
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Low Cost Shop Floor DNC System

A dissertation presented

in Partial fulfilment of the requirements

for the postgraduate Masters of Technology

in Automation & Control at

Massey University

William H.Y. Ma

2002

LOW COST SHOP FLOOR

DNC SYSTEM

William H.Y. Ma

2002

ABSTRACT

DirecUDistributed Numerical Control (DNC) has a vital role in delivering a

successful Computer Integrated Manufacturing (CIM) strategy. DNC is the

most popular form of factory automation system in the shop floor environment.

Its core function is to enable manufacturing information to flow smoothly and

efficiently to and from the shop floor facilities. The current New Zealand small

to medium manufacturers are unwilling to make large financial investment in

the more expensive packages, and hence, there is a need for a cost effective

DNC application software within this sector of the industry.

The research conducted for this project focuses on the application of a

multiport serial card, and the development of a low cost DNC application

software that can be implemented in the small to medium size companies for

transferring data and other manufacturing data such as drawing files, and

computerised numerical control (CNC) programs. In addition, the research

also looks at methods to allow remote access to the system through the World

Wide Web (WWW).

In order to achieve the objectives mentioned above, a powerful and user­

friendly user interface programming tool kit - Borland's Delphi 4 was adopted

as the key development tool. Delphi 4 is a Rapid Application Development

(RAD) package that is fully compatible to the Multiport's serial programming

library, and majority of the Microsoft's remote access technology such as

Object Linking and Embedding technology (OLE) or ActiveX.

Acknowledgements

I would especially like to thank the following for their time and support

throughout this year:

The Lord Almighty for his sovereign support and guidance.

My project supervisor Dr Liqiong Tang, for her invaluable advice and guidance

through out the entire year.

My family and friends, who gave me indefinite amount of emotional support.

11

List of Figures:

Figure 1.1: Proposed interface connections 8

Figure 2.1: AWF's CIM Model 12

Figure 2.2: Application of PC in the VM 16

Figure 2.3: VM Scope & Integration with Enterprise Functions 18

Figure 2.4: DNC Model 23

Figure 2.5: Auxiliary & basic functions in DNC system 24

Figure 2.6: 25 Pin and 9 pin serial connectors 28

Figure 2.7 Asynchronous Serial Data Frame (8E1) 31

Figure 2.8: Traditional modularity concepts 37

Figure 2.9: 00 Approach 38

Figure 2.10: Delphi Interface 40

Figure 3.1: Moxa multiport card 43

Figure 3.2: Putting the Multiport Card into the the PCI Slot 43

Figure 3.3: IO-IRQ utility 44

Figure 3.4: Driver installation 45

Figure 3.5: Configuration Panel 46

Figure 3.6: Property Dialog 46

Figure 3.7: Diagnostic software 47

Figure 3.8: Terminal Emulator 48

Figure 3.9: Setting dialog 49

Figure 3.10: Transparent Mode 50

Figure 3.11 Bridge Mode 50

111

Figure 3.12: Data Scope 51

Figure 3.13: 9 Pin gender changer 52

Figure 3.14: Null modem cable 53

Figure 3.15: The entire cable and adaptors used 53

Figure 3.16: Hierarchical PComm library 54

Figure 4.1: Waterfall model 56

Figure 4.2: Storyboarding 59

Figure 4.4: Final design of main interface 60

Figure 5.1: Delphi's project manager 61

Figure 5.2: Showstatus 63

Figure 5.3: Config.pas 64

Figure 5.4: Output state & flow control 64

Figure 5.5: Confirmation Dialog 65

Figure 5.6: Default name 66

Figure 5.7: Menu Designer 67

Figure 5.8: Anatomy of keyword Function 67

Figure 5.9: Test 70

Figure 6.1: Character Transfer Interface 71

Figure 6.2: Quick button for Character exchange interface 72

Figure 7 .1: Confirmation Dialog 78

Figure 7.2: Protocol Specification Tab Sheet 79

Figure 7 .3 Directory List box 80

Figure 7.4: Feedback Tab Sheet 83

IV

Figure 7.5: Quick File Transfer Interface

Figure 7. 7: Machine Form

Figure 7.8 Property form

Figure 8.1: Changing the FormStyle

Figure 8.2: Multiple NC editor

Figure 8.3: NC program in editing

Figure 8.4: Cut & Copy button enabled

Figure 9.1: RegEdit.exe

Figure 9.2: Ole Container

Figure 9.3: OLE Container in FtransForm

Figure 10.1: Import ActiveX Control

Figure 10.2: ActiveForm Wizard

Figure 10.3: Type Library

Figure 10.4 Build the Active Form in Delphi

Figure 10.5: Web Deployment Options

Figure 10.6: ActiveForm on the WWW

88

89

90

92

93

93

94

100

101

101

104

105

106

107

108

111

V

Table of Contents
Abstract. i

Acknowledgement.ii

List of Figuresiii

Table of Contents i

1. Introduction 5
1.1. The Research Topic 5
1.2. The Scope ofResearch 6

1.2.1. Interface Card Selection & Integration 6
1.2.2. Software Development 7

1.3. Organisation ofDissertation 9

2. Literature Review 11
2.1 . Introduction 11
2.2. Computer Integrated Manufacturing (CIM) 11

2.2.1. Background 11
2.2.2. Production Planning and Control (PPC) 13
2.2.3. Computer Aided Process Planning (CAPP) 13
2.2.4. Computer Aided Quality Assurance (CAQ) 14
2.2.5. Computer Aided Design (CAD) 14
2.2.6. Computer Aided Manufacturing (CAM) 15

2.3. Virtual Manufacturing (VM) 16
2.3.1 . Background 16
2.3.2. Application ofVM 19
2.3.3. Virtual Manufacturing over the Intemet.. 21

2.4. DNC System 22
2.4.1 . Background 22
2.4.2. Function ofDNC System 22
2.4.3. DNC Applications 26

2.5. Manufacturing Communication 27
2.5.1. Introduction 27
2.5.2. History 27
2.5.3. RS232: The Physical Interface ... 27
2.5.4. Serial Port 29
2.5.5. Serial Transmission Methods 30
2.5.6. Bit Rates 32
2.5 .7. UARTS 32
2.5 .8. Interrupts 34
2.5.9. IO Address & IRQ 35

2.6. Software Development Process 36
2.6.1. Introduction 36

1

2.6.2. Objects & Object-Oriented Software 36
2.6.3. Borland's Delphi 4.0 39

3. Multiport Card Installation 42
3. I . Introduction 4 2
3.2. Background 42
3.3. Hardware Installation 43

3.3.1 . Quick Hardware Installation 43
3.3.2. Hardware Installation with IO-IRQ Utility44

3.4. Software Installation .. 45
3 .4.1 . Installing Driver 45

3.5. Serial Programming Tools 47
3.5.1. Diagnostic Tool. 47
3.5.2. Terminal Emulator 48
3.5.3. Data Scope 49

3.6. Cabling 52
3.6.1. 9 Pin Female to Female Gender Changer 52
3.6.2. The Null Modem Cable 52
3.6.3. Installing the Cable 53

3.7. PComm Application Programming Interface (API) 54

4 . DNC Software Development Process 55
4.1. Introduction 55
4.2. Requirement Analysis & Definition 56

4.2. 1. End- User/Operating Environment Analysis 56
4.3. Interface Design 58

4 .3. I . Specification Defined 5 8
4.3.2. Design Concepts 59
4.3 .3. Final Design 60

5. Establishing Communication 61
5.1. Introduction 61
5 .2. Establishing Communication 61

5.2.1. PComm.pas 62
5.2.2. MxTool.pas 62
5.2.3. ExGlobal.pas 62
5.2.4. Config.pas 64
5.2.5. FormCreate Procedure 65
5.2.6. Menu 66
5.2.7. PortSet Function 67
5.2.8. Open Port Function 68
5.2.9. Setting I Click Procedure 69
5.2.10. PortOpenClick/ PortCloseClick Procedure 69
5.2.11. Testing for Signals 69

2

Table of contents

6. Character Exchange Interface 71
6. I . Introduction ... 71
6.2. SimpleM.pas 71
6.3. Threading Applications 72

6.3. I . The Thread Class 73
6.3.2. ReadThread.pas 74
6.3.3. Advantage of Single Thread 75

7. File Transfer 76
7. I . Introduction 7 6
7.2. File Transfer Protocols 76
7.3. File Transfer Interface 78

7.3. I. Protocol Configuration Tab .. 79
7 .3 .2. Directory List Tab 80
7.3.3. Transfer Status Feedback Tab 83
7.3.4. FtProc Thread 83
7.3.5. Execute () 84
7 .3 .6. xCal!Back/rCal!Back () 85
7 .3. 7. ProcessRet() 8 6

7.4. CNC Machine Quick Access 87

8. MDI Programming 91
8. I. Introduction 91
8.2. MDI- Main Window Form 91
8.3. NC Code Editor 92
8.4. Child.pas 94

8.4.1. FileNewClick Procedure .. 95
8.4.2. FileOpenClick Procedure 95
8.4.3. SaveAs Procedure 95
8.4.4. FileSaveClick Procedure 95
8.4.5. FilePrintSetupClick Procedure 96
8.4.6. FilePrintClick Procedure 96

9. COM & OLE Automation 97
9 . 1. Introduction 97
9.2. Component Object Model (COM) 97

9.2.1. Jnteifaces 97
9 .2.2. !Unknown 98
9.2.3. GUID 98

9.3. Object Linking Embedding (OLE) 99
9.4. OLE Object 99
9.5. MDI OLE Container Interface 100

9.5.1 . ChildWin.pas 102

3

Table of contents

10. Remote Access using Active X .. 103
10.1. Introduction 103
10.2. Understanding ActiveX 103

10.2.1. Installing ActiveX Component 104
10.2.2. ActiveForm Wizard 105
10.2.3. Type Library 105

10.3. Building the Form 107
10.4. Deploying an ActiveForm 108

10.4.1. Connecting to an ActiveForm ... 110

11. Testing 112
11.1. Introduction ... 112
11 .2. Interface Testing 112
11.3. Test Results .. 113

12. Results & Discussions 114

13. Recommendations 115

14. Conclusion 116

15. References ... 11 7

APPENDIX A 119

4

CHAPTER 1

1. Introduction

1.1. The Research Topic

In the modern industrial production environment, the number of computer

application is steadily increasing. The potential for automated process,

especially in manufacturing sector, has been put into practice by applying ever

more sophisticated computer aided tools and methods.

With the increase saturation of companies with computerised processes. The

future development of such beneficial integration will not only lie in the installation

of isolated computerised solutions in the different areas (island solutions), but

rather in the coupling and therefore in the utilisation the combined effect of

automation technology and shopfloor management. Such concept is often

referred to as Computer Integrated Manufacturing (CIM), which includes the

coupling of all areas linked to the actual manufacturing operations, including

Computer Aided Design (CAD), Computer Aided Process Planning (CAPP),

Computer Aided Manufacturing (CAM) and Material Requirement Planning

(MRP).

As part of the key development in achieving CIM, Direct/Distributed Numerical

Control (DNC) and Computer Numerical Control (CNC) were introduced as the

first computer control systems in the early 1970 [4] . The DNC control system

establishes a direct link between a computer and each NC machine tool, and

eliminates the necessity for using punched tape input. In addition, CNC

technology consists of a soft-wired controller that can be adapted to various

types of machine tools by programming the control functions into the computer

memory for a particular machine. Today, the DNC system is a basic self­

contained control unit in the manufacturing automation environment, and one of

the first steps towards factory automation based for CIM.

5

DNC is a major necessity for any manufacturing organisation that wants to

achieve a successful CIM. However, the costs of employing existing DNC

system packages have driven away many small and medium companies within

the New Zealand industry. Hence, by developing a low cost shop floor DNC

system will be very appealing for this market sector. This research project, led

by Dr Liqiong Tang, Institute of Technology & Engineering (ITE) of Massey

University, is dedicated to the development of low cost DNC systems that will

allow further in depth integration of CIM for the New Zealand manufacturing

industry.

1.2. The Scope of Research

The research undertaken here concerns the critical information flow between

different users and seeks a low cost and efficient method in delivering

manufacturing information between the geometrical/technological domains, this

domain area usually only includes the CAD/CAM/CNC Data Communication.

The system developed in this Masters thesis involves the implementation of a

suitable interface card and the development of Graphical User Interface (GUI)

that will integrate with existing CAD/CAM application in ITE faculty.

1.2.1. Interface Card Selection & Integration

With the aim of connecting the isolated CNC machines, to the current industrial

communication systems. The DNC system developed within this research

project will implement several serial communication hardware devices.

One of the keys of the research is to understand the hardware system required to

deliver a cost effective Serial Distributed Control System. Therefore, factors

such as the following will be considered during the selection of the interface card

6

};a, Highest performance that meets all speed-demanding and data intensive

communication needs.

};a, Large on-board buffer for high-performance communication

};a, Compact design size-ideal for high performance systems

};a, Critical industrial control

};a, Response demanding monitoring systems

};a, Cost Efficient

1.2.2. Software Development

A large number of small and medium size companies today possess a significant

number of machines and equipment incompatible with the new Operating System

(OS) standards. For control of data transfer, there are still many DOS application

that can only run single task at a time, which means no other application program

can be executed concurrently. Another disadvantage of these DOS application is

the lack of communication between application programs such as CAD/CAM,

which results in large amount of time wasted in switching between programs and

loading saved data.

Therefore, the application program developed in this project will focus on the

following core functionality to overcome the shortcomings within the DOS

environment.

};a, Front-end Application interface for CAD/CAM Environment

};a, Communication interface programs for both serial data transfer and

networking between the CAD/CAM workstations and CNC machines.

};a, Application programs for NC code editing and for accessing other software

application within the workstation.

};a, Remote software access through Internet for cost effective software

distribution.

7

With the previous listed functions, Figure 1.1 illustrates three interfaces that are

considered within this research.

~
~CA-D-/C_AM_~I

Massey CNC
Facilities

INTERFACE I

Internet

• --------~ INTERFACE 3 I

\
RernoteCNC
Facilities

Figure 1. 1: Proposed interface connections

}., Interface 1 --- For communication with CNC machines

};;- lnterface2 --- For communication with CAD/CAM System and other

desktop applications

}., Interface 3 --- Internet interface for remote access to software from

remote site.

The front-end application interface within this research project is designed

through Borland's Delphi 4. Delphi offers all of the windows GUI advantages,

which allows the programmer to write standard window features such as title bar,

menu bar and common tool bars for quick access to commonly used commands.

8

Introduction

1.3. Organisation of Dissertation

The dissertation is arranged as follows:

Chapter 2 deals with the methods and theories of current shopfloor

manufacturing strategies, concepts such as Computer Integrated Manufacturing

(CIM), Virtual Manufacturing, Direct/Distributed Numerical Control (DNC) and

serial communication devices are described in detail. This chapter aims to

provide essential theoretical support and research direction for this project.

Chapter 3 focuses on the installation process of the selected multiport card, and

describes some of the serial programming utilities that accompany the multiport

card.

Chapter 4 covers the software engineering process applied. The chapter only

covers the analysis and design stages. Allowing the implementation and testing

stages to be described in later chapters.

Chapter 5 describes the basic steps used for establishing communication

interface to the multiport device. The chapter denotes some of the fundamental

functions used within the program, and illustrates the testing results ascertained

through a RS-232 tester.

Chapter 6 illustrates the implementation of the character exchange interface.

This section describes the application of Threading function from Delphi, allowing

user to view the keyboard input from the other end of the serial network.

Chapter 7 denotes the definition of several serial communication protocols, and

explains how these protocols are implemented through the Application

Programming Interface (API) functions

9

Chapter 8 describes the methods used in implementing Multiple Document

Interface (MDI) function within this project. The MDI interface will be used for the

NC editor and OLE child form. This chapter will describe the code used in

constructing the NC editor.

Chapter 9 discusses the application of Component Object Model (COM), and

Object Linking & Embedding (OLE) technology within the research thesis. The

chapter will also describe the code used constructing the OLE child form

Chapter 10 focuses on the use of ActiveX technology, describing how the

resulting interface will allow remote access to the restricted version of the

interface through the World Wide Web (WWW).

Chapter 11 describes the testing procedures conducted on the interface

program.

Chapter 12-14 discusses the results of the project by listing areas of work done

and possible areas of improvement.

10

Literature Review

CHAPTER2

2. Literature Review

2. 1. Introduction

This chapter reviews the theoretical background required for developing a low

cost shop floor Distributed Numerical Control (DNC) system. Therefore, it aims

to cover areas within the study of factory automation, and the theoretical

knowledge required.

2.2. Computer Integrated Manufacturing (CIM)

2.2.1. Background

The concept of Computer Integrated Manufacturing (CIM) is based on the

principle of the production cycle developed by Harrington. Harrington's definition

of the production cycle starts with the development of a product, then moves on

to manufacturing and delivery to the customer and ends with service and

maintenance. These functions are closely interconnected within the operational

sequence organisation, it is not expedient to regard the single functions as

isolated from each other. Hence by extending Harrington's concept, the

components involved in CIM are the data processing tools underlying the

production cycle.

Although the concept of CIM has been around more than 2 decades. Much of its

definition differs widely, due to the fact that much has been written with regard to

the substance of CIM without a comprehensive consensus.

In order to provide a clarified definition of the components attributed to CIM within

the research project. It is intended to do so by referring to the publication of

Ausschuss fuer Wirtschaftliche Fertigung e. V (AWF-Committee for Economical

Manufacturing). Waldner's literature [3] describes AWF in the sense that all data

processing system in every area related to manufacturing, which are to be

integrated.

11

The term CIM described by AWF denotes the use of computer to design the

products, plan the production, control the operations, and accomplish many of

the business related function in a manufacturing firm. The theory also suggests

convergence of various functions within manufacturing by means of computer

systems. It is in the data processing and information flow within a firm that this

integration primary occurs and the control of production equipment by computers

will facilitate integration in a CIM system.

Figure 2.1 illustrates the graphical representation of the system. Its aim is to

achieve an integration of the technical and the administrative functions involved

in manufacturing.

CIM

CAD/CAM

Production Planning

CAPP
C Material Planning

CAD A Capacity Planning

Q
Order Release

CAM
Order Supervision

Figure 2.1: AWF's CIM Model [3}

12

Literature R~i,ew

The figure is introduced to represent an overall unified computer system, which

allows the factory to achieve manufacturing productivity. Based on the definition

given by Dorf [7], it states a full CIM system would provide a centralised control

of the manufacturing environment, addressing two main requirements: vertical

integration, and horizontal integration.

The term vertical integration describes Computer Aided Design (CAD), Computer

Aided Process Planning (CAPP), Computer Aided Manufacturing, and Computer

Aided Quality Assurance (CAQ) that is illustrated within the left hand side of

Figure 2.1. It describes the capability of the computer system to integrate the full

process from design conception to part manufacture.

The term horizontal integration describes a hardware/software network solution,

encompassing all the functionalities exercised on the manufacturing floor. Such

a capability would include the Production Planning and Control Systems (PPC).

2.2.2. Production Planning and Control (PPC)

Production Planning and Control (PPC) Systems are applied as a higher-level

instrument for the organisational planning, control and supervision of the

production processes with regards to volume, delivery dates and capacities [7].

2.2.3. Computer Aided Process Planning (CAPP)

CAPP Systems are applied in the area of computer aided process planning. It

uses the results generated in the design process. CAPP system cover data

processing systems, which support the planning of the operation process and the

operation process sequence as well as the selection of methods and resources

necessary for the manufacturing of the objects and the control program for

resources [7].

13

2.2.4. Computer Aided Quality Assurance (CAQ)

Quality assurance is included as a part of the pre-production functions but it also

overlaps into the areas of production. CAO indicates the support by data

processing tools of the planning and execution of quality assurance, which on the

one hand includes the generation of test schemes, test programs and control

values and on the other hand the execution of measuring and test methods [7]

2.2.5. Computer Aided Design (CAD)

Computer Aided Design (CAD) system within the CIM system aims at the

engineering design function, rather than the traditional drafting function. The

distinction is based on the paradigm where the drafting function provides support

for the design function. Another area that sets the computer-aided design is the

incorporation of a more extensive set of analytical tools. This is an additional

function responds to the needs of both the design and drafting functions.

Furthermore, such systems tend towards the full integration of the entire Design­

To-Manufacture (DTM) process. A trend that is driven by concepts as the ones

listed below

The Paperless Factory

Traditionally, the engineering and drafting functions are usually carried out by

separate groups within the engineering department, where engineering designs

are passed to drafting departments for the detailing process and the production

of engineering drawings. However, one aspect of introducing the computer aided

design technology is the move towards paperless industry, which transform the

DTM process to depend more on "computerised-databases' and less on

engineering (paper) drawings. Furthermore, the concept of paperless factory

extends all the way to the manufacturing functions, and with assistance from

some other concepts it facilitates the full integration of DTM process [7].

14

_________________________ Literature Review

1. Feature-Based Design

The concept of feature-based design was advanced as an attempt to simplify

mechanical process design as an extension of CAD. As described by Dorf [7],

technical drawing can not supply sufficient information for all kinds of application

programmes in a CAD/CAM system. However the introduction of feature- based

solid modelling is expected to resolve this problem. By using the feature-based

modelling techniques, a designer can identify the geometry of a part that

corresponds to a particular machining operation. Feature based modeller use

machining terms such as "bore" to make a hole, rather than the Boolean

operation found in traditional packages. Commercially available feature-based

modeller such as SolidWorks, and Pro Engineer provides capabilities to create a

mechanical design consist of a collection of standard geometric features,

accompanied by standard processes to create these features. The list of such

features includes prismatic shapes, cylinder, cones, slots, holes, rounds, fillets,

etc.

2.2.6. Computer Aided Manufacturing (CAM)

The application of CAM systems in CIM relates to the areas of production

executing functions. The system could normally consist of single CNC machines,

several numerically controlled manufacturing installations that are controlled by a

host computer through a DNC system. Thus, providing the ability to form

Flexible Manufacturing Cells (FMC) around the machines within any work shop

[7].

15

--------------------------=Literature Review

2.3. Virtual Manufacturing (VM)

2.3.1. Background

The significant growth in the computer technology sector has also influenced and

improved the concept of CIM over the past decade. One of the core

developments evolved from CIM was the concept of Virtual Manufacturing (VM).

Figure 2.2 illustrate the vision of VM is to provide a capability to "Manufacturing in

the Computer". In Lin's literature on VM [16], it describes that VM will provide a

modelling and simulation environment so powerful that the fabrication/assembly

of any product, including the associated manufacturing process, can be

simulated in the computer. This powerful capability essentially takes all of the

variables in the production environment from shop floor processes to enterprise

transaction. In essence, VM accommodates the visualisation of the process in

CIM, and has even greater impact on related process such as accounting,

purchasing and management.

itera te
lo

M::ilurity

Opportunities

Manufacturing

lnformation
• Plan

• Change

• Control

Modify &
Control

Resources

Manufacturing

P roducts

"Make it" in a Computer "Make it" Physically

Figure 2.2: Application of PC in the VM [1 6)

16

....._.----------=~-=--~------- LiteratureReview

According to research conducted by Lin [16]. Two major research events have

combined to initiate the concept of VM. First the on going improvement on US

defence environment and the acquisition strategies required development of the

capability to prove the manufacturability and affordability of new weapons system

prior to the commitment of large production resources. VM has the potential to

address these issues. Secondly, through out the last decade the

engineering/manufacturing sector has made tremendous advancement in

modelling and simulation technologies. Thus, offering a realistic opportunity to

build such a computing capability [16]. For example, the Distributed Interactive

Simulation (DIS) program has demonstrated the usefulness of Modelling and

Simulation (M&S) in an environment rivalling manufacturing in complexity.

Developing a definition of something as complex as VM is often difficult; such a

definition can rarely capture everything necessary to fully capture the complexity.

As a result, selected commentary is presented below to better capture some of

its complexity.

Perhaps the closest definition for VM is [16):

• VM is an integrated, synthetic manufacturing environment exercised to

enhance all levels of decision and control. It focuses on improving

manufacturing processes by the employment of a model-based approach

which leverages simulation capabilities

The fundamental notion of VM is that it is a computer-based, simulated product

development environment that enables the manufacturers to "make it virtually"

before "making it for real". The term "product development" encompasses all of

the various activities, both business and technical , associated with developing

and producing a given product.

17

Literature Rmew

Figure 2.3 represents an attempt to capture the idea that while VM is not just a

new "buzz ward" that is used to accomplish the desired cross-functional trade-off

analyses; in most cases it can be integrated with all of the relevant enterprise

functional areas via a trade-off mechanism, the Integrated Product and Process

Design (IPPD process).

VM must. be scoped if we are to achieve meaningful near-term

Suggestion:

PRODUCT DEVELOPMENT PROCESS

Cross­
Functional
Trade-Off

Mechanism
(IPPD Process)

Focus

Figure 2.3: VM Scope & Integration with Enterprise Functions

VM allows for the creation of many more "soft prototypes" (by reducing both cost

and time factors), and/or reduces the cost of the prototyping process overall.

VM is model-based manufacturing, with tools that leverage those models.

Primary among the techniques used is simulation, which can reduce some costs

of manufacturing and allow exploration of many options in a mixed real/computed

space.

18

i......ii------LlEi5----------------- LiteratureRevi£1Y

At the local level, VM adds simulation to control processes to allow for expedited

re-engineering/improvement of processes. At a more global level, VM provides

for evaluation of partial and complete designs by "manufacturing in computers" in

an enhanced IPPD environment. VM is not a single solution, architecture or

monolithic database approach. It is a collection of many smaller, incrementally

tools, together with some more overarching concepts that may require larger

investments by developers and users.

2.3.2. Application of VM

The following categorization shows the breadth of areas in which VM might be

used [16].

CORPORA TE MEMORY -- Through the increased development and use of

expert systems to capture the knowledge of subject matter. The first area which

the VM will enhance is the corporate memory. The details of product design are

captured as part of the corporate memory in a systematic way, but the

manufacturing process details often are not. Using expert systems in conjunction

with VM would be a significant improvement by providing process capability and

cost information to guide the product design process as well as adding some

viability to the concept of "shelf technology" where a product might go into

production long after the initial design prototyping and testing are completed [16] .

SUPPLIER MANAGEMENT - The current VM impact on suppliers is rare and

the use of VM by suppliers themselves would often be limited to the larger

companies because of the anticipated large investment required to install VM

[16]. The future impact on supplier management, however, is expected to be

very significant. Make/buy decisions will be enhanced through easy access to

better quality and more detailed information on costs, capacity, process capability

and lead-times as part of the make/buy decision process.

19

Literature Review

Cost control would also be enhanced because VM offers more accurate cost

information for suppliers. Major suppliers will have early involvement in product

design and process planning through the Integrated Product and Process Design

(IPPD) teaming approach that is likely to be an accelerating and long-lasting

trend and will interact with VM in that context. Smaller suppliers are also likely to

be see some positive impacts by getting much better and more stable product

requirements information from customers and the customers should be positively

impacted by not having to invest so many resources in having to solve problems

with their suppliers [16).

PRODUCT DESIGN -- The emerging modelling and simulation will enhance the

effectiveness of systems integration in the design process. It will allow

organisations to minimize interference between subsystems and, and reduce the

dependence on hard-mock-ups. Also in the near term, electronic co-location of

IPPD team members will become more practical and widespread. In the longer

term, major improvements to the transition from design to production are

envisioned because of much stronger and more effective influence of process

capacity and manufacturing cost information on the product designer as well as

the ability to do many more design iterations prior to committing to hardware.

COST EST/MA TING -- The move towards VM will provide more accurate cost

information than can typically be provided by current cost accounting systems.

This will accelerate the current trend toward activity-based accounting systems

and other accounting system changes that allow detailed and accurate product

costing. Some current reliance on "semi-expert" systems for cost estimating was

identified, VM provides better data through more accurate approaches. In near

future, VM systems will provide accurate cost data throughout the design,

development, and production process. Cost estimating systems will become fully

integrated with design and manufacturing databases and will have access to

detailed process-level design feature related data [16].

20

Literature Review

SHOP FLOOR - The application of VM will allow shop floor workers to have a

greater influence on the design process, and manufacturing approaches that

have been modelled and simulated above the shop floor will be brought out on

the shop floor to validate the models and simulations. Significant improvements

to work instructions will be seen through the ready availability of graphics. Much

better tool ing will be available on the shop floor with features that make it easier

for the worker to succeed via access to better instructions and illustrations to

promote error-free tool use. This will also make it easier to accommodate the

envisioned drop in the average skill and education level of shop-floor workers.

The proofing of designs and manufacturing processes in the computer prior to

commitment to hardware should sharply reduce the problems on the shop floor.

2.3.3. Virtual Manufacturing over the Internet

The Internet has recently become a major information resource provider for

industry, and its demand keeps growing. The Word Wide Web (WWW) plays an

especially important role in providing information services on the Internet.

Several languages are currently used or developed in the near term, there are

promising potential areas for development of VM tools on the internet. The best

known example is the HTML language used for constructing the documents read

by web browsers. Documents written in HTML include embedded commands

that change the formatting of the text or specify remote locations from which

further information can or should be retrieved.

HTML documents may be useful for sending certain kinds of Virtual

manufacturing information over the Internet, by transmitting design and

manufacturing data to a web browser from a program running at a remote

location. Example includes, CAD models, and manufacturing data such as NC

programmes. Other application of Internet includes software product demos,

where GUI can be developed through advanced ClienUServer technology such

as ActiveX to distribute the software over the Internet.

21

Literature Review

2.4. DNC System

2.4.1. Background

The New Zealand manufacturing industry mainly employees numerically

controlled machine tools because it provides a fast and low-cost adaptation to

the changing production requirements for the small quantities of products.

However, when machines have to be frequently re-set, coupled with short

production runs, the time spent in delays due to setting and loading of NC

programs at different terminals has an undesirable effect on the efficiency of

machine utilization.

DNC (Direct or Distributed Numerical Control) refers to controlling machines or

machine cells (a group of related machines) using a centralised computer. DNC

system originally had machines without individual controllers that were all

controlled from a central computer (Direct Numerical Control) [8]. However, with

the continue increase in the number of NC machine within the factory floor. The

current form of DNC is typically used to describe a system in which each

machine has its own controller that is linked to a central computer system that

co-ordinates the machines and maintains a list of part programs that can be

downloaded to a machine as needed; this form of DNC is more accurately know

as Distributed Numerical Control.

2.4.2. Function of DNC System

The basic function of a fundamental DNC system is to download and upload NC

programs -- character by character, or block-by-block or even whole program,

depending on the target CNC controller's memory capacity. It is very convenient

and flexible compared with paper tape. However, as described in the previous

sections, there are more functions that can be explored from a DNC system in

relation to the CAM sector of the CIM strategy.

22

Smith [4] describes a complete DNC control system should consist of the

following four basic components

1. DNC Computer

2. Bulk Memory used as a local database for NC part programs and other

manufacturing information

3. Telecommunication lines and relevant adaptors

4. Machine tools & controllers

Figure 2.4 illustrates a DNC model, which includes four components as

mentioned above. The DNC computer downloads the part program from disk to

a specific machine as the need arises. It also receives data back from machines.

CAD/CAM

DNC Computer &
Local Database

Local Data Bus Adaptors: Null Modem or MAP boards

CNC
Controller 1

Turning
Machine

CNC
Controller 2

Milling
Machine

CNC
Controller 3

Machining
Centre

Figure 2.4: DNC Model [4]

CNC
Controller 4

Manufacture
Cell

23

Literature Review

In a DNC system, Figure 2.5 shows that there are 2 kinds of functions, i.e. basic

functions and auxiliary functions, may be identified, irrespective of the type of

control to which it is connected.

Functions ofa DNC System

NC Program Management

NC Data Distribution

NC Data Correction

NC Program Generation

Centralised Control

CAD/CAM &Workstation Communication

Data collection, Processing & Reporting

C:
U 0 ·-,.:,
1/) u
ro c:

CD :::i
LL

Figure 2.5: Auxiliary & basic functions in DNC system

2.4.2.1. Basic Functions

The basic function covers the management of the management of the NC part

program and the distribution of the NC data at the appropriate time to the

respective control unit via the production computer. The management of large

volumes of NC data in a production computer offers considerably more scope for

storing and working with NC programs than the traditional punched tapes. Once

the program is generated, the data are read in to the external memory store of

the production computer so that they may be managed or administered, which

include copying, recording, suppressing and releasing [4].

24

Literature Review

The NC data distribution comprise making the NC programs available and

transmitting the NC data to the machines. When the machine operator requests

a particular NC program the production computer will firstly test the compatibility

and look for any barring with respect to the NC unit and the NC program.

The data output buffer is prepared and filled an accept or reject message is

transmitted to the requesting terminal in accordance with the results of the tests.

If this is an acceptance signal the transmission (in blocks, words or individual

characters) is dependent upon the hardware configuration of the complete

system. The refilling of the buffer in the central memory stores from the external

memory store occurs automatically through the software system in the production

computer (DNC program system) (4]. After an NC program has been completely

transmitted, the process is closed and the particular channel which was used is

made available for other requirements.

2.4.2.2. Extended Functions

In order that the NC part programs are carried out effectively and so that any

necessary corrections may be included the NC data correction in the computer

should be effected through the operator's terminal directly on the machine itself.

The computer aided generation of the NC code will provide the functionalities

needed to form VM by allowing simulation and testing to be done prior to

manufacturing.

Beside serial communication for NC code transmission to CNC machines, data

communication over the network is required to accomplish system integration.

Communication among the various systems is such an important function that is

central to the operation of any DNC system.

25

The essential communications are done through a centralised workstation,

providing links and communication between the following components of the

system:

1. DNC Workstation & Machine Tools

2. DNC Workstation and the CAD/CAM application or other Workstation

The DNC system is also likely to have some form of programs such as a

monitoring program and a shop floor control program to enhance its capability.

