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Abstract

How does heat and/or pollutant transfer from objects embedded in the ground depend on

their size, shape and burial depth, and how does the dispersion of heat and/or pollution in

groundwater aquifers depend on the soil properties, the speed of the groundwater flow, etc.?

In detail, the aims of present study are:

• To investigate how the size, shape and position of an object or set of solid or partially

pervious objects, e.g., fluid tanks, pipes, etc., embedded in a porous medium affect the

local speed and shape of the flow.

• If heat is ejected from the solid objects e.g., fuel storage cylindrical tanks, radioactive

waste reservoirs in deep geological formations, etc., and/or a pollutant is released from,

or removed by, the pervious object, e.g., septic tanks, disposal of drums of contaminants,

etc., how does the subsequent dispersal through a groundwater aquifer depend on the

various parameters involved (e.g., the object size, object’s burial depth, perviousness of

the object, the aquifer’s depth, the fluid flow rates, etc.)?

• What is the effect of the non-homogeneity in matrix properties (e.g. permeability or

hydraulic conductivity) on fluid flow, pollutant and heat transport rates?



This study pursues answers to these questions. The porous medium fluid flow equations,

and the advection-dispersion equations that model the heat and/or species transport, have

coefficients that depend mainly on depth. Generally, analytic solutions are not possible. In

order to investigate the effects of various objects of different shapes embedded in a porous

medium, I have developed numerical algorithms and used some special mathematical tech-

niques for two-dimensional models, namely conformal mappings within the framework of

complex analysis.

The velocity potential and (2-D) stream function satisfy Laplace’s equation. Central and

one-sided finite difference methods are applied to solve this equation subject to a chosen

combination of constant-head or constant-flux boundary conditions. Results are discussed

for various embedded shapes in homogeneous and layered groundwater aquifers. A Matlab

command “contour” is used to depict the streamlines and equipotential lines, and the re-

sulting temperature or pollutant concentrations.

Steady-state and time-dependent forced convection heat/pollutant transfer from some cylin-

ders embedded in groundwater are explored numerically using finite difference methods. The

results show that the size, shape, position, perviousness and burial depth of the cylinder af-

fect the pressure drop, as well as the pollutant and/or heat transfer. Moreover advection and

dispersion depend on the permeability structure and the fluid speed.
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Nomenclature

Symbol Units Description

Bi [-] Biot number

c [J kg−1 K−1] specific heat

C [kg m−3] concentration of pollutant in the fluid

D [m2 s−1] tensor coefficient of mechanical dispersion of a dissolved

pollutant while it flows in the porous media

D [m2 s−1] scalar coefficient of mechanical dispersion of a dissolved pol-

lutant while it flows in the porous media

Dth [m2 s−1] thermal diffusion/dispersion coefficient

g [m s−2] gravitational acceleration

h [m] height of the vertical wall

k [m2] isotropic permeability of the porous medium

K [m s−1] hydraulic conductivity

n [-] porosity of the porous media

Nuf [-] time-mean average fluid Nusselt number

Nus [-] time-mean average solid Nusselt number

P [kg m−1 s−1] mass flux of a pollutant

p [kg m−1 s−2] absolute pressure of the fluid

Q [m2 s−1] total flux through the whole aquifer per unit width of the

aquifer, subscripts L, R and I stand for flux in, flux out,

and net flow across the pervious rectangular/cuboidal cross

section, respectively

Ra [-] Rayleigh number



Re [-] Reynolds number

t [s] time

T [K] temperature

V [m s−1] average three-dimensional Darcy velocity vector of fluid

V=(u, v, w)

Greek Symbols

α [m] dispersion length (dispersivity) of the porous medium

αL [m] longitudinal dispersivity

αT [m] transversal dispersivity

αth [m] coefficient of thermal diffusion/dispersion

βps [m] coefficient of pressure difference (which is a measure of re-

sistance of the object’s surface to flow through it)

φ [m] two- and three-dimensional velocity potential function

Φ [m2 s−1] Φ = Kφ

γ = αL/αT [-] ratio of longitudinal to transverse dispersivity

κms [W m−1 K−1] thermal conductivity

ωps [s−1] constant of proportionality

µ [kg m−1 s−1 ] dynamic viscosity of the fluid

ρ [kg m−3] density of water (constant)

ψ [m] two-dimensional stream function

Ψ [m2 s−1] Ψ = Kψ

σ [-] coefficient of thermal advection

ξ, η [m] transformed coordinates

Subscripts

e effective

f fluid

ˆ transformed variable

I internal

L left



m mixture (formation+fluid)

ms mixture saturated

ps porous surface

R right



Chapter 1

Introduction

Transport phenomena within porous media1 is a subject of common interest and has emerged

as a distinct field of study. The mechanism of fluid flow in a porous medium relates to many

problems crucial to engineering, applied science and industry, e.g., groundwater hydrology,

reservoir engineering, soil science, soil mechanics and chemical engineering. For example, civil

engineers manage the water flow in aquifers, transmission of moisture through and under en-

gineering constructions, advection and dispersion of pollutants (or tracers) in aquifers and

prediction of stresses under engineering systems. Movement of water and solute transport in

the root zone in the soil is tackled by agricultural engineers. Chemical engineers face prob-

lems related to heat and mass transfer in packed-bed reactor columns, solid catalyzed reactions

and drying phenomena. Flow of oil, water and gas in petroleum reservoirs, and recovery of

fuels from underground oil and gas reservoirs are encountered in reservoir engineering. In all

these examples, one or more quantities that are additive over volume, mass, momentum and

energy are transported through the solid or liquid phase of a porous medium domain. In such

a domain, the solution of a transport problem means to determine the spatial and temporal

distributions of state variables. State variables include velocity, mass density and pressure of a

fluid phase, concentration of a solute and stress in the solid skeleton [12].

1A material that contains pores (voids) is called a porous medium (or a porous material). The skeletal
portion of the material is often called the “matrix” or “frame”. Normally, the pores are filled with a fluid
(liquid and/or gas). Generally, the skeletal material is a solid, but in many occasions, foam like substances are
also considered as porous media.
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Dissertation topic and motivation of the study

This thesis deals with the mathematical modelling of incompressible fluid flow and trans-

port of pollutant/heat released from leaky/hot bodies embedded in homogeneous2 and non-

homogeneous aquifers. The reason for undertaking the study of pollutant transport in ground-

water aquifers leaking from some underground buried formations (e.g., septic tanks, drums of

contaminants, leaky swimming pools, broken sewerage pipes, etc.), is that groundwater pol-

lution is one of the major threats to public health in the whole world. Water quality has

deteriorated during the last few decades not only in my home country Pakistan but all over the

globe. Regarding drinking water quality, Pakistan ranks at number 80 among 122 nations [8].

Drinking water quality is poorly monitored and managed all over the country. Drinking wa-

ter sources, both surface and groundwater are contaminated not only by human activities but

also by agrochemicals, and industrial and municipal wastes. A frequent violation in drinking

water quality parameters set by WHO (World Health Organisation) is observed.

In Pakistan, the area near to my locality, Ghulam Muhammad Abad, Faisalabad is notorious

for its poor quality of drinking water. Sewerage pipes are quite old and cracked at many places.

As a result of which, groundwater is polluted severely by this contaminated water and people

ignorantly are forced to drink this polluted water, which results in the form of many health

problems, e.g., a high rate of hepatitis, cholera, and many other infectious and fatal bacterial

diseases of small intestine, etc.

The Government of Pakistan has established some organisations/acts to improve drinking wa-

ter quality. Among them are: Ministry of Environment, Pakistan; NWFP, North West Frontier

Province (former name of Khyber Phakhtoonkhwa Province); NWQM, National Water Qual-

ity Monitoring; PAK-EPA, Pakistan Environmental Protection Agency: PCRWR, Pakistan

Council for Research in Water Resources: and PEPO, Pakistan Environmental Protection Or-

dinance [8].

As a researcher, I want to contribute my expertise at a national and international level. The

prime applications of this research would be: special emphasis on major pollutants, sources of

2A porous medium domain is said to be homogeneous with respect to its permeability, if the permeability is
the same at all its points. If not, the domain is called heterogeneous, or non-homogeneous [11].
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pollution, remediation of different pollutants, and the consequent health problems.

A project in Japan is working on the possibility of re-use of buried cylindrical tanks. Once,

these cylinders are used for fuel storage at motor vehicle service stations, and afterwards would

be re-used as thermal repositories connected to space heating systems, e.g., utility stores, in

Japan [34]. The study of heat transport from underground buried cylindrical tanks is motivated

by the above project. To seek new resources of energy, this project should be initialised in other

countries as well, specially in the developing ones.

In this work, the phenomenon of pollutant and heat transport in groundwater aquifers works

on a similar basis. In both cases, it is assumed that fluid is incompressible and Darcy’s law

is applicable. The only difference between these two models is that: transport of heat occurs

for solid objects, whereas, transport of pollutant takes place for pervious bodies embedded in

a porous medium.

Porous medium

The concept of porous media is used in many areas of applied science and engineering,

e.g., filtration, mechanics (acoustics, geomechanics, soil mechanics, rock mechanics), engineer-

ing (petroleum and geothermal engineering, bio-remediation, construction engineering), geo-

sciences (hydrogeology, petroleum geology, geophysics), biology and biophysics, material sci-

ence, etc. [11]. Soil, sand, fissured rock, cemented sandstone, Karstic limestone, man-made

materials such as cements and ceramics, foam rubber, zeolites, bread, biological tissues (e.g.

bones, wood, cork), lungs and kidneys are some examples of natural and artificial porous media.

Some additional examples of porous medium domains include aquifers3, petroleum reservoirs

which provide oil and/or gas, sand filters for purifying water, packed-beds in the chemical en-

gineering industry and the root zone in agriculture [12]. The aquifer, is the porous medium

domain explored by the ground water hydrologist, and the oil reservoir, is the porous medium

domain investigated by the reservoir engineer [11].

The porosity n is the major characteristic of a porous medium, which is defined as the ratio of

volume of the void spaces (Uv) to the bulk volume (Ub) of a porous medium, averaged over a

3A geological formation, or a stratum, that contains water with a considerable amount of water passing
through it [11].

3



suitably-sized representative elementary volume (REV) [11]:

n =
Uv
Ub

=
Ub − Us
Ub

, (1.1)

where Us is the volume of solids within Ub. Other properties of the medium are permeability,

hydraulic conductivity, transmissivity, tensile strength and electrical conductivity, etc.

Mathematical modelling

Several types of mathematical models have been used to investigate groundwater flow prob-

lems. These models can be distinguished into analogue and mathematical models; the latter can

be solved using analytical and numerical techniques [44]. Hydrologists usually use mathematical

models to analyse groundwater flow problems. These models contain a set of differential equa-

tions along with initial and boundary conditions whose solutions demonstrate the groundwater

flow. The mathematical models are usually solved using a mixture of analytical and numerical

techniques. Modelling the physics of three different media like solids, fluids and porous media

is an important area in engineering and mathematical problems. Due to the complexity and

non-linear nature of fluid flow in porous media, direct experimentation methods are often used

to investigate the nature of the fluid flow in a porous medium.

Almost all mathematical models are composed of a set of partial differential equations

(PDE’s) with appropriate initial and boundary conditions within and on the porous medium’s

boundaries, layer interfaces, and on the object’s surfaces. Generally, analytic solutions are

not possible. Numerical modelling of the problem is established on the basis of the assump-

tion that if the flow is incompressible then the velocity potential satisfies Laplace’s equation.

Hence, the governing equation, in terms of velocity potential for two- and three-dimensional

flows, is Laplace’s equation, which is discretized together with boundary conditions, using

finite-difference methods. For some geometries, a two-dimensional formulation allows the use

of a stream function (a complementary function that also satisfies Laplace’s equation). Here,

Matlab is used to compute approximations to the velocity potential and stream function. The

4



Matlab command “contour” is used to depict the equipotential lines4 and streamlines5, and

all the contour lines are equally spaced. All the modelling is done numerically by my own

computer coding and no special Matlab package/subroutine is used to solve the equation.

Both three-dimensional (XY Z, where the xy-plane is horizontal and the positive z-axis is

aligned vertically upwards) and two-dimensional (XZ) Cartesian coordinate systems are used.

Because of the rectangular meshes used, it is laborious to model the problems for shapes of

higher complexity, such as ellipses, circles, polygons and irregular objects embedded in porous

media. To overcome this difficulty, a special mathematical technique of complex analysis,

namely conformal mapping, has been used for the solution of fluid and pollutant/heat flow (two-

dimensional problems) in the porous media. For a homogeneous porous medium, the basis of the

complex potential is that the two-dimensional velocity potential and stream function for steady

and unsteady flow are both harmonic functions. Since harmonic functions remain harmonic

under conformal mappings, transformation of complicated flow boundaries into regular flow

geometries allows the use of a standard method.

This work - an outline

This work is composed of seven chapters, with the current one being the introduction of

the thesis. The reader is led to comprehend the meanings of the various parameters and

coefficients involved in the explanation of flow problems in porous media. The concept of

velocity potential, stream function and conformal transformation is also introduced in this

chapter. Mathematics has substantial implementations in the field of advanced engineering

mathematics, partial differential equations, vector analysis, Cartesian tensor analysis, fluid

mechanics and elements of the theory of functions. Obviously, it is not possible to review ev-

ery example of each subject treated. Although I discuss the topic in general, the surfaces are

restricted to simply-shaped objects, thus excluding chemical and electrochemical surfaces.

4The lines/surfaces where the velocity potential is constant are referred to as equipotential lines/surfaces or
isobars.

5The lines for which the stream function is constant are referred to as streamlines.

5



In Chapter 2, a background of the topic is included. Nusselt6, Peclet7, and Reynolds8

numbers are introduced. A comparison of LTE (one-equation energy model)9 and LTNE

(two-equation energy model)10models is also discussed in detail.

Chapter 3 deals with the mathematical modelling of the problem, conceptual models are

represented in the form of mathematical formulations. The equations of conservation of

mass, momentum and energy in a continuum give a good start to the next step and the

motion equations describe the behaviour of the fluid flow for the general case of an isotropic

and homogeneous aquifer. Modelling is initiated with the equation of motion for an in-

compressible fluid, starting from its two-dimensional form and then extending the idea to

three-dimensional flow in homogeneous aquifers.

Due to the limitation on analytical solutions, most of the results are simulated numerically.

A relationship between the stream function and the piezometric head is also added in that

chapter. Once the continuity or mass conservation equations have been established, the next

natural step is to examine the initial and boundary conditions on a porous medium domain

as well as on the objects embedded in it. For two- and three-dimensional cases, rectangular

and cuboidal homogeneous aquifers, respectively are discussed. The effects of the presence

of impermeable/pervious rectangular and triangular objects on fluid flow are investigated.

It is demonstrated that the flow rates are affected not only by the parameter βps (which is a

measure of resistance of the object’s surface to flow through it), but also by the geometries

and positions of the objects embedded in aquifers. However, the results remain unaltered

for different domain sizes. Afterwards, the problem is approximated by a Hele-Shaw cell11.

Chapter 4 deals with the fluid flow in two- and three-dimensional non-homogeneous aquifers.

6In heat transfer at a boundary (surface) within a fluid, the Nusselt number (Nu) is the ratio of convective to
conductive heat transfer across (normal to) the boundary. In this context, convection includes both advection
and diffusion.

7The Peclet number is defined to be the ratio of the rate of advection of a physical quantity by the flow to
the rate of diffusion of the same quantity driven by an appropriate gradient.

8The Reynolds number is defined as the ratio of inertial forces to viscous forces and consequently quantifies
the relative importance of these two types of forces for given flow conditions.

9In a local thermal equilibrium (LTE ) energy model it is supposed that within a representative elementary
volume (REV), the solid and fluid phase have the same temperature.

10In this model, both fluid and solid are assigned individual local temperatures, as a result of which heat
transfer occurs between the two phases.

11This term is usually used for cases in which a fluid is injected between (from above or below) two parallel
flat impervious plates separated by a small gap. It occurs when a less viscous fluid is injected displacing a more
viscous one or vice versa. The governing equation of Hele-Shaw flows is similar to that of the inviscid potential
flow and to the flow of fluid through a porous medium (Darcy’s law).
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The porous media that constitute aquifers and oil reservoirs are rarely homogeneous with re-

spect to their permeability. A non-homogeneous aquifer may be composed of several parallel

layers of different texture. In this work, it is assumed that, within each layer, the properties

of the medium remain uniform. The groundwater flow within each layer is considered to be

due to a pressure gradient across each layer. Transfer of the pollutant may occur across the

layer interfaces as well as along the strata.

Various cases are discussed in the absence and presence of impermeable and pervious ob-

jects embedded in the non-homogeneous aquifers. The conceptual model starts with the

assumption that the non-homogeneous aquifer system is composed of horizontal and vertical

layers of different thicknesses. Because of recharge or pumping of groundwater, there is a

large variation in the value of dynamic pressure12 in each sub-layer. For horizontally lay-

ered aquifers, for the vertical movement of the water, the vertical speed and the dynamic

pressure have an equal value above and below the interface. In fact, there is no barrier

at horizontal interfaces and they are just sitting between the sub-layers, so the pressure is

continuous across the boundary. However, for a vertically layered non-homogeneous aquifer,

the dynamic pressure and horizontal speed of fluid on the interface have a value equal to

that of the adjacent layers.

Moreover, a short discussion about the permeable objects, whose permeability is different

from the outer porous media is also added. The conceptual model is justified by graphical

representation of contouring plots of equipotential and streamlines. Lastly, the modelling is

continued for the motion of fluids in three-dimensional aquifers.

Chapter 5 presents the transport phenomena of waste disposal in deep geological formations

in both homogeneous and non-homogeneous porous media. In each case, the discussion leads

to the construction of a complete mathematical model of the problem. Advection and dis-

persion of the pollutant in the vicinity takes place due to motion of the underground water

and the permeability structure of adjacent layers, respectively. A general comparison of the

cases:

1. when dispersion depends on fluid speed and direction,

12The kinetic energy per unit volume of a fluid particle is called dynamic pressure.

7



2. when dispersion depends upon fluid speed only, and

3. when dispersion is uniformly constant,

have been discussed for various values of the parameters.

In Chapter 6, heat flow from buried cylindrical tanks submerged in groundwater is modelled. A

complex variable technique, namely conformal mapping, is introduced for both fluid and heat

flow. The transformed problem is then solved numerically subject to the mapped boundary

conditions in the ξη-plane. This model is based on the assumptions that: the groundwater flow

speed is very slow, cold water is entering in the region from the upstream boundary and passes

by the cylinder which is assumed to be kept at a constant temperature; no heat is generated

by the system and the cylinder is completely buried in the ground. Elliptic and diamond-

shaped cylinders are considered. It is found that the shape and burial depth of the cylinder,

the thickness of the aquifer, permeability structure of the medium, and the positions of the

upstream and downstream boundaries have a great impact on predicted fluid and heat fluxes.

In Chapter 7, a summary of the theoretical background in the form of mathematical models is

discussed, a short conclusion and some future proposals are also recommended there.

Finally, for the justification of the mathematical models, derivations and calculations for some

mathematical equations are added in the form of Appendices. An analytic solution for the

derivation of time-dependent as well as steady-state heat equations from the xz-plane to the

transformed ξη-plane is also included in Appendix A.

Figure 1.1 is the schematic diagram of rectangular porous media with one inlet and one exit,

that are enclosed in an envelope marked by a blue boundary. In these porous media, there

are embedded various cylinders of different cross-sections. Water enters from the left-hand

side upstream boundary, passes through the porous medium with embedded objects at various

positions and leaves from the right-hand side exit. The objects may be impermeable, pervious,

or be kept at constant temperature.
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Figure 1.1: Some cross-sections of cylinders, that will be investigated in the thesis, embedded in rect-
angular porous mediums (thick black lines), with one entrance and one exit. The outer thick blue
boundary just serves as an envelope for these porous media.

Figure 1.2 illustrates the example of fluid flow in a multilayered aquifer with two imper-

meable rectangular cylinders mounted at different positions. The aquifer is composed of two

layers of different permeabilities, the top layer is ten times more permeable than the lower one.

The separation zone between these two regions is marked by a dashed black line which is called

the interface. Refraction in streamlines and equipotential lines can be seen along this interface.

Water is entering and leaving the aquifer from upstream (marked by red line on L.H.S) and

downstream (blue line on R.H.S) boundaries respectively.
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Figure 1.2: Example of the numerical solution for the velocity potential φ (red lines) and stream
function ψ (blue lines) with two rectangular objects (prisms) embedded in a layered porous medium
with inflows and outflows. This is a typical example of what will be investigated later.
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Chapter 2

Background

Modelling heat and mass transfer from embedded objects in porous media has been a topic

of great interest for researchers of geophysics and engineering for the last three decades or

so. An extensive range of solution techniques are available for the solution of fluid flow and

transport problems in porous media incorporating numerical and analytical techniques. When

it is the matter of solving a realistic field problem, due to limitations on analytic solutions, it

becomes challenging for the scientists to achieve their goals. Currently, such problems become

practicable numerically by the advent of super computers.

Steady and non-steady groundwater flow problems can be solved by the finite difference method,

which was first proposed by 20th century scientists (Southwell,1940; Forsythe and Wasow, 1960;

Fox, 1962; Kantorovich and Krylov, 1964), who used it for the solution of engineering prob-

lems [13]. In this study, we will focus our attention on the finite difference method to solve

two- and three-dimensional flow problems of incompressible flow, pollutant and heat transfer

from/to objects embedded in groundwater. We will deal with various flow problems with the

help of velocity potentials and stream functions.
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Figure 2.1: Schematic diagram of Darcy’s law in groundwater aquifers. Here, Q [m2s−1] is the fluid
flux, and h1, h2 in [m] are the piezometric heads in the two wells. Later on, the symbols φ1 and φ2

are used as piezometric heads.

Henry Darcy was a French hydraulic engineer who pioneered the modelling of fluid flow in

saturated porous media and proposed several theories about groundwater flow [20]. Darcy’s

law1 was based on the results of experimental data on the flow of water through beds of

sands. An interesting factor about this law is that it is analogous to Fourier’s law2 in the

field of heat conduction, Ohm’s law3 in the field of electricity, or Fick’s law4 in diffusion

theory.

After the introduction of Darcy’s model, several extensions and modifications were made by

researchers of various disciplines including chemical, mechanical and civil engineering. There

has been considerable work published in the field of convective heat and pollutant transfer

1In 1856, Henry Darcy deduced that flow rate in porous media is proportional to head loss and inversely
proportional to the length of the flow path, i.e., Q ∝ (−dh/L), dh = h2 − h1, see Figure 2.1.

2Fourier’s law, states that the time rate of heat transfer through a material is proportional to the negative
gradient in the temperature and to the area, at right angles to that gradient, through which the heat flows.

3Ohm’s law postulates that the current through a conductor between two points is directly proportional
to the voltage difference across the two points. Introducing the constant of proportionality, the resistance R,
the mathematical formulation of the law is that I = V

R , where I is the current through the conductor in units
of amperes, V is the voltage measured across the conductor in units of volts, and R is the resistance of the
conductor in units of ohms.

4Fick’s law states that the diffusion flux goes from regions of high concentration to regions of low concentra-
tion, with a magnitude that is proportional to the concentration gradient.
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in porous media stimulated by a large number of geophysical and engineering applications.

Nield and Bejan [39] comprehensively reviewed the phenomenon of thermally-driven convec-

tion in porous media. It is well established that using porous media with higher thermal

conductivity can increase heat transfer.

Some analytical, numerical and experimental review articles and monographs have been

produced by, for example, Cheng [16], Tien and Vafai [51], Kakac et al. [27], Ingham and

Pop [24], Vafai [53], Pop and Ingham [42]. All these studies demonstrate the concept of heat

transfer in porous media. However, a lot of work on the above stated topic has dealt with

either convection near plane walls or in channels filled with porous medium.

To date little work has been published on convective heat and pollutant (or tracers) transfer

from heated bodies of higher complexity or leaking structures buried in porous media, such

as a tank filled with liquid or gas, a pipe, building foundations, cylinders embedded in porous

media, etc.

Chemical species such as tracers or dissolved pollutants are dispersed by flow in groundwater

aquifers. Soluble compounds are not only advected downstream together with fluid flow but

are spread in all directions. This happens mainly due to the phenomenon of mechanical dis-

persion of fluid flow in complex porous formations. The aquifer may be composed of several

different layers of non-uniform thickness. However, when a rock system contains different

layers, the average permeability of the system can be measured for some simple flow cases.

Many researchers, for example Van Herwaarden [54] investigated fluid flow and pollutant

transport in porous media. In his study, he found that the horizontal and vertical coefficients

of dispersion are proportional to the fluid speed. Moreover he found that the solution obtained

by asymptotic approximations only depends on the point of intersection of the boundary with

the streamline leading away from the stagnation point, and not on the particular shape of

the boundary. Burr et al. [15] examined the field-scale transport of reactive and nonreactive

groundwater solutes in a statistically anisotropic aquifer by means of high-resolution, three-

dimensional numerical solutions of the steady state flow and transient advection-dispersion

equations. In this analysis, a relationship was established between fluid velocity, longitudinal

and transversal plume spreading of reactive and non-reactive solutes transport and the results
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were verified with those available in the literature. Moreover, it was also explored that the

longitudinal macrodispersivity of a reactive solute could be enhanced comparative to that of a

nonreactive one through heterogeneous aquifers.

McKibbin [32] published an interesting study using simplified layered models to discuss the

parallel discretization of groundwater confined aquifers of different physical properties. After-

wards, McKibbin [33] formulated the coupled mass-balance equation for multi-layered systems

in confined5 aquifers. The latter work was extended more generally by Ali et al. [4, 5, 6, 7] when

pollutant transport in phreatic6 and confined aquifers were taken into consideration. In this

study, some simplified modelling of pollutant transport as well as pollutant remediation in one-

and two-dimensional homogeneous and non-homogeneous aquifers was presented. The pollu-

tant remediation model of this study was for the remediation strategy called In Situ Chemical

Oxidation (ISCO) and the reaction between pollutant and remediation agent was taken to be

of order two.

Jourak et al. [26] studied the longitudinal (DL) and transverse (DT ) dispersion coefficients for

flow through randomly packed beds of discrete monosized spherical particles. The derived val-

ues of DL and DT in the 3-D packed beds of spheres are in good agreement with those available

in the literature at low Peclet numbers. It was found that, as the porosity decreases, DL and DT

also decrease at very low Peclet numbers. However, the effect of porosity at high Peclet numbers

was negligible. Moreover, changing the pore structure from random to perturbed hexagonal

close-packed packing shows higher values of DL and DT at low Peclet numbers. However, at

higher Peclet numbers (Pem > 2), because in the case of an ordered structure there is lower

irregularity of the flow front, so the resulting DL and DT have lower values as compared to the

system that had been packed randomly.

