Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Nitrogen Metabolism in Ostertagia (Teladorsagia) circumcincta

A thesis presented In partial fulfilment of the requirements For the degree of DOCTOR OF PHILOSOPHY In Physiology

at Massey University, Palmerston North New Zealand

> NOORZAID MUHAMAD 2006

Table of Contents

Table of Contents	i
Abstract	xii
Acknowledgements	xiv
List of Figures	xvi
List of Tables	xxiii
List of Abbreviations	xxviii
Introduction	xxxiv
CHAPTER 1 LITERATURE REVIEW	1
1.1 Sources of Nitrogen	2
1.2 Uptake of Nitrogenous Compounds	3
1.2.1 Uptake of nitrogenous compounds in helminths	5
1.3 Excretion of Nitrogenous Compounds	6
1.3.1 Ammonia excretion	6
1.3.2 Uric acid excretion	7
1.3.3 Urea excretion	8
1.3.4 Excretion of nitrogenous compounds in nematodes	8
1.4 Urea Metabolism	9
1.4.1 The Ornithine-Urea Cycle	9
1.4.2 Creatinase	

1.4.3 Urease	.11
1.5 Arginine Metabolism	.12
1.5.1 Synthesis of ornithine by arginase	.13
1.5.2 Synthesis of ornithine by arginine deiminase	.14
1.5.3 Synthesis of nitric oxide	.14
1.5.4 Synthesis of agmatine	.15
1.5.5 Synthesis of polyamines	.15
1.5.6 Synthesis of creatine	.17
1.5.7 Synthesis of glutamate and proline	.18
1.6 Alanine and Aspartate Metabolism: Transamination	.20
1.6.1 Alanine racemase	.21
1.6.2 L-Alanine dehydrogenase	.21
1.6.3 Opine dehydrogenases	.22
1.6.4 Pyruvate synthesis	.22
1.6.5 Alanine synthesis by aspartate-4-carboxylase	.23
1.6.6 β-Alanine synthesis	.23
1.6.7 Asparagine synthesis and catabolism	.24
1.6.8 Aspartate kinase	.25
1.6.9 Purine salvage pathway	.25
1.6.10 Aspartase	.26
1.6.11 Transamination	.26
1.6.11.1 Alanine aminotransferase	.27
1.6.11.2 Aspartate aminotransferase	.28

1.6.11.3 Other aminotransferases29
1.7 Glutamate Metabolism
1.7.1 Glutamate dehydrogenase
1.7.2 Glutaminase
1.7.3 Glutamine synthetase
1.7.4 Glutamate synthase
1.7.5 Synthesis of N-acetylglutamate
1.7.6 Glutamate decarboxylase
1.8 Other Nematode Enzymes
1.8.1 Chitin metabolism
1.8.2 Amino acid catabolism
1.8.3 Shikimate pathway40
1.8.4 Sulphur amino acid metabolism40
1.8.5 Neurotransmitters41
1.8.6 Transglutaminase42
1.8.7 Glutathione S-transferase42
1.9 Conclusions
Chapter 2 Uptake and Excretion of Nitrogenous

Compounds by Ostertagia circumcincta

2.1 Introduction	.44
2.1.1 Uptake of nitrogenous compounds	.44
2.1.2 Excretion of nitrogenous compounds	.45

2.2 Mater	rials and Methods	46
2.2.1 Wo	orm culture	46
2.2.2 Exc	cretion of nitrogenous compounds	47
2.2.2.1	Ammonia excretion	47
2.2.2.2	Urea excretion	48
2.2.2.3	Uric acid excretion	48
2.2.2.4	Amino acid excretion	48
2.2.2.5	Protein excretion	48
2.2.3 Upt	take of amino acids	49
2.2.3.1	Incubation media	49
2.2.3.2	Uptake in adult worms	49
2.2.3.3	Uptake in sheathed L3	50
2.2.3.4	Calculation of amino acid uptake	51
2.2.3.5	Statistics	51
2.3 Resu	Its	51
2.3.1 Am	nmonia excretion	51
2.3.1.1	pH of medium	51
2.3.1.2	Incubation temperature	51
2.3.1.3	Parasite density	52
2.3.1.4	Time of incubation	52
2.3.1.5	External ammonia concentration	52
2.3.1.6	Exsheathed L3	52
2.3.1.7	Adult worms	53

2.3.2 Urea excretion	53
2.3.3 Uric acid excretion	53
2.3.4 Amino acid excretion	53
2.3.5 Protein excretion	53
2.3.6 Amino acid uptake	53
2.4 Discussion	54
2.4.1 Amino acid uptake	
2.4.2 Nitrogen excretion	56
2.4.3 Ammonia and urea production	

Chapter 3 Metabolism of Arginine and Urea in Ostertagia circumcincta

3.1 Introduction	60
3.1.1 Arginase (EC 3.5.3.1)	61
3.1.2 Creatinase (EC 3.5.3.3)	62
3.1.3 Urease (EC 3.5.1.5)	62
3.1.4 Δ^1 -pyrroline-5-carboxylic acid dehydrogenase (EC 1.5.1.12).	63
3.2 Materials and Methods	64
3.2 Materials and Methods 3.2.1 Homogenate preparation	64 64
 3.2 Materials and Methods 3.2.1 Homogenate preparation 3.2.2 Arginase 	64 64 64
 3.2 Materials and Methods 3.2.1 Homogenate preparation 3.2.2 Arginase 3.2.2.1 Kinetic parameters 	64 64 64 65

3.2.3 Creatinase
3.2.3.1 Kinetic parameters
3.2.3.2 Effectors/inhibitors
3.2.4 Urease
3.2.5 Pyrroline-5-carboxylate dehydrogenase
3.3 Results
3.3.1 Arginase
3.3.1.1 Effect of pH
3.3.1.2 Kinetic parameters
3.3.1.3 Effectors/inhibitors
3.3.2 Creatinase
3.3.2.1 Effect of pH69
3.3.2.2 Kinetic parameters
3.3.2.3 Effectors/inhibitors
3.3.3 Urease
3.3.4 Pyrroline-5-carboxylate dehydrogenase
3.4 Discussion 70
3.4.1 Arginase
3.4.2 Creatinase
3.4.3 Urease
3.4.4 Pyrroline-5-carboxylate dehydrogenase
3.4.5 Urea and arginine metabolism