The basic purpose behind the data collection, processing and reporting is to

monitor production in the factory. Data are a collected on production piece

count, tool usage, machine utilisation, and other factors that measure

performance in the shop floor. These data must then be processed by the DNC

computer and reports any critical trends to management.

2.4.3. DNC Applications

Key features need to be considered when evaluating a DNC application:

ERROR CHECKING FOR DATA COMMUNICATION - Error checking of data

communication is very important in real time manufacturing on the shop floor. No

error checking programs will result in possible heavy loss of data caused by the

high level of interference that subside within the industrial environment

SYSTEM SECURITY - Depending upon the real manufacturing environment, it

is important to maintain levels of control over system use and access. Inability to

manage the possibility of misuse could often lead to poor product quality, since it

is impossible to track the user that caused the defect.

USER FRIENDLY MENU & STRUCTURE - The user interface for DNC

operating system should be user friendly. It is important to realise that most

operators within the shop floor are not required to have detail knowledge in

software application. Therefore a well designed interface will, in some extent,

decrease the skills demanded from an operator.

26

2.5. Manufacturing Communication

2.5.1. Introduction

One of the approaches in improving the manufacturing efficiency is to allow the

user to access manufacturing data quickly and efficiently. To do so, the designer

of such system must have a clear understanding of the industrial communication

equipments behind most of the CNC machines. Therefore it is the objective of

this section to cover detailed studies conducted on Serial communication and the

components used.

2.5.2. History

RS-232 was originally adopted in 1960 by the Electronic Industries Association

(EIA). The standard evolved over the years and in 1969 the third revision (RS-

232C) was to be the standard of choice of PC makers. In 1987 a fourth revision

was adopted (RS-232D also known as EIA-232D). In most part of this new

revision, 3 additional test lines were added. In this section several parts of the

original RS-232C standard and mostly the ones used in the PC world [13].

2.5.3. RS232: The Physical Interface

This section denotes the basic understanding of RS-232 connection to allow

work to be carried out with cables, connector, cards, and wires.

Most equipment using RS-232 serial ports use a DB-25 type connector that is

illustrated in Figure 2.6. Based on the literature research conducted [17], many

PCs today use DB-9 connectors (see Figure 2.6) since all it is required in

asynchronous mode is 9 signals. Normally the male connector is on the DTE

(Data Terminal Equipment) side and the female connector is on the DCE (Data

Communication Equipment) side even if this is not always the case.

27

I

@ <~>

LiteratureR w

Female
Side

'----!--+----'

22 20
8 7

Figure 2.6: 25 Pin and 9 pin serial connectors

The standard specifies 25 signal pins, and that the DTE connector should be a

male and the DCE connector should be a female. The most used connectors are

the DB-25 male, but many of the 25 pins are not needed. For that reason in

many modern PCs a DB-9 male connector is used. So it is common to find one

or more of these connectors in the rear panel of the PC. The voltage levels are

between -3V and -15V for a logic high. A logic low is a voltage between +3V and

+15V. The commonly used voltages are +12V and -12V. The most commonly

used signals are listed below [17):

9 Pin#

20 4

6 I 6
I

SIGNAL NAME

DTR (Data-Terminal-Ready): The PC tells the modem that is powered
up and ready to send data.

DSR (Data-Set-Ready): The modem tells the PC it is powered up and
ready to transmit or receive data.

l'I' RTS (Request-To-Send): The PC sets this signal when has a character
ready to be sent.

l'I' CD (Carrier-Detect): The modem sets this signal when has detected the
computer. l'I' CTS (Clear-To-Send): The modem is ready to transmit da,a. The
computer will start sending data to the modem.

l'I' This is the logical ground which is used as a point of reference for all
signals received or transmitted. ~I' RI (Ring Indicator) This line is used mostly by communications software
when the modem is not in "auto answer" mode.

. -· -

~l'ITxD: The modem receives data from de PC.
J

;~
I I

2 I RxD: The modem transmits data to the PC

Table 2.1: Pins description [17]
28

2.5.4. Serial Port

The serial port is an 1/0 (Input/Output) device. An 1/0 device is a way to get data

into and out of a computer. The are many types of current types of 1/0 devices,

such as serial ports, parallel ports, disk drive controllers , Ethernet boards,

universal serial buses, etc.

In most cases PCs have a 9-pin connector (sometimes 25-pin) on the back of the

computer. Computer programs can send data (bytes) to the transmit pin (output)

and receive bytes from the receive pin (input). The other pins are for control

purposes and ground.

According to Mark [13], the serial port converts the data from parallel to serial

and changes the electrical representation of the data . Inside the computer, data

bits flow in parallel (using many wires at the same time) .v Serial flow is a stream

of bits over a single wire (such as on the transmit or receive pin of the serial

connector). For the serial port to create such a flow, it must convert data from

parallel (inside the computer) to serial on the transmit pin (and conversely). Data

is transferred from sender to receiver one bit at a time through a single line or

circuit. The serial port takes 8, 16 or 32 parallel bits from the computer bus and

converts it as an 8, 16 or 32 bit serial stream. The name serial communications

comes from this fact; each bit of information is transferred in series from one

location to another [13].

In theory a serial link would only need two wires, a signal line and a ground, to

move the serial signal from one location to another. But in practice this doesn't

really work for a long time, some bits might get lost in the signal and thus altering

the ending result. If one bit is missing at the receiving end, all succeeding bits

are shifted resulting in incorrect data when converted back to a parallel signal.

So to establish reliable serial communications the PC must overcome these bit

errors that can emerge in many different forms. Bits from the computer bus and

convert it as an 8, 16 or 32 bit serial stream.

29

2.5.5. Serial Transmission Methods

Two serial transmission methods are used that correct serial bit errors. The first

one is synchronous communication, the sending and receiving ends of the

communication are synchronized using a clock that precisely times the period

separating each bit. By checking the clock the receiving end can determine if a

bit is missing or if an extra bit (usually electrically induced) has been introduced

in the stream [17].

To illustrate this method of communication, lets say that on a conveyor belt a

product is passing through a sensing device every 5 seconds, if the sensing

device senses something in between the 5 second lap it assumes that whatever

is passing is a foreign object of some sorts and sounds an alarm, if on the 5

second lap nothing goes by it assumes that the product is missing and sounds an

alarm. One important aspect of this method is that if either end of the

communication loses its clock signal, the communication is terminated [17] .

The alternative method (used in PCs) is to add markers within the bit stream to

help track each data bit. By using a start bit which indicates the start of a short

data stream, the position of each bit can be determined by timing the bits at

regular intervals, by sending start bits in front of each 8 bit streams, the two

systems don't have to be synchronized by a clock signal, the only important issue

is that both systems must be set at the same port speed. When the receiving

end of the communication receives the start bit it starts a short-term timer. By

keeping streams short, there's not enough time for the timer to get out of sync.

This method is known as asynchronous communication because the sending and

receiving end of the communication are not precisely synchronized by the means

of a signal line.

30

Each stream of bits are broke up in 5 to 8 bits called words. Usually in the PC

environment you will find 7 or 8 bit words, the first is to accommodate all upper

and lower case text characters in ASCII codes (the 127 characters) the latter one

is used to exactly correspond to one byte. By convention, the least significant bit

of the word is sent first and the most significant bit is sent last. When

communicating the sender encodes the each word by adding a start bit in front

and 1 or 2 stop bits at the end. Sometimes it will add a parity bit between the last

bit of the word and the first stop bit, this used as a data integrity check. This is

often referred to as a data frame [17].

As shown in Figure 2.7, five different parity bits can be used, the mark parity bit

is always set at a logical 1, the space parity bit is always set at a logical 0, the

even parity bit is set to logical 1 by counting the number of bits in the word and

determining if the result is even, in the odd parity bit, the parity bit is set to logical

1 if the result odd.

The later two methods offer a means of detecting bit level transmission errors.

Note that you don't have to use parity bits, thus eliminating 1 bit in each frame,

this is often referred to as non parity bit frame.

PARITY
DATA WORD BIT

START l STOP
BIT 1 1 0 1 0 0 1 1 BIT

DATA LINE -u--u~- O

CLOCK LINE

Figure 2.7 Asynchronous Serial Data Frame (8El)

31

2.5.6. Bit Rates

Another important part of every asynchronous serial signal is the bit rate at which

the data is transmitted. The rates at which the data is sent is based on the

minimum speed of 300 bps (bits per second), the user may find some slower

speeds of 50, 100 and 150 bps, but these are not used in today's technologies.

Faster speeds are all based on the 300 bps rate, you merely double the

preceding rate, so the rates are as follows, 600, 1200, 2400, 4800, 9600, 19200

and 38400 which is the fastest speed supported by today's BIOS's. Note that a

few years ago the fastest speed was of 19200 bps, because of all the strain

exercised on the CPU because of the software control used to control the serial

port. Today with the new Micro Channel , EISA, VL Bus and PCI motherboards,

the new systems take advantage of bus mastering OMA control which has

pushed rates up to 38400 by eliminating microprocessor overhead.

2.5.7. UARTS

Universal Asynchronous Receiver Transmitters (UARTs) are serial chips on PC

motherboard (or on an internal modem card) [17]. The UART function may also

be done on a chip that does other things as well. On older computers like many

486's, the chips were on the disk 10 controller card. Still older computer have

dedicated serial boards.

The UART's purpose is to convert bytes from the PC's parallel bus to a serial bit­

stream. The cable going out of the serial port is serial and has only one wire for

each direction of flow. The serial port sends out a stream of bits, one bit at a

time. Conversely, the bit stream that enters the serial port via the external cable

is converted to parallel bytes that the computer can understand. UARTs deal

with data in byte sized pieces, which is conveniently also the size of ASCII

characters [13].

32

Literature Reviel!

For example when the user have a terminal hooked up to a PC. When the user

types a character, the terminal gives that character to its transmitter (also a

UART). The transmitter sends that byte out onto the serial line, one bit at a time,

at a specific rate . On the PC end, the receiving UART takes all the bits and

rebuilds the (parallel) byte and puts it in a buffer.

Along with converting between serial and parallel, the UART does some other

things as a by-product (side effect) of its primary task. The voltage used to

represent bits is also converted (changed). Extra bits (called start and stop bits)

are added to each byte before it is transmitted. Also, while the flow rate (in

bytes/sec) on the parallel bus inside the computer is very high, the flow rate out

the UART on the serial port side of it is much lower. The UART has a fixed set of

rates (speeds), which it can use at its serial port interface.

33

Literature Review

2.5.8. Interrupts

When the serial port receives a number of bytes (may be set to 1, 4, 8, or 14) into

its FIFO buffer, it signals the CPU to fetch them by sending an electrical signal

known as an interrupt on a certain wire normally used only by that port. Thus the

FIFO waits for a number of bytes and then issues an interrupt [17].

However, this interrupt will also be sent if there is an unexpected delay while

waiting for the next byte to arrive (known as a timeout). Thus if the bytes are

being received slowly (such as someone typing on a terminal keyboard) there

may be an interrupt issued for every byte received. For some UART chips the

rule is like this: If 4 bytes in a row could have been received, but none of these 4

shows up, then the port gives up waiting for more bytes and issues an interrupt to

fetch the bytes currently in the FIFO. Of course, if the FIFO is empty, no interrupt

will be issued.

Each interrupt conductor (inside the computer) has a number (IRQ) and the serial

port must know which conductor to use to signal on. For example, ttyS0 normally

uses IRQ number 4 known as IRQ4 (or IRQ 4). A list of them and more will be

found in "man set serial" (search for "Configuring Serial Ports"). Interrupts are

issued whenever the serial port needs to get the CPU's attention. It's important to

do this in a timely manner since the buffer inside the serial port can hold only 16

(1 in old serial port) incoming bytes. If the CPU fails to remove such received

bytes promptly, then there will not be any space left for any more incoming bytes

and the small buffer may overflow (overrun) resulting in a loss of data bytes.

There is no Flow Control to prevent this.

34

Literature Review

Interrupts are also issued when the serial port has just sent out all 16 of its bytes

from its small transmit buffer out the external cable . It then has space for 16

more outgoing bytes. The interrupt is to notify the CPU of that fact so that it may

put more bytes in the small transmit buffer to be transmitted. Also, when a

modem control line changes state an interrupt is issued.

Interrupts convey a lot of information but only indirectly. The interrupt itself just

tells a chip called the interrupt controller that a certain serial port needs attention.

The interrupt controller then signals the CPU. The CPU then runs a special

program to service the serial port. That program is called an interrupt service

routine (part of the serial driver software). It tries to find out what has happened

at the serial port and then deals with the problem such a transferring bytes from

(or to) the serial port's hardware buffer.

This program can easily find out what has happened since the serial port has

registers at 10 addresses known to the serial driver software. These registers

contain status information about the serial port. The software reads these

registers and by inspecting the contents, finds out what has happened and takes

appropriate action.

2.5.9. 10 Address & IRQ

Since the computer needs to communicate with each serial port, the operating

system must know that each serial port exists and where it is (its 1/0 address). It

also needs to know which wire (IRQ number) the serial port must use to request

service from the computer's CPU. It requests service by sending an interrupt on

this wire. Thus every serial port device must store in its non-volatile memory

both its 1/0 address. Interrupt ReQuest number: IRQ. For the PCI bus it doesn't

work exactly this way since the PCI bus has its own system of interrupts. But

since the PCl-aware BIOS sets up chips to map these PCI interrupts to IRQs, it

seemingly behaves just as described above except that sharing of interrupts is

allowed (2 or more devices may use the same IRQ number).

35

Eiterature eview

1/0 addresses are not the same as memory addresses. When an 1/0 addresses

is put onto the computer's address bus, another wire is energized. This both tells

main memory to ignore the address and tells all devices which have 1/0

addresses (such as the serial port) to listen to the address to see if it matches the

devices. If the address matches, then the 1/0 device reads the data on the data

bus.

2. 6. Software Development Process

2.6.1. Introduction

As indicated in the previous section, CIM is one of the most discussed topics in

manufacturing. CIM as the name suggests, in an effort to integrate activities in

manufacturing through the medium of computers [12]. It is now widely accepted

that CIM leads to widespread improvement in productivity. The CIM strategy is

based on the successful integration of both hardware and software. Therefore,

this section discusses same of the major issues related to software aspect of

CIM and how Object Oriented (00) concepts may be used to offer generalized

solutions.

2.6.2. Objects & Object-Oriented Software

Object-oriented (00) computing is a style of computing in which data and

associated procedure are encapsulated to form an 'object'. Thus, an object is

computational entity that exists at a higher level of abstraction than data

structures or procedures. The term encapsulation implies that the data can be

accessed only through pre-defined procedure. The other main principle in this

paradigm is that objects communicate with each other can only by exchanging

messages.

36

r

Software systems that implement 00 techniques are popularly called Object­

oriented programming systems (OOPS) or Object-oriented software (OOS). The

00 paradigm is an outcome of the evolution of modularity concepts developed to

improve various aspects of the software development life cycle. Most of these

developments retained the traditional fundamental notion that

(Computer) Programs = Data+Algorithm (Procedures)

The basic problem with this approach is that most real world entities are

encapsulations of data and procedures that characterize their behaviour.

Therefore, a programmer or analyst must go through a transformation and often

a restructuring process to construct programs to model the entities.

(~_D_A_TA~) + [PROCEDURE]

Figu re 2.8: Traditional modularity concepts [1 2}

The 00 paradigm represents a different way of looking at the program modules.

It defines program modules as package of data and procedures named an

'object': i.e. an abstraction of private data and operations that are naturally

associated together. Because of this abstraction facility, it is possible to

represent real life factory objects such as N machines or a part quite close to

reality (Figure 2.9).

37

Literature Review

Data is stored in locations, i.e. instance variables, which cannot be directly

accessed by other objects. Procedures are commonly known as 'methods'.

Each procedure (or method) defines the behaviour expected of the object. Such

behaviour is to change the data stored in its instance variable. Objects interact

by sending one another messages. That is, an object sends a message to

another when it wants certain services from the object receiving the message.

DATA
PROCEDURE

DATA
PROCEDURE

DATA
PROCEDURE

Figure 2.9: 00 Approach [12}

There is a number of high level programming languages such as Borland's

Delphi, Visual Basic, Visual C++, and Borland's C++. Because each

programming language has its own programming features and characteristics, it

is necessary to evaluate all the possible options and relevant requirements

before choosing a suitable programming tool that will facilitate the development

of the project.

The following are the requirements defined in order to select the most

appropriate programming language [12]:

1. The language must be able to build a scalable, maintainable and

reusable within the Rapid Application Development (RAD)

environment.

2. The language must communicate with other Window based

applications.

38

Literature Review

3. The application built with the language must be an open system

application that fully utilise Window resources and keep in consistency

with the graphic format from the Microsoft Window's Operating

systems.

4. The application should be capable of creating a dient server

application.

2.6.3. Borland's Delphi 4.0

Based on all research conducted. Borland's Delphi is easier to learn for

beginners, it also full meets the requirements listed above. As described by

Reisdorph [10] , the first version of Delphi was developed by Borland in 1994, and

it is also Borland's best-selling rapid application development product for writing

Windows applications. With Delphi , it is possible to write Windows programs

such as Win 32 console applications or Win32 graphical user interface (GUI)

programs more quickly. When creating Win32 GUI applications with Delphi , the

user has the programming power of a true complied programming language

(Object Oriented Pascal) within a RAD environment. Hence, the user can create

a GUI to a program using drag-and drop techniques for true rapid application

development [1 O].

One of the most important concepts within Delphi is the Integrated Development

Environment (IDE). As illustrated in Figure 2.10, Delphi IDE is divided into three

parts. The top window can be considered the main window. It contains the

toolbars and the component palette. The Delphi toolbar allows the usual one­

click access to functions such as opening, saving, and compiling projects. The

Component palette contains a wide array of components that the user can drop

onto the main form. These components include text labels, edit controls, list

boxes, buttons, and ActiveX controls.

39

Literature Review

Eletdl~-ch~~&ui~Qat:abete loo!t l:1$

D Ii&· Iii al ~ (d ~ O Stand.!rd IAdditiorwil l \1/'nD l s~$1ern l 1n111n11: I D•• Acc•u l oa,Conhak DRMMIII) o..ioo. JwnJ.11 Sa!D11 l Ar:bY.X l

Tool Bar ~ - _;l ~;'j :i_ , _. _ b ~ . -~ ~ -- ~ A _fi'I ~~ "-"~ ~ ':"° .. - '."' . __ iJ __ _ .. _ .. _ ,-u

~----~ 1·.:.:1:-1 J -~ ·· ·· ··· ·········· ·· · ····· ··· :., ... , : .. ··· · · -·· ·:· f, I

Form
Designer

Object
Inspector

Code Editor

::'.c....a ,:: : .!! ..:ili;:J
Aigl"I .at,one ,frfom1 ..!!.. urw:1 j .. +

WlChors [al!.let!:.81.T~J · · • _] V~ano .n.it Onitl :
"""6aol l""'

I c.-, Foun1
Clo,1H,qi ...

°"""""' ... Cab clln:-a:ia .con.tr• tTSiz~~ir
Cd) TM

c:rOeld
ci,~.ccr.-efonn

t---.... F•te
o,~
Dr~odl
Enablad T1ue

..font (TFont)

. •J Uwt

~ . : :

~--
lllndows , 11••••119:• , ! yt1Ut 1 ls, Cl-••• , Grapb.1 c s , Cont r o ls, re

•n•
Tror11l '" cl.us (Trom)

(Pz.ipa ttt d ecJ•:•t.tons J

... l..l .

(Jlubl.:c aiscl • .utioa.s 1
.,.ul:

P'onal : TP'on:i l ;

FoimS~ ffNortMI 1~: -·
Hed"t <teo { Sit ".CJnl}

1

1 ·.:_"- o • o

. I ,: 1 Modfiad ll'INII

.__ ____ __. ;a• >~•----------------------~~

Pooe 33 Sec 2 33'33 N. 6.9cm ln 7 Cal Bl ~ (U.S '1J,:

Figure 2.10: Delphi Interface

Object Inspector

Below the main window and on the left side of the screen is the object inspector.

It is through the object inspector that a user can modify a component's properties

and events. As illustrated in Figure 2.1 O; the object inspector has two tables: the

properties tab and the events tab. A component's properties control how the

component operates. For example, changing the Colour property of a

component changes the background colour of that component. The list of

properties available varies from component to component, although components

usually have several common elements such as Width and Height properties.

The event tab contains a list of events for a component. Events occur as the

user interacts with a component. For example, when a component is clicked, an

event is generated that informs the user that the component was clicked. The

user then could write code that responds to these events, performing specific

actions when an event occurs. As with properties, the event could also be made

responsive to variation from component to component.

40

The Delphi Workspace

The main part of the Delphi IDE is the workspace. The workspace initially

displays the form designer. It allows the user to create forms, such as the

program's main window, a dialog box, or any other type of window. The form

designer will enable the user to place, move, and size components as part of the

form creation process.

Hiding behind the form designer is the code editor. The code editor is where the

user could type code when writing the programs. The object inspector, form

designer, code editor and component palette work interactively as the user builds

the applications [1 O].

41

CHAPTER 3

3. Multiport Card Installation

3.1. Introduction

Multi ort Card Installation

As part of DNC system developed within this research project. It involves the

study of a multiport board that is most suitable for the small & medium- sized

manufacturers in New Zealand.

MS-DOS and the original PC BIOS were originally developed to support just two

or perhaps four RS-232 ports. Users immediately saw the need for applications

using 4, 8 or even 16 ports. Third-party manufacturers quickly responded to the

demand and began producing nonintelligent multiport boards.

3.2. Background

These nonintelligent multiport boards typically contain an array of 8250 UARTS

that can be configured to reside in various slots on the 1/0 memory bus. Each of

the UARTs appears to the CPU to be more or less identical to a standard RS-232

port, with one important exception rather than have each UART directly control

an interrupt line, all of the UARTS on the board share a single interrupt line. The

board itself supplies hardware logic that manages and performs arbitration

between all of these UARTs competing for use of a single interrupt line.

Figure 3.1 shows the Smartio C104 board selected for this research project. The

board can be configured with either four to eight 16550 class UARTS. In this

particular board, the C1104 is configured with four UARTS. Moxa has a standard

extender cable that connects to the card edge via a large D Connector, and has

four RS-232 cables extending from it. Each of the cables supports the standard

signals used on PC RS-232 ports.

42

Multiport Card Installation

. ~ --" .. ~
.. --, ~: ,.

Figure 3.1: Moxa multiport card

3.3. Hardware Installation

The installation of the Smartio C104 series consists of hardware and software

installation . The hardware installation is detailed in this section of the chapter,

while the next section deals with the procedure involved in installing the software.

3.3.1. Quick Hardware Installation

The Smartio card features flexible hardware configuration that allows a quick and

easy method installation for users. The procedure firstly requires the user to

short the jumper JP1 on the upper left comer of the board. As illustrated in

Figure 3.2 the card is inserted into the desired PCI slot. The user could now

proceed to the software installation phase. Once the software installation is

completed , the user then need to cold start the system to complete the quick

installation.

Figure 3.2: Inserting the Mu/tiport Card into the PC/ Slot

43

Multiport Card Installation

3.3.2. Hardware Installation with 10-IRQ Utility

Although the quick installation seems very simple and efficient. This quick

installation process did not activate the C104 card during the course of this

research project. Therefore , the IO-IRQ Utility program was used instead.

The application IO-IRQ utility shown in Figure 3.3 comes after the C104 is

plugged into the PCI slot in the PC. The user must run the IO-IRQ.exe utility in

the driver diskette under DOS system to change the hardware configuration .

.~. :,.·,.;.,.. .

..I u .. .r .. a <t IJ., ,_ .. .,

I•} IP.Q i~ the 1=t :::te"f> -to conf i--rur-e

I.hi: I --1) ,,.,1.-1 r•,-::•:::. I .. :lJ. 1-:t.1 : 1 ,t' t.h1:

uo ~wi I.cit/ .i m1i1>t:-r- ..:-ll~J""I. iu/111du~ l io

t:-,.';11 F.~ni lt=J ,11111 c:-1,:..1-1 h11,1r·rl:-:_

ff.._. ···11r·•· l_h,1t 11111· l ,,11r1 1J11L•, ••11•":)

bu-:1.r•,J. 11.:t.~ .:o.l!"eict.J11 bt!e1k i,1:::tnllt:-d in

1:h~ -:. 1 ,::tr.m h,..fnrr. rtnYllltlfJ t.111,;- -r,~.""
!U'-:i.lt. j f IIOJ"t:' tJ1~.ll ,,i1c- botU--:1 11t!,::oO:.I.

1:•""I ·h,~ r:o·nf' i ff1•rr..~, ,-:.nnf i!YIH·~ an1 ...

... , ... r-,1 ,. i ... I i Ill ..

·:-. ,\

Figure 3. 3: /O-IRQ utility

Once the user selects the "Smartio/lndustio ISA family on the interface , it was

then possible to re configure the CAP address of the C104. The values for the

default setting is listed below

I/O Address: 0xl 80 (Portl), 0xl88 (Port 2), Ox l90 (Port 3), 0xl98 (Port 4)

IRQ: 10

INT Vector: 0x l C0

Configuration Access Port (CAP): 0xl80

44

Multiport Card Installation

3.4. Software Installation

This section is a follow on from the previous section on hardware installation. It

illustrates areas such as software driver installation; configuration and driver

update procedure described for the selected Windows NT operating system.

Windows NT is still by far the most used operating system within the

manufacturing sector. Characteristics such as stability, network integration, and

mobile computing make this OS a common application within the manufacturing

shop floor. Windows NT supports up to 256 serial ports from COM1 to COM

256. To fully integrate the advanced features of Windows NT, multi-process and

multi-thread, pure 32-bit Windows NT device driver are developed for the C104

multiport boards.

3.4.1. Installing Driver

In order to install the driver, the user must first log in as the Administrator. Once

logged in , the user must access the control panel and select the network icon to

activate the adaptor tab. Figure 3.4 shows the driver can be located in the driver

diskette, where a file by the name of WINDOWS.NT will activate the

i nstal I ation/configu ration process.

ld•"'i'ica1~ .. 1 s . .. ;.,.,,] Fl'ctoo:l: Adorx.,., I sirdng;, I ?~I
tle·~-.al Adap1~,s

l11f.1(1Hl""'"' "E2

~dd .

(lcm l,lob:,;

llovel N[~UUJAd

11W 3Ccn 3C!ll! IS6. 16-bil Ehrr-.e1 Adapte1
ar,I Jl,n Elhorir~ II t do:xo, fa«: ii/lb and 11.'le I P
ID 3Co n Elh~1ld : 1·J 1SA.PCMCAAUQ'1Jlt-t

ill:' JCirn Elherl1r>< Ill P: 1 Bu: ttao!Er A"°p•er JC'-.SO
lrl :lCrrn [~101li ~ 1r.1(1 ·e l. ;,,l 1£ Tr ,1.,,1,;-,1r1
...,. , ... -c-.. .,,,1 =, ... _._ , ... :.. 0-1 ,n,1r-no ... , e- T '\.-1 ,r , r-,::,o.,_

7 X

..::J

lnsr.rl Ord. 1£1

I n,trt d•k 9"b-i ac/lW;re PfOViaed by too acltw;ro 01
r.a,rl"""" ..,.nulacluR'I f the fie. c..-, t:.. 1ourd " a
dfocrt l=ion 101 e,,.oQl:ic on ordh:r d,iyc ~ o
rell/ peih lo !h& ~ 1>!4oN.

Figure 3.4: Driver installation

45

The installation process then presents the

user with the Moxa Smartio/lndustio

Configuration panel dialog box, where the

user could configure the broad by configuring

the properties. By clicking on the add button

shown on Figure 3.5, the user can enter the

property dialog shown on Figure 3.6, where

the user needs to select the "C104 Series" in

the "Board Type" field. If necessary, the user

also needs to type the desired interrupt vector

address, in the "INT Vector" field. By

selecting the desired interrupt number in the

Interrupt No" field and typing the desired base

1/0 address, in the "Base 1/0 Port Address"

field. All the settings should then match

settings that are physically set on the board

and conflict with no other devices.

MultiportCaHllnstalliitiqn

Property £1

COM5
COMG

Figure 3.6: Property Dialog

Figure 3.5: Configuration Panel

46

Multiport Card Installation

3.5. Serial Programming Tools

As part of the technical support offered from Moxa. PComm, a professional serial

communication tool for PC is included with the Smartio C104 multiport card . It

consists of powerful serial communication library for easy programming in most

popular languages, and useful utilities such as diagnostic, and terminal emulator.

The serial communication library is commonly used during the development

phase of data communication, remote access, data acquisition or industrial

control in the Windows operating systems.

3.5.1 . Diagnostic Tool

As one of the supporting utility provided by Moxa. A convenient diagnostic

program such as "PComm Diagnostic" shown in Figure 3.7, provides internal and

external testing of the multiport. This program offers testing for of IRQ, TxD/RxD,

UART, CTS/RTS, DTR/DSR for the C104 board and ports to verify correct

operation of both the software and hardware.

!jPColHI Diagnostic B~EI
fie [.i3(Jno~e J:!.ap

l o be le~ed .. r e~l Acpo,t

I nterna l I.onnhac~ T~

coro (P l
C•.J~.~ (P ::
(IJI{<; (P,
CO!l.b (P4

I RQ Toot

[T;: •P.;;]
I~

.11:
~'-'· .. ,,~

rn~ 10 ~·1<

(UART]
I I~

I.JI,
l),l­

CU·

(To::; i Trne 05/ 12/ 99 H : t ~ : 39)------------

~ 4 --- .!.J

Figure 3. 7: Diagnostic software

47

MultipgrfCard Installation

This utility was used immediately after the C014 board was installed. This utility

was proven to be effective when the first quick installation failed on the

workstation used. Thus enabling quick debugging of the installation problem,

and resolving the problem by implementing the IO-IRQ installation method.

3.5.2. Terminal Emulator

Once the system have been checked by the diagnostic program. It was then

possible to make use of the terminal emulator program that is included in the

PComm serial programming tool. The terminal emulator shown in Figure 3.8 was

used as a benchmark during the development of our own data communication

software. Terminal emulator features multi-windows and supports terminal type

VT100, ANSI and Dumb. It is possible for the user to transfer data interactively,

send pattern periodically and transfer files using Zmodem, Ymodem, Xmodem,

Kermit or ASCII protocols.

! lk' !ilk 11:n dbpl:.,,·, lhc'

1c'i1l)J!~Ur~1!11\J'i ril l!k'

/ll·t \''....,lll'<-\\lrld\<l,\

I Ii-· 111 ,1 1,uti.:,11 1,

u-.,1.-•d tr,) ~t""-'!) 11J

(I,,,,· I lh! p, •rt

[Ile• "lrl R" and
"RTS" butlun, ar.:­
u,,:d 1<' 1urn ,,n n1

,,n lh•: DTR .md
RlS s1,:1nl

Ilic ,111··-\\ 111d"\\ I ilk i',l! cl1,pl:n •.,·11rr,:n1
,-,·,m1nuni,,::111,,11 p:1111111c:k1, (• l\l p,,rt. h:,ud
!elk. p:1rn1. d.1!:1 J,11.,_ •I••!' 1'•11' :md i.:nrnnal tip,·

\\ ~-------~
The, status lin<? intl1c:1ks th.: nmcnt status ur
th,, pnrL OP!'N'Cl OSI· .. and lhs> Im(· status
ofthc•"CTS". "l)SR". "RI", and ·!)CD"
sig1nb, Signals are gr~:,vd if n,1t a,,s>nd.

Figure 3.8: Terminal Emulator

48

Multiport Card Installation

To start a terminal emulation session on a COM port, the user must first ensure

the RS-232 cables are connected correctly (see next section on cabling) and the

setting in both of the terminal are adjusted to the correct setting using the port

setting dialog shown in Figure 3.9.

Propell1 D

In th-: "(. < ll\1 Opt1 ,111:-." k!J 11up. ,..-1-:-l·t t lh.'
tk:-.JJ'l'U C< >1\1 1wrt ,lllJ l't'llll11lllllt'aln111

p,HaJne'kJ':-.

In the' 'Th,\, < 't1ntr11I" ~l\'llJ'. e·lw1b-:: II'
turn ,ln d lf th-: h,nd,,:nl· :inJ 1,r ~''""Ml'
Ill\\ l·, ,111 r,, 1. k'"l'l'lll\ d,

CO\! Oorlor\$

Pob I CUIA3 ...:.I
~Fl.ale . j921 GOO ...:.I

OdJ> Db · Is ...:.I
P"'\11 lr-m:: ...:.I

SlopBh 1, .:J

~ Flow Cm1ol- 1 OU!lll,l&au,--,
P' 8I,_5!'.£1~l OTA r, OM r OFF

~ -------------~ r~ FITS If' ' (' 1

In tile' "C lutput ~l,ll l' .. ~l\'lll'. , l' l tlh' lllill,11
, tak' ,,r tli-.· I) IR ,llld I{ I~ ' ik!llal In" I~

n,,t \ ,II id \\ he' ll RI ~ (. r~ 1:-. 'l' I

Figure 3.9: Setting dialog

OK C®cel

With the correct setting, the terminal emulator allows the user to carry out

versatile operations such as file transfer, or sending pattern between terminals.

3.5.3. Data Scope

After the system was set up in the PC. An immediate test was conducted out to

examine whether the terminal emulation program was fully functional. During the

testing stages, minor problems were encountered the configuration of the cables.

As part of the approach taken in pin pointing the source of the problem was

through the application of the Data scope utility within the serial communication

tools. The Data Scope is also a utility program that assists the user with serial

communication trouble shooting and debugging for any Win32 compliant COM

port. It offers transparent monitoring capability of serial communication lines and

allows data to be streamed to disk storage for later analysis.

