regression modelling (Walker and Moore, 1988). For this reason
classification trees are becoming increasingly popular, particularly in the medical
domain. For exploring large datasets such as in data mining classification trees have

become a standard method.

With our data set, classifiers that minimize the number of misclassification errors are
inadequate for problems with variable misclassification costs. Using the GINI selection
criterion in CART variables for outcome classification could not be found without
weighting on misclassification cost. Trees taking account of differential cost-sensitivity
in combination with altered priors allowed the ability to provide reasonable predictions
of the occurrence of FMD outbreaks in selected terminal nodes. The classification trees
showed an increase in misclassification risk and in sensitivity but a decreased
specificity as the misclassification cost of false-negatives increased. We therefore used
estimates of the sensitivity and specificity for correctly identifying outcome categories
in accordance with the requirements of the FMD control scheme to compare the
performance of the different classification trees based on different misclassification
costs. Estimates of sensitivity and specificity have been used in a number of studies as
the basis of a comparison of prognostic models (Stark, 1998; Long, er al., 1993). The
classification tree can be converted into a set of decision rules (Figure 22) for
extrapolation beyond the data domain, keeping in mind the efficacy of prediction as

quantified by the sensitivity and specificity of the tree model.

\

The receiver-operating charac.teristic (ROC) curve is a useful summary statistic of
predictive performance of models generating probability-based predictions as outcome
variables. It plots the various combinations of true positive and false positive risks as
the test threshold that defines a positive test is being varied. The ROC curve provides a
method for decision makers to consciously vary cut-off values for binary decision
criteria taking into account the requred level and weighting of sensitivity and
specificity. This characteristic of the ROC curve can also be used to choose appropriate

cut-off points for logistic regression model predictions.

Visual assessment of the risk maps shows that the logistic models predicted the
presence of FMD outbreaks in only a small number of areas, whereas the classification
tree indicated large areas as being at different levels of risk of FMD outbreaks. The cut-
off point used in logistic regression is 0.5. With our data set this level resulted in a

sensitivity and specificity of 12 % and 98%, respectively. The level of sensitivity and
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specificity using the same cut-off point for the classification tree predictions resulted in

63% and 83%, respectively.

The 'risk map' of model predictions provides a visually effective method for guiding
informed disease control decision making that takes into account ‘likely’ local outbreak
risks. The decision as to which of various control strategies to implement can then be
based on the level of disease risk in individual areas. The map should be considered n
combination with the ROC curve which very effectively summarises the probability of
missing potential outbreaks or unnecessarily applying the control measures to

individual areas depending on which cut-off point has been selected.

Conclusion

This study has shown the potential for generating useful information through
combination of data from a routine disease surveillance system and geographical data
bases. While the different techniques discussed can be used to generate useful
predictions to be incorporated in the planning of disease control efforts, the quality of
the predictions will depend on the data used to generate them. In this particular
situation in Thailand, before these models can be applied the accuracy of the disease
reporting data should be assessed. In addition, the level of aggregation at which the data
1s being recorded should be determined after considering the intended use of the
information. Too high a level of aggregation relative to the scale at which the
underlying disease process is operating will make it difficult to derive predictive
models. Ideally, outbreaks of diseases such as FMD should be recorded with an
accuracy at least at the village level. The district level is not adequate if analyses as

presented in this study are intended.

As result of a comparison of the different models it was decided that with this dataset
the predictions generated by the classification tree model tree 5_/ were probably most
useful. Considerable effort went into the comparison of different methods for
controlling spatial autocorrelation, and it was concluded that the auto-logistic or /ocal
region modelling approach did not seem to of benefit with this data. It is possible that
the data quality and potential confounding relationships between the variables was

partly responsible for this unexpected result.
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In conclusion, we are moving towards a situation where, through the availability of
sophisticated data analysis tools in combination with advanced data management and
presentations systems such geographic information systems, disease control decision
makers will be better able to make informed decisions that more effectively utilise data

which often is collected at great expense, but that is frequently not used effectively.
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CHAPTER 5.

Development of a simple geographical disease

reporting and analysis system for Thailand

Introduction

With the advent of computer-based electronic data processing, it has become possible
to process information about a large number of factors associated with animal
populations, disease, and geography. Computer-based systems that combine
cartographic (map-making) capabilities with these information-processing capabilities

are known as geographic information systems (GIS).

In recent time, the development of GIS has presented epidemiologists with an
opportunity to explore and analyse the geographical or spatial distribution of diseases
as well as any other aspects of disease distribution. The application of GIS in veterinary
epidemiology and disease control has become quite common as part of projects in
many countries concerning diseases such as bovine tuberculosis (Clifton-Hadley ef al.,
1993), theileriosis (Dvorak, 1993), pseudorabies (Norman ez al., 1996), Lyme's disease
(Kitron ez al., 1997; 1998), avian influenza (Akey, 1993), trypanosomiasis (Reid ez al.,
1997), foot-and-mouth-disease (Sanson er al, 1993) and some parasitic zoonoses (Mott
et al., 1995). This trend is certain to continue and expand to include more countries as

the potential power, usefulness and cost-effectiveness of GIS is being realised.

Because GIS is a relatively new and high cost technique, the use of this tool in
developing countries, especially as a component of animal health information systems,
represents a difficult challenge. In addition, it is not sufficient to purchase the hardware
and software, but it is also necessary to train staff in technical aspects of GIS.
Considering all these difficulties, it does not mean that GIS is not practical or not
suitable for animal health information systems in developing countries. As an initial
step to allow a gradual transition towards the new technology, a comprehensive

geographical epidemiological study and a reporting system can be set up.
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The objective of the current study is to generate a template for the development of an
information system for simple standard reporting on geographical patterns of disease

occurrence and spatial cluster analyses of the major diseases in Thailand.

Review of GIS Components

GIS has served important roles as an integrating technology. Rather than being
completely new, GIS has evolved by linking a number of discrete technologies into a

‘whole that 1s greater than the sum of its parts’.

As any other information system, GIS includes four major components. These are data
input: data storage. data manipulation and analysis, and data reporting. The relationship
between a GIS and a traditional animal health information system is outlined in Table

29.

Table 29. Relationship between a GIS and a traditional animal health information

system
Processing task Geographical information Animal health information
System Ssvstem

Data input Geographical feature: digitising or Attribute data with geo-reference:
scanning from maps. aerial photos. populations, disease  reporting,
satellites, and other sources vaccination

Data storage GIS files Database file

Data manipulation and Spatial operations. analysis, Tabular  operations,  non-spatial

analvsis modelling, including spatial statistic statistic. cross-tabulate

Output and reporting Maps, plot, display, text reports, Tables, text reports

tables

GIS 1s an integrative technology. Whereas other technologies might be used only to
analyse aerial photographs and satellite images, to only create statistical models, or to
draft maps, these capabilities are all offered together within a comprehensive GIS

(Foote er al., 1998).

GIS, with its array of functions, should be viewed as a process rather than as merely

software or hardware. GIS is a tool assisting in decision making. The way in which data
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1s entered, stored, and analysed within a GIS must mirror the way information will be

used for a specific research or decision-making task.

Administrative Structure for Animal Disease Control and

Eradication in Thailand

The country is politically divided into 76 provinces (changwat), 844 districts (amphoe),
and 6,404 sub-districts (rambon). The governmental system is highly centralised and
based in Bangkok where the central office of the Department of Livestock
Development (DLD) is located. The DLD divides the country into nine Livestock
Development Regions (DLD regions), which do not correspond to the regions used by
the National Statistics Office of Thailand. There are DLD regional offices in each
region, province, and district. The current administrative structure for animal disease
control and eradication in Thailand is graphically shown in Figure 26. Figure 27 shows
the procedural steps followed in the event a disease outbreak occurs (Division of

Disease Control, 1996).

Figure 26. Current administrative structure of the government veterinary service
in Thailand
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Figure 27. Flowchart of the responsibilities of the Emergency Disease Control Unit
during disease outbreaks within the administrative structure of the
government veterinary service
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System Requirements

Software

GIS software

The GIS software ArcView 3.1® (ESRI Inc., California, U.S.A.) was chosen as the
software platform for the system design. ArcView 3.1® simplifies the task of spatial
data query and map generation, and it includes virtually all the key functions for
manipulation and spatial analysis of geo-attribute data. Using a familiar Microsoft

Windows™ interface, it allows the user to quickly and intuitively create interactive
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maps. ArcView 3.1® can display an almost infinite variety of geographically linked
data, view associated database tables, present graphical data displays, and develop

presentation quality maps for final output.

ArcView can be used for the ad-hoc linking and display of any of the geographical and
attribute data, and the creation of maps. More complex attributes can be derived by
linking multiple files and calculating new values from existing data. It is also possible

to connect to external databases through ODBC connectivity.

ArcView's programming language called Avenue™ offers the ability to develop
automated procedures allowing routine tasks to be carried out quickly and simply. It
allows the addition of any new functions useful for data management and analysis.
Avenue 1s a fully integrated object-orientated programming (OOP) language and
development environment (Amir, 1997). Complex programs can be developed to create
a customised user-interface and automate a wide range of routine tasks. This approach

is used to fit the unique needs of this present project.

Database management software

The database management software used for the entry and manipulation of animal
health data in this project is Microsoft Access 97 (Microsoft Corporation, Redmond,
WA, and U.S.A.) which can be easily linked to ArcView via an ODBC connection. MS
Access enables the handling of very large data files. It can manage a database by
providing an efficient structure for storage and retrieval of information. Because MS-
Access is a relational database management system (RDBMS), this approach makes it
easy to bring related data together by establishing relationships to minimise duplication

of data. This process can maximise the speed and accuracy of working with the data.

Spatial cluster analysis software

SaTScan® version 2.1.3 (National Cancer Institute, 1998, Bethesda, MD, U.S.A)) 1s
used to apply the spatial scan statistic to the data. This method is used for identification
of the presence and location of possible disease clusters in a population with
inhomogeneous spatial density, and to estimate likelihood ratios based on Monte Carlo
replications to allow statistical inference with respect to the detected clusters

(Kulldorff, 1995).
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Hardware

The system was originally installed on a personal computer (PC) with an Intel Pentium
microprocessor, running at 166 MHz, 32 MB of RAM as recommended for ArcView

3.1,and a 1.99 GB hard disk. The system runs under the Windows 95 operating system.

Data Requirements

In addition to hardware and software, the third essential element of a GIS is the data
which comprises of spatial feature data such as maps of administrative boundaries and

of attribute data such as disease reporting data.

Spatial feature datasets

All maps used in this study are in vector format and represent geographical features at
1:250,000 scale (or lcm: 2.5 km) except for a raster map used in the spatial analysis.
This raster map was converted from a district polygon coverage (but excluded districts
in DLD regions 2, 8, and 9 as these regions have been declared FMD free zones by the
government) to a grid cell theme using a resolution of 25 x 25 kilometre (km) for each
grid cell square. The two geographical data sets used in this project are listed in Table

30.

Table 30. Spatial datasets used as part of this project

Spatial dataser Data (feature type) Description
category
Administrative DLD Region (polygon) Boundaries of DLD region
Province (polygon) Boundaries of province
District (Point and polygon) Boundaries and centroid of district
(amphoe)
Sub-district (point) Centroid of sub-district or (rambon)
Grid cell (25 x 25 km) Converted  from  district  polygon

coverage excluding districts in DLD

regions 2, 8, and 9

Infrastructure Transportation and route (arc) Type of transportation features
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Attribute data

Geographical attribute data

The attribute tables of geographical features and associated data tables were linked
using a geo-reference code. The coding scheme for administrative purposes used in this
project has been defined by the National Rural Development Committee (NRD2C),
except for the DLD region identification code. The unique identification code for each
province, district, and sub-district is used to connect to the tables, which provide
geographical attribute data such as names of sub-districts, districts, and provinces for

the whole country.

The transportation routes related to nine types of transportation features were
aggregated into four categories: highway, main road, secondary road and minor road,

and railroad.

Animal health attribute data

An expert consultancy report commissioned by FAO (1994) describes a number of
specific data elements which should be part of an effective animal health information
system. The four elements used as part of the current animal disease control
information system in Thailand are 1) livestock demographic, 2) disease specific
monitoring, 3) laboratory diagnostic and 4) animal movement data. In this project, only

the first three data elements are used.

The livestock population profile is updated annually by the District Livestock Office.
Livestock population data at the level of district and sub-district were used in the
project. Since the livestock census data in Thailand is currently collected at the district
level, the livestock population in sub-districts was estimated as the product between the
livestock density for each district (animals per square km.) and the area (square km.) of

the sub-district.