Chapter 4 Metabolism of Alanine and Aspartate in *Ostertagia circumcincta*

4.1 Introduction	79
4.1.1 Alanine aminotransferase (AlaAT) (EC 2.6.1.2)	79
4.1.2 Aspartate aminotransferase (AspAT) (EC 2.6.1.1)	.80
4.1.3 Aspartase (EC 4.3.1.1)	.81
4.2 Materials and Methods	.81
4.2.1 Homogenate preparation	.81
4.2.2 Alanine aminotransferase	.82
4.2.2.1 Effect of pH and PLP concentration	.82
4.2.2.2 Kinetic parameters in the direction of alanine utilisation	.83
4.2.2.3 Kinetic parameters in the direction of alanine formation	.83
4.2.3 Aspartate aminotransferase	.84
4.2.3.1 Effect of pH, PLP concentration, ADP and ATP	.84
4.2.3.2 Kinetic parameters in the direction of aspartate utilisation	.85
4.2.3.3 Kinetic parameters in the direction of aspartate formation	.86
4.2.4 Aspartase	.86
4.2.4.1 Kinetic parameters in the direction of fumarate utilisation	.86
4.2.4.2 Kinetic parameters in the direction of fumarate formation	.87
4.2.4.3 Effect of pH	.88
4.2.4.4 Effectors/inhibitors	.88
4.3 Results	.88
4.3.1 Alanine aminotransferase	.88

4.3.1.1 Effect of pH and PLP concentration88
4.3.1.2 Kinetic parameters in the direction of alanine utilisation89
4.3.1.3 Kinetic parameters in the direction of alanine formation89
4.3.2 Aspartate aminotransferase90
4.3.2.1 Effect of pH, PLP concentration, ATP and ADP90
4.3.2.2 Kinetic parameters in the direction of aspartate utilisation90
4.3.2.3 Kinetic parameters in the direction of aspartate formation90
4.3.3 Aspartase91
4.3.3.1 Kinetic parameters in the direction of fumarate utilisation91
4.3.3.2 Kinetic parameters in the direction of fumarate formation91
4.3.3.3 Effect of pH91
4.3.3.3 Effectors/inhibitors92
4.4 Discussion
4.4.1 Alanine aminotransferase (AlaAT)92
4.4.2 Aspartate aminotransferase (AspAT)94
4.4.3 Aspartase
4.4.4 Alanine and aspartate metabolism

Chapter 5 Metabolism of Glutamate in Ostertagia circumcincta

5.1 Introduction 10	D1
5.1.1 Glutamate dehydrogenase (GDH) (EC 1.4.1.2-4)	21
5.1.2 Glutaminase (EC 3.5.1.2)10)3
5.1.3 Glutamine synthetase (GS) (EC 6.3.1.2)	04

5.1.4 Glutamate synthase (GOGAT or GItS) (EC 1.4.1.14)	105
5.2 Materials and Methods	106
5.2.1 Homogenate preparation	106
5.2.2 Glutamate dehydrogenase	106
5.2.2.1 Effect of pH	106
5.2.2.2 Effect of temperature	107
5.2.2.3 Effect of ATP and ADP	107
5.2.2.4 Kinetic parameters in the direction of glutamate utilisation	on .108
5.2.2.5 Kinetic parameters in the direction of glutamate formation	on .108
5.2.3 Glutaminase	109
5.2.3.1 Kinetic parameters	109
5.2.3.2 Effectors and inhibitors	109
5.2.4 Glutamine synthetase	110
5.2.4.1 Kinetic parameters	110
5.2.5 Glutamate synthase	111
5.2.5.1 Kinetic parameters	111
5.2.5.2 Comparison of GOGAT activities in sheep muscle and adult worms	112
5.2.5.3 Effect of azaserine	112
5.2.5.4 Comparison of GOGAT and GDH activities	113
5.3 Results	113
5.3.1 Glutamate dehydrogenase	113
5.3.1.1 Effect of pH	113

5.3.1.2 Effect of temperature
5.3.1.3 Effect of ATP and ADP114
5.3.1.4 Kinetic parameters in the direction of glutamate utilisation .114
5.3.1.5 Kinetic parameters in the direction of glutamate formation .114
5.3.2 Glutaminase
5.3.2.1 Kinetic parameters115
5.3.2.2 Effectors and inhibitors115
5.3.3 Glutamine synthetase
5.3.3.1 Kinetic parameters
5.3.4 Glutamate synthase
5.3.4.1 Kinetic parameters116
5.3.4.2 Comparison of GOGAT activities in sheep muscle and adult worms
5.3.4.3 Effect of azaserine117
5.3.4.4 Comparison of GOGAT and GDH activities
5.4 Discussion 117
5.4.1 Glutamate dehydrogenase117
5.4.2 Glutaminase
5.4.3 Glutamine synthetase
5.4.4 Glutamate synthase (GOGAT)123
5.4.5 Glutamate metabolism125
Chapter 6 General Discussion 128
References

Appendix 1:	Parasitology	
1.1 Larval	culture	
1.2 Faeca	I egg counts	
1.3 Exshe	athing L3	
1.4 Recov	very of adult worms	
1.5 Baern	nannisation and counting of larv	/ae184
Appendix 2:	Assays	
2.1 Ammo	onia assay	
2.2 Urea	assay	
2.3 Protei	n microassay	
2.4 Total	amino acid assay	
2.5 Uric a	cid assay	
2.6 Prepa	ration of homogenates	
2.7 Contin	uous enzyme assays	
2.8 Deter	mination of extinction coefficien	ıt189
2.9 Calcu	lation of enzyme activity	
2.10 Gluta	amine synthetase activity	
Appendix 3	Solutions	
3.1 Phosp	hate buffer	
3.2 Tris b	uffer	
3.3 Phos	bhate buffered saline	

xi

Abstract

The aim of the experiments was to investigate some key areas of nitrogen metabolism in adult and third-stage larval *Ostertagia (Teladorsagia) circumcincta*, to seek enzymes either not present in mammals or with distinctive kinetic properties, which clearly differentiated the nematode and host metabolic systems. The study encompassed excretion and uptake in intact worms and determining the kinetic properties of eleven enzymes involved in the metabolism of arginine, urea, alanine aspartate and glutamate.

