Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Low Cost Shop Floor DNC System

A dissertation presented
in Partial fulfiiment of the requirements
for the postgraduate Masters of Technology
in Automation & Control at

Massey University

William H.Y. Ma

2002

LOW COST SHOP FLOOR
DNC SYSTEM

William H.Y. Ma
2002

ABSTRACT

Direct/Distributed Numerical Control (DNC) has a vital role in delivering a
successful Computer Integrated Manufacturing (CIM) strategy. DNC is the
most popular form of factory automation system in the shop floor environment.
Its core function is to enable manufacturing information to flow smoothly and
efficiently to and from the shop floor facilities. The current New Zealand small
to medium manufacturers are unwilling to make large financial investment in
the more expensive packages, and hence, there is a need for a cost effective
DNC application software within this sector of the industry.

The research conducted for this project focuses on the application of a
multiport serial card, and the development of a low cost DNC application
software that can be implemented in the small to medium size companies for
transferring data and other manufacturing data such as drawing files, and
computerised numerical control (CNC) programs. In addition, the research
also looks at methods to allow remote access to the system through the World
Wide Web (WWW).

In order to achieve the objectives mentioned above, a powerful and user-
friendly user interface programming tool kit — Borland'’s Delphi 4 was adopted
as the key development tool. Delphi 4 is a Rapid Application Development
(RAD) package that is fully compatible to the Multiport's serial programming
library, and majority of the Microsoft's remote access technology such as
Object Linking and Embedding technology (OLE) or ActiveX.

Acknowledgements

| would especially like to thank the following for their time and support

throughout this year:
The Lord Almighty for his sovereign support and guidance.

My project supervisor Dr Ligiong Tang, for her invaluable advice and guidance

through out the entire year.

My family and friends, who gave me indefinite amount of emotional support.

ii

List of Figures:

Figure 1.1: Proposed interface connections 8

Figure 2.1: AWF’s CIM Model 12
Figure 2.2: Application of PC in the VM 16
Figure 2.3: VM Scope & Integration with Enterprise Functions 18
Figure 2.4: DNC Model 23
Figure 2.5: Auxiliary & basic functions in DNC system 24
Figure 2.6: 25 Pin and 9 pin serial connectors 28
Figure 2.7 Asynchronous Serial Data Frame (8E1) 31
Figure 2.8: Traditional modularity concepts 37
Figure 2.9: OO Approach 38
Figure 2.10: Delphi Interface 40
Figure 3.1: Moxa multiport card 43
Figure 3.2: Putting the Multiport Card into the the PCI Slot 43
Figure 3.3: 10-IRQ utility 44
Figure 3.4: Driver installation 45
Figure 3.5: Configuration Panel 46
Figure 3.6: Property Dialog 46
Figure 3.7: Diagnostic software 47
Figure 3.8: Terminal Emulator 48
Figure 3.9: Setting dialog 49
Figure 3.10: Transparent Mode 50

Figure 3.11 Bridge Mode 50

iii

Figure 3.12: Data Scope

Figure 3.13: 9 Pin gender changer

Figure 3.14: Null modem cable

Figure 3.15: The entire cable and adaptors used

Figure 3.16: Hierarchical PComm library

Figure 4.1:
Figure 4.2:
Figure 4.4:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 6.1:
Figure 6.2:
Figure 7.1:

Figure 7.2:

Waterfall model
Storyboarding

Final design of main interface
Delphi’s project manager
Showstatus

Config.pas

Output state & flow control
Confirmation Dialog

Default name

Menu Designer

Anatomy of keyword Function
Test

Character Transfer Interface
Quick button for Character exchange interface
Confirmation Dialog

Protocol Specification Tab Sheet

Figure 7.3 Directory List box

Figure 7.4:

Feedback Tab Sheet

51
52
53
53
54
56
59
60
61
63
64
64
65
66
67
67
70
71
72
78
79
80
83

iv

List of figures

Figure 7.5: Quick File Transfer Interface 88
Figure 7.7: Machine Form 89
Figure 7.8 Property form 90
Figure 8.1: Changing the FormStyle 92
Figure 8.2: Multiple NC editor 93
Figure 8.3: NC program in editing 93
Figure 8.4: Cut & Copy button enabled 94
Figure 9.1: RegEdit.exe 100
Figure 9.2: Ole Container 101
Figure 9.3: OLE Container in FtransForm 101
Figure 10.1: Import ActiveX Control 104
Figure 10.2: ActiveForm Wizard 105
Figure 10.3: Type Library 106
Figure 10.4 Build the ActiveForm in Delphi 107
Figure 10.5: Web Deployment Options 108
Figure 10.6: ActiveForm on the WWW i R

Table of Contents

Abstract
Acknowledgement
List of Figures

Table o COMEENTS. cumnsmnmi i v T A T T S e s e T b

T'able of contents

1. Introduction... e
1.1. The Rcsearch TOpIC .
1.2. The Scope ofResearch s R S S e sy

1.2.1. Interface Card Selectron & Integratlon)
1.2.2. Software Development ... 7
1.3. Organisation ofDlssertatlon9

2. Literature Review .. .11
2.1. Introduction .. w1l
2.2. Computer Integrated Manufacturmg (CIM) JL

2.2.1. Background.... 14
2.2.2. Production Planmng and Control (PPC) PN R T -
2.2.3. Computer Aided Process Planning (CAPP) .. 13
224 Computer Aided Quality Assurance (CAQ)....c.cooveeeievreiciieriicreernianeeen. 14
2.25. Computer Aided Design (CAD)coivmimmssmimmsmmssmirasstmssivis 14
22.6. Computer Aided Manufacturing (CAM).....c.cceevieenieeenceenieieesiieeneee. 15
2.3, Nitual Manufactiering (VM) .onseimssmisesssms s sasissasiss ssvaossssmsssiss 16
2.3.1. BackPPomil... . ..cone cxnmmirmmsnmonsressemmmmsss ssvnsasansasssissne s s A s g 16
232, Application 0f VM ..cocumismssiavssusiiesisanemmisssasssesniaissississismiiss 19
2.3.3. Virtual Manufacturing over the Internet...........coooecveeiiiieininiecciieeeeeen 21
o5 N 1, [2L OO TP 22
24.1. Background... .
2.4.2. Function of DNC System .0
24.3. DNC Applications... e P .26
29 ManufacturingCommunication..27r
2.5.1. Introduction... d
2.5.2. History... SRRSO CRRPRUDRI SURRRONI .|
2.5.3. RS232: The Physwal Interfhce ... 27
2.5.4. Serial Port.. OB .29
2.5.5. Serial Transmlssmn Methods .. 30
290 BIURBIEE o cosmmmunsemnommsrsessoasis s s o aass s s s S aes 32
e I & . B T TR 32
2.5.8. Interrupts........... eSS A A .34
2.5.9. 10 Address & IRQ ... 35
2. DO e e ORI IO cxmicsunnssonanesonsiesionnssisms aabeoso s SwHEHO0S KSR RBN R 36
2.6.1. IETOAUCIION . cosssunnsoiavanessaons iniuasssanuss s rms i R TSRS s R s 36

3.

2.6.2. Objects & Object-Oriented SORRWATEc..ceeiiuiiriieiiiceiieecreeeie e 36

2085 Porland w e AL i R B RN R 39
Multiport Card InStallation.........c.c.eevuueeieinieirieeeiere ettt et erna e e s eeaas 42
2 (RN .73 11 o) O ST 42
T i T —— 42
23, Foanlwatt INRRIEEIEDN. .. oo oy s s o s g 43
341 Diiick Hardware [nstallation .t i 43
3.3.2. Hardware Installation with IO-IRQ Utilityccccerrvernrniiinnieneriiennnnns 44
3.4, Software InStallationcccccvueeeriienieneinriiciieneee e sese s s eree s sanessesnens 45
34.1. THSLATHID IIEIVEE .o cinssnsrmmse st mnessensansns s sss soss e A AR SRS ST F A SRR 45
R I Ul ST T T — 47
3.5.0. DEBuostE Tolk...ov s s s e 47
3.2, o IR0 T TS SR s e O S 48
e I . — 49
BB, LTBIIINR «onrnrons nvumnsenssssammmensss s pasins crasss s anessasanss s SR e s A VRSP R RS SRS 52
3.6.1. 9 Pin Female to Female Gender Changer...........c.ccceeeecveeecceeeesneneessennnnn. 52
3.6.2. The: Null Modlem Eabie oo csomsommsismsomss i amsa ss s siei iii 52
3.63. Installing the Cableccocoiiiiiieieeeeeciie e et as e ere e e e nnaes 53
3.7. PComm Application Programming Interface (API)......cccccvveeeiereeevnncenienenen. 54
DNC Software Development Process........coviieiieiiiinieiiiciiie i 55
I {1 i 55
4.2, Requirement Analysis & Deltion ... wusnimmnsuspmssmmsssssssys 56
4.2.1. End- User/Operating Environment Analysis..........cccceeevieeenieeecieneerecnnne. 56
4.3 ICTIeE DS oo rms s o B e R e G S s 58
4.3.1. Spectfication Defined ..uuumssmsassie O 58
4,32, DEBIETOIOEIIR ..o vcosrmssramermsimmssnmasma s e s s s iass s kS s s e 59
L i L L T T— 60
Establishing CommuniCationccccoeviieiiiiiiiinieiiie e es v e 61
s 1 () R —— 61
5.2. Establishing CommUuRICALION: . .coumssvsesssvrsrismvensssssssssms sovvesissssssssssrss sorevssase 61
S21. PUOEIIIS e mmsmmammsmsnissin S iswonm s s e 62
- A i T —— 62
e R KO O 62
Doy, AT TR s ssiesirimsirnions s o A s 435 R RN SR S A 64
828, FonnOrene Protediit.couasmmmsmssimsammms s issasmsess 65
Tl BBIE....ooumms o s R R RS S 66
3.2.7. POTLBEE TITHIBENOINL. con cxsnonsnssnsraresnras snsansssnnssss avasmasns serasasnsanssasasesrsnsns smansnne 67
928, RIpes POrt FUtCI .o siiss e s b s sy A s s s 68
529 SeHmPlUOk PIOCBOBIR. . ..ocovsumsimmsimmsmmmsmmmssswersmmssmmmmess s csssune 69
5.2.10. PortOpenClick/ PortCloseClick Procedureccceeveeeieneeeericecescennnnen. 69
Y2l Toutim Tor SIBINIS cuunmummmiesim s e i S A NS 69

b. Churselor Exchangl TEIROE . o uismmpusiommumoinonusssssmmmimsasoiut s 71

el ORI v omanammtrii SR T TR N FE R skl 71
B2 SDIEMEEE oo e R S A A R R 71
Bk LIRS T EHEIE v srudicon v g ks byt oo e e 72
6.3.1. T8 TR0 LB ooy tomie oot A e e S R SRV i 13
6.3.2. Lo g o s B e T — 74
6.3.3. Advantage of Single Thread ... ssusseuivseso 75

I T T 76
<0 T ST T R AN IO SN SO N S A 76
7.2. File TraBEler PIORIBEIE. camo o ssnmmsommmsmmsmsss s oo cssnsmss sissmsisms smmssesisss s 76
g0 VRN | Lo IM0 aTd sll s a o Tm—— 78
73.1. Prolpcol Confipumiion Tab......comwmmasmsismusssssssssgsss 79
7302, e T L 80
733 Transfer Status Feedbiok Tab. ..o ommsssmmimmiis s st i 83
7.34. {2 Lo Tl e T RN S SR M S WS S e R N 83
T EHINI L) o oottt e A 84
736 2CallBackrCallBack () cusnammausummmsonsmmnpsssnsmsam iyt 85

y e A L) P O S T S 86
T, ONCG Mashins QUICK BSEBEE. «essrmissiissomsmsiiaissismmes s dsnossmars sikitas s s s sisitins 87
8. I PSRRI e e it s st ol e s it S et s R 91
Wl IIOOHGEENY o cennansisisiome i o s S S R TR 91
8.2: NDI= Main Window FOmmi ciuasmnssmmeias e s i o 5 i i i 91
1 N T U S T S 92
I L " v 94
8.4.1. FileNew Chok Progodtire ..o ussmsamissssimsssesssissessissrss s 95
8.4.2. el G PYOCEIIINE . .vonemesmsnresrwmnssinmirmmamumsen s msnnss omssssmssnmams s 95
8.4.3. A R I usounvissouo s e S R X R RS B s SRS 95
8.4.4. FleBavEU itk PIOCEOIIE .o s s ook i s st s s 95
8.4.5. FilePrintSetupChok PrOCRAUTE.. ... oo mmmsrssrmmsmmsesssmsssssmmanessnenssbrsssassnnsensns 96
8.4.6. PilePrmit ok PrOCEIIT wss s e s samsass o s 96

9. COM-& DLE AUTOmMaton q i s s i s i s s vsnsins 97
L 1N RN 51 741 [- o) o T ——— 97
9.2. Component Object Model (COM)ccevrmeieiniieiiireieiinieieerereesessree s ssresenns 97
9.2.1. s T — 97
922, T TTEEIONR oooonnsimcnsiinmni s e S S S R e vtz 98
0.23, BRI i 5 0 R B i A B R S B R e s B 98
9.3 Object Linking Brobedting COLIRY s s osmmvssinss i s somsm s 99
I 0 T — 99
95. MDIOLE Contaitier IMETIACE.xuvscmsmmmsmmsserssnmmmsnssssmmsrs sxmsnonesssmsnssansrsasson 100
951 CHIWHEDEE s G S s s s 102

10. Reole AOBEES IR ATHVE X vy 103

10.1. VETORIEININ ocormmmmassimmssmmennemsmiar e e arinds o s R 103
10.2. NI erSUROTIg AARTIVEM s nsnsmsio s s ek M RS S A 103
10.2.1. Installing ActiveX COMPONENLccoceervurrerreerscnnicsersearernsessnsssnssssensssns 104
10.2.2. ActiveForm Wizard..........coeerieinieiniiece et e e svane e 105
1023, T08 LADEEY oo i s s i s 105
10.3. Buyilding 1he FOTIL...cuummmmsesissspmiisseses i s 107
10.4. Deploying an ACtiVEFOIMcovveiermeiriieeriinieireteeenee e sennaseesaes 108
10:4.1, Comcctng 1o 8 ACEVEROIINL .ot i 110

11 BRI i niistn e s mmem oo R s ek i 112
113, ORI RO BN v R A S AR A S R PR TS AR AR RS 112
11.2. IEErIREE ORI oo oy s O e S SRR T A A 112
113 F R GBI s srinmsskrimsain s s i p e o A 113
12. PRSI R TR, .oz pssogs sl g s W S RSN 114
I (T —— 115
14. O s nrss s ik o e s S SR ST 116
15. TICTRNIOOR it b i i b B 558 s e 117
BPPENINII s oo oo sy s s e S e B M B S S S R A S 119

Introduction

CHAPTER 1

1. Introduction

1.1. The Research Topic

In the modern industrial production environment, the number of computer
application is steadily increasing. The potential for automated process,
especially in manufacturing sector, has been put into practice by applying ever

more sophisticated computer aided tools and methods.

With the increase saturation of companies with computerised processes. The
future development of such beneficial integration will not only lie in the installation
of isolated computerised solutions in the different areas (island solutions), but
rather in the coupling and therefore in the utilisation the combined effect of
automation technology and shopfloor management. Such concept is often
referred to as Computer Integrated Manufacturing (CIM), which includes the
coupling of all areas linked to the actual manufacturing operations, including
Computer Aided Design (CAD), Computer Aided Process Planning (CAPP),
Computer Aided Manufacturing (CAM) and Material Requirement Planning
(MRP).

As part of the key development in achieving CIM, Direct/Distributed Numerical
Control (DNC) and Computer Numerical Control (CNC) were introduced as the
first computer control systems in the early 1970 [4]. The DNC control system
establishes a direct link between a computer and each NC machine tool, and
eliminates the necessity for using punched tape input. In addition, CNC
technology consists of a soft-wired controller that can be adapted to various
types of machine tools by programming the control functions into the computer
memory for a particular machine. Today, the DNC system is a basic self-
contained control unit in the manufacturing automation environment, and one of
the first steps towards factory automation based for CIM.

DNC is a major necessity for any manufacturing organisation that wants to

achieve a successful CIM. However, the costs of employing existing DNC
system packages have driven away many small and medium companies within
the New Zealand industry. Hence, by developing a low cost shop floor DNC
system will be very appealing for this market sector. This research project, led
by Dr Ligiong Tang, Institute of Technology & Engineering (ITE) of Massey
University, is dedicated to the development of low cost DNC systems that will
allow further in depth integration of CIM for the New Zealand manufacturing

industry.

1.2. The Scope of Research

The research undertaken here concerns the critical information flow between
different users and seeks a low cost and efficient method in delivering
manufacturing information between the geometrical/technological domains, this
domain area usually only includes the CAD/CAM/CNC Data Communication.

The system developed in this Masters thesis involves the implementation of a
suitable interface card and the development of Graphical User Interface (GUI)
that will integrate with existing CAD/CAM application in ITE faculty.

121 Interface Card Selection & Integration

With the aim of connecting the isolated CNC machines, to the current industrial
communication systems. The DNC system developed within this research

project will implement several serial communication hardware devices.

One of the keys of the research is to understand the hardware system required to
deliver a cost effective Serial Distributed Control System. Therefore, factors

such as the following will be considered during the selection of the interface card

iy
E
i

Introduction

» Highest performance that meets all speed-demanding and data intensive
communication needs.

Large on-board buffer for high-performance communication

Compact design size—ideal for high performance systems

Critical industrial control

Response demanding monitoring systems

Cost Efficient

Y V V VYV VY

1.2.2. Software Development

A large number of small and medium size companies today possess a significant
number of machines and equipment incompatible with the new Operating System
(OS) standards. For control of data transfer, there are still many DOS application
that can only run single task at a time, which means no other application program
can be executed concurrently. Another disadvantage of these DOS application is
the lack of communication between application programs such as CAD/CAM,
which results in large amount of time wasted in switching between programs and

loading saved data.

Therefore, the application program developed in this project will focus on the
following core functionality to overcome the shortcomings within the DOS

environment.

» Front-end Application interface for CAD/CAM Environment

» Communication interface programs for both serial data transfer and
networking between the CAD/CAM workstations and CNC machines.

» Application programs for NC code editing and for accessing other software
application within the workstation.

» Remote software access through Internet for cost effective software

distribution.

With the previous listed functions, Figure 1.1 illustrates three interfaces that are

considered within this research.

= Clntemet

CAD/CAM INTERFACE 2
A INTERFACE 3
INTERFACE 1
Massey CNC Remote CNC
Facilities Facilities

Figure 1.1: Proposed interface connections

» Interface 1 --- For communication with CNC machines

» Interface2 --- For communication with CAD/CAM System and other
desktop applications

» Interface 3 --- Internet interface for remote access to software from
remote site.

The front-end application interface within this research project is designed
through Borland’s Delphi 4. Delphi offers all of the windows GUI advantages,
which allows the programmer to write standard window features such as title bar,

menu bar and common tool bars for quick access to commonly used commands.

1.3. Organisation of Dissertation

The dissertation is arranged as follows:

Chapter 2 deals with the methods and theories of current shopfloor
manufacturing strategies, concepts such as Computer Integrated Manufacturing
(CIM), Virtual Manufacturing, Direct/Distributed Numerical Control (DNC) and
serial communication devices are described in detail. This chapter aims to

provide essential theoretical support and research direction for this project.

Chapter 3 focuses on the installation process of the selected multiport card, and
describes some of the serial programming utilities that accompany the multiport

card.

Chapter 4 covers the software engineering process applied. The chapter only
covers the analysis and design stages. Allowing the implementation and testing

stages to be described in later chapters.

Chapter 5 describes the basic steps used for establishing communication
interface to the multiport device. The chapter denotes some of the fundamental
functions used within the program, and illustrates the testing results ascertained
through a RS-232 tester.

Chapter 6 illustrates the implementation of the character exchange interface.
This section describes the application of Threading function from Delphi, allowing

user to view the keyboard input from the other end of the serial network.

Chapter 7 denotes the definition of several serial communication protocols, and
explains how these protocols are implemented through the Application
Programming Interface (API) functions

Chapter 8 describes the methods used in implementing Multiple Document
Interface (MDI) function within this project. The MDI interface will be used for the
NC editor and OLE child form. This chapter will describe the code used in

constructing the NC editor.

Chapter 9 discusses the application of Component Object Model (COM), and
Object Linking & Embedding (OLE) technology within the research thesis. The
chapter will also describe the code used constructing the OLE child form

Chapter 10 focuses on the use of ActiveX technology, describing how the
resulting interface will allow remote access to the restricted version of the

interface through the World Wide Web (WWW).

Chapter 11 describes the testing procedures conducted on the interface

program.

Chapter 12-14 discusses the results of the project by listing areas of work done
and possible areas of improvement.

10

CHAPTER 2

2. Literature Review

2.1. Introduction

This chapter reviews the theoretical background required for developing a low
cost shop floor Distributed Numerical Control (DNC) system. Therefore, it aims
to cover areas within the study of factory automation, and the theoretical

knowledge required.

2.2. Computer Integrated Manufacturing (CIM)

2.2.1. Background

The concept of Computer Integrated Manufacturing (CIM) is based on the
principle of the production cycle developed by Harrington. Harrington’s definition
of the production cycle starts with the development of a product, then moves on
to manufacturing and delivery to the customer and ends with service and
maintenance. These functions are closely interconnected within the operational
sequence organisation, it is not expedient to regard the single functions as
isolated from each other. Hence by extending Harrington’s concept, the
components involved in CIM are the data processing tools underlying the

production cycle.

Although the concept of CIM has been around more than 2 decades. Much of its
definition differs widely, due to the fact that much has been written with regard to

the substance of CIM without a comprehensive consensus.

In order to provide a clarified definition of the components attributed to CIM within
the research project. It is intended to do so by referring to the publication of
Ausschuss fuer Wirtschaftliche Fertigung e.V (AWF-Committee for Economical
Manufacturing). Waldner's literature [3] describes AWF in the sense that all data
processing system in every area related to manufacturing, which are to be

integrated.

11

— T & e
et s N e = Ty AT e
T Rl e AT L z«x'»g,%w’%?é»é\ e

SR NSRRI Xateratire Review

The term CIM described by AWF denotes the use of computer to design the
products, plan the production, control the operations, and accomplish many of
the business related function in a manufacturing firm. The theory also suggests
convergence of various functions within manufacturing by means of computer
systems. It is in the data processing and information flow within a firm that this
integration primary occurs and the control of production equipment by computers

will facilitate integration in a CIM system.

Figure 2.1 illustrates the graphical representation of the system. Its aim is to
achieve an integration of the technical and the administrative functions involved
in manufacturing.

CIM

CAD/CAM PPC

Production Planning

CAPP

Material Planning

CAD A “ Capacity Planning

Order Release

CAM

Order Supervision

Figure 2.1: AWF’s CIM Model [3]

Literature Review

The figure is introduced to represent an overall unified computer system, which
allows the factory to achieve manufacturing productivity. Based on the definition
given by Dorf [7], it states a full CIM system would provide a centralised control
of the manufacturing environment, addressing two main requirements: vertical
integration, and horizontal integration.

The term vertical integration describes Computer Aided Design (CAD), Computer
Aided Process Planning (CAPP), Computer Aided Manufacturing, and Computer
Aided Quality Assurance (CAQ) that is illustrated within the left hand side of
Figure 2.1. It describes the capability of the computer system to integrate the full

process from design conception to part manufacture.

The term horizontal integration describes a hardware/software network solution,
encompassing all the functionalities exercised on the manufacturing floor. Such

a capability would include the Production Planning and Control Systems (PPC).

222, Production Planning and Control (PPC)

Production Planning and Control (PPC) Systems are applied as a higher-level
instrument for the organisational planning, control and supervision of the
production processes with regards to volume, delivery dates and capacities [7].

2.2:3. Computer Aided Process Planning (CAPP)

CAPP Systems are applied in the area of computer aided process planning. It
uses the results generated in the design process. CAPP system cover data
processing systems, which support the planning of the operation process and the
operation process sequence as well as the selection of methods and resources
necessary for the manufacturing of the objects and the control program for
resources [7].

13

2.2.4. Computer Aided Quality Assurance (CAQ)

Quality assurance is included as a part of the pre-production functions but it also
overlaps into the areas of production. CAQ indicates the support by data
processing tools of the planning and execution of quality assurance, which on the
one hand includes the generation of test schemes, test programs and control

values and on the other hand the execution of measuring and test methods [7]

2.2.5. Computer Aided Design (CAD)

Computer Aided Design (CAD) system within the CIM system aims at the
engineering design function, rather than the traditional drafting function. The
distinction is based on the paradigm where the drafting function provides support
for the design function. Another area that sets the computer-aided design is the
incorporation of a more extensive set of analytical tools. This is an additional
function responds to the needs of both the design and drafting functions.

Furthermore, such systems tend towards the full integration of the entire Design-
To-Manufacture (DTM) process. A trend that is driven by concepts as the ones
listed below

The Paperless Factory

Traditionally, the engineering and drafting functions are usually carried out by
separate groups within the engineering department, where engineering designs
are passed to drafting departments for the detailing process and the production
of engineering drawings. However, one aspect of introducing the computer aided
design technology is the move towards paperless industry, which transform the
DTM process to depend more on “computerised-databases’ and less on
engineering (paper) drawings. Furthermore, the concept of paperless factory
extends all the way to the manufacturing functions, and with assistance from

some other concepts it facilitates the full integration of DTM process [7].

14

Literature Review

1. Feature-Based Design

The concept of feature-based design was advanced as an attempt to simplify
mechanical process design as an extension of CAD. As described by Dorf [7],
technical drawing can not supply sufficient information for all kinds of application
programmes in a CAD/CAM system. However the introduction of feature- based
solid modelling is expected to resolve this problem. By using the feature-based
modelling techniques, a designer can identify the geometry of a part that
corresponds to a particular machining operation. Feature based modeller use
machining terms such as “bore” to make a hole, rather than the Boolean
operation found in traditional packages. Commercially available feature-based
modeller such as SolidWorks, and Pro Engineer provides capabilities to create a
mechanical design consist of a collection of standard geometric features,
accompanied by standard processes to create these features. The list of such
features includes prismatic shapes, cylinder, cones, slots, holes, rounds, fillets,

etc.

2.2.6. Computer Aided Manufacturing (CAM)

The application of CAM systems in CIM relates to the areas of production
executing functions. The system could normally consist of single CNC machines,
several numerically controlled manufacturing installations that are controlled by a
host computer through a DNC system. Thus, providing the ability to form
Flexible Manufacturing Cells (FMC) around the machines within any work shop

(7.

15

2.3. Virtual Manufacturing (VM)

2:3.1. Background

The significant growth in the computer technology sector has also influenced and
improved the concept of CIM over the past decade. One of the core
developments evolved from CIM was the concept of Virtual Manufacturing (VM).
Figure 2.2 illustrate the vision of VM is to provide a capability to “Manufacturing in
the Computer”. In Lin’'s literature on VM [16], it describes that VM will provide a
modelling and simulation environment so powerful that the fabrication/assembly
of any product, including the associated manufacturing process, can be
simulated in the computer. This powerful capability essentially takes all of the
variables in the production environment from shop floor processes to enterprise
transaction. In essence, VM accommodates the visualisation of the process in
CIM, and has even greater impact on related process such as accounting,

purchasing and management.

Opportunities Resources
Manufacturing

“image”
Iterate
Lo
Maturity

Virtual
Manufacturing

{ i Modify &
Information c?; X V i
= Plan 8
* Change
* Control
“Make it” in a Computer “Make it” Physically

Figure 2.2: Application of PC in the VM [16]

16

According to research conducted by Lin [16]. Two major research events have

combined to initiate the concept of VM. First the on going improvement on US
defence environment and the acquisition strategies required development of the
capability to prove the manufacturability and affordability of new weapons system
prior to the commitment of large production resources. VM has the potential to
address these issues. Secondly, through out the last decade the
engineering/manufacturing sector has made tremendous advancement in
modelling and simulation technologies. Thus, offering a realistic opportunity to
build such a computing capability [16]. For example, the Distributed Interactive
Simulation (DIS) program has demonstrated the usefulness of Modelling and

Simulation (M&S) in an environment rivalling manufacturing in complexity.

Developing a definition of something as complex as VM is often difficult; such a
definition can rarely capture everything necessary to fully capture the complexity.
As a result, selected commentary is presented below to better capture some of

its complexity.

Perhaps the closest definition for VM is [16]:

e VM is an integrated, synthetic manufacturing environment exercised to
enhance all levels of decision and control. It focuses on improving
manufacturing processes by the employment of a model-based approach

which leverages simulation capabilities

The fundamental notion of VM is that it is a computer-based, simulated product
development environment that enables the manufacturers to "make it virtually”
before "making it for real". The term "product development" encompasses all of
the various activities, both business and technical, associated with developing

and producing a given product.

1

ot b il p o L

Figure 2.3 represents an attempt to capture the idea that while VM is not just a
new “buzz ward” that is used to accomplish the desired cross-functional trade-off
analyses; in most cases it can be integrated with all of the relevant enterprise
functional areas via a trade-off mechanism, the Integrated Product and Process
Design (IPPD process).

VM must be scoped if we are to achieve meaningful near-term
Suggestion:

PRODUCT DEVELOPMENT PROCESS

Cross-
Functional
Trade-Off
Mechanism

(IPPD Process)

/
Suggested

Near-Term
Focus

Figure 2.3: VM Scope & Integration with Enterprise Functions

VM allows for the creation of many more "soft prototypes” (by reducing both cost
and time factors), and/or reduces the cost of the prototyping process overall.

VM is model-based manufacturing, with tools that leverage those models.
Primary among the techniques used is simulation, which can reduce some costs
of manufacturing and allow exploration of many options in a mixed real/computed
space.

18

Literature Review

At the local level, VM adds simulation to control processes to allow for expedited
re-engineering/improvement of processes. At a more global level, VM provides
for evaluation of partial and complete designs by "manufacturing in computers” in
an enhanced IPPD environment. VM is not a single solution, architecture or
monolithic database approach. It is a collection of many smaller, incrementally
tools, together with some more overarching concepts that may require larger

investments by developers and users.

2.3.2. Application of VM

The following categorization shows the breadth of areas in which VM might be
used [16].

CORPORATE MEMORY -- Through the increased development and use of
expert systems to capture the knowledge of subject matter. The first area which
the VM will enhance is the corporate memory. The details of product design are
captured as part of the corporate memory in a systematic way, but the
manufacturing process details often are not. Using expert systems in conjunction
with VM would be a significant improvement by providing process capability and
cost information to guide the product design process as well as adding some
viability to the concept of "shelf technology" where a product might go into
production long after the initial design prototyping and testing are completed [16].

SUPPLIER MANAGEMENT - The current VM impact on suppliers is rare and
the use of VM by suppliers themselves would often be limited to the larger
companies because of the anticipated large investment required to install VM
[16]. The future impact on supplier management, however, is expected to be
very significant. Make/buy decisions will be enhanced through easy access to
better quality and more detailed information on costs, capacity, process capability
and lead-times as part of the make/buy decision process.

19

Cost control would also be enhanced because VM offers more accurate cost

information for suppliers. Major suppliers will have early involvement in product
design and process planning through the Integrated Product and Process Design
(IPPD) teaming approach that is likely to be an accelerating and long-lasting
trend and will interact with VM in that context. Smaller suppliers are also likely to
be see some positive impacts by getting much better and more stable product
requirements information from customers and the customers should be positively
impacted by not having to invest so many resources in having to solve problems

with their suppliers [16].

PRODUCT DESIGN -- The emerging modelling and simulation will enhance the
effectiveness of systems integration in the design process. It will allow
organisations to minimize interference between subsystems and, and reduce the
dependence on hard-mock-ups. Also in the near term, electronic co-location of
IPPD team members will become more practical and widespread. In the longer
term, major improvements to the transition from design to production are
envisioned because of much stronger and more effective influence of process
capacity and manufacturing cost information on the product designer as well as

the ability to do many more design iterations prior to committing to hardware.

COST ESTIMATING -- The move towards VM will provide more accurate cost
information than can typically be provided by current cost accounting systems.
This will accelerate the current trend toward activity-based accounting systems
and other accounting system changes that allow detailed and accurate product
costing. Some current reliance on "semi-expert" systems for cost estimating was
identified, VM provides better data through more accurate approaches. In near
future, VM systems will provide accurate cost data throughout the design,
development, and production process. Cost estimating systems will become fully
integrated with design and manufacturing databases and will have access to
detailed process-level design feature related data [16].

20

SHOP FLOOR - The application of VM will allow shop floor workers to have a

greater influence on the design process, and manufacturing approaches that
have been modelled and simulated above the shop floor will be brought out on
the shop floor to validate the models and simulations. Significant improvements
to work instructions will be seen through the ready availability of graphics. Much
better tooling will be available on the shop floor with features that make it easier
for the worker to succeed via access to better instructions and illustrations to
promote error-free tool use. This will also make it easier to accommodate the
envisioned drop in the average skill and education level of shop-floor workers.
The proofing of designs and manufacturing processes in the computer prior to

commitment to hardware should sharply reduce the problems on the shop floor.

2.3.3. Virtual Manufacturing over the Internet

The Internet has recently become a major information resource provider for
industry, and its demand keeps growing. The Word Wide Web (WWW) plays an

especially important role in providing information services on the Intemet.

Several languages are currently used or developed in the near term, there are
promising potential areas for development of VM tools on the internet. The best
known example is the HTML language used for constructing the documents read
by web browsers. Documents written in HTML include embedded commands
that change the formatting of the text or specify remote locations from which

further information can or should be retrieved.

