
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Effective Security Analysis for Combinations
of MTD Techniques on Cloud Computing

Hooman Alavizadeh

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy (Ph.D.) in Computer Science,

Massey University, 2019.

iii

Abstract

Moving Target Defense (MTD) is an emerging security mechanism that can in-

troduce a dynamic defensive layer for a given system by changing the attack surface.

MTD techniques are useful to address security issues in cloud computing.

MTD techniques are classified into three main categories: Shuffle, Diversity, and

Redundancy. Shuffle MTD techniques can rearrange the system’s components (e.g.,

IP mutation). They confuse the attackers by hardening the reconnaissance process

and wasting the information collected by the attackers. Diversity MTD techniques

change the variants of a system’s component (e.g., operating systems), which makes

an attack more difficult and costly because the attackers encounter a new set of vul-

nerabilities. Redundancy MTD techniques increase the system components’ replicas.

They can be used to increase system dependability (e.g., reliability or availability)

by providing redundant ways of providing the same services when some system

components are compromised. Since deploying each MTD technique may affect the

others and also have different effects on the system (e.g., one can enhance the secu-

rity and another can provide service’s availability), it is important to combine MTD

techniques in such a way that they can support each other directly or indirectly.

This research first conducts an extensive survey of MTD literature to realize and

summarize the key limitations of the current MTD studies. We reveal that (i) there

is a lack of investigation on the combination of MTD techniques, (ii) relatively less

effort has been made to evaluate the effectiveness of MTD techniques using security

analysis, and (iii) there is a shortcoming in the validation of MTD techniques on

more realistic cloud testbeds.

We focus on the theoretical aspects of combining MTD techniques and provide

formalization to combine MTD techniques in order to address those limitations.

First, we achieve this by combining Shuffle and Redundancy to find a trade-off be-

tween System Risk and Reliability. Then, we provide a formal mathematical defini-

tion to combine Shuffle and Diversity to increase security while narrowing the scope

for potential attacks. We evaluate the effectiveness of the proposed combined tech-

niques using Graphical Security Models (GSMs) and incorporating various security

metrics.

We extend the combination of MTD techniques by including Redundancy besides

Shuffle and Diversity. We perform an in-depth analysis on combining those MTD

techniques to find out a trade-off between security alongside the reliability of the

cloud. We show that if those MTD techniques are combined properly, it not only

improves the cloud’s security posture but also it increases the reliability of the cloud.

Moreover, we study the economic metrics to show how MTD techniques can be

deployed in a cost effective way. We also propose an Optimal Diversity Assignment

Problem (O-DAP) to find the optimal solution for deploying Diversity over cloud.

Finally, we design and develop an automated cloud security framework to eval-

uate the cloud security posture and adapt MTD techniques on the real cloud plat-

form. We demonstrate the feasibility, adaptability, and usability of implementing

MTD techniques on UniteCloud which is a real private cloud platform.

In memory of my father

v

Acknowledgements

I would like to express my great appreciation to everyone who have helped me throughout

the completion of my Doctoral thesis, writing publications, and anyone who has accom-

panied me during my PhD journey – my apologies to anyone whom I failed to mention.

I specially owe gratitude to my research supervisors Associate Professor Julian Jang-

Jaccard and Associate Professor Dongseong Kim, who have guided me through my Doc-

toral research. I am quite sure that this PhD dissertation would have not been possible and

fruitful without their continued support, extensive expertise and knowledge. To Julian,

you have been more than a supervisor for me; you have showed me compassion during

difficult times of my PhD journey and helped me to overcome the challenges. Thank you

for sharing your knowledge, invaluable guidance and relentless support, you have been a

permanent source of enthusiasm for my research progress, I will forever remain thankful

for that. To Dongseong, I owe a very special gratitude to you for giving me the chance

to work with you and learn from you, thank you for sharing your knowledge, showing me

the way to start, grow and learn, and conduct a fruitful research – thank you for being

a friend. I will always remain indebted to you for indelible impact you have made on

my growth and success. To both of you, I was immensely lucky to have you as my PhD

supervisors.

I would like to extend my sincere thanks to my co-supervisor Professor Hans Guesgen

for his kind support and helpful advice during the time when I was studying in Palmerston

North and afterward.

I am tremendously grateful to Dr Samin Aref not only for great collaboration, but

also for being a role model, a friend, a person who has helped me during the tough times

in my life, given me the encouragement for making right decisions in my critical moments

of my PhD journey. I am also very grateful to my previous supervisor Dr Mark Wilson

for his utmost supports, sharing knowledge, and all he has taught me.

A very special thank you to Dr Jin B. Hong for his collaboration, sharing knowledge,

comments and advice, and helpful contributions. Also, I would like to express my gratitude

to Dr Simon Yusuf and Dr Mengmeng Ge for helping me to address my concerns regarding

challenges and questions I encountered during my research.

vii

viii

I am also grateful to my previous supervisor Dr Kuda Dube for his valuable and

constructive suggestions when I was studying in Palmerston North, and also for all his

help and support before I move to New Zealand and start my PhD.

I wish to express my appreciation to Associate Professor Winston Sweatman and, my

friend, Mohsen Hashemi for their insightful advice for my mathematical and notation

related concerns. I am also thankful to Tony Shi for his help and support to address the

problems and concerns regarding the UniteCloud.

I also would like to gratefully acknowledge the School of Natural and Computational

Sciences at Massey University for supporting my research project and providing me with

three years’ financial support.

I would like to express my great appreciation to the people whom I have made collab-

oration and friendship in the School of Natural and Computational Sciences and cyber

security lab in the University of Canterbury: Sibghat, Dilli, Yuanyuan, Mehmood, Azadeh,

Niloofar, Rahila, Jinting.

Last but not the least, I would like to give a big thanks to my family, specially my

mother for her enduring love and faithful support in all my pursuits, I am forever grateful

to her. I owe a very special thanks to my wife – someone with whom I shared the rest of my

life – thanks for her continued love and support – this thesis would have not be completed

without her patient and sacrifices. Also, a gratitude to my brother, whom I have shared

so many points of interests in computer science and so many similar objectives about

what a perfect work should be about.

Publications Arising from this Thesis

The core of this thesis was based on the following peer-reviewed journals and conferences.

• Alavizadeh, H., Kim, D. S., Hong, J. B., and Jang-Jaccard, J. Effective security

analysis for combinations of MTD techniques on cloud computing (short paper). In

International Conference on Information Security Practice and Experience (ISPEC)

(2017), Springer, pp. 539-548.

• Alavizadeh, H., Jang-Jaccard, J., and Kim, D. S. Evaluation for combination of

Shuffle and Diversity on Moving Target Defense strategy for cloud computing. In

2018 17th IEEE International Conference On Trust, Security And Privacy In Com-

puting And Communications/12th IEEE International Conference On Big Data

Science And Engineering (TrustCom/BigDataSE) (2018), IEEE, pp. 573-578.

• Alavizadeh, H., Hong, J. B., Jang-Jaccard, J., and Kim, D. S. Comprehensive se-

curity assessment of combined MTD techniques for the cloud. In Proceedings of the

5th ACM Workshop on Moving Target Defense (2018), ACM, pp. 11-20.

• Alavizadeh, H., Alavizadeh, H., Kim, D. S., Jang-Jaccard, J., and Niazi Torshiz,

M. An automated security analysis framework and implementation for MTD in

cloud. In International Conference on Information Security and Cryptology (ICISC)

(2019), Springer.

• Alavizadeh, H., Hong, J. B., Kim, D. S., and Jang-Jaccard, J. Evaluating the Ef-

fectiveness of Shuffle and Redundancy MTD Techniques in the Cloud. Submitted

to IEEE Transactions on Dependable and Secure Computing (IEEE TDSC) (Under

review).

• Alavizadeh, H., Kim, D. S., and Jang-Jaccard, J. Model-based Evaluation of Combi-

nations of Shuffle and Diversity MTD Techniques on the Cloud. Future Generation

Computing Systems (FGCS).

• Alavizadeh, H., Aref, S., Kim, D. S., and Jang-Jaccard, J. Security and Economic

Modeling and Analysis of MTD techniques for Cloud Computing. Manuscript is

ready for submission to IEEE Transactions on Emerging Topics in Computing

(IEEE TETC).

ix

x

• Jin-Hee, C, Sharma, D. p., Alavizadeh, H., Ben-Asher, N, Yoon, S, Moore, T. J.,

Kim, D. S., Lim, H., Free-Nelson, F. Toward Proactive, Adaptive Defense: A Survey

on Moving Target Defense. Revised version submitted to IEEE Communications

Surveys and Tutorials (Under review).

Contents

Contents xi

List of Figures xiv

List of Tables xvii

1 Preface 1

2 A Survey on MTD techniques 5

2.1 Introduction . 5

2.2 Defining MTD Framework . 6

2.2.1 Shuffle . 7

2.2.2 Diversity . 10

2.2.3 Redundancy . 10

2.2.4 Discussion and Limitations of Existing MTD Techniques . . . 11

2.3 MTD Techniques Evaluation . 12

2.3.1 Metrics for MTD Techniques 13

2.3.2 GSM Overview . 13

2.4 Insights and Directions for this Research 15

3 Evaluating the Effectiveness of Shuffle and Redundancy MTD

Techniques on the Cloud 17

3.1 Introduction . 18

3.2 Related Work . 20

3.3 Preliminaries . 21

3.3.1 System Setting and Configuration 22

3.3.2 HARM Construction . 24

3.3.3 Network Centrality Measures on HARM 26

3.3.4 Selection Criteria . 26

3.3.5 Shuffle Formalism . 27

3.3.6 Redundancy Formalism . 27

3.3.7 Combination of S+R Formalism 27

xi

xii Contents

3.3.8 System Risk Analysis . 28

3.3.9 Reliability Analysis . 29

3.4 Deploying MTD Techniques . 30

3.4.1 MTD Technique Analysis . 30

3.4.2 Shuffle Technique Analysis . 34

3.4.3 Redundancy Technique Analysis 35

3.4.4 Analysis of S+R MTD Techniques 37

3.5 Discussion and Limitations . 40

3.6 Conclusion . 42

4 Model-based Evaluation of Combinations of Shuffle and Diversity

MTD Techniques on the Cloud 43

4.1 Introduction . 44

4.2 Related Work . 46

4.3 Preliminaries . 48

4.3.1 System and Threat Model . 48

4.3.2 Defensive MTD Model . 49

4.3.3 GSM Models . 51

4.4 MTD Techniques Deployment . 57

4.4.1 Shuffle Technique Definition and Formalization 57

4.4.2 Shuffle Technique Evaluation 58

4.4.3 Diversity Technique Definition and Formalization 60

4.4.4 Diversity Technique Evaluation 61

4.5 MTD Combinations Definition and Formalization 63

4.5.1 Evaluation of MTD Combinations 64

4.5.2 Simulation and Evaluation in Large Cloud Model 70

4.6 Discussion and Limitations . 72

4.6.1 Combining MTD Techniques 73

4.6.2 Limitations and Extensions 73

4.7 Conclusion . 74

5 Security and Economic Modeling and Analysis of MTD Techniques

for Cloud Computing 75

5.1 Introduction . 76

5.2 Related Work . 78

5.3 Definitions and Formalization . 79

5.3.1 A Cloud Model . 79

5.3.2 HARM Construction . 80

5.3.3 Importance Measures . 81

5.3.4 Security Metrics . 81

5.3.5 MTD Formalism . 81

Contents xiii

5.4 MTD Analysis . 83

5.4.1 Security Analysis of Current System 83

5.4.2 Diversity on Multiple VMs . 84

5.4.3 Combining Shuffle, Diversity, and Redundancy 86

5.5 Economic Metrics for MTD techniques . 89

5.5.1 A Case Study on E-Health Cloud Model 89

5.5.2 Single Loss Expectancy . 90

5.5.3 Annual Loss Expectancy . 91

5.5.4 Benefit of Security . 91

5.5.5 Cost of Security . 91

5.5.6 Return on Security Investment 92

5.5.7 Shuffle Evaluation . 92

5.5.8 Diversity Evaluation . 92

5.5.9 Optimal Diversity Assignment 94

5.5.10 Numerical Experiment of Optimization Model 96

5.6 Discussion and Limitations . 97

5.7 Conclusions . 100

5.8 Appendix* . 101

6 Usability and Adaptation of MTD Techniques on a Realistic

Testbed: Implementation of an Automated Security Analysis Framework

using MTD Techniques on Cloud 103

6.1 Introduction . 104

6.2 Proposed Approach . 105

6.2.1 Preliminaries . 105

6.2.2 Security Model for Cloud . 107

6.2.3 Security Analysis . 108

6.3 Design and Implementation . 108

6.3.1 Case Study: UniteCloud Analysis 108

6.3.2 Cloud Security Framework . 110

6.3.3 User Interface (UI) Implementation 116

6.4 Results and Discussion . 117

6.5 Related Work . 122

6.6 Conclusions . 123

7 Conclusions and Future Directions 125

Bibliography 129

List of Figures

2.1 An example of deploying MTD technique on a web server 7

2.2 Metrics used for MTD techniques . 13

2.3 Development of different GSMs approaches 15

3.1 A cloud system example . 22

3.2 FDD diagram for cloud zones. 22

3.3 Two-layer HARM of the cloud example . 24

3.4 Generated HARM of cloud-band with 50 VMs 32

3.5 Exponential line fitted among Betweenness and Risk. 33

3.6 Comparison of the Risk and Reliability after deploying Shuffle in Cloud-band.

(a) the Risk resulting from deploying Shuffle based on the top 10% of Be-

tweenness and ES. (b) Reliability after deploying Shuffle. 33

3.7 Comparison of the Risk and Reliability based on Betweenness and Closeness

after deploying Redundancy (from 0-R to 5-R). (a) the result of deploying

Redundancy on the top 10% of Betweenness nodes. (b) the result of deploying

Redundancy on the top 10% of Betweenness and Closeness nodes. 33

3.8 The Result of Deploying Redundancy on the Top 10% of Closeness Nodes

(with 0-R to 5-R) on two Cloud-bands with (a) 20 VMs, (b) 50 VMs. 34

3.9 Comparing the result of deploying Redundancy technique and Risk 35

3.10 Comparing different combinations of MTD techniques with regard to Risk

and Reliability. (a) comparing the combinations of MTD techniques based on

different Cloud-band sizes and replicas over the Risk. (b) comparing the effects

of deploying Shuffle, Redundancy (2-R), and S+R techniques on the Reliability. 37

3.11 Comparing the result of deploying S+R on the Unattackability based on three

attack rate values: 0.1, 0.2, and 0.4. (a), (b), and (c) the Unattackability values

of the cloud before deploying S+R under the given attack rates. (d), (e), and

(f) changes in Unattackability after deploying S+R. 38

4.1 A Cloud system example: (a) The infrastructure layer of a private cloud. (b)

The Cloud example Model showing the connection of the VMs. 48

4.2 VM-Live Migration on the Cloud. (a) Migrating Phase. (b) Migrated. 50

xiv

List of Figures xv

4.3 (a) Two-layer HARM of the Cloud example. (b) An attack path from the

attacker to target in HARM (the risk values of exploiting each VM are depicted

beside each VM). 53

4.4 Generating Lower Layers AT to calculate ASP for vm3 and vm8 56

4.5 Comparison of security metrics after deploying two Shuffle MTD and Diversity

MTD strategies separately on the VMs (VMs in x-axis are sorted in descend-

ing order based on their importance using IMs). (a) The results of deploying

Shuffle technique on the cloud example. (b) The results of deploying Diversity

technique on the cloud example. 61

4.6 Comparison of security metrics after deploying two MTD combination strate-

gies on the VMs (VMs in x-axis are sorted in descending order based on their

importance using IMs) . 66

4.7 Comparison of security metrics resulting from deploying various MTD tech-

niques (VMs in x-axis are sorted in descending order based on their importance

using IMs) . 68

4.8 Comparing the correlation of path-based metrics against ASPc and Riskc after

deploying Shuffle on each VM. The correlation co-efficient between (a) ASPc

and MAPLc is about 70%, (b)ASPc and SDPLc is about 78%, (c)Riskc and

MAPLc is about 87%, (d)ASPc and SDPLc is about 77% showing a positive

relation. 69

4.9 Changes on the Path-based Metrics after deploying Shuffle on each VM (VMs

in x-axis are sorted in descending order based on their importance using IMs) 70

4.10 Comparison of metrics before and after deploying the four types of MTD metrics 71

5.1 The Cloud-band model. (a) Cloud-band model including two cloud-band nodes

and one resource node, (b) Generated upper layer of the HARM for the cloud-

band model including 400 VMs. 80

5.2 Security analysis results of the current cloud-band 83

5.3 The values of Reliability for the current cloud-band 84

5.4 Comparing the result of RoA metrics after deploying Diversity on multiple

nodes selected based on three different criteria on the cloud-band with various

number of VMs . 85

5.5 Comparison of AC and Risk values obtained after deploying the Diversity

technique on the multiple VMs having the highest Betweenness values for the

cloud-band example with a various node sizes 87

5.6 Line chart comparing normalized metrics of the cloud-band with n = 350

before and after deploying S+D+R: upper line charts show the current cloud-

band and lower line charts show the metrics after deploying MTD techniques 87

5.7 (a) Comparing the results of AC and RoA for D-Only with S+D+R. (b)

Comparing the Reliability values after S+R+D against Reliability value for

current cloud-band for n = 150, 400. 88

xvi List of Figures

5.8 An E-Health cloud model including PHI records 89

5.9 Generated Two-layer HARM for the Cloud 90

5.10 Comparing RoSI values obtained after deploying Diversity on various VMs

against CS based on RVS and BVS (the asterisked point shows the optimal

solution.) . 94

5.11 Optimal OS Diversity assignment satisfying the coloring requirement on ad-

jacent nodes and maximizing the expected net benefit (note that the backup

denoted by B5 and B6 are CentOS and OpenBSD, respectively.) 98

5.12 Radar charts comparing all Risk, AC, RoA, Reliability metrics after and

before deploying S+D+R MTD technique. (a) security levels of current cloud,

(b) security levels after deploying MTD technique. 99

6.1 Running Example and cloud model for two enterprises migrated into the cloud

named EP1 and EP2. (a) Two-layer HARM of the EP1 in the Cloud, (b) Two-

layer HARM of the EP1 in the Cloud, (c) a private cloud example including

the various Hosts (servers) and Virtual Machines (VMs) hosting EP1 and EP2.106

6.2 Security modeling, analysis, and deployment Phases 109

6.3 Security framework and communication overview. 111

6.4 OpenStack API Calls for information collection phase. 111

6.5 OS Diversification: Ubuntu14.04 replaces with CentOS7 for vm6-EP2 115

6.6 OS Replication: Create 2 replicas for vm6-EP2 115

6.7 VM-LM: Migration of vm6-EP2 from Compute07 node to Compute08 node . 116

6.8 Cloud security framework UI panel: UniteCloud Graph view and HARM vi-

sualization . 117

6.9 Cloud scanning API calls in Information Collection phase 118

6.10 Comparing the operational time (To) for deployment of MTD in real cloud for

10 API requests denoted as (1-10) . 120

6.11 The histograms showing the TC distributions for MTD deployments (Times

in Seconds) . 120

6.12 Comparing normalized security merics before and after deploying MTD tech-

nique on cloud (EP1) . 122

List of Tables

2.1 MTD Techniques and Deployment Layers . 6

3.1 OS Vulnerabilities . 23

3.2 Cloud firewall traffic and access control rules 23

3.3 Correlation of metrics against NCMs . 32

4.1 OS Vulnerabilities (V) including Base-Score (BS), Impact (I), Exploitability

(E), and Attack Cost (AC) 4.2 . 49

4.2 Some notations, explanations and supporting examples or references 52

4.3 Notations w.r.t deploying MTD techniques and metrics 58

4.4 The percentage of changes in the security metrics after deploying Shuffle on

each VM in the cloud example . 59

4.5 The percentage of changes in the security metrics after deploying Diversity on

each VM in the cloud example . 62

4.6 The percentage of changes in the security metrics after deploying S+D on each

VM in the cloud example . 67

4.7 The percentage of changes in the security metrics after deploying S∆D on each

VM in the cloud example . 67

4.8 Comparison of the studied MTD techniques and evaluations 73

5.1 MTD techniques applicable in different cloud computing layers 79

5.2 Recalling some notations, formulas, and metrics 82

5.3 VM Assets and Vulnerabilities (Note that vm10 is the target VM and includes

PHI records) . 89

5.4 The results of deploying Shuffle on each VM in the cloud 93

5.5 The results of deploying Diversity on each VM in the cloud 93

5.6 Backup OS variants used for the optimization test case 97

6.1 Configuration and setup for VMs and hosts in the cloud. Note: floating IPs

are denoted as asterisked . 110

6.2 Benchmark analysis for MTD API calls . 118

xvii

xviii List of Tables

6.3 API JSON calls and related information including the TR and TC . Note: the

asterisked times are TC . 119

6.4 The results of three security metrics: Risk, AC, and RoA on the cloud resulting

from deploying MTD techniques on EP1 and EP2 121

List of Acronyms

AC Attack Cost

ACL Access Control List

AG Attack Graph

ALE Annual Loss Expectancy

AP Attack Path

ARO Annualized Rate of Occurrence

ASP Attack Success Probability

AT Attack Tree

AV Asset Value

BS Benefits of Security

BVS Betweenness VM Selection

CS Cost of Security

CVE Common Vulnerability and Exposures

CVS Closeness VM Selection

CVSS Common Vulnerability and Scoring System

DDoS Distributed Denial of Service

DMZ Demilitarized Zone

EF Exposure Factor

ENB Expected Net Benefit

ES Exhaustive Search

FDD Firewall Derision Diagram

GSM Graphical Security Model

xix

xx List of Acronyms

HARM Hierarchical Attack Representation Model

IC Informative Call

IDS Intrusion Detection System

IM Important Measure

MAPL Mean of Attack Path Length

ML Machine Learning

MoPL Model of Attack Path Length

MTD Moving Target Defense

NCM Network Centrality Measure

OC Operational call

O-DAP Optimal Diversity Assignment Problem

OS Operating System

PHC Personal Health Cloud

PHI Personal Health Information

PN Protected Network

RoA Return on Attack

RoSI Return on Security Investment

RVS Random VM Selection

RZ Resource Zone

SAP Shortest Attack Path Length

SDN Software Defined Networking

SDPL Standard Deviation of Attack Path Length

SLE Single Loss Expectancy

VM Virtual Machine

VM-LM Virtual Machine Live Migration

VMM Virtual Machine Monitoring

Chapter 1

Preface

Cloud computing is an on-demand network paradigm that facilitates access to a large

pool of computing resources [105]. Cloud computing has attracted widespread attention

in the domain of information technology (IT) and industries due to economic benefits

such as reduction of capital and operational expenditure [125, 142]. Despite these mul-

tifaceted benefits, security remains one of the fundamental concerns related to cloud

computing [15, 163]. For this reason, the majority of cloud’s clients are unable to trust

this technology [17]. The lack of sufficient trust and loss of certain security controls engag-

ing with cloud computing make this transition difficult. Although many reactive security

mechanisms have been proposed and used to protect the cloud against cyber-attacks such

as virtual machine isolation, firewalls, Intrusion Detection Systems (IDS), anti-malware

and so forth, cyber criminals are still able to utilize novel techniques in order to exploit

the vulnerabilities and compromise security and privacy of the cloud.

Recently, Moving Target Defense (MTD) techniques have been proposed in extant

literature and used extensively in the realm of cyber security. MTD can introduce a dy-

namic defensive layer to a system aiming to protect the system by changing the attack

surface. The underlying idea behind the MTD strategies is that it is not always possible

to secure a given system perfectly. To this end, the MTD strategies try to utilize normal

functioning of the system even in the presence of attackers trying to penetrate the system.

Since the perfect prevention of attacks is impossible, the main endeavor of MTD is to

introduce ambiguity and difficulties for the attacker to mitigate the attack chance rate,

thereby thwarting the potential attacks. In practice, MTD can be introduced by modify-

ing and controlling the attack surface through manipulation of the system’s configurations

so that the changes transpiring in the system’s components and configuration confound

the attackers targeting the system. Deploying successful MTD strategies may exacerbate

uncertainty and complexity for the attackers, thus making it increasingly difficult for the

attacker to identify targets (e.g., vulnerable system components). It also may introduce

higher costs in launching attacks in terms of time, resource, and monetary costs. As a

consequence, the attacker will waste considerable time and effort without being able to

1

2 Preface

gain useful/actionable intelligence about the system [66,114]. MTD techniques are mainly

divided into three categories: Shuffle (rearranging a system’s component), Diversity (us-

ing various variants for a system’s component), and Redundancy (increasing a system’s

component replicas) [66].

Although MTD techniques such as Shuffle, Diversity, and Redundancy have been

widely studied in the literature, there is still a lack in the current studies to combine

those techniques. It is of paramount importance to combine MTD techniques in such a way

that they can support each other directly or indirectly. Firstly, Shuffle MTD technique

can change and rearrange the system’s components. This introduces confusion to the

attackers by hardening the reconnaissance process and making the collected information

of the attackers obsolete and useless. Secondly, Diversity are usually deployed to enhance

security by changing the system’s components (i.e., software, OS, services, etc. [51, 54,

146]). This makes a system more robust and resilience in the occurrence of the attacks as

the attackers need to encounter a new set of vulnerabilities. Thus, Shuffle MTD technique

can support Diversity because the way in which system’s components are rearranged may

affect the degree of Diversity and vise versa. However, in order to combine those techniques

to benefit from the advantages of each, it is important to know how much Shuffle can

enhance security, and similarly, how Diversity can increase attacker’s difficulties to deal

with new system in terms of time, effort, costs, and so forth. Unlike Shuffle and Diversity

MTD techniques, Redundancy is a non-trivial technique to increase service reliability

and availability for users. This technique is often measured by some concept of system

dependability (e.g., reliability). Redundancy MTD can be well-mingled with Shuffle and

Diversity aiming to increasing both security and service reliability.

One can benefit from using a MTD technique solely, but the problem arises when a

trade-off between security and dependability such as service availability or reliability is

required. Deploying each MTD technique can affect the others. For instance, the service

reliability or availability of a system can be easily interrupted by performing an unrea-

sonable Shuffle or Diversity leading to a service interruption or even a deterioration of

overall security. Moreover, deploying Redundancy may incur extra cost for the system

as it creates additional replicas of the system components (i.e., servers or paths). Fur-

thermore, if Redundancy is not properly deployed, it gives the attacker more chance to

attack the system due to larger attack surface. It is important to extensively investigate

the way in which MTD techniques can be combined to optimally meet these multiple

objectives such as increasing benefits and reducing the undesirable effects. However, se-

curity modeling and analysis such as Graphical Security Models (GSMs) have been used

in the literature to evaluate the effectiveness of MTD techniques. Many security metrics

can be incorporated with the proposed GSMs to analyze the security [157].

MTD can be used to secure various application domains such as Internet of Things

(IoT), software defined networks (SDNs), and so forth. To the best of our knowledge,

there is no public or private cloud that has adapted moving target defenses on their

Preface 3

platform as a defensive mechanism. Based on the aforementioned problems, we provide

the research questions we aim to address throughout this thesis.

• Q1: How MTD techniques can be combined to enhance the effectiveness of the

proposed technique on cloud?

• Q2: Which security metrics should be used to evaluate the effectiveness of combined

MTD techniques?

• Q3: How we can adapt the effective MTD technique on a real cloud environment?

The main goals of this research is to evaluate the combinations of MTD techniques

and adapt/implement the MTD techniques on cloud computing. We define following three

sub-goals corresponding to the research questions:

• G1: To focus on the theoretical aspect of combined MTD techniques on cloud: The

outcomes of this goal is an extensive survey on MTD techniques focusing on the way

in which MTD techniques can be combined alongside providing distinctive formal-

ism to model three combination of MTD techniques including Shuffle+Redundancy,

Shuffle+Diversity, Shuffle+Diversity+Redundancy for cloud.

• G2: To evaluate different proposed combinations of MTD techniques for cloud

through simulation: The outcome of this goal is using GSMs and various secu-

rity metrics to evaluate the effectiveness of the combined MTD techniques find

more promising strategies in terms of trade-offs among security, dependability, and

economic metrics.

• G3: To investigate on the practical side of the research to demonstrate the feasibility,

adaptability, and usability of those MTD techniques for a real cloud testbed: The

outcome of achieving this goal consist of developing a cloud security framework

which is able to 1) automatically assess the security posture of a private cloud

using GSMs and security metrics, 2) finding the most promising defensive MTD

techniques based on the security level required by the cloud provider, 3) adapt

and deploy the MTD techniques on UniteCloud [1] which is a real private cloud

platform.

The organization of this thesis is as follows. Chapter 2 in this thesis presents a com-

prehensive survey on MTD studies. We review the proposed MTD studies to understand

what aspects lack in the MTD literature. The scope of survey covers three main MTD

categories and implementation layers which have been used in this thesis.

In Chapter 3, we formulate and evaluate the combination of Shuffle and Redundancy

MTD techniques to find a trade-off between System Risk (Risk) and Reliability (The

earlier version of this work has been published in [13]). We use a scalable GSM named

4 Preface

HARM to evaluate the security metrics and use Network Centrality Measures (NCMs)

to effectively combine MTD techniques. We conduct a correlation analysis to find out a

relation between the deploying Shuffle and Diversity and the used metrics.

In Chapter 4, we present an extensive evaluation on combinations of Shuffle and

Diversity MTD techniques to harden the attack success and reduce the system Risk (The

earlier version of this work has been published in [12]). We formulate the combination of

Shuffle and Diversity in which it can be able to capture different combinations strategies

for those techniques to provide the promising results. We utilize eight security metrics to

assess the effectiveness of the combination of Shuffle and Diversity (The extended version

of this work has been published in [14]).

In Chapter 5, we present a comprehensive combination of MTD techniques includ-

ing Shuffle, Diversity, and Redundancy together to analyze the effectiveness of MTD

techniques based on both attacker and cloud provider’s perspective (The work has been

published in [11]). We reformulate our Diversity formalism so that it can capture deploy-

ing Diversity on multiple VMs to obtain better results. We utilize two Attack Cost (AC)

and Return on Attack (RoA) metrics to assess security from the attacker point of view,

and also used Risk and Reliability to show the security and dependability of the system

from the cloud provider’s perspective. We extend the work by including a more specific

context by modeling an E-health cloud to investigate on economic-based evaluation for

MTD techniques and Diversity Assignment Problem through optimization We formulate

Diversity as a mathematical model considering graph coloring to harden the attack. We

use a binary linear optimization model to solve the problem and find the optimized result.

In Chapter 6, We demonstrate the practicality of implementation and adaptation of

MTD techniques on a read cloud environment. We investigate on feasibility of adapta-

tion of MTD techniques on a real cloud platform. We evaluate the implemented MTD

techniques using real cloud measurements. We utilize API programming allowing us to

automate the cloud security framework and MTD deployment (The work has been pub-

lished in [10]).

In Chapter 7, we conclude this thesis and introduce some future research directions.

Chapter 2

A Survey on MTD techniques

2.1 Introduction

Moving Target Defense (MTD) is an emerging proactive approach which provides an

asynchronous defensive mechanism over a system aiming to increase the attack difficulties

by changing the attack surface. The basic assumption of MTD is that it very difficult

(even impossible) to provide complete and perfect security for a system. Since the perfect

security of a given system cannot be always provided, the main idea behind MTD is to

provide an adequate level of dynamicity for a system so that it can introduce uncertainty

and unpredictability for attackers. MTD can decrease the attacker’s chance to identify

targets such as vulnerable system components or impose higher costs in launching attacks.

The desired goal of MTD techniques is that the attacker spend more time and effort, while

having minimum chance to penetrate to a system [114].

The concept of MTD technique goes back to the 1970’s, when those concepts intro-

duced under different names in the literature such as reconfigurable computing [20, 40],

fault tolerance [18, 34] which introduced the n-version programming (NVP) concept, or

bio-inspired cybersecurity [86, 94]), and so forth. Various defensive techniques have been

proposed under the name of MTD and rapidly developed over the recent years due to its

promising capability and merit.

However, there has been a lack on current MTD literature in terms of classification

and deployment layers of MTD techniques, evaluation and effectiveness of the proposed

techniques (e.g., using security modeling and analysis), combining MTD techniques, and

implementing MTD techniques on real testbeds such as cloud computing.

In this chapter, we define a comprehensive survey for the existing state-of-art MTD

techniques with an aim to find the important limitations of the current MTD proposals. At

the end of this chapter, we highlight the main shortcoming of the current MTD research.

5

6 A Survey on MTD techniques

Table 2.1: MTD Techniques and Deployment Layers

Deployment Layer
Techniques

Diversity (D) Redundancy (R) Shuffle (S)

Application

Web [36,71,145]
App [19,36,71]
Database [36,145]
Other [70]

Web [56,154]
App
Database
Other

TCP/UDP Port [16,82,100]
HTTP/HTML [78,151]
Apps Migration [116]

Host (OS level)
VM (Instance)

Windows
Linux [71]
Solaris [71]
Other

Host/VM [98,120]
IP Address [78]
Virtual IP [16,75,82]
VM migration [55,120,164]

Hypervisor (VMM)

Xen
VMware
ESXi
Other

Hypervisor Replica
Failover
Switchover

Hardware

Intel
HP
Sun Solaris
Other

Backup/Replica Hardware Replace

2.2 Defining MTD Framework

We survey the existing literature in terms of (1) classification of MTD techniques, (2)

MTD deployment Layers, (3) combination of MTD Techniques at different Layers, as

shown in Table 2.1. Moreover, we survey the current MTD studies extensively in terms

of application domain which includes Cloud computing, Internet of Things (IoT), Soft-

ware Defined Networking (SDN), Enterprise Networks. Furthermore, we survey the MTD

techniques based on the implementation, validation, and evaluation.

Generally, Hong et al. [66] classified the MTD strategies in three comprehensive op-

erational categories as follows:

• Shuffle: This technique are defined as any method which can re-arrange the system’s

configuration such as IP mutations os changing, Host randomization, network’s

topology rearrangement, Virtual Machine (VM) migration, and so on [45, 75, 116].

The main idea behind Shuffle techniques is to thwart potential attacks by increasing

the uncertainties and confusion for cyber attackers. This may waste the information

collected by the attackers, and also can harden the reconnaissance and identification

process for the attackers.

• Diversity: This technique can be considered as the replacing the system’s compo-

nent with the alternative variant or implementation (e.g, a server, programming

language, Operating System, hardware, etc.), while the system provides equivalent

functionality with the previous state (before changing variant) [74,110,126]. Diver-

sity MTD technique has a twofold advantage, increasing the system’s resiliency and

fault-tolerance in presence of attack on a system, and making difficulties for the

attackers to deal with a new variant in terms of spending time and effort to learn

the new system and penetration ways (e.g., exploiting vulnerabilities).

Defining MTD Framework 7

• Redundancy: This technique are defined as the redundant ways of providing services

in a system, such as increasing the number of components which includes replicas

for servers, hardware, OS, software, services, and so forth [85, 154]. This includes

providing multiple replicas for a systems’ component such as having multiple VMs

in a cloud, or multiple servers in a network. Redundancy can be used on a system to

enhance service reliability and availability so that if a single or multiple components

of a system are compromised, redundant variants can preserve the system reliability

and availability in an acceptable threshold.

Figure 2.1 demonstrates three examples of MTD deployment categories Shuffle, Diver-

sity, and Redundancy on a web server (denoted as Serverx in Figure 2.1). Moreover, the

MTD techniques can be applied on different systems and contexts (such as IoT, Cloud,

Enterprises) and various components (e.g, servers, VMs, hosts, programming languages,

etc.) and also different layers (like Hardware, Application, Network, and so forth).

Serverx : V−IPa

Changes periodically
to

Serverx : V−IPa′

(a) Shuffle

Serverx

Multiple replicas (r)

Serverr
1

x Serverr
2

x
. . . Serverr

n

x

(b) Redundancy

Serverx : APACHE

Replaces with

Serverx′ : IIS

(c) Diversity

Figure 2.1: An example of deploying MTD technique on a web server

2.2.1 Shuffle

In this section, we review existing MTD techniques categorized as Shuffle. Later on, we

discuss the limitation of Shuffle technique found from the literature and the way that

those limitations can be addressed.

Network, Port, and IP Shuffling: Shuffle can be deployed on various network using

Port Hopping techniques [100]. Typically, these techniques can dynamically map a specific

port to another unused port which is randomly selected. Luo et al. [100] evaluated the

effectiveness of the port hopping techniques using hiding service identities aiming to

increasing reconnaissance effort by the attacker.They evaluated their method using attack

success probability with a large size of a port pool.

Deploying Shuffle technique through changing IP address and host randomization

approaches has been proposed in many studies. Jafarian et al. [75] implemented an IP

shuffle technique by mutating the IP addresses unpredictably while minimizing overhead

of the operation. They used OpenFlow to frequently reassign the Virtual IP addresses

which were translated from and to a real host’s IP address. Their method is effective in

terms of low operational overhead and can effectively defends against malicious scanning

8 A Survey on MTD techniques

tools and worms. Sharma et al. [136] proposed an MTD technique using an IP shuffling

approach which used IP multiplexing (or demultiplexing) for an SDN environment. In

[101], the authors proposed a host IP mutation technique to defend against potential

attacks in large networks using SDN controller. Another IP randomization technique

is proposed by Antonatos et al. in [16]. The authors used IP randomization as an MTD

technique aiming to thwart Hit-List worms attacks. The proposed technique increases the

difficulties of information gathering process by the attackers aiming to find the vulnerable

targets. However, they only assessed the performance and did not carry out the security

assessment and analysis.

Carroll et al. [30] proposed a network address shuffling technique as an MTD tech-

nique. They evaluated the performance of their method using probabilistic models in

terms of the number of possible IPs scanned by the attackers, the size of a network, the

number of vulnerabilities and the IP shuffle technique frequency.

Changing the network topology has been proposed in many studies as a Shuffle MTD

technique. Changing routes in a network can be a useful defensive technique aiming

to invalidate the attacker’s information about the attack paths in the network. For in-

stance, Achleitner et al. [3,4] proposed a network routes shuffling technique using virtual

topology generation which can defend against scanning attack. In [68], the authors pro-

posed an optimal network reconfiguration technique using shuffle assignment problem for

SDN environments. They showed their method can enhance the network security through

changing the routes.

VM Migration: Virtual Machine migration can be used as Shuffle MTD technique to

secure the virtualization environment. VM migration is a useful technique for security

cloud computing [15,144]. VM migration can be used as Shuffle technique to address the

multi-tenancy problems in a virtualized environment such as side-channel attack [164].

This wastes attacker’s time and effort to gain information about a target VM and placing

a malicious VM in the same physical host with the victim. Another advantage of using

VM migration is that it can change the network topology in a cloud environment (e.g.,

Virtual Cloud Network (VCN)) and add the benefits of changing network topology by a

Shuffle technique.

Danev et al [45] proposed an approach to securely migrating VMs in a private cloud

as a shuffle MTD technique. The main approach they used is to utilize an extra phys-

ical Trusted Platform Module (TPM), and trusted parties for migration process. They

also used public key infrastructure to secure their proposed protocol. Zhang et al. [164]

proposed a shuffle method based on a VM-live migration in cloud environment to defend

against the threats resulting from side-channel attack. They used random VM placement

as the Shuffle technique. They showed a balance between the level of security against the

cost incurred by VM migrations.

Penner and Guirguis in [120] proposed a set of MTD technologies to vary VM’s loca-

tion in the cloud to thwart Multi-Armed Bandit attacks (MAB) which was resulted from

Defining MTD Framework 9

the a lack of adequate VM isolation in the cloud. Indeed, they evaluate their method

based on the attacker’s perspective, and also the VM migration time. They argued that

their method can thwart MAB attack designed to find critical information (e.g. datasets

and credit card information). In [119], the authors proposed a Shuffle MTD technique

which utilizes the VM migration technique in the cloud. They investigated the way that

VM can be implemented more effectively to be able to defend against intelligent attackers

using dynamic attack surfaces. They also proposed MTD service strategy using probabil-

ity models. Their results showed that the enhancement in effectiveness of MTD can be

provided in the presence of the defender’s awareness about dynamic attack surface.

Jia et al. [78] proposed an MTD technique named client-to-proxy shuffling which

is able to continuously move the secret proxies. Their proposed method aimed to deal

with Distributed Denial-of-Service (DDoS) attacks through securing data transmission

between authenticated (legitimate) clients and a protected server. They evaluated their

method using assessing the resistance and overhead of the proposed MTD technique using

brute-force attacks.

Software and Platform Shuffling: Shuffle MTD techniques have been utilized in soft-

ware, platform, and application layers as well. In [32], authors proposed an MTD tech-

nique for an IoT environment based on a reconfiguration approach for devices in a way

that their firmware and cryptosystems can be shuffled. Vikram et al. [151] proposed a

shuffle technique on the application layer to secure websites by randomizing the HTML

elements. The static parts of websites such as HTML elements in the HTTP content/form

page can be easily attacked to gain information by bots. Ultimately, randomizing those

HTML elements/parameters are useful technique to defend against the bot attacks. The

authors utilized a machine learning technique to enhance the effectiveness of their defen-

sive strategy. They evaluated their method by measuring the page loading time overhead.

In [115], the author developed a framework named Trusted Dynamic Logical Heterogene-

ity System (TALENT) for migrating the critical application running on the infrastructure

through heterogeneous platforms which allows live changing of OS and Hardware. The

TALENT can provide a virtualized environment in the OS layer through some contain-

ers having checkpoint compiler to enable live migration of different platforms running

application.

The advantage of the Shuffle MTD technique is that it works with existing technologies

(such as migrating a VM from one host to another host) without using another expensive

security mechanism. Thus, Shuffle is a comparatively cheaper defensive option than other

defensive mechanisms and also can be adapted immediately. Although Shuffle can only

change the attack surface, it will not able to mitigate the current vulnerabilities existing

on the system. However, additional service interruptions may be introduced to the system

if Shuffle technique is not executed properly.