The metabolism of *O. circumcincta* was different from that in mammals and more like that of microorganisms and plants. Ammonia was the main excretory product, with a little urea, both apparently crossing the cuticle through specific permeases. The excretion rate increased with temperature, but decreased as the external ammonia concentration increased, suggesting that ammonia may be a source of nitrogen additional to amino acids, which were taken up by adult worms. Ammonia could be incorporated directly into glutamate and other amino acids through the glutamine synthetase-glutamate synthase pathway, which was more active in adult worms. Glutamate dehydrogenase was able to use either NADH or NADP in the deaminating direction, which would be the predominant direction because of the low affinity of GDH for ammonia. In the aminating direction, there was greater activity with NADH than NADPH.

Creatinase and arginase were probably the sources of excreted urea. There was no urease activity to convert urea to ammonia. No role could be assigned to creatinase other than to degrade host creatine, perhaps to supply sarcosine for metabolism. The unusual feature of aspartate metabolism was aspartase activity in addition to aspartate aminotransferase, which, in larvae, had the highest activity of all enzymes studied. In adult worms, which are believed to have a more anaerobic metabolism than larvae, aspartase would allow aspartate to be formed directly from fumarate in association with only a partial TCA cycle.

Perhaps the most important finding was the identification in the parasites of three enzymes, creatinase, aspartase and glutamate synthase, which are not believed to be expressed in the sheep host or other mammals, making them possible candidates for developing novel anthelmintic therapies.

Acknowledgements

This thesis would not have materialised without the firm nudging and assistance with writing of my supervisor Professor Heather Simpson, whose advice, criticism and encouragement have been most invaluable. More than simply guiding me in my experimental work, she quickly became a mentor to indoctrinate me into the world of the research scientist.

Also, I would like to take this opportunity to express my heartfelt thanks to Associate Profesor Kevin Pedley for his supervision of the uptake studies and active participation in my PhD project and thesis. On both a professional and personal level, I really appreciated the support that he has given to me during my PhD down times.

I would also like to thank Dr David Simcock and Dr Simon Brown for their advice and assistance in using spectrophotometric techniques for enzyme assays. I would especially like to thank Dr Simcock for his assistance with infecting sheep, collecting adult worms and helping me carry out multiple assays to make the best use of adult worms. I am also grateful to him and Lisa Walker for providing me with unpublished data for use in discussion. There is no way I would have been able to finish the bench work on time if it weren't for their assistance. I would like to thank my fellow students for their team work in maintaining the supply of parasites for the laboratory.

I would like to thank Lisa Walker, Lois Taylor, Juliet Sutherland, and Alexandra Huber for their assistance in the laboratory and Mat Levin for making sure that the network ran smoothly. I am very grateful for the encouragement of Dr Gordon Reynolds, Miria Busby, everyone in the PTC building, postgraduate students in the PD hut and Portaloo building, the Malaysian Students Association, especially Zul, Lani, Daniel, Nik, Pica, Clayton, Alex and Nandoo and Sylvia Hooker and staff of ISO. To Dr Bruce Simpson thanks for your cheery motivational advice, I really appreciate it. Not to forget those in IFNHH especially Professor Geoffrey Annison, former HOI of IFNHH, for his concern and support.

My thanks go to UNIMAS for personal support and Meat and Wool New Zealand for providing the financial support for my research work.

I would like to dedicate my love and thanks to my mom, my dad, brother and sisters. Thank you for your support, encouragement and your never-ceasing prayers.

To my beautiful wife Resni who has to endure dinner conversations focused solely on metabolism and parasite for more than a year, thanks for your patience. To Sarah and Imran, as promised you can now use the computer. To Armin sorry for not being able to give you the attention you need as daddy was fully occupied.

"The man who removes a mountain begins by carrying away small stones"

List of Figures

	Facing page
Figure 1.1. The γ -glutamyl cycle which acts as an amino acid transporter.	4
Figure 1.2. Degradation of purines to uric acid and other excretory products.	7
Figure 1.3. Ornithine-Urea cycle.	9
Figure 1.4. Pathways by which creatinine and creatine may be degraded in microorganisms.	11
Figure 1.5. Arginine metabolism in mammals.	12
Figure 1.6. Invertebrate phosphagen precursors which form the corresponding phosphagen by covalent attachment of a phosphate group to the guanidino moiety at the left of the molecule.	14
Figure 1.7. Enzymes involved in the interconversion of arginine, glutamate and proline.	18
Figure 1.8. The major reactions and pathways for which alanine is a substrate.	20
Figure 1.9. The major reactions and pathways for which aspartate is a substrate.	21
Figure 1.10. Diagram of the malate-aspartate shuttle for the transport of reducing equivalents between the cytosol and mitochondria in the electron transport system of the mammalian cell.	28
Figure 1.11. The major reactions and pathways for which glutamate is a substrate.	30
Figure 1.12. The reactions and enzymes catalysing the interconversions of glutamine, glutamate and 2-oxoglutarate.	31
Figure 1.13. Generalised scheme of methionine metabolism in mammals and parasites.	40
Figure 2.1. Diagrammatic representation of the procedure for separating <i>O. circumcincta</i> adult worms from residual medium by centrifugation through a dibutyl pthalate solution.	50