49

This utility has the advantage of turning a simple PC or notebook into an

economical but powerful data analyser for serial communications. By using two

COM ports, it is possible to easily tap into two serial devices at the RS232

interface and watch all the data and communication status between the two

devices.

To in order to activate the data scope, the user must first configure the port to the

desired connection mode. The user must decide whether the scope will use

Transparent mode (Figure 3.10) or Bridge mode (Figure 3.11).

A B

Figure 3.10: Transparent Mode

Under transparent mode, data scope will transparently monitor the data and line

status across the communication line. Port A will listens to the data sent by

Device A and Port B will listen to the data sent by device B.

Figure 3.11 Bridge Mode

Under the bridge mode, data scope will transmit the data received from Port A to

Port B, and vice versa, but not including the line status signals. The Device A

and Device B are physically connected to the PC running data scope utility with

two RS-232 null modem cables

50

MuJtiport Card Installation

During the testing session, the bridge mode was used, and the result from the

test was ascertained and illustrated in the following Figure 3.12.

Curw nt C0 \'1 po11 , \
pai r for Poit.-\ a net 1

PortB

y_;,,.,., f!.clp

I Current d~1t:1 count for Po11A :md
Pf 11t B. (not inc hiding Ii 11..? ~t.'.ltus)

.!~L Ld ~ ~ ~ ~ ,_Ci_r;;;:;_"' ~ S-

PortA
.R'l'S [
DTR (
DCD (

Ports
RTS t
DTR [
DC::O (

C<A,nt 'IO I!! Be00,""""'.8,1

00 0 1 02 03 04 05 0 6 0 7 OS 0 9 1 0 11 12 1..3 t 4 15

__ ,
I I
L_J

.!.. 2 3 "1

-o----iJ---------------===--------
Po rtA
FITl.'l [
C!I'R [
D C:D (

'Po r t: D
R 'l' l,l [

DTR l
OCD (

- 1---""I

n

I\, r1 11 Ii lk' i ndi,~1k':,. lb ta I r,,m Ik, i,I.'
B. RI"- I in..- ind il·:11,.>- RI ~ :--i~nal stalu;
fr,,m 1)..-, i,· l• H. "am..- IL' DTR ,rnd t)L' l)

lin,.-". l.ih-,, is,,.'. thi, ;1pplil·~ 10 Pon A

n n

-=.::.J

(. u1-r,· 11t infc,11nati,, 11 for th, dat1. ,, h..-r.._, th..­
't1r:-,_1r ,1,,p:--. lnfp1111a1i,~n inl'lud~; : p,,11.
,,,Jum1L data i n .\ Sl II : ind l kx. tirn..- :-.1 :Hnp.
linl' ~t;Htb f,,r Rl ~- lrl R :rnd Dl'D.

Figure 3. I 2: Data Scope

51

. Mulµpod: Card Jnsta,Jlittl<tn

3.6. Cabling

After the C104 card was installed in the PC. The next task was to gather the

various cables required for the RS-232 connections. The connection for the

C104 is a 25 pin male connector. However, most serial ports are 9 pin female

connectors, and during the initial stages of the research project, the following

cables and adaptor were used for the serial communication to take place.

3.6.1. 9 Pin Female to Female Gender Changer

Figure 3.13 shows the standard "Female Gender Changer" cable. This cable has

a female D-subminature 9-pin connector on one end and its female equivalent on

the other. All the signals are routed straight through, terminating on the same

numbered pin where it began.

DTE DCE

TD 3 " I> 3 TD

RD ,, "I I> 2 RD L.

RTS 7 ... • 7 RTS

CTS 8 " I> 8 CTS

DSR 6 " I> 6 DSR

GND 5 ... • 5 GND

DCD <ii I> DCD

DTR 4 ~ I> 4 DIR

RI 9 ... • 9 RI

Figure 3.13: 9 Pin gender changer

3.6.2. The Null Modem Cable

This cable is required when test are carried out between PCs. The standard PC­

to-modem cable does not work because both PC are DTE devices, both will

transmit on Pin 2 and receive on Pin 3 of their 25-pin connectors. Thus, a cable

that routes all signal straight through will be connecting the output from one PC

directly to the output to the other PC, and the RD line from PC will be connected

to the RD line of the other.

52

Multiport Card Installation

A Null modem cable that crosses over the pins, with exception to the ground pin

was used. Figure3.14 shows the wiring diagram used for this operation.

DTE DCE
TD 2 X 2 TD
RD 3 3 RD
RTS 4 X 4 RTS
CTS 5 5 CTS
DSR 6 X 6 DSR
DTR 20 20 DTR
GND 7 7 GND
DCD 8 8 DCD

Figure 3. 14: Null modem cable

3.6.3. Installing the Cable

Once the necessary cables and adaptors are gathered, it was then possible to

link to the testing j ig PC to the C104 board. The Figure3.15 below illustrates all

the cables and adaptors used in making this connection.

[JC]
7 [JCJ

C104 25 Pin
Null Modem

Cable

25 Pin to 9
Pin Adaptor

Gender
Changer

Figure 3.15: The entire cable and adaptors used

End
Terminal

53

Multipor:t <;Jard .Installation

3. 7. PComm Application Programming Interface (AP/)

To understand how to communicate and transfer data between the terminals. It

is important to understand some of the basic fundamentals of APL

The acronym API stands for Application Programming Interface. It serves as a

software interface to be used by other programs. Just as a number keypad is the

interface for a calculator. API is the set of classes, functions, and methods of a

particular programming language. Developers use the API to code the software,

and it has the ability to simplify commands sent to the operating system or

computer hardware.

PComm provides API libraries for establishing communication with the multiport

and end terminal. Its purpose is to assist users to develop programs for serial

communications for any COM port complying with Microsoft. It can ease the

implementation process of Multi-process and multi-thread serial communication

program and hence greatly reduce the developing time. It is suitable for all Win

32 compatible COM ports. The hierarchical diagram in Figure 3.16 shows the

PComm library.

J1~pphcations calling I'comrn Functions Application calling Win32 COl1AlvI
iJ..:PI

Pcomm Library

Vlindov,.rs \}lll\f32 COl\11\11 API

~1tlindov1s WilB2 COJ:vTh-1 .Jl~I

Figure 3.16: Hierarchical PComm library

The PComm library functions can be divided into categories such as Port control,

data input/output, and file transfer.

54

DNC Software Development Process

CHAPTER 4

4. DNC Software Development Process

4.1. Introduction

This chapter describes the software development process for the system. The

software is developed through the Waterfall model illustrated in Figure 4.1, and

the 4 stages of progression are as follows:

Requirement Analysis & Definition

This stage investigates the system's services , constraints and goals. The final

system requirements are established by consulting with system users.

Interface Design

The interface design process partitions the requirement of the software system.

It establishes overall system architecture.

Implementation

This involves the actual coding of software sub-systems that have been analysed

and designed, and the integration of these sub-systems into a complete

functional system. Due to the structure of the chapters , the detailed description

of the implementation process is described from chapter 5 to chapter 10.

Testing

Testing stage will be carried out when a fully designed and implemented module

is completed. Sets of exercises will be designed to test the performance of the

application . Through these testing, software functions will be accurately verified

and conformed to the specification.

55

! DNC Si>ftware Development Pro'cess

Analysis

Design

;/,
// Implementation

Draw Concept

Testing

Refine Review

Figure 4.1: Waterfall model

4.2. Requirement Analysis & Definition

4.2.1. End- User/Operating Environment Analysis

The primary purpose of structured analysis is to model the system's services,

constraints and goals by consulting with target users. When developing a GUI

application, the analysis activity focuses on the user and the user's tasks. To

develop user profiles, the analysis looks at the user's frequency of use and the

user's tasks.

People who come in contact with the use of this system are usually operators

within an industrial environment that need to transfer design files or NC programs

through the RS232 network on a day to day basis. It can be assumed that the

users of this system are technically qualified NC machine operators that are

experience with the use of computers. The amount of knowledge will vary from

one to another, but it is assumed that most users have used computers in the

Microsoft Windows environment.

56

DNC Software Development Process

Due to the fact that there are only a small amount of factories implementing

advanced DNC system. The end users are not expected to have any knowledge

of what a DNC system is or any prior experience in using similar packages.

A DNC structure built with a proprietary operating system will limit a manufacture

in implementing CIM applications in the future . The strong domination of

Microsoft Operating Systems (OS) over the past few years has made Windows a

de facto standard within almost every sector of industry. Therefore software

developed for th is project runs under any operating system from Window 95 or

above.

Environmental Attribute Description

User type is novice to The min imum user know ledge is confi dence w ith Microsoft Windows
experienced environmen t. However some users may have previous experience in

NC programming.

DNC for commercial The software will be installed in small to medium manufactu rers. The
purposes system will replace some of the manual program insertion and older

generation systems.

The users technical CNC The user of the DNC have been identified as operators in
machine operators manufacturing environment

DNC is run under The new system shou ld not change the computer hardware
Microsoft Windows requirements for the DNC
9.x/NT

Table 4.1 : Specifications

57

4.3. Interface Design

This section of the report shows the design process for the GUI. It first states the

specifications of the design that were gathered and deduced from the analysis in

the previous section. It then proceeds to show some of the design concepts that

were used to refine the overall design of the system.

4.3.1. Specification Defined

The specifications come from a number of areas. First and foremost the

specification from the users of the system. As one of the main principle on GUI

design, the designer must have considerations for the end users. It is important

to not only take user's requests into account but their individual perspective of

the system must also be considered.

The first specification comes from the user type definition. The types of user are

from beginners to experienced, and with such a wide variation in user type the

interface must be created to accommodate the variance in PC literacy skills.

Therefore, the interface must not become so simplified that the experienced

users become frustrated by the interface restriction, but at the same time the new

interface must supply a way of carrying out tasks step by step to assist the

novice user using the DNC system. The new interface is to be used as a data

transferring system from PC to PC terminals or from PC to CNC facilities.

Therefore, it is expected the system will offer efficiency and good organisation of

the machines controlled by the main terminals

The interface must be recognisable as a standard Microsoft Windows style

interface. That is it should follow the same format for the window style and for

the controls. The interface must have the same appearance as the Microsoft

Windows software, and controls like buttons and menus must also behave in a

similar manner to the standard case.

58

DNC Software Development Process

4.3.2. Design Concepts

From the specification above , the design process is design-by-refinement where

a concept is drawn and then reviewed for suitability and adaptability.

Figure 4.2 shows storyboarding were used as the principle method of design lay

out. First of all , the required task was documented in operations through 00

program design approach. These operations were then expanded into a

sequence of steps where each step was a designed element. To illustrate the

idea, the following is an example of a very simple use of exchanging characters

between the two terminals

1. Initiate the system.

2. Specify the terminals to initiate communication.

3. Activate the serial port by declaring the necessary conditions.

4. Start the communication with the desired terminal.

File I Edit I 'vVi.ndows I Pott ~

I I
I First 1~rindov,, ~

--------------~~-----------.

I
P ort 1 o

P ort 2 D OK

P ort 3 D

Cancel
P ort4 D

Figure 4.2: Storyboarding

59

4.3.3. Final Design

The combination of all those concepts and design iterations resulted in the final

design that is illustrated in Figure 4.4. The final design was developed using

Multiple Document Interface (MDI) technique. Many window-based applications

such as Microsoft Excel, Microsoft Word, and CAD systems etc have similar

multiple document interfaces. The interface consistency makes it easy to

operate in the Windows environment. A MDI application allows users to display

multiple documents at the same time, with each document displayed in its own

window. Document windows are contained in a parent window, which provides a

workspace for all the document windows in the application. As stated in the

previous section, this system contains four independent modules. The

communication model mainly takes cares of data transmission and records NC

programs downloaded and uploaded. Other relevant manufacturing information

can also be viewed through this module. NC editor facilitates the users to edit or

modify NC programs within the DNC system. The OLE MDI form will allow the

users to link the system to other existing software on the desktop.

NC Editor

OLE Link

Figure 4.4: Final design of main interface

Tool Bar

NC Program
List&

Terminal List

File Transfer
Setup

60

Establishing Communication

CHAPTERS

5. Establishing Communication

5.1. Introduction

This section of the report explains the implementation phases of the program.

Denoting areas such as the structure of the program and the actual development

procedures of the system. It covers the programming techniques used, the

application of Delphi programming functions and the step-by-step explanation on

establishing communication through a multiport card.

5.2. Establishing Communication

The first step taken to establish a serial communication between the multiport

card and a second terminal is to open a communication channel. This research

begins by establishing a new project file called Fountera.dpr and a main form

named FtansM.pas. In order to access the PComm Serial tool , two more files

must be added to the project. Figure 5.1 illustrates how to add these files using

the project manager in Delphi4.

l!J'J"f}l:J~2"-"'",,-;..,i~ ,,;.)? ~ ,_, . .,., ,

~ X
I • New Remove .6,ctr,,..ate

Files I Path I
~ ProjectGroup1 C: \ Program Files \B orland\D elphi4 \P
B [[:] FounTera. e11e C:\DocLm1ents and Settings\Captain

~ Mxtool.pas [:\Documents and Settings\Captain

~ - Pcomrn.pas C:\ Documents and Settings\Captain

Figure 5. 1: Delphi 's project manager

61

5.2.1. PComm.pas

The full context of the PComm.pas can be found in section 10 of Appendix A.

This file is the main file within the PComm serial programming API. The first part

of this file has numerous declaration of constants for ports and file transfer

settings. The rest of the PComm file imports routines from the PComm.dll and

are all declared as functions within this file.

5.2.2. MxTool.pas

MxTool is a Pascal file that is within the PComm serial programming tool. This

file is mainly responsible for the handling of error messages. The file has a

specific procedure that lists out the main errors when they are encountered.

5.2.3. ExGlobal.pas

After those file for the PComm serial tool has been installed. The main interface

FtransForm then needs a Pascal file which contains the Global variable & COM

port record defined for the main interface. The ExG!obaf.pas shown in the

Appendix A starts by declaring:

type

TExampleForm = class(TForm)

Term: TMemo;

The line TExampleForm = class(TForm) describes a form created in the memory. The

TFtransFrom inherits TForm's members, a class that Delphi provides for creating

forms. While Term is a Memo class that is also used later on during the

program.

The next part of this program is a record named TCOMMDATA. A record is a

Pascal syntax that allows a collection of related data to be rolled up into a single

storage unit. In this program, TCOMMDATA is a single data variable that holds all

fields needed in configuring a serial port.

62

For example,

TCOMMDATA = record

Port : Longlnt;

BaudRate : Integer;

Hw : boolean ;

Establishing Communication

The next section of the Exglobal.pas declares the Global variables required in the

FtransForm. As shown in Appendix A, the first variable is GcommData, it is

declared so that instances can be created in FtransM. The second variable

GszAppName is a string declaration that stores the name of the application, and

the third variable declares the GhForm as a TExampleForm. The rest of the global

variable declarations include numerous other array of variables required, for

example, the following array declares all the 5 possible parity bits found in serial

communication.

GstrParityTable :array[0 .. 4] of string= (

'None','Odd','Even','Marl<','Space') ;

The very last section of this file is the codes used for the procedure ShowStatus.

Figure 5.2 illustrates the end effect of this ShowStatus function , this procedure

writes the information on the COM port on top of the Window after a user

chooses to open a serial port.

The current
status of this
application

::.;;.,. ::::- =-

l ~· l ~ I ~ l Ckl • Ia l ~ l el -, l --I tJ I ~ I ID7J

Figure 5.2: Showstatus

63

Establishing Communication

5.2.4. Config.pas

In order to adjust the setting of the serial port for establishing communication

between terminals, the next step of the research project is to make a form that

allows the user to adjust the setting of the serial port. Figure 5.3 illustrates what

config.pas looks like

· ·: COIII Option l!llilD

Comoptim

Port: .:.I
Baud Rate: I .:.I
Parit:1: .:.I
Data Bits. .:.I
Stop B,t:, .::J

.~OK .1 ·

Output State

r DTR

r RTS

Flm.\J Control

r ><ON/1{0FF

r RTS/CTS

)(c~ncel 1•

Figure 5.3: Con.fig.pas

The name of this form is called a CfgForm, and contains 5 procedures that are

used in manipulating the serial ports. The first procedure FormCreate is used

specifically for configuring COM ports. As shown in section 5 in Appendix A, the

FormCreate procedure uses a for loop function that adds the word COM to the

start of every port.

The FormActive procedure allows all the selected setting from this interface to

take effect when a port is opened. For example, the line cbBaudRate.ltemlndex :=

ibaudrate declares the baud rate to be the value selected from the Combo Box.

The chHwClick procedure provides a simple technique that turns off the RTS

output state when RTS/CTS is turned on (see Figure 5.4).

Output State

w DTR

w RTS

Flm"I Control
r XONk:OFF

r RTS/CTS

Output State

w DTR

r

Flaw Control
r XONh<OFF

Figure 5.4: Output state &flow control

64

Establishing Communication

This is achieved by first declaring a Boolean variable called Gfhw in the start of

the code, and if the RTS/CTS (chHw) is enabled, the RTS (chRts) will be

automatically disabled.

The last two procedures, the CfgCancelClick and the OKClick are used for allowing

the user to make the newly determined setting of the serial port to replace the

default setting provided in the FormCreate procedure in FtransM.pas. If the Ok

button is accidentally pushed. A pop up window will appear for the very last

minute confirmation of the setting as shown in Figure 5.5.

Confirm 13

Settings Correct?

l! .. :.: ... :.:res ___ ~_::.J! _ _ tl_o _ _.

Figure 5.5: Confirmation Dialog

5.2.5. FormCreate Procedure

Having included the PComm.pas, MxTool.pas, ExG/obal.pas, and Config.pas it

is now possible to construct the main interface. The first part of coding is the

FormCreate procedure:

procedure TFTransForm.FormCreate(Sender: TObject);

As illustrated in section 1 of the Appendix A, the code of the FormCreate

procedure includes many other lines of code that are used for other functions.

However, this chapter is only interested in establishing communication between

the multiport and the main PC terminal. Therefore, only functions, codes and

programming techniques that are closely linked with the establishment of the

terminal communication is discussed in this section

65

Establishing Communication

The first part of the FormCreate procedure uses a with statement to set up

instances for the GcommData record. The use of With statement allows the

declaration of the record without using record identifiers and dot operator. In this

declaration, all the initial default parameter for the serial port is listed. As it is

shown, if the user chooses to open up a serial port, the default opens with the

following settings:

Port := 3;

ibaudrate := 14;

iparity := O;

ibytesize := 3;

istopbits := O;

BaudRate := B38400;

Parity := P _NONE;

ByteSize := BIT _8;

StopBits := STOP_ 1 ;

Figure 5.6 shows the default serial port declarations of the serial port after it is

activated.

Figure 5.6: Default name

5.2.6. Menu
As shown in Figure 5.6, main menu is also a component that is being applied

during the early phase of the programming. Every item in a menu is an object of

the Tmenultem class; Delphi automatically creates these objects when the user

designs menus with the Menu designer. As shown in figure 5.7, the menu

designer can be sized in any way that the user desires, it also offers the ability to

create short cut keys assignments for menu commands.

66

rrt FTransform.MainMenul ':t;,,.: J!tli

!1ew

Qpen

2,ave

Save B,s ...

Save Setting

!:,rint .. .

Pr.int Setup ...

E;::,it

e_ort

\ ... 1

Tr.ansfer· ~dit .OLE.. . t!elp ,

Figure 5.7: Menu Designer

Establishing Communication

The next relevant procedure is SwitchMenu procedure. This procedure inhibits

the use of menu item when certain conditions are imposed, for example when a

serial port is opened, the port open menu button will be automatically made

inaccessible until the serial port is closed.

5.2.7. PortSet Function

The PortSet Function is a very important function used in setting up the serial

port. Functions are very similar to procedures, both functions and procedures

are executed when the interface needs to perform specific actions in a program.

However, a function has to return a value, while procedure doesn't. As illustrated

in Figure 5.8, an anatomy of a function can dissected into following parts

Function
Keyword

function TFTransForm.OpenPort:Boolean;
n

Function
Name

Figure 5.8: Anatomy of keyword Function

Return
Type

67

The PortSet function provides port control functions for all the serial ports. As

shown in section 1 of Appendix A, PortSet function makes use of the APls

provided by PComm serial programming tool. The first API used here is sio_ioctl,

this API configures communication parameter such as baud rate, parity, data bits

and stop bits. This function requires argument such as Port, baud and mode as

parameters, for example:

Port= COMPort number;

{port:= GCommData.Port;}

Ba ud=(bits/sec);

{ GCommData.BaudRate;}

Mode=bitcnt OR stop_bit OR parity

{mode:= GCommData.Parity or GCommData.ByteSize or GCommData.StopBits;}

Sio_ioctl returns SIO_OK, which is a long integer value represented by ret If the

output of sio_loctl is not SIO_OK, the function will then activate the Show Error

function provided by MxTool.pas. The rest of this function also applies similar

coding algorithm, it checks setting for hardware and software flow control

(sio_flowctrl), DTR state (sio_DTR) and RTS state (sio_RTS) for the serial port

setting.

5.2.8. Open Port Function

The OpenPort function starts off by declaring OpenPort as false. It then uses a

sio_open from PComm.pas API to allow a COM port to be opened for data

transmitting and receiving. The sio_open function takes on the value for the COM

port number, and returns SIO_OK, which is a long integer represented by ret in

FtransM.pas. Another important aspect of the OpenPort function is that if the

PortSet function is to be found false within the OpenPort function. The OpenPort

function would then close the COM port and stop transmitting or receiving any

data.

68

Establishing Communication

5.2.9. Setting1Click Procedure

The setting1 click procedure is used to adjust the setting of the serial port, As

shown in the Appendix A, when the setting is clicked using either the roll down

menu or through the quick access button . The procedure will immediately

access the CfgForm in Config.pas. As shown in this procedure , if the user

chooses to cancel , the CfgForm disappears, and FtransForm takes the default

setting declared early on in FormCreate procedure. If the user chooses the Ok

button, the GcommData will then replace the default setting in FormCreate

procedure.

5.2.10. PortOpenClick/ PortCloseClick Procedure

Having declared the OpenPort & ClosePort function previously, these functions

can now be access through the roll down menu. The PortOpen procedure

activates the OpenPort function , and will produce a "Beeping" sound . Both of

these procedures will also show hints on the status bar when activated .

5.2.11. Testing for Signals

All the programming listed in this chapter is the fundamental code required to

open and close port. To test whether these procedures have been written

correctly, the user must use the data scope from the PComm serial programming

tool to see if the serial port have been open or closed when the user pushes the

menu buttons. In the research project, a device called a RS-232 tester was also

used to provide an even quicker indication as to whether serial ports have been

accessed successfully.

69

Establishing Communication

The following three setting were used to demonstrate the program works:

First Test:

Com Option El

Com option,------.
0 utput Slate

P DTR

P RTS

Port : Ui!•IH.Di3
Baud Rate : 138400 .:J
Parity : I None

Data Bits : I 8

Stop Bits 1,

~ OK

Second Test:

3
3
3

Flow Control~
r XONIXOFF

r RTS/CTS

)(Cancel I
Figure 5.9: Test 1

Com Option El

Com optic
0 utpul Slate

Port : .:J P DTR

Baud Rate : 138400 .:J r ATS

Parity : I None .:J ["~'·"'' Data Bits : la .:J r XON IXOFF

Stop Bits 1, .:J r RTS /CTS

~ OK)(Cancel

Figure 5.9: Test 2

Third Test

Com Option El

Com oplia,~ ----~
0 ulput Stale

P DTR Port : Ui•IH•.:.l
Baud Rate : 138400 .:J
Parity : I None

Data Bits : I 8

Stop Bits 1,

~ OK

3
3
3

17 RTS

Flow Contra
r XON/XO FF

P RTS/CTS

)(Cancel

Figure 5.9: Test 1

70

CHAPTER&

6. Character Exchange Interface

6. 1. Introduction

Character Exchange Interface

This chapter describes how SimpleForm from SimpleM.pas transfer characters

through the serial ports. Apart from the similar structure and programming skills

used in FtransM.pas, threading technique was adopted to allow data to be

displayed on the end terminal.

6.2. SimpleM.pas

As stated in the introduction, this file contains codes that are very similar to the

procedures and functions found in the early sections of the FtransM.pas. The

graphical interface is shown in Figure 6.1.

/4' Simple Demo l!lliJEI

i 00001
: N1 G21

I N2 (6 MM 4 FLUTE HSS E.M.)
N3G91 G2SX0Y0Z0
N4 TOS M06
N5 S200 M03
N6 G90 G54 G00 X1S7. Y1.25
N7 G43Z10. HOS MOS
NS G01 Z-10. F2.
N9 X4. F500.
N10Y0
N11 Y-1 .75
N12X1S7.
N13 Y-4.75
N14 X4.
N1 5Y-7.75
N1 6X1S7.
N1 7Y-10.75
N1 SX4.
N1 9Y-13.75
N20 X1S7.
N21 Y-16.75
N22X4.
N23Y-19.75
N24 X1S7.
N25Y-22.75
N26X4.
N27Y-25.75
..

Figure 6.1: Character Transf er Interface

71

Character Exchange Interface

The Data Exchange interface (SimpleForm) has a Memo that is aligned in the

centre of the interface, and has a sticky button on top which activates the read

thread procedure required.

To access the character exchange interface, the user first needs to establish

communication between the two terminals by configuring the COM ports on both

terminals using the setting button on the menu. The port setting on the second

terminal must also concur with the main workstation. By clicking on the quick

button shown in Figure 6.2, the character exchange interface is then activated.

This interface allows the user on both end of the RS-232 network to type

whatever character on the keyboard, and to have the characters displayed in the

main memo.

Quick
Button

,I' Simple Demo - COM3,38400,None,8,1 N~'?c:~

Figure 6.2: Quick button for Character exchange interface

6.3. Threading Applications

The Win32 operating system provides the user with the capability to have to have

multiple threads of execution in the application developed in this project.

Threads provide a mean for running many distinct code routines simultaneously.

Of course, strictly speaking, two threads can't truly run simultaneous operations.

However, each thread is scheduled fractions of seconds of time by the operating

system in such a way as to give the feeling that many threads are running

simultaneously.

72

Character Exchange Interface

6.3.1. The Thread Class

Delphi encapsulates the API thread object into an Object Pascal object called

Tthread. Thread class is never used directly, because it is an abstract class- a

class with virtual abstract method. To use threads, the user must always

subclass Tthread and uses the features of this base class

The Tthread object has many properties and methods to handle threads. The

properties and methods used are summarised with description of each in Table

6.1 and 6.2.

Table 6. 1: Property Description

Property Description

• Free On Terminate - Determines whether the thread object is

automatically

• Priority - Specifies the thread's scheduling priority. Set this priority

to a higher or lower value when needed.

• Suspended - Specifies whether the thread is discontinued or not.

• Terminated - Determines whether the thread is about to cease.

• ThreadlD - Determines the thread's identifier.

Table 6.2: Method Description

Method Description

• DoTerminate() Calls the OnTerminate event handler without

terminating the thread.

• Execute() Contains the code to be executed when the thread runs.

• Resume() Resumes a suspended thread

• Suspend() Pauses a running thread.

• Terminate() Signals the thread to terminate.

73

C

6.3.2. ReadThread.pas

The most straightforward way to create Tthread descendants is to select Thread

object from the New Item dialog box provided by Delphi. After choosing Thread

object from the new item dialog box, the user will then be presented with a

dialog box that prompts you to enter a name for the new object. In this case,

enter TReadThread, this will then create a new unit that is initially defined as

follows

type

TReadThread = class(TThread)

private

{ Private declarations}

protected

procedure Execute; override;

end;

In this application, the ReadThread unit is used to display the character sent out

from the other end terminal. Therefore, ShowData procedure had to be added to

carry out this task. The procedure starts by declaring a variable lend that hold

the length of the text within the form. This variable is then used to control buffer

size limit (m_buf) if the length of variable lend exceeds the set limit.

if(lend> 25000)then

begin

{ Edit Control buffer size limit}

GhForm.Term.Text := string{m_buf);

Exit;

end;

The method that the user must override in order to create a functional

descendant of TReadThread is the Execute () method. In the listing shown in next

page, Execute () will set GhExit to true to terminate the read thread before close

the serial port.

74

The sio_read API function takes the COM port number, Buffer pointer, and the

length of the data to be read as input argument and returns a long Integer

variable Len. If the value of Len is greater than 10, the procedure then sets a null

terminated string and then adds the synchronise method.

procedure TReadThread.Execute ;

var

len : Long Int;

begin

(* before close port.set GhExit to true to terminate

the read thread *)

while not GhExit do

begin

Sleep(10) ;

len := sio_read(GCommData .Port,@m_buf,511);

if (len>O) then

begin

m_buf{len] := Char(O) ;{null terminated string}

Synchronize(ShowData) ;

end

end ;

end;

6.3.3. Advantage of Single Thread

The data exchange is a single threaded interface. As a single-threaded

interface, it greatly reduces the complexity of the application. Win 32 requires

that each thread creates a window have its own message loop using

GetMessage() function. Therefore, when there are many threads being used,

there will be messages coming into the application from a variety of sources.

Because an application's message queue provides a means for serializing input­

fully processing one condition before moving on to the next. Adding additional

message effects the serialisation, thereby opening up potential synchronization

problems and possibly introducing a need for complex synchronization code.

75

De Transf'er

CHAPTER 7

7. File Transfer

7. 1. Introduction

After a system has been properly set up and has the ability to exchange

alphabetical character between terminals. The next milestone within the project

is to be able to successfully transfer files. To achieve this task, the system

requires the correct RS-232 cabling, correct serial port settings and both

terminals involved in the transaction also need to be set up exactly the same.

This chapter will cover areas such as file transfer protocols and the techniques

used in the programs.

7.2. File Transfer Protocols

One of the main prerequisite before conducting a file transfer is to look for the

protocols common to both machines and select the most appropriate one for the

task. Following is a brief overview of some of the more well-known protocols.

XMODEM: The XMODEM protocol was one of the first file transfer methods that

achieved widespread use on the desktop. XMODEM is a relatively simple

protocol that allows a user to perform a binary transfer of a single file. It requires

a clear 8-bit channel with no software handshaking.

Many minor variant of XMODEM have been developed over the years. The most

universal is XMODEM-CRC, which uses a 16 bit CRC Checksum rather than an

8 bit additive checksum for improved error detection. XMODEM-1 K increases

the block size from 128 to 1024 bytes, giving great utilization of MNP-4, because

it assumes an error free connection and does not require immediate

acknowledgement of each packet.

76

'--'--------------------------=File Transfer

YMODEM: is an enhancement of the XMODEM file transfer protocol. YMODEM

adds a file information packet to the XMODEM protocol so that it can send the

filename, size and data along with the file content. Because of this extra layer in

the protocol, YMODEM can also send batch of files than just one file at a time.

ZMODEM: XMODEM and YMODEM work well under certain circumstances, but

they have their drawbacks and limitations. The X & YMODEM work only on 8-bit

communication lines. Packet-switched network cause XMODE performance to

degrade, and most of the time X & Y MODEM don't make very efficient use of

their available band width.

ZMODEM: was designed to correct all of these problems. First of all, ZMODEM

was specifically designed to work well on packet-switched networks. This which

allows to form a streaming protocol, meaning that it sends data in a continuous

fashion without waiting for acknowledgment of individual blocks.

KERMIT: Kermit was developed in an attempt to let machines from various

incompatible architecture communicate. Kermit is a carefully designed, well­

layered protocol, with detailed specification and public domain source code

available.

Kermit is a packet-oriented protocol that avoid using characters that could conflict

with software handshaking or other protocol characters. It can work on either 8-

bits or 7-bits channels or offer built in data compression and other advanced

systems.

77

File Transfer,

7.3. File Transfer Interface

This section describes much of the interface used in transferring data between

terminals. As mentioned earlier, one of the main focuses of this application is to

enable users to conduct quick file transfer between terminals. Therefore as

shown in Figure 4.4, much of the file transfer configuration occupies half of the

areas of the FtransForm (FtransM.pas) interface.

To initiate a file transfer through the application. The user first needs to establish

communication through the serial port using the methodology and the steps

illustrated in Chapter 5. Once the serial ports on both terminals have been

activated and configured to the same standard, the Transfer menu button will be

enabled and thus allowing the user to carry out the task of transferring files.

If the transferring menu button is clicked, the message window interface shown in

Figure 7.1 will enquire the user to confirm the decision made in initiating a file

transfer.

Confirm ~

Activate File Transfer Protocols?

IL.. tf:.~JI ____ M_o __,

Figure 7.1: Confirmation Dialog

If the "Yes" button in the message dialog is pressed. The Function UpdateGT will

be activated, which takes the user to the proceeding configuration panels to

conduct file transfers.

78

7.3.1. Protocol Configuration Tab

After the user confirms to initiate the file transferring process. UpdateGT function

only allows Tab sheet 1 to be made active. The UpdateGT provides a form of

restriction that prevents unpredicted error, and it is also a method that can be

easily to implement. Figure 7.2 illustrates Tab sheet 1, as it is shown it contains

two radio groups, in which the user must specify which protocol the user wishes

to employee, and whether a file is being transmitted or received.

Transfer Protocol ·, File Directory I Transfer Status I

Protoco1----~--~

r.' XModem -1 KCRC

r XModem,. 'checkSum

r XModem - CBC

r ZModem

r Ytv1odem

r Kermit

r .ASCII

Direction-~----~

r. Transmit

r Receive

v' Ok

)(Cancel

Figure 7.2: Protocol Specification Tab Sheet

Once the user selects OK, the items on the rgProtocol radiogroup will be passed

to a shared variable (Gprotoco1 that is declared in the single thread file (FtProc).

The same applies to the rgDirection radiogroup found in TabSheet 1. The

activation of the OK button on tab sheet also triggers a further update of the

interface through UpdateHt function. This update allows TabSheet 1 to be

continually active while enabling the user to access the functions in tab sheet 2.