HTML documents may be useful for sending certain kinds of Virtual
manufacturing information over the Intemet, by transmitting design and
manufacturing data to a web browser from a program running at a remote
location. Example includes, CAD models, and manufacturing data such as NC
programmes. Other application of Internet includes software product demos,
where GUI can be developed through advanced Client/Server technology such

as ActiveX to distribute the software over the Internet.

21

24. DNC System

2.4.1. Background

The New Zealand manufacturing industry mainly employees numerically
controlled machine tools because it provides a fast and low-cost adaptation to

the changing production requirements for the small quantities of products.

However, when machines have to be frequently re-set, coupled with short
production runs, the time spent in delays due to setting and loading of NC
programs at different terminals has an undesirable effect on the efficiency of

machine utilization.

DNC (Direct or Distributed Numerical Control) refers to controlling machines or
machine cells (a group of related machines) using a centralised computer. DNC
system originally had machines without individual controllers that were all
controlled from a central computer (Direct Numerical Control) [8]. However, with
the continue increase in the number of NC machine within the factory floor. The
current form of DNC is typically used to describe a system in which each
machine has its own controller that is linked to a central computer system that
co-ordinates the machines and maintains a list of part programs that can be
downloaded to a machine as needed; this form of DNC is more accurately know
as Distributed Numerical Control.

2.4.2. Function of DNC System

The basic function of a fundamental DNC system is to download and upload NC
programs -- character by character, or block-by-block or even whole program,
depending on the target CNC controller's memory capacity. It is very convenient
and flexible compared with paper tape. However, as described in the previous
sections, there are more functions that can be explored from a DNC system in
relation to the CAM sector of the CIM strategy.

22

Literature Review

Smith [4] describes a complete DNC control system should consist of the

following four basic components

1. DNC Computer

2. Bulk Memory used as a local database for NC part programs and other
manufacturing information

3. Telecommunication lines and relevant adaptors

4. Machine tools & controllers

Figure 2.4 illustrates a DNC model, which includes four components as
mentioned above. The DNC computer downloads the part program from disk to
a specific machine as the need arises. It also receives data back from machines.

CAD/CAM

DNC Computer &
Local Database

J =

Local Data Bus I ¢ Adaptors: Null Modem or MAP boards

CNC CNC CNC CNC
Controller 1 Controller 2 Controller 3 Controller 4

Turning Milling Machining Manufacture
Machine Machine Centre Cell

Figure 2.4: DNC Model [4]

23

In a DNC system, Figure 2.5 shows that there are 2 kinds of functions, i.e. basic

functions and auxiliary functions, may be identified, irrespective of the type of
control to which it is connected.

Functions of a DNC System

NC Program Management

- NC Data Distribution

NC Data Correction

= NC Program Generation

= Centralised Control

— CAD/CAM & Workstation Communication

Auxiliary
Function

= Data collection, Processing & Reporting

Figure 2.5: Auxiliary & basic functions in DNC system

2.4.2.1. Basic Functions

The basic function covers the management of the management of the NC part
program and the distribution of the NC data at the appropriate time to the
respective control unit via the production computer. The management of large
volumes of NC data in a production computer offers considerably more scope for
storing and working with NC programs than the traditional punched tapes. Once
the program is generated, the data are read in to the external memory store of
the production computer so that they may be managed or administered, which
include copying, recording, suppressing and releasing [4].

24

The NC data distribution comprise making the NC programs available and

transmitting the NC data to the machines. When the machine operator requests
a particular NC program the production computer will firstly test the compatibility
and look for any barring with respect to the NC unit and the NC program.

The data output buffer is prepared and filled an accept or reject message is
transmitted to the requesting terminal in accordance with the results of the tests.
If this is an acceptance signal the transmission (in blocks, words or individual
characters) is dependent upon the hardware configuration of the complete
system. The refilling of the buffer in the central memory stores from the external
memory store occurs automatically through the software system in the production
computer (DNC program system) [4]. After an NC program has been completely
transmitted, the process is closed and the particular channel which was used is

made available for other requirements.

2.4.2.2. Extended Functions

In order that the NC part programs are carried out effectively and so that any
necessary corrections may be included the NC data correction in the computer
should be effected through the operator’s terminal directly on the machine itself.
The computer aided generation of the NC code will provide the functionalities
needed to form VM by allowing simulation and testing to be done prior to

manufacturing.

Beside serial communication for NC code transmission to CNC machines, data
communication over the network is required to accomplish system integration.
Communication among the various systems is such an important function that is

central to the operation of any DNC system.

25

The essential communications are done through a centralised workstation,

providing links and communication between the following components of the

system:

1. DNC Workstation & Machine Tools
2. DNC Workstation and the CAD/CAM application or other Workstation

The DNC system is also likely to have some form of programs such as a
monitoring program and a shop floor control program to enhance its capability.
The basic purpose behind the data collection, processing and reporting is to
monitor production in the factory. Data are a collected on production piece
count, tool usage, machine utilisation, and other factors that measure
performance in the shop floor. These data must then be processed by the DNC

computer and reports any critical trends to management.

2.4.3. DNC Applications

Key features need to be considered when evaluating a DNC application:

ERROR CHECKING FOR DATA COMMUNICATION — Error checking of data
communication is very important in real time manufacturing on the shop floor. No
error checking programs will result in possible heavy loss of data caused by the
high level of interference that subside within the industrial environment

SYSTEM SECURITY — Depending upon the real manufacturing environment, it
is important to maintain levels of control over system use and access. Inability to
manage the possibility of misuse could often lead to poor product quality, since it

is impossible to track the user that caused the defect.

USER FRIENDLY MENU & STRUCTURE — The user interface for DNC
operating system should be user friendly. It is important to realise that most
operators within the shop floor are not required to have detail knowledge in
software application. Therefore a well designed interface will, in some extent,
decrease the skills demanded from an operator.

26

Literature Reyiew

2.5. Manufacturing Communication

2.5.1. Introduction

One of the approaches in improving the manufacturing efficiency is to allow the
user to access manufacturing data quickly and efficiently. To do so, the designer
of such system must have a clear understanding of the industrial communication
equipments behind most of the CNC machines. Therefore it is the objective of
this section to cover detailed studies conducted on Serial communication and the
components used.

2.5.2. History

RS-232 was originally adopted in 1960 by the Electronic Industries Association
(EIA). The standard evolved over the years and in 1969 the third revision (RS-
232C) was to be the standard of choice of PC makers. In 1987 a fourth revision
was adopted (RS-232D also known as EIA-232D). In most part of this new
revision, 3 additional test lines were added. In this section several parts of the
original RS-232C standard and mostly the ones used in the PC world [13].

2.5.3. RS232: The Physical Interface

This section denotes the basic understanding of RS-232 connection to allow
work to be carried out with cables, connector, cards, and wires.

Most equipment using RS-232 serial ports use a DB-25 type connector that is
illustrated in Figure 2.6. Based on the literature research conducted [17], many
PCs today use DB-9 connectors (see Figure 2.6) since all it is required in
asynchronous mode is 9 signals. Normally the male connector is on the DTE
(Data Terminal Equipment) side and the female connector is on the DCE (Data
Communication Equipment) side even if this is not always the case.

27

R R R D I B Titerature Review
8765432 1 T T
13 LIl — | & 5 |
> CEEEIREE @ [tom & G @ [romoe
25 | [14 9 | ‘ 5
22 20
B 7

Figure 2.6: 25 Pin and 9 pin serial connectors

The standard specifies 25 signal pins, and that the DTE connector should be a
male and the DCE connector should be a female. The most used connectors are
the DB-25 male, but many of the 25 pins are not needed. For that reason in
many modern PCs a DB-9 male connector is used. So it is common to find one
or more of these connectors in the rear panel of the PC. The voltage levels are
between -3V and -15V for a logic high. A logic low is a voltage between +3V and
+15V. The commonly used voltages are +12V and -12V. The most commonly

used signals are listed below [17]:

= e ——— e — S

25 Pin# | 9Pin# SIGNAL NAME
20 DTR (Data-Terminal-Ready): The PC tells the modem that is powered
up and ready to send data.
6 6 |[DSR (Data-Set-Ready): The modem tells the PC it is powered up and
[ready to transmit or receive data.
a ;RTS (Request-To-Send): The PC sets this signal when has a character
[ready to be sent.
|
8 | 1 |CD (Carrier-Detect): The modem sets this signal when has detected the
computer.
5 8 CTS (Clear-To-Send): The modem is ready to transmit data. The
computer will start sending data to the modem.
7 5 This is the logical ground which is used as a point of reference for all
signals received or transmitted.
RI (Ring Indicator) This line is used mostly by communications software
22 9 - ‘o "
when the modem is not in "auto answer" mode.
2 3 TxD: The modem receives data from de PC.
B 2 RxD: The modem transmits data to the PC

Table 2.1: Pins description [17]
28

Literature Review

2.5.4, Serial Port

The serial port is an /O (Input/Output) device. An I/O device is a way to get data
into and out of a computer. The are many types of current types of 1/O devices,
such as serial ports, parallel ports, disk drive controllers, Ethernet boards,

universal serial buses, etc.

In most cases PCs have a 9-pin connector (sometimes 25-pin) on the back of the
computer. Computer programs can send data (bytes) to the transmit pin (output)
and receive bytes from the receive pin (input). The other pins are for control

purposes and ground.

According to Mark [13], the serial port converts the data from parallel to serial
and changes the electrical representation of the data. Inside the computer, data
bits flow in parallel (using many wires at the same time).v Serial flow is a stream
of bits over a single wire (such as on the transmit or receive pin of the serial
connector). For the serial port to create such a flow, it must convert data from
parallel (inside the computer) to serial on the transmit pin (and conversely). Data
is transferred from sender to receiver one bit at a time through a single line or
circuit. The serial port takes 8, 16 or 32 parallel bits from the computer bus and
converts it as an 8, 16 or 32 bit serial stream. The name serial communications
comes from this fact; each bit of information is transferred in series from one

location to another [13].

In theory a serial link would only need two wires, a signal line and a ground, to
move the serial signal from one location to another. But in practice this doesn't
really work for a long time, some bits might get lost in the signal and thus altering
the ending result. If one bit is missing at the receiving end, all succeeding bits
are shifted resulting in incorrect data when converted back to a parallel signal.
So to establish reliable serial communications the PC must overcome these bit
errors that can emerge in many different forms. Bits from the computer bus and
convert it as an 8, 16 or 32 bit serial stream.

29

T s T T e A

N IR TV I e i
k'l ACE T I Assi s e

0 Literature Review

2.59.5. Serial Transmission Methods

Two serial transmission methods are used that correct serial bit errors. The first
one is synchronous communication, the sending and receiving ends of the
communication are synchronized using a clock that precisely times the period
separating each bit. By checking the clock the receiving end can determine if a
bit is missing or if an extra bit (usually electrically induced) has been introduced

in the stream [17].

To illustrate this method of communication, lets say that on a conveyor belt a
product is passing through a sensing device every 5 seconds, if the sensing
device senses something in between the 5 second lap it assumes that whatever
is passing is a foreign object of some sorts and sounds an alarm, if on the 5
second lap nothing goes by it assumes that the product is missing and sounds an
alarm. One important aspect of this method is that if either end of the

communication loses its clock signal, the communication is terminated [17].

The alternative method (used in PCs) is to add markers within the bit stream to
help track each data bit. By using a start bit which indicates the start of a short
data stream, the position of each bit can be determined by timing the bits at
regular intervals, by sending start bits in front of each 8 bit streams, the two
systems don't have to be synchronized by a clock signal, the only important issue
is that both systems must be set at the same port speed. When the receiving
end of the communication receives the start bit it starts a short-term timer. By
keeping streams short, there's not enough time for the timer to get out of sync.
This method is known as asynchronous communication because the sending and
receiving end of the communication are not precisely synchronized by the means

of a signal line.

30

IR Rk

Each stream of bits are broke up in 5 to 8 bits called words. Usually in the PC
environment you will find 7 or 8 bit words, the first is to accommodate all upper
and lower case text characters in ASCII codes (the 127 characters) the latter one
is used to exactly correspond to one byte. By convention, the least significant bit
of the word is sent first and the most significant bit is sent last. When
communicating the sender encodes the each word by adding a start bit in front
and 1 or 2 stop bits at the end. Sometimes it will add a parity bit between the last
bit of the word and the first stop bit, this used as a data integrity check. This is

often referred to as a data frame [17].

As shown in Figure 2.7, five different parity bits can be used, the mark parity bit
is always set at a logical 1, the space parity bit is always set at a logical 0, the
even parity bit is set to logical 1 by counting the number of bits in the word and
determining if the result is even, in the odd parity bit, the parity bit is set to logical
1 if the result odd.

The later two methods offer a means of detecting bit level transmission errors.
Note that you don't have to use parity bits, thus eliminating 1 bit in each frame,

this is often referred to as non parity bit frame.

PARITY
DATA WORD BIT
START ¢ . STOP
BIT 1 BIT 4

1 0.1 o o _1 1
DATA LINE I | ’ |
0
CLOCK LINE| } | § } | } | § l ; * | ; | ; | § } | } |

Figure 2.7 Asynchronous Serial Data Frame (8E1)

31

2.5.6. Bit Rates

Another important part of every asynchronous serial signal is the bit rate at which
the data is transmitted. The rates at which the data is sent is based on the
minimum speed of 300 bps (bits per second), the user may find some slower
speeds of 50, 100 and 150 bps, but these are not used in today’s technologies.

Faster speeds are all based on the 300 bps rate, you merely double the
preceding rate, so the rates are as follows, 600, 1200, 2400, 4800, 9600, 19200
and 38400 which is the fastest speed supported by today’s BIOS’s. Note that a
few years ago the fastest speed was of 19200 bps, because of all the strain
exercised on the CPU because of the software control used to control the serial
port. Today with the new Micro Channel, EISA, VL Bus and PCI motherboards,
the new systems take advantage of bus mastering DMA control which has

pushed rates up to 38400 by eliminating microprocessor overhead.

2.5.7. UARTS

Universal Asynchronous Receiver Transmitters (UARTSs) are serial chips on PC
motherboard (or on an internal modem card) [17]. The UART function may also
be done on a chip that does other things as well. On older computers like many
486's, the chips were on the disk 10 controller card. Still older computer have
dedicated serial boards.

The UART's purpose is to convert bytes from the PC's parallel bus to a serial bit-
stream. The cable going out of the serial port is serial and has only one wire for
each direction of flow. The serial port sends out a stream of bits, one bit at a
time. Conversely, the bit stream that enters the serial port via the external cable
is converted to parallel bytes that the computer can understand. UARTs deal
with data in byte sized pieces, which is conveniently also the size of ASCII
characters [13].

32

Literature Review

For example when the user have a terminal hooked up to a PC. When the user
types a character, the terminal gives that character to its transmitter (also a
UART). The transmitter sends that byte out onto the serial line, one bit at a time,
at a specific rate. On the PC end, the receiving UART takes all the bits and
rebuilds the (parallel) byte and puts it in a buffer.

Along with converting between serial and parallel, the UART does some other
things as a by-product (side effect) of its primary task. The voltage used to
represent bits is also converted (changed). Extra bits (called start and stop bits)
are added to each byte before it is transmitted. Also, while the flow rate (in
bytes/sec) on the parallel bus inside the computer is very high, the flow rate out
the UART on the serial port side of it is much lower. The UART has a fixed set of

rates (speeds), which it can use at its serial port interface.

33

2.5.8. Interrupts

When the serial port receives a number of bytes (may be setto 1, 4, 8, or 14) into
its FIFO buffer, it signals the CPU to fetch them by sending an electrical signal
known as an interrupt on a certain wire normally used only by that port. Thus the

FIFO waits for a number of bytes and then issues an interrupt [17].

However, this interrupt will also be sent if there is an unexpected delay while
waiting for the next byte to arrive (known as a timeout). Thus if the bytes are
being received slowly (such as someone typing on a terminal keyboard) there
may be an interrupt issued for every byte received. For some UART chips the
rule is like this: If 4 bytes in a row could have been received, but none of these 4
shows up, then the port gives up waiting for more bytes and issues an interrupt to
fetch the bytes currently in the FIFO. Of course, if the FIFO is empty, no interrupt

will be issued.

Each interrupt conductor (inside the computer) has a number (IRQ) and the serial
port must know which conductor to use to signal on. For example, ttySO normally
uses IRQ number 4 known as IRQ4 (or IRQ 4). A list of them and more will be
found in "man set serial" (search for "Configuring Serial Ports"). Interrupts are
issued whenever the serial port needs to get the CPU's attention. It's important to
do this in a timely manner since the buffer inside the serial port can hold only 16
(1 in old serial port) incoming bytes. If the CPU fails to remove such received
bytes promptly, then there will not be any space left for any more incoming bytes
and the small buffer may overflow (overrun) resulting in a loss of data bytes.

There is no Flow Control to prevent this.

34

Literature Review

Interrupts are also issued when the serial port has just sent out all 16 of its bytes
from its small transmit buffer out the external cable. It then has space for 16
more outgoing bytes. The interrupt is to notify the CPU of that fact so that it may
put more bytes in the small transmit buffer to be transmitted. Also, when a

modem control line changes state an interrupt is issued.

Interrupts convey a lot of information but only indirectly. The interrupt itself just
tells a chip called the interrupt controller that a certain serial port needs attention.
The interrupt controller then signals the CPU. The CPU then runs a special
program to service the serial port. That program is called an interrupt service
routine (part of the serial driver software). It tries to find out what has happened
at the serial port and then deals with the problem such a transferring bytes from

(or to) the serial port's hardware buffer.

This program can easily find out what has happened since the serial port has
registers at 10 addresses known to the serial driver software. These registers
contain status information about the serial port. The software reads these
registers and by inspecting the contents, finds out what has happened and takes

appropriate action.

2.59. I0 Address & IRQ

Since the computer needs to communicate with each serial port, the operating
system must know that each serial port exists and where it is (its I/O address). It
also needs to know which wire (IRQ number) the serial port must use to request
service from the computer's CPU. It requests service by sending an interrupt on
this wire. Thus every serial port device must store in its non-volatile memory
both its I/O address. Interrupt ReQuest number: IRQ. For the PCI bus it doesn't
work exactly this way since the PCI bus has its own system of interrupts. But
since the PCl-aware BIOS sets up chips to map these PCI interrupts to IRQs, it
seemingly behaves just as described above except that sharing of interrupts is

allowed (2 or more devices may use the same IRQ number).

35

R o G R £ B e b AT 7 A 2

I/O addresses are not the same as memory addresses. When an I/O addresses
is put onto the computer's address bus, another wire is energized. This both tells
main memory to ignore the address and tells all devices which have I/O
addresses (such as the serial port) to listen to the address to see if it matches the
devices. If the address matches, then the 1/O device reads the data on the data

bus.

2.6. Software Development Process

2.6.1. Introduction

As indicated in the previous section, CIM is one of the most discussed topics in
manufacturing. CIM as the name suggests, in an effort to integrate activities in
manufacturing through the medium of computers [12]. It is now widely accepted
that CIM leads to widespread improvement in productivity. The CIM strategy is
based on the successful integration of both hardware and software. Therefore,
this section discusses same of the major issues related to software aspect of
CIM and how Object Oriented (OO) concepts may be used to offer generalized

solutions.

2.6.2. Objects & Object-Oriented Software

Object-oriented (OO) computing is a style of computing in which data and
associated procedure are encapsulated to form an ‘object’. Thus, an object is
computational entity that exists at a higher level of abstraction than data
structures or procedures. The term encapsulation implies that the data can be
accessed only through pre-defined procedure. The other main principle in this
paradigm is that objects communicate with each other can only by exchanging

messages.

36

_ Literature Review

Software systems that implement OO techniques are popularly called Object-
oriented programming systems (OOPS) or Object-oriented software (OOS). The
OO0 paradigm is an outcome of the evolution of modularity concepts developed to
improve various aspects of the software development life cycle. Most of these

developments retained the traditional fundamental notion that

(Computer) Programs = Data+Algorithm (Procedures)

The basic problem with this approach is that most real world entities are
encapsulations of data and procedures that characterize their behaviour.
Therefore, a programmer or analyst must go through a transformation and often

a restructuring process to construct programs to model the entities.

[DATA] + [PROCEDURE]

Figure 2.8: Traditional modularity concepts [12]

The OO paradigm represents a different way of looking at the program modules.
It defines program modules as package of data and procedures named an
‘object’: i.e. an abstraction of private data and operations that are naturally
associated together. Because of this abstraction facility, it is possible to
represent real life factory objects such as N machines or a part quite close to
reality (Figure 2.9).

37

Data is stored in locations, i.e. instance variables, which cannot be directly
accessed by other objects. Procedures are commonly known as ‘methods’.
Each procedure (or method) defines the behaviour expected of the object. Such
behaviour is to change the data stored in its instance variable. Objects interact
by sending one another messages. That is, an object sends a message to

another when it wants certain services from the object receiving the message.

DATA DATA DATA
PROCEDURE PROCEDURE PROCEDURE

Figure 2.9: OO Approach [12]

There is a number of high level programming languages such as Borland’s
Delphi, Visual Basic, Visual C++, and Borland's C++. Because each
programming language has its own programming features and characteristics, it
is necessary to evaluate all the possible options and relevant requirements
before choosing a suitable programming tool that will facilitate the development
of the project.

The following are the requirements defined in order to select the most

appropriate programming language [12]:

1. The language must be able to build a scalable, maintainable and
reusable within the Rapid Application Development (RAD)
environment.

2. The language must communicate with other Window based

applications.

38

Literature Review

3. The application built with the language must be an open system
application that fully utilise Window resources and keep in consistency
with the graphic format from the Microsoft Window's Operating
systems.

4. The application should be capable of creating a client server
application.

2.6.3. Borland’s Delphi 4.0

Based on all research conducted. Borland’'s Delphi is easier to learn for
beginners, it also full meets the requirements listed above. As described by
Reisdorph [10], the first version of Delphi was developed by Borland in 1994, and
it is also Borland’s best-selling rapid application development product for writing
Windows applications. With Delphi, it is possible to write Windows programs
such as Win 32 console applications or Win32 graphical user interface (GUI)
programs more quickly. When creating Win32 GUI applications with Delphi, the
user has the programming power of a true complied programming language
(Object Oriented Pascal) within a RAD environment. Hence, the user can create
a GUI to a program using drag-and drop techniques for true rapid application
development [10].

One of the most important concepts within Delphi is the Integrated Development
Environment (IDE). As illustrated in Figure 2.10, Delphi IDE is divided into three
parts. The top window can be considered the main window. It contains the
toolbars and the component palette. The Delphi toolbar allows the usual one-
click access to functions such as opening, saving, and compiling projects. The
Component palette contains a wide array of components that the user can drop
onto the main form. These components include text labels, edit controls, list
boxes, buttons, and ActiveX controls.

39

Literature Review

=
Flo [Seerch Yew Project Bun Component Datebass Toos Hel
Standard | Addihonsl | W32 | Surlem | interet | DislaAccess | Data Cortols | GHsoot | Disicos | Win 81 | Samoles | Actrva

D -W 0% 33 @ i
Tool Bar PAT[2 - 2o R F'ﬁam!ﬂ’:'ﬂﬂ‘“‘ 8 5
. e T e e T R TR P ol Bl M. e e e =

Fomm1- TFom1 -
Progeties | Evenls
Action 8 L} 3
AckveConbel - x
Mg dind wl TFomi Y
snchon [akLan sk Top] o | Variabims Tonstarty wnit Tritl;
Macherd Tre o 3 Usen
Form Aurchio Fabe interface
i slordeicom [bSysemMern]
DESIgIIﬂ‘ :w Eﬁ"m : ‘.::B*U'; Bessages, SysUtils, Classes, Grapbice, Contcols, Fo
Caphon Faml _—
m g TForml = clase(TFocm)
Cokex BirFacn privats
oCongbaints. [[SheComse |+ { Psivate declarations |
(= 1] Troa public
Ob_lec{ g::,m mam k m;."ut':;c decleratioas |
4 Fae
Inspector Diekind * 010 var
DragMode amiarasl Forml: TTormi:
Enabled The
TF: :

.::'\sl!ﬁ Em::- implement ation
H 480 | { . 3
""" . HRR

Code Editor - : > - .
- ‘ 11 Modied B °
- .
maE o . : »

ik Racount o viem> = Begount
Drom= [; AytoShepes = vCOOEE A - L-A-=E=E06.
Poge 33 Sec 2 VR MeIm T W i _ Egehius QX
Figure 2.10: Delphi Interface
Object Inspector

Below the main window and on the left side of the screen is the object inspector.
It is through the object inspector that a user can modify a component’s properties
and events. As illustrated in Figure 2.10; the object inspector has two tables: the
properties tab and the events tab. A component’s properties control how the
component operates. For example, changing the Colour property of a
component changes the background colour of that component. The list of
properties available varies from component to component, although components
usually have several common elements such as Width and Height properties.

The event tab contains a list of events for a component. Events occur as the
user interacts with a component. For example, when a component is clicked, an
event is generated that informs the user that the component was clicked. The
user then could write code that responds to these events, performing specific
actions when an event occurs. As with properties, the event could also be made

responsive to variation from component to component.

40

B s Literature Review
The Delphi Workspace

The main part of the Delphi IDE is the workspace. The workspace initially
displays the form designer. It allows the user to create forms, such as the
program’'s main window, a dialog box, or any other type of window. The form
designer will enable the user to place, move, and size components as part of the

form creation process.

Hiding behind the form designer is the code editor. The code editor is where the
user could type code when writing the programs. The object inspector, form
designer, code editor and component palette work interactively as the user builds
the applications [10].

41

CHAPTER 3

3. Multiport Card Installation

3.1. Introduction

As part of DNC system developed within this research project. It involves the
study of a multiport board that is most suitable for the small & medium- sized

manufacturers in New Zealand.

MS-DOS and the original PC BIOS were originally developed to support just two
or perhaps four RS-232 ports. Users immediately saw the need for applications
using 4, 8 or even 16 ports. Third-party manufacturers quickly responded to the

demand and began producing nonintelligent multiport boards.

3.2. Background
These nonintelligent multiport boards typically contain an array of 8250 UARTS

that can be configured to reside in various slots on the I/O memory bus. Each of
the UARTSs appears to the CPU to be more or less identical to a standard RS-232
port, with one important exception rather than have each UART directly control
an interrupt line, all of the UARTS on the board share a single interrupt line. The
board itself supplies hardware logic that manages and performs arbitration

between all of these UARTs competing for use of a single interrupt line.

Figure 3.1 shows the Smartio C104 board selected for this research project. The
board can be configured with either four to eight 16550 class UARTS. In this
particular board, the C1104 is configured with four UARTS. Moxa has a standard
extender cable that connects to the card edge via a large D Connector, and has
four RS-232 cables extending from it. Each of the cables supports the standard
signals used on PC RS-232 ports.

42

Multiport Card Installation

Figure 3.1: Moxa multiport card

3.3. Hardware Installation

The installation of the Smartio C104 series consists of hardware and software
installation. The hardware installation is detailed in this section of the chapter,
while the next section deals with the procedure involved in installing the software.

359, Quick Hardware Installation

The Smartio card features flexible hardware configuration that allows a quick and
easy method installation for users. The procedure firstly requires the user to
short the jumper JP1 on the upper left comer of the board. As illustrated in
Figure 3.2 the card is inserted into the desired PCI slot. The user could now
proceed to the software installation phase. Once the software installation is
completed, the user then need to cold start the system to complete the quick
installation.

Figure 3.2: Inserting the Multiport Card into the PCI Slot

43

Multiport Card Installation

3.3.2. Hardware Installation with 10-IRQ Utility

Although the quick installation seems very simple and efficient. This quick
installation process did not activate the C104 card during the course of this

research project. Therefore, the I0-IRQ Utility program was used instead.

The application I0-IRQ utility shown in Figure 3.3 comes after the C104 is
plugged into the PCI slot in the PC. The user must run the I0-IRQ.exe utility in
the driver diskette under DOS system to change the hardware configuration.

Iy 29y Uere 7173 I
. IG-IR? is the 1zt ztep to cond igurc
| Lhe: 150 addesszs, [RU. sk of 4 TR
- St SRR
= . - ——rrer o swilchs jmaper Znarctioc Induslico
J ——rrre I5A Fani la and C36H boaeds:
- . . - e
4 B Sure that ooe Cand ooly o)

QTR SRS

bhosrd has alesedu beew itustalled in
the system hefoer raoaing this peo
I, IF pore than one board need
to ke configurnd, conf iqure one

hoavd at 2 tioe

Snartio/Industia 15 il
Hhat iz the board type " 2 g 51 . kit

Figure 3.3: I0-IRQ utility

Once the user selects the “Smartio/Industio ISA family on the interface, it was
then possible to re configure the CAP address of the C104. The values for the
default setting is listed below

/O Address: 0x180 (Portl), 0x188 (Port 2), 0x190 (Port 3), 0x198 (Port 4)
IRQ: 10
INT Vector: 0x1CO

Configuration Access Port (CAP): 0x180

44

Multiport Card Installation

3.4. Software Installation

This section is a follow on from the previous section on hardware installation. It
illustrates areas such as software driver installation; configuration and driver
update procedure described for the selected Windows NT operating system.
Windows NT is still by far the most used operating system within the
manufacturing sector. Characteristics such as stability, network integration, and
mobile computing make this OS a common application within the manufacturing
shop floor. Windows NT supports up to 256 serial ports from COM1 to COM
256. To fully integrate the advanced features of Windows NT, multi-process and
multi-thread, pure 32-bit Windows NT device driver are developed for the C104
multiport boards.

3.4.1. Installing Driver

In order to install the driver, the user must first log in as the Administrator. Once
logged in, the user must access the control panel and select the network icon to
activate the adaptor tab. Figure 3.4 shows the driver can be located in the driver
diskette, where a file by the name of WINDOWS.NT will activate the

installation/configuration process.

Menwork Gl preis
BRI N NEZ

Diick the Netsok ddacte thal matches yow hadsae, ad then
Eﬂg’ cick BK. I sou have e natellabon disk for his comporent. ciek
Have Disk.

Hehaork Adepter. :

B 3Cor 30508 (524 16-bil Etemrel hdapte: g :
B 3Com Etherk. || Adaocer [ake (1716 and 11712 TR i
- B Con Etheilirk |1 ISAROMTA Adaplel

Add. { - IBRSCom EtheiLink Il PTI Buz Masler Aepier [3C580
: i - }ﬁ?lﬁwn Fibeliek 164 Fer ink 16 TP Acdapie B
T Hotes 2 '.‘ﬂ‘zrm € st Srnens imie BT NMCNEBACE T Adamear [3TFOR .:.{ :

& IHcvn!NLLUUUA:‘ .

-

. HaeDie |

B et Disk :

A MAND WS NT|

Figure 3.4: Driver installation

45

Muitiport Card Installation

The installation process then presents the

user with the Moxa Smaniof/lndustio

- Biard Tvpe §7Tﬂ4 Seris 3}

Configuration pane! dialog box, where the

user could configure the broad by configuring

1

.p, NT Veﬂior . hco

the properties. By clicking on the add button 1" ,me,mp, o, B e "
shown on Figure 3.5, the user can enter the | p.o. un son auress [THFJ_—‘-_ o

property dialog shown on Figure 3.6, where

the user needs to select the “C104 Series” in

Ciohtd 14 16
MG 14 163
COMG 14 16

the “Board Type” field. If necessary, the user |

ok

E-Y

also needs fo type the desired interrupt vector
address, in the “INT Vector” field. By |
selecting the desired interrupt number in the
Interrupt No” field and typing the desired base o [5ot |
I/O address, in the “Base [/O Port Address” - ' '
field. Al the sefttings should then match

OK E Cancel E

settings that are physically set on the board

and conflict with no other devices. Figure 3.6: Property Dialog

L1 Moxa Swartin/Industio Configaration Panel

Bosrd Type }L’Daddress INT vecler © IRQ Bus ' Dev | COMNumber

Figure 3.5: Configuration Panel

46

. Multiport Card Installation

3.5. Serial Programming Tools

As part of the technical support offered from Moxa. PComm, a professional serial
communication tool for PC is included with the Smartio C104 multiport card. It
consists of powerful serial communication library for easy programming in most

popular languages, and useful utilities such as diagnostic, and terminal emulator.

The serial communication library is commonly used during the development
phase of data communication, remote access, data acquisition or industrial

control in the Windows operating systems.

3.5.1. Diagnostic Tool

As one of the supporting utility provided by Moxa. A convenient diagnostic
program such as “PComm Diagnostic” shown in Figure 3.7, provides internal and
external testing of the multiport. This program offers testing for of IRQ, TxD/RxD,
UART, CTS/RTS, DTR/DSR for the C104 board and ports to verify correct

operation of both the software and hardware.

IEPComm Diagnostic [_ =] x]

Fie Disgnose Help

=] = QS

e e e
704 Smes LOMICI=] o
u" ¥ RO=100=157 'J 2104 Series IRO-10, L0=-1320
t ccmaunlcation Faramet=r=3215600 Hone. 6.2
Draver Version.5.1
28 Versiom Windows 4 10(8nild: 19%8)

Internal TLoophack Tes

[Tx<Bx] CUART)

(TS -5 | L

COMd Pz ik

CONE (PE b

Cone (P4 1k
{IRQ Test
IRY 10

;_;:(Tcsz Tine ; G57127/99 14 :4d: 39 f——mmmmnmmn

Figure 3.7: Diagnostic software

47

Multiport Card Installation

This utility was used immediately after the C014 board was installed. This utility
was proven to be effective when the first quick installation failed on the
workstation used. Thus enabling quick debugging of the installation problem,

and resolving the problem by implementing the 10-IRQ instaliation method.