Figure 2.2. Ammonia concentrations of the incubation media (mean \pm SEM, n = 3) during the incubation of 50,000 sheathed L3 in 1 ml 0.8 mM phosphate buffer of pH 6.0, 6.5, 7.0 and 7.5 at 37°C for 4 hours.	51
Figure 2.3. Ammonia concentrations of the incubation media (mean \pm SEM, n = 3) during the incubation of 50,000 sheathed L3 in 1 ml 0.8 mM phosphate buffer, pH 7.0 at 4°C or 20°C or 37°C for 4 hours.	51
Figure 2.4. Ammonia concentrations of the incubation media (mean \pm SEM, n = 3) after the incubation for 2.5 hours of 5,000, 10,000, 50,000, 70,000 and 100,000 sheathed L3 in 1 ml 0.8 mM phosphate buffer, pH 7.0 at 37°C.	52
Figure 2.5. Ammonia concentrations of the incubation media (mean \pm SEM, n = 3) during the incubation of 50,000 sheathed L3 in 1 ml 0.8mM phosphate buffer, pH 7.0 at 37°C.	52
Figure 2.6. Ammonia concentrations of the incubation media (mean \pm SEM, n = 3) during the incubation of 50,000 sheathed L3 in 1 ml 0.8 mM phosphate buffer, pH 7.0 at 37°C for 5 hours, with and without the addition of 60 μ M NH ₄ CI.	52
Figure 2.7. Ammonia concentrations of the incubation media (mean \pm SEM, n = 3) during the incubation of 50,000 sheathed or exsheathed L3 in 1 ml 0.8 mM phosphate buffer, pH 7.0 at 37°C for 5 hours.	52
Figure 2.8. Ammonia concentrations of the incubation media (mean \pm SEM, n = 3) during the incubation of adult worms (~ 6 mg wet weight) in 1 ml 0.8 mM phosphate buffer, pH 7.0 at 37°C for 9 hours.	53
Figure 2.9. Urea concentrations in the incubation media (mean \pm SEM, n = 3) during the incubation of 50,000 sheathed or exsheathed L3 in 1ml 0.8 mM phosphate buffer, pH 7.0 at 37°C for 4 hours.	53
Figure 2.10. Protein concentrations in the incubation media (mean \pm SEM, n = 3) during the incubation of 50,000 sheathed L3 or adult worms (~6 mg wet weight) in 1ml 0.8 mM phosphate buffer, pH 7.0 at 37°C for 4 hours.	53
Figure 3.1. The reaction catalysed by arginase.	61
Figure 3.2. The reaction catalysed by creatinase.	62
Figure 3.3. Reaction catalysed by Δ^1 -pyrroline-5-carboxylate dehydrogenase (P5CDH).	63
Figure 3.4. Effect of pH on arginase activity (mean ± SEM, n = 2) of sheathed L3 <i>O. circumcincta</i> homogenate SL1.	68

xviii

Figure 3.5. Arginase activity of sheathed L3 <i>O. circumcincta</i> homogenate SL2a with increasing concentration of arginine.	68
Figure 3.6. Arginase activity of adult O. <i>circumcincta</i> homogenate A1a with increasing concentration of arginine.	68
Figure 3.7. Effect of pH on creatinase activities (mean ± SEM, n = 2) of sheathed L3 <i>O. circumcincta</i> homogenate SL5.	69
Figure 3.8. Creatinase activity of sheathed L3 O. <i>circumcincta</i> homogenate SL6 with increasing concentration of creatine.	69
Figure 3.9. Creatinase activity of adult O. circumcincta homogenate A2a with increasing concentration of creatine.	69
Figure 3.10. Pyrroline-5-carboxylate dehydrogenase (P5CDH) activity of sheathed L3 <i>O. circumcincta</i> homogenate SL13b with increasing concentration of 1-pyrroline-5-carboxylate.	70
Figure 3.11. Metabolic map of enzymes of urea and arginine metabolism identified in L3 or adult <i>O. circumcincta</i> homogenates.	77
Figure 4.1. Reaction catalysed by alanine aminotransferase.	79
Figure 4.2. Reaction catalysed by aspartate aminotransferase.	80
Figure 4.3. Reaction catalysed by aspartase.	81
Figure 4.4. Effect of pH on AlaAT activities of sheathed L3 <i>O. circumcincta</i> homogenates in the direction of alanine utilisation (SL15) (▲) and formation (SL16) (■).	89
Figure 4.5. Effect of PLP concentration on AlaAT activity (mean \pm SEM, n = 2) of sheathed L3 <i>O. circumcincta</i> homogenate SL17 in the direction of alanine utilisation.	89
Figure 4.6. AlaAT activity of sheathed L3 <i>O. circumcincta</i> homogenate SL20 monitored in the direction of alanine utilisation with increasing concentration of 2-oxoglutarate.	89
Figure 4.7. AlaAT activity of sheathed L3 O. circumcincta homongenate SL21b monitored in the direction of alanine utilisation with increasing concentration of alanine.	89
Figure 4.8. AlaAT activity of adult <i>O. circumcincta</i> homogenate A5a monitored in the direction of alanine utilisation with increasing concentration of alanine.	89
Figure 4.9. AlaAT activity of sheathed L3 O. circumcincta homogenate SL23 monitored in the direction of alanine formation with increasing concentration of glutamate.	89

Figure 4.10. AlaAT activity of sheathed L3 <i>O. circumcincta</i> homogenate SL28 monitored in the direction of alanine formation with increasing concentration of pyruvate.	89
Figure 4.11. AlaAT activity of adult <i>O. circumcincta</i> homogenate A6 monitored in the direction of alanine formation with increasing concentration of pyruvate.	89
Figure 4.12. Effect of pH on AspAT activities (mean ± SEM, n = 2) of sheathed L3 <i>O. circumcincta</i> homogenate SL29 in the direction of aspartate utilisation.	90
Figure 4.13. Effect of PLP concentration on AspAT activities (mean \pm SEM, n = 2) of sheathed L3 O. <i>circumcincta</i> homogenate SL30 in the direction of aspartate utilisation.	90
Figure 4.14. AspAT activity of sheathed L3 <i>O. circumcincta</i> homogenate SL32 monitored in the direction of aspartate utilisation with increasing concentration of 2-oxoglutarate.	90
Figure 4.15. AspAT activity of adult <i>O. circumcincta</i> homogenate A7a monitored in the direction of aspartate utilisation with increasing concentration of 2-oxoglutarate.	90
Figure 4.16. AspAT activity of sheathed L3 O. <i>circumcincta</i> homogenate SL35 monitored in the direction of aspartate utilisation with increasing concentration of aspartate.	90
Figure 4.17. AspAT activity of adult <i>O. circumcincta</i> homogenate A8 monitored in the direction of aspartate utilisation with increasing concentration of aspartate.	90
Figure 4.18. AspAT activity of sheathed L3 <i>O. circumcincta</i> homogenate SL36 monitored in the direction of aspartate formation with increasing concentration of glutamate.	90
Figure 4.19. AspAT activity of sheathed L3 <i>O. circumcincta</i> homogenate SL37c monitored in the direction of aspartate formation with increasing concentration of oxaloacetate.	91
Figure 4.20. Aspartase activity of sheathed L3 <i>O. circumcincta</i> homogenate SL39 monitored in the direction of fumarate utilisation with increasing concentration of ammonia.	91
Figure 4.21. Aspartase activity of sheathed L3 O. <i>circumcincta</i> homogenate SL41 monitored in the direction of fumarate utilisation with increasing concentration of fumarate	91
Figure 4.22. Aspartase activity of sheathed adult <i>O. circumcincta</i> homogenate A10 monitored in the direction of fumarate utilisation with increasing concentration of fumarate.	91