79

FDe Transfer

7.3.2. Directory List Tab

As it is shown in Figure 7.3, TabSheet 2 acts like a directory dialog, and is

composed of several directory navigating components,

T:tansfer Protocol

File f!ame Directo,ies

F:\ExamplelDIREX

IAII fil~~J*.J ~l l~ __ e: []

Figure 7.3 Directory List box

DirectoryListBox

The Directorylist object displays a directory tree outline. User can double click

FilelistBox and use the keyboard to select directories in this window.

The user can use a DirectorylistBox alone in a window, but it usually needs to

display files in selected directories. To do that, the user needs to assign the

name of a FilelistBox object to the DirectorylistBox's File List property. This

could be carried out in the Object Inspector window. However, in this application,

the assignment is made at a run time with code as listed below within the

OnCreate event handler of the FtransM unit.

DirBox.Filelist := FilelistBox;

80

File Transfer

To show the currently selected path as a string, a label (Dirlabel} was inserted

into the form, and association was made at run time, by inserting the following

statement into FtransForm's (FtransM) onCreate event handler:

DirBox.Dirlabel := Dirlabel;

DriveComboBox

A DriveCombox will allow the user fully utilise the storage spaces available in a

PC, The following code was added to the FtransForm's OnCreate event handler to

relate the DriveComboBox or the DirectorylistBox.

DriveBox.Dirlist := DirBox ;

When users select a different drive, the DirectorylistBox automatically updates

its tree. If the FilelistBox is also associated with the DirectorylistBox, the file list

is also updated.

FileListBox

A filelist box displays filename in the current directory. The DirectorylistBox is

associated with a FilelistBox within this application, so that the list automatically

changes when user browses through directories.

The listing below shows the code required to add an edit control to this

application, the EditControl initially shows the filter *.*, which selects all files. As

users select filenames, the FilelistBox inserts them into the Edit windows

FilelistBox.FileEdit := FileNameEdit;.

After the user has specified the path of the file to be transferred. The system will

then record these specifications if the OK button (DirD/gOKC/ick} on Tab sheet 2

is clicked. The DirDlgOKClick first determines the direction of file transfer, by

examining the ltemlndex on the rgdirection Radiogroup. ltemlndex holds the

ordinal number of the selected radio button in the Items list.

81

FOe Transfer

The first button, Transmit (FT _XMIT) is 0, and the second button Receive

(FT_RECV) is 1. The value of ltemlndex changes at runtime as the user selects

radio buttons. If the user wants one of the buttons selected to appear, the user

must assign that button to ltemlndex at design time; otherwise, leave ltemlndex

will be set to the default value of -1, which means that no button is selected. The

default itemlndex values in this case is set to 0, thus Transmit will the default

button chosen.

The listing below shows that if Transmit is the direction chosen, procedure

XmitFile will be activated. XmitFile first declares a string variable (Falcon) that

stores the FileNameEdit string. It then uses a Window's API function called

lstrcpy, which copies the entire contents of one string (Falcon) into another string

defined in ActiveFormlmpl1 unit (GxFnarre). The XmitFile function works closely

with the FTProc thread, which is the main thread used to execute the file

transfers. (Details on FTPro is discussed in the next section).

if FTransForm.rgDirection.ltemlndex = FT_XMIT then

XmitFile

If the direction of the file transfer is set as Receive, the DirOlgOKClick would then

determine whether any the following three protocols ZMODEM, (FTZMDM),

YMODEM (FTYMDM) or KERMIT (FTKERMIT) have been chosen in Tab Sheet 1.

If so, the DirDlgOKClick procedure will again activate the lstrcpy, and copy the

entire contents of one string (Falcon) into another string defined in

ActiveForrnlmp/1 unit (GrPath).

lstrcpy(GrPath,PChar(FTransForm.DirBox.Directory));

SetCu rrentDir(GrPath)

82

File Transfer

7.3.3. Transfer Status Feedback Tab

The DirDlgOKClick leads to the initiation of the third Tab Sheet, which is illustrated

in Figure 7.4. This is also the last of the three tab sheets used with the file

transfer sequence

Transfer Protoco l I File Directory Transfer Status I

Port ilbPort Protocol !lbProtocol

File Size ilbFSize Length [lbxlen

File NB.me lbFname

)(Cancel

Figure 7.4: Feedback Tab Sheet

This interface provides the user a visual feedback of the current file transfer

status through the Ftproc thread. Therefore, the detailed discussion on the

technique in designing the feedback function will be described in the proceeding

section.

7.3.4. FtProc Thread

As mentioned in the previous chapter, thread provides a very easy technique in

delivering the necessary background processing while still providing the best

possible response time. In this part of the application, the FtProc thread is used

for numerous file transfer functions, and transfer status feedbacks.

83

De Transfer,

As described in the preceding section, the file starts by declaring the ltemlndex

value for the direction of file transfer Constants, and proceeds by declaring the

ltemlndex value for the file transfer protocols. In both of these radio groups, the

itemlndex holds the ordinal number of the selected radio button in the Items list

(The first button is 0.). The value of ltemlndex changes at runtime as the user

selects radio buttons.

7.3.5. Execute()

After creating the thread object in main process, 'Execute()' procedure will be

called automatically. The execute procedure starts by setting 'ret' as a long

integer variable used by all the PComm functions. In this part of the FtProc, the

'Execute()' examines whether the rgdirection of the first radio group has been set

to transmit. If the rgdirection is set to transmit, the program then determines the

protocol chosen at tab sheet one, and applied the API accordingly. For example,

if the user decides to conduct the file transmission through the ZMODEM

protocol. The following API will be executed:

FTZMDM:

ret := sio_FtZmodemTx(port,GxFname,xCallBack, 27);

This API function takes on the following as input arguments: COM port number,

the name of the file, and a call back function that is invoked each time data is

transmitted and keeps the progress of the file transferring updated.

If the user opts to receive a file on Tab sheet 1, the Execute () will then undergo

through a case statement that is similar to the one used for the FT _XMIT. The

only difference is a different set of APls are used for receiving. For example, if

the user decides to receive file through the ZMODEM protocol. The following

API will be executed:

ret := sio_FtZmodemRx(Port, fname, 1,rCallBack, 27);

84

At the end of Execute(), the procedure lists the action that will be implemented

when an error occurs during the transmission/receiving of the file. As shown in

Appendix A, the procedure enters the ProcessRet() procedure when an error

occurs (The ret is <O), and if the ret value checks out to be >O, the file would then

display the message dialog box to give a warning signal

7.3.6. xCallBack/rCallBack ()

The Cancel button in Tabsheet 2 & 3 has been designed to a more complicated

level than the Cancel button on tab sheet one. When a user pushes the cancel

button on tab sheet 1, none of the setting in the radiogroups would have any

effect, because most of arguments would have remained dormant, However,

the Ok button on tab sheet one will invoke the DirDlgOKClick (). Therefore, when

the user wishes to exit form the file transfer sequence, the Cancel button

executes another procedure, where the function calls the xCallback () in Ff Proc.

When the cancel button on the second tab sheet is pushed, the application

enters DirDlgCancelClick () , and set the GftCancel to true. The xCallBack () from the

FtProc will set the xCallBack to -1, which would stop the terminal from transmitting

data. The PComm file transfer API executed would then return SIOFT _FUNC

(Described later in ProcessRet function) , to cause the current file transmission to

be aborted.

However, if none of the cancel buttons have been activated during the file

transfer sequence. The xCallBack () would enter the RefreshDlg() on FtransM

unit, and would update the caption edits on the tab sheet 3, and sets xCallBack

() to O to indicate the application is continuing receiving file.

When receiving files, the application works exactly the same way. Except when

GftCancel to true, the FtProc would enter the rCallBack() function which operates

exactly the same way.

85

7.3.7. ProcessRet()

As mentioned in the earlier section, the Execute() would enter the ProcessRet()

when ret < 0. The ProcessRet() is specialised in returning message dialogs to

give user feedbacks concerning the possible cause of failures.

The following table is the list of possible returns:

S1O BADPORT

SIOFT TIMEOUT

SIOFT FOPEN

SIOFT CANABORT

SIIOFT PROTOCOL

SIOFT WIN32FAIL

Port is not opened in advance

Protocol timeout

Can not open files

CAN signal abort

Protocol checking error abort

Calling Win32 function failed

86

7.4. CNC Machine Quick Access

One of the key requirements in delivering a successful DNC system is the ability

to transfer the data quickly and easily across the network. To achieve this task,

the following outline components were added onto the main interface

(FtransForm) as illustrated in Figure 7 .5. This enables the users to add and link

additional CNC machine or PC terminals to the main communication centre.

New
Outline 1 ~_ j

._____,-~

Machine
Porperty

Save
Setting

Open
Setting

- ~ I
~

Figure 7.5: Quick File Transfer Interface

Machine outline contains some of the machine that a typical small-medium New

Zealand CNC company might possess. The main function provided by these two

outline component is that the user can add a new CNC machine quickly, and

access it through one of the 6 serial port that are available on the main DNC

workstation (2 standard serial port on a Pentium PC, and 4 additional serial port

provided by the Moxa multiple port card).

87

FDeT~

The outline component on the main interface allows the users to assign CNC

machine to any existing serial ports on the main workstation. Figure 7.6 shows

the assignment of a milling machine to serial port 2.

~ Milling Machine
~ P,apid Protot.1pe
~ U-JC' Lathe
~ L0s1:cr Cutter
~ Cornrnun ice,tion T enninal

First Outline

~ COM1
ecoM2

~ MilJi.r.iq .. M.~.c:.h.i.r.i .l=.
~ COM3
~ COM4
~ COM5
~ COtv1G Second Outline

Figure 7.6: Machine assigned to serial port 2

The Handling the dragging method is used to allow the users to assign CNC

machines to the serial ports. The method starts when the program calls the

BeginDrag procedure after the user presses the left mouse button over the first

outline component.

As soon as the button is released, the program automatically calls the EndDrag

method of the first outline. The second outline defines a simple handler for the

OnDragOver event, and performs the real work in the OnDragDrop event.

This method listed in the next page is quite complex, but it is also the main focus

of this part of the interface. When the user drags a new element, the program

first determines the item of the destination outline on which the element was

dropped, using the Getltem function and the coordinates passed by the event.

Then the program selects this item as the outline's current item -- that is, the item

that will be affected by the following call to the AddChild method. The -1 is

needed because the Lines array is zero-based, while the items are numbered

starting from 1. It is possible to extract the text of the item directly form the Lines

Array only because the items of the source list have no indentation.

88

File Transfer

procedure TFTransForm.Outline2DragDrop(Sender, Source: TObject; X,

Y: Integer);

var

Current: Integer;

begin

begin

Current := Outline2.Getltem (X, Y) ;

if Current > 0 then

Outline2.AddChild (Current, Outline1 .Lines[Outline1 .Selected Item - 1]);

Outline2.ltems [Current].Expanded := True;

End

End;

The add button on the right hand side allows the user to add specific type of Date

Terminal Equipment by typing in the name of the additional machine using the

MachineForm shown below:

::

+Add I)(Cancel I '.& P,operty I
Figure 7. 7: Machine Form

The following listing is used to examine whether the user have inserted a name

for EditNew. If the EditNew is not empty or the lndexOf () is less than 0, then the

method would then put the newly added machine name into the first outline.

if (EditNew.Text <>")and

(FTransForm.Outline1 .Lines.lndexOf (EditNew.Text) < 0) then

begin

{add the string to both listboxes}

FTransForm.Outline1 .Lines.Add (EditNew.Text);

Close;

end;

89

The MachineForm has a button which links to the property form that is illustrated

in Figure 7 .8.

He.e.sVF-4
Hite.chi-Sieki SV 508
Me.tsuure.
Mill Machine-mm
Mori-Seiki SVSOB
Turn Machine-4 Axis

Select J

'Me.chin~ Type:

Macl!ine ID, Li~htDUft·

a
:k~i;; · .· ~ ·:ca,- .1:

25000100;wmtmm

M.ox ~pin~ti~J3peed'. 1_000~;00/pm

Figure 7.8 Property form

Through the property form, the application allows the users to specify the

controller type through a for loop that assigns detailed description of each

controller. The listing below shows the for loop assigns a value to every list items

found in the listbox. When the ListBox1Click method is called, the for loop

determines the value of the item selected, and displays the details in all the

captions within the right hand side of the form.

procedure TPropertyForm.ListBox1 Click(Sender: TObject);

var

Listltem: Integer;

begin

for Listltem := 0 to ListBox1 .Items.Count - 1 do

if ListBox1 .Selected [Listltem) then

begin

if Listltem = 0 then

begin

MachTypeLabel.Caption := 'Haas VF-4 Mill';

MachDutylabel.Caption := 'Light Duty';

NoAxislabel.Caption := '4';

MaxFeedlabel.Caption := '25000.00 mm/min';

MaxSpinlabel.Caption := '10000.00 rpm';
end;

90

MDI Programming

CHAPTER 8

8. MDI Programming

8. 1. Introduction

As part of the research, Multiple Document Interface (MDI) is used for both the

NC code editor and the OLE windows (See Chapter 9). Every MDI has three

basic parts

• The MDI Main window form

• One or More document MDI child-window forms

• The MDI main menu

Unlike in conventional Windows programming, a Delphi form object takes the

place of the standard MDI frame and client windows. Classically, the frame

window is the visible one; the client window is kind of silent partner that handles

global operations, created child windows, and performs message services. In

Delphi applications, the frame and cl ient window still exist, but the user rarely

uses them. For all practical purposes, it is possible for the programmers to treat

the frame and the clients as one window, represented to the program as the

main-window form. A MDI is often considered as a file-handling system, but an

application's child windows do not have to be associated with disk files. The user

could also use the MDI to construct multi window applications in other areas.

8.2. MDI- Main Window Form

In order to have MDI based interface, one of the first task carried out when

creating the FtransForm, was that it must have its FormStyle set to fsMDIForm in

the dialog shown in Figure 8.1 . To ensure that the windows' form object is

automatically created, the user could double check this by going to the Project!

Options, and verifies that the FtransForm is shown in the main form list box and is

listed under Auto-created forms

91

''Prom mmm

ontext ;...................... fsN ormal

i' :::[;:-·?~==~::=··· {~~:::_~_ .. .,
Figure 8.1: Changing the FormStyle

8.3. NC Code Editor
Every MDI application needs at least one child-window form and unit. In this

project, there are 2 major functions that requires the use of MDls. The first MDI

application is the NC editor. With the NC editor, an NC program can be modified

before it is transmitted to other terminals on the shop floor. The NC editor

facilitates users to accomplish the task of modifying variables such as feed rate,

spindle speed . Once the user has made the necessary modifications, the user

can then download the NC programs to a specific machine tool immediately from

the main communication terminal.

To make the NC editor into an MDI application. A new form object named

ChildForm (Child.pas) must have its FormStyle set to fsMDIChild, and the form

should be resized, so that it can be selected more easily.

92

,..._ _____________ MDI Programming

Figure 8.2 illustrates the NC editor working with multiple documents like earlier

versions of Microsoft Word. Many different programs can be opened at the same

time as long as the RAM of the PC allows.

j- File Transfer Interface ,

OI.E... Help

Figure 8.2: Multiple NC editor

Figure 8.3 shows an NC program in Editing. Once the modification is completed,

the NC program can then be saved, downloaded, or uploaded to remote

controller.

;{' Base.bet ,~'t

00001
N1 G21
N2 (6 MM 4 FLU TE HSS E.M.)
N3 G91 G28XOYOZO
N4 TOB MOS
N5 S200 M03
NS G90 G54 GOO X187. Y1 .25
N7 G43 Z10. HOS MOB
NS G01 Z-10. F2.
N9 X4. F500.
N10YO
N11 Y-1.75
N12X187.
N1 3 Y-4.75
N14 X4.
N1 5Y-7. 75
N16 X187.
N17 Y-10.75
N1 8X4.
N1 9Y-13.75

Figure 8.3: NC program in editing

...

93

Mill Programmin

8.4. Child.pas
The code in Child.pas is quite straightforward, this file interacts with numerous

menu and speed buttons in FtransForm (FtransM.pas). The first related procedure

found in this file is the SetOLEFileName procedure. This is the same naming

procedure (SetOLEFileName) found in Childwin.pas, which will be describe later in

the OLE MDI Section.

The next useful procedure that works in conjunction with the FtransForm is the

FormClose procedure. This procedure exams whether the childform has been

modified, and whether any text have been written on the memo. If these two

conditions are met, the save procedure found in FtransM is then activated. The

Action := Cafree; line frees the current childform, and the line found at the bottom of

the FormClose procedure disables the speed button when it is not required

The rest of the procedures found in this file is used for controlling the status of

the speed buttons. As illustrated in Figure 8.4, the Memo1Click procedure exams

the SelLength to determine the length, in characters, of the selected text. This

allows the application to have similar function found in Microsoft word, where cut

and copy button will only be enabled when text have been selected.

r' File Transfer Interface !I~ D

00001

&111u111=1:~1-1=11N
N3 G91 G28XOYOZO
N4 TOB M06
N5 S200 M03
N6 G90 G54 GOO X187. Yl .25
N7 G43Z10. HOB MOB
NB GOl Z-10. F2.
N9 X4. F500.
NlO YO

Figure 8.4: Cut & Copy button enabled when text is selected

94

...._ ________________________ MD=.·=--=I=Programming

8.4.1 . FileNewClick Procedure

Many of the menu function items illustrated in chapter 5 are used to support the

Multiple Document Interface. As shown in Figure 5.7, the first menu function

found in FtransM.pas is the FileNewClick Procedure. Like most of the MDI

Window based interface, this function creates a new Child Form for the NC

editor. The structure of this procedure first checks whether the existing ChildForm

has been modified, and whether the data has been saved. If the conditions are

met, the procedure will make an addition increment to the number of ChildForm

within the application.

8.4.2. FileOpenClick Procedure

The OpenClick Procedure will open up any NC codes within the NC editor

ChildForm. In the procedure, the try block is used to define the code for which an

exception might be raised. The try statement tells the compi ler to try and get the

Memo panel on ChildForm to open up files from the open dialog. If the code

works, the except block is ignored and program execution continues. If any of

the statement inside the try block raise an exception , the code within the except

block is executed.

8.4.3. SaveAs Procedure

The procedure here examines whether there is any ChildForm within the

application, and whether the save dialog have been activated. If both of these

conditions are met, this procedure stores up the lines from the memo panel to a

specific destination drive.

8.4.4. FileSaveClick Procedure

The save procedure is practically the same as the save as procedure. However,

the save procedure will examine whether a filename has been assigned to the

ActiveMDI child. If there is no name assigned, the fsave procedure activates the

SaveAs procedure, if there is a name, then the procedure saves the data to the

current name.

95

. Dl Program g

8.4.5. FilePrintSetupClick Procedure

Printing is an everyday necessity for most Windows users. Delphi provides the

common print and print setup dialog boxes for use in the applications. The user

in FtransM.pas can use the Print dialog box just before the printing begins and

the Print set up dialog box to configure the printer.

The Print Dialog Box is encapsulated in VCL in the PrintDialog component. As

with the other common dialog boxes. This component provides functions such

as printer selection, number of copied, and orientation options are also available.

The PrintDialog component has the execute Method only, and no events, thus it is

very easy to implement. The following are the only event handler that is

required.

procedure TFTransForm.FilePrintSetupClick(Sender: TObject);

begin

PrinterSetupDialog .Execute;

end;

8.4.6. FilePrintClick Procedure

The key to this section is the use of the AssignPrn procedure, this connects a file

with the printer. After starting the print process, the use can start using Write and

Writeln to print the text by calling the ReWrite Procedure. Using a for loop from

the first to the last line

for l:=0 to ChildForm.Memo1.Lines.Count-1 do

Writeln(PrintFile, ChildForm.Memo1.Lines(I]);

In Delphi, a try block can be followed by either an except or finally block. In This

procedure a try block and a finally block are used to perform the clean up action

after the file in the memo panel has been printed.

96

COM &OLE Automation

CHAPTER 9

9. COM & OLE Automation

9.1. Introduction

Although this chapter is very much concerned with the concept of OLE (Object

Linking Embedding) automation technology. However, it is also the purpose of

this chapter to discuss the concept of COM (Component Object Model) and how

it relates to the later concepts such as OLE and ActiveX.

9.2. Component Object Model (COM)

The Component Object Model (COM) forms the foundation upon which OLE and

ActiveX technology is built. COM defines an API and a binary standard for

communication between objects that is independent of any particular

programming language or platform. COM objects are similar to the VCL objects,

except that COM objects have only methods and properties associated, not data

fields.

9.2.1. Interfaces

A COM object consists of one or more interfaces, which are essentially tables of

functions associated with that object. COM defines a standard map of how an

object's function is laid out in memory. Functions are arranged in virtual tables.

The programming language description of each table is referred to as an

Interface.

An Interface can be divided into 2 parts. The first part is the interface definition,

which consists of a collection of one or more function declaration in a specific

order. The interface definition is shared between the object and the user of the

object. The second part is the interface implementation, which is the actual

implementation of the functions described in the interface declaration.

97

COM &OLE Automatio

9.2.2. !Unknown

Just as all Object Pascal classes implicitly descend from Tobject, all COM

interfaces implicitly derive from !Unknown. !Unknown is defined in the system unit

as follows:

type

end;

!Unknown= interface

['{0000000-0000-000-C000-00000000046}']

function Quesrylnterface(const 11D : TGUID; TGUID; out Obj) : Integer;

stdll;

function _AddRef: Integer; stdcall ;

function _Release: Integer; stdcall ;

Apart from the use of the Interface keyword, another obvious difference between

an interface and class declaration is that the proceeding listing is the presence of

Globally Unique Identifier or GUID.

9.2.3. GUID

GUID is an ID which identifies any COM server class and any interface in the

system. GUIDs are created by a special COM library function called

CoCreateGUID. This function generates a GUID that is guaranteed to be unique.

CoCreateGUID uses a combination of the PC information, random number

generation, and a time stamp to create GUIDs.

In Delphi, GUIDs are generated automatically when the user creates an

automation object, COM Object, ActiveX Control, or ActiveForm Control. GUIDs

in Delphi are defined by the TGUID record.

98

COM &OLE Automation

9.3. Object Linking Embedding (OLE)
As part of the development based on COM, the most sophisticated data-sharing

technique available in Windows is known as Object Linking and Embedding

(OLE). The key advantage that OLE offers is a shift from an application-oriented

view of computing to one that centres on documents. With OLE, users can also

combine information in unforeseen ways. For example, a word processor

document can contain graphical image created by software unknown to the word

processor's author. OLE makes it possible for users, not just software designers,

to create new type of documents that are not limited to a single application

specific format.

9.4. OLE Object

The application developed within this research project has 3 OLE objects from

the registered Windows registry. The links are Microsoft Word, Microsoft Internet

Explorer and SolidWorks 2000.

To create an OLE object, the application must first call the CreateOleObject

function in Delphi 's ComObj unit. This function calls a number of internal system

wide OLE functions. The end result of these series of calls is that the function

returns a COM object to the user containing an interface to the object that the

user wants to call. As illustrated in the list below (FtransM), the call retrieves the

Word application.

S := CreateOleObject('Word.Application');
S.Visible :=True;

The first line of the code S:= CreateOleObject('Word.Application') asks for an object

called Application that resides inside Word. CreateOleObject retrieves an instance

of the object in the form of an ldisptach interface encapsulated inside a Variant

called s. Thus, the user can access the Visible property of the object by simply

writing

S.Visible := True;

99

COM &O E utomation

The call to CreateOleObject returns COM object called !dispatch housed inside a

Variant. The user can pass a string to CreateOleObject specifying the name of the

COM object the user want to retrieve . In this application the main Word

Automation object was retrieved by passing in the string Word.Application. To find

this string, it was required to work with the GUID Registry by opening the

REGEDIT.EXE within Windows (See figure 9.1). This is a simple database that

has the primary take out associating numerical values with each of the COM

Objects available on the system. By opening the tree called

HKEY _CLASSES_ROOT, it is then possible to select the string name required by

scrolling down to the Class ID (CLSID) folder.

r't Registry Editor ,!Hil EJ
I .B.egistry [dit ~iew .!:!elp

! El -~ My Computer
[tl a HKEY_CLASS ES_ROOT
f±l·D HKEY _CURR ENT _USER
liJ Q HKEY_LOCAL_MACHINE
1±1 ·0 HKEY USERS
r:B ·G:J HKEY =CURRENT _CONFIG
. D HKEY _DYN_DAT A

jMy Computer\HKEY_CLASSES_ROOT

Name
§'.](Default)

Figure 9.1: RegEdit.exe

9.5. MDI OLE Container Interface

l Data , "
(value not set)

The preceding sections demonstrate only one way to use OLE. Another way is

to create a container application that communicates with an OLE server. With

this technique, it is possible to link and embed server documents in the

application developed within this research project. For example, an OLE

container can create, load, edit and save a Microsoft Access document.

Because Access is a full-featured server application, Delphi program can call on

Access to create database documents, all from inside of the application window

developed within this project.

100

COM &OLE Automation

To make a MDI child for the OLE container, similar techniques were outsourced

from the MDI NC editor. When the user activates the "Activate OLE" from the

menu on FtransForm. An OLE childform is created, and it calls the object's

lnsertObjectDialog method, which displays the dialog shown in Figure 9.2.

Insert Object 6 EI

r. Create New
Object J_ype:

ActionB vr Class
ActorBvr Class

r Create from £ile Anoular Gauoe ActiveX Control
: -·
Chart FX
ColorBvr Class
Cr 8 ehavior Factory
EffectBvr Class

Result-------------=
lnsfl!ts a new Bitmap Image object into _your
document.

Figure 9.2: Ole Container

OK

Cancel

r .QisplayAs lcon

The user can select the type of OLE object to create and choose whether to

insert a full image of the object or display it as an icon. Users can also select an

icon to depict the file. Figure 9.3 shows the Childwin.pas containing window's

paint utility. The OLE server replaces the Delphi Application's menu and displays

with its own. With only a little programming, the sample program provides full

graphic file editing capabilities to the users.

/Fde Transfer Interface l!l~E'i
De S.ot""O f ort 'rc•,.1# f.dil OLL Jiet> .Edit Y- I._ J2r,tiom 1:18'>

J;ct~J~lg~Jal ~lal~llfj l -1~1 8fl M ITL•uuy.ac.•z IJ~
0 ~

~ e,.
I A
~A

' (

Figure 9.3: OLE Container in FtransForm

101

COM &OLEAutomatlo

9.5.1. ChildWin.pas

The code ChildWin.pas is very much the simplified version of Child.pas used for

the MDI NC editor, this file also interacts with OLE menu in FtransForm

(FtransM.pas). As mentioned in the previous section, both ChildWin and Child

units uses the same naming procedure (SetOLEFileName). This procedure allows

file name to be extracted on to the top of the window on the Child form.

In the SetOLEFileName procedure, the property from the 00 Pascal syntax was

implemented. A property is basically a name that is mapped to some read and

write methods or that accesses some data directly. In other words, every time

that a user reads the value of a property or changes it, the user might be

accessing a field (even a private one) or might be calling a method. In the case

of Child.pas, the definition of a property for a data object is:

property OLEFileName: string read FOLEFileName write SetOLEFileName;

To access the value of the OLEFileName, this code has to read the value of the

private field FOLEFileName, while to change the value it calls the method

SetOLEFileName.

procedure TChildForm.SetOLEFileName(const Value: string);
begin
if Value <> FOLEFileName then
begin

FOLEFileName := Value;
Caption := ExtractFileName(FOLEFileName);

end;
end;

102

Remote Access using ActiveX

CHPTER 10

10. Remote Access using Active X

10.1. Introduction

As listed in the system specifications, one of the interfaces will provide remote

access to functions developed within this research project. To meet this

requirement, the research project aims to apply COM related technology, such as

ActiveX to implement of remote access capability for the system through the

World Wide Web 0f'/WW).

10.2. Understanding ActiveX

ActiveX is a relatively new term for a technology that has been around for awhile

originally ActiveX was called OCX controls. An ActiveX control are DLL-based.

This means that when it is applied, the designer needs to distribute their code

(the OCX file) along with the application.

An Active X control is essentially a COM object in disguise. The primary

difference between An ActiveX control and a COM object is that an ActiveX

Control has a design time interface. An ActiveX controls also has code that

enables it to be deployed on a Web page or over a network. ActiveX is a subset

of COM, everything discussed concerning COM object in the previous chapter

applies to ActiveX control as well .

As a Delphi based research project, the components here has the capabilities of

native VCL components and forms. However, by converting VCL controls into

ActiveX controls, the potential market is not merely fellow Delphi and C++ builder

developers, but also users of practically any Win32 development tools. Even if

the end user is not a component vendor, the user can still take advantage of

ActiveX controls to add contents and functionality to World Wide Web pages.

103

_________________________ ..;:R...,e::::m:..o:,.:t.:.e ... A=ccess usin Acti eX

10.2.1. Installing ActiveX Component

Microsoft Internet Explorer version 3.x and above are based on ActiveX control,

The user can import these ActiveX control into Delphi and use the control within

the application.

To install the ActiveX control component, the user first needs to choose

Component I Import ActiveX control from the main menu. Delphi would then pop

up with the Import ActiveX illustrated in Figure 10.1.

Import ActiveX ;-;.

MicrO$Oft DirectAnimation Media Controls (Ver$ion 1 .0)
Microsoft FlexGrid Control 6.0 (Version 1.0)
Microsoft Forms 2.0 Object Library (Version 2.0)
Microsoft HTML Ob'ect Librar ersion 4.0

Microsoft Internet Transfer Control 6.0 (Version 1 .0)
Microsoft NetShow Player (Version 1 .0)

I C:\W1NDOWS\System32\shdocvw.dD

....J

e,dd .. flemove

,!;;lass names: TWebBrowser V1
TWebBrowser-

Ealette page: jActiveX

Unit _gii name: le:\Program Files\Borland\Delphi4\lmp01ts _J
.S,earch path: I$(DELPHl)\Lib;$(DELPHl]\Bin;$(DELPHl)\lmports;c: \

[mtal.. 11 Cieate !,!nit I Cancel I l::!.elp

Figure JO.I : Import ActiveX Control

X

The user then needs to scroll down and select Microsoft Internet Control, and

install it. After the control has been placed on the Component Palette, the class

name such as TwebBrowser could then be used within the application.

104

Remote Access using ActiveX

10.2.2. Active Form Wizard

The process involved in creating an ActiveX form is very straightforward. By

clicking the ActiveX form icon from the one-step wizard , Delphi will invoke the

ActiveX form Wizard, which is shown in Figure 10.2.

Activeform Wizard " .

\/CL Qass Name; IT .6.ct1veForm

t;!ewActiveX Name: j~i'ltMi,fo,iS

Implementation !J.nit: !ActiveFormlmpl1 .pas

,Eroject Name f ActiveF ormProj1 . dpr

lhreading Model: !Apartment

ActiveX Control Option

i]

i]

r Include Design-Time !,icense r lncludeBbout Box

r Include ~ersion Information

OK Cancel !:ielp

Figure 10.2: ActiveForm Wizard

10.2.3. Type Library

The ActiveForm wizard is a powerful tool provided by Delphi. When it is

activated, it would also automatical ly generate a type library (Shown in Figure

10.3) that allows the user to add or remove interfaces, add properties and

methods to interfaces, remove elements from interfaces and create host of other

COM elements such enumeration, records, or co-classes.

As illustrated in Figure 10.3, on the left side of the Type Library Editor is the

Object panel. The Object pane contains a tree view control. On top of the tree

view hierarchy is the type library itself. Below the type library are elements

contained in the type library.

105

On the right side of the Type Library Editor is the Information panel. This pane

provides information about the object currently selected in the Object panel. The

information presented in the Information pane varies with the type of object

selected. The attributes page shows the type library name, its GUID, version,

help string, help file, and so on.

~ ActiveformProjl.tlb ___ ___ _ ___ _ f "fffUl!I i . rel · -

. El··+*+ '
IB · IActiveForrnX
Ef]···+ IActiveForrnXE vents
i--6 ActiveForrnX

~l i T ~ctiveF ormB orders t_yle
~ ·· T xPrintS cale
l:i:1 --· TxMouseButton
l±l · TxBiDiMode

Uses]'-Fk!gsr E Text

Name:
GUID: {A70D614D-C9F6-11 D5-91 DF-0000EB5EFBBA}

Help String·Context:
,--------------.

;-Help String DLL:

Jielp File:

Figure 10.3: Type Library

When the type library node is selected, the Information panel shows a tab label

uses. In almost all cases, this list will include the OLE automation library, it can

also include others as well.

The text page shows the type library definition in IDL syntax. IDL for the

ActiveFormProj1 is illustrated in Appendix A. It is a sort of scripting language

used to create binary type library files

106

Remote Access using ActiveX

10.3. Building the Form

An ActiveForm form is just a regular form at this stage. The user can add

controls to the form, add code, and respond to events just like a form that

belongs to an application. One difference is that the title bar on an ActiveForm

does not appear on the control itself. It is just there at design time.

The design of the ActiveForm uses several functions found in the FtransForm

(FtransM.pas). Figure 10.4 shows the components that is found in ActiveForm.

: : - Com option

Port :

Be.udRe.te ·

.. Pe.nty

De.le. Bits:

· · Stop Bits

.::J

.::J

.::J

.::J

.::J

l::c· ~i~i~~F ·:
: : r RTS/CTS :
.. ---

. :10utput Ste.te--i
. r DTR

::, rRTS

. ..

@ OK 1·: .. • Ce.nee\ I::::::::::
.......