Disease-reporting data is also collected at the district level. The district livestock officer
must report the details of disease outbreaks for all notifiable diseases as soon as the
outbreak occurs. At the same time, the district livestock officer has to send specimens
from the infected animal to the laboratory diagnostic centre for confirmation and virus
typing in the case of a FMD outbreak. All information flows are from the regional

office to the central office for analysis, interpretation, and reporting of disease patterns.
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The results are being used to develop a disease control work plan for the next year

(Figure 27).

All data are kept in an Access database which can be accessed from ArcView so that

up-to-date data 1s available at all times.

Project Overview

The power and flexibility of a GIS can help to achieve the aim of animal health
improvement by providing better information to decision-makers (Figure 28).
Knowledge about the spatial component of disease distribution has the ability to
considerably enhance the effectiveness of most functions of an animal health
information system, and in addition it can also provide entirely new areas of

functionality.

The potential applications for GIS in animal disease control in Thailand range from use
in epidemiological studies to animal disease surveillance. The main two areas of use in
epidemiological field studies include the visual display of geographical patterns and
spatial analysis. In the area of surveillance, GIS allows production of maps of disease
occurrence and it can be part of a sophisticated animal disease information system

(Pfeiffer, 1994).
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Figure 28. Components of a simple geographical disease reporting and analysis
system for Thailand
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The system comprises of three main functions; a routine report generator, outbreak
management, and data analysis tools. The functionality includes simple data

visualisation techniques as well as analysis for spatial cluster detection.

Routine report generator

The routine report menu includes maps for visualisation of livestock density and
disease occurrence. The generation of routine reports is important for administrative
management, control program planning, priority setting, and to satisfy international

reporting requirements and thereby represents a key function in any animal health

information system.
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Livestock population

The system allows production of maps showing livestock density for any relevant
animal species by choosing data aggregation at the area, district or provincial level.
However, if the actual livestock population for a specific district is required, a bar chart
showing the livestock population numbers for the district of interest can be generated
interactively by clicking with the cursor on the relevant location on the map (Figure
29).

Figure 29. Provincial livestock population view (includes '"AddTheme" and
"ViewChart" buttons for visualising the density of any livestock species
at the province level)
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Disease occurrence

Data used to produce disease occurrence maps were collated on the basis of the current
passive reporting system. The regional offices have to report all outbreaks of notifiable
diseases according to the Animal Epidemic Act B.E. 2499 (in 1956 AD). This data can
be used to estimate the cumulative incidence of infected animals. This information
should be interpreted with caution since under-reporting is common with passively
acquired data. With the system, maps of cumulative incidence for any diseases are
drawn based on the data which are stored in an Access database file to be updated

regularly.
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In this study, the cumulative incidence by area, district or province, over a given period
of time was used to display the disease occurrence. This 1s done by aggregating the

number of new cases reported in each outbreak at the area level, then dividing by the

number of animals at risk in that area.

Selection of appropriate category cut-points can be performed in a number of ways
(ArcView ® GIS, 1996). For the present study, the quantile classification method was
used to display the disease map. Each class presented on the map is assigned the same
number of observations. Quantile classes can therefore be misleading because low
values are often included in the same class as high values. However, this distortion can
be overcome by increasing the number of classes. The quantile classification method 1s

useful for emphasising the relative position of a feature among other features.

For example, an FMD cumulative incidence map is easily created. The system allows
the user to choose an administrative boundary level of interest, such as district or
province, and a specific duration of time. [t then draws cumulative incidence maps at
the selected level of spatial aggregation by obtaining the relevant FMD reporting data
for that period from the Access database and summarising incidence data for each

outbreak (Figure 30). A bar chart for selected areas can be viewed as well (Figure 31).

Figure 30. Map of cumulative incidence of FMD. User can choose the district or
province level of aggregation and a period of time for disease reporting.
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Figure 31. Interactively generated bar charts of cumulative incidence for selected
provinces shown in yellow on background map
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Outbreak management
Primary information for the current disease outbreak should be collected immediately
in order to allow effective planning of control activities. The outbreak management
strategy designed specifically for the current system in Thailand consists of five
activities (Figure 27). It was adapted from Cameron's system (Cameron et al., 1997),
which is able to assist the conducting unit (Emergency disease control unit) in the
management of the disease outbreak by providing the basic information for the tasks of
ring vaccination and animal movement control. This action allows the user to choose
the radius of the vaccination buffer zone, draws the corresponding map and generates a
message box with statistics on livestock population in the sub-district where the
outbreak occurs as well as other sub-districts within the buffer zone. The name of the
District Livestock Office and all road intersections with the buffer zone are also

presented (Figure 32).
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Figure 32. Outbreak management system allowing the user to choose the radius of
the vaccination buffer zone. This operation will draw the corresponding
maps and generate a message box with various relevant statistics
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Data analysis

The data analysis menu consists of two main functions: prediction of FMD outbreaks

and spatial cluster analysis.

Prediction of FMD outbreaks

The system estimates the probability of occurrence of FMD outbreaks in any grid cell
area based on the analysis result from the classification tree model (CART) described
in Chapter 4. The disease surveillance data on FMD outbreaks in Thailand from
January 1995 to May 1997 were used to construct the CART model for prediction of
FMD outbreaks for each grid cell based on a selection of risk factors accessible as

attribute data (Figure 33).

Factors associated with occurrence of FMD outbreaks can vary over time such as the
density of buffalo in that area in turn affecting the probability of occurrence of FMD
outbreaks. This problem can be addressed by the user specifying the current
information for that area before estimating the predicted risk of FMD outbreaks (Figure

34),
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Figure 33. Probability of FMD outbreak and 95% confidence intervals based on a
classification tree model shown for a selected grid cell
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Spatial cluster analysis
On-going research is essential for the effective implementation of disease control
programs. The examination of geographical location as a factor in disease occurrence
or spatial pattern 1s part of the disease distribution study. The spatial patterns of disease

distribution can be investigated routinely using a GIS.

Using the Avenue programming language the software, SaTScan®, is called to perform
spatial cluster analysis within ArcView®. SaTScan® conducts the spatial analysis
scanning for high rate disease clusters using a Poisson model. Disease reporting data
from an up-to-date database can be transferred to SaTScan® via ArcView®. The data
transfer involved minor data manipulation to make adjustments to the text file formats
generated by these two programmes. The analysis results from SaTScan® are used to
produce maps of relative risk estimates for each district and 1dentified cluster (Figure

35). This type of connectivity has been named bi-directional integration by Anselin

(1992).

Figure 35. Map showing the output generated by SaTScan® and displayed using
ArcView®.
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Discussion

The complexity, cost, and lack of appropriate digital data represent a difficult challenge
for the use of GIS in veterinary applications. This situation is likely to change as soon
as GIS has proliferated into other areas, and digital data becomes more easily
accessible. The key will be shared use of data. This will then allow increasing use of
GIS in the veterinary field for animal disease control. For example, Sanson et al. (1993)
developed EpIMAN, an advanced decision support system for management of an
outbreak of foot-and-mouth-disease. This system combines database management
systems, GIS, expert system elements. and simulation models of foot-and-mouth-
disease. It is certain that the cost of establishing such as system is generally high but
should be seen in the context of the costs poorly managed disease outbreaks may be
incurring. The cost of GIS technology has been reviewed by a number of authors
(Sharma. 1997: Tim, 1995: Harrison ez al., 1997; Akey, 1993). Although most came to
the conclusion that GIS is cost effective, this issue is still a significant problem for
developing countries such as Thailand. In fact, it remains questionable whether
immediate implementation of such complex animal health information systems should
be a goal for countries such as Thailand. A gradual process starting with simple
systems and leading towards more sophisticated systems is probably a more realistic
option. The usefulness of GIS for national animal disease control has already been

recognised by the Thai government.

As in many other countries, GIS technology has been applied to many areas within
Thailand, such as environmental management and military activities. A basic digital
geographical database at a national scale has become available. This will provide the

basis for applying this technology to animal health management in Thailand.

The current project developed a simple geographical disease reporting and analysis
system for Thailand. This simple system aims at improving the understanding of the
geographical patterns of major animal diseases in Thailand such as FMD, and it can be
used to produce custom maps for routine reporting for decision makers. The system
functions are largely automated and only require the operator to possess basic computer
skills. Thus this system is within the capabilities of virtually all government veterinary

services.
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As with all information systems, availability and quality of animal health data used in
the system is one of the most important issues, especially disease specific surveillance
data. These data are used in spatial analysis and mapping with a GIS at the national
level. Therefore, the improvement of the quality and detail of animal health

surveillance data should be considered.

It has been stated as part of the national animal disease control and eradication strategy
for Thailand that ring vaccination is one strategy for controlling disease outbreaks.
Ring vaccination involves strategic vaccination of animals at risk in areas surrounding
an outbreak to provide a barrier against spread of infection. The main aim of
vaccination 1s to reduce the amount of circulating virus by decreasing the number of
susceptible animals in the vaccination zone and consequently reducing the amount of
virus excreted (Donaldson ez al., 1992). Movement restrictions have to be placed on the
vaccinated animals in the vaccination buffer zone because these animals can become
silent excretors if they were infected before full immunity developed, or they can
become carriers if they were infected later (Donaldson ez al., 1992). Checkpoints have
to be set up at major livestock transport routes passing through the outbreak area to

control animals moving in or out of this area.

With livestock husbandry systems in developing countries such as Thailand, the best
locational unit for specifying an outbreak area, in the epidemiological sense, is the
village since the livestock are kept in a contiguous area and are often mixed together
while grazing during the day. The village is also the smallest unit of the administrative
system in Thailand. Geographical data of village locations at the national scale is not
available at present, therefore the sub-district was used to specify outbreak locations.
This 1s too crude a scale relative to the scale at which outbreaks will occur and the
biological mechanisms relevant to the epidemiology of FMD. But it should still be
possible to use the current scale used for recording locational data about disease
occurrence to demonstrate the use of the system in the case of disease outbreaks for
providing information to the emergency disease control unit to assist when planning

ring vaccination and animal movement control tasks.

The simple geographical reporting and analysis system developed as part of this project

fulfils the following tasks:

e Production of livestock population maps



e Cumulative incidence maps of the distribution of major diseases

e Provision of information for ring vaccination and animal movement

control tasks in the case disease outbreak,
e Perform spatial cluster analysis using the spatial scan statistic and

e Production of outbreak risk maps for visual presentation of potential

disease clusters

Accurate maps have to be generated regularly and passed on to the decision-makers,
not just in the event of a disease outbreak. It is hoped that the maps and spatial cluster
analysis results can provide useful information about disease patterns for decision-
makers to plan disease control strategies more effectively and more quickly. The
current system provides relatively simple reporting and analysis functionality and it is
hoped that it will provide the basis for a gradual transition towards a more sophisticated

decision support system.
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General Discussion and Conclusions

Different methods for investigating and presenting spatial animal health data have been
presented in this thesis. Epidemiological data was first analysed using a range of
different spatial analysis methods. Results from some of these analyses were then used
for the development of a simple spatial information system. Animal disease data from
both Thailand and New Zealand were explored and analysed using the spatial analysis

methods.

This chapter discusses the methodology and conclusions reached from this thesis. It
also briefly outlines future opportunities for development of geographical animal health

information systems in Thailand.

The first three chapters presented how spatial analysis can be used to improve
understanding of the patterns of disease distribution through detection of disease
clustering. The pattern of disease events can be studied and aggregated to identify the
pattern of the distribution of cases in any particular place and/or time. Any disease
event occurring in both, the space and the time dimension, may express any of three
types of patterns: clustering in time, clustering in space and clustering in space-time or
space-time interaction. A number of methods were used to explore the clustering of
FMD in Thailand and EBL in New Zealand. It is important to choose the most
appropriate method of analysis for any disease cluster investigation, and it will usually
involve consideration of a range of different cluster scenarios taking into account the
strengths and weaknesses of each method. This places considerable responsibility on
the investigator who needs to have a thorough understanding of the data and the
epidemiology of the disease being investigated. A range of analytical methods should
be applied with due consideration of their strengths and weaknesses relative to the

disease process before deciding on the final method of choice.

Considerable attention must be paid to confounding. Since its presence may lead to
false positive or false negative results of the statistical spatial data analysis. Although
confounding is a complex and difficult issue to address, it i1s an important component in

the interpretation of cluster studies.

Searching for spatial clustering is the first step in spatial data exploration. Studies of
disease clusters are valuable since the result of this analysis can then be used to

generate specific hypotheses for further investigation.
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Spatial data modelling can be used if the investigators would like to explain or predict
the spatial patterns of disease occurrence by identifying important risk factors. Chapter
four presented the use of logistic regression and tree-based models for the prediction of
geographical patterns of FMD outbreaks in Thailand. The potential presence of spatial
dependence or spatial autocorrelation must be taken into account when modelling
spatial data. The validity of any final model depends upon the choice of an appropriate
form of the first-order component of spatial variation and the appropriate covariate
parameters used to control for the presence of spatial dependence when fitting the

model.