Singh et al. [48] derived the analytical solution for solute transport along the unsteady ground-

water flow in a semi-infinite porous medium by the Laplace Transformation Technique. For

predicting the contamination concentration profiles in the different geological formations such

as aquitards and aquifers, an exponentially decreasing, sinusoidal, asymptotic, and algebraic

sigmoid form of velocity expression are taken into account. These geological formations are

5Confined aquifers are those which are bounded above and below by impermeable layers of clay that prohibits
water seepage into the aquifer.

6Phreatic aquifers are those which are not confined above.
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composed of gravel, sand and sandy clay and solute concentration for these materials is pre-

dicted for their average porosities. Later on, Singh et al. [49] mathematically modelled the

solute transport in finite aquifers. A comparison between analytical and numerical solution

was given for contaminant concentration for two different time domains and the results of the

model were verified with those available in the literature. Dalwadi et al. [19] presented a math-

ematical model about chemical agent removal by reaction with an immiscible cleanser. Their

study demonstrates how different features of a cleanser affect the speed of decontamination.

Moreover, they found that the changing cleanser concentration affects the removal time of a

chemical agent and using a more potent cleanser may not enhance the removal time of the

agent.

Heat transfer from a circular cylinder submerged in a fluid saturated porous media has many

experimental implementations such as compact heat exchangers, nuclear reactors, solar power

collectors and in radioactive waste containers in deep geological structures, where the waste

serves as a large heat source. The studies to date underpin the usefulness of using mathemati-

cal modelling to investigate fluid flow and heat transport in a porous medium with embedded

objects. Moreover, most of the studies published on this particular topic have been extensively

investigated by using either free (natural or buoyant)7 or mixed (combination of forced8 and

free) convection. Typical examples of the free or mixed convection are the pioneering work of

Merkin [35], Cheng [17], Ingham and Pop [25], Badr and Pop [9], Pop and Cheng [41], Zhou and

Lai [60] and Saeid [46], whereas, forced convection has been given less attention by researchers.

Garimella and Schlitz [21] analysed experimentally the enhancement of forced convection heat

transfer in a rectangular duct from discrete heat sources with water and FC-77. Generally,

fluorocarbon liquids (e.g., FC-72, FC-86, FC-77, etc.) are considered to be the most suitable

liquids for direct immersion cooling. It was found that the Nusselt number data from FC-77

coolant are higher than those from water coolant.

Most of the studies presented so far on forced convection have applied Darcy’s law to build

a relationship between flow velocities and the applied pressure gradient. Pop & Yan [43] and

7Natural convection is a process, or type of heat transfer, in which the fluid motion is caused only by density
differences in the fluid occurring due to temperature gradients but not produced by any external source (like a
pump, fan, suction device, etc.).

8Forced convection is a mechanism, or type of heat transfer in which fluid motion is produced by an external
source (like a pump, fan, suction device, etc.).
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Sano [47] applied this model to explore analytic solutions of the energy equation for large and

small Peclet number. Kimura [29] analytically and numerically investigated transient forced

convective heat transfer from a circular cylinder in a saturated porous medium. The Nusselt

number was calculated analytically at transient and steady-states. It was found that the length

of the transient periods generally decrease with increasing Peclet numbers. Layeghi and Nouri-

Borujerdi [30] numerically computed the thermal field around the cylinder; it was found to

vary with the porosity of the porous medium and not with the permeability. The steady-state

problem was studied for Peclet number ≤ 40 with constant Prandtl number equal to 1.

Several other authors have applied other types of Darcy model. Murty et al. [37], for example,

used the Darcy-Brinkman-Forchheimer (DBF) model and presented streamlines and equipoten-

tial lines for a single Prandtl and certain ranges of Darcy and Reynolds number; it was found

that the heat transfer is not effected much by the Forchheimer extension of Darcy’s equations.

J. Thevenin and D. Sadaoui [50] used the Darcy-Brinkman model to analyse the conditions

of the enhancement of heat transfer over a circular cylinder immersed in porous medium and

observed the influence of various local and mean Nusselt numbers with certain ranges of the

Reynolds, Darcy and Peclet numbers on streamlines and isotherms. It was found that the

permeability of the porous medium has no influence on the temperature field whereas, it has

strong effects on the velocity field.

One- and two-equation energy models which are referred to as local thermal equilibrium (LTE )

and local thermal non-equilibrium (LTNE ) models, respectively, are used by many researchers.

It appears that the LTE model was used in all the above studies, i.e., within a representative

elementary volume (REV), the temperature of the solid and fluid phase is considered to be the

same. However the LTE assumption is rejected by several authors due to the fact that when

advection and conduction techniques vary significantly in transferring heat, the temperature

difference between solid and fluid phase also increases significantly. Pop & Cheng [41] also

noticed that when the particle size in the solid porous matrix is similar to, or more than, the

thermal boundary layer thickness, the LTE model may not be applicable. To overcome these

difficulties, a LTNE model is introduced. According to this model, local temperatures are as-

signed independently to the solid and fluid phases during heat transfer.

The two-equation energy model has been applied by Rees et al. [45] and Wong et al. [57]. Gazy
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et al. [3] and Gazy [2] included Darcian affects, i.e. combining the effects of solid boundaries,

inertia and thermal dispersion with the LTNE assumptions to analyse time-dependent forced

convection heat transfer from a single cylinder and then from banks of four circular cylinders,

immersed in a horizontal packed bed of spherical particles. In the first study [3], it was found

that using the one-equation energy model there is a continuous increase in Nuf (time-mean

average fluid Nusselt number) against κr (solid/fluid thermal conductivity ratio); however, the

two-equation energy model predicts that relationship between Nuf against κr (for κr > 10)

is completely produced by the Biot number Bi (Bi = hL/κs, where h is the convection heat

transfer coefficient, L is the characteristic length scale, κs is the thermal conductivity of the

solid medium). Also, Bi is directly proportional to Nus (time-mean average solid Nusselt num-

ber) and inversely proportional to Nuf . Moreover, the effect of Reynolds number Re on Nuf

is much higher than that of κr and Bi due to the effect of thermal dispersion.

In the later study [2], a numerical investigation was made to find the characteristics of fluid flow

and forced convection heat transfer around a bank of four circular cylinders, in two alignments;

staggered and in-line, embedded in a different metallic or non-metallic porous horizontal chan-

nel. It was found that both Nuf and Nufφ (steady-state local fluid Nusselt number) have a

significant dependence on ReD (Reynolds number, D stands for cylinder diameter), SP (Spac-

ing parameter), and the type of cylinder bank alignment. However, the variation of Nuf

(steady-state average fluid Nusselt number) with SP is unaltered with varying κr. Moreover,

the results show that, the staggered arrangement of cylinders is highly recommended from

practical and economical aspects due to a high level of thermal performance in construction of

actual tubular heat exchangers. In addition, it is evident that heat transfer increases as a result

of thermal dispersion and this effect is more dominant than that of spacing between cylinders

and the type of the porous material used.

A three-dimensional mixed convection in a fluid saturated cubic porous medium with an isother-

mally heated cubic body embedded at its centre is examined by Krishna Murthy et al. [36] for

various values of the Rayleigh number and for several geometries of the hot object for different

injection/suction velocities. In their study, they found that when Ra < 100, a three-dimensional

symmetry of flow as well as temperature distribution is visible. However, for Ra > 100, the

three-dimensional symmetry to the four vertical planes, is replaced by a two-dimensional sym-
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metry for flow and temperature fields. Moreover, with an increase in Ra beyond 100, mixed

heat transfer and descending expansion of thermal plumes are observed in the lower half of the

cuboidal porous media as well as under the hot body.

Applications of this research are not only in groundwater hydrology, it could be extended to any

field relating to heat and mass transfer in porous media. Recently, a novel possible application

of my research is found in heat transfer in skin cancer treatment, and it would be innovative

for future PhD students. In this study, Casey et al. [40] developed a mathematical model for

obtaining an optimal temperature distribution in a 3-D triple-layered rectangular skin structure

with an embedded countercurrent vasculature comprised of seven-level blood vessels, arteries

and veins and a tumor appearing in the subcutaneous area. The tumor tissue is injected with

gold nano-shells with an optimized laser intensity. Numerical results show that, within the pain

tolerance limit of the patients, the tumor tissue can be heated and maintained above 42 ◦C

while the temperature of the surrounding healthy tissue remains low enough in order to keep

it from being damaged.

It is very interesting to note that the concept of leaky objects embedded in two- and three-

dimensional, homogeneous and non-homogeneous groundwater aquifers, is my own and original

contribution. I reviewed the literature, but found very little about leaky bodies with finite

dimensions embedded in groundwater aquifers. So far, no work has been reported on three-

dimensional forced convection heat/pollutant transfer from leaky/hot objects embedded in

fluid-saturated cubic porous media. In this study, an example of pollutant transport in a three-

dimensional aquifer is included in Chapter 5. The only concerns at this stage, are to find a

relationship between longitudinal and transversal dispersivities and to obtain their effects on

the shape of pollutant plumes. Further study will focus on three-dimensional forced convection

pollutant/heat transport in a porous medium with embedded objects, where two-dimensional

slices may be taken to explore the effects of various parameters on pollutant/heat plumes.

The main objective of the present study is to mathematically model:

1. fluid flow in a porous medium in which there are embedded one or more impermeable and

pervious two- and three-dimensional objects (e.g. a tank, a pipe, building foundations in

a groundwater aquifer),
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2. the transport of heat or a pollutant (or tracer) that is injected into a groundwater aquifer

together with a fluid source that may be associated with the object(s) (e.g., heat from a

tank, pollution from a leaking pipe, injected waste water, or that removed by pumping

or leaking),

3. the effects of longitudinal and transversal dispersivities on shape of the pollutant plume,

and to establish a relationship between them.

The concentration of the pollutant will vary laterally and vertically because of advection

by the fluid, mechanical dispersion by the flow in the porous matrix, and interlayer transfer

across the layer interfaces. All of these aspects will depend on the mechanical parameters of

the matrix system (including layer thicknesses, porosities, permeabilities and dispersivities) as

well as background pressure gradient, etc.

The modelling will include cases where there is significant fluid injection into, and/or with-

drawal from, an aquifer system. The presence or otherwise of a background flow due to a

natural pressure gradient will also be considered. The mathematical models will be solved

using a mixture of analytical (using conformal transformations) and numerical techniques. The

most popular equation to describe the flow of fluids through porous media has famously been

described by Darcy’s law [20].

Darcy’s law is adequate for studying a substantial class of flows through porous media; how-

ever, this law does not help to solve all problems. One example is a flow wherein the range of

pressure involved is very large and high pressure gradients are at play [28]. To overcome this

difficulty, a new formulation which involves a relationship between pressure and pressure gra-

dients is included in Chapter 3. This relationship is derived by taking into account Darcy’s law

and will be discussed in detail for various values of the parameters involved in the formulation.
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Chapter 3

Fluid Flow Model for a Homogeneous

Aquifer

The objective of this chapter is to develop the mathematical models that describe transport

phenomena in homogeneous aquifers in which there are embedded various cylinders of different

shapes. To achieve this goal, we start with a short analysis of some basic concepts of continuum

mechanics. Furthermore, we establish balance equations for several substantial quantities of

interest. Expressions for fluxes are introduced that come into view in the balance equations.

Finally, after the discussion of the nature of boundaries, models for discussion include potential

flow1 in a two- and a three-dimensional homogeneous aquifer in the:

1. absence of impermeable and pervious objects,

2. presence of impermeable objects of different sizes and shapes, placed at various positions

in the aquifer, and

3. presence of pervious objects with the pressure inside different from those at the inlet and

outlet.

The first model will give a comparison for fluid flow in groundwater aquifers without imperme-

able and pervious objects. This modelling will include examples of fluid flow in aquifers with

one or more entrances and exits, and give measurements for pressure and fluid flow rates.

1The flow of an inviscid (ideal) incompressible fluid is known as potential flow.
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In the second model, study of impermeable buried cylindrical tanks will be extended for mod-

elling of heat transfer. In Chapter 6, I will look at the cases when one or more impermeable

objects are embedded in the groundwater and will explore the effects of their size, shape, burial

depth, and their position on fluid flow and heat transport rates.

Modelling about pervious objects embedded in groundwater aquifers for model three will be

helpful in the study of groundwater pollution (pollutant leaking from septic tanks, disposals of

drums of contaminants, etc.) in Chapter 5. Examples of leaky cylinders which are completely

buried in the groundwater and pollutant which are leaking from the whole surface of the cylin-

der or from a part of the cylinder will be discussed in detail for various values of the parameters

involved.

The development of mathematical models for each case is discussed below.

3.1 Eulerian coordinate systems

By Eulerian we mean information (pressure, say) at a position relative to some “zero”

position or origin. By coordinate systems we mean methods to measure space. One example of

Eulerian coordinate systems is the Cartesian (x, y, z) (in case of 2D, (x, y)) system for a box,

as shown in Figure 3.1. It should be noted that all the coordinate system axes are orthogonal.

x

z

y

O(0, 0, 0)

Figure 3.1: Cartesian coordinate system.

Using a three-dimensional Cartesian coordinate system XY Z, where the xy-plane is horizontal
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and the positive z-axis is aligned vertically upwards as shown in Figure 3.1, we will discuss the

fluid flow through a homogeneous porous medium. For the two-dimensional case, a rectangular

domain, and for the three-dimensional case a cuboidal domain, are used.

3.2 Three-dimensional modelling of aquifers

The visualisation of two- and three-dimensional flow and vector fields is one of the major

tasks in scientific visualisation. In general, flow through aquifers is three-dimensional. Darcy’s

law2 gives the specific discharge (or specific volume flux) V (m3/s)/m2 through a surface per-

pendicular to the flow velocity vector whose components are given as:

V(x, y, z) = u(x, y, z)i + v(x, y, z)j + w(x, y, z)k. (3.1)

Generally in the three-dimensional case, the continuity equation (conservation of fluid mass

equation) for a fluid with uniform density, is expressed by:

∇ ·V = 0, implies (3.2)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (3.3)

According to Darcy’s law, the velocity vector V(x, y, z), where z is vertical, is proportional to

gradient of dynamic pressure. The momentum equation for the water flow is Darcy’s law:

V(x, y, z) =
k

µ
(−∇p+ ρg), (3.4)

where k [m2] is the intrinsic permeability, µ [kg m−1 s−1] is the fluid dynamic viscosity, ρ [kg

m−3] is the fluid density, p [kg m−1 s−2] is the absolute pressure of the fluid, and g = (0, 0,−g)

2Darcy velocity is the volume flow rate of water per unit area through a cross-sectional area perpendicular
to the flow direction.
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[m s−2] is the gravitational acceleration. Hence, the velocity components are expressed by:

u(x, y, z) =
k

µ

(
−∂p
∂x

)
, (3.5)

v(x, y, z) =
k

µ

(
−∂p
∂y

)
, (3.6)

w(x, y, z) =
k

µ

(
−∂p
∂z
− ρg

)
. (3.7)

The piezometric level, or head, φ (the level to which water will rise in a well that penetrates a

groundwater aquifer) is referred to here as the velocity potential which is defined by:

φ =

(
p

ρg
+ z

)
. (3.8)

Then the components of velocity in terms of φ are written as:

u(x, y, z) = −ρgk
µ

∂φ

∂x
, (3.9)

v(x, y, z) = −ρgk
µ

∂φ

∂y
, (3.10)

w(x, y, z) = −ρgk
µ

∂φ

∂z
. (3.11)

3.3 Two-dimensional modelling of aquifers

In the case where the flow has negligible dependence on y, the equation of continuity gives

∂u

∂x
+
∂w

∂z
= 0. (3.12)

As we are assuming that flow is two-dimensional, so it is convenient to introduce another

function, which is plausible only for such a case and is the so-called stream function ψ(x, z)

[m]. The function ψ = ψ(x, z) is a measure of total flow and components of velocity in terms

of the stream function can be defined as:

u(x, z) =
ρgk

µ

∂ψ

∂z
, (3.13)

w(x, z) = −ρgk
µ

∂ψ

∂x
. (3.14)
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In terms of components of velocity the two-dimensional velocity potential is:

u(x, z) = −ρgk
µ

∂φ

∂x
, (3.15)

w(x, z) = −ρgk
µ

∂φ

∂z
. (3.16)

The functions (φ, ψ) satisfy the Cauchy-Riemann (C-R) equations; they are related to each

other by:

∂φ

∂x
= −∂ψ

∂z
, (3.17)

∂φ

∂z
=

∂ψ

∂x
. (3.18)

Also both φ and ψ are harmonic, i.e. they each satisfy Laplace’s equation. As V = −(kρg/µ)∇φ,

and ∇×V = −(kρg/µ)(∇×∇φ) ≡ 0 for irrotational flow. Also, the flow is incompressible,

so ∇ ·V=0, implies ∇2φ = 0, and for the two-dimensional case, ∇2ψ = 0.

We will deal with various flow problems with the help of velocity potential φ and stream func-

tion ψ. The stream function gives a good representation of fluid flows, and the velocity potential

is the tool used to calculate potentials across the flow.
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3.4 Elliptic PDE on rectangular domain, separation of

variables for velocity potential φ(x, z)

∂φ
∂z

= 0

∂φ
∂z

= 0

φ(0, z) = f(z) φ(a, z) = g(z)∇2φ(x, z) = 0

C

z

O

B

A
x

a

b

Figure 3.2: Schematic diagram of porous domain for φ.

An analytical solution for velocity potential φ(x, z) is found by using the separation of variables

technique. The following problem is discussed for Laplace’s equation in terms of the velocity

potential.

The boundary value problem for φ(x, z) with impervious lower and upper boundaries and

prescribed flow speeds on the vertical boundaries is:

∂2φ

∂x2
+
∂2φ

∂z2
= 0, 0 < x < a, 0 < z < b, (3.19)

∂φ

∂z
(x, 0) = 0, 0 < x < a, (3.20)

∂φ

∂z
(x, b) = 0, 0 < x < a, (3.21)

φ(0, z) = f(z), 0 < z < b, (3.22)

φ(a, z) = g(z), 0 < z < b. (3.23)

Solution

By using the method of separation of variables, let φ(x, z) = X(x)Z(z), then Laplace’s equa-
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tion (3.19) can be written as:

X ′′Z +XZ ′′ = 0, (3.24)

which implies
X ′′

X
=
−Z ′′

Z
. (3.25)

Since the two sides of Equation (3.25) are functions of different variables, we conclude that

they must be constant, which we set to be αC (say), i.e.,

X ′′

X
=
−Z ′′

Z
= αC . (3.26)

Homogeneous boundary conditions (3.20)-(3.21) implies Z ′(0) = Z ′(b) = 0.

Therefore X(x) and Z(z) must satisfy

X ′′ − αCX = 0, (3.27)

Z ′′ + αCZ = 0, (3.28)

Z ′(0) = 0, (3.29)

Z ′(b) = 0. (3.30)

Here, we need to find a number αC and a nonzero solution. For this constant αC , we have three

cases:

Case 1 αC=0.

Equation (3.27) has a general solution:

X = A+Bx.

Whereas, Equation (3.28) gives the general solution:

Z = C +Dz.

This solution satisfy the boundary conditions (3.29)-(3.30). Hence the solution for Z reduces

to:

Z = C.
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Since

φ(x, z) = X(x)Z(z), (3.31)

we have

φ(x, z) = A0 +B0x. (3.32)

Case 2 αC = −λ2, (λ > 0).

Equations (3.27)-(3.30) become:

X ′′ + λ2X = 0, (3.33)

Z ′′ − λ2Z = 0, (3.34)

Z ′(0) = 0, (3.35)

Z ′(b) = 0. (3.36)

For case 2, only the trivial solution exists, i.e.,

φ(x, z) = 0. (3.37)

Case 3 αC = λ2, (λ > 0).

Equations (3.27)-(3.30) become

X ′′ − λ2X = 0, (3.38)

Z ′′ + λ2Z = 0, (3.39)

Z ′(0) = 0, (3.40)

Z ′(b) = 0, (3.41)

We find that the general solution to Case 3 is:

φ(x, z) = (A coshλx+B sinhλx)(C cosλz),
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where, λ = nπ
b

.

After inserting the value of λ,

φ(x, z) = (A2 cosh
nπx

b
+B2 sinh

nπx

b
) cos

nπz

b
.

By superposing the solutions of all cases, we find that

φ(x, z) = A0 +B0x+
n=∞∑
n=1

[
An cosh

nπx

b
+Bn sinh

nπx

b

]
cos

nπz

b
. (3.42)

(3.42) is the solution of Laplace’s equation with real numbers An and Bn. We want to choose An

and Bn such that φ(x, z) in Equation (3.42) satisfies the non-zero boundary conditions (3.22)-

(3.23):

φ(0, z) = A0 +
n=∞∑
n=1

An cos
nπz

b
= f(z),

and

φ(a, z) = A0 +B0a+
n=∞∑
n=1

[
An cosh

nπa

b
+Bn sinh

nπa

b

]
cos

nπz

b
= g(z), (3.43)

where

A0 =
1

b

∫ b

0

f(z)dz,

An =
2

b

∫ b

0

f(z) cos
nπz

b
dz,

A0 +B0a =
1

b

∫ b

0

g(z)dz,

and

An cosh
nπa

b
+Bn sinh

nπa

b
=

2

b

∫ b

0

g(z) cos
nπz

b
dz.
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A0, B0, An and Bn can be solved by Quadrature methods.

3.4.1 Corollary

If in the non-homogeneous boundary conditions i.e., in Equations (3.22)-(3.23), we replace f(z)

by a constant φL and g(z) by φR, hence,

φ(0, z) = φL, and φ(a, z) = φR,

implies

A0 = φL, B0 =
(φR − φL)

a
, An = 0, and Bn = 0.

So the Equation (3.42) reduces to a linear function:

φ(x, z) = φL +
(φR − φL)x

a
, (3.44)

where φL and φR are the values of head on left- and right-hand side of the domain respectively.

3.5 Modelling two-dimensional flow in aquifers in ab-

sence of objects

As part of the hydrologic cycle, it is always significant to discuss the motion of groundwater.

The movement of groundwater always takes place from natural and artificial recharge zones to

those of natural and artificial discharge. For the flow modelling in an aquifer, the dependent

variable is the velocity potential φ(x, z) as discussed in Section 3.2, with the governing (balance)

equation and suitable initial and boundary conditions within a control box. Here, the control

box is in the form of a rectangular region with area ab, where a is the aquifer’s length and

b is its height, respectively. A more rigorous way for discretization of the solution domain is

discussed in the following subsection.
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3.5.1 Discretization of the solution domain
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b

Figure 3.3: Schematic diagram of the physical domain.

The solution domain is in the form of a rectangular box OABC having a height b and width

a as shown in Figure 3.3. The entrance b1b2 is on the left hand side and the exit b3b4 is on

the right hand side of the domain. The thick blue lines represent the solid impermeable walls

of the domain, the x-axis is taken along the horizontal direction, while the (vertical) z-axis is

aligned normal to it.

The domain will be equipped with a solution grid comprising k = 1, ..., N + 1 equally-spaced

points and j = 1, ...,M + 1 in the x- and z-directions respectively. The increments in the x-

and z-direction are given by the constant difference between their two consecutive values, i.e.,

dx = x(2)− x(1); and dz = z(2)− z(1).

Along the line Ob1b2C, k = 1 or x1 = 0, while line Ab3b4B represents k = N + 1 or xN+1 = a.

Similarly, the line OA corresponds to j = 1 or z1 = 0 and along line CB, j = M + 1 or

zM+1 = b.

In order to locate the points b1, b2, b3 and b4, the indices jb1 , jb2 , etc. are assigned respectively

with the assumption that jb1 < jb2 and jb3 < jb4 .
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3.5.2 Complete statement of mathematical flow model

Prior to the development of any mathematical model, it is necessary to conduct a set of

relevant assumptions that incorporate our conceptual model. Conceptual models provide a

pathway for the understanding of real systems under consideration. This model comprises the

following characteristics which are relevant to the problem:

1. Describe a complete format of the flow domain required for the construction of the model.

2. Specify the flow pattern (laminar or turbulent flow), that will pass through the geometrical

configuration.

3. Set out the assumptions about matrix properties relevant to the homogeneity/non-homogeneity

(e.g., permeability or hydraulic conductivity) and isotropy/anisotropy of the domain,

which affect the transport and storage procedure in the flow domain.

4. Develop an understanding about the sources and sinks of water within the flow regime.

5. Specify state variables (usually, φ(x, z), and ψ(x, z), etc.).

6. Form a partial differential equation (PDE) with respect to the state variables defined in

(6).

7. Identify the numerical value of the coefficients of the PDE stated in (7).

8. Specify initial/boundary conditions in terms of state variables appearing in (6), It is

worthwhile to mention that no initial condition is specified for the steady flow.

Taking into account the assumptions set out for the construction of the conceptual model,

every mathematical model needs to be well-posed. By a well-posed boundary value prob-

lem, we mean a system subject to the following conditions:

(a) a unique solution of the problem must exist,

(b) the solution must be stable, i.e., a small alteration in the initial or boundary conditions

should leave little impact on the solution, otherwise the problem should be considered

as ill-posed.
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3.5.3 Mathematical description of the velocity potential problem

Figure 3.4 shows the governing Laplace’s equation ∇2φ(x, z) = 0, and initial and boundary

conditions for a two-dimensional potential flow in terms of the velocity potential φ(x, z). It

is assumed that flow in the porous medium is governed by Darcy’s law, and therefore iner-

tial, thermal expansion, and fluid buoyancy effects are neglected. Following are the initial and

boundary conditions for φ.

The opening in the upstream boundary, namely, section b1b2, and opening in the downstream

boundary, namely, section b3b4, have a scaled dynamic pressure which is hydrostatic i.e.,

Dirichlet-type boundary conditions, φ(0, z) = φL, and φ(a, z) = φR are specified in these

sections.

Since no water can pass across the solid impermeable boundaries of the domain so, Neumann-

type boundary conditions are stated there. Hence, normal components of the velocity are taken

to be zero there, i.e., w = ∂φ/∂z = 0 along OA and CB and u = ∂φ/∂x = 0 along vertical

solid boundaries of the domain.
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∂z
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∂φ
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= 0

∂φ
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= 0 ∂φ
∂x
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∂φ
∂x
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φ = φR∇2φ(x, z) = 0
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Figure 3.4: Schematic diagram of the physical domain for φ.
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3.5.4 Mathematical description of the stream function problem

ψ = 0

ψ = Q
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b4

ψ = 0
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ψ = 0

ψ(0, z) = Q(z−b1)
b2−b1 or ∂ψ

∂x = 0

ψ(a, z) = Q(z−b3)
b4−b3 or ∂ψ

∂x = 0

∇2ψ(x, z) = 0

a

b

C

z

O

B

A
x

Figure 3.5: Schematic diagram of the physical domain for ψ.