ABC.txt
About Ndf
About Npe.
Aboutdcu
About dim
Aboutpe.s
ACOC

List f'tlea of !YJ>e:

IA\l files (" J

Directories

F:&leW>tAflC

12:; C\
12; Documents end Sett,n
12; Ce.pte.mshe.ft
12; My Documents
12; Masters
12; FounTeraXR

.:.I

.::J jli!l cO

Figure 10.4 Build the ActiveForm in Delphi

• • I . ~OK . .
X ee.nee1 I
• Prev I

The initial status of several button remains dormant until the ActiveForm calls the

cmSettingC/ick method by clicking on the "setting" button. This method assigns

the default data from Exglobal.pas into the ltemlndex for all the combo boxes

found on the left hand side of the ActiveForm. The user must then press "OK" on

the left hand side to access the file transfer sequence on the right hand side of

this interface. The file transfer sequences used here have similar structure to the

ones found in FtransForm.

107

10.4. Deploying an ActiveForm

Once the form have been built, the next step is to deploy the ActiveForm. In

this case, the goal is to have it appear inside the Internet Explorer.

Start by choosing Web Deployment options from the project menu. A dialog like

the one shown in Figure 10.5 will pop up. Before this dialog appears, the

project must be compiled and linked, so a short delay is expected while the files

are processed .

• Directorie~ and URL~' ,,,,..,,.--=,,,,,_.,,=-=,--;,-;==---------,-...,,,,..-="'=::-.
I I I arget dir:

1
T f~getj.!~L:

HTML dir:

jc:\~D\

)C:\CD\

, General Option
r Use g..B, file compres.sion

P Include file yersidn number

P , Auto increment release number

r ,i6e1i·;itt
F"" •

OK

Bro.'{)!se.,.

r Code lign project

r Qeploy,1.t;[gUir~ri pa.of.ages.

r Deploy additionaf1iles ·

Figure 10.5: Web Deployment Options

At the top of the Deployment option dialog are three controls

• Target Dir

• Target URL

• HTML Dir

1.

108

In the target Dir Field, the user needs to list where OGX or any other binary files

will be deployed. These files can be distributed to anyone who attaches to the

main server over the web. As the ActiveForm developed within this project was

not saved into a Web server. The files were stored in a randomly created folder.

The target URL specify is used by the HTML an/or INF file that launches the

OGX. The string enter in this field should point to the directory where the OGX is

located when it is ready to be deployed.

By default, Delphi will cerate sample HTML and INF files for the project. The

HTML file can be loaded into a browser and used to launch the OGX created. If

the project deploys multiple files, the HTML file will reference a second file with

an .inf extension. The INF file will contain the URL where the OGX resides, and

any other additional files needed by the project, such as packages or the runtime

library. In the case of ActiveFormProj1 the runtime library are not used, so no

INF file will be created.

HTML Dir indicates where the sample HTML and INF files that Delphi generates

will be placed. Typically, this location is the same directory as our specified

Target Dir.

Once all three controls have been specified, the user must make sure Auto

Increment Release Number check box is checked. Then by choosing the Web

deploy from the project menu in Delphi, the entire AvtiveForm project is copied

automatically into the directories specified in the web deployment option dialog.

109

R-emote Access using ActiveX

Once, the web pages is created, the user could test the interface by going to the

HTML folder where the files have been deployed. In certain cases, the user may

spot odd mistakes with the code, and wishes to see some changes being made

to it. Although, the process of redeploying the entire project may seems to be the

obvious thing to do, but when an OCX is loaded into the memory through

Microsoft system, the only way it is unloaded is to reboot Windows every time an

user wishes to make a change. In layman's term, when the user tries to redeploy

the OCX, it might be getting the same OCX in the client app because the old DLL

may not have been unloaded from memory. Furthermore, the OCX that is

downloaded onto a machine are often stored in a directory called OCCACHE,

which is just below the Window's Downloaded Program Files. Hence, to make

the desired changes to the application, the user must unregistered and delete the

files from this directory to create a clean machine to run tests on.

10.4.1. Connecting to an Active Form

At this point the project's OCX is ready downloaded to the second machine, and

to access it through the internet. The end user can view the HTML file on the

browser. To understand how this procedure works, consider the HTML

generated by Delphi:
<HTML>

<H1> Delphi 4 ActiveX Test Page </H1><p>

You should see your Delphi 4 forms or controls embedded in the form below.

<H R><center><P>

<OBJECT

>

classid="clsid :A70D6152-C9F6-11 D5-91 DF-0000E85EFBBA"

codebase="C:/CD/ActiveFormProj1 .dll"#version=1,0,29,0

width=847

height=321

align=center

hspace=0

vspace=0

</OBJECT>

</center></HTML>

110

Remote Access using ActiveX

The CLSID shown here specifies the GUID associated with the object created.

The line labelled codebase points to the directory where the OCX resides.

Because the application is stored in a single machine that does not feature a web

server, the target URL field in the Web deployment option dialog will display a

DOS path rather than a URL

codebase="C:/CD/ActiveFormProj1 .dll"#version=1 ,0,29,0

Figure 10.6, demonstrates that a every day web page could access the

ActiveForm application, a free internet based web site has been created, and

when activated the link will take the user to the ActiveFormProj1 site.

t mt§M4,,4·i,ii'"-3i· ti½Mtffliifkfftfttfflttfttffil;M/1¢M¥!ttt···lf f&;

'] o- . .,) . i)@ ...,~Jf)s-,h <f,,.._"(,,,_ .. ~- €) , :'.?o - -~ gs .
j Aclhu !l@l http,//www.geoctoe,.comfcactiW><haft69/Act_o,_oll .htm

j Co ,gle - j .:] ~S..-chWeb (& s,,i,-:-, 5<• J 6 Pq Wo • iilJ> • i -:- tt-

Delphi 4 ActiveX Test Page
YOJ sh:>uld see yc,._r Del~i 4 forms or cootrols embedded ,n the form below

j! ~Setbng i Tran sf er Protocol File Dnectory j Transfer Sterus j

Ate!!M>e Directories

ComoptJon
(Flow Control 1·· c:\..'Capbffi•haft.'Oe9ktop

Port : ICDM1 3 r XON{)<OFF / (.:r,_ Cap,emsho.tt Ink lo C\
Baud Re.le · 138400 3 [r RTS/CTS Delph, 4 In(e Documents ond Senm

Pari1y· !None 3 !CO in! lo Ce,: tamshett
I Shortcut to Control Panel Ir V'- r ':'r -..:

DelaB,ts . le 3 · Oulput Sta1e Shortcut10 ZFREE In,

I 11 3
P' OTA Windows Explorer Ink

S10p8rts
I P' ATS I ~f,),,,1;.·.,

•eence, I
L;,,r-otb,>o: o,-;p.

OoK IAII t,les r j 3 jliil c D .:l

Figure 10.6: ActiveForm on the WWW

111

CHAPTER 11

11. Testing

11.1. Introduction

This section gives an overview of the testing procedures developed and

implemented in the presented system. Few specific tests have been made to

evaluate the system and the functionalities.

The testing for interface defects is particularly difficult because interface faults

may only manifest themselves under unusual conditions, and because of the

tight time restrictions on the project. The testing phase of this project has been

merged with the implementation phase to a great deal.

11.2. Interface Testing

The interface testing used in this application takes place when modules or sub­

systems are integrated to create the larger system. Therefore tests have been

carried out on modules as they have been built. Each module or sub-system

has a defined interface which is called by other program components. The

objective of these testing is to detect faults which may have been introduced

because of interface errors or invalid assumptions about interface.

The first interface testing is to examine each call to an component. This include

designing a set of tests where all the values ranges available on the combo

boxes are tested. For example, the config.pas has wide range of baud rate

available for file transfer. To test whether these values could be used, file

transfers were conducted at both low and high baud rate settings

112

The second level of testing is the application of stress testing. Some classes of

system are designed to handle a specific load. For example, by opening

numerous number of MDI child forms in the application and observe whether

there are any circumstance that may arise through an unexpected combination of

events where the load placed on the system exceeds the maximum design load

of the system. In these circumstance, it is important that system failure will not

cause any system corruption, or unexpected OS crashes. This technique is quite

important, since the application is most likely to be used within an industrial

environment, where down time in a DNC system may cause tremendous losses.

Another third testing consists of transferring data across different terminals. For

example, PC or CNC machines. This will provide immediate feedback to see

whether data have been successfully transferred.

11.3. Test Results

The results of the module tests conducted were only briefly looked at, as these

were evident by the way the system works with low number of bugs.

The test at code level were successful, and the bugs that were found were fixed

and checked again. The application also did well under the stress test, overall

speaking the system performed well in dealing with many MDI child forms.

However, the stress testing was carried out on a fairly recent machine. Hence, it

had much more tolerance than some of the PC workstation found in small to

medium manufacturing firms.

113

CHAPTER12

12. Results & Discussions

The research project has proven to be a successful project. The application

developed contains the following major components which fulfilled the criteria set

out by the specification.

• Character Exchange Interface

This allowed the users to establish communication between the terminals

after a serial connection has been made.

• File Transfer Interface

The file transfer made use of numerous serial transfer protocols, and enabled

the user to use a easy step by step file transfer through the main interface

within of the application.

• NC Editor Child Form

The NC editor enabled the user to alter the code before transmitting any file

to a terminals. The NC editor was also very convenient for comparing two NC

programs if the use wishes.

• OLE Automation Child Forms & Buttons

The OLE automation containers and buttons allowed other programs to be

integrated into the application, and thus satisfied the objective of creating a

CAD/CAM link to integrate manufacturing information flows between the

users and the NC machines on the shop floor.

• Internet Remote Access using ActiveForm

The application of ActiveForm provided remote access through the World

Wide Web ,yJWW). The powerful tool will allow users all over world to

share/purchase the application developed within this research project.

114

CHAPTER 13

13. Recommendations

In order to further improve the application software, the following areas of

development are recommended:

Database Design

The property form within the application software shows the fundamental

concepts required in assigning controller type from a database to newly added

machine type on to the outline component. Database design is an important

feature within a DNC system, because any communication occurring between

two entities involves visiting a related database or storing data into a related

database. Although it was not specified in the application software

specifications, but a fully developed CIM strategy requires a strong database

system that liase between the DNC system and the shop floor manufacturing

configuration. Further efforts must be made to identify what information should

be managed for the local database, and what information should be exchanged

with remote site databases via the COM automation technique.

Monitoring System

Another aspect of CIM is to have gain advance process control over the entire

automated processes in one application software. Process monitoring requires

further involvement of auxiliary hardware integration, such as PLCs temperature

sensors, limit switches and motor controllers. The information collected by the

monitoring system will be stored in the local database, or passed back to PLC for

automated feedback control.

115

CHAPTER14

14. Conclusion

This research project has successfully developed a working GUI that is

implemented with the Moxa multiport card. The application software allows data

to be transferred to and from other terminals. The software made use of the OLE

technology that allowed access to other software installed on the desktop

workstation, and ActiveX technology that allowed remote access to the file/data

transfer components through the World Wide Web. The future of this field will

depend much on the total integration of automated NC equipment and

Information Technology, such as Internet and database.

116

15. REFERENCES

1. Calvert, Charles, 1999, Charlie Calvert's Delphi 4 unleashed,

[Indianapolis, IN] : Sams Pub. : Borland Press.

2. Sholz-Reiter, B, 1992, CIM interfaces : concepts, standards and problems

of interfaces in computer integrated manufacturing, London ; New York :

Chapman & Hall.

3. Waldner, Jean-Baptiste, 1992, CIM, principles of computer-integrated

manufacturing, Chichester, West Sussex, England ; New York: Wiley.

4. Smith , Graham, T, 1993, CNC machining technology, London ; New York :

Springer-Verlag.

5. Swan, Tom, 1998, Delphi 4 bible, Foster City, CA: IDG Books Worldwide.

6. Pacheco, Xavier, 1998, Delphi 4 developer's guide, Indianapolis, Ind

Sams.

7. Dorf , C, R, 1994, Handbook of design, manufacturing, and automation,

New York : Wiley.

8. Weck, Manfred, 1984, Handbook of machine tools, Chichester [West

Sussex] ; New York: Wiley.

9. Canto, Marco, 1997, Mastering Delphi 3, San Francisco: Sybex.

10. Reisdorph, Kent, 1998, Sams teach yourself Borland Delphi 4 in 21 days,

Indianapolis, Ind. : Sams Pub.

1 I 7

11 . Lee, Geoff, 1993, Object-oriented GUI application development,

Englewood Cliffs, N.J. : PTR Prentice Hall.

12. Adiga, S, 1992, Object-oriented software for manufacturing systems,

London; New York: Chapman & Hall

13. Nelson, Mark, 2000, Serial communications developer's guide, Foster

City, CA: IDG Books Worldwide.

14. Moxa Tchnologies Co. Ltd, 1999, Smartio C104H/HS User's Manual,

Moxa technologies Co, Ltd.

15. Sommerville, Ian, 1996, Software engineering, Wokingham, England ;

Reading, Mass. : Addison-Wesley Pub. Co.

16. Lin, Edward, 1995, Virtual Manufacturing User Workgroup, Lawrence

Associated Inc.

17. http://www.ctips.com/rs232.html

18. http://www.moxa.com/product/PComm/pcomm.htm

19. http://www.moxa.com/product/smartio/C104H.htm

20. http://www.rad.com/networks/1995/rs232/back.htm#backhdr

118

APPENDIX A

1. FTRANSM.P AS
(***

FTransM.pas

-- Main window for file transfer example program.

**)

unit FTransM;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

Menus,ExGlobal, StdCtrls, Buttons, ExtCtrls, Printers, ComCtrls , OleCtnrs,

ToolWin , WinProcs, Win Types, ExtDlgs, Mask, FileCtrl , Office_ Tlb, Excel_ TLB,

Actnlist, Grids, Outline, ChildWin;

type

TFTransForm = class(TExampleForm)

OpenDlg : TOpenDialog ; //First Open Dialog it is used for NC Codes

SaveDlg : TSaveDialog ; //First Save Dialog used for Saving NC Codes

StatusBar1 : TStatusBar;

Timer1: TTimer;

PrintDialog: TPrintDialog;

PrinterSetupDialog : TPrinterSetupDialog ;

MainMenu1: TMainMenu ;

File1 : TMenultem;

FileNew: TMenultem;

FileSave: TMenultem;

FileSaveAs: TMenultem;

N2: TMenultem;

FilePrint: TMenultem;

FilePrintSetup: TMenultem;

N1: TMenultem;

FileExit: TMenultem;

119

Port1: TMenultem;

PortOpen: TMenultem;

PortClose: TMenultem;

Setting1: TMenultem;

cmFtrans: TMenultem;

Help1: TMenultem;

HelpAbout: TMenu Item;

CooIBar1: TCoolBar;

TooIBar1: TToolBar;

EnterPort: TSpeedButton;

ExitPort: TSpeedButton;

Saving: TBitBtn;

Setting: TSpeedButton;

Print: TBitBtn;

SolidWorks: TBitBtn;

Words: TBitBtn;

Internet: TBitBtn;

ExitAII: TSpeedButton;

Edit1: TMenultem;

N4: TMenultem;

Paste1 : TMenultem;

Copy1: TMenultem;

OLEEdit: TMenultem;

Speed Button6: TSpeed Button;

NCCut: TSpeedButton;

NCCopy: TSpeedButton;

NCPaste: TSpeedButton;

Comm: TBitBtn;

NCOpen: TBitBtn;

NCNew: TBitBtn;

FileOpen: TMenultem;

Cut: TMenultem;

Actionlist1: TActionlist;

Panel1 : TPanel;

Outline1: TOutline;

NewBtn: TBitBtn;

PageControl1: TPageControl;

TabSheet1: TTabSheet;

120

rgProtocol: TRadioGroup;

rgDirection: TRadioGroup;

FSetOk: TBitBtn;

FSetCancel: TBitBtn ;

TabSheet2: TTabSheet;

Label1 : Tlabel;

ListFileslabel : Tlabel;

Driveslabel : Tlabel ;

Dirlabel: Tlabel;

FileNamelabel: Tlabel;

DirBox: TDirectorylistBox;

DirOlgOK: TBitBtn;

DirOlgCancel: TBitBtn ;

DriveBox: TDriveComboBox;

DirOlgPrev: TBitBtn ;

FilelistBox: TFilelistBox;

FileNameEdit: TEdit;

FilterComboBox: TFilterComboBox;

TabSheet3 : TTabSheet;

TPort: Tlabel ;

TFileSize: Tlabel;

TProtocol : Tlabel ;

Tlength : Tlabel ;

TFileName: Tlabel;

Bevel1 : TBevel;

Bevel2: TBevel;

Bevel3: TBevel ;

Bevel4: TBevel ;

Bevel5: TBevel;

lbFname: Tlabel;

lbFSize: Tlabel ;

lbxlen : Tlabel;

lbPort: Tlabel;

lbProtocol: Tlabel ;

TCancel : TBitBtn;

PropBtn: TBitBtn;

Outline2: TOutline;

OpenBtn: TBitBtn;

121

SaveBtn: TBitBtn;

SaveDialog2: TSaveDialog;

SaveAsSet: TMenultem;

OpenDialog2: TOpenDialog;

ActivateOLE: TMenultem;

N5: TMenultem;

OLESave: TMenultem;

SaveAsOLE: TMenultem;

CopyOLE: TMenultem;

PasteOLE: TMenultem;

OpenDialog1 : TOpenDialog;

SaveDialog1: TSaveDialog;

PrintDialog1: TPrintDialog;

PrinterSetupDialog1 : TPrinterSetupDialog;

procedure FormCreate(Sender: TObject);

procedure SwitchMenu;

function OpenPort:Boolean;

procedure ClosePort;

function PortSet:boolean;

procedure XmitFile;

procedure RecvFile;

procedure cmFTransClick(Sender: TObject);

procedure FormKeyDown(Sender: TObject; var Key: Word ;

Shift: TShiftState);

procedure Timer1 Timer(Sender: TObject);

procedure FileNewClick(Sender: TObject);

procedure FileSaveClick(Sender: TObject);

procedure FileSaveAsClick(Sender: TObject);

procedure FilePrintSetupClick(Sender: TObject);

procedure FileExitClick(Sender: TObject);

procedure PortOpenClick(Sender: TObject);

procedure PortCloseClick(Sender: TObject);

procedure Setting1Click(Sender: TObject);

procedure lntemetClick(Sender: TObject);

procedure SolidWorksClick(Sender: TObject);

procedure WordsClick(Sender: TObject);

procedure FormMouseMove(Sender: TObject; Shift: TShiftState; X,

122

Y: Integer);

procedure ControIBar1 MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);

procedure CommClick(Sender: TObject);

procedure FSetOkClick(Sender: TObject) ;

procedure FSetCancelClick(Sender: TObject);

procedure FilelistBoxDblClick(Sender: TObject);

procedure TCancelClick(Sender: TObject);

procedure DirDlgOKClick(Sender: TObject) ;

procedure RefreshDlg(xlen :Long lnt;flen:Long lnt;fname:string);

procedure DirDlgCancelClick(Sender: TObject) ;

procedure DirDlgPrevClick(Sender: TObject) ;

procedure HelpAboutClick(Sender: TObject) ;

procedure FileOpenClick(Sender: TObject);

procedure Copy1Click(Sender: TObject);

procedure Paste1Click(Sender: TObject);

procedure CutClick(Sender: TObject) ;

procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);

procedure NewBtnClick(Sender: TObject) ;

procedure Outline1 MouseDown(Sender: TObject; Button: TMouseButton;

Shift: TShiftState ; X, Y: Integer) ;

procedure PropBtnClick(Sender: TObject) ;

procedure SaveBtnClick(Sender: TObject) ;

procedure SaveAsSetClick(Sender: TObject) ;

procedure OpenBtnClick(Sender: TObject) ;

procedure Outline2DragDrop(Sender, Source: TObject; X, Y: Integer) ;

procedure Outline2DragOver(Sender, Source: TObject; X, Y: Integer;

State: TDragState; var Accept: Boolean) ;

procedure Outline2DbIClick(Sender: TObject);

procedure ActivateOLEClick(Sender: TObject) ;

procedure SaveAsOLEClick(Sender: TObject);

procedure OLESaveClick(Sender: TObject) ;

procedure CopyOLEClick(Sender: TObject);

procedure PasteOLEClick(Sender: TObject);

procedure FilePrintClick(Sender: TObject);

private

Falcon : String ; //Used as a transitional variable in between pages

123

b_busy : Boolean;

DoTra : Boolean;

Olemenu: Boolean;

X1, Y1: Integer;

FOLEFilename: String;

Counter: Integer;

FStartDrag: Boolean;

{mouse position}

procedure SetOLEFileName(const Value : string);

public

V: Variant;

S: Variant;

FileName: String;

procedure ShowHint(Sender: TObject);

procedure CheckCapslock;

procedure Checklnslock;

procedure CheckNumlock;

property OLEFileName: string read FOLEFileName write SetOLEFileName;

procedure UpdateFT;

procedure UpdateGT;

procedure UpdateHt;

procedure UpdateJt;

function SaveChanges: Boolean;

function Save: Boolean;

function SaveAs: Boolean;

function SaveSetting: Boolean;

function SaveAsSetting: Boolean;

end;

var

FTransForm: TFTransForm;

implementation

{$R *.DFM}

124

uses PComm,MxTool,Config,FtProc,About,HelpTxt,ComObj,ShellAPl,ReadThd,

SimpleM, PrintDialog, MachForm, Prop, Child;

var NumChildren : Cardinal= O; {A var declared for Childforms}

Lend : Integer;

procedure TFTransForm.FormCreate(Sender: TObject) ;

begin

Application.OnHint := ShowHint;

UpdateFT; {Update File Transfer TabSheets}

{Default Settings for the Serial Port Config}

with GCommData do

begin

Port := 3;

ibaudrate := 14;

iparity := O;

ibytesize := 3;

istopbits := O;

BaudRate := B38400;

Parity := P _NONE;

ByteSize := BIT _8;

Stop Bits :=STOP_ 1;

Hw := false;

Sw := false;

Dtr := true ;

Rts := true ;

end ;

{This two is used for the purpose of enabling and disabling buttons}

DoTra := false;

GszAppName := 'File Transfer Demo';

GbOpen := false;

GhForm := FTransForm;

b_busy := false;

Olemenu := false;

Switch Menu();

{This diplay the current directory as the caption of a label control}

125

DirBox.Dirlabel := Dirlabel;

{The displays the current drive so that the directory list box auomatically

updates its tree}

DriveBox .Dirlist := DirBox;

{This assign the edit objects name to the FilelistBox's FileEdit property}

FilelistBox.FileEdit := FileNameEdit;

end;

{This procedure creates a Delay function which is used in the rest of the code}

procedure Delay(ms: longint);

var

TheTime : Longlnt;

begin

The Time := GetTickCount + ms;

while GetTickCount < The Time do

Application. Process Messages ;

end;

procedure TFTransForm.FormCloseQuery(Sender: TObject;

var Can Close: Boolean) ;

begin

if ActiveMDIChild <> nil then

CanClose := not ChildForm.Memo1 .Modified or SaveChanges

end;

procedure TFTransForm.FormMouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);

begin

StatusBar1 .Panels[5].Text := 'X = '+ lntToStr(X) ;

StatusBar1 .Panels[6].Text := 'Y = '+ lntToStr(Y);

end;

procedure TFTransForm.ControlBar1 MouseMove(Sender: TObject;

Shift: TShiftState; X, Y : Integer);

begin

StatusBar1 .Panels[5].Text := 'X = '+ lntToStr(X);

StatusBar1 .Panels[6).Text := 'Y = '+ lntToStr(Y);

126

end;

procedure TFTransForm.SwitchMenu ;

begin

EnterPort.Enabled := not GbOpen;

PortOpen.Enabled := not GbOpen ;

PortClose.Enabled := GbOpen;

ExitPort.Enabled := GbOpen;

cmFTrans .Enabled := GbOpen and (not b_busy) ;

end;

function TFTransForm.PortSet:boolean;

var

port : Longlnt;

mode : Longlnt;

hw,sw : Longlnt;

ret : Long Int;

begin

port := GCommData .Port;

mode := GCommData .Parity or GCommData.ByteSize or GCommData .StopBits ;

PortSet := false ;

if GCommData .Hw then

hw := 3

else

hw := O;

{ bitO and bit1 }

if GCommData.Sw then

SW:= 12

else

SW :=O;

{ bit2 and bit3 }

ret := sio_ioctl(port,GCommData.BaudRate,mode);

if ret<>SIO_OK then

begin

MxShowError('sio_ioctl' ,ret);

Exit;

end;

127

ret := sio_flowctrl(port,hw or sw);

if ret<>SIO_OK then

begin

MxShowError('sio_flowctrl' ,ret);

Exit;

end;

ret := sio_DTR(port,lnteger(GCommData.Dtr));

if ret<>SIO_OK then

begin

MxShowError('sio_DTR' ,ret) ;

Exit;

end ;

if not GCommData.Hw then

begin

ret := sio_RTS(port,lnteger(GCommData .Rts)) ;

if ret<>SIO_OK then

begin

MxShowError('sio_RTS',ret) ;

Exit;

end;

end ;

ShowStatus() ;

PortSet := True;

end;

function TFTransForm.OpenPort:Boolean ;

var

ret: Integer;

begin

Open Port := false;

ret := sio_open(GCommData .Port) ;

if ret <> SIO_OK then

begin

MxShowError('sio_open' ,ret);

128

Exit;

end ;

if PortSet() = false then

begin

sio_close(GCommData.Port);

Exit;

end ;

OpenPort := true;

GbOpen := true;

Outline1 .Enabled := DoTra;

Switch Menu();

Show Status() ;

end;

procedure TFTransForm.ClosePort;

begin

sio_close (GCommData.Port) ;

GbOpen := False;

Switch Menu() ;

Show Status() ;

end ;

procedure TFTransForm .Setting1 Click(Sender: TObject);

var

bakdata : TCOMMDATA;

begin

StatusBar1 .Panels[4].Text :='Port Setting' ;

bakdata := GCommData;

if CfgForm.ShowModal = mrCancel then

StatusBar1 .Panels[4].Text :=" ;

Exit;

if GbOpen then

if PortSet()=false then

begin

GCommData := bakdata;

Exit;

129

end;

Show Status();

end;

procedure TFTransForm.PortOpenClick(Sender: TObject);

begin

Open Port();

SysUtils .Beep;

Windows.Beep(00, 000);

StatusBar1 .Panels(4].Text := 'Open Port';

Delay (2000);

StatusBar1 .Panels[4].Text := ";

end;

procedure TFTransForm.PortCloseClick(Sender: TObject);

begin

Close Port();

SysUtils .Beep;

Windows.Beep(00, 000);

StatusBar1 .Panels[4].Text := 'Close Port';

Delay (2000);

StatusBar1 .Panels[4].Text := ";

end;

procedure TFT rans Form . File NewClick(Sende r: TObject);

begin

if not ChildForm.Modified or SaveChanges then

begin

Inc (Counter);

lnc(NumChildren);

with TChildForm.Create(Application) do

begin

Caption := 'Untitled' + lntToStr(NumChildren);

{Bring up insert OLE object dialo~ and insert into child }

ChildForm.Memo1 .Text := ";

Modified := False;

FileName := ";

Caption := 'File - [Untitled]';

130

end ;

end;

end;

procedure TFT ra nsF orm. FileOpenC lick(Sender: TObject) ;

begin

if OpenDlg.Execute then

with TChildForm.Create(Application) do

begin

try

OleFileName := OpenDlg.FileName;

Memo1 .Lines.LoadFromFile(OleFileName);

Show;

except

Release ; II free form on error

raise; II re-raise exception

end;

end ;

end;

function TFtransForm.SaveChanges: Boolean;

begin

case MessageDlg (

'The document ' + filename + ' has changed .' +

#13#13 + 'Do you want to save the changes?' ,

mtConfirmation , mbYesNoCancel , 0) of

idYes:

II call Save and return its result

Result := Save;

idNo:

II do not save and continue

Result := True ;

else II idCancel :

II do not save and abort operation

Result:= False;

end;

end;

131

{a return value "False" means the SaveAs

operation has been aborted}

function TFTransForm.Save: Boolean;

begin

if Filename = "then

Result := SaveAs II ask for a file name

else

begin

ChildForm.Memo1.Lines.SaveToFile (FileName);

ChildForm.Modified := False;

Result:= True;

end ;

end;

{return a value "False" if the SaveAs

dialog box has been 'cancelled'}

function TFTransForm.SaveAs: Boolean;

begin

SaveDlg.FileName := Filename;

if SaveDlg.Execute then

begin

Filename := SaveDlg.FileName;

Save;

Caption := 'RichNote - '+ Filename;

Result := True;

end

else

Result := False;

end;

procedure TFTransForm.FileSaveClick(Sender: TObject) ;

begin

if ActiveMDIChild <> nil then

{ if no name is assigned, then do a "save as"}

if TChildForm(ActiveMDIChild).OLEFileName = " then

FileSaveAsClick(Sender)

else

{ otherwise save under current name}

132

with TChildForm(ActiveMDIChild) do

Memo1.Lines.SaveToFile(OLEFileName);

end;

procedure TFTransForm.FileSaveAsClick(Sender: TObject) ;

begin

if (ActiveMDIChild <> nil) and (SaveDlg.Execute) then

with TChildForm(ActiveMDIChild) do

begin

OleFileName := SaveDlg.FileName;

Memo1.Lines .SaveToFile(OleFileName);

end;

end ;

procedure TFTransForm.FilePrintClick(Sender: TObject) ;

var

PrintFile: TextFile;

I: Integer;

bakdata: TCOMMDATA;

begin

StatusBar1 .Panels[4].Text := 'Print File';

{PrintButton .ShowModa I;}

begin

bakdata := GCommData ;

if PrintDialog .Execute then

begin

AssignPrn (PrintFile) ;

Rewrite (PrintFile);

try

Printer.Canvas.Font:= ChildForm.Memo1 .Font;

for l:=0 to ChildForm.Memo1 .Lines.Count-1 do

Writeln(PrintFile, ChildForm.Memo1.Lines[I]};

finally

CloseFile (PrintFile) ;

end ;

end;

Delay (2000);

StatusBar1 .Panels[4).Text := ";

133

end;

end;

procedure TFTransForrn .FilePrintSetupClick(Sender: TObject);

begin

PrinterSetupDialog.Execute;

end ;

procedure TFTransForm.FileExitClick(Sender: TObject);

begin

Close;

end;

procedure TFTransForm.cmFTransClick(Sender: TObject);

var

W: Word;

begin

PageControl1.ActivePage := TabSheet1 ;

W:=MessageDlg('Activate File Transfer Protocols?', mtConfirmation,[mbYes, mbNo], O) ;

case Wof

mrYes : UpdateGT;

mrNo: Exit;

end ;

end ;

procedure TFTransForm.CutClick(Sender: TObject) ;

begin

if ActiveMDIChild <> nil then

TChildForm(ActiveMDIChild}.Memo1 .CutToClipboard ;

end;

procedure TFTransForrn.Copy1Click(Sender: TObject);

begin

if ActiveMDIChild <> nil then

TChildForrn(ActiveMDIChild}.Memo1.CopyToClipboard;

end;

procedure TFTransForrn.Paste1Click(Sender: TObject);

134

begin

if ActiveMDIChild <> nil then

TChildForm(ActiveMDIChild).Memo1.PasteFromClipboard;

end;

procedure TFtransForm.SetOLEFileName(const Value: string);

begin

if Value <> FOLEFileName then

begin

FOLEFileName := Value;

Caption := ExtractFileName(FOLEFileName);

end;

end;

procedure TFTransForm.ActivateOLEClick(Sender: TObject);

begin

if not ChildForm.Modified or SaveChanges then

begin

Inc (Counter) ;

lnc(NumChildren);

with TMDIChild .Create(Application) do

begin

Caption := 'Untitled'+ lntToStr(NumChildren);

{ bring up insert OLE object dialog and insert into child}

OleContainer. lnsertObjectDialog;

end;

end ;

end;

procedure TFTransForm.SaveAsOLEClick(Sender: TObject);

begin

if (ActiveMDIChild <> nil) and (Save0ialog1 .Execute) then

with TMDIChild(ActiveMDIChild) do

begin

OleFileName := SaveDialog1 .FileName;

OleContainer.SaveToFile(OleFileName);

end;

end;

135

procedure TFTransForm.OLESaveClick(Sender: TObject);

begin

if ActiveMDIChild <> nil then

{ if no name is assigned, then do a "save as"}

ifTMDIChild(ActiveMDIChild).OLEFileName ="then

SaveAsOLEClick(Sender)

else

{ otherwise save under current name}

with TMDIChild(ActiveMDIChild) do

0 leContainer.Save ToFile(OLEFileName);

end;

procedure TFTransForm.CopyOLEClick(Sender: TObject);

begin

if ActiveMDIChild <> nil then

TMDIChild(ActiveMDIChild).OleContainer.Copy;

end;

procedure TFTransForm.PasteOLEClick(Sender: TObject);

begin

if ActiveMDIChild <> nil then

with TMDIChild(ActiveMDIChild).OleContainer do

{ Before invoking dialog, check to be sure that there }

{ are valid OLE objects on the clipboard.}

if Can Paste then PasteSpecialDialog;

end;

procedure TFTransForm.HelpAboutClick(Sender: TObject);

begin

AboutFrm.ShowModal;

end;

procedure TFTransForm.CommClick(Sender: TObject);

var

W:Word;

begin

if EnterPort.Enabled = not DoTra then

136

begin

W:=MessageDlg('Port is not Opened? Continue Accessing Communication Dialog?',

mtConfirmation,[mbYes, mbNo], O) ;

case W of

mrYes:

begin

PortOpen.Click;

GhExit := false ;

TReadTh read .C reate(fa lse) ;

SimpleForm.ShowModal;

end;

mrNo: ;

end ;

end

else

GhExit := false;

TReadThread.Create(false) ;

SimpleForm.ShowModal;

end;

procedure TFTransForm .SolidWorksClick(Sender: TObject) ;

begin

StatusBar1 .Panels[4].Text := 'Loading SolidWorks' ;

V := CreateOleObject('SldWorks .Application') ;

V.Visible :=True ;

Delay (2000);

StatusBar1 .Panels[4].Text := ";

end;

procedure TFTransForm.WordsClick(Sender: TObject);

begin

StatusBar1 .Panels(4].Text := 'Load Microsoft Word';

S := CreateOleObject('Word .Application');

S.Visible :=True;

Delay (2000);

StatusBar1 .Panels[4).Text := ";

end;

137

procedure TFTransForm.lntemetClick(Sender: TObject);

Var St:Array[0 .. 255] of char;

begin

StatusBar1 .Panels[4].Text := 'Access Internet';

ShellExecute(Handle,'open',StrPCopy(St,'http:/f+lntemet.Caption),nil ,nil ,SW_SHOW);

Delay (2000);

StatusBar1 .Panels[4].Text := ";

end;

procedure TFTransForm.ShowHint(Sender: TObject);

begin

StatusBar1 .Panels[0].Text := Application.Hint;

end;

procedure TFTransForm.CheckCapslock;

begin

if Odd (GetKeyState (VK_CAPITAL)) then

StatusBar1 .Panels[1].Text := 'CAPS'

else

StatusBar1 .Panels[1].Text := ";

end ;

procedure TFTransForm.Checklnslock;

begin

if Odd (GetKeyState (VK_INSERT)) then

StatusBar1 .Panels[2].Text :='INS'

else

StatusBar1 .Panels[2].Text :=";

end;

procedure TFTransForm.CheckNumlock;

begin

if Odd (GetKeyState (VK_NUMLOCK)) then

StatusBar1 .Panels[3].Text :='NUM'

else

StatusBar1 .Panels[3].Text :=";

end;

138

procedure TFTransForm.FormKeyDown(Sender: TObject; var Key: Word ;

Shift: TShiftState) ;

begin

CheckCapslock;

Checklnslock ;

CheckNumlock;

end;

procedure TFTransForm.Timer1Timer(Sender: TObject);

begin

CheckCa pslock;

Checklnslock;

CheckNumlock;

StatusBar1 .Panels[8].Text := TimeToStr(Time) ;

end;

procedure TFTransForm.NewBtnClick(Sender: TObject) ;

begin

MachineForm.ShowModal ;

end ;

procedure TFTransForm .Outline1 MouseDown(Sender: TObject;

Button : TMouseButton ; Shift: TShiftState; X, Y: Integer);

var

fStartDrag: Boolean;

begin

fStartDrag := True ;

if (Outline1 .ltemCount > 0) and (Button= mbleft) then

Outline1 .BeginDrag (True) ;

fStartDrag := False;

end ;

procedure TFTransForm.PropBtnClick(Sender: TObject);

begin

PropertyForm.ShowModal ;

end;

function TFTransForm.SaveSetting: Boolean;

139

begin

if Filename= 11 then

Result := SaveAsSetting II ask for a file name

else

begin

Outline1 .Lines.SaveToFile (FileName);

ChildForm.Modified := False;

Result := True;

end;

end;

function TFTransForm.SaveAsSetting: Boolean;

begin

SaveDialog2.FileName := Filename;

if SaveDialog2.Execute then

begin

Filename := SaveDialog2.FileName;

SaveSetting;

Caption := 'RichNote - '+ Filename;

Result:= True;

end

else

Result := False;

end;

procedure TFTransForm.SaveBtnClick(Sender: TObject);

begin

StatusBar1 .Panels[4).Text := 'Save File';

begin

if Filename = 11 then

SaveAsSetClick(Sender) II ask for a file name

else

begin

if ChildForm.Modified then

SaveSetting;

end;

end;

Delay (2000);

140

StatusBar1 .Panels[4].Text := ";

end;

procedure TFTransForm.SaveAsSetClick(Sender: TObject) ;

begin

SaveAsSetting;

end ;

procedure TFTransForm.OpenBtnClick(Sender: TObject);

begin

begin

if not ChildForm.Modified or SaveChanges then

if OpenDialog2 .Execute then

begin

FileName := OpenDialog2.FileName;

Outline1 .Lines .LoadFromFile (FileName) ;

ChildForm .Modified := false ;

Caption := FileName;

end;

end ;

end ;

procedure TFTransForm.Outline2DragDrop(Sender, Source: TObject; X,

Y : Integer) ;

var

Current: Integer;

begin

Current := Outline2.Getltem (X, Y) ;

if Current> 0 then

begin

Outline2.AddChild (Current, Outline1 .Lines[Outline1 .Selected Item - 11);

Outline2.ltems [Current].Expanded := True;

end

else

MessageDlg ('You''ve not dragged over an item',

mtError, [mbOk], O) ;

end;

141

procedure TFTransForm.Outline2DragOver(Sender, Source: TObject; X,

Y: Integer; State: TDragState; var Accept: Boolean);

begin

if Sender is TOutline then

Accept := True ;

end;

procedure TFTransForm.Outline2DblClick(Sender: TObject);

begin

if CfgForm.ShowModal = mrYes then

Open Port();

UpdateGT;

end;

procedure TFTransForm.FSetOkClick(Sender: TObject);

begin

//Declare which protocol to use.

