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ABSTRACT

The forestry sector in New Zealand ranks as the third largest export eammer. The individual
industries within the forestry sector have, in some cases, grown up on the basis of
institutionalised knowledge, sometimes without a full understanding of the underlying
fundamental physico-chemical relationships and the changes that occur during wood
material processing. At the same time the commercial pressures of operating within the
forestry sector have resulted in demand for more uniform, high quality, fit-for-purpose
product, faster throughput and less downgrade from what is becoming a lower quality
feedstock as harvest ages decline. In the 21% century, the forestry sector is being
transformed into an “engineered ligno-cellulosic materials processor” and this in tumn is
requiring a more sophisticated knowledge of the material feedstock and the processes

involved in wood products manufacture.

The aim of this work was to use magnetic resonance techniques to explore aspects of
ligno-cellulosic materials processing at points along the value-added process chain, namely
drying, chemical modification (preservation) and re-engineering (gluing) of wood

products.

Magnetic resonance mini-imaging studies of the water transport during the drying of
radiata pine boards lave shown differences in the directional movement of water within
the wood structure. These effects show a dependence on the surface area to volume ratio of
timber and the orientation of the annual rings with respect to the larger drying face.
Narrow, flat-sawn boards exhibit anomalous drying behaviour in terms of water mass
transport, whereas thicker boards display more conventional core-shell drying behaviour.
These restrictions to flow have been further investigated using diffusion tensor imaging via
a modified pulsed field gradient spin-echo sequence to elucidate the nature of anisotropic
diffusion in wood. The direction of least restriction to self-diffusion is in the longitudinal
direction, as would be expected with it being the direction of active transport within a tree
stem, whereas the direction of greatest restriction to self-diffusion is in the radial direction,

with the higher density latewood acting as a barrier.



Preservation of radiata pine sapwood with novel boron-based preservatives has been
investigated using magnetic resonance imaging to determine the penetration and retention
of the incipient compounds. An apparent anomaly in retention for trimethylborate-treated
Pinus radiata sapwood was investigated by 'B MAS NMR spectroscopy of excised
sections of latewood and earlywood, which showed hydrolytic decomposition of trimethyl
borate to form boric acid. The rate of hydrolysis of trimethylborate was monitored by ''B
MAS NMR spectroscopy and was shown to occur very rapidly in the latewood (within 24
hours), and over a longer time scale of several days in the earlywood. The resulting

publication has reported some of the first published ''B MRI images.

Magnetic resonance spectroscopy has provided (in conjunction with separate mass
spectrometry studies) mechanistic evidence for the accelerated curing of phenolresorcinol
formaldehyde resols, using ammonia in combination with the conventional
paraformaldehyde hardener - a process known as GreenWeld™. Carbon-13 and nitrogen-
15 NMR spectroscopy has shown evidence of both benzylamine and aniline type bridging
structures formed during cure, compared to only methylene structures being formed under

conventional curing conditions.

Poly(vinyl acetate) emulsion polymer adhesive has also been examined using NMR
spectroscopic methods, with particular focus on the effect of addition of aluminium
chloride, which is often commercially added to PVAc formulations as a crosslinking agent.
Multinuclear magnetic resonance spectra obtained during the cure of AICk modified PVAc
adhesive, shows a low freduéncy 27 Al shift of ca. 3 ppm suggesting a local change in
environment as the aluminium changes from a solvated to a covalently bonded octahedral

environment.

Finally, as a preliminary study, a new device for measuring uniaxial extension of visco-
elastic solids was trialled on poly(vinyl acetate) hydrogels to study the effect of addition of
aluminium chloride on the visco-elastic properties of the adhesive. A similar, manually
operated device was used to obtain NMR spectroscopic data during compression of the gel.
These studies have shown that addition of aluminium chloride as a crosslinking agent, in
fact produces a cured adhesive with fewer crosslinks than the corresponding unmodified

adhesive, but with increased resistance to shear-induced creep.
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