Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

AMOEBIC MENINGITIS

In all thermal pools

KEEP YOUR HEAD ABOVE WATER

to avoid the possibility of developing the serious illness called AMOEBIC MENINGITIS.

This disease can be caught in thermal pools if water enters the nose, while swimming or diving.

Massey University Library New Zealand & Pacific Collection

PATHOGENIC FREE-LIVING AMEBAE-OCCURRENCE IN NEW ZEALAND THERMAL REGIONS TOGETHER WITH INVESTIGATIONS INTO THEIR DISINFECTION, IMMUNITY AND VIRULENCE

A thesis presented in partial fulfuilment of the requirements for the degree of Doctor of Philosophy in Microbiology at Massey University, New Zealand

Raymond Thomas Michael Cursons 1978

29 01008

ABSTRACT

Pathogenic free-living amebae (PFLA), of which Naegleria fowleri was the predominant pathogenic species, were isolated from 6 out of 10 pools sampled from the Hamilton, Rotorua and Gisborne Health Districts. The majority of these PFLA contaminated-pools occurred in the Matamata-Taupo region, and this localized geographical distribution appeared to be influenced, in part, by the particular physical and chemical properties of the pool. 'High-risk' pools, which exhibited a high incidence of isolations of PFLA, were shown to be natural pools, i.e. soil enclosures, as opposed to concrete constructed pools. PFLA were also isolated from the soil, and it was thought that soil acted as a reservoir of PFLA. No seasonal distribution in the occurrence of PFLA in thermal pools was noticed.

A comparative study on the disinfecting potential of chlorine, chlorine dioxide, ozone and deciquam 222 for PFLA showed that all 4 disinfectants possessed amebicidal properties, but only at higher levels than those normally used for disinfecting bacteria. Of the 4 disinfectants, deciquam 222 proved to be the most effective amebicide, followed by chlorine, chlorine dioxide and ozone.

An immunological survey of normal human sera for the presence of antibodies to either pathogenic or non-pathogenic <u>Naegleria</u> and <u>Acanthamoeba</u> spp. established that human sera had a titre ranging between 1/5 - 1/20 for <u>Naegleria</u> spp. and between 1/5 - 1/80 for <u>Acanthamoebae</u>. No discrimination in titres was observed between blood groups or sexes and fluorescein-labelkd class-specific immunoglobulins showed that these antibodies belonged mainly to both the Ig M and Ig G classes. It was also shown that fresh adult human sera, as opposed to cord or specific hyperimmune-rabbit sera, contained a heat-labile neutralizing factor which inhibited the formation of cytopathic effects (CPE) in Vero cell

(ii)

culture by <u>Acanthamoeba culbertsoni</u>, but not by <u>N. fowleri</u>. Homologous, as well as heterologous antigens of <u>Naegleria</u> spp. were however, shown to cross-react with both the <u>in vitro</u>, macrophage inhibition factor assay, and <u>in vivo</u>, delayed hypersensitivity, correlates of cell-mediated immunity.

Finally, this study also demonstrated that both pathogenic and non-pathogenic species of <u>Naegleria</u> and <u>Acanthamoeba</u> secreted both an extracellular phospholipase 2 and lysophospholipase into their axenic cultures. The relative production of phospholipase 2 correlated with the formation of CPE in Vero cell culture by either amebae, or by cell-free filtrates from axenic cultures of amebae. The relative level of production of this enzyme appeared to influence the virulence and hence pathogenic-potential of these micro-organisms.

ACKNOWLEDGEMENTS

The production of this thesis was only possible because of the generous help which I received during the course of this investigation. I am indebted to the Department of Microbiology and Genetics, Massey University for providing the opportunity and facilities for this investigation, to the New Zealand Department of Health for financial support and co-operation, and, to the Medical Research Council for financial support for technical assistance for the survey.