GProtocol := FTransForm.rgProtocol.ltemlndex;

//Declare whether to send or to receive file.

GDirection := FTransForm.rgDirection .ltemlndex;

//Update of the buttons and sheets .

UpdateHt;

if FTransForm.rgDirection.ltemlndex = FT_XMIT then

//Access the the second page of Tab.

PageControI1 .ActivePage := TabSheet2

else

PageControl1.ActivePage := TabSheet2;

end;

procedure TFTransForm.FSetCancelClick(Sender: TObject);

begin

UpdateFt;

end;

procedure TFTransForm.FilelistBoxDblClick(Sender: TObject);

begin

Falcon := FileNameEdit.Text;

142

if FTransForm.rgDirection.ltemlndex = FT_XMIT then

XmitFile

else

begin

if (GProtocol=FTZMDM) or (GProtocol=FTYMDM) or (GProtocol=FTKERMIT)then

begin

lstrcpy(GrPath,PChar(FTransForm.DirBox.Directory)) ;

SetCurrentDir(GrPath)

end

else

begin

lstrcpy(GrFname,PChar(Falcon));

end ;

PageControl1.ActivePage :=TabSheet3;

RecvFile ;

end;

end;

procedure TFTransForm.DirOlgOKClick(Sender: TObject) ;

begin

Falcon := FileNameEdit.Text;

if FTransForm.rgDirection.ltemlndex = FT_XMIT then

XmitFile

else

begin

if (GProtocol=FTZMDM) or (GProtocol=FTYMDM) or (GProtocol=FTKERMIT)then

begin

lstrcpy(GrPath,PChar(FTransForm.DirBox.Directory)) ;

SetCurrentDir(GrPath)

end

else

begin

lstrcpy(GrFname,PChar(Falcon));

end;

PageControl1.ActivePage :=TabSheet3;

RecvFile;

end;

end;

143

procedure TFTransForm.DirDlgCancelClick(Sender: TObject);

begin

GftCancel :=true;

PageControI1.ActivePage := TabSheet1;

UpdateFt;

end;

procedure TFTransForm.DirDlgPrevClick(Sender: TObject);

begin

{if Previous button is pushed the program returns to TabSheet 1}

PageControl1.ActivePage := TabSheet1 ;

end;

procedure TFTransForm.TCancelClick(Sender: TObject);

begin

GftCancel :=true;

PageControl1 .ActivePage := TabSheet1 ;

UpdateFt;

end;

procedure TFT ra nsF orm. RefreshDlg(xlen :Long lnt;flen :Long lnt;fna me:string) ;

begin

lbFSize.Caption := lntToStr(flen);

lbPort.Caption := lntToStr(GCommData.Port);

lbProtocol.Caption := GstrProtocol[GProtocol];

lbFName.Caption := fname;

lbxlen.Caption := lntToStr(xlen);

end;

procedure TFTransForm.XmitFile;

begin

{Declare Falcon using the FileNameEdit string}

Falcon := FileNameEdit.Text;

{lstrcpy copies the entire contents of one string into another string.

Either string, instead of being a "real" string, can also be merely a pointer to a string instead .

The target string must already have enough space to receive the source string's contents .

The function also will copy a terminating null character into the target string}

144

lstrcpy(GxFname,PChar(Falcon)) ;

{If user press 'Cancel' button which on status dialog,

'GftCancel' flag will be set to true .This will let callback

function to return -1 to terminate file transfer.}

GftCancel := false ;

TFtProc.Create(false) ;

PageControl1 .ActivePage := TabSheet3 ;

UpdateJt;

end;

procedure TFTransForm.RecvFile;

begin

GftCancel := false ;

TFtProc.Create(false);

end ;

{The first menu button updates , most button are disabled until transfer config are decalred}

procedure TFtransForm.UpdateFT;

begin

PageControl1.ActivePage :=TabSheet1 ;

NCPaste.Enabled := DoTra ;

NCCut.Enabled := DoTra;

NCCopy.Enabled := DoTra ;

FSetOk .Enabled := DoTra ;

FSetCancel.Enabled := DoTra ;

rgProtocol.Enabled := DoTra ;

rgD irection.Enabled := DoTra ;

TabSheet1 .Enabled := DoTra;

TabSheet2.Enabled := DoTra;

TabSheet3.Enabled := DoTra;

DirDlgOK.Enabled := DoTra ;

DirDlgCancel.Enabled := DoTra ;

DirDlgPrev.Enabled := DoTra ;

TCancel.Enabled := DoTra;

lbFSize.Caption := ";

lbPort.Caption := ";

lbProtocol.Caption := ";

lbFName.Caption := ";

145

lbxlen.Caption := ";

end;

{This is the update after Config is declared, only TabSheet1 is allowed}

procedure TFtransForm.UpdateGT;

begin

FSetOk.Enabled := not DoTra;

FSetCancel.Enabled := not DoTra;

TabSheet1 .Enabled := not DoTra;

rgProtocol.Enabled := not DoTra;

rgDirection.Enabled := not DoTra;

TabSheet2.Enabled := DoTra;

TabSheet3.Enabled := DoTra ;

DirDlgOK.Enabled := DoTra ;

DirDlgCancel.Enabled := DoTra ;

DirDlgPrev.Enabled := DoTra;

TCancel.Enabled := DoTra ;

end ;

{The second update, after the direction and transfer protocol is declared}

procedure TFtransForm.UpdateHt;

begin

TabSheet2.Enabled := not DoTra;

TabSheet3.Enabled := DoTra;

DirDlgOK.Enabled := not DoTra ;

DirDlgCancel.Enabled := not DoTra;

DirDlgPrev.Enabled := not DoTra ;

TabSheet3.Enabled := DoTra;

TCancel.Enabled := DoTra;

end;

{The Thrid update, after the file storage location have been specified}

procedure TFtransForm.UpdateJt;

begin

TabSheet3.Enabled := not DoTra;

FSetOk.Enabled := DoTra ;

DirDlgOK.Enabled := DoTra;

DirDlgPrev.Enabled := DoTra;

146

FSetOk.Enabled := DoTra ;

FSetCancel.Enabled := DoTra ;

rgProtocol.Enabled := DoTra;

rgDirection.Enabled := DoTra;

TCancel.Enabled := not DoTra;

end;

end.

147

2. FOUNTERA TLB.P AS

unit FounTera_ TLB;

II ** II

//WARNING

II------ II

II

II The types declared in this file were generated from data read from a //

II Type Library. If this type library is explicitly or indirectly (via II

II another type library referring to this type library) re-imported, or the II

II 'Refresh' command of the Type Library Editor activated while editing the II

II Type Library, the contents of this file will be regenerated and all II

II manual modifications will be lost. II

II ** I I

II PASTLWTR: $Revision: 1.11.1.63 $

II File generated on 111112001 7:09 :02 p.m. from Type Library described below.

// ** //

II Type Lib : C :\Documents and Settings\Captainshaft\My

Documents\Masters\FounTera\FounTera.tlb

II 110\LCID: {F8F19781-DB75-4ED4-85C3-F5B0EE44C5AA}\0

II Helpfile:

II HelpString: FounTera Library

II Version: 1.0

II ** II

interface

uses Windows, ActiveX, Classes, Graphics, OleCtrls, StdVCL;

I I * ***** **** *** ** ********* ***** ********* *******************************I/

II GUIDS declared in the Typelibrary. Following prefixes are used: II

II Type Libraries : LIBID_xxxx II

II CoClasses : CLASS_xxxx II

II DISPlnterfaces : D11D_xxxx II

II Non-DISP interfaces: 11D_xxxx II

148

II ***II

canst

LIBID_FounTera: TGUID = '{F8F19781-DB75-4ED4-85C3-F5B0EE44C5AA}';

implementation

uses ComObj;

end.

149

3. ABOUT.PAS

About . ,; ,,,:_ .<.,,1,?ff~

NetTech DNC Software

Copyright (c) 2001

L DKJ Ir· -~ ... -----~1

(***

About.pas

**)

unit About;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, Buttons, ExtCtrls , jpeg ;

type

T AboutFrm = class(TForm)

Aboutlabel: Tlabel;

Label2 : Tlabel;

BitBtn1: TBitBtn;

lmage1: Tlmage;

procedure AboutOKClick(Sender: TObject);

procedure BitBtn1 Enter(Sender: TObject);

private

{ Private declarations}

public

{ Public declarations }

end;

150

var

AboutFrm: TAboutFrm;

implementation

uses ExGlobal;

{$R *.DFM}

procedure TAboutFrm.AboutOKClick(Sender: TObject) ;

begin

Close();

end ;

procedure T AboutFrm.BitBtn1 Enter(Sender: TObject) ;

begin

Aboutlabel.Caption := 'NetTech '+' DNC '+ ' Software';

end;

end.

151

4. CHILD.PAS

unit Child;

interface

00001
N1 G21
N2 (6 MM 4 FLUTE HSS E.M.]
N3G91 G28XOYOZO
N4 TOS M06
N5 5200 M03
NG G90 G54 GOO X187. Y1.25
N7 G43 Z10. HOB MOB
NB G01 Z-10. F2.
N9 X4. F500.
N10YO
N11 Y-1.75
N12X187.
N13Y-4.75
N14X4.
N15Y-7.75
N16 X187.
N17Y-10.75
N18 X4.
N19Y-13.75

uses SysUtils, Windows, Messages, Classes, Graphics, Controls,

Forms, Dialogs, OleCtnrs, StdCtrls;

type

TChildForm = class(TForm)

Memo1: TMemo;

procedure FormClose(Sender: TObject; var Action: TCloseAction);

procedure Memo1 MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);

procedure Memo1 Click(Sender: TObject);

procedure Memo1 Enter(Sender: TObject);

procedure Memo1 Exit(Sender: TObject);

private

FOLEFilename: string;

DoTra : Boolean;

Lend : Integer;

procedure SetOLEFileName(const Value: string);

public

Modified: Boolean;

property OLEFileName: string read FOLEFileName write SetOLEFileName;

end;

152

var

ChildForm: TChildForm;

implementation

uses FTransM;

{$R *.DFM}

procedure Delay(ms : longint);

var

TheTime : Longlnt;

begin

The Time:= GetTickCount + ms;

while GetTickCount < The Time do

Application. Process Messages;

end ;

procedure TChildForm.SetOLEFileName(const Value : string);

begin

if Value <> FOLEFileName then

begin

FOLEFileName := Value;

Caption := ExtractFileName(FOLEFileName);

//ExtractFileNa m

extracts the name and extension parts of FileName.

end;

end;

procedure TChildForm.FormClose(Sender: TObject; var Action: TCloseAction);

begin

if Memo1.Modified and (Length (Memo1.lines.Text)>O) then

FtransForm.FileSaveAsClick (sender);

Action := Cafree;

FtransForm.NCPaste.Enabled := DoTra;

FtransForm.NCCut.Enabled := DoTra;

e

153

FtransForm.NCCopy.Enabled := DoTra ;

end;

procedure TChildForm.Memo1 MouseMove(Sender: TObject; Shift: TShiftState; X,

Y: Integer);

begin

FTransForm.StatusBar1 .Panels[5].Text := 'X =' + lntToStr(X);

FTransForm.StatusBar1 .Panels[6].Text := 'Y =' + lntToStr(Y);

end;

procedure TCh ildForm. Memo 1 Click(Sender: TObject);

begin

FtransForm.StatusBar1 .Panels[4).Text := 'NC Editor';

if Memo1.Sellength >O then

FtransForm.NCCut.Enabled := not DoTra;

if Memo1 .Sellength >O then

FtranSForm.NCCopy.Enabled := not DoTra;

if Memo1 .Sellength =O then

FtransForm.NCCut.Enabled := DoTra;

if Memo1 .Sellength =O then

FtransForm.NCCopy.Enabled := DoTra;

Delay (2000);

FtransForm.StatusBar1 .Panels[4].Text := ";

end;

procedure TChildForm.Memo1 Enter(Sender: TObject);

begin

FtransForm.NCPaste.Enabled := not DoTra;

end;

procedure TChildForm.Memo1 Exit(Sender: TObject);

begin

FtransForm.NCPaste.Enabled := DoTra;

end;

end.

154

5. CONFIG.P AS

Com Option £1

Com optiorr.;:;;:;;;;.;;;;;;;;;;;;;.:;;;:,e-;;=;::i

Port: I~ -----1
Baud Rate :

Parity :

Data Bits:

Stop Bits

(***

Config.pas

- Config dialog for com port commnucation parameters

**)

unit Config ;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs,StdCtrls, Buttons;

type

TCfgForm = class(TForm)

GroupBox1: TGroupBox;

Label1: Tlabel;

cbPort: TComboBox;

Label2: Tlabel;

cbBaudRate: TComboBox;

Label3: Tlabel;

cbParity: TComboBox;

155

Label4: Tlabel;

cbByteSize: TComboBox;

Label5: Tlabel;

cbStopBits : TComboBox;

GroupBox2: TGroupBox;

chHw: TCheckBox;

chSw: TCheckBox;

GroupBox3: TGroupBox;

chDtr: TCheckBox;

chRts: TCheckBox;

Cancel: TBitBtn;

OK: TBitBtn;

procedure FormCreate(Sender: TObject);

procedure chHwClick(Sender: TObject);

procedure CfgCancelClick(Sender: TObject) ;

procedure FormActivate(Sender: TObject);

procedure OKClick(Sender: TObject) ;

private

{ Private declarations}

public

{ Public declarations }

end;

var

CfgForm: TCfgForm;

implementation

uses ExGlobal ;

var

Gfhw: boolean;

{$R *.DFM}

procedure TCfgForm.FormCreate(Sender: TObject);

156

var

i:Word;

begin

for i:=1 to 256 do

cbPort.ltems.Add('COM'+lntToStr(i));

end;

procedure TCfgForm.FormActivate(Sender: TObject);

begin

with GCommData do

begin

cbPort.ltemlndex := Port-1 ;

cbBaudRate.ltemlndex := ibaudrate;

cbParity.ltemlndex := iparity;

cbByteSize.ltemlndex := ibytesize;

cbStopBits .ltemlndex := istopbits;

chHw.Checked := Hw;

chSw.Checked := Sw;

chRts.Checked := Rts ;

chDtr.Checked := Dtr;

Gfhw := Hw;

chRts .Enabled := not Gfhw;

{ disable com port setting when opend }

cbPort.Enabled := not GbOpen;

end;

end;

procedure TCfgForm.chHwClick(Sender: TObject);

begin

chRts.Enabled := Gfhw;

Gfhw := Not Gfhw;

end;

procedure TCfgForm.CfgCancelClick(Sender: TObject);

157

begin

ModalResult := mrCancel;

end;

procedure TCfgForm.OKClick(Sender: TObject);

varW:Word;

begin

with GCommData do

begin

Port := cbPort.ltemlndex + 1;

ibaudrate := cbBaudRate.ltemlndex;

iparity := cbParity.ltemlndex;

ibytesize := cbByteSize.ltemlndex;

istopbits := cbStopBits.ltemlndex;

BaudRate := GBaudTable[ibaudrate];

ByteSize := GByteSizeTable[ibytesize];

Parity := GParityTable[iparity);

StopBits := GStopBitsTable[istopbits];

Hw := chHw.Checked ;

Sw := chSw.Checked;

Rts := chRts .Checked ;

Dtr := chDtr.Checked;

end;

begin

W:=MessageDlg('Settings Correct?', mtConfirmation ,[mbYes, mbNo], O);

case Wof

mrYes: ModalResult := mrOk;

mrNo: ModalResult := mrCancel;

end ;

end;

end.

158

6. EXGLOBAL.PAS
(***

ExGlobal.pas

-- Global variable & Com port record defined for

example program.

**)

unit ExGlobal;

interface

uses Forms,Menus ,StdCtrls ,PComm;

type

TExampleForm = class(TForm)

Term: TMemo;

procedure ShowStatus ;

private

{ Private declarations}

protected

public

{ Public declarations}

end;

TCOMMDATA = record

Port : Longlnt;

BaudRate : Integer;

Parity : Integer;

ByteSize : Integer;

StopBits : Integer;

ibaudrate : Integer;

iparity : Integer;

ibytesize : Integer;

istopbits : Integer;

Hw : boolean;

Sw : boolean;

159

Dtr : boolean;

Rts : boolean;

hNC: boolean;

end;

var

{ Global variable for example}

GCommData : TCOMMDATA;

GszAppName: string;

GhForm : TExampleForm; { main form }

GbOpen : boolean; { opened ? }

GhExit : boolean; { stop thread ? }

GBaudTable :array[0 .. 19] of Integer= (

);

850,875,B 110,8134,8150,8300,8600,81200,

81800,82400,84800,87200,89600,819200,838400,

857600,8115200,8230400,8460800,8921600

GParityTable :array[0 .. 4] of Integer= (

P _NONE,P _EVEN ,P _ODD ,P _MRK,P _SPC

);

GByteSizeTable:array[0 .. 3] of Integer=(

BIT _5 ,BIT _6,BIT _7,BIT _8

);

GStopBitsTable:array[0 .. 1] of Integer= (

STOP_ 1 ,STOP _2

);

GstrBaudTable :array[0 .. 19] of string = (

'50','75','110','134','150','300',

'600','1200','1800','2400','4800','7200',

'9600','19200','38400','57600','115200',

'230400','460800','921600'

);

GstrParityTable :array[0 .. 4] of string= (

160

'None' ,'Odd' ,'Even' ,'Mark', 'Space'

);

GstrByteSizeTable:array[0 .. 3] of string= (

'51,'6 1
,

171,'81

);

GstrStopBitsTable:array[0 .. 1) of string = (

'1','2'

);

implementation

uses SysUtils;

procedure TExampleForm.ShowStatus;

var

szMessage : string;

begin

szMessage := GszAppName;

if GbOpen then

begin

with GCommData do

begin

szMessage := szMessage + ' -- COM'+ lntToStr(Port) + ',' ;

szMessage := szMessage +

GstrBaudTable[ibaudrate] + ',';

szMessage := szMessage +

GstrParityTable[iparity) + ',';

szMessage := szMessage +

GstrByteSizeTable[ibytesize) + ',';

szMessage := szMessage +

GstrStopBitsTable[istopbits];

if Hwthen

szMessage := szMessage + ',RTS/CTS';

if Sw then

szMessage := szMessage + ',XON/XOFF';

end;

161

end ;

Caption := szMessage;

end;

end.

162

7. FTPROC.PAS
(***

FtProc.pas

-- File transfer thread for file transfer example program.

**)

unit FtProc;

interface

uses

Classes;

Const

FT_XMIT = O;

FT_RECV = 1;

FTXMDM1 KCRC = O;

FTXMDMCHK = 1;

FTXMDMCRC = 2;

FTZMDM = 3;

FTYMDM = 4;

FTKERMIT = 5;

FTASCII = 6;

MAX_PATH = 260; {Win32 defined}

type

TFtProc = class(TThread)

private

{ Private declarations}

protected

procedure Execute; override;

end;

var

GxFname : array[O .. MAX_PATH] of Char;

GrFname : array(O .. MAX_PATH] of Char;

163

GrPath: array[O .. MA)(_PATH] of Char;

GstrProtocol:array [0 .. 6] of string= (

);

'XModem-1 KCRC', 'XModem-CheckSum' ,'XModem-CRC',

'ZModem', 'YModem', 'Kermit' ,'ASCII'

GProtocol: Word;

GDirection : Word;

GftCancel: boolean;

implementation

uses Windows,Forms,PComm,ExGlobal,FTransM,MxTool, Comobj;

function xCa IIBack(xmitlen: Long lnt;buflen :Long lnt;buf:PCha r;flen: Long Int):

Longlnt;stdcall;forward;

tu nction rCall Back(recvlen :Long lnt;buflen :Long lnt;buf:PCha r;flen :Long Int):

Longlnt;stdcall;forward;

procedure ProcessRet(port:Long lnt;ret: Long lnt;protocol :Word ;direction :Word);

forward;

{ TFtProc}

(*

After create thread object in main process,'Execute()' function

will be called automatically.

If user press 'Cancel' button which on status dialog,

'GftCancel' flag will be set to true.This will let callback

function to return -1 to terminate file transfer.

*)

procedure TFtProc.Execute;

var

ret: Longlnt;

port: Longlnt;

fname : PChar;

begin

{ Place thread code here }

164

port := GCommData.Port;

ret := O;

if (GDirection = FT _XMIT) then

begin

case GProtocol of

FTXMDM1KCRC:

ret := sio_FtXmodem1 KCRCTx(port,GxFname,xCallBack, 27) ;

FTXMDMCHK:

ret := sio_FtXmodemCheckSumTx(port,GxFname,xCallBack, 27);

FTXMDMCRC:

ret := sio_FtXmodem1 KCRCTx(port,GxFname,xCallBack, 27);

FTZMDM:

ret := sio_FtZmodemTx(port,GxFname,xCallBack, 27);

FTYMDM:

ret := sio_FtYmodemTx(port,GxFname,xCallBack, 27);

FTKERMIT:

ret := sio_FtKermitTx(port,GxFname,xCallBack, 27);

FTASCII :

ret := sio_FtASCIITx(port,GxFname,xCallBack, 27);

end;

end

else {FT _RECV}

begin

case GProtocol of

FTXMDM1KCRC:

ret := sio_FtXmodem1 KCRCRx(Port, GrFname,rCallBack, 27);

FTXMDMCHK:

ret := sio_FtXmodemCheckSumRx(Port, GrFname,rCallBack, 27);

FTXMDMCRC:

ret := sio_FtXmodem1 KCRCRx(Port, GrFname,rCallBack, 27);

FTZMDM:

begin

fname := GrFname;

ret := sio_FtZmodemRx(Port, fname,1,rCallBack, 27) ;

end;

FTYMDM:

begin

165

fname := GrFname;

ret := sio_FtYmodemRx(Port, fname , 1, rCallBack, 27);

end;

FTKERMIT:

begin

fname := GrFname;

ret := sio_FtKermitRx(Port, fname, 1, rCallBack, 27);

end;

FTASCII:

ret := sio_FtASCIIRx(Port, GrFname,rCallBack, 27,3);

end;

end;

if ret < 0 then { maybe something error}

ProcessRet(port, ret, GProtocol, GDirection)

else

if (GDirection = FT _XMIT) then

Appl ication .MessageBox(PChar('File Transmit OK') ,PChar(GszAppName),MB_OK)

else

Application.MessageBox(PChar('File Receive OK'),PChar(GszAppName),MB_OK);

FTransForm.UpdateFT;

end;

function xCallBack(xmitlen :Longlnt;buflen:Longlnt;buf:PChar;flen:Longlnt) :

Longlnt;stdcall ;

begin

if GftCancel then

begin

xCallBack := -1; { this will terminate file transfer}

Exit;

end;

FTransForm.RefreshDlg(xmitlen, flen, GxFname);

xCallBack := O;

end;

function rCallBack(recvlen:Longlnt;buflen:Longlnt;buf:PChar;flen:Longlnt):

Longlnt;stdcall;

166

begin

if GftCancel then

begin

rCallBack := -1 ; { this will terminate file transfer}

Exit;

end;

FTransFom1.RefreshDlg(recvlen, flen, GrFname);

rCallBack := O;

end;

procedure ProcessRet(port:Longlnt;ret:Longlnt;protocol:Word;direction:Word);

var

buf: string;

begin

if (ret <> SIOFT _WIN32FAIL) then

begin

case ret of

SIOFT _BADPORT:

buf := 'Port is not opened in advance';

SIOFT _ TIMEOUT:

if (direction = FT _RECV) then

buf := 'Receive timeout'

else

buf := 'Transmit Timeout' ;

SIOFT _FUNC:

if ((protocol= FT ASCII) And (direction= FT _RECV)) then

{ When downloading ASCII file,user must press "Cancel"

button to stop ASCII receive}

buf := 'Receive File Ok'

else

buf := 'User abort';

SIOFT_FOPEN :

buf := 'Can"t open file';

SIOFT_CANABORT:

but := 'Remote side abort';

SIOFT _BOARDNOTSUPPORT:

but:= 'Board does not support this function';

167

SIOFT_PROTOCOL, SIOFT_SKIP:

buf := 'File transfer error';

else

buf := 'File transfer error';

end;

Application.MessageBox(PChar(buf),PChar(GszAppName),MB_OK);

end

else

ShowSysErr(GszAppName);

end;

end.

168

8. MACHFORM.PAS

Ji' Add CNC Machine .~~

+ Add ,C Cancel Im. Property I

unit MachForm;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

StdCtrls, Buttons, ExtCtrls , FTransM;

type

TMachineForm = class(TForm)

Bevel1: TBevel;

EditNew: TEdit;

AddBtn : TBitBtn;

CancelBtn: TBitBtn ;

BitBtn1 : TBitBtn ;

procedure AddBtnClick(Sender: TObject) ;

procedure CancelBtnClick(Sender: TObject);

procedure BitBtn1 Click(Sender: TObject);

procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);

private

{ Private declarations}

public

{ Public declarations}

end;

var

MachineForm: TMachineForm;

169

implementation

uses Prop;

{$R *.DFM}

procedure TMachineForm.AddBtnClick(Sender: TObject);

begin

if (EditNew.Text <>")and

(FTransForm.Outline1 .Lines.lndexOf (EditNew.Text) < 0) then

begin

{add the string to both listboxes}

FTransForm.Outline1 .Lines.Add (EditNew.Text);

Close;

end;

end;

procedure TMachineForm.CancelBtnClick(Sender: TObject);

begin

Close;

end;

procedure TMachineForm.BitBtn1Click(Sender: TObject);

begin

Prope rtyForm .ShowModal;

end;

procedure TMachineForm.FormCloseQuery(Sender: TObject;

var CanClose: Boolean);

begin

EditNew.Text :="

end;

end.

170

9. MXTOOL.P AS
(***

MxTool.pas

-- Process PComm function return value

**)

unit MxTool;

interface

procedure ShowSysErr(title:string) ;

procedure MxShowError(title:string ;errcode :Long Int);

implementation

uses

Windows,Dialogs ,PComm,SysUtils ,Forms;

procedure MxShowError(title:string ;errcode :Long Int);

var

buf:string;

begin

if errcode <> SIO_WIN32FAIL then

begin

case errcode of

SIO_BADPORT:

buf := 'Port number is invalid or port is not opened in advance';

SIO_OUTCONTROL:

buf := 'This board does not support this function';

SIO_NODATA:

buf := 'No data to read';

SIO_OPENFAIL:

buf := 'No such port or port is occupied by other program';

S10 _RTS_BY _HW:

buf := 'RTS can"t be set because H/W flowctrl';

SIO_BADPARM:

171

buf := 'Bad parameter';

SIO_BOARDNOTSUPPORT:

buf := 'This board does not support this function';

SIO_ABORT_WRITE:

buf := 'Write has blocked, and user abort write';

SIO_WRITETIMEOUT:

buf := 'Write timeout has happened';

else

buf := 'Unknown Error:'+lntToStr(errcode);

end;

Application .MessageBox(PChar(buf),PChar(title),MB_OK or MB_ICONSTOP);

end

else

ShowSysErr(title);

end;

procedure ShowSysErr(title:string);

var

syserr :Longlnt;

lpMsgBuf:array[0 .. 79] of Char;

lang :Longlnt;

begin

syserr := GetlastError();

{MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAUL T)}

lang := (SUBLANG_DEFAULT shl 10) + LANG_NEUTRAL;

F ormatMessage(

);

FORMAT _MESSAGE_FROM_SYSTEM,

nil,

syserr,

lang,

@lpMsgBuf,

80,

nil

Application.MessageBox(lpMsg Buf,PChar(title),MB_ OK or MB_ICONSTOP);

end; end.

172

10. PCOMM.PAS
(***

PComm.pas

-- PComm Lib unit for Delphi (32 bit version).