xix

Figure 4.23 . Aspartase activity of sheathed L3 <i>O. circumcincta</i> homogenate SL43 monitored in the direction of fumarate formation with increasing concentration of aspartate.	91
Figure 4.24 . Effect of pH on aspartase activities of sheathed L3 <i>O. circumcincta</i> homogenate SL46 in the direction of fumarate formation.	91
Figure 4.25. Metabolic map of enzymes of alanine and aspartate metabolism identified in L3 or adult <i>O. circumcincta</i> homogenates.	98
Figure 5.1. The reaction catalysed by glutamate dehydrogenase (GDH) by which ammonia is reversibly incorporated into 2-oxoglutarate.	101
Figure 5.2. The reaction catalysed by glutaminase.	103
Figure 5.3. The reaction catalysed by glutamine synthetase.	104
Figure 5.4. The reaction catalysed by glutamate synthase (GOGAT or Glts).	105
Figure 5.5. Effects of pH on glutamate dehydrogenase (GDH) activities (mean \pm SEM, n = 2) at 30°C of sheathed L3 <i>O. circumcincta</i> homogenates in the direction of glutamate formation (SL48-49) (\blacktriangle) and glutamate utilisation (SL50-51) (\blacksquare).	113
Figure 5.6. Effects of temperature on glutamate dehydrogenase (GDH) activities (mean \pm SEM, n = 2) of sheathed L3 <i>O. circumcincta</i> homogenates SL52 (\blacktriangle) and SL53 (\blacksquare) in the direction of glutamate formation.	113
Figure 5.7. Glutamate dehydrogenase (GDH) activity at 30°C of sheathed L3 <i>O. circumcincta</i> homogenate SL56, monitored in the direction of glutamate utilisation, with increasing concentration of glutamate.	114
Figure 5.8. Glutamate dehydrogenase (GDH) activity at 30°C of adult <i>O. circumcincta</i> homogenate A9c, monitored in the direction of glutamate utilisation, with increasing concentration of glutamate.	114
Figure 5.9. Glutamate dehydrogenase (GDH) activities at 30°C of sheathed L3 <i>O. circumcincta</i> homogenate SL60, monitored in the direction of glutamate utilisation, with increasing concentration of NAD ⁺ or NADP ⁺ .	114
Figure 5.10. Glutamate dehydrogenase (GDH) activity at 30°C of sheathed L3 O. <i>circumcincta</i> homogenate SL62a, monitored in the direction of glutamate formation, with increasing concentration of 2-oxoglutarate.	114

xx

Figure 5.11. Glutamate dehydrogenase (GDH) activity at 30°C of adult *O. circumcincta* homogenate A1c, monitored in the direction of glutamate formation, with increasing concentration of 2-oxoglutarate.

Figure 5.12. Glutamate dehydrogenase (GDH) activity at 30°C of sheathed L3 *O. circumcincta* homogenate SL64, monitored in the direction of glutamate formation, with increasing concentration of ammonia.

Figure 5.13. Glutamate dehydrogenase (GDH) activity at 30°C of adult *O. circumcincta* homogenate A9d, monitored in the direction of glutamate formation, with increasing concentration of ammonia.

Figure 5.14. Glutamate dehydrogenase (GDH) activities at 30°C of sheathed L3 *O. circumcincta* homogenate SL68, monitored in the direction of glutamate formation, with increasing concentration of NADH or NADPH.

Figure 5.15. Glutaminase activity at 30°C of sheathed L3 O. *circumcincta* homogenate SL70 with increasing concentration of glutamine.

Figure 5.16. Glutaminase activity at 30°C of adult O. *circumcincta* homogenate A9e with increasing concentration of glutamine.

Figure 5.17. Glutamine synthetase (GS) activity of sheathed L3 O. *circumcincta* homogenate SL75a, monitored at 30°C in the direction of glutamate utilisation, with increasing concentration of ammonia.

Figure 5.18. Glutamine synthetase (GS) activity of sheathed L3 O. *circumcincta* homogenate SL77, monitored at 30°C in the direction of glutamate utilisation, with increasing concentration of glutamate.

Figure 5.19. Glutamate synthase (GOGAT) activity at 30°C of sheathed L3 *O. circumcincta* homogenate SL81 with increasing concentration of glutamine.

Figure 5.20. Glutamate synthase (GOGAT) activity at 30°C of adult *O. circumcincta* homogenate A12 with increasing concentration of glutamine.