A short discussion about streamlines was provided in Chapter 1, now a detailed analysis

of the topic is discussed here. The flow velocity V at any point of a streamline is tangent to

the line, i.e., no water can flow across the streamline, but water flows along the direction of

streamline. Moreover, the quantity of water remains constant between any two streamlines and

is measured by the difference in the values of the stream function on that pair of streamlines.

Figure 3.5 shows the governing Laplace’s equation ∇2ψ(x, z) = 0, and the boundary conditions

for a two-dimensional potential flow in terms of the stream function ψ(x, z) of the flow within a

rectangular domain with one entrance and one exit. The solution domain is rectangular having

width a and height b.

In the beginning of the research work, for both the analytic and numerical solutions, the open-

ing in the upstream boundary, namely, section b1b2, has a value ψ(0, z) = Q(z − b1)/(b2 − b1),

and the opening in the downstream boundary, namely, section b3b4, has a value ψ(a, z) =

Q(z − b3)/(b4 − b3). Afterwards, along these cross-sections (i.e., along b1b2 and b3b4), the as-

sumption of horizontal flow is taken into account, therefore the vertical velocity component,

w = −∂ψ/∂x = 0 is assigned there.

The solid boundary b1OAb3 corresponds to a streamline of flow since for ideal flow a flow par-

ticle entering the domain at b1 will be transported along b1OAb3. We select streamline b1OAb3

33



to correspond to ψ(x, z) = 0. The solid boundary b2CBb4 is also a streamline of the flow

corresponding to the value of the unit discharge Q (the discharge per unit width perpendicular

to the flow plane), i.e., ψ(x, z) = Q along b2CBb4.

3.5.5 Analytical solution for stream function ψ(x, z)

Solve Laplace’s equation ∇2ψ(x, z) = 0 subject to the boundary conditions:

ψ(x, 0) = 0, 0 < x < a,

ψ(x, b) = Q, 0 < x < a,

ψ(0, z) =



0, 0 ≤ z ≤ b1,

Q(z−b1)
b2−b1 , b1<z<b2,

Q, b2 ≤ z ≤ b,

ψ(a, z) =



0, 0 ≤ z ≤ b3,

Q(z−b3)
b4−b3 , b3<z<b4,

Q, b4 ≤ z ≤ b,

where Q is the unit discharge.

The analytical solution of Laplace’s equation ∇2ψ(x, z) = 0 with these boundary conditions is

found by the method of separation of variables as discussed in Section 3.4:

ψ(x, z) =
Qz

b
+
∞∑
n=1

[
An cosh

nπx

b
+Bn sinh

nπx

b

]
sin

nπz

b
, (3.45)

where,

An =
2

b

∫ b

0

[
ψ(0, z)− Qz

b

]
sin

nπz

b
dz,
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and

An cosh
nπa

b
+Bn sinh

nπa

b
=

2

b

∫ b

0

[
ψ(a, z)− Qz

b

]
sin

nπz

b
dz.

An and Bn can be solved by quadrature methods.

3.5.5.1 Fluid flow illustration for analytic solution for ψ(x, z)

Figure 3.6 shows the graphical representation of analytic solution (given by Equation (3.45))

for stream function ψ(x, z). The flow domain is rectangular with one entrance, marked by a

red line on the left-hand side and one exit, marked by a blue line on the right-hand side. Fluid

flow lines are visible going from left to right through the porous medium domain. The value

of stream function is constant on each streamline and this value remains constant between

each pair of streamlines. The validity of this analytic solution is verified by the numerical

solution of ψ(x, z) which is illustrated in Figure 3.10a and a detailed analysis about the graph

of streamlines is given in Subsection 3.5.7. To make the exact comparison between the two

solutions, both results are calculated for similar boundary conditions, identical geometry and

same values of the parameters involved.
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Figure 3.6: Example of the analytic solution for the stream function ψ with inflows and outflows.
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3.5.6 Fluid flow illustrations for velocity potential φ(x, z)

Different techniques have been used to investigate flow problems numerically. Some of them

are: finite difference method, finite element method, boundary integral method, boundary ele-

ment method, panelisation method, etc. Among them, the finite difference and finite element

methods are widely used in fluid dynamics research [56]. In both these methods a system of

nodal points is superimposed over the problem domain. The distribution of nodes make it

possible to differentiate between these two methods. The finite difference nodes are usually

taken in the form of a regular grid where nodes can be block-centred or mesh-centred (Fig-

ure 3.7), whereas the finite element methods can have an irregular distribution of nodes which

are connected together to form triangular sub-areas called elements [56].

(j, k)
(j, k + 1)(j, k − 1)

(j + 1, k)

(j − 1, k)

∆x

∆z

k

j

Figure 3.7: Finite difference grid of nodes.

To demonstrate the numerical method, consider an example of an incompressible fluid flow-

ing in a homogeneous, isotropic confined aquifer in the absence of sources or sinks. The
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numerical solution of Laplace’s equation ∂2φ/∂x2 + ∂2φ/∂z2 = 0 should be satisfied for all

the interior points of the flow domain. On the boundaries of the domain, boundary condi-

tions are specified as discussed in Subsection 3.5.3. MATLAB was used to find the solution

through an implicit solution scheme for Laplace’s equation. The discretization of the solu-

tion domain is presented in Subsection 3.5.1. The solution is shown graphically by using the

function contour in Figure 3.8. Computer code of some numerical methods will be included

in Appendix B.

Tests were performed for four different physical domains according to the positions and num-

ber of their upstream and downstream boundaries to ensure that the nature of the numerical

results obtained remains unaltered. For all the graphs with more than one entrance and exit,

all the entrances are connected to the same reservoir with pressure is equal to one, and all

the exits are connected to the same reservoir with pressure is equal to zero.

Graphs illustrate that water flows in a direction opposite to the dynamic pressure gradient,

i.e., water flows from the area of higher pressure (φ = 1, shown by red lines) to that of the

lower pressure (φ = 0, shown by blue lines), and the value of pressure along equipotential

lines (isobars) remains constant. The darkest red lines in each of the figures are all of the

same pressure and the darkest blue lines are similarly all at the same pressure, but lower

than that in the case of red lines. The lines from blue to red go up in steps of 0 : 0.05 : 1.

Moreover, the fluid velocity at every point of an equipotential line is normal to the line, i.e.,

no water can flow along equipotential lines, but water flows across the equipotential lines.
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Figure 3.8: Illustration of numerical solution for the velocity potential φ(x, z), with φ = 1 in the
entrance(s), and φ = 0 in the exit(s). Darkest red lines are φ = 1 and darkest blue lines are φ = 0. In
all the graphs, the contours are equally spaced and the lines are all at 5 percent intervals between the
highest and lowest pressure. Graph of isobars with (a) one entrance on L.H.S and one exit on R.H.S;
(b) one entrance on top boundary and one exit on R.H.S; (c) one entrance on top and two exits on
L.H.S and R.H.S; (d) two entrances, one on the top boundary and a second on R.H.S and two exits,
first on L.H.S and second on R.H.S.
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3.5.7 Fluid flow for stream function ψ(x, z) without an object
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Figure 3.9: Schematic diagram of the physical domain.

After the solution of velocity potential φ(x, z), the next goal is to calculate the net flow across

the flow domain. If b1b2, b3b4, b5b6 and b7b8, are openings in the L.H.S (OC), R.H.S (AB), top

boundary (CB) and bottom boundary (OA), respectively, as shown in Figure 3.9 in the flow

domain, then the fluxes in these directions are given by the following four integrals, calculated

using quadrature formulae

Qleft =
−kρg
µ

∫ b2

b1

∂φ

∂x
(0, z) dz,

Qright =
−kρg
µ

∫ b4

b3

∂φ

∂x
(a, z) dz,

Qtop =
−kρg
µ

∫ b6

b5

∂φ

∂z
(x, b) dx,

Qbottom =
−kρg
µ

∫ b8

b7

∂φ

∂z
(x, 0) dx.

Within computational error, the net flux across the domain should be zero; this provides a

check on the method.

In Section 3.3, it was discussed that the functions (φ, ψ) satisfy the Cauchy-Riemann equations
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and they relate to each other in this way:

−∂φ
∂x

=
∂ψ

∂z
, −∂φ

∂z
= −∂ψ

∂x
.

After the calculations of fluxes along the openings and for the sake of assigning boundary

conditions there in terms of stream function ψ, we use the above Cauchy-Riemann equations.

Figure 3.5 shows the governing Laplace’s equation ∇2ψ(x, z) = 0, and the boundary conditions

for a two-dimensional potential flow in terms of the stream function ψ(x, z). The numerical

solution (a finite difference scheme is used) to the problem is represented subject to the fluxes

calculated in terms of the velocity potential φ(x, z).

The resulting contour lines demonstrate the streamlines of the flow as illustrated in Figure 3.10

for four different domains in respect of the different position and number of their upstream and

downstream boundaries. The water enters the domain from entrance(s) and flows out through

the exit(s) along the streamlines (routes which a water particle will travel under absolutely

advective motion).

The different colours of the streamlines show that, in accordance with the boundary conditions,

the minimum value of the stream function is on the bottom, as shown in Figure 3.10a and 3.10b

i.e., where ψ(x, 0) = 0 (where streamlines has blue colour). The stream function increases

towards the top (red streamlines). Moreover, in the narrower region of the aquifer (i.e., in

entrance(s) and exit(s)), where fluid speed is greater, streamlines are closer to each other and

they spread apart in the regions of lower speed of the fluid.

In addition, for the cases where there are more than one entrance and exit, e.g., in Figure 3.10c

and 3.10d, the results are verified by the law of conservation of mass, i.e.,
∑
Qin =

∑
Qout.
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Figure 3.10: Graph of numerical solution for the stream function ψ(x, z), with (a) one entrance on
L.H.S and one exit on R.H.S; (b) one entrance on top boundary and one exit on R.H.S; (c) one
entrance on top and two exits, with one on L.H.S and second on R.H.S; (d) two entrances, one on the
top boundary and second on R.H.S (lower) and two exits, first on L.H.S and second on R.H.S (upper).

Another analysis is undertaken for four different domains with the same upstream and

downstream lengths and positions, but with different spatial length resolutions in terms of

streamlines. Table 3.1 demonstrates the details of these four domains, where b1b2, is the en-

trance, b3b4 is the exit, M is the number of rows, N is the number of columns and Q is the

unit discharge. Figure 3.11 shows that the numerical results obtained so far are independent

of the spatial grid resolutions. Other numerical experiments showed that increasing the grid

resolution did not improve the results.

Table 3.1: Four physical domains with their upstreams and downstream lengths for different mesh
resolutions.

Domain b1 b2 b3 b4 M N Q
M1 1 3 4 5 20 12 4
M2 1 3 4 5 40 24 4
M3 1 3 4 5 80 48 4
M4 1 3 4 5 160 96 4
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Figure 3.11: (a) - (d) Graphs of numerical solution for 4 physical domains with different resolutions
with their upstream and downstream lengths, for stream function ψ.

3.6 Modelling two-dimensional flow in aquifers in the

presence of impermeable objects

The problem under consideration is to find the steady-state flow around a rectangular

impermeable object immersed in a rectangular aquifer, as shown in Figure 3.12.
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Figure 3.12: Schematic diagram of the physical domain with embedded impermeable object.

Together with the assumptions discussed in Section 3.5, we set some extra assumptions for

the object embedded in groundwater:

• The object is completely impermeable, i.e., a solid tank(s) or pipe(s), building founda-

tions, rocks, etc.

• No heat is generated by the object.

• Fluid buoyancy effects are neglected.

Based on these assumptions, the system has a two-dimensional governing Laplace’s equation

in terms of velocity potential φ and stream function ψ. The discussion about the boundary

conditions on the object and illustration of the numerical results in terms of φ and ψ are given

separately in the following subsections.

3.6.1 Fluid flow for velocity potential φ(x, z) in the presence of im-

permeable objects

The main purpose of this study is to elaborate the behaviour of equipotential lines through a

porous medium in which there are embedded solid impermeable objects. A possible combination

of boundary conditions for the rectangular object are shown in Figure 3.13.
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Figure 3.13: Schematic diagram of boundary conditions for φ on an impermeable rectangular object.

As no fluid passes through the solid boundaries of the impermeable object, so, the normal

components of velocity are taken as zero on the four walls of the rectangular object and this

object serves as a streamline for the flow. Figure 3.14a shows that all pressure lines strike

normally to the solid walls of the rectangular cross-sections of the cylinder and water alters its

steady hydrodynamic behaviour in the presence of embedded underground solid objects. The

flow pattern varies for the different geometries and positions of the embedded objects.

If instead of placing a rectangular object, a very thin vertical impermeable wall is placed in the

porous media, as shown in Figure 3.14b, the flow assumes a pattern similar to that discussed

for the rectangular one.

In Figure 3.14c, a number of solid vertical walls are mounted on the bottom and top of the

rectangular domain; pressure lines strike normally to these walls. In addition, it seems that

the greatest pressure drop occurs in the first and second “chambers” and then the pressure

gradient weakens as fluid flows further downstream. This is because the second pair of walls

(in this pair, from left to right, one is at the first position on the bottom and the other is at

the second position on the top) have a relatively smaller “gate” than the others.

44



0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x

z
 

(a)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x 

z

(b)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x 

z

(c)

Figure 3.14: Graphs of numerical solution of velocity potential with embedded impermeable (a) rectan-
gular object; (b) vertical wall; (c) different vertical walls mounted at bottom and top of domain.

3.6.2 Fluid flow for stream function ψ(x, z) in the presence of im-

permeable objects: some examples

In this section, the study will be extended in terms of the stream function ψ for a selection of

triangular and rectangular impermeable solid objects placed at various positions of the aquifer.

Following are the possible boundary conditions for ψ on a rectangular object, where Qc is the

constant amount of the unit discharge along all the boundaries of the object. This is just to

experiment to find out what kind of flows we will get for a variety of object shapes.

ψ = Qc

ψ = Qc

ψ = Qc ψ = Qc

(xl, zt)

(xl, zb)

(xr, zt)

(xr, zb)

Figure 3.15: Schematic diagram of impermeable rectangular object for ψ.

As discussed before the presence of solid objects embedded inside groundwater significantly

alters the steady hydrodynamic behaviour inside the medium. This argument is more signifi-

cantly evident in the illustrations of ψ (which is the representation of pathways of water). For

the illustrations, consider the following cases:

If a vertical impermeable wall is embedded inside the porous medium as illustrated in Fig-
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ure 3.16a, then this wall behaves as a streamline, as the value of the stream function remains

constant everywhere on this wall.

Figure 3.16b shows a rectangular object placed at the bottom of a rectangular domain. Since

the value of stream function ψ is zero at the lower boundary, the whole object would be con-

sidered as a streamline corresponding to the value ψ = 0.

Now, if two adjacent rectangles are attached to the upper boundary of the rectangular domain,

then since the value of ψ is Q [m2 s−1] at the top boundary, so the value of the stream function

is ψ = Q [m2 s−1] at every point on the surfaces of these two rectangular objects.

Owing to the rectangular mesh size in the finite difference method, a triangular object is posi-

tioned so that points on its sloping surface coincide with mesh points. The value of the stream

function is ψ = 0 at every point of this triangular object as shown in the Figure 3.16d.

In Figure 3.16e, a number of impermeable vertical walls are placed on the top and bottom of

the rectangular domain which serve as streamlines of the flow, and we can see an interesting

pattern of fluid flow between these walls. Actually, there is no particular motivation to discuss

such kinds of objects embedded in the aquifers, but the motivation is to investigate the different

kinds of flow patterns for different combinations of objects embedded inside the aquifer.

In summary, if some of the above results are combined together, Figure 3.16f depicts the change

of hydrodynamic flow pattern in the presence of underground solid objects.
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Figure 3.16: Graphs of the numerical solution of the stream function with embedded in it (a) an
impermeable vertical wall; (b) a rectangular object placed on the bottom; (c) two rectangular objects
hanging on the top; (d) a triangular object placed at the bottom; (e) various vertical impermeable
walls mounted at the bottom and top of the domain; (f) a triangular object placed at the bottom, one
rectangle mounted on the top and a second one hanging in the middle of the aquifer.

3.6.3 Stream function for flow past impermeable objects when there

are more than one entrance and/or exit

The problem considered in this part represents fluid flow passing through two rectangular

objects immersed in a horizontal, rectangular porous medium having;

1. two entrances and one exit,

2. one entrance and two exits,

3. two entrances and two exits.

One of the rectangular objects is attached to the upper wall and the other is hanging in

the porous domain. The value of the stream function is ψ = Q [m2 s−1] at every point

of the rectangular objects attached at the top and the value of the stream function on the

rectangular object immersed within the rectangular domain is a constant. This constant

value on this rectangular object is obtained by using a relaxation technique.

It is noticeable in Figure 3.17a that out of the total flow Q, Q1 = 1 [m2 s−1] units of fluid

enters from the lower upstream boundary and Q2 = 3 [m2 s−1] units of fluid enters from the
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upper entrance. Since flux in should be equal to flux out, so, a total Q = Q1 + Q2 [m2 s−1]

units of fluid leaves the domain from the single exit on the R.H.S, which is evident from the

greater number of streamlines passing through the downstream boundary.

If on the other hand, a negative value is assigned to the inflow from one of the entrances, e.g.

Q2 = −0.5 [m2 s−1] (say), then the entrance discussed earlier in the L.H.S will be converted

into an exit, as shown in Figure 3.17b, and instead of water entering, it starts to leave the

porous media.

Figure 3.17c illustrates Q1 = 2 [m2 s−1] and Q2 = 4 [m2 s−1] units of fluid entering from

the lower and the upper entrances on the L.H.S respectively, and since inflow=outflow, so

Q3 = 3 [m2 s−1] and (Q−Q3) [m2 s−1] units of fluid leave the porous media from the lower

and upper exits on the R.H.S respectively.

The trapezoidal rule is used to calculate the fluid flow rates through the inlets and exits and

the numerical results confirm the above said argument.
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Figure 3.17: Graphs of the numerical solution of the stream function with two rectangular objects
embedded in it, with (a) two entrances on L.H.S, and one exit on R.H.S; (b) with one entrance on
L.H.S and two exits, one on L.H.S and second on R.H.S; (c) with two entrances on L.H.S and two
exits on R.H.S.

3.6.4 Flow grid display

For two-dimensional flow, one may be interested to find a relationship between stream

function ψ and velocity potential φ.

From the Cauchy-Riemann equations, the velocity components of the flow in terms of the

velocity potential and stream function are related to each other by

u = −∂φ
∂x

=
∂ψ

∂z
, w = −∂φ

∂z
= −∂ψ

∂x
. (3.46)
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Since along an isobar, φ is constant, i.e., let φ = C. It follows that:

dφ = ∇φ · ds =
∂φ

∂x
dx+

∂φ

∂z
dz = 0. (3.47)

In Equation (3.47), the displacement ds occurs along a line of constant velocity potential.

Inserting Equations (3.46) into Equations (3.47), we get:

−udx− wdz = 0. (3.48)

Hence, the gradient of equipotential lines is given by

(
dz

dx

)
φ=C

= − u
w
. (3.49)

Along a streamline the stream function does not change (i.e., dψ = 0), let ψ = D. It follows

that:

dψ = ∇ψ · ds =
∂ψ

∂x
dx+

∂ψ

∂z
dz = 0. (3.50)

Making use of Equation (3.46) into Equation (3.50), we get:

−wdx+ udz = 0. (3.51)

Hence the gradient of the streamlines is given by

(
dz

dx

)
ψ=D

=
w

u
. (3.52)

Multiplying Equations (3.49) and (3.52) with each other, we find:

(
dz

dx

)
φ=C

(
dz

dx

)
ψ=D

= −1. (3.53)

showing that equipotential lines and streamlines are orthogonal to each other. The stream

function is able to be calculated from (3.46) when the velocity potential is given and vice versa.

As equipotential lines and streamlines cross each other at 90 degrees, so both sets of lines form
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an orthogonal grid, (known as the flow grid) as shown in Figure 3.18a.

The presence of impermeable objects within the domain preserves the property of orthogonality

as well. An example of a flow grid for the whole problem domain when an impermeable

rectangular object is inside the aquifer, is shown in Figure 3.18b.
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Figure 3.18: Flow grid display of numerical solution for the equipotential lines (red) and streamlines
(blue) (a) without an object; (b) with an impermeable object.

3.7 Modelling two-dimensional flow in aquifers in the

presence of a leaky rectangular cylinder

The flow into or from a pervious structure embedded in a porous media is one of great

significance in many areas of engineering and science. Major examples include petroleum

and geothermal engineering, manufacturing process of advanced composites, radioactive

waste containers, geosciences (hydrogeology, petroleum geology), septic tanks and disposal

of drums of contaminants, etc.

Although Darcy’s law [20] is sufficient to describe the flow of fluid through porous media,

there are however certain situations in which Darcy’s equation cannot be applied. One such

example is a flow through the boundaries of a pervious block and where certain pressures

and pressure gradients are applied inside.

To deal with such situations, we need a more advanced flow model which precisely describes

appropriate boundary conditions for the pervious boundaries of the objects. Several modifi-

cations have been made in Darcy’s law to model such problems. Most of the models comprise

the situations in which pervious blocks are partially embedded in the overall system. In this
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study, the definition of boundary conditions on the pervious walls of the embedded objects

is discussed.

The objective of the present study is to propose suitable boundary conditions on the surface

of a pervious object, and analyse the solution for various values of the parameters involved.

Assuming the same governing equation (Laplace’s equation) and the outer boundary condi-

tions for the rectangular porous medium, as discussed in Section 3.5, a pervious tube with

rectangular cross-section is now supposed to be embedded in the porous medium. To de-

scribe the boundary conditions on the walls of this pervious structure, we proceed as follows;

To calculate values of the pressure gradients on the boundaries of the pervious surface, we

start with Darcy’s law on the boundaries outside the object. The flow into the object is

un = −ρgkps
µ

(
∂φ

∂n

)
ps

. (3.54)

Also, for the pervious boundary,

un ∝ (φps − φI), (3.55)

implies un = ωps(φps − φI), (3.56)

in which ωps [s−1] is a measure of resistance of the object’s pervious surface to flow through it,

and φI [m] is the constant pressure inside the object. It is assumed that the pervious object is

full of water at a constant pressure.

Combining Equation (3.54 ) and Equation (3.56), we get,

un = −ρgkps
µ

(
∂φ

∂n

)
ps

= ωps(φps − φI), (3.57)

implies −
(
∂φ

∂n

)
ps

=
ωpsµ

ρgkps
(φps − φI), (3.58)

implies −
(
∂φ

∂n

)
ps

=
βps
kps

(φps − φI), (3.59)

in which,

kps =
Kpsµ

ρg
, (3.60)
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where, kps [m2], and Kps [cm s−1] or [m day−1] are respectively the intrinsic permeability and

hydraulic conductivity of the porous medium, µ [kg m−1s−1] is the dynamic viscosity, ρ [kg m−3]

is fluid density, g [m s−2] is acceleration of gravity, φI is the pressure inside the rectangular cross-

section, and βps = ωpsµ/ρg.

The boundary conditions in terms of (∂φ/∂n)ps along the four pervious walls of the rectangular

cross-section are illustrated by the following schematic diagram:
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−
(
∂φ
∂z

)
ps

=
βps
kps

(φps − φI)

−
(
∂φ
∂z

)
ps

=
βps
kps

(φI − φps)

−
(
∂φ
∂x

)
ps

=
βps
kps

(φps − φI) −
(
∂φ
∂x

)
ps

=
βps
kps

(φI − φps)

(xl, zt)

(xl, zb)

(xr, zt)

(xr, zb)

φ = φI

(b)

Figure 3.19: Schematic diagram of the (a) physical domain for φ with a pervious septic tank embedded
in the homogeneous porous media; (b) rectangular cross-section of a pervious septic tank.
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3.7.1 Illustrations

Consider a septic tank, which is connected to some continuous source of fluid and is kept

at a constant dynamic pressure inside. The tank is embedded in a homogeneous aquifer,

which is further connected to two reservoirs of water, one on the left-hand side and the other

on the right-hand side. Fluid is ejected or sucked by this leaky tank depending upon the

amount of fluid inside and the level of water in the two reservoirs. The schematic diagram

of the setup is shown in Figure 3.19. This example is presented only for the discussion of

fluid flow, transport of pollutant will be discussed in Chapter 5.

In this particular situation, the aquifer is connected to two different reservoirs, with fixed

values of the dynamic pressures on left- and right-hand sides as φL = 1 and φR = 0,

respectively. Numerical simulations are performed for four different values of φI , which

represents the value of constant pressure inside the tank, but with a fixed value of the

permeability parameter βps = 3. At the end, two contour plots are added for βps = 3, and

βps = 0 to give the comparison between pervious and impermeable objects. It should be

noted that, in all the graphs of Figure 3.20, the outline of the rectangular cross-sections is

drawn to mention their exact position in the porous medium, and the colour of the boundaries

of rectangles is selected to match with the value of φI inside.

In the first illustration, the value of φI inside the pervious rectangular cross-section is taken

as φI = 5, which is larger than the values of the pressures in the two openings of the aquifer,

so the fluid inside the tank exerts a larger pressure on the outside fluid; as a result of which,

water is ejecting outside through these two openings. This effect is evident from the filled

graphics in Figure 3.20a by the red colour in the neighbourhood of the tank and blue colours

in the two openings.

In Figure 3.20b, the value of φI inside the pervious object/tank is taken as φI = 1, which

is equal to the value of pressure in the left-hand side opening, b1b2, as a result of which a

larger pressure is observed by the red area in the surrounding of the tank. This pressure is

exerted by the fluid inside the object and the fluid coming from the left-hand side reservoir.

Figure 3.20c illustrates the value of φI equal to the value of φ on the right-hand side opening,

b3b4. Since the pressure on the object and on the right-hand opening is less than the pressure
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on the left-hand side opening, so more pressure is exerted by the fluid coming through the

left-hand opening to the fluid in the remaining area of the domain, which is visible by the

greater blue area on R.H.S of the domain and in the neighbouring area of the object.