3.5.2. Terminal Emulator

Once the system have been checked by the diagnostic program. It was then
possible to make use of the terminal emulator program that is included in the
PComm serial programming tool. The terminal emulator shown in Figure 3.8 was
used as a benchmark during the development of our own data communication
software. Terminal emulator features multi-windows and supports terminal type
VT100, ANSI| and Dumb. It is possible for the user to transfer data interactively,
send pattern periodically and transfer files using Zmodem, Ymodem, Xmodem,

Kermit or ASCI| protocols.

r
i e Gl B dipias s fhe | Fae salveemdeoss tele Ban sl s cnreenl
! ;

OO NIRRT

i) . - . : s %] i B
Pooonhsiiatng el g | St et B

T TR TR RS i Ce Par b Bl sbop Bl el oy

i FConum Tevminal Evmnlator - CObI2, 382000 e 8, Luamh Termunl
Erofile -Edn Fod Meonger Wndew Geh

ga[%g]%[mi@isrkl ,:s|zﬁl e

81 t11 <t It 1 ” B COMZ, 36400, Hone,8 Trarzh Tewniack

HIE TR M PRI EN o
Hawd T st o -] =
ke e ot ria

i
H
N Bl

[B TRT
SIS Bulbes are
Lsasd T e onn o
atl the T3TH and
KN sional

The status b mdates the cureesd slalus of
the poart, OPENACTONE s Hie e status
ST e TS DSRT R ad "THTYT
ST Skl are aresad b not assenied.

Figure 3.8: Terminal Emulator

48

Multiport Card Installation

To start a terminal emulation session on a COM port, the user must first ensure
the RS-232 cables are connected correctly (see next section on cabling) and the
setting in both of the terminal are adjusted to the correct setting using the port

setting dialog shown in Figure 3.9.

[Fommesyetinis s o

_Emmmm?m | rerminal] fie 1iancter | Caneng |

- COM Oofons

B e Pota: [Tz L
In the “COM Options™ group, select the s . = -
desired COM port and commumcation -

 Daedk:
parameters : e :
StopBls:
In the “Flow Control™ group. choose o \ =
twrn on ofl the hardware and or software - Flow Coniral

Iow control. respectin \.‘]ﬂ. L p;ﬂm

[y the ~Output State™ group. set the initial
state of the DR and RTS signal . RTS s

not valid when RTS CTS is sel] e]

TR

Figure 3.9: Setting dialog

With the correct setting, the terminal emulator allows the user to carry out

versatile operations such as file transfer, or sending pattern between terminals.

3.53. Data Scope

After the system was set up in the PC. An immediate test was conducted out to
examine whether the terminal emulation program was fully functional. During the
testing stages, minor problems were encountered the configuration of the cables.
As part of the approach taken in pin pointing the source of the problem was
through the application of the Data scope utility within the serial communication
tools. The Data Scope is also a utility program that assists the user with serial
communication trouble shooting and debugging for any Win32 compliant COM
port. It offers transparent monitoring capability of serial communication lines and

allows data to be streamed to disk storage for later analysis.

49

Mulitiport Card Installation

This utility has the advantage of turning a simple PC or notebook into an
economical but powerful data analyser for serial communications. By using two
COM ports, it is possible to easily tap into two serial devices at the R5232
interface and watch all the data and communication status between the two

devices.

To in order to activate the data scope, the user must first configure the port to the
desired connection mode. The user must decide whether the scope will use

Transparent mode {Figure 3.10) or Bridge mode (Figure 3.11).

Figure 3.10: Transparent Mode
Under transparent mode, data scope will transparently monitor the data and line
status across the communication iine. Port A will listens to the data sent by

Device A and Pcrt B wili listen to the data sent by device B.

Figure 3.11 Bridge Mode

Under the bridge mode, data scope will transmit the data received from Port A to
Port B, and vice versa, but not including the line status signals. The Device A
and Device B are physically connected to the PC running data scope utility with
two RS-232 nuil modem cables

50

- Multiport Card Installation

During the testing session, the bridge mode was used, and the result from the

test was ascertained and illustrated in the following Figure 3.12.

Current COM pon | j | Current data count for PortA and
pair for PortAand | | !'| PonB.inotincluding line status)
Poit B \ f

/
/S
,-'J
.-/‘,l
.-fIl
| Pl 0O L S s A TS Hgh L TR gl DEDhaoh]

— | Part B line indicates data from Device | Current information for the data, where the
B. RTS line indicates RTS signal status cursor stops. Information includes: port.
from Device B. Same to DTR and DCD | eolumn, data in ASCH and Hex time stamp,
lines. Likewise. this applies to Port A, : line status for RTS, DTR and DD,

Figure 3.12: Data Scope

51

Multiport Card Installation

3.6. Cabling

After the C104 card was installed in the PC. The next task was to gather the
various cables required for the RS-232 connections. The connection for the
C104 is a 25 pin male connector. However, most serial ports are 9 pin female
connectors, and during the initial stages of the research project, the following

cables and adapter were used for the seriai communication to take place.

3.6.1. 9 Pin Female to Female Gender Changer

Figure 3.13 shows the standard “Female Gender Changer” cable. This cable has
a female D-subminature 9-pin connector on one end and its female equivalent on
the other. All the signals are routed straight through, terminating on the same

numbered pin where it began.

DTE DCE

TD 3 e 3 TD
RD 2 > I RD
RIS 7 +——* 7 RTS
cTd g +—* & CTS
DS & " o LSR
GHD 5 4+ * I GHD
pch 1 Y+ DCD
DTR 4 * * 4 DTE
RI g v * v RI

Figure 3.13: 9 Pin gender changer

3.6.2. The Null Modem Cable

This cable is required when test are carned out between PCs. The standard PC-
to-modem cable does not work because both PC are DTE devices, both will
transmit on Pin 2 and receive on Pin 3 of their 25-pin connectors. Thus, a cable
that routes all signal straight through will be connecting the output from one PC
directly to the output to the other PC, and the RD line from PC will be connected
to the RD line of the other.

52

 Multiport Card Installation

A Null modem cable that crosses over the pins, with exception to the ground pin

was used. Figure3.14 shows the wiring diagram used for this operation.

DTE

OTR
GND
oCcD

DCE
2 >/- 2
3 ™~ 3
4 >< 4
5 5
B 6
20 >< 20
7 e
5 8

TD

RD

RTS
CT&
DSR
DTR
GND
bCD

Figure 3.14: Null modem cable

3.63 Installing the Cable

Once the necessary cobles and adaptors are gathered, it was then possible to
link to the testing jig PC to the C104 board. The Figure3.15 below illustrates all

the cables and adaptors used in making this connection.

—
1
i
\ o

C104

25 Pin 25Pinto 9 Gender End
Null Modem Pin Adaptor Changer Terminal
Cable
Figure 3.15: The entire cable and adaptors used

53

Multiport Card Installation

3.7. PComm Application Programming Interface (API)

To understand how to communicate and transfer data between the terminals. It

is important to understand some of the basic fundamentals of API.

The acronym APl stands for Application Programming Interface. [t serves as a
software interface to be used by other programs. Just as a number keypad is the
interface for a calculator. APl is the set of classes, functions, and methods of a
particular programming language. Developers use the APl to code the software,
and it has the ability to simplify commands sent to the operating system or

computer hardware,

PComm provides API fibraries for establishing communication with the multiport
and end terminal. Its purpose is to assist users to develop programs for serial
communications for any COM port complying with Microsoft. It can ease the
implementation process of Multi-process and muiti-thread serial communication
program and hence greatly reduce the developing time. It is suitable for all Win
32 compatible COM ports. The hierarchical diagram in Figure 3.16 shows the

PComm library.

Applications calbing Peomm Functions Application calling Win32 COB
ATPT

Promm Library
Windows WINZ2 COMM AT
Windews W32 COMDM AP

Figure 3.16: Hierarchical PComm library

The PComm library functions can be divided into categories such as Port control,

data input/output, and file transfer.

54

DNC Software Development Process

CHAPTER 4

4. DNC Software Development Process

4.1. Introduction

This chapter describes the software development process for the system. The
software is developed through the Waterfall model illustrated in Figure 4.1, and

the 4 stages of progression are as follows:

Requirement Analysis & Definition
This stage investigates the system’s services, constraints and goals. The final

system requirements are established by consulting with system users.

Interface Design
The interface design process partitions the requirement of the software system.

It establishes overall system architecture.

Implementation

This involves the actual coding of software sub-systems that have been analysed
and designed, and the integration of these sub-systems into a complete
functional system. Due to the structure of the chapters, the detailed description

of the implementation process is described from chapter 5 to chapter 10.

Testing

Testing stage will be carried out when a fully designed and implemented module
is completed. Sets of exercises will be designed to test the performance of the
application. Through these testing, software functions will be accurately verified

and conformed to the specification.

55

. DNC Software Development Process

Apalysis h
Design j
,f"/ Implemertation
[3
l—-) Draw Concept 1~’

Testing {

Refine Fewiew

Figure 4.1: Waterfall model

4.2. Requirement Analysis & Definition

4.2.1. End- User/Operating Environment Analysis

The primary purpose of structured analysis is tc model the sysiem's services,
constraints and goals by consulting with target users. When developing a GUI
application, the analysis activity focuses on the user and the user’s tasks. To
develop user profiles, the analysis looks at the user’s frequency of use and the

user’'s tasks.

People who come in contact with the use of this system are usually operators
within an industrial environment that need to transfer design files or NC programs
through the R5232 network on a day to day basis. It can be assumed that the
users of this system are technically qualified NC machine operators that are
experience with the use of computers. The amount of knowledge will vary from
one to another, but it is assumed that most users have used computers in the

Microsoft Windows environment,

56

DNC Software Development Process

Due to the fact that there are only a small amount of factories implementing
advanced DNC system. The end users are not expected to have any knowledge
of what a DNC system is or any prior experience in using similar packages.

A DNC structure built with a proprietary operating system will limit a manufacture
in implementing CIM applications in the future. The strong domination of
Microsoft Operating Systems (OS) over the past few years has made Windows a
de facto standard within almost every sector of industry. Therefore software
developed for this project runs under any operating system from Window 95 or
above.

Environmental Attribute | Description

User type is novice to The minimum user knowledge is confidence with Microsoft Windows

experienced environment. However some users may have previous experience in
NC programming.

DNC for commercial The software will be installed in small to medium manufacturers. The

purposes system will replace some of the manual program insertion and older

generation systems.

The users technical CNC The user of the DNC have been identified as operators in
machine operators manufacturing environment

DNC is run under The new system should not change the computer hardware
Microsoft Windows requirements for the DNC

9x/NT

Table 4.1: Specifications

57

gEiter e Lt T DNC Software Development Process

4.3. interface Design

This section of the report shows the design process for the GUL. |t first states the
specifications of the design that were gathered and deduced from the analysis in
the previous section. It then proceeds to show some of the design concepts that

were used to refine the overall design of the system.

4.3.1. Specification Defined

The specifications come from a number of areas. First and foremost the
specification from the users of the system. As one of the main principie on GUI
design, the designer must have considerations for the end users. It is important
to not only take user’'s requests into account but their individuat perspective of

the system must aiso be considered.

The first specification comes from the user type definition. The types of user are
from beginners to experienced, and with such a wide variation in user type the
interface must be created to accommodate the variance in PC literacy skilis.
Therefore, the interface must not become so simplified that the experienced
users become frustrated by the interface restriction, but at the same time the new
interface must supply a way of carrying out tasks step by step to assist the
novice user using the DNC system. The new interface is to be used as a data
transferring system from PC to PC terminals or from PC to CNC facilities.
Therefore, it is expected the system wilt offer efficiency and good organisation of

the machines confrofled by the main terminals

The interface must be recognisable as a standard Microsoft Windows style
interface. That is it shouid follow the same format for the window style and for
the controls. The interface must have the same appearance as the Microsoft
Windows software, and controls like buttons and menus must aiso behave in a

similar manner to the standard case.

58

DNC Software Development Process

4.3.2. Design Concepts

From the specification above, the design process is design-by-refinement where

a concept is drawn and then reviewed for suitability and adaptability.

Figure 4.2 shows storyboarding were used as the principle method of design lay
out. First of all, the required task was documented in operations through OO
program design approach. These operations were then expanded into a
sequence of steps where each step was a designed element. To illustrate the
idea, the following is an example of a very simple use of exchanging characters

between the two terminals

Initiate the system.
Specify the terminals to initiate communication.

Activate the serial port by declaring the necessary conditions.

B W o=

Start the communication with the desired terminal.

File | Edit | Windows| Port

First Window
Port1l
Port2 O 0K
Port3 O
Cancel
Portd O
Send X

Figure 4.2: Storyboarding

59

DNC Software Development Prooeéss

4.3.3. Final Design

The combination of all those concepts and design iterations resulted in the final
design that is illustrated in Figure 4.4. The final design was developed using
Multiple Document Interface (MDI} technique. Many window-based appiications
such as Microsoft Excel, Microsoft Word, and CAD systems etc have similar
multiple document interfaces. The interface consistency makes it easy to
operate in the Windows environment. A MDI application allows users to display
mutliple documents at the same time, with each document displayed in its own
window. Document windows are contained in a parent window, which provides a
workspace for all the document windows in the application. As stated in the
previous section, this system contains four independent modules. The
communication model mainly takes cares of data transmission and records NC
programs downioaded and uploaded. Other relevant manufacturing information
can also be viewed through this module. NC editor facilitates the users to edit or
madify NC programs within the DNC system. The OLE MDI form will allow the

users to link the system to other existing software on the deskiop.

Main
Menu Tool Bar
NC Edit
T NC Program
List &
Terminal List
OLE Link
File Transfer

Setup

Figure 4.4: Final design of main interface

60

Establishing Communication

CHAPTER 5

5. Establishing Communication

5.1. Introduction

This section of the report explains the implementation phases of the program.
Denoting areas such as the structure of the program and the actual development
procedures of the system. It covers the programming techniques used, the
application of Delphi programming functions and the step-by-step explanation on

establishing communication through a multiport card.

5.2. Establishing Communication

The first step taken to establish a serial communication between the multiport
card and a second terminal is to open a communication channel. This research
begins by establishing a new project file called Fountera.dpr and a main form
named FtansM.pas. In order to access the PComm Serial tool, two more files
must be added to the project. Figure 5.1 illustrates how to add these files using

the project manager in Delphi4.

.ﬂ

i x |

lew Femove |

Files | Path

{’:j ProjectGroupl C:AProgram Files'\Borland\Delphid'\P
= @ FounTela.exe C:ADocuments and Settings\Captain
g Mutool pas C:\Documents and Settings\Captain
r=] Pcomm.pas C:\Documents and Settings\Captain

Figure 5.1: Delphi’s project manager

61

% .Establishihg Communication

5.2.1. PComm.pas

The full context of the PComm.pas can be found in section 10 of Appendix A.
This file is the main file within the PComm serial programming API. The first part
of this file has numerous declaration of constants for ports and file transfer
settings. The rest of the PComm file imports routines from the PComm.dll and

are all declared as functions within this file.

5.2.2. MxTool.pas
MxTool is a Pascal file that is within the PComm serial programming tool. This

file is mainty responsible for the handling of error messages. The file has a

specific procedure that lists out the main errors when they are encountered.

5.2.3. ExGlobal.pas

After those file for the PComm serial tool has been installed. The main interface
FtransForm then needs a Pascal file which contains the Global variable & COM
port record defined for the main interface. The ExGlobalpas shown in the

Appendix A starts by deciaring:

type
TExampleForm = class{TFom)

Term: TMemao;

The line TExampleForm = class{TForm) describes a form created in the memory. The
TFtransFrom inherits TForm's members, a class that Delphi provides for creating
forms. While Term is a Memo ciass that is also used later on during the

program.

The next part of this program is a record named TCOMMDATA. A record is a
Pascal syntax that allows a coilection of related data to be rolled up info a single
storage unit. In this program, TCOMMDATA is a single data variable that holds all

fields needed in configuring a serial port.

62

Establishing Communication

For example,

TCOMMDATA = record
Port : Longint;
BaudRate : Integer;

Hw : boolean;

The next section of the Exglobal.pas declares the Global variables required in the
FtransForm. As shown in Appendix A, the first variable is GcommData, it is
declared so that instances can be created in FtransM. The second variable
GszAppName is a string declaration that stores the name of the application, and
the third variable declares the GhForm as a TExampleForm. The rest of the global
variable declarations include numerous other array of variables required, for
example, the following array declares all the 5 possible parity bits found in serial

communication.

GstrParityTable :array[0..4] of string = (
'None','Odd','Even','Mark','Space');

The very last section of this file is the codes used for the procedure ShowStatus.
Figure 5.2 illustrates the end effect of this ShowStatus function, this procedure
writes the information on the COM port on top of the Window after a user

chooses to open a serial port.

M Simple Demo -- COM3,38400,None, 8,1
File Setkrfig Port Transfer Edit OLE... Help

|elgleibi@sima]-| [o|s|y
s oras | | DRI JR=TE
application ' . - _J

Figure 5.2: Showstatus

63

Establishing Communication

5.2.4. Config.pas

In order to adjust the setting of the serial port for establishing communication
between terminals, the next step of the research project is to make a form that
allows the user to adjust the setting of the serial port. Figure 5.3 illustrates what
config.pas looks like

=t Com Bptron

© 0 Com aption

COuputState
Fort : [=] rom
Baud Fate I 'I I A
Patity - [—L] IRy
[Chata Eis - [—Li [T XOMAGEF
Shop Bits I 'I [~ RTS/CTS

© Flow Controf

Figure 5.3 Config.pas

The name of this form is called a CfgForm, and contains 5 procedures that are
used in manipulating the serial ports. The first procedure FormCreate is used
specifically for configuring COM ports. As shown in section 5 in Appendix A, the
FormCreate procedure uses a for loop function that adds the word COM {o the

start of every port.

The FormActive procedure allows all the selected setting from this interface to
take effect when a port is opened. For exampie, the line cbBaudRate. ltemindex :=
ibaudrate declares the baud rate to be the value selected from the Combo Box.
The chHwClick procedure provides a simpie technique that turns off the RTS
output state when RTS/CTS is tumed on (see Figure 5.4).

OLtput Srate Output Stake
¥ DTF v DIR

™ RIS i

Flaw CTontrob Flow Control

[~ XOMAOFF [T WOMAOFF
™ RTS/ACTS

Figure 5.4: Ouiput state & flow control
64

Establishing Communication

This is achieved by first declaring a Boolean variable called Gfhw in the start of
the code, and if the RTS/CTS (chHw) is enabled, the RTS (chRts) will be
automatically disabled.

The last two procedures, the CfgCancelClick and the OKClick are used for allowing
the user to make the newly determined setting of the serial port to replace the
default setting provided in the FormCreate procedure in FtransM.pas. If the Ok
button is accidentally pushed. A pop up window will appear for the very last
minute confirmation of the setting as shown in Figure 5.5.

Confirm

\c;') Seftings Correct?
L]

525, FormCreate Procedure

Having included the PComm.pas, MxTool.pas, ExGlobal.pas, and Config.pas it

is now possible to construct the main interface. The first part of coding is the
FormCreate procedure:

procedure TFTransForm.FormCreate(Sender: TObject);

As illustrated in section 1 of the Appendix A, the code of the FormCreate
procedure includes many other lines of code that are used for other functions.
However, this chapter is only interested in establishing communication between
the multiport and the main PC terminal. Therefore, only functions, codes and
programming techniques that are closely linked with the establishment of the

terminal communication is discussed in this section

65

Establishing Communication

The first part of the FormCreate procedure uses a with statement io set up
instances for the GcommData record. The use of With statement aliows the
deciaration of the record without using record identifiers and dot operator. In this
declaration, all the initial default parameter for the serial port is listed. As it is
shown, if the user chooses to open up a serial port, the default opens with the

following settings:

Porl :=3;
ibaudrate := 14;
tparity :=0;
ibylesize = 3;
istopbits = 0
BaudRate := B3840Q0;
Parity :=P_NONE;
ByteSize = BIT_8;
StopBits = STOP_1;

Figure 5.6 shows the default serial port declarations of the serial port after it is

activated.

Default

Name LE... Helx

|eda h@®a0D

Figure 5.6: Default name

5.2.6. Menu
As shown in Figure 5.6, main menu is also a component that is being applied

during the early phase of the programming. Every item in a menu is an object of
the Tmenultem class; Delphi automatically creates these objects when the user
designs menus with the Menu designer. As shown in figure 5.7, the menu
designer can be sized in any way that the user desires, it also offers the ability to

create short cut keys assignments for menu commands.

66

Establishing Communication

'l FTransForm.MainMenu1 ‘ T o]
58 Setting Port Transfer Edit OLE.. Help |

New

Open

Save

Save As...
Save Setting

Print...

Print Setup...

Exit

Figure 5.7: Menu Designer

The next relevant procedure is SwitchMenu procedure. This procedure inhibits
the use of menu item when certain conditions are imposed, for example when a
serial port is opened, the port open menu button will be automatically made

inaccessible until the serial port is closed.

5.2.7. PortSet Function

The PortSet Function is a very important function used in setting up the serial
port. Functions are very similar to procedures, both functions and procedures
are executed when the interface needs to perform specific actions in a program.
However, a function has to return a value, while procedure doesn’t. As illustrated

in Figure 5.8, an anatomy of a function can dissected into following parts

function TFTransForm.OpenPort:Boolean;

Function Return

Keyword Type

Function
Name

Figure 5.8: Anatomy of keyword Function

67

“5 Establishing Communication

The PorSet function provides port control functions for all the serial ports. As
shown in section 1 of Appendix A, PortSet function makes use of the APIs
provided by PComm serial programming tool. The first APl used here is sio_ioctl,
this APl configures communication parameter such as baud rate, parity, data bits
and stop bits. This function requires argument such as Port, baud and mode as

parameters, for example:

Port = COMPort number;
{ port := GCommData.Port;}

Baud={bits/sec);
{ GCommData.BaudRate;}

Mode=bitcnt OR stop_bit OR parity
{mode := GCommData.Parity or GCommData.ByteSize or GComm©Data.StopBits;}

Sio_ioctl returns SIO_OK, which is a long integer value represented by ret if the
output of sio_loctl is not SIO_OK, the function wili then activate the Show FError
function provided by MxToolpas. The rest of this function also applies similar
coding algorithm, it checks setting for hardware and software fiow control
(sio_flowctrl), DTR state (sio_DTR) and RTS state {sio RTS) for the serial port

setting.

5.2.8. Open Port Function

The OpenPort function starts off by declaring OpenPort as false. 1t then uses a
sio_open from PCcmm.pas APl to aliow a COM port to be opened for data
transmitting and receiving. The sio_open function takes on the vatue for the COM
port number, and refurns SIO_OK, which is a long integer represented by ret in
FtransM.pas. Another important aspect of the OpenPort function is that if the
PortSet function is to be found false within the OpenPort function. The OpenPort
function would then close the COM port and stop transmitting or receiving any

data.

68

Establishing Communication

5.2.9. Setting1Click Procedure

The settingiclick procedure is used to adjust the setting of the serial port, As
shown in the Appendix A, when the setting is clicked using either the roll down
menu or through the quick access button. The procedure will immediately
access the CfgForm in Config.pas. As shown in this procedure, if the user
chooses to cancel, the CfgForm disappears, and FtransForm takes the default
setting declared early on in FormCreate procedure. If the user chooses the Ok
button, the GcommbData will then replace the default setting in FormCreate
procedure.

5.2.10. PortOpenClick/ PortCloseClick Procedure

Having declared the OpenPort & ClosePort function previously, these functions
can now be access through the roll down menu. The PortOpen procedure
activates the OpenPort function, and will produce a “Beeping” sound. Both of

these procedures will also show hints on the status bar when activated.

5.2.11. Testing for Signals

All the programming listed in this chapter is the fundamental code required to
open and close port. To test whether these procedures have been written
correctly, the user must use the data scope from the PComm serial programming
tool to see if the serial port have been open or closed when the user pushes the
menu buttons. In the research project, a device called a RS-232 tester was also
used to provide an even quicker indication as to whether serial ports have been
accessed successfully.

69

Establishing Communication

The following three setting were used to demonstrate the program works:

First Test:
~Com option tatd aol * 4 hs
utput State
Port: m ‘ ’ p’ DTR }
BaudRate: |38400 ~ i ¥ RTS J
Parity : None v i
Flow Control
Dassis: [¢ 2T oo
Stop Bits |1 vl | ‘ ATS/CTS }
(avic) inaa|
Figure 5.9: Test |
Second Test:
[Consl Efone” =1 115, S A R R |
|
B SRS L AR |
| [iy \ "'Uutput State—— ;
- Port: ETEW -] | o .
| BaudRate: |3B4C0 vl ’i I RTS l;
i NO"G 3 Flow Control i ‘:
Data Bits : IG vI et 4
sopBis |1 =] I RTS/CTS .
I—le X Cancel |
Figure 5.9: Test 2
Third Test
R R e il < |
P ; Output State | '
Port : [mﬂ p DTR ‘lm“
Baud Rate : 38400 e '7 RTS I.{
Parity : None v o ! :
Data Bits : lB vl r XON/)(DGI i | .:
sopBis |1 =] P RTSATS ! 4
»
l « 0K I x Cancel I

Figure 5.9: Test 1

70

Character Exchange Interface

CHAPTER 6
6. Character Exchange Interface

6.1. Introduction

This chapter describes how SimpleForm from SimpleM.pas transfer characters
through the serial ports. Apart from the similar structure and programming skills
used in FtransM.pas, threading technique was adopted to allow data to be

displayed on the end terminal.

6.2. SimpleM.pas

As stated in the introduction, this file contains codes that are very similar to the
procedures and functions found in the early sections of the FtransM.pas. The

graphical interface is shown in Figure 6.1.

§ / Simple Demo

{00001

N1 G21

N2 (B MM 4 FLUTE HSSE M)
N3 GIT G28X0Y0Z0

N4 T8 MO5

NS s200 MO3

NE G0 G54 GO0 X187, ¥1.25
N7 G43Z10. HOS MO

NS GO Z10.F2.

N9 x4, 00,

HN10vo

HN11v1.75

Huzxsr.

{N13v-4.75

IN14%4.

{N15Y-7.75

N16%187.

N17Y-10.75

| MR

N19Y-13.75

N20 %187,

N21v-16.75

N2z %4,

N23Y-19.75

{N24 %187,
N25Y-22.75 <
N2E 4.
AN27v-25.75

Figure 6.1: Character Transfer Interface

A

_Character Exchange Interface

The Data Exchange interface (SimpleForm) has a Memo that is aligned in the
centre of the interface, and has a sticky button on top which activates the read

thread procedure required.

To access the character exchange interface, the user first needs to establish
communication between the two terminals by configuring the COM ports on both
terminals using the setting button on the menu. The port setting on the second
terminal must also concur with the main workstation. By clicking on the quick

button shown in Figure 6.2, the character exchange interface is then activated.

This interface allows the user on both end of the RS-232 network to type
whatever character on the keyboard, and to have the characters displayed in the

main memo.
Quick Asimple Demo -- COM3,38400None,81
Button dle_ Setting Port Transfer Edit ©OLE... Help

=] w]

o|al|n@a|m)|

Figure 6.2: Quick button for Character exchange interface

id

6.3. Threading Applications

The Win32 operating system provides the user with the capability to have to have
multiple threads of execution in the application developed in this project.
Threads provide a mean for running many distinct code routines simultaneously.
Of course, strictly speaking, two threads can't truly run simultaneous operations.
However, each thread is scheduled fractions of seconds of time by the operating
system in such a way as to give the feeling that many threads are running

simultaneously.

72

6.3.1. The Thread Class

Delphi encapsulates the API thread object into an Object Pascal object called

Tthread. Thread class is never used directly, because it is an abstract class- a

class with virtual abstract method. To use threads, the user must always

subclass Tthread and uses the features of this base class

The Tthread object has many properties and methods to handle threads. The

properties and methods used are summarised with description of each in Table

6.1 and 6.2.

Table 6.1: Property Description

Property Description

Free On Terminate - Determines whether the thread object is
automatically

Priority - Specifies the thread’s scheduling priority. Set this priority
to a higher or lower value when needed.

Suspended - Specifies whether the thread is discontinued or not.
Terminated - Determines whether the thread is about to cease.

ThreadID - Determines the thread's identifier.

Table 6.2: Method Description

Method Description

DoTerminate() Calls the OnTerminate event handler without
terminating the thread.

Execute() Contains the code to be executed when the thread runs.
Resume() Resumes a suspended thread

Suspend() Pauses a running thread.

Terminate() Signals the thread to terminate.

73

6.3.2. ReadThread.pas

The most straightforward way to create Tthread descendants is to select Thread
object from the New Item dialog box provided by Delphi. After choosing Thread
object from the new item dialog box, the user will then be presented with a
dialog box that prompts you to enter a name for the new object. In this case,
enter TReadThread, this will then create a new unit that is initially defined as

follows

type
TReadThread = class(T Thread)
private
{ Private declarations }
protected
procedure Execute; override;
end;

In this application, the ReadThread unit is used to display the character sent out
from the other end terminal. Therefore, ShowData procedure had to be added to
carry out this task. The procedure starts by declaring a variable lend that hold
the length of the text within the form. This variable is then used to control buffer
size limit (m_buf) if the length of variable lend exceeds the set limit.

if(lend>25000)then

begin
{ Edit Control buffer size limit }
GhForm.Term.Text := string(m_buf);
Exit;

end;

The method that the user must override in order to create a functional
descendant of TReadThread is the Execute () method. In the listing shown in next
page, Execute () will set GhExit to true to terminate the read thread before close
the serial port.

74

Character Exchange Interface

The sio_read API function takes the COM port number, Buffer pointer, and the
length of the data to be read as input argument and returns a long Integer
variable Len. If the value of Len is greater than 10, the procedure then sets a null
terminated string and then adds the synchronise method.

procedure TReadThread.Execute;
var
len : Longlnt;
begin
(* before close port,set GhExit to true to terminate
the read thread *)
while not GhExit do
begin
Sleep(10);
len := sio_read(GCommData.Port,@m_buf,511);
if (len>0) then

begin
m_buf[len] := Char(0);{null terminated string}
Synchronize(ShowData);
end
end;
end;

6.3.3. Advantage of Single Thread

The data exchange is a single threaded interface. As a single-threaded
interface, it greatly reduces the complexity of the application. Win 32 requires
that each thread creates a window have its own message loop using
GetMessage() function. Therefore, when there are many threads being used,
there will be messages coming into the application from a variety of sources.
Because an application’s message queue provides a means for serializing input-
fully processing one condition before moving on to the next. Adding additional
message effects the serialisation, thereby opening up potential synchronization
problems and possibly introducing a need for complex synchronization code.

75

CHAPTER 7

7. File Transfer

7.1. Introduction

After a system has been properly set up and has the ability to exchange
alphabetical character between terminals. The next milestone within the project
is to be able to successfully transfer files. To achieve this task, the system
requires the correct RS-232 cabling, correct serial port settings and both
terminals involved in the transaction also need to be set up exactly the same.
This chapter will cover areas such as file transfer protocols and the techniques

used in the programs.

7.2. File Transfer Protocols

One of the main prerequisite before conducting a file transfer is to look for the
protocols common to both machines and select the most appropriate one for the

task. Following is a brief overview of some of the more well-known protocols.

XMODEM: The XMODEM protocol was one of the first file transfer methods that
achieved widespread use on the desktop. XMODEM is a relatively simple
protocol that allows a user to perform a binary transfer of a single file. It requires

a clear 8-bit channel with no software handshaking.

Many minor variant of XMODEM have been developed over the years. The most
universal is XMODEM-CRC, which uses a 16 bit CRC Checksum rather than an
8 bit additive checksum for improved error detection. XMODEM-1K increases
the block size from 128 to 1024 bytes, giving great utilization of MNP-4, because
it assumes an error free connection and does not require immediate

acknowledgement of each packet.

76

YMODEM: is an enhancement of the XMODEM file transfer protocol. YMODEM
adds a file information packet to the XMODEM protocol so that it can send the

filename, size and data along with the file content. Because of this extra layer in

the protocol, YMODEM can also send batch of files than just one file at a time.

ZMODEM: XMODEM and YMODEM work well under certain circumstances, but
they have their drawbacks and limitations. The X & YMODEM work only on 8-bit
communication lines. Packet-switched network cause XMODE performance to
degrade, and most of the time X & Y MODEM don’'t make very efficient use of
their available band width.

ZMODEM: was designed to correct all of these problems. First of all, ZMODEM
was specifically designed to work well on packet-switched networks. This which
allows to form a streaming protocol, meaning that it sends data in a continuous

fashion without waiting for acknowledgment of individual blocks.

KERMIT: Kermit was developed in an attempt to let machines from various
incompatible architecture communicate. Kermit is a carefully designed, well-
layered protocol, with detailed specification and public domain source code

available.

Kermit is a packet-oriented protocol that avoid using characters that could conflict
with software handshaking or other protocol characters. It can work on either 8-
bits or 7-bits channels or offer built in data compression and other advanced

systems.

¥

7.3. File Transfer Interface

This section describes much of the interface used in transferring data between
terminals. As mentioned earlier, one of the main focuses of this application is to
enable users to conduct quick file transfer between terminals. Therefore as
shown in Figure 4.4, much of the file transfer configuration occupies half of the

areas of the FtransForm (FtransM.pas) interface.

To initiate a file transfer through the application. The user first needs to establish
communication through the serial port using the methodology and the steps
illustrated in Chapter 5. Once the serial ports on both terminals have been
activated and configured to the same standard, the Transfer menu button will be

enabled and thus allowing the user to carry out the task of transferring files.

If the transferring menu button is clicked, the message window interface shown in
Figure 7.1 will enquire the user to confirm the decision made in initiating a file
transfer.