**)

unit PComm;

interface

canst

{ baud rate setting }

B50 = $0;

B75 = $1;

B110 = $2;

B134 = $3;

B150 = $4;

B300 = $5;

B600 = $6;

B1200 = $7;

B1800 = $8 ;

B2400 = $9;

B4800 = $A;

B7200 = $B;

B9600 = $C;

B19200 = $D;

B38400 = $E;

B57600 = $F;

B115200 = $10;

B230400 = $11;

B460800 = $12;

B921600 = $13;

{ data bit}

BIT_5 = $0;

BIT_6=$1;

173

BIT_7 = $2;

BIT_8 = $3;

{ stop bit}

STOP_1 =$0;

STOP_2 = $4;

{ parity}

P _EVEN = $18;

P _ODD = $8;

P _SPC = $38;

P _MRK = $28;

P _NONE =$0;

{ modem control setting }

C_DTR = $1 ;

C_RTS = $2;

{ modem line status }

S_CTS = $1 ;

S_DSR = $2;

S_RI = $4;

S_CD = $8;

{ error code }

SIO_OK =0;

SIO _BAD PORT = -1; { No such port or port not opened }

SIO_OUTCONTROL = -2; { Can't control board}

SIO_NODATA = -4; { No data to read or no buffer to write}

SIO_OPENFAIL = -5; { No such port or port has opened}

SIO_RTS_BY _HW = -6; { Can't set because H/W flowctrl}

SIO_BADPARM = -7; { Bad parameter}

SIO_WIN32FAIL = -8; (* Call win32 function fail, please call}

GetlastError to get the error code *)

SIO_BOARDNOTSUPPORT = -9; { Board does not support this function}

SIO_FAIL = -10; { PComm function run result fail}

SIO _ABORT_ WRITE = -11 ; { Write has blocked, and user abort write }

SIO_WRITETIMEOUT = -12; { Write timeout has happened}

174

{ file transfer error code }

SIOFT_OK = O;

SIOFT _BAD PORT = -1; { No such port or port not open }

SIOFT _ TIMEOUT = -2 ; { Protocol timeout}

SIOFT _ABORT = -3; { User key abort}

SIOFT _FUNC = -4; { Fune return abort}

SIOFT _FOPEN = -5; { Can not open files}

SIOFT _ CANABORT = -6; { Ymodem CAN signal abort}

SIOFT_PROTOCOL = -7 ; { Protocol checking error abort}

SIOFT_SKIP = -8;{ Zmodem remote skip this send file}

SIOFT _LACKRBUF = -9; { Zmodem Recv-Buff size must>= 2K bytes}

SIOFT_WIN32FAIL = -10 ; (* OS fail}

GetlastError to get the error code *)

SIOFT _BOARDNOTSUPPORT = -11 ; { Board does not support this function}

type

lrqProc = procedure(port: Longint);stdcall ;

CallBackProc = function(len : Long int; rlen : Longint; buf: PChar; flen : Longint): Longint;stdcall ;

{Import routine from PComm.dll}

function sio_open(port: Longint): Longint; stdcall ;

function sio_close(port: Longint): Longint; stdcall ;

function sio_ioctl(port, baud, mode: Longint): Longint; stdcall ;

function sio_flowctrl(port, mode: Longint): Longint; stdcall;

function sio_flush(port, tune: Longint): Longint; stdcall;

function sio_DTR(port, mode: Longint): Longint; stdcall;

function sio_RTS(port, mode: Longint): Longint; stdcall ;

function sio_lctrl(port, mode: Longint): Longint; stdcall;

function sio_baud(port, speed: Longint): Longint; stdcall ;

function sio_getch(port: Longint): Longint; stdcall;

function sio_read(port: Longint; buf: PChar; len: Longint): Longint; stdcall;

function sio_linput(port: Longint; buf:PChar; len: Longint; term:Longint): Longint; stdcall;

function sio_putch(port, term: Longint): Longint; stdcall;

function sio_putb(port: Longint; buf:PChar; len: Longint): Longint; stdcall;

function sio_write(port: Longint; buf:PChar; len: Longint) : Longint; stdcall;

function sio_putb_x(port: Longint; buf:PChar; len: Longint; tick:Longint): Longint; stdcall;

175

function sio_putb_x_ex(port: Longint; buf:PChar; len: Longint; tms:Longint): Longint; stdcall;

function sio_lstatus(port: Longint): Longint; stdcall;

function sio_iqueue(port: Longint): Longint; stdcall;

function sio_oqueue(port: Longint): Longint; stdcall;

function sio_ Tx_hold(port: Longint): Long int; stdcall;

function sio_getbaud(port: Longint): Longint; stdcall;

function sio_getmode(port: Longint): Longint; stdcall;

function sio_getflow(port: Longint): Longint; stdcall;

function sio_data_status(port: Longint): Longint; stdcall;

function sio_term_irq(port: Longint; func: lrqProc; code: Byte): Longint; stdcall;

function sio_cnUrq(port: Longint; func: lrqProc; count: Longint): Longint; stdcall;

function sio_modem_irq(port: Longint; tune: lrqProc): Longint; stdcall;

function sio_break_irq(port: Long int; func: lrqProc): Longint; stdcall;

function sio_ Tx_empty_irq(port: Longint; func: lrqProc): Longint; stdcall;

function sio_break(port, time: Longint): Longint; stdcall;

function sio_view(port: Longint; buf: PChar; len: Longint): Longint; stdcall;

function sio_ TxlowWater(port, size: Long int): Longint; stdcall;

function sio_AbortWrite(port: Longint): Longint; stdcall;

function sio_AbortRead(port: Longint): Longint; stdcall;

function sio_SetWriteTimeouts(port, timeouts : Longint): Longint; stdcall;

function sio_GetWriteTimeouts(port: Longint; var TotalTimeouts:Longint): Longint; stdcall ;

function sio_SetReadTimeouts(port, TotalTimeouts, lntervalTimeouts: Longint): Longint; stdcall ;

function sio_GetReadTimeouts(port: Longint; var TotalTimeouts, lntervalTimeouts: Longint):

Longint; stdcall;

function sio_FtASCIITx(port:Longint; fname:PChar; func:CallBackProc; key:Longint): Longint;

stdcall;

function sio_FtASCIIRx(port:Longint; fname:PChar; func:CallBackProc; key:Longint; sec:Longint):

Longint; stdcall;

function sio_FtXmodemCheckSumTx(port:Longint; fname:PChar; func:CallBackProc;

key:Longint): Longint; stdcall;

function sio_FtXmodemCheckSumRx(port:Longint; fname:PChar; func:CallBackProc;

key:Longint) : Longint; stdcall;

function sio_FtXmodemCRCTx(port:Longint; fname:PChar; func:CallBackProc; key:Longint):

Longint; stdcall;

function sio_FtXmodemCRCRx(port:Longint; fname:PChar; func:CallBackProc; key:Longint):

Longint; stdcall;

function sio_FtXmodem 1 KCRCTx(port:Longint; fname:PChar; func:CallBackProc; key:Longint):

Longint; stdcall;

176

function sio_FtXmodem1 KCRCRx(port:Longint; fname:PChar; func:CallBackProc; key :Longint):

Longint; stdcall;

function sio_FtYmodemTx(port:Longint; fname:PChar; func:CallBackProc; key:Longint): Longint;

stdcall ;

function sio_FtYmodemRx(port:Longint; var fname:PChar;fno:Longlnt;func:CallBackProc;

key:Longint) : Longint; stdcall;

function sio_FtZmodemTx(port:Longint; fname:PChar; func:CallBackProc ; key :Longint) : Longint;

stdcall;

function sio_FtZmodemRx(port:Longint; var fname:PChar;fno:Longlnt;func:CallBackProc;

key:Longint): Longint; stdcall ;

function sio_FtKermitTx(port:Longint; fname:PChar; func:CallBackProc; key:Longint) : Longint;

stdcall ;

function sio_FtKermitRx(port:Longint; var

key:Longint) : Longint; stdcall ;

implementation

function sio_open; external 'PComm.dll' ;

function sio_close; external 'PComm.dll';

function sio_ioctl ; external 'PComm.dll';

function sio_flowctrl; external 'PComm.dll';

function sio_flush; external 'PComm.dll' ;

function sio_DTR; external 'PComm.dll' ;

function sio_RTS; external 'PComm.dll' ;

function sio_lctrl; external 'PComm.dll';

function sio_baud ; external 'PComm.dll';

function sio_getch; external 'PComm.dll';

function sio_read; external 'PComm.dll';

function sio_linput; external 'PComm.dll';

function sio_putch; external 'PComm.dll';

function sio_putb; external 'PComm.dll' ;

function sio_write; external 'PComm.dll';

function sio_putb_x; external 'PComm.dll';

function sio_putb_x_ex; external 'PCornm.dll';

function sio_lstatus; external 'PComm.dll';

function sio_iqueue; external 'PComm.dll';

function sio_oqueue; external 'PComm.dll';

function sio_ Tx_hold; external 'PComm.dll';

fname:PChar;fno:Longlnt;func:CallBackProc;

177

function sio_getbaud; external 'PComm.dll';

function sio_getmode; external 'PComm.dll';

function sio_getflow; external 'PCornrn.dll';

function sio_data_status; external 'PCornrn.dll';

function sio_term_irq; external 'PComm.dll';

function sio_cnt_irq; external 'PCornrn.dll';

function sio_rnodern_irq; external 'PCornrn.dll';

function sio_break_irq; external 'PCornrn.dll';

function sio_ Tx_ernpty_irq; external 'PCornrn.dll';

function sio_break; external 'PCornm.dll';

function sio_view; external 'PCornrn.dll';

function sio_ TxlowWater; external 'PCornrn.dll';

function sio_AbortWrite; external 'PCornrn.dll' ;

function sio_AbortRead; external 'PCornrn.dll';

function sio_SetWriteTirneouts; external 'PCornrn.dll';

function sio_GetWriteTirneouts; external 'PCornrn.dll';

function sio_SetReadTirneouts; external 'PCornrn.dll';

function sio_GetReadTirneouts ; external 'PCornrn.dll';

function sio_FtASCIITx; external 'PCornrn.dll';

function sio_FtASCIIRx; external 'PComrn.dll';

function sio_FtXrnodernCheckSurnTx; external 'PCornrn.dll';

function sio_FtXrnodernCheckSurnRx; external 'PCornrn.dll' ;

function sio_FtXmodernCRCTx; external 'PCornrn.dll';

function sio_FtXrnodernCRCRx; external 'PCornrn.dll';

function sio_FtXrnodem 1 KCRCTx; external 'PCornrn.dll';

function sio_FtXmodem1 KC RC Rx; external 'PComrn.dll';

function sio_FtYmodemTx; external 'PCornrn.dll';

function sio_FtYmodemRx; external 'PCornrn.dll';

function sio_FtZmodernTx; external 'PCornrn.dll';

function sio_FtZmodernRx; external 'PCornrn.dll';

function sio_FtKermitTx; external 'PCornrn.dll';

function sio_FtKermitRx; external 'PCornrn.dll';

end.

178

11. PROP.PAS

Me.chine, J Controller J

unit Prop;

interface

uses

He.as V F-4
Hitachi-S ieki SV 508
Matsuura
Mill Machine-mm
tv1ori-Seiki SV SOB
Turn Machine-4 Axis

Select

Me.chine Type:

Me.chine ID:

Number of.Axis

Mill Me.chine-mm

Light Duty

3

Max Feeare.te: 25000.00:mm/mln

Max E;pindle Speed: 10000.00 rpr;n

Windows , Messages , SysUtils , Classes, Graphics, Controls , Forms, Dialogs,

StdCtrls, ExtCtrls , Buttons , ComCtrls;

type

TPropertyForm = class(TForrn)

Properties: TPageControl;

Machine: TTabSheet;

Controller: TTabSheet;

ListBox2: TListBox;

Select: TBitBtn;

Bevel1: TBevel;

MachName: Tlabel;

ContType: Tlabel;

ZHOME: Tlabel;

TravRate: Tlabel;

Contlabel: Tlabel;

179

Machinelabel: Tlabel ;

ZHOMELabel : Tlabel;

TRAVRATELabel: Tlabel;

ListBox1: TListBox;

BitBtn1: TBitBtn;

MachType: Tlabel;

MaxFeed: Tlabel ;

MachTypelabel: Tlabel ;

MachDutylabel: Tlabel ;

NoAxislabel: Tlabel ;

MaxFeedlabel: Tlabel;

Bevel2: TBevel ;

NoAxis: Tlabel;

MaxSpinSpeed: Tlabel ;

MachineDuty: Tlabel;

MaxSpinlabel: Tlabel ;

procedure SelectClick(Sender: TObject);

procedure ListBox1 Click(Sender: TObject) ;

private

{ Private declarations}

public

{ Public declarations }

end ;

var

PropertyForm: TPropertyForrn ;

implementation

{$R *.DFM}

procedure TPropertyForrn.ListBox1 Click(Sender: TObject);

var

Listltem: Integer;

begin

180

{look at each item of the multiple selection listbox}

for Listltem := 0 to ListBox1 .Items.Count - 1 do

if ListBox1 .Selected [Listltem] then

begin

if Listltem = 0 then

begin

MachTypelabel.Caption := 'Haas VF-4 Mill';

MachDutylabel.Caption := 'Light Duty';

NoAxislabel.Caption := '4';

MaxFeedlabel.Caption := '25000.00 mm/min';

MaxSpinlabel.Caption := '10000.00 rpm';

end;

if Listltem = 1 then

begin

MachTypelabel.Caption := 'Hitachi Sieki Mill';

MachDutylabel.Caption := 'Light Duty';

NoAxislabel.Caption := '3' ;

MaxFeedlabel.Caption := '25000.00 mm/min';

MaxSpinlabel.Caption := '10000.00 rpm' ;

end;

if Listltem = 2 then

begin

MachTypelabel.Caption := 'Matsuura Mill' ;

MachDutylabel.Caption := 'Light Duty';

NoAxislabel.Caption := '3' ;

MaxFeedlabel.Caption := '25000.00 mm/min';

MaxSpinlabel.Caption := '10000.00 rpm';

end;

if Listltem = 3 then

begin

MachTypelabel.Caption := 'Mill Machine-mm';

MachDutylabel.Caption := 'Light Duty';

NoAxislabel.Caption := '3';

MaxFeedlabel.Caption := '25000.00 mm/min';

MaxSpinlabel.Caption := '10000.00 rpm';

181

end;

if Listltem = 4 then

begin

MachTypelabel.Caption := 'Mori-Sieki SV Mill';

MachDutylabel.Caption := 'Light Duty';

NoAxislabel.Caption := '3';

MaxFeedlabel.Caption := '25000.00 mm/min';

MaxSpinlabel.Caption := '10000.00 rpm';

end;

end;

end;

procedure TPropertyForm.SelectClick(Sender: TObject);

var

Listltem: Integer;

begin

{look at each item of the multiple selection listbox}

for Listltem := 0 to ListBox1 .Items.Count - 1 do

if ListBox2.Selected [Listltem] then

begin

if Listltem = 0 then

begin

Contlabel.Caption := 'ACROMATIC 2100';

Machinelabel.Caption := 'CINCINNATI';

ZHomelabel.Caption := '508.00mm';

TRAVRATELabel.Caption := '6350.00mm';

end;

if Listltem = 1 then

begin

Contlabel.Caption := 'ACROMATIC 850';

Machinelabel.Caption := 'CINCINNATI';

ZHomelabel.Caption := '508.00mm';

TRAVRATELabel.Caption := '6350.00mm';

end;

182

if Listltem = 2 then

begin

ContLabel.Caption := 'FADAL CNC 88';

MachineLabel.Caption := 'FADAL' ;

ZHomeLabel.Caption := '508.00mm' ;

TRAVRATELabel.Caption := '6350.00mm';

end;

if Listltem = 2 then

begin

ContLabel.Caption := 'MORI SEIKI' ;

MachineLabel.Caption := 'FANUC 3000C';

ZHomeLabel.Caption := '508.00mm';

TRAVRATELabel.Caption := '6350.00mm' ;

end ;

if Listltem = 3 then

begin

ContLabel.Caption := 'MILL TUTORIAL';

MachineLabel.Caption := 'FANUC TYPE';

ZHomeLabel.Caption := '508.00mm' ;

TRAVRATELabel.Caption := '250.00mm';

end ;

if Listltem = 4 then

begin

ContLabel.Caption := 'MILL TUTORIAL';

MachineLabel.Caption := 'FANUC TYPE' ;

ZHomeLabel.Caption := '508.00mm';

TRAVRATELabel.Caption := '250.00mm';

end;

if Listltem = 5 then

begin

ContLabel.Caption := 'HAAS CONTROL';

MachineLabel.Caption := 'HAAS';

ZHomeLabel.Caption := '508.00mm';

183

TRAVRATELabel.Caption := '6350.00mm';

end;

if Listltem = 6 then

begin

ContLabel.Caption := 'HEIDENHAIN TNC 145';

MachineLabel.Caption := WELLS INDEX';

ZHomeLabel.Caption := '508.00mm';

TRAVRATELabel.Caption := '6350 .00mm';

end;

end ;

end;

end.

184

12. READTHD.P AS
(***

ReadThd.pas

-- Read Thread for example program.

**)

unit ReadThd;

interface

uses Classes;

type

TReadThread = class(TThread)

private

m_buf : array [0 .. 511] of Char;

{ Private declarations}

protected

procedure Execute ; override;

procedure ShowData;

end;

implementation

uses Windows ,PComm,ExGlobal , FtransM;

{ TReadThread}

procedure TReadThread .ShowData;

var

lend: Longlnt;

begin

(*

When got any data.dump buffer to Edit window.

185

NOTE:

If any Null character in buffer,

characters after null can't be dumped

to Edit window.

*)

lend := Length(GhForm.Term.Text);

if(lend> 25000)then

begin

{ Edit Control buffer size limit}

GhForm.Term.Text := string(m_buf);

Exit;

end;

if(lend>25000)then

GhForm.Term.SelStart := lend;

GhForm.Term.Sellength := O;

GhForm.Term.SelText := string(m_buf);

end ;

procedure TReadThread.Execute;

var

len : Long Int;

begin

(* before close port,set GhExit to true to terminate

the read thread *)

while not GhExit do

begin

Sleep(10);

len := sio_read(GCommData .Port,@m_buf,511);

if (len>O) then

begin

m_buf[len] := Char(O);{null terminated string}

Synchron ize(ShowData);

end

end;

end;

end.

186

13. SIMPLEM.P AS

(***

SimpleM.pas

-- Main window for simple dumb terminal example program.

**)

unit SimpleM;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

Menus,ExGlobal, StdCtrls , Buttons, ExtCtrls, ToolWin, ComCtrls;

type

TSimpleForm = class(TExampleForm)

Panel1: TPanel;

SendButton: TSpeedButton;

procedure FormCreate(Sender: TObject);

procedure FormClose(Sender: TObject; var Action: TCloseAction);

187

procedure TermKeyPress(Sender: TObject; var Key: Char);

procedure ClosePort;

procedure cmClearClick(Sender: TObject);

function OpenPort:Boolean;

function PortSet:boolean;

procedure SendButtonClick(Sender: TObject);

private

Modified: Boolean;

public

end;

var

SimpleForm : TSimpleForm;

implementation

uses PComm,MxTool ,Config ,ReadThd, About, FTransM;

{$R *.DFM}

procedure TSimpleForm.FormCreate(Sender: TObject) ;

begin

GszAppName := 'Simple Demo' ;

Term.Enabled := False;

GbOpen := false;

GhForm := SimpleForm;

end;

function TSimpleForm.PortSet:boolean;

var

port : Longlnt;

mode : Longlnt;

hw,sw: Longlnt;

ret: Longlnt;

begin

port := GCommData.Port;

188

mode:= GCommData.Parity or GCommData.ByteSize or GCommData.StopBits;

PortSet := false;

if GCommData.Hw then

hw := 3

else

hw := O;

{ bit0 and bit1 }

if GCommData.Sw then

sw := 12 { bit2 and bit3 }

else

SW :=0;

ret := sio_ioctl(port,GCommData.BaudRate,mode);

if ret<>SIO_OK then

begin

MxShowError('sio_ioctl',ret);

Exit;

end;

ret := sio_flowctri(port,hw or sw) ;

if ret<>SIO_OK then

begin

MxShowError('sio_flowctrl' ,ret) ;

Exit;

end ;

ret := sio_DTR(port,lnteger(GCommData.Dtr)) ;

if ret<>SIO_OK then

begin

MxShowError('sio_DTR' ,ret);

Exit;

end;

if not GCommData.Hw then

begin

ret := sio_RTS(port,lnteger(GCommData.Rts));

if ret<>SIO_OK then

189

begin

MxShowError('sio_RTS',ret);

Exit;

end;

end;

ShowStatus();

PortSet := True;

end;

function TSimpleForm.OpenPort:Boolean;

var

ret:lnteger;

begin

OpenPort := false;

ret := sio_open(GCommData.Port);

if ret <> SIO_OK then

begin

MxShowError('sio_open' ,ret);

Exit;

end;

if PortSet() = false then

begin

sio_ close(GCommData. Port);

Exit;

end;

OpenPort := true;

GhExit := false;

TReadThread.Create(false);

GbOpen := true;

Show Status();

end;

procedure TSimpleForm.ClosePort;

begin

190

GhExit := true ;

sio_close (GCommData .Port);

GbOpen := False;

Show Status();

end;

procedure TSimpleForm.TermKeyPress(Sender: TObject; var Key: Char);

begin

sio_putch(GCommData.Port,lnteger(Key)) ;

// Key:=Char(0) ;

end;

procedure TSimpleForm.cmClearClick(Sender: TObject);

begin

Term.Clear();

end ;

procedure TSimpleForm.SendButtonClick(Sender: TObject) ;

begin

Term.Enabled :=True;

end;

procedure TSimpleForm.FormClose(Sender: TObject; var Action: TCloseAction) ;

begin

end;

end.

Ftra nsForm .PortClose .Click;

Close;

191

14. ACTIVEFORMIMPLl

~ • • 0 .. • • • ' T • •• 0 • • A • 0 • • ~ • • 0 0 • •• 0 •• • ~ • ,,. • • 0 ~ 0 "' • • • File Directory

' %
XDirecto,iea !; ~: 1: :~ ~.~~~]Li 1: d]::::: ii~): :~):;:::: l ~; FMe Hant4

...-------1
; :rcom optio
~ -i ;·i Port :

t :i Baud Rate :

H Pe.my :
! '.1 Date.Bits:

I Ell

Fl 1 ··· Mi
" .I Stop Bits I ElJ

...

0 OK [::: : ,· • Cancel
!: :: : :: , '

unit ActiveFormlmpl1;

interface

uses

¢
List f"lle• of Jype:

127 C\ ,
127 Documents and Settin l
127 Captainshaft ·
127 My Documents
127 Masters
127 FounTeraXR

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

ActiveX, AxCtrls, ActiveFormProj1_TLB, StdCtrls, Buttons, ExtCtrls,

FileCtrl, ComCtrls;

type

TActiveFormX = class(TActiveForm, IActiveFormX)

GroupBox2: TGroupBox;

chHw: TCheckBox;

chSw: TCheckBox;

GroupBox1: TGroupBox;

Label1 : Tlabel;

Label2: Tlabel;

Label3: Tlabel;

Label4: Tlabel;

Label5: Tlabel;

cbPort: TComboBox;

cbBaudRate: TComboBox;

192

cbParity: TComboBox;

cbByteSize: TComboBox;

cbStopBits: TComboBox;

OK: TBitBtn;

Cancel : TBitBtn;

GroupBox3: TGroupBox;

chDtr: TCheckBox;

chRts: TCheckBox;

cmSetting: TBitBtn ;

PageControl1: TPageControl;

TabSheet1: TTabSheet;

rgProtocol: TRadioGroup;

rgDirection: TRadioGroup;

FSetOk: TBitBtn ;

FSetCancel: TBitBtn;

TabSheet2: TTabSheet;

Label6: Tlabel;

ListFileslabel: Tlabel ;

Driveslabel : Tlabel ;

Dirlabel : Tlabel;

FileNamelabel: Tlabel;

DirBox: TDirectorylistBox;

DirDlgOK: TBitBtn ;

DirDlgCancel: TBitBtn ;

DriveBox: TDriveComboBox;

DirDlgPrev: TBitBtn ;

FilelistBox: TFilelistBox;

FileNameEdit: TEdit;

FilterComboBox: TFilterComboBox;

TabSheet3: TTabSheet;

TPort: Tlabel ;

TFileSize: Tlabel;

TProtocol: Tlabel;

Tlength: Tlabel;

TFileName: Tlabel;

Bevel1 : TBevel;

Bevel2: TBevel;

Bevel3: TBevel;

193

Bevel4: TBevel;

Bevel5: TBevel;

lbFname: Tlabel;

lbFSize: Tlabel;

lbxlen: Tlabel ;

lbPort: Tlabel;

lbProtocol: Tlabel;

TCancel: TBitBtn;

procedure FormCreate(Sender: TObject);

procedure chHwClick(Sender: TObject);

procedure OKClick(Sender: TObject);

procedure cmSettingClick(Sender: TObject);

function OpenPort:Boolean;

function PortSet:Boolean;

procedure FSetOkClick(Sender: TObject) ;

procedure CancelClick(Sender: TObject) ;

procedure ClosePort;

procedure FilelistBoxDblClick(Sender: TObject);

procedure XmitFile;

procedure RecvFile;

procedure FSetCancelClick(Sender: TObject);

procedure DirDlgCancelClick(Sender: TObject) ;

procedure DirDlgOKClick(Sender: TObject) ;

private

{ Private declarations}

DoTra: Boolean;

FEvents: IActiveFormXEvents;

procedure ActivateEvent(Sender: TObject);

procedure ClickEvent(Sender: TObject);

procedure CreateEvent(Sender: TObject);

procedure DblClickEvent(Sender: TObject);

procedure DeactivateEvent(Sender: TObject);

procedure DestroyEvent(Sender: TObject);

procedure KeyPressEvent(Sender: TObject; var Key: Char);

procedure PaintEvent(Sender: TObject);

procedure UpDateFT;

procedure UpDateGT;

194

procedure UpDateHt;

procedure UpDateKt;

protected

{ Protected declarations}

procedure DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage); override;

procedure EventSinkChanged(const EventSink: !Unknown); override;

function Get_Active: WordBool; safecall;

function Get_AutoScroll : WordBool; safecall;

function Get_AutoSize: WordBool; safecall;

function Get_AxBorderStyle: TxActiveFormBorderStyle; safecall;

function Get_BiDiMode: TxBiDiMode; safecall;

function Get_Caption: WideString; safecall;

function Get_Color: OLE_COLOR; safecall;

function Get_Cursor: Smallint; safecall;

function Get_DoubleBuffered: WordBool; safecall;

function Get_DropTarget: WordBool; safecall;

function Get_Enabled: WordBool; safecall;

function Get_Font: IFontDisp; safecall;

function Get_HelpFile: WideString; safecall;

function Get_KeyPreview: WordBool ; safecall;

function Get_PixelsPerlnch: Integer; safecall;

function Get_PrintScale: TxPrintScale; safecall ;

function Get_Scaled: WordBool; safecall;

function Get_Visible: WordBool; safecall;

procedure _Set_Font(const Value: IFontDisp); safecall;

procedure Set_AutoScroll(Value: WordBool) ; safecall;

procedure Set_AutoSize(Value: WordBool); safecall;

procedure Set_AxBorderStyle(Value: TxActiveFonnBorderStyle); safecall;

procedure Set_BiDiMode{Value: TxBiDiMode); safecall;

procedure Set_Caption(const Value: WideString); safecall;

procedure Set_Color(Value: OLE_COLOR); safecall;

procedure Set_Cursor(Value: Smallint); safecall;

procedure Set_DoubleBuffered{Value: WordBool); safecall;

procedure Set_DropTarget(Value: WordBool); safecall;

procedure Set_Enabled{Value: WordBool); safecall;

procedure Set_Font(var Value: IFontDisp); safecall;

procedure Set_HelpFile{const Value: WideString); safecall;

procedure Set_KeyPreview{Value: WordBool); safecall;

195

procedure Set_PixelsPerlnch(Value: Integer); safecall;

procedure Set_PrintScale(Value: TxPrintScale); safecall;

procedure Set_Scaled(Value: WordBool); safecall;

procedure Set_ Visible(Value: WordBool); safecall;

public

{ Public declarations }

procedure Initialize; override;

end;

var

ActiveXForm: TActiveFormX;

GProtocol: Word ;

GDirection : Word ;

GftCancel: boolean;

Gfhw: boolean;

Falcon : String;

GxFname : array[0 .. MAX_PATH] of Char;

GrFname : array[0 .. MAX_PATH] of Char;

GrPath : array[0 .. MAX_PATH] of Char;

GstrProtocol :array [0 .. 6] of string= (

);

'XModem-1 KCRC' ,'XModem-CheckSum' ,'XModem-CRC',

'ZModem' ,'YModem','Kermit' ,'ASCII'

implementation

uses ComObj, ComServ, ExGlobal , PComm, MxTool, FtPro;

{$R *.DFM}

{ T ActiveFormX }

procedure TActiveFormX.DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage);

begin

{ Define property pages here. Property pages are defined by calling

196

DefinePropertyPage with the class id of the page. For example,

DefinePropertyPage(Class_ActiveFormXPage); }

end;

procedure TActiveFormX.EventSinkChanged(const EventSink: !Unknown);

begin

FEvents := EventSink as IActiveFormXEvents;

end;

procedure T ActiveFo rmX. Initialize;

begin

inherited Initialize;

OnActivate := ActivateEvent;

OnClick := ClickEvent;

OnCreate := CreateEvent;

OnDblClick := DblClickEvent;

OnDeactivate := DeactivateEvent;

OnDestroy := DestroyEvent;

OnKeyPress := KeyPressEvent;

OnPaint := PaintEvent;

end;

function TActiveFormX.Get_Active : WordBool ;

begin

Result := Active ;

end;

function TActiveFormX.Get_AutoScroll : WordBool;

begin

Result := AutoScroll;

end;

function TActiveFormX.Get_AutoSize: WordBool;

begin

Result:= AutoSize;

end;

function TActiveFonnX.Get_AxBorderStyle: TxActiveFormBorderStyle;

197

begin

Result:= Ord(AxBorderStyle};

end;

function TActiveFormX.Get_BiDiMode: TxBiDiMode;

begin

Result:= Ord(BiDiMode};

end;

function TActiveFormX.Get_Caption: WideString;

begin

Result := WideString(Caption);

end;

function TActiveFormX.Get_Color: OLE_COLOR;

begin

Result:= OLE_COLOR(Color);

end;

function TActiveFormX.Get_ Cursor: Sma llint;

begin

Result := Smallint(Cursor) ;

end;

function TActiveFormX.Get_DoubleBuffered: WordBool;

begin

Result:= DoubleBuffered;

end;

function TActiveFormX.Get_DropTarget: WordBool;

begin

Result := DropTarget;

end;

function TActiveFormX.Get_Enabled: WordBool;

begin

Result:= Enabled;

end;

198

function TActiveFormX.Get_Font: IFontDisp;

begin

GetOleFont(Font, Result) ;

end;

function TActiveFormX.Get_HelpFile: WideString ;

begin

Result:= WideString(HelpFile);

end ;

function TActiveFormX.Get_KeyPreview: WordBool ;

begin

Result := KeyPreview;

end;

function TActiveFormX.Get_PixelsPerlnch: Integer;

begin

Result := PixelsPerlnch;

end ;

function TActiveFormX.Get_PrintScale: TxPrintScale;

begin

Result := Ord(PrintScale) ;

end ;

function TActiveFormX.Get_Scaled : WordBool ;

begin

Result:= Scaled;

end ;

function TActiveFormX.Get_Visible: WordBool;

begin

Result := Visible;

end;

procedure TActiveFormX._Set_Font(const Value: IFontDisp);

begin

199

SetOleFont(Font, Value);

end;

procedure TActiveFormX.Set_AutoScroll(Value: WordBool) ;

begin

AutoScroll := Value;

end;

procedure TActiveFormX.Set_AutoSize(Value: WordBool};

begin

AutoSize := Value ;

end;

procedure TActiveFormX.Set_AxBorderStyle(Value: TxActiveFormBorderStyle);

begin

AxBorderStyle := TActiveFormBorderStyle(Value) ;

end;

procedure TActiveFormX.Set_BiDiMode(Value: TxBiDiMode);

begin

BiDiMode := TBiDiMode(Value) ;

end;

procedure TActiveFormX.Set_Caption(const Value: WideString);

begin

Caption := TCaption(Value) ;

end;

procedure T ActiveFormX.Set_ Color(Value: OLE_ COLOR);

begin

Color:= TColor(Value);

end ;

procedure TActiveFormX.Set_Cursor(Value: Smallint);

begin

Cursor := TCursor(Value);

end;

200

procedure TActiveFormX.Set_DoubleBuffered(Value: WordBool);

begin

DoubleBuffered := Value;

end;

procedure TActiveFormX.Set_DropTarget(Value: WordBool);

begin

Drop Target:= Value;

end;

procedure TActiveFormX.Set_Enabled(Value: WordBool);

begin

Enabled := Value;

end;

procedure TActiveFormX.Set_Font(var Value : IFontDisp);

begin

SetOleFont(Font, Value);

end;

procedure TActiveFormX.Set_HelpFile(const Value : WideString);

begin

HelpFile := String(Value);

end;

procedure TActiveFormX.Set_KeyPreview(Value: WordBool);

begin

KeyPreview := Value;

end;

procedure TActiveFormX.Set_PixelsPerlnch(Value: Integer);

begin

PixelsPerlnch := Value;

end;

procedure TActiveFormX.Set_PrintScale(Value: TxPrintScale);

begin

PrintScale := TPrintScale(Value);

201

end;

procedure TActiveForrnX.Set_Scaled(Value: Word Boal);

begin

Scaled := Value;

end;

procedure TActiveForrnX.Set_ Visible(Value : WordBool);

begin

Visible := Value;

end;

procedure TActiveForrnX.ActivateEvent(Sender: TObject);

begin

if FEvents <> nil then FEvents.OnActivate;

end;

procedure TActiveFormX.ClickEvent(Sender: TObject);

begin

if FEvents <> nil then FEvents .OnClick;

end;

procedure TActiveFormX.CreateEvent(Sender: TObject);

begin

if FEvents <> nil then FEvents .OnCreate;

end;

procedure TActiveFormX.DblClickEvent(Sender: TObject);

begin

if FEvents <> nil then FEvents.OnDblClick;

end;

procedure TActiveForrnX.DeactivateEvent(Sender: TObject);

begin

if FEvents <> nil then FEvents.OnDeactivate;

end;

procedure T ActiveForrnX.DestroyEvent(Sender: TObject);

202

begin

if FEvents <> nil then FEvents .OnDestroy;

end ;

procedure TActiveFormX.KeyPressEvent(Sender: TObject; var Key: Char);

var

TempKey: Smallint;

begin

TempKey := Smallint(Key);

if FEvents <> nil then FEvents .OnKeyPress(TempKey);