The behaviour of lower pressure inside the object is determined by Figure 3.20d, where the

value of φI is taken as −1, which is less than that in the left-hand side opening, b1b2 and

right-hand opening, b3b4. This situation shows the example when water is being sucked by

the tank from the incoming water through the two openings. Since the pressure in the object

is less than from the two openings, but the pressure in the left-hand opening is greater than

that in the right-hand opening, so more pressure is exerted by the fluid coming from the

left-hand reservoir to the fluid in the remaining part of the domain. A lighter red colour is

also visible in the right-hand side opening, showing a relatively larger pressure there than

that in the tank.
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Figure 3.20: Filled contour plots of numerical solution for φ(x, z) with a leaky cylinder embedded in
a homogeneous porous medium, for βps = 3, φL = 1, φR = 0, and for (a) φI = 5; (b) φI = 1; (c)
φI = 0; (d) φI = −1.

The value βps is a measure of resistance of the object’s pervious surface to flow through it.
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This will be discussed in detail in Sections 3.9 and 3.10 and illustrated by Figure 3.23. However,

here we will take only two examples for the sake of comparison between pervious and imper-

vious objects. The colour of the cylinders is taken randomly to match with the value of φI inside.

In Figure 3.21a, the value of βps is taken as βps = 3, and the value of pressure inside the

pervious rectangular cross-section is taken as φI = 5, which is larger than the pressures in the

left- and right-hand sides openings. Since the object is pervious with a larger pressure inside,

so the fluid inside the object pushes the outside fluid towards the two openings; this is evident

from the red lines near the object in Figure 3.21a. On the other hand, Figure 3.21b shows the

result of the case when the value of βps = 0 (it doesn’t matter what would be the value of φI

inside the object), as a result of which, the pervious object becomes completely impermeable

and isobars are visible striking normally to the solid boundaries of the tank. The contour

plot in Figure 3.21b looks similar to the graph for the impermeable object as illustrated in

Figure 3.14a, where the isobars strike normally to the solid walls of the surface.
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Figure 3.21: Contour plots of φ(x, z) for a leaky cylinder with rectangular cross-section for φL = 1,
φR = 0, φI = 5, and for (a) βps = 3; (b) βps = 0.
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3.8 Calculation of the net flow along the four boundaries

of the rectangular cross-section using the Trapezoidal

rule

We can also calculate the net flow QI [m2 s−1] out of the cylinder by calculating the separate

outward flows across the four boundaries of rectangular cross-section (by using Trapezoidal

rule), i.e., QI = −Qleft +Qright −Qbottom +Qtop.

The results are verified if QI = QR − QL, or QR = QL + QI , where QL [m2 s−1] and QR [m2

s−1] are the values of the flux in the left- and right-hand side openings respectively. The value

of QI clarifies whether the water is injected into or withdrawal from this pervious object. If QI

is negative, then water is being sucked by the object, and the positive value of QI represents

the withdrawal of water from the pervious cylinder.

Table 3.2: Verification of the net flows across the leaky tube of rectangular cross-section embedded in
a porous medium with φL = 2 [m] and φR=1 [m].

βps φI QL QR QI QR −QL relative error

3

0 1.9418 -0.8460 -2.7345 -2.7878 0.0191
-1 2.9080 -1.7014 -4.5207 -4.6094 0.0192
1 0.9756 0.0095 -0.9482 -0.9661 0.0185
2 0.0094 0.8649 0.8380 0.8555 0.0205
5 -2.8891 3.4313 6.1967 6.3204 0.0196

10

0 2.0298 -0.8871 -2.8245 -2.9169 0.0317
-1 3.0418 -1.7800 -4.6686 -4.8218 0.0318
1 1.0178 0.0058 -0.9804 -1.0120 0.0312
2 0.0058 0.8986 0.8637 0.8929 0.0327
5 -3.0303 3.5773 6.3960 6.6076 0.0320

100

0 2.0681 -0.9048 -2.8470 -2.9729 0.0423
-1 3.0998 -1.8141 -4.7054 -4.9140 0.0424
1 1.0363 0.0045 -0.9886 -1.0318 0.0419
2 0.0045 0.9138 0.8699 0.9093 0.0433
5 -3.0908 3.6418 6.4452 6.7326 0.0427

3.9 A vertical pervious thin wall

In this part we will discuss the case of taking an infinitesimally thin vertical wall in a homoge-

neous porous domain. The pressure gradients on L.H.S and R.H.S of this wall are denoted by
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∂φ−/∂x and ∂φ+/∂x respectively, and can be found by the formulae,

−
(
∂φ−

∂x

)
ps

=
βps
kps

(φ−kB1
− φ+

kB2
), (3.61)

−
(
∂φ+

∂x

)
ps

=
βps
kps

(φ−kB1
− φ+

kB2
). (3.62)

where βps is a measure of resistance of the object’s surface to flow through it, as discussed

in Section 3.7, φ−kB1
, and φ+

kB2
are the values of pressures on L.H.S and R.H.S of the wall

respectively.

The solution is obtained by using a finite difference formula. In Equation (3.61), a 3-4-1

backward formula and in Equation (3.62), a 3-4-1 forward formula are used for the calculations

of pressures φ−kB1 and φ+
kB2 respectively.

3.9.1 Illustrations

The present section includes some results for different values of parameter βps to give a com-

parison between impermeable and pervious wall. Moreover, an analysis is given to show how

the perviousness of the wall increases as the value of βps gets larger.

Figures 3.22a-3.22d comprise examples for the cases when βps = 0, 5, 50, and 1000, respec-

tively. Results show that when βps = 0, the wall becomes completely impermeable, as shown in

Figure 3.22a which is similar to the results of Figure 3.14b for an impermeable wall. Whereas,

for βps > 0, the wall becomes comparatively more pervious and there is a smaller pressure

drop across the pervious wall, as shown in Figures 3.22b and 3.22c. More significant results are

shown in Figure 3.22d where a larger value is assigned to βps (=1000), as a result of which the

wall becomes completely pervious and the fluid feels no resistance to flow (as if the wall was

not present at all).
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Figure 3.22: Contour plots of φ(x, z) for a vertical thin wall immersed in homogeneous porous media
with, φL = 1, φR = 0, for different values of parameter βps, with (a) βps = 0; (b) βps = 5; (c)
βps = 50; (d) βps = 1000.

3.10 A connection between flux out, height of the per-

vious wall, h, and parameter βps

To see the impact of βps and height of pervious wall on net flow, a numerical study is undertaken

for a rectangular domain with width a = 10cm and height b = 6cm, at a grid resolution 48×80

for the following parameters:

• h, the height of the vertical pervious wall within the range 0-6,

• the parameter βps, which is a measure of perviousness of the wall, and

• flux out QR.

The first analysis is done between QR and h, by varying βps within the range 0 − 1000,

while keeping the wall at the bottom of the system. In Figure 3.23a, it is observed that, when
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h is very small, QR does not vary significantly, but as the values of h increase, QR decreases

gradually. It is also observed that when βps = 0, the wall becomes completely impermeable

and it serves as a barrier for the flow of the fluid; it completely stops the fluid flow at h = 6,

which is the maximum height of the flow domain. Moreover, for larger values of βps, the wall

becomes more pervious and for very large values of βps (e.g. βps = 1000), this wall becomes

almost completely permeable and the flow is little affected by height or even the presence of

the wall.

The second analysis is made between QR and βps, for eight different heights of the wall. In

Figure 3.23b, it is shown that when the values of βps increase, the flux out QR also increases.

In addition, for maximum height of the wall, i.e., at h = 6cm, a little amount of water can

pass through the wall, while for h = 0, there is no variations in the amount of the flow and a

constant amount of fluid passes through the domain. As the height of the wall increases, the

value of QR decreases.
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Figure 3.23: Graphs of (a) h versus QR; (b) βps versus QR.
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3.11 Modelling three-dimensional flow

The objective of this part of the study is to formulate a mathematical model based on the

conceptual model of any groundwater flow problem for three-dimensional domains. After the

discussion of the basic mass balance equation and boundary conditions for three-dimensional

flows, the equations will be developed for flow in homogeneous aquifers. Solution of the math-

ematical model enables one to solve forecasting problems of water levels or piezometric heads

in any type of aquifer with precise geometries and properties.

Every mathematical model that describes the transport phenomena of mass and energy in a

porous medium domain requires a balance equation of that quantity. In fluid flow problems,

this balance equation is considered in the form of a partial differential equation, each term of

which represents a change in mass of the fluid per unit volume of porous media per unit time.

3.11.1 Discretization of solution domain

(yLl, zLb)

(yLl, zLt)

(yLr, zLb)

(yLr, zLt)

(yRl, zRb)

(yRl, zRt)

(yRr, zRb)

(yRr, zRt)
∇2φ(x, y, z) = 0

∂φ(x, y)/∂z = 0

∂φ(x, y)/∂z = 0

∂φ(y, z)/∂x = 0
∂φ(y, z)/∂x = 0

∂φ(x, z)/∂y = 0

∂φ(x, z)/∂y = 0
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Figure 3.24: Nomenclature for mass conservation for a control volume for φ.

Consider a control box in the form of a solid rectangular parallelepiped box OABCDEFG,

having a length X, width Y and height Z. The domain is provided by a solution grid consisting
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of I equally-spaced points in the x-direction, J equally-spaced points in the y-direction and K

equally-spaced points in the z-direction. The following uses MATLAB terminology.

In the x-direction the increments are represented by dx = round(X
I

), the increments in the

y-direction are given by dy = round(Y
J

), and the increments in the z-direction are given by

dz = round( Z
K

). The mesh grid is constructed as: [x, y, z] = meshgrid(xx, yy, zz).

In this case, instead of taking the holes in entrance and exits, open rectangular windows are

taken in L.H.S and R.H.S of the cube. In this program, windows are located in the yz-plane.

The coordinates of the upstream boundary are taken as: (yLl, zLb), (yLl, zLt), (yLr, zLb) and

(yLr, zLt) and in the downstream boundary are represented as: (yRl, zRb) (yRl, zRt), (yRr, zRb)

and (yRr, zRt). In order to locate points yLl, yLr, zLb, zLt in the upstream boundary, we associate

them with indices jLl, jLr, kLb, kLt, respectively, and calculate jLl = round(yLl
dy

) + 1, jLr =

round(yLr
dy

) + 1, kLb = round( zLb
dz

) + 1 and finally kLt = round( zLt
dz

) + 1.

Similarly, for the downstream boundary, in order to locate points yRl, yRr, zRb, zRt, we associate

them with indices jRl, jRr, kRb, kRt, respectively, and calculate jRl = round(yRl
dy

) + 1, jRr =

round(yRr
dy

) + 1, kRb = round( zRb
dz

) + 1 and finally kRt = round( zRt
dz

) + 1.

3.12 The basic mass balance equation and initial and

boundary conditions

As velocity potential φ(x, y, z) is defined for three-dimensional flows as well, we consider the

flow is steady and both water and solid matrix are taken as incompressible, so the governing

equation is the Laplace’s equation

∇2φ(x, y, z) =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0. (3.63)

This basic equation has an infinite number of possible solutions, each one is consistent with a

unique case of flow in a porous media domain. To obtain a particular solution from multiple

solutions, it is essential to provide additional information besides the basic equation. The addi-

tional information together with the partial differential equation determines the mathematical

model of a particular problem with the requirement of initial and boundary conditions.
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Different boundary conditions correspond to different solutions. Each boundary condition is

expressed in the form of a mathematical equation to describe known water fluxes, or known

values of state variables on all the boundaries of the domain.

Since no water can pass across the solid impermeable boundaries of the domain, Neumann-type

boundary conditions are stated there. Normal components of the velocity are zero on the six

solid faces of the box i.e., ∂φ/∂n = 0 along these faces. The opening in the upstream boundary

and opening in the downstream boundary have the scaled dynamic pressure which is hydro-

static i.e., Dirichlet-type boundary condition, φ(0, y, z) = φL, and φ(X, y, z) = φR are specified

in these sections. In detail these boundary conditions are:

−∂φ
∂x

= 0, on left face excluding inlet, (3.64)

−∂φ
∂x

= 0, on right face excluding exit, (3.65)

−∂φ
∂y

= 0, on front face, (3.66)

−∂φ
∂y

= 0, on back face, (3.67)

−∂φ
∂z

= 0, on bottom face, (3.68)

−∂φ
∂z

= 0, on top face, (3.69)

φ(0, y, z) = φL, on injection window, (3.70)

φ(X, y, z) = φR, on suction window. (3.71)

3.13 Three-dimensional flow in the absence of an object

A numerical solution for the dynamic pressure is undertaken for Laplace’s equation subject

to suitable boundary conditions as shown in Figure 3.24. A simple example is used for illus-

tration. A homogeneous aquifer is taken in the form of a rectangular parallelepiped box with

0 ≤ x ≤ 10 [m], 0 ≤ y ≤ 12 [m], and 0 ≤ z ≤ 14 [m]. The boundary conditions on the upstream

and downstream boundaries (at free surfaces of the fluid) are assigned respectively, as follows:

φ(0, y, z) = φL = 2, φ(X, y, z) = φR = 1, (3.72)
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and for the boundary conditions on the solid boundaries of the cube, the fact of zero normal

velocities is taken into account, i.e., ∂φ/∂n = 0, where n is the unit vector normal to every side

of the box.

Figure 3.25 shows the contour plot of isobars, which provides the same fact as illustrated

for two-dimensional aquifers, i.e., water flows in a direction opposite to the dynamic pressure

gradient (that water flows along the direction where pressure gradient drops most, because a

greater value of pressure, i.e., φL = 2 (red) is assigned to the upstream boundary as compared

to the downstream boundary, where φR = 1 (blue)).
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Figure 3.25: Graphs of velocity potential φ(x, y, z), with all the contours equally spaced between mini-
mum (φR = 1) and maximum (φL = 2) values of φ(x, y, z).
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3.14 Three-dimensional flow in the presence of an im-

permeable cuboidal object

Impermeable object
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Figure 3.26: Nomenclature for (a) mass conservation for a control volume for φ, with an impermeable
cuboidal object embedded in it; (b) schematic diagram of the impermeable object.
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Figure 3.26 represents a three-dimensional cubical porous medium with an impermeable

cubical object embedded in it. In analysing the problem, the following assumptions should be

considered:

• The cubic porous medium is homogeneous and isotropic.

• No heat generation, or pollutant or tracers occur inside the porous medium.

• No heat generation or pollutant or tracers pass across the cuboidal object.

Based on these assumptions, the governing equation and the boundary conditions on porous

media are the same as discussed in Section 3.13. The boundary conditions on the impermeable

cuboidal object are assigned with regard to the fact that normal components of the velocities

are taken to be zero there.

Figure 3.27a illustrates the results of the numerical simulations. Since the cuboid is imperme-

able, no fluid can pass across the solid boundaries (walls) of this object. However, it is not clear

that equipotential lines strike normal to this object, so an xy-slice of Figure 3.27a is taken and

the preservation of normality is illustrated in Figure 3.27b.
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Figure 3.27: Graphs of velocity potential φ(x, y, z) with (a) an impermeable cuboid placed in it (b) an
xy-slice through the impermeable cuboid
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3.15 Three-dimensional flow in the presence of pervious

cuboidal objects

pervious object
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Figure 3.28: Schematic diagram of (a) φ(x, y, z) with pervious object embedded in it; (b) an enlarged
view of pervious cuboidal object with boundary conditions.
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Figure 3.28 represents a cubical pervious object in a three-dimensional aquifer. Boundary

conditions on the surface of the porous enclosure are the same as those discussed in Section 3.12.

The following boundary conditions have been considered on the surface of embedded pervious

body. These equations have been written in the scaled form of the velocity potential φ(x, y, z)

as:

−
(
∂φ

∂x

)
ps

=
βps
kps

(φps − φI), on left face, (3.73)

−
(
∂φ

∂x

)
ps

=
βps
kps

(φI − φps), on right face, (3.74)

−
(
∂φ

∂y

)
ps

=
βps
kps

(φps − φI), on front face, (3.75)

−
(
∂φ

∂y

)
ps

=
βps
kps

(φI − φps), on back face, (3.76)

−
(
∂φ

∂z

)
ps

=
βps
kps

(φps − φI), on bottom face, (3.77)

−
(
∂φ

∂z

)
ps

=
βps
kps

(φI − φps), on top face, (3.78)

where βps [m] is a measure of resistance of the object’s surface to flow through it, and φI [m]

is the pressure inside the pervious body.

A numerical solution for the governing Laplace’s equation together with boundary condi-

tions (3.64)-(3.78) is plotted as contours of isobars in Figure 3.29. In this example, the value of

dynamic pressure in the entrance is taken as φL = 1 [m], in the exit as φR = 0 [m], and inside

the body as φI = 5 [m] or φI = −5 [m].

In Figure 3.29a, the mean dynamic pressure inside the pervious body is higher than that of

the neighbourhood area, which is shown by red isobars. But the pressure exerted by the fluid

inside the cubic cross-section to the neighbouring area is not visible, so two-dimensional xy-

and yz-slices of this cuboid are taken. Figures 3.29b and 3.29c represent higher pressure inside

the slices as compared to the upstream and downstream boundaries. On the other hand for a

lower value of dynamic pressure, i.e., φI = −5 [m], the isobars are visible in the form of blue

lines near the object in the Figures 3.29d-3.29f.
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Figure 3.29: Graphs of φ with βps = 2, for a cubical aquifer with (a) a pervious cuboid in it with
φI = 5; (b) an xy-slice of pervious cuboid with φI = 5, at z=8; (c) a yz-slice of pervious cuboid with
φI = 5, at x = 4; (d) a pervious cuboid in it with φI = −5; (e) an xy-slice of pervious cuboid with
φI = −5, at z = 6; (f) a yz-slice of pervious cuboid with φI = −5, at x = 6.

3.15.1 Influence of φI on fluxes

To give the influence of φI on net flow, a comparison between φI and various fluxes through a

cubic porous media with a pervious cubical body is given in Figure 3.30. For a positive value

of βps (say βps = 2), as φI turns from negative to positive, flux through the cuboid, QI (red

line) and flux out through the porous media, QR (magenta line) increases significantly, whereas,

flux in, QL (green line) through the porous media tends to decrease gradually, as illustrated

in Figure 3.30a. This is because, for a higher value of φI , the fluid inside the pervious cuboid

exerts a high pressure on the neighbouring fluid, as a result of which, water flows outside the

porous media from the exit as well as from the inlet, and the relationship between φI and fluxes

is linear. On the other hand, for a larger magnitude of negative value of φI , flux in is larger

than flux out and flux through cuboid. This shows that more water is entering into the cubical

body as compared to leaving it.

In addition, the net flow across the system follows the mass balance law, and results are verified

in Figure 3.30b, in which the net flow in (which is equal to flux in, QL through the porous media

and flux, QI passed through cuboid) is exactly equal to flux out QR through the porous media

i.e., QR = QI +QL.
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Figure 3.30: Illustrations of fluxes for βps = 2, φL = 1, φR = 0, for various values of φI , graph between
(a) φI and flux through pervious cubic object, flux in through entrance and flux out through exit, and;
(b) φI and net flow in and net flow out.
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3.16 Hele-Shaw cell

The notion of pervious objects enables us to extend our study to various pervious objects

embedded inside the porous media. This leads us to elaborate on the idea of a Hele-Shaw

cell [10]. In this arrangement of the fluid flow field, inertia forces are neglected.

According to this composition, a two-dimensional flow takes place between two parallel plates,

which are separated by an infinitesimally small displacement d. The gap between the plates is

partially covered by fluid and partially by stumbling blocks (cylinders) whose generators are

perpendicular to the plates. A steady pressure difference is exerted between both the ends of

the system, as a result of which, fluid is forced to flow from one end of the layer to the other.

In this arrangement, the local velocity and local pressure gradient are related by

u ≈ − 1

2µ

∂p

∂x
z(d− z), v ≈ − 1

2µ

∂p

∂y
z(d− z), (3.79)

where the coordinate z is normal to the plane [10]. In 1898, Hele-Shaw proposed the idea that

at some constant value of z (or averaged with respect to z (Equation. (3.79)), the value of u

and v defines a two-dimensional, irrotational velocity field which also preserves the property

of zero normal components on the rigid boundaries of a surface. Thus the Hele-Shaw’s steady

flow past objects is similar to that of theoretical flow of inviscid fluid with zero vorticity passing

through a porous media with embedded objects of the same kind.

The equations governing the Hele-Shaw flows are similar to those of the inviscid potential

flow and to the flow of fluid through a porous medium (Darcy’s law). For a porous medium,

approximations to Hele-Shaw flow are observed in the way that, when groundwater is forced

to flow by a pressure gradient exerted by the soil, then each constituent of the water follows

a complicated path when it passes through the random arrangement of the interstices. In this

case, the interstices function like the parallel plates [10].

Our system is composed of two parallel plates which are joined together in the form of a

rectangular porous medium OABC, which is connected to two water containers on L.H.S and

R.H.S with different scaled dynamic pressures φL and φR respectively. Between these plates

there are immersed four rectangular pervious objects, which are also connected to a single

separate water container whose dynamic pressure φI is different from that of φL and φR, as
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shown in Figure 3.31.

Water is forced to flow in the system in this way so that the level of surface at one end of the

arrangement is being kept higher than the other by the introduction of liquid there.

φL φR

WaterφI

C

O

B

A

Figure 3.31: Schematic diagram of the physical domain for Hele-Shaw cell.

3.16.1 Illustration: a three-dimensional homogeneous aquifer with

four pervious cuboidal objects embedded in it, with the same

value of φI

Even though the Hele-Shaw cell is described for two-dimensional flows, here as an illus-

tration, consider a three-dimensional flow past objects in homogenous cubic porous media as

shown in Figure 3.32. The governing equation and boundary conditions on the porous media

and pervious objects are similar as discussed in Section 3.15.
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As water always flows from areas of higher dynamic pressure to those of lower pressure, so

the flow of water will depend on the values of φL, φR and φI . In this example, fluid is set in

motion by assigning a higher value of φI = 5 for the obstacles and by fixing the values of scaled

dynamic pressure in the entrance and exit as φL = 1, and φR = 0, respectively. Four pervious

objects of different dimensions are placed in the cube. Figure 3.32a is a simple illustration of

equipotential lines (red), which depicts a higher pressure in the neighbourhood of the obstacles

and flow of water through the two openings on L.H.S and R.H.S of the porous media.

Since the governing equation and boundary conditions are linear and homogeneous, so the mo-

tion of the fluid is reversible and there is a linear relationship between φI and flux through the

cuboids, as illustrated in Figure 3.32b. The graph is plotted for φL = 1, φR = 0, βps = 1 and

βps = 100, for various values of φI . As βps is a measure of the perviousness of a surface, so

for non-negative values of φI , the value of flux through the cuboids increases significantly for

a larger value of βps. Moreover, the value of flux depends also on the dimensions and positions

of the cuboids, as is obvious from the plot of flux through the yellow cuboid, which is placed

near the exit and has relatively higher dimensions than the others.
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Figure 3.32: (a) Isolines of velocity potential in 3D with four pervious cuboids, with βps = 100, φL = 1,
φR = 0 and φI = 5; (b) Graph of fluxes into (for negative φI) or out (for positive φI) of these cuboids
for various values of φI , with βps = 1, and βps = 100.
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3.17 A three-dimensional homogeneous aquifer, with four

pervious cuboidal objects embedded in it with dif-

ferent values of φI

Following the discussion in Subsection 3.16.1, and recalling the idea of Hele-Shaw cell of

Section 3.16, here we suppose that all the embedded objects are connected to different water con-

tainers with different pressures φI , I = I1, I2, I3, I4, by introduction of varying amounts of liquid

there, as shown in Figure 3.33. It does not matter what are the values of φi, i = L,R, I1, I2, I3, I4

(L means in the inlet, R means in the exit and I1, I2, I3, I4, means in the four containers), be-

cause on the basis of our previous experiments, it can be deduced readily that, whatever the

values and signs of φi, i = L,R, I, the velocity of the water lies in the direction opposite to the

scaled dynamic pressure gradient.
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Figure 3.33: Schematic diagram of the physical domain for Hele-Shaw cell for four different pressures
of containers.

As an illustration, consider Figure 3.34, in which four pervious cuboids with different values

of pressure inside are immersed inside a cubic porous media. The values of scaled dynamic

pressures in the entrance and exit are kept constant by assigning them the values φL = 1 [m]

and φR = 0 [m], respectively. The values of pressure inside the cuboids are taken as follows:

φI1 = 0.1 [m] (red),

φI2 = 0.5 [m] (green),

φI3 = 0.7 [m] (magenta),

φI4 = 0.8 [m] (yellow).

Since the pressure inside the red cuboid is minimum, so blue equipotential lines can be seen

in the neighbourhood of this cuboid. On the other hand, due to the higher pressure in the
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yellow cuboid, red isobars are prominent in its neighbouring area.
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Figure 3.34: Graph of φ in 3D aquifer, with βps = 2, φL = 1, φR = 0 with four pervious cuboids in
it kept at different pressures as: φI1 = 0.1 (red), φI2 = 0.5 (green), φI3 = 0.7 (magenta), φI4 = 0.8
(yellow).
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Chapter 4

Fluid Flow Model for

Non-homogeneous Aquifers

So far in the discussion of permeability, we assumed that the geological formation was

homogeneous and isotropic, indicating that the value of intrinsic permeability, k was everywhere

uniform. However, porous media comprising groundwater aquifers and oil reservoirs are rarely

homogeneous regarding to their permeability1. To avoid confusion with intrinsic permeability

k, the hydraulic conductivity K may be expressed as:

K =
kρg

µ
, (4.1)

where k [m2], K [m day−1], ρ [kg m−3], g [m s−2] and µ [kg m−1 s−1] are respectively the

permeability, the hydraulic conductivity of a material, fluid density, gravitational acceleration,

and fluid dynamic viscosity. Table 4.1 represents values of µ, g, and ρ.

Table 4.1: Parameters used for the simulations.

Parameters Values Units
fluid dynamic viscosity µ 1.002× 10−3 [kg m−1 s−1]
gravitational acceleration g 9.8 [m s−2]
fluid density ρ 1000 [kg m−3 ]

Table 4.2 includes representative hydraulic conductivity and respective permeability of ge-

1Permeability is a measure of the ability of a material (such as rocks or soil) to transmit fluids. This is a
property only of the medium and is independent of fluid properties [52].
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ological materials. It is worthy to mention that these values are taken as an average of many

measurements, which depend on various elements, e.g., fracturing, weathering, burial depth,

and solution channels, etc. [52].

Table 4.2: Representative values of hydraulic conductivity and permeability of some materials. For
conversion, see Equation 4.1.