In particular I would like to thank my supervisor, Dr Tim Brown, Prof. D.F. Bacon, Dr Adam Wilkins, Dr Vaughn Crow and other academic and technical staff of the Department of Microbiology and Genetics for their advice, help and encouragement.

I would also like to thank:

Dr Kevin Moriarty of the Department of Veterinary Pathology and Public Health for his help with Immunological studies.

Dr John Tweedie and Mr John McLean of the Department of Biochemistry for help with biochemical investigations.

Mr Des Till of NHI for his co-operation and suggestions.

Mr Doug Hopcroft, Ives, Keithand Al of the Electron-Microscope Department, Applied Biochemistry Division, DSIR for help with electron microscopy.

The Medical Officers of the Hamilton, Rotorua and Gisborne Health Departments, and especially Mr Morrie Marks, Mr Charlie Barber, Mr Rod Findon, Mr Maurice Miles with other nameless health inspectors, for collecting samples and arranging bacterial counts and photographs. Without their generous help, the survey could not have been completed. Mrs Elizabeth Keys for her patience, efficiency and encouragement.

TwiGywn, Tim, Af? Patila londer; ferboand other friends for their help and encouragement.

My parents.

Mrs Penny van Doorn for typing the draft.

Bridget for typing the final copy.

The Library staff of Massey University for the numerous interloan requests.

Robinson Designs, Auckland, for the supply of 'whirl bags'.

Maui Brothers for the gift of deciquam 222.

Jim, Les and the girls of the Central Photographic Unit.

PREFACE

Since the first reported cases in New Zealand in 1968 of primary amebic meningo-encephalitis (PAM) (Mandal <u>et al.</u>, 1970) the small free-living amebae of the genera Acanthamoeba and Naegleria have been of great interest to the New Zealand Department of Health. Locally it is known as 'Hot-Pool Meningitis' and there have been 7 confirmed cases of the disease all due to <u>Naegleria fowleri</u> and all contracted after swimming in thermal pools in the central North Island (Cursons <u>et al.</u>, 1978b). Subsequently, these pathogenic free-living amebae (PFLA) (Adam <u>et al.</u>, 1971) have been shown to be responsible for a number of diseases ranging from chronic illnesses such as respiratory infections (Martinez <u>et al.</u>, 1975) and humidifier fever (M.R.C. Symposium, 1977) to blindness (Visvesvara & Jones, 1975).

The apparent ubiquity and ease of isolation of these amebae from the environment stimulated a program (initiated by the New Zealand Department of Health and run by the National Health Institute) of isolating amebae from specific thermal pools. Later this program was extended under contract to Massey University to cover 10 thermal pools in 3 different Health Districts, with the aim of sampling the pools for the presence or absence of PFLA and trying to correlate their presence or absence with such parameters as the chemical composition of the waters, pH, temperature, and numbers of bacteria. In addition, comparative disinfection tests were carried out using a variety of compounds to observe their respective amebicidal properties. Because of the repeated isolations of PFLA from some New Zealand thermal pools, an immunological study was also undertaken. It was hoped to explain the enigma of the human population's apparent immunity to these amebae, despite their pathogenicity and distribution. Finally, the virulence of these amebae in relation to their pathogenicity was also studied.