Figure 7.1: Confirmation Dialog
If the “Yes” button in the message dialog is pressed. The Function UpdateGT will

be activated, which takes the user to the proceeding configuration panels to

conduct file transfers.

78

7.3.1. Protocol Configuration Tab

After the user confirms to initiate the file transferring process. UpdateGT function
only allows Tab sheet 1 to be made active. The UpdateGT provides a form of
restriction that prevents unpredicted error, and it is also a method that can be
easily to implement. Figure 7.2 illustrates Tab sheet 1, as it is shown it contains
two radio groups, in which the user must specify which protocol the user wishes

to employee, and whether a file is being transmitted or received.

Transfer Protocol | File Directory | Transfer Status |

~Protocol Direction
@ XModem - TKCRC & Transmit
 XModem - CheckSum
" Receive
= XModem-CRC
| " ZModem
T YModem v Ok
" Kermit |
- ASCI ‘ X Cancel

Figure 7.2: Protocol Specification Tab Sheet

Once the user selects OK, the items on the rgProtocol radiogroup will be passed
to a shared variable (Gprotocol) that is declared in the single thread file (FtProc).
The same applies to the rgDirection radiogroup found in TabSheet 1. The
activation of the OK button on tab sheet also triggers a further update of the
interface through UpdateHt function. This update allows TabSheet 1 to be
continually active while enabling the user to access the functions in tab sheet 2.

79

7.3.2. Directory List Tab

As it is shown in Figure 7.3, TabSheet 2 acts like a directory dialog, and is
composed of several directory navigating components.

=
| = William

e 0412FounTera

Figure 7.3 Directory List box

DirectoryListBox
The DirectoryList object displays a directory tree outline. User can double click
FileListBox and use the keyboard to select directories in this window.

The user can use a DirectoryListBox alone in a window, but it usually needs to
display files in selected directories. To do that, the user needs to assign the
name of a FileListBox object to the DirectoryListBox's File List property. This
could be carried out in the Object Inspector window. However, in this application,
the assignment is made at a run time with code as listed below within the
OnCreate event handler of the FtransM unit.

DirBox.FileList := FileListBox;

80

To show the currently selected path as a string, a label (DirLabel) was inserted

into the form, and association was made at run time, by inserting the following
statement into FtransForm’s (FtransM) onCreate event handler:

DirBox.DirLabel := DirLabel;

DriveComboBox

A DriveCombox will allow the user fully utilise the storage spaces available in a
PC, The following code was added to the FtransForm’s OnCreate event handler to
relate the DriveComboBox or the DirectoryListBox.

DriveBox.DirList := DirBox;

When users select a different drive, the DirectoryListBox automatically updates
its tree. If the FileListBox is also associated with the DirectoryListBox, the file list
is also updated.

FileListBox
A filelist box displays filename in the current directory. The DirectoryListBox is
associated with a FileListBox within this application, so that the list automatically

changes when user browses through directories.

The listing below shows the code required to add an edit control to this
application, the EditControl initially shows the filter *.*, which selects all files. As

users select filenames, the FileListBox inserts them into the Edit windows

FileListBox.FileEdit := FileNameEdit;.

After the user has specified the path of the file to be transferred. The system will
then record these specifications if the OK button (DirDigOKClick) on Tab sheet 2
is clicked. The DirDIgOKClick first determines the direction of file transfer, by
examining the ltemindex on the rgdirection Radiogroup. Itemindex holds the

ordinal number of the selected radio button in the Items list.

81

The first button, Transmit (FT_XMIT) is 0, and the second button Receive
(FT_RECV) is 1. The value of Itemindex changes at runtime as the user selects

radio buttons. If the user wants one of the buttons selected to appear, the user
must assign that button to Itemindex at design time; otherwise, leave Itemindex
will be set to the default value of -1, which means that no button is selected. The
default itemindex values in this case is set to 0, thus Transmit will the default

button chosen.

The listing below shows that if Transmit is the direction chosen, procedure
XmitFile will be activated. XmitFile first declares a string variable (Falcon) that
stores the FileNameEdit string. It then uses a Window's API function called
Istrcpy, which copies the entire contents of one string (Falcon) into another string
defined in ActiveFormlmpl1 unit (GxFname). The XmitFile function works closely
with the FTProc thread, which is the main thread used to execute the file

transfers. (Details on FTPro is discussed in the next section).

if FTransForm.rgDirection.ltemindex = FT_XMIT then
XmitFile

If the direction of the file transfer is set as Receive, the DirDIgOKClick would then
determine whether any the following three protocols ZMODEM, (FTZMDM),
YMODEM (FTYMDM) or KERMIT (FTKERMIT) have been chosen in Tab Sheet 1.
If so, the DirDIgOKClick procedure will again activate the Istrcpy, and copy the
entire contents of one string (Falcon) into another string defined in

ActiveFormImpl1 unit (GrPath).

Istrcpy(GrPath,PChar(F TransForm.DirBox.Directory));
SetCurrentDir(GrPath)

82

73.3. Transfer Status Feedback Tab

The DirDIgOKClick leads to the initiation of the third Tab Sheet, which is illustrated
in Figure 7.4. This is also the last of the three tab sheets used with the file
transfer sequence

Transfer Protncol? File Directory Transfer Status

Port ibPort Protocol |bProtocol

File Size |hFSize ~ Length lbxLen

File Name |pFname
X Cancel i

Figure 7.4: Feedback Tab Sheet

This interface provides the user a visual feedback of the current file transfer
status through the Fiproc thread. Therefore, the detailed discussion on the

technique in designing the feedback function will be described in the proceeding
section.

7.3.4. FtProc Thread

As mentioned in the previous chapter, thread provides a very easy technique in
delivering the necessary background processing while still providing the best
possible response time. In this part of the application, the FtProc thread is used
for numerous file transfer functions, and transfer status feedbacks.

83

R T R R R SRR Flle Transfer

As described in the preceding section, the file starts by declaring the Itemindex
value for the direction of file transfer Constants, and proceeds by declaring the
Itemindex value for the file transfer protocols. In both of these radio groups, the
itemindex holds the ordinal number of the selected radio button in the Items list
(The first button is 0.). The value of ltemindex changes at runtime as the user

selects radio buttons.

Tud: D) Execute ()

After creating the thread object in main process, 'Execute()' procedure will be
called automatically. The execute procedure starts by setting ‘ret’ as a long
integer variable used by all the PComm functions. In this part of the FtProc, the
‘Execute()’ examines whether the rgdirection of the first radio group has been set
to transmit. If the rgdirection is set to transmit, the program then determines the
protocol chosen at tab sheet one, and applied the API accordingly. For example,
if the user decides to conduct the file transmission through the ZMODEM

protocol. The following API will be executed:

FTZMDM:
ret := sio_FtZmodemTx(port, GxFname xCallBack, 27);

This API function takes on the following as input arguments: COM port number,
the name of the file, and a call back function that is invoked each time data is

transmitted and keeps the progress of the file transferring updated.

If the user opts to receive a file on Tab sheet 1, the Execute () will then undergo
through a case statement that is similar to the one used for the FT_XMIT. The
only difference is a different set of APIs are used for receiving. For example, if
the user decides to receive file through the ZMODEM protocol. The following
API will be executed:

ret := sio_FtZmodemRx(Port, fname,1,rCallBack, 27);

84

B DR T e R e File Transfer

At the end of Execute(), the procedure lists the action that will be implemented
when an error occurs during the transmission/receiving of the file. As shown in
Appendix A, the procedure enters the ProcessRet() procedure when an error
occurs (The ret is <0), and if the ret value checks out to be >0, the file would then

display the message dialog box to give a warning signal

1.3.6. xCaliBack/rCallBack ()

The Cancel button in Tabsheet 2 & 3 has been designed to a more complicated
level than the Cancel button on tab sheet one. When a user pushes the cancel
button on tab sheet 1, none of the setting in the radiogroups would have any
effect, because most of arguments would have remained dormant, = However,
the Ok button on tab sheet one will invoke the DirDIgOKClick (). Therefore, when
the user wishes to exit form the file transfer sequence, the Cancel button
executes another procedure, where the function calls the xCallback () in FtProc.

When the cancel button on the second tab sheet is pushed, the application
enters DirDIgCancelClick (), and set the GftCancel to true. The xCallBack () from the
FtProc will set the xCallBack to -1, which would stop the terminal from transmitting
data. The PComm file transfer API executed would then return SIOFT_FUNC
(Described later in ProcessRet function), to cause the current file transmission to
be aborted.

However, if none of the cancel buttons have been activated during the file
transfer sequence. The xCallBack () would enter the RefreshDIg() on FtransM
unit, and would update the caption edits on the tab sheet 3, and sets xCallBack

() to O to indicate the application is continuing receiving file.
When receiving files, the application works exactly the same way. Except when

GftCancel to true, the FtProc would enter the rCallBack() function which operates

exactly the same way.

85

1.3.1. ProcessRet()

As mentioned in the earlier section, the Execute () would enter the ProcessRet()
when ret < 0. The ProcessRet() is specialised in returning message dialogs to
give user feedbacks concerning the possible cause of failures.

The following table is the list of possible returns:

SIO_BADPORT Port is not opened in advance
SIOFT_TIMEOUT Protocol timeout
SIOFT_FOPEN Can not open files

SIOFT_CANABORT CAN signal abort
SIHIOFT_PROTOCOL Protocol checking error abort
SIOFT_WIN32FAIL Calling Win32 function failed

86

File Transfer

7.4. CNC Machine Quick Access

One of the key requirements in delivering a successful DNC system is the ability
to transfer the data quickly and easily across the network. To achieve this task,
the following outline components were added onto the main interface
(FtransForm) as illustrated in Figure 7.5. This enables the users to add and link

additional CNC machine or PC terminals to the main communication centre.

New
Qutline 1

& hdilling Machine

Machine
Porperty

Save

-

Open
Setting

Figure 7.5: Quick File Transfer Interface

Machine outline contains some of the machine that a typical small-medium New
Zealand CNC company might possess. The main function provided by these two
outline component is that the user can add a new CNC machine quickly, and
access it through one of the 6 serial port that are available on the main DNC
workstation (2 standard serial port on a Pentium PC, and 4 additional serial port

provided by the Moxa multiple port card).

87

© 000 File Transfer

e

The outline component on the main interface allows the users to assign CNC
machine to any existing serial ports on the main workstation. Figure 7.6 shows

the assignment of a milling machine to serial port 2.

on Terminal

& COMS

First Outline - ENeel Second Outline

Figure 7.6: Machine assigned to serial port 2

The Handling the dragging method is used to allow the users to assign CNC
machines to the serial ports. The method starts when the program calls the
BeginDrag procedure after the user presses the left mouse button over the first

outline component.

As soon as the button is released, the program automatically calls the EndDrag
method of the first outline. The second outline defines a simple handler for the

OnDragOver event, and performs the real work in the OnDragDrop event.

This method listed in the next page is quite complex, but it is also the main focus
of this part of the interface. When the user drags a new element, the program
first determines the item of the destination outline on which the element was
dropped, using the Getltem function and the coordinates passed by the event.
Then the program selects this item as the outline’s current item -- that is, the item
that will be affected by the following call to the AddChild method. The -1 is
needed because the Lines array is zero-based, while the items are numbered
starting from 1. It is possible to extract the text of the item directly form the Lines
Array only because the items of the source list have no indentation.

88

procedure TFTransForm.Outline2DragDrop(Sender, Source: TObject; X,
Y: Integer);

var
Current: Integer;
begin
Current := Outline2.Getltem (X, Y);
if Current > 0 then
begin
Outline2.AddChild (Current, Outline1.Lines[Outline 1.Selecteditem - 1]);
Outline2.ltems [Current].Expanded := True;
End
End;

The add button on the right hand side allows the user to add specific type of Date

Terminal Equipment by typing in the name of the additional machine using the
MachineForm shown below:

B Lo . : il)
= e

Figure 7.7: Machine Form

The following listing is used to examine whether the user have inserted a name
for EditNew. If the EditNew is not empty or the IndexOf () is less than 0, then the

method would then put the newly added machine name into the first outline.

if (EditNew.Text <> ") and

(FTransForm.OutLine1 Lines.IndexOf (EditNew.Text) < 0) then
begin
{add the string to both listboxes}
FTransForm.OutLine1.Lines.Add (EditNew.Text);
Close;
end;

89

=
e
il Sk

The MachineForm has a button which links to the property form that is illustrated
in Figure 7.8.

/" Property

T ch

H&GS VF'4 A ; ty i) - > i __o'-":‘“" . R fff- 15
Hitachi-Sieki SV 508 UL M Macige- il
Moteulin | Machine ID: LightDuty:
= Mill Machine-mm plesenngis i il i ot
Mori-Seiki SV50B
Turn Machine-4 Axis

Number of Axis 3
MexFeedrate: 2500000 mmymin
‘MexSpindle Speed: 10000007pm

Select I

Figure 7.8 Property form

Through the property form, the application allows the users to specify the
controller type through a for loop that assigns detailed description of each
controller. The listing below shows the for loop assigns a value to every list items
found in the listbox. When the ListBox1Click method is called, the for loop
determines the value of the item selected, and displays the details in all the
captions within the right hand side of the form.

procedure TPropertyForm.ListBox1Click(Sender: TObject);
var
Listitem: Integer;
begin
for Listitem := 0 to ListBox1.ltems.Count - 1 do
if ListBox1.Selected [Listitem] then
begin
if Listltem = O then
begin
MachTypelLabel.Caption := 'Haas VF-4 Mill';
MachDutyLabel.Caption := 'Light Duty';
NoAxisLabel.Caption :='4';
MaxFeedLabel.Caption := 25000.00 mm/min’;

MaxSpinLabel.Caption :='10000.00 rpm’;
end;

90

CHAPTER 8

8. MDI Programming

8.1. Introduction

As part of the research, Multiple Document Interface (MDI) is used for both the
NC code editor and the OLE windows (See Chapter 9). Every MDI has three

basic parts

e The MDI Main window form
e One or More document MDI child-window forms

e The MDI main menu

Unlike in conventional Windows programming, a Delphi form object takes the
place of the standard MDI frame and client windows. Classically, the frame
window is the visible one; the client window is kind of silent partner that handles
global operations, created child windows, and performs message services. In
Delphi applications, the frame and client window still exist, but the user rarely
uses them. For all practical purposes, it is possible for the programmers to treat
the frame and the clients as one window, represented to the program as the
main-window form. A MDI is often considered as a file-handling system, but an
application’s child windows do not have to be associated with disk files. The user

could also use the MDI to construct multi window applications in other areas.

8.2. MDI- Main Window Form

In order to have MDI based interface, one of the first task carried out when
creating the FtransForm, was that it must have its FormStyle set to fsMDIForm in
the dialog shown in Figure 8.1. To ensure that the windows’ form object is
automatically created, the user could double check this by going to the Project|
Options, and verifies that the FtransForm is shown in the main form list box and is

listed under Auto-created forms

91

lObject Inspector

i FsN ormal i
fsStayOnTop

A

Figure 8.1: Changing the FormStyle
8.3. NC Code Editor
Every MDI application needs at least one child-window form and unit. In this
project, there are 2 major functions that requires the use of MDIs. The first MDI
application is the NC editor. With the NC editor, an NC program can be modified
before it is transmitted to other terminals on the shop floor. The NC editor
facilitates users to accomplish the task of modifying variables such as feed rate,
spindle speed. Once the user has made the necessary modifications, the user
can then download the NC programs to a specific machine tool immediately from

the main communication terminal.
To make the NC editor into an MDI application. A new form object named

ChildForm (Child.pas) must have its FormStyle set to fsMDIChild, and the form
should be resized, so that it can be selected more easily.

92

Figure 8.2 illustrates the NC editor working with multiple documents like earlier
versions of Microsoft Word. Many different programs can be opened at the same
time as long as the RAM of the PC allows.

| A File Transfer
e Setting

Figure 8.2: Multiple NC editor

Figure 8.3 shows an NC program in Editing. Once the modification is completed,
the NC program can then be saved, downloaded, or uploaded to remote
controller.

/X Base.tut

ooom
N1 G21

N2 [E MM 4 FLUTE HSS E.M.)
{N3G91 G28<0Y0Z0 |
N4 T08 MOB

N5 5200 MO3

NG G390 G54 GOD X187 ¥1.25
N7 G43210. HO8 MO8

{N16x187.
{N17v1075
IN18 4.
N19Y-13.75

Figure 8.3: NC program in editing

93

8.4. Child.pas
The code in Child.pas is quite straightforward, this file interacts with numerous

menu and speed buttons in FtransForm (FtransM.pas). The first related procedure
found in this file is the SetOLEFileName procedure. This is the same naming
procedure (SetOLEFileName) found in Childwin.pas, which will be describe later in
the OLE MDI Section.

The next useful procedure that works in conjunction with the FtransForm is the
FormClose procedure. This procedure exams whether the childform has been
modified, and whether any text have been written on the memo. If these two
conditions are met, the save procedure found in FtransM is then activated. The
Action := Cafree; line frees the current childform, and the line found at the bottom of
the FormClose procedure disables the speed button when it is not required

The rest of the procedures found in this file is used for controlling the status of
the speed buttons. As illustrated in Figure 8.4, the Memo1Click procedure exams
the SelLength to determine the length, in characters, of the selected text. This
allows the application to have similar function found in Microsoft word, where cut

and copy button will only be enabled when text have been selected.

NINEE
LIIN2Z (6 M 4 FLUTE HSS E.M.
{IN3 GI1 G28X0YDZ0
(N4 TO8 MOB

NG5 5200 M03

N6 G390 G54 GO0 X187. Y1.25

|N7 G43Z210. HO8 M08

N8 GO12-10. F2

N3 x4. F500.

N10Y0

b %
| ’ <

Figure 8.4: Cut & Copy button enabled when text is selected

94

8.4.1. FileNewClick Procedure

Many of the menu function items illustrated in chapter 5 are used to support the
Multiple Document Interface. As shown in Figure 5.7, the first menu function
found in FtransM.pas is the FileNewClick Procedure. Like most of the MDI
Window based interface, this function creates a new Child Form for the NC
editor. The structure of this procedure first checks whether the existing ChildForm
has been modified, and whether the data has been saved. If the conditions are
met, the procedure will make an addition increment to the number of ChildForm
within the application.

8.4.2. FileOpenClick Procedure

The OpenClick Procedure will open up any NC codes within the NC editor
ChildForm. In the procedure, the try block is used to define the code for which an
exception might be raised. The try statement tells the compiler to try and get the
Memo panel on ChildForm to open up files from the open dialog. If the code
works, the except block is ignored and program execution continues. If any of
the statement inside the try block raise an exception, the code within the except

block is executed.

8.4.3. SaveAs Procedure

The procedure here examines whether there is any ChildForm within the
application, and whether the save dialog have been activated. If both of these
conditions are met, this procedure stores up the lines from the memo panel to a

specific destination drive.

8.4.4. FileSaveClick Procedure

The save procedure is practically the same as the save as procedure. However,
the save procedure will examine whether a filename has been assigned to the
ActiveMDI child. If there is no name assigned, the fsave procedure activates the
SaveAs procedure, if there is a name, then the procedure saves the data to the

current name.

95

PR S S

A

Rl e B

8.4.5. FilePrintSetupClick Procedure

Printing is an everyday necessity for most Windows users. Delphi provides the
common print and print setup dialog boxes for use in the applications. The user
in FtransM.pas can use the Print dialog box just before the printing begins and
the Print set up dialog box to configure the printer.

The Print Dialog Box is encapsulated in VCL in the PrintDialog component. As
with the other common dialog boxes. This component provides functions such
as printer selection, number of copied, and orientation options are also available.
The PrintDialog component has the execute Method only, and no events, thus it is
very easy to implement. The following are the only event handler that is
required.

procedure TFTransForm.FilePrintSetupClick(Sender: TObject);
begin

PrinterSetupDialog.Execute;

end;

8.4.6. FilePrintClick Procedure

The key to this section is the use of the AssignPrn procedure, this connects a file
with the printer. After starting the print process, the use can start using Write and
WriteLn to print the text by calling the ReWrite Procedure. Using a for loop from
the first to the last line

for I:=0 to ChildForm.Memo1.Lines.Count-1 do
Writeln(PrintFile, ChildForm.Memo1.Lines[l]);

In Delphi, a try block can be followed by either an except or finally block. In This

procedure a try block and a finally block are used to perform the clean up action

after the file in the memo panel has been printed.

96

CHAPTER 9

9. COM & OLE Automation

9.1. Introduction

Although this chapter is very much concerned with the concept of OLE (Object
Linking Embedding) automation technology. However, it is also the purpose of
this chapter to discuss the concept of COM (Component Object Model) and how

it relates to the later concepts such as OLE and ActiveX.

9.2. Component Object Model (COM)

The Component Object Model (COM) forms the foundation upon which OLE and
ActiveX technology is built. COM defines an APl and a binary standard for
communication between objects that is independent of any particular
programming language or platform. COM objects are similar to the VCL objects,
except that COM objects have only methods and properties associated, not data
fields.

9.2.1. Interfaces

A COM object consists of one or more interfaces, which are essentially tables of
functions associated with that object. COM defines a standard map of how an
object’s function is laid out in memory. Functions are arranged in virtual tables.
The programming language description of each table is referred to as an
Interface.

An Interface can be divided into 2 parts. The first part is the interface definition,
which consists of a collection of one or more function declaration in a specific
order. The interface definition is shared between the object and the user of the
object. The second part is the interface implementation, which is the actual

implementation of the functions described in the interface declaration.

97

| COM &OLE Automation

9.2.2. IUnknown

Just as all Object Pascal classes implicitly descend from Tobject, all COM
interfaces implicitly derive from IUnknown. IUnknown is defined in the system unit
as follows:

type
IUnknown = interface
[{0000000-0000-000-C000-00000000046}]
function Quesrylnterface(const IID: TGUID; TGUID; out Obj): Integer;
stdll;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;
end;

Apart from the use of the Interface keyword, another obvious difference between
an interface and class declaration is that the proceeding listing is the presence of
Globally Unique Identifier or GUID.

9.2.3. GUID

GUID is an ID which identifies any COM server class and any interface in the
system. GUIDs are created by a special COM library function called
CoCreateGUID. This function generates a GUID that is guaranteed to be unique.
CoCreateGUID uses a combination of the PC information, random number

generation, and a time stamp to create GUIDs.
In Delphi, GUIDs are generated automatically when the user creates an

automation object, COM Object, ActiveX Control, or ActiveForm Control. GUIDs
in Delphi are defined by the TGUID record.

98

9.3. Object Linking Embedding (OLE)
As part of the development based on COM, the most sophisticated data-sharing

technique available in Windows is known as Object Linking and Embedding
(OLE). The key advantage that OLE offers is a shift from an application-oriented
view of computing to one that centres on documents. With OLE, users can also
combine information in unforeseen ways. For example, a word processor
document can contain graphical image created by software unknown to the word
processor’'s author. OLE makes it possible for users, not just software designers,
to create new type of documents that are not limited to a single application
specific format.

9.4. OLE Object

The application developed within this research project has 3 OLE objects from
the registered Windows registry. The links are Microsoft Word, Microsoft Internet
Explorer and SolidWorks 2000.

To create an OLE object, the application must first call the CreateOleObject
function in Delphi’s ComObj unit. This function calls a number of internal system
wide OLE functions. The end result of these series of calls is that the function
returns a COM object to the user containing an interface to the object that the
user wants to call. As illustrated in the list below (FtransM), the call retrieves the
Word application.

S := CreateOleObject("Word.Application');
S.Visible :=True;

The first line of the code S:= CreateOleObject('Word.Application') asks for an object
called Application that resides inside Word. CreateOleObject retrieves an instance
of the object in the form of an Idisptach interface encapsulated inside a Variant
called S. Thus, the user can access the Visible property of the object by simply
writing

S.Visible := True;

99

WS b _.-:‘,gré HE SRR i 7 : 7
. i ! o e phien galod S e e . |
B gacdiRbe B L b SR e L M D Al i Il U g

- COM &OLE Automation

The call to CreateOleObject returns COM object called Idispatch housed inside a
Variant. The user can pass a string to CreateOleObject specifying the name of the
COM object the user want to retrieve. In this application the main Word
Automation object was retrieved by passing in the string Word.Application. To find
this string, it was required to work with the GUID Registry by opening the
REGEDIT.EXE within Windows (See figure 9.1). This is a simple database that
has the primary take out associating numerical values with each of the COM
Objects available on the system. By opening the tree called
HKEY_CLASSES_ROOT, it is then possible to select the string name required by
scrolling down to the Class ID (CLSID) folder.

£ Registry Editor S =1 E3 |

Begisty. Edt View Help L it L o Pl g
= =3 My Computer | Name R i pAs ;

RS EHKEY CLASSES ROOT [ab] (Defaul) [value not set)

@-{Z3 HKEY_CURRENT_USER

-1 HKEY_LOCAL_MACHINE

#-3 HKEY_USERS

4] HKEY_CURRENT_CONFIG

(] HKEY_DYN_DATA
< i

My Computer\HKEY_CLASSES_ROOT v

Figure 9.1: RegEdit.exe

9.5. MDI OLE Container Interface

The preceding sections demonstrate only one way to use OLE. Another way is
to create a container application that communicates with an OLE server. With
this technique, it is possible to link and embed server documents in the
application developed within this research project. For example, an OLE
container can create, load, edit and save a Microsoft Access document.
Because Access is a full-featured server application, Delphi program can call on
Access to create database documents, all from inside of the application window

developed within this project.

100

To make a MDI child for the OLE container, similar techniques were outsourced
from the MDI NC editor. When the user activates the “Activate OLE” from the
menu on FtransForm. An OLE childform is created, and it calls the object’s

InsertObjectDialog method, which displays the dialog shown in Figure 9.2.

Insert Object

ActionBwvr Class
ActorBvr Class
Angular Gauge ActiveX Control

Chart FX
ColorBwvr Class
Cr Behavior Factory

F;'gure 92 Ole Container

The user can select the type of OLE object to create and choose whether to
insert a full image of the object or display it as an icon. Users can also select an
icon to depict the file. Figure 9.3 shows the Childwin.pas containing window’s
paint utility. The OLE server replaces the Delphi Application’s menu and displays
with its own. With only a litle programming, the sample program provides full
graphic file editing capabilities to the users.

¥ File Transfer Interface

gtting

Untitled2

Figure 9.3: OLE Container in FtransForm

101

9.5.1. ChildWin.pas

The code ChildWin.pas is very much the simplified version of Child.pas used for
the MDI NC editor, this file also interacts with OLE menu in FtransForm
(FtransM.pas). As mentioned in the previous section, both ChildWin and Child
units uses the same naming procedure (SetOLEFileName). This procedure allows
file name to be extracted on to the top of the window on the Child form.

In the SetOLEFileName procedure, the property from the OO Pascal syntax was
implemented. A property is basically a name that is mapped to some read and
write methods or that accesses some data directly. In other words, every time
that a user reads the value of a property or changes it, the user might be
accessing a field (even a private one) or might be calling a method. In the case
of Child.pas, the definition of a property for a data object is :

property OLEFileName: string read FOLEFileName write SetOLEFileName;

To access the value of the OLEFileName, this code has to read the value of the
private field FOLEFieName, while to change the value it calls the method
SetOLEFileName.

procedure TChildForm.SetOLEFileName(const Value: string);
begin
if Value <> FOLEFileName then
begin
FOLEFileName := Value;
Caption := ExtractFileName(FOLEFileName);
end;
end;

102

CHPTER 10

10. Remote Access using Active X

10.1. Introduction

As listed in the system specifications, one of the interfaces will provide remote
access to functions developed within this research project. To meet this
requirement, the research project aims to apply COM related technology, such as
ActiveX to implement of remote access capability for the system through the
World Wide Web (WWW).

10.2. Understanding ActiveX

ActiveX is a relatively new term for a technology that has been around for awhile
originally ActiveX was called OCX controls. An ActiveX control are DLL-based.
This means that when it is applied, the designer needs to distribute their code
(the OCX file) along with the application.

An Active X control is essentially a COM object in disguise. The primary
difference between An ActiveX control and a COM object is that an ActiveX
Control has a design time interface. An ActiveX controls also has code that
enables it to be deployed on a Web page or over a network. ActiveX is a subset
of COM, everything discussed concerning COM object in the previous chapter

applies to ActiveX control as well.

As a Delphi based research project, the components here has the capabilities of
native VCL components and forms. However, by converting VCL controls into
ActiveX controls, the potential market is not merely fellow Delphi and C++ builder
developers, but also users of practically any Win32 development tools. Even if
the end user is not a component vendor, the user can still take advantage of

ActiveX controls to add contents and functionality to World Wide Web pages.

103

10.2.1. Installing ActiveX Component

Microsoft Internet Explorer version 3.x and above are based on ActiveX control,
The user can import these ActiveX control into Delphi and use the control within
the application.

To install the ActiveX control component, the user first needs to choose
Component | Import ActiveX control from the main menu. Delphi would then pop
up with the Import ActiveX illustrated in Figure 10.1.

Import ActiveX

Microsoft DitectAnimation Media Controls [Wersion 1.0)
Microsoft FlexGrid Control 6.0 [Version 1.0]
Microsoft Forms 2.0 Object Library (Version 2.0)
Microsoft HTML Obiject Library [Version 4.0

icrosoft Intemet Controls [Version 1.11
Microsoft Intemet Transfer Control 6.0 [Version 1.0)
Microsoft NetShow Player [Version 1.0)

[CAWINDOWS\Syste

TWehBruwse}_';f‘i

C:\Program Files\B orlénd‘\[) elphi4'(|mports

$IDELPHINL $(DELPHIBin-${DELPHINmports.c:t

b

Figure 10.1: Import ActiveX Control
The user then needs to scroll down and select Microsoft Internet Control, and

install it. After the control has been placed on the Component Palette, the class
name such as TwebBrowser could then be used within the application.

104

10.2.2. ActiveForm Wizard

The process involved in creating an ActiveX form is very straightforward. By
clicking the ActiveX form icon from the one-step wizard, Delphi will invoke the

ActiveX form Wizard, which is shown in Figure 10.2.

ActiveForm Wizard

ToctiveF o

ActiveFormi

. "IActiveFormImpl‘I pas

Aclivef-;ormprni'l .dpt

a;{“ ' Caricel.] ﬁelp [

Figure 10.2: ActiveForm Wizard

10.2.3. Type Library

The ActiveForm wizard is a powerful tool provided by Delphi. When it is
activated, it would also automatically generate a type library (Shown in Figure
10.3) that allows the user to add or remove interfaces, add properties and
methods to interfaces, remove elements from interfaces and create host of other

COM elements such enumeration, records, or co-classes.

As illustrated in Figure 10.3, on the left side of the Type Library Editor is the
Object panel. The Object pane contains a tree view control. On top of the tree
view hierarchy is the type library itself. Below the type library are elements
contained in the type library.

105

On the right side of the Type Library Editor is the Information panel. This pane
provides information about the object currently selected in the Object panel. The

information presented in the Information pane varies with the type of object
selected. The attributes page shows the type library name, its GUID, version,
help string, help file, and so on.

%3 ActiveFormProjl.tib

O e
. E-e% ActiveFormProfl A e s ke g o B

- |ActiveFormX Atrbutes | Uses '-Fh.a_s.fl Test |

(-4 |ActiveFormXE vents S - :

4 ActiveFarmX Nm I‘_Ad""eF“""P"‘f‘

B4 TxActiveFormBorderStyle GUID: |{A7UDB1 4D-C9F6-11D5-91DF-0000EBSEFBBA}

H- 4 TxPrintScale L

-8 TxMouseButton : ’S’.efm : ILU

-4 TxBiDiMode LOID: I
'—H*J i . s i
HﬁpShmg‘ _lActiveFormPron Library

‘Help Context:]
Help String Context: |
Help Sting DLL. |
Help File: |

Figure 10.3: Type Library

When the type library node is selected, the Information panel shows a tab label
uses. In almost all cases, this list will include the OLE automation library, it can
also include others as well.

The text page shows the type library definition in IDL syntax. IDL for the

ActiveFormProj1 is illustrated in Appendix A. It is a sort of scripting language
used to create binary type library files

106

10.3. Building the Form

An ActiveForm form is just a regular form at this stage. The user can add
controls to the form, add code, and respond to events just like a form that
belongs to an application. One difference is that the title bar on an ActiveForm

does not appear on the control itself. It is just there at design time.

The design of the ActiveForm uses several functions found in the FtransForm

(FtransM.pas). Figure 10.4 shows the components that is found in ActiveForm.

e Flow Control— -

i Pon: I -] ™ XONMXOFF | @ : e

i - [ABCw Ei = C\

. ;. BaudRete: i '] I RTS/CTS & |Apout™df = Documents and Settin
= : i :j sEems e LABBIE Y pa £ Captainshaft

Lt Lo SRS About dcu (= My Documents
e -] OuiputState - = {apoit dim B> Masters

] ™ DTR 17 |Aboutpas = FounTera XR

e : S?Gf) Bits 1 ’;

I RTS : JACDC ot |

. @ Cancel

_List files of Type: Drives

[Anties ¢ -] [=cp -]

Figure 10.4 Build the ActiveForm in Delphi

The initial status of several button remains dormant until the ActiveForm calls the
cmSettingClick method by clicking on the “setting” button. This method assigns
the default data from Exglobal.pas into the Itemindex for all the combo boxes
found on the left hand side of the ActiveForm. The user must then press “OK” on
the left hand side to access the file transfer sequence on the right hand side of
this interface. The file transfer sequences used here have similar structure to the

ones found in FtransForm.

107

10.4. Deploying an ActiveForm

Once the form have been built, the next step is to deploy the ActiveForm. In

this case, the goal is to have it appear inside the Internet Explorer.