10 A Survey on MTD techniques

2.2.2 Diversity

In this section, we review the MTD studies based on changing the systems’ components

with different variants in various domains in the literature.

Software and Programming Language: Software diversity can be implemented on

code blocks, loops, instructions, and different levels of systems and programs which can

include linking, compilation, and/or installation [95]. For instance, in [19], the authors

developed an approach to change a running program’s variants erratically through which

a large program can be divided into smaller components (e.g., cells or tasks). They used a

recovery mechanism to enhance the system resilience. The main idea behind this technique

is that using a different variant at runtime can make the attacker more confused. In this

approach, only the variant that is affected by the attacker can be instantly changed by

other variants during recovery time. However, dividing a running application to smaller

chunks to be able to be detected and recovered can be a complex process.

In [70,71], the authors introduced a Diversity MTD technique aiming to increase the

network service resiliency. They deployed diversity on the virtual servers (VS) such as

OS, virtualization components, Web Servers (WS), and application software. Then, they

evaluated the proposed method through computing the probability of attack success. An

example of a Diversity MTD technique in the programming language level is presented

in [145]. The authors proposed a method which diversifies the programming language in

different layers of the web application aiming to avoid code and SQL injection attacks.

They showed that the proposed method can replace programming languages variants

without imposing any disruption in the system functionality.

Network and Virtualization Diversity: In [170], the authors investigated on the

relationship between deploying Diversity on the network configurations against the prob-

ability of attack success. They used a logical mission model to evaluate the proposed

MTD technique. They utilized many factors to show the effectiveness of MTD techniques

such as examining the network size, testing the frequency of shuffling and adaptations,

and also the number of vulnerable computers. To do this, they used a network security

simulator and conducted the experimental results.

Diversity MTD techniques leverages the existing technologies (e.g., changing an OS

in a VM with another one). Although Diversity changes the system’s variants and causes

difficulties for attacker to deal with a new set of vulnerabilities, this technique cannot be

effective enough if the new variants have high vulnerabilities. Moreover, the number of

available variants for deploying Diversity is also important. If the number of those usable

variants are not adequate, this would be inherent limitations of Diversity.

2.2.3 Redundancy

In this section, we discuss the existing studies proposing Redundancy-based MTD tech-

niques in various implementation domains.

Defining MTD Framework 11

Redundancy of Software Components: Yuan et al. [154] developed a Redundancy

approach for web servers which aims to defend against malicious code injection attacks on

a web server using a self-protection model. The proposed method includes architectural

adaptation threat detection and mitigation using so called agreement-based redundancy.

The proposed method provides software component’s replicas during runtime. However,

they didn’t study the effectiveness of their proposed technique.

Gorbenko et al. [56] proposed an MTD technique which provides redundant web ser-

vices aiming to maximize system dependability. They evaluated the proposed method

through the evaluation of system availability, reliability, and response time. However,

they didn’t assess the security of the proposed method (e.g., using security metrics).

Redundancy of Network Sessions: In [96], the authors adopted a redundancy tech-

nique for Cyber-Physical System (CPS) environments using the traffic morphing mech-

anism called CPSMorph. This mechanism can maintain a redundant number of network

sessions which include the indistinguishable distribution of inter-packet delays comparing

with other normal network sessions. Within a time constraint, a CPS message can be

distributed through one of the redundant sessions. Using this technique, they can adjust

the morphing process dynamically; consequently, it minimizes the overhead. They showed

that their proposed method has low complexity while having high adaptation over CPS

environments.

Although Redundancy MTD techniques are used to enhance the service availability

and reliability on a system, adding additional replicas for any contents of a system such

as servers, VMs, service paths may either incur additional costs to the system or affect

the security of whole system. For instance, if Redundancy is not properly deployed, it

makes an attack even easier for the attackers due to the larger attack surface caused by

deploying a Redundancy on system’s components (e.g., a server in a cloud). In this sense,

evaluating the effectiveness of Redundancy technique is a non-trivial task based on the

domains in which Redundancy is deployed and also based on the effects it may have on

the attack surface.

2.2.4 Discussion and Limitations of Existing MTD Techniques

In this section, we discuss the main shortcomings of the current MTD techniques in

literature based on the classification presented in table 2.1. The main limitations of MTD

techniques we found in current studies are summarized as follows:

Limited investigations on combining MTD techniques: A large volume of Shuffle

MTD techniques have been proposed in different application layers, as shown in Fig-

ure 2.1. Shuffle technique works with the existing technology to change the attack surface

on a system (e.g., move a VM from one physical host to another host). Thus, if those

existing technologies are not robust enough or deployed effectively against attacks, the

effectiveness of Shuffle can be significantly limited by those vulnerabilities of the used

12 A Survey on MTD techniques

system. For example, well-known vulnerabilities to attackers exist on a VM which is mi-

grated to another host; in this case, although this migration makes the attackers confused

in terms of changing VM’s location, but those vulnerabilities are still available on that

VM for the attackers to exploit. On the other hand, Diversity technique can also leverage

the existing technologies, but it is able to vary the vulnerabilities of used system (such as

different OS variants with different vulnerabilities). Thus, one can combine Shuffle and

Diversity counterparts to cover the disadvantages of each technique and maximize the

effectiveness of a proposed MTD.

We noticed that the Redundancy MTD techniques are mostly used to increase reli-

ability and availability of a system (e.g., defense against Distributed Denial of Service

(DDOS) attacks) and does not play a significant role as proactive MTD defense com-

pared to the other two techniques. Redundancy can be easily excluded when Shuffle and

Diversity MTD techniques are solely used without consideration of the critical trade-off

between enhanced security and reliability. However, there is a lack in the literature for

combining of Redundancy with Shuffle and Diversity.

Evaluation of the effectiveness of MTD techniques: Many MTD techniques are

proposed in various application/operation domains. Most of the proposed methods rely

on the evaluation of the performance and the overheads of the techniques and mostly

measure the overhead. However, there still is a lack on comprehensive evaluation of the

effectiveness of those proposed MTD techniques in terms of security metrics using security

models. Moreover, the investigation on MTD techniques against economic impacts such

as economic-related metrics have not been thoroughly investigated. To summarize, it

is also critical to 1) evaluate MTD techniques using security metrics to show how the

overall seurity of the system is improved after deploying MTD technique, 2) find trade-offs

between enhanced security (e.g., Risk, AC, etc.) and performance (e.g., system utilization

and service availability).

Adaptability and validation of MTD techniques on real testbeds: Proposed

MTD techniques are mostly verified using analytical models, simulation, and emulation

models. However, there is a lack on the studies to adapt and verify the MTD techniques

on the real testbeds such as cloud computing.

2.3 MTD Techniques Evaluation

Security analysis plays an important role in evaluating a given system’s security with

different perspectives such as attacker’s and defender’s points of view [157]. Security

analysis can be also incorporated into the MTD techniques to evaluate the effectiveness

of MTD techniques. In this section, we provide a study on the methods, tools, and metrics

which can be used to evaluate the effectiveness of MTD techniques using security analysis

and modeling (such as Graphical Security Models (GSMs)).

MTD Techniques Evaluation 13

METRICS
in

MTD

Shuffle

Redundancy

Diversity Combinations
of MTD

Techniques

Figure 2.2: Metrics used for MTD techniques

2.3.1 Metrics for MTD Techniques

Figure 2.2 shows various metrics which can be utilized to evaluate the effectiveness of

MTD techniques. They can be categorized into three main metrics including Security,

Performability, and Economic Metrics. Security metrics can evaluate a given system in

terms of both attacker’s perspective (such as Attack Cost, and Return on Attack [157])

and defender’s perspective (such as System Risk, Attack Success Probability). Likewise,

performability metrics can evaluate proposed MTD techniques for the given system in

terms of performance alongside the availability which includes the metrics such as Relia-

bility, Availability, Overhead, and so forth. The third group are economic metrics which

mainly evaluate the proposed defensive techniques against incurred costs such as Return

on Security Investment metric. GSMs are useful tools to model the given system (such

as enterprise networks [156], IoT [53], Cloud [13], etc. [67]) and accordingly evaluate

the related security metrics. GSMs have also used to evaluate the effectiveness of MTD

techniques by computing various metrics [12].

2.3.2 GSM Overview

In this section, we provide a review on GSMs techniques in the literature. Two main GSMs

including Attack Trees (ATs) [131] and Attack Graphs(AGs) [121] have been proposed

in order to model the complex and sophisticated attack scenarios in the formal ways. All

potential and possible attack ways in a given system (such as a network) through which

the attacker can compromise a target in that system (e.g., compromising a server) can

14 A Survey on MTD techniques

be captured and described by ATs and AGs. Each path in an AT shows how an attacker

can access to any crucial parts of a network leading to undesirable states. In [46], the

authors defined four main phases which can model and represent of attacks by using

GSMs which includes Information Gathering, Construction of GSM, Visualization and

Analysis. Evaluating a system using GSMs usually undergoes the following steps [46]:

• Information Gathering: This phase is the preliminary step for security modeling in

which the required information about the system need to be gathered. This informa-

tion may include configurations, security rules, vulnerabilities, network topologies,

hosts and virtual machines, connectivities of the network’s components, etc.

• GSM Construction: The gathered information obtained from the previous phase can

be used to construct GSMs. In this phase, possible attack scenarios can be captured

based on hosts and vulnerabilities. However, most of the proposed AGs and ATs

suffer from scalability problem for large networks.

• Security Analysis and Visualization: The final step is the evaluation of the given

system using the constructed GSM. The security analysis process can incorporate

many security metrics into the GSMs and evaluate the given system based on the

various metrics of different aspects, as shown in Figure 2.2.

Proposed GSMs and Development: We have summarized and highlighted relevant

GSM approaches in Figure 2.3. In [104], the authors proposed a method to model system’s

behavior and construct an AG through a simpler rank-based automaton (NFA). In [91],

the authors proposed a measurement using AG for ranking and evaluating the security

levels of a given system. They used both quantitative and qualitative security analysis

approaches and utilized Bayesian Networks (BN) for their evaluation. The work presented

in [84] used logical expressions and conditions to do statistical analysis for AG. In this

method, a countermeasure solution is selected based on the cost-related criteria. However,

they didn’t explain how they generated the proposed AG in their methodology. Moreover,

there have been numerous studies incorporating artificial intelligent (AI) approaches for

security analysis of the given networks such as machine learning (ML) techniques (Gen-

eral ML and Classification-based ML [38, 39], and Reinforcement learning [147, 166]),

generic algorithms, and so on [47]. In the study conducted by [152], the authors intro-

duced AG-based security metrics. They used a combination of hosts’ vulnerabilities and

attacker’s activity status to provide a security measurement using vulnerability informa-

tion and probabilities techniques. However, the proposed methods are not scalable for

large networks. In [69], the authors proposed a method to address the scalability issue

of AGs by reducing the size of big graphs to smaller, but critical, ones. They used linear

Depth First Search (DFS) and Boolean Clauses methods for this reduction. They could

reduce the attack graph size by 15 percent. However, their proposed method cannot ad-

dress the scalability issues appropriately in a very large context. In [122] the authors used

Insights and Directions for this Research 15

Figure 2.3: Development of different GSMs approaches

Bayesian AGs to introduce a method to measure vulnerability as a metric called vulnera-

bility scoring system. However, most of the proposed approaches and methods focusing on

AG or AT suffer from scalability problem, especially, in larger networks. To address the

aforementioned issues, Hong et al. [61], proposed a formal model based approach named

Hierarchical Attack Representation Model (HARM) consisting of two hierarchical layers

for capturing network reachabilities (as an AG), and network vulnerabilities (as an AT)

in separate layers. HARM is more scalable and adoptable than other formal GSMs [62].

In the proposed method, topological information can be captured at the higher layer and

vulnerability information remains in the lower layer of the model. However, this two-

layered approach has been further developed and used in many studies [52, 64, 155] due

to ease of uses and its merits to address the scalability problem.

2.4 Insights and Directions for this Research

Based on the limitations discussed for MTD techniques in this chapter such as Shuffle,

Diversity, and Redundancy, we conduct an extensive investigation on the methods and

practice for followings: 1) Combining different MTD techniques, 2) Evaluating the effec-

tiveness of each combined MTD technique using various security metrics. 3) Implementing

and adaptation of the MTD techniques in a realistic cloud platform. Each of the pointed

contributions are extensively investigated and discussed in the following chapters of this

study (Chapters 3 – 6).

Chapter 3

Evaluating the Effectiveness of

Shuffle and Redundancy MTD

Techniques on the Cloud

Summary

Moving Target Defense (MTD) is a defensive strategy to thwart adversaries by contin-

uously shifting the attack surface. The MTD techniques can be applied to the cloud

computing to make the cloud more unpredictable, hence more difficult to exploit. There

are many MTD techniques proposed, and various metrics are used to measure their effec-

tiveness. However, it is difficult to assess the effectiveness of MTD techniques when they

are used in combinations. In this chapter, we propose a formal security assessment ap-

proach to evaluate the effectiveness of Shuffle and Redundancy techniques using security

modeling. We use security metrics, such as system risk (Risk) and system reliability (Reli-

ability), to evaluate those MTD techniques. In particular, we investigate how the security

of the cloud changes when two categories of MTD techniques, Shuffle and Redundancy,

are used in combination. We also present approaches to find important components in the

cloud using Network Centrality Measures and the size of the cloud and evaluate the trade-

off between security and performance in terms of the Risk and Reliability, respectively.

Our experimental analysis shows that combining the Shuffle and Redundancy MTD tech-

niques could enhance the security of the cloud with the trade-off between the Risk and

Reliability, which can be managed using the proposed security assessment approach.

17

18 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

3.1 Introduction

Cloud computing (cloud) offers scalability, on-demand service, cost reduction, resilience,

and available network access services to its customers. Many studies have explored im-

plementing reactive and proactive security mechanisms to improve the security of the

cloud computing resources and services [79, 167], but there is a lack of knowledge to

evaluate how the security posture of the cloud changes when multiple security mecha-

nisms are used in combination. As a result, there may be new vulnerabilities arising from

unexpected dependencies or conflicts created when using multiple security mechanisms

together [6]. Since cloud customers rely on the service provider for various services includ-

ing data storage, infrastructure and services, security issues must be addressed for the

customers to fully trust on cloud services offered by public and private cloud providers

(e.g. Microsoft Azure, Amazon Web Service (AWS), Google Cloud, and so forth). Moving

Target Defense (MTD) is a proactive defensive security solution in which it makes attack

surface dynamic, unpredictable, and intricate for attackers [119,160,164,169]. Unlike the

traditional security approaches that rely on detecting and removing vulnerabilities, MTD

techniques aim to increase the attack efforts so that the attackers need to spend more

resource (e.g., times and costs) to exploit the target system. However, most proposed

MTD techniques evaluate their effectiveness using different evaluation methods. Thus, it

is difficult to understand how the effectiveness of techniques changes when multiple MTD

techniques are used together.

MTD techniques can be adopted in different cloud’s deployment layers such as ap-

plication, virtualization, hardware layers. For instance, Virtual Machine Live Migration

(VM-LM) is a Shuffle technique in the virtualization layer. VM-LM is a feature on the

clouds which can be enabled by the cloud provider and a VM can migrate from one

physical host to another one [107]. The main goal of deploying VM-LM is to increase

uncertainty for the attackers (e.g. to make information gathered by the attacker useless

and obsolete). Moreover, VM replication is an example of Redundancy technique in the

virtualization layer of the cloud through which different replicas of a VM can be created

so that each replica has the same feature as the main VM. VM replication increases the

reliability of the cloud by creating redundant VMs (e.g. crucial servers) so that if any

crucial VM is compromised, others can provide the same services leading to high service

quality for the users. OS diversification is a Diversity technique in the virtualization layer

which can replace a VM’s instance by another instance or image [9].

MTD techniques can be used individually or in combinations. Combining different

MTD techniques would potentially benefit by grasping the strong points of each tech-

nique and can introduce additional benefits (such as enhancing security and decreasing

the system interruption) which may not be possible under deployment of a single MTD

technique. For instance, Redundancy techniques can be used to increase the service avail-

ability (fewer service interruption) and can be measured with system Reliability, while

other MTD techniques like Shuffle are used to increase the security of a system. However,

Introduction 19

if Redundancy is not properly deployed, it may cost the cloud providers and also it may

increase the attack surface. Thus, MTD techniques can be combined aiming to increase

both security and reliability. However, combining MTD techniques may not necessarily

improve the security of the system, because the operations of deployed MTD techniques

may conflict. For example, application diversity to variate attack paths may become inef-

fective if a host shuffling technique changes the attack path. Therefore, it is of paramount

importance to evaluate the combinations of the MTD techniques [11].

When it comes to the real cloud, deploying MTD techniques depends on the con-

straints defined by the cloud providers. For instance, for deploying OS diversification (as

a Diversity technique) on the cloud, the cloud providers need to purchase the new OS,

distributions, licenses, etc. which may cost the cloud providers. The economic impact of

deploying Diversity techniques on the cloud providers does not mean that Diversity should

not be deployed or combined with the other MTD techniques at all. However, it needs

more investigation to find a trade-off between the economical impacts against security

achievements. Considering and evaluating all combinations of all MTD techniques over

the system’s layers makes the scope too large. In this chapter, we only focus on combining

the two Shuffle and Redundancy MTD techniques. The investigation and evaluation of

other combinations including Diversity techniques is out of scope of this chapter and is

presented in Chapters 4 and 5.

Graphical Security Models (GSM), such as Attack Graphs (AGs) [139] or Attack Trees

(ATs) [132], can be used to formally assess the security of systems and networks [67,89].

They utilize various security metrics to represent the security posture of the system

(e.g. System risk, reliability, Attack Cost, etc.), which can provide different aspects of a

system’s security [157]. Consequently, MTD techniques can be incorporated and modeled

using GSMs to assess their effectiveness [66]. This helps to find better strategies and

formulate the possible optimal MTD solutions before deploying them. However, there is

a lack of studies on how MTD techniques can be combined, especially in the context of

the cloud. Many studies proposed new MTD techniques at different layers. However, a

few of them focused on evaluating the effectiveness of combined MTD method on the

infrastructure layer of the cloud. Moreover, most of the proposed literature on MTD have

not investigated on comprehensive security analysis using GSMs (like AG, AT, HARM,

etc.) to compute important security metrics.

To address the aforementioned problems, we propose methods to evaluate the com-

binations of MTD techniques, taking into account the Shuffle and Redundancy, using a

GSM named HARM [64].

The preliminary results and earlier version of this chapter is given in [13]. In addition to

the investigations we have already made in the earlier version, we make new contributions

which, to the best of our knowledge, has not been researched by other works. The new

contributions of this chapter are summarized as follows.

20 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

• We provide the formal definitions for the MTD techniques Shuffle (S) and Redun-

dancy (R) and the combinations of these two (S+R) explicitly as the functions

applied on HARM and provide the pseudocodes for each MTD technique with re-

gards to the defined formalism;

• We present and formalize the system unattackability metric as an additional compo-

nent to investigate the effect of deploying S+R. We estimate system Unattackability

under various attack rates to show how resistant the system is against varying de-

grees of attack rates. We demonstrate that the combination of two MTD techniques,

such as S+R, contributes the likelihood to increase the system Unattackability;

• We conduct a regression analysis between two Network Centrality Measures (NCMs)

Betweenness and Closeness against Shuffle, Redundancy, and S+R. We conclude

that there is a strong relationship between the two NCMs and the Redundancy

technique alone but no other MTD techniques;

• We include a small scale cloud system to help for understand the formalization and

calculation steps. Besides the small scale cloud example, we used a larger cloud-

band model, as the cloud example in a larger scales for more in-depth analysis. We

utilize Firewall Decision Diagram (FDD) to concretely demonstrate the way the

connectivity among network components are captured under this system. We show

how this insight is used for the HARM construction.

This chapter is organized as follows. A review of the related work is summarized

in Section 3.2. In Section 3.3, we define the necessary concepts, definitions, mathemat-

ical notations, and propose formalisms for MTD techniques. In Section 3.4, we analyze

the MTD techniques using HARM. Discussion and limitations of the current study are

presented in Section 3.5. Lastly, we conclude this chapter in Section 3.6.

3.2 Related Work

Most of the existing works only focused on the novelty on the proposed strategies and lay-

ers of implementation, like defensive method after detecting an attack, low-level shuffling

techniques, finding a suitable time-period for applying the IP mutation frequently, dealing

with worms and web bots through MTD [31,151], and so on. However, there are very few

works evaluating the MTD techniques especially for cloud computing needing precise and

scalable security analysis. Carroll et al. [31] proposed a port number shuffling technique,

and evaluated the effectiveness using a theoretical analysis in terms of practicability using

the proposed probabilistic models. The attack success probability versus connection lost

rates are evaluated. Luo et al. [100] also proposed a port number-based shuffle MTD tech-

nique, where they compared the attack success rate for evaluation. Another shuffle-based

MTD technique, particularly for virtualized systems, is to use VM migration. Danev et

Preliminaries 21

al. [45] proposed a VM Migration in the cloud in a secure way by using an extra physi-

cal Trusted Platform Module, and trusted parties for the migration process. Okhravi et

al. [116] proposed an application migration technique in the virtualized system to avoid

malicious attackers exploiting application vulnerabilities (e.g. critical and vulnerable run-

ning application). They used live migration technique for critical applications in different

platforms so that attacker’s reconnaissance process to find a specific target or platform

becomes ineffective. Nguyen and Sood [111] proposed a system architecture for MTD

named “SCIT-MTD” aiming to secure web applications on the cloud through minimizing

the attack surface for the servers compromising the system. They argued that the velocity

of moving, diversity of various configurations, and redundancy of active servers (VMs) are

important factors to enhance the security availability of the entire system. Bardas et al.

in [21] presented an MTD platform for Cloud-Based IT Systems named MTD CBITS us-

ing an Automated eNterprise network COmpileR (ANCOR) [149] (which is a framework

for creating and managing the cloud-based IT systems). They developed an automated

platform for IT system in which any component can be replaced with a new version aim-

ing to increase the attack difficulty. Indeed, they adapted a MTD strategy on a real cloud

(e.g. OpenStack platform) using live instance replacement technique. They showed the

practicality of their approach and analyzed the security benefits of their proposed method.

They also evaluated the effectiveness of their MTD technique by analyzing the cost and

security benefits of the proposed MTD platform. They showed that the deploying MTD

technique based on live instance replacements has a low impact (negligible performance

overhead) on the normal operation of the system. However, this technique can be cate-

gorized as a Diversity technique in which the systems’ components can be replaced with

another variant serving the same functionality. Kampanakis et al. in [82] investigated the

advantage and disadvantages of using MTD technique through SDN and the methods for

implementing it. They used a shuffle method for the host randomization and mutation.

The evaluation was based on the overhead against the performance of using the MTD

through SDN. However, they did not use a formal security models to perform in-depth

security analysis and evaluation.

Even though many MTD techniques have been proposed in the literature, there is still

a lack in combining MTD techniques, also the effectiveness of the proposed techniques

needs to be evaluated in order to ensure that security requirements are met besides

performance.

3.3 Preliminaries

In this section, we define and recall the required notations and mathematical formalisms

for security analysis models, metrics and calculation method, MTD techniques, and pseu-

docodes through a cloud example. The defined notations will further be used in the other

sections.

22 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

Figure 3.1: A cloud system example

Figure 3.2: FDD diagram for cloud zones.

3.3.1 System Setting and Configuration

We set up a cloud system consisting of three subnets; Demilitarized Zone (DMZ), Pro-

tected Network (PN), and Resource Zone (RZ), as shown in Figure 3.1. Each subnet

contains hosts, and each host holds up to four Virtual Machines (VM). VMs hosted in

the DMZ are installed with Windows 10 operating system (OS), and VMs in PN and RZ

are installed with Enterprise Linux OS. The entry point of the cloud from the Internet

is the interface 0 of the gateway router (R1) connecting the router to the Internet, and

interface 1 and 2 connect the gateway router to inside cloud, see in Figure 3.1. We assume

that an attacker resides outside of the network and might exploit the vulnerabilities of

the operating systems to gain access to the network. We assume that the attacker plans

to compromise the Database (DB) in the RZ. The system’s configurations, connectivi-

Preliminaries 23

Table 3.1: OS Vulnerabilities

OSID CVE ID CVE BS Impact Exploitability

W10v0 CVE-2017-8530 5.8 4.9 8.6
W10v1 CVE-2017-8495 6.0 6.4 6.8
W10v2 CVE-2016-7247 7.5 3.6 3.9
W10v3 CVE-2016-3209 5.0 2.9 10
W10v4 CVE-2016-0019 9.3 10 8.6
Linuxv0 CVE-2016-7034 6.8 6.4 8.6
Linuxv1 CVE-2016-4278 5.0 2.9 10
Linuxv2 CVE-2016-10309 7.5 6.4 10
Linuxv3 CVE-2016-10307 10 10 10
Linuxv4 CVE-2016-10066 4.3 2.9 8.6

Table 3.2: Cloud firewall traffic and access control rules

VM
Default Details

Access permit only from
OS Zone

VM1 W10 DMZ Internet, VM3

VM2 W10 DMZ Internet, VM3

VM3 W10 DMZ Host1, Host4
VM4 W10 DMZ VM2, VM6

VM5 Linux PN Host2, Host4, VM7

VM6 Linux PN Host1, Host3, VM9

VM7 Linux PN Host5, Host6, VM5

VM8 Linux PN Host5, Host6
VM9 Linux PN Host5, Host6, VM6

VM10 Linux RZ Host5
DB Linux Database Host6

ties, and constraints are assumed as follows (we use the following assumptions for the

simplicity in description and models and these assumptions could be relaxed):

• All VMs are active and never suspended

• A VM can migrate to another host, and the downtime for that is neglectable

• A VM cannot migrate to other subnets

• Only VM1 and VM2 are connected to the Internet

• VM10 on Host6 cannot be migrated due to system constraints

• All VMs in Host2, Host4, and Host5 are interconnected, and VM1, VM4 are always

connected to a VM in Host2 (if any)

• VM7 and VM8 are always connected

• Only VM10 can access to the Database (DB)

24 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

A

VM1

VM2

VM3

VM4

VM5

VM6

VM9

VM8

VM7

VM10

.V M10 Compromised

OR

Lv4Lv3Lv2Lv1Lv0

VM1 Compromised

OR

Wv4Wv3Wv2Wv1Wv0

Figure 3.3: Two-layer HARM of the cloud example

Table 3.1 shows the vulnerabilities for Windows 10 (W) and Linux (L) OS. Here,

we only modeled the vulnerabilities that can bypass firewalls and authentications. There

are five of those vulnerabilities for the Windows OS, which are denoted as W10v0 up to

W10v4, and similarly for the Linux OS from Linuxv0 up to Linuxv4. Further information

regarding these vulnerabilities and measures can be found in the National Vulnerability

Database (NVD) [106].

In our cloud example, we assume that firewall rules defined in routers (R) control the

traffic passing between zones. We define Firewall Decision Diagram (FDD) [97] mapping

every packet between zones and the Internet (I). We assume that the firewall rules are

applied to three routers R = {1, 2, 3}. As we defined before, we have five zones including

the Internet Z = {I,DMZ,PN,RZ,DM}. We define source zone S such that S ∈ Z, and

destination zone D such that D ∈ Z. We donate a to traffic acceptance and d to traffic

discard. Figure 3.2 demonstrates the FDD diagram for controlling traffic between zones

in the cloud system. Also, Table 3.2 shows the VMs access control through an access list

inside the hosts.

3.3.2 HARM Construction

We construct a two-layered HARM [66] to model and evaluate the MTD techniques.

Using the HARM, we calculate the Risk as the seminal metric for assessing the overall

security of the network. We use an AG and an AT in the upper and lower layers of

the HARM respectively. The former can capture the reachability between VMs, and the

Preliminaries 25

latter captures the vulnerabilities existing on a VM. Further details of conducting the

Risk analysis using the HARM is given in Section 3.3.8. HARM can be formulated as

below [66].

Definition 1. HARM can be defined as a 3-tuple H = (U,L,C) where U refers to the

upper layer corresponding to an Attack Graph (AG), and L represents the lower layer

in which an Attack Tree (AT) is constructed. We define C = U → L as a one-by-one

mapping of the upper layer to the lower layer.

Definition 2. The upper layer of HARM U can be defined as a bidirectional graph

U = (VM,E), where VM = {vm1, vm2, . . . , vmn} is a set of VMs in the cloud, with

|VM | = n, and E ⊆ VM2 = {(i, j)|i, j ∈ VM} is a set of reachability of VMs. Then,

vmi shows a specific VM in the network (i ∈ {1, . . . , n}). We can show the bidirectional

graph of the VMs through a non-symmetric adjacency matrix a, in Equation (3.1). We

define ei,j ∈ E as a bi-directed edge showing connectivity between vmi and vmj .

aij =

1 if (i, j) ∈ E

0 if (i, j) /∈ E
(3.1)

Definition 3. The lower layer L uses an AT, which is defined as a 3-tuple L =

(V,G, root). Then, V = {v1, v2, . . . , vm} is a set of vulnerabilities in a VM denoting

leaves of the tree. We denote the number of vulnerabilities in each VM as |V | = m, and

G is a set of logical gates G = {AND-gate, OR-gate} constructing the inner nodes of

tree, and root is the corresponding node in U .

Figure 3.3 shows the constructed HARM for the example cloud system.

Example 1. We formulate the HARM for cloud system (cs) shown in Figure 3.1 as

Hcs = (Ucs, L
VMcs
cs , Ccs), where Ucs is the AG of the cloud system represented in the

upper layer of HARM and LVMcs
cs denotes an AT in the lower layer corresponding to a

VM in the upper layer, and Ccs = VMcs → LVMcs
cs connects a VM in the upper layer to

the corresponding lower layer Lcs.

Then, we can define the upper layer of HARM for cloud system as Ucs = (VMcs, Ecs),

where VMcs = {A, vm1, vm2, vm3, vm4, vm5, vm6, vm7, vm8, vm9, vm10}, and the con-

nectivity of VMs is as Ecs = {(A, vm1), (A, vm2), (vm1, vm3), (vm2, vm3), (vm2, vm4),

(vm3, vm5), (vm3, vm6), (vm4, vm6), (vm5, vm6), (vm5, vm7), (vm6, vm9), (vm7, vm8),

(vm7, vm10), (vm8, vm10), (vm9, vm7), (vm9, vm8), (vm9, vm10)}.
The lower layer of vm3 in the cloud system can be defined as Lvm3

cs = (VW10, G, vm3),

where VW10 = {W10v0 ,W10v1 ,W10v2 ,W10v3 ,W10v4} is a set of OS vulnerabilities in

vm3 (obtained from Table 3.1), and G=OR-gate.

26 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

3.3.3 Network Centrality Measures on HARM

We compute NCMs in order to find a set of network components serving a crucial role

in an event of an attack without exhausting all possible attack paths and named them

as Importance Measures (IMs). We compute NCMs in the upper layer of the HARM to

obtain the IMs [63]. In here, we consider two main NCMs; Betweenness Centrality (Cb)

and Closeness Centrality (Cc) [27]. However, there are other NCMs measures which can

be used on MTD techniques (e.g., Harmonic Closeness, PageRank, Eigenvector, etc.), but

they are out of the scope of this study. NCMs can be formulated based on the upper layer

of HARM defined in definition 2. Then, we can rank the VMs based on their NCM values

as follows.

Definition 4. Let d be a function calculating geodesic distance of two VMs in U , then

we can calculate the Cc value of a specific VM in the network as Equation (3.2), and Cb

value of a VM can be computed as Equation (3.3).

Cc(vmi) =

(
1

n− 1

∑
j 6=i∈VM

d(vmi, vmj)

)−1

(3.2)

Cb(vmi) =
∑

s,t∈VM\{vmi}

δst(vmi)

δst
, (3.3)

where δst is a function calculating the total number of the shortest path between each pair

of VMs (s, t) ∈ VM , and δst(vmi) denotes the number of those paths passing through

the specific VM (vmi).

3.3.4 Selection Criteria

We consider some criteria to select VMs on the cloud in order to deploy MTD techniques

on them. We defined three Selection Criteria (SC). (i) The VMs can be ranked and

selected based on their Cb values , (ii) the SC can be based on Cc value , or (iii) none of

them (i.e. random VM is selected using random selection function denoted by f), as in

Equation (3.4).

k =

arg max

vmi∈VM
Cb(vmi), if SC = Cb

arg max
vmi∈VM

Cc(vmi), if SC = Cc

f(1, |VM |), otherwise

(3.4)

Then, the value of k determines the argument of the VM that needs to be selected

for deploying MTD technique on. For instance, k = 3 shows that MTD technique should

be applied on vm3.

Preliminaries 27

3.3.5 Shuffle Formalism

We formulate the Shuffle technique in which the shuffle function is applied to HARM as

follows.

Definition 5. Let S(H, k) be a shuffle function on HARM where 1 ≤ k ≤ n, and k

denotes a specific VM that should be selected for shuffling. Then the result of shuffle

function is as S(H, k) = Hs. We define Hs = (U s
k, L, C) where U s

k is the transformed AG

resulted from shuffle on vmk in the upper layer of the HARM and can be represented as

U s
k = (VM,E′), where E′ ⊆ VM × VM .

Note that shuffle function S(H, k) preserves L and C because it only changes reacha-

bility of VMs in the upper layer of HARM.

3.3.6 Redundancy Formalism

We formulate the Redundancy technique in which the redundancy function is applied to

HARM as follows.

Definition 6. Let R(H, k, r) be a redundancy function on HARM where k denotes the

VM that should be replicated for r times, then the result of redundancy function is as

R(H, k, r) = Hr, where 1 ≤ k ≤ n and r ≤ l, and l is a limit for replication of a VM.

Thus, vmr
k shows the replicated VM in the upper layer. We define Hr = (U r

k, L
r
k, C) where

U r
k is a transformed AG resulted from replication of vmk for r times in the upper layer

of HARM and can be represented as U r
k = (VM ′, E′), where VM ′ can be shown as:

VM ′ = VM ∪
(l⋃
r=1

VM r
k

)
and |VM ′| = n+ r, and E′ ⊆ VM ′ × VM ′.

Replication of VMs in the upper layer results in adding vulnerabilities in the lower

layer of HARM, then we can define the lower layer as follows.

Definition 7. Let V r be a set of vulnerabilities caused by replication of a VM in the upper

layer of HARM, then the lower layer of HARM can be updated as Lr
k = (V ′, G, root),

where V ′ = V ∪ V r.

Unlike shuffle function, R(H, k, r) changes L and C with new vulnerabilities resulting

from VM replication.

3.3.7 Combination of S+R Formalism

We formulate the combination of Shuffle and Redundancy (S+R) as a function on HARM

as follows.

28 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

Definition 8. Let S+R(H, ks, kr, r) be a S+R function on HARM where kr shows the

VM that is selected to be replicated for r times, and ks is the VM selected to be shuffled.

Then the result of S+R function is as S+R(H, ks, kr, r) = Hs+r, where 1 ≤ ks, kr ≤ n and

0 < r ≤ l. Thus, vmr
kr

shows the replicated VM and vmks ∈ VM is the VM that is shuffled

in the upper layer . We define Hs+r = (U s+r
kr,ks

, Ls+r
kr
, C) where U s+r

kr,ks
is a transformed AG

in the upper layer in which S+R is deployed on and Ls+r
kr

is the corresponding transferred

AT in the lower layer. Then, the former can be represented as U s+r
kr,ks

= (VM ′, E′), where

VM ′ can be shown as:

VM ′ = VM ∪
(l⋃
r=1

VM r
kr

)
and |VM ′| = n + r, and E′ ⊆ (VM + r) × (VM + r). Next, the latter can be shown as

Ls+r
kr

= (V ′, G, root), where V ′ = V ∪ V r, and V r is a set of vulnerabilities caused by

S+R in HARM.

3.3.8 System Risk Analysis

System Risk (Risk) is used to evaluate the effects of MTD techniques, which can be

calculated as the product of exploitability of a VM (attack success probability for a

VM) and the total impact of the attack on that specific VM [128]. Then, a sum of

the all risks associated with the all VMs in the all attack paths in a system defines

a total risk of a system. We first construct the HARM for our example network using

the connectivity information of VMs obtained from system constraints (e.g. Firewall

rules) and vulnerabilities information listed in Table 3.1. Then, we show how HARM can

compute the Risk value. As we defined in Definition 2, we assume that the upper layer of

HARM contains a set of VMs, where n is the number of VMs, and each vmi ∈ VM has

up to a m number of vulnerabilities. Then, there exists a vulnerability vi ∈ vmj | 0 ≤
i ≤ m, 0 ≤ j ≤ n.

Lower layer of HARM includes two logical gates, AND-gate ∈ G, OR-gate ∈ G con-

necting the vulnerabilities exist in this layer. Let ANDx represents a set of vulnerabilities

and other logical gates connected by the AND-gatex, and the ORx shows a set of vul-

nerabilities and other logical gates connected by the OR-gatex. Then, let p(vmj) be the

probability of compromising the vmj , and p(vi) is the probability of attack success when

exploiting the vulnerability vi. Also, we let p(ANDx) be the probability of attack success

for exploiting all vulnerabilities grouped for that AND-gatex, and p(ORx) be the prob-

ability of attack success for exploiting any vulnerability for that OR-gatex, respectively.

Then, we can calculate the probability of attack success for vulnerabilities grouped by

ANDx or ORx gates as shown in Equations (3.5) and (3.6), respectively.

p(ANDx) =
∏

vj∈ANDx

p(vj) (3.5)

Preliminaries 29

p(ORx) = 1−
∏

vj∈ORx

(
1− p(vj)

)
(3.6)

Using Equations (3.5) and (3.6), we can calculate the probability of an attack success

to compromise vmi as shown in Equation (3.7) denoted by the top-gate, TOP .

p(vmi) = p(TOP) | TOP ∈ {ANDx, ORx} (3.7)

We define the impact of an attack exploiting a vulnerability vi as Ivi . Then, we define

the impact of an attack exploiting vmi as denoted as Ivmi , which is shown in Equation

(3.8).

Ivmi = max
vj∈vmi

(Ivj) (3.8)

Then, we denote the risk associated with vmi as Riskvmi , which is calculated by the

product of the probability of an attack success and the impact of an attack to vmi as

shown in Equation (3.9).

Riskvmi = p(vmi)× Ivmi , (3.9)

Here, we assume that each attack path is independent to other attack paths in the

system. Then, we can define the Risk as a cumulative sum of all the risk associated

with VMs in all possible attack paths, paths, where path = (vm1, vm2, . . . , vmn) ∈
VM × VM × . . .× VM | path ∈ paths defines a series of VMs that form an attack path

such that vmi is adjacent to vmi+1 for 1 ≤ i < n. Finally, the total Risk for cloud (Riskc)

value can be calculated as shown in Equation (3.10).

Riskc =
∑

vmi∈path∈paths

Riskvmi (3.10)

3.3.9 Reliability Analysis

System Reliability (Reliability) is calculated using SHARPE (Symbolic Hierarchical Au-

tomated Reliability and Performance Evaluator) [130], which uses a reliability graph to

quantify the chance of the existence of a path between an entry point of the network and

the target (e.g. a Database). We assume that time to failure for each VM are exponen-

tially distributed. We can estimate a VM failure probability F (t) at the time t using a

cumulative exponential distribution [159]. Hence, we define the Reliability of a VM as the

probability that the failure on a VM has not occurred at time t, R(t) = 1−F (t). Finally,

we can use SHARPE to evaluate the Reliability of the whole system (cloud) based on a

given time and failure rate. To this purpose, the upper layer of the HARM can be fed

into SHARPE as a reliability graph. Then, SHARPE can evaluate the robustness of the

cloud over the time by considering various given failure rates.

30 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

Algorithm 1: Shuffle technique on HARM

Data: H = (U,L,C), SC /* Selection Criteria */

Result: Hs = (Usk , L, C)
1 begin
2 foreach vmi ∈ {vm1 . . . vmi} do
3 if SC == Cb then
4 β = Cb(vmi)
5 Add β into Zvmi
6 else if SC == Cc then
7 ζ = Cc(vmi)
8 Add ζ into Zvmi
9 end

10 end
11 k ← [Max(Zvmi)]
12 foreach ei,j ∈ E do
13 if i==k or j==k then
14 Remove ei,j form U
15 end
16 Create new edge ex,j in U

17 end

18 return Usk /* Only U in H is changed */

19 end

3.4 Deploying MTD Techniques

MTD techniques can be applied to different layers of a network, e.g. Application Layer,

Virtual Machine, Host, Hypervisor, and Hardware [5, 151, 164]. In this chapter, we con-

sider deploying Shuffle, Redundancy, and Combination of both techniques in the Virtual

Machine layer.

To deploy Shuffle technique, we utilize VM-LM in the cloud. In this technique, a

VM can migrate from one physical host in the cloud to another host (subject to system

constraints). Any changes in the cloud with regards to the reachability of VMs and

vulnerabilities of OS can be captured by HARM. We present the algorithms for Shuffle

technique based on the Shuffle formalism (3.3.5) in Algorithm 1. Then, we apply VM

replication to deploy Redundancy technique. We denote k number of replications of a VM

as k-R. We present the algorithms for Redundancy technique based on the Redundancy

formalism defined in 3.3.6 in Algorithm 2. Finally, we combine both VM-LM and VM

replication to deploy the S+R technique.