TABLE OF CONTENTS

										P	age
ABSTI	RACT .	••	••	••		••			••	••	ii
ACKN	OWLEDGEN	MENTS		••	••	••	••	••	••	••	iv
PREF	ACE		••	••	••	••	• • •	••	••	••	vi
LIST	OF TABI	LES	••	••	••				••	• •	xiii
LIST	OF FIGU	JRES	•••	••		••	••	••	••	••	XV
LIST	OF PLA	TES	••	••	••	• •	••	••	• •		xvii
CHAP	TER 1:	INTRO	DUCTI	ON	••	••	••	••	••		1
1.1	The His	story o	of Fr	ee-li	ving A	mebae	e as I	Diseas	se		
	Agen	ts	••	••	••	••	••	••	••	••	1
1.2	Occurre	ence ar	nd Di	strib	ution	••	••		••	••	4
1.3	Infect	ion	••	••	••	••	••	••	••	••	5
1.4	Immuni	ty	•••	••	••	••	••	• •	••	••	6
1.5	Disinf	ection		••	••	••	••	••	••	• •	7
CHAP?	TER 2:	SAMPLI	ING S	SITES	••	••	••	••	••	••	9
2.1	Introdu	uction		••	••	••	••	••	••	••	9
2.2	Hamilto	on Heal	lth D	istri	ct	••	••	••	••	••	11
	2.2.1	Waigna	aro S	pring	s.	••	••	••	••	••	11
	2.2.2	Moana	-iti	Sprin	gs	••	••	••	••	••	12
	2.2.3	Opal S	Sprin	igs	••	••	••	••	• •	••	12
	2.2.4	Okoro	ire S	Spring	s.	••	••	••	• •	••	13
2.3	Rotoru	a Heal	th Di	stric	t.	••	••	••	••	••	16
	2.3.1	Soda S	Sprir	ıgs	••	••	••	••	••	••	16
	2.3.2	Butche	er's	Pool	••	••	••		••	• •	16
	2.3.3	Otumal	heke	Strea	m	••	••	••	••	•••	16
2.4	Gisbor	ne Hea	lth D	istri	ct	••	••	••	••	••	20
	2.4.1	Te Pu	ia	••	••	••	••	••	••	••	20
	2.4.2	Morer	е	••	••	••	••	••	••	••	21
CHAP	TER 3:	MATER	IALS	••	••	••	••	••	••	••	25
3.1	Amebic	Cultu	res u	ised	••	••	••	••	••	••	25
3.2	Plate I	Media	••	••	••	••	••	••	••	••	30
	3.2.1	Ameba	Sali	.ne Ag	ar	••	••	••	••	••	30
	3.2.2	Ameba	1% 5	Saline	Agar						30

(viii)

											Page
	3.2.3	N.M.	Agar	••	••	••	•••		••		30
	3.2.4	E.Y.	Agar	••	••	••	••	• •	••	• •	30
	3.2.5	Lysol	ecithi	in Aga	ar	• •	••	• •	••	• •	31
	3.2.6	Haemo	lytic	Agar	••	••	••	••	••	• •	31
	3.2.7	Prote	inase	Agar	•••	••	••	••	••	•••	31
	3.2.8	DIFCO	Stand	dard M	lethoo	ls Aga	ar	••	••	• •	32
	3.2.9	DIFCO	Viole	et Ree	d Bile	e Agar	•	••	••		32
3.3	Axenic	Media	for A	Ameba	е.	••	••	• •	••	••	32
	3.3.1	Page'	s Amel	ba Sal	line	••	••	••	• •	••	32
	3.3.2	СУМ М	edium	• •	••	••	••	••	••	• •	32
	3.3.3	СҮМН	Mediu	n.	••	••	•••	••	••	• •	32
	3.3.4	4% Ne	ff Mee	dium	••	••	••	••	••	• •	32
3.4	Cell Cu	ulture	Media	a.	••	••	••		••	• •	32
3.5	Lymphod	cyte a	nd Ma	croph	age Cı	lture	e Me	dia	••		32
	3.5.1	Lymph	ocytes	5.	••	••	••	••	••	••	32
	3.5.2	Macro	phages	s.	••	••	••	••	••	• •	33
3.6	Disinfo	ection	Solu	tions	Used	••	••		••	••	33
	3.6.1	Water	••	••	••	••	••	••	••	• •	33
	3.6.2	Chlor	ine	••	••	••	• •	• •	••	• •	33
	3.6.3	Chlor	ine d	ioxid	е.	••	••		••		33
	3.6.4	Ozone	•••	••	••	••	• •	••	••	•••	33
	3.6.5	Deciq	uam 22	22	••	••	••	••	••	••	33
3.7	Polyac	rylami	de Ge	l Eleo	ctropł	noresi	S	••	••	••	34
	3.7.1	Polya	cryla	mide (Gels	• •	••		••		34
	3.7.2	Runni	ng Bu	ffer	••	••	••	• •	••		34
	3.7.3	Track	ing Ma	arker	••	••	••	••	••	••	34
	3.7.4	Gel S	taini	ng So	lutior	1.	••	••	••	• •	34
3.8	Staini	ng Sol	ution	S	••	••	••		••	••	35
	3.8.1	Sudan	black	κ.	••	••	••	••	••		35
	3.8.2	Ehrli	ch's l	haema	toxyl	in	••	••	••	••	35
	3.8.3	Glyce	erin-je	elly	••	••	••	••	• •	••	35
3.9	Chemica	als an	d Ser	ologi	cal Re	eagent	ts	• •	• •		35
3.10	Experi	mental	Anima	als	••	••	• •	••		• •	36
CHAPI	TER 4:	METHO	DS	••	••	••	••	••			37.
4.1	Miscel	laneou	s Metl	hods	••	••					37
	4.1.1	Chemi	cal A	nalys	is of	Therm	nal	Pool	Water	••	37