Tree-based models were also constructed to determine decision rules for FMD outbreak
prediction using the classification tree (CART) method. Cost-sensitivity concepts were
introduced during the model construction through weighting the value of sensitivity and
specificity. With this technique, the differential effect of false positive or false negative
predictions can be taken into account rather than simply an equal weighting of the
number of incorrect predictions. For FMD the cost of not predicting an actual outbreak
1s far higher than predicting a "non-event" outbreak. This could be easily taken into

account with the tree-based analysis approach.

A useful summary statistic of predictive model performance is the receiver-operating
characteristic (ROC) curve. The ROC curve plots the various conjunctions of
sensitivity and false positive rates as the threshold defining an event/non-event is
varied. This characteristic of the ROC curve can also be used to choose appropriate cut-
off points for the model that maximise cost-effectiveness of disease control and
eradication programmes taking into account the consequences of false positive and

false negative model predictions.

The predicted probability values generated by the different types of spatial models were
then used to produce risk maps. Each grid cell represented the probability of occurrence
of an FMD outbreak at that cells taking into account any attribute information. The
model generated using CART was incorporated in the development of the simple
geographical animal health reporting and analysis system. Finally, observed and
predicted geographical patterns of disease occurrence can be displayed using these

spatial analysis techniques.
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Chapter five outlines a simple geographical analysis and reporting system which could
be introduced as the basis of an animal health information system in Thailand. Simple
standard reporting of geographical patterns of disease occurrence and results of spatial
disease cluster detection can be generated easily and quickly using this system. The
system presented in this thesis is based on the GIS software ArcView 3.1%, the database
management software MS Access 97% the spatial cluster analysis software SaTScan®
version 2.1.3 and integrated using the Avenue programming language. The animal
health and disease reporting data are stored in an Access database that can be accessed
from ArcView®, the advantage being that the dataset used in ArcView is up-to-date at

all times.

Availability and quality of the data used in the system is one of the most important
1ssues, especially in the case of disease specific monitoring data. At the national level
these data provide the basis for spatial analysis and mapping. Therefore, the
improvement of animal health monitoring data should be considered a priority so that

these data can be used to generate meaningful analyses.

It is hoped that the maps generated and analysis results by such an information system
can provide useful information on the disease patterns for decision-makers to improve

the effectiveness of planning of control strategies for any animal diseases.
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List of Interfaces and Associated Scripts
Interface 1 Graphical user interface (GUI) at the beginning of the application. User
will be forced to save the default project as new project at the start-up. .................... 137
Project.SaveASNEW. ...coiii 137

Interface 2 "Routine report menu" provides maps for disease status and livestock
density visualization (associated scripts for each interface control in callout square).

..................................................................................................................................... 138
ApplL.OpenVIEWEFMD ... 138
Appl.OpenViewPOPPIOVINCE .......ooiiiiiiiiie e 138

Interface 3 Provincial livestock population view comes with "AddTheme" and
"ViewChart" buttons to visualize the density of any livestock species at the level of

province (associated scripts for each interface control in callout square)................... 139
Lbt_AddLivePopTheme_Prov ... 139
UPAate. LDt e 139
View.Pop.BeefTheme_Prov.........oocoi 139
SelPop.dbt_Done.cliCK ... ..o 140
Lbt.ViewChart.POp_Prov........ocooiii 140

Interface 4 District livestock population view comes with "AddTheme" and
"ViewChart" buttons to visualize the density of any livestock species at the level of

district (associated scripts for each interface control in callout square). .................... 143
Lbt_AddLivePopTheme_DiSt.....c..cccoiiiiiiiiiiiiic e 143
UPAAte. LDl e 143
View.Pop.BeefTheme_DISt ....coooiiiiiiiiiiiiiiiiie e 143
Lbt.ViewChart.Pop_DISt....coiiiiiiii e 144
ChPOP.BeEl DSt 145

Interface 5 Foot and Mouth Disease view works with three buttons which will be
activated when this view is opened. "Map boundary" button allows user to choose the
level of map boundary and also gives the overview of that map level (associated scripts

for each interface control in callout square)............c.cciiooiiiiiiiiii e, 147
View.OpenSelBaseMap_DIg.Button ........cccooceioiiiiiinniiiiiniiiii e 147
View.AddDistrictBndTheme ..o 147

SelBaseMap.1bt_OK.CICK.....cuoiiiiiiieiee e 148
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Interface 6 "F" button is used to add foot and mouth disease cumulative incidence map
and allows user to choose the level of district or province and year of disease reporting

(associated script for each interface control in callout square). ... 149
View. FMDcumINCThemME .......c.oooiiiiiiiiiiiieee e 149
FEMDVIEW. UDPAALE ..ot 154

Interface 7 "View chart" button is used to display a column chart of cumulative

incidence for interesting areas (associated script for interface control in callout square).
..................................................................................................................................... 155

Interface 8 "Outbreak management menu" let user open DLD region view to operate
vaccination buffer zone for outbreak management (associated script for each interface
control 1n callout SQUATE). .......cc.oiiiiiiiiiiiiiiii e 158

AppL.OPenVIEWDLD 17 ..ot 158

Interface 9 "Outbreak management” button will be activated when one of DLD region
view is opened. This operation allows user to choose the distance of vaccination buffer
zone. This operation will draw the graphics and give message box with statistics on
livestock numbers and District Livestock Office within buffer zone (associated script

for interface control in callout SQUATE). .........coiiiiiiiiiiii et 159
OUtbreak. UPAALe ... .o 159
OUutbreakMana@e ........oouiiiiiiieiii e 159

Interface 10 "Data analysis menu" let user open "prediction of FMD outbreak"” view
and "Spatial cluster analysis" view to analyse the disease data (associated scripts for
each interface control in callout SQUATE). .........oooiiiiiiiieeiiiii e 165

ApPLOPENEMDPTIOD . ... 165

Interface 11 Probability of FMD outbreak view comes with three overviews and works
with two buttons which will be activated when this view is opened. "Identify
probability of FMD outbreak” tool provides the information of Probability of FMD
outbreak and 95% confidence interval from the result of decision tree model........... 166

ProbabilityFMD.Identif y.......cccooiiiiiiiiiiiiiicii e 166

Interface 12 "Prediction of FMD outbreak” button predicts the probability of foot and
mouth outbreak for selected grid with the information put in the message box using the

result of DeciSion tree analysiS. .. ....oooiiiiiiiiiiii e 168
MsgBox. ProbFMDOULbreak ...........c.ooioiiiiiiiiiiiiiiie e 168
ProbEMD.UPAALE ..ottt 170

Interface 13 Spatial cluster analysis comes with two buttons with will be activated
when this view is opened. "Export disease data" button use to export disease data from
ArcView to analyse in SaTScan program then get the result back to ArcView to
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perform the relative risk and cluster group with "Get the SaTScan result” button

(associated scripts for each interface control in callout square)...........ccccccereeniennne. 171
Cluster View. Update ........oouiiiiiiiiiii e 171
Get Table to Export to SaTScan ..o 171
FMDSPUDAL ..o 172

Load spatial file Int0 ATCVIEW .......ooiiiiiiiiiiiiiiii e 172



Interface 1 Graphical user interface (GUI) at the beginning of the application. User will be forced to
save the default project as new project at the start-up.

£ AwcView GIS Version 3.1 HEE

Fde . Boutne tep0t  Duttresh manapement  Data anshzx  Wndow  Heb
») ,
Start up Sc:Project.SaveAsNew

& restape : R _ (0] x]

Dietnct Livestocs Popudation

DD egor i 7 Zartnapnyt )
CiDteger 21 Louton oxt |

TLD repor 2 4 [ Nontheastern zan |
{ LD egen £ 6 Notthern patt |
Tabie: i CLD tageon & &7 Sougtemr. pant

(P | Feot anc Moutr Diasie

. ; hemothagc Se
Chants ] Frobatady ¢!

Frovecis Lvestecr PoDgator
Foases

Spatia cisttet anave

I

(’\\ Svae Foves
517 Tibercteic

q

Ll
Ll

Project.SaveAsNew

' Forcing Save As at the start-up of the project.
theProject = av.GetProject
defaultName = FileName.GetCWD MakeTmp ("GIS","apr")
" Open the file window to get a project name.
newProject = FileDialog Put
(defaultName,"* apr","create a NEW PROJECT")
NewName="E:/Maps/test.apr". AsFileName
WrongName=(NewName=NewProject)
if (Nil < newProject) then
if (not(WrongName) )then
theProject SetFileName(newProject)
theProject. Save
Exit
end
MsgBox.Error("You can not use this name for your project","Wrong name")
theProject.Close
Else
" If the user clicked on Cancel, close the project.
theProject.Close
end



Interface 2 "Routine report menu" provides maps for disease status and livestock density visualization
(associated scripts for each interface control in callout square).
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Appl.OpenViewFMD

thisProject=av.GetProject
theView=thisProject.FindDoc("Foot and Mouth Disease")
theViewWindow=theView.GetWin
theViewWindow.open

Appl.OpenViewPopProvince

thisProject=av.GetProject

theView=thisProject. FindDoc("Provincial Livestock Population ")
theViewWindow=the View.GetWin

theViewWindow.open

theViewWindow.maximize



Interface 3 Provincial livestock population view comes with " AddTheme" and

"ViewChart" buttons

to visualize the density of any livestock species at the level of province (associated scripts

for each interface control in callout square).
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Lbt_AddLivePopTheme_Prov

* View.OpenSelPopTheme_Prov_Dlg.Button
' Run the dialog
av.GetProject. FindDialog ("SelPopTheme_Prov_Dlg").Open

Update.Lbt
theView=av.GetActiveDoc

Lbt_AddTheme=self.GetObjectTag
Lbt_AddTheme.GetControl

View.Pop.BeefTheme_Prov

‘This script used to add a new beef population theme to the current view. Then draw it from shape file.
'This script joined the data of livestock population from Access database by SQL connection into the

feature table of selected into S strata.
theView=av.GetActiveDoc
‘Establish a data source and load it into the view.
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aSrcName=SrcName.Make("E:/Maps/thai/thaicwatShape/Province.shp")
aTheme=Theme.Make(aSrcName)

theView.AddTheme(aTheme)

aTheme.SetActive(true)

BeefTheme=aTheme.SetName("Beef density (per Km2) in province")
BeefTheme=theView.GetThemes.Get(0)

"If Oracle server is not available, then display a list of available databases to the user for selection.
mySQLConnection = SQLCon.Find ("oracle")

mySQLConnection = SQLCon.Find ("MS Access 97 Database")
mySQLConnection.Login("Tippawon/Took")

astring="Select * from LivestockProvince"
theVTab=VTab.MakeSQL(mySQLConnection, astring)

Join the theme with the livestock table data
ProvinceJoinField=theVTab.FindField("ChangwatID")
BeefVTab=BeefTheme.GetFTab
foreachoneVTabin {BeefVTab}

theJoinField = oneVTab.FindField("Changwat")

oneVTab.Join (theJoinField theVTab,ProvinceJoinField)

end
Set theme’s legend. "Use Natural for the legend type
BeefLegend=BeefTheme.GetLegend
BeefLegend.SetLegendType

((LEGEND_TYPE_COLOR)

> Add a normalization by type Field. But First eliminate a known null value in the normalization field
BeeflLegend.SetNullValue("SqKm",0)
BeefLegend.SetNormType(#LEGEND_NORMTYPE_FIELD)
BeefLegend.SetNormFieldName("SqKm")
BeefLegend.Natural(BeefTheme,"Beef™,5)

TLoad the symbol legend from legend file(SymbLeg.avl)

alegendFile = "E:/Maps/Legend/SymbLeg.avl".AsFileName
Beeflegend.Load(aLegendFile #LEGEND_LOADTYPE_SYMBOLYS)
Display the Beef population theme and varify that the legend is visible.
BeefTheme.SetVisible(true)

BeefTheme.SetLegend Visible(true)

aViewDisplay=theView.GetWin

aViewDisplay.maximize

SelPop.lbt_Done.click

> SelPop.1bt_Done.click
’Attached to the Done button to close the dialog
self.GetDialog.Close

Lbt.ViewChart.Pop_Prov

AnimalList={"Cattle (Beef&Dairy)", "Beef", "Dairy", "Buffalo",
"Sheep”, "Goat", "Pig", "Chicken", "Duck”, "Dog"}