3.4.1 MTD Technique Analysis

In the previous section, we defined the formalisms for Shuffle, Redundancy, and S+R

techniques in conjunction with HARM. In this section, we analyze the effectiveness of

the MTD techniques through simulation. We simulated a large Cloud-band model as

Deploying MTD Techniques 31

Algorithm 2: Redundancy technique on HARM

Data: H = (U,L,C), SC /* Selection Criteria */

Data: R /* R is the number of replicas */

Result: Hr = (Urk , L
r
k, C)

1 begin
2 foreach vmi ∈ {vm1 . . . vmi} do
3 if NCM == Cb then
4 β = Cb(vmi)
5 Add β into Zvmi
6 else if NCM == Cc then
7 ζ = Cc(vmi)
8 Add ζ into Zvmi
9 end

10 end
11 k ← [Max(Zvmi)]
12 foreach vmi ∈ {vm1 . . . vmi} do
13 if vmi == k then
14 for r = 1 to R do
15 Create vmn+r

16 V r ← set of new vulnerabilities
17 Create Lrk(V r, G, vmn+r)
18 Add vmn+r into VM
19 foreach ei,j ∈ E do
20 if i==k then
21 Create new edge en+r,j in U ;
22 end
23 if j==k then
24 Create new edge ei,n+r in U ;
25 end

26 end

27 end

28 end

29 end

30 return Urk , L
r
k, C /* U,L in H are changed */

31 end

used in [13]. This model includes two cloud-band nodes that can hold up to 450 VMs.

Only a few VMs in the Cloud-band are connected to the Internet (i.e., front-end servers).

We assume there is an attacker outside the cloud, and the attack goal is to compromise

the resource node by compromising VMs in the attack paths. We assume that VMs can

migrate between the Cloud-band nodes if there is an available space, which rearranges

the logical connections between the VMs. Moreover, it is assumed that all VMs in the

Cloud-bands are using the same OS.

In this chapter, we analyze the effectiveness of our deployed MTD techniques includ-

ing Shuffle, Diversity, and combination of both. We use HARM and SHARPE to analyze

32 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

192.168.1.1

192.168.1.2

192.168.1.3
192.168.1.4

192.168.1.5
192.168.1.6

192.168.1.7

192.168.1.8

192.168.1.9

192.168.1.10

192.168.1.11

192.168.1.12

192.168.1.13

192.168.1.14

192.168.1.15

192.168.1.16

192.168.1.17

192.168.1.18

192.168.1.19

192.168.1.20

192.168.1.21

192.168.1.22

192.168.1.23

192.168.1.24

192.168.1.25

192.168.1.26

192.168.1.27

Target

192.168.1.29

Attacker

VM Compromised

OR

Lv4Lv3Lv2Lv1Lv0

VM Compromised

OR

Lv4Lv3Lv2Lv1Lv0

VM Compromised

OR

Lv4Lv3Lv2Lv1Lv0

VM Compromised

OR

Lv4Lv3Lv2Lv1Lv0

VM Compromised

OR

Lv4Lv3Lv2Lv1Lv0

VM Compromised

OR

Lv4Lv3Lv2Lv1Lv0

VM Compromised

OR

Lv4Lv3Lv2Lv1Lv0

VM Compromised

OR

Lv4Lv3Lv2Lv1Lv0

VM Compromised

OR

Lv4Lv3Lv2Lv1Lv0

VM Compromised

OR

Lv4Lv3Lv2Lv1Lv0

Figure 3.4: Generated HARM of cloud-band with 50 VMs

system Risk and the Reliability respectively. We measure the changes in Risk and Relia-

bility to evaluate the effectiveness of MTD techniques. In the following sections, we show

the effects of the MTD techniques on the Risk and Reliability metrics. Figure 3.4 shows

an example of upper and lower layers of HARM generated for the Cloud-band model

including 50 VMs.

The Risk and Reliability of the current system have been evaluated based on different

number of VMs in each cloud-band node and illustrated in Figures 3.6a and 3.6b for

further comparison with the results of deploying MTD techniques.

In the following section, we will show how deploying MTD techniques would affect

the overall Risk and Reliability of the current system.

Table 3.3: Correlation of metrics against NCMs

Metrics correlations
Closeness Betweenness

Trend Value Trend value

Risk Linear 70% Exponential 92%
Reliablity None 24% None 28%

Deploying MTD Techniques 33

... Correlation=~92%
y = 4413.2e31.565x

R² = 0.8146

0

2

4

6

8

10

12

14

16

18

20

0 0.05 0.1 0.15 0.2 0.25

R
isk

x
10

00
00

0

Betweenness Value
Figure 3.5: Exponential line fitted among Betweenness and Risk.

0

20

40

60

80

100

120

20 50 100 150 200 250 300 350 400

Ri
sk

10

00

Min (Risk), top 10% IMs

Before VM-LM

Min (Risk), ES

No. of VMs

×

(a)

0

0.05

0.1

0.15

0.2

0.25

20 50 100 150 200 250 300 350 400

R
el

ia
bi

lit
y

Before VM-LM

After Shuffle

No. of VMs

(b)

Figure 3.6: Comparison of the Risk and Reliability after deploying Shuffle in Cloud-band.
(a) the Risk resulting from deploying Shuffle based on the top 10% of Betweenness and
ES. (b) Reliability after deploying Shuffle.

y = 63.499e1.5548x

R² = 0.987
0.117

0.122

0.127

0.132

0.137

0.142

0.147

0.152

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5
No. of Replicas

Ri
sk

 ×
10

00

Associated Risk

Max (Reliabilities in top 10%)

(a)

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5

Re
lia

bi
lit

y

No. of Replicas

Betweenness, Best in top 10%
Closeness, Rank 1
ES (Max and Min)

(b)

Figure 3.7: Comparison of the Risk and Reliability based on Betweenness and Closeness
after deploying Redundancy (from 0-R to 5-R). (a) the result of deploying Redundancy
on the top 10% of Betweenness nodes. (b) the result of deploying Redundancy on the top
10% of Betweenness and Closeness nodes.

34 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

0.11

0.16

0.21

0.26

0.31

40

90

140

190

240

290

0 1 2 3 4 5

Re
lia

bi
lit

y

No. of Replicas

Risk

Reliability

Sy
ste

m
 R

isk

(a)

0.43

0.48

0.53

0.58

0.63

0.68

0.73

0.78

0.83

950

1750

2550

3350

4150

4950

5750

0 1 2 3 4 5

Sy
ste

m
Ri

sk

Re
lia

bil
ity

No. of Replicas

Risk

Reliability

(b)

Figure 3.8: The Result of Deploying Redundancy on the Top 10% of Closeness Nodes
(with 0-R to 5-R) on two Cloud-bands with (a) 20 VMs, (b) 50 VMs.

3.4.2 Shuffle Technique Analysis

We use VM-LM as the base technique of deploying Shuffle in our simulation. Migration

of each VM from a host to another one may affect the overall security of the system.

Thus, we consider the effects of deploying Shuffle technique on both Risk and Reliability

metrics. We used HARM and SHARPE to compute Risk and Reliability respectively.

Migration scenarios only affect the upper layer of HARM which is responsible for cap-

turing connectivities. Thus, we only process the upper layer for Risk analysis and fed

the upper layer into SHARPE in order to compute the Reliability values. It is obvious

that if we consider all possible VM-LM scenarios and analyze the effectiveness of each

migration through an ES method, we can obtain the best migration scenario. However,

this evaluation is very time consuming and is not applicable for the large-sized networks.

To address this problem, we use IMs to find the most important nodes in the network

in terms of centrality. We analyze the correlation of each IMs, Betweenness and Close-

ness, against Shuffle technique. We then compare the results obtained from ES with those

found through IMs.

We first deployed Shuffle technique on each VM and consequently evaluate the Risk

and Reliability corresponding to that deployment using ES. Then, we repeated the evalua-

tion by deploying Shuffle technique on those VMs having higher values of IM (Betweenness

and Closeness). The results are demonstrated in Figure 3.6a showing (i) how deploying

Shuffle can reduce Risk, (ii) whether the best scenario for deployed MTD technique can

be obtained through IMs.

The results show that the best Shuffle deployment scenario minimizing Risk can be

found through analyzing only the top 10% of the most important nodes based on Be-

tweenness, but this method does not guarantee the best Reliability value. As it can be

seen in the Figure 3.6a, the result of IMs analysis is equivalent with ES to find the opti-

mal Shuffle deployment. However, deploying Shuffle so that it minimizes the Risk leads

Deploying MTD Techniques 35

to a mild decrement on the Reliability which is negligible. Figure 3.6b demonstrates the

Reliability values before and after deploying Shuffle.

40

90

140

190

240

290

0

10

20

30

40

50

60

70

0 1 2 3 4 5

Cl
os

en
ess

 -
Ri

sk

Be
tw

een
ne

ss
-R

isk
 ×

10
00

No. of Replicas

Betweenness, Min (Risk in top 10%)

Closeness, Rank 1

(a)

1

2

3

4

5

6

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5

Cl
ose

ne
ss

-R
isk

 ×
10

00

Be
tw

een
ne

ss
-R

isk
 ×

10
00

00
0

No. of Replicas

Betweenness, Min (Risk in top 10%)

Closeness, Rank 1

(b)

y = 715.89e2.654x

R² = 0.9983

y = 63.499e1.5548x

R² = 0.9864

0

20

40

60

80

100

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5

20
VM

s -
Ri

sk
 ×

10
00

50
VM

s -
Ri

sk
 ×

10
00

00
0

No. of Replicas

50 VMs - ExponRegression

20 VMs - Expon Regression

(c)

0

100

200

300

400

500

600

700

20 50 100 150 200 250 300 350 400

Ri
sk

 ×
10

00

No. of VMs

0-R

1-R

2-R

3-R

4-R

5-R

(d)

0

0.5

1

1.5

2

2.5

3

3.5

20 50 100 150 200 250 300 350 400

Ri
sk

 ×
10

00
00

0

10-R

15-R

20-R

25-R

30-R

No. of VMs

(e)

Figure 3.9: Comparing the result of deploying Redundancy technique and Risk

3.4.3 Redundancy Technique Analysis

We denote Redundancy technique with k replicas on a VM as k-R. Note that Redundancy

technique affects both upper and lower layer of HARM, as it introduces new connections

between VMs and new set of vulnerabilities for each created VM. Thus, both layer of

HARM should be updated.

To analyze the effectiveness of Redundancy technique, (i) we perform a regression

analysis to compare Risk and Reliability against the IMs (Closeness and Betweenness).

We first calculate the values of Risk and Reliability after deploying Redundancy technique

(with 3-R) for each VM through the ES. The upper layer of HARM is fed into SHARPE

to obtain Reliability, then perform a regression analysis to show the correlation of each

IMs with the corresponding Risk and Reliability values. Furthermore, for evaluation of

deploying Redundancy, (ii) we investigate on whether the best values of either Risk or

Reliability can be found through analysis of a portion of IMs to avoid using the Exhaustive

Search (ES) methods. Finally, (iii) to what extent deploying Redundancy on those IMs

can affect both Risk and Reliability metrics.

The results of regression analysis on deploying Redundancy in HARM are considered

by comparing the correlation of Risk and Reliability against Betweenness and Closeness.

We construct the HARM consisting of overall 50 VMs based on the Cloud-band model.

36 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

Then, behavior of the system is monitored after three hours has passed in order to calcu-

late Reliability. We deploy three replicas (3-R) for each VM in the top layer of HARM in

order to perform regression analysis. However, other VM sizes and different replicas are

tested to compare the effects of Redundancy on both Risk and Reliability separately. Fig-

ure 3.5 reveals the correlation between Risk and Betweenness, an exponential line fitted

through the data shows a high correlation (92%) between the values. Moreover, other cor-

relations are reported in Table 3.3. We found a moderate linear correlation (70%) between

Closeness with Risk. Other regression results among the IMs (Closeness, Betweenness)

with Reliability are 0.24% and 0.28% respectively, that show no correlation between IMs

and Reliability. Next, we deploy Redundancy up to 5 replicas on the VMs with top Be-

tweenness and Closeness values separately to analyze the effects of these deployments in

term of Risk and Reliability. This analysis is based on two scenarios, (i) considering the

trend of both Risk and Reliability against the number of replicas based on Betweenness

and Closeness, Figures 3.7a and 3.8 respectively, (ii) to investigate whether we can find

the optimal Reliability value through IMs compared with ES, see Figure 3.7b. Then, we

perform other analysis comparing the trend of the only Risk when deploying Redundancy

on a VM with the highest Closeness and Betweenness values with various number of VMs

and replicas, Figure 3.9.

Scenario (i). Figure 3.5 depicts the correlation of Betweenness with Risk obtained

based on 3-R, as it can be obviously seen, there is a very high exponential correlation

about 82% between those values. Thus, we can conclude that deploying Redundancy on

the nodes with high Betweenness causes very high Risk value.

Scenario (ii). Figure 3.7a compares the growth rate of Risk against Reliability with a

various number of replicas on the cloud-band consisting 50 VMs. We deploy the Redun-

dancy to the top 10% of VMs with the highest Betweenness values. The trend of Risk

value is highly exponential, but Reliability grows logarithmic. However, we will later show

that the best value of Reliability cannot be found through deploying Redundancy on a

VM or a portion of them with the highest Betweenness values.

Scenario (iii). Figure 3.8 compares the same factors as Figure 3.7a through two charts

showing cloud-bands with 20 and 50 VMs, but it only considers the growth rate of Risk

and Reliability resulted from deploying Redundancy on only a VM with the highest

Closeness value. We observe that by increasing replicas Risk grows linearly (this rate for

Betweenness is exponential) and Reliability goes logarithmic.

Scenario (iv). Figure 3.7b compares the results obtained through an ES with two

groups of IMs, first, top 10% of VMs having higher Betweenness values and, second, a

VM with the highest Closeness value. As it can be clearly seen, the best values obtained

through ES correspond with the latter group. Thus, the best Reliability value can be

obtained via deploying Redundancy on the first rank of Closeness.

Scenario (v). Figure 3.9 compares only Risk values under different conditions. Figures

3.9a and 3.9b reveal the trend of increasing Risk through both Betweenness and Closeness

Deploying MTD Techniques 37

0

0.5

1

1.5

2

2.5

3

3.5

20 50 100 150 200 250 300 350 400

Ri
sk

 x
10

00
00

0

No. of VMs

10-R
15-R
20-R
25-R
30-R
30-S+R
25-S+R
20-S+R
15-S+R
10-S+R
No-R-No-S
S-only

(a)

0

0.1

0.2

0.3

0.4

0.5

20 50 100 150 200 250 300 350 400

Re
lia

bi
lit

y

2-R - The most IMs (Closeness)

Current system - No Replicas

After Shuffle

S+R

(b)

Figure 3.10: Comparing different combinations of MTD techniques with regard to Risk
and Reliability. (a) comparing the combinations of MTD techniques based on different
Cloud-band sizes and replicas over the Risk. (b) comparing the effects of deploying Shuffle,
Redundancy (2-R), and S+R techniques on the Reliability.

in two different cloud-band sizes including 20 and 50 VMs respectively. Figure 3.9c shows

a deeper analysis to show how fast Risk grows on those two cloud-bands when we deploy

Redundancy based on Betweenness, these rates are 98% and 99% for 20VMs and 50VMs

respectively. Nevertheless, in Figures (3.9d, and 3.9e) we see that the number of replicas

are increased up to 30-R and the number of VMs up to 400 VMs, and observe that trend

of increasing Risk remains linear when we choose a VM with the highest Closeness value

for deploying Redundancy.

To conclude, deploying Redundancy technique increases the Reliability of a system.

The best deployment scenario can be found by analyzing Closeness. The noticeable point

is that Reliability obtained through this deployment grows logarithmic while in the worst

case (if we use Betweenness as IM) it causes an exponential growth in Risk and in the best

case (using Closeness) we have a linear increment in Risk. Hence, Redundancy technique

should be deployed precisely based on the network’s size and specifications. For instance,

in our cloud-band example, the best number of replicas to enhance Reliability with a

reasonable Risk value is 5-R based on Figure 3.8, and more replicas on that particular

VM do not improve Reliability while it increases the system Risk.

3.4.4 Analysis of S+R MTD Techniques

According to results of the previous sections, Shuffle can decrease the Risk of a network

while Redundancy enhances the Reliability. Thus, satisfying those metrics are valuable

in a network, especially in large sized networks or cloud environments. In this section,

we consider the combination of both Shuffle and Redundancy denoted as S+R, and then

evaluate the effectiveness of this technique. Based on the experimental results obtained

from the previous sections, we develop the S+R together with IMs so that we deploy

38 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10

U
na

tt
ac

ka
bi

lit
y

Time

20 VMs
50 VMs
150 VMs
400 VMs

(a) λ=0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10

U
na

tt
ac

ka
bi

lit
y

Time

20 VMs
50 VMs
150 VMs
400 VMs

(b) λ=0.2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10

U
na

tt
ac

ka
bi

lit
y

Time

20 VMs
50 VMs
150 VMs
400 VMs

(c) λ=0.4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10

U
na

tt
ac

ka
bi

lit
y

Time

20 VMs
50 VMs
150 VMs
400 VMs

(d) λ=0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10

U
na

tt
ac

ka
bi

lit
y

Time

20 VMs
50 VMs
150 VMs
400 VMs

(e) λ=0.2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10

U
na

tt
ac

ka
bi

lit
y

Time

20 VMs
50 VMs
150 VMs
400 VMs

(f) λ=0.4

Figure 3.11: Comparing the result of deploying S+R on the Unattackability based on
three attack rate values: 0.1, 0.2, and 0.4. (a), (b), and (c) the Unattackability values of
the cloud before deploying S+R under the given attack rates. (d), (e), and (f) changes in
Unattackability after deploying S+R.

Shuffle among the top 10% of VMs having the highest Betweenness values, also we de-

ploy Redundancy on the most important VM ranked by the Closeness value. Then, we

Deploying MTD Techniques 39

show that S+R can provide a trade-off between the Risk and Reliability. We assess the

effectiveness of the system after deploying S+R with a various number of replicas and

different number of VMs in each cloud-band. The obtained results of S+R are compared

with other deployments like Shuffle only, Redundancy only, and No-R No-S (current sys-

tem). Figure 3.10a compares the growth trend in the Risk against different cloud-band

sizes and replicas by deploying all combinations of foregoing MTD strategies. In order to

analyze the effects of deploying S+R on Reliability, and compare it with other deploy-

ment scenarios, we replicate the most important VM using Closeness and find the best

Shuffle scenario using Betweenness (as in Subsection 3.4.2), see Figure 3.10b.

As shown in 3.10a, deploying Shuffle only (S-only) can decrease the Risk (compare S-

only with No-R-No-S in the chart). Next, deploying Redundancy only (R-only) increases

the system Risk. Nevertheless, deploying S+R causes a gentle increment on the Risk which

is not comparable with the same values caused by deploying Redundancy only. In Figure

3.10b, comparing the current system with the results of deploying both Redundancy and

S+R, we obviously observe that both of these techniques enhance the Reliability, while

Shuffle decreases Reliability. Then, we conclude that the two important system Risk

and Reliability metrics have a negative correlation toward MTD techniques. Although

increasing the Reliability through deploying Redundancy may also increase Risk and vice

versa, one can benefit from a combination strategy to find a reliable threshold between

those two metrics based on the particular system and cloud environment.

System Unattackability. System Unattackability metric measures how tolerant the

cloud is against various attack rates. Let X be a random variable that represents the time

to launch a successful attack on a single VM. Then, Attackability of a VM at time t is

the probability that the VM vmi ∈ VM be attackable (a successful attack has occurred)

in the interval [0, t), and can be represented as Avmi(t)=P (X < t). We assume that the

times to a successful attack on each VM follows an exponential distribution. Then, the

Attackability of the whole cloud system (Acs) depends on the Attackability on each single

VM in the upper layer of HARM. Let Acs(Ucs, λ, t) be a function on the upper layer of

HARM which determines the probability that the cloud system be attackable under the

given attack rate and time parameters, where Ucs is the upper layer of HARM and λ is

the attack rate. Then, the upper layer can be represented as Ucs = (VM,E, σ), where σ

is a mapping function assigning the λ value to each edge σ : E→ {λ}. An attack path of

length ` in Ucs is a sequence of VMs path = (vm0, vm1, ..., vm`−1, vm`) such that for each

i = 1, 2, .., ` there is an edge with the assigned λ value between vmi−1 and vmi. Then,

a system is attackable if every single VM vmi ∈ path is compromised which shows the

probability of the existence of an attack from a source to a target (DB). Then, we define

the system Unattackability as the probability that the cloud system be unattackable

under a given attack rate over a period as 1−Acs(Hcs). In order to compute the overall

Unattackability of the cloud, we used SHARPE and fed the Ucs to the SHARPE and set

the λ value together with a source and a target to evaluate the overall Unattackability of

40 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

Ucs by considering all possible attack paths.

In practice, the actual attack rate observed can be near impossible to predict, our

model provides a method to evaluate various cloud systems with different attack types of

varying attack rates. Because our model is generalized, we show how the security posture

of the cloud may change with respects to the varying attack rates.

We measured Unattackability over with different attack rates 0.1, 0.2, and 0.4, respec-

tively. Figure 3.11 plots the Unattackability values for before (as shown in Figures 3.11d,

3.11e, and 3.11f) and after deploying S+R techniques (as shown in Figures 3.11a, 3.11b,

and 3.11c). We evaluate the results of deploying S+R techniques on the cloud based on

two scenarios, (i) increasing the number of VMs and evaluating the system Unattackabil-

ity before and after MTD deployment, (ii) increasing the attack rates and evaluate the

system Unattackability.

Scenario (i). Figure 3.11 shows the system Unattackability postures of the cloud system

before and after deploying MTD techniques over different attack rates with different cloud

sizes. First, the results show that the system Unattackability follows a descending trend

for all scenarios over time. The results show that the clouds having lower number of

VMs tend to be more attackable than the clouds including higher number of VMs for

both before and after deploying S+R. Moreover, the descending trends on Unattackability

values after deploying S+R are lower than the values before deploying S+R. For instance,

the system Unattackability for a cloud having 20 VMs is too low in time 5 which is about

0.2, see Figure 3.11a, while this value is more than 0.7 in time 5 after deploying S+R, see

Figure 3.11d.

Scenario (ii). Increasing the attack rates reduces the system Unattackability over time.

As it can be seen in Figures 3.11a, 3.11b, and 3.11c, the values of Unattackability for the

clouds having 400 VMs under various attack rates λ=0.1, λ=0.2, and λ=0.4 in time 5

are about 0.6, 0.3, 0, respectively. However, these values after deploying S+R have higher

rates and are about 0.9, 0.8, and 0.4 respectively, see Figures 3.11d, 3.11e, and 3.11f.

Finally, the results demonstrate that deploying S+R technique can secure the cloud

by increasing the Unattackability threshold over time. Moreover, the results show that

increasing the number of VMs in cloud-band can increase the Unattackability values over

time.

3.5 Discussion and Limitations

MTD techniques have been proposed to prevent adversaries to penetrate in a cyber en-

vironment. In this chapter, we evaluated three different MTD techniques: Shuffle, Re-

dundancy, and the combination of both. However, deploying each technique resulted in

various changes to the system Risk and Reliability. To compare their effectiveness, we

adopted a scalable security model, named HARM, together with using two NCMs, Close-

ness and Betweenness. We simulated a large-sized cloud-band model and compared the

changes in the system Risk and Reliability of each deployed MTD technique.

Discussion and Limitations 41

The experimental analysis in Section 3.4 showed that the best Shuffle technique (that

minimize the Risk) can be found using the IMs with only the top 10% of VMs. Although

deploying Shuffle decreased the Reliability, this decrement is neglectable (especially in the

larger cloud-bands) as shown in Figures 3.6b and 3.10b. When deploying the Redundancy

technique, Betweenness measure has a strong exponential correlation with the Risk. It

shows that deploying Redundancy technique on the nodes with higher Betweenness values

increases Risk exponentially. Although Betweenness works well for finding the best Shuffle

deployment, replication of the nodes with higher Betweenness leads a heavy increament

on the Risk. As the Redundancy technique aims to improve the system Reliability, we

observed a trade-off between the Risk and the Reliability when using the Redundancy

technique. The second finding is that Betweenness has no correlation with Reliability;

thus, replication of a VM with highest Betweenness centrality does not guarantee the

best Reliability. On the other hand, one can deploy Redundancy on a VM with the

highest Closeness rate to achieve the best Reliability value while Risk grows linearly.

Finally, combining S+R can help to find an appropriate threshold between Reliability

and Risk metrics based on the security levels required by cloud providers. Moreover, we

estimated system Unattackability, our proposed model can suggest the potential attack

rate the system could withstand by testing against a range of attack rates, and security

hardening suggestions to improving the security posture to withstand higher attack rates.

The limitations of this study are as follows. The observed results are valid based on

our cloud-band model and may vary on the different type of networks and topologies, and

cloud models [108, 129]. Other MTD combinations including Diversity technique should

also be considered with more metric analysis. We only focused on three Risk, Reliability,

and Unattackability metrics for evaluation, while there are many other security metrics,

like Attack cost, Attack impact, Return-on-attacks, Normalized value, etc [157]. Moreover,

we only analyzed the OS level vulnerabilities in the VM layer, but different vulnerabilities

from other layers of the system (e.g. application vulnerabilities) should also be considered.

The cost of deploying MTD techniques is another perspective that needs to be considered

to show the economic impact against the achieved security. In this study, we assumed

that the attacker is outside of the system, but considering attacks from inside the cloud

is also important (like attacks resulted from VM co-residency, etc.) [72]. Finally, this

model should be implemented in a real cloud testbed to be evaluated based on the real

environment.

We will incorporate other MTD techniques and combinations to evaluate the effective-

ness of each combination scenarios in Chapters 4 – 5. Further, we will conduct experiments

using a real cloud testbed. We will use a private cloud named UniteCloud [1], in Chapter 6,

to implement our work and evaluate the techniques in a real cloud infrastructure.

42 Evaluating the Effectiveness of Shuffle and Redundancy Techniques

3.6 Conclusion

MTD techniques have been proposed to enhance the cybersecurity by making changes

on the attack surface to make it unpredictable, and consequently confuse the attackers.

However, deploying MTD techniques need to be evaluated as it may affect the system

Risk and Reliability. Thus, it is important to evaluate the effectiveness of the MTD tech-

niques prior to deploying the strategies. Moreover, by computing security metrics, we

can quantify the effectiveness of each MTD technique separately or in combinations. To

conduct the study, we first formalized MTD techniques based on the scalable HARM to

combines Shuffle, Redundancy, and the combination of both. Then, we evaluated the ef-

fectiveness of MTD techniques with regards to analyzing security metrics. We considered

three metrics for evaluation: Risk, Reliability, and Unattackability. To improve the secu-

rity analysis through HARM, we utilized NCMs to find IMs: Closeness and Betweenness

to rank the most crucial VMs in the cloud. Then, we showed how the IMs can improve

the security analysis for evaluating MTD techniques. Finally, the experimental results

revealed that we can combine Shuffle and Redundancy techniques to minimize the Risk

while we increase the Reliability metric and hold Unattackability in an acceptable thresh-

old. However, we showed that a single MTD technique like Shuffle only or Redundancy

only cannot satisfy all metrics in a desirable level.

Chapter 4

Model-based Evaluation of

Combinations of Shuffle and Diversity

MTD Techniques on the Cloud

Summary

Regardless of cloud computing capabilities, security is still one of the biggest threats in

the cloud. In this chapter, we propose a combination of two MTD techniques: Shuffle

and Diversity which we believe further attributes to reduce the cyber attack surface.

We first provide the formal definitions of the combination to design and implement our

proposal. Then, we investigate a number of approaches in which Shuffle and Diversity can

be combined in order to provide the most effective defense. Towards, we utilize Network

Centrality Measures (NCMs) to find out the most critical component in the cloud. Then,

we evaluate the proposed MTD techniques through formal Graphical Security Models

(GSM) and quantify the cloud security level through eight useful security metrics before

and after deploying the MTD techniques. Our experimental evaluation shows that the

combination of Shuffle and Diversity techniques can increase the security posture of the

cloud.

“This chapter is the peer reviewed version of the following article: “Alavizadeh, H.,

Kim, D. S., and Jang-Jaccard, J. Model-based evaluation of combinations of Shuffle and

Diversity MTD techniques on the cloud. Future Generation Computer Systems (2019)”,

which has been published in final form at https://doi.org/10.1016/j.future.2019.

10.009. This article may be used for non-commercial purposes in accordance with Elsevier

Terms and Conditions for Use of Self-Archived Versions.”

43

https://doi.org/10.1016/j.future.2019.10.009
https://doi.org/10.1016/j.future.2019.10.009

44 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

4.1 Introduction

Cloud computing security has become a huge challenge for the cloud providers as the

cloud’s customers cannot trust the security of this new paradigm while the cloud pro-

vides comprehensive services to their customers. According to the International Data

Corporation (IDC) survey on the cloud computing challenges, the cloud security with

87.5% was ranked first as the greatest concern for the enterprise cloud customers [123].

Conventional security mechanisms are used to address the security issues by eliminating

the vulnerabilities and risks. However, it is difficult to perfectly remove or patch all pos-

sible vulnerabilities on a system. Hence, it is crucial to have effective security mechanism

to improve the cloud security from different defensive aspects [79, 167]. As an emerging

proactive approach, Moving Target Defense (MTD) has been proposed which can provide

another perspective of defensive strategies against cyber attacks. MTD makes a system

more unpredictable for the attackers by continuously changing the attack surface. MTD

can utilize the existing system components and technologies providing more affordable

defense solutions.

As stated earlier, Hong et al. [66] categorized MTD techniques into three comprehen-

sive categories including [66]: Shuffle [75,151], Redundancy [154] and Diversity [110,127].

In general, Shuffle MTD techniques can reconfigure the system’s components in order to

change the attack surface and consequently increase uncertainty and confusion for the

attacker. Redundancy MTD techniques deal with replication of any system’s component

aiming to enhance the system and service reliability or availability for the customers.

Thus, if a system’s component fails due to attack, there would be alternative ways to

provide the same service. The advent of the Internet of Things (IoT) makes more viable

attack sources for attackers so that they can launch various attacks through the botnets

these days. Botnets are good starting points for attackers to launch a wider attack range

to the cloud using vulnerable IoT-based botnets [83]. For example, a Distributed Denial-

of-Service (DDoS) attack utilizes botnets (leveraging compromised IoT devices) to attack

a cloud by flooding traffic messages from various sources aiming to deny services to users.

In this case, Redundancy contributes to increase cloud resiliency, and can battle these

kinds of attacks. However, the investigation of Redundancy technique is out of the scope

of this chapter and is presented in Chapters 3 and 5. Diversity MTD techniques may

increase the difficulties of attacks by changing the system’s component variants. Chang-

ing a component in the system may introduce different and new set of vulnerabilities

and invalidate the vulnerability information collected by the attackers. Ultimately, the

attacker may spend more time, effort, and money to learn new techniques to exploit the

newly introduced vulnerabilities.

Deploying an MTD technique for a specific reason may vary the security posture of a

system. Most of proposed MTD techniques do not offer convincing evidence if they would

be effective as claimed. Therefore, it is important to assess the effectiveness of MTD

techniques through security metrics such as Attack Cost (AC) and Return on Attack

Introduction 45

(RoA) which evaluate the security from the attackers’ perspective and other metrics like

System Risk (Risk) and Attack Success Probability (ASP) which may be desirable metrics

for cloud providers’ perspective. Security analysis plays an inevitable role in evaluating

the overall security-related perspectives of a system.

Formal graphical attack models like Graphical Security Models (GSMs) are useful

tools to model and evaluate the security of the systems such as IoT and enterprises [53]

or clouds [112]. GSMs can be used to evaluate the effectiveness of MTD techniques [13,66].

However, analyzing the security through most of GSM suffers from exponential computa-

tional complexity issue, especially, in the large networks [61]. To overcome this problem,

the Hierarchical Attack Representation Model (HARM) is proposed which is a formal

hierarchical graph-based model including two layers [61]. HARM is more scalable and

adaptable than other formal GSMs [62]. In this chapter, we use HARM to evaluate the

effectiveness of the MTD techniques and compute the security metrics.

MTD techniques can be either used independently or combined together to obtain

more effective results. Many MTD strategies have been proposed [103,160], but it is

still difficult to evaluate the effectiveness of combined MTD techniques. Combining MTD

techniques can introduce additional benefits of enhancing security, which may not be

possible under a single technique based MTD solutions; for instance, as Redundancy is

mostly used to increase service reliability, it can be measured with the concepts of system

dependability (e.g. reliability), while other MTD techniques like Shuffle and Diversity are

used to increase the security of a system and need to be evaluated using security metrics.

Thus, MTD techniques can be well-mingled together aiming to increase both security and

reliability. However, those techniques should be evaluated using adequate security metrics

as deploying each MTD technique may affect others in different ways. A combination

of MTD techniques including Shuffle, Diversity, and Redundancy is presented in [11]

which is mainly limited to a single deployment strategy and four security metrics such as

Risk, AC, RoA, and Reliability. However, in this Chapter, we conduct extensive analysis

on Shuffle and Diversity MTD technique which considers different sets of combination

strategies. Moreover, we capture the effects of different MTD deployment strategies using

eight important security metrics.

The earlier published version of this chapter is presented in [12]. In this chapter, we

extend the earlier version mainly focusing on formalism and definitions of MTD techniques

and combination strategies on the cloud together with more effective security metrics to

show the different perspective of the cloud security posture affected by deploying MTD

techniques. Moreover, we have revised the previous model with new vulnerabilities and

metrics. The new contributions of this Chapter, which to the best of our knowledge have

not already been proposed by other works, are listed as follows:

• We provide the formal mathematical definitions for the combination of Shuffle (S) and

Diversity (D) MTD techniques to unambiguously design and implement it in the cloud.

46 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

Our formal method is written based on Hierarchical Attack Representation Model

(HARM).

• We propose a new approach that combines Shuffle (S) and Diversity (D) techniques.

We also provide a set of strategies for the way Shuffle (S) and Diversity (D) can be com-

bined differently. By computing Important Measures (IMs), the effects of the different

combination strategies are calculated and explained.

• We provide simulation and calculation results for the deployed MTD techniques using

four security metrics to assist in extensive understanding of the trades between MTD

techniques and Metrics involved in the combined defense and the attack. The security

metrics we use include: Risk, Attack Cost (AC), Return on Attack (RoA), and Attack

Success Probability (ASP).

• We also include the path-based security metrics and evaluate them against each MTD

strategy to evaluate how difficulty is required for the attacker can reach a target. We

also conduct regression analysis between path-based metrics and security metrics (Risk

and ASP) to investigate the correlation between those metrics.

• We perform comparative analysis and evaluation of “before” and “after” deployment

of MTD techniques to be able to quantify and compare the cloud security posture.

The rest of this chapter is organized as follows. We present the related work in Sec-

tion 4.2. We define the concepts, definitions, formalism, and the security metrics used

throughout this chapter in Section 4.3. In Section 4.4, we provide definitions and formal-

ism for MTD techniques including Shuffle and Diversity and evaluate the deployment of

each MTD technique. Definition, deployment, and analysis of different strategies for com-

bining MTD techniques are given in Section 4.5. Then further discussion and limitations

are given in Section 4.6. Finally, we conclude the chapter in Section 4.7.

4.2 Related Work

Definition of MTD is not restricted to a portion or a specific part of a system. Any

static or dynamic component of a system can be changed using MTD techniques to

make a system more unpredictable for attackers. MTD can be deployed through different

layers of a network. Numerous research have been proposed either to introduce new

techniques or improve an MTD model [75,138]. Many researchers have focused on MTD

frameworks [164,169], applications [33,150], strategies and techniques [8,75,162]. However,

we summarized the proposed MTD techniques based on different contexts.

Redundancy can be deployed on the cloud using replication of the cloud resources

(such as VM replication). This technique can increase the reliability of the cloud by cre-

ating redundant VMs (e.g. crucial servers). The extension of cloud resources to increase

Related Work 47

the service reliability and battle against DDoS attacks have been investigated in [154].

However, deploying redundant cloud resources to avoid attacks may affect cloud’s perfor-

mance. To address this problem, Al-Haidari et al. [7] studied the impact of cloud scaling

size factors against the CPU cost and performance. They used the optimization problem

to find an optimal number of cloud resources against QoS requirements. In [29], the

authors proposed a resource allocation scheme for the virtual desktop cloud (VDC) and

developed a tool named VDC-Analyst aiming to satisfy quality of experiments (QoE) for

users by increasing net utility and service response time. The concept of Random Route

Mutation (RRM) has been introduced by Al-Shaer [8] to find an optimal randomized

path between source and target. However, this technique can be categorized as a Shuffle

technique deployed on the service paths in a network. The application of MTD tech-

niques to mitigate DDoS attacks on the cloud using Software-defined networking (SDN)

has been studied in many research [75,141]. Moreover, Bawany et al. [22] conducted a

substantial survey to study and classify the proposed SDN-based DDoS attack detection

and mitigation techniques. They also proposed an SDN-based proactive DDoS Framework

(ProDefence) for detection and mitigation of DDoS attacks in a large-scale network. How-

ever, these types of MTD techniques can be combined with other techniques to double

the effectiveness of the proposed methods in terms of both service availability, reliability

and security.

Machine Learning-based MTD (ML-based MTD) techniques have been proposed by

researchers in various studies [43,44,81,148,151]. For instance, Vikram et al. [151] pro-

posed a Shuffle MTD technique on the application layer for securing the web by ran-

domizing the HTML elements using Machine Learning (ML). ML-based MTD enables a

defensive system to capture evolving attack patterns with high scalability and applicabil-

ity. The ML-based techniques can be affected by the lack of a large amount of data for

training reasons to provide an acceptable prediction accuracy level. Data-driven incident

prediction methods play a crucial role in addressing such ML-based techniques. In [143],

the authors surveyed the emerging research for cybersecurity incident prediction focusing

on data-driven methodologies. They categorized the related research into six data types

category such as the organization’s report, dataset, network dataset, synthetic dataset,

web page data, social media data, and mixed-type dataset. Anomaly detection techniques

and Intrusion Detection System (IDS) can be incorporated with MTD techniques [134].

Network traffic classification is useful methods which can be used for various purposes

such as anomaly detection on the networks. In [161] the authors proposed a framework

for network traffic classification which can be adapted using very few training samples but

high performance. However, this technique can be implemented and used by trigger-based

MTD techniques.

Most of the previous works only focused on the novelty on the proposed strategies and

layers of implementation, like defensive method after detecting an attack, low-level shuf-

fling techniques, finding a suitable time-period for applying the IP mutation frequently,

48 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

(a)

A

Internet

vm1

Host1

vm2

Host1

vm3

Host2

vm4

Host2

vm5

Host3

vm6

Host3

vm9

Host4

vm8

Host4

vm7

Host4

vm10

Host5

(b)

Figure 4.1: A Cloud system example: (a) The infrastructure layer of a private cloud. (b)
The Cloud example Model showing the connection of the VMs.

dealing with worms and web bots through MTD [151], and so on. However, there are

very few works effectively analyzing the MTD techniques for the large networked system

needing precise and scalable security analysis, like cloud-based environments. Peng et

al. [119] investigated the effectiveness of MTD techniques for securing cloud-based ser-

vices with a heterogeneous or dynamic attack surface. However, they did not utilize a

rational or formal security model and analysis tool to evaluate the effectiveness of the

deployed strategy. Hong et al. [66] introduced Shuffle, Redundancy, and Diversity MTD

techniques separately and analyzed the varies on security when MTD techniques are de-

ployed. However, other combinations of MTD techniques should be also considered like

deploying a combination of Shuffle and Diversity, and analyzing more security metrics

aiming to cover more security requirements of the cloud.

4.3 Preliminaries

In this section, we explain and recall some required notations, concepts and definitions

used throughout this chapter, such as system setting, configuration and constraints, secu-

rity metrics, and other related assumptions through a running example in a cloud system.

4.3.1 System and Threat Model

As a running example for the rest of the chapter, we assume a private cloud consisting

of five main hosts (servers) each of which can hold up to four active Virtual Machines

(VMs). We assume that only two VMs on the first host are allowed to connect to the

Internet and only the last host (Host5) is connected to the critical Database (DB), as

shown in Figure 4.1. Each VM includes a default operating system (OS) and a backup

one shown on the top of each server in Figure 4.1. VMs hosted in the Host1 and Host2

are installed with Windows 10, and VMs in the other hosts are installed with Enterprise

Linux OS. We assume that an attacker is outside the private cloud and can exploit the

Preliminaries 49

Table 4.1: OS Vulnerabilities (V) including Base-Score (BS), Impact (I), Exploitability
(E), and Attack Cost (AC) 4.2

OS (θ) V CVE-ID BS I E AC

Win10
ν1,w CVE-2018-8490 8.4 6 0.17 1.6
ν2,w CVE-2018-8484 7.8 5.9 0.18 2.2
ν3,w CVE-2016-3209 8.8 5.9 0.28 1.2

Linux
ν1,l CVE-2018-14678 7.8 5.9 0.18 2.2
ν2,l CVE-2018-14633 7 4.7 0.22 3
ν3,l CVE-2017-15126 8.1 5.9 0.22 1.9

Fedora ν1,f CVE-2014-1859 5.5 3.6 0.18 4.5

vulnerabilities of those operating systems to gain access. In addition, we also assume that

the hypervisors provide enough isolation for VMs hosted on each server. The goal of the

attacker is to compromise the Database (DB) in the Host5. The system’s configurations,

connectivities and constraints are assumed as follows1):

• All VMs are active and never suspended

• A VM either can migrate to another host or be launched with its backup OS; the

downtime for those processes are negligible

• Two vm1 and vm2 are connected to the Internet (entry points of the cloud)

• vm10 on Host5 cannot be migrated due to system constraints

• Only vm10 can access the Database (DB) which makes the vm10 a target to the at-

tackers

Table 4.1 shows the vulnerabilities for different OS: Win10 (W), Linux (L), and Fe-

dora (F). Here, we only modeled the vulnerabilities that can bypass firewalls and au-

thentications. There are three of those vulnerabilities for both Windows OS and Linux

OS, together with a single vulnerability for Fedora OS. Further information regarding

these vulnerabilities and measures can be found in the National Vulnerability Database

(NVD) [106].