(ix)

										Page
	4.1.2	Scanning	Electi	on M	icroso	сору	••	••	••	37
4.2	Identi	fication o	of Amel	bae a	nd Bad	cteri	ia.	••	••	37
	4.2.1	Identific	cation	of A	mebic	Isol	lates	••	••	37
	4.2.2	Total Co	liform	and	Total	Bac	teria	Count	••	39
4.3	Amebic	Culture 2	Technic	ques	••	••	••	••	••	40
	4.3.1	Cloning	• •	••	••	••	••	••	••	40
	4.3.2	Axenic Cu	ulture	••	••	••	••	••	••	40
4.4	Cell C	ulture	••	••	• •	••	••	••	••	40
	4.4.1	Neutralia	zation	of A	mebae	in (Cell C	Cultur	es	41
4.5	Indire	ct Macroph	nage Ir	nhibi	tion A	Assay		••	•••	41
	4.5.1	Immuniza	tion of	f Gui	nea-p	igs	••	••	••	41
	4.5.2	Lymphocy	te Cul	ture	and P	roduo	ction	of		
		Macroph	nage Ir	nhibi	tion H	Facto	or.	•	••	41
	4.5.3	Culture o	of Mac	ropha	ges	••	••	••	••	42
	4.5.4	Delayed H	Hyperse	ensit	ivity		••	••;	••	44
4.6	Disinf	ection	••	••	••	••	••		••	44
	4.6.1	Productio	on of I	Disin	fecta	nts	••	••	••	44
	4.6.2	Chemical	Analys	sis o	f Dis:	infe	ctants		••	46
	4.6.3	Disinfec	tion To	ests	••	••	••		••	46
4.7	Polyac	rylamide (Gel Ele	ectro	phore	sis	••	••	••	46
4.8	Cytoch	emical Sta	aining		••	••	••	••	••	47
4.9	Prelim	inary Iso	lation	and	Chara	cteri	izatio	on of		
	Extr	acellular	Enzymo	es of	Path	ogen	ic Fro	ee-liv	ing	
	Ameb	ae	••	••	••	••	••	••	••	47
	4.9.1	Detection	n of Ar	nebic	Extra	acel	lular	Enzym	es	47
	4.9.2	Thin Lay	er Chro	omoto	graph	У.	••	••	••	47
	4.9.3	Haemolys	is	••	••	••	••	••	••	48
	4.9.4	Isolation Superna	n of Pl atants	hosph of <u>N</u>	olipa aegle	ses : ria :	from 1 fowle:	the i (Ms	T)	48
4.10	Protei	n Determin	nation		••	••	••	••	••	50
4.11	Steril	ization	••	••	••	••	••	••	••	50
CHAPT	ER 5:	RESULTS	••	••	••	••	••	••	••	52
5.1	Survey	of PFLA	in New	Zeal	and T	herma	al Poc	ols	••	52
	5.1.1	The Dist:	ributi	on of	PFLA	in 1	New Ze	ealand	L	
		Therma	l Pool	s dur	ing t	he 19	976 Si	urvey		52
	5.1.2	The Occu	rrence	of P	FLA i	n Ne	w Zea	land		
		Therma	al Pool	ls du	ring t	the 1	.977 S	urvey	••	58