Start by choosing Web Deployment options from the project menu. A dialog like
the one shown in Figure 10.5 will pop up. Before this dialog appears, the
project must be compiled and linked, so a short delay is expected while the files

are processed.

Web Deployment Options
 Project. |Packages| Addiional stl l;ode sm j

-—DnectuuesandUFlLs
 Tagetd: [CACDA

Taiget URL: [C./CD/

HTMLdi [CACDY Browse...
~General Options

I~ Use CAB file compression [~ Code sign project

IV Include file version number I Deplopequired packages

[V Auto increment release number [T Deploy additional files

I~ Ditauk |k Cancel I Help

Figure 10.5: Web Deployment Options

At the top of the Deployment option dialog are three controls

e Target Dir
e Target URL
e HTML Dir

108

~ Remote Access using ActiveX

In the target Dir Field, the user needs to list where OCX or any other binary files
will be deployed. These files can be distributed to anyone who attaches to the
main server over the web. As the ActiveForm developed within this project was

not saved into a Web server. The files were stored in a randomly created folder.

The target URL specify is used by the HTML an/or INF file that launches the
OCX. The string enter in this field should point to the directory where the OCX is
located when it is ready to be deployed.

By default, Delphi will cerate sample HTML and INF files for the project. The
HTML file can be loaded into a browser and used to launch the OCX created. |If
the project deploys multiple files, the HTML file will reference a second file with
an .inf extension. The INF file will contain the URL where the OCX resides, and
any other additional files needed by the project, such as packages or the runtime
library. In the case of ActiveFormProj1 the runtime library are not used, so no
INF file will be created.

HTML Dir indicates where the sample HTML and INF files that Delphi generates
will be placed. Typically, this location is the same directory as our specified
Target Dir.

Once all three controls have been specified, the user must make sure Auto
Increment Release Number check box is checked. Then by choosing the Web
deploy from the project menu in Delphi, the entire AvtiveForm project is copied
automatically into the directories specified in the web deployment option dialog.

109

0.1 RemoteAccess using ActiveX

T T
EEEEN

Once, the web pages is created, the user could test the interface by going to the
HTML folder where the files have been deployed. In certain cases, the user may
spot odd mistakes with the code, and wishes to see some changes being made
to it. Although, the process of redeploying the entire project may seems to be the
obvious thing to do, but when an OCX is loaded into the memory through
Microsoft system, the only way it is unloaded is to reboot Windows every time an
user wishes to make a change. In layman’s term, when the user tries to redeploy
the OCX, it might be getting the same OCX in the client app because the old DLL
may not have been unloaded from memory. Furthermore, the OCX that is
downloaded onto a machine are often stored in a directory called OCCACHE,
which is just below the Window's Downloaded Program Files. Hence, to make
the desired changes to the application, the user must unregistered and delete the
files from this directory to create a clean machine to run tests on.

10.4.1. Connecting to an ActiveForm

At this point the project’'s OCX is ready downloaded to the second machine, and
to access it through the internet. The end user can view the HTML file on the
browser. To understand how this procedure works, consider the HTML

generated by Delphi:

<HTML>

<H1> Delphi 4 ActiveX Test Page </H1><p>

You should see your Delphi 4 forms or controls embedded in the form below.

<HR><center><P>

<OBJECT
classid="clsid:A70D6152-C9F6-11D5-91DF-0000E85EFBBA"
codebase="C:/CD/ActiveFormProj1.dll"#version=1,0,29,0
width=847
height=321
align=center
hspace=0
vspace=0

>

</OBJECT>

</center></HTML>

110

The CLSID shown here specifies the GUID associated with the object created.
The line labelled codebase points to the directory where the OCX resides.
Because the application is stored in a single machine that does not feature a web
server, the target URL field in the Web deployment option dialog will display a
DOS path rather than a URL

codebase="C:/CD/ActiveFormProj1.dll"#version=1,0,29,0

Figure 10.6, demonstrates that a every day web page could access the
ActiveForm application, a free internet based web site has been created, and
when activated the link will take the user to the ActiveFormProj1 site.

; http://www.geocities.com/captainshalt69/ActiveFormProji htm - Microsoft Internet &Wé!‘r

x| e
e hetp:fvy. geocites com/capt snshafte9jactiveF
| Gorgle-] Z Whsewchwet oo

Delphi 4 ActiveX Test Page

You should see your Delphi 4 forms or controls embedded in the form below,

Transter Protocot File Directory ! Transfer Status

File Hame Directories

s ewComobes [t CA-CapteinsheNtcukion
. Por- ICONH '] i T XONXOFF =
|] i Captainshatt Ink = Ch
| BaudRate |384UD ‘] + [RTSICIS Deiphi 4 ink & Documents and Settin
3 S e s ey 1 - C{.‘p ~ h ft
{ i : l :,:] + 1CQ Ink = Captainshatt
i Pamy ? ane o Shortcut to Control Panel.ir
! DetaBils: . [8 ~ Output State - Shortcutto ZFREE Ink
i Stop B G ﬁmmw:{l i W DTR ! ‘Windows Explorer Ink
i p Bits grohy |

 Listfilesof Type: . Drives

~ Janmespn .

Figure 10.6: ActiveForm on the WWW

i

| Remote Access using ActiveX

CHAPTER 11

11. Testing

11.1. Introduction

This section gives an overview of the testing procedures developed and
implemented in the presented system. Few specific tests have been made to
evaluate the system and the functionalities.

The testing for interface defects is particularly difficult because interface faults
may only manifest themselves under unusual conditions, and because of the
tight time restrictions on the project. The testing phase of this project has been

merged with the implementation phase to a great deal.

11.2. Interface Testing

The interface testing used in this application takes place when modules or sub-
systems are integrated to create the larger system. Therefore tests have been
carried out on modules as they have been built. Each module or sub—system
has a defined interface which is called by other program components. The
objective of these testing is to detect faults which may have been introduced

because of interface errors or invalid assumptions about interface.

The first interface testing is to examine each call to an component. This include
designing a set of tests where all the values ranges available on the combo
boxes are tested. For example, the config.pas has wide range of baud rate
available for file transfer. To test whether these values could be used, file

transfers were conducted at both low and high baud rate settings

112

. ~ Remote Access using ActiveX

The second level of testing is the application of stress testing. Some classes of
system are designed to handle a specific load. For example, by opening
numerous number of MDI child forms in the application and observe whether
there are any circumstance that may arise through an unexpected combination of
events where the load placed on the system exceeds the maximum design load
of the system. In these circumstance, it is important that system failure will not
cause any system corruption, or unexpected OS crashes. This technique is quite
important, since the application is most likely to be used within an industrial

environment, where down time in a DNC system may cause tremendous losses.

Another third testing consists of transferring data across different terminals. For
example, PC or CNC machines. This will provide immediate feedback to see
whether data have been successfully transferred.

11.3. Test Results

The results of the module tests conducted were only briefly looked at, as these

were evident by the way the system works with low number of bugs.

The test at code level were successful, and the bugs that were found were fixed
and checked again. The application also did well under the stress test, overall
speaking the system performed well in dealing with many MDI child forms.
However, the stress testing was carried out on a fairly recent machine. Hence, it
had much more tolerance than some of the PC workstation found in small to

medium manufacturing firms.

113

=y

R P SRS T

CHAPTER 12
12. Results & Discussions

The research project has proven to be a successful project. The application
developed contains the following major components which fulfilled the criteria set
out by the specification.

e Character Exchange Interface
This allowed the users to establish communication between the terminals

after a serial connection has been made.

e File Transfer Interface

The file transfer made use of numerous serial transfer protocols, and enabled
the user to use a easy step by step file transfer through the main interface
within of the application.

e NC Editor Child Form
The NC editor enabled the user to alter the code before transmitting any file
to a terminals. The NC editor was also very convenient for comparing two NC

programs if the use wishes.

e OLE Automation Child Forms & Buttons

The OLE automation containers and buttons allowed other programs to be
integrated into the application, and thus satisfied the objective of creating a
CAD/CAM link to integrate manufacturing information flows between the
users and the NC machines on the shop floor.

e Intemet Remote Access using ActiveForm

The application of ActiveForm provided remote access through the World
Wide Web (WWW). The powerful tool will allow users all over world to
share/purchase the application developed within this research project.

114

CHAPTER 13

13. Recommendations

In order to further improve the application software, the following areas of

development are recommended:

Database Design

The property form within the application software shows the fundamental
concepts required in assigning controller type from a database to newly added
machine type on to the outline component. Database design is an important
feature within a DNC system, because any communication occurring between
two entities involves visiting a related database or storing data into a related
database. Although it was not specified in the application software
specifications, but a fully developed CIM strategy requires a strong database
system that liase between the DNC system and the shop floor manufacturing
configuration. Further efforts must be made to identify what information should
be managed for the local database, and what information should be exchanged

with remote site databases via the COM automation technique.

Monitoring System

Another aspect of CIM is to have gain advance process control over the entire
automated processes in one application software. Process monitoring requires
further involvement of auxiliary hardware integration, such as PLCs temperature
sensors, limit switches and motor controllers. The information collected by the
monitoring system will be stored in the local database, or passed back to PLC for
automated feedback control.

115

CHAPTER 14

14. Conclusion

This research project has successfully developed a working GUI that is
implemented with the Moxa multiport card. The application software allows data
to be transferred to and from other terminals. The software made use of the OLE
technology that allowed access to other software installed on the desktop
workstation, and ActiveX technology that allowed remote access to the file/data
transfer components through the World Wide Web. The future of this field will
depend much on the total integration of automated NC equipment and
Information Technology, such as Internet and database.

116

15. REFERENCES

. Calvert, Charles, 1999, Charlie Calvert's Delphi 4 unleashed,

[Indianapalis, IN] : Sams Pub. : Borland Press.
. Sholz-Reiter, B, 1992, CIM interfaces : concepts, standards and problems
of interfaces in computer integrated manufacturing, London ; New York :

Chapman & Hall.

. Waldner, Jean-Baptiste, 1992, CIM, principles of computer-integrated

manufacturing, Chichester, West Sussex, England ; New York : Wiley.

. Smith, Graham, T, 1993, CNC machining technology, London ; New York :
Springer-Verlag.

. Swan, Tom, 1998, Delphi 4 bible, Foster City, CA : IDG Books Worldwide.

. Pacheco, Xavier, 1998, Delphi 4 developer's guide, Indianapolis, Ind :

Sams.

. Dorf, C, R, 1994, Handbook of design, manufacturing, and automation,
New York : Wiley.

. Weck, Manfred, 1984, Handbook of machine tools, Chichester [West
Sussex] ; New York : Wiley.

. Canto, Marco, 1997, Mastering Delphi 3, San Francisco : Sybex.

10. Reisdorph, Kent, 1998, Sams teach yourself Borland Delphi 4 in 21 days,

Indianapolis, Ind. : Sams Pub.

117

11.Lee, Geoff, 1993, Object-oriented GUI application development,
Englewood Cliffs, N.J. : PTR Prentice Hall.

12. Adiga, S, 1992, Object-oriented software for manufacturing systems,
London ; New York : Chapman & Hall

13. Nelson, Mark, 2000, Serial communications developer's guide, Foster
City, CA : IDG Books Worldwide.

14. Moxa Tchnologies Co. Ltd, 1999, Smartio C104H/HS Users Manual,

Moxa technologies Co, Ltd.

15. Sommerville, lan, 1996, Software engineering, Wokingham, England ;
Reading, Mass. : Addison-Wesley Pub. Co.

16. Lin, Edward, 1995, Virtual Manufacturing User Workgroup, Lawrence

Associated Inc.

17. http://lwww.ctips.com/rs232.html

18. http://www.moxa.com/product/PComm/pcomm.htm

19. http://www.moxa.com/product/smartio/C104H.htm

20. http://www.rad.com/networks/1995/rs232/back.htm#backhdr

118

APPENDIX A

1. FTRANSM.PAS

(t***i***iitiii**ittitiii*ttti***t******!!i**ttt*i***t**t*t*ii**ttt*ﬂ

FTransM.pas
- Main window for file transfer example program.

‘o e v e sk e o sk o s ooy e ok e ool ol ok el e o ok ok ok o ol e sk e e ok ek ke ‘*I‘I‘““***ti*l"'“!i***“ii*”)

unit FTransM;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Menus,ExGlobal, StdCtrls, Buttons, ExtCtrls, Printers, ComCitrls, OleCtnrs,
ToolWin, WinProcs, WinTypes, ExtDIgs, Mask, FileCtrl, Office_Tlb, Excel_TLB,
ActnList, Grids, Outline, ChildWin;

type

TFTransForm = class(TExampleForm)

OpenDlIg: TOpenDialog; //First Open Dialog it is used for NC Codes
SaveDlg: TSaveDialog; //First Save Dialog used for Saving NC Codes
StatusBar1: TStatusBar;

Timer1: TTimer;

PrintDialog: TPrintDialog;

PrinterSetupDialog: TPrinterSetupDialog;

MainMenu1: TMainMenu;

File1: TMenultem;

FileNew: TMenultem;

FileSave: TMenultem;

FileSaveAs: TMenultem;

N2: TMenultem;

FilePrint: TMenultem;

FilePrintSetup: TMenultem;

N1: TMenultem;

FileExit: TMenultem;

119

Port1: TMenultem;
PortOpen: TMenultem;
PortClose: TMenultem;
Setting1: TMenulitem;

cmFtrans: TMenultem;
Help1: TMenultem;
HelpAbout: TMenultem;
CoolBar1: TCoolBar;
ToolBar1: TToolBar;
EnterPort: TSpeedButton;
ExitPort: TSpeedButton;
Saving: TBitBtn;

Setting: TSpeedButton;
Print: TBitBtn;
SolidWorks: TBitBtn;
Words: TBitBtn;

Internet: TBitBtn;

ExitAll: TSpeedButton;
Edit1: TMenultem;

N4: TMenultem;

Paste1: TMenultem;
Copy1: TMenultem;
OLEEdit: TMenultem;
SpeedButton6: TSpeedButton;
NCCut: TSpeedButton;
NCCopy: TSpeedButton;
NCPaste: TSpeedButton;
Comm: TBitBtn;
NCOpen: TBitBtn;
NCNew: TBitBtn;
FileOpen: TMenultem;
Cut: TMenultem;
ActionList1: TActionList
Panel1: TPanel;
Outline1: TOutline;
NewBtn: TBitBtn;
PageControl1: TPageControl;
TabSheet1: TTabSheet;

120

rgProtocol: TRadioGroup;
rgDirection: TRadioGroup;
FSetOk: TBitBtn;
FSetCancel: TBitBtn;
TabSheet2: TTabSheet;
Label1: TLabel;
ListFilesLabel: TLabel;
DrivesLabel: TLabel;
DirLabel: TLabel;
FileNamelLabel: TLabel;
DirBox: TDirectoryListBox;
DirDIgOK: TBitBtn;
DirDIgCancel: TBitBtn;
DriveBox: TDriveComboBox;
DirDIgPrev: TBitBtn;
FileListBox: TFileListBox;
FileNameEdit: TEdit;
FilterComboBox: TFilterComboBox;
TabSheet3: TTabSheet;
TPort: TLabel;

TFileSize: TLabel;
TProtocol: TLabel;
TLength: TLabel;
TFileName: TLabel;
Bevell: TBevel;

Bevel2: TBevel;

Bevel3: TBevel;

Beveld: TBevel;

Bevel5: TBevel;

IbFname: TLabel;
IbFSize: TLabel;

IbxLen: TLabel;

IbPort: TLabel;

IbProtocol: TLabel;
TCancel: TBitBtn;
PropBtn: TBitBtn;
Qutline2: TOutline;
OpenBtn: TBitBtn;

121

SaveBtn: TBitBtn;
SaveDialog2: TSaveDialog;
SaveAsSet: TMenultem;
OpenDialog2: TOpenDialog;
ActivateOLE: TMenultem;
N5: TMenultem;

OLESave: TMenultem;
SaveAsOLE: TMenultem;
CopyOLE: TMenultem;
PasteOLE: TMenultem;
OpenDialog1: TOpenDialog;
SaveDialog1: TSaveDialog;
PrintDialog1: TPrintDialog;
PrinterSetupDialog1: TPrinterSetupDialog;

procedure FormCreate(Sender: TObject);

procedure SwitchMenu;

function OpenPort:Boolean;

procedure ClosePort;

function PortSet:boolean;

procedure XmitFile;

procedure RecvFile;

procedure cmFTransClick(Sender: TObject);

procedure FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);

procedure Timer1Timer(Sender: TObject);

procedure FileNewClick(Sender: TObject);

procedure FileSaveClick(Sender: TObject);

procedure FileSaveAsClick(Sender: TObject);

procedure FilePrintSetupClick(Sender: TObject);

procedure FileExitClick(Sender: TObject);

procedure PortOpenClick(Sender: TObject);

procedure PortCloseClick(Sender: TObject);

procedure Setting1Click(Sender: TObject);

procedure IntemetClick(Sender: TObject);

procedure SolidWorksClick(Sender: TObject);

procedure WordsClick(Sender: TObject);

procedure FormMouseMove(Sender: TObject; Shift: TShiftState; X,

122

Y: Integer);

procedure ControlBar1MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure CommClick(Sender: TObject);

procedure FSetOkClick(Sender: TObject);

procedure FSetCancelClick(Sender: TObject);

procedure FileListBoxDblClick(Sender: TObject);

procedure TCancelClick(Sender: TObject);

procedure DirDIgOKClick(Sender: TObject);

procedure RefreshDIg(xlen:Longlint;flen:LongInt;fname:string);

procedure DirDIgCancelClick(Sender: TObject);

procedure DirDIgPrevClick(Sender: TObject);

procedure HelpAboutClick(Sender: TObject);

procedure FileOpenClick(Sender: TObject);

procedure Copy1Click(Sender: TObject);

procedure Paste1Click(Sender: TObject);

procedure CutClick(Sender: TObject);

procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);

procedure NewBtnClick(Sender: TObject);

procedure Outline1MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

procedure PropBtnClick(Sender: TObject);

procedure SaveBtnClick(Sender: TObject);

procedure SaveAsSetClick(Sender: TObject);

procedure OpenBtnClick(Sender: TObject);

procedure Outline2DragDrop(Sender, Source: TObject; X, Y: Integer);

procedure Outline2DragOver(Sender, Source: TObject; X, Y: Integer;
State: TDragState; var Accept: Boolean);

procedure Outline2DblClick(Sender: TObject);

procedure ActivateOLECIick(Sender: TObject);

procedure SaveAsOLEClIick(Sender: TObject);

procedure OLESaveClick(Sender: TObject);

procedure CopyOLEClIick(Sender: TObject);

procedure PasteOLECIlick(Sender: TObject);

procedure FilePrintClick(Sender: TObject);

private
Falcon : String; //Used as a transitional variable in between pages

123

b_busy : Boolean;

DoTra : Boolean;
Olemenu: Boolean;

X1, Y1: Integer; {mouse position}
FOLEFilename: String;

Counter: Integer;

FStartDrag: Boolean;

procedure SetOLEFileName(const Value: string);

public
V: Variant;
S: Variant;
FileName: String;

procedure ShowHint(Sender: TObject);
procedure CheckCapslock;
procedure Checklinslock;
procedure CheckNumlock;
property OLEFileName: string read FOLEFileName write SetOLEFileName;
procedure UpdateFT;
procedure UpdateGT;
procedure UpdateHt;
procedure UpdateJt;
function SaveChanges: Boolean;
function Save: Boolean:
function SaveAs: Boolean;
function SaveSetting: Boolean;
function SaveAsSetting: Boolean;
end;

var
FTransForm: TFTransForm;

implementation

{$R *.DFM}

124

uses PComm,MxTool,Config,FtProc,About,HelpTxt,ComObj,ShellAPI,ReadThd,
SimpleM, PrintDialog, MachForm, Prop, Child;

var NumChildren: Cardinal = 0; {A var declared for Childforms}

Lend : Integer;

procedure TFTransForm.FormCreate(Sender: TObject);
begin
Application.OnHint := ShowHint;
UpdateFT; {Update File Transfer TabSheets}

{Default Settings for the Serial Port Config}
with GCommData do
begin
Port :=3;
ibaudrate := 14;
iparity =0;
ibytesize := 3;
istopbits := 0;
BaudRate :=B38400;
Parity :=P_NONE;
ByteSize :=BIT_8;
StopBits := STOP_1,

Hw := false;

Sw := false;

Dtr := true;

Rts := true;
end;

{This two is used for the purpose of enabling and disabling buttons}
DoTra := false;

GszAppName := 'File Transfer Demo';

GbOpen := false;

GhForm = FTransForm;

b_busy := false;

Olemenu := false;

SwitchMenu();

{This diplay the current directory as the caption of a label control}

125

DirBox.DirLabel := DirLabel;
{The displays the current drive so that the directory list box auomatically

updates its tree}

DriveBox.DirList := DirBox;

{This assign the edit objects name to the FileListBox's FileEdit property}
FileListBox.FileEdit := FileNameEdit;

end;

{This procedure creates a Delay function which is used in the rest of the code}
procedure Delay(ms : longint);
var
TheTime : Longint;

begin

TheTime := GetTickCount + ms;

while GetTickCount < TheTime do

Application.ProcessMessages;

end;

procedure TFTransForm.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

begin
if ActiveMDIChild <> nil then
CanClose := not ChildForm.Memo1.Modified or SaveChanges

end;

procedure TFTransForm.FormMouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

begin
StatusBar1.Panels[5].Text := 'X =" + IntToStr(X);
StatusBar1.Panels[6].Text := 'Y ="'+ IntToStr(Y);

end;

procedure TFTransForm.ControlBar1 MouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

begin
StatusBar1.Panels[5]. Text := "X ="+ IntToStr(X);
StatusBar1.Panels[6].Text := Y ="+ IntToStr(Y);

126

i
f

:z(\g:,;a

end;

procedure TFTransForm.SwitchMenu;
begin
EnterPort.Enabled := not GbOpen;
PortOpen.Enabled := not GbOpen;
PortClose.Enabled := GbOpen;
ExitPort.Enabled := GbOpen;
cmFTrans.Enabled := GbOpen and (not b_busy);
end;

function TFTransForm.PortSet:boolean;
var
port : Longint;
mode : Longint;
hw,sw : Longint;
ret : Longint;
begin
port := GCommbData.Port;
mode := GCommData.Parity or GCommData.ByteSize or GCommData.StopBits;
PortSet := false;

if GCommData.Hw then
hw:=3 { bit0 and bit1 }
else

if GCommData.Sw then
sw:=12 { bit2 and bit3 }
else

sw :=0;

ret := sio_ioctl(port, GCommData.BaudRate,mode);
if ret<>SI0_OK then
begin

MxShowError('sio_ioctl',ret);

127

ret := sio_flowctr(port,hw or sw);
if ret<>SI0_OK then
begin

MxShowError('sio_flowctrl'ret);
Exit;
end;

ret := sio_DTR(port,Integer(GCommData.Dtr));
if ret<>S10_OK then
begin
MxShowError('sio_DTR',ret);
Exit;
end;

if not GCommData.Hw then
begin

ret := sio_RTS(port,Integer(GCommData.Rts));

if ret<>SI0_OK then
begin
MxShowError('sio_RTS' ret);
Exit;
end;
end;

ShowStatus();
PortSet := True;
end;

function TFTransForm.OpenPort:Boolean;
var

ret:integer;
begin

OpenPort := false;

ret := sio_open(GCommData.Port);

if ret <> SIO_OK then

begin

MxShowError('sio_open',ret);

128

Exit;

end;

if PortSet() = false then

begin
sio_close(GCommData.Port);
Exit;

end;

OpenPort := true;

GbOpen = true;

Outline1.Enabled := DoTra;

SwitchMenu();

ShowStatus();

end;

procedure TFTransForm.ClosePort;
begin
sio_close (GCommData.Port);
GbOpen := False;
SwitchMenu();
ShowStatus();

end;

procedure TFTransForm.Setting1Click(Sender: TObject);
var
bakdata : TCOMMDATA;
begin
StatusBar1.Panels[4].Text :='Port Setting';
bakdata := GCommData;
if CfigForm.ShowModal = mrCancel then
StatusBar1.Panels[4].Text :=";
Exit;

if GbOpen then
if PortSet()=false then
begin
GCommbData := bakdata;
Exit;

PV RE AR A%

129

end;
ShowsStatus();
end;

procedure TFTransForm.PortOpenClick(Sender: TObject);
begin

OpenPort();

SysUtils.Beep;

Windows.Beep(00, 000);

StatusBar1.Panels[4].Text := 'Open Port';

Delay (2000);

StatusBar1.Panels[4].Text :=";
end;

procedure TFTransForm.PortCloseClick(Sender: TObject);
begin

ClosePort();

SysUtils.Beep;

Windows.Beep(00, 000);

StatusBar1.Panels[4].Text := 'Close Port';

Delay (2000);

StatusBar1.Panels[4]. Text := ",

end;

procedure TFTransForm.FileNewClick(Sender: TObject);
begin
if not ChildForm.Modified or SaveChanges then
begin
Inc (Counter);
Inc(NumChildren);
with TChildForm.Create(Application) do
begin
Caption := 'Untitled' + IntToStr(NumChildren);
{Bring up insert OLE object dialog and insert into child }
ChildForm.Memo1.Text = ";
Modified := False;
FileName =";
Caption := 'File - [Untitled]’;

130

i
i
i

end;
end;
end;

procedure TFTransForm.FileOpenClick(Sender: TObject);
begin
if OpenDlg.Execute then
with TChildForm.Create(Application) do
begin
try
OleFileName := OpenDlg.FileName;
Memo1.Lines.LoadFromFile(OleFileName);
Show;
except
Release; // free form on error
raise; // re-raise exception
end;
end;
end;

function TFtransForm.SaveChanges: Boolean;
begin
case MessageDlg (
'The document ' + filename + ' has changed.' +
#13#13 + 'Do you want to save the changes?’,
mtConfirmation, mbYesNoCancel, 0) of
idYes:
/I call Save and return its result
Result := Save;
idNo:
// do not save and continue
Result := True;
else // idCancel:
/I do not save and abort operation
Result := False;
end;
end;

i

131

{a retum value "False" means the SaveAs

operation has been aborted}
function TFTransForm.Save: Boolean;
begin
if Filename =" then
Result := SaveAs // ask for a file name
else
begin
ChildForm.Memo1.Lines.SaveToFile (FileName);
ChildForm.Modified := False;
Result := True;
end;
end;

{retum a value "False" if the SaveAs
dialog box has been ‘cancelled’}
function TFTransForm.SaveAs: Boolean;
begin
SaveDlg.FileName := Filename;
if SaveDlg.Execute then
begin
Filename := SaveDlg.FileName;
Save;
Caption := 'RichNote - ' + Filename;
Result := True;
end
else
Result := False;
end;

procedure TFTransForm.FileSaveClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
{if no name is assigned, then do a "save as" }
if TChildForm(ActiveMDIChild).OLEFileName =" then
FileSaveAsClick(Sender)
else
{ otherwise save under current name }

132

with TChildForm(ActiveMDIChild) do
Memo1.Lines.SaveToFile(OLEFileName);
end;

procedure TFTransForm.FileSaveAsClick(Sender: TObject),
begin
if (ActiveMDIChild <> nil) and (SaveDIg.Execute) then
with TChildForm(ActiveMDIChild) do
begin
OleFileName := SaveDlg.FileName;
Memo1.Lines.SaveToFile(OleFileName);
end;
end;

procedure TFTransForm.FilePrintClick(Sender: TObject);
var
PrintFile: TextFile;
I: Integer;
bakdata : TCOMMDATA,;
begin
StatusBar1.Panels[4].Text := 'Print File';
{PrintButton.ShowModal;}
begin
bakdata := GCommData;
if PrintDialog.Execute then
begin
AssignPrn (PrintFile);
Rewrite (PrintFile);
try
Printer.Canvas.Font:= ChildForm.Memo1.Font;
for 1:=0 to ChildForm.Memo1.Lines.Count-1 do
WriteIn(PrintFile, ChildForm.Memo1.Lines[l]);
finally
CloseFile (PrintFile);
end;
end;
Delay (2000);
StatusBar1.Panels[4].Text ;= ";

133

end;

end;

procedure TFTransForm.FilePrintSetupClick(Sender: TObject);
begin

PrinterSetupDialog.Execute;
end;

procedure TFTransForm.FileExitClick(Sender: TObject);
begin
Close;

end;

procedure TFTransForm.cmFTransClick(Sender: TObject);
var
W: Word;
begin
PageControl1.ActivePage := TabSheet1;
W:=MessageDlIg('Activate File Transfer Protocols?', mtConfirmation,[mbYes, mbNo], 0);
case W of
mrYes : UpdateGT;
mrNo : Exit;
end;
end;

procedure TFTransForm.CutClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
TChildForm(ActiveMDIChild).Memo1.CutToClipboard;
end;

procedure TFTransForm.Copy1Click(Sender: TObject);
begin
if ActiveMDIChild <> nil then
TChildForm(ActiveMDIChild).Memo1.CopyToClipboard;
end;

procedure TFTransForm.Paste 1Click(Sender: TObject);

134

begin
if ActiveMDIChild <> nil then
TChildForm(Active MDIChild).Memo1.PasteFromClipboard;
end;

procedure TFtransForm.SetOLEFileName(const Value: string);
begin
if Value <> FOLEFileName then
begin
FOLEFileName := Value;
Caption := ExtractFileName(FOLEFileName);
end;
end,

procedure TFTransForm.ActivateOLEClick(Sender: TObject);
begin
if not ChildForm.Modified or SaveChanges then
begin
Inc (Counter);
Inc(NumChildren);
with TMDIChild.Create(Application) do
begin
Caption := 'Untitled' + IntToStr(NumChildren);
{ bring up insert OLE object dialog and insert into child }
OleContainer.InsertObjectDialog;
end;
end;

end;

procedure TFTransForm.SaveAsOLECIick(Sender: TObject);
begin
if (ActiveMDIChild <> nil) and (SaveDialog1.Execute) then
with TMDIChild(ActiveMDIChild) do
begin
OleFileName := SaveDialog1.FileName;
OleContainer.SaveToFile(OleFileName);
end;
end;

135

procedure TFTransForm.OLESaveClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
{if no name is assigned, then do a "save as"
if TMDIChild(ActiveMDIChild).OLEFileName = " then
SaveAsOLECIlick(Sender)
else

{ otherwise save under current name }
with TMDIChild(ActiveMDIChild) do
OleContainer.SaveToFile(OLEFileName);
end;

procedure TFTransForm.CopyOLECIick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
TMDIChild(ActiveMDIChild).OleContainer.Copy;

end;

procedure TFTransForm.Paste OLEClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
with TMDIChild(ActiveMDIChild).OleContainer do
{ Before invoking dialog, check to be sure that there }
{ are valid OLE objects on the clipboard. }
if CanPaste then PasteSpecialDialog;

end;

procedure TFTransForm.HelpAboutClick(Sender: TObject);
begin

AboutFrm.ShowModal;
end;

procedure TFTransForm.CommClick(Sender: TObject);
var

W: Word;
begin

if EnterPort.Enabled = not DoTra then

136

foo

begin
W:=MessageDlIg('Port is not Opened? Continue Accessing Communication Dialog?",
mtConfirmation,[mbYes, mbNo], 0);

case W of
mrYes :
begin
PortOpen.Click;
GhExit := false;

TReadThread.Create(false);
SimpleForm.ShowModal;
end;
mrNo : ;
end;

end

else

GhExit := false;

TReadThread.Create(false);

SimpleForm.ShowModal;

end;

procedure TFTransForm.SolidWorksClick(Sender: TObject);
begin

StatusBar1.Panels[4].Text := 'Loading SolidWorks';

V := CreateOleObject('SldWorks.Application');

V .Visible :=True;

Delay (2000);

StatusBar1.Panels[4].Text :=";

end;

procedure TFTransForm.WordsClick(Sender: TObject);
begin
StatusBar1.Panels[4]. Text := 'Load Microsoft Word'";
S := CreateOleObject('Word.Application');
S.Visible :=True;
Delay (2000);
StatusBar1.Panels[4]. Text :=";
end;

137

procedure TFTransForm.IntemetClick(Sender: TObject);

Var St:Array[0..255] of char;

begin
StatusBar1.Panels[4].Text := 'Access Internet’;
ShellExecute(Handle,'open’,StrPCopy(St, 'http://'+Internet.Caption),nil,nil, SW_SHOW);
Delay (2000);
StatusBar1.Panels[4].Text :=";

end;

procedure TFTransForm.ShowHint(Sender: TObject);

begin

StatusBar1.Panels[0].Text := Application.Hint;

end;

procedure TFTransForm.CheckCapslock;
begin
if Odd (GetKeyState (VK_CAPITAL)) then
StatusBar1.Panels[1].Text := 'CAPS'
else
StatusBar1.Panels[1].Text := ",

end;

procedure TFTransForm.ChecklInslock;
begin
if Odd (GetKeyState (VK_INSERT)) then
StatusBar1.Panels[2].Text :='INS'
else
StatusBar1.Panels[2]. Text :=";

end;

procedure TFTransForm.CheckNumlock;
begin
if Odd (GetKeyState (VK_NUMLOCK)) then
StatusBar1.Panels[3].Text :='NUM'
else
StatusBar1.Panels[3]. Text :=";
end;

138

procedure TFTransForm.FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);
begin
CheckCapslock;
ChecklInslock;
CheckNumlock;
end;

procedure TFTransForm.Timer1Timer(Sender: TObject);
begin

CheckCapslock;

Checkinslock;

CheckNumlock;