4.3.2 Defensive MTD Model

Generation of a defensive model is important for providing appropriate security strategies.

The defensive model can analyze the current system and make the decision for deploying

the best MTD techniques based on the system requirements, constraints, and limitations.

We define a defensive model which can follow the following steps: (1) Model creation (in

here, the model we create is HARM for computing the security metrics), (2) Evaluation

1These assumptions are used for simplicity in model description and could be released.

50 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

(a) Migrating

(b) Migrated

Figure 4.2: VM-Live Migration on the Cloud. (a) Migrating Phase. (b) Migrated.

of current cloud security posture, (3) MTD analyzer to find the best strategies, (4) MTD

Deployment on the cloud. We assume that the following operations are permitted by the

cloud provider. We then use these operations for deploying MTD techniques.

Virtual Machine Live Migration: Virtual Machine Live Migration (VM-LM) can

be enabled by the cloud provider, and a VM can migrate from one physical host to another

one if there is enough space in the new host. Figure 4.2 shows an example of VM-LM

technique on the cloud example. We use VM-LM as the main approach of deploying Shuffle

technique in the cloud. However, other approaches can be used as Shuffle techniques like

Virtual IP mutation, Port Hopping , etc. [137] which are out of the scope of this chapter.

OS Diversification: Changing the operating system is the process of using a backup

OS instead of the default OS on each VM in the cloud. OS Diversification can be used

as a Diversity technique [11]. We assume that the probability of failure in launching a

new OS is negligible. Changing the OS may introduce a new set of vulnerabilities to

the attacker. Other Diversity methods can be utilized such as changing applications and

services running on the VMs, changing programming languages, etc. However, in this

study we only consider OS Diversification to deploy Diversity.

We deploy VM-LM and OS Diversification through simulation. In this study, the focus

is not on implementation on the real cloud but the theoretical appraisal and formalism,

and only considered theoretical analysis and evaluation through simulation to assess the

effectiveness of combining MTD techniques. However, the feasibility, adaptability, and,

usability of those MTD techniques on a private cloud, named UniteCloud [1], are prac-

tically considered in [9].

Preliminaries 51

4.3.3 GSM Models

HARM is proposed by Hong et al. which is a scalable GSM for analyzing the security of

the systems through two layers. HARM has been used in many studies needing scalable

security analysis like enterprise security analysis [49, 156], cloud computing, IoT, and

MTD [53, 66]. In this study, we use HARM for security analysis and evaluate the MTD

techniques. HARM separates the networks’ connectivities and vulnerabilities into two

layers so that reachability of the network’s components is captured in the upper layer

and the vulnerabilities existing on each component can be captured in the lower layer.

We utilize HARM to capture the connectivities of VMs on the cloud in the upper layer

and OS vulnerabilities excising on each VM in the lower layer of HARM. Constructing

the HARM, we can perform the security analysis and compute the security metrics.

We recall HARM defined in Definition 1 presented in Chapter 3.

Definition 1. HARM can be defined as a 3-tuple H = (U,L,C) where U refers to the

upper layer which is an Attack Graph (AG), and L represents the lower layer in which

an Attack Tree (AT) is constructed. We define C = U → L as a one-by-one mapping

of the upper layer to the lower layer. Then, the upper layer of HARM is defined as a

graph U = (VM,E), where VM = {vm1, vm2, . . . , vmn} is a set of VMs in the cloud,

with |VM | = n, and E ∈ VM × VM is a set of connectivities between VMs.

We reformulate the lower layer of HARM in a way that it includes a set of OS for

deploying Diversity as follows.

Definition 9. The lower layer L is a set of ATs corresponding to each VM vmi in

the upper layer and can be defined as L = {`1, `2, . . . , `n}, where `i = (Vi,θ, G, root),

and `i is an AT corresponding to the vmi. Then, Vi,θ = {ν1,θ, ν2,θ, . . . , νm,θ} is a set

of vulnerabilities existing on each corresponding OS θ ∈ OS on each VM vmi, where

OS = {W,L, F}. We denote the number of vulnerabilities in each VM (specifically, on

each OS) as |Vi,θ| = m, and G is a set of logical gates G = {AND-gate, OR-gate}
constructing the inner nodes of the AT, and root is the corresponding node in U .

Figure 4.3a demonstrates the generated HARM for the cloud system example pre-

sented in Figure 4.1. We can calculate the security metrics including Risk, AC, RoA

using the generated HARM. We then can compute and evaluate the overall security of

the cloud by considering both sides: the cloud provider and the attackers. In the upper

layer of the HARM, an AG is used, and in the lower layer an AT is used, such as in [66].

Figure 4.3a shows the constructed HARM for the example cloud system.

Hence, the generated HARM for the cloud system illustrated in Figure 4.1 is presented

as follows.

Example 2. The HARM for the Cloud system example (cs) is shown

as Hcs = (Ucs, Lcs, Ccs). Then, Ucs = (VMcs, Ecs), where VMcs =

(A, vm1, vm2, . . . , vmn). The VMs are connected as Ecs = {(A, vm1),

52 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

T
a
b

le
4.2:

S
om

e
n

o
ta

tio
n

s,
ex

p
la

n
a
tio

n
s

a
n

d
su

p
p

o
rtin

g
ex

a
m

p
les

o
r

referen
ces

N
o
ta

tio
n

s
D

e
sc

rip
tio

n
F
o
rm

u
la

,
R

e
fe

re
n

c
e

G
en

era
l

V
M

T
h

e
set

o
f

a
ll

V
irtu

al
M

a
ch

in
es

(V
M

s)
in

th
e

clo
u

d
,|V

M
|
=
n

V
M

=
{
v
m

1 ,v
m

2 ,...,v
m
n }

V
i,θ

T
h

e
set

of
all

v
u

ln
erab

ilities
ex

istin
g

o
n
i th

V
M

,
i.e.

v
m
i ,|V

i,θ |
=
m

V
i,θ

=
{
ν

1
,θ ,ν

2
,θ ,...,ν

m
,θ }

ν
j,θ

T
h

e
j
th

v
u

ln
erab

ility
in

a
sin

g
le

V
M

,
ν
j,θ
∈
V
i,θ

T
ab

le
4.1

I
ν
j
,θ

T
h

e
im

p
act

of
ex

p
loitin

g
th

e
j
th

v
u

ln
era

b
ility

in
a

sin
g
le

V
M

,
ν
j,θ
∈
V
i,θ .

T
ab

le
4.1

E
ν
j
,θ

T
h

e
ex

p
loita

b
ility

of
th

e
j
th

v
u

ln
era

b
ility

in
a

sin
g
le

V
M

,
ν
j,θ
∈
V
i,θ .

T
ab

le
4.1

a
p

A
n

a
ttack

p
ath

in
th

e
clo

u
d

d
efi

n
ed

a
s

a
series

o
f

a
d

ja
cen

t
V

M
s

in
th

e
clou

d
fro

m
th

e
en

try
p

o
in

t
to

th
e

ta
rg

et.
a
p

=
(v
m

1 ,v
m

2 ,...,v
m
n
)

A
P

A
ll

p
o
ssib

le
a
tta

ck
p

ath
s

in
th

e
clo

u
d

fro
m

a
n

en
try

p
o
in

t
to

a
ta

rg
et,|A

P
|
=
p

A
P

=
{
a
p

1 ,a
p

2 ,...,a
p
p }

C
b (v

m
i)

A
fu

n
ction

retu
rn

in
g

th
e

b
etw

een
n

ess
va

lu
e

o
f

a
V

M
in

th
e

clo
u

d
.

E
q
u

ation
4.1

S
ecu

rity
M

etrics

C
lou

d
R

isk
(R
isk

c)

R
isk

v
m
i

T
h

e
risk

valu
e

a
sso

ciated
w

ith
a

V
M

in
th

e
clo

u
d

E
q
u

ation
4.3

R
isk

a
p

T
h

e
cou

n
t

of
all

V
M

s’
risk

va
lu

es
o
f

a
n

a
tta

ck
p

a
th
a
p

in
th

e
clo

u
d

E
x
am

p
le

3
R
isk

c
T

h
e

to
ta

l
risk

o
f

th
e

clo
u

d
b

a
sed

o
n

a
n

en
try

p
o
in

t
a
n
d

th
e

ta
rg

et
E

q
u

ation
4.4

A
tta

ck
C

ost
(A
C
c)

A
C
v
m
i

T
h

e
co

st
of

ex
p

lo
itin

g
a

V
M

in
th

e
clo

u
d

fo
r

a
n

a
tta

cker
b
y

co
n

sid
erin

g
a
ttacker’s

k
n

ow
led

g
e

an
d

ex
cisin

g
v
u

ln
era

b
ilities

in
th

e
V

M
.

T
ab

le
4.1

A
C
a
p

T
h

e
co

u
n
t

o
f

a
ll

V
M

s’
A

C
va

lu
es

o
f

a
n

a
tta

ck
p

a
th
a
p

in
th

e
clo

u
d

E
x
am

p
le

4.5

A
C
c

T
h

e
to

ta
l

a
tta

ck
cost

im
p

o
sed

o
n

a
n

a
tta

cker
to

su
ccessfu

lly
co

m
p

ro
m

ise
th

e
ta

rg
et

in
th

e
clou

d
E

q
u

ation
4.5

R
etu

rn
on

A
tta

ck
(R
oA

c)

R
oA

v
m
i

T
h

e
total

gain
a
n

atta
ck

er
m

ay
a
ch

ieve
b
y

co
m

p
ro

m
isin

g
a

V
M

in
th

e
clo

u
d

a
g
ain

st
th

e
attacker’s

eff
o
rts

E
q
u

ation
4.6

R
oA

a
p

T
h

e
co

u
n
t

o
f

a
ll

V
M

s’
R

o
A

va
lu

es
o
f

a
n

a
tta

ck
p

a
th
a
p

in
th

e
clo

u
d

E
q
u

ation
4.7

R
oA

c
T

h
e

tota
l

b
en

efi
ts

an
a
tta

ck
er

g
a
in

b
y

su
ccessfu

lly
co

m
p

ro
m

isin
g

th
e

ta
rget

in
th

e
clou

d
b
y

con
sid

erin
g

th
e

a
tta

cker’s
eff

o
rt

E
q
u

ation
4.7

Preliminaries 53

A

vm1

W

vm2

W

vm3 W

vm4

W

vm5

L

vm6

L

vm9

L

vm8

L

vm7

L

vm10

O
R

. . .

. . .
O

R

. . .

O
R

ν3,lν2,lν1,l
O

R
ν3,wν2,wν1,w

(a)

A

vm1

1.65

vm2

W

vm3

1.65

vm4

W

vm5

1.3

vm6

L

vm9

L

vm8

L

vm7

1.3

vm10

1.3

O
R

. . .

. . .

O
R

. . .

O
R

ν3,lν2,lν1,l

O
R

ν3,wν2,wν1,w

(b)

Figure 4.3: (a) Two-layer HARM of the Cloud example. (b) An attack path from the
attacker to target in HARM (the risk values of exploiting each VM are depicted beside
each VM).

(A, vm2), (vm1, vm3), (vm2, vm3), (vm2, vm4), (vm3, vm5), (vm3, vm6), (vm4, vm6), (vm5

, vm6), (vm5, vm7), (vm6, vm9), (vm7, vm8), (vm7, vm10), (vm8, vm10), (vm9, vm7), (vm9,

vm8), (vm9, vm10)}. Then, Lcs = {`1, `2, . . . , `10}. For example, `1 = {V1,W , G1, root1}
shows the AT for vm1, where V1,W is a set of OS vulnerabilities (Windows) existing on

vm1, and G1 = OR− gate, and root1 = vm1.

4.3.3.1 Importance Measures (IM)

As stated earlier, security analysis through GSM suffers from scalability problems, espe-

cially, when we use Exhaustive Search (ES) to find the optimal solution. To address this

shortfall, we utilize Betweenness Centrality Measures (Cb) [27] as the IM to discover more

critical VMs in the cloud. Using IMs we can find the most important nodes in the network

(VMs in here) in the upper layer of HARM. Then we deploy our MTD Technique on a set

of crucial VMs without using ES. In Chapter 3, we showed that the best MTD scenario

could be found by deploying MTD on the VMs having higher values of Betweenness in

the cloud. We recall Cb in Equation (4.1).

Cb(vmi) =
∑

s,t∈VM\{vmi}

δst(vmi)

δst
, (4.1)

where δst is a function calculating the total number of shortest path between each pair of

VMs (s, t) ∈ VM , and δst(vmi) denotes the number of those paths passing through the

specific VM (vmi). Then, after constructing the HARM, we can find the most important

54 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

VM in the cloud based on the HARM definition denoted as κ = Γ(H), where Γ(H)

is a function returning the argument of a VM in the HARM (H) having the highest

Betweenness values based on Equation (4.2).

Γ(H) = arg max
vmi∈VM

Cb(vmi) (4.2)

Then, the value of κ determines the argument of the VM that needs to be selected

for deploying MTD technique on. For instance, κ = 3 shows that MTD technique should

be applied on vm3.

4.3.3.2 Cloud Risk

Constructing the HARM, we can compute the security metrics. The overall risk value

associated with the cloud is called Cloud Risk (Riskc). We can construct the HARM

through obtaining information related to the VM connectivities on the cloud and con-

sidering the vulnerabilities of each VM through a vulnerability database (i.e. NVD) as

listed in Table 4.1. In order to measure the Riskc, we use both layers of HARM in which

VMs connectivities are presented on the upper layer and vulnerabilities are captured on

the lower layer. Let Eνj,θ and Iνj,θ be the exploitability and impact values of jth vulner-

ability existing on the OS θ on the vmi such that νj,θ ∈ Vi,θ. Then, the risk of a VM can

be computed as the product of those values returning the maximum value, as shown in

Equation (4.3).

Riskvmi = max
νj,θ∈Vi,θ

(
Eνj,θ × Iνj,θ

)
. (4.3)

Thus, the value of Riskap can be computed as counting all risk values on any single VM

in an attack path (ap) from the attacker to the target. Then, the sum of all risk values

associated with all possible attack paths on the system provides the Riskc value, see

Equation (4.4).

Riskc =
∑

ap∈AP

(∑
vmi∈ap

Riskvmi

)
(4.4)

Example 3. Figure 4.3b shows an attack path from the attacker to target and can

be shown as ap1 = {(A, vm1), (vm1, vm3), (vm3, vm5), (vm5, vm7), (vm7, vm10)}, then

Riskap1 = Riskvm1
+Riskvm3

+Riskvm5
+Riskvm7

+Riskvm10
= 5.9∗0.28+5.9∗0.28+

5.9 ∗ 0.22 + 5.9 ∗ 0.22 + 5.9 ∗ 0.22 = 7.2. Finally, the total risk of the system is as sum of

all Rap values which is Riskc = 211.692 for the cloud example.

4.3.3.3 Attack Cost

The cost of exploiting the vulnerabilities on a VM by an attacker is defined as Attack

Cost (AC). We expand this metric to compute the overall AC of the cloud. We use the

upper layer of HARM to compute AC. Table 4.1 lists the cost of exploiting a VM through

Preliminaries 55

vulnerabilities (ACvm). Equation (4.5) shows the calculation formula for the overall AC

value of the cloud.

ACc =
∑

ap∈AP

(∑
vmi∈ap

ACvmi

)
(4.5)

where ap is a single attack path in the system and APs is the list of all possible attack

paths in the network.

4.3.3.4 Return on Attack

Return on Attack (RoA) is another security metrics from the attacker’s perspective [42].

RoA quantifies the attack cost versus benefits of attack. The higher value of RoA indi-

cates a higher probability that attacker exploit those vulnerabilities (higher tendency to

attack). The ratio of risk value for a VM and attack cost determines the RoA value for a

specific VM which are shown in Equation (4.6). Then, the overall RoA of a system can

be computed through Equation (4.7).

RoAvmi =
maxνj,θ∈Vi,θ

(
Eνj,θ × Iνj,θ

)
ACvmi

(4.6)

RoAc =
∑

ap∈AP

(∑
vmi∈ap

RoAvmi

)
(4.7)

4.3.3.5 Path-based Metrics

We consider path-based metrics as presented in [158] to quantify the network security level

resulting from deploying MTD techniques on each VM. We use four path-based metrics

in this chapter, Shortest Attack Path (SAP), Mean of Attack Path Lengths (MAPL),

Standard Deviation of Path Lengths (SDPL), Mode of Path Lengths (MoPL), but other

metrics such as Attack Resistance Metric, Network Compromise Percentage [158] can

also be computed. Path-based metrics only considers the reachability of the network and

the changes on the vulnerabilities in the VMs may not affect the path-based metrics.

Thus, Path-based metrics may be changed if only the upper layer of HARM is changed,

and the changes in the lower layer of HARM resulting from adding or removing the

vulnerabilities have no effects on the path-based metrics. The SAP metric for the cloud

example, as shown in Figure 4.3a can be computed as Equation (4.8).

SAPc = min
ap∈AP

|ap| = 5 (4.8)

The SAPc value indicates the minimum number of VMs the attacker needs to ex-

ploit before compromising the target VM. The cloud provider may select the appropriate

countermeasure to increase SAPc to make the attack more difficult for the attacker. For

56 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

ASPvm3=0.51

OR

Eν1,w=0.17 Eν2,w=0.18 Eν3,w=0.28

ASPvm8=0.5

OR

Eν1,l=0.18 Eν2,l=0.22 Eν3,l=0.22

Figure 4.4: Generating Lower Layers AT to calculate ASP for vm3 and vm8

example, the cloud provider may choose a replacement strategy for Shuffle so that a VM

can be injected to the shortest path to make the attack path more difficult to exploit.

The existence of more number of attack paths (p) in the network causes less security

as the attacker can leverage different alternative paths to launch the attacks. Thus, the

increment of p and higher values for MAPL indicates less security in the network. Equa-

tion (4.9) shows the calculation for MAPL for the cloud example. Moreover, the SDPL

metric for the cloud example can be computed as Equation (4.10).

MAPLc =

∑
ap∈AP |ap|

p
= 6.25 (4.9)

SDPLc =

√∑
ap∈AP (|ap| −MAPLc)2

p
= 0.89 (4.10)

4.3.3.6 Attack Success Probability

We can generate the ATs in the lower layer of HARM based on the given vulnerabilities

and compute Attack Success Probability (ASP) for each VM vmi in the cloud denoted

as ASPvmi . However, generating ATs from vulnerabilities needs a clear understanding of

the vulnerabilities and the way in which they can be exploited. For instance, an attacker

can exploit only a single vulnerability to penetrate into a VM, or the attacker may need

to exploit a set of vulnerabilities to penetrate into a VM. In the former, a logical OR-gate

can be used and for the latter, a combination of logical AND/OR-gates can be used as

presented in [128]. For simplicity, we assume that the attacker can compromise a VM

by exploiting any vulnerability existing in a VM. In this case, only OR-gate is used to

generate AT. The ASPvmi can be obtained based on the exploitability values (E) of

the vulnerabilities on the VM. Let Evj,θ be the exploitability value of jth vulnerability

existing on the OS θ on the vmi such that vj,θ ∈ Vi,θ. Then, we can compute the ASPvmi

as Equation (4.11).

ASPvmi = 1−
∏

vj,θ∈Vi,θ

(
1− Evj,θ

)
(4.11)

In this study, we only consider the OS vulnerabilities. For example, we assume that

there are three vulnerabilities for Win10 as shown in Table 4.1 and vm3 uses Win10.

MTD Techniques Deployment 57

Thus, based on the Example 2, the lower layer of HARM for vm3 can be shown as

`3 = {V3,W, G3, root3} shows the AT for vm3, where V3,W is a set of Win10 vulnerabilities

existing on vm3, and G3 = OR− gate, and root3 = vm3. Then, the ASPvm3
can be

computed as 1− (1− 0.17)× (1− 0.18)× (1− 0.28) = 0.51. The generated ATs for both

vm3 and vm8 with the corresponding ASP values are shown in Figure 4.4. Finally, in order

to compute the total ASP for the cloud ASPc, we used SHARPE (Symbolic Hierarchical

Automated Reliability and Performance Evaluator) [130], which uses a reliability graph

to quantify the overall ASP. The upper layer of HARM including the ASP for each VM

can be fed into the SHARPE as a reliability graph.

4.4 MTD Techniques Deployment

Deploying MTD techniques on the cloud depends on the constraints defined by the cloud

providers. For instance, some operations may be restricted by the cloud providers such as

VM-LM from a host to a specific host (which is protected). We assume that VM-LM and

OS Diversification are allowed by the cloud provider. Then, we utilize VM-LM and OS

Diversification techniques to develop Shuffle and Diversity techniques respectively. Later

on in Section 4.5, we discuss the MTD combination deployment strategies. In order to

evaluate the effects of MTD techniques on the cloud, we analyze the cloud security level

before deploying MTD techniques by computing the security metrics: Riskc, ACc, and

RoAc as described in Table 4.2, and then analyze the effectiveness of each selected MTD

technique by reconsidering those security metrics again, the notations and symbols are

presented in Table 4.3. In this section, we define and formalize the MTD techniques we

used in this chapter which are Shuffle, Diversity, and the combinations of both. Then, we

consider the effects of deploying each MTD techniques on the security metrics.

4.4.1 Shuffle Technique Definition and Formalization

In general, Shuffle techniques work based on the rearrangement of the system’s com-

ponents, settings, and configuration such as mutating or shuffling the IP address, re-

arranging the network’s topology, moving a VM from one host to another one, and so

forth [45, 75, 137]. Shuffle strategies can be deployed in different layers like Application

Layer, Virtualization, Host, Virtual Machine Monitoring (VMM), Hardware [5,151,164].

In this study, we deploy MTD techniques on the virtualization layer. We utilize VM-LM

method to deploy Shuffle in our simulation, as depicted in Figure 4.2. Migration of each

VM from a host to another machine may affect the overall security of the system. For

this reason, before deploying Shuffle technique, we investigate the effects of deploying

Shuffle technique on the cloud by analyzing the security metrics which are Riskc, ACc,

and RoAc through HARM.

Deploying Shuffle techniques falls into two scenarios: (1) Selecting the VM for deploy-

ing Shuffle which is usually named as ‘what to move’ in the literature [28]. (2) The place

58 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

Table 4.3: Notations w.r.t deploying MTD techniques and metrics

Symbol Descriptions

S⊗D Combination of Shuffle (S) and Diversity (D) strategies
S+D Strategy: deploying S first, then D
S∆D Strategy: deploying S first, computing IM, then D
RiskSc Total cloud’s risk after deploying S only
RiskDc Total cloud’s risk after deploying D only
RiskS+D

c Total cloud’s risk after deploying S+D
RiskS∆D

c Total cloud’s risk after deploying S∆D
ACSc Total attack cost value after deploying S only
ACDc Total attack cost value after deploying D only
ACS+D

c Total attack cost value after deploying S+D
ACS∆D

c Total attack cost value after deploying S∆D
RoASc Total return on attack value after deploying S only
RoADc Total return on attack value after deploying D only
RoAS+D

c Total return on attack value after deploying S+D
RoAS∆D

c Total return on attack value after deploying S∆D
ASPSc Attack Success Probability after deploying S only
ASPDc Attack Success Probability after deploying D only
ASPS+D

c Attack Success Probability after deploying S+D
ASPS∆D

c Attack Success Probability after deploying S∆D

in which the VM should be moved into which is called as ‘how to move’ [28]. In this

chapter, we utilized the both Exhaustive Search (ES) and Important Measures (IMs) for

the former scenario and a replacement algorithm for the latter scenario which chooses

the shortest path in the upper layer of the HARM and migrates the selected VM to that

place. This replacement algorithm aims to increase the length of the shortest attack path

that attacker can traverse from the entry point (the Internet) to the target (i.e. a DB).

As the Shuffle technique only changes the physical locations of VMs (i.e. from a

physical server in the cloud to another server), it only affects the reachability of VMs in

the upper layer of HARM.

We recall Shuffle technique formulated in Definition 5 presented in Chapter 3.

Definition 5. Let S(H,κ) be a Shuffle function on the HARM where 1 ≤ κ ≤ n, and

κ denotes a specific VM vmκ ∈ VM chosen for the shuffling. Then the result of Shuffle

function is as S(H,κ) = Hs. We define Hs = (U s,κ, L, C) where U s,κ is the transformed

AG resulted from Shuffle on vmk in the upper layer of the HARM and can be represented

as U s,κ = (VM,E′), where E′ ⊆ VM × VM .

4.4.2 Shuffle Technique Evaluation

According to the Shuffle definition 4.4.1, the result of deploying Shuffle on the cloud

example (Figure4.3a) is as follows.

MTD Techniques Deployment 59

Table 4.4: The percentage of changes in the security metrics after deploying Shuffle on
each VM in the cloud example

ID
Values % of Changes

RiskSc ACSc RoASc RiskSc ACSc RoASc

vm1 164.49 201.8 102.81 -22.30% -19.73% -24.28%
vm2 130.51 161.8 80.86 -38.35% -35.64% -40.44%
vm3 82.25 100.9 51.40 -61.15% -59.86% -62.14%
vm4 174.05 209.7 110.37 -17.78% -16.59% -18.70%
vm5 116.94 139.5 74.73 -44.76% -44.51% -44.95%
vm6 88.26 102.4 57.61 -58.31% -59.27% -57.56%
vm7 122.48 146.4 78.16 -42.14% -41.77% -42.43%
vm8 205.67 236.5 135.13 -2.84% -5.93% -0.46%
vm9 93.1 110.7 59.65 -56.02% -55.97% -56.06%
Best vm3 vm8 vm3 vm3 vm8 vm3

Example 4. The result of Shuffle function on the generated HARM for the cloud

example (Hcs) in which the most crucial VM is selected to be shuffled (vmκ) can

be represented as S(Hcs, κ) = Hs
cs. Based on Equation (4.2), κ = 3 which means

vm3 is selected as a VM with the highest IM values on the cloud. Then, Hs
cs =

(U s,3
cs , L, C) which U s,3

cs = (VMcs, E
′
cs) is the upper layer of HARM for cloud system,

where VMcs = {A, vm1, vm2, vm3, vm4, vm5, vm6, vm7, vm8, vm9, vm10}, and E′cs de-

notes the connectivity of VMs after deploying Shuffle technique on vm3 and is repre-

sented as E′cs = {(A, vm1),(A, vm2), (vm2, vm3), (vm3, vm4), (vm4, vm6), (vm6, vm9),

(vm5, vm6), (vm5, vm7), (vm7, vm10), (vm9, vm8),. . . }. Note that Shuffle technique only

changes the upper layer of HARM and preserves L and C.

Based on the definition of the Shuffle technique 4.4.1, we deploy Shuffle on a VM

and then recalculate the security metrics to observe the effectiveness of the deployed

technique in the cloud. For Example, deploying S(Hcs, vm3) may add/remove edges in

the upper layer of HARM. Let consider a new attack path resulting from deploying

Shuffle ap1 = {(A, vm2), (vm2, vm3), (vm3, vm4), (vm4, vm6), (vm6, vm9), (vm9, vm8),

(vm8, vm10)}, then we can compute the Riskap1 = Riskvm2
+ Riskvm3

+ Riskvm4
+

Riskvm6
+Riskvm9

+Riskvm8
+Riskvm10

= 1.65+1.65+1.65+1.3+1.3+1.3+1.3 = 10.15.

Likewise, we calculate the ACap1 , RoAap1 as follows. ACap1 = ACvm2
+ACvm3

+ACvm4
+

ACvm6
+ ACvm9

+ ACvm8
+ ACvm10

= 1.2 + 1.2 + 1.2 + 1.9 + 1.9 + 1.9 + 1.9 = 11.2.

RoAap1 = RoAvm2
+ RoAvm3

+ RoAvm4
+ RoAvm6

+ RoAvm9
+ RoAvm8

+ RoAvm10
=

1.38 + 1.38 + 1.38 + 0.68 + 0.68 + 0.68 + 0.68 = 6.86.

We denote the overall security metrics after deploying Shuffle techniques on the cloud

as RiskSc , ACSc , and RoASc . Then, after deploying Shuffle on vm3, RiskSc = 82.25,

ACSc = 100.9, and RoASc = 51.4. We then calculate the results of deploying Shuffle

on other VMs and compare them. Figure 4.5a reveals the results of deploying Shuffle

60 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

technique on each VM in the cloud example. We illustrate the VMs sorted in descending

order based on their IMs values in the x-axis and the security metrics values for RiskSc ,

ACSc , RoASc in the y-axis. It is obvious that the values obtained for VMs vm3, vm6, and

vm9 (which have higher ranks in terms of IMs) are lower than the others, while deploying

Shuffle on the VMs vm4 and vm8 (which have lower IMs ranks) yields higher Riskc and

RoAc. Accordingly, we tabulated the percentage of the changes in the security metrics

in Table 4.4. The results show that the RiskSc , and RoASc are improved after deploying

Shuffle techniques on the cloud and the best percentage of changes belongs to deploying

Shuffle on vm3 with -61.15% and -62.14% for RiskSc and RoASc , respectively. The lower

values of RoAc shows that the attacker has less orientation to launch the attacks again

on that specific cloud’s configuration, while the higher rate of the RoAc shows the higher

probability of the same attack is launched by the attacker.

4.4.3 Diversity Technique Definition and Formalization

The main idea behind the Diversity techniques is to replace the systems’ components (e.g.

a VM, server, programming language, OS, hardware, and etc.) with different variants or

implementations, while the system provides the same services for the customers [110,

126]. We change the OS instances (OS Diversification) in the cloud to deploy Diversity

technique. Unlike Shuffle technique which may change the reachability of the VMs in the

cloud, deploying Diversity has no effects on the reachability of the VMs and may vary the

vulnerabilities existing on the VMs (only the lower layer of HARM may be affected and the

upper layer remains the same). In this study, we only consider OS vulnerabilities though

other vulnerabilities can also be investigated through HARM [65]. Deploying Diversity

has two advantages. First, it invalidates the information collected by the attacker to

exploit the vulnerabilities of the current system. Secondly, Diversity can introduce new

vulnerabilities to the attacker, thus the adversary needs to deal with new vulnerabilities

and spend more time and cost to gain information and exploit them. In here, we assume

that the cloud provider can use a backup OS which imposes a higher cost to the attacker

based on the vulnerabilities on the new OS, we consider AC as the difficulties to exploit

vulnerabilities using NVD database. Diversity can be formulated based on the HARM

definition as follows.

Definition 10. We formulate the Diversity technique in which the diversity function is

applied on H as D(H,κ) = Hd, where κ denotes a specific VM vmκ ∈ VM selected for

replacing with another OS variant. Then, Hd = (U,Ld,k, C) is the result of deploying

Diversity technique, where Ld,k = {`1, . . . , `k, . . . , `n} denotes the ATs corresponding to

each VM and `k = (Vk,θ, G, root) is the transformed AT of vmk which is replaced with an-

other variant θ ∈ OS. Diversity technique affects the lower layer and varies vulnerabilities

Vk,θ = {ν1,θ, ν2,θ, . . . , νm,θ}, while U = (VM,E) is preserved.

MTD Techniques Deployment 61

vm3 vm6 vm9 vm5 vm7 vm2 vm1 vm4 vm8

0

30

60

90

120

150

180

210

240

VM

M
et

ri
cs

V
al

u
e

RiskSc
ACSc
RoASc

(a) S

vm3 vm6 vm9 vm5 vm7 vm2 vm1 vm4 vm8

0

50

100

150

200

250

300

350

VM

M
et

ri
cs

V
al

u
e

RiskDc ACDc RoADc

(b) D

Figure 4.5: Comparison of security metrics after deploying two Shuffle MTD and Diversity
MTD strategies separately on the VMs (VMs in x-axis are sorted in descending order
based on their importance using IMs). (a) The results of deploying Shuffle technique on
the cloud example. (b) The results of deploying Diversity technique on the cloud example.

4.4.4 Diversity Technique Evaluation

In order to analyze Diversity technique, we first create the HARM for the cloud exam-

ple 2 and compute the security metrics to observe the current security posture of the

cloud. Then, we deploy the Diversity technique on the VMs based on the Diversity def-

62 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

Table 4.5: The percentage of changes in the security metrics after deploying Diversity on
each VM in the cloud example

ID
Values % of Changes

RiskDc ACDc RoADc RiskDc ACDc RoADc

vm1 201.65 284.4 123.44 -4.74% 13.13% -9.08%
vm2 197.64 297.6 118.51 -6.64% 18.38% -12.71%
vm3 191.61 317.4 111.11 -9.5% 26.25% -18.16%
vm4 207.68 264.6 130.83 -1.9% 5.25% -3.63%
vm5 203.89 282.6 129.29 -3.68% 12.41% -4.77%
vm6 198.69 303.4 124.98 -6.14% 20.68% -7.94%
vm7 202.59 287.8 128.21 -4.3% 14.48% -5.56%
vm8 203.89 282.6 129.29 -3.68% 12.41% -4.77%
vm9 198.69 303.4 124.98 -6.14% 20.68% -7.94%
Best vm3 vm3 vm3 vm3 vm3 vm3

inition 10. Finally, we compare and analyze the security metrics after deploying each

Diversity scenario. The following example shows the Diversity based on the given Diver-

sity definition 10. We change the current OS for each VM with the backup one. To be

specific, we use Fedora as the backup OS which includes different vulnerability values,

see Table 4.1.

Example 5. The result of Diversity function on the HARM for the cloud example (Hcs)

in which a VM is selected to be shuffled (vmκ) is represented as S(Hcs, κ) = Hd
cs. For

example, we select vm3 having the highest IM value on the cloud for deploying Di-

versity. Then, Hd
cs = (Ucs, L

d,3
cs , C) which Ucs = (VMcs, Ecs) remains unchanged, and

`3 = (V3,W , G, root), where `3 ∈ Ld,3cs , and V3,W = {ν1,W , ν2,W , ν3,W }, has been replaced

with the backup OS (Fedora(F)). Then, `3 = (V3,F , G, root) where, V3,F = {ν1,F } as in

Table 4.1

Unlike Shuffle, deploying Diversity will not add/remove or change any attack path

in the upper layer of the HARM, but it varies the lower layer of the HARM by in-

troducing different vulnerabilities. Consequently, the security metrics regarding each

attack path may change. For example, let consider an attack path existing on the

cloud example (showed by red dashed lines in Figure 4.3b) which is defined as ap1 =

{(A, vm1) , (vm1, vm3), (vm3, vm5), (vm5, vm7), (vm7, vm10)}. Then, we deploy Diver-

sity techniques on vm3, and calculate the security metrics for ap1 as follows. Riskap1 =

Riskvm1
+Riskvm3

+Riskvm5
+Riskvm7

+Riskvm10
≈ 6.2. Likewise, ACap1 and RoAap1

are around 11.4 and 3.56 respectively. Then, the overall values of the security met-

rics after deploying Diversity on vm3 are as follows: RiskDc = 191.61, ACDc = 317.4,

RoADc = 111.11. To compare with the other deployment scenarios, we compute the Di-

versity technique on the other VMs in the cloud example and compare the results among

them. Figure 4.5b shows the values of Diversity on each VM in the cloud example. The

MTD Combinations Definition and Formalization 63

VMs are sorted in descending order based on their IMs values on the x-axis and the secu-

rity metrics on the y-axis. The results show that deploying Diversity highly increases the

AC value. However, the highest AC values can be found through deploying Diversity on

the VMs vm3, vm6, and vm9 which have higher IMs values. Similarly, better results can

be obtained for Risk and RoA values for vm3. Table 4.5 lists the percentage of changes

in the security metrics after deploying Diversity showing the negative changes for Risk

and RoA values and the positive changes on AC values. Although changing OS is used

for deploying Diversity technique, the variation on the security metrics such as AC highly

depend on the vulnerability information introduced by the new OS.

4.5 MTD Combinations Definition and Formalization

In this section, we investigate the effects of deploying the combination of Shuffle and Di-

versity together using the security metrics. Based on the results reported in sections 4.4.2

and 4.4.4, deploying Shuffle technique decreases both RiskSc and RoACc , but it also re-

duces the ACSc values. However, deploying Diversity increases ACSc values, but the per-

centage of changes in RiskSc and RoASc are not very significant. Thus, the idea to combine

both Shuffle and Diversity may be useful to improve all those metrics. We formulate and

combine Shuffle and Diversity technique to understand the benefits of deploying these

techniques together on the cloud. To combine both Shuffle and Diversity techniques, we

utilize VM-LM as the Shuffle technique and OS diversification as the Diversity techniques;

then we deploy both VM-LM and OS diversification at the same time for each VM in

the cloud. The strategies for ways combining MTD techniques can be different. For ex-

ample, we can deploy Shuffle and Diversity on a single VM, or different VMs. In this

section, we investigate the combination strategies and the effectiveness of each. Finding

the best deployment strategy through Exhaustive Search (ES) is time-consuming on the

large clouds. To address this problem, we use IMs to find out the most important VMs

on the cloud first before applying MTD techniques on them.

We combine MTD techniques through considering the following strategies and steps

after the first computation of IMs:

S+D: (i) deploying Shuffle on the VM indicated by IMs, (ii) deploying Diversity on the

same VM;

D+S: (i) deploying Diversity on the VM indicated by IMs, (ii) deploying Shuffle on the

same VM;

S∆D: (i) deploying Shuffle on the VM indicated by IMs, (ii) computing IMs again, (iii)

deploying Diversity on a VM indicated by IMs;

D∆S: (i) deploying Diversity on the VM indicated by IMs, (ii) computing IMs again,

(iii) deploying Shuffle on a VM indicated by IMs;

64 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

We define S⊗D as the combination of MTD techniques including different combination

strategies. Although there are four possible combinations for combining Shuffle and Di-

versity using IMs, some combinations are equivalent based on the definition of HARM.

For example, as Diversity only affects the lower layer of HARM, thus deploying Diversity

first does not vary the upper layer of HARM. In this case, the permutation of S+D or

D+S are the same and both techniques yield the same results. Similarly, the computation

of IMs cannot be affected by deploying Diversity first. Then, the permutations of S∆D

or D∆S are equivalent and both lead to the same results. The formal definitions of S⊗D
include S+D and S∆D based on HARM are given as follows.

Definition 11. Let S⊗D(H,κs, κd) be a combination of Shuffle and Diversity function

on the HARM where 1 ≤ κs, κd ≤ n, and κs,κd denote the specific VM vmκs , vmκd

∈ VM chosen for the shuffling and OS diversification respectively. Then the result of

S⊗D function is as S⊗D(H,κs, κd) = Hs⊗d. We define Hs⊗d = (U s,κs , Ld,kd , C) where

U s,κs is equivalent to U s,κ in the Shuffle definition 4.4.1, where κ = κs, and Ld,κd is

equivalent to Ld,κ in the Diversity definition 10, where κ = κd.

The S+D can be a specific strategy under the definition of S⊗D(H,κs, κd), where

κs = κd which means deploying Shuffle and deploying Diversity on the same VM

vmκ and named as S+D(H,κ). The S+D strategy includes two consecutive steps:

S+D(H,κ)=S(H,κ)+D(Hs, κ), which means first deploying Shuffle technique on the

vmκ ∈ H where κ is selected by κ = Γ(H) and then deploy Diversity on the same VM

vmκ in the transformed HARM vmκ ∈ Hs.

Then, the S∆D strategy can be defined as S⊗D(H,κs, κd), where κs and κd are

not necessarily the same and is denoted as S∆D(H,κs, κd). The S∆D includes two

consecutive steps: S∆D(H,κs, κd) = S(H,κs)+D(Hs, κd), which specifically means first

deploying Shuffle technique on the VM selected by κs=Γ(H) which is vmκs . Then deploy

Diversity on the VM chosen by κd = Γ(Hs) which is vmκd∈Hs which exists on the

transformed HARM resulting from deploying Shuffle.

4.5.1 Evaluation of MTD Combinations

In this section, we evaluate the effectiveness of combinations of Shuffle and Diversity

MTD techniques. This evaluation undergoes three steps: (1) creating the cloud model

using HARM, (2) deploying different combination strategies (based on S+D and S⊗D),

and finally (3) analyzing the changes in the cloud’s security posture for each strategy.

We analyze the security metrics values after deploying each S⊗D strategies. The

following example shows the deploying S+D on the cloud based on the given Definition 11.

Example 6. The result of S+D function on the generated HARM for the cloud example

(Hcs) in which a VM is selected to be shuffled (vmκ) can be represented as S+D(Hcs, κ) =

S(Hcs, κ) +D(Hs
cs, κ) including the following steps: (i) Finding the most important VM

MTD Combinations Definition and Formalization 65

in the HARM using κ = Γ(H), which returns κ = 3, (ii) Deploying S(Hcs, 3), where vm3

is shuffled and results in the changes on the upper layer of HARM (Hs). (iii) Deploying

Diversity on the transformed HARM D(Hs
cs, 3), where the selected VM for deploying

Diversity is the same as the previous step which was vm3.

We denote the security metrics resulting from deploying S+D as RiskS+D
c , ACS+D

c ,

and RoAS+D
c . Similarly, we can show the example of deploying S∆D as follows.

Example 7. The result of S∆D function on the generated HARM for the cloud example

(Hcs) in which two VMs are selected for deploying combined MTD can be represented as

S∆D(Hcs, κs, κd) = S(Hcs, κs)+D(Hs
cs, κd) consisting of the following steps: (i) Finding

the most important VM in the HARM using κs = Γ(H), which returns κs = 3 meaning

vm3 is selected, (ii) Deploying S(Hcs, 3), where vm3 is shuffled and results in the changes

on the HARM (Hs). (iii) Re-calculating IMs again on the transformed HARM (Hs
cs) to

find the most important VM for deploying Diversity using κd = Γ(Hs
cs), which returns

κd = 6 meaning vm6 is selected, (iv) Deploying Diversity on the transformed HARM

D(Hs
cs, 6), where the selected VM for deploying Diversity is vm6.