Material Hydraulic conductivity K (m/day) Permeability k (m2)
Gravel, fine 450 5.3167× 10−10

Gravel, medium 270 3.1952× 10−10

Gravel, coarse 150 1.7751× 10−10

Sand, coarse 45 5.3253× 10−11

Sand, medium 12 1.4201× 10−11

Sand, fine 2.5 2.9585× 10−12

Silt 0.08 9.4671× 10−14

Clay 0.0002 2.3668× 10−16

Sandstone medium-grained 3.1 3.6685× 10−12

Sandstone fine-grained 0.2 2.3668× 10−13

Groundwater aquifers are composed of a layered structure of different physical properties,

such as permeability, porosity, hydraulic conductivity and transmissivity, etc. This layered sys-

tem has evolved due to various geological processes over different periods of time. It forms a

non-homogeneous material composed of layers of different textures [11]. The present chapter

will cover a discussion about potential flow in two- and three-dimensional non-homogeneous

aquifers considering permeability and hydraulic conductivity as its main characteristics, includ-

ing analysis of flow:

1. in the absence of an object in two- and multi-layered systems, with different positions of

entrance and exit of fluid,

2. in the presence of impermeable objects of different sizes and shapes, placed at various

positions in the aquifer,

3. in the presence of a permeable object, whose permeability is different from the outside

porous media, and

4. in the presence of pervious objects with pressure inside different from the inlet and outlet.
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Two situations arise for a non-homogeneous aquifer: one with the horizontal layered system

and the other composed of several vertical layers of different thicknesses and permeabilities.

In former system, if a single layer has relatively lower permeability, then the vertical flow is

decelerated, but fluid flows smoothly in the horizontal direction by means of a layer of relatively

higher permeability.

An example of three horizontal layers is shown in Figure 4.1. This is just an illustration to show

an aquifer consisting of three horizontal layers, each independently isotropic, but with different

permeabilities and thicknesses. If ki, di and Qi, i = 1, 2, 3, are respectively, the permeability,

the thickness and discharge per unit width of aquifer (measured normal to the plane of flow) in

each layer, then by Darcy’s law, the total discharge, Q, which is the sum of individual discharge

rates, Qi, is given by [11]:

Q =
3∑
i=1

Qi, (4.2)

where Qi = kidi
∆φ

a
, (4.3)

and ∆φ = φL − φR, (4.4)

so, Q =
3∑
i=1

Qi =
3∑
i=1

kidi
∆φ

a
. (4.5)
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Figure 4.1: Diagram of 3 horizontal strata in a confined aquifer, each isotropic, with different thick-
nesses and permeabilities.

Now consider a second example of flow whose direction is normal to the layer system as

shown in Figure 4.2. In this case, the discharge Q, and ∆φ is given by,

∆φ = φL − φR, (4.6)

and a =
3∑
i=1

ai, (4.7)

hence Qi = kib
∆φ

ai
; (4.8)

where Q =
3∑
i=1

Qi =
3∑
i=1

kib
∆φ

ai
; (4.9)

so, Q = b∆φ
3∑
i=1

ki
ai
. (4.10)
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Figure 4.2: Diagram of 3 vertical strata, each isotropic with different widths and permeabilities.

4.1 The general motion equation for a non-homogeneous

aquifer in terms of φ(x, z)

For two-dimensional flow in an isotropic homogeneous aquifer in the xz-plane, we have

V = −∇Φ(x, z), where Φ = Kφ. However, when the discussion is extended to non-homogeneous,

yet isotropic porous media, the above relationship becomes,

V = −K∇φ(x, z) = −(ρgk)

µ
∇φ(x, z). (4.11)

For a non-homogeneous medium, with two materials of different permeabilities ki, i = 1, 2, the

components of velocity in terms of piezometric head φ are

u1 = −ρgk1

µ

∂φ1

∂x
, u2 = −ρgk2

µ

∂φ2

∂x
, w1 = −ρgk1

µ

∂φ1

∂z
, and w2 = −ρgk2

µ

∂φ2

∂z
, (4.12)
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where k1 [m2], k2 [m2], and φ1 [m], φ2 [m], are respectively the permeabilities of the materials

and piezometric heads in the two-layer system of a non-homogeneous aquifer.

Based on the same assumptions and same procedure as described for a homogeneous porous

medium, another assumption is to be supposed here that the medium is non-homogeneous. To

clarify this new assumption we proceed as follows.

Consider a two-dimensional incompressible, steady-state fluid flow in an isotropic non-homogeneous

medium in the xz-plane. As a non-homogeneous porous medium contains various layers of dif-

ferent permeabilities, the equation of motion for a two-layered, non-homogeneous incompressible

fluid in terms of piezometric head φ (φ = z + p/ρg) [11] is

∇2φ(x, z) = 0. (4.13)

At the vertical interface, u1 = u2, this implies

k1
∂φ1

∂x
= k2

∂φ2

∂x
. (4.14)

By integrating the above expression, we get

φ1 = φ2. (4.15)

For a horizontal interface, w1 = w2, this implies

k1
∂φ1

∂z
= k2

∂φ2

∂z
. (4.16)

By integrating the above relationship, we have φ1 = φ2. The problem and physical domain are

shown in Figure 4.3.
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Figure 4.3: Schematic diagram in terms of φ, for a two-layered non-homogeneous aquifer, separated
by a horizontal permeable interface.

4.2 The relationship between φ and Φ, ψ and Ψ, and

the general motion equation for a non-homogeneous

aquifer in terms of Ψ(x, z)

In the case of two-dimensional flow in a homogeneous isotropic aquifer, we know that the

function Ψ = Ψ(x, z) is constant along streamlines, where Ψ = Kψ(x, z). Moreover, the

functions Φ and Ψ, satisfy Cauchy-Riemann conditions for two-dimensional flow in the xz-

plane, i.e.,

u = −∂Φ

∂x
=
∂Ψ

∂z
, w = −∂Φ

∂z
= −∂Ψ

∂x
. (4.17)
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But, in the case of two-dimensional flow in the xz-plane in an isotropic non-homogeneous

aquifer, Equation (4.17) is converted into the form:

u = −K∂φ

∂x
=
∂Ψ

∂z
, w = −K∂φ

∂z
= −∂Ψ

∂x
. (4.18)

For a non-homogeneous medium, with two layers of different materials with hydraulic conduc-

tivities, Ki, i = 1, 2, the components of velocity become:

u1 = −K1
∂φ1

∂x
=
∂Ψ1

∂z
, u2 = −K2

∂φ2

∂x
=
∂Ψ2

∂z
, (4.19)

implies u1 = −ρgk1

µ

∂φ1

∂x
=
∂Ψ1

∂z
, u2 = −ρgk2

µ

∂φ2

∂x
=
∂Ψ2

∂z
, and (4.20)

w1 = −K1
∂φ1

∂z
= −∂Ψ1

∂x
, w2 = −K2

∂φ2

∂z
= −∂Ψ2

∂x
, (4.21)

implies w1 = −ρgk1

µ

∂φ1

∂z
= −∂Ψ1

∂x
, w2 = −ρgk2

µ

∂φ2

∂z
= −∂Ψ2

∂x
, (4.22)

where φ1 [m], φ2 [m], and Ψ1 [m2 s−1], Ψ2 [m2 s−1], are respectively the piezometric heads and

stream functions in a two-layer system.

Since V = −K∇φ(x, z) and the flow is irrotational, so we have curlV = 0. By inserting

Equation (4.18) in terms of Ψ in (curlV)y = 0, we get a parallel differential equation for Ψ

∇2Ψ(x, z) =
∂2Ψ

∂x2
+
∂2Ψ

∂z2
= 0, (4.23)

which is the governing Laplace’s equation for a two-dimensional flow in a non-homogeneous

porous media in terms of Ψ. The governing equation and the boundary conditions for the

porous medium are shown in Figure 4.4.

Now a discussion about boundary conditions on the interface of two horizontal layers, each

individually isotropic, is given below.

Near the horizontal interface, w1 = w2, so from Equation (4.17) we have,

−∂Ψ1

∂x
= −∂Ψ2

∂x
, (4.24)
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then by integrating the above expression, i.e.

−
∫ x

0

∂Ψ1

∂x
dx = −

∫ x

0

∂Ψ2

∂x
dx,

we get

−Ψ1(x) = −Ψ2(x), (4.25)

implies

Ψ1 = Ψ2. (4.26)

Similarly, for a vertical interface, u1 = u2, again from Equation (4.17) we have

∂Ψ1

∂z
=
∂Ψ2

∂z
, (4.27)

integration gives

Ψ1 = Ψ2. (4.28)

86



Permeable interface
mb

k1

k2

w1

w2

Ψ1

Ψ2

Ψ(x, 0) = 0

Ψ(x, b) = Q

b1

b2

b3

b4

w = −∂Ψ
∂x

= 0

Ψ(0, z) = Q Ψ(a, z) = Q

w = −∂Ψ
∂x

= 0

Ψ(0, z) = 0 Ψ(a, z) = 0

∇2Ψ(x, z) = 0

a

b

C

z

O

B

A

x

Figure 4.4: Schematic diagram in terms of Ψ, for a two-layered non-homogeneous aquifer, separated
by a horizontal permeable interface.

4.2.1 Illustrations: fluid flow in a horizontally-layered aquifer in

terms of φ(x, z) and Ψ(x, z) in the absence of objects

Example 4.2.1 Water is flowing in a two-layer system of a two-dimensional, non-homogeneous,

isotropic aquifer, with length, a = 10 [m], and a width b = 6 [m]. The lower layer is composed of

coarse gravel, and the upper layer is made of fine gravel. Values of various parameters involved

are shown in Tables 4.2 and 4.1. The opening in the upstream boundary is kept at piezometric

head, φL = 1 [m], and the opening in the downstream boundary is kept at piezometric head,

φR = 0.

(a) If the upstream opening lies in the lower layer, and the downstream opening lies in the

upper layer of the system, determine the flow pattern and rate of flow Q. Also consider the

reverse case, i.e., when the upstream opening lies in the upper layer and the downstream
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opening lies in the lower layer.

(b) If the upstream opening lies in the upper layer, and the downstream opening lies in the

upper layer as well, determine the flow pattern and the rate of flow Q.

(a) If the upstream opening, lies in the lower layer, and the downstream boundary lies in the

upper layer of the system, then the scaled dynamic pressure φ is plotted as red contours

(isobars) and the stream function Ψ, is plotted as blue contours (streamlines) as shown

in Figure 4.5a. A refraction in isobars and streamlines can be seen across the interface

(marked by dashed black line). According to the statement, the permeability, k2 of the

upper layer is 3-times greater than that of the lower layer, and the large spacing between

the streamlines indicates a lower permeability while in the area of higher permeability the

streamlines get closer to each other demonstrating it as a higher fluid speed area. Moreover,

within each layer, the isobars and streamlines are orthogonal as they were orthogonal in

homogeneous aquifers discussed in Subsection 3.6.4. The total discharge Q [m2 s−1], in the

upstream and downstream boundaries is given respectively by

QL =
−k1ρg

µ

∫ b2

b1

∂φ

∂x
(0, z) dz = 0.0011[m2s−1],

QR =
−k2ρg

µ

∫ b4

b3

∂φ

∂x
(a, z) dz = 0.0011[m2s−1].

Figure 4.5b shows the reverse case, i.e., when the entrance lies in the upper layer, and the

exit lies in the lower layer of the system. Interestingly, the total discharge Q [m2 s−1], in

the upstream and downstream boundaries remains unaltered, and is given respectively by

QL =
−k2ρg

µ

∫ b2

b1

∂φ

∂x
(0, z) dz = 0.0011[m2s−1],

QR =
−k1ρg

µ

∫ b4

b3

∂φ

∂x
(a, z) dz = 0.0011[m2s−1].

(b) When both the upstream and downstream boundaries lie in the upper layer, i.e., in the

region of higher permeability, the results are shown in Figure 4.5c. As a contrast, the total

discharge Q [m2 s−1], in the upstream and downstream boundaries, is slightly increased to
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the amount 0.0016 [m2 s−1] and is given respectively by the formula

QL =
−k2ρg

µ

∫ b2

b1

∂φ

∂x
(0, z) dz = 0.0016[m2s−1],

QR =
−k2ρg

µ

∫ b4

b3

∂φ

∂x
(a, z) dz = 0.0016[m2s−1].
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Figure 4.5: Graphs of the numerical solution for Ψ (blue) and φ (red) in a 2D non-homogeneous porous
medium: (a) two-layer system, with k1 = 1.7751× 10−10, and k2 = 3k1 respectively the permeabilities
of lower and upper layers, with entrance in the lower layer, and exit in upper layer of the system; (b)
same as (a), but the entrance lies in the upper layer and the exit lies in the lower layer; (c) same as
(a), but both entrance and exit lie in the upper layer.

Example 4.2.2 Water is flowing in a three-layer system of a non-homogeneous, isotropic

aquifer. The lower layer is composed of coarse sand, the middle layer is formed by fine gravel

and the upper layer is made of coarse gravel, values of various parameters involved are shown

in Table 4.2 and 4.1. Dimensions of the aquifer are taken as length = a = 20 [m], and

width = b = 12 [m]. Values of piezometric head in the upstream and downstream boundaries

are taken to be similar to that of Example 4.2.1. The exit lies in the top layer of the aquifer.

What would be the effect on the flow pattern, if the entrance lies in the:

(a) lower layer,

(b) middle layer,

(c) and top layer of the system?

In the present example, as shown in Figure 4.6 a numerical solution for Laplace’s equation

is presented for a three-layer non-homogeneous aquifer. The respective boundary conditions on

the aquifer in terms of φ(x, z) and Ψ(x, z) are shown in Figure 4.3 and Figure 4.4. Boundary
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conditions on the interface are assigned in accordance with the Sections 4.1-4.2, however, in a

three-layer, non-homogeneous system, the boundary conditions for the third layer, in terms of

φ and Ψ, are assigned respectively as follows.

At the second horizontal interface, w2 = w3, so we have

k2
∂φ2

∂z
= k3

∂φ3

∂z
, (4.29)

and, since the pressure is continuous,

φ2 = φ3. (4.30)

Moreover, in terms of Ψ, near the second horizontal interface, w2 = w3, so we have

−∂Ψ2

∂x
= −∂Ψ3

∂x
, (4.31)

after integration, we get

Ψ2 = Ψ3, (4.32)

where, φ2 [m], φ3 [m], Ψ2 [m2 s−1], Ψ3 [m2 s−1], and k2 [m2], k3 [m2] are, respectively, the values

of the piezometric head, the stream function and permeabilities for the second and third layers

of the system.

(a) Figure 4.6a represents the case when the entrance lies in the lower layer of the aquifer. As

the permeability of the bottom layer is 10 times smaller than that of the upper (middle)

layer, and 10
3

times than that of top layer, so vertical movement of the water occurs towards

the area of relatively higher permeability, as a result of which fluid speed is highest in the

middle layer, which is visible by the greater number of streamlines there. It is interesting

to note that, even though the permeability of the top layer is 3-times lower than that of

the middle layer, a vertical movement of flow occurs from the middle layer towards the top

layer due to the decreasing value of the pressure.

(b) Figure 4.6b represents the case when the entrance lies in the middle layer of the aquifer.

Knowing that the permeability of the bottom layer is 10 times smaller than the middle
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layer, so downward vertical movement of the water is retarded completely; however, upward

movement can occur due to the decreasing pressure gradient of the flow, as a result of which

water can easily leave the aquifer from the exit lying in the third layer having relatively

lower permeability than that of middle layer.

(c) Figure 4.6c represents the case when the entrance lies in the top layer of the aquifer. As

the top layer has 3-times lower permeability than that of the middle layer, so a vertically

downward flow can occur towards an area of relatively higher permeability, as well as a

horizontal flow due to a decreasing pressure gradient. However, movement of water is

completely retarded in the bottom layer of the aquifer, having the lowest permeability.
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Figure 4.6: Graphs of the numerical solution for Ψ (blue) and φ (red) in a 2D non-homogeneous,
three-layer system, with k1 = 5.3253 × 10−11, k2 = 10k1, and k3 = 10

3 k1 = 3.3k1, respectively the
permeabilities in [m2], from bottom to top, and the exit lies in the top layer, with the entrance in the
(a) bottom layer; (b) middle layer; (c) top layer of the system.

4.2.2 Illustrations: fluid flow in a vertically-layered aquifer in terms

of φ(x, z) and Ψ(x, z) in absence of objects

Example 4.2.3 Repeat Examples 4.2.1 and 4.2.2 for a vertically-layered, non-homogeneous

aquifer with the same values of parameters used.

For the two-layer system, at the vertical interface, since u1 = u2, so we have

k1
∂φ1

∂x
= k2

∂φ2

∂x
,

and, since the pressure is continuous,

φ1 = φ2.
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In the case of the stream function Ψ, in the two-layer system for a vertical interface, u1 = u2,

so we have,

∂Ψ1

∂z
=
∂Ψ2

∂z
,

after integration, we get

Ψ1 = Ψ2.

Similarly, for a vertical three-layer non-homogeneous system, for the second vertical interface,

u2 = u3, then the boundary condition in terms of φ(x, z) and Ψ(x, z), are respectively,

k2
∂φ2

∂x
= k3

∂φ3

∂x
,

and

∂Ψ2

∂z
=
∂Ψ3

∂z
,

where, φ2 [m], φ3 [m], Ψ2 [m2 s−1], Ψ3 [m2 s−1], and k2 [m2], k3 [m2] are, respectively, the values

of the piezometric head, the stream function and permeabilities for the second and third layer

of the system.

Figure 4.7 shows the results for vertical, two- and three-layer (from left to right), non-homogeneous

aquifers.

In the two-layer system, the permeability k2, of the second layer is 3-times greater than the

permeability k1 of the first layer, so we can note in Figure 4.7a that the greatest pressure drop

occurs in the area of highest permeability. However, by changing the positions of entrance and

exits, there is not a significant influence on the net flow.

Figures 4.7b and 4.7c, show the plots of isobars and streamlines, for a vertical three-layer sys-

tem. Let k1, k2, and k3, respectively (from left to right) be the permeabilities of the first,

second and third layers. As k2/k1 = 10, k3/k1 = 10/3, and k3/k2 = 3, so fluid flows with lower

speed and greater pressure in the first and third layer. However, a greatest pressure drop can
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be seen in the middle layer, where fluid speed is greater than that of remaining two layers of

the system. To observe the normality condition for the pair (φ,Ψ) in a vertical three-layer

system, Figure 4.7d illustrates the combined plot of Figures 4.7b and 4.7c, where isobars and

streamlines strike with each other orthogonally.
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Figure 4.7: Graphs of the numerical solution of (a) Ψ (blue) and φ (red) in 2D non-homogeneous,
vertical two-layer system, with k1 = 1.7751×10−10, and k2 = 3k1 respectively the permeabilities in [m2],
from left to right; (b) φ in 2D non-homogeneous, vertical three-layer system, with k1 = 5.3253×10−11,
k2 = 10k1, and k3 = 10

3 k1 = 3.3k1, the permeabilities in [m2] of the layers from left to right respectively;
(c) same as (b), but plot of streamlines only; (d) combining the plots of (b) and (c).

4.3 Numerical solution for velocity potential φ(x, z) and

stream function Ψ(x, z) in a non-homogeneous porous

medium with embedded impermeable objects

Recalling the flow in a homogeneous aquifer with embedded objects in Section 3.6 and follow-

ing the discussion in Subsections 4.2.1-4.2.2, the present model is of non-homogeneous aquifers

with embedded objects. The confined aquifer is composed of horizontal two-layer and vertical

two- and three-layer systems with different permeabilities (as values labelled in Figures 4.5,
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and 4.7), as shown in Figure 4.8.

A separate graph for a horizontal three-layer system is shown in Figure 4.10 for the sake of

comparison with the results presented in Example 4.2.2. The purpose of dividing the non-

homogeneous aquifers in horizontal and vertical two- and three-layer systems with embedded

impervious objects of various dimensions is to elaborate the effect of these objects on ground-

water flow.

In all the graphs of Figure 4.8, and Figure 4.9, it can be seen that water changes its path

when it passes underground embedded impervious objects. In addition, it is also evident that

position, dimension, burial depth of the embedded objects, and non-homogeneity of the aquifer

influence the fluid flow.
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Figure 4.8: Graphs of isobars (red) and streamlines (blue) in a 2D non-homogeneous porous medium in
a horizontal two-layer system, with k1 = 1.7751×10−10, and k2 = 3k1, respectively the permeabilities of
lower and upper layers, with (a) an impermeable rectangular object embedded in it; (b) an impermeable
vertical wall embedded in it; (c) an impermeable horizontal wall embedded in it; (d) two impermeable
rectangular objects embedded in it.
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Figure 4.9: Graphs of isobars (red) and streamlines (blue) in non-homogeneous porous media for a
vertical (a) two-layer system with an impermeable rectangular object embedded in it, the values of
permeabilities are, k1 = 1.7751 × 10−10, and k2 = 3k1, in [m2], from left to right respectively; (b)
three-layer system with two impermeable rectangular objects embedded in it, with k1 = 5.3253× 10−11,
k2 = 10k1, and k3 = 10

3 k1 = 3.3k1 in [m2] from left to right respectively.

It is well known in the literature [52] that, in the absence of solid objects, water would

flow preferentially in the highest permeability region, as verified in Figure 4.6. However, in the

presence of solid objects, this may not generally be the case, intuitive results can be achieved

as shown in Figure 4.10, where a certain amount of water can be seen flowing all around the

object in all layers including the layers of lowest permeability.

It can be concluded that the presence of impermeable objects embedded inside the non-

homogeneous aquifers significantly alters the behaviour of water flow. Moreover, it is also

concluded that the rate of fluid flowing into and out of the non-homogeneous aquifer is equal

in all the cases of Figure 4.10 as discussed above.
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Figure 4.10: Graphs of the numerical solution for Ψ (blue) and φ (red) with a rectangular object
embedded in 2D non-homogeneous, three-layer system, with k1 = 5.3253 × 10−11, k2 = 10k1, and
k3 = 10

3 k1 = 3.3k1, respectively the permeabilities in [m2], from bottom to top, and the exit lies in the
top layer, with the entrance in the: (a) bottom layer; (b) middle layer; (c) top layer of the system.
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4.4 A permeable rectangular cylinder with permeability

different from outside

The fundamentals of every mathematical model in the transport of any universal quantity,

e.g., mass or energy, inside a porous medium is the balance equation of that quantity [13].

The balance equation may be in the form of a partial differential equation. Here we shall

concentrate on the situation of transport of fluid through a semipermeable object placed

inside an aquifer.

Consider a control rectangular box placed inside the flow domain in an aquifer. In the

present study, fluid enters and leaves the box through its surfaces, and our objective is to

write a balance, or a statement of conservation for the mass of fluid entering, leaving, and

being stored in the box. The next goal is the discussion of boundary conditions.

Boundary conditions provide a mechanism of interaction between a considered section and

its environment. Alternatively, they provide the background of a situation, e.g., known water

fluxes or piezometric head, that the outer zone affects the considered one. Despite the fact

that in a mathematical model, boundary conditions are stated in mathematical form, their

role is to explore some concrete truth in the real world [13].

If k1 and k2 are the permeabilities of the aquifer and that of the box respectively, then we

can compute pressure (potential) and amount of fluid flow across the semipermeable object

with the help of φ and Ψ.

Suppose φ1 is the value of pressure in the porous medium whose permeability is k1, and φ2

is the value of pressure inside the object with permeability k2. The quantity ki(∂φi/∂n),

i = 1, 2 denotes the mass flux of the water at the surface of box. Then the boundary

conditions in terms of φ(x, z) for the rectangular object are:

on the bottom and top boundaries of the object, since w1 = w2, we have

k1
∂φ1

∂z
= k2

∂φ2

∂z
, (4.33)
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and on the left-hand and right-hand side boundaries, since u1 = u2, the boundary conditions

are

k1
∂φ1

∂x
= k2

∂φ2

∂x
. (4.34)

If Ψ1 is the value of the stream function in the porous medium whose permeability is k1

and Ψ2 is the value of the stream function inside the object with permeability k2, then the

boundary conditions for the rectangular object in terms of Ψ(x, z) are:

on the bottom and top boundaries of the object, since w1 = w2, we have

∂Ψ1

∂x
=
∂Ψ2

∂x
, (4.35)

and on the left-hand and right-hand side boundaries, since u1 = u2, the boundary conditions

are

∂Ψ1

∂z
=
∂Ψ2

∂z
. (4.36)

To understand the whole phenomenon consider the following example.

4.4.1 Illustrations

Example 4.4.1 Consider a confined aquifer, composed of coarse sand with dimensions 10× 6

[m]. Water is flowing inside the aquifer in which there is embedded a semipermeable box filled

with fine gravel. Values of the piezometric head in the entrance and exit are respectively, φL = 2

[m] and φR = 1 [m]. Determine:

(a) the flow pattern graphically,

(b) the flow pattern graphically, if the materials in the aquifer and box are replaced by each

other.

(a) Consider a homogeneous aquifer with permeability k1 and a rectangular box placed inside

the aquifer with different permeability k2 (the values of k1 and k2 are labelled in Figure 4.11).

Suitable boundary conditions on the aquifer are similar to those assigned in Section 3.5,
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and on the object are taken in accordance to Section 4.4.

Water is flowing through the aquifer from left to right as the value of piezometric head φL

in the entrance is higher than that in the exit (as evident by red isobars near the entrance

and blue near the exit in Figure 4.11a). As the permeability of fine gravel is 10 times higher

than that of coarse sand, so water feels less pressure (Figure 4.11a) when it enters through

the object and the fluid speed becomes higher in that region (Figure 4.11b).

(b) For the reverse case, as the permeability in the vicinity of the object is 10 times higher

than the object, so the water feels a relatively greater pressure while passing through the

object, as evident by Figure 4.11c, and fluid flows slowly through the object, as illustrated in

Figure 4.11d by the help of streamlines. This is visible by the smaller number of streamlines

and the greater number of pressure lines inside the object.
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Figure 4.11: Graphs of a permeable rectangular object with permeability k2 embedded in a homogeneous
porous medium with permeability k1; the value of the piezometric head in the entrance is φL = 2, and
that in the exit is φR = 1. (a) isobars with k1 = 5.3253 × 10−11, k2 = 10k1; (b) streamlines with
k1 = 5.3253× 10−11, k2 = 10k1; (c) isobars with k1 = 10k2, k2 = 5.3253× 10−11; (d) streamlines with
k1 = 10k2, k2 = 5.3253× 10−11.
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4.5 Modelling two-dimensional flow in aquifers in the

presence of a leaky cylinder with rectangular cross-

section, placed in a non-homogeneous porous medium

Following the discussion of Section 3.7 for a homogeneous porous medium, in this section

fluid flow through pervious objects placed inside a non-homogeneous porous medium is dis-

cussed. For a non-homogeneous porous medium, with two layers of different permeabilities ki,

i = 1, 2, the gradient of φ on the boundaries of the object can be written as:

∂φ

∂n
=

ωpsµ

ρgk1

(φps − φI),
∂φ

∂n
=
ωpsµ

ρgk2

(φps − φI), (4.37)

implies
∂φ

∂n
=

βps
k1

(φps − φI), and
∂φ

∂n
=
βps
k2

(φps − φI), (4.38)

where βps = ωpsµ/ρg, and φI is the pressure inside the rectangular cross-section.