StatusBar1.Panels[8].Text := TimeToStr(Time);
end;

procedure TFTransForm.NewBtnClick(Sender: TObject);
begin

MachineForm.ShowModal:
end;

procedure TFTransForm.Outline1MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
fStartDrag: Boolean;
begin
fStartDrag := True;
if (Outline1.ltemCount > 0) and (Button = mbLeft) then
Outline1.BeginDrag (True);
fStartDrag := False;
end;

procedure TFTransForm.PropBtnClick(Sender: TObject);
begin
PropertyForm.ShowModal,

end;

function TFTransForm.SaveSetting: Boolean;

139

begin
if Filename = " then
Result := SaveAsSetting / ask for a file name
else

begin
Outline1.Lines.SaveToFile (FileName);
ChildForm.Modified := False;
Result ;= True;
end;
end;

function TFTransForm.SaveAsSetting: Boolean;
begin
SaveDialog2.FileName := Filename;
if SaveDialog2.Execute then
begin
Filename := SaveDialog2.FileName;
SaveSetting;
Caption := 'RichNote - ' + Filename;
Result ;= True;
end
else
Result := False;
end;

procedure TFTransForm.SaveBtnClick(Sender: TObject);
begin
StatusBar1.Panels[4].Text := 'Save File';
begin
if Filename =" then
SaveAsSetClick(Sender) // ask for a file name
else
begin
if ChildForm.Modified then
SaveSetting;
end;
end;
Delay (2000);

140

o o o o - 5 o .
§?' o e B 4 SR S & S i

StatusBar1.Panels[4].Text := ",
end;

procedure TFTransForm.SaveAsSetClick(Sender: TObject);
begin

SaveAsSetting;
end;

procedure TFTransForm.OpenBtnClick(Sender: TObject);
begin
begin
if not ChildForm.Modified or SaveChanges then
if OpenDialog2.Execute then
begin
FileName := OpenDialog2.FileName;
Outline1.Lines.LoadFromFile (FileName);
ChildForm.Modified := false;
Caption := FileName;
end;
end;
end;

procedure TFTransForm.Outline2DragDrop(Sender, Source: TObject; X,
Y: Integer);
var
Current: Integer;
begin
Current := Outline2.Getltem (X, Y);
if Current > 0 then
begin
Outline2.AddChild (Current, Outline1.Lines[Outline1.Selectedltem - 1]);
Outline2.ltems [Current].Expanded := True;
end
else
MessageDIg ("You"ve not dragged over an item',
mtError, [mbOk], 0);
end;

141

procedure TFTransForm.Outline2DragOver(Sender, Source: TObject; X,
Y: Integer; State: TDragState; var Accept: Boolean);

begin
if Sender is TOutline then

Accept := True;
end;

procedure TFTransForm.Outline2DblClick(Sender: TObject);
begin

if CigForm.ShowModal = mrYes then

OpenPort();

UpdateGT,
end;

procedure TFTransForm.FSetOkClick(Sender: TObject);
begin
//Declare which protocol to use.
GProtocol := FTransForm.rgProtocol.ltemindex;
/IDeclare whether to send or to receive file.
GDirection := FTransForm.rgDirection.ltemindex;
//Update of the buttons and sheets.
UpdateHt;

if FTransForm.rgDirection.ltemindex = FT_XMIT then
//Access the the second page of Tab.
PageControl1.ActivePage := TabSheet2
else
PageControl1.ActivePage := TabSheet2;

end;

procedure TFTransForm.FSetCancelClick(Sender: TObject);
begin

UpdateFt;
end;

procedure TFTransForm.FileListBoxDbIClick(Sender: TObject);

begin
Falcon := FileNameEdit.Text;

142

B
Bl
i

if FTransForm.rgDirection.ltemindex = FT_XMIT then
XmitFile
else
begin
if (GProtocol=FTZMDM) or (GProtocol=FTYMDM) or (GProtocol=FTKERMIT)then
begin
Istrcpy(GrPath,PChar(FTransForm.DirBox.Directory));
SetCurrentDir(GrPath)
end
else
begin
Istrcpy(GrFname,PChar(Falcon));
end;
PageControl1.ActivePage :=TabSheet3;
RecvFile;
end;
end;

procedure TFTransForm.DirDIgOKClick(Sender: TObject);
begin
Falcon := FileNameEdit.Text;
if FTransForm.rgDirection.ltemindex = FT_XMIT then
XmitFile
else
begin
if (GProtocol=FTZMDM) or (GProtocol=FTYMDM) or (GProtocol=F TKERMIT)then
begin
Istrcpy(GrPath,PChar(FTransForm.DirBox.Directory));
SetCurrentDir(GrPath)
end
else
begin
Istrcpy(GrFname,PChar(Falcon));
end;
PageControl1.ActivePage :=TabSheet3;
RecvFile;
end;
end;

143

procedure TFTransForm.DirDIgCancelClick(Sender: TObject);
begin

GftCancel :=true;

PageControl1.ActivePage := TabSheet1;

UpdateFt;
end;

procedure TFTransForm.DirDIgPrevClick(Sender: TObject);

begin
{if Previous button is pushed the program returns to TabSheet 1}
PageControl1.ActivePage := TabSheet1;

end;

procedure TFTransForm.TCancelClick(Sender: TObject);
begin

GftCancel :=true;

PageControl1.ActivePage := TabSheet1;

UpdateFt;
end;

procedure TFTransForm.RefreshDig(xlen:Longlnt;flen:Longint;fname:string);
begin

IbFSize.Caption := IntToStr(flen);

IbPort.Caption := IntToStr(GCommbData.Port);

IbProtocol.Caption := GstrProtocol[GProtocol];

IbFName.Caption := fname;

IbxLen.Caption := IntToStr(xlen);
end;

procedure TFTransForm.XmitFile;

begin
{Declare Falcon using the FileNameEdit string}
Falcon := FileNameEdit.Text,
{Istrcpy copies the entire contents of one string into another string.
Either string, instead of being a "real" string, can also be merely a pointer to a string instead.
The target string must already have enough space to receive the source string's contents.
The function also will copy a terminating null character into the target string}

144

Istrcpy(GxFname,PChar(Falcon));
{If user press 'Cancel' button which on status dialog,
'GftCancel flag will be set to true.This will let callback
function to return -1 to terminate file transfer.}
GftCancel := false;
TFtProc.Create(false);
PageControl1.ActivePage := TabSheet3;
UpdateJt;

end;

procedure TFTransForm.RecvFile;

begin
GftCancel := false;
TFtProc.Create(false);
end;

{The first menu button updates, most button are disabled until transfer config are decalred}

procedure TFtransForm.UpdateFT;

begin
PageControl1.ActivePage:=TabSheet1;
NCPaste.Enabled := DoTra;
NCCut.Enabled := DoTra;
NCCopy.Enabled := DoTra;
FSetOk.Enabled := DoTra;
FSetCancel.Enabled := DoTra;
rgProtocol.Enabled := DoTra;
rgDirection.Enabled := DoTra;
TabSheet1.Enabled := DoTra;
TabSheet2.Enabled := DoTra;
TabSheet3.Enabled := DoTra;
DirDIgOK.Enabled := DoTra;
DirDIgCancel.Enabled := DoTra;
DirDIgPrev.Enabled := DoTra;
TCancel.Enabled := DoTra;
IbFSize.Caption := ",
IbPort.Caption :=";
IbProtocol.Caption :=";
IbFName.Caption := ",

145

IbxLen.Caption =",

end;

{This is the update after Config is declared, only TabSheet1 is allowed}

procedure TFtransForm.UpdateGT;

begin
FSetOk.Enabled := not DoTra;
FSetCancel.Enabled := not DoTra;
TabSheet1.Enabled := not DoTra;
rgProtocol.Enabled := not DoTra;
rgDirection.Enabled := not DoTra;
TabSheet2.Enabled := DoTra;
TabSheet3.Enabled := DoTra;
DirDIgOK .Enabled := DoTra;
DirDIigCancel.Enabled := DoTra;
DirDIgPrev.Enabled := DoTra;
TCancel.Enabled := DoTra;

end;

{The second update, after the direction and transfer protocol is declared}

procedure TFtransForm.UpdateHt;

begin
TabSheet2.Enabled := not DoTra;
TabSheet3.Enabled := DoTra;
DirDIgOK_.Enabled := not DoTra;
DirDIigCancel.Enabled := not DoTra;
DirDigPrev.Enabled := not DoTra;
TabSheet3.Enabled := DoTra;
TCancel.Enabled := DoTra;

end;

{The Thrid update, after the file storage location have been specified}
procedure TFtransForm.UpdateJt;
begin

TabSheet3.Enabled := not DoTra;

FSetOk.Enabled := DoTra;

DirDIgOK .Enabled := DoTra;

DirDIgPrev.Enabled := DoTra;

146

FSetOk.Enabled := DoTra;

FSetCancel.Enabled := DoTra;

rgProtocol.Enabled := DoTra;

rgDirection.Enabled := DoTra;

TCancel.Enabled = not DoTra;
end;

end.

147

2. FOUNTERA_TLB.PAS

unit FounTera_TLB;

”’ S e e sk o e e e o oo ol sl st sk o ol e ok stk o sl ook e ol sl ol s ok sk ol sl skl ol ol o ok ok o ol ol ok ok e ok el o ok ok ke ek hf

[/ WARNING "

I - 1

/l The types declared in this file were generated from data read froma //
/I Type Library. If this type library is explicitly or indirectly (via //

/I another type library referring to this type library) re-imported, or the //

/l 'Refresh' command of the Type Library Editor activated while editing the /
/l Type Library, the contents of this file will be regenerated and all //

/I manual modifications will be lost. I

L’ e e e o s e e ek s kel ok ke sk e o e e skl ook vk sl ok ok ok o ol ol ol e sk i ok ok o ol ok sk ok o ol ol ok o ek el ok o ke e ek n‘

/I PASTLWTR : $Revision: 1.11.1.63 $
/l File generated on 1/11/2001 7:09:02 p.m. from Type Library described below.

”' B e L e L L e e hf

I Type Lib: C:\Documents and Settings\Captainshaft\My
Documents\Masters\FounTera\FounTera.tlb

/I 1ID\LCID: {F8F19781-DB75-4ED4-85C3-F5BOEE44C5AAN0

/I Helpfile:

/l HelpString: FounTera Library

/l Version: 1.0

Il e ke e g e e sk e vhede e vk dhedke e o o ok ol o s ool o oo ol sk e e e e e e sk o ol skl e o e sl e ol el o ok o e e ol ok de ik e ek ,f

interface

uses Windows, ActiveX, Classes, Graphics, OleCltrls, StdVCL;

l‘[e e v s ol e e e e s e vl ek sl s e e ol ok o ool ook o ol sk e ok S ek i ok s ol ok o sk ok ok ol ol ook ok ok ke ﬂtﬂ*}!

// GUIDS declared in the TypelLibrary. Following prefixes are used: //

/I Type Libraries : LIBID_xxxx I
/I CoClasses : CLASS_ xxxx "
/I DISPInterfaces : DIID_xxxx I
Il Non-DISP interfaces: IID_xxxx I

148

!! sk st de e e ek sk sk e ek she ok e ol e ok ol e ook ok e ol ok ok o e e sk ek e ok ook ook o ok e e o ok ek ok e ok ol skl s o ey t’!

const
LIBID_FounTera: TGUID = {F8F19781-DB75-4ED4-85C3-FSBOEE44C5AAY},

implementation
uses ComObj;

end.

149

3. ABOUT.PAS

NeiTech DNC Software

Copyright [c] 2001

(“H*ﬂﬂ*t* e o s o o e o sl e s ok ol e o ok ok e sl il ok ok ok sl e o ook ok e ok ek ol okl e o ok ek ke e ek ek

About.pas

S s s e sk ok ok ok ol ol v o e s ol ok sl ok o ok ok ok sk e e e e ol e ok kel o ek ok ke sk ol ok sheole e ek ok ok o ek ok e e e ﬂ)

unit About;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, ExtCtrls, jpeg;

type
TAboutFrm = class(TForm)

AboutlLabel: TLabel;
Label2: TLabel;
BitBtn1: TBitBtn;
Image1: Timage;
procedure AboutOKClick(Sender: TObject);
procedure BitBtn1Enter(Sender: TObject),
private
{ Private declarations }
public
{ Public declarations }
end;

150

var
AboutFrm: TAboutFrm;

implementation

uses ExGlobal;
{$R *.DFM}

procedure TAboutFrm.AboutOKClick(Sender: TObject);
begin

Close();
end;

procedure TAboutFrm.BitBtn1Enter(Sender: TObject);
begin

AboutLabel.Caption := ‘NetTech '+' DNC '+ ' Software ',
end;

end.

151

4. CHILD.PAS

/" Base.txt

00001 — ' |

N1 G21

N2 (6 MM 4 FLUTE HSSEM.)
N3 G391 G28X0YDZ0

N4 708 M06

N5 $200 M03

NE G0 G54 GO0 X187 Y1.25
N7 G43210. HO8 M08

N8B GO1 Z-10. F2,

NS X4, F500.

N10Y0

N11Y-1.75

N12X187.

[N13'Y-4.75

N14X4.

N15Y-7.75

N16 X187

N17Y-10.75

N18X4.

N13Y-13.75

o

unit Child;

interface

uses SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, OleCtnrs, StdCtrls;
type
TChildForm = class(TForm)
Memo1: TMemo;
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure Memo1MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);
procedure Memo1Click(Sender: TObject);
procedure Memo1Enter(Sender: TObject);
procedure Memo1Exit(Sender: TObject);
private
FOLEFilename: string;
DoTra : Boolean;
Lend : Integer;
procedure SetOLEFileName(const Value: string);
public
Modified : Boolean;
property OLEFileName: string read FOLEFileName write SetOLEFileName;
end;

152

var
ChildForm: TChildForm;

implementation

uses FTransM;

{$R *.DFM}

procedure Delay(ms : longint);

var

TheTime : Longlnt;

begin
TheTime := GetTickCount + ms;
while GetTickCount < TheTime do
Application.ProcessMessages;

end;

procedure TChildForm.SetOLEFileName(const Value: string);
begin
if Value <> FOLEFileName then

begin
FOLEFileName := Value;
Caption := ExtractFileName(FOLEFileName);
/[ExtractFileNam e
extracts the name and extension parts of FileName.
end;
end;

procedure TChildForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
if Memo1.Modified and (Length (Memo1.lines.Text)>0) then
FtransForm.FileSaveAsClick (sender);
Action := Cafree;
FtransForm.NCPaste.Enabled := DoTra;
FtransForm.NCCut.Enabled := DoTra;

153

FtransForm.NCCopy.Enabled := DoTra;
end;

procedure TChildForm.Memo1MouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

begin
FTransForm.StatusBar1.Panels[5].Text := 'X =" + IntToStr(X);
FTransForm.StatusBar1.Panels[6].Text := Y =" + IntToStr(Y);

end;

procedure TChildForm.Memo1Click(Sender: TObject);
begin
FtransForm.StatusBar1.Panels[4].Text := 'NC Editor";
if Memo1.SelLength >0 then
FtransForm.NCCut.Enabled := not DoTra;
if Memo1.SelLength >0 then
FtranSForm.NCCopy.Enabled := not DoTra;
if Memo1.SellLength =0 then
FtransForm.NCCut.Enabled := DoTra;
if Memo1.SelLength =0 then
FtransForm.NCCopy.Enabled := DoTra;
Delay (2000);
FtransForm.StatusBar1.Panels[4].Text := ";
end;

procedure TChildForm.Memo1Enter(Sender: TObject);
begin

FtransForm.NCPaste.Enabled := not DoTra;
end;

procedure TChildForm.Memo1Exit(Sender: TObject);
begin
FtransForm.NCPaste.Enabled := DoTra;

end;

end.

154

5. CONFIG.PAS

—Com option— : Dulpm st& |
Port : |I:.Elh-1“: vI ~ DTR %
Baud Rate : |384L'IU vI [~ RTS
Parity : INone vI
Flow Control——— =
Data Bits : IS vl XONMXDFF
ss [1 =] ||| rRisiis

X Cancel | |

(*‘I*IIﬂIﬂﬂt*“i'*‘ﬁ'ﬂI‘I‘I‘ﬂﬂ‘*I'ﬂHI'i'II,ﬁ!t'Iﬂ*titﬂﬁ"ﬂﬂt*i't‘ﬁi‘ﬂ*

Config.pas

- Config dialog for com port commnucation parameters

ii*itiii**t*****iiitittt*i**ii*i*i*i*i***itt**ttt**ti*ti*it*ii*t!t)

unit Config;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs,StdCtrls, Buttons;

type
TCfgForm = class(TForm)
GroupBox1: TGroupBox;
Label1: TLabel;
cbPort: TComboBox;
Label2: TLabel;

cbBaudRate: TComboBox;

Label3: TLabel;
cbParity: TComboBox;

155

Label4: TLabel;
cbByteSize: TComboBox;
Label5: TLabel;
cbStopBits: TComboBox;
GroupBox2: TGroupBox;
chHw: TCheckBox;
chSw: TCheckBox;
GroupBox3: TGroupBox;
chDtr: TCheckBox;
chRts: TCheckBox;
Cancel: TBitBtn;

OK: TBitBtn;

procedure FormCreate(Sender: TObject);
procedure chHwClick(Sender: TObject);

procedure CfgCancelClick(Sender: TObject);

procedure FormActivate(Sender: TObject);
procedure OKClick(Sender: TObject);

private

{ Private declarations }
public

{ Public declarations }

end;

var
CfgForm: TCfgForm;

implementation

uses ExGlobal;

var
Gfhw : boolean;

{$R *.DFM}

procedure TCfgForm.FormCreate(Sender: TObject);

156

var
i:Word;
begin
fori:=1 to 256 do
cbPort.Items. Add('COM'+IntToStr(i));

end;

procedure TCfgForm.FormActivate(Sender: TObject);
begin
with GCommData do
begin
cbPort.ltemindex := Port-1;

cbBaudRate.ltemindex := ibaudrate;
cbParity.ltemindex :=iparity;
cbByteSize.ltemindex := ibytesize;
cbStopBits.ltemindex := istopbits;

chHw.Checked = Hw;
chSw.Checked := Sw;
chRts.Checked ;= Rts;
chDtr.Checked := Dtr;

Gfhw = Hw;
chRts.Enabled := not Gfhw;

{ disable com port setting when opend }
cbPort.Enabled := not GbOpen;
end;
end;

procedure TCfgForm.chHwClick(Sender: TObject);
begin

chRts.Enabled := Gfhw;

Gthw := Not Gfhw;

end;

procedure TCfgForm.CfgCancelClick(Sender: TObject);

157

begin
ModalResult := mrCancel;
end;

procedure TCfgForm.OKClick(Sender: TObject);
var W:Word;
begin
with GCommData do
begin
Port :=cbPort.ltemindex + 1;

ibaudrate := cbBaudRate.ltemindex;
iparity := cbParity.ltemindex;
ibytesize := cbByteSize.ltemindex;
istopbits := cbStopBits.ltemindex;

BaudRate := GBaudTable[ibaudrate];
ByteSize := GByteSizeTable[ibytesize];
Parity := GParity Table[iparity];
StopBits := GStopBitsTable[istopbits];

Hw :=chHw.Checked;

Sw :=chSw.Checked;

Rts := chRts.Checked;

Dtr := chDtr.Checked;
end;

begin
W:=MessageDlIg('Settings Correct?', mtConfirmation,[mbYes, mbNo], 0);
case W of
mrYes: ModalResult ;= mrOk;
mrNo: ModalResult := mrCancel;
end;
end;
end.

158

g ; g SRR T

6. EXGLOBAL.PAS

(I‘I' e e sk e o o o ok ok sk o o kol ok oo e sk ok ok ook e ol ook o sk e o e ol sl ok ol o ok skl o ok ok ok ke ok o ok e e ke ek

ExGlobal.pas
-- Global variable & Com port record defined for
example program.

e e o i e e o ook o e e ol ok o o ol i ook o o i e o ook o ok ok oo o o ook o sk e ek ol ook o e o o ool ook e e e ek e ek !‘****)

unit ExGlobal;
interface
uses Forms,Menus,StdCtrls,PComm;

type
TExampleForm = class(TForm)
Tem: TMemo;
procedure ShowStatus;
private
{ Private declarations }
protected
public
{ Public declarations }
end;

TCOMMDATA = record
Port : Longint;
BaudRate : Integer;
Parity : Integer;
ByteSize : Integer;
StopBits : Integer;
ibaudrate : Integer;
iparity :Integer;
ibytesize : Integer;
istopbits : Integer;
Hw : boolean;

Sw : boolean;

f & ih e Wt oo WL z
Bl i i W stk B et e P R R e

159

Dtr : boolean;
Rts : boolean;
hNC : boolean;
end;

var
{ Global variable for example }
GCommData : TCOMMDATA,;
GszAppName : string;
GhForm : TExampleForm; {main form }
GbOpen :boolean; { opened ? }
GhExit :boolean; {stop thread ? }

GBaudTable :array[0 .. 19] of Integer = (
B50,B75,8110,B134,B150,B300,B600,B1200,
B1800,82400,B4800,87200,B9600,B19200,B38400,
B57600,B8115200,8230400,B460800,8921600

);

GParityTable :array|[0..4] of Integer = (
P_NONE,P_EVEN,P_ODD,P_MRK,P_SPC

);

GByteSizeTable:array[0..3] of Integer =(
BIT_5,BIT_6,BIT_7,BIT_8

);

GStopBitsTable:array[0..1] of Integer = (
STOP_1,STOP_2

);

GstrBaudTable :array[0..19] of string = (
'50','75','110','134','150','300",
'600','1200','1800','2400','4800','7200',
'‘9600','19200','38400','57600','115200',
'230400','460800','921600"

)i

GstrParityTable :array[0..4] of string = (

160

i

'‘None','Odd','Even’,'Mark','Space’
%

GstrByteSizeTable:array[0..3] of string = (
I5III6|I|7I1l8!
);

GstrStopBitsTable:array[0..1] of string = (
!1 IIF2I
);
implementation

uses SysUtils;

procedure TExampleForm.ShowStatus;
var

szMessage : string;

begin
szMessage := GszAppName;
if GbOpen then
begin

with GCommData do
begin

szMessage := szMessage + ' - COM' + IntToStr(Port) +',';

szMessage := szMessage +
GstrBaudTable[ibaudrate] +',';

szMessage := szMessage +
GstrParityTable[iparity] +'.";

szMessage := szMessage +
GstrByteSizeTable[ibytesize] +',";

szMessage := szMessage +
GstrStopBitsTable[istopbits];

if Hw then

szMessage := szMessage + ' RTS/CTS";

if Sw then

szMessage := szMessage + 'XON/XOFF",

end;

161

end;
Caption := szMessage;
end;

end.

162

7. FTPROC.PAS

(i*ﬁttt e sk s e e s sl s s ol s sk o ok ol skl o s sl e ok ool o ook ook ok ol o ok sk e ek ok ok o e e ok e e ok o ek ek e ok ek

FtProc.pas

- File transfer thread for file transfer example program.

e e s e e o ek i e e o o o ok e e o ek e ok ok e ok o o e ol e s ek e o skl ke ok sk e e ok e ke e e e e o *ii“)

unit FtProc;

interface
uses

Classes;

Const
FT_XMIT =0;
FT_RECV=1;

FTXMDM1KCRC =0;
FTXMDMCHK = 1;
FTXMDMCRC = 2;

FTZMDM = 3;
FTYMDM = 4;
FTKERMIT =5;
FTASCII = 6;

MAX_PATH = 260; {Win32 defined}

type
TFtProc = class(TThread)

private

{ Private declarations }
protected

procedure Execute; override;

end;

var
GxFname : array[0..MAX_PATH)] of Char;
GrFname : array[0..MAX_PATH] of Char,

163

GrPath : array[0..MAX_PATH] of Char;

GstrProtocol:array [0..6] of string = (
'"XModem-1KCRC','’XModem-CheckSum','XModem-CRC',
'ZModem',"Y Modem','Kermit','ASCII'

);

GProtocol : Word;
GDirection : Word;
GftCancel : boolean;

implementation

uses Windows,Forms,PComm,ExGlobal,FTransM,MxTool, Comobj;

function xCallBack(xmitlen:Longlnt;buflen:LongInt;buf:PChar;flen:Longint):
Longlnt;stdcall;forward;

function rCallBack(recvlen:LongInt;buflen:LongInt;buf:PChar;flen:Longint):
Longlnt;stdcall;forward;

procedure ProcessRet(port:Longlnt;ret:Longint;protocol:Word;direction:Word);

forward;

{ TFtProc }

¢
After create thread object in main process,'Execute()' function
will be called automatically.
If user press 'Cancel' button which on status dialog,
'GftCancel' flag will be set to true.This will let callback
function to return -1 to terminate file transfer.

g

procedure TFtProc.Execute;

var
ret : Longint;
port: Longint;
fname : PChar;

begin
{ Place thread code here }

164

port := GCommData.Port;

ret .= 0;
if (GDirection = FT_XMIT) then
begin
case GProtocol of
FTXMDM1KCRC:
ret := sio_FtXmodem1KCRCTx(port,GxFname xCallBack, 27);
FTXMDMCHK:
ret := sio_FtXmodemCheckSumTx(port,GxFname xCallBack, 27);
FTXMDMCRC:
ret := sio_FtXmodem1KCRCTx(port,GxFname xCallBack, 27);
FTZMDM:
ret := sio_FtZmodemTx(port,GxFname,xCallBack, 27);
FTYMDM:
ret := sio_FtYmodemTx(port,GxFname xCallBack, 27);
FTKERMIT:
ret := sio_FtKermitTx(port,GxFname,xCallBack, 27);
FTASCII:
ret := sio_FtASCIITx(port,GxFname xCallBack, 27);
end;
end
else {FT_RECV}
begin
case GProtocol of
FTXMDM1KCRC:
ret := sio_FtXmodem1KCRCRx(Port, GrFname,rCallBack, 27);
FTXMDMCHK:
ret := sio_FtXmodemCheckSumRx(Port, GrFname,rCallBack, 27);
FTXMDMCRC:
ret := sio_FtXmodem1KCRCRx(Port, GrFname,rCallBack, 27);
FTZMDM:
begin
fname := GrFname;
ret := sio_FtZmodemRx(Port, fname,1,rCallBack, 27);
end;
FTYMDM:
begin

165

fname := GrFname;
ret := sio_FtYmodemRx(Port, fname, 1, rCallBack, 27);
end;
FTKERMIT:
begin
fname := GrFname;
ret := sio_FtKermitRx(Port, fname, 1, rCallBack, 27);
end;
FTASCII:
ret := sio_FtASCIIRx(Port, GrFname,rCallBack, 27,3);
end;
end;

if ret < 0 then { maybe something error }
ProcessRet(port, ret, GProtocol, GDirection)
else
if (GDirection = FT_XMIT) then
Application.MessageBox(PChar('File Transmit OK'),PChar(GszAppName),MB_OK)
else
Application.MessageBox(PChar('File Receive OK'),PChar(GszAppName),MB_OK);
FTransForm.UpdateFT;
end;

function xCallBack(xmitlen:LongInt;buflen:LongInt;buf:PChar;flen:LongInt):
Longint;stdcall;
begin
if GftCancel then
begin
xCallBack := -1; { this will terminate file transfer }
Exit;
end;
FTransForm.RefreshDIg(xmitlen, flen, GxFname);
xCallBack := 0;

end;

function rCallBack(recvien:Longint;buflen:Longint;buf:PChar;flen:Longint):
Longlint;stdcall;

166

begin
if GftCancel then
begin
rCallBack := -1; { this will terminate file transfer }
Exit;

end;

FTransForm.RefreshDlg(recvlen, flen, GrFname);
rCallBack :=0;
end;

procedure ProcessRet(port:Longint;ret:Longint;protocol:Word;direction:Word);
var
buf : string;
begin
if (ret <> SIOFT_WIN32FAIL) then
begin
case ret of
SIOFT_BADPORT:
buf := 'Port is not opened in advance”;
SIOFT_TIMEOUT:
if (direction = FT_RECV) then
buf := 'Receive timeout'
else
buf := '"Transmit Timeout';
SIOFT_FUNC:
if ((protocol = FTASCII) And (direction = FT_RECV)) then
{ When downloading ASCI file,user must press "Cancel”
button to stop ASCI| receive }
buf := 'Receive File Ok'

else
buf ;= 'User abort';
SIOFT_FOPEN:

buf := 'Can"t open file";
SIOFT_CANABORT:

buf := 'Remote side abort’,
SIOFT_BOARDNOTSUPPORT:

buf := 'Board does not support this function’;

167

SIOFT_PROTOCOL, SIOFT_SKIP:
buf := 'File transfer error’;

else
buf := 'File transfer error’;

end;

Application.MessageBox(PChar(buf),PChar(GszAppName),MB_OK);
end
else

ShowSysErr(GszAppName);

end;

end.

168

8. MACHFORM.PAS

A add CNC Machine

unit MachForm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtris, Buttons, ExtCtrls, FTransM;

type
TMachineForm = class(TForm)
Bevell: TBevel;
EditNew: TEdit;
AddBtn: TBitBtn;
CancelBtn: TBitBtn;
BitBtn1: TBitBtn;
procedure AddBtnClick(Sender: TObject);
procedure CancelBtnClick(Sender: TObject);
procedure BitBtn1Click(Sender: TObject);
procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
private
{ Private declarations }
public
{ Public declarations }
end;

var
MachineForm: TMachineForm;

169

implementation

uses Prop;

{SR *DFM}

procedure TMachineForm.AddBtnClick(Sender: TObject);
begin
if (EditNew.Text <> ") and
(FTransForm.OutLine1.Lines.IndexOf (EditNew.Text) < 0) then
begin
{add the string to both listboxes}
FTransForm.OutLine1.Lines.Add (EditNew.Text);
Close;
end;
end;
procedure TMachineForm.CancelBtnClick(Sender: TObject);
begin
Close;
end;

procedure TMachineForm.BitBtn1Click(Sender: TObject);
begin

PropertyForm.ShowModal;
end;

procedure TMachineForm.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);
begin
EditNew.Text :="

end;

end.

170

9. MXTOOL.PAS

(*tt*iii*tt*i***tttti*iit*ti**tit**t**h*t*tt*tﬂ*t e sk e e e s o ool ok ok e e e

MxTool.pas
-- Process PComm function retum value

e ek e e s e ol sk ol ok e sk ok e s kel s ok ol sk ol o ol stk e ok o sl ol ol e ool e e ok ke sl ool e sk ok sl sl s ool ol sk ok o e ok ek e e e e ii)

unit MxTool;
interface

procedure ShowSysErr(title:string);
procedure MxShowError(title:string;errcode:Longlnt);

implementation

uses

Windows,Dialogs,PComm,SysUtils,Forms;

procedure MxShowError(title:string;errcode:Longint);
var
buf:string;
begin
if errcode <> SIO_WIN32FAIL then
begin
case errcode of
SIO_BADPORT:
buf := 'Port number is invalid or port is not opened in advance';
SIO_OUTCONTROL:
buf := 'This board does not support this function';
SIO_NODATA:
buf := 'No data to read";
SI0_OPENFAIL:
buf := 'No such port or port is occupied by other program’;
SIO_RTS_BY_HW:
buf := 'RTS can"t be set because H/W flowctrl";
SI0O_BADPARM:

171

buf := 'Bad parameter’,
SIO_BOARDNOTSUPPORT:

buf := 'This board does not support this function’;
SIO_ABORT_WRITE:

buf := 'Write has blocked, and user abort write';
SIO_WRITETIMEOUT:

buf := 'Write timeout has happened’;

else
buf := 'Unknown Error:'+IntToStr(errcode);

end;

Application.MessageBox(PChar(buf),PChar(title), MB_OK or MB_ICONSTOP);
end
else

ShowSyskErr(title);
end;

procedure ShowSysErr(title:string);
var
syserr :Longint;
IpMsgBuf:array[0..79] of Char;
lang :Longint;
begin
syserr := GetlLastError();

{MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT) }
lang := (SUBLANG_DEFAULT shl 10) + LANG_NEUTRAL;

FormatMessage(
FORMAT_MESSAGE_FROM_SYSTEM,
nil,
syserm,
lang,
@IpMsgBuf,
80,
nil
);
Application.MessageBox(IpMsgBuf,PChar(title),MB_OK or MB_ICONSTOP);
end; end.