WhichAnimal=MsgBox.Choice AsString

(AnimalList,"Please select an animal: “,"Livestock Chart Choice")

’stop the excute if user clicks on the cancel button.

if (nil=WhichAnimal) then

exit

end

if(WhichAnimal="Beef") then
aScriptBeef=av.FindScript("Ch.Pop.Beef_Prov")
av.Run("Ch.Pop.Beef_Prov","")

elseif (WhichAnimal="Dairy") then
aScriptDairy=av.FindScript("Ch.Pop.Dairy_Prov")
av.Run("Ch.Pop.Dairy_Prov","")

elseif (WhichAnimal="Buffalo") then
aScriptBuffalo=av.FindScript("Ch.Pop.Buffalo_Prov")



av.Run("Ch.Pop.Buffalo_Prov","")

elseif (WhichAnimal="Cattle (Beef&Dairy)") then
aScriptCattle=av.FindScript("Ch.Pop.Cattle_Prov")
av.Run("Ch.Pop.Cattle_Prov","")

elseif (WhichAnimal="Sheep") then
aScriptSheep=av.FindScript("Ch.Pop.Sheep_Prov")
av.Run("Ch.Pop.Sheep_Prov","")

elseif (WhichAnimal="Goat") then
aScriptGoat=av.FindScript("Ch.Pop.Goat_Prov")
av.Run("Ch.Pop.Goat_Prov","")

elseif (WhichAnimal="Pig") then
aScriptPig=av.FindScript("Ch.Pop.Pig_Prov")
av.Run("Ch.Pop.Pig_Prov","")

elseif (WhichAnimal="Chick") then
aScriptChick=av.FindScript("Ch.Pop.Ckick_Prov")
av.Run("Ch.Pop.Chick Prov""")

elseif (WhichAnimal="Duck") then
aScriptDuck=av FindScript("Ch.Pop.Duck Prov")
avRun("Ch.Pop.Duck Prov","")

else
aScriptDog=av FindScript("Ch.Pop.Dog_Prov")
avRun("Ch.Pop.Dog_Prov""")

end

Ch.Pop.Beef Prov

‘Name:

Chart Population Beef in

provinces

* Title: Displays a column

chart of the number of beef

0K

Cancel

population
' Topics: Charts, Views

" Description: Generates a column chart for the selected provincial areas in a Provincial livestock
population view. A new Chart document is created to display the number of beef population in that areas.

' Requires: A livestock population theme must be the active document.

" Self:
" Returns:

' Gather information from the current Document and retrieve the basic information.

theView = av GetActiveDoc

theTheme = theView.GetThemes Get(0)

if (nil=theTheme) then

MsgBox. Warning

("Unable to find any Livestock Population Themes "

+NL+"You have to add the Livestock Population Theme first"

+NL+"then select interesting provinces","")
exit
end
theVTab = theTheme.GetFTab
‘SelectedRecords=theVTab.GetSelection
if (selectedRecords.count=0) then
'no records were selected
‘Therefore,no chart display

MsgBox Error ("Please select about S interesting areas.

exit
end
' Retnieve the required fields for charts.
fieldList] = { theVTab.FindField("Beef")}
if (fieldListl .Get(0) = nil) then
MsgBox Error ("Unable to find fields.","")
exit
end
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>Create the charts and set their properties.
columnChart = Chart.Make (theVTab, fieldListl)
columnChartWin = columnChart.GetWin
columnDisplay = columnChart.GetChartDisplay
columnDisplay.SetType (#CHARTDISPLAY_COLUMN)
columnDisplay.SetStyle (#CHARTDISPLAY_VIEW_SIDEBYSIDE)
columnChart.SetName ("Livestock Population Chart (Beef)")
columnChart.SetSeriesFromRecords (True)
columnChart.GetChartLegend.SetVisible (true)
columnChart.GetY Axis.SetAxis Visible (true)
columnChart.GetY Axis.SetLabel Visible (False)
columnChart.GetY Axis.SetTickLabelsVisible (True)
columnChart.GetX Axis.SetLabelVisible (False)
columnChart.GetXAxis.SetName ("Province")
columnChart.SetSeriesFromRecords(true)
nameField=the VTab.FindField("Province")
columnChart.SetRecordLabelField(nameField)
columnChart.GetChartLegend.SetLocation(#ChartDISPLAY_LOC_BOTTOM)
columnChart.GetY Axis.SetMajorGridVisible(False)
columnChart.GetTitle.SetName (" Beef Population in Province™)
if (columnDisplay.IsOK.Not) then

proceed = MsgBox.YesNo

("column chart may have an inconsistency status” ++columnDisplay.GetStatus

+NL+"Do you want to continue?", "", False)
if (Not proceed) then
exit

end
end
* Add the charts to the project and open them.
thisProject=av.GetProject
thisProject.close All
TheView.GetWin.Open
columnChartWin.Open
av.TileWindows
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Interface 4 District livestock population view comes with "AddTheme" and "ViewChart" buttons to
visualize the density of any livestock species at the level of district (associated scripts for

each interface control in callout square).
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Lbt_AddLivePopTheme_Dist

' View.OpenSelPopTheme Dist_DIg Button
‘Run the dialog
av.GetProject. FindDialog ("SelPopTheme Dist_Dlg").Open

Update.Lbt

theView=av.GetActiveDoc
Lbt_AddTheme=self GetObjectTag
Lbt_AddTheme.GetControl

View.Pop.BeefTheme_Dist

theView=av.GetActiveDoc

‘Establish a data source and load it into the view.

aSrcName=SrcName Make("E:/Maps/thai/thaiamphShape/amphur.shp")
aTheme=Theme Make(aSrcName)

theView. AddTheme(aTheme)

'N:n ) SciPop.rad_Sh
j.\"c y View Pop Sh
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aTheme.SetActive(true)

BeefTheme=aTheme.SetName("Beef density (per Km2) in district")
BeefTheme=theView.GetThemes.Get(0)

"If Oracle server is not available, then display a list of available databases to the user for ’selection.
mySQLConnection = SQLCon.Find ("oracle")

mySQLConnection = SQLCon.Find ("MS Access 97 Database")
mySQLConnection.Login("Tippawon/Took")

astring="Select * from Livestock"
theVTab=VTab.MakeSQL(mySQLConnection, astring)

Join the theme with the livestock table data
AmpherJoinField=theVTab.FindField("AmphurlD")
BeefVTab=BeefTheme.GetFTab
for each oneVTab in {BeefVTab}

theJoinField = one VTab.FindField("Amphur")

oneVTab.Join (theJoinField.theVTab,AmpherJoinField)

end
Set theme’s legend.

"Use Natural for the legend type
Beefl.egend=BeefTheme.Getl egend
BeeflLegend.Setl.egendType

(#LEGEND_TYPE_COLOR)

* Add a normalization by type Field

"But First eliminate a known null value in the normalization field
Beeflegend.SetNullValue("SgKm",0)
Beeflegend.SetNormType(#LEGEND_NORMTYPE_FIELD)
Beeflegend.SetNormFieldName("SqKm™)
Beeflegend.Natural(BeefTheme,"Beef™,5)

Load the symbol legend from legend file(SymbLeg.avl)
alegendFile = "E:/Maps/Legend/SymbLeg.avl".AsFileName
Beeflegend.Load(aLegendFile #LEGEND_LOADTYPE_SYMBOLYS)
Display the Beef population theme

'and varify that the legend is visible.

BeefTheme.SetVisible(true)

BeefTheme.SetLegend Visible(true)
aViewDisplay=theView.GetWin

aViewDisplay.maximize

Lbt.ViewChart.Pop_Bist

AnimalList={ "Cattle (Beef&Dairy)", "Beef", "Dairy", "Buffalo",
"Sheep”. "Goat", "Pig”. "Chicken", "Duck"”. "Dog"}

WhichAnimal=MsgBox.ChoiceAsString

(AnimalList,"Please select an animal: ","Livestock Chart Choice")

’stop the excute if user clicks on the cancel button.

if (nil=WhichAnimal) then

exit

end

if(WhichAnimal="Beef") then
aScriptBeef=av.FindScript("Ch.Pop.Beef_Dist")
av.Run("Ch.Pop.Beef _Dist","")

elseif (WhichAnimal="Dairy") then
aScriptDairy=av.FindScript("Ch.Pop.Dairy_Dist")
av.Run("Ch.Pop.Dairy_Dist","")

elseif (WhichAnimal="Buffalo") then
aScriptBuffalo=av.FindScript("Ch.Pop.Buffalo_Dist")
av.Run("Ch.Pop.Buffalo_Dist","")

elseif (WhichAnimal="Cattle (Beef&Dairy)") then
aScriptCattle=av.FindScript("Ch.Pop.Cattle_Dist")
av.Run("Ch.Pop.Cattle_Dist","")

elseif (WhichAnimal="Sheep") then
aScriptSheep=av.FindScript("Ch.Pop.Sheep_Dist")



av.Run("Ch.Pop.Sheep_Dist","")

elseif (WhichAnimal="Goat") then
aScriptGoat=av.FindScript("Ch.Pop.Goat_Dist")
av.Run("Ch.Pop.Goat_Dist","")

elseif (WhichAnimal="Pig") then
aScriptPig=av.FindScript("Ch.Pop.Pig_Dist")

av.Run("Ch.Pop.Pig_Dist","")

elseif (WhichAnimal="Chick") then R
aScriptChick=av.FindScript("Ch.Pop.Ckick_Dist")
av.Run("Ch.Pop.Chick_Dist","")

elseif (WhichAnimal="Duck") then
aScriptDuck=av.FindScript("Ch.Pop.Duck_Dist")
av.Run("Ch.Pop.Duck_Dist","")

else
aScriptDog=av.FindScript("Ch.Pop.Dog_Dist")
av.Run("Ch.Pop.Dog_Dist","")

end

Ch.Pop.Beef_Dist

*Gather information from the current Document and retrieve the basic information.

theView = av.GetActiveDoc
theTheme = theView.GetThemes.Get(0)
if(nil=theTheme) then
MsgBox.Warning
("Unable to find any Livestock Population Themes."
+NL+"You have to add Livestock Population Theme first”
+NL+"then select interesting districts”,"")

exit

end

theVTab = theTheme.GetFTab
SelectedRecords=the VTab.GetSelection
if (selectedRecords.count=0) then
‘no records were selected. Therefore,no chart display
MsgBox.Error ("Please select about 5 interesting areas.”,"")
exit
end
’Retrieve the required fields for charts.
fieldListl = { theVTab.FindField("Beef™)}
if (fieldListl.Get(0) = nil) then

MsgBox.Error ("Unable to find fields.","")

exit
end
*Create the charts and set their properties.
columnChart = ChartMake (theVTab, fieldListl)
columnChartWin = columnChart.GetWin
columnDisplay = columnChart.GetChartDisplay
columnDisplay.SetType (#CHARTDISPLAY _COLUMN)
columnDisplay.SetStyle (#CHARTDISPLAY _VIEW_SIDEBYSIDE)
columnChart.SetName ("Livestock Population Chart (Beef)")
columnChart.SetSeriesFromRecords (True)
columnChart.GetChartLegend.SetVisible (true)
columnChart.GetY Axis.SetAxisVisible (true)
columnChart.GetY Axis.SetLabel Visible (False)
columnChart.GetY Axis.SetTickLabelsVisible (True)
columnChart.GetX Axis.SetLabelVisible (False)
columnChart.GetX Axis.SetName ("District™)
columnChart.SetSeriesFromRecords(true)
nameField=theVTab.FindField("District")
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columnChart.SetRecordLabelField(nameField)
columnChart.GetChartLegend.SetLocation(#ChartDISPLAY_LOC_BOTTOM)
columnChart.GetY Axis.SetMajorGrid Visible(False)
columnChart.GetTitle.SetName (“Beef Population in District™)
if (columnDisplay.IsOK.Not) then
proceed = MsgBox.YesNo ("column chart may have an inconsistency"
+NL+"Status:"++columnDisplay.GetStatus
+NL+"Do you want to continue?", "", False)
if (Not proceed) then
exit
end
end
’ Add the charts to the project and open them.
thisProject=av.GetProject
thisProject.closeAll
TheView.GetWin.Open
columnChartWin.Open
av.TileWindows
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Interface 5 Foot and Mouth Disease view works with three buttons which will be activated when this
view is opened. "Map boundary" button allows user to choose the level of map boundary
and also gives the overview of that map level (associated scripts for each interface control
in callout square).
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View.OpenSelBaseMap_DIlg. Button

' View.SelBaseMap_Dlg_open Button
‘' Run the dialog
av.GetProject FindDialog ("SelBMap Dig") Open