Figure 5.21. Glutamate synthase (GOGAT) activity at 30°C ofadult O. circumcincta homogenate A13 with increasingconcentration of 2-oxoglutarate.116

114

115

115

115

115

115

116

116

116

116

Figure 5.22. Assay of glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) activity at 30°C in a sheep muscle homogenate and adult <i>O. circumcincta</i> homogenate	
A14.	116
Figure 5.23. Assay of glutamate synthase (GOGAT) activity at 30°C of adult <i>O. circumcincta</i> homogenate A15 showing inhibition by 2 mM agaserine (added at D)	117
Figure 5.24. Experiment to distinguish activities of glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) at	
30°C in adult <i>O. circumcincta</i> homogenate A16.	11/
Figure 5.25. Metabolic map of enzymes of glutamate metabolism identified in L3 or adult <i>O. circumcincta</i> homogenates	125
nomogenates.	120
Figure 6.1. Metabolic map of enzymes of nitrogen metabolism identified in L3 or adult <i>O. circumcincta</i> homogenates.	128
Figure A2.1. Example of a continuous assay in which the rate of NADH utilisation was monitored spectrophotometrically at	
340 nm.	188
Figure A2.2. The spectra of 1-7 mM phenylalanine in phosphate medium at 30°C.	189

List of Tables

	Facing page
Table 1.1.Classification of amino acid transport systems inthe brush border membrane (top) and basolateral membrane(bottom) of mammalian enterocytes.	4
Table 2.1. Uptake of amino acids (mean \pm SEM, n), expressed as adjusted disintegrations per minute, by adult <i>O. circumcincta</i> in three experiments in which they were incubated with a [U- ¹⁴ C]-protein hydrolysate in PBS.	54
Table 3.1. Arginase activities of sheathed L3 O. circumcinctahomogenates with increasing concentration of arginine.	68
Table 3.2.Arginase activities of adult O. circumcinctahomogenates with increasing concentration of arginine.	68
Table 3.3.Arginase activities (mean \pm SEM, n = 2) ofsheathed L3 O. circumcincta homogenate SL4 in the presenceof metal ions or EDTA.	68
Table 3.4.Creatinase activities of sheathed L3 O.circumcincta homogenates with increasing concentration of creatine.	69
Table 3.5.Creatinase activity of adult O. circumcinctahomogenate A2 with increasing concentration of creatine.	69
Table 3.6. Creatinase activities (mean \pm SEM, n = 2) of sheathed L3 <i>O. circumcincta</i> homogenate SL9 in the presence of metal ions, ADP, ATP or EDTA.	69
Table 3.7. Pyrroline-5-carboxylate dehydrogenase activities ofsheathed L3 O. circumcincta homogenates with increasingconcentration of 1-pyrroline-5-carboxylate.	70
Table 3.8. K _m values for arginases of different organisms.	72
Table 3.9. Effects of various inhibitors on <i>P. putida</i> creatinaseactivity (Yoshimoto <i>et al.</i> , 1976).	73
Table 3.10.Kmvaluesforpyrroline-5-carboxylateinthereaction catalysed by pyrroline-5-carboxylate dehydrogenase indifferent organisms.	76
Table 4.1. AlaAT activities of sheathed L3 O. circumcinctahomogenates monitored in the direction of alanine utilisationwith increasing concentration of 2-oxoglutarate.	89

Table 4.2. AlaAT activities of sheathed L3 O. circumcinctahomogenates monitored in the direction of alanine utilisationwith increasing concentration of alanine.	89	
Table 4.3. AlaAT activities of adult O. circumcinctahomogenates monitored in the direction of alanine utilisationwith increasing concentration of alanine.	89	
Table 4.4. AlaAT activities of sheathed L3 O. circumcinctahomogenates monitored in the direction of alanine formationwith increasing concentration of glutamate.	89	
Table 4.5. AlaAT activities of sheathed L3 O. circumcinctahomogenates monitored in the direction of alanine formationwith increasing concentration of pyruvate.	89	
Table 4.6. AlaAT activities of an adult O. circumcinctahomogenate monitored in the direction of alanine formationwith increasing concentration of pyruvate.	89	
Table 4.7. Effects of 1 mM ATP or ADP on the activities of AspAT (mean \pm SEM, n = 3) of sheathed L3 <i>O. circumcincta</i> homogenate SL31 in the direction of aspartate utilisation.	90	
Table 4.8. AspAT activities of sheathed L3 O. circumcinctahomogenates monitored in the direction of aspartate utilisationwith increasing concentration of 2-oxoglutarate.	90	
Table 4.9. AspAT activities of adult O. circumcinctahomogenates monitored in the direction of aspartate utilisationwith increasing concentration of 2-oxoglutarate.	90	
Table 4.10. AspAT activities of sheathed L3 O. circumcinctahomogenates monitored in the direction of aspartate utilisationwith increasing concentration of aspartate.	90	
Table 4.11. AspAT activities of adult O. circumcinctahomogenates monitored in the direction of aspartate utilisationwith increasing concentration of aspartate.	90	
Table 4.12. AspAT activities of sheathed L3 O. circumcinctahomogenates monitored in the direction of aspartate formationwith increasing concentration of glutamate.	90	
Table 4.13. AspAT activities of sheathed L3 O. circumcinctahomogenates monitored in the direction of aspartate formationwith increasing concentration of oxaloacetate.	91	
Table 4.14. Aspartase activities of L3 O. circumcincta sheathedL3 homogenates monitored in the direction of fumarateutilisation with increasing concentration of ammonia.	91	
Table 4.15. Aspartase activities of L3 O. circumcincta sheathedL3 homogenates monitored in the direction of fumarateutilisation with increasing concentration of fumarate.	91	