			1	Page
5.2	The Com	parative Use of Disinfectants against		
	Free-	living Amebae	••	62
	5.2.1	The Use of Chlorine as a Disinfectant		
		against Free-living Amebae	••	62
	5.2.2	The Use of Alternative Disinfectants to		
		Chlorine against Free-living Amebae	••	63
5.3	Immunit	ty to PFLA	••	65
	5.3.1	The Presence of Antibodies to PFLA in		
		Human Sera	••	65
	5.3.2	The Presence of a Specific Neutralizing		
		Factor against PFLA in Normal Human Ser	a	76
	5.3.3	The Reaction of the Cell-Mediated Immune		
		System to Antigens of Naegleria spp.	••	80
5.4	Viruler	nce of PFLA	••	83
	5.4.1	The Presence of Extracellular Enzymes in		
		the Supernatants of Axenic Cultures of		
		Free-living Amebae	••	83
	5.4.2	Production of Phospholipase 2 in Axenic		
		Cultures of Free-living Amebae	••	91
	5.4.3.	The Preliminary Isolation of a Phospholip	base	
		2 from Axenic Cultures of <u>N. fowleri</u> (M	1sT)	94
		5.4.31 The Isolation of Phospholipase 2		
		from Serum-supplemented Axenic		
		Cultures	••	98
	5.4.4	Virulence of Amebae and Cell-free Axenic		
		Filtrates in Vero Cell Culture	••	105
CHAPT	CER 6:	DISCUSSION	••	118
6.1	Survey	of New Zealand Thermal Pools	••	118
	6.1.1	The Distribution of PFLA in New Zealand		
		Thermal Pools during the 1976 Survey	••	118
	6.1.2	The Effect of Chemical, Physical and		
		Biological Parameters on the Distribut:	ion	
		of PFLA in New Zealand Thermal Pools	••	118
	6.1.3	The Incidence of PFLA in New Zealand The	rmal	
		Pools		125

(x)

(xi)

										Page
6.2	The Co	mparativ	e Use of	Disi	nfect	ants	agair	st		
	Free	-living	Amebae	••	••	••	••	••	••	131
	6.2.1	The Use	of Chlo	rine	as a	Disi	nfecta	int		
		again	st Free-	livin	ig Ame	bae	• •	• •	••	131
	6.2.2	The Use	of Alte	rnati	ve Di	sinfe	ectant	s to		
		Chlor	ine agai	nst F	`ree-l	iving	g Amet	bae	••	137
		6.2.21	The Use	of C	Chlori	ne di	ioxido	e as a	A	
			Disin	fecta	int ag	ains	t Free	-livi	Ing	
			Ameba	e	• •			••		137
		6.2.22	The Use	e of C)zone	as a	Disir	fecta	ant	
			again	st Fr	ee-li	ving	Ameba	le		138
		6.2.23	The Use	e of D	eciqu	am 23	22 as	a		
			Disin	fecta	int ag	ains	t Free	e-livi	ng	
			Ameba	e	••	••	••	••		141
6.3	Immuni	ty to PF	LA	••	••	••	••	••	••	144
	6.3.1	The Pre	sence of	Anti	bodie	s to	PFLA	in		
		Human	Sera	••	••	••	••	••	••	145
	6.3.2	The Pre	sence of	a Sp	ecifi	c Ne	utrali	zing		
		Facto	r agains	t PFL	Ain	Norma	al Hum	an So	era	147
	6.3.3	The Ind	uction o	f the	e Cell	-Med	iated	Immur	16	
		Syste	m	••	••	••	••	••	••	149
	6.3.4	Immune	Response	s in	Relat	ion	to Inf	ectio	on	
		with	PFLA	••	••	••	••	••	••	150
6.4	Virule	nce of P	FLA	••		••	••	••	••	156
	6.4.1	The Pre	sence of	Extr	acell	ular	Phosp	pholip	bases	
		in th	e Supern	atant	s of	Axen	ic Cul	tures	s of	
		Free-	living A	mebae		••	••	••	••	156
	6.4.2	Product	ion of P	hosph	olipa	se 2	in Ax	kenic		
		Cultu	res of F	`ree-l	living	Ame	bae	••	••	157
	6.4.3	Prelimi	nary Isc	latic	on of	Phos	pholip	base 2	2	
		from	Axenic C	Cultur	es of	<u>N.</u>	fowler	ci (Ms	sT)	160
	6.4.4	Virulen	ce of Am	lebae	and C	ell-:	free A	Axenio	2	
		Filtr	ates in	Vero	Cell	Cult	ure	••	••	161
	6.4.5	The Sig	nificanc	ce of	Phosp	holi	pase 2	2		
		Produ	ction an	nd its	s Rela	tion	ship 1	to the	5	
		Patho	genicity	of F	PFLA	• •	••	••	••	163