View.AddDistrictBndTheme

" A script used to add a new ThaiAmpherTheme to the current view, create a single symbol legend to
show the 'District boundary, and draw it from shape file of Thaiamph (Amphur.shp). A legend of single
symbol is created 'based on the SngBnd.avl file.

theView = av.GetActiveDoc

' Create the SourceName. ..

theSrc = SrcName Make("E:\Maps\Thai\ThaiamphShape\Amphur.shp")

" Use the SourceName to make a theme...

aTheme = Theme Make(theSrc)

' Add the theme to the view...

theView. AddTheme(aTheme)

' Set a new name for the theme...

aTheme.SetName("District Bnd")

' Get the theme legend and create a single symbol...

theLegend = aTheme.GetLegend

aLegendFile="E:\maps\legend\SngBnd.avl". AsFileName

TheLegend.Load(aLegendFile #LEGEND_LOADTYPE_ALL)
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’Update the legend in the view TOC...
aTheme.InvalidateLegend
’Draw the theme...
aTheme.SetVisible(True)
aTheme.SetActive (True)
aViewDisplay=theView.GetWin
Create Overview
check if an overview window already exists for this view; if so, exit
DistOver=av.GetProject.Finddoc("District Bnd Overview")
if(not(DistOver=nil )) then
Msgbox.info(" District Bnd Overview already exists”,"")
DistOver.GetWin.Activate
return NIL
end
> get the themes to use for the overview
LstTheme = {aTheme)
' get the themes to use for the overview
LstTheme = {aTheme}
> attach the update scripts
theView.SetUpdateScript("Overview.Update")
theView.SetOpenScript("Overview.OpenClose")
theView.SetCloseScript("Overview.OpenClose")
> create the overview view
over = View.MakeWithGUI("Overview")
over.SetTOCWidth(0)
over.SetTOCUnResizable(TRUE)
over.SetName(aTheme.GetName ++ "OverView")
over.SetProjection(The View.GetProjection.Clone)
*set the extent of the overview and set theme properties
r = Rect.MakeEmpty
foreach tinlstTheme
r = r.UnionWith(t.ReturnExtent)
t.SetVisible(TRUE)
t.GetThreshold.SetMaximumOn(FALSE)
t.GetThreshold.SetMinimumOn(FALSE)
over.AddTheme(t.Clone)
end
over.GetDisplay.SetExtent(r.Scale(1.1))
* position the window of the overview view
w = over.GetWin
w.Resize(175, 175)
ext = av.ReturnExtent
w.MoveTo(ext.GetX - 185, 5)
*link the view to the overview
over.SetObjectTag(theView)
*add the overview to the project and open it
av.GetProject.AddDoc(over)
over.GetWin.Open
*draw the graphic and bring the main view to the front
av.Run(theView.GetUpdateScript, theView)
theView.GetWin.Activate

SelBaseMap.lbt_OK.click

’SelBaseMap.lbt_OK.click
’Attached to the OK button to close the dialog
self.GetDialog.Close
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Interface 6 "F" button is used to add foot and mouth disease cumulative incidence map and allows
user to choose the level of district or province and year of disease reporting (associated
script for each interface control in callout square).
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View. FMDcumIncTheme

‘This script used to add a FMD cumulative incidence theme to the current view and allowed user to
choose interested level, District and Provincial level. Then draw it from shape file of selected level. This
script gets the information of FMD from Access database by SQL connection and summarized all
incidence in each outbreak into selected level (District or provincial). Then joined the summarized data
of FMD into the feature table of selected shape file. A Natural legend is created into 4 strata.

‘Retrive the boundary base map.

'Let user choose the interested level

LevelList={"District level","Provincial level"}

WhichLevel=MsgBox.ChoiceAsString

(LevelList,"Please select one of these levels: ","Level Theme Choice")

'stop the excute if user clicks on the cancel button.

if (nil=WhichLevel) then

exit
end €3 Level Theme Choice { X]

theView=av.GetActiveDoc

if{ WhichLevel="Provincial level") then
' If user choose Provincial level R e N {0 R ons
' Add Province boundary theme as a base map. Browincial ievel : “ Cancel ‘

Please select one of these levelc ook
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' Establish a data source and load it into the view.
aSrcName=SrcName Make("E:/Maps/thai/thaicwatShape/Province.shp")
aTheme=Theme. Make(aSrcName)

theView. AddTheme(aTheme)

aTheme SetActive(true)
FMDTheme=aTheme.SetName("Provincial cum.inc.per 10,000 ")
FMDTheme=theView.GetThemes.Get(0)

' Retrive the data base of FMD

' Verify that there is a FMD table in this project or not
thisProject=av.GetProject

FMDTable=thisProject. FindDoc("FMD")

if (FMDTable=nil) then

' Add table from SQL conection

mySQLConnection = SQLCon Find ("oracle")
mySQLConnection = SQLCon.Find ("MS Access 97 Database")
mySQLConnection.Login("Tippawon/Took")

astring="Select * from FMD9597"
theVTab=VTab.MakeSQL(mySQLConnection, astring)
FMDTable=Table Make(theVTab)
FMDTable.SetName("FMD")

end

' Retrive the basic information of data table
FMDVTab=FMDTable GetVTab
abitMap=FMDVTab.GetSelection

aYear = FMDVTab. FindField("Year")

‘summarize FMD incidence in each province

'Let user choose the interested year

YearList={"1995","1996" "1997" "All"}

WhichYear=MsgBox.ChoiceAsString

(YearList," Which year do you want to know?"," Year of Database")

'stop the excute if user clicks on the cancel button.

if (nil=WhichYear) then

exit 1
end ’ ;
aQStr= "[Year]>=1995" ]
'if user choose the year of 1995 /hich year do you want to know? oK i
if (WhichYear="1995") then |

aQStr="[Year]=1995" T = Cancel | |
FMDVTab.Query( _Teaes N - {

aQStr,abitmap, #VTAB_SELTYPE_NEW)
provinceFld = FMDVTab.FindField("Province")
incFld =FMDVTab.FindField("Incidence")
cwatFld =FMDVTab FindField("Changwat [D")
aNewVtab = FMDVTab.Summarize("E:/maps/thai/summary data/ProIncF". AsFileName,dBASE,
cwatFld, {provinceFld,incFld},
{#VTAB_SUMMARY FIRST #VTAB SUMMARY SUM })
sumFMDTable=Table. make(aNewVtab)
sumFMDTable.SetName ("sumProvIincFMD 1995")
FMDTheme=aTheme.SetName("Provincial cum.inc.per 10,000 in 1995")
elseif (WhichYear="1996")then
aQStr="[Year]=1996"
FMDVTab.Query( aQStr,abitmap,#VTAB_SELTYPE_NEW)
provinceFld = FMDVTab FindField("Province")
incFld =FMDVTab.FindField("Incidence")
cwatFld =FMDVTab FindField("Changwat ID")

aNewVtab =FMDVTab.Summarize("E:/maps/thai/summary data/ProlncF" AsFileName,dBASE,

cwatFld, {provinceFld,incFld},
{#VTAB_SUMMARY _FIRST #VTAB_SUMMARY_SUM })
sumFMDTable=Table. make(aNewVtab)



sumFMDTable.SetName ("sumProvincFMD 1996")
FMDTheme=aTheme.SetName("Provincial cum.inc.per 10,000 in 1996")
elseif (WhichYear="1997")then
aQStr="[Year]=1997"
FMDVTab.Query( aQStr,abitmap,#VTAB_SELTYPE_NEW)
provinceFld = FMDVTab.FindField("Province")
incFld = FMDVTab.FindField("Incidence")
cwatFld = FMDVTab.FindField("Changwat ID")
aNewVtab = FMDVTab.Summarize("E:/maps/thai/summary
data/ProlncF". AsFileName dBASE, cwatFld, {provinceFld,incFld},
{#VTAB_SUMMARY_FIRST, #VTAB_SUMMARY_SUM })
sumFMDTable=Table.make(aNewVtab)
sumFMDTable.SetName ("sumProvIincFMD 1997")
FMDTheme=aTheme.SetName("Provincial cum.inc.per 10,000 in 1997")
else
FMDVTab.Query( aQStr.abitmap.#VTAB_SELTYPE_NEW)
provinceFld = FMDVTab FindField("Province™)
incFld = FMDVTab FindField("Incidence”)
cwatFld =FMDVTab FindField("Changwat ID")
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aNewVtab =FMDVTab.Summarize("E:/maps/thai/summary data/ProlncF".AsFileName , dBASE.

cwatFld, {provinceFld,incFld},
{#VTAB_SUMMARY_FIRST#VTAB_SUMMARY_SUM })
sumFMDTable=Table.make(aNewVtab)
sumFMDTable.SetName ("sumProvincFMD")

FMDTheme=aTheme.SetName("Provincial cum.inc.per 10,000 until now")
end

FMDTheme=theView.GetThemes.Get(0)
Join the theme with the livestock table data
theVTab=sumFMDTable.GetVTab
‘Set Alias for the provice name field
ProvinceNameFIld=theVTab.FindField("First_Province")
ProvinceNameFId.SetAlias("Name")
cwatJoinField=theVTab.FindField("Changwat ID")
FMDVTab=FMDTheme.GetFTab
for each oneVTab in {FMDVTab}

theJoinField = oneVTab.FindField("Changwat")

~neVTab.Join (theJoinField.theVTab,cwatJoinField)

-nd
FMDTable=thisProject.FindDoc("FMD")
FMDVTab=FMDTable. GetVTab
allSelected=FMDVTab.GetSelection
allSelected.ClearAll
Clear all selection from the FMD table
Set theme’s legend.
Use Natural for the legend type
FMDLegend=FMDTheme.GetLegend
FMDLegend.SetLegendType
(#LEGEND_TYPE_COLOR)
FMDLegend.Natural(FMDTheme,"Sum_Incidence”.4)
* Set a colorramp
theColorRamp = SymbolList.GetPreDefined(#SYMLIST_TYPE_COLORRAMP).Get(0)
FMDLegend.GetSymbols.RampSavedColors(theColorRamp)
Load the symbol legend from legend file(FMD4Lev.avl)
alegendFile = "E:/Maps/Legend/FMD4Lev.avl".AsFileName
FMDlegend.Load(aLegendFile, #LEGEND_LOADTYPE_SYMBOLYS)
Display the FMD theme
’and varify that the legend is visible.
FMDTheme.SetVisible(true)
FMDTheme.SetLegendVisible(true)
exit
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else
Tf user choose the district level
* Add District boundary theme as a base map.
> Establish a data source and load it into the view.
aSrcName=SrcName.Make("E:/Maps/thai/thaiamphShape/amphur.shp")
aTheme=Theme.Make(aSrcName)
theView.AddTheme(aTheme)
aTheme.SetActive(true)
FMDTheme=aTheme.SetName("District cum.inc. per 10,000 ")
FMDTheme=the View.GetThemes.Get(0)
*Retrive the data base of FMD
> Verify that there is a FMD table in this project or not
thisProject=av.GetProject
FMDTable=thisProject.FindDoc("FMD")
if (FMDTable=nil) then
* Add table from SQL conection
mySQLConnection = SQLCon.Find ("oracle")
mySQLConnection = SQLCon.Find ("MS Access 97 Database")
mySQLConnection.Login("Tippawon/Took")
astring="Select * from FMD9597"
theVTab=VTab.MakeSQL(mySQLConnection, astring)
FMDTable=Table.Make(theVTab)
FMDTable.SetName("FMD")
end
"Retrive the basic information of data table
FMDVTab=FMDTable.GetVTab
abitMap=FMDVTab.GetSelection
aYear = FMDVTab.FindField("Year")
'summarize FMD incidence in each province
Let user choose the interested year
YearList={"1995","1996","1997"," All"}
WhichYear=MsgBox.Choice AsString
(YearList,” Which year do you want to know?"," Year of Database")
'stop the excute if user clicks on the cancel button.
if (nil=WhichYear) then
exit
end
aQStr= "[Year]>=1995"
1f user choose the year of 1995
if ( WhichYear="1995") then
aQStr= "[Year]=1995"
FMDVTab.Query( aQStr,abitmap,#VTAB_SELTYPE_NEW)
districtFld = FMDVTab.FindField("AmphurID")
incFld =FMDVTab.FindField("Incidence")
amphFld =FMDVTab.FindField("District")
aNewVtab =FMDVTab.Summarize("E:/maps/thai/summary data/DstIncF".AsFileName,dBASE.
districtFld, {amphFld,incFld},
{#VTAB_SUMMARY_FIRST #VTAB_SUMMARY_SUM })
sumFMDTable=Table.make(aNewVtab)
sumFMDTable.SetName ("sumDistrictincFMD 1995")
FMDTheme=aTheme.SetName("District cum.inc. per 10,000 in 1995")
elseif (WhichYear="1996")then
aQStr= "[Year]=1996"
FMDVTab.Query( aQStr,abitmap,#VTAB_SELTYPE_NEW)
districtFld = FMDVTab.FindField("AmphurID")
incFld = FMDVTab.FindField("Incidence")
amphFld = FMDVTab.FindField("District")
aNewVtab =FMDVTab.Summarize("E:/maps/thai/summary data/DstIncF". AsFileName, dBASE,
districtFld, {amphFIld,incFld}, {#VTAB_SUMMARY_FIRST #VTAB_SUMMARY_SUM })
sumFMDTable=Table.make(aNewVtab)
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sumFMDTable.SetName ("sumDistrictincFMD 1996")