172

e T

10. PCOMM.PAS

(I‘tt’*:t e s e e s s e e e sk sk sk ok o ok oo o o sl ok ok ok ok o o o ok ok ok ok ok ol sk ok o e e e e ek e e e e

PComm.pas
-- PComm Lib unit for Delphi (32 bit version).

e e stk ek ok vk ok o e gk ok ok o ol e ok o ek ok o e o o ok ek e o ek o e e ok e e deoke sk e e e de ek e ek e “ﬂﬂl“l)

unit PComm;
interface

const
{ baud rate setting }
B50 = $0;
B75 = $1;
B110 = $2;
B134 = $3;
B150 = $4;
B300 = $5;
B600 = $6;
B1200 = $7,;
B1800 = $8;
B2400 = $9;
B4800 = $A;
B7200 = $B;
B9600 = $C;
B19200 = $D;
B38400 = $E;
B57600 = $F;
B115200 = $10;
B230400 = $11;
B460800 = $12;
B921600 = $13;

{ data bit }
BIT_5 = $0;
BIT_6=$1;

173

BIT_7=$2;
BIT_8 = $3;

{ stop bit }
STOP_1=$0;
STOP_2 = $4;

{ parity }
P_EVEN = $18;
P_ODD = $8;
P_SPC =$38;
P_MRK =$28;
P_NONE = $0;

{ modem control setting }
C_DTR = $1;
C_RTS = $2;

{ modem line status }
S_CTS=§1;

S_DSR = $2;

S_RI =$4;

S_CD = $8;

{ error code }

SIO_OK =0;

SIO_BADPORT =-1; { No such port or port not opened }

SIO_OUTCONTROL =-2; { Can't control board }

SIO_NODATA =-4; { No data to read or no buffer to write }

SIO_OPENFAIL =-5; {No such port or port has opened }

SIO_RTS_BY_HW =-6; {Can't set because H/W flowctrl }

SIO_BADPARM =-7; { Bad parameter }

SIO_WIN32FAIL =-8; (* Call win32 function fail, please call }
GetlLastError to get the error code *)

SI0_BOARDNOTSUPPORT =-9; { Board does not support this function}

SIO_FAIL =-10; { PComm function run result fail }

SIO_ABORT_WRITE =-11; { Write has blocked, and user abort write }

SIO_WRITETIMEOUT = -12; { Write timeout has happened }

174

{ file transfer error code }

SIOFT_OK =0;

SIOFT_BADPORT =-1; {No such port or port notopen }
SIOFT_TIMEOUT = -2, { Protocol timeout }
SIOFT_ABORT =-3; { User key abort }

SIOFT_FUNC =4; { Func retum abort }
SIOFT_FOPEN =-5; { Can not open files }

SIOFT_CANABORT =-6; {Ymodem CAN signal abort}
SIOFT_PROTOCOL =-7; {Protocol checking error abort }
SIOFT_SKIP = -8;{ Zmodem remote skip this send file }
SIOFT_LACKRBUF =-9; {Zmodem Recv-Buff size must >= 2K bytes }
SIOFT_WIN32FAIL =-10; (* OS fail }

GetlastError to get the error code *)
SIOFT_BOARDNOTSUPPORT = -11; { Board does not support this function}

type

IrgProc = procedure(port: Longint);stdcall;
CaliBackProc = function(len: Longint; rlen: Longint; buf: PChar; flen: Longint): Longint;stdcall;

{Import routine from PComm.dll}

function sio_open(port: Longint): Longint; stdcall;

function sio_close(port: Longint): Longint; stdcall;

function sio_ioctl(port, baud, mode: Longint): Longint; stdcall;

function sio_flowctrl(port, mode: Longint): Longint; stdcall;

function sio_flush(port, func: Longint): Longint; stdcall;

function sio_DTR(port, mode: Longint): Longint; stdcall;

function sio_RTS(port, mode: Longint): Longint; stdcall;

function sio_Ictri(port, mode: Longint): Longint; stdcall;

function sio_baud(port, speed: Longint): Longint; stdcall;

function sio_getch(port: Longint): Longint; stdcall;

function sio_read(port: Longint; buf: PChar; len: Longint): Longint; stdcall;

function sio_linput(port: Longint; buf:PChar; len: Longint; term:Longint): Longint; stdcall;
function sio_putch(port, term: Longint): Longint; stdcall;

function sio_putb(port: Longint; buf:PChar; len: Longint): Longint; stdcall;

function sio_write(port: Longint; buf:PChar; len: Longint): Longint; stdcall;

function sio_putb_x(port: Longint; buf:PChar; len: Longint; tick:Longint): Longint; stdcall;

175

function sio_putb_x_ex(port: Longint; buf:PChar; len: Longint; tms:Longint): Longint; stdcall;

function sio_lIstatus(port: Longint): Longint; stdcall;

function sio_iqueue(port: Longint): Longint; stdcall;

function sio_oqueue(port: Longint): Longint; stdcall;

function sio_Tx_hold(port: Longint): Longint; stdcall;

function sio_getbaud(port: Longint): Longint; stdcall;

function sio_getmode(port: Longint): Longint; stdcall;

function sio_getflow(port: Longint): Longint; stdcall;

function sio_data_status(port: Longint): Longint; stdcall;

function sio_term_irg(port: Longint; func: IrqProc; code: Byte): Longint; stdcall;

function sio_cnt_irg(port: Longint; func: IrgProc; count: Longint): Longint; stdcall;

function sio_modem_irg(port: Longint; func: IrgProc): Longint; stdcall;

function sio_break_irg(port: Longint; func: IrgProc): Longint; stdcall;

function sio_Tx_empty_irg(port: Longint; func: IrgProc): Longint; stdcall;

function sio_break(port, time: Longint): Longint; stdcall;

function sio_view(port: Longint; buf: PChar; len: Longint): Longint; stdcall;

function sio_TxLowWater(port, size: Longint): Longint; stdcall;

function sio_AbortWrite(port: Longint): Longint; stdcall;

function sio_AbortRead(port: Longint): Longint; stdcall,

function sio_SetWriteTimeouts(port, timeouts: Longint): Longint; stdcall;

function sio_GetWriteTimeouts(port: Longint; var TotalTimeouts:Longint): Longint; stdcall;
function sio_SetReadTimeouts(port, TotalTimeouts, IntervalTimeouts: Longint): Longint; stdcall;
function sio_GetReadTimeouts(port: Longint; var TotalTimeouts, IntervalTimeouts: Longint):
Longint; stdcall;

function sio_FtASCIITx(port:Longint; fname:PChar; func:CallBackProc; key:Longint): Longint;
stdcall;

function sio_FtASCIIRx(port:Longint; fname:PChar; func:CallBackProc; key:Longint; sec:Longint):
Longint; stdcall;

function sio_FtXmodemCheckSumTx(port:Longint; fname:PChar; func:CallBackProc;
key:Longint): Longint; stdcall;

function sio_ FtXmodemCheckSumRx(port:Longint; fname:PChar; func:CallBackProc;
key:Longint): Longint; stdcall;

function sio_FtXmodemCRCTx(port:Longint; fname:PChar; func:CallBackProc; key:Longint):
Longint; stdcall;

function sio_FtXmodemCRCRx(port:Longint; fname:PChar; func:CallBackProc; key:Longint):
Longint; stdcall;

function sio_FtXmodem1KCRCTx(port:Longint; fname:PChar; func:CallBackProc; key:Longint):
Longint; stdcall;

176

R

Sk

function sio_FtXmodem1KCRCRXx(port:Longint; fname:PChar; func:CallBackProc; key:Longint):
Longint; stdcall;

function sio_FtYmodemTx(port:Longint; fname:PChar; func:CallBackProc; key:Longint): Longint;
stdcall;

function sio_FtYmodemRx(port:Longint; var fname:PChar;fno:Longlnt;func:CallBackProc;
key:Longint): Longint; stdcall;

function sio_FtZmodemTx(port:Longint; fname:PChar; func:CallBackProc; key:Longint): Longint;
stdcall;

function sio_FtZmodemRx(port:Longint; var fname:PChar;fno:Longint;func:CallBackProc;
key:Longint): Longint; stdcall;

function sio_FtKermitTx(port:Longint; fname:PChar; func:CallBackProc; key:Longint): Longint;
stdcall,

function sio_FtKermitRx(port:Longint; var fname:PChar;fno:Longint;func:CallBackProc;
key:Longint): Longint; stdcall;

implementation

function sio_open; extemal 'PComm.dll';
function sio_close; external 'PComm.dIl';
function sio_ioctl; external 'PComm.dll’;
function sio_flowctrl; extemal 'PComm.dll’;
function sio_flush; extemal 'PComm.dll';
function sio_ DTR; extemal 'PComm.dIl';
function sio_RTS; external 'PComm.dll’;
function sio_lctrl; external 'PComm.dll’;
function sio_baud; extemal 'PComm.dll’;
function sio_getch; external 'PComm.dIl’;
function sio_read; external 'PComm.dlI';
function sio_linput; external 'PComm.dll’;
function sio_putch; external 'PComm.dll’;
function sio_putb; external 'PComm.dll;
function sio_write; extemal 'PComm.dll';
function sio_putb_x; extemal 'PComm.dIl';
function sio_putb_x_ex; external 'PComm.dll’;
function sio_lIstatus; extemal 'PComm.dll';
function sio_iqueue; extemal 'PComm.dlil';
function sio_oqueue; external 'PComm.dll’;
function sio_Tx_hold; external 'PComm.dll';

177

function sio_getbaud; external 'PComm.dll';

function sio_getmode; extemal 'PComm.dll";

function sio_getflow; extemal 'PComm.dll';

function sio_data_status; external 'PComm.dll';

function sio_term_irq; external 'PComm.dll';

function sio_cnt_irq; extemal 'PComm.dll’;

function sio_modem_irg; external 'PComm.dIl';

function sio_break_irqg; external 'PComm.dll’;

function sio_Tx_empty_irq; external 'PComm.dll';
function sio_break; external 'PComm.dll';

function sio_view; extemal 'PComm.dll';

function sio_TxLowWater; extemal 'PComm.dll’;

function sio_AbortWrite; extemal 'PComm.dll’;

function sio_AbortRead; extemal 'PComm.dll';

function sio_SetWriteTimeouts; external 'PComm.dll';
function sio_GetWriteTimeouts; external 'PComm.dll’;
function sio_SetReadTimeouts; external 'PComm.dll’;
function sio_GetReadTimeouts; external 'PComm.dIl’;
function sio_FtASCIITx; external 'PComm.dll’;

function sio_FtASCIIRx; extemal 'PComm.dll';

function sio_FtXmodemCheckSumTx; external 'PComm.dll";
function sio_FtXmodemCheckSumRx; external 'PComm.dll';
function sio_FtXmodemCRCTx; external 'PComm.dll';
function sio_ FtXmodemCRCRXx; external 'PComm.dll';
function sio_FtXmodem1KCRCTx; extemal 'PComm.dll';
function sio_FtXmodem1KCRCRXx; extemal 'PComm.dll';
function sio_FtYmodemTx; external ‘PComm.dll';
function sio_FtYmodemRx; external 'PComm.dlIl';
function sio_FtZmodemTXx; external '‘PComm.dll’;
function sio_FtZmodemRx; external 'PComm.dll';
function sio_FtKermitTx; extemal 'PComm.dlIl’;

function sio_FtKermitRx; external 'PComm.dll';

end.

178

S

[

11. PROP.PAS

/¥ Property

Machine I Controller |

Haas VF-4 : : : st
Hitachi-Sieki SV 508 Machine Type: Mill Machine-mm
Matsuura : : .
Mill Machine-mm Wacnine 10 HOBUY
Maori-Seiki SV50B Number of Axis 3
Tum Machine-4 Axis
Max Feedrate: 25000.00 mm/min
Max Spindle Speed: 10000.00 rpm

Select |

unit Prop;

interface

uses
Windows, Messages, SysUltils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtris, ExtCtrls, Buttons, ComCitris;

type
TPropertyForm = class(TForm)

Properties: TPageControl;
Machine: TTabSheet;
Controller: TTabSheet;
ListBox2: TListBox;
Select: TBitBtn;
Bevell: TBevel;
MachName: TLabel;
ContType: TLabel;
ZHOME: TLabel;
TravRate: TLabel;
ContlLabel: TLabel;

179

MachineLabel: TLabel;
ZHOMELabel: TLabel;
TRAVRATELabel: TLabel;
ListBox1: TListBox;
BitBtn1: TBitBtn;
MachType: TLabel;
MaxFeed: TLabel;
MachTypelLabel: TLabel;
MachDutyLabel: TLabel;
NoAxisLabel: TLabel,
MaxFeedLabel: TLabel;
Bevel2: TBevel;

NoAxis: TLabel,
MaxSpinSpeed: TLabel;
MachineDuty: TLabel;
MaxSpinLabel: TLabel;

procedure SelectClick(Sender: TObject);
procedure ListBox1Click(Sender: TObject);

private

{ Private declarations }
public

{ Public declarations }
end;

var
PropertyForm: TPropertyForm;

implementation

{$R *.DFM}

procedure TPropertyForm.ListBox1Click(Sender: TObject);
var

Listitem: Integer;
begin

180

{look at each item of the multiple selection listbox}
for Listltem := 0 to ListBox1.ltems.Count - 1 do
if ListBox1.Selected [Listitem] then
begin
if Listltem = 0 then
begin
MachTypelabel.Caption :='Haas VF-4 Mill';
MachDutyLabel.Caption := 'Light Duty";
NoAxisLabel.Caption :='4';
MaxFeedLabel.Caption := '25000.00 mm/min’;
MaxSpinLabel.Caption := '10000.00 rpm’";

end;

if Listitem = 1 then

begin
MachTypelabel.Caption := 'Hitachi Sieki Mill";
MachDutyLabel.Caption := 'Light Duty";
NoAxisLabel.Caption :='3'";
MaxFeedLabel.Caption := '25000.00 mm/min’;
MaxSpinLabel.Caption := '10000.00 rpm";

end;

if Listitem = 2 then

begin
MachTypelabel.Caption := ‘Matsuura Mill';
MachDutyLabel.Caption := 'Light Duty';
NoAxisLabel.Caption :='3";
MaxFeedLabel.Caption := '25000.00 mm/min";
MaxSpinLabel.Caption := '10000.00 rpm’;

end;

if Listitem = 3 then

begin
MachTypeLabel.Caption := 'Mill Machine-mm";
MachDutyLabel.Caption := 'Light Duty";
NoAxisLabel.Caption :='3";
MaxFeedLabel.Caption := "25000.00 mm/min’;
MaxSpinLabel.Caption := "10000.00 rpm";

181

end;

if Listitem = 4 then

begin
MachTypel abel.Caption := 'Mori-Sieki SV Mill';
MachDutyLabel.Caption := 'Light Duty";
NoAxisLabel.Caption := '3';
MaxFeedLabel.Caption := '25000.00 mm/min’;
MaxSpinLabel.Caption :='10000.00 rpm’;

end;

end;
end;

procedure TPropertyForm.SelectClick(Sender: TObject);
var
Listitem: Integer;
begin
{look at each item of the multiple selection listbox}
for Listitem := 0 to ListBox1.ltems.Count - 1 do
if ListBox2.Selected [Listltem] then
begin
if Listitem = 0 then
begin
ContLabel.Caption := 'ACROMATIC 2100';
MachineLabel.Caption := 'CINCINNATI";
ZHomel abel.Caption :='508.00mm’;
TRAVRATELabel.Caption :='6350.00mm’;
end;

if Listitem = 1 then

begin
ContlLabel.Caption := '"ACROMATIC 850",
MachineLabel.Caption := 'CINCINNATI";
ZHomelL abel.Caption :='508.00mm";
TRAVRATELabel.Caption = '6350.00mm;

end;

182

if Listitem = 2 then

begin
ContLabel.Caption := 'FADAL CNC 88';
MachineLabel.Caption := 'FADAL',
ZHomel abel.Caption :='508.00mm";
TRAVRATELabel.Caption = '6350.00mm’;

end;

if Listitem = 2 then

begin
ContlLabel.Caption := 'MORI SEIKI';
MachineLabel.Caption := 'FANUC 3000C",;
ZHomel abel.Caption := '508.00mm";
TRAVRATELabel.Caption := '6350.00mm’;

end;

if Listltem = 3 then

begin
ContlLabel.Caption := 'MILL TUTORIAL;
MachineLabel.Caption := 'FANUC TYPE';
ZHomel abel.Caption := '508.00mm’;
TRAVRATELabel.Caption = '250.00mm",

end;

if Listitem = 4 then

begin
ContLabel.Caption := 'MILL TUTORIAL
MachineLabel.Caption := 'FANUC TYPE',
ZHomelL abel.Caption :='508.00mm’;
TRAVRATELabel.Caption := '250.00mm’;

end;

if Listitem = 5 then

begin
ContlLabel.Caption := 'HAAS CONTROL";
MachineLabel.Caption := 'HAAS';
ZHomelL abel.Caption := '508.00mm";

183

TRAVRATELabel.Caption := '6350.00mm’;
end;

if Listitem = 6 then

begin
ContlLabel.Caption := 'HEIDENHAIN TNC 145",
MachineLabel.Caption := 'WELLS INDEX";
ZHomel abel.Caption := '508.00mm’;
TRAVRATELabel.Caption := '6350.00mm’;

end;

end;
end;

end.

184

12. READTHD.PAS

(i e e v i sy e e s sk e sk s ok s e s sl sk e sl sk s s ool o ok sl o e ol e o ok ok sk o ol ok o ok o e el e ol e e ok ok ool ok e el ek

ReadThd.pas
- Read Thread for example program.

o o e e e ol ek ok b o ol ok o o ok v e ol ok o o ok ook o o o e e ok oo o ok g ool e o o ok o e ook e ok ok o o ol ok ol ook e e e ok it)

unit ReadThd;
interface

uses Classes;

type
TReadThread = class(TThread)
private
m_buf : array [0..511] of Char;

{ Private declarations }
protected

procedure Execute; override;

procedure ShowData;

end;
implementation
uses Windows,PComm ExGlobal, FtransM;

{ TReadThread }
procedure TReadThread.ShowData;
var
lend : Longint;
begin
*
When got any data,dump buffer to Edit window.

185

NOTE:
If any Null character in buffer,

characters after null can't be dumped
to Edit window.

")
lend := Length(GhForm.Term.Text);

if(lend>25000)then
begin
{ Edit Control buffer size limit }
GhForm.Term.Text := string(m_buf);
Exit;
end,;
if(lend>25000)then
GhForm.Term.SelStart := lend;
GhForm.Term.SelLength := 0;
GhForm.Term.SelText := string(m_buf);

end;

procedure TReadThread.Execute;
var

len : Longlnt;
begin

(* before close port,set GhEXxit to true to terminate

the read thread *)
while not GhExit do
begin

Sleep(10);

len := sio_read(GCommbData.Port,@m_buf,511);

if (len>0) then
begin

m_buf[len] := Char(0);{null terminated string}

Synchronize(ShowData);
end
end;
end;
end.

186

13, SIMPLEM.PAS

(***i**ittii****a‘*il‘**t**t**tt****t**t**tttt****tt**tttt*tt**!i*tti*ﬂ

SimpleM.pas
-- Main window for simple dumb terminal example program.

e e e e e e s ke ke e ke ok e sk i ol sl o ke e ol ok skl ol o e e e ok ok ek ool e e e e sl ok ke sk e ek s el e e e e e ek e e ke i*)

unit SimpleM;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Menus,ExGlobal, StdCtrls, Buttons, ExtCtrls, ToolWin, ComCitrls;

type
TSimpleForm = class(TExampleForm)

Paneli: TPanel;
SendButton: TSpeedButton;

procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

187

procedure TermKeyPress(Sender: TObject; var Key: Char);

procedure ClosePort;

procedure cmClearClick(Sender: TObject);
function OpenPort:Boolean;

function PortSet:boolean;

procedure SendButtonClick(Sender: TObject);

private
Modified: Boolean;
public

end;

var
SimpleForm : TSimpleForm;

implementation

uses PComm,MxTool,Config,ReadThd, About, FTransM;

{$R *.DFM}

procedure TSimpleForm.FormCreate(Sender: TObject);
begin

GszAppName := 'Simple Demo';

Term.Enabled := False;

GbOpen := false;

GhForm := SimpleForm;
end;

function TSimpleForm.PortSet:boolean;
var

port : Longlint;

mode : Longint;

hw,sw : Longint;

ret : Longlint;
begin

port := GCommData.Pont;

188

mode := GCommData.Parity or GCommData.ByteSize or GCommData.StopBits;
PortSet := false;

if GCommData.Hw then
hw =3 { bit0 and bit1 }
else

if GCommData.Sw then
sw:=12 { bit2 and bit3 }
else

ret := sio_ioctl(port, GCommData.BaudRate,mode);
if ret<>SI0_OK then
begin
MxShowError('sio_ioctl',ret);
Exit;
end;

ret := sio_flowctr(port,hw or sw);

if ret<>SI10_OK then

begin
MxShowError('sio_flowctrl' ret);
Exit;

end;

ret := sio_DTR(por,Integer(GCommData.Dtr));
if ret<>SI10_OK then
begin
MxShowError('sio_DTR',ret);
Exit;
end;

if not GCommData.Hw then

begin
ret := sio_ RTS(port,Integer(GCommData.Rts));
if ret<>SI0_OK then

189

begin
MxShowError('sio_RTS' ret);
Exit;

end;

end;

ShowStatus();
PortSet := True;
end;

function TSimpleForm.OpenPort:Boolean;
var
retiinteger;
begin
OpenPort := false;
ret := sio_open(GCommbData.Port);
if ret <> SIO_OK then
begin
MxShowError('sio_open' ret);
Exit;

end;

if PortSet() = false then

begin
sio_close(GCommData.Port);
Exit;

end;

OpenPort := true;

GhExit := false;

TReadThread.Create(false);

GbOpen := true;

ShowStatus();

end;

procedure TSimpleForm.ClosePort;
begin

190

CLTR SRS)20 (e SRRl | (e L K A B
GhExit = true;

sio_close (GCommData.Port);
GbOpen := False;
ShowStatus();

end;

procedure TSimpleForm.TermKeyPress(Sender: TObject; var Key: Char);
begin
sio_putch(GCommData.Port,Integer(Key));

Il Key:=Char(0);
end;

procedure TSimpleForm.cmClearClick(Sender: TObject);
begin

Term.Clear();
end;

procedure TSimpleForm.SendButtonClick(Sender: TObject);
begin

Term.Enabled :=True;
end;

procedure TSimpleForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin

FtransForm.PortClose.Click;

Close;
end;

end.

191

s
zmgc

14. ACTIVEFORMIMPLI1

= CA
[Documents and Setti

& Captainshaft

= My Documents
£ Masters
= FounTera XR

unit ActiveFormimpl1;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ActiveX, AxCtrls, ActiveFormProj1_TLB, StdCtrls, Buttons, ExtCtrls,
FileCtrl, ComCtrls;

type
TActiveFormX = class(TActiveForm, lIActiveFormX)

GroupBox2: TGroupBox;
chHw: TCheckBox;
chSw: TCheckBox;
GroupBox1: TGroupBox;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
cbPort: TComboBox;
cbBaudRate: TComboBox;

192

cbParity: TComboBox;
cbByteSize: TComboBox;
cbStopBits: TComboBox;
OK: TBitBtn;

Cancel: TBitBtn;
GroupBox3: TGroupBox;
chDtr: TCheckBox;

chRts: TCheckBox;
cmSetting: TBitBtn;
PageControl1: TPageControl;
TabSheet1: TTabSheet;
rgProtocol: TRadioGroup;
rgDirection: TRadioGroup;
FSetOk: TBitBtn;
FSetCancel: TBitBtn;
TabSheet2: TTabSheet;
Label6: TLabel;
ListFilesLabel: TLabel;
DrivesLabel: TLabel;
DirLabel: TLabel;
FileNamelLabel: TLabel;
DirBox: TDirectoryListBox;
DirDIgOK: TBitBtn;
DirDIgCancel: TBitBtn;
DriveBox: TDriveComboBox;
DirDIgPrev: TBitBtn;
FileListBox: TFileListBox;
FileNameEdit: TEdit;

FilterComboBox: TFilterComboBox:

TabSheet3: TTabSheet;
TPort: TLabel;
TFileSize: TLabel;
TProtocol: TLabel;
TLength: TLabel;
TFileName: TLabel;
Bevel1: TBevel,

Bevel2: TBevel;

Bevel3: TBevel;

L

Beveld: TBevel;

Bevel5: TBevel;

IbFname: TLabel;

IbFSize: TLabel;

IbxLen: TLabel;

IbPort: TLabel;

IbProtocol: TLabel;

TCancel: TBitBtn;

procedure FormCreate(Sender: TObject);
procedure chHwClick(Sender: TObject);
procedure OKClick(Sender: TObject);
procedure cmSettingClick(Sender: TObject);
function OpenPort:Boolean;

function PortSet:Boolean;

procedure FSetOkClick(Sender: TObject);
procedure CancelClick(Sender: TObject);
procedure ClosePort;

procedure FileListBoxDblClick(Sender: TObject);
procedure XmitFile;

procedure RecvFile;

procedure FSetCancelClick(Sender: TObject);
procedure DirDIgCancelClick(Sender: TObject);
procedure DirDIgOKClick(Sender: TObject);

private
{ Private declarations }
DoTra: Boolean;
FEvents: |IActiveFormXEvents;
procedure ActivateEvent(Sender: TObject);
procedure ClickEvent(Sender: TObject);
procedure CreateEvent(Sender: TObject);
procedure DblIClickEvent(Sender: TObject);
procedure DeactivateEvent(Sender: TObject);
procedure DestroyEvent(Sender: TObject);
procedure KeyPressEvent(Sender: TObject; var Key: Char);
procedure PaintEvent(Sender: TObject);
procedure UpDateFT;
procedure UpDateGT;

194

AR

L

procedure UpDateHt;

procedure UpDateKit;

protected
{ Protected declarations }
procedure DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage); override;
procedure EventSinkChanged(const EventSink: IUnknown); override;
function Get_Active: WordBool; safecall;
function Get_AutoScroll: WordBool; safecall;
function Get_AutoSize: WordBool; safecall;
function Get_AxBorderStyle: TxActiveFormBorderStyle; safecall;
function Get_BiDiMode: TxBiDiMode; safecall;
function Get_Caption: WideString; safecall;
function Get_Color: OLE_COLOR; safecall;
function Get_Cursor: Smallint; safecall;
function Get_DoubleBuffered: WordBool: safecall;
function Get_DropTarget: WordBool; safecall;
function Get_Enabled: WordBool; safecall;
function Get_Font: IFontDisp; safecall;
function Get_HelpFile: WideString; safecall;
function Get_KeyPreview: WordBool; safecall;
function Get_PixelsPerinch: Integer; safecall;
function Get_PrintScale: TxPrintScale; safecall;
function Get_Scaled: WordBool; safecall;
function Get_Visible: WordBool; safecall;
procedure _Set_Font(const Value: IFontDisp); safecall;
procedure Set_AutoScroll(Value: WordBool); safecall;
procedure Set_AutoSize(Value: WordBool); safecall;
procedure Set_AxBorderStyle(Value: TxActiveFormBorderStyle); safecall;
procedure Set_BiDiMode(Value: TxBiDiMode); safecall;
procedure Set_Caption(const Value: WideString); safecall;
procedure Set_Color(Value: OLE_COLOR); safecall;
procedure Set_Cursor(Value: Smallint); safecall;
procedure Set_DoubleBuffered(Value: WordBool); safecall;
procedure Set_DropTarget(Value: WordBool); safecall;
procedure Set_Enabled(Value: WordBool); safecall;
procedure Set_Font(var Value: IFontDisp); safecall;
procedure Set_HelpFile(const Value: WideString); safecall;
procedure Set_KeyPreview(Value: WordBool); safecall;

195

procedure Set_PixelsPerinch(Value: Integer); safecall;
procedure Set_PrintScale(Value: TxPrintScale); safecall;
procedure Set_Scaled(Value: WordBool); safecall;
procedure Set_Visible(Value: WordBool); safecall;

public
{ Public declarations }
procedure Initialize; override;
end;

var
ActiveXForm: TActiveFormX;
GProtocol : Word;
GDirection : Word;
GftCancel : boolean;
Gfhw : boolean;
Falcon : String;
GxFname : array[0..MAX_PATH] of Char;
GrFname : array[0..MAX_PATH)] of Char;
GrPath : array[0..MAX_PATH] of Char;

GstrProtocol:array [0..6] of string = (

‘XModem-1KCRC','’XModem-CheckSum',’XModem-CRC',
'ZModem',"Y Modem','Kermit''ASCII'

X

implementation

uses ComObj, ComServ, ExGlobal, PComm, MxTool, FtPro;

{$R *.DFM}

{ TActiveFormX }

procedure TActiveFormX.DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage);

begin

{ Define property pages here. Property pages are defined by calling

DefinePropertyPage with the class id of the page. For example,
DefinePropertyPage(Class_ActiveFormXPage); }
end;

procedure TActiveFormX.EventSinkChanged(const EventSink: IlUnknown);
begin

FEvents := EventSink as IActiveFormXEvents;
end;

procedure TActiveFormX.Initialize;

begin
inherited Initialize;
OnActivate := ActivateEvent;
OnClick := ClickEvent;
OnCreate := CreateEvent;
OnDbIClick := DbIClickEvent;
OnDeactivate := DeactivateEvent;
OnDestroy := DestroyEvent;
OnKeyPress = KeyPressEvent;
OnPaint := PaintEvent;

end;

function TActiveFormX.Get_Active: WordBool;
begin
Result := Active;

end;

function TActiveFormX.Get_AutoScroll: WordBool;
begin
Result := AutoScroll;

end;
function TActiveFormX.Get_AutoSize: WordBool;
begin

Result := AutoSize;

end;

function TActiveFormX.Get_AxBorderStyle: TxActiveFormBorderStyle;

197

begin
Result := Ord(AxBorderStyle);
end;

function TActiveFormX.Get_BiDiMode: TxBiDiMode;
begin

Result := Ord(BiDiMode);
end;

function TActiveFormX.Get_Caption: WideString;
begin

Result := WideString(Caption);
end;

function TActiveFormX.Get_Color: OLE_COLOR;
begin

Result := OLE_COLOR(Color);
end;

function TActiveFormX.Get_Cursor: Smallint;
begin
Result := Smallint(Cursor);

end;

function TActiveFormX.Get_DoubleBuffered: WordBool;
begin

Result := DoubleBuffered;
end;

function TActiveFormX.Get_DropTarget: WordBool;
begin

Result := DropTarget;
end;

function TActiveFormX.Get_Enabled: WordBool;
begin

Result := Enabled;
end;

198

function TActiveFormX.Get_Font: IFontDisp;
begin
GetOleFont(Font, Result);

end;

function TActiveFormX.Get_HelpFile: WideString;
begin
Result := WideString(HelpFile);

end;

function TActiveFormX.Get_KeyPreview: WordBoal;
begin

Result := KeyPreview;
end;

function TActiveFormX.Get_PixelsPerinch: Integer;
begin

Result := PixelsPerinch;
end;

function TActiveFormX.Get_PrintScale: TxPrintScale;
begin
Result := Ord(PrintScale);

end;

function TActiveFormX.Get_Scaled: WordBool;
begin

Result := Scaled;
end;

function TActiveFormX.Get_Visible: WordBool;
begin

Result := Visible;
end;

procedure TActiveFormX._Set_Font(const Value: IFontDisp);
begin

199

SetOleFont(Font, Value);
end;

procedure TActiveFormX.Set_AutoScroll(Value: WordBool);
begin

AutoScroll := Value;
end;

procedure TActiveFormX.Set_AutoSize(Value: WordBool);
begin

AutoSize := Value;
end;

procedure TActiveFormX.Set_AxBorderStyle(Value: TxActiveFormBorderStyle);
begin
AxBorderStyle := TActiveFormBorderStyle(Value);

end;

procedure TActiveFormX.Set_BiDiMode(Value: TxBiDiMode);
begin
BiDiMode := TBiDiMode(Value);

end;

procedure TActiveFormX.Set_Caption(const Value: WideString);
begin

Caption := TCaption(Value);
end;

procedure TActiveFormX.Set_Color(Value: OLE_COLOR);
begin

Color := TColor(Value);
end;

procedure TActiveFormX.Set_Cursor(Value: Smallint);
begin

Cursor := TCursor(Value);
end;

200

%&L TE "’%?&awzs _ﬁ%é i
L ’ei‘g%«%ﬂ% Eﬁ% _2%

procedure TActiveFormX.Set_DoubleBuffered(Value: WordBool);
begin

DoubleBuffered := Value;
end;

procedure TActiveFormX.Set_DropTarget(Value: WordBool);
begin

DropTarget := Value;
end;

procedure TActiveFormX.Set_Enabled(Value: WordBool);
begin

Enabled := Value;
end;

procedure TActiveFormX.Set_Font(var Value: IFontDisp);
begin

SetOleFont(Font, Value);
end;

procedure TActiveFormX.Set_HelpFile(const Value: WideString);
begin

HelpFile := String(Value);
end;

procedure TActiveFormX.Set_KeyPreview(Value: WordBool);
begin

KeyPreview := Value;
end,

procedure TActiveFormX.Set_PixelsPerinch(Value: Integer);
begin

PixelsPerinch := Value,
end;

procedure TActiveFormX.Set_PrintScale(Value: TxPrintScale);
begin
PrintScale := TPrintScale(Value);

201

end;

procedure TActiveFormX.Set_Scaled(Value: WordBool);
begin

Scaled = Value;
end;

procedure TActiveFormX.Set_Visible(Value: WordBool);
begin

Visible := Value;
end;

procedure TActiveFormX.ActivateEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnActivate;

end;

procedure TActiveFormX.ClickEvent(Sender: TObject);
begin

if FEvents <> nil then FEvents.OnClick;
end;

procedure TActiveFormX.CreateEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnCreate;

end;

procedure TActiveFormX.DblIClickEvent(Sender: TObject);
begin

if FEvents <> nil then FEvents.OnDbIClick;
end;

procedure TActiveFormX.DeactivateEvent(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnDeactivate;

end;

procedure TActiveFormX.DestroyEvent(Sender: TObject);

202

begin

if FEvents <> nil then FEvents.OnDestroy;
end;

procedure TActiveFormX.KeyPressEvent(Sender: TObject; var Key: Char);

var
TempKey: Smallint;

begin
TempKey := Smallint(Key);
if FEvents <> nil then FEvents.OnKeyPress(TempKey);
Key := Char(TempKey);

end;

procedure TActiveFormX.PaintEvent(Sender: TObject);
begin

if FEvents <> nil then FEvents.OnPaint;
end;

procedure TActiveFormX.FormCreate(Sender: TObject);
var
i:Word;
begin
DoTra := false;
UpDateFT;
for i:=1 to 256 do
cbPort.ltems.Add('COM'+IntToStr(i));
with GCommData do
begin
Port :=1;
ibaudrate = 14;
iparity =0;
ibytesize := 3;
istopbits :=0;
BaudRate :=B38400;
Parity :=P_NONE;
ByteSize = BIT_8;
StopBits := STOP_1;
Hw := false;