We denote the security metrics resulting from deploying S∆D as RiskS∆D
c , ACS∆D

c ,

and RoAS∆D
c . We consider two combination strategies of MTD and evaluate the cloud

security level before and after deploying the combined techniques. Then, we compare the

combination strategies to find a more effective technique. Figure 4.6 compares the results

of deploying two different combinations of MTD techniques which are S+D and S∆D on

the VM in the cloud example through analysis of the security metrics. The metric values

are plotted as the y-axis against the VMs sorted in the descending trend based on their

IMs values in the x-axis. Figure 4.6a shows the security metrics after deploying S+D, and

Figure 4.6b reveals the results of deploying S∆D on the cloud example. Both graphs show

the combinations of MTD techniques on VMs which have higher IM values (like vm3,

vm6, and vm9) cause lower rates for Riskc and RoAc metrics. Although deploying the

combined MTD decreases ACc values, it also intensively reduces Riskc, and RoAc values.

With these results, we can observe that it is important to choose the appropriate VM. For

instance, deploying MTD techniques on the VMs with the lower values of IMs are shown

to be less effective than the others. Moreover, we can observe that S∆D deployment

strategy is better than S+D as the RiskS∆D
c and RoAS∆D

c are lower than RiskS+D
c

and RoAS+D
c , while ACS∆D

c rates are higher than ACS+D
c values. However, the obtained

security metrics values depend on the cloud’s constraints and might be different in other

contexts. Based on the results, the optimal results of deploying S+D and S∆D are the

selection of vm3 leading to the best values.

Comparing the percentage of the changes on metrics reported in Table 4.6 and 4.7 for

combinations of MTD techniques with Table 4.5 for D only, we can notice a significant

improvement on RiskDc and RoADc , where the percentage of the changes for those values

are about -9.49% and -18.16%, respectively in the best scenario (deploying Diversity

66 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

vm3 vm6 vm9 vm5 vm7 vm2 vm1 vm4 vm8

0

50

100

150

200

250

300

VM

M
et

ri
cs

V
al

u
e

RS+D
c

ACS+D
c

RoAS+D
c

(a) S+D

vm3 vm6 vm9 vm5 vm7 vm2 vm1 vm4 vm8

0

50

100

150

200

250

300

VM

M
et

ri
cs

V
a
lu

e

RS∆D
c

ACS∆D
c

RoAS∆D
c

(b) S∆D

Figure 4.6: Comparison of security metrics after deploying two MTD combination strate-
gies on the VMs (VMs in x-axis are sorted in descending order based on their importance
using IMs)

on vm3), while these rates for RiskS+D
c and RoAS+D

c are about -62.1% and -63.9% for

the best deployment scenario, and even better for S∆D with the values of -63.6% and

-65.3% for RiskS∆D
c and RoAS∆D

c , respectively.

Figure 4.7 compares the results of deploying each MTD technique (S and D) and

combination strategies (S∆D and S+D) on the security metrics (RoAc, Riskc, ACc, and

MTD Combinations Definition and Formalization 67

Table 4.6: The percentage of changes in the security metrics after deploying S+D on each
VM in the cloud example

VM
Values % of Changes

RiskS+D
c ACS+D

c RoAS+D
c RiskS+D

c ACS+D
c RoAS+D

c

vm1 160.48 215 97.87 -24.19% -14.48% -27.91%
vm2 126.49 175 75.93 -40.25% -30.39% -44.07%
vm3 80.24 107.5 48.94 -62.10% -57.24% -63.95%
vm4 170.03 222.9 105.44 -19.68% -11.34% -22.33%
vm5 114.34 149.9 72.58 -45.99% -40.37% -46.54%
vm6 85.66 112.8 55.46 -59.53% -55.13% -59.15%
vm7 120.53 154.2 76.54 -43.06% -38.66% -43.62%
vm8 200.47 257.3 130.82 -5.30% 2.35% -3.64%
vm9 91.15 118.5 58.03 -56.94% -52.86% -57.25%
Best vm3 vm8 vm3 vm3 vm8 vm3

Table 4.7: The percentage of changes in the security metrics after deploying S∆D on each
VM in the cloud example

VM
Values % of Changes

RiskS∆D
c ACS∆D

c RoAS∆D
c RiskS∆D

c ACS∆D
c RoAS∆D

c

vm1 154.09 243.4 94.18 -27.21% -3.18% -30.63%
vm2 122.71 193 74.39 -42.03% -23.23% -45.20%
vm3 77.05 121.7 47.09 -63.60% -51.59% -65.31%
vm4 162.35 256.5 100.67 -23.31% 2.03% -25.85%
vm5 109.14 170.7 68.26 -48.44% -32.10% -49.72%
vm6 78.22 135.4 45.29 -63.05% -46.14% -66.65%
vm7 114.68 177.6 71.69 -45.83% -29.36% -47.19%
vm8 195.92 275.5 127.04 -7.45% 9.59% -6.42%
vm9 85.07 137.1 49.79 -59.81% -45.47% -63.32%
Best vm3 vm8 vm6 vm3 vm8 vm6

ASPc). The results demonstrated in Figure 4.7a show that RoAS∆D
c has lower values than

the other MTD techniques and combination strategies for all selected VMs. However, the

best RoAc results can be found through deploying S∆D on the top three VMs vm3, vm6,

and vm9 having the higher IMs rates which yieldRoAS∆D
c lower than 50. Nevertheless, the

worst results for RoAc can be obtained after deploying Diversity which yields the highest

RoAc as RoADc values fall between 110 and 130 in the best and the worst deployment

scenarios (shown in Figure 4.7a). The same trend can be seen in the results of deploying

MTD strategies on Riskc values. The best Riskc results from deploying S∆D as RiskS∆D
c

for all VMs have lower values than the Riskc obtained from the other MTD strategies. In

contrast, RiskDc yield the worst results, see Figure 4.7b. The results of ACc are shown in

Figure 4.7c. Comparing the ACc values obtained from deploying different MTD strategies,

we observe that ACDc values are highest and ACSc values are the lowest among the other

68 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

vm3vm6vm9vm5vm7vm2vm1vm4vm8

10

30

50

70

90

110

130

VM

R
oA

RoAD
c

RoAS
c

RoAS+D
c

RoAS∆D
c

(a) RoAc values

vm3vm6vm9vm5vm7vm2vm1vm4vm8
0

30

60

90

120

150

180

210

VM

R
is
k

RD
c

RS
c

RS+D
c

RS∆D
c

(b) Riskc values

vm3vm6vm9vm5vm7vm2vm1vm4vm8
0

50

100

150

200

250

300

VM

A
C

ACDc

ACSc

ACS+D
c

ACS∆D
c

(c) ACc values

vm3vm6vm9vm5vm7vm2vm1vm4vm8
0

0.05

0.1

0.15

0.2

0.25

VM

A
S
P

ASPDc

ASPSc

ASPS+D
c

ASPS∆D
c

(d) ASPc values

Figure 4.7: Comparison of security metrics resulting from deploying various MTD tech-
niques (VMs in x-axis are sorted in descending order based on their importance using
IMs)

techniques. Figure 4.7d compares all ASPc values resulting from deploying different MTD

strategies on the VMs. As it can be seen, the results of ASPS∆D
c yield the lower ASPc

values in comparison with the other MTD strategies. It means that after deploying S∆D

the attacker has a lower chance to compromise the target while this chance after deploying

other MTD strategies are higher. The worst ASPc values can be found after deploying

Shuffle as the ASPSc are the highest. Furthermore, in all cases, deploying MTD strategies

on the VMs having higher IMs values leads to better results in terms of the security

metrics (Riskc, RoAc, ACc, and ASPc). Moreover, considering the overall results, we can

conclude that combining MTD techniques leads to better results in terms of the security

metrics. We also observe that the combination strategies are important to achieve a better

security posture as the results of S∆D surpasses S+D values.

However, deploying Diversity has no effect on the reachability of the VMs, whilst

MTD Combinations Definition and Formalization 69

0.15 0.2 0.25
5.4

5.6

5.8

6

6.2

ASPc

M
A
P
L
c

R2 = 0.48

(a)

0.15 0.2 0.25
0.4

0.6

0.8

1

1.2

ASPc

S
D
P
L
c

R2 = 0.61

(b)

100 150 200
5.4

5.6

5.8

6

6.2

Riskc

M
A
P
L
c

R2 = 0.76

(c)

100 150 200
0.4

0.6

0.8

1

1.2

Riskc

S
D
P
L
c

R2 = 0.60

(d)

Figure 4.8: Comparing the correlation of path-based metrics against ASPc and Riskc
after deploying Shuffle on each VM. The correlation co-efficient between (a) ASPc and
MAPLc is about 70%, (b)ASPc and SDPLc is about 78%, (c)Riskc and MAPLc is
about 87%, (d)ASPc and SDPLc is about 77% showing a positive relation.

deploying Shuffle varies the reachability of VMs and changes the upper layer of HARM.

Thus, Shuffle may change the path-based metrics. Moreover, as Diversity technique cannot

affect the upper layer of HARM, it cannot vary the path-based metrics. Consequently, the

results of deploying those MTD techniques combined with Shuffle (S, S+D, and S∆D)

on the path-based metrics are similar. Thus, we only evaluate the path-based metrics for

Shuffle technique. We computed the path-based metrics after deploying Shuffle on each

VM in the cloud. In Figure 4.8, we plot the ASP and Risk values obtained after deploying

Shuffle on each VM against the corresponding values for MAPL and SDPL and compute

the correlation coefficient of those metrics. We found a positive linear correlation between

them which means increment on path-based metrics like MAPL and SDPL may increase

the risk and attack success probability. Figure 4.9 shows the normalized values of path-

70 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vm3 vm6 vm9 vm5 vm7 vm2 vm1 vm4 vm8
VM

MAPL

MoPL

SDPL

SAP
N

or
m

al
iz

ed
 V

al
ue

s

Figure 4.9: Changes on the Path-based Metrics after deploying Shuffle on each VM (VMs
in x-axis are sorted in descending order based on their importance using IMs)

based metrics and the changes in those metrics after deploying Shuffle on each VM. The

values of x-axis are the VMs sorted in descending order based on their importance using

IMs (as Equation (4.1)). The results demonstrate a gentle increment on the both MAPL

and SDPL values. As the higher values of MAPL and SDPL may increase the ASP

and Risk values, deploying Shuffle on the VMs vm9, vm6, and vm3 which have higher

betweenness values leads better MAPL and SDPL values. Moreover, although the SAP

values remain steady after deploying Shuffle on each VM, deploying Shuffle on VMs vm3,

vm9, and vm8 have the higher SAP values showing the minimum number of VMs that

the attacker needs to exploit to compromise the target are higher for those VMs.

4.5.2 Simulation and Evaluation in Large Cloud Model

We assess the effectiveness of individual and combined MTD techniques in a larger con-

text. The evaluation in the larger scale can show that (1) how scalable the proposed MTD

techniques and strategies are, (2) how the cloud security posture varies as the size of the

cloud changes (as the management of the larger clouds is more difficult than smaller

clouds). We simulated a large Cloud-band model we used in the earlier version of this

chapter presented in [11]. This cloud-band model includes up to 900 VMs divided into two

cloud-band nodes each of which can accommodate up to 450 VMs. We assume that only

a few VMs are the entry points of the system (i.e., front-end servers) and are connected

to the Internet. Moreover, we assume that the attackers can only enter the cloud from

the VMs connected to the internet. Attackers can exploit vulnerabilities on each VM,

explore the attack paths, and finally get access to the resource node. We also assume

that all VMs in the cloud-band nodes use the Linux as the main OS and Fedora as the

backup OS. The vulnerability values for each OS are considered based on the values in

Table 4.1. We also assume that the backup OS for each VM in the cloud can be launched

MTD Combinations Definition and Formalization 71

R
A
C
R
oA R

A
C
R
oA R

A
C
R
oA R

A
C
R
oA R

A
C
R
oA R

A
C
R
oA

0

200

400

600

800

1,000

1
2
0

8
7

1
0
0

2
3
0

1
6
7

1
9
2

3
6
3

2
6
4 3
0
2

5
4
1

3
9
3 4
5
1

7
3
6

5
3
5 6

1
3

9
8
2

7
1
3

8
1
8

150 200 250 300 350 400

V
a
lu

e
s
×

1
0
0
0

Before S

After S

(a) S

R
A
C
R
oA R

A
C
R
oA R

A
C
R
oA R

A
C
R
oA R

A
C
R
oA R

A
C
R
oA

0

200

400

600

800

1,000

1
1
6

1
0
1

9
5

2
2
3

1
9
3

1
8
2

3
5
1

3
0
5

2
8
7

5
2
2

4
5
4

4
2
8

7
1
1

6
1
8

5
8
2

9
4
8

8
2
5

7
7
7

150 200 250 300 350 400

V
a
lu

e
s
×

1
0
0
0

Before D

After D

(b) D

R
A
C
R
oA R

A
C
R
oA R

A
C
R
oA R

A
C
R
oA R

A
C
R
oA R

A
C
R
oA

0

200

400

600

800

1,000

1
2
0

8
7

1
0
0

2
3
0

1
6
7

1
9
2

3
6
3

2
6
4 3
0
2

5
4
1

3
9
3 4
5
1

7
3
6

5
3
5 6

1
3

9
8
2

7
1
3

8
1
8

150 200 250 300 350 400

V
a
lu

e
s
×

1
0
0
0

Before S+D

After S+D

(c) S+D

R
A
C
R
oA R

A
C
R
oA R

A
C
R
oA R

A
C
R
oA R

A
C
R
oA R

A
C
R
oA

0

200

400

600

800

1,000

1
2
0

8
7

1
0
0

2
3
0

1
6
7

1
9
2

3
6
3

2
6
4 3
0
2

5
4
1

3
9
3 4
5
1

7
3
6

5
3
5 6

1
3

9
8
2

7
1
3

8
1
8

150 200 250 300 350 400

V
a
lu

e
s
×

1
0
0
0

Before S∆D

After S∆D

(d) S∆D

Figure 4.10: Comparison of metrics before and after deploying the four types of MTD
metrics

by the cloud provider with the neglectable machine downtime. Finally, the cloud provider

allows VM-LM feature between cloud-band nodes as if there is available space on each

node. Note that VM-LM may rearrange the logical connectivities between the VMs based

on the cloud constraints. In Section 4.4, we showed that deploying MTD techniques on

the VMs with higher IM values leads to better security posture in comparison with other

VMs. To deploy MTD techniques effectively, we used IMs rather than ES. We deploy

MTD techniques in the cloud-band example and consider the effectiveness of each MTD

combination by comparing the security metrics. We first generate the two layered-HARM

for the cloud-band model and analyze the security posture of the cloud before and after

deploying each MTD technique.

To conduct the results, we simulate the various cloud-band sizes and deploy for deploy-

ing MTD techniques. Figure 4.10 compares the security posture of the cloud with various

VM sizes before and after deploying the MTD techniques: S, D, S+D, and S∆D. Con-

sidering the graphs, we can obvious that deploying MTD decreases Risk and RoA values

72 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

for all techniques. Moreover, AC increases in D, while this value decreases in the other

techniques. However, in D technique, as in Figure 4.10b, the decrements in Risk and

RoA rates are less in comparison with the others which infer that the other techniques

have better results than D based on the defined cloud and system constraints. Then,

the results show that using S in MTD can be helpful for cloud providers as it highly

decreases the values of Risk and RoA, as in Figure 4.10a. We also can see that increasing

the cloud-band sizes provides the linear increment on all metrics. This trend is almost

similar in S and S+D, but different in D and S∆D. For instance, the overall values

for the metrics are very high in D only. Although it increases the AC values, the values

of RoA after deploying D are very high. For instance, this value is about 777 for the

cloud-band with 400 VMs which shows the high orientation of the attacker to attack the

cloud again, while the same RoA values are about halved for other techniques.

The best scenario. Although Diversity (D) provides the worst results in Risk and

RoA comparing with the other techniques, it increases the AC rates. Thus, combining D

with S improves the overall security posture of the cloud. When the IMs are calculated

between the techniques S∆D, it leads to the best combination scenario, see Figure 4.10d.

Moreover, the security posture of S+D is better than S or D-only, see Figure 4.10c, but

lower than S∆D. Comparing the results, we observe that the best MTD combination is

S∆D technique in which the values of Risk and RoA are lower than the others, the RoA

values in S∆D are 47 and 372 for the cloud-band with 150 and 400 VMs respectively,

which shows the optimal values. Moreover, the optimal values for Risk are 57 and 456 for

150 and 400 VMs in the cloud-bands respectively. Furthermore, the values for AC when

S∆D are deployed are better than those of S and S+D techniques.

4.6 Discussion and Limitations

In this chapter, we proposed the novel combinations of MTD techniques which utilize dif-

ferent strategies to combine Shuffle and Diversity techniques. The four MTD deployment

scenarios include Shuffle and Diversity as the single MTD techniques together with S+D

and S∆D as the combined strategies. The approaches we used to deploy the MTD tech-

niques on the cloud are limited to VM-LM and OS diversification for Shuffle and Diversity

respectively. We utilized four main security metrics Risk, AC, RoA, and ASP to evaluate

the security posture of the cloud. We chose to use those metrics due to evaluating the

cloud security posture based on two different perspectives. Two AC and RoA show the

security level of the cloud based on the attacker’s perspective, while Risk and ASP are

categorized as the metrics showing the cloud security based on the cloud providers’ per-

spective. Then, we evaluated the results of deploying MTD techniques on the path-based

metrics to observe the cloud security based on the reachability of the VMs. Path-based

metrics can show the attacker’s efforts needed to compromise the target in terms of ex-

ploiting the paths, the number of VMs on a path, minimum path length, and so on. We

further discuss the limitations and extensions of this work.

Discussion and Limitations 73

Table 4.8: Comparison of the studied MTD techniques and evaluations

Reference
MTD
Techniques

Combination
Strategies

Security Metrics

Risk ASP Rel AC RoA MAPL MoPL SDPL ASP

This chapter S, D 3 3 3 7 3 3 3 3 3 3
Chapter 5 [11] S, R, D 7 3 7 3 3 3 7 7 7 7
Chapter 3 [13] S, Risk 7 3 7 3 7 7 7 7 7 7
Alavizadeh et al. [12] S, D 7 3 7 7 3 3 7 7 7 7

4.6.1 Combining MTD Techniques

A comparison of current MTD literature which proposed the combination MTD technique

is presented in Table 4.8. This comparison is based on factors such as MTD techniques,

combination strategies (as discussed in Section 4.5), and security metrics including path-

based metrics. We investigated the combining MTD techniques as each technique can be

effective on a particular sight. For instance, Diversity incurs more costs for the attacker

and can be evaluated in terms of the attacker’s point of view. Some security metrics such

as AC and RoA are useful indicators to quantify the security of the cloud based on the

attacker’s perspective. We showed how Diversity increases AC (shown in Figure 4.10b).

In fact, the main drawback of Diversity is that it may need extra resources (such as more

Operating Systems (OS) variants) and lack of enough variants may affect the Diversity

functionality. Alternatively, Shuffle may be deployed in such a way to improve the overall

security of the system such as reducing the Risk and RoA values. The inherent benefit of

Shuffle is that it can be easily applicable and usually no need extra resources. However, as

Shuffle relies on the existing resources, it cannot eliminate or change the vulnerabilities of

the current resources. Consequently, those MTD techniques can be well-mingled together

by the cloud provider to benefit from the advantages of each technique.

4.6.2 Limitations and Extensions

In this chapter, we only considered Shuffle, Diversity and combination of those two tech-

niques, while the other combinations of MTD techniques can also be formalized and

investigated. Although analyzing more MTD techniques and combinations of them might

increase the security analysis complexity, it might provide the cloud providers with better

security solutions and defensive capabilities and the cloud provider can opt the desirable

MTD techniques for combination based on the available resources.

Despite their importance, the security metrics we used in our experiments are only

limited to Risk, AC, RoA, and ASP together with path-based metrics while there are

other security metrics which can be used based on the cloud security level requirements,

such as those discussed in [118]. We will further consider other sets of security metrics

to capture different aspects of the cloud security requirements in our future work. More-

over, we assumed that the attacker is outside of the cloud. However, adapting an MTD

technique, which is able to defend against the insider threats, is also important. The

74 Model-based Evaluation of Combinations of Shuffle and Diversity Techniques

techniques to identify the propagation source of attacks in a network can be utilized to

enhance the defensive techniques against the prospective attack from a single or a group

of suspicious sources [80,153]. Moreover, the techniques for detecting and preventing at-

tacks launched from inside of a network are extensively discussed in [99]. We believe that

our MTD techniques can be expanded based on intrusion alerts, then the MTD triggers

when a threat is detected by the Intrusion Detection System (IDS).

We considered and evaluated Diversity technique with only a single backup VM.

Thus, the security achieved by the Diversity technique can be significantly degraded by

the limitation on the number of variants in such a way that the attacker may gradually

learn the techniques to exploit and cover a set of limited vulnerabilities. To address

this, we further investigate Diversity technique with more backup OS variants. Moreover,

other Diversity approaches such as Applications, Code and Software Diversity [70] can

be included.

Moreover, there is a lack of the economical evaluation of deploying MTD techniques

on the cloud. For example, in order to deploy Diversity technique the cloud provider

should purchase more OS or licenses. It is difficult for most of the private cloud providers

to supply various OS variants for their customers due to economical-related reasons;

vendors can provide the customers with more OS options, but customers may not afford

to buy them. Thus, cost evaluation of deploying MTD techniques is a crucial problem

which we plan to address in our future work.

4.7 Conclusion

MTD techniques can be applied to cloud computing to enhance the security of the cloud

by making the cloud more unpredictable for the attackers. In this chapter, we introduced

the combinations of MTD techniques including Shuffle and Diversity and evaluated the

effectiveness of them by deploying different combination strategies for the cloud. Com-

paring the security posture of the cloud before and after deploying each combination

scenario, we showed that combining MTD techniques is important, as it can introduce

additional benefits of enhancing security, which may not be possible under a single MTD

technique. For instance, Diversity technique can enhance some security metrics such as

AC and RoA which are mainly used to show the cloud security level based on the at-

tacker’s perspective, while Shuffle technique may vary other aspects of security metric like

Risk and ASP which mainly capture the security from cloud providers’ point of view.

Thus, MTD techniques can be well-mingled together aiming to increase various aspects

of security. We also wanted to show that, if those techniques are not properly deployed,

it may cost the cloud providers and also it may increase the attack surface. Moreover,

we simulated a large cloud-band model to conduct the results. Our experimental analysis

showed the best combination strategies for Shuffle and Diversity providing better results

in terms of improving the security posture of the cloud in comparison to single MTD

techniques or other combinations.

Chapter 5

Security and Economic Modeling and

Analysis of MTD Techniques for

Cloud Computing

Summary

Cloud computing leverages MTD techniques to enhance the security posture of the cloud

against cyber threats. While many MTD techniques have been applied to cloud comput-

ing, there is still uncertainty involving the effectiveness of MTD techniques with respect to

security and economic metrics. In this chapter, we first introduce mathematical definitions

on the combination of three main MTD techniques: Shuffle, Diversity, and Redundancy.

Then, we utilize four security metrics including system risk, attack cost, return on at-

tack, and reliability to assess the effectiveness of the combined MTD techniques applied

to large-scale cloud models. We focus on a specific context based on a cloud model for

E-health applications to evaluate the effectiveness of the MTD techniques using both

security and economic metrics. We introduce (1) a strategy to effectively deploy Shuffle

technique using virtual machine placement technique and (2) two strategies for deploying

Diversity through OS diversification. Since deploying Diversity may involve a cost benefit

analysis for the cloud providers, we propose the Optimal Diversity Assignment Problem

(O-DAP) and formulate it as a binary linear programming model to find the optimal

solution which maximizes the expected net benefit.

75

76 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

5.1 Introduction

Moving Target Defense (MTD) techniques have been proposed aiming to make a system

dynamic, less deterministic, and unpredictable for the cyber attackers by continuously

changing the attack surface [102]. The static nature of the systems makes a system more

attack-prone since the attackers have enough time to learn the potential attack ways,

exploiting vulnerabilities, and eventually penetrating into the system. Unlike the tra-

ditional defensive security solutions such as anti-malware, Intrusion Detection Systems

(IDS), firewalls (which are usually expensive and are reactive methods against possible

threats), MTD techniques are mostly proactive defensive techniques which adopt the ex-

isting technologies in a system (e.g., virtual machines, backup Operating Systems (OS),

and so forth) to introduce adequate levels of unpredictability to the attackers such that

they make the attacks difficult and complicated. Consequently, it may increase the at-

tacker’s effort, time, and cost while potentially decreasing the defensive costs. However,

the proposed defensive MTD strategies need to be effective and efficient to prevent po-

tential attacks while being affordable. In this chapter, we leverage MTD capabilities to

secure cloud computing.

Furthermore, the effects of combining different MTD techniques are considered in this

chapter by investigating various MTD properties when several techniques are deployed.

We use the MTD classification proposed by Hong et al. [66], which are Shuffle, Diversity,

and Redundancy. We investigate the effects of combining different MTD techniques from

these three categories and evaluate them in terms of both security and economic metrics.

These include the system risk, attacker cost and effort, return on attack, and reliability

together with promising economic metrics such as return on security investment and

expected net benefit of security. In general, Shuffle MTD methods may enhance the

overall security of a system by reconfiguring the system to change the attack surface of

the system, but it may have no effect on the system’s reliability, or even deteriorate the

reliability of the system. Redundancy MTD techniques may enhance the reliability or

availability of the system while it may affect the overall security of a crucial system in a

opposite way (e.g. increase the system risk), because it could potentially place the system

in a more vulnerable state, as described in [13]. Moreover, Diversity MTD techniques may

increase the difficulties of attacks (e.g., software vulnerability exploitation), but it may

increase the cost of the defense and therefore have negative economic impacts. Due to the

uncertainty of deploying individual or combined MTD techniques, the effectiveness of the

proposed MTD techniques must be evaluated prior to deployment. One can benefit from

using MTD techniques solely, but the problem arises when a trade-off between security

and dependability (such as service availability or reliability) is required. Deploying each

MTD technique can affect the others. However, there is still uncertainty involving these

analytical issues [12,13].

In this chapter, we aim to address the aforementioned problems by evaluating the

effectiveness of different MTD techniques including Shuffle, Diversity, Redundancy, and

Introduction 77

combinations of them for cloud computing. Accordingly, we model and analyze MTD

techniques using a graphical security model named Hierarchical Attack Representation

Model (HARM) [2]. We identify applicable MTD techniques in the cloud computing

environment and formally define them. In addition, we use important measures such as

network centrality measures (NCMs) to improve the scalability of the evaluation process

for large-sized cloud computing systems. First, we carry out experimental analysis to

evaluate and compare how combined MTD techniques affect the security of the cloud

systems. Then, we focus on more specific context studying the evaluation the effectiveness

of MTD techniques on an E-health cloud model as a case study. We utilize both security

and economic metrics to show the effectiveness of the proposed MTD techniques. We

propose an effective Shuffle strategy to deploy this technique in an appropriate way aiming

to reduce economic impacts while increase security level. Moreover, we extend our study

by conducting in-depth investigations on Diversity technique considering the interplay

between cost of security and benefit of security. Diversity technique may incur additional

cost to the cloud providers due to purchasing the license, component’s variants (such

as VMs), etc., while the cloud providers usually have to deploy defensive strategy with

limited (allocated) budgets. Thus, the use of various system’s components (such as backup

OS variants) should be precisely prioritized and possibly optimized. To this end, we

propose a Diversity strategy based on the globally optimal solution of an optimization

model which maximizes the expected net benefit under all possible Diversity assignments.

The earlier published version of this chapter is presented in [12]. In this chapter, we

extend the earlier version mainly focusing on formalism and definitions of combined MTD

techniques together with evaluation the MTD techniques using the economic metrics

alongside the security metrics. Moreover, we propose an optimization model which finds

an optimal solution to diversity assignment by considering both the cost of security and

the benefit of security. The main contributions of this chapter, which to the best of our

knowledge have not been proposed by other works, are listed as follows:

• We provide the formal mathematical definitions for combining Shuffle, Diversity,

and Redundancy MTD techniques;

• We evaluate the effectiveness of combined MTD techniques using security metrics

including System Risk (Risk), Attack Cost (AC), and Return on Attack (RoA), and

Reliability for a large cloud model through simulation. We evaluate the combined

method by deploying Diversity on multiple VMs in the cloud using OS diversification

technique.

• We model an E-health cloud example (also called Personal Health Cloud (PHC)),

and evaluate the effectiveness of MTD techniques based on both security and eco-

nomic metrics.

78 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

• We provide a set of strategies in which Shuffle and Diversity can be effectively

deployed. We propose a VM placement strategy for Shuffle and two strategies for

deploying Diversity based on deploying Diversity (OS diversification) (i) with only

one backup OS and (ii) with multiple backup OS variants over the set of VMs.

• To solve the second case mentioned above, we propose the Optimal Diversity As-

signment Problem (O-DAP) and formulate it as a binary linear programming model.

This allows us to find an assignment of OS variants on multiple VMs in such a way

that the expected net benefit is maximized.

The rest of the chapter is organized as follows. Section 5.2, we provide a comprehensive

overview of the related work and define MTD technique frameworks. Section 5.3 presents

the preliminaries of this chapter including formalism for combination of MTD techniques.

Proposed MTD definition and evaluation criteria based on the security metrics are given

in Section 5.4. In Section 5.5, we evaluate the effectiveness of MTD techniques on both

economic and security metrics as well as defining optimization model to solve diversity

assignment problem. In Section 5.6, we provide the discussion and limitation of this

chapter. Finally, the conclusion is provided in Section 5.7.

5.2 Related Work

Several studies have been conducted on MTD theory, techniques, and evaluation [25,28,

165]. Hobson et al. [60] introduced three main challenges of developing MTD as coverage,

unpredictability, and timeline. Zhuang et al. [168] argue that an effective MTD technique

should consider the following issues: (1) the right pieces to be moved, (2) sufficient space

for movement, and (3) correct time for movement. Similarly, Cai et al. [28] defined three

aspects for the movement of MTD techniques: (1) WHAT to move, (2) HOW to move

and (3) WHEN to move. However, these studies have not discussed the cost or economic

efficiency of the MTD movement. They merely explore common properties of the MTD

(movement selection, movement strategy and movement time) that should be achieved

when an MTD technique is adopted. In addition to the total cost of security, the relative

cost of movement with respect to the achieved security should be taken into account.

Our analysis framework contributes to the literature by including (1) MTD techniques

and categories, (2) MTD applicable layers, and (3) definition of the combination of MTD

techniques at different cloud’s layer (shown in Table 5.1). As those studies in MTD liter-

ature have been extensively discussed in Chapter 2, we avoid recurring the related work

in this section. The readers who are interested in a specific research and MTD tech-

nique mentioned in Table 5.1 can jump to Chapter 2. However, due to the importance of

understanding the three MTD categories, we recall those MTD categories as follows [66]:

• Shuffle: this technique refers to any technique which can re-arrange the system

setting in different software, hardware, and network layers like changing or shuffling

Definitions and Formalization 79

Table 5.1: MTD techniques applicable in different cloud computing layers

Cloud Layer Diversity Redundancy Shuffle

Application Layer
Web Services [36,71,145]
Web Applications [19,36,71]

Web [56,154]
Port/IP [16,82,100]
Web App. [116]
HTTP [78,151]

Platform Layer
Application/ Web service
Design [36,71]
Database [36,145]

Web Server Replica Web Service

Infrastructure Layer
Operating System (OS)
Virtualization [13,66,71]

Virtualization [13,66]
SDN [75,133]

SDN, VM migration
[13,55,66,120]

Virtual IP [75,76]

the IP address, re-arranging the network’s topology, moving or migrating a VM,

Host, Hardware to another location, etc. [45, 75,116].

• Diversity: this technique can be considered as replacing the components’ variant

(which can be a server, programming language, operating system, hardware, and

etc.), while the system provides equivalent functionality with the previous state

(before changing variant) [74,110,126].

• Redundancy: through this technique, one can increase the number of components’

replica in the system, like servers, hardware, OS, software, services, and etc [85,154].

However, the existing MTD techniques proposed in the literature mostly focused on

proposing novel approaches and methods for operating MTD techniques, while evaluating

their effectiveness are not adequately discussed. Moreover, there is still a shortcoming in

the literature to effectively combine MTD techniques for cloud. Among the existing MTD

methods proposed for different layers, a few of them investigated on securing infrastruc-

ture layer of cloud and there is no work to evaluate the effectiveness of the combination

of all three MTD categories together to assess how effective the combined method is.

Moreover, there is a gap in the MTD studies in evaluating the proposed MTD techniques

based on security and economic metrics. Only a few studies such as [24,50] have proposed

evaluating the economic impacts of defensive techniques using Graphical Security Mod-

els (GSMs) and economic metrics. Security metrics can be incorporated into GSMs to

evaluate both the effectiveness of given network models and that of the MTD techniques.

5.3 Definitions and Formalization

5.3.1 A Cloud Model

Throughout this chapter, we use a running example based on the cloud-band model

consisting of two main cloud band nodes each accommodating up to 450 VMs and one

resource node connecting to a Database (DB). The system model can be used as an input

to generate the HARM described in Subsection 5.3.2, which can be used for evaluating the

80 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

(a)

vm

vm

vm

151.26.25.163

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm vm

vm

vm

vm

vm

vm
vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

202.154.33.129

Server

vm
vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm
vm

vm

vm

vm

vm

vm

vm
vm

vm

vm

vm

vm

vm

vmvm

vm

vm

vm

vm
vm

vm

vm

vm

vm

vm

vm
vm

vm

vm

vm
vm

vm

vm

vm

vm

vm

vm
vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

192.168.26.35

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm
vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm
vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vmvm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

DB

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm
vm

vm

vm

vm
vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

129.25.36.129vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vmvm

vm

vm

vm

vm

vm

vm

vm

vm

vm

160.25.141.43

vm

vm
vm

vm

vm

vm

vmvm

vm

vm

vm

vm

vm

vm
vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm vm
vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

vm

(b)

Figure 5.1: The Cloud-band model. (a) Cloud-band model including two cloud-band nodes
and one resource node, (b) Generated upper layer of the HARM for the cloud-band model
including 400 VMs.

security of the cloud. Figure 5.1 demonstrates the abstract cloud-band model and related

upper layers of HARM. In this model, we assume that an attacker is outside of the cloud-

band. The attacker can penetrate into the cloud by exploiting vulnerabilities of VMs in

the first cloud band node. We assume there exist vulnerabilities that can be exploited

by the attacker to give them the root privilege. We use the information from reported

vulnerabilities and rankings which are populated from the vulnerability databases such

as the National Vulnerability Database (NVD) [106]. Further assumptions are as follows:

(1) cloud provider permits Virtual Machine-Live Migration (VM-LM) for cloud-band

nodes, (2) VM-LM downtime is negligible, (3) cloud provider purchases enough licenses

for backup OS, and (4) VMs’ OS can be replaced with other variants if needed.

5.3.2 HARM Construction

In order to perform the security analysis of the cloud and further evaluate the effects of

MTD techniques on the cloud, we construct a two-layered HARM [2] of the cloud-band

model. Using the HARM, we can compute security metrics for comparison. We show the

computations of the four security metrics of the running cloud-band example. Later in

Section 5.4, we evaluate how they change.

In this section, we used HARM to compute security metrics and evaluate the MTD

techniques. To recall the notations and definitions oh HARM, refer to Definitions (1) –

(3) presented in Chapter 3.

Definitions and Formalization 81

5.3.3 Importance Measures

As stated earlier, the upper layer of HARM represents a comprehensive scheme of the

connectivity of VMs in the cloud through a graph. To efficiently carry out the security

analysis, it is important to identify the most important components (in here VMs) of the

network. We use two important Network Centrality Measures (NCM), betweenness and

closeness [27] for identifying the VMs playing a more crucial role in the cloud. The utiliza-

tion of those NCMs has already shown in Chapters 3 – 4 and in [12,13]. In Section 5.4, we

show how Important Measures (IMs) can be utilized to find out more effective combined

MTD strategies including Shuffle, Diversity, and Redundancy.

NCMs can be incorporated into the upper layer of HARM. Then we can calculate

the Closeness Centrality (Cc) of a specific VM in the network as in Equation (3.2) and

Betweenness Centrality (Cb) of a VM as in Equation (3.3) which have already defined in

Chapter 3.

We have defined the cloud setup for the running example, the HARM for modeling

and analysis for the cloud security, and also the use of IMs for efficiently evaluating the

security for large-sized clouds. We describe the analysis of MTD techniques in the next

section.

5.3.4 Security Metrics

In this section, we utilize four security metrics to evaluate the security of the cloud after

deploying MTD techniques and identify the most suitable technique deployment strate-

gies. We analyze the security of the cloud from four security perspectives: (i) System Risk

(Risk), (ii) Attack Cost (AC), (iii) Return on Attack (RoA), and (iv) System Reliability

(Reliability). Risk is based on the vulnerabilities of the network’s components [66]. AC

measures the difficulties of attackers to attack a system and can be quantified in terms of

cost incurred by an attacker to exploit a network component or the whole system [156].

RoA shows the willingness of the attacker to use the same components, attack path, and

vulnerabilities to penetrate the network. In fact, RoA quantifies the cost of an attack

versus the benefit of the attack [42]. Reliability quantifies the reliability of the network’s

components (i.e. critical components) under certain attack circumstances. Calculation

of system Reliability can be performed using the SHARPE tool (Symbolic Hierarchical

Automated Reliability and Performance Evaluator) [130]. The details of computing these

four security perspective metrics are recalled in Table 5.2.

5.3.5 MTD Formalism

We utilize VM-LM as the main technique for deploying Shuffle. Shuffle technique can be

formulated based on the HARM definition. The formalism for Shuffle has already been

given in Definition 4.4.1 presented in Chapter 4.

82 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

Table 5.2: Recalling some notations, formulas, and metrics

Notations Metrics Description Reference and Formula

AP An attack path from attacker to target (DB) -
APc All possible attack paths in a cloud -
P (vm) Attack success probability for a single VM lower layer of HARM
Ivm The impact of a successful attack on a VM NVD [106,113]
Riskvm The risk value associated with a VM p(vm)× Ivm
Riskp The risk of a single attack path

∑
Riskvmi , vmi ∈ AP

Riskc The overall risk value of a cloud
∑
Riskp, p ∈ APc

ACvm Attack cost of exploiting a single VM NVD, [156]
ACp Attack cost of an attack path

∑
ACvmi , vmi ∈ AP

ACc The overall attack cost for a cloud
∑
ACp, p ∈ APc

RoAvm Return on attack value of a VM p(vm)×Ivm
ACvm

RoAp Return on attack for an attack path
∑
RoAvmi , vmi ∈ AP

RoAc The overall return on attack for a cloud
∑
RoAp, p ∈ APc

In here, we reformulate Diversity definition in such a way that Diversity function is

applied on a set of VMs as follows.

Definition 12. We formulate the Diversity technique in which the diversity function is

applied on H as D(H,K) = Hd, where K denotes a set of VMs K ⊆ VM selected for

replacing with another OS variant. Then, for each κ ∈ K we have Hd = (U,Ld,κ, C)

which is the result of deploying Diversity technique on a denoted VM, where Ld,κ =

{`1, . . . , `k, . . . , `n} denotes the ATs corresponding to each VM, and `κ = (Vκ,θ, G, root)

is the transformed AT of vmκ which is replaced with another variant θ ∈ OS. Diver-

sity technique affects the lower layer and varies vulnerabilities Vκ,θ={ν1,θ, ν2,θ, . . . , νm,θ},
while U=(VM,E) is preserved.

We formulate the combination of shuffle, Diversity, and redundancy (S+D+R) as a

function on HARM as follow:

Definition 13. Let S+D+R(H, ks, kd, kr, r) be a S+D+R function on HARM where kr

shows the VM that is selected to be replicated for r times, and ks is the VM selected

to be shuffled, and kd denotes the VM selected for Diversity. Then the result of S+D+R

function is as S+D+R(H, ks, kd, kr, r) = Hs+d+r, where 1 ≤ ks, kd, kr ≤ n and 0 < r ≤ l.
We define Hs+d+r = (U s+d+r

kr,ks
, Ls+d+r

kr,kd
, C) where U s+r

kr,ks
is a transformed AG in the upper

layer in which S+R is deployed on and Ls+r
kr,kd

is the corresponding transferred AT in the

lower layer. Then, the former can be represented as U s+d+r
kr,ks

= (VM ′, E′), where

VM ′ = VM ∪
(l⋃
r=1

VM r
kr

)
and |VM ′| = n + r, and E′ ⊆ (VM + r) × (VM + r). Next, the latter can be shown as

Ls+d+r
kr,kd

= (V ′, G, root), where V ′ = V ∪V r ∪V d, and V r is a set of vulnerabilities caused

by replication of a VM, and V d is a set of new vulnerabilities introduced by replacing the

OS variants.

MTD Analysis 83

n=150 n=200 n=250 n=300 n=350 n=400
0

1

2

3

4

5

6

No. of VM in cloud-band nodes

M
il

li
on

s

Risk
RoA
AC

Figure 5.2: Security analysis results of the current cloud-band

5.4 MTD Analysis

5.4.1 Security Analysis of Current System

The HARM can be used to compute the security metrics such as Risk, AC, and RoA.

For the running example considered here, we assume there are vulnerabilities which if

exploited would grant the attacker the root privilege. For the comprehensive security

overview, the computation will incorporate the analysis of all possible attack paths that

are calculated using the upper layer of the HARM (the formulas are shown in Table 5.2).