FMDTheme=aTheme.SetName("District cum.inc. per 10,000 in 1996")

elseif (WhichYear="1997")then

aQStr= "[Year]=1997"

FMDVTab.Query( aQStr,abitmap,#VTAB_SELTYPE_NEW)

districtFld = FMDVTab.FindField("AmphurID")

incFld = FMDVTab.FindField("Incidence")

amphFld = FMDVTab.FindField("District")

aNewVtab =FMDVTab.Summarize("E:/maps/thai/summary data/DstIncF".AsFileName,
dBASE, districtFld, {amphFld,incFld},

{#VTAB_SUMMARY_FIRST #VTAB_SUMMARY_SUM })
sumFMDTable=Table.make(aNewVtab)
sumFMDTable.SetName ("sumDistrictIncFMD 1997")

FMDTheme=aTheme.SetName("District cum.inc. per 10.000 in 1997")

else

FMDVTab.Query( aQStr,abitmap, #VTAB_SELTYPE_NEW)

districtFld = FMDVTab.FindField("AmphurID")

incFld =FMDVTab.FindField("Incidence")

amphFld = FMDVTab FindField("District")

aNewVtab = FMDVTab.Summarize("E:/maps/thai/summary data/DstIncF". AsFileName,
dBASE, districtFld, {amphFld.incFld},

{#VTAB_SUMMARY_FIRST,#VTAB_SUMMARY_SUM })

sumFMDTable=Table.make(aNewVtab)
sumFMDTable.SetName ("sumDistrictincFMD")

FMDTheme=aTheme.SetName("District cum.inc. per 10,000 up to now")

end

FMDTheme=theView.GetThemes.Get(0)

Join the theme with the livestock table data

theVTab=sumFMDTable.GetVTab

Set Alias for the district name field

districtNameFld=theVTab.FindField("First_District™)

districtNameFId.SetAlias("Name")

AmpherJoinField=theVTab.FindField("AmphurID")

FMDVTab=FMDTheme.GetFTab

for each oneVTab in {FMDVTab}

theJoinField = oneVTab.FindField("Amphur")
oneVTab.Join (theJoinField.theVTab,AmpherJoinField)
end

FMDTable=thisProject.FindDoc("FMD")

FMDVTab=FMDTable.GetVTab

allSelected=FMDVTab.GetSelection

allSelected.ClearAll

‘Clear all selection from the FMD table

‘Set theme’s legend.

Use Natural for the legend type

FMDLegend=FMDTheme.GetLegend

FMDLegend.SetLegendType

(#LEGEND_TYPE_COLOR)

FMDLegend.Natura(FMDTheme,"Sum_Incidence",4)

theColorRamp = SymbolList.GetPreDefined(#SYMLIST_TYPE_COLORRAMP).Get(0)

FMDLegend.GetSymbols.RampSavedColors(theColorRamp)

Load the symbol legend from legend file(FMD4Lev.avl)

aLegendFile = "E:/Maps/Legend/FMD4Lev.avl". AsFileName

FMDlegend.Load(alLegendFile #LEGEND_LOADTYPE_SYMBOLYS)

Display the FMD theme

'and varify that the legend is visible.

FMDTheme.SetVisible(true)

FMDTheme.SetLegendVisible(true)

end
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FMDView.Update

theView = av.GetActiveDoc.GetName
TheFMDView="Foot and Mouth Disease"
SELF.SetEnabled(theView=TheFMD View)
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Interface 7 "View chart” button is used to display a column chart of cumulative incidence for
interesting areas (associated script for interface control in callout square).
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' Generates a column chart for the selected areas in active theme. A new Chart document is created
' to display cumulative incidence in those areas.
* Requires: FMD theme in any level theme must be the active document.
' Retrieve the basic information.
theView = av.GetActiveDoc ,
ThemeList=TheView.GetThemes Selectthe theme o went 1o creste chatt
FMDThemeList={} o ‘ '
For each t in ThemeList B Frovmeist cum ine por 10,600 brom 1995 wrdl o
FMDThemeList. Add(t) Provincs Bnd
end
If (FMDThemeList.count=0) then
MsgBox.error("no theme in the FMD
view","Error")
exit o
else
TheTheme=MsgBox. List(FMDThemeList, "Select the theme you want to create chart." " View chart")
end
theFTab =theTheme.GetFTab
SelectedRecords=theFTab.GetSelection
if (selectedRecords.count=0) then
'no records were selected
‘Therefore,no chart display
MsgBox Error ("Please select the interested areas.","")
exit
end
' Retrieve the required fields for charts.
fieldList] = { theFTab.FindField("Sum_Incide")}
if (fieldList] .Get(0) = nil) then
MsgBox Error ("Unable to find fields.","")
exit
end
' Create the charts and set their properties.

columnChart = Chart. Make (theFTab, fieldList1)

columnChartWin = columnChart. GetWin

columnDisplay = columnChart.GetChartDisplay
columnDisplay.SetType (#CHARTDISPLAY_ COLUMN)
columnDisplay.SetStyle #CHARTDISPLAY_VIEW_SIDEBYSIDE)
NameChart=MsgBox.input("Enter a chart name: ","Chart name","")
columnChart.SetName (NameChart. AsString++"chart")
columnChart.SetSeriesFromRecords (True)

columnChart GetChartLegend.SetVisible (False) £ Chad v ;
columnChart. GetY Axis.SetAxisVisible (true) : _
columnChart.GetY Axis.SetLabel Visible (False) Erdes & char name: Do | ;
columnChart GetY Axis.SetTickL abelsVisible (True) YRSy e Cornt Z !
columnChart.GetXAxis. SetLabelVisible (false) '%

columnChart.SetSeriesFromRecords(false)
nameField=theFTab.FindField("Name")
columnChart.SetRecordLabelField(nameField)
columnChart. GetX Axis. SetMajorGridSpacing (1)
columnChart.GetTitle.SetName (theTheme.GetName++"chart")
if (columnDisplay.IsOK.Not) then

proceed = MsgBox. YesNo

(“column chart may have an inconsistency"

+NL+"Status: "++columnDisplay.GetStatus

+NL+"Do you want to continue?", "", False)

if (Not proceed) then

exit

end

end
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> Add the charts to the project and open them.
thisProject=av.GetProject
thisProject.AddDoc (columnChart)
columnChartWin.open
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Interface 8 "Qutbreak management menu' let user open DLD region view to operate vaccination
buffer zone for outbreak management (associated script for each interface control in
callout square).
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Appl.OpenViewDLD17

"This script opens view named DLD region 1,7(Central part) from the project menu. This script is

‘executed from menu bar on the project's user interface.

Required: Foot and Mouth Disease View Document from the defualt Project
thisProject=av.GetProject

theView=thisProject Find Doc("DLD region 1, 7 ( Central part )")
theViewWindow=theView.GetWin

theViewWindow.open
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Interface 9 "QOutbreak management" button will be activated when one of DLD region view is opened.
This operation allows user to choose the distance of vaccination buffer zone. This
operation will draw the graphics and give message box with statistics on livestock numbers
and District Livestock Office within buffer zone (associated script for interface control in

callout square).
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theView = av. GetActiveDoc.GetName
OutbreakViewPattern= Pattern Make ("DLD region*")
SELF SetEnabled(theView=OutbreakViewPattern)

OutbreakManage

"* Author: Angus Cameron, 1996

"* Modified: Tippawon Teekayuwat, 1998

‘Set up themes and field names

TheView = av.GetActiveDoc

theTheme = TheView.findTheme("Tambon")
AmphoeTheme = TheView.FindTheme("Amphoe")
AmphoeoffTheme = TheView FindTheme(" Amphoeoff™)
RoadTheme = TheView FindTheme("Road")

Toal Livestock 5272
Eveage Aramaly pe T embon ZHEES

8:eav.conn by Ampnos ol !
Arvovee Dol wn NAKHNN DAT SN _J

TmbNameField = TheTheme.GetFTab FindField("Tambon_e")
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TmbAmpField = TheTheme.GetFTab.FindField("District")
TmbCwatField = TheTheme GetFTab FindField("Province")

‘Get selected Tambon

TS = theTheme GetFTab.GetSelection

if (TS.count = 0) then

MsgBox Error ("Please click on the tambon where the outbreak has occurred.","Outbreak management")
exit

elseif (TS.count >1) then

for each Tmbl in TS

if (TS.count > 1) then

TS.clear(Tmbl)

end

end

end

ShapeField = TheTheme.GetFTab.FindField("Shape")

OBTmbRec = TS.GetNextSet(-1)

OBTambon = TheTheme GetFTab.ReturnValue(ShapeField, OBTmbRec)
OBTmbString = "Outbreak Tambon: "+nl+TheTheme GetFTab ReturnValueString(TmbNameField,
OBTmbRec)++","++

TheTheme GetFTab.ReturnValueString(TmbA mpField,
OBTmbRec)++","++

TheTheme. GetFTab.RetumValueString(TmbCwatField,
OBTmbRec)+nl+nl

TheTheme GetFTab.SetSelection(TS)
TheTheme.GetFTab.UpdateSelection

‘Get Selection Radius and select Tambons

Radius=""

While (Radius.IsNumber Not)

Radius = MsgBox.Input("What is the vaccination buffer zone radius? (km)",
"Outbreak Management", Radius)

end

if (radius = nil) then

exit

end

What is the vaccination wuffer zone Radius? (km) oK

{15 Cancel

TheDistance = Units.Convert( Radius. AsNumber, FUNITS_LINEAR_KILOMETERS,
av.GetActiveDoc.GetDisplay.GetUnits )

TheTheme.SelectByTheme(TheTheme #FTAB_ RELTYPE_ISWITHINDISTANCEOF, TheDistance,
#VTAB_SELTYPE_NEW)

‘Draw buffer zone and outbreak Tambon

myODB = ODB.Open("c:\ESRINAV_GIS30\ARCVIEW\symbols\municipl.avp".asFilename)
MarkerList = myODB.Get(0)

TambonMarker = MarkerList. Get(7)

RoadBlockMarker = MarkerList.Get(47)

TheCircle = GraphicShape Make(circle. Make(OBTambon, TheDistance))

TheTambon = GraphicShape Make(OBTambon)

RoadBlockMarker. SetColor(Color. GetMagenta)

TambonMarker.SetColor(Color. GetBlue)

TheTambon.SetSymbol(TambonMarker)

TheView.GetGraphics. Add(TheCircle)

TheView.GetGraphics.Add(TheTambon)

TheView.GetDisplay.Flush
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TS = TheTheme.GetFTab.GetSelection

TotalTmbls = TS.count

Export Buffer Zone Tambon details to tabular report

CattleField = theTheme.GetFTab.FindField("Cattletmb")

BuffaloField = theTheme.GetFTab.FindField("Buffalotmb")
PreviousTable = av.GetProject.FindDoc(" Vaccination Buffer Tambons")
If (PreviousTable <> nil) then
av.GetProject.RemoveDoc(PreviousTable)

end

ReportVTab = TheTheme.GetFTab.Export("E:\Maps\workDr\outbreak report.dbf".asFileName, dBASE.
true)

ReportTable =Table.Make(ReportVTab)
ReportTable.SetName("Vaccination Buffer Tambons")

‘Calculate Total number of cattle and buffalo
Script.The.SetNumberFormat( "d" )

CattleSum =0

BuffaloSum =0

Counter=0

av.ShowMsg("Calculating totals...")

av.ShowStopButton

foreachrecin TS

counter = counter + |

Progress=100*(counter/TS.Count)

If (av.SetStatus(Progress).not) then

break

end

theValuel = theTheme.GetfTab.ReturnValueNumber( CattleField, rec)
theValue2 = theTheme.GetFTab.ReturnValueNumber( BuffaloField. rec )
if ( not ( theValuel.IsNull ) ) then