(xii)

									Page
APPENDICES	••	••	••	••	••	••	••	••	166
Appendix I	Data	from	the	1976	Survo	зу	S		166
Appendix II	Data	from	the	1977	Surve	зу	••	••	175
Appendix III	Paper	s Pub	olisł	ned	••	••		••	189
BIBLIOGRAPHY	••	••	••	••	••	••	••	••	190

2

LIST OF TABLES

	F	age
I.	Cases of Primary Amebic Meningo-encephalitis	
	reported after 1974	2
II.	Chemical and Physical Characteristics of	
	Thermal Pools from the Waikato Health	
	District	13
III.	Chemical and Physical Characteristics of	
	Thermal Pools from the Rotorua-Taupo	
	Health District	20
IV.	Chemical and Physical Characteristics of	
	Thermal Pools from the Gisborne Health	
	District	21
ν.	Ameba Cultures Used	25
VI.	Distribution and Incidence of PFLA from New	
	Zealand Thermal Pools during the 1976 Survey	52
VII.	Monthly Isolations of PFLA from New Zealand	
	Thermal Pools during the 1976 Survey	57
V II.	The range of total Coliform and Bacterial	
	Counts from New Zealand Thermal Pools	
	during the 1976 Survey	58
IX.	The Incidence of PFLA in New Zealand Thermal	
	Pools during the 1977 Survey	59
х.	Monthly Isolations of PFLA from New Zealand	
	Thermal Pools during the 1977 Survey	60
XI.	Bacteriological Quality of Thermal Pools and	
	Surrounding Soils during the 1977 Survey	61
XII.	The Amebicidal Capacity of Chlorine	62
XIII.	The Comparative Amebicidal Capacity of Chlorine	
	dioxide, Ozone and Deciquam 222	64
XIV.	Presence of Antibodies to PFLA in Human Sera	
	from the Palmerston North Health District .	66
XV.	Presence of Antibodies to PFLA in Human Sera	
	from the Hamilton Health District	68
XVI.	Presence of Antibodies to PFLA in Human Sera	
	from the Rotorua Health District	70
XVII.	Presence of Class-specific Antibodies to PFLA	
	in Human Sera	75
XVIII.	Use of Hyperimmune Rabbit and Normal Human Sera	
	in Neutralizing <u>N. fowleri</u> (MsT) and <u>A.</u>	
	culbertsoni (A-1) Vero Cell Culture	77

(xiv)