Key := Char(TempKey);

end ;

procedure TActiveFormX.PaintEvent(Sender: TObject);

begin

if FEvents <> nil then FEvents .OnPaint;

end ;

procedure TActiveFormX.FormCreate(Sender: TObject);

var

i:Word ;

begin

DoTra := false;

UpDateFT;

for i:=1 to 256 do

cbPort.ltems.Add('COM'+lntToStr(i));

with GCommData do

begin

Port := 1;

ibaudrate := 14;

iparity := O;

ibytesize := 3;

istopbits := O;

BaudRate := B38400;

Parity := P _NONE;

ByteSize := BIT _8;

StopBits := STOP_ 1;

Hw := false;

203

Sw := false;

Dtr := true;

Rts := true;

end;

DirBox.Filelist := FilelistBox;

{This diplay the current directory as the caption of a label control}

DirBox.Dirlabel := Dirlabel;

{The displays the current drive so that the directory list box auomatically

updates its tree}

DriveBox.Dirlist := DirBox;

{This assign the edit objects name to the FilelistBox's FileEdit property}

FilelistBox.FileEdit := FileNameEdit;

end ;

procedure TActiveFormX.UpDateFT;

begin

cbPort.Enabled := DoTra;

cbBaudRate.Enabled := DoTra;

cbParity.Enabled := DoTra ;

cbByteSize .Enabled := DoTra ;

cbStopBits.Enabled := DoTra;

chSw.Enabled := DoTra ;

chHw.Enabled := DoTra ;

chDtr.Enabled := DoTra ;

chRts .Enabled := DoTra;

OK.Enabled := DoTra;

Cancel.Enabled := DoTra;

PageControl1 .Enabled := DoTra;

TabSheet1 .Enabled := DoTra;

FSetOk.Enabled := DoTra;

FSetCancel.Enabled := DoTra;

DirDlgOK.Enabled := DoTra;

DirDlgCancel.Enabled := DoTra;

DirDlgPrev.Enabled := DoTra;

TCancel.Enabled := DoTra;

end;

procedure TActiveFormX.chHwClick{Sender: TObject};

204

begin

chRts .Enabled := Gfhw;

Gfhw := Not Gfhw;

end ;

procedure T ActiveFo rmX .cmSetti ngClick(Sender: TObject) ;

begin

UpDateGT;

with GCommData do

begin

cbPort.ltemlndex := Port-1;

cbBaudRate .ltemlndex := ibaudrate;

cbParity .Item Index := iparity ;

cbByteSize.ltemlndex := ibytesize;

cbStopBits .ltemlndex := istopbits ;

chHw.Checked := Hw;

chSw.Checked := Sw;

chRts.Checked := Rts;

chDtr.Checked := Dtr;

Gfhw := Hw;

chRts.Enabled := not Gfhw;

{ disable com port setting when opend}

cbPort.Enabled := not GbOpen ;

end;

end ;

procedure TActiveFormX.UpDateGT;

begin

cmSetting.Enabled := not DoTra ;

cbPort.Enabled := not DoTra ;

cbBaudRate.Enabled :=not DoTra;

cbParity.Enabled := not DoTra ;

cbByteSize.Enabled := not DoTra;

cbStopBits.Enabled := not DoTra;

chSw.Enabled := not DoTra;

chHw.Enabled := not DoTra;

chDtr.Enabled := not DoTra;

205

chRts.Enabled := not DoTra;

OK.Enabled := not DoTra;

Cancel.Enabled := not DoTra;

PageControI1.Enabled := DoTra;

TabSheet1 .Enabled := DoTra;

FSetOk.Enabled := DoTra;

FSetCancel.Enabled := DoTra;

end;

procedure TActiveFormX.OKClick(Sender: TObject);

var

W:Word;

begin

with GCommData do

begin

Port := cbPort.ltemlndex + 1;

ibaudrate := cbBaudRate.ltemlndex;

iparity := cbParity.ltemlndex;

ibytesize := cbByteSize.ltemlndex;

istopbits := cbStopBits.ltemlndex;

BaudRate := GBaudTable[ibaudrate];

ByteSize := GByteSizeTable[ibytesize);

Parity := GParityTable[iparity];

StopBits := GStopBitsTable[istopbits];

Hw := chHw.Checked;

Sw := chSw.Checked;

Rts := chRts.Checked;

Dtr := chDtr.Checked;

end;

begin

W:=MessageDlg('Settings Correct?', mtConfirmation,[mbYes, mbNo], O);

case Wof

mrYes: begin

Open Port();

PageControl1.ActivePage := TabSheet1;

end;

mrNo: modalresult := mrcancel;

206

end;

end;

end;

function TActiveFormX.OpenPort:Boolean;

var

ret:lnteger;

begin

OpenPort := false ;

ret := sio_open(GCommData.Port);

if ret <> SIO_OK then

begin

MxShowError('sio_open' ,ret);

Exit;

end;

if PortSet() = false then

begin

sio_close(GCommData .Port) ;

Exit;

end;

OpenPort := true;

GhExit := false;

//TReadThread .Create(false);

GbOpen := true ;

//Switch Menu() ;

UpDateHt;

end ;

procedure T ActiveFormX.U pDateHt;

begin

cmSetting .Enabled := DoTra;

cbPort.Enabled := DoTra;

cbBaudRate.Enabled := DoTra;

cbParity.Enabled := DoTra;

cbByteSize.Enabled := DoTra;

cbStopBits.Enabled := DoTra;

chSw.Enabled := DoTra;

chHw.Enabled := DoTra;

207

chDtr.Enabled := DoTra;

chRts .Enabled := DoTra;

OK.Enabled := DoTra;

Cancel.Enabled := not DoTra;

PageControl1.Enabled := not DoTra ;

TabSheet1 .Enabled := not DoTra;

FSetOk.Enabled := not DoTra;

FSetCancel.Enabled := not DoTra ;

end ;

procedure TActiveFormX.ClosePort;

begin

sio_close (GCommData .Port);

GbOpen := False;

end;

function TActiveFormX.PortSet:boolean;

var

port : Longlnt;

mode : Longlnt;

hw,sw : Longlnt;

ret : Long Int;

begin

port := GCommData.Port;

mode := GCommData .Parity or GCommData.ByteSize or GCommData .StopBits ;

PortSet := false ;

if GCommData.Hw then

hw := 3 { bit0 and bit1 }

else

hw := 0;

if GCommData.Sw then

sw := 12 { bit2 and bit3 }

else

SW :=0;

ret := sio_ioctl(port,GCommData.BaudRate,mode);

208

if ret<>SIO_OK then

begin

MxShowError('sio_ioctl' ,ret);

Exit;

end;

ret := sio_flowctr1(port,hw or sw);

if ret<>SIO_OK then

begin

MxShowError('sio_flowctrl',ret);

Exit;

end;

ret := sio_DTR(port,lnteger(GCommData.Dtr)) ;

if ret<>SIO_OK then

begin

MxShowError('sio_DTR',ret) ;

Exit;

end ;

if not GCommData .Hw then

begin

ret := sio_RTS(port,lnteger(GCommData.Rts));

if ret<>SIO_OK then

begin

MxShowError('sio_RTS',ret) ;

Exit;

end;

end;

PortSet := True;

end;

procedure TActiveFormX.FSetOkClick(Sender: TObject);

begin

//Declare which protocol to use.

GProtocol := rgProtocol.ltemlndex;

//Declare whether to send or to receive file.

209

GDirection := rgDirection.ltemlndex;

//Update of the buttons and sheets.

if rgDirection.ltemlndex = FT_XMIT then

//Access the the second page of Tab.

UpDateKt

else

UpDateKt;

end;

procedure TActiveFonnX.UpDateKt;

begin

PageControl1.ActivePage := TabSheet2 ;

DirDlgOk.Enabled := not DoTra;

DirDlgCancel.Enabled := not DoTra;

DirDlgPrev.Enabled := not DoTra;

end;

procedure TActiveFormX.CancelClick(Sender: TObject);

begin

Close Port();

UpDateGT;

end;

procedure TActiveFonnX.FilelistBoxDblClick(Sender: TObject);

begin

if rgDirection.ltemlndex = FT _XMIT then

XmitFile

end;

procedure TActiveFonnX.FSetCancelClick(Sender: TObject);

begin

GftCancel :=true;

end;

procedure TActiveFonnX.DirDlgCancelClick(Sender: TObject);

begin

GftCancel :=true;

end;

A endix

210

procedure TActiveFormX.XmitFile;

begin

{Declare Falcon using the FileNameEdit string}

Falcon := FileNameEdit.Text;

{lstrcpy copies the entire contents of one string into another string .

Either string, instead of being a "real" string , can also be merely a pointer to a string instead.

The target string must already have enough space to receive the source string's contents .

The function also will copy a terminating null character into the target string}

lstrcpy(GxFname,PChar(Falcon));

{If user press 'Cancel' button which on status dialog,

'GftCancel' flag will be set to true.This will let callback

function to return -1 to terminate file transfer.}

GftCancel := false ;

TFtProC.Create(false);

PageControl1.ActivePage := TabSheet3 ;

end;

procedure TActiveFormX.RecvFile ;

begin

GftCancel := false ;

TFtProc .Create(fa lse) ;

end ;

procedure TActiveFormX.DirDlgOKClick(Sender: TObject);

begin

Falcon := FileNameEdit.Text;

{Declare Falcon using the FileNameEdit string}

if rgDirection .ltemlndex = FT_XMIT then

XmitFile

else

begin

if (GProtocol=FTZMDM) or (GProtocol=FTYMDM) or (GProtocol=FTKERMIT)then

begin

lstrcpy(GrPath,PChar(D irBox.Directory));

Set Cu rrentDi r(GrPath)

end

211

else

begin

lstrcpy(GrFname,PChar(Falcon));

end;

PageControl1 .ActivePage :=TabSheet3;

RecvFile;

end;

{lstrcpy copies the entire contents of one string into another string.

Either string, instead of being a "real" string, can also be merely a pointer to a string instead.

The target string must already have enough space to receive the source string's contents.

The function also will copy a terminating null character into the target string}

{If user press 'Cancel' button which on status dialog,

'GftCancel' flag will be set to true.This will let callback

function to return -1 to terminate file transfer.}

GftCancel := false;

TFtProC.Create(false);

PageControl1 .ActivePage := TabSheet3;

end;

initialization

T ActiveFormFactory .Create(

Com Server,

TActiveFormControl,

T ActiveFormX,

Class_ActiveFormX,

1,

OLEMISC_SIMPLEFRAME or OLEM ISC_ACTSLIKELABEL,

tmApa rtment);

end.

212

15. ACTIVEFORMPROJl TLB

unit ActiveFormProj1 _ TLB;

II** II

//WARNING

II----- II

II

II The types declared in this file were generated from data read from a II

II Type Library. If this type library is explicitly or indirectly (via II

II another type library referring to this type library) re-imported, or the II

II 'Refresh' command of the Type Library Editor activated while editing the II

II Type Library, the contents of this file will be regenerated and all //

II manual modifications will be lost. II

//** II

II PASTLWTR : $Revision: 1.11.1.63 $

II File generated on 10126101 11 :38 :09 PM from Type Library described below.

II** II

II Type Lib : C:\CD\ActiveFormProj1 .tlb

1111D\LCID: {A70D614D-C9F6-11 D5-91 DF-00O0E85EFBBA}\0

II Helpfile:

II HelpString: ActiveFormProj1 Library

II Version: 1.0

II ** II

interface

uses Windows, ActiveX, Classes, Graphics, OleCtrls, StdVCL;

II * ***** **** ***** ****** *** ***** ********* **************** ******* ******** //

II GUIDS declared in the Typelibrary. Following prefixes are used: II

II Type Libraries : LIBID_xxxx II

II CoClasses : CLASS_xxxx II

II DISPlnterfaces : D11D_xxxx II

II Non-DISP interfaces: 11D_xxxx II

II * ***** **** ***** ********* ***I I

213

canst

LIBID_ActiveFormProj1: TGUID = '{A70D614D-C9F6-11 D5-91 DF-0000E85EFBBA}';

11D_IActiveFormX: TGUID = '{A70D614E-C9F6-11 D5-91 DF-0000E85EFBBA}';

DIID_IActiveFormXEvents: TGUID = '{A70D6150-C9F6-11 D5-91 DF-0000E85EFBBA}';

CLASS_ActiveFormX: TGU ID = '{A70D6152-C9F6-11 D5-91 DF-0000E85EFBBA}';

II * ********* ***** ********* ***** ********* ***** ************** **** ******** //

II Declaration of Enumerations defined in Type Library II

// ********** ***** **I I

II TxActiveFormBorderStyle constants

type

TxActiveFormBorderStyle = TOleEnum;

canst

afbNone = $00000000;

afbSingle = $00000001;

afbSunken = $00000002;

afbRaised = $00000003;

II TxPrintScale constants

type

TxPrintScale = TOleEnum;

canst

poNone = $00000000;

poProportional = $00000001;

poPrintToFit = $00000002;

II TxMouseButton constants

type

TxMouseButton = TOleEnum;

canst

mbleft = $00000000;

mbRight = $00000001;

mbMiddle = $00000002;

II TxBiDiMode constants

type

TxBiDiMode = TOleEnum;

canst

214

bdleftToRight = $00000000;

bdRightToleft = $00000001;

bdRightToleftNoAlign = $00000002;

bdRightToleftReadingOnly = $00000003;

type

// ************************ *** //

// Forward declaration of interfaces defined in Type Library //

II ***************************** ** //

IActiveFormX = interface;

IActiveFormXDisp = dispinterface;

IActiveFormXEvents = dispinterface;

// ***II

II Declaration of CoClasses defined in Type Library //

// (NOTE: Here we map each CoClass to its Default Interface) II

// ************************ ***** ************** ************************* * //

ActiveFormX = IActiveFormX;

// * ***** **** ************** ***** **************************** ************/I

// Interface : IActiveFonnX

// Flags: (4416) Dual OleAutomation Dispatchable

// GUID: {A70D614E-C9F6-11 D5-91 DF-0000E85EFBBA}

//***//

IActiveFonnX = interface(IDispatch)

['{A70D614E-C9F6-11 D5-91 DF-0000E85EFBBA}']

function Get_Visible: WordBool; safecall;

procedure Set_ Visible(Value: Word Boal); safecall;

function Get_AutoScroll: WordBool; safecall;

procedure Set_AutoScroll(Value: WordBool); safecall;

function Get_AutoSize: WordBool; safecall;

procedure Set_AutoSize(Value: WordBool); safecall;

function Get_AxBorderStyle: TxActiveFormBorderStyle; safecall;

procedure Set_AxBorderStyle(Value: TxActiveFonnBorderStyle); safecall;

function Get_Caption: WideString; safecall;

procedure Set_Caption(const Value: WideString); safecall;

215

function Get_Color: OLE_COLOR; safecall;

procedure Set_Color(Value: OLE_COLOR); safecall ;

function Get_Font: IFontDisp; safecall;

procedure _Set_Font(const Value: IFontDisp); safecall ;

procedure Set_Font(var Value: IFontDisp); safecall;

function Get_KeyPreview: WordBool; safecall;

procedure Set_KeyPreview(Value: WordBool); safecall ;

function Get_PixelsPerlnch: Integer; safecall ;

procedure Set_PixelsPerlnch(Value: Integer); safecall;

function Get_PrintScale: TxPrintScale; safecall ;

procedure Set_PrintScale(Value: TxPrintScale); safecall ;

function Get_Scaled : WordBool; safecall;

procedure Set_Scaled(Value: WordBool); safecall;

function Get_Active: WordBool; safecall;

function Get_DropTarget: WordBool; safecall;

procedure Set_DropTarget(Value: WordBool); safecall ;

function Get_HelpFile: WideString; safecall;

procedure Set_HelpFile(const Value: WideString) ; safecall ;

function Get_DoubleBuffered : WordBool ; safecall;

procedure Set_DoubleBuffered(Value: WordBool); safecall ;

function Get_Enabled: WordBool; safecall;

procedure Set_Enabled(Value: WordBool) ; safecall ;

function Get_BiDiMode: TxBiDiMode; safecall ;

procedure Set_BiDiMode(Value: TxBiDiMode); safecall;

function Get_Cursor: Smallint; safecall;

procedure Set_Cursor(Value: Smallint); safecall;

property Visible: WordBool read Get_ Visible write Set_ Visible ;

property AutoScroll: WordBool read Get_AutoScroll write Set_AutoScroll;

property AutoSize: WordBool read Get_AutoSize write Set_AutoSize;

property AxBorderStyle: TxActiveFormBorderStyle read Get_AxBorderStyle write

Set_AxBorderStyle;

property Caption: WideString read Get_Caption write Set_Caption;

property Color: OLE_COLOR read Get_Color write Set_Color;

property Font: IFontDisp read Get_Font write _Set_Font;

property KeyPreview: WordBool read Get_KeyPreview write Set_KeyPreview;

property PixelsPerlnch: Integer read Get_PixelsPerlnch write Set_PixelsPerlnch;

property PrintScale: TxPrintScale read Get_PrintScale write Set_PrintScale;

property Scaled: WordBool read Get_Scaled write Set_Scaled;

216

property Active: WordBool read GeLActive;

property Drop Target: WordBool read Get_DropTarget write Set_DropTarget;

property HelpFile: WideString read Get_HelpFile write Set_HelpFile;

property DoubleBuffered : WordBool read Get_DoubleBuffered write Set_DoubleBuffered;

property Enabled : WordBool read Get_Enabled write Set_Enabled;

property BiDiMode: TxBiDiMode read Get_BiDiMode write Set_BiDiMode;

property Cursor: Smallint read Get_Cursor write SeLCursor;

end;

II***//

// Displntf: IActiveFormXDisp

// Flags: (4416) Dual OleAutomation Dispatchable

// GUID: {A70D614E-C9F6-11 D5-91 DF-0000E85EFBBA}

// * *********************** ***I I

IActiveFormXDisp = dispinterface

['{A70D614E-C9F6-11 D5-91 DF-0000E85EFBBA}1

property Visible: WordBool dispid 1;

property AutoScroll : WordBool dispid 2;

property AutoSize: WordBool dispid 3;

property AxBorderStyle: TxActiveFormBorderStyle dispid 4 ;

property Caption : WideString dispid -518;

property Color: OLE_COLOR dispid -501 ;

property Font: IFontDisp dispid -512;

property KeyPreview: WordBool dispid 5;

property PixelsPerlnch: Integer dispid 6;

property PrintScale: TxPrintScale dispid 7;

property Scaled : WordBool dispid 8;

property Active: WordBool readonly dispid 9;

property Drop Target: WordBool dispid 10;

property HelpFile: WideString dispid 11 ;

property DoubleBuffered: WordBool dispid 12;

property Enabled : WordBool dispid -514;

property BiDiMode: TxBiDiMode dispid 13;

property Cursor: Smallint dispid 14;

end;

I I * ***** **** ************** ***I I

// Displntf: IActiveFormXEvents

217

// Flags: (0)

// GUID: {A70D6150-C9F6-11 D5-91 DF-0000E85EFBBA}

I I * **************************** **I I

IActiveFonnXEvents = dispinterface

r{A70D6150-C9F6-11D5-91 DF-0000E85EFBBA}1

procedure OnActivate; dispid 1;

procedure OnClick; dispid 2;

procedure OnCreate; dispid 3;

procedure OnDblClick ; dispid 4;

procedure OnDestroy; dispid 5;

procedure OnDeactivate; dispid 6;

procedure OnKeyPress(var Key: Smallint); dispid 1 0;

procedure OnPaint; dispid 15;

end ;

I I ***II

// OLE Control Proxy class declaration

II Control Name : TActiveFonnX

II Help String : ActiveFormX Control

II Default Interface: IActiveFormX

II Def. lntf. DISP? : No

II Event Interface: IActiveFormXEvents

II TypeFlags : (34) CanCreate Control

I I * ***** **** *** ** **** ***** ***** ********* *******************************I I

A endh

T ActiveFormXOnKeyPress = procedure(Sender: TObject; var Key: Smallint) of object;

T ActiveFormX = class(TOleControl)

private

FOnActivate: TNotifyEvent;

FOnClick: TNotifyEvent;

FOnCreate: TNotifyEvent;

FOnDblClick: TNotifyEvent;

FOnDestroy: TNotifyEvent;

FOnDeactivate: TNotifyEvent;

FOnKeyPress: TActiveFormXOnKeyPress;

FOnPaint: TNotifyEvent;

Flntf: IActiveFormX;

218

function GetControllnterface: IActiveFormX;

protected

procedure CreateControl;

procedure lnitControlData; override;

public

property Controllnterface: IActiveFormX read GetControllnterface;

property Visible: WordBool index 1 read GetWordBoolProp write SetWordBoolProp;

property Active: WordBool index 9 read GetWordBoolProp;

property Drop Target: WordBool index 10 read GetWordBoolProp write SetWordBoolProp;

property HelpFile: WideString index 11 read GetWideStringProp write SetWideStringProp;

property DoubleBuffered: WordBool index 12 read GetWordBoolProp write SetWordBoolProp;

property Enabled: WordBool index -514 read GetWordBoolProp write SetWordBoof Prop;

property BiDiMode: TOleEnum index 13 read GetTOleEnumProp write SetTOleEnumProp;

published

property AutoScroll: WordBool index 2 read GetWordBoolProp write SetWordBoolProp stored

False;

property AutoSize: WordBool index 3 read GetWordBoolProp write SetWordBoolProp stored

False;

property AxBorderStyle: TOleEnum index 4 read GetTOleEnumProp write SetTOleEnumProp

stored False;

property Caption: WideString index -518 read GetWideStringProp write SetWideStringProp

stored False;

property Color: TColor index -501 read GetTColorProp write SetTColorProp stored False;

property Font: TFont index -512 read GetTFontProp write SetTFontProp stored False;

property KeyPreview: WordBool index 5 read GetWordBoolProp write SetWordBoolProp stored

False;

property PixelsPerlnch: Integer index 6 read GetlntegerProp write SetlntegerProp stored False;

property PrintScale: TOleEnum index 7 read GetTOleEnumProp write SetTOleEnumProp

stored False;

property Scaled: WordBool index 8 read GetWordBoolProp write SetWordBoolProp stored

False;

property Cursor: Smallint index 14 read GetSmallintProp write SetSmallintProp stored False;

property OnActivate: TNotifyEvent read FOnActivate write FOnActivate;

property OnClick: TNotifyEvent read FOnClick write FOnClick;

property OnCreate: TNotifyEvent read FOnCreate write FOnCreate;

property OnDblClick: TNotifyEvent read FOnOblClick write FOnDblClick;

property OnDestroy: TNotifyEvent read FOnDestroy write FOnDestroy;

property OnDeactivate: TNotifyEvent read FOnDeactivate write FOnDeactivate;

219

property OnKeyPress: TActiveFormXOnKeyPress read FOnKeyPress write FOnKeyPress;

property OnPaint: TNotifyEvent read FOnPaint write FOnPaint;

end;

procedure Register;

implementation

uses ComObj;

procedure TActiveFormX.lnitControlData;

const

CEventDisplDs: array [0 .. 7) of DWORD = (

$00000001,$00000002,$00000003,$00000004,$00000005,$00000006,

$0000000A, $0000000F);

CTFontlDs: array [0 .. 0) of DWORD = (

$FFFFFE00);

CControlData: TControlData = (

Class ID: '{A70D6152-C9F6-11 D5-91 DF-0000E85EFBBA}';

EventllD: '{A 70D6150-C9F6-11 D5-91 DF-0000E85EFBBA}';

EventCount: 8;

EventDisplDs: @CEventDisplDs ;

LicenseKey: nil;

Flags: $0000001 D;

Version: 300;

FontCount: 1;

FontlDs: @CTFontlDs);

begin

ControlData := @CControlData;

end;

procedure TActiveFormX.CreateControl;

procedure DoCreate;

begin

Flntf := IUnknown{OleObject) as IActiveFormX;

end;

220

begin

if Flntf = nil then DoCreate;

end;

function TActiveFormX.GetControllnterface: IActiveFormX;

begin

CreateControl;

Result := Flntf;

end;

procedure Register;

begin

RegisterComponents('ActiveX',(TActiveFormX]);

end;

end.

221

· A ffl~

16. ACTIVEFORMPROJl.IDL

uuid(A70D614D-C9F6-11 D5-91 DF-0000E85EFBBA),

version(1 .0),

helpstring("ActiveFormProj1 Library"),

control

library ActiveFormProj1

{

importlib("stdole2.tlb");

importlib("STDVCL40.DLL");

uuid(A70D614E-C9F6-11D5-91 DF-0000E85EFBBA),

version(1 .0),

helpstring("Dispatch interface for ActiveFormX Control"),

dual,

olea utomation

interface IActiveFormX: !Dispatch

{

[propget, id(0x00000001), hidden]

HRESUL T _stdcall Visible([out, retval] VARIANT_BOOL * Value);

[propput, id(0x00000001), hidden]

HRESULT _stdcall Visible([in] VARIANT_BOOL Value);

[propget, id(0x00000002)]

HRESUL T _stdcall AutoScroll([out, retval] VARIANT_BOOL * Value);

[propput, id(0x00000002)]

HRESULT _stdcall AutoScroll([in] VARIANT_BOOL Value);

[propget, id(0x00000003)]

HRESULT _stdcall AutoSize([out, retval] VARIANT_BOOL *Value);

[propput, id(0x00000003)]

HRESUL T _stdcall AutoSize([in] VARIANT _BOOL Value);

[propget, id(0x00000004)]

HRESUL T _stdcall AxBorderStyle([out, retval] TxActiveFormBorderStyle * Value);

[propput, id(0x00000004)]

222

HRESUL T _stdcall AxBorderStyleWn] TxActiveFormBorderStyle Value);

[propget, id(0xFFFFFDFA)]

HRESUL T _stdcall Caption([out, retval] BSTR * Value);

[propput, id(0xFFFFFDFA)]

HRESUL T _stdcall Caption([in] BSTR Value);

[propget, id(0xFFFFFE0B)]

HRESULT _stdcall Color([out, retval] OLE_COLOR *Value) ;

[propput, id(0xFFFFFE0B)]

HRESUL T _stdcall Color([in] OLE_COLOR Value);

[propget, id(0xFFFFFE00)]

HRESUL T _stdcall Font([out, retval) IFontDisp ** Value);

[propput, id(0xFFFFFE00)]

HRESUL T _stdcall Font([in] IFontDisp *Value);

[propputref, id(0xFFFFFE00)]

HRESUL T _stdcall FontWn, out] IFontDisp **Value);

[propget, id(0x00000005)]

HRESULT _stdcall KeyPreview([out, retval] VARIANT_BOOL *Value);

[propput, id(0x00000005)]

HRESUL T _stdcall KeyPreview([in] VARIANT _BOOL Value) ;

[propget, id(0x00000006)]

HRESUL T _stdcall PixelsPerlnch([out, retval] long* Value) ;

[propput, id(0x00000006)]

HRESUL T _stdcall PixelsPerlnch([in] long Value);

[propget, id(0x00000007)]

HRESUL T _stdcall PrintScale([out, retval] TxPrintScale *Value);

[propput, id(0x00000007)]

HRESUL T _stdcall PrintScale([in] TxPrintScale Value);

[propget, id(0x00000008)]

HRESULT _stdcall Scaled([out, retval] VARIANT_BOOL *Value);

[propput, id(0x00000008)]

HRESUL T _stdcall Scaled([in] VARIANT _BOOL Value);

[propget, id(0x00000009), hidden]

HRESUL T _stdcall Active([out, retval] VARIANT _BOOL *Value);

[propget, id(0x00O0000A), hidden]

HRESUL T _stdcall DropTarget([out, retval] VARIANT _BOOL *Value);

[propput, id(0x00O0000A), hidden]

HRESUL T _stdcall DropTarget([in] VARIANT _BOOL Value);

[propget, id(0x0000000B), hidden]

223

, , *' • A endix ·

HRESUL T _stdcall HelpFile([out, retval] BSTR *Value);

[propput, id(0x0000000B), hidden]

HRESUL T _stdcall HelpFile([in] BSTR Value);

[propget, id(0x0000000C), hidden]

HRESUL T _stdcall DoubleBuffered([out, retval] VARIANT _BOOL *Value);

[propput, id(0x0000000C), hidden]

HRESUL T _stdcall DoubleBuffered([in] VARIANT _BOOL Value);

[propget, id(0xFFFFFDFE), hidden]

HRESULT _stdcall Enabled([out, retval] VARIANT_BOOL *Value);

[propput, id(0xFFFFFDFE), hidden]

HRESULT _stdcall Enabled([in] VARIANT_BOOL Value);

[propget, id(0x0000000D), hidden]

HRESUL T _stdcall BiDiMode([out, retval] TxBiDiMode • Value);

[propput, id(0x0000000D), hidden]

HRESUL T _stdcall BiDiMode([in] TxBiDiMode Value);

[propget, id(0x0000000E)]

HRESUL T _stdcall Cursor([out, retval] short• Value);

[propput, id(0x0000000E)]

HRESUL T _stdcall Cursor(Pn] short Value);

};

uuid(A70D6150-C9F6-11O5-91 DF-0000E85EFBBA},

version(1.0),

helpstring("Events interface for ActiveFormX Control")

d ispinterface IActiveFormXEvents

{

properties:

methods:

[id(0x00000001)]

void OnActivate(void);

[id(0x00000002)]

void OnClick(void);

[id (0x00000003)]

void OnCreate(void);

[id(0x00000004)]

void OnDblClick(void);

224

[id(0x00000005)]

void OnDestroy(void);

[id(0x00000006)]

void OnDeactivate(void);

[id (0x0000O00A)]

void OnKeyPress([in, out] short* Key);

[id(0x0000O00F)]

void OnPaint(void);

};

uuid(A70D6152-C9F6-11 D5-91 DF-0000E85EFBBA),

version(1.0),

helpstring("ActiveFormX Control"),

control

coclass ActiveFormX

{

[default] interface IActiveFormX;

[default, source] dispinterface IActiveFormXEvents;

};

uuid(A70D6154-C9F6-11 D5-91 DF-0000E85EFBBA),

version(1 .0)

typedef enum tagTxActiveFormBorderStyle

{

[helpstring("afbNone")]

afbNone = 0,

[helpstring("afbSingle")]

afbSingle = 1,

[helpstring("afbSunken")]

afbSunken = 2,

[helpstring("afbRaised")]

afbRaised = 3

} TxActiveFormBorderStyle;

225

· A endh

uuid(A70D6155-C9F6-11 D5-91 DF-0000E85EFBBA),

version(1 .0)

typedef enum tagTxPrintScale

{

(helpstring("poNone")]

poNone = 0,

[helpstring("poProportional")]

poProportional = 1,

[helpstring ("po PrintT oFit")]

poPrintToFit = 2

} TxPrintScale;

uuid(A70D6156-C9F6-11 D5-91 DF-0000E85EFBBA),

version(1 .0)

typedef enum tagTxMouseButton

{

[helpstring("mbleft")]

mbleft = 0,

[helpstring("mbRight")]

mbRight = 1,

[helpstring("mbMiddle")]

mbMiddle =2

} TxMouseButton;

uuid(A70D6157-C9F6-11 D5-91 DF-0000E85EFBBA),

version(1 .0)

typedef enum tagTxBiDiMode

{

[helpstring ("bet LeftT oR ig ht")]

bdleftToRight = 0,

[helpstring ("bet R ightT oleft")]

bdRightToleft = 1,

226

[helpstring("bdRightToleftNoAlign")]

bdRightToleftNoAlign = 2,

[helps tring ("bd R ightT oleftRead ingO nly")]

bdRightToleftReadingOnly = 3

} TxBiDiMode;

};

227

17. ACTIVEPROJl.HTML

tz'"": ' '.:.J.IJ~
j If I

Delphi 4 ActiveX Test Page
YOJ srculd see y<::AJ Deli:;hl 4 forms or controls embedded In the form below.

l~ Settingl

T ""'sier P>o1ocol File Dire®,y T ransier Sla\l! I
, .. _

Diecloriu

mop~on riow9 C.'\,.~

Pon; jCOM1 .:.l ~C,j(Ii:) C\
138400 .:.l Lr~~s Capte.,nshelt.lnk

Baud Re.le : Delph, 4.lnk 12:) Documents and Settin

Pari\y'. iNone .:.l ICOlnk lc,C tamshaft
Shortcut to Control Panel.Ir ~0.,,,.:-et

Dau.Bits : Je .:.l Shoncut to ZFREE.lnk

Stop81ts !1 .:l Windows Explorer Ink
-~Pi'pV-

e eonce1 1

Uot ,.. • .,, Jype:
OOK jAJ1 files\.") .:l lliilc a :::I

i'j~o,,e,,,r,;i.,;;;.iji_agohhtii;tp;Jl://:;;;_;;;.good:;;;..;1es..;.a,m1:;;;;rc:c..,~-~t669i9/i;;;-i;:;:· ~n;>,~oajljl};,tt,,,:;;: .. ::-. ---::::::::::::--,iiiiiiiiiiirrri. trtemet

' 'St.ti I (,4 "::J 0 ,. J t)11rbo<i,ctlon.doc- Mia ... I uCO ll~ http://www.a•oclties-, [« a@til'!>>ii>a~ l:S7p.m.

<HTML>
<HI > Delphi 4 ActiveX Test Page </Hl><p>
You should see your Delphi 4 forms or controls embedded in the form below.
<HR><center><P>
<OBJECT

>

classid="clsid:A 70D6 l 52-C9F6-l l D5-9 l DF-0000E85EFBBA"
codebase="C:/CD/ActiveFormProjl.dll"#version= l,0,29,0
width=847
height=321
align=center
hspace=O
vspace=0

</OBJECT>
</center></HTML>

228