Table 4.16. Aspartase activity of adult O. circumcincta homogenate A10 monitored in the direction of fumarate utilisation with increasing concentration of fumarate. 91 Aspartase activities of sheathed L3 O. Table 4.17. circumcincta homogenates monitored in the direction of 91 fumarate formation with increasing concentration of aspartate. **Table 4.18.** Aspartase activities (mean \pm SEM, n = 2) in the direction of fumarate formation of sheathed L3 O. circumcincta homogenate SL47 in the presence of ions, ATP, ADP or EDTA. 92 Table 4.19. K_m values for the substrates alanine (Ala), 2oxoglutarate (2-OG), pyruvate (Pyr) and glutamate (Glu) for the reactions catalysed by alanine aminotransferases of different organisms. 93 Table 4.20. K_m values for the substrates aspartate (Asp), 2oxoglutarate (2-OG), oxaloacetate (OAA) and glutamate (Glu) for the reactions catalysed by aspartate aminotransferases of different organisms. 95 Table 4.21. K_m values for the substrate aspartate (Asp) for the reactions catalysed by aspartases of different organisms. 96 Table 4.22. Activities and substrate K_m of AlaAT, AspAt and aspartase compared with those of some TCA cycle enzymes in 99 homogenates of L3 O. circumcincta. Table 5.1. Glutamate dehydrogenase (GDH) activities (mean \pm SEM, n = 2) at 30°C of sheathed L3 O. circumcincta homogenates (SL 54-55) in the directions of glutamate formation and utilisation with 1 mM ATP or ADP added to the 114 reaction mixture... Table 5.2. Glutamate dehydrogenase (GDH) activities at 30°C of sheathed L3 O. circumcincta homogenates, monitored in the direction of glutamate utilisation, with increasing concentration 114 of glutamate. Table 5.3. Glutamate dehydrogenase (GDH) activities at 30°C of adult O. circumcincta homogenates, monitored in the direction of glutamate utilisation, with increasing concentration of glutamate. 114 Table 5.4. Glutamate dehydrogenase (GDH) activities at 30°C of sheathed L3 O. circumcincta homogenates, monitored in the direction of glutamate utilisation, with increasing concentration of NAD⁺ or NADP⁺. 114 Table 5.5. Glutamate dehydrogenase (GDH) activities at 30°C of sheathed L3 O. circumcincta homogenates, monitored in the direction of glutamate formation, with increasing concentration of 2-oxoglutarate. 114

XXV

Table 5.6. Glutamate dehydrogenase (GDH) activities at 30°C of adult *O. circumcincta* homogenates, monitored in the direction of glutamate formation, with increasing concentration of 2-oxoglutarate.

Table 5.7. Glutamate dehydrogenase (GDH) activities at 30°C of sheathed L3 *O. circumcincta* homogenates, monitored in the direction of glutamate formation, with increasing concentration of ammonia.

Table 5.8. Glutamate dehydrogenase (GDH) activities at 30°C of adult *O. circumcincta* homogenates, monitored in the direction of glutamate formation, with increasing concentration of ammonia.

Table 5.9. Glutamate dehydrogenase (GDH) activities at 30°C of sheathed L3 *O. circumcincta* homogenates, monitored in the direction of glutamate formation, with increasing concentration of NADH or NADPH.

Table 5.10. Glutaminase activities at 30°C of sheathed L3 *O. circumcincta* homogenates with increasing concentration of glutamine.

Table 5.11. Glutaminase activity at 30°C of an adult *O. circumcincta* homogenate with increasing concentration of glutamine.

Table 5.12. Glutaminase activities (mean \pm SEM, n = 2) at 30°C of sheathed L3 *O. circumcincta* homogenates (SL73-74) in the presence of metal ions, arginine or EDTA.

Table 5.13. Glutamine synthetase (GS) activity of sheathed L3O. circumcincta homogenates monitored in the direction of
glutamate utilisation with increasing concentration of ammonia.116

Table 5.14. Glutamine synthetase (GS) activities of sheathed L3 *O. circumcincta* homogenates, monitored at 30°C in the direction of glutamate utilisation, with increasing concentration of glutamate.

Table 5.15. Glutamate synthase (GOGAT) activity at 30°C of sheathed L3 *O. circumcincta* homogenates with increasing concentration of glutamine.

Table 5.16. Glutamate synthase (GOGAT) activity at 30°C ofadultO.circumcinctahomogenatewithincreasingconcentration of glutamine.

Table 5.17. Glutamate synthase (GOGAT) activity at 30°C of
an adult O. circumcincta homogenate with increasing
concentration of 2-oxoglutarate.116

Table 5.18.Kmvaluesforsubstratesofglutamatedehydrogenases from different organisms.118

114

115

115

115

115

115

115

116

116

116

Table 5.19.Km values for glutamine for the reaction catalysedby glutaminases in different organisms.	121
Table 5.20. K _m values for glutamate and ammonia for the reaction catalysed by glutamine synthetase in different organisms.	123
Table 5.21. K _m values for glutamine for the reaction catalysedby glutamate synthase (GOGAT) in different organisms.	124

List of Abbreviations

2D	two dimensional
A. aegypti	Aedes aegypti
A. galli	Ascaridia galli
A. lumbricoides	Ascaris lumbricoides
A. marina	Arenicola marina
A. suum	Ascaris suum
аа	amino acids
ADC	arginine decarboxylase
AGAT	arginine-glycine amidinotransferase
AK	arginine kinase
AlaAT	alanine aminotransferase
AMP	adenosine monophosphate
APC	acid-polyamine-choline
AS	asparagine synthetase
AspAT	aspartate aminotransferase
ATF1	amino acid transporter superfamily 1
B. malayi	Brugia malayi
B. mori	Bombyx mori
B. pahangi	Brugia pahangi
BCAT	branched chain aminotransferases
C. briggsae	Caenorhabditis briggsae
C. elegans	Caenorhabditis elegans
C. emasculans	Cercaria emasculans
C. lingua	Cryptocotyle lingua
C. oncophera	Cooperia oncophera
cAlaAT	cytosolic alanine aminotransferase

cAspAT	cytosolic aspartate aminotransferase
CCBL	cysteine S-conjugate β-lyase
cGDH	cytosolic glutamate dehydrogenase
Ci	curie
СК	creatine kinase
cNOS	constitutive nitric oxide synthase
СоА	Coenzyme A
CPS	carbamoyl phosphate synthetase
D. immitis	Dirofilaria immitis
D. melanogaster	Drosophila melanogaster
D. polymorpha	Dreissena polymorpha
DFMO	difluoromethylornithine
DNA	deoxyribonucleic acid
dpm	disintegrations per minute
E. coli	Escherichia coli
EDTA	Ethylene diamine tetra acetic acid
e.p.g.	eggs per gram
ES	excretory/secretory
Expt	experiment
F. hepatica	Fasciola hepatica
Fd	ferrodoxin
g	gram
g	gravitational force
G. intestinalis	Giardia intestinalis
G. lamblia	Giardia lamblia
GABA	γ-aminobutyric acid
GABA-T	4-aminobutyrate:2-oxoglutarate aminotransferase
GAMT	S-adenosyl-L-methionine:N-guanidinoacetate methyltransferase