CattleSum = the Value | + CattleSum

end

if ( not ( theValue2.IsNull ) ) then

BuffaloSum = theValue2 + BuffaloSum

end

end

av.ClearStatus

av.ClearMsg

ReportString = "Tambons in the vaccination buffer zone of " ++Radius. AsString++ "Km."+nl+
" Total Tambons: "+TS.Count. AsString + nl +

" Total Cattle: "+CattleSum.AsString +nl +

" Total Buffalo: "+BuffaloSum.AsString+nl +

" Total Livestock: "+(BuffaloSum+CattleSum).AsString+nl+

" Average Animals per Tambon: "+
((BuffaloSum+CattleSum)/TS.Count).SetFormat(“d.dd").AsString+nl
AmphoeList = nl+"Breakdown by Amphoe"+nl

Find affected Amphoes

NameField = AmphoeTheme.GetFTab.FindField("Amphoe_E")
CwatField = AmphoeTheme.GetFTab.FindField("Province_E")
AmphoeoffField = AmphoeTheme.GetFTab.FindField("Amphoe_")
AmphoeoffShapeField = Amphoeoff Theme.GetFTab.FindField("Shape"”)
AmphoeTheme.SelectByTheme(TheTheme #FTAB_RELTYPE_COMPLETELYCONTAINS,0,
#VTAB_SELTYPE_NEW)

AmphoeBitMap = AmphoeTheme.GetFTab.GetSelection
AmphoeShapeField = AmphoeTheme.GetFTab.FindField("Shape"”)
Calculate Amphoe Breakdown

Counter=0

av.ShowMsg("Calculating Amphoe breakdown...")

av.ShowStopButton

for each amp in AmphoeBitMap

counter = counter + |
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Progress=100*(counter/AmphoeBitMap.Count)

If (av.SetStatus(Progress).not) then

break

end

AmphoeoffRec = AmphoeTheme.GetFtab.ReturnValue(AmphoeoffField,amp)-2
AmphoeList = AmphoeList +nl+ "Amphoe: "+
AmphoeTheme.GetFtab.ReturnValueString(NameField,amp) + ", "

AmphoeList = AmphoeList + AmphoeTheme.GetFtab.ReturnValueString(CwatField,amp) + nl
Amphoeoff = AmphoeoffTheme.GetFTab.ReturnValue( AmphoeoffShapeField, AmphoeoffRec)
TheDistance = Units.convert(OBTambon.Distance(Amphoeof ),
av.GetActiveDoc.GetDisplay.GetUnits,

#UNITS_LINEAR_KILOMETERS)

AmphoeList = AmphoeList + " Distance from Amphoeoff to Tambon: "+TheDistance.AsString
++"“km"+nl

AmphoePoly = AmphoeTheme.GetFTab.ReturnValue(AmphoeShapeField, Amp)
TheTheme.GetFTab.SetSelection(TS)

TheTheme.SelectByPolygon(AmphoePoly, #VTAB_SELTYPE_AND)

AmpTmbBM = TheTheme GetFTab.GetSelection

AmphoeList = AmphoeList + " Number of Tambons in Amphoe: "+ AmpTmbBM.Count. AsString+nl
CattleSum =0

BuffaloSum=0

for each rec in AmpTmbBM

theValuel = theTheme.GetfTab.ReturnValueNumber( CattleField, rec )

theValue2 = theTheme.GetFTab.ReturnValueNumber( BuffaloField, rec )

if ( not ( theValuel.IsNull) ) then

CattleSum = theValuel + CattleSum

end

if ( not ( theValue2.IsNull ) ) then

BuffaloSum = theValue2 + BuffaloSum

end

end

AmphoeList = AmphoeList + " Total Livestock: "+(BuffaloSum+CattleSum). AsString+nl
end

av.ClearStatus

av.ClearMsg

TheTheme.GetFTab.SetSelection(TS)

‘Calculate Road Block locations

RoadShapeField = RoadTheme.GetFTab.FindField("Shape")

PolyList = {theCircle.GetShape. AsMultiPoint. AsList }

CirclePoly = PolyLine.Make(PolyList)

BlockString = ""

BlockCount =0

RoadTypeField = RoadTheme.GetFTab.FindField("Trans_typ")
RoadTheme.SelectByPolygon(theCircle.GetShape.AsPolygon, #VTAB_SELTYPE_NEW)
For each Rd in Roadtheme.GetFTab.GetSelection

RoadList = RoadTheme.GetFTab.ReturnValue(RoadShapeField, Rd).AsList

RoadType = RoadTheme.GetFTab.ReturnValue(RoadTypeField,Rd)

ForEach RL in RoadList

Foreach Pt in 0..((RIl.count)-2)

LineSeg = Line.Make(RL.Get(Pt), RL.Get(Pt+1))

if (CirclePoly.Intersects(LineSeg)) then

BlockCount = BlockCount+1

BlockString = BlockString + " " + BlockCount.AsString +

“. "+LineSeg.RetumnCenter.GetX. AsString+" "+LineSeg.ReturnCenter.GetY .AsString

if (RoadType = 1) then

typestring = "Highway"

elseif (RoadType = 2) then

typestring = "Major Road"

elseif (RoadType = 3) then

typestring = "Secondary Road"



elseif (Road Type = 4) then

typestring = "Secondary Road"

elseif (RoadType = 8) then

typestring = "Railroads"

elseif (RoadType = 9) then

typestring = "Future roads"

else

typestring = "Minor Road"

end

BlockString = BlockString + " ("+typestring+")"+nl
TheRoadBlock = GraphicShape. Make(LineSeg ReturnCenter)
TheRoadBlock SetSymbol(RoadBlockMarker)
TheView.GetGraphics. Add(TheRoadBlock)

end

end

end

end

RBString = "Road blocks for livestock movement control"+nl+

" Up to "+blockcount asstring++"road blocks will be necessary"+nl+
* UTM Map Reference"+nl+BlockString
‘Tidy the screen

sel = RoadTheme GetFTab.GetSelection
sel ClearAll

RoadTheme GetFTab.UpdateSelection

sel = AmphoeTheme GetFtab GetSelection
sel.ClearAll

AmphoeTheme GetFTab.UpdateSelection T g =]
TheView.GetDisplay.Flush [Kiong Nox Kiathung Bangien Naknonpathom 11
3 - {
'Indicate date of report I T amdons 7 the vaccnation bube: 2one 07 15 K -~
= : Toly Tambons 26
today = Date Now { <ot Cote B52¢

today.SetFormat( "d/MMM/yyyy, hh.m AMPM" ) | Tota Buttain 443 ,

Di e ! Tota Lvestock: 8272
ispl r Tam listi a Pa—
} splay summary report and Tambon list ng Average Anirnais per TaToon 2SE 83

MsgBox Report( OBTmbString ++ S e R, =
ReportString ++
AmphoeList ++nl+
RBString + nl +

"+nl+
"Reported outbreak management date" ++ today.AsString, "Outbreak Management Report")
ReportDoc = OBTmbString ++
ReportString ++
AmphoeList ++nl+
RBString + nl +""+ nl+
"Reported outbreak management date " ++ today. AsString
Clipboard. The.Empty
Clipboard.The.Add(ReportDoc)
Clipboard. The. Update
If (MsgBox.YesNo("This report was copied to the system clipboard. To print them, open a text
editor"++
"(like notepad), paste in the contents of the clipboard, and print them from the text
editor.","ReportDoc", True) )
then
system.execute("notepad.exe")
exit
end
ReportTable. GetWin.Open
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This f&qm{ was cwred tothe system cﬁ;}bwd, Toprnt them,
open atest editor {Bke notepad) paste  the contents of the

- ghinboard. and prnt them: from the test editor.
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Interface 10 "Data analysis menu" let user open "prediction of FMD outbreak" view and "Spatial
cluster analysis" view to analyse the disease data (associated scripts for each interface
control in callout square).

P{qect Boutne teport  Juteeak management ik

] v

— 1 Sc: Appl OpenrFMDProh
New * Cpen t Prnt ! Heipr Open FMD probubiliiy: viewd Open
- . Probabiinty of ¥MD outbreak vien o get the
N 2l - informason on eredict nl ¥ EMI authreak
_y = o Lk b M au H T orlichior > ) onlore
@ Instict Livestocy. Poodaioen { i et =25 A L
m JZtegon i 7 levial o ) ‘
tegon 2| Tazanpsr !
@ ‘ JLOtepon 3§ | Ne&Taesnmr pan §
- 1 2L0 e y0n 3 B Nietmtn pyt i
“*.'\"‘ LD reyon 2 S Sodther an ) H
2 s ; i
(— “o o Mosthlieans i
[E . {
| acy. : i
Chate { iy o FMD st ; 1
N, v Lives’acs Trogeds on Sc: Appl.OpenClusterView |
Saves X
Loyows | ;Q:wxa Cluzis: snspi Feip Open Spatial cluster anaivsis views Open
AT Teves I Spaial cluster anoivsis view 0 anajvse  the
Tubercuoes reiattve of cach cluster usine SaTSein program
i
Soph i
(,i.‘> i
5 1
Diglogs i
F e i
@ |
i ! !
. r i
Cvetviews | !
5 f
i
{
!
R e |
-l wi
i

Open Probiabity of FMD outbrea- vwiew 10 get the nitimatinn an predicton of FMD outteak,

Appl.OpenFMDProb

‘This script opens view named Probability of FMD outbreak from the project menu. This script is
executed 'from menu bar on the project's user interface.

'Required: Probability of FMD outbreak View Document from the defualt Project

theProject = av.GetActiveDoc

'Open theView named Probability of FMD outbreak

thisProject=av.GetProject

theView=thisProject. FindDoc("Probability of FMD outbreak")
theViewWindow=theView.GetWin

theViewWindow.open
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Interface 11 Probability of FMD outbreak view comes with three overviews and works with two
buttons which will be activated when this view is opened. "lIdentify probability of FMD
outbreak"” tool provides the information of Probability of FMD outbreak and 95%
confidence interval from the result of decision tree model
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Probability FMD.Identify

‘Identify probability of FMD outbreak from the result of
'dicision tree no 5 using MultiInput.
'Detail for Tree 5 : Cost of false negative:false positive = 5:1
- Priors type: Calculated from training sample
- Adjusted Prior by cost: on
: Target category: non outbreak = 0.5468, outbreak = 0.4532
: Resulting Tree: Total number of nodes = 13
: Total number of levels in tree = 3
- Total number of terminal nodes =7
: Resubstitution: Risk estimate = 0.35, : SE of risk estimate =0.02
: Cross-validation: Risk estimate = 0.39, : SE of risk estimate =0.03
' - Sensitivity (95% CI): 0.89 (0.83-0.96)
' - Specificity (95% CI): 0.45 (0.41-0.49)
'Set up themes and field names
TheView = av.GetActiveDoc
ProbFMDTheme = TheView.FindTheme("Probability of FMD outbreak")
ProbFld=ProbFMDTheme.GetFTab.FindField("Tree5")
Prob95UpFld=ProbFMDTheme.GetFTab.FindField("Tree5up")
Prob95LowFld=ProbFMDTheme.GetFTab. FindField("TreeSlow")
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AmphoeTheme = TheView.FindTheme(" Amphoe”)
AmphoeNameFld = AmphoeTheme.GetFTab.FindField("Amphoe_E")
ProvinceNameFld = AmphoeTheme.GetFTab.FindField("Province")
‘Get selected Grid
p = theView.GetDisplay.ReturnUserPoint
ProbFMDTheme.SelectbyPoint(p,#VTAB_SELTYPE_NEW)
GS=ProbFMDTheme.GetFTab.GetSelection
AmphoeTheme.SelectByTheme(ProbFMDTheme #FTAB_RELTYPE_CONTAINSTHECENTEROF,0,
#VTAB_SELTYPE_NEW)
AmphoeGridTheme = AmphoeTheme.GetFTab.GetSelection
AmphoeRec = AmphoeGridTheme.GetNextSet(-1)
AmphoeName = AmphoeTheme.GetFTab.ReturnValueString(AmphoeNameFld,AmphoeRec)
ProvinceName = AmphoeTheme.GetFTab.ReturnValueString(ProvinceNameFld,AmphoeRec)
Amp = AmphoeName.AsString
Pro=ProvinceName.AsString
if (ProbFMDTheme.CanFindByPoint) then
keys = ProbFMDTheme.FindByPoint(p)
for each key in keys
found = TRUE
idlabel = "Amphoe:"++Amp
f=NIL
if (ProbFMDTheme.CanLabel) then
f=ProbFMDTheme.GetLabelField
end
if f<>NIL)then
s = ProbFMDTheme .ReturnValueString(f.GetName. key)
idlabel = idlabel++s
end
ProbFMDTheme.Identify(key. idlabel)
end
end
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Interface 12 "Prediction of FMD outbreak” button predicts the probability of foot and mouth
outbreak for selected grid with the information put in the message box using the result of
Decision tree analysis.
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MsgBox.ProbFMDOutbreak