		Page
XIX.	Cross-reactivity of Homologous and Hetero	
	logous Antigens of <u>Naegleria</u> spp. as	
	judged by Delayed Hypersensitivity	80
XX.	Cross-reactivity of Homologous and Hetero-	
	logous Antigens of <u>Naegleria</u> spp. as	
	judged by Inhibition of Macrophages	82
XXI.	Products of Enzymatic Hydrolysis of Phos-	
	phatidyl choline by Different Phospholipases	84
XXII.	Effect of Rosenthal's Inhibitor on Phospholi-	
	pase 2 Activity in EY Agar	88
XXIII.	Production of Phospholipase 2 by <u>Naegleria</u>	
	spp	92
XXIV.	Production of Phospholipase 2 by Acanthamoeba	
	spp	93
XXV.	Effect of Protein Concentration of the Reaction	ר
	of <u>N. fowleri</u> and <u>A. culbertsoni</u> Cell-free	
	filtrates in EY Agar	97
XXVI.	Relative formation of Cytopathic Effects in	
	Vero Cell Culture by <u>Naegleria</u> spp	106
XXVII.	Relative formation of Cytopathic Effects in	
	Vero Cell Culture by <u>Acanthamoeba</u> spp	108
XXVIII.	Relative formation of Cytopathic Effects in	
	Vero Cell Culture by axenic Cell-free	
	Filtrates	112
XXIX.	Addition of <u>N. fowleri</u> (Ms1) axenic filtrate	
	to vero Cell Cultures inoculated with	110
VVV	<u>N. IOWIEFI</u> (IS-I)	113
	Effects in Vere Cell Cultures ineculated	
	with N fowlori by anti-phospholipasos sorum	116
XXXI	Comparison of the properties of Chloring	110
	Chlorine dioxide Ozone and Deciguam 222	1 22
XXXII	Previous Reports of antibodies in Human Sora	146
TARIT .	rievious reports or antibodies in numan otta	140

LIST OF FIGURES

	LIST OF FIGURES	Page
1.	Map showing the location of thermal areas of the	
	North Island of New Zealand	10
2.	Flow diagram showing the strategy used for the	
	isolation and identification of PFLA	38
3.	Method used for the production of chlorine dioxide	45
4.	Method used for the production of ozone	45
5.	Flow diagram showing the strategy used for the	
	isolation of phospholipases from <u>N. fowleri</u> (MsT)	
	supernatants	45
6.	Graph showing average monthly temperature for	
	New Zealand	54
7.	Graph showing average monthly rainfall for the	
	Matamata and Taupo regions	55
8.	Graph showing average monthly rainfall for the	
	Rotorua and Gisborne regions	56
9.	Thin-layer chromatograms of neutral lipids and	
	phospholipids from extracts of EY plates	86
10.	PAGE profile of the supernatant from serum-	
	supplemented axenic <u>N. fowleri</u> culture	95
11.	PAGE profile of 40-60% $(NH_4)_2SO_4$ precipitated	
	fraction of the serum-supplemented axenic	
	<u>N. fowleri</u> culture	95
12.	PAGE profile of the XM 50,000 MW ultrafiltration	
	fraction of serum-supplemented axenic N. fowleri	
	culture	96
13.	PAGE profile of the SEPHADEX G-100 fraction of	
	serum-supplemented axenic N. fowleri culture	96
14.	PAGE profile of serum-supplemented axenic culture	
	medium	99
15.	PAGE profile of bovine serum	99
16.	PAGE profile of serum-free axenic culture medium .	101
17.	PAGE profile of the supernatant from serum-free	
	axenic <u>N. fowleri</u> culture	101
18.	PAGE profile of SEPHADEX G-100 fraction of serum-	
	free axenic <u>N. fowleri</u> culture	102
19.	Gel-diffusion pattern using anti-phospholipases ser	um
	serum	103

(xv)

(xvi)

		Page
20.	Graph of predation by <u>Naegleria</u> spp. on the	
	bacterium Enterobacter cloacae	121
21.	Graph of predation by Acanthamoeba spp. on the	
	bacterium Enterobacter cloacae	122
22.	Distribution of HOCl and OCl $$ as a function of pH	134
23.	Relative bactericidal efficiency of chlorine	
	containing derivatives	135
24.	Effect of nitrogen compounds on the chlorine	
	demand	135
25.	Relative effectiveness of chlorine dioxide as a	
	disinfectant	139

.