For the reliability analysis, we use the SHARPE software package [130]. We assume that

the attack rate for cloud-band models follows an exponential function with an average

value of 0.2 (i.e., one attack per every five hours). Also, we compute the Reliability

values during a 10-hour period. We compute the defined security metrics of the current

cloud-band system before deploying the MTD techniques on the cloud. We calculate

these metrics for different cloud-band sizes ranging from 150 VMs up to 400 VMs in

the cloud-band. Figures 5.2 and 5.3 illustrate the posture of the current security level of

the cloud-band with various cloud-band sizes. Figure 5.2 compares the metrics obtained

through analyzing HARM which shows that larger cloud-band sizes have more Risk, AC,

and RoA values. However, Figure 5.3 shows that the variation of Reliability value is not

significant for different cloud-band sizes. In the following sections, we compare the results

obtained from deploying MTD techniques on the cloud-band against the current security

posture of the cloud to investigate the effectiveness of the deployed MTD techniques.

84 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

R
el

ia
bi

lit
y

Figure 5.3: The values of Reliability for the current cloud-band

5.4.2 Diversity on Multiple VMs

Diversity plays a crucial role in increasing the required efforts for the attackers. The

attackers must spend time, money, and efforts to gain sufficient knowledge to exploit the

vulnerabilities of a system (i.e. network’s component, a VM, service, and OS). Any sudden

change in those component confuses the attacker, which also increases the time and effort

needed for carrying out the attack. We consider using the OS diversification method as the

main technique for deploying Diversity. In this section, we consider deploying Diversity

techniques on multiple VMs (i.e., for different subsets of VMs). To evaluate the Diversity

technique, we deploy OS diversification on multiple VMs based on three selection criteria

(SC): (i) Random VM Selection (RVS), (ii) Betweenness VM Selection (BVS), and (iii)

Closeness VM Selection (CVS). The RVS method selects a set of random VMs in the

cloud. The BVS method selects the set of VMs based on their higher Betweenness ranks,

which is one of the NCM measures. Similarly, the CVS method uses the Closeness ranks

of the VMs in the cloud-band.

Deploying Diversity preserves the upper layer of HARM. In here, we assume that the

cloud provider has up to five OS variants backup. Note that increasing OS variants costs

cloud provider (i.e. purchase OS licenses for OS variants). For simplicity, in this section,

we do not consider the cloud provider cost.

Our approaches, formulas, and references of calculating AC, Risk, and other security

metrics are given in Table 5.2. Other approaches to calculating AC can be found in [69].

Figure 5.5 shows the AC and Risk metrics after deploying Diversity on multiple VMs

ranked based on higher Betweenness values. We denote xV as deploying new variants on

x selected VMs respectively. Then, 5V represents deploying five OS variants on the five

MTD Analysis 85

300

310

320

330

340

350

1 2 3 4 5

T
ho

us
an

ds

No. of OS diversifications

BVS
CVS
RVS

R
oA

×

(a) n = 200

700

720

740

760

780

800

820

1 2 3 4 5

T
ho

us
an

ds

No. of OS diversifications

BVS
CVS
RVS

(b) n = 300

1.28

1.33

1.38

1.43

1.48

1 2 3 4 5

M
ill

io
ns

No. of OS diversifications

BVS
CVS
RVS

R
oA

×

(c) n = 400

Figure 5.4: Comparing the result of RoA metrics after deploying Diversity on multiple
nodes selected based on three different criteria on the cloud-band with various number
of VMs

selected VMs. We observe that deploying Diversity on the VMs with higher Betweenness

ranks results in a larger increase in cost for the attacker and increases the AC value.

This increase will be higher if we add to the the number of OS variants and deploy the

Diversity technique on multiple nodes. Deploying OS diversification by assigning 5V in a

cloud band with 400 VMs increases AC value from around 2.3 million to 3 million, while

the increase for 1V does not go beyond 2.5 million.

We do not observe a substantial change in Risk values after deploying Diversity

techniques. The Risk value remains almost steady after increasing OS variants, but it

still increases exponentially by increasing the cloud-band nodes, see Figure 5.5.

Figure 5.4 compares the results of RoA metric through deploying Diversity on three

VM selection groups: BVS, CVS, and RVS in different cloud-band sizes. These obser-

vations indicate that deploying Diversity on a set of VMs selected using BVS provides

the best results in comparison to the other groups. The values of RoA for RVS groups

86 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

Algorithm 3: VM selection pseudocode based on RVS, BVS, and CVS in the
HARM

Data: H = (AG,AT,M), SC /* SC: Selection Criteria */

Data: m /* m: Number of required VMs */

Result: K /* k: Set of selected VMs */

1 begin
2 if SC = RVS then
3 k ← Select(rnd i, i ∈ VM , m) /* opt m random VMs */

4 else
5 foreach vmi ∈ {vm1 . . . vmi} do
6 if SC = BVS then
7 β = Cb(vmi)
8 Add β into Zi
9 else if SC = CVS then

10 ζ = Cc(vmi)
11 Add ζ into Zi
12 end

13 end

14 k ← Select
(
[maxi∈VM Zi], m

)
/* opt m top VMs */

15 end
16 return k

17 end

have very gentle decrements while OS diversification increases. However, both RoA values

for BVS and CVS groups decrease sharply when increasing OS diversification numbers.

Other results for different cloud-band nodes show the same trend, but as it is expected,

RoA values for cloud-band including more VMs are higher (i.e. RoA values of cloud-band

with 400 VMs are between 1 and 1.5 million, Figure 5.4c, while this rate is between 300

and 350 thousand for cloud-band including 200 VMs, Figure 5.4a).

5.4.3 Combining Shuffle, Diversity, and Redundancy

We combine the main three MTD techniques, Shuffle, Diversity, and Redundancy

(S+D+R) to investigate the enhanced the security of the cloud. It is important to quan-

tify the effects of the combined MTD techniques and compare them with the current

security level of the system. In order to combine the three techniques, we set combination

criteria based on the results obtained from previous sections. The results discussed in

Subsection 5.4.2 showed that OS diversification on the VMs having higher betweenness

(grouped in BVS) has a better effect on security metrics. They also revealed that increas-

ing the numbers of OS variants increases AC and decreases RoA. Based on those results,

we only consider BVS group for deploying Diversity in this section. Moreover, based on

the results of previous studies reported in [13] for combining Shuffle and Redundancy

techniques, we deploy Shuffle technique on the most suitable VM which can be found

through analyzing only the top 10% of the VMs holding higher values of Betweenness.

MTD Analysis 87

0

0.5

1

1.5

2

2.5

3

150 200 250 300 350 400

M
ill

io
ns

No. of VMs in cloud-band nodes

AC-5V

AC-4V

AC-3V

AC-2V

AC-1V

AC-Current

Risk

Figure 5.5: Comparison of AC and Risk values obtained after deploying the Diversity
technique on the multiple VMs having the highest Betweenness values for the cloud-band
example with a various node sizes

0 1Risk 0 1AC 0 1RoA 0 1

0 1Risk 0 1AC 0 1RoA 0 1Reliability

Figure 5.6: Line chart comparing normalized metrics of the cloud-band with n = 350
before and after deploying S+D+R: upper line charts show the current cloud-band and
lower line charts show the metrics after deploying MTD techniques

Finally, We deploy Redundancy on DB or VMs connected to DB (target) to increase the

Reliability of the cloud and availability of DB against DDoS attacks.

We deployed the S+D+R technique with 5V on the cloud-band and evaluate the

results. Figure 5.6 compares the results of deploying S+D+R on the cloud-band with 350

VMs. It is clear that all security metrics are improved after deployment.

Figure 5.7a compares AC and RoA metrics after deploying S+R+D with 5V against

Diversity (D-Only). We observe that the values of AC in D-Only are lower than AC in

S+D+R. However, the corresponding RoA values for S+D+R is also lower in D-Only

which shows the attacker has less tendency to attack again. Figure 5.7b compares the

Reliability values of the cloud-band with 150 and 400 VMs before and after deploying

S+D+R technique. We select the boundaries of n = 150 and n = 200 as the other values

of n fall between these two boundaries. We can observe how Reliability values increase

after deploying S+D+R. After passing 10 hours of assumed attack with α=0.2, the cloud-

bands which are secured with S+D+R are around 40% available, while this rate reaches

almost 0% for current cloud-bands without deploying MTD techniques.

88 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

1V 2V 3V 4V 5V
0

0.5

1

1.5

2

2.5

3

No. of OS Diversification

M
il
li
o
n
s

S+R+D, AC

S+R+D, RoA

D-Only, AC

D-Only, RoA

(a)

R
el

ia
bi

lit
y

(b)

Figure 5.7: (a) Comparing the results of AC and RoA for D-Only with S+D+R. (b)
Comparing the Reliability values after S+R+D against Reliability value for current
cloud-band for n = 150, 400.

Nevertheless, combining MTD techniques can be quantified based on the security

levels expected by cloud providers of network administrators. Deploying MTD techniques

may be costly and it is important for cloud providers to find a trade-off between security

and economic requirements.

Economic Metrics for MTD techniques 89

Figure 5.8: An E-Health cloud model including PHI records

5.5 Economic Metrics for MTD techniques

Although security metrics show different dimensions of a cloud’s security posture, in-

vestigating economic aspects of deploying MTD techniques are also crucial. In here, we

compute various economic metrics to show different perspectives of MTD deployment

scenarios for a cloud example.

5.5.1 A Case Study on E-Health Cloud Model

We consider that the personal health information (PHI) of patients including medical

histories are located in a private personal health cloud (PHC) as shown in Figure 5.8.

We assume that the attacker is located out of the cloud and can use the vulnerabilities

of the cloud’s components (e.g., VMs) to get into the cloud and find a path to the PHI

database. In this section, we aim to evaluate the effectiveness of MTD techniques in terms

Table 5.3: VM Assets and Vulnerabilities (Note that vm10 is the target VM and includes
PHI records)

VMs OS (θ)
Asset Value
(AV) ($)

Vulnerabilities (V)

V-ID CVE-ID Threat E AC EF (%)

vm1−5 Win10 500
ν1,W CVE-2018-8490 Remote 0.17 1.6 0.6
ν2,W CVE-2018-8484 Privilege Escalation 0.18 2.2 0.59
ν3,W CVE-2018-0784 Privilege Elevation 0.28 1.2 0.59

vm6−9 Linux 480
ν1,L CVE-2018-14678 DDoS 0.18 2.2 0.59
ν2,L CVE-2018-14633 DDoS & Remote 0.22 3 0.47
ν3,L CVE-2017-15126 Use After Free (UAF) 0.22 1.9 0.59

vm10 Linux 10000
ν1,L CVE-2018-14678 DDoS 0.18 2.2 0.59
ν2,L CVE-2018-14633 DDoS & Remote 0.22 3 0.47

Backup Fedora 450 ν1,F CVE-2014-1859 Symlink attack 0.18 4.5 0.3

90 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

A

vm1

W

vm2

W

vm4 W

vm5

W

vm3

W

vm7

L

vm6

L

vm9

L

vm8

L

vm10

O
R

ν3,lν2,lν1,l

. . .

O
R

ν3,lν2,lν1,l

O
R

ν3,lν2,lν1,l

O
R

ν3,wν2,wν1,w

Figure 5.9: Generated Two-layer HARM for the Cloud

of economic metrics. We first model the cloud using HARM demonstrated in Figure 5.9.

Table 5.3 demonstrates the vulnerabilities existing on each VM [113]. Moreover, we as-

sume that the cloud provider has one backup OS which can be used for Diversity. We

assume that PHI records are stored in a DB connected to vm10 and any successful at-

tack exploiting vm10 incurs significant damage of 10000$ to the organization (due to loss

and/or disclosure of patients health information).

5.5.2 Single Loss Expectancy

The Single Loss Expectancy (SLE) measures an organization’s loss from a single

threat [93]. SLE can be determined for a cloud based on the Asset Values (AV) for each

VM including costs of maintenance, running OS, services, DB record values, applications,

and so forth. The estimated AV for each OS is shown in Table 5.3. We assume that SLE

can be calculated for both VM and network (cloud) levels. The value of SLE for a VM

can be obtained by multiplying asset value and the maximum percentage of loss for that

asset caused by a treat which is called exposure factor (EF), see Equation 5.1.

SLEvmi =

(
1−

∏
vj,θ∈Vi,θ

(
1− EFvj,θ

))
×AVvmi (5.1)

In Equation 5.1, the AV consists of the cost associated with running an active VM (i.e.

purchasing a license for an OS, applications, values of DB, etc.)

Then, the SLE for the cloud (SLEc) including all assets (in here VMs) can be calcu-

lated as Equation (5.2).

Economic Metrics for MTD techniques 91

SLEc =
∑

ap∈AP

(∑
vmi∈ap

SLEvmi

)
(5.2)

5.5.3 Annual Loss Expectancy

Annual Loss Expectancy (ALE) can be defined as the expected financial loss due to

an attack event and can be computed by the product of SLE and Annualized Rate of

Occurrence (ARO) which represents the estimated number of occurrences of a threat

event per year [93]. However, due to lack of real data to estimate ARO, we assume ARO

value to be 1 (similar to [24]).

ALEc =
∑

ap∈AP

(∑
vmi∈ap

SLEvmi ×AROvmi
)

(5.3)

5.5.4 Benefit of Security

Many defensive strategies can be adapted to the cloud to either avoid or mitigate the

exploitation or damages to the cloud. In this chapter, we evaluate the benefits achieved

by deploying MTD techniques. Benefits of Security (BS) [24] can be used to show the

effects of deploying a single or combined defensive techniques. The benefit of security for

a cloud BSc can be computed based on Equation 5.4.

BSµc = ALEc − (ALEµc ×MFµ) (5.4)

In Equation 5.4, ALEµc denotes ALE value of the cloud after deploying MTD techniques.

µ ⊆ {S,D,R} denoted a set of MTD used as defensive technique. Mitigation Factor MFµ

shows the ability of the defensive MTD techniques to mitigate the ALE which can be

mapped to [0, 1] as in Equation 5.5.

MFµ = MFµ =

1− ALEµc
ALEc

, ALEµc > if ALEc

0, otherwise
(5.5)

5.5.5 Cost of Security

Cost of Security (CS) consists of any expenses associated with the factors such as deploy-

ment, purchase, maintenance, patching costs, ets. for a defensive security mechanism [26].

In fact, cost of security may also include loss of productivity due to system downtime

or other security-related activities such as training which causes indirect costs. However,

for simplicity, we present the following assumptions for costs of security. We assume that

the unit cost of deploying Shuffle technique for a given VM is 20$ per operation which

includes the costs of experts and loss of productivity. We also assume that the unit cost of

deploying Diversity on a VM such that a given VM is replaced with the backup OS (Fe-

dora in Table 5.3) is 55$ per operation which includes the costs of experts, maintenance,

and loss of productivity for a given VM for an operation per year [124,140].

92 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

5.5.6 Return on Security Investment

The overall benefits of the selected defensive MTD strategies against the costs of imple-

mentation can be evaluated using Return on Security Investment (RoSI) metric. RoSI

can be used to evaluate the profitability of a defensive investment against the costs as

formulated in Equation (5.6).

RoSIµc =
BSµc − CSµ

CSµ
, (5.6)

5.5.7 Shuffle Evaluation

In this section we evaluate the Shuffle technique on the PHC cloud example based on

economic metrics. We propose a VM placement strategy based on the shortest path in

the upper layer of HARM. We aim to enhance the migration scenarios for Shuffle technique

by using the shortest path rather than random VM placement strategy. The idea behind

selecting the shortest path strategy for VM placement is to increase the Shortest Attack

Path (SAP) [157] alongside other benefits of Shuffle technique.

Migration Strategy. We propose the shortest path injection approach in which a se-

lected VM can be moved and connected to the VMs located in the shortest path in the

upper layer of HARM. Since there may be more than one shortest path we utilize a

migration strategy to find the most critical shortest path as in Equation (5.7).

Let SAP = {sp1, sp2, sp3, . . . , spq} be a set of possible shortest paths existing in the

upper layer of HARM. Then, we define the strategy Tsp as a selected shortest path having

lower in-degree values as follows.

Tsp = min
sp∈SAP

(∑
vmi∈sp

∑
j≤n

aij

)
(5.7)

We deploy Shuffle techniques on all VMs in the upper layer of HARM and evaluate the

effectiveness of each migration scenario. We compare both security and economic metrics

to find the best deployment scenario. Table 5.4 demonstrates the results of Shuffle on

the VMs based on Riskc, ACc, and RoAc security metrics, and ALEc, BSc, and RoSIc

economic metrics. Table 5.4 shows that the most promising results for security metrics

is deploying Shuffle on VM vm5 which yields the lowest Riskv and RoAc values. While,

deploying Shuffle on VM vm9 leads to the best results for economic metrics which yields

the highest RoSIc=2631 compared to the other deployment scenarios. However, in the

case that VM vm9 is selected for Shuffle, it still yields appropriate results for RoA which

is about 87 (the second best RoAc value). In fact, the cloud provider can incorporate

both RoA and RoSI in the decision making process and prioritize based on their values.

5.5.8 Diversity Evaluation

In Subsection 5.4.2, we evaluated Diversity using security metrics through a large cloud-

band model. In here, we extend Diversity evaluation by considering economic metrics and

Economic Metrics for MTD techniques 93

Table 5.4: The results of deploying Shuffle on each VM in the cloud

VM ID
Security Metrics Economic Metrics

RiskSc ACSc RoASc ALESc ($) BSSc ($) RoSISc

vm5 118.35 136.7 77.51 113878 46315 2315
vm6 126.14 134.7 87.19 114913 45281 2263
vm9 117.65 124.7 81.7 107563 52630 2631
vm4 128.97 142.5 87.15 115712 44482 2223
vm2 135.58 147.3 92.66 116912 43282 2163
vm3 149.98 163.5 102.27 131045 29149 1456
vm1 140.54 150.9 96.79 117812 42382 2118
vm7 145.73 158.5 99.52 130178 30015 1500
vm8 182.07 198.3 124.23 159910 283 13
Best vm5 vm8 vm5 vm9 vm9 vm9

Table 5.5: The results of deploying Diversity on each VM in the cloud

VM ID
Security Metrics Economic Metrics

RiskDc ACDc RoADc ALEDc ($) BSDc ($) RoSIDc

vm5 167.31 253 105.19 157266 2928 52.24
vm6 174.27 236.6 117.37 157867 2327 41.31
vm9 173.62 239.2 116.83 157701 2493 44.33
vm4 171.32 239.8 110.12 157998 2196 38.93
vm2 173.33 233.2 112.59 158364 1830 32.27
vm3 177.35 220 117.52 159096 1098 18.96
vm1 171.32 239.8 110.12 157998 2196 38.93
vm7 175.57 231.4 118.44 158199 1994 35.26
vm8 178.82 218.4 121.14 159030 1163 20.15
Best vm5 vm5 vm5 vm5 vm5 vm5

optimization. We consider deploying Diversity based on two scenarios: (i) Diversity on

single or multiple VMs using a single backup OS and (ii) Diversity on multiple VMs using

multiple backup OS (using an optimization model).

Scenario 1. We deploy Diversity only on a single VM through Exhaustive Search (ES).

We evaluate the effectiveness of Diversity technique through computing security and

economic metrics. Table 5.5 shows the results of deploying Diversity on each VM. The

experimental results show that deploying Diversity on VM vm5 yields the best results in

terms ofRiskc, ACc andRoAc for security metrics. It provides the best result for economic

metrics as it yields the lowest ALEc which is 157266. It also leads to the highest BSc

and RoSIc values which are 2928 and 52.24, respectively.

Scenario 2. We evaluate the Diversity deployment on various VMs with a single backup

OS. To do this, we leverage two strategies to find a set of VMs for deploying Diversity

(OS diversification): Random VM Selection (RVS) and Betweenness VM Selection (BVS)

(as in Subsection 5.4.2). We compere the results of deploying those two strategies on

the PHC cloud example focusing on return on security investment and cost of security.

94 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

1 2 3 4 5 6 7 8 9
20

30

40

50

60

70

80

No. of OS diversification

R
o
S

I
va

lu
es

0

50

100

150

200

250

300

C
S

CS
RoSI-RVS
RoSI-BVS

Figure 5.10: Comparing RoSI values obtained after deploying Diversity on various VMs
against CS based on RVS and BVS (the asterisked point shows the optimal solution.)

We aim to find a trade-off between the number of OS diversification (using the same

back up OS) on a set of VMs against the CS while we maximize the RoSI. Figure 5.10

compares the results of deploying Diversity on RoSI values based on two RVS and BVS

strategies on various number of VMs (from 1 to 9 OS diversification). The results show

that deploying Diversity on the four VMs having the highest Betweenness values reach the

peak and yields the best RoSI values while the cost of security remains between 100$ and

150$. However, the results based on RVS strategies suggest that deploying nine backup

OS to increase the RoSI, but it incurs the highest cost of security which is more than

250$. Moreover, the highest RoSI metric after deploying BVS is about 75, while the same

metric resulting from RVS strategy reaches 70 in the best case.

5.5.9 Optimal Diversity Assignment

In this section, we analyze the Diversity technique with multiple OS variants on multiple

VMs through an optimization model. We model the decision problem of maximizing

expected net benefit by assigning backup operating systems to existing virtual machines

as a mathematical programming model with binary decision variables. In our model, we

consider a graph coloring scheme so that each backup OS variant is assigned with a color

(c) in the graph such that no two adjacent VMs are assigned the same color (Backup

OS). This aims to increase the difficulty for the attacker who would encounter a different

back up OS in adjacent VMs through the attack path.

We use θ = {1, 2, . . . , k = |θ|} to represent the set of all potential backup operating

systems from which to choose to implement Diversity on some virtual machines.

We use the binary decision variable dic ∀i ∈ VM, c ∈ θ for virtual machine i and

backup operating system c such that dic takes value 1 if and only if backup operating

Economic Metrics for MTD techniques 95

system c is assigned to virtual machine i. We also use the binary decision variable ei ∀i ∈
VM for virtual machine i which takes value 1 if and only if virtual machine i is assigned

a backup operating system.

In our mathematical programming model, we penalize diversity assignments in which

the same operating system is assigned to adjacent nodes. Accordingly, we use the binary

decision variable fij ∀(i, j) ∈ E to penalize assigning of same backup operating system

on endpoint i and endpoint j of the edge (i, j).

The maximization objective function represents the expected net benefit (ENB)

which is calculated based on Equation (5.8) in which M represents a large enough value

to be used as “big M” for penalizing same backup operating system being assigned to

adjacent nodes.

ENB =ALEafter −ALEbefore

− cost of security−
∑

(i,j)∈E

Mfij

=
∑

p∈paths

∑
i∈p

SLEdi AROi −
∑

p∈paths

∑
i∈p

SLEiAROi

−
∑
i∈VM

∑
c∈θ

CScdic −
∑

(i,j)∈E

Mfij

(5.8)

The objective function in (5.8) is formed first by subtracting the cost of security

incurred from implementing Diversity technique from the benefit of security which was

formulated in (5.4). Secondly, the penalty of assigning same backup operating system on

adjacent nodes is applied to the objective function.

We formulate the term SLEdi using the binary decision variables dic and ei in (5.9).

According to this linear formulation, the SLEd for virtual machine i remains unchanged

if no backup operating system is assigned to it (ei = dic = 0 ∀c ∈ θ). However, if backup

operating system c is assigned to virtual machine i (ei = dic = 1), the value of SLEd

is updated according to the asset value and exploitability factor of the assigned backup

operating system c.

SLEdi = SLEi(1− ei) +
∑
i∈VM

∑
c∈θ

dicAV cEF c (5.9)

The maximum expected net benefit under all possible assignments of |θ| potential

backup operating systems on |VM | virtual machines is obtained by solving the Optimal

Diversity Assignment Problem (O-DAP) formulated in (5.10) as a binary linear optimiza-

tion model.

96 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

max
dic:i∈VM,c∈θ,ei:i∈VM,fij :(i,j)∈E

Z = ENB

s.t.
∑
c

dic ≥ ei ∀i ∈ VM

fij ≥ dic + djc − 1 ∀(i, j) ∈ E,∀c ∈ θ

dic ∈ {0, 1} ∀i ∈ VM,∀c ∈ θ

xi ∈ {0, 1} ∀i ∈ VM

fij ∈ {0, 1} ∀(i, j) ∈ E

(5.10)

Given a network of virtual machines with certain asset values and exploitability factors

before implementing any Diversity techniques (before solving the optimization problem),

ALEbefore can be computed by summing SLE × ARO over all virtual machines in all

attack paths. Based on the binary decision variables dic and ei, ALEafter can be computed

after updating SLEd values according to (5.9).

The dependencies between the dic and ei values are taken into account using the first

constraint in (5.8) (one linear constraint for each virtual machine) which also supports

the natural constraint that each virtual machine gets at most one backup operating

system. The second constraint in (5.8) is for obtaining the edges (i, j) for which the same

backup operating system is assigned on adjacent nodes. Accordingly, O-DAP model has

(|θ|+ 1)|VM |+ |E| binary decision variables and |VM |+ |E| constraints.

Generally, the problem of assigning |θ| potential backup operating systems on |VM |
virtual machines has (|θ|+ 1)

|VM |
solutions because each virtual machine can independent

of others get either one of the backup operating systems or none. Therefore, the solution

to O-DAP for instances with a large |VM | and |θ| cannot be found by exhaustively going

through all (|θ|+ 1)
|VM |

possibilities and finding the solution with the maximum desired

output. However, our formulation provided in (5.10) is a binary linear programming model

and can be used to efficiently find the globally optimal solutions to large instances with

thousands of virtual machines in a reasonable time.

5.5.10 Numerical Experiment of Optimization Model

In this section, we discuss a numerical example with seven potential backup operating

systems to be implemented as Diversity technique on nine virtual machines in the upper

layer of HARM shown in Figure 5.9 and solve it using Gurobi solver [57].

Table 5.6 shows a E-Health cloud equipped with various backup OS variants which

can be used for Diversity techniques. The table represents the number of patched or

mitigated vulnerabilities and the cost of security for each entry as well as the asset value

for each VM. It is assumed that more secure backup variants have higher cost of security

values, and accordingly have less impact of damage.

Discussion and Limitations 97

Table 5.6: Backup OS variants used for the optimization test case

No. Backup OS (θ)
Vulnerabilities (V)

CS ($) AV ($)|V | EF
1 HP-UX 11i 4 0.55 55 450
2 Windows (Win 8) 4 0.53 65 490
3 Solaris 3 0.51 80 550
4 Win XP 3 0.49 100 590
5 CentOS 2 0.47 120 620
6 OpenBSD 1 0.45 150 680
7 Win Server 2008 1 0.43 200 690

According to the values in Table 5.6, the seven backup systems have the following

values for cost of security, exploitability factor, and asset value:

cost_of_security=[55,65,80,100,120,150,200]

exploitability_factor=[0.55,0.53,0.51,0.49,0.47,0.45,0.43]

asset_value=[450,490,550,590,620,680,690].

Based on the network shown in Figure 5.9, the values for ALEbefore, SLEi, and AROi

are as follows:

ALE_before=160194

SLE=[300.0,300.0,300.0,300.0,283.2,283.2,283.2,283.2,283.2,5900.0]

ARO=[1,1,1,1,1,1,1,1,1,1].

The Gurobi [57] model for this instance of the O-DAP is provided in the Appendix

in which the value of “big M” is considered to be 100000.

While this instance of the problem has (|θ|+ 1)
|VM |

= 89 = 134217728 feasible solu-

tions, Gurobi solver obtains the globally optimal solution (associated with the maximum

value of the expected net benefit) in 0.02 seconds on an ordinary laptop with 8.00 GBs

of RAM and Intel Core i5 6360U CPU @ 2.00 GHz.

The optimal value of the expected net benefit is 117.8 which is achieved by assigning

backup operating system 6 on virtual machines 5 and 6 and backup operating system 5

on virtual machine 9 (d5,6 = 1.0, d6,6 = 1.0, d9,5 = 1.0). These optimal changes to the

upper layer of HARM are represented in Figure 5.11.

5.6 Discussion and Limitations

In Subsection 5.4.2, we showed that deploying Diversity technique can enhance the secu-

rity of the cloud by increasing the AC values (i.e,. the attacker must spend more efforts to

penetrate into the cloud and exploit a target). We also observed that Diversity decreases

98 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

A

vm1

W

vm2

W

vm4 W

vm5

B6

vm3

W

vm7

L

vm6

B6

vm9

B5

vm8

L

vm10

Figure 5.11: Optimal OS Diversity assignment satisfying the coloring requirement on
adjacent nodes and maximizing the expected net benefit (note that the backup denoted
by B5 and B6 are CentOS and OpenBSD, respectively.)

the RoA values, which shows that attacker would have less tendency to attack. Fur-

thermore, we witnessed that increasing the number of variants of the OS diversification

technique leads to higher AC values and provides lower values for the RoA metrics.

Comparing three strategies for deploying Diversity technique on multiple VMs, we

show that the best OS diversification strategy is deploying Diversity technique on VMs

grouped by the BVS group. However, Diversity does not have significant effects on Risk

and Reliability values. In Section 5.4.3, we showed that combining all MTD techniques

(S+D+R) can improve the security in all aspects with respect to the security metrics

used (i.e., the Risk, AC, RoA, and Reliability values).

We compared D-Only to combining (S+D+R) and observed that the results of deploy-

ing S+D+R are better. The values of RoA metric in S+D+R is less than the same metric

in D-Only. Moreover, combining S+D+R leads to more promising results on Reliability,

see Figure 5.7. In fact, combining S+D+R technique will help the cloud providers to keep

the security level of the cloud at a desirable level. Figure 5.6 demonstrated the overall

results of combining MTD techniques. It compares all security metrics before and after

deploying MTD techniques and shows the effectiveness of MTD deployment in one scope.

Comparing metrics in Figure 5.6, we observe that deploying S+D+R decreases the RoA

and the overall risk of the cloud while the values of AC, and Reliability increase. However,

one can change the defined parameters to obtain the desired results based on the type of

the cloud and the required security levels. For instance, we experimented with setting the

attack rate to 0.2, and setting OS diversification variants between 1v to 5v. In addition,

we conducted our experiment based on modeling a PHC cloud example to evaluate the

security and economic metrics for both Shuffle and Diversity MTD techniques. We lever-

aged a VM placement strategy for deploying Shuffle. We also utilized two strategies for

deploying Diversity in which a single backup OS can be deployed either on one selected

VM or a multiple set of selected VMs in the cloud. We observed that deploying Diversity

using the same OS (one OS variants) on multiple VMs can enhance RoSI value. We found

Discussion and Limitations 99

(a) (b)

Figure 5.12: Radar charts comparing all Risk, AC, RoA, Reliability metrics after and
before deploying S+D+R MTD technique. (a) security levels of current cloud, (b) security
levels after deploying MTD technique.

that deploying four OS diversification among four VMs has the highest Betweenees values

which leads to the highest RoSI values while incurring a reasonable CS values compared

to other Diversity strategies.

Moreover, we solved an optimal diversity assignment problem to find the most promis-

ing results based on the given network and a set of various backup OS variants using

theoretical and mathematical optimization model in Section 5.5.9. We showcased our

proposed Diversity techniques by a test case of seven OS variants (Backup OS) and a

cloud network with nine VMs based on the parameters shown in Table 5.6. We used

Gurobi solver to find the optimal assignment of OS variants on virtual machines through

solving a binary linear programming model (O-DAP). According to the globally optimal

solution for that instance, among over 134 million possibilities, assigning certain backup

OS’s on certain VMs yields the maximum expected net benefits 5.5.9.

Limitations: In this chapter, we did not consider the economic metrics for combining all

three MTD technique. Since each MTD technique may vary the security and economic

metrics in different ways. A multi-objective optimization is needed to solve the problem

in a way that three MTD techniques can be combined effectively to satisfy the security

and economic levels required by the cloud provider based on the constraints such as the

given model and allocated budget.

Moreover, we only include OS-level vulnerabilities on each VM in order to perform

the security analysis, while there are many other vulnerabilities existing on the cloud and

each VMs such as network, application, service vulnerabilities, and so on. Hence, a more

promising model should be proposed to cover the other vulnerabilities in the security

analysis phase. We also assumed that the attacker is located outside of the cloud, but it

100 Comprehensive Security Assessment of Combined MTD Techniques for the Cloud

is also important to propose a formal model to be able to capture internal threats like

the multi-tenancy and co-residency threats. [72].

The system performance is known as another downside of most MTD techniques.

In this chapter, we did not investigate performance analysis. For instance, any Shuffle

technique may lead to system functionality degradation i.e. downtime, component failure,

etc. which we plan to address in our future work.

Lastly, we deployed an optimization model for Diversity technique, while modeling and

formulating optimization models for other MTD techniques such as Shuffle and Diversity

can be considered. Moreover, multi-objective optimization can be utilized to find an

optimal solution based on several objective functions such as RoSI and RoA. We plan to

address an integrated optimization model in future work. Moreover, the obtained optimal

values were based on a single operation only, while MTD techniques can be adapted and

deployed on periodic basis. Deploying defensive MTD technique can be set periodically

or erratically based on various factors such as the annual rates of attack (ARO), intrusion

detection, and so forth which is out of the scope of this chapter and we aim to address

them in our future works.

5.7 Conclusions

Many techniques have been proposed to enhance the security of the cloud. Among them,

MTD strategies are the new paradigm having been examined systematically in the past

couple of years aiming to mitigate the possible cyber-security threats on the cloud. How-

ever, the effectiveness of combining them for enhancing the security of the cloud has not

been studied well. In this study, we reviewed the current state-of-the-art MTD techniques

applicable in the cloud. Then, we adopted a formal security model to evaluate the effects

of combined MTD techniques. In comprehensive experimental analyses, we showed the

effectiveness of a combined approach compared to a single MTD technique. The results

showed that our proposed approach can be used for evaluating the effectiveness of MTD

techniques (individually or combined). Moreover, we evaluated the effectiveness of MTD

techniques in terms of economic metrics alongside security metrics for a specific E-health

cloud model to analyze the cost of security against security achievements. We proposed

an optimization model for Diversity allocation and showed that our binary linear pro-

gramming formulation handles large instances of the O-DAP with millions of feasible

solutions in a fraction of a second on an ordinary computer.

Appendix* 101

5.8 Appendix*

Gurobi model for the instance of the OPTIMAL DIVERSITY ASSIGNMENT problem

used as a test case in Subsection 5.5.10 is provided below. Properties of the seven potential

backup operating systems were provided in Table 5.6. In this instance, diversity technique

was to be implemented on nine virtual machines in the network shown in Figure 5.9.

Maximize

(-269.2

+ 2915.0 d1,1

+ 3051.4 d1,2

+ ...

+ 4250.5 d9,7

+ -3600.0 e1

+ -3000.0 e2

+ ...

+ -4248.0 e9

+ -100000.0 f1,3

+ -100000.0 f1,4

+ ...

+ -100000.0 f7,9)

Subject To

-1.0 d1,1 + -1.0 d3,1 + f1,3 ≥ -1.0

-1.0 d1,1 + -1.0 d4,1 + f1,4 ≥ -1.0

...

-1.0 d7,7 + -1.0 d9,7 + f7,9 ≥ -1.0

d1,1 + d1,2 + d1,3 + d1,4 + d1,5 + d1,6 + d1,7 ≤ e1

d2,1 + d2,2 + d2,3 + d2,4 + d2,5 + d2,6 + d2,7 ≤ e2

...

d9,1 + d9,2 + d9,3 + d9,4 + d9,5 + d9,6 + d9,7 ≤ e9

Binaries

d1,0, d1,1, ... , d9,7, e1, e2, ... , e9, f1,3, f1,4, ... , f7,9

Chapter 6

Usability and Adaptation of MTD
Techniques on a Realistic Testbed:
Implementation of an Automated Security Analysis Framework using

MTD Techniques on Cloud

Summary

Cloud service providers offer their customers with on-demand and cost-effective services,

scalable computing, and network infrastructures. Enterprises migrate their services to the

cloud to utilize the benefit of cloud computing such as eliminating the capital expense of

their computing need. There are security vulnerabilities and threats in the cloud. Many

studies have been proposed to analyze the cloud security using Graphical Security Mod-

els (GSMs) and security metrics. In addition, it has been widely researched in finding

appropriate defensive strategies for the security of the cloud. Moving Target Defense

(MTD) techniques can utilize the cloud elasticity features to change the attack surface

and confuse attackers. Most of the previous work incorporating MTDs into the GSMs are

theoretical and the performance was evaluated based on the simulation. In this chapter,

we realize the previous framework and design, implement and test a cloud security as-

sessment tool in a real cloud platform named UniteCloud. Our security solution can (1)

monitor cloud computing in real-time, (2) automate the security modeling and analysis

and visualize the GSMs using a Graphical User Interface via a web application, and (3)

deploy three MTD techniques including Diversity, Redundancy, and Shuffle on the real

cloud infrastructure. We analyze the automation process using the APIs and show the

practicality and feasibility of automation of deploying all the three MTD techniques on

the UniteCloud.

103

104 Automated Security Analysis Framework for MTD techniques on Cloud

6.1 Introduction

The growth of the cloud computing as a powerful and affordable context for users has

caused many business and commerce migrate to this on-demand, scalable, and cost-

effective paradigm. The organizations outsource their network infrastructures, computing

needs, software and services into the cloud in order to benefit from the cloud’s utilities

such as economical benefits (cutting off physical resources and damages). However, many

organizations and enterprises find this migration undesirable due to cloud security is-

sues [135,171].

Many security mechanisms and defensive strategies have been proposed by researchers

both theoretically and practically. In order to improve the security of cloud computing,

it is important to evaluate the security posture of cloud. Graphical Security Models

(GSMs) (such as Attack Graphs (AGs) [41], Attack Trees (ATs) [88], Attack-defense

threes (ADTrees) [87], Hierarchical Attack Representation Model (HARM) [61]) are the

widely adopted methods to analyze the security of enterprise networks [77, 156]; a GSM

can be used to define attack surfaces and summarize the attack scenarios, and compute

security metrics. Moreover, GSMs can be used to evaluate the cloud security posture.

GSMs can also be used to evaluate the effectiveness of defensive techniques such as Mov-

ing Target Defense (MTD). MTD techniques are proactive defensive techniques and the

primary idea is mainly changing the attack surface in order to introduce confusions to

attackers carrying out cyber attackers. There are a few research in this line. Only a few

studies have been proposed for the uses of GSM in evaluating MTD techniques for cloud

computing. However, most of the previous research are theoretical and use simulation

only [11–13, 66] to show the feasibility of their approaches. To the best of our knowl-

edge, the incorporation of GSMs and MTD techniques together for security analysis and

deployment of MTD techniques in the infrastructures of the real clouds has not been

proposed. In this chapter, we tackle the aforementioned shortcomings by designing and

development of a cloud security assessment framework which can automatically monitor,

model, and analyze a private cloud security and deploy the MTD techniques on the cloud

infrastructures. In this section, we focus on the practical side rather theoretical appraisal.

We demonstrate the practicality of implementation, feasibility of automation, usability

of the project using a real cloud platform named UniteCloud [1,59,117].

The main contributions of this chapter are summarized as follows:

• Formalization: We formalized a cloud-based security model hosting various inde-

pendent enterprises.

• Cloud monitoring : We developed a cloud security framework which can automate

the process of cloud vulnerability scanning in order to collect the information of the

cloud’s components together with the vulnerabilities of each component.

Proposed Approach 105

• Cloud security evaluation: Cloud security framework can create the HARM based

on the collected information for security analysis and MTD evaluation purposes.

• MTD deployment : Cloud security framework automated the deployment of three

MTD techniques such as Diversity, Redundancy, and Shuffle on the real cloud in-

frastructure.

• Automation evaluation: We investigated on a private cloud platform and uses of

OpenStack Application Programming Interfaces (APIs) to analyze the automation

process for implementation steps.

• MTD visualization: We developed a graphical user interface (GUI) as a web applica-

tion for interaction between cloud security framework and security experts including

both cloud provider view and HARM [66] visualization.

• MTD measures: We analyze the MTD deployment based on different API calls time

measurements.

The rest of the chapter is organized as follows. Section 6.2 defines the proposed ap-

proach including a brief explanation on preliminaries, concepts, and definitions. Section

6.3 presents the design and implementation of the cloud security assessment framework.

Discussion and limitations of this work are given in Section 6.4. Section 6.5 summarizes

the related work. Finally, we conclude this chapter in Section 6.6.

6.2 Proposed Approach

In this work, we implement a cloud security assessment framework which is able to moni-

tor the cloud, analyze, and deploy the three MTD techniques including Shuffle, Diversity,

and Redundancy on the real infrastructures of the cloud. The main part of this chapter

is the automation of the cloud assessment framework in the real cloud. The uses of APIs

in the implementation and automation of the project are nontrivial. Automation process

needs a deep understanding of the infrastructures and platforms in which the private

cloud uses. On the other hand, the security analysis framework should be able to handle

the cloud constraints defined by both cloud provider and security experts such as uses

of services, access to controllers, etc.. This work includes four main phases elucidated

as follows. (1) Information Collection, (2) Cloud Security Modeling using HARM, (3)

Security Analysis Engine, (4) Deployment Phase.

6.2.1 Preliminaries

In this section, we describe the related concepts and definitions used throughout this

chapter. We first define a running example as the main scenario for the migration of

enterprises to the cloud. Later on, we deploy the proposed scenario together with the

proposed approach on the UniteCloud.

106 Automated Security Analysis Framework for MTD techniques on Cloud

A

vm0

W

vm1

W

vm2 W

vm3

W

vm4

L

vm5

L

vm6

L

vm7

L

DB

O
R

. . .ν2ν1

. . .
O

R

. . .ν2ν1

O
R

. . .ν2ν1
O

R
. . .ν2ν1

(a)

A

vm0

W

vm1

W

vm2 W

vm3

W

vm4

Lvm5

L

vm6

L

vm7

L

DB

O
R

. . .ν2ν1

. . .