203

Sw = false;

Dtr := true;
Rts := true;
end;

DirBox.FileList := FileListBox;

{This diplay the current directory as the caption of a label control}
DirBox.DirLabel := DirLabel;

{The displays the current drive so that the directory list box auomatically
updates its tree}

DriveBox.DirList := DirBox;

{This assign the edit objects name to the FileListBox's FileEdit property}
FileListBox.FileEdit := FileNameEdit;

end;

procedure TActiveFormX.UpDateFT,;
begin

cbPort.Enabled = DoTra;
cbBaudRate.Enabled := DoTra;
cbParity .Enabled := DoTra;
cbByteSize.Enabled := DoTra;
cbStopBits.Enabled := DoTra;
chSw.Enabled := DoTra;
chHw.Enabled := DoTra;
chDtr.Enabled := DoTra;
chRts.Enabled := DoTra;
OK.Enabled := DoTra;
Cancel.Enabled := DoTra;
PageControl1.Enabled := DoTra;
TabSheet1.Enabled := DoTra;
FSetOk.Enabled := DoTra;
FSetCancel.Enabled := DoTra;
DirDIgOK.Enabled := DoTra;
DirDIgCancel.Enabled := DoTra;
DirDIigPrev.Enabled := DoTra;
TCancel.Enabled := DoTra;
end;

procedure TActiveFormX.chHwClick{(Sender: TObject);

204

i

begin
chRts.Enabled := Gfhw;
Gfhw := Not Gfthw;

end;

procedure TActiveFormX.cmSettingClick(Sender: TObject);

begin

UpDateGT;

with GCommData do

begin
cbPort.ltemindex := Port-1;
cbBaudRate.ltemindex := ibaudrate;
cbParity.ltemindex := iparity;
cbByteSize.ltemindex := ibytesize;
cbStopBits.Itemindex := istopbits;
chHw.Checked = Hw;
chSw.Checked := Sw;
chRts.Checked := Ris;
chDtr.Checked = Dtr;
Gfhw = Hw;
chRts.Enabled := not Gfhw;
{ disable com port setting when opend }
cbPort.Enabled := not GbOpen;

end;

end;

procedure TActiveFormX.UpDateGT;

begin
cmSetting.Enabled := not DoTra;
cbPort.Enabled = not DoTra;
cbBaudRate.Enabled :=not DoTra;
cbParity.Enabled := not DoTra;
cbByteSize.Enabled := not DoTra;
cbStopBits.Enabled := not DoTra;
chSw.Enabled := not DoTra;
chHw.Enabled := not DoTra;
chDtr.Enabled := not DoTra;

205

._ﬁ
gl

chRts.Enabled := not DoTra;
OK.Enabled := not DoTra;
Cancel.Enabled := not DoTra;
PageControl1.Enabled := DoTra;
TabSheet1.Enabled := DoTra;
FSetOk.Enabled := DoTra;
FSetCancel.Enabled := DoTra;
end;

procedure TActiveFormX.OKClick(Sender: TObject);
var
W:Word;
begin
with GCommData do
begin
Port :=cbPort.ltemindex + 1;
ibaudrate := cbBaudRate.ltemindex;
iparity := cbParity.ltemindex;
ibytesize := cbByteSize.ltemindex;
istopbits := cbStopBits.ltemindex;
BaudRate := GBaudTable[ibaudrate];
ByteSize := GByteSizeTable[ibytesize];
Parity := GParityTable[iparity];
StopBits := GStopBitsTable[istopbits];
Hw :=chHw.Checked;
Sw :=chSw.Checked;
Rts := chRts.Checked;
Dtr := chDtr.Checked;
end;

begin
W:=MessageDIg('Settings Correct?', mtConfirmation,[mbYes, mbNo], 0);
case W of
mrYes: begin
OpenPort();
PageControl1.ActivePage := TabSheet1,;
end;
mrNo: modalresult := mrcancel;

206

end;
end;
end;

function TActiveFormX.OpenPort:Boolean;

var
ret:Integer;
begin

OpenPort := false;

ret := sio_open(GCommbData.Port);

if ret <> SIO_OK then

begin
MxShowError('sio_open',ret);
Exit;

end;

if PortSet() = false then

begin
sio_close(GCommbData.Port);
Exit;

end;

OpenPort := true;

GhExit := false;

/[TReadThread.Create(false);

GbOpen := true;

/ISwitchMenu();

UpDateHt;

end;

procedure TActiveFormX.UpDateHt;

begin
cmSetting.Enabled := DoTra;
cbPort.Enabled := DoTra;
cbBaudRate.Enabled := DoTra;
cbParity.Enabled := DoTra;
cbByteSize.Enabled := DoTra;
cbStopBits.Enabled := DoTra;
chSw.Enabled := DoTra;
chHw.Enabled := DoTra;

207

chDtr.Enabled := DoTra;
chRts.Enabled := DoTra;
OK.Enabled := DoTra;
Cancel.Enabled := not DoTra;
PageControl1.Enabled := not DoTra;
TabSheet1.Enabled := not DoTra;
FSetOk.Enabled := not DoTra;
FSetCancel.Enabled := not DoTra;
end;

procedure TActiveFormX.ClosePort;

begin
sio_close (GCommData.Port);
GbOpen := False;

end;

function TActiveFormX.PortSet:boolean;
var

port : Longint;

mode : Longint;

hw,sw : Longint;

ret : Longint;
begin

port := GCommData.Port;

mode := GCommData.Parity or GCommData.ByteSize or GCommData.StopBits;

PortSet := false;

if GCommData.Hw then
hw:=3 { bit0 and bit1 }
else

if GCommData.Sw then

sw =12 { bit2 and bit3 }
else

sw:=0;

ret := sio_ioctl(port, GCommData.BaudRate,mode);

208

if ret<>S|0_OK then

begin
MxShowError('sio_ioctl',ret);
Exit;

end;

ret := sio_flowctrd(port,hw or sw);

if ret<>S|0_OK then

begin
MxShowError('sio_flowctrl',ret);
Exit;

end;

ret := sio_DTR(port,Integer(GCommData.Dtr));
if ret<>SI10_OK then
begin
MxShowError('sio_ DTR',ret);
Exit;
end;

if not GCommData.Hw then
begin
ret := sio_ RTS(port,Integer(GCommData.Rts));
if ret<>S10_OK then
begin
MxShowError('sio_RTS' ret);
Exit;
end;
end;

PortSet := True;

end;

procedure TActiveFormX.FSetOkClick(Sender: TObject);
begin

/IDeclare which protocol to use.

GProtocol := rgProtocol.ltemindex;

/IDeclare whether to send or to receive file.

209

GDirection := rgDirection.ltemIndex;
//Update of the buttons and sheets.

if rgDirection.ltemindex = FT_XMIT then
//Access the the second page of Tab.
UpDateKt

else

UpDateKt;

end;

procedure TActiveFormX.UpDateKt;

begin
PageControl1.ActivePage := TabSheet2;
DirDIgOk.Enabled := not DoTra;
DirDIgCancel.Enabled := not DoTra;
DirDigPrev.Enabled := not DoTra;

end;

procedure TActiveFormX.CancelClick(Sender: TObject);
begin

ClosePort();

UpDateGT;

end;

procedure TActiveFormX_FileListBoxDblClick(Sender: TObject);
begin

if rgDirection.ltemindex = FT_XMIT then

XmitFile
end;

procedure TActiveFormX.F SetCancelClick(Sender: TObject);
begin

GftCancel :=true;
end;

procedure TActiveFormX.DirDIgCancelClick(Sender: TObject);
begin

GftCancel :=true;
end;

210

procedure TActiveFormX.XmitFile;
begin
{Declare Falcon using the FileNameEdit string}
Falcon := FileNameEdit.Text;
{Istrcpy copies the entire contents of one string into another string.
Either string, instead of being a "real" string, can also be merely a pointer to a string instead.
The target string must already have enough space to receive the source string's contents.
The function also will copy a terminating null character into the target string}
Istrcpy(GxFname,PChar(Falcon));
{If user press 'Cancel' button which on status dialog,
'GftCancel' flag will be set to true.This will let callback
function to return -1 to terminate file transfer.}
GftCancel := false;
TFtProC.Create(false);
PageControl1.ActivePage := TabSheet3;
end,

procedure TActiveFormX.RecvFile;

begin
GftCancel := false;
TFtProc.Create(false);
end;

procedure TActiveFormX.DirDIgOKClick(Sender: TObject);
begin
Falcon := FileNameEdit.Text;
{Declare Falcon using the FileNameEdit string}
if rgDirection.ltemindex = FT_XMIT then
XmitFile
else
begin
if (GProtocol=FTZMDM) or (GProtocol=FTYMDM) or (GProtocol=FTKERMIT)then
begin
Istrcpy(GrPath,PChar(DirBox.Directory));
SetCurrentDir(GrPath)
end

211

else

begin

Istrcpy(GrFname,PChar(Falcon));

end;

PageControl1.ActivePage :=TabSheet3;

RecvFile;

end;

{Istrcpy copies the entire contents of one string into another string.

Either string, instead of being a "real" string, can also be merely a pointer to a string instead.
The target string must already have enough space to receive the source string's contents.
The function also will copy a terminating null character into the target string}

{If user press 'Cancel' button which on status dialog,
'GftCancel' flag will be set to true.This will let callback
function to return -1 to terminate file transfer.}
GftCancel := false;

TFtProC.Create(false);

PageControl1.ActivePage := TabSheet3;

end;

initialization

TActiveFormFactory.Create(
ComServer,
TActiveFormControl,
TActiveFormX,
Class_ActiveFormX,

1,

OLEMISC_SIMPLEFRAME or OLEMISC_ACTSLIKELABEL,
tmApartment);

end.

212

15. ACTIVEFORMPROJ1_TLB

unit ActiveFormProj1_TLB;

I'.l e T L L B B e g P e jl

/I WARNING "

I =mmmeme I

/I The types declared in this file were generated from data read froma //
/I Type Library. If this type library is explicitly or indirectly (via //

/l another type library referring to this type library) re-imported, or the //
/I'Refresh’ command of the Type Library Editor activated while editing the /
/Il Type Library, the contents of this file will be regenerated and all //

/I manual modifications will be lost. i

’ll e e dede e dede oo ok e e s de ok ok vk ek de ke g e sk e e ok ok Ak ek 2 o dd e ok vl e o e o sk e o o e ek de e e ek ek /'.l

// PASTLWTR : $Revision: 1.11.1.63 §
/I File generated on 10/26/01 11:38:09 PM from Type Library described below.

// Fhhkdkhkkkkkhhrhhhhhdhhhhhddhhdhhddddkokhd hkddddk ok ik dddddokddddeddid dkhdkdiod kkdd ‘f/

/I Type Lib: C:\CD\ActiveFormProj1.tlb

/IMID\LCID: {A70D614D-C9F6-11D5-91DF-0000E85EFBBANO
// Helpfile:

/I HelpString: ActiveFormProj1 Library

Il Version: 1.0

‘fl Bl S B o S s //

interface

uses Windows, ActiveX, Classes, Graphics, OleCtrls, StdVCL;

Il e dededede e dede dede ok o sk ek s o o e ook e ok o e ok sk ek e ek e e e sl e ok e e ke e sk e e e ke ******R*II

/I GUIDS declared in the TypeLibrary. Following prefixes are used: //

/I Type Libraries : LIBID_xxxx "
/I CoClasses : CLASS_ xxxx I
/I DISPInterfaces : DIID_xxxx /l
/I Non-DISP interfaces: 1ID_xxxx i

f, Fdedkdkdkd ok kddkhhk kR ik ki hkkk ik **“‘***‘lﬁ“***********f*******ﬂﬂ*ﬂ*l!

213

const
LIBID_ActiveFormProj1: TGUID = '{A70D614D-C9F6-11D5-91DF-0000E85EFBBAY};
1ID_lActiveFormX: TGUID = '{A70D614E-C9F6-11D5-91DF-0000E8SEFBBAY';
DIID_IActiveFormXEvents: TGUID = '{A70D6150-C9F6-11D5-91DF-0000E85EFBBAY}';
CLASS_ActiveFormX: TGUID = '{A70D6152-C9F6-11D5-91DF-0000E85EFBBA}';

h‘ dhkkkkdkkkhkkkdh bbbkt dk bk dhddddbdddddbbdhddhdhdddddbhddddddddd ﬂﬂtﬂl‘h"

/I Declaration of Enumerations defined in Type Library I

h‘ e e e g e e o o e ke el e o ok ook e e e sl e o o o el oo e o sl e e e e ok ok o ok ok ok ol e el ok ek th'

/I TxActiveFormBorderStyle constants
type

TxActiveFormBorderStyle = TOleEnum;
const

afbNone = $00000000;

afbSingle = $00000001;

afbSunken = $00000002;

afbRaised = $00000003;

/I TxPrintScale constants
type
TxPrintScale = TOleEnum;
const
poNone = $00000000;
poProportional = $00000001;
poPrintToFit = $00000002;

/l TxMouseButton constants
type
TxMouseButton = TOleEnum;
const
mbLeft = $00000000;
mbRight = $00000001;
mbMiddle = $00000002;

/I TxBiDiMode constants

type
TxBiDiMode = TOleEnum;

const

214

bdLeftToRight = $00000000;
bdRightTolLeft = $00000001;
bdRightTolLeftNoAlign = $00000002;
bdRightTolLeftReadingOnly = $00000003;

type

!i til'H*ti**itiiti*ii*1*I't***ii*ti**tl'itH*iiﬁ***ii*iiiii**t****i**tt*!!

/Il Forward declaration of interfaces defined in Type Library 1
l" st dede o dedk ook iti***t*I*l*it**I‘***titkiiit***i*t*i*iitt*iiiﬁ*tti*i*iii*t*!,‘
|ActiveFormX = interface;
IActiveFormXDisp = dispinterface;

IActiveFormXEvents = dispinterface;

!)(e e v e e ek s sk sk o sk e s e o o e ek e o ok ook o ol o ke ek sl ok ol ol o sk ol o ok ook o o ok ok o o o e ok o e o ek I!'!

/I Declaration of CoClasses defined in Type Library /!
I/l (NOTE: Here we map each CoClass to its Default Interface) I

f"‘ ke !‘I‘"*I‘*I‘“!‘I‘*I‘I‘l‘t***“****“*i‘t**“I‘!‘*I‘I‘I‘D*I‘*RI*I‘*'*Qtl‘*l‘l‘ﬂﬂ*tﬁ*tt}f

ActiveFormX = |ActiveFormX;

;,,‘ St st e it s s R st s Rt bttt sttt b it s sl *;"

/I Interface: |ActiveFormX
/l Flags: (4416) Dual OleAutomation Dispatchable
/IGUID: {A70D614E-C9F6-11D5-91DF-0000E85EFBBA}
] FRA oA AR {7] TR R AR AR AR 3 AR AR R RRR R AR RS
IActiveFormX = interface(IDispatch)
[{A70D614E-CO9F6-11D5-91DF-0000E85EFBBAY}
function Get_Visible: WordBool; safecall;
procedure Set_Visible(Value: WordBool); safecall;
function Get_AutoScroll: WordBool; safecall;
procedure Set_AutoScroll(Value: WordBool); safecall;
function Get_AutoSize: WordBool; safecall;
procedure Set_AutoSize(Value: WordBool); safecall;
function Get_AxBorderStyle: TxActiveFormBorderStyle; safecall;
procedure Set_AxBorderStyle(Value: TxActiveFormBorderStyle); safecall;
function Get_Caption: WideString; safecall;
procedure Set_Caption(const Value: WideString); safecall;

215

function Get_Color: OLE_COLOR; safecall;

procedure Set_Color(Value: OLE_COLOR); safecall;
function Get_Font: IFontDisp; safecall;

procedure _Set Font(const Value: IFontDisp); safecall;

procedure Set_Font(var Value: IFontDisp); safecall;

function Get_KeyPreview: WordBool; safecall;

procedure Set_KeyPreview(Value: WordBool); safecall,

function Get_PixelsPerinch: Integer; safecall;

procedure Set_PixelsPerinch(Value: Integer); safecall;

function Get_PrintScale: TxPrintScale; safecall;

procedure Set_PrintScale(Value: TxPrintScale); safecall;

function Get_Scaled: WordBool; safecall;

procedure Set_Scaled(Value: WordBool); safecall;

function Get_Active: WordBool; safecall;

function Get_DropTarget: WordBool; safecall;

procedure Set_DropTarget(Value: WordBool); safecall;

function Get_HelpFile: WideString; safecall;

procedure Set_HelpFile(const Value: WideString); safecall;

function Get_DoubleBuffered: WordBool; safecall;

procedure Set_DoubleBuffered(Value: WordBool); safecall;

function Get_Enabled: WordBool; safecall;

procedure Set_Enabled(Value: WordBool); safecall;

function Get_BiDiMode: TxBiDiMode; safecall;

procedure Set_BiDiMode(Value: TxBiDiMode); safecall;

function Get_Cursor: Smallint; safecall;

procedure Set_Cursor(Value: Smallint); safecall;

property Visible: WordBool read Get_Visible write Set_Visible;
property AutoScroll: WordBool read Get_AutoScroll write Set_AutoScroll;
property AutoSize: WordBool read Get_AutoSize write Set_AutoSize;
property AxBorderStyle: TxActiveFormBorderStyle read Get AxBorderStyle

Set_AxBorderStyle;

property Caption: WideString read Get_Caption write Set_Caption;

property Color: OLE_COLOR read Get_Color write Set_Color;

property Font: IFontDisp read Get_Font write _Set_Font;

property KeyPreview: WordBool read Get_KeyPreview write Set_KeyPreview;
property PixelsPerinch: Integer read Get_PixelsPerinch write Set_PixelsPerinch;
property PrintScale: TxPrintScale read Get_PrintScale write Set_PrintScale;
property Scaled: WordBool read Get_Scaled write Set_Scaled;

write

216

property Active: WordBool read Get_Active;
property DropTarget: WordBool read Get_DropTarget write Set_DropTarget;
property HelpFile: WideString read Get_HelpFile write Set_HelpFile;
property DoubleBuffered: WordBool read Get_DoubleBuffered write Set_DoubleBuffered,;
property Enabled: WordBool read Get_Enabled write Set_Enabled;
property BiDiMode: TxBiDiMode read Get_BiDiMode write Set_BiDiMode;
property Cursor: Smallint read Get_Cursor write Set_Cursor;
end;

.” t*i***t***tt****tii*ttti*i*i*ti*tiitti*il‘**i*t*ttt****t*it*!tt’ttwtttn‘

/I Displntf: |ActiveFormXDisp
Il Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {A70D614E-C9F6-11D5-91DF-0000E85EFBBA}
)
IActiveFormXDisp = dispinterface
[{A70D614E-C9OF6-11D5-91DF-0000E8S5EFBBAY}]
property Visible: WordBool dispid 1;
property AutoScroll: WordBool dispid 2;
property AutoSize: WordBool dispid 3;
property AxBorderStyle: TxActiveFormBorderStyle dispid 4;
property Caption: WideString dispid -518;
property Color: OLE_COLOR dispid -501;
property Font: IFontDisp dispid -512;
property KeyPreview: WordBool dispid 5;
property PixelsPerinch: Integer dispid 6;
property PrintScale: TxPrintScale dispid 7;
property Scaled: WordBool dispid 8;
property Active: WordBool readonly dispid 9;
property DropTarget: WordBool dispid 10;
property HelpFile: WideString dispid 11;
property DoubleBuffered: WordBool dispid 12;
property Enabled: WordBool dispid -514;
property BiDiMode: TxBiDiMode dispid 13;
property Cursor: Smallint dispid 14;
end;

!" iﬂﬂtﬂhh*hﬂﬂi*tﬂhh*ﬂ**t**ﬂﬂﬂ*ﬁﬂ*ttﬁ**ﬂti*ﬂﬂﬂ*ﬂ*’!

/I DispIntf: 1ActiveFormXEvents

217

ll Flags: (0)
//GUID: {A70D6150-C9F6-11D5-91DF-0000E8SEFBBA}

hl **ﬁ*************‘*“***ﬂﬂuiﬂﬂt******ﬁ**t*ﬁ****#*******“ﬁﬂ*ﬂ*hr

IActiveFormXEvents = dispinterface
[{A70D6150-C9F6-11D5-91DF-0000E85EFBBA}]
procedure OnActivate; dispid 1;
procedure OnClick; dispid 2;
procedure OnCreate; dispid 3;
procedure OnDbiClick; dispid 4;
procedure OnDestroy; dispid 5,
procedure OnDeactivate; dispid 6;
procedure OnKeyPress(var Key: Smallint); dispid 10;
procedure OnPaint; dispid 15;

end;

Il ***H**************‘!i**""*‘l’**‘t*t**************i*****l*i*‘*!!ﬁ*t**ii’l

// OLE Control Proxy class declaration

{// Control Name : TActiveFormX

/l Help String : ActiveFormX Control

/I Default Interface: 1ActiveFormX

I/ Def. Intf. DISP? : No

// Event Interface: IActiveFormXEvents
Il TypeFlags : (34) CanCreate Control

l’ Fedrd ik d kkhdk ko Rk Ak Rk Ak Ak Ak d Ak kR kR hdk ke ok Rk kkkkkkk kA k kA kR khk ki kdk *II

TActiveFormXOnKeyPress = procedure(Sender: TObject; var Key: Smallint) of object,

TActiveFormX = class(TOleControl)
private
FOnActivate: TNotifyEvent;
FONClick: TNotifyEvent;
FOnCreate: TNotifyEvent;
FOnDDbIClick: TNotifyEvent;
FOnDestroy: TNotifyEvent;
FOnDeactivate: TNotifyEvent;
FOnKeyPress: TActiveFormXOnKeyPress;
FOnPaint: TNotifyEvent;
Fintf: IActiveFormX;

218

function GetControlinterface: |ActiveFormX:

protected
procedure CreateControl;
procedure InitControlData; override;
public
property Controllnterface: IActiveFormX read GetControlinterface;
property Visible: WordBool index 1 read GetWordBoolProp write SetWordBoolProp;
property Active: WordBool index 9 read GetWordBoolProp;
property DropTarget: WordBool index 10 read GetWordBoolProp write SetWordBoolProp;
property HelpFile: WideString index 11 read GetWideStringProp write SetWideStringProp;
property DoubleBuffered: WordBool index 12 read GetWordBoolProp write SetWordBoolProp;
property Enabled: WordBool index -514 read GetWordBoolProp write SetWordBoolProp;
property BiDiMode: TOleEnum index 13 read GetTOleEnumProp write SetTOleEnumProp;
published
property AutoScroll: WordBool index 2 read GetWordBoolProp write SetWordBoolProp stored
False;
property AutoSize: WordBool index 3 read GetWordBoolProp write SetWordBoolProp stored
False;
property AxBorderStyle: TOleEnum index 4 read GetTOleEnumProp write SetTOleEnumProp
stored False;
property Caption: WideString index -518 read GetWideStringProp write SetWideStringProp
stored False;
property Color: TColor index -501 read GetTColorProp write SetTColorProp stored False;
property Font: TFont index -512 read GetTFontProp write SetTFontProp stored False;
property KeyPreview: WordBool index 5 read GetWordBoolProp write SetWordBoolProp stored
False;
property PixelsPerinch: Integer index 6 read GetintegerProp write SetintegerProp stored False;
property PrintScale: TOleEnum index 7 read GetTOleEnumProp write SetTOleEnumProp
stored False;
property Scaled: WordBool index 8 read GetWordBoolProp write SetWordBoolProp stored
False;
property Cursor: Smallint index 14 read GetSmallintProp write SetSmallintProp stored False;
property OnActivate: TNotifyEvent read FOnActivate write FOnActivate;
property OnClick: TNotifyEvent read FOnClick write FOnClick;
property OnCreate: TNotifyEvent read FOnCreate write FOnCreate;
property OnDblClick: TNotifyEvent read FOnDbIClick write FOnDbIClick;
property OnDestroy: TNotifyEvent read FOnDestroy write FOnDestroy;
property OnDeactivate: TNotifyEvent read FOnDeactivate write FOnDeactivate;

219

property OnKeyPress: TActiveFormXOnKeyPress read FOnKeyPress write FOnKeyPress;
property OnPaint: TNotifyEvent read FOnPaint write FOnPaint;
end;

procedure Register;
implementation
uses ComObj;

procedure TActiveFormX.InitControlData;
const
CEventDisplIDs: array [0..7] of DWORD = (
$00000001, $00000002, $00000003, $00000004, $00000005, $00000008,
$0000000A, $0000000F);
CTFontIDs: array [0..0] of DWORD = (
$FFFFFEQO);
CControlData: TControlData = (
ClassID: '{A70D6152-C9F6-11D5-91DF-0000E85EFBBAY';
EventlID: '{A70D6150-C9F6-11D5-91DF-0000E85EF BBA}';
EventCount: 8;
EventDispIDs: @CEventDisplDs;
LicenseKey: nil;
Flags: $0000001D;
Version: 300;
FontCount: 1;
FontliDs: @CTFontIDs);
begin
ControlData := @CControlData;
end;

procedure TActiveFormX.CreateControl;
procedure DoCreate;
begin

Fintf := lUnknown(OleObject) as IActiveFormX;
end;

220

begin
if FIntf = nil then DoCreate;
end;

function TActiveFormX.GetControlinterface: IActiveFormX;

begin
CreateControl;
Result := Fintf;

end;

procedure Register;

begin

RegisterComponents(‘ActiveX',[TActiveFormX]);
end;

end.

221

16. ACTIVEFORMPROJ1.IDL

uuid(A70D614D-C9F6-11D5-91DF-0000E8SEFBBA),
version(1.0),

helpstring("ActiveFormProj1 Library"),

control

library ActiveFormProj1

importlib("stdole2.tib");
importlib("STDVCL40.DLL");

uuid(A70D614E-C9F6-11D5-91DF-0000ES5EFBBA),
version(1.0),

helpstring("Dispatch interface for ActiveFormX Control"),
dual,

oleautomation

]

interface IActiveFormX: IDispatch
{
[propget, id(0x00000001), hidden]
HRESULT _stdcall Visible([out, retval] VARIANT_BOOL * Value);
[propput, id(0x00000001), hidden]
HRESULT _stdcall Visible([in] VARIANT_BOOL Value);
[propget, id(0x00000002)]
HRESULT _stdcall AutoScroli([out, retval] VARIANT_BOOL * Value);
[propput, id(0x00000002)]
HRESULT _stdcall AutoScroll([in] VARIANT_BOOL Value),
[propget, id(0x00000003)]
HRESULT _stdcall AutoSize([out, retval] VARIANT_BOOL * Value);
[propput, id(0x00000003)]
HRESULT _stdcall AutoSize([in] VARIANT_BOOL Value),
[propget, id(0x00000004)]
HRESULT _stdcall AxBorderStyle([out, retval] TxActiveFormBorderStyle * Value);
[propput, id(0x00000004)]

222

Haid
#

HRESULT _stdcall AxBorderStyle([in] TxActiveFormBorderStyle Value);
[propget, id(0xFFFFFDFA)]

HRESULT _stdcall Caption([out, retval] BSTR * Value);

[propput, id(OxFFFFFDFA)]

HRESULT _stdcall Caption([in] BSTR Value);

[propget, id(OxFFFFFEOB)]

HRESULT _stdcall Color([out, retval] OLE_COLOR * Value);
[propput, id(0xFFFFFEOB)]

HRESULT _stdcall Color([in] OLE_COLOR Value);

[propget, id(0xFFFFFEQQ)]

HRESULT _stdcall Font([out, retval] IFontDisp ** Value);
[propput, id(0OxFFFFFEOQQ)]

HRESULT _stdcall Font([in] IFontDisp * Value);

[propputref, id(OxFFFFFEQ0OQ)]

HRESULT _stdcall Font([in, out] IFontDisp ** Value);

[propget, id(0x00000005)]

HRESULT _stdcall KeyPreview([out, retval] VARIANT_BOOL * Value);
[propput, id(0x00000005)]

HRESULT _stdcall KeyPreview([in] VARIANT_BOOL Value);
[propget, id(0x00000006)]

HRESULT _stdcall PixelsPerinch([out, retval] long * Value);
[propput, id(0x00000006)]

HRESULT _stdcall PixelsPerinch([in] long Value);

[propget, id(0x00000007)]

HRESULT _stdcall PrintScale([out, retval] TxPrintScale * Value);
[propput, id(0x00000007)]

HRESULT _stdcall PrintScale([in] TxPrintScale Value);

[propget, id(0x00000008)]

HRESULT _stdcall Scaled([out, retval] VARIANT_BOOL * Value);
[propput, id(0x00000008)]

HRESULT _stdcall Scaled([in] VARIANT_BOOL Value);

[propget, id(0x00000009), hidden]

HRESULT _stdcall Active([out, retval] VARIANT_BOOL * Value);
[propget, id(0x0000000A), hidden]

HRESULT _stdcall DropTarget([out, retval] VARIANT_BOOL * Value);
[propput, id(0x0000000A), hidden]

HRESULT _stdcall DropTarget([in] VARIANT_BOOL Value);
[propget, id(0x0000000B), hidden]

223

HRESULT _stdcall HelpFile([out, retval] BSTR * Value);
[propput, id(0x0000000B), hidden]

HRESULT _stdcall HelpFile([in] BSTR Value);
[propget, id(0x0000000C), hidden]

HRESULT _stdcall DoubleBuffered([out, retval] VARIANT_BOOL * Value);

[propput, id(0x0000000C), hidden]

HRESULT _stdcall DoubleBuffered([in] VARIANT_BOOL Value);
[propget, id(OxFFFFFDFE), hidden]

HRESULT _stdcall Enabled([out, retval] VARIANT_BOOL * Value);
[propput, id(OxFFFFFDFE), hidden]

HRESULT _stdcall Enabled([in] VARIANT_BOOL Value);
[propget, id(0x0000000D), hidden]

HRESULT _stdcall BiDiMode([out, retval] TxBiDiMode * Value);
[propput, id(0x0000000D), hidden]

HRESULT _stdcall BiDiMode([in] TxBiDiMode Value);

[propget, id(0x0000000E)]

HRESULT _stdcall Cursor([out, retval] short * Value);

[propput, id(0x0000000E)]

HRESULT _stdcall Cursor([in] short Value);

[
uuid(A70D6150-C9F6-11D5-91DF-0000E8SEF BBA),

version(1.0),
helpstring("Events interface for ActiveFormX Control")

]

dispinterface |ActiveFormXEvents
{
properties:
methods:
[id(0x00000001)]
void OnActivate(void);
[id(0x00000002)]
void OnClick(void);
[id(0x00000003)]
void OnCreate(void);
[id(0x00000004)]
void OnDbIClick(void);

224

i : s =
s e §('

[id(0x00000005)]

void OnDestroy(void);
[id(0x00000006)]

void OnDeactivate(void);
[id(0x0000000A)]

void OnKeyPress([in, out] short * Key);
[id(0x0000000F)]

void OnPaint(void);

>

[
uuid(A70D6152-C9F6-11D5-91DF-0000E85EFBBA),

version(1.0),
helpstring("ActiveFormX Control"),
control

coclass ActiveFormX
{
[default] interface |ActiveFormX;
[default, source] dispinterface |IActiveFormXEvents;

h

[
uuid(A70D6154-C9F6-11D5-91DF-0000E85EFBBA),

version(1.0)

]

typedef enum tagTxActiveFormBorderStyle

{
[helpstring("afbNone")]
afbNone =0,
[helpstring("afbSingle")]
afbSingle = 1,
[helpstring("afbSunken")]
afbSunken =2,
[helpstring("afbRaised")]
afbRaised =3

} TxActiveFormBorderStyle;

225

[
uuid(A70D6155-C9F6-11D5-91DF-0000E85EFBBA),

version(1.0)

]
typedef enum tagTxPrintScale

{
[helpstring("poNone")]

poNone =0,
[helpstring("poProportional”)]
poProportional = 1,
[helpstring("poPrintToFit")]
poPrintToFit= 2

} TxPrintScale;

[

uuid(A70D6156-C9F6-11D5-91DF-0000ES85EFBBA),

version(1.0)

]

typedef enum tagTxMouseButton

{
[helpstring("mbLeft")]
mblLeft = 0,
[helpstring("mbRight")]
mbRight =1,
[helpstring("mbMiddle")]
mbMiddle = 2

} TxMouseButton;

[

uuid(A70D6157-C9F6-11D5-91DF-0000E85EFBBA),

version(1.0)

]

typedef enum tagTxBiDiMode

{
[helpstring("bdLeftToRight")]
bdLeftToRight = 0,
[helpstring("bdRightToLeft")]
bdRightToLeft = 1,

226

[helpstring("bdRightToLeftNoAlign")]
bdRightToLeftNoAlign = 2,
[helpstring("bdRightToLeftReadingOnly")]
bdRightToLeftReadingOnly = 3

} TxBiDiMode;

227

i iy ACTIVEPROJ1.HTML

:i http:/ /www.geocities.co

rwerrmne

Delphi 4 ActiveX Test Page

You should see your Delphi 4 forms or controls embedded in the form below.

e Mtscsfmemgescten-

<HTML>
<H1> Delphi 4 ActiveX Test Page </H1><p>
You should see your Delphi 4 forms or controls embedded in the form below.
<HR><center><P>
<OBJECT
classid="clsid: A70D6152-C9F6-11D5-91DF-0000E8 SEFBBA"
codebase="C:/CD/ActiveFormProj1.dll"#version=1,0,29,0
width=847
height=321
align=center
hspace=0
| vspace=(
-
</OBJECT>
</center></HTML>
|
\
\
|

228