(xvii)

LIST OF PLATES

	<u>P</u>	age
1.	Waignaro thermal pool	14
2.	Moana-iti thermal pool	14
3.	Opal 'Jockey' thermal pool	15
4.	Okoroire 'No. 4' thermal pool	15
5.	Soda thermal pool	17
6.	Butcher's thermal pool	17
7.	Upper Otumaheke stream	18
8.	Mouth of Otumaheke stream	18
9.	Old 'Whey' soil-site of Otumaheke stream	19
10.	Hot-water source of Te Puia Springs	22
11.	Wooden trough used to pipe thermal water to	
	Te Puia pool	22
12.	Morere thermal baths pipe supply	23
13.	Hut enclosing Morere thermal baths	23
14.	Scanning electron micrograph of <u>N. gruberi</u>	
	trophozoite	26
15.	Scanning electron micrograph of N. gruberi	
	flagellate	26
16.	Scanning electron micrograph of N. gruberi cyst	27
17.	Scanning electron micrograph of <u>N. fowleri</u> cyst	27
18.	Scanning electron micrograph of <u>A. castellanii</u>	
	trophozoite	28
19.	Scanning electron micrograph of A. castellanii	
	cyst	28
20.	Scanning electron micrograph of A. culbertsoni	
	cyst	29
21.	Photomicrograph of N. fowleri stained by IFAB	72
22.	Photomicrograph of <u>N. gruberi</u> stained by IFAB	72
23.	Photomicrograph of A. culbertsoni stained by	
	IFAB	73
24.	Photomicrograph of <u>A. castellanii</u> stained by	
	IFAB	73
25.	Photomicrograph of section through skin of	
	guinea-pig immunized with N. fowleri and skin-	-
	tested with saline	81

	1	age
26-28.	Photomicrographs of sections through skin of	
	guinea-pig immunized with <u>N. fowleri</u> and	
	skin-tested with Naegleria spp. antigens	81
29.	Photomicrograph of control migration of PEC	82
30.	Photomicrograph of inhibition of migration	
	of PEC	82
31.	Clearing of EY plates by cell-free filtrates from	
	exponential axenic cultures of amebae	85
32.	Clearing of EY plates by cell-free filtrates from	
	stationary axenic cultures of amebae	85
33.	Clearing of EY plates by cell-free filtrates from	
	48 hr axenic cultures of amebae	90
34.	Inhibition of clearing of EY plates by cell-free	
	filtrates from 48 hr axenic cultures of amebae	
	by Rosenthal's inhibitor	90
35.	Clearing and turbidity of egg-yolk after native	
	PAGE of purified phospholipases	104
36.	Scanning electronmicrograph of control Vero Cell	
	Culture monolayer	104
37.	Photomicrograph of Vero Cell Culture inoculated	
	with <u>N. fowleri</u> showing early cytopathic	
	effects	109
38.	Scanning electronmicrograph showing attachment	
	of <u>N. fowleri</u> to Vero cells	109
39.	Photomicrograph of Vero Cell Culture inoculated	
	with <u>N. fowleri</u> showing pronounced cytopathic	
	effects	110
40.	Scanning electronmicrograph of Vero Cell Culture	
	inoculated with <u>N. fowleri</u> showing pronounced	
	cytopathic effects	110
41.	Photomicrograph of control Vero Cell Culture	
	stained with Sudan black	114
42.	Photomicrograph of Vero Cell Culture inoculated	
	with <u>A. culbertsoni</u> stained with Sudan black	114
43.	Photomicrograph of Vero Cell Culture inoculated	
	with <u>N. fowleri</u> and stained with Sudan black	114