O
R

. . .ν2ν1

O
R

. . .ν2ν1

O
R

. . .ν2ν1

(b)

(c)

Figure 6.1: Running Example and cloud model for two enterprises migrated into the
cloud named EP1 and EP2. (a) Two-layer HARM of the EP1 in the Cloud, (b) Two-layer
HARM of the EP1 in the Cloud, (c) a private cloud example including the various Hosts
(servers) and Virtual Machines (VMs) hosting EP1 and EP2.

6.2.1.1 Running Example

Figure 6.1c shows the running example scenario on the migrations of two independent or-

ganizations entitled Enterprise-1 (EP1) and Enterprise-2 (EP2) to a private cloud. Those

companies decide to cut off the physical equipment and use a private cloud for accommo-

dating their computing needs. Each organization has launched 8 Virtual Machines (VMs)

on the cloud together with a Database (DB) creating a virtual network. We assume that

the first four VMs use Windows10 and the rest use Linux Ubuntu. Moreover, the VMs

vm0 and vm1 for both organizations are connected to the Internet. Later on, we deploy

the running example shown in Figure 6.1c in the real cloud infrastructures of UniteCloud.

Proposed Approach 107

6.2.1.2 System and Attack Models

System constraints are usually defined based on both cloud provider and security experts.

For instance, the cloud provider can determine which cloud zones or physical hosts are

available for the customers. Moreover, the cloud provider can set the limitations on the

physical hosts such as defining the maximum VMs can be located on each host and so

forth. The system constraints are defined due to different reasons like workload balance

or energy saving, security purposes [58]. However, the security experts of enterprises

migrated into the cloud may have their own security policies like defining firewalls rules

and Access Control Lists (ACL). We assume that an attacker can launch the attacks from

outside of the cloud using exploiting the software vulnerabilities of the VMs connected

to the Internet. Then, the attacker can launch a series of other attacks in order to access

the DB along the identified attack paths.

6.2.2 Security Model for Cloud

We define our model based on multiple organizations migrating to the cloud. We first

define a cloud system as follows.

Definition 14. A cloud system can de defined as a Tuple C = (NC , SC), where

NC = {VMC , EC} is the network of VMs in the cloud connected to each other and

SC = {s1, s2, ..., sz} is a set of physical servers in the cloud hosting different VMs. Then,

VMC = {vm1, vm2, . . . , vmn} is a total set of VMs in the cloud, with |VM | = n, and

EC ⊆ {VMC × VMC} denotes the connectivities of VMs.

Then, as a cloud can accommodate multiple organizations each of which has inde-

pendent network in the cloud, we define a set of sub-clouds showing various enterprises

which have their own network and infrastructures in the cloud.

Definition 15. Let define SC = {sc1, sc2, ..., sce} as a set of sub-clouds where |SC| = e

denotes the number of enterprises migrating to the cloud. We define scx = (Nx, Sx) as

the cloud infrastructures assigned to the xth enterprise, EPx, migrated into the cloud,

where 0≤x≤e, and Sx∈SC , and Nx = {VMx, Ex} shows the network of EPx, such that

VMx∈VMC , and Ex ⊆ {VMx×VMx}.

In this study, we use HARM [61, 66] for graphical security modeling, analysis and

evaluation. Since multiple independent organization can reside in the same cloud, we

redefine HARM based on sub-clouds for each independent organization migrated to the

cloud as follows.

Definition 16. HARM can be modeled as a 3-tuple Hsc = (Usc, Lsc,Msc) where Usc

refers to an AG corresponding to a sub-cloud scx, and Lsc denotes an AT corresponding to

a sub-cloud scx, and Msc is a one-to-one mapping link from the AG to the corresponding

108 Automated Security Analysis Framework for MTD techniques on Cloud

AT, Msc = Usc→Lsc (shown as dashed lines in Figure 6.1). The upper layer of HARM

captures the connectivities of VMs, and the lower layer captures the vulnerabilities of

each VMs Vvmi = {ν1, ν2, . . . , νm}, such that the vulnerabilities make the leaves of three

and the root is a logical gate.

Figure 6.1a and 6.1b represent two layers of HARM for EP1 and EP2 respectively.

Figure 6.1c show a private cloud model hosting EP1 and EP2.

6.2.3 Security Analysis

Constructing the security model, we can leverage HARM to compute the security met-

rics and quantify the cloud security. As the focus of this chapter is implementation of

cloud security framework using MTD, we only leverage three security metrics, which are

Cloud Risk (R), Attack Cost (AC), and Return on Attack (RoA), to evaluate the cloud

security posture before and after deploying MTD techniques to find out the most effec-

tive defensive strategy. The uses of those metrics for evaluation of cloud are theoretically

investigated through simulation in Chapters 3−5. Other security metrics such as Attack

Success Probability (ASP), Mean Time to Attack (MTTA), etc. [156,158] can also be com-

puted. HARM uses the vulnerabilities information which can be obtained from National

Vulnerability Database (NVD) [106] and generate the lower layer using the vulnerability

values such as Impact, Exploitability, Base Score. The brief description, formalism and

calculation for the security metrics are given in Table 4.2 presented in Chapter 4.

6.3 Design and Implementation

This section provides the design and development of a security analysis framework for

cloud computing. We investigate the feasibility and practical requirements such as Soft-

ware tools, packages, programming interfaces, libraries in order to implement and auto-

mate the security analysis tool and MTD techniques in the real-world cloud deployment.

We develop a framework which can perform security modeling, evaluation, MTD deploy-

ment for enterprises migrated into the private clouds. The cloud security framework is

able to automate information collection: cloud scanning, vulnerability scanning, HARM

creation, security evaluation, and MTD deployment on a real cloud infrastructure. To

implement the framework we utilize a private cloud named UniteCloud and develop our

framework on UniteCloud as a case study. However, we believe that our developed frame-

work can be adopted for other private clouds as well.

6.3.1 Case Study: UniteCloud Analysis

The UniteCloud uses the OpenStack cloud platform. For setting up the project, we can

either use OpenStack horizon dashboard or utilize OpenStack APIs. The setup process

Design and Implementation 109

In
fo

rm
at

io
n

 C
o

lle
ct

io
n

St
ar

t

C
lo

u
d

Sc

an
n

in
g

St
ep

1

H
A

R
M

 C
re

at
io

n

St
ep

2

Se
cu

ri
ty

 A
n

al
ys

is

En
gi

n
e

St
ep

3

M
TD

 D
ep

lo
ym

en
t

St
ep

4

V
u

ln
er

ab
ili

ty

Sc
an

n
in

g

C
al

l S
te

p
 2

En
d

St
ar

t

G
en

er
at

e
U

p
p

er
 L

ay
er

G
en

er
at

e
Lo

w
er

 L
ay

er

C
al

l S
te

p
 3

En
d

Ex
p

er
t

St
ar

t

Se
le

ct
 S

ec
u

ri
ty

M

et
ri

c

Se
cu

ri
ty

Ev
al

u
at

io
n

Se
le

ct
D

ef
en

si
ve

 M
TD

En
d

M
et

ri
cs

P

o
o

l

M
TD

Te
ch

n
iq

u
es

M
TD

Ev

al
u

at
io

n

Sy
st

em

C
o

n
st

ra
in

ts

C
al

l S
te

p
 4

St
ar

t

D
ep

lo
y

M
TD

in
 C

lo
u

d

U
p

d
at

e
H

A
R

M

C
al

l S
te

p
 1

En
d

F
ig

u
re

6.
2:

S
ec

u
ri

ty
m

o
d

el
in

g
,

a
n

a
ly

si
s,

a
n

d
d

ep
lo

y
m

en
t

P
h

a
se

s

110 Automated Security Analysis Framework for MTD techniques on Cloud

includes the creation of VMs with different flavors and OS, assigning internal and float-

ing IP addresses, defining firewall rules and ACL, etc. However, we first create the cloud

example VMs shown in Figure 6.1c into the UniteCloud infrastructures using the hori-

zon dashboard. Further, we utilize the OpenStack APIs for automation. Table 6.1 shows

the created VMs including the related information on each host. The cloud consisting

of 16 physical Hosts (Compute Hosts) is distributed over three availability zones: IBM-

Zone, HPZone, and Nova. However, for our implementation, we used four hosts each of

which includes different VMs with different flavors. We assign two flavors for the VMs:

m1.medium and m1.generic. The specification of the former VM is 2 VCPUs, 4 GB RAM,

and 80 GB Disk, and that of the latter is 1 VCPUs, 1 GB RAM, and 20 GB Disk, respec-

tively. We assign two floating IP addresses for both VMs vm0 and vm1 of two enterprises

which are the entry points of the cloud. Moreover, VMs vm6 and vm7 of both enterprises

EP1 and EP2 are connected to their own DB.

6.3.2 Cloud Security Framework

The security framework consists of a backend engine and user interface (UI). The backend

engine is responsible for information collection, security modeling, analysis, and deploy-

ment phases which are demonstrated in Figure 6.2. The UI is used for interactions between

Table 6.1: Configuration and setup for VMs and hosts in the cloud. Note: floating IPs are
denoted as asterisked

Host &
Zone Name

VM
Name

OS
IP
Addresses

Flavor
Size

h0

IBMZone

vm1-EP2 Win10
172.16.7.33
192.168.1.100∗ m1.medium

vm2-EP2 Win10 172.16.7.32 m1.medium
vm5-EP2 Ubuntu14.04 172.16.7.39 m1.generic
vm3-EP2 Win10 172.16.7.36 m1.medium
vm7-EP1 Ubuntu14.04 172.16.19.16 m1.generic

vm0-EP1 Win10
172.16.19.14
192.168.1.239∗ m1.medium

vm0-EP2 Win10
172.16.7.35
192.168.1.149∗ m1.medium

vm1-EP1 Win10
172.16.19.12
192.168.1.63∗ m1.medium

h1

IBMZone

vm4-EP2 Ubuntu14.04 172.16.7.37 m1.generic
vm6-EP1 Ubuntu14.04 172.16.19.18 m1.generic
vm2-EP1 Win10 172.16.19.15 m1.medium
vm3-EP1 Win10 172.16.19.11 m1.medium

h2

HPZone
vm6-EP2 Ubuntu14.04 172.16.7.40 m1.generic
vm5-EP1 Ubuntu14.04 172.16.19.19 m1.generic

h3

HPZone
vm7-EP2 Ubuntu14.04 172.16.7.38 m1.generic
vm4-EP1 Ubuntu14.04 172.16.19.17 m1.generic

Design and Implementation 111

Figure 6.3: Security framework and communication overview.

security experts of enterprises and the backend engine for configuration and visualization

purposes. The generated graphical security model can be visualized in the UI. Figure 6.3

shows an overview of the security framework prototype and related tools and commu-

nication. The cloud security framework utilizes the following programming languages,

tools, and concepts: .NET Core, JSON, JavaScript, jQuery Ajax, Python, Nessus [23],

Data-Driven Documents JavaScript (D3.js). In this section, we show the implementation

of the cloud security framework. Security modeling is the first phase of the cloud se-

curity framework. Security modeling consists of two phases: (1) information collection,

(2) HARM creation shown as steps 1 and 2 in Figure 6.2. First, the cloud infrastructure

should be scanned in order to obtain Hosts, VMs, and reachability information. Then, the

vulnerabilities existing on each VM should be obtained using the vulnerability scanning

tools [23]. Information gathering is a crucial phase for the security modeling. Next, the

HARM can be constructed using the obtained information. The reachability information

can be used to generate the upper layer of HARM where an AG is used to show all

the possible attack scenarios given system and attack model. Moreover, the vulnerabil-

ity information can be used to construct the lower layer of HARM which uses the ATs.

However, generating ATs from vulnerabilities needs a clear understanding of the vulnera-

bilities and the way in which they can be exploited. For instance, an attacker can exploit

Figure 6.4: OpenStack API Calls for information collection phase.

112 Automated Security Analysis Framework for MTD techniques on Cloud

only one vulnerability to penetrate into a VM, or the attacker may need to exploit a set of

vulnerabilities to penetrate into a VM. In the former case a logical OR-gate can be used

and for the latter, a combination of logical AND/OR-gates can be used [128]. The uses

of logical AND/OR-Gates and computation approach are presented in [128]. However, a

security expert can help to define the vulnerabilities relations. Entry points of the cloud

are actually the VMs connected to the Internet. Those VMs are the entry points of the at-

tacks as well. The target could be any VM which includes important information or runs

crucial services. We assume that the DB is the attackers’ target. Both entry points and

target are captured in the upper layer of the HARM. The upper layer can be generated

using reachability information obtained from analyzing the firewall rules.

6.3.2.1 Information Collection Automation

As stated earlier, cloud infrastructure information including VMs and hosts, and the

reachability of VMs are required for constructing the upper layer of HARM, and vulner-

abilities associated to each VM are required to create the lower layer of HARM. Cloud

security framework needs to automatically fetch two information: (1) cloud information

such as the number of VMs, the number of physical hosts, the host of each VM, the

reachability between the VMs and (2) vulnerability information existing on each VM.

We use .NET Core as the backend engine programming language and call APIs in order

to access both OpenStack and Nessus automatically and fetch information. Accessing to

the UniteCloud OpenStack consists of two parts: OpenStack authentication and fetching

information. OpenStack uses Keystone feature for user authentication. Moreover, it uses

nove-computes, neutron-networks, Glance-images features for different purposes such as

accessing to compute nodes (VMs, Hosts, Zones, etc). In order to access to the OpenStack

and retrieve the information, we first need to access keystone using APIs for authenti-

cation. The username, password, and domain name are sent to the Keystone controller

using a JSON API call for authentication. Once the user is authenticated using the Key-

stone authentication method, OpenStack sends a response including the authentication

token (X-Subject-Token), other OpenStack Controllers’ address including nova, neutron,

glance, cinder, etc. which can be used for further API calls. The received message should

be first parsed to receive the authentication token together with the nova controller ad-

dress. Then, the backend engine sends another API call using the authentication token and

the nova controller to gather the list of VMs and Hosts. The received message contains

unnecessary/irrelevant information including VM status, availability zone, created and

updated time, etc., the message should be parsed to fetch only the required information.

Similarly, another API including the authentication token and neutron controller should

be called to get network-related information. The received information should be again

parsed to obtain VMs’ IP addresses and the reachability of VMs. Figure 6.4 demonstrates

the API calls and related responses between the cloud security framework and OpenStack

in order to gain the information. Beside the VMs and reachability information, we need

Design and Implementation 113

Algorithm 4: Information collection procedure

/* Input info. needed for OpenStack (Ops) */

Data: Ops-user-credential, Keystone-Controller-Url
/* Input Info. needed for Nessus (NS) */

Data: NS-user-credential, Nessus-Session-Url
/* Result: Dictionaries of VMs and Reachability, VMs and Vulnerabilities */

Result: VMs Links Dic, VMs Vuls Dic
1 begin

/* Cloud Scanning: fetch Host & VM info. */

2 Credential-Data←JSonConvert(Ops-user-credential)
3 JResult←API Call(Credential-Data, Keystone-Controller-Url)

4 Auth Token←Parse(JResult, Authentication)
5 Controllers List←Parse(JResult, Nova and Neutron Controllers)

6 Host-VM-Info← API Call(Auth Token, Nova-Controller)

7 Network-Info← API Call(Auth Token, Neutron-Controller)

/* Parsing and saving the fetched data */

8 Hosts List←Parse(Host-VM-Info, Hosts)
9 VMs List←Parse(Host-VM-Info, VMs)

10 Reachability List←Parse(Network-Info, Reachability)
11 VMs Links Dic = Create Dictionary[VM, VM]

/* Nessus Scanning: fetch vulnerabilities */

12 Credential-Data←JSonConvert(NS-user-credential)
13 JResult←API Call(Credential-Data, Nessus-Session-Url)

14 Auth Token←Parse(JResult, token)
15 JResult←API Call(Auth Token, Nessus-vulnerabilities-Url)

16 VMs Vuls Dic = Create Dictionary[VM, Vulnerabilities-List]

/* Get & save vulnerabilities on each VM */

17 foreach vm ∈ VMs List do
18 Vuls-Info←Parse(JResult, vm)
19 Add vm and Vuls-Info into VMs Vuls Dic

20 end
/* Return reachability of VMs */

Output: VMs Links Dic
/* Return vulnerabilities on each VM */

Output: VMs Vuls Dic
21 end

vulnerabilities information for each VM on the cloud. We use Nessus [23] to scan the

cloud and obtain vulnerabilities. Then, cloud security framework uses a backend engine

to access to Nessus and retrieve the vulnerabilities’ information. The first API called is

used for authentication. Having obtained the response message, the backend engine sends

other API calls using the authentication token in order to get the vulnerability infor-

mation. the extracted information contains useful information related to Vulnerability,

possible threats, Base Score [106], severity, etc., CVE identifier (CVE-ID). However, cloud

security framework only need CVE-ID for selected vulnerabilities so that it can obtain

the other information such as vulnerability impact and exploitability through National

Vulnerability Database (NVD) [106]. The pseudocode for the overall information collec-

tion is shown in Algorithm 4. Note that cloud scanning using Nessus is a time-consuming

114 Automated Security Analysis Framework for MTD techniques on Cloud

process and cannot be done frequently. Instead, it can be run once a while to keep the

vulnerabilities updated, or run once a change catches on the VMs such as adding new

VM, or changing OS, etc.

6.3.2.2 HARM Creation

The upper layer of HARM can be generated using the VMs and reachability information

obtained from the previous step. This information is saved as a key and value dictionary

representing the VMs’ links as a graph. Thus, the backend engine can generate the AG

based on the dictionary. The second part of the information obtained from Nessus scan-

ning is a dictionary of VMs and related vulnerabilities on each VM which can be used to

generate the lower layer of HARM. The lower layer of HARM uses the ATs. The backend

Engine uses Python programming language to generate HARM. However, other software

and tools can also be used like Gephi which is a network analysis and visualization soft-

ware package. Moreover, we use Python [77] as the security analysis engine to compute

security metrics and evaluate MTD techniques.

6.3.2.3 Security Analysis Engine

Security analysis engine has two main phases: general security evaluation and MTD eval-

uation. HARM can be adopted to compute the security metrics in the pool. Security anal-

ysis engine is implemented on the backend engine using Python. It consists of security

evaluation and MTD evaluation subroutine. Security analysis engine uses the generated

HARM and the security metrics. In fact, security experts can choose or prioritize various

security metrics and add them to the metric pools based on the security requirements

such as System Risk, Attack Cost, MTTA, Attack Success Probability, and so forth. Once

the security metrics are selected, security analysis engine uses HARM for security evalua-

tion and computing the selected security metrics. Security analysis framework uses MTD

techniques as the main defensive strategies for security the organizations on the cloud.

However, deploying MTD techniques could be limited based on system constraints. For

instance, VM-LM (Shuffle technique) might be restricted from one host to another one

due to lack of space on the target host, or OS Diversification (a Diversity technique) could

be limited to only a few OS instances due to the cost of the license for the cloud provider.

Thus, the MTD techniques should be chosen based on the defined system constraints.

6.3.2.4 MTD Deployment Implementation

The final phase of the cloud security framework is the deployment of selected MTD

techniques on the cloud infrastructure. It uses .NET Core and OpenStack APIs to deploy

MTD techniques, it utilizes glance for creating and retrieving OS instance images, nova,

and network controllers for accessing and manipulating VMs and Network purposes.

Design and Implementation 115

Figure 6.5: OS Diversification: Ubuntu14.04 replaces with CentOS7 for vm6-EP2

Diversity. Security analysis framework uses OS diversification technique for deploying

Diversity. In order to deploy Diversity technique, backend engine uses nova to access the

desired VM and update the VM instances with another OS image. Similar to the infor-

mation collection phase, the user credential information should be sent to the Keystone

controller using JSON API call for authentication. Backend engine omits this phase as

the authentication token is already received in information collection phase; moreover,

both nova and glance controllers are fetched from the response message. Before calling

API to change the VM instance, we need to fetch the ImageRef by sending an API to

glance. Once the response received, the ImageRef associated to the desired VM image

can be obtained. Finally, an API should be called to pass the authentication token, VM

ID, ImageRef to the nova in order to rebuild the VM with another OS variant. Figure 6.5

shows the results of calling APIs for replacing Ubuntu14.04 with CentOS7 for vm6-EP2

on the cloud. Note that Diversity preserves the VM’s physical host

Redundancy. Based on the Redundancy definition, different replicas of a VM should

be created so that each replica has the same feature as the main VM. For instance, the

replicated VMs should have the same OS, Flavor, inbound and outbound links from/to

other VMs The only difference is the newly assigned IP addresses. Backend engine is

responsible for deploying redundancy. However, the number of replicas for deploying re-

dundancy is chosen by either MTD evaluation part or expert entry using UI. There is no

feature on OpenStack to create replication for each VM. Thus, deploying redundancy on

OpenStack needs creation r new VMs based on the similar existing instance or copied

Figure 6.6: OS Replication: Create 2 replicas for vm6-EP2

116 Automated Security Analysis Framework for MTD techniques on Cloud

Figure 6.7: VM-LM: Migration of vm6-EP2 from Compute07 node to Compute08 node

snapshot. Backend engine can use the same authentication token already obtained from

the information collection phase and use nova controller. Thus, the backend engine sends

an API to nova controller including the authentication token, ImageRef, FlavorRef, Net-

workID together with a max count which is the number of required replicas (r). Figure 6.6

demonstrates the results of calling APIs for the creation of two new replicas of vm6-EP2

with the same OS, links, hosts, flavors, but different IP addresses.

Shuffle. In this framework, VM-LM is used as the Shuffle technique. VM-LM can be

deployed on the OpenStack using nova controller. Similar to other MTD techniques, the

backend engine omits the authentication API call because the authentication token and

nove controllers have already been fetched in the information collection section. The

target host can be selected either by MTD evaluation results or security experts. In order

to deploy VM-LM, an API including authentication token together with the VM ID and

Target Host ID is called. Figure 6.7 demonstrates the results of calling APIs for migration

of vm6-EP2 from Compute07 to Compute08.

6.3.3 User Interface (UI) Implementation

Cloud security framework uses a UI in order to interact between the security experts

of enterprises and backend engine. Security experts can add update the security metrics

pool, choose MTD techniques, analyze and monitor the cloud security using visualization

panel. UI is implemented as a web application using JavaScript, JSON, jQuery Ajax, and

D3.js interacting with the backend engine. UI web application includes two different per-

spectives for visualization. Cloud provider and security model previews. Cloud provider

preview illustrates the internal connection of the VMs, routers, subnets, and etc. in the

cloud, and security model preview visualizes the generated upper layer of HARM which

captures the reachability of VMs based on the firewall rules and possible attack scenarios.

UI also shows the vulnerabilities captured for each VM . UI uses internal APIs to com-

municate with backend engine and update and gain information. Figure 6.8 demonstrates

the UI panel showing two different previous based on the UniteCloud network and HARM

view.

Results and Discussion 117

Figure 6.8: Cloud security framework UI panel: UniteCloud Graph view and HARM
visualization

6.4 Results and Discussion

Backend engine is the base of the cloud security framework which use the OpenStack

APIs to create security, perform security analysis, and deploy MTD techniques. The

backend engine is responsible for automating the information collection APIs and MTD

deployment APIs. The feasibility and practicability of implementing the backend using

OpenStack API calls is important. We evaluated the usability of the backend engine by

considering the API calls passing through the backend and two other parties: Nessus

vulnerability scanning tool, and OpenStack controllers. The details of API calls like the

type of APIs and elapsed times are elucidated in this section.

Cloud security framework uses two types of APIs which can be categorized as infor-

mative calls (ICs) and operational calls (OCs). The first group can be only used to get

the information like getting authentication tokens, list of hosts, VMs, etc., these APIs

will not make any changes on the cloud. Unlike the first group, operational calls can

perform an operation and make the changes on the cloud such as migrating a VM from

one host to another one, or changing the VM’s instance, etc. We measure the informative

calls with the response time (TR). Particularly, TR is the total time needed for sending

a request to the cloud and receiving the required information, as shown in Figure 6.4.

For instance, the TR of a keystone authentication call is the time elapsed between calling

API and receiving the response from keystone showing accepted status 202 together with

118 Automated Security Analysis Framework for MTD techniques on Cloud

M
1:

 A
ut

he
nt

ic
at

io
n

R
eq

.

G

Li
st

 S
er

ve
rs

 R
eq

. (
M

3)
IC

M
2:

 X
-t

ok
en

 r
ec

ei
ve

d

M
6:

 N
eu

tr
on

 R
ep

ly

M
4:

 N
ov

a
R

ep
ly

N
et

w
or

k
in

fo
. R

eq
. (

M
5)

ᵋ

Reply messages
may arrive in
different orders

M
8:

 G
la

nc
e

R
ep

ly

Li
st

 o
f I

m
ag

es
 in

fo
. R

eq
. (

M
8)

Time

Figure 6.9: Cloud scanning API calls in Information Collection phase

Table 6.2: Benchmark analysis for MTD API calls

API Calls VM
Status

Request Numbers (time in Seconds)
Ave. Std.

MTD Type (T) 1 2 3 4 5 6 7 8 9 10

S
Tγ Up 0.65 0.77 0.42 0.43 0.42 0.55 0.45 0.45 0.71 0.43 0.53 0.13
To Down 10.00 11.00 13.00 12.00 9.00 18.00 11.00 13.00 17.00 11.00 12.50 2.77
TC N/A 10.65 11.77 13.42 12.43 9.42 18.55 11.45 13.45 17.71 11.43 13.03 2.80

D
Tγ Up 0.56 0.72 0.66 0.44 0.42 0.42 0.70 0.81 0.44 0.68 0.58 0.14
To Down 18.00 17.00 18.00 20.00 17.00 19.00 16.00 19.00 18.00 18.00 18.00 1.10
TC N/A 18.56 17.72 18.66 20.44 17.42 19.42 16.70 19.81 18.44 18.68 18.58 1.06

R
(3-r)

Tγ Up 0.73 0.73 0.76 0.74 1.08 0.76 0.82 0.75 0.91 1.06 0.83 0.13
To Up 10.00 10.00 11.00 11.00 12.00 12.00 11.00 12.00 11.00 11.00 11.10 0.70
TC Up 10.73 10.73 11.76 11.74 13.08 12.76 11.82 12.75 11.91 12.06 11.93 0.75

the required information in the body of message. However, operational calls consist of:

(1) Reaction Time (Tγ) which is the time between calling API and the start time of an

operation. Note that the response for an API call may include some acknowledge such

as denied, abort, unauthorized, etc. which means the operational call was unsuccessful.

In this case Tγ includes the response time. (2) Operational Time (To) which means the

difference between the start of an operation using API calls and the time in which the

task is fully done. (3) Completion Time (TC) which is the total time for completion of an

operational call: Tγ+To; for instance, the total time between sending a request for VM-

LM process and the end of the process. Table 6.3 shows the details of API calls including

the required fields, received messages together with the average elapsed time for each

call and response. The total average TR for cloud scanning including informative calls

only is around 3121 milliseconds (ms). Nessus scanning APIs also includes as informative

calls for authentication and vulnerability information fetches. The total measured TR for

Nessus scanning APIs is about 4509 ms. Note that, cloud scanning using Nessus servers

Results and Discussion 119

Table 6.3: API JSON calls and related information including the TR and TC . Note: the
asterisked times are TC

API
Calls

Type Content
Time
(ms)

Cloud Scanning APIs

M1 Request [User, Password, Domain], [Keystone Controller] 356
M2 Response [Authentication Token, Controllers’ URL]
M3 Request [Authentication Token], [Nova Controller]

1997
M4 Response [List of Servers, Hosts, Zones, etc.]
M5 Request [Authentication Token], [Neutron Controller]

209
M6 Response [Networks, Routers, Ports, etc]

Nessus Scanning APIs

M1 Request [User, Password], [Nessus Session URL]
471

M2 Response [Token]
M3 Request [Token], [Nessus Session URL]

4038
M4 Response [CVE-IDs, etc.]

Diversity APIs: OS Diversification

M1 Request [Authentication Token], [glance controller URL]
559

M2 Response [List of images (OS instances)]
M3 Request [Authentication Token], [VM ID, ImageRef,

Nova]
18081∗

M4 Response [Status: accepted or abort]

Redundancy APIs: VM Replicas

M1 Request [Token], [Image&FlavorRef, max count, Nova]
12091∗

M2 Response [Status: accepted or abort]

Shuffle APIs: VM-LM

M1 Request [Auth. Token], [VM ID, Host ID, Nova controller]
7216∗

M2 Response [Migration Status]

is a separate process and is not included in Nessus scanning APIs. As the TC includes

both Tγ and To we only tabulated TC for deploying MTD technique (as asterisked in

Table 6.3).

MTD Deployment Measures. We developed the experiments by performing a

Benchmark analysis for deploying three Shuffle (S), Diversity (D), and Redundancy (R)

MTD techniques on the OpenStack. We evaluated the operational API calls by mea-

suring the Tγ , To, and TC obtained based on a sequence of 10 API requests. We sent

these request to the cloud for deploying MTD techniques on the VM-6-EP2 which uses

Ubuntu14.04 and m1.generic flavor size. For analyzing Shuffle, we send operational API

calls to the cloud for randomly migrating vm6-EP2 to other Hosts and measured the op-

erational times for each request. For Diversity, we repeated the experiments by changing

120 Automated Security Analysis Framework for MTD techniques on Cloud

Request Number

Figure 6.10: Comparing the operational time (To) for deployment of MTD in real cloud
for 10 API requests denoted as (1-10)

(a) Shuffle (b) Diversity (c) Redundancy

Figure 6.11: The histograms showing the TC distributions for MTD deployments (Times
in Seconds)

the vm6-EP2 OS to CentOS and vice versa and measured the time. Finally, we analyze

Redundancy by creating three replicas (3-R) for vm6-EP2 named as vm6-EP2-R-1, vm6-

EP2-R-2, and vm6-EP2-R-3. We tabulated the measurements of operational times for

all MTD techniques on each request together with the average, and standard deviation

values in Table 6.2. The results show that the average TC for S, D, and R (3-R) are

13.03, 18.58, and 11.93 seconds, respectively. Moreover, the results show that the VM is

active (Up) during Tγ , while the VM is not accessible (Down) during To for both S and

D. The VM status is N/A during TC if there Tγ be in Up and To be in Down states.

However, the VM status for R is always UP as there are always at least one replication

of a VM which can work without the interruption or downtime. Figure 6.10 visualizes

and compares the To measured based on each request together with the average values.

It is obvious that 3 VMs (3-R) can be created in about the average of 11.1 Seconds which

is faster than VM-LM (used for deploying Shuffle) with the average migration time 12.5

Results and Discussion 121

Seconds. Moreover, the highest average To value is for deploying Diversity which takes

about 18 Seconds to change the current OS with another instance.

We extended our analysis by conducting experiments for a sequence of 20 API requests

to measure the operational time for MTD techniques with more accuracy. We divided

the TC into different intervals and counted the number of occurrence for each group.

Figure 6.11 demonstrates the histograms for MTD techniques based on the measured

times for 20 requests (N=20). We observe that most of the Shuffle technique requests can

be completed between 11.7 and 12.8 seconds. Moreover, Diversity can be fully deployed

between 18.16 and 20.08 seconds in most of the cases. Finally, Redundancy API requests

for creation of three replicas (3-R) can be fully served between 11.73 and 12.73 seconds

in most of the cases.

Security Metrics Evaluation. We also evaluated the effectiveness of the MTD tech-

niques in terms of system security. We adopted three security metrics Risk, AC, and RoA

into the metrics pool and evaluate each MTD technique. Those metrics are useful for

evaluation of Shuffle and Diversity and have already been investigated for evaluation of

MTD techniques on cloud through simulation [12]. However, more security metrics can

be similarly used to evaluate other security aspects of the cloud [156]. Table 6.4 shows the

security metrics resulting from deploying MTD techniques on each VM on the cloud for

both EP1 and EP2. Those results can be used by MTD Evaluation phase in the Security

Analysis Engine (as shown in Figure 6.3) to find and deploy the most effective deploy-

ment. Comparing the results for deploying MTD techniques for EP1, we can observe that

deploying Shuffle on vm7 can lead to better result in terms of Risk and RoA metrics

which yield 25.4 and 14.2, respectively. Similarly, deploying Diversity on vm7 yields 45.5,

89, and 24.4 for Risk, AC, and RoA, respectively. Likewise, deploying Shuffle on vm7 for

EP2 cause lower Risk and RoA values and deploying Diversity on vm6 provides the better

results in terms of Risk and RoA which yields 62.9 and 34.6, respectively. However, the

Table 6.4: The results of three security metrics: Risk, AC, and RoA on the cloud resulting
from deploying MTD techniques on EP1 and EP2

VM
Shuffle (EP1) Diversity (EP1) Shuffle (EP2) Diversity (EP2)

Risk AC RoA Risk AC RoA Risk AC RoA Risk AC RoA

vm0 34.2 50.5 18.9 48.7 79.2 26.6 47.9 70.9 26.9 65.0 117.9 35.2
vm1 31.1 45.7 16.9 47.3 87.9 25.1 53.5 79.2 30.3 65.5 115.1 35.8
vm2 32.1 47.3 17.6 47.8 85.0 25.6 44.7 66.1 24.9 65.0 117.9 35.2
vm3 45.4 67 25.1 47.8 85.0 25.6 53.3 78.8 29.7 63.7 126.6 33.6
vm4 34.5 51.2 19.5 47.6 81.2 26.1 56.6 84 32.3 66.4 105.7 37.3
vm5 30.7 45.5 17.5 45.5 89.0 24.4 63.9 94.8 36.4 65.7 108.3 36.8
vm6 31.9 47.4 18.2 46.9 83.8 25.5 49.9 74.1 28.3 62.2 121.3 34.0
vm7 25.4 37.5 14.2 45.5 89.0 24.4 41.4 61.4 23.6 62.9 118.7 34.6

122 Automated Security Analysis Framework for MTD techniques on Cloud

Before D

After D

(a) Risk

Before D

After D

(b) AC

Before D

After D

(c) RoA

Figure 6.12: Comparing normalized security merics before and after deploying MTD tech-
nique on cloud (EP1)

best results for AC is deploying Diversity on vm6 yields 121.3. The overall changes on the

security metrics obtained from the best MTD deployment scenario for EP1 are shown in

the Figure 6.12. The results shows that deploying Shuffle yields better results that Di-

versity in terms of Risk and RoA metrics. Deploying Diversity yields a gentle decrements

for Risk and RoA in the best case while those metrics are almost halved after deploying

best Shuffle scenario. However, Diversity yields better results for AC and increases AC.

Limitations and Extensions. The update phase has not been implemented in cloud

security framework. This includes running of Nessus scanning and recreation of HARM

based on any changes captured in the cloud, such as updating VMs or vulnerabilities. We

will further consider the update phase in our future work. We deployed and measured

the Redundancy technique on the real cloud. The main aim of Redundancy technique is

to enhance the service availability in the cloud. Redundancy can be measured with the

concepts of system dependability (e.g. reliability and availability) which is out of scope of

this chapter. We will further consider dependability metrics for evaluating Redundancy

technique on real cloud in our future work. Moreover, This Chapter presents the imple-

mentation and real measurements on a private cloud using OpenStack Platform. However,

implementation, adaptation, and deployment of MTD techniques on other types of clouds

such as private and/or public clouds (e.g., Microsoft Azure, Amazon AWS, etc.) also need

to be investigated to show the robustness of the proposed method.

6.5 Related Work

The theoretical investigation and evaluation of the security modeling and analysis adopt-

ing based on the MTD techniques for cloud computing have been proposed in the

work [13, 66]. However, most of the proposed frameworks have focused on the imple-

mentations of GSMs on the networks [48, 77, 90]. The security modeling and analysis

tools on the literature can be categorized based on the context of implementation test-

bed such as cloud computing [37], networks and enterprises [92], or based on GSMs [61],

Conclusions 123

ATs [48], AGs [73, 90], etc., the automation approaches and levels [109], or based on the

effectiveness of solution like response time and the probability of success [109]. Authors

in [92] proposed and implemented a fast network security assessment prototype based

on the real scenario. Moreover, the work [37] developed a framework named NICE in

the virtual network systems which is able to detect possible attacks against the cloud

infrastructure. To the best of our knowledge, there is no prior work developing the MTD

techniques incorporated with the automated GSMs in a cloud environment. In this chap-

ter, we developed an automated cloud security framework able to monitor and detect a

private cloud and deploy MTD techniques on the infrastructures of the cloud.

6.6 Conclusions

We have investigated on practicability and usability of incorporating MTD techniques into

GSMs as a framework on the real cloud. We have developed a cloud security framework

which is able to run on a private cloud platform named UniteCloud. The developed

framework can 1) automatically monitor the cloud and collect the information such as

hosts, VMs, network, and vulnerabilities existing on each VM using OpenStack APIs, 2)

model and evaluate the cloud’s security and adopt defensive MTD techniques, 3) automate

the deployment of three MTD techniques OS Diversification as the Diversity technique,

VM replication as the Redundancy technique, and VM-LM as the shuffle technique on

the infrastructures of the UniteCloud using API calls, and 4) use a web application UI for

interaction between the security experts and the backend engine of the framework and

also visualize the generated security model. Finally, we have evaluated MTD techniques

based on real measurements and security metrics and showed that MTD techniques can

be adopted in the real cloud infrastructure.

Chapter 7

Conclusions and Future Directions

The present thesis aimed to utilize the MTD techniques in a way that it enhances the

cloud computing security. An extensive survey on MTD techniques was first conducted

to find the gaps in the existing proposals. Then, combinations of MTD techniques were

investigated, defined, and formulated for the cloud. Lastly, a cloud security framework

was designed for a realistic testbed, which was able to adapt the MTD techniques on a

real cloud testbed.

In Chapter 2, We conducted a survey of the studies on MTD techniques, their proposed

techniques, key designs, principal concepts, domains of application, and implementation.

We summarized the key limitations of the MTD techniques proposed in the literature

and found relatively less effort in: 1) investigating the combinations of multiple MTD

techniques, 2) evaluating the effectiveness of MTD techniques using security metrics in

addition to performance and overhead assessment, and 3) adapting MTD technique on

real cloud platforms, such as private, public, and hybrid clouds. Ultimately, based on the

insights and lessons learned from the survey, we defined the research questions and the

direction of this thesis. However, we realized other limitations, such as interplay between

the MTD and other defensive mechanisms, investigation on optimal MTD techniques and

combinations, which have important implications for future investigations.

In Chapter 3, we studied the combination of Shuffle and Redundancy MTD techniques

and conducted the experimental results through simulation. We first formalized Shuffle

and Redundancy MTD techniques based on the scalable HARM to combine Shuffle,

Redundancy, and a combination of both. We then utilized Network Centrality Measures

(NCMs) to improve the security analysis through HARM and to rank the most crucial

VMs in the cloud. Our studies of these combinations revealed that leveraging Important

Measures (IMs) can improve the security analysis and evaluation process. We also showed

that we can combine Shuffle and Redundancy techniques to minimize the Risk while

increasing the Reliability and holding system unattackability at an acceptable threshold,

while deploying single MTD techniques cannot satisfy all desired metrics.

125

126 Conclusions and Future Directions

However, to investigate how the MTD techniques could enhance the security by hard-

ening potential attacks on the cloud, it was recognized that the Shuffle and Diversity MTD

techniques would need to be properly combined. In Chapter 4, we introduced the combi-

nations of Shuffle and Diversity and evaluated their effectiveness. We formulated Shuffle

and Diversity techniques by considering different combination scenarios and strategies.

By incorporating eight different security metrics including the path-based metrics. In

our combined model, we discovered that using IMs between deploying the Shuffle and

Diversity can provide the most promising strategies to combine these MTD techniques,

which could in tern yield better results (it increases the attack cost while reducing system

risk and return on attack). However, because the Redundancy was not included in this

combination, it is unable to increase the dependability (e.g., reliability) of the system.

The efficient combinations of MTD techniques we developed in Chapters 3 and 4 en-

couraged us to formulate and extend the combination of MTD techniques by including

the Redundancy technique in addition to the Shuffle and Diversity. To this end, in Chap-

ter 5, we investigated how those three techniques can be combined to efficiently secure

the cloud from both the attacker’s and the cloud provider’s perspectives. The experimen-

tal results showed that combining Shuffle, Diversity, and Redundancy can contribute to

provide security and reliability while making the attack more difficult for the attackers

and increasing the attack cost. Moreover, we focused on more specific context using E-

health cloud model to evaluate the effects of MTD techniques on economic metrics. We

showed that deploying MTD techniques can increase the return on security investment

values, while decreasing the return on attack metrics. To find the most promising MTD

strategies, we proposed a migration strategy for deploying Shuffle which is able to deploy

Shuffle on only a selected critical shortest paths in the network to avoid computational

complexity of Exhaustive Search (ES) and also increase the attack path length. We also

proposed an optimization model called O-DAP for Diversity and showed that our binary

linear programming formulation handles large instances of Diversity allocation using var-

ious OS backup over multiple VMs with millions of feasible solutions in a fraction of a

second on an ordinary computer. However, since deploying MTD techniques either solely

or in combinations can introduce a trade-off between security, availability, and defensive

costs, a multi-optimization problem for those conflicting goals can be further investigated

in-depth such as using techniques seen in [35].

While Chapters 3–5 mainly have focused in the theoretical aspects of proposing and

evaluating the combinations of MTD techniques, the importance of practical side of the

research for either validation or usability of MTD techniques encouraged us to develop

and adapt MTD techniques on a realistic cloud testbed. In Chapter 6, we developed and

automated security analysis framework equipped with MTD defensive techniques in a

real private cloud platform (that is UniteCloud). Our proposed cloud security framework

showed that how API programming can help security analysis and MTD deployment

phases to design and develop an automated cloud security framework on cloud. We also

Conclusions and Future Directions 127

demonstrated that all MTD techniques Shuffle, Diversity, and Redundancy MTD are

deployed on a real cloud platform with low effect in performance in terms of system

downtime. However, performing MTD on real clouds to obtain real measurements is a

difficult task since the cloud providers has their own policies and restrictions. To this end,

the realistic results and measurements presented in Chapter 6 can be on an inspiration

for further research.