The other boundary conditions in terms of φ, i.e., on the porous media, are assigned in the

same manner as discussed in Subsection 3.5.3. For further explanation, consider the following

schematic diagram:
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Figure 4.12: Schematic diagram of the (a) physical domain for φ with pervious object embedded in it;
(b) pervious rectangular cross-section of the object.

4.5.1 Illustrations

Results are calculated for a two-layer non-homogeneous aquifer with a pervious object po-

sitioned between two layers of different permeabilities. Again, it is assumed that, the value of

the scaled dynamic pressure in the entrance is taken to be higher than that of the exit, so fluid

flows in the direction of decreasing pressure gradient.
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Permeability of the lower layer, k1 is taken as 10 times higher than that of the top one. In

order to make direct comparison between different cases, results are repeated with fixed values

of βps and for a range of values of φI . Values of various parameters used in the simulation are

given in Table 4.3.

Table 4.3: Parameters used for the simulations

Parameters Values Units
value of φ in entrance φL 1 [m]
value of φ in exit φR 0 [m]
values of φ inside the pervious object φI -1, 0, 0.5, 1, 5 [m]
value of βps 1.0224 [m]
value of ωps 10000000 [s−1]
value of k1 5.3167× 10−10 [m2]
value of k2 5.3253× 10−11 [m2]
fluid dynamic viscosity µ 1.002× 10−3 [kg m−1 s−1]
gravitational acceleration g 9.8 [m s−2]
fluid density ρ 1000 [kg m−3 ]

The main objective of this section is to highlight the feasibility of placing pervious objects

inside a non-homogeneous aquifer which is composed of different materials. It is found that

the nature of the results remains unaltered from those previously conducted for homogeneous

aquifers, however, the speed of the fluid is noticed to be higher in the layer of higher perme-

ability.

In systems where the value of φI , is negative or 0, water is being sucked by the object, as

shown by Figures 4.13a and 4.13b, indicated by a blue area. For the cases when the value of

φI is taken to be the average value of φL and φR (the values of scaled dynamic pressures in the

entrance and exit, respectively), some water is being sucked by the object, whereas, in some

areas of the aquifer where the pressure is lower than that of φI , water is being discharged by

the object, as illustrated in Figure 4.13c.

For systems where the value of φI is higher than or equal to the higher value of piezometric

head in either the entrance or exit, water is being discharged by the object, which is shown by

the red area in the graphs of Figures 4.13d and 4.13e. In order to represent the refraction of

the isobars across the interface of the two-layer system, a contour plot of Figure 4.13e is shown
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in Figure 4.13f.
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Figure 4.13: Graphs of φ(x, z) of a leaky tube with rectangular cross-section in a non-homogeneous
porous medium with φL = 1, φR = 0, k1 = 10k2, k2 = 5.3253 × 10−11, for (a) a filled contour plot
with φI = −1; (b) a filled contour plot with φI = 0; (c) a filled contour plot with φI = 0.5; (d) a filled
contour plot with φI = 1; (e) a filled contour plot with φI = 5; (f) a contour plot with φI = 5.

4.6 A vertical pervious thin wall placed in a non-homogeneous

aquifer

This section includes a discussion about a thin pervious vertical wall embedded in a non-

homogeneous porous medium. As the wall is infinitesimally thin, we assume that the value of

pressure gradients on L.H.S and R.H.S of the wall are equal and are denoted by ∂φ−/∂x and

∂φ+/∂x respectively, and can be found by the formulae:

−∂φ
−

∂x
=

βps
k1

(φ−kB1
− φ+

kB2
), −∂φ

−

∂x
=
βps
k2

(φ−kB1
− φ+

kB2
), (4.39)

−∂φ
+

∂x
=

βps
k1

(φ−kB1
− φ+

kB2
), −∂φ

+

∂x
=
βps
k2

(φ−kB1
− φ+

kB2
), (4.40)

where βps, is a measure of perviousness of the wall, ki, i = 1, 2, are the permeabilities of the

two layers in the system, φ−kB1
and φ+

kB2
are the values of pressures on L.H.S and R.H.S of the

wall respectively.
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4.6.1 Illustrations

In this section, some examples for different values of parameters βps, k1, and k2 (where k1

and k2 are the permeabilities of the lower and upper layers, respectively) are illustrated.

If βps = 0, the pervious vertical wall is converted to an impervious wall as indicated in Fig-

ures 4.14a and 4.14d, where the pressure lines strike normally to the wall, indicating it as a

barrier in the fluid flow path, moreover fewer pressure lines are visible in the region of higher

permeability and more lines are present in the less permeable region. However, for a non-zero

value of βps, the wall becomes semi-pervious as shown in Figures 4.14b, 4.14e, and even becomes

completely pervious for an extremely large value of βps, as shown in Figures 4.14c and 4.14f,

and fluid flows freely without any resistance.
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Figure 4.14: A contour plot for φ(x, z) of a pervious vertical thin wall placed in a non-homogeneous
porous medium, with φL = 1, φR = 0, (a) k1 = 10k2, k2 = 5.3253 × 10−11, βps = 0; (b) k1 =
10k2, k2 = 5.3253 × 10−11, βps = 1.0224; (c) k1 = 10k2, k2 = 5.3253 × 10−11, βps = 1000; (d)
k1 = 5.3253 × 10−11, k2 = 10k1, βps = 0; (e) k1 = 5.3253 × 10−11, k2 = 10k1, βps = 1.0224; (f)
k1 = 5.3253× 10−11, k2 = 10k1, βps = 1000.

4.7 Modelling three-dimensional flow in a non-homogeneous

porous medium, with an embedded cuboid

The study of Section 4.3 is limited to two-dimensional non-homogeneous porous media; here

the discussion is extended to a three-dimensional non-homogeneous aquifer.
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The governing equation and the boundary conditions on porous media and object are similar

to that of the Section 3.14. For a two-layer system with horizontal interface, the boundary

condition for this interface in terms of φ(x, y, z) (where the z-axis is aligned normal to the

xy-plane) is

k1
∂φ1

∂z
= k2

∂φ2

∂z
, (4.41)

where k1 [m2], k2 [m2] and φ1 [m], φ2 [m] are, respectively, the values of permeabilities and

piezometric heads in the lower and upper layers of the system.

Some simulations are performed to show the results and a few illustrations are shown in three-

dimensional non-homogeneous porous media.

For the illustrations, the value of the scaled dynamic pressure in the entrance and exit are,

respectively, φL = 2, and φR = 1. The permeability of the top layer is taken to be 10 times

that of the lower layer, so we can see in Figure 4.15a more isobars in the lower permeability

region, however, refractions are not visible across the interface. As the interface is parallel to

the xy-plane, so for a xy-slice, refractions across the interface are not visible in Figure 4.15b,

hence these refractions are only visible for the vertical, yz- slice in Figure 4.15c.
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Figure 4.15: A contour plot of φ(x, y, z) in a three-dimensional, non-homogeneous porous medium,
with k1 = 5.3253 × 10−11, k2 = 10k1, with (a) an impermeable cuboidal object embedded in it; (b) an
xy-slice at z = 8; (c) a yz-slice at x = 4.
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Chapter 5

Modelling Groundwater Pollution

Released by Embedded Objects

So far, the purpose of this study was the development of mathematical models for the sake

of discussion of fluid flow through aquifers with embedded impervious and pervious objects,

overlooking a major factor of interest, namely, groundwater pollution. Groundwater pollution

or groundwater contamination may be defined as the artificially-generated deterioration of

natural groundwater quality [52]. Usually, the term quality refers to either energy (heat or

nuclear radiations) or organic constituents dissolved in groundwater. Sometimes, this dissolved

matter reaches up to a certain level, as a result of which water becomes inappropriate for

acceptable usage. In this case, we use the term pollution for the dissolved constituents whose

concentration has definitely increased up to a certain dangerous level.

Pollution can diminish the water usage and can cause hazards to public health due to the spread

of diseases and toxicity. Mostly, pollution is generated by wastewater disposal, involving a wide

variety of sources, ranging from septic tanks to agricultural irrigation purposes.

Compared with surface water pollution, however, it seems that groundwater is rarely polluted,

but it is still subject to pollution, and when the latter occurs, it is difficult to detect and

hard to control and may persist underground for a long time. Because of the emerging area of

interest for development and management of the water resource system, gradually more efforts

are undergoing for the prevention, diminishing, and removal of groundwater pollution.

The number of possible pollutants present in groundwater is countless, however, human water
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consumption is considered to be the major source and cause of groundwater pollution.

On the basis of sources and causes, groundwater pollution may be classified into the following

four categories:

(i) Environmental. When groundwater flows through carbonated rocks, these rocks dissolve

in water in small or significant amounts leaving the water polluted. In coastal areas

extensive pumping of freshwater may cause salty seawater to enter into the freshwater

aquifer, which may disturb the natural equilibrium between the two sources of water,

giving an example of environmental pollution.

(ii) Domestic. This category includes: biological contaminants, e.g., bacteria and viruses,

accidental breaking of sewers, leakage from infected containers, penetration of rain water

into clean groundwater, and artificial replenishment of aquifers by sewage.

(iii) Industrial. Even though the construction of domestic and industrial pollution is different,

it is difficult to differentiate them. Typical examples are: heavy metals, highly toxic

compounds, non-decaying materials and radioactive substances.

(iv) Agricultural. Irrigation of land with polluted water, rain water, chemical fertilisers, her-

bicides, pesticides, and salts, etc. seeps through the ground surface and recharges the

aquifer [13].

In this chapter, a discussion about the advection-dispersion phenomenon of pollutants re-

leased by pervious cylinders (septic tanks, drums of contaminants, etc.) in two- and three-

dimensional, isotropic/anisotropic, homogeneous and non-homogeneous porous media is added.

The physical system is based on the following assumptions:

1. groundwater aquifer is taken in the form of a porous medium which is connected on left-

and right-hand sides with two water reservoirs with different levels of water;

2. inside the porous medium, there is embedded a cylinder/tank, which is completely per-

vious (leaky), i.e., all sides of the cylinder are equally pervious;

3. the cylinder is full of water and the pressure inside the cylinder is kept constant by a

fixed amount of fluid inside. This pressure is different from the pressure of the outside
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porous media, as well as from that of the two openings (the places at which the aquifer

is connected to the reservoirs);

4. the pollutant concentration inside the box is uniform and constant, and the pollutant

advection/dispersion phenomenon depends mainly on the value of pressure inside the

box, as well as on the fluid speed and various types of dispersion coefficients.

Based on these assumptions, different results have been compiled in the form of contour as

well as surface plots of pollutant concentration for every situation.

5.1 Advective, dispersive, and diffusive fluxes

Consider a fixed component in a single fluid phase or in a multiphase system that occupies

the entire void space. The conservation of mass for a solute in a porous medium is considered

on the flux of solute into and out of the fixed component of the porous medium [52].

Physical procedures that control flux into and out of the elemental volume are referred to

as advection and hydrodynamic dispersion. Transport of solute as a result of groundwater

movement is known as advection, whereas, hydrodynamic dispersion is caused by mechanical

dispersion and molecular diffusion.

Mechanical dispersion occurs as a result of contamination of contaminated and uncontaminated

groundwater. Mechanical dispersion is further composed of two parts: longitudinal dispersion

and lateral (transverse) dispersion. Longitudinal dispersion takes place when contamination

occurs along the streamline, whereas, lateral dispersion lies normal to longitudinal dispersion.

Lateral dispersion is a much weaker process as compared to longitudinal dispersion, however,

when molecular diffusion is dominant, at lower velocities, coefficients of longitudinal and lateral

dispersion become nearly equal.

Diffusion occurs as a result of solute flux from an area of higher concentration to an area of

lower concentration caused by Brownian motion of ions and molecules. However, in a porous

medium, diffusion is not treated in the same rate as it is treated in water, because in the

presence of particles in the solid matrix, ions take a longer route to travel and there may be
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ionic adsorption1 on the solids [52].

5.1.1 Coefficients of dispersion

Various authors (e.g., Nikolaevskii, 1959; Bear, 1961; Scheidegger, 1961; Bear and Bachmat,

1967) established a correspondence between the coefficient D (coefficient of (mechanical) dis-

persion), molecular diffusion, flow velocity, and microscopic porous matrix configuration [13].

The following cases arise for the selection of dispersion coefficients:

Case 1a: Dispersion coefficients for a three-dimensional flow case, when dispersion

depends on flow speed and direction, i.e., αL 6= αT .

We denote fluid velocity V in a three-dimensional porous medium with the z-axis aligned

normal to the xy-plane as

V = ui + vj + wk, (5.1)

and the speed is given by

V =
√
u2 + v2 + w2. (5.2)

1Increase in the mass of a substance (pollutant or tracer) on the solid at a fluid-solid interface is known as
adsorption [13].
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For a locally isotropic porous medium, the dispersion coefficients are expressed in the following

form

Dxx = αL
u2

V
+ αTV

v2

V 2
1

+ αT
u2w2

V V 2
1

,

Dxy = αL
uv

V
− αTV

uv

V 2
1

+ αT
uvw2

V V 2
1

,

Dxz = (αL − αT )
uw

V
,

Dyx = αL
uv

V
− αTV

uv

V 2
1

+ αT
uvw2

V V 2
1

,

Dyy = αL
v2

V
+ αTV

u2

V 2
1

+ αT
v2w2

V V 2
1

,

Dyz = (αL − αT )
vw

V
,

Dzx = (αL − αT )
uw

V
,

Dzy = (αL − αT )
vw

V
,

Dzz = αL
w2

V
+ αT

V 2
1

V
,

where V1 =
√
u2 + v2, the components αL [m], and αT [m], are respectively the longitudinal

dispersivity, and transversal dispersivity of the porous media.

In laboratory experiments in homogeneous sand columns it was found that αL is of the order

of the size of an average sand grain. The transversal dispersivity is approximated as 10- to

20-times smaller than αL. Very limited information is available for transverse dispersivity αT

in the literature. Ratios of αL/αT of 5 : 1 to 24 : 1 even up to 100 : 1 have been published [13].

Based on averaging published data (Gelhar et al. [22]), a rough estimation of αL is [52]

αL = 0.1L, (5.3)

where L [m] is the length of the flow path. Another approximation is given by Neuman [38],

according to whom, for length L less than 3, 500 m,

αL = 0.0175L1.46. (5.4)
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Xu and Eckstein [58] established the following relationship between αL [m] and L [m] on the

basis of published statistical data2

αL = 0.83(logL)2.414. (5.5)

Case 1b: Dispersion coefficients for two-dimensional flow, when dispersion depends

on flow speed and direction, i.e., αL 6= αT , v = 0, V 2
1 = u2, V =

√
u2 + w2.

For the two-dimensional case, the three-dimensional dispersion coefficients are reduced to

the following form

Dxx = αL
u2

V
+ αT

w2

V
,

Dxy = 0,

Dxz = (αL − αT )
uw

V
,

Dyx = 0,

Dyy = αTV,

Dyz = 0,

Dzx = (αL − αT )
uw

V
,

Dzy = 0,

Dzz = αL
w2

V
+ αT

u2

V
,

which can be written in matrix form as

[
Dij

]
=


αL

u2

V
+ αT

w2

V
0 (αL − αT )uw

V

0 αTV 0

(αL − αT )uw
V

0 αL
w2

V
+ αT

u2

V

 .
2The authors who found Equations (5.4) and (5.5) did not non-dimensionalise their units prior to fitting the

relationships.
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Case 2a: Dispersion coefficients for three-dimensional flow, when dispersion de-

pends on flow speed only, i.e., when αL = αT = α.

For this case, the following are the dispersion coefficients

Dxx = α

(
u2

V
+ V

v2

V 2
1

+
u2w2

V V 2
1

)
,

Dxy = α

(
uv

V
− V uv

V 2
1

+
uvw2

V V 2
1

)
,

Dxz = 0,

Dyx = α

(
uv

V
− V uv

V 2
1

+
uvw2

V V 2
1

)
,

Dyy = α

(
v2

V
+ V

u2

V 2
1

+
v2w2

V V 2
1

)
,

Dyz = 0,

Dzx = 0,

Dzy = 0,

Dzz = αV,

which can be written in matrix form

[
Dij

]
= α


u2

V
+ V v2

V 2
1

+ u2w2

V V 2
1

uv
V
− V uv

V 2
1

+ uvw2

V V 2
1

0

uv
V
− V uv

V 2
1

+ uvw2

V V 2
1

v2

V
+ V u2

V 2
1

+ v2w2

V V 2
1

0

0 0 V

 .

Case 2b: Dispersion coefficients for two-dimensional flow, when dispersion depends

on flow speed only, i.e., αL = αT = α, v = 0, V 2
1 = u2, V =

√
u2 + w2.

In matrix form,

[
Dij

]
=


αV 0 0

0 αV 0

0 0 αV

 .

5.2 The fundamental balance equation for a pollutant

Consider a rectangular box in the form of a porous medium with saturated flow, and let

inside it be embedded a pervious object as shown in Figure 5.1. This object contains a certain

mass of solute, which is described as a tracer. Within a porous medium domain, there is a

velocity V of the fluid at every point and a concentration, C ( C=mass of the substance per
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unit volume of the liquid) of some material under consideration. The average tracer flux of the

considered substance is composed of three macroscopic fluxes:

1. An advective flux, indicating the flux transported by the water at the latter’s average

velocity.

2. A dispersive flux = −D · ∇C = −Dij∂C/∂xj, (ith-component), where D is a second rank

symmetric tensor called the coefficient of (mechanical) dispersion and this flux transpires

from an area of higher concentration to a lower one [13].

3. A diffusive flux = −D∗d · ∇C, where D∗d is a second rank symmetric tensor called the

coefficient of molecular diffusion in a porous medium and that demonstrates the influence

of the geography of the water holding part of REV [13].

As in a groundwater flow, the process of molecular diffusion and mechanical dispersion

cannot be separated, the coefficient of hydrodynamic dispersion is considered for both. The

coefficient of hydrodynamic dispersion, Dh, is given below

Dh = D + D∗d, (5.6)

where D is called the coefficient of mechanical dispersion, D∗d is the effective (molecular) diffusion

coefficient. The longitudinal coefficient of hydrodynamic dispersion, DL, is given below

DL = αLv̄ + D∗d, (5.7)

where αL is the dynamic longitudinal dispersivity, v̄ is the average linear groundwater velocity.

The total flux (amount of the pollutant passing through a unit area of a porous medium) of a

pollutant, by advection. dispersion, and diffusion can be written in the form [13]

qC = CV − nD · ∇C − nD∗d · ∇C, (5.8)

qC = CV − n(D + D∗d) · ∇C, (5.9)
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where n is the porosity of the porous medium. In porous media, if we neglect the effect of the

coefficient of molecular diffusion, D∗d, then Equation (5.9) becomes

qC = CV − nD · ∇C. (5.10)

A pollutant may be injected (by replenishment through a waste disposal operation) or removed

(e.g., by pumping) by the objects embedded in the porous media. Let C(x, z, t) denote the

pollutant’s concentration within the water. The quantity ∂(nC)/∂t denotes the rate at which

the quantity of the pollutant is increased within a control box. Hence we obtain

∂(nC)

∂t
= −∇ · qC, (5.11)

∂(nC)

∂t
= −∇ · (CV − nD · ∇C), (5.12)

∂(nC)

∂t
+ V · ∇C = ∇ · (nD · ∇C), (5.13)

∂C

∂t
+

1

n
(V · ∇C) = ∇ · (D · ∇C). (5.14)

Three cases arise for the coefficient of mechanical dispersion D, as discussed in Subsection 5.1.1:

1. When dispersion depends on flow speed and direction, then Equation (5.14) becomes

∂C

∂t
+

1

n
(V · ∇C) =

∂

∂x

(
Dxx

∂C

∂x
+Dxy

∂C

∂y
+Dxz

∂C

∂z

)
+
∂

∂y

(
Dyx

∂C

∂x
+Dyy

∂C

∂y
+Dyz

∂C

∂z

)
+
∂

∂z

(
Dzx

∂C

∂x
+Dzy

∂C

∂y
+Dzz

∂C

∂z

)
.

Where x and y are the coordinates in the direction of flow, z is the coordinate normal to

flow, V is fluid velocity.

2. When dispersion depends only on the magnitude of the flow speed, then D = DI, Equa-

tion (5.14) becomes

∂C

∂t
+

1

n
(V · ∇C) = ∇ · (D∇C). (5.15)
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Writing D = αV , Equation (5.15) becomes

∂C

∂t
+

1

n
(V · ∇C) =

∂

∂x

(
αV

∂C

∂x

)
+

∂

∂y

(
αV

∂C

∂y

)
+

∂

∂z

(
αV

∂C

∂z

)
. (5.16)

3. When dispersion is uniformly constant, then D = D̄I = αV̄ I, where, V̄=Arithmetic Mean

of V , then Equation (5.14) becomes

∂C

∂t
+

1

n
(V · ∇C) = ∇ · (D̄I · ∇C), (5.17)

∂C

∂t
+

1

n
(V · ∇C) = ∇ · (D̄∇C), (5.18)

∂C

∂t
+

1

n
(V · ∇C) = D̄

(
∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)
. (5.19)

To model the problem for the pollutant released by the polluted water from the rectangular

object embedded in a porous media, it is assumed that, over reasonable scale of time, CI is

constant and there is no spatial variation of C. Schematic diagram and boundary conditions

are shown in Figure 5.1.
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C = CI

Figure 5.1: Schematic diagram of the physical domain for concentration C and leaky cylinder embedded
in the domain.

5.2.1 Discussion about the boundary conditions

In the illustration of the schematic diagram of Figure 5.1, thick blue lines of the rectangular

porous media are impervious, as no fluid or pollutant can pass across these boundaries so

normal components of the gradient of concentration are taken to be zero there. In more detail,

the total flux (amount of the pollutant passing through a unit area of a porous medium) of a
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pollutant by advection and dispersion can be written in the form

qC = CV − nD · ∇C, (5.20)

where, qC = (qCx, qCy, qCz).

For assigning boundary conditions on the solid boundaries of the porous medium, the following

steps are taken into account.

The pollutant flux component in the z-direction is

qCz = Cw − n
(
Dzx

∂C

∂x
+Dzy

∂C

∂y
+Dzz

∂C

∂z

)
. (5.21)

On z = 0, and z = b, qCz = 0. We have w = 0, so Dzx = Dzy = 0 (see Subsection 5.1.1). Using

Equation (5.21) gives,

qCz = −n
(
Dzz

∂C

∂z

)
= 0. (5.22)

Since n 6= 0 and Dzz = αT
√
u2 + v2, so by Equation (5.22), on the lower and upper solid

boundaries (i.e., on z = 0, b), ∂C/∂z = 0.

By a similar argument, on the vertical solid boundaries (i.e., on x = 0, and x = a), ∂C/∂x = 0.

Boundary conditions on the entrance and exit are assigned in accordance with the value of

pressure φI inside the pervious object (represented by red dotted lines in the Figure 5.1 and

discussed in detail in Section 3.7) embedded in the porous medium.

In the entrance, on x = 0, the boundary condition is C = CL = 0 only when pressure inside is

less than outside the entrance. This is because fresh clean water is entering the domain. On the

other hand, the boundary condition, ∂C/∂x = 0 is assigned when the flow is moving through

the “entrance” from inside to outside.

Boundary conditions at the “exit” on x = a are assigned similarly.

Boundary conditions on the embedded leaky object are considered in the following way:

Inside the pervious object, there is a constant concentration of pollutant which is represented

by C = CI . For the four pervious walls of the object, the boundary conditions are assigned
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by considering the velocity of the fluid passing into or out of the object. If the clean water

is entering the object, then the boundary conditions on the walls are taken to be ∂C/∂n = 0

(where n is a unit normal vector to a boundary), and if the contaminated water is leaking out

from the object, then in this situation, the boundary conditions are assigned to be C = CI .

5.3 Illustrations: homogeneous aquifers

We will discuss the case when pollutants are released from a rectangular pervious object

(which is kept at constant pressure) embedded in a homogeneous aquifer. When a pollutant

is released from an object, it advects with the fluid flow and disperses in all directions, whose

rate depends mainly on the porous structure and fluid speed. First consider the example of a

homogeneous porous medium, which is taken in the form of a rectangular box.

5.3.1 When dispersion depends on magnitude and direction

Example 5.3.1 Consider an aquifer with a running stream of fresh water which is contami-

nated with a well-mixed pollutant of concentration CI leaking from a rectangular cylinder em-

bedded in the aquifer. The cylinder is kept at a constant pressure and at a fixed level of pollutant

concentration CI . All the walls of the cylinder are equally pervious. In this example, well sorted

sediments are being considered, i.e., fine gravel with a permeability 5.3167× 10−10 [m2] is used

as the porous material inside the aquifer. Parameters used for the simulations are shown in

Table 5.1. The problem is to find a numerical solution of the problem when dispersion depends

on magnitude and direction.
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Table 5.1: Parameters used for the simulations

Parameters Values Units
scaled dynamic pressure in entrance φL 1 [m]
scaled dynamic pressure in exit φR 0 [m]
scaled dynamic pressure inside the pervious object φI 0.5 [m]
constant of proportionality ωps 1× 107 [s−1]
measure of resistance of the object’s surface to flow through it βps 1.0224 [m]
porosity n 0.33 [-]
permeability of the porous media k 5.3167× 10−10 [m2]
time step dt 0.001 [-]
maximum allowed real time for simulations Tmax 2000 [s]
concentration of the injected chloride ions CI = mass/volume 10.7/12 = 0.8917 [kg m−3]
density of the groundwater ρ 1000 [kg m−3]
gravitational acceleration g 9.8 [m s−2]
dynamic viscosity of the groundwater µ 1.002× 10−3 [kg m−1 s−1]
transversal dispersivity αT 0.01 [m]

The problem under consideration is time-dependent, forced convection pollutant transfer from

a leaky cross-section of a cylinder placed in a fairly homogeneous aquifer. After the solution of

the fluid flow problem which is already solved in Section 3.7, the fluid velocities are calculated

in terms of pressure on the cylinder as well as on the porous medium. The pollutant advection-

dispersion phenomenon takes place for the following cases only:

• when the value of pressure inside the cylinder is greater than that in the inlet and in the

exit, i.e., φI > φL, and φI > φR;

• when the value of pressure inside the cylinder is greater than that in the exit, but less

than that in the inlet i.e., φI > φR, and φI < φL ;

• when the value of pressure inside the cylinder is greater than that in the exit, but equal

to that in the inlet i.e., φI > φR, and φI = φL;

• when the value of pressure inside the cylinder is less than that in the inlet , but equal to

that in the exit i.e., φI < φL, and φI = φR.