' Calculate probability of FMD outbreak from the result of decision tree no S using Multilnput.
‘Detail for Tree 5 : Cost of false negative:false positive = 5:1
' . Priors type: Calculated from training sample
: Adjusted Prior by cost: on
: Target category: non outbreak = 0.5468
outbreak = 0.4532
: Resulting Tree: Total number of nodes = 13
: Total number of levels in tree = 3
: Total number of terminal nodes = 7
: Resubstitution: Risk estimate = 0.35
! : SE of risk estimate =0.02
. Cross-validation: Risk estimate = 0.39
' : SE of risk estimate =0.03
' : Sensitivity (95% CI): 0.89 (0.83-0.96)
' : Specificity (95% CI): 0.45 (0.41-0.49)
‘Set up themes and field names
TheView = av.GetActiveDoc
GridTheme = TheView.FindTheme(" Amphoe grid")
AmphoeTheme = TheView.FindTheme("Amphoe")
AmphoeNameFld = AmphoeTheme.GetFTab.FindField(" Amphoe E")

t

1



169

ProvinceNameFld = AmphoeTheme.GetFTab.FindField("Province™)

’Get selected Tambon

GS = GridTheme.GetFTab.GetSelection

if (GS.count = 0) then

MsgBox.Error ("Please select Amphoe grid where you want to know the prediction.”,"Prediction for
FMD outbreak")

exit

end

for each g in GS

AmphoeTheme.SelectByTheme(GridTheme, #FTAB_RELTYPE_CONTAINSTHECENTEROF,0,
#VTAB_SELTYPE_NEW)

AmphoeGridTheme=AmphoeTheme.GetFTab.GetSelection

AmphoeRec= AmphoeGridTheme.GetNextSet(-1)
AmphoeName=AmphoeTheme.GetFTab.ReturnValueString(AmphoeNameFld, AmphoeRec)
ProvinceName=AmphoeTheme.GetFTab.ReturnValueString(ProvinceNameFld,AmphoeRec)

AnswerBox = MsgBox.Multilnput("Enter information for Amphoe :"++ AmphoeName.AsString+",
Province"++ProvinceName.AsString,
“Prediction for FMD outbreak”,
{ "Distance from border of Laos (km.):", "Buffalo density (km2):", "Distance from main road
(km.):",
"Percentage of households which grows field crops(%) :",
"Percentage of Tambon which has public news broadcast (%):". "Distance from livestock market
(km.):"},
"Check to see if the user clicked cancel to end input...
it (AnswerBox.count < 1) then
exit
end
if (AnswerBox.Get(0).AsNumber > 268) then
if (AnswerBox.Get(1).AsNumber > 1.5) then
if (AnswerBox.Get(2).AsNumber > 6) then
MsgBox.Info("Probabilty of FMD outbreak occur in
Amphoe"++AmphoeName.AsString+nl+"Province"++ProvinceName.AsString+"
FMD outbreak™)
exit
Else
MsgBox.Info("Probabilty of FMD outbreak occur in
Amphoe"++AmphoeName.AsString+nl+"Province"++ProvinceName.AsString+" = 15.22 %."+nl+NI+
"{ NEGATIVE } base on 89 % Sensitivity, 45 % Specificity"+nl+
"{ POSITIVE } with 97 % Sensitivity, 38 % Specificity"” ."Prediction of FMD outbreak™)

0 %", "Prediction of

exit
end
else
MsgBox.Info("Probabilty of FMD outbreak occur in
Amphoe"++AmphoeName.AsString+nl+"Province"++ProvinceName.AsString+" = 0 %", "Prediction of
FMD outbreak")
exit
end
end
if (AnswerBox.Get(3).AsNumber <= 6) then
if (AnswerBox.Get(4).AsNumber <= 63.5) then
MsgBox.Info("Probabilty of FMD outbreak occur in
Amphoe"++AmphoeName.AsString+nl+"Province"++ProvinceName.AsString+" = 46.67 % ."+nl+nl+
"{ POSITIVE } base on 89 % Sensitivity, 45 % Specificity","Prediction of FMD outbreak")
exit
else
MsgBox.Info("Probabilty of FMD outbreak occur in
Amphoe"++AmphoeName.AsString+nl+"Province"++ProvinceName.AsString+" = 19.05 %."+nl+nl+
“{ POSITIVE } base on 89 % Sensitivity, 45 % Specificity","Prediction of FMD outbreak")
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exit
end
end
if (AnswerBox.Get(5). AsNumber <= 30) then
MsgBox.Info("Probabilty of FMD outbreak occur in
Amphoe"++AmphoeName.AsString+nl+"Province"++ProvinceName.AsString+" = 18.75 %."+nl+nl+
“{ POSITIVE } base on 89 % Sensitivity, 45 % Specificity”, "Prediction of FMD outbreak")
exit
else
exit

end
else
MsgBox.Info("Probabilty of FMD outbreak occur in
Amphoe"++AmphoeName.AsString+nl+"Province"++ProvinceName.AsString+" = 0 %", "Prediction of
FMD outbreak")
exit
end
end
if (AnswerBox.Get(3).AsNumber <= 6) then
if (AnswerBox.Get(4).AsNumber <= 63.5) then
MsgBox.Info("Probabilty of FMD outbreak occur in
Amphoe"++AmphoeName.AsString+nl+"Province"++ProvinceName.AsString+" = 46.67 %."+nl+nl+
"{ POSITIVE } base on 89 % Sensitivity, 45 % Specificity","Prediction of FMD outbreak")
exit
else
MsgBox.Info("Probabilty of FMD outbreak occur in
Amphoe"++AmphoeName. AsString+nl+"Province"++ProvinceName.AsString+" = 19.05 %."+nl+nl+
“{ POSITIVE } base on 89 % Sensitivity, 45 % Specificity","Prediction of FMD outbreak")
exit
end
end
if (AnswerBox.Get(3).AsNumber <= 30) then
MsgBox.Info("Probabilty of FMD outbreak occur in
Amphoe"++AmphoeName.AsString+nl+"Province "++ProvinceName.AsString+" = 18.75 %."+nl+nl+
"{ POSITIVE } base on 89 % Sensitivity, 45 % Specificity”,"Prediction of FMD outbreak")
exit
else
MsgBox.Info("Probabilty of FMD outbreak occur in
Amphoe"++AmphoeName.AsString+nl+"Province"++ProvinceName.AsString+" = 3.53 %."+nl+nl+
"{ NEGATIVE } base on 89 % Sensitivity, 45 % Specificity","Prediction of FMD
outbreak")
exit
end
end

ProbFMD.Update

theView = av.GetActiveDoc.GetName
TheProbFMDView="Probability of FMD outbreak"
SELF.SetEnabled(theView=TheProbFMDView)
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Interface 13 Spatial cluster analysis comes with two buttons with will be activated when this view is
opened. "Export disease data" button use to export disease data from ArcView to analyse
in SaTScan program then get the result back to ArcView to perform the relative risk and
cluster group with "Get the SaTScan result” button (associated scripts for each interface

control in callout square).

@ ArcView G1S Verrion 3.1
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Help Get the SuTScan resuit /7 Import text file
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Sc: Get table to export to SalScan

UpdSe ClusterView Update

Help: Expont disease data JGet i

from Access database mto AreView then

I"‘

inpont text fie from Sa7 Scen mto Arcyew

ClusterView.Update

theView = av.GetActiveDoc.GetName
TheClusterView="Spatial cluster analysis"
SELF .SetEnabled(theView=TheClusterView)

Get Table to Export to SaTScan

' Retrive the data base of FMD

' Verify that there is a FMD table in this project or not

thisProject=av.GetProject

FMDcaseTable=thisProject.FindDoc("FMDcase")

if (FMDcaseTable=nil) then

' Add table from SQL connection

' If Oracle server is not available, then
‘ display a list of available databases to
' the user for selection.

mySQLConnection = SQLCon.Find ("oracle")

mySQLConnection = SQLCon.Find ("MS Access 97 Database")

mySQLConnection.Login("Tippawon/Took")

astring="Select' FMD9597" " AmphurIDtxt’, ‘FMD9597"." Infected animal’, 'FMD9597" .'spicies’ from

FMD9597"
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theVTab=VTab.MakeSQL(mySQLConnection, astring)

FMDcaseTable=Table.Make(theVTab)

FMDcaseTable.SetName("FMDcase")

end

’Retrieve the basic information of data table

FMDcaseVTab=FMDcaseTable.GetVTab

TableExport = FMDcaseVTab.Export("C:/SatScan/GIS/FMDCase.cas".asFileName, DText, false)
system.execute("C:\SatScan\FMDspt.bat")

FMDspt bat

batch file use to execute the SaT Scan program and manage format of text file from these two programs
c:

cd\

cd satscan

tail +2 GIS\FMDcase.cas | tr "," "\011" > GIS\FMDcase.cas

satscan.exe FMDspt.prm

cp header.txt GIS\FMDcase.txt

gawk -f awk.scr GIS\FMDSPT.GIS >> GIS\FMDcase.txt

exit

Load spatial file into ArcView

TxtFile= ("C:/SatScan/GIS/FMDCase.txt").asFileName
TempVTab=VTab.Make(TxtFile false,False)
TempTable=Table.Make(TempVTab)
TempTable.SetName("TempTable")
TempVTab.Export ( "C:/SatScan/GIS/FMDSpt.dbf".asFileName, dBASE, FALSE )
“output file, newfile.dbf, and all records
TempTableDoc = av.GetProject.FindDoc("TempTable")
av.GetProject.RemoveDoc(TempTableDoc)

PreviousTable = av.GetProject.FindDoc("SpatialFMD")
If (PreviousTable <> nil) then
av.GetProject.RemoveDoc(PreviousTable)
end
DbfFile=("C:/SatScan/GIS/FMDSpt.dbf").asFileName
ForWrite=true
SkipFirst=False
SptVTab=VTab.Make(DbfFile ForWrite,SkipFirst)
SptTable=Table.Make (SptVTab)
SptTable.SetName("SpatialFMD")
AmpTxtField=Field.Make("AmphoeIDTxt", #FIELD_CHAR,8,0)
SptVTab.AddFields({ AmpTxtField})
AmpIDField=SptVTab.FindField("AmphoeID")
For eachr in SptVTab
SptVTab.SetValueString(AmpTxtField,r,SptVTab.ReturnValueNumber(AmpIDField,r).AsString)
end
SptVTab.RemoveFields({ AmpldField})
SptTable.StopEditing
"Retrieve the basic information for joining the result
> of spatial analysis file into FMD theme.
ClusterView = av.GetProject.FindDoc("Spatial Cluster analysis")
RRTheme = ClusterView.FindTheme("Relative risk of cluster")
RRVTab= RRTheme.GetFTab
RRVTab.UnjoinAll
ClusGrpTheme = Cluster View.FindTheme("FMD Cluster group")
ClusGrpVTab= ClusGrpTheme.GetFTab
ClusGrpVTab.UnJoinAll
SptFMD = av.GetProject.FindDoc("SpatialFMD")
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SptFMDVTab = SptFMD.GetVTab
Join the theme with the SpatialFMD table data
AmpherJoinField=SptFMDV Tab.FindField(" AmphoeldTxt")
for each oneVTab in {RRVTab,ClusGrpVTab}
theJoinField = oneVTab.FindField("Amp_code")
oneVTab.Join (theJoinField,SptFMDVTab,AmpherJoinField)
end
‘Set each theme’s legend.
Use chart for the first legend and
*eraduate for the second
RRLegend=RRTheme.GetLegend
RRLegendFile="E:\Maps\Legend\RRChart.avl".AsFileName
RRLegend.Load(RRLegendFile, #LEGEND_LOADTYPE_ALL)
’Apply the legend changes
RRTheme.InvalidateLegend
RRTheme.SetVisible(True)
RRTheme.SetLegendVisible(True)
ClusterLegend= ClusGrpTheme.GetLegend
ClusterLegendFile="E:\Maps\Legend\clusterGrp.avl".AsFileName
ClusterLegend.Load(ClusterLegendFile #LEGEND_LOADTYPE_ALL)
‘Apply the legend changes
ClusGrpTheme.InvalidateLegend
ClusGrpTheme.SetVisible(True)
ClusGrpTheme.SetLegend Visible(True)
aViewDisplay=Cluster View.GetWin