Bibliography

[1] Unitecloud, http://www.unitecloud.net/.

[2] Towards scalable security analysis using multi-layered security models. Journal of

Network and Computer Applications 75 (2016), 156 – 168.

[3] Achleitner, S., La Porta, T., McDaniel, P., Sugrim, S., Krishnamurthy, S. V., and

Chadha, R. Cyber deception: Virtual networks to defend insider reconnaissance.

In Proceedings of the 8th ACM CCS international workshop on managing insider

security threats (2016), pp. 57–68.

[4] Achleitner, S., Porta, T. L., McDaniel, P., Sugrim, S., Krishnamurthy, S. V., and

Chadha, R. Deceiving network reconnaissance using SDN-based virtual topologies.

IEEE Transactions on Network and Service Management 14 (Dec. 2017), 1098–

1112.

[5] Adili, M. T., Mohammadi, A., Manshaei, M. H., and Rahman, M. A. A cost-

effective security management for clouds: A game-theoretic deception mechanism.

In Integrated Network and Service Management (IM), 2017 IFIP/IEEE Symposium

on (2017), IEEE, pp. 98–106.

[6] Aikat, J., Akella, A., Chase, J. S., Juels, A., Reiter, M., Ristenpart, T., Sekar, V.,

and Swift, M. Rethinking security in the era of cloud computing. IEEE Security &

Privacy (2017).

[7] Al-Haidari, F., Sqalli, M., and Salah, K. Impact of cpu utilization thresholds and

scaling size on autoscaling cloud resources. In 2013 IEEE 5th International Confer-

ence on Cloud Computing Technology and Science (2013), vol. 2, IEEE, pp. 256–261.

[8] Al-Shaer, E. Toward network configuration randomization for moving target de-

fense. Moving Target Defense (2011), 153–159.

[9] Alavizadeh, H., Alavizadeh, H., Kim, D. S., Jang-Jaccard, J., and Niazi Torshiz, M.

An automated security analysis framework and implementation for cloud. arXiv

preprint arXiv:1904.01758 (2019).

129

130 Bibliography

[10] Alavizadeh, H., Alavizadeh, H., Kim, D. S., Jang-Jaccard, J., and Niazi Torshiz, M.

An automated security analysis framework and implementation for MTD techniques

on cloud. In International Conference on Information Security and Cryptology

(2019), Springer.

[11] Alavizadeh, H., Hong, J. B., Jang-Jaccard, J., and Kim, D. S. Comprehensive

security assessment of combined mtd techniques for the cloud. In Proceedings of

the 5th ACM Workshop on Moving Target Defense (2018), ACM, pp. 11–20.

[12] Alavizadeh, H., Jang-Jaccard, J., and Kim, D. S. Evaluation for combination of

shuffle and diversity on moving target defense strategy for cloud computing. In 2018

17th IEEE International Conference On Trust, Security And Privacy In Computing

And Communications/12th IEEE International Conference On Big Data Science

And Engineering (TrustCom/BigDataSE) (2018), IEEE, pp. 573–578.

[13] Alavizadeh, H., Kim, D. S., Hong, J. B., and Jang-Jaccard, J. Effective security

analysis for combinations of mtd techniques on cloud computing (short paper). In

International Conference on Information Security Practice and Experience (2017),

Springer, pp. 539–548.

[14] Alavizadeh, H., Kim, D. S., and Jang-Jaccard, J. Model-based evaluation of com-

binations of shuffle and diversity MTD techniques on the cloud. Future Generation

Computer Systems (2019).

[15] Ali, M., Khan, S. U., and Vasilakos, A. V. Security in cloud computing: Opportu-

nities and challenges. Information Sciences 305 (2015), 357–383.

[16] Antonatos, S., Akritidis, P., Markatos, E. P., and Anagnostakis, K. G. Defend-

ing against hitlist worms using network address space randomization. Computer

Networks 51, 12 (2007), 3471–3490.

[17] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee,

G., Patterson, D. A., Rabkin, A., Stoica, I., et al. Above the clouds: A berkeley

view of cloud computing. Tech. rep., Technical Report UCB/EECS-2009-28, EECS

Department, University of California, Berkeley, 2009.

[18] Avizienis, A. The n-version approach to fault-tolerant software. IEEE Transactions

on Software Engineering 11, 12 (Dec. 1985), 1491–1501.

[19] Azab, M., Hassan, R., and Eltoweissy, M. Chameleonsoft: a moving target defense

system. In Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom), 2011 7th International Conference on (2011), IEEE, pp. 241–

250.

Bibliography 131

[20] Baran, M. E., and Wu, F. F. Network reconfiguration in distribution systems for

loss reduction and load balancing. IEEE Transactions on Power Delivery 4, 2 (Apr.

1989), 1401–1407.

[21] Bardas, A. G., Sundaramurthy, S. C., Ou, X., and DeLoach, S. A. Mtd cbits: Moving

target defense for cloud-based it systems. In European Symposium on Research in

Computer Security (2017), Springer, pp. 167–186.

[22] Bawany, N. Z., Shamsi, J. A., and Salah, K. Ddos attack detection and mitigation

using sdn: methods, practices, and solutions. Arabian Journal for Science and

Engineering 42, 2 (2017), 425–441.

[23] Beale, J., Deraison, R., Meer, H., Temmingh, R., and Walt, C. The NESSUS

project. Syngress Publishing (2002).

[24] Bistarelli, S., Fioravanti, F., Peretti, P., and Santini, F. Evaluation of complex se-

curity scenarios using defense trees and economic indexes. Journal of Experimental

& Theoretical Artificial Intelligence 24, 2 (2012), 161–192.

[25] Blakely, B., Horsthemke, W., Poczatec, A., Nowak, L., and Evans, N. Moving target,

deception, and other adaptive defenses. In Industrial Control Systems Security and

Resiliency. Springer, 2019, pp. 95–118.

[26] Böhme, R. Security metrics and security investment models. In International

Workshop on Security (2010), Springer, pp. 10–24.

[27] Cadini, F., Zio, E., and Petrescu, C.-A. Using centrality measures to rank the

importance of the components of a complex network infrastructure. In CRITIS

(2008), Springer, pp. 155–167.

[28] Cai, G.-l., Wang, B.-s., Hu, W., and Wang, T.-z. Moving target defense: state

of the art and characteristics. Frontiers of Information Technology & Electronic

Engineering 17, 11 (2016), 1122–1153.

[29] Calyam, P., Rajagopalan, S., Seetharam, S., Selvadhurai, A., Salah, K., and Ram-

nath, R. Vdc-analyst: Design and verification of virtual desktop cloud resource

allocations. Computer Networks 68 (2014), 110–122.

[30] Carroll, T. E., Crouse, M., Fulp, E. W., and Berenhaut, K. S. Analysis of net-

work address shuffling as a moving target defense. In Proceedings of the IEEE

International Conference on Communications (ICC) (Jun. 2014), pp. 701–706.

[31] Carroll, T. E., Crouse, M., Fulp, E. W., and Berenhaut, K. S. Analysis of network

address shuffling as a moving target defense. In Communications (ICC), 2014 IEEE

International Conference on (2014), IEEE, pp. 701–706.

132 Bibliography

[32] Casola, V., Benedictis, A. D., and Albanese, M. A moving target defense ap-

proach for protecting resource-constrained distributed devices. In Proceedings of

the IEEE 14th International Conference on Information Reuse Integration (IRI)

(2013), pp. 22–29.

[33] Chatfield, B., and Haddad, R. J. Moving target defense intrusion detection system

for ipv6 based smart grid advanced metering infrastructure. In SoutheastCon, 2017

(2017), IEEE, pp. 1–7.

[34] Chen, L., and Avizienis, A. N-version programming: A fault-tolerance approach to

reliability of software operation. In Digest of Papers FTCS-8: Eight Annual Inter-

national Conference on Fault-Tolerant Computing (Toulouse, June 1978), pp. 3–9.

[35] Cho, J., Wang, Y., Chen, I., Chan, K. S., and Swami, A. A survey on modeling

and optimizing multi-objective systems. IEEE Communications Surveys Tutorials

19, 3 (2017), 1867–1901.

[36] Christodorescu, M., Fredrikson, M., Jha, S., and Giffin, J. End-to-end software

diversification of internet services. Moving Target Defense (2011), 117–130.

[37] Chung, C., Khatkar, P., Xing, T., Lee, J., and Huang, D. NICE: Network Intru-

sion Detection and Countermeasure Selection in Virtual Network Systems. IEEE

Transactions on Dependable and Secure Computing 10, 4 (July 2013), 198–211.

[38] Colbaugh, R., and Glass, K. Predictability-oriented defense against adaptive adver-

saries. In 2012 IEEE International Conference on Systems, Man, and Cybernetics

(SMC) (2012), IEEE, pp. 2721–2727.

[39] Colbaugh, R., and Glass, K. Moving target defense for adaptive adversaries. In 2013

IEEE International Conference on Intelligence and Security Informatics (2013),

IEEE, pp. 50–55.

[40] Compton, K., and Hauck, S. Reconfigurable computing: A survey of systems and

software. ACM Computing Surveys 34, 2 (Jun. 2002), 171–210.

[41] Cook, K., Shaw, T., Hawrylak, P., and Hale, J. Scalable attack graph genera-

tion. In Proceedings of the 11th Annual Cyber and Information Security Research

Conference (2016), ACM, p. 21.

[42] Cremonini, M., and Martini, P. Evaluating information security investments from

attackers perspective: the return-on-attack (roa). In WEIS (2005).

[43] Crouse, M., and Fulp, E. W. A moving target environment for computer configura-

tions using genetic algorithms. In 2011 4th Symposium on Configuration Analytics

and Automation (SAFECONFIG) (2011), IEEE, pp. 1–7.

Bibliography 133

[44] Crouse, M., Fulp, E. W., and Canas, D. Improving the diversity defense of ge-

netic algorithm-based moving target approaches. In Proceedings of the National

Symposium on Moving Target Research (2012).

[45] Danev, B., Masti, R., Karame, G., and Capkun, S. Enabling Secure VM-vTPM

Migration in Private Clouds. In Proc. of the 27th Annual Computer Security Appli-

cations Conference (ACSAC 2011) (New York, NY, USA, 2011), ACM, pp. 187–196.

[46] Dawkins, J., Clark, K., Manes, G., and Papa, M. A framework for unified net-

work security management: Identifying and tracking security threats on converged

networks. Journal of Network and Systems Management 13, 3 (2005), 253–267.

[47] Dewri, R., Poolsappasit, N., Ray, I., and Whitley, D. Optimal Security Hardening

using Multi-objective Optimization on Attack Tree Models of Networks. In Proc.

of ACM conference on Computer and communications security (CCS 2007) (New

York, NY, USA, 2007), ACM, pp. 204–213.

[48] Dewri, R., Ray, I., Poolsappasit, N., and Whitley, D. Optimal security hardening

on attack tree models of networks: a cost-benefit analysis. International Journal of

Information Security 11, 3 (2012), 167–188.

[49] Enoch, S. Y., Ge, M., Hong, J. B., Alzaid, H., and Kim, D. S. A systematic

evaluation of cybersecurity metrics for dynamic networks. Computer Networks 144

(2018), 216–229.

[50] Enoch, S. Y., Hong, J. B., Ge, M., Alzaid, H., and Kim, D. S. Automated secu-

rity investment analysis of dynamic networks. In Proceedings of the Australasian

Computer Science Week Multiconference (2018), ACM, p. 6.

[51] Franz, M. E unibus pluram: massive-scale software diversity as a defense mecha-

nism. In Proceedings of the New Security Paradigms Workshop (2010), pp. 7–16.

[52] Ge, M., Hong, J. B., Yusuf, S. E., and Kim, D. S. Proactive defense mechanisms for

the software-defined internet of things with non-patchable vulnerabilities. Future

Generation Computer Systems (2017).

[53] Ge, M., Hong, J. B., Yusuf, S. E., and Kim, D. S. Proactive defense mechanisms for

the software-defined internet of things with non-patchable vulnerabilities. Future

Generation Computer Systems 78 (2018), 568–582.

[54] Gherbi, A., and Charpentier, R. Diversity-based approaches to software systems

security. In Proceedings of the International Conference on Security Technology

(2011), pp. 228–237.

134 Bibliography

[55] Gillani, F., Al-Shaer, E., Lo, S., Duan, Q., Ammar, M., and Zegura, E. Agile

virtualized infrastructure to proactively defend against cyber attacks. In Computer

Communications (INFOCOM), 2015 IEEE Conference on (2015), IEEE, pp. 729–

737.

[56] Gorbenko, A., Kharchenko, V., and Romanovsky, A. Using Inherent Service Redun-

dancy and Diversity to Ensure Web Services Dependability. In Methods, Models and

Tools for Fault Tolerance, M. Butler, C. Jones, A. Romanovsky, and E. Troubitsyna,

Eds., vol. 5454 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2009, pp. 324–341.

[57] Gurobi Optimization Inc. Gurobi optimizer reference manual, 2018. url: www.

gurobi.com/documentation/8.0/refman/index.html date accessed 1 June 2018.

[58] Han, Y., Chan, J., Alpcan, T., and Leckie, C. Using virtual machine allocation poli-

cies to defend against co-resident attacks in cloud computing. IEEE Transactions

on Dependable and Secure Computing 14, 1 (2017), 95–108.

[59] He, M., Pang, S., Lavrov, D., Lu, D., Zhang, Y., and Sarrafzadeh, A. Reverse

replication of virtual machines (rrvm) for low latency and high availability services.

In Proceedings of the 9th International Conference on Utility and Cloud Computing

(2016), ACM, pp. 118–127.

[60] Hobson, T., Okhravi, H., Bigelow, D., Rudd, R., and Streilein, W. On the challenges

of effective movement. In Proceedings of the First ACM Workshop on Moving Target

Defense (2014), ACM, pp. 41–50.

[61] Hong, J., and Kim, D. HARMs: Hierarchical Attack Representation Models for Net-

work Security Analysis. In Proc. of the 10th Australian Information Security Man-

agement Conference on SECAU Security Congress (SECAU 2012) (2012), pp. 1–8.

[62] Hong, J., and Kim, D. Performance Analysis of Scalable Attack Representation

Models. In Security and Privacy Protection in Information Processing Systems

(SEC 2013), L. Janczewski, H. Wolfe, and S. Shenoi, Eds., vol. 405 of IFIP Advances

in Information and Communication Technology. Springer Berlin Heidelberg, 2013,

pp. 330–343.

[63] Hong, J., and Kim, D. Scalable Security Model Generation and Analysis Using

k-importance Measures. In Security and Privacy in Communication Networks (Se-

cureComm 2013), T. Zia, A. Zomaya, V. Varadharajan, and M. Mao, Eds., vol. 127

of Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering. Springer International Publishing, 2013, pp. 270–

287.

www.gurobi.com/documentation/8.0/refman/index.html
www.gurobi.com/documentation/8.0/refman/index.html

Bibliography 135

[64] Hong, J., and Kim, D. Towards Scalable Security Analysis Using Multi-layered

Security Models. Journal of Netwowrk and Computer Applications 75, C (Nov.

2016), 156–168.

[65] Hong, J., Kim, D., and Haqiq, A. What Vulnerability Do We Need to Patch First?

In Proc. of the 44th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks Workshop (DSNW 2014) (2014), pp. 684–689.

[66] Hong, J. B., and Kim, D. S. Assessing the effectiveness of moving target defenses

using security models. IEEE Transactions on Dependable and Secure Computing

13, 2 (2016), 163–177.

[67] Hong, J. B., Kim, D. S., Chung, C.-J., and Huang, D. A survey on the usability

and practical applications of graphical security models. Computer Science Review

26 (2017), 1–16.

[68] Hong, J. B., Yoon, S., Lim, H., and Kim, D. S. Optimal network reconfiguration

for software defined networks using shuffle-based online MTD. In IEEE Symposium

on Reliable Distributed Systems (SRDS) (2017).

[69] Huang, H., Zhang, S., Ou, X., Prakash, A., and Sakallah, K. Distilling critical attack

graph surface iteratively through minimum-cost sat solving. In Proceedings of the

27th Annual Computer Security Applications Conference (2011), ACM, pp. 31–40.

[70] Huang, Y., and Ghosh, A. Introducing Diversity and Uncertainty to Create Mov-

ing Attack Surfaces for Web Services. In Moving Target Defense, S. Jajodia, A. K.

Ghosh, V. Swarup, C. Wang, and X. S. Wang, Eds., vol. 54 of Advances in Infor-

mation Security. Springer New York, 2011, pp. 131–151.

[71] Huang, Y., Ghosh, A. K., Bracewell, T., and Mastropietro, B. A security evaluation

of a novel resilient web serving architecture: Lessons learned through industry/a-

cademia collaboration. In Dependable Systems and Networks Workshops (DSN-W),

2010 International Conference on (2010), IEEE, pp. 188–193.

[72] Hussain, S. A., Fatima, M., Saeed, A., Raza, I., and Shahzad, R. K. Multilevel

classification of security concerns in cloud computing. Applied Computing and

Informatics 13, 1 (2017), 57–65.

[73] Ingols, K., Chu, M., Lippmann, R., Webster, S., and Boyer, S. Modeling Mod-

ern Network Attacks and Countermeasures Using Attack Graphs. In Proc. of the

25th Annual Computer Security Applications Conference (ACSAC 2009) (2009),

pp. 117–126.

[74] Jackson, T., Salamat, B., Homescu, A., Manivannan, K., Wagner, G., Gal, A.,

Brunthaler, S., Wimmer, C., and Franz, M. Compiler-Generated Software Diversity.

136 Bibliography

In Moving Target Defense, S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S.

Wang, Eds., vol. 54 of Advances in Information Security. Springer New York, 2011,

pp. 77–98.

[75] Jafarian, J., Al-Shaer, E., and Duan, Q. Openflow Random Host Mutation: Trans-

parent Moving Target Defense Using Software Defined Networking. In Proc. of the

1st Workshop on Hot Topics in Software Defined Networks (HotSDN 2012) (New

York, NY, USA, 2012), ACM, pp. 127–132.

[76] Jafarian, J. H., Al-Shaer, E., and Duan, Q. An effective address mutation approach

for disrupting reconnaissance attacks. IEEE Transactions on Information Forensics

and Security 10, 12 (Dec 2015), 2562–2577.

[77] Jia, F., Hong, J. B., and Kim, D. S. Towards automated generation and visualization

of hierarchical attack representation models. In Computer and Information Tech-

nology; Ubiquitous Computing and Communications; Dependable, Autonomic and

Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PI-

COM), 2015 IEEE International Conference on (2015), IEEE, pp. 1689–1696.

[78] Jia, Q., Sun, K., and Stavrou, A. MOTAG: Moving Target Defense against Inter-

net Denial of Service Attacks. In Proc. of the 22nd International Conference on

Computer Communications and Networks (ICCCN 2013) (2013), pp. 1–9.

[79] Jia, Q., Wang, H., Fleck, D., Li, F., Stavrou, A., and Powell, W. Catch Me if You

Can: A Cloud-Enabled DDoS Defense. In Proc. of the the 44th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN 2014) (Jun

2014).

[80] Jiang, J., Wen, S., Yu, S., Xiang, Y., and Zhou, W. Identifying propagation sources

in networks: State-of-the-art and comparative studies. IEEE Communications Sur-

veys & Tutorials 19, 1 (2016), 465–481.

[81] John, D. J., Smith, R. W., Turkett, W. H., Cañas, D. A., and Fulp, E. W. Evo-

lutionary based moving target cyber defense. In Proceedings of the Companion

Publication of the 2014 Annual Conference on Genetic and Evolutionary Compu-

tation (2014), ACM, pp. 1261–1268.

[82] Kampanakis, P., Perros, H., and Beyene, T. Sdn-based solutions for moving target

defense network protection. In World of Wireless, Mobile and Multimedia Networks

(WoWMoM), 2014 IEEE 15th International Symposium on a (2014), IEEE, pp. 1–

6.

[83] Khan, M. A., and Salah, K. Iot security: Review, blockchain solutions, and open

challenges. Future Generation Computer Systems 82 (2018), 395–411.

Bibliography 137

[84] Kijsanayothin, P., and Hewett, R. Analytical approach to attack graph analysis for

network security. In Availability, Reliability, and Security, 2010. ARES’10 Inter-

national Conference on (2010), IEEE, pp. 25–32.

[85] Kirrmann, H., and Dzung, D. Selecting a Standard Redundancy Method for Highly

Available Industrial Networks. In Proc. of the 3rd IEEE International Workshop

on Factory Communication Systems (WFCS 2006) (2006), pp. 386–390.

[86] Knight, J., Davidson, J., Nguyen-Tuong, A., Hiser, J., and Co, M. Diversity in

cybersecurity. Computer 49, 4 (Apr. 2016), 94–98.

[87] Kordy, B., Mauw, S., Radomirović, S., and Schweitzer, P. Attack–defense trees.

Journal of Logic and Computation 24, 1 (2014), 55–87.

[88] Kordy, B., Pietre-Cambacedes, L., and Schweitzer, P. DAG-Based Attack and

Defense Modeling: Don’t Miss the Forest for the Attack Trees. CoRR abs/1303.7397

(2013).

[89] Kordy, B., Piètre-Cambacédès, L., and Schweitzer, P. DAG-Based Attack and

Defense Modeling: Don’t Miss the Forest for the Attack Trees. Computer Science

Review 13 (2014), 1–38.

[90] Kotenko, I., and Chechulin, A. Computer attack modeling and security evaluation

based on attack graphs. In 2013 IEEE 7th International Conference on Intelligent

Data Acquisition and Advanced Computing Systems (IDAACS) (2013), vol. 2, IEEE,

pp. 614–619.

[91] Kotenko, I., and Stepashkin, M. Attack graph based evaluation of network security.

Lecture Notes in Computer Science 4237 (2006), 216–227.

[92] Kotenko, I. V., and Doynikova, E. Evaluation of computer network security based

on attack graphs and security event processing. JoWUA 5, 3 (2014), 14–29.

[93] Krutz, R. L., Vines, R. D., and Stroz, E. M. The CISSP prep Guide: Mastering the

ten domains of Computer Security. Wiley New York, 2001.

[94] Lala, J. H., and Schneider, F. B. It monoculture security risks and defenses. IEEE

Security Privacy 7, 1 (Jan. 2009), 12–13.

[95] Larsen, P., Homescu, A., Brunthaler, S., and Franz, M. SoK: Automated software

diversity. In 2014 IEEE Symposium on Security and Privacy (2014), IEEE, pp. 276–

291.

[96] Li, Y., Dai, R., and Zhang, J. Morphing communications of cyber-physical sys-

tems towards moving-target defense. In 2014 IEEE International Conference on

Communications (ICC) (June 2014), pp. 592–598.

138 Bibliography

[97] Liu, A. X., and Gouda, M. G. Diverse firewall design. IEEE Transactions on

Parallel and Distributed Systems 19, 9 (2008), 1237–1251.

[98] Liu, H. A new form of dos attack in a cloud and its avoidance mechanism. In Pro-

ceedings of the 2010 ACM workshop on Cloud computing security workshop (2010),

ACM, pp. 65–76.

[99] Liu, L., De Vel, O., Han, Q.-L., Zhang, J., and Xiang, Y. Detecting and preventing

cyber insider threats: a survey. IEEE Communications Surveys & Tutorials 20, 2

(2018), 1397–1417.

[100] Luo, Y.-B., Wang, B.-S., and Cai, G.-L. Effectiveness of port hopping as a moving

target defense. In Security Technology (SecTech), 2014 7th International Conference

on (2014), IEEE, pp. 7–10.

[101] MacFarland, D. C., and Shue, C. A. The SDN shuffle: Creating a Moving-Target

Defense using host-based Software-Defined Networking. In in Proceedings of the

Second ACM Workshop on Moving Target Defense (MTD) (2015), pp. 37–41.

[102] Manadhata, P., and Wing, J. An Attack Surface Metric. IEEE Transactions on

Software Engineering 37, 3 (2011), 371–386.

[103] Manadhata, P. K. Game theoretic approaches to attack surface shifting. In Moving

Target Defense II. Springer, 2013, pp. 1–13.

[104] Mehta, V., Bartzis, C., Zhu, H., Clarke, E., and Wing, J. Ranking Attack Graphs. In

Proc. of the 9th international conference on Recent Advances in Intrusion Detection

(RAID 2006) (Berlin, Heidelberg, 2006), Springer-Verlag, pp. 127–144.

[105] Mell, P., Grance, T., et al. The nist definition of cloud computing.

[106] Mell, P., Scarfone, K., and Romanosky, S. Common vulnerability scoring system.

IEEE Security & Privacy 4, 6 (2006).

[107] Moon, S.-J., Sekar, V., and Reiter, M. K. Nomad: Mitigating arbitrary cloud side

channels via provider-assisted migration. In Proceedings of the 22nd acm sigsac

conference on computer and communications security (2015), ACM, pp. 1595–1606.

[108] Moreno-Vozmediano, R., Montero, R. S., Huedo, E., and Llorente, I. M. Cross-site

virtual network in cloud and fog computing. IEEE Cloud Computing 4, 2 (2017),

46–53.

[109] Nespoli, P., Papamartzivanos, D., Mármol, F. G., and Kambourakis, G. Opti-

mal countermeasures selection against cyber attacks: A comprehensive survey on

reaction frameworks. IEEE Communications Surveys & Tutorials 20, 2 (2018),

1361–1396.

Bibliography 139

[110] Newell, A., Obenshain, D., Tantillo, T., Nita-Rotaru, C., and Amir, Y. Increasing

network resiliency by optimally assigning diverse variants to routing nodes. IEEE

Transactions on Dependable and Secure Computing 12, 6 (2015), 602–614.

[111] Nguyen, Q. L., and Sood, A. Scalability of cloud based scit-mtd. In 2017 IEEE

International Conference on Software Quality, Reliability and Security Companion

(QRS-C) (2017), IEEE, pp. 581–582.

[112] Nhlabatsi, A. M., Hong, J. B., Kim, D. S. D., Fernandez, R., Hussein, A., Fetais,

N., and Khan, K. M. Threat-specific security risk evaluation in the cloud. IEEE

Transactions on Cloud Computing (2018).

[113] NIST. National vulnerability database (nvd).

[114] of Homeland Security, D. Moving target defense, 2018.

[115] Okhravi, H., Comella, A., Robinson, E., and Haines, J. Creating a cyber moving

target for critical infrastructure applications using platform diversity. International

Journal of Critical Infrastructure Protection 5, 1 (2012), 30–39.

[116] Okhravi, H., Comella, A., Robinson, E., Yannalfo, S., Michaleas, P., and Haines, J.

Creating a cyber moving target for critical infrastructure applications. In Critical

Infrastructure Protection V, J. Butts and S. Shenoi, Eds., vol. 367 of IFIP Advances

in Information and Communication Technology. Springer Berlin Heidelberg, 2011,

pp. 107–123.

[117] Pang, S., Shi, T., Zhang, R., and Lavrov, D. Cdmc task 2: Incident detection

over unified threat management (utm) operation on unite-cloud. Unitec Institute

of Technology, Auckland, New Zealand (2017).

[118] Pendleton, M., Garcia-Lebron, R., Cho, J.-H., and Xu, S. A survey on systems

security metrics. ACM Computing Surveys (CSUR) 49, 4 (2017), 62.

[119] Peng, W., Li, F., Huang, C.-T., and Zou, X. A moving-target defense strategy for

cloud-based services with heterogeneous and dynamic attack surfaces. In Communi-

cations (ICC), 2014 IEEE International Conference on (2014), IEEE, pp. 804–809.

[120] Penner, T., and Guirguis, M. Combating the bandits in the cloud: A moving target

defense approach. In Proceedings of the 17th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (2017), IEEE Press, pp. 411–420.

[121] Phillips, C., and Swiler, L. A Graph-based System for Network-vulnerability Anal-

ysis. In Proc. of the 1998 Workshop on New Security Paradigms (NSPW 1998)

(New York, NY, USA, 1998), ACM, pp. 71–79.

140 Bibliography

[122] Poolsappasit, N., Dewri, R., and Ray, I. Dynamic Security Risk Management Using

Bayesian Attack Graphs. IEEE Transactions on Dependable and Secure Computing

(TDSC 2012) 9, 1 (2012), 61–74.

[123] Popović, K., and Hocenski, Ž. Cloud computing security issues and challenges. In

The 33rd International Convention MIPRO (2010), IEEE, pp. 344–349.

[124] Rabai, L. B. A., Jouini, M., Aissa, A. B., and Mili, A. A cybersecurity model in

cloud computing environments. Journal of King Saud University-Computer and

Information Sciences 25, 1 (2013), 63–75.

[125] Rimal, B. P., Choi, E., and Lumb, I. A taxonomy and survey of cloud computing

systems. NCM 9 (2009), 44–51.

[126] Rohrer, J., Jabbar, A., and Sterbenz, J. Path Diversification for Future Internet

End-to-End Resilience and Survivability. Telecommunication Systems (2013), 1–19.

[127] Rohrer, J. P., Jabbar, A., and Sterbenz, J. P. Path diversification for future internet

end-to-end resilience and survivability. Telecommunication Systems 56, 1 (2014),

49–67.

[128] Roy, A., Kim, D., and Trivedi, K. Attack Countermeasure Trees (ACT): Towards

Unifying the Constructs of Attack and Defense Trees. Security and Communication

Networks 5, 8 (2012), 929–943.

[129] Sabi, H. M., Uzoka, F.-M. E., Langmia, K., Njeh, F. N., and Tsuma, C. K. A

cross-country model of contextual factors impacting cloud computing adoption at

universities in sub-saharan africa. Information Systems Frontiers (2017), 1–24.

[130] Sahner, R. A., Trivedi, K., and Puliafito, A. Performance and Reliability Analysis

of Computer Systems: An Example-Based Approach Using the SHARPE Software

Package. Springer Publishing Company, Incorporated, 2012.

[131] Schneier, B. Attack trees. Dr. Dobb’s journal 24, 12 (1999), 21–29.

[132] Schneier, B. Secrets and Lies: Digital Security in a Networked World. John Wiley

and Sons Inc., 2000.

[133] Scott-Hayward, S., O’Callaghan, G., and Sezer, S. Sdn security: A survey. In Future

Networks and Services (SDN4FNS), 2013 IEEE SDN For (2013), IEEE, pp. 1–7.

[134] Sengupta, S., Chowdhary, A., Huang, D., and Kambhampati, S. Moving target

defense for the placement of intrusion detection systems in the cloud. In Inter-

national Conference on Decision and Game Theory for Security (2018), Springer,

pp. 326–345.

Bibliography 141

[135] Sgandurra, D., and Lupu, E. Evolution of attacks, threat models, and solutions for

virtualized systems. ACM Computing Surveys (CSUR) 48, 3 (2016), 46.

[136] Sharma, D. P., Kim, D. S., Yoon, S., Lim, H., Cho, J., and Moore, T. J. FRVM:

Flexible random virtual IP multiplexing in software-defined networks. In 17th IEEE

International Conference On Trust, Security And Privacy In Computing And Com-

munications/ 12th IEEE International Conference On Big Data Science And En-

gineering (TrustCom/BigDataSE) (Aug, 2018), pp. 579–587.

[137] Sharma, D. P., Kim, D. S., Yoon, S., Lim, H., Cho, J.-H., and Moore, T. J. Frvm:

Flexible random virtual ip multiplexing in software-defined networks. In 2018 17th

IEEE International Conference On Trust, Security And Privacy In Computing And

Communications/12th IEEE International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE) (2018), IEEE, pp. 579–587.

[138] Sheldon, F. T., and Vishik, C. Moving toward trustworthy systems: R&d essentials.

Computer 43, 9 (2010), 31–40.

[139] Sheyner, O., Haines, J., Jha, S., Lippmann, R., and Wing, J. Automated Generation

and Analysis of Attack Graphs. Tech. rep., CMU, 2002.

[140] Sonnenreich, W., Albanese, J., Stout, B., et al. Return on security investment (rosi)-

a practical quantitative model. Journal of Research and practice in Information

Technology 38, 1 (2006), 45.

[141] Steinberger, J., Kuhnert, B., Dietz, C., Ball, L., Sperotto, A., Baier, H., Pras, A.,

and Dreo, G. Ddos defense using mtd and sdn. In NOMS 2018-2018 IEEE/IFIP

Network Operations and Management Symposium (2018), IEEE, pp. 1–9.

[142] Sultan, N. Cloud computing for education: A new dawn? International Journal of

Information Management 30, 2 (2010), 109–116.

[143] Sun, N., Zhang, J., Rimba, P., Gao, S., Zhang, L. Y., and Xiang, Y. Data-driven

cybersecurity incident prediction: A survey. IEEE Communications Surveys & Tu-

torials 21, 2 (2018), 1744–1772.

[144] Sun, X., Dai, J., Singhal, A., and Liu, P. Inferring the stealthy bridges between

enterprise network islands in cloud using cross-layer bayesian networks. In Inter-

national Conference on Security and Privacy in Communication Systems (2014),

Springer, pp. 3–23.

[145] Taguinod, M., Doupé, A., Zhao, Z., and Ahn, G.-J. Toward a moving target de-

fense for web applications. In Information Reuse and Integration (IRI), 2015 IEEE

International Conference on (2015), IEEE, pp. 510–517.

142 Bibliography

[146] Taylor, C., and Alves-Foss, J. Diversity as a computer defense mechanism. In

Proceedings of the 2005 Workshop on New Security Paradigms (2005), pp. 11–14.

[147] Tozer, B., Mazzuchi, T., and Sarkani, S. Optimizing attack surface and configu-

ration diversity using multi-objective reinforcement learning. In 2015 ieee 14th in-

ternational conference on machine learning and applications (icmla) (2015), IEEE,

pp. 144–149.

[148] Tozer, B., Mazzuchi, T., and Sarkani, S. Optimizing attack surface and configu-

ration diversity using multi-objective reinforcement learning. In 2015 IEEE 14th

International Conference on Machine Learning and Applications (ICMLA) (Dec.

2015), pp. 144–149.

[149] Unruh, I., Bardas, A. G., Zhuang, R., Ou, X., and DeLoach, S. A. Compiling

abstract specifications into concrete systems—bringing order to the cloud. In 28th

Large Installation System Administration Conference (LISA14) (2014), pp. 26–42.

[150] Venkatesan, S., Albanese, M., Amin, K., Jajodia, S., and Wright, M. A moving

target defense approach to mitigate ddos attacks against proxy-based architectures.

In Communications and Network Security (CNS), 2016 IEEE Conference on (2016),

IEEE, pp. 198–206.

[151] Vikram, S., Yang, C., and Gu, G. Nomad: Towards non-intrusive moving-target

defense against web bots. In Communications and Network Security (CNS), 2013

IEEE Conference on (2013), IEEE, pp. 55–63.

[152] Wang, L., Islam, T., Long, T., Singhal, A., and Jajodia, S. An attack graph-based

probabilistic security metric. Lecture Notes in Computer Science 5094 (2008), 283–

296.

[153] Wen, S., Haghighi, M. S., Chen, C., Xiang, Y., Zhou, W., and Jia, W. A sword

with two edges: Propagation studies on both positive and negative information in

online social networks. IEEE Transactions on Computers 64, 3 (2014), 640–653.

[154] Yuan, E., Malek, S., Schmerl, B., Garlan, D., and Gennari, J. Architecture-Based

Self-Protecting Software Systems. In Proc. of the 9th International ACM Sigsoft

Conference on the Quality of Software Architectures (QoSA 2013) (2013), pp. 33–

42.

[155] Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., and Kim, D. S. Evaluating the

effectiveness of security metrics for dynamic networks. In 2017 IEEE Trustcom

(2017), IEEE, pp. 277–284.

Bibliography 143

[156] Yusuf, S. E., Ge, M., Hong, J. B., Kim, H. K., Kim, P., and Kim, D. S. Security

modelling and analysis of dynamic enterprise networks. In Computer and Infor-

mation Technology (CIT), 2016 IEEE International Conference on (2016), IEEE,

pp. 249–256.

[157] Yusuf, S. E., Hong, J. B., Ge, M., and Kim, D. S. Composite metrics for network

security analysis. Software Networking 2017, 1 (2017), 137–160.

[158] Yusuf, S. E., Hong, J. B., Ge, M., and Kim, D. S. Composite metrics for network

security analysis. Software Networking 2018, 1 (2018), 137–160.

[159] Zacks, S. Introduction to reliability analysis: probability models and statistical meth-

ods. Springer Science & Business Media, 2012.

[160] Zhang, H.-q., Lei, C., Chang, D.-x., and Yang, Y.-j. Network moving target defence

technique based on collaborative mutation. Computers & Security (2017).

[161] Zhang, J., Xiang, Y., Wang, Y., Zhou, W., Xiang, Y., and Guan, Y. Network

traffic classification using correlation information. IEEE Transactions on Parallel

and Distributed systems 24, 1 (2012), 104–117.

[162] Zhang, L., Shetty, S., Liu, P., and Jing, J. Rootkitdet: Practical end-to-end defense

against kernel rootkits in a cloud environment. In European Symposium on Research

in Computer Security (2014), Springer, pp. 475–493.

[163] Zhang, Q., Cheng, L., and Boutaba, R. Cloud computing: state-of-the-art and

research challenges. Journal of internet services and applications 1, 1 (2010), 7–18.

[164] Zhang, Y., Li, M., Bai, K., Yu, M., and Zang, W. Incentive compatible moving

target defense against vm-colocation attacks in clouds. In SEC (2012), Springer,

pp. 388–399.

[165] Zheng, J., and Namin, A. S. A survey on the moving target defense strategies: An

architectural perspective. Journal of Computer Science and Technology 34, 1 (Jan

2019), 207–233.

[166] Zhu, M., Hu, Z., and Liu, P. Reinforcement learning algorithms for adaptive cyber

defense against heartbleed. In Proceedings of the First ACM Workshop on Moving

Target Defense (2014), ACM, pp. 51–58.

[167] Zhu, Y., Hu, H., Ahn, G., Huang, D., and Wang, S. Towards temporal access

control in cloud computing. In Proc. of Annual IEEE International Conference on

Computer Communications (INFOCOM 2012) (2012), pp. 2576–2580.

[168] Zhuang, R., DeLoach, S. A., and Ou, X. Towards a theory of moving target defense.

In Proceedings of the First ACM Workshop on Moving Target Defense (2014), ACM,

pp. 31–40.

144 Bibliography

[169] Zhuang, R., Zhang, S., Bardas, A., DeLoach, S., Ou, X., and Singhal, A. Investigat-

ing the Application of Moving Target Defenses to Network Security. In Proc. of the

6th International Symposium on Resilient Control Systems (ISRCS 2013) (2013),

pp. 162–169.

[170] Zhuang, R., Zhang, S., DeLoach, S., Ou, X., and Singhal, A. Simulation-based

Approaches to Studying Effectiveness of Moving-Target Network Defense. In Proc.

of National Symposium on Moving Target Research (2012).

[171] Zissis, D., and Lekkas, D. Addressing cloud computing security issues. Future

Generation computer systems 28, 3 (2012), 583–592.

	Contents
	List of Figures
	List of Tables
	Preface
	A Survey on MTD techniques
	Introduction
	Defining MTD Framework
	Shuffle
	Diversity
	Redundancy
	Discussion and Limitations of Existing MTD Techniques

	MTD Techniques Evaluation
	Metrics for MTD Techniques
	GSM Overview

	Insights and Directions for this Research

	Evaluating the Effectiveness of Shuffle and Redundancy MTD Techniques on the Cloud
	Introduction
	Related Work
	Preliminaries
	System Setting and Configuration
	HARM Construction
	Network Centrality Measures on HARM
	Selection Criteria
	Shuffle Formalism
	Redundancy Formalism
	Combination of S+R Formalism
	System Risk Analysis
	Reliability Analysis

	Deploying MTD Techniques
	MTD Technique Analysis
	Shuffle Technique Analysis
	Redundancy Technique Analysis
	Analysis of S+R MTD Techniques

	Discussion and Limitations
	Conclusion

	Model-based Evaluation of Combinations of Shuffle and Diversity MTD Techniques on the Cloud
	Introduction
	Related Work
	Preliminaries
	System and Threat Model
	Defensive MTD Model
	GSM Models

	MTD Techniques Deployment
	Shuffle Technique Definition and Formalization
	Shuffle Technique Evaluation
	Diversity Technique Definition and Formalization
	Diversity Technique Evaluation

	MTD Combinations Definition and Formalization
	Evaluation of MTD Combinations
	Simulation and Evaluation in Large Cloud Model

	Discussion and Limitations
	Combining MTD Techniques
	Limitations and Extensions

	Conclusion

	Security and Economic Modeling and Analysis of MTD Techniques for Cloud Computing
	Introduction
	Related Work
	Definitions and Formalization
	A Cloud Model
	HARM Construction
	Importance Measures
	Security Metrics
	MTD Formalism

	MTD Analysis
	Security Analysis of Current System
	Diversity on Multiple VMs
	Combining Shuffle, Diversity, and Redundancy

	Economic Metrics for MTD techniques
	A Case Study on E-Health Cloud Model
	Single Loss Expectancy
	Annual Loss Expectancy
	Benefit of Security
	Cost of Security
	Return on Security Investment
	Shuffle Evaluation
	Diversity Evaluation
	Optimal Diversity Assignment
	Numerical Experiment of Optimization Model

	Discussion and Limitations
	Conclusions
	Appendix*

	Usability and Adaptation of MTD Techniques on a Realistic Testbed: Implementation of an Automated Security Analysis Framework using MTD Techniques on Cloud
	Introduction
	Proposed Approach
	Preliminaries
	Security Model for Cloud
	Security Analysis

	Design and Implementation
	Case Study: UniteCloud Analysis
	Cloud Security Framework
	User Interface (UI) Implementation

	Results and Discussion
	Related Work
	Conclusions

	Conclusions and Future Directions
	Bibliography