For this model, the value of pressure φI is taken as an average of the values of pressure in inlet

and outlet. To verify the validity of the fluid flow model, flux in, QL [m2 s−1] through inlet;

flux out, QR [m2 s−1] through outlet; and flux through the pervious cylinder, QI are calculated.
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From the Table 5.2, as Qin=QR (where, Qin= QL+ QI), then the model is verified for further

calculations of pollutant transport.

Table 5.2: Values of the fluid flux through inlet, exit, and pervious cylinder

Fluxes Values Units
flux in QL 0.0024 [m2 s−1]
flux through the cylinder QI 1.2082× 10−15 [m2 s−1]
flux total in Qin 0.0024 [m2 s−1]
flux out QR 0.0024 [m2 s−1]

The two-dimensional pollutant transport model, in terms of the transport equation and

subject to boundary conditions on the aquifer as well as on the pervious cylinder, is shown in

Figure 5.1. In this case, the tracer transport equation for fluid flow in homogeneous aquifer is

∂C

∂t
+

1

n
(V · ∇C) =

∂

∂x

(
Dxx

∂C

∂x
+Dxz

∂C

∂z

)
+

∂

∂z

(
Dzx

∂C

∂x
+Dzz

∂C

∂z

)
. (5.23)

Following the discussion of Subsection 5.1.1 about dispersion coefficients which further involves

two important parameters αL and αT , in this part a short discussion about the case in which

dispersion depends upon magnitude of speed and direction of flow is included. A list of signif-

icant parameters involved in calculations is given in Table 5.1, in which βps = (ωpsµ)/(ρg) is

the factor involving the perviousness of the cylinder.

A numerical solution of the time-dependent Equation (5.23) is plotted in Figures 5.2-5.5 for the

parametric values listed in Table 5.1. The plots consist of a contour as well as a surface plot

for self explanation. As the results are simulated in real situations (i.e., using natural values of

the parameters), and the groundwater speed is very slow, so it took a long time to reach the

solution near to steady-state form. Results are repeated for a solution near to steady-state with

a fixed value of parameter αT = 0.01 [m] and for various values of αL with a ratio γ = αL/αT

which varies from 1 : 1, 5 : 1, 10 : 1, and 20 : 1.

In these illustrations, as the value of pressure inside the cylinder is φI = 0.5 [m], and the stream

of water is flowing from left (with φL = 1 [m]) to right (with φR = 0 [m]) within the aquifer,

so very little pollutant can escape towards the upstream entrance and a big pollutant plume

moves towards the downstream exit. The white region in all contour plots and blue area in

all the surface plots shows the uncontaminated or fresh water, whereas the dark red region in
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the surface plots show the polluted water in that region. To know about the impact of various

ratios of αL/αT on the solution, it is required to calculate the pollutant fluxes through the inlet

and exit of the aquifer and through the cylinder.
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(b) contour plot for concentration C
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(c) surface plot for concentration C

Figure 5.2: Graphs of a leaky cylinder with rectangular cross-section with αL = αT = 0.01 (a) a contour
plot of φ with magenta representing the value of φI ; (b) a contour plot of pollutant concentration, with
magenta representing the value of CI ; (c) a surface plot of pollutant concentration.
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(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.3: Graphs of a leaky cylinder with rectangular cross-section with αL = 0.05, αT = 1
5αL=.01

(a) a contour plot of pollutant concentration with magenta representing the value of CI ; (b) a surface
plot of pollutant concentration.
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(a) contour plot for concentration C

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6
phiI=0.5

x 

z
 

(b) surface plot for concentration C

Figure 5.4: Graphs of a leaky cylinder with rectangular cross-section with αL = 0.1, αT = 1
10αL=.01

(a) a contour plot of pollutant concentration with magenta representing the value of CI ; (b) a surface
plot of pollutant concentration.
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(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.5: Graphs of a leaky cylinder with rectangular cross-section with αL = 0.2, αT = 1
20αL=.01

(a) a contour plot of pollutant concentration with magenta representing the value of CI ; (b) a surface
plot of pollutant concentration.
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Calculations of pollutant fluxes

The advective flux of the pollutant PL through the entrance (on L.H.S) of the aquifer is

calculated as follows.

If u ≥ 0, then

PL =

∫ b2

b1

1

n
uCLdz,

where, CL is the value of pollutant concentration outside the entrance (assumed constant).

If u < 0, then

PL =

∫ b2

b1

1

n
uCdz.

The advective flux of the pollutant PR through the exit (R.H.S) of the aquifer is calculated as

follows.

If u ≤ 0, then

PR =

∫ b4

b3

1

n
uCRdz,

where, CR is the value of pollutant concentration outside the exit.

If u > 0, then

PR =

∫ b4

b3

1

n
uCdz.

The advective flux of the pollutant POL through the object’s lower boundary is given by the

following expressions.

If v ≥ 0, then

POL =

∫ xr

xl

1

n
vCdx.

If v < 0, then

POL =

∫ xr

xl

1

n
vCIdx,

123



where, CI is the value of pollutant concentration inside the cylinder.

The advective flux POT of the pollutant through the object’s top boundary is calculated in this

way.

If v ≤ 0, then

POT =

∫ xr

xl

1

n
vCdx.

If v > 0, then

POT =

∫ xr

xl

1

n
vCIdx.

The advective flux of the pollutant on the object’s L.H.S is given by the following expressions.

If u ≥ 0, then

POleft =

∫ zt

zb

1

n
uCdz.

If u < 0, then

POleft =

∫ zt

zb

1

n
uCIdz.

The advective flux of the pollutant on the object’s R.H.S is given by the following formulae.

If u ≤ 0, then

POright =

∫ zt

zb

1

n
uCdz.

If u > 0, then

POright =

∫ zt

zb

1

n
uCIdz.

The total amount of advective pollutant flux through the object is:

PI = −POL + POT − POleft + POright.

Values of the three fluxes, viz. PL, PR, and PI are given in Table 5.3. It is evident from the table

that as the ratio γ goes to increase, PR also increases steadily, whereas, PL decreases gradu-
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ally. On the other side, the pollutant flux through the object remains constant for all values of γ.

Table 5.3: Advective mass flux of a pollutant [kg m−1 s−1] through entrance, exit and pervious rectan-
gular cross-section near to steady-state condition for various values of αL and γ = αL/αT .

αL 0.01 0.05 0.1 0.2
αT 0.01 0.01 0.01 0.01
γ 1 5 10 20
PL ≈ 0.0000 ≈ 0.0000 ≈ 0.0000 ≈ 0.0000
PI 0.0037 0.0037 0.0037 0.0037
PR 0.0031 0.0033 0.0034 0.0035
Pin 0.0037 0.0037 0.0037 0.0037

Test for steady-state is: PR = PL + PI = Pin, but this solution is not in steady-state

form. For this model, simulations are done for real values of parameters and due to very slow

movement of groundwater, one has to be patient for a long time to get steady-state solution.

5.3.2 When dispersion depends on magnitude only

Example 5.3.2 Repeat Example 5.3.1 for the case when dispersion depends on magnitude only

with the same values of the parameters as listed in Table 5.1.

In this section, we discuss the case when dispersion depends on magnitude of fluid velocity only.

Horizontal and vertical dispersion coefficients are equal and they are proportional to fluid speed

V [m s−1], i.e., D = αV , where α [m] is the dispersion length (dispersivity) that is dependent

on the matrix structure. Two cases arise for the selection of α,

Case 1

when αL = αT = α, and

Case 2

when α is the geometric mean of (αL, αT ), i.e., α =
√
αLαT .

The average speed V =
√
u2 + w2 [m s−1].

For this situation, the pollutant dispersion equation for a two-dimensional, confined and homo-

geneous aquifer is given by

∂C

∂t
+

1

n
(V · ∇C) =

∂

∂x

(
αV

∂C

∂x

)
+

∂

∂z

(
αV

∂C

∂z

)
. (5.24)
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After the solution of the fluid flow problem, and calculation of Darcy’s velocity, Equation (5.24)

is solved numerically subject to the boundary conditions as illustrated in Figure 5.1 and dis-

cussed in the Subsection 5.2.1. By using the known parameters and varying the value of α [m]

as listed in Table 5.4, the transport model is simulated by using chloride ions as a pollutant

source leaking from the rectangular cylinder with concentration (10.7)/(12 ) [kg m−3] and the

resulting concentration profile is plotted for a steady-state solution in Figures 5.6-5.12.

Table 5.4: Parameters used for the simulations.

Parameters Values Units
component of dispersivity α 0.01, [m]√

(0.01)(0.05)=0.0224,√
(0.01)(0.1)=0.0316,√
(0.01)(0.2)=0.04472,

0.05, 0.1, 0.2
coefficient of dispersion D = αV [m2 s−1]

A verification between the results of Subsections 5.3.1 and 5.3.2 is when the parameter αL

is equal to αT . The above argument is validated in the illustrations of Figures 5.2b-5.2c and

Figures 5.6a-5.6b, which is further verified by the pollutant fluxes as listed in Tables 5.3 and 5.5

for the value of α = 0.01. Moreover, since the dispersion coefficient is equal to the product of α

and average speed V , for a very large value of α, the spread of the dispersion plume is large in

the transverse direction, however, the mass flux of the pollutant does not change significantly

in this direction. The illustrations of this model are given below in Figures 5.6-5.12.
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5.3.2.1 Illustrations: When dispersion depends on magnitude only

αL = αT = α = 0.01 [m]
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(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.6: Graphs of a leaky cylinder with rectangular cross-section with α = 0.01 (a) a contour plot
of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.

α is a geometric mean of (αL = 0.05, αT = 0.01)=0.0224 [m]

As discussed in Subsection 5.3.1, the ratio between αL and αT , i.e., γ = αL/αT varies from

1 : 1, 5 : 1, 10 : 1, and 20 : 1. Results have been conducted already for these ratios in that

section. Here, a discussion has been included to view the changes in pollutant concentration

profile with varying values of α (which is geometric mean of αL and αT ) between these ratios.

Amongst all other ratios (i.e., arithmetic mean, mode, median, etc.), geometric mean gives the

satisfactory results with minimum error of precision. Following are the illustrations for some

values of α, when α is a geometric mean of αL and αT .
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(b) surface plot for concentration C

Figure 5.7: Graphs of a leaky cylinder with rectangular cross-section with α = 0.0224 (a) a contour plot
of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.
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α is a geometric mean of (αL = 0.1, αT = 0.01)=0.0316 [m]
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(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.8: Graphs of a leaky cylinder with rectangular cross-section with α = 0.0316 (a) a contour plot
of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.

α is a geometric mean of (αL = 0.2, αT = 0.01)=0.04472 [m]
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(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.9: Graphs of a leaky cylinder with rectangular cross-section with α = 0.04472 (a) a contour
plot of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.
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αL = αT = α = 0.05 [m]
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(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.10: Graphs of a leaky cylinder with rectangular cross-section with α = 0.05 (a) a contour plot
of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.

αL = αT = α = 0.1 [m]
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(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.11: Graphs of a leaky cylinder with rectangular cross-section with α = 0.1 (a) a contour plot
of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.
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αL = αT = α = 0.2 [m]
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(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.12: Graphs of a leaky cylinder with rectangular cross-section with α = 0.2 (a) a contour plot
of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.

For this type of pollutant model, one can observe that the spread of pollutant through

the entrance is negligible (i.e., pollutant flux PL) due to the higher dynamic pressure there, a

fresh stream of water is entering the domain, as a result of which little pollutant can escape

towards the entrance. On the other hand, the pollutant flux PR is significantly high due to the

lower pressure φR on the exit. Results are tending to the steady-state level and the test for

steady-state is: PR = PL + PI = Pin.

Table 5.5: Mass flux of a pollutant [kg m−1 s−1] through entrance, exit and pervious rectangular
cross-section near to steady-state.

α 0.01 0.0224 0.0316 0.04472 0.05 0.1 0.2
PL ≈ 0.0000 ≈ 0.0000 ≈ 0.0000 ≈ 0.0000 ≈ 0.0000 ≈ 0.0000 ≈ 0.0000
PI 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037
PR 0.0031 0.0033 0.0033 0.0034 0.0034 0.0033 0.0032
Pin 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037

Table 5.5 shows the values of pollutant fluxes through the entrance, exit, and pervious

cylinder. In real situations, average speed of groundwater is very slow and it takes a long

time to transport a pollutant leaking from underground buried objects. For this model, since,

dispersion coefficient D = αV , where, V =
√
u2 + w2 [m s−1] is the average fluid speed, the

results are not in steady-state form due to the long time consumed for the simulations.
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5.3.3 When dispersion is uniformly constant

Example 5.3.3 Repeat Example 5.3.1 for the case when dispersion is uniformly constant with

the same values of the parameters as listed in Table 5.1.

The transport model for this situation is

∂C

∂t
+

1

n
(V · ∇C) = D

(
∂2C

∂x2
+
∂2C

∂z2

)
, (5.25)

where the constant D is the coefficient of mechanical dispersion. In a geological formation it is

due to different flow paths acquired by the water particles. Occasionally, water particles follow

a faster flow path which is mainly because of that water flows in a more direct flow or it flows

through the larger pores or between the centre of the pores where the friction is negligible.

The numerical value of mechanical dispersion is different for each geological material and is

equal to the product of advective groundwater velocity and dispersivity. As discussed earlier

in Section 5.1, dispersivity is an essential attribute of a geological medium which has two

components and is dependent on matrix structure.

The dispersion coefficient D, in this situation is given by D̄ = αV̄ , where α [m] is dispersion

length (dispersivity), V̄ = AM(V ), and V is the average flow speed given by V =
√
u2 + w2

[m s−1].

There are various choices for the selection of V̄ . Arithmetic mean, geometric mean, mode,

median, or any other ratio can be considered for V̄ . In this particular situation, V̄ is regarded

as the arithmetic mean of average speed V for the purpose of demonstration and to establish

an agreement between the two transport models as discussed in Subsections 5.3.1 and 5.3.2.

Two cases arise for the selection of α,

Case 1: when αL = αT = α, and

Case 2: when α is the geometric mean of (αL, αT )=
√
αLαT .

Table 5.6 shows a list of parameters used in the simulations.
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Table 5.6: Parameters used for the simulations.

Parameters Values Units
value of V̄ 3.3276e-04 [m s−1]
component of dispersivity α 0.01, [m]√

(0.01)(0.05)=0.0224,√
(0.01)(0.1)=0.0316,√
(0.01)(0.2)=0.04472,

0.05, 0.1, 0.2
coefficient of dispersion D̄ = αV̄ 3.3276e-06, [m2 s−1]

7.4538e-06,
1.0515e-05,
1.4881e-05,
1.6638e-05,
3.3276e-05,
6.6552e-05

A numerical solution for the transport model given by Equation (5.25) is plotted in Fig-

ures 5.13-5.19 in the form of a contour as well as a surface plot. In the inlet, exit and inside

the pervious body, because ∇C = 0, there is advective flux only, while in the porous medium

side we have both advective and dispersive fluxes. We note the spreading of the contaminated

water, is not only in the direction of uniform flow (in the longitudinal direction), but also in

the transverse direction, and the concentration plume spreads gradually in transverse direction

with the increasing value of α. It cannot be due to the fluid flow speed, because in this situa-

tion, V̄ is taken as the arithmetic mean of fluid speed, and is constant everywhere. Fluid flow

is continuous, α may depends upon the porosity and permeability of the porous medium, but

it is assumed that the porous medium is homogeneous with uniform porosity.

As α [m] is the dispersion length that depends on matrix structure, so with the increasing value

of α, pollutant occupies an ever increasing proportion towards the transversal direction. Hence,

the two basic factors that yield this kind of spreading (transverse) are, the fluid flow and the

existence of a matrix structure by means of which fluid flow occurs. Graphical representation

of this situation is given in Figures 5.13-5.19.
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5.3.3.1 Illustrations: When dispersion is uniformly constant

αL = αT = α = 0.01 [m]

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x 

z
 

(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.13: Graphs of a leaky cylinder with rectangular cross-section with α = 0.01 (a) a contour plot
of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.

α is a geometric mean of (αL = 0.05, αT = 0.01)=0.0224 [m]
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(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.14: Graphs of a leaky cylinder with rectangular cross-section with α = 0.0224 (a) a contour
plot of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.
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α is a geometric mean of (αL = 0.1, αT = 0.01)=0.0316 [m]
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(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.15: Graphs of a leaky cylinder with rectangular cross-section with α = 0.0316 (a) a contour
plot of pollutant concentration; (b) a surface plot of pollutant concentration.

α is a geometric mean of (αL = 0.2, αT = 0.01)=0.04472 [m]

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x 

z
 

(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.16: Graphs of a leaky cylinder with rectangular cross-section with α = 0.04472 (a) a contour
plot of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.
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αL = αT = α = 0.05 [m]

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x 

z
 

(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.17: Graphs of a leaky cylinder with rectangular cross-section with α = 0.05 (a) a contour plot
of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.

αL = αT = α = 0.1 [m]
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(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.18: Graphs of a leaky cylinder with rectangular cross-section with α = 0.1 (a) a contour plot
of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.
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αL = αT = α = 0.2 [m]
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(a) contour plot for concentration C
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(b) surface plot for concentration C

Figure 5.19: Graphs of a leaky cylinder with rectangular cross-section with α = 0.2 (a) a contour plot
of pollutant concentration with magenta representing the value of CI ; (b) a surface plot of pollutant
concentration.

Pollutant fluxes are calculated for the inlet, outlet and through the pervious surface in

Table 5.7. As according to the boundary conditions (Subsection 5.2.1), on these boundaries

there is advective flux only, so for a stationary boundary (solid), there is no transport of

pollutant to or from the porous medium domain.

For the nature of the various fluxes, it is noted that in the entrance of the porous medium, there

is a running stream of fresh water, therefore very little amount of pollutant can advect through

this region, whereas, water is flowing outside from the exit, so with the increasing value of α,

the advective flux through this area also increases slowly and becomes equal to the advective

pollutant flux through the leaky cylinder in the steady-state condition.

Table 5.7: Mass flux of a pollutant [kg m−1 s−1] through entrance, exit and pervious rectangular
cross-section near to steady-state.

α 0.01 0.0224 0.0316 0.04472 0.05 0.1 0.2
PL ≈ 0.0000 ≈ 0.0000 ≈ 0.0000 ≈ 0.0000 ≈ 0.0000 ≈ 0.0000 ≈ 0.0000
PI 0.0037 00.0037 0.0037 0.0037 0.0037 0.0037 0.0037
PR 0.0030 0.0031 0.0032 0.0033 0.0033 0.0033 0.0033
Pin 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037
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5.3.4 When dispersion is uniformly constant: a case for a larger φI

inside

Example 5.3.4 Repeat Example 5.3.3 for the case when pressure inside the object is higher

than that in the inlet and exit.

Example 5.3.3 is reconsidered for a higher value of φI inside the cylinder. Parameters used for

the simulations are shown in Table 5.8. As pressure inside is higher than that in the vicinity

of the cylinder so inside fluid is ejecting the fluid outside and a part of which is escaping out

from inlet and exit; this is visible in Figure 5.20a where red pressure lines are visible in the

neighbourhood of the cylinder depicting the fact of higher pressure there. This higher pressure

is maintained to be constant inside as a continuous replenishment of water there.

Table 5.8: Parameters used for the simulations.

Parameters Values Units
scaled dynamic pressure in entrance φL 1 [m]
scaled dynamic pressure in exit φR 0 [m]
scaled dynamic pressure inside the pervious object φI 2 [m]
constant of proportionality ωps 1× 107 [s−1]
measure of resistance of the object’s surface to flow through it βps 1.0224 [m]
porosity n 0.33 [-]
permeability of the porous media k 5.3167× 10−10 [m2]
time step dt 0.001 [-]
maximum allowed real time for simulations Tmax 2000 [s]
concentration of the injected chloride ions CI = mass/volume 10.7/12 = 0.8917 [kg m−3]
density of the groundwater ρ 1000 [kg m−3]
gravitational acceleration g 9.8 [m s−2]
dynamic viscosity of the groundwater µ 1.002× 10−3 [kg m−1 s−1]
component of dispersivity α 0.2 [m]

Table 5.9 shows that flux in QL [m2 s−1] has a negative value −0.0039, which shows that

fluid is escaping out through the inlet, whereas, flux through the cylinder QI and the exit flux

QR have respectively the positive values 0.0118 and 0.0081 [m2 s−1], which indicate fluid inside

the cylinder is ejecting the fluid towards the exit as well as in the inlet. The model of fluid flow

is verified by the values of fluid fluxes through the inlet, exit and the cylinder, and the check

on the model is: Qin = QR, where Qin = QL +QI .

After the validation of the fluid flow model and calculations of Darcy velocities, the problem
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is to find a numerical solution of the pollutant transport model for the case when dispersion is

uniformly constant.

Consider a running stream of fresh water which is contaminated with a well-mixed pollutant of

concentration CI leaking from a rectangular cylinder embedded in the aquifer. The cylinder is

kept at a constant pressure and at a fixed level of pollutant concentration CI . All the walls of

the cylinder are equally pervious. In this example, well sorted sediments are being considered,

i.e., fine gravel with a permeability 5.3167 × 10−10 [m2] is used as the porous material inside

the aquifer.

Figure 5.20b and 5.20c show respectively the concentration contour and surface plots of the

problem near steady-state. As pressure inside the cylinder is higher, fluid inside the cylinder

pushes the pollutant outside with a great pressure and a pollution plume goes towards the

inlet and the exit. When the solution reaches to a steady-state form, all the water will be

contaminated by the pollutant which will be visible in the illustration of the surface plot in

Figure 5.20c in which whole region will be turned out red.

Table 5.9: Values of fluid and mass fluxes near the steady-state solution for a larger φI inside the
object.

Fluxes Values Units
flux in QL -0.0039 [m2 s−1]
flux through the cylinder QI 0.0118 [m2 s−1]
flux total in Qin 0.0080 [m2 s−1]
flux out QR 0.0081 [m2 s−1]
value of V̄ 8.9037e-04 [m s−1]
coefficient of dispersion D̄ = αV̄ 1.7807e-04 [m2 s−1]
mass flux of a pollutant (from entrance) PL -0.0088 [kg m−1 s−1]
mass flux of a pollutant (through the cylinder) PI 0.0341 [kg m−1 s−1]
total mass flux in of a pollutant PIn 0.0254 [kg m−1 s−1]
total mass flux out of a pollutant PR 0.0208 [kg m−1 s−1]

A part of the Table 5.9 shows the mass fluxes [kg m−1 s−1] of the pollutant through the inlet,

exit and the cylinder. As the objective of the illustrations is to elaborate the effect of higher

pressure inside the cylinder on concentration profiles, so results of pollutant concentration are

restricted near to steady-state form.
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Figure 5.20: Graphs for a leaky cylinder with rectangular cross-section placed in a homogeneous aquifer,
with α = 0.2, φI = 2, φL = 1, and φR = 0 (a) a contour plot of φ; (b) a contour plot of pollutant
concentration; (c) a surface plot of pollutant concentration.
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5.3.5 Influence of βps on fluid and pollutant flux rates

The parameter which gives the measure of perviousness of the leaky cylinder is the factor

βps which is discussed in Section 3.7. To find the influence of βps on pollutant transfer rates,

a study is undertaken for three values of pressure (i.e., for φI = 0.5, 1, 2) inside the pervious

cylinder. It is observed from the Figures 5.21a, 5.21b, and 5.21c that as the perviousness of

the cylinder increases from 0 to 1, the value of pollutant concentration flux out also increases

abruptly, afterwards the curve increases smoothly.

Moreover, it is also observed that, for a higher value of φI , the pollutant flux has larger values,

as evident from Figure 5.21d, where the pollutant flux curve for φI = 2 has the highest values

when compared to φI = 1 and φI = 0.5, and the curve for φI = 1 has relatively larger values

than for φI = 0.5. This comparison is done not only for pollutant fluxes, but is verified for

fluid fluxes also, where in Figure 5.22 pollutant and fluid flux curves are shown for φI = 0.5,

1, 2 against various values of βps. It is also shown that as fluid fluxes increase, pollutant fluxes

also increase. The relationship between pollutant and fluid fluxes will be discussed later.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Graph between β
ps

  and Concentration fluxout, when φ
I
=0.5

β
ps

P
R

(a) φI = 0.5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

Graph between β
ps

  and Concentration fluxout, when φ
I
=1

β
ps

P
R

(b) φI = 1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Graph between β
ps

  and Concentration fluxout, when φ
I
=2

β
ps

P
R

(c) φI = 2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Graph between β
ps

  and Concentration fluxout, when φ
I
=0.5, 1,2

β
ps

P
R

 

 

P
out

total

(φ
I
=0.5)

P
out

total

(φ
I
=1)

P
out

total

(φ
I
=2)

(d) φI=0.5, 1, 2

Figure 5.21: Illustrations of pollutant concentration net flux out plotted against for various values of
βps, for φL = 1, φR = 0, when (a) φI = 0.5; (b) φI = 1; (c) φI = 2; (d) combined graph of (a), (b),
and (c).
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Figure 5.22: Illustrations of graph of fluid and pollutant concentration net flux out plotted against
various values of βps, for φL = 1, φR = 0, φI=0.5, 1, 2.

5.3.6 Influence of φI on net fluid and pollutant fluxes out

Numerical simulations were performed for total rate of contamination transfer against pres-

sure φI inside the leaky cylinder for βps=0, 1, 2. Figure 5.23a shows that for βps = 0 the total

rate of pollutant transfer remains zero against all values of φI . The reason is that the cylinder

is completely impermeable for βps = 0, so no transfer of pollutant occurs across the cylinder.

However, for βps > 0, the total rate of pollutant transfer increases gradually for various values

of φI , as illustrated in Figures 5.23b and 5.23c.