GDH	glutamate dehydrogenase
GOGAT	glutamate synthase
GS	glutamine synthetase
GSH	glutathione
GST	glutathione S-transferase
GTP	guanosine triphosphate
h	hour
H. alvei	Hafnia alvei
H. citelli	Hymenolepis citelli
H. contortus	Haemonchus contortus
H. diminuta	Hymenolepis diminuta
H. nana	Hymenolepis nana
H. polygyrus	Heligmosomoides polygyrus
H. pylori	Helicobacter pylori
IMP	inosine monophosphate
iNOS	inducible nitric oxide synthase
kg	kilogram
L. carinii	Litomosoides carinii
L3	third stage larva
L4	fourth stage larva
LASPO	L-aspartate oxidase
Μ	molar
M. expansa	Moniezia expansa
M. similis	Microphallus similis
mAlaAT	mitochondrial alanine aminotransferase
mAspAT	mitochondrial aspartate aminotransferase
mCi	millicurie
MDH	mitochondrial malate dehydrogenase

1	xxx	i
1		

MFS	major facilitator superfamily
mg	milligram
mGDH	mitochondrial glutamate dehydrogenase
min	minute
ml	millilitre
mM	millimollar
MW	molecular weight
n	number
N. americanus	Necator americanus
N. brasiliensis	Nippostrongylus brasiliensis
NAD ⁺	nicotinamide adenine dinucleotide
NADH	reduced nicotinamide adenine dinucleotide
NADP⁺	nicotinamide adenine dinucleotide phosphate
NADPH	reduced nicotinamide adenine dinucleotide
	phosphate
NAG	phosphate N-acetylglutamate
NAG nl	phosphate N-acetylglutamate nanolitre
NAG nl nm	phosphate N-acetylglutamate nanolitre nanometre
NAG nl nm nmole	phosphate N-acetylglutamate nanolitre nanometre nanomole
NAG nl nm nmole NOS	phosphate N-acetylglutamate nanolitre nanometre nanomole nitric oxide synthase
NAG nl nm nmole NOS O. circumcincta	phosphate N-acetylglutamate nanolitre nanometre nanomole nitric oxide synthase <i>Ostertagia circumcincta</i>
NAG nl nm nmole NOS O. circumcincta O. cuniculi	phosphate N-acetylglutamate nanolitre nanometre nanomole nitric oxide synthase Ostertagia circumcincta Obeliscoides cuniculi
NAG nl nm nmole NOS O. circumcincta O. cuniculi O. volvulus	phosphateN-acetylglutamatenanolitrenanometrenanomolenitric oxide synthaseOstertagia circumcinctaObeliscoides cuniculiOnchocerca volvulus
NAG nl nm nmole NOS O. circumcincta O. cuniculi O. volvulus OAA	phosphateN-acetylglutamatenanolitrenanometrenanomolenitric oxide synthaseOstertagia circumcinctaObeliscoides cuniculiOnchocerca volvulusoxaloacetate
NAG nl nm nmole NOS O. circumcincta O. cuniculi O. volvulus OAA	phosphateN-acetylglutamatenanolitrenanometrenanomolenitric oxide synthaseOstertagia circumcinctaObeliscoides cuniculiOnchocerca volvulusoxaloacetateornithine aminotransferase
NAG nl nm nmole NOS O. circumcincta O. cuniculi O. volvulus OAA OAT	phosphateN-acetylglutamatenanolitrenanometrenanomolenitric oxide synthaseOstertagia circumcinctaObeliscoides cuniculiOnchocerca volvulusoxaloacetateornithine aminotransferaseornithine decarboxylase
NAG nl nm nmole NOS O. circumcincta O. cuniculi O. volvulus OAA OAT ODC OTCase	phosphateN-acetylglutamatenanolitrenanometrenanomolenitric oxide synthaseOstertagia circumcinctaObeliscoides cuniculiOnchocerca volvulusoxaloacetateornithine aminotransferaseornithine transcarbamylase
NAG nl nm nmole NOS O. circumcincta O. cuniculi O. volvulus OAA OAT ODC OTCase OUC	phosphateN-acetylglutamatenanolitrenanometrenanomolenitric oxide synthaseOstertagia circumcinctaObeliscoides cuniculiOnchocerca volvulusoxaloacetateornithine aminotransferaseornithine transcarbamylaseOrnithine-Urea Cycle

P. crassipalpis	Parasarcophaga crassipalpis
P. freudenreichii	Propionibacterium freudenreichii
P. islandicum	Pyrobaculum islandicum
P. pacifica	Pista pacifica
P. putida	Pseudomonas putida.
P. redivivus	Panagrellus redivivus
P5C	Δ^1 -pyrroline-5-carboxylic acid
P5CDH	pyrroline-5-carboxylate dehydrogenase
P5CR	pyrroline-5-carboxylate reductase
P5CS	pyrroline-5-carboxylate synthase
RO	reverse osmosis
PBS	phosphate buffer saline
PC	pyruvate carboxylase
PEP	Phosphoenolpyruvate
PEPCK	phosphoenolpyruvate carboxykinase
PLP	pyridoxal 5'-phosphate
PMP	pyridoxamine 5'-phosphate
POT	proton oligopeptide transporter
RNA	ribonucleic a cid
S. sclerotiorum	Sclerotinia sclerotiorum
S. bibionis	Steinernema bibionis
S. cerevisiae	Saccharomyces cerevisiae
S. cynthia ricini	Samia cynthia ricini
S. frugiperda	Spodoptera frugiperda
S. japonicum	Schistosoma japonicum
S. mansoni	Schistosoma mansoni
S. solida	Semele solida
S. typhimurium	Salmonella typhimurium

X	XX	ii	i

SAMdc	S-adenosyl methionine decarboxylase
SDS	sodium-dicarboxylate symporters
SEM	standard error of the mean
SL	sheathed larva
T. colubriformis	Trichostrongylus colubriformis
T. cruzi	Trypanosoma cruzi
T. spiralis	Trichinella spiralis
TCA	tricarboxylic acid
μCi	microcurie
hð	microgram
μΙ	microlitre