Figure 5.23d gives a comparison for three values of βps (i.e., for 0, 1, and 2), in which a larger

βps indicates greater perviousness of the cylinder and as a result a relatively greater rate of

contamination transfer occurs through the porous medium. Figure 5.24 gives a summary of

fluid and contamination flux rates against various values of φI for βps=0, 1, 2. It is noted that

for βps = 0, the fluid flux remains at a constant rate of 0.2947 [m2 s−1], whereas, for βps > 0,

the fluid flux also increases as the pollutant fluxes do.
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Figure 5.23: Illustrations of graph of pollutant concentration flux out plotted against various values of
φI , for φL = 1, φR = 0, when (a) βps = 0; (b) βps = 1; (c) βps = 2; (d) combine graph of (a), (b),
and (c).
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Figure 5.24: Illustrations of graphs of fluid and pollutant concentration flux out plotted against various
values of φI , for φL = 1, φR = 0, βps=0, 1, 2.
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5.3.7 Influence of fluid flux on pollutant flux for various values of φI

and βps

Figures 5.25 and 5.26 gives the rate of total contaminant transfer to the groundwater flow

rate, plotted against various parametric values of βps and φI , respectively. Before plotting

Figure 5.25, fluid fluxes out and contaminant transfer fluxes out are calculated first for various

values of parameter βps by keeping φI fixed. Afterwards, contaminant fluxes out are plotted

against fluid fluxes for three different levels of φI by selecting its values one by one.

In Figures 5.25a-5.25c, pollutant concentration fluxes are plotted against fluid fluxes for φI=0.5,

1, and 2. In all these graphs, it is observed that the pollutant contaminant transfer rate

increases as the fluid flow rate increases. In addition, Figure 5.25d gives a combined graph of

Figures 5.25a-5.25c, which shows that rate of total contaminant transfer is also proportional to

φI . The pollutant concentration flux curve for φI = 2 is almost double in length and its rate

of increase is twice than that of the curve for φI = 1, while the curve for φI = 1 is about two

times longer (both in length and in value) than for φI = 0.5.
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Figure 5.25: Illustrations of pollutant concentration flux out plotted against fluid flux out, calculated
for various values of βps, for φL = 1, φR = 0, when (a) φI = 0.5; (b) φI = 1; (c) φI = 2; (d) combined
graph of (a), (b), and (c).
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Pollutant or fluid transfer through the embedded groundwater objects occurs only when

they are leaky/pervious. The parameter βps characterises the perviousness of the embedded

objects. If βps is zero, then these objects become completely impermeable and it is not possible

for fluid and pollutant to pass through them. Before plotting the graph of Figure 5.26, fluid and

pollutant concentration flux out are calculated first for various values of φI and by keeping βps

fixed. Then, pollutant concentration fluxes out are plotted against fluid fluxes out for βps=0, 1

and 2 .

In Figure 5.26a, it is observed that, for βps = 0, the pollutant concentration flux rate remains

zero against a constant value of fluid flux out. However, for βps > 0, as the fluid flux increases,

the pollutant concentration flux also increases, as observed in Figures 5.26b and 5.26c. Fig-

ure 5.26d gives the comparison for three values of βps, in this graph, it is shown that the two

curves of pollutant fluxes for βps= 1, 2 increase at the same rates because for positive values of

βps, as the fluid flux increases, the contamination flux also increases, and vice versa.
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Figure 5.26: Illustrations of graph of pollutant concentration net flux out plotted against fluid flux out,
calculated for various values of φI , for φL = 1, φR = 0, when (a) βps = 0; (b) βps = 1; (c) βps = 2;
(d) combined graph of (a), (b), and (c).
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5.3.8 Swimming pool problem

Example 5.3.5 Figure 5.27 shows a three-dimensional homogeneous groundwater aquifer with

a rectangular top measuring 14 m by 10 m. The front, back, top and bottom sides of the aquifer

are impervious. The system is 14 m deep at both the rectangular ends and water is entering

into the aquifer through the entrance OECD and leaving from the exit AFBG. Chlorinated

water with mass CI [kg m−3] is leaking from one corner of a swimming pool which is embedded

inside the aquifer and is polluting the groundwater. The swimming pool has coordinates: (4,

4, 6), (4,10, 6), (8 ,4, 6), (8, 10, 6), (4, 4, 14), (4, 10, 14), (8, 4, 14), (8, 10, 14). Plot the

pollutant concentration profile of the problem.

10 m

14 m

14 m

Leaking corner

Exit

Entrance

C

D
z

x
O

B

A

F
E

G

y

Figure 5.27: Schematic diagram of a swimming pool problem

The tracer transport equation for the swimming pool problem is given by

∂C

∂t
+

1

n
(V · ∇C) = D

(
∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)
, (5.26)
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subject to the boundary conditions on the porous medium which are

∂C

∂y
(x, 0, z) =

∂C

∂y
(x, 14, z) = 0, 0 ≤ x ≤ 10, 0 ≤ z ≤ 14, (5.27)

∂C

∂y
(x, y, 0) =

∂C

∂y
(x, y, 14) = 0, 0 ≤ x ≤ 10, 0 ≤ y ≤ 14, (5.28)

CL(0, y, z) = CR(10, y, z) = 0, 0 ≤ y ≤ 14, 0 ≤ z ≤ 14. (5.29)

The swimming pool is impervious, except at one point which is the common point of the front,

bottom, and right hand sides of the swimming pool (as shown in Figure 5.27 marked by a red

circle and pollutant plume is going towards the exit). So, on the solid boundaries, the normal

components of the gradient of concentration are assigned to be zero.
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Figure 5.28: Numerical solution of pollutant concentration in a three-dimensional homogeneous aquifer
at time t=5000 [s] after release. Pollutant of concentration CI = 20 [kg m−3] is leaking from the xz-
plane’s right-bottom corner of a swimming pool. The parametric values are: n = 0.33 [-], D = 0.01
[m2 s−1].

In the earlier discussions of this chapter, it was assumed that the whole surface of the

cylinder was leaking, but in this particular problem, the pollutant is leaking from a point

source only. After the solution of the fluid flow problem and calculation of Darcy’s velocities,
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a numerical solution of the Equation (5.26) together with the boundary conditions is plotted

in Figure 5.28. Illustration shows that chlorinated water is advecting towards the exit with

the incoming groundwater from the entrance and dispersing all around in the neighbouring

area. However, in the three-dimensional view, it is difficult to view the exact position of the

concentration plume. To overcome this difficulty, two-dimensional slices may help the viewer

to understand the problem.

Following are the xy- and yz-slices of the three-dimensional problem. Since, the pollutant is

leaking from one corner of the swimming pool, so chopping off these slices should be taken

at an appropriate distance from the leaking point. A cutting extremely close or extremely far

from the source point may lead to an absurd result.
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Figure 5.29: Two-dimensional slices of Figure 5.28 taken in the form of (a) an xy-slice at z = 8 [m];
(b) a yz-slice taken at x = 7 [m].

5.4 Illustrations: non-homogeneous aquifers

The fluid flow problem for a two-layer non-homogeneous aquifer with a pervious rectangular

cylinder has already been discussed in Section 4.5. Here, a fluid flow problem and pollutant

advection-dispersion model for a three-layer non-homogeneous aquifer with different perme-

abilities, ki, i = 1, 2, 3, with a leaky cylinder (full of some pollutant) is presented. In this

three-layer case, the bottom layer is composed of coarse sand (K1 = 45 [m day−1]), the middle

layer is composed of fine gravel (K2 = 450 [m day−1]) and the top layer consists of coarse gravel

(K3 = 150 [m day−1]), see Table 4.2.

Results are given for three different positions of the entrance while keeping fixed the position of
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the exit. Values of the common parameters involved in the calculation are listed in Table 5.10.

For the sake of simplicity, results are calculated for the transport model of pollutant concentra-

tion when dispersion is uniformly constant. In this model, the permeability k1 of the bottom

layer is the smallest, while the middle layer is 10 times more permeable than that of the bottom

layer and the permeability of the top layer is 3k1. Simulations are obtained for results near to

the steady-state solution.

Intuitive results are found for the three cases, viz. (a) when the entrance is lying in the lower

layer; (b) when the entrance is lying in the middle layer; and (c) when the entrance is lying in

the top layer. Graphical representation of these cases is given in Figures 5.30, 5.31, and 5.32.

Table 5.10: Parameters used for the simulations for a non-homogeneous three-layer system.

Parameters Values Units
scaled dynamic pressure in entrance φL 1 [m]
scaled dynamic pressure in exit φR 0 [m]
scaled dynamic pressure inside the pervious object φI 0.5 [m]
constant of proportionality ωps 1×107 [s−1]
measure of resistance of the object’s surface to flow through it βps 1.0224 [m]
porosity n 0.33 [-]
density of groundwater ρ 1000 [kg m−3]
gravitational acceleration g 9.8 [m s−2]
dynamic viscosity of groundwater µ 1.002×10−3 [kg m−1 s−1]
permeabilities (k1, k2, k3) of the layers of
the non-homogeneous aquifer (from bottom to top) k1=5.3252×10−11, [m2]

k2 = 10k1,
k3 = 3k1

time step dt 0.001 [-]
maximum allowed real time for simulations Tmax 5000 [s]
concentration of the injected chloride ions CI 0.8917 [kg m−3]
component of dispersivity α 0.2 [m]

When the entrance is lying in the lower layer

In the illustration of Figure 5.30a, some fluid is going inside the object due to a lower

pressure in the pervious object as compared to the inlet and some is leaving because of higher

pressure inside as compared to the exit. The pollutant in the higher permeability middle layer

of the non-homogeneous aquifer appears to advect and disperse faster due to the highest fluid

speed being in that region [7].
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Figure 5.30 represents the case when the entrance lies in the bottom sub-layer of lowest perme-

ability, as a result of which fluid as well as pollutant move slower in this area and we can see a

lower spread of pollutant concentration there. However, in the top sublayer, pollutant advects

and disperses faster due to a higher permeability zone and the position of the exit there.
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Figure 5.30: Graphs for a leaky cylinder with rectangular cross-section placed in a non-homogeneous
aquifer, with the entrance in the lowest sub-layer (a) a contour plot of φ; (b) a contour plot of pollutant
concentration; (c) a surface plot of pollutant concentration.

The fluid and mass fluxes for this first case (i.e., when the entrance lies in the bottom layer),

through the inlet, exit, and pervious cylinder are given in Table 5.11, whereas, the fluid and

mass fluxes for the remaining two cases are listed in separate tables.
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For verification of the model, fluid as well as the mass fluxes through the cylinder and entrance

should be equal to those of through the exit. However, in this example, the total fluid flux in is

7.6779× 10−4 [m2 s−1] which is slightly less than the total fluid flux out which is 8.1846× 10−4

[m2 s−1]. Similarly, the total mass flux in of a pollutant is 0.0020 [kg m−1 s−1] which is slightly

less than the total pollutant mass flux out which is 0.0022 [kg m−1 s−1]. This is probably

because of the the high permeability difference between the adjacent layering system.

Table 5.11: Values of fluid and mass fluxes near the steady-state solution, for an entrance lying in the
bottom sub-layer; position of entrance between points b1 = 1 [m], b2 = 3 [m], and exit between points
b3 = 9 [m], b4 = 11 [m].

Fluxes Values Units
flux in QL 2.9510×10−4 [m2 s−1]
flux through the cylinder QI 4.7269×10−4 [m2 s−1]
flux total in Qin 7.6779×10−4 [m2 s−1]
flux out QR 8.1846×10−4 [m2 s−1]
value of V̄ 3.9342×10−5 [m s−1]
coefficient of dispersion D̄ = αV̄ 7.8684×10−6 [m2 s−1]
mass flux of a pollutant (from entrance) PL 2.5479×10−19 [kg m−1 s−1]
mass flux of a pollutant (through the cylinder) PI 0.0020 [kg m−1 s−1]
total mass flux in of a pollutant PIn 0.0020 [kg m−1 s−1]
total mass flux out of a pollutant PR 0.0022 [kg m−1 s−1]

When the entrance is lying in the middle layer

Table 5.12 and Figure 5.31 show respectively the recordings and illustration of the case

when the entrance lies in the second zone of maximum permeability. Maximum transport of

fluid and pollutant is visible in the middle layer of highest permeability and dispersion of the

pollutant occurs in the other sub-layers due to the fact of mechanical dispersion from the higher

concentration region to the lower one.

150



Table 5.12: Parameters used for the simulations, and values of fluid and mass fluxes near the steady-
state solution, for an entrance lying in the middle sub-layer; position of entrance between points b1 = 5
[m[, b2 = 7 [m], and exit between points b3 = 9 [m], b4 = 11 [m].

Parameters Values Units
flux in QL 16.3479×10−4 [m2 s−1]
flux through the cylinder QI -7.2188×10−4 [m2 s−1]
flux total in Qin 9.1291×10−4 [m2 s−1]
flux out QR 8.2034×10−4 [m2 s−1]
value of V̄ 7.5526 ×10−5 [m s−1]
component of dispersivity α 0.2 [m]
coefficient of dispersion D̄ = αV̄ 1.5105×10−5 [m2 s−1]
mass flux of a pollutant (from entrance) PL 4.8784×10−16 [kg m−1 s−1]
mass flux of a pollutant (through the cylinder) PI 0.0018 [kg m−1 s−1]
total mass flux in of a pollutant PIn 0.0018 [kg m−1 s−1]
total mass flux out of a pollutant PR 0.0020 [kg m−1 s−1]

151



0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

x 

z
 

(a)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

x 

z
 

(b)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

x 

z
 

(c)

Figure 5.31: Graphs for a leaky cylinder with rectangular cross-section placed in a non-homogeneous
aquifer, with the entrance in the second sub-layer (a) a contour plot of φ; (b) a contour plot of pollutant
concentration; (c) a surface plot of pollutant concentration.

When the entrance is lying in the top layer

Lastly, the fluid flow and pollutant advection-dispersion model for the case when the en-

trance lies in the top sub-layer, is plotted in Figure 5.32. Surprisingly, more dispersion of

pollutant can be seen in the bottom sub-layer of minimum permeability as compared to the top

layer of relatively higher permeability. Is this due to the faster fluid speed or is there another

mechanism involved for dispersion?

As the movement of fluid as well as pollutant takes place from the region of lower permeability
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to the higher one, so more spread and transport of pollutant occurs in the middle sub-layer

of highest permeability and then transport of pollutant further extends to the bottom layer of

lowest permeability due to the relatively higher value of pressure in the middle layer just past

the object.

Table 5.13: Parameters used for the simulations, and values of fluid and mass fluxes near the steady-
state solution, for entrance in the top sub-layer, position of entrance between points b1 = 9 [m], b2 = 11
[m], and exit between points b3 = 9 [m], b4 = 11 [m].

Parameters Values Units
flux in QL 8.2021×10−4 [m2 s−1]
flux through cylinder QI 4.5024×10−16 [m2 s−1]
flux total in Qin 8.2021×10−4 [m2 s−1]
flux out QR 8.2021×10−4 [m2 s−1]
value of V̄ 5.6944×10−5 [m s−1]
component of dispersivity α 0.2 [m]
coefficient of dispersion D̄ = αV̄ 1.1389×10−5 [m2 s−1]
mass flux of a pollutant (from entrance) PL 1.6121×10−15 [kg m−1 s−1]
mass flux of a pollutant (through the cylinder) PI 0.0019 [kg m−1 s−1]
total mass flux in of a pollutant PIn 0.0019 [kg m−1 s−1]
total mass flux out of a pollutant PR 0.0020 [kg m−1 s−1]
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Figure 5.32: Graphs for a leaky cylinder with rectangular cross-section placed in a non-homogeneous
aquifer, with the entrance in the top sub-layer (a) a contour plot of φ; (b) a contour plot of pollutant
concentration; (c) a surface plot of pollutant concentration.
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Chapter 6

Modelling Heat Transport in a Porous

Medium with Embedded Convex

Objects

In this chapter our main aim is to formulate models of heat (which is released by heated

bodies embedded in a porous media) transport in groundwater aquifers. Generally, in all trans-

port models, heat as well as fluid transport is taken into account. Perhaps, it is due to the

fact that both the fluid’s density and viscosity depend on the temperature [12]. However, we

shall assume the case when the fluid is incompressible and irrotational, so our model will be

restricted to only heat transfer.

Before analysing the basis of convective heat transfer modelling, it is important to know about

the historic relationship between fluid mechanics and heat transfer. Particularly, during the

past century, both fluid mechanics and heat transfer have completed their journey in success-

ful collaboration [14]. Problems encountered in this area, includes the examples of chemical

engineering, geothermal reservoir engineering, storage of nuclear waste material, groundwater

flows, pollutant dispersion in aquifers, radioactive waste reservoirs, solar power accumulators,

and food industries, etc. [12]. There has been extensive and substantial published research in

the field of heat convection, advection and dispersion in porous media.

In contrast with mass transfer, where the solid is considered to be impermeable to mass flux,

in the case of heat transfer, the solid matrix is regarded to be a heat conduction source. Due
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to the fact that heat may be exchanged between these two phases, the average temperature of

solid and fluid(s) need not be the same, However, all our study will be based on the assumption

that the system will remain in thermal equilibrium.

Heat that is injected into a groundwater aquifer together with a fluid source that may be as-

sociated with the object(s) (e.g., heat from a tank), is dispersed by water flowing within the

permeable matrix. It is well-known from the literature that heat transfer can be increased by

using porous media with higher thermal conductivity.

This chapter will discuss fluid and heat transport in a homogeneous aquifer. Heated objects

which are embedded in the underground aquifers will be taken as elliptic or diamond cross-

sections of the cylinder. To discuss the fluid/heat flow model with these objects, first a complex

variable technique known as conformal mapping will be discussed. In this technique, compli-

cated objects may be transformed into regular objects [18]. The transformed problem then

becomes simpler to solve for fluid and heat flow in porous media with embedded convex ob-

jects.

After finding the transformation and solving the fluid flow problem in the transformed plane,

the heat equation is then solved for steady-state and time dependent cases for some values

of thermal diffusion/dispersion and advection coefficients. Validity of the solution is checked

by calculating heat fluxes through the cylinders, inlet, and outlet for both original (x, z) and

transformed (ξ, η) planes.

6.1 Conformal mapping

It is hard to fit curved objects like circles or ellipse and polygons like diamonds, pentagons,

etc., using rectangular mesh in a porous medium. But it is possible to find a mapping using

complex variables techniques namely, conformal mappings. The procedure is to find a conformal

transformation of a rectangular flow region ((x, z) plane) into another rectangular region ((ξ, η)

plane, say) for which the transformed stream function ψ̂(ξ, η) and velocity potential φ̂(ξ, η)

persist to be harmonic. The problem becomes easy to solve after finding a mapping x = x̂(ξ, η),

z = ẑ(ξ, η), as both x̂(ξ, η) and ẑ(ξ, η) are harmonic. So after getting the transformation, x̂(ξ, η),

156



and ẑ(ξ, η) remain harmonic. i.e.,

−∂x̂
∂ξ

=
∂ẑ

∂η
, −∂x̂

∂η
= −∂ẑ

∂ξ
. (6.1)

The transformed problem is simpler to solve, but it also requires that the boundary conditions

from the (x, z) plane should be mapped across to the (ξ, η) plane. The Laplace’s equation in

the (x, z) plane is transformed numerically into Laplace’s equation in the (ξ, η) plane, provided

these two planes are related by a conformal transformation.

Laplace’s equation for the coordinates x̂(ξ, η) and ẑ(ξ, η) whose transformation is made using

conformal mapping [18] is

∇̂2x̂ =
∂2x̂

∂ξ2
+
∂2x̂

∂η2
= 0, (6.2)

∇̂2ẑ =
∂2ẑ

∂ξ2
+
∂2ẑ

∂η2
= 0, (6.3)

and Laplace’s equation for the coordinates ξ(x, z) and η(x, z) is

∇2ξ =
∂2ξ

∂x2
+
∂2ξ

∂z2
= 0, (6.4)

∇2η =
∂2η

∂x2
+
∂2η

∂z2
= 0. (6.5)

6.1.1 Some discussion about governing equation and boundary con-

ditions

Figure 6.1 shows the schematic diagram for the governing equation and boundary conditions

in terms of (ξ, η) and (x, z) planes for conformal mapping. Figures 6.1a-b show the boundary

value problems in the (ξ, η) plane, however, the only difference in these two figures is that

Figure 6.1a illustrates the boundary value problem in terms of x̂(ξ, η) and Figure 6.1b shows

the governing equation and boundary conditions in terms of ẑ(ξ, η). Figures 6.1c and 6.1d are

the original planes in terms of (x, z) for quarter of a diamond and elliptic cylinders.

Numerical solution of Figures 6.1a-b is plotted in Figure 6.2a and the solution of Figures 6.1c-d

is given by Figures 6.2b and 6.2c respectively.
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Following are the governing equations in terms of x̂(ξ, η) and ẑ(ξ, η) in the ξη-plane.

∇̂2x̂ =
∂2x̂

∂ξ2
+
∂2x̂

∂η2
= 0, 0 < ξ < a′, 0 < η < b, (6.6)

∇̂2ẑ =
∂2ẑ

∂ξ2
+
∂2ẑ

∂η2
= 0, 0 < ξ < a′, 0 < η < b, (6.7)

where a′ is the length of the rectangle in ξη-plane, and is found during the solution process for

the mapping. Generally, a′ 6= a.

With reference to Figure 6.1, the boundary conditions are:

on O′A′,
∂x̂

∂η
= 0, ẑ = 0, (6.8)

on A′B′,
∂x̂

∂η
= 0,

∂ẑ

∂ξ
= 0, (6.9)

on B′C ′,
∂x̂

∂η
= 0, ẑ = b, (6.10)

on C ′D′, x̂ = 0,
∂ẑ

∂ξ
= 0. (6.11)

For the case of a quarter diamond (see Figure 6.1c):

on D′O′, x̂ and ẑ are related by ẑ = c−mx̂.

Other relationships between x̂ and ẑ depend on the cylinder shape.
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Figure 6.1: Schematic diagram of the physical domains for conformal mapping in (a) ξη-plane (mapped
plane), governing equation and boundary conditions are in terms of x̂(ξ, η). D′O′ is the quarter of a
horizontal plate, which is a mapping for DO in (c) and (d); (b) same as (a), but in terms of ẑ(ξ, η);
(c) xz-plane (original plane) , DO is the quarter of a diamond, which is mapped on a horizontal plate
D′O′ in (a) and (b); (d) xz-plane (original plane), DO is the quarter of an ellipse, which is mapped
on a horizontal plate D′O′ in (a) and (b).

6.1.2 Illustrations: graphs of conformal transformation

In this study, first a conformal mapping is found in the first quadrant of two planes, in

which quarter of a diamond and elliptic shaped cylinders are mapped to a quarter of a hori-

zontal plate, as shown in Figure 6.2.

We are still solving Laplace’s equation for the coordinates x̂(ξ, η) and ẑ(ξ, η) whose transfor-

mation is made using conformal mapping, which map the quarter of a horizontal plate and the

mesh (which is all rectangular), as shown in Figure 6.2a into quarter of a diamond/ellipse and

the orthogonal mesh, as shown in Figures 6.2b and 6.2c. If we do the mapping in the right

way all the lines of Figure 6.2a become bent around the object and are orthogonal, as shown

in Figures 6.2b and 6.2c.
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Figure 6.2: Typical computational domain in quarter of ξη- and xz- planes for (a) map of the region
into ξη-plane. The mapped points on the cylinder are marked by quarter of a horizontal plate; (b)
orthogonal mesh in (x, z) plane corresponding to rectangular mesh in the (ξ, η) plane for quarter of a
diamond; (c) orthogonal mesh in (x, z) plane corresponding to rectangular mesh in the (ξ, η) plane for
quarter of an ellipse.

After finding a transformation in the first quadrant of the ξη- and xz-planes, a transfor-

mation for the complete ξη- and xz-planes is found by flipping the results into the second

quadrant and then in the negative η- and z-axis of the two planes. Figure 6.3a is a complete

mapping in the ξη-plane, which shows a mapping of a horizontal plate into a diamond/ellipse

in the xz-plane, whose graphs are shown in Figures 6.3b-6.3c. In fact, Figure 6.3a is an image

of Figure 6.3b and Figure 6.3c.

Moreover, a dilatation in the mesh size of Figure 6.3a is visible in Figures 6.3b and 6.3c, where

the mesh size of ξη-plane is compacted (shrinkage) by an amount known as the Jacobian of

the transformation and is discussed in Appendix A. In some cases of conformal transformation,

this dilatation may result in the expansion of the mesh size of the mapped ξη-plane.

It should be noted that, in conformal mapping, shrinkage of the ξη-plane is different for dif-

ferent shapes, and is visible in both the graphs of the xz-plane. It is also observed that the

length of the xz-plane in the case of an elliptic cylinder is greater than that of diamond shaped

cylinder, even though we have mapped a plate of the same length to the diamond and ellipse,

and verified the results with the same length and width of horizontal plate in the ξη-plane for

both types of cylinders. Because of the different geometric shapes, the shrinkage is different due

to the conformal mapping. The diamond shape cylinder has a very sharp edge, which reduces

the length of the xz-plane.
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Figure 6.3: Typical computational domain for (a) map of the region into (ξ, η)-plane. Lines correspond
to constant x and z. The mapped points on the cylinder are marked by a horizontal plate; (b) orthogonal
mesh in (x, z) plane corresponding to rectangular mesh in the (ξ, η) plane for diamond; (c) orthogonal
mesh in (x, z) plane corresponding to rectangular mesh in the (ξ, η) plane for ellipse.

6.2 Numerical solution of φ(ξ, η), φ(x, z), ψ(ξ, η), and ψ(x, z)

After conformal transformation, our next goal is the discussion of fluid flow through a

homogeneous porous medium with embedded bluff bodies. Mathematical modelling starts with

the assumption that the fluid is incompressible and Darcy’s law is applicable, so, as discussed

before in Section 3.3 both φ(x, z) and ψ(x, z) are harmonic functions in the xz-plane. Since

under conformal mapping harmonic functions remain harmonic, so both φ̂(ξ, η), and ψ̂(ξ, η)

are still harmonic in the (ξ, η) plane.

The approach is to find a conformal mapping of the flow region to a rectangular region in

the (ξ, η) plane where the transformed functions φ̂(ξ, η) and ψ̂(ξ, η) remain harmonic. The

basis of the complex potential is that both velocity potential φ and stream function ψ have to

satisfy Laplace’s equation. If we want to see the effects of conformal transformation on complex

potentials, it is fair enough to investigate their effect on Laplace’s equation. In order to show

this, we have only to transform the first and second derivative of variables ψ and φ with respect

to x and z into derivatives with respect to the transformed variables ξ and η. Then considering

ψ and φ to be functions of ξ and η, we can easily calculate the Laplace’s equation for both ψ

and φ.

In the context of Darcy’s law, the components of velocity in terms of φ(x, z) and ψ(x, z) are
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u(x, z) = −ρgk
µ

∂φ

∂x
, w(x, z) = −ρgk

µ

∂φ

∂z
, (6.12)

u(x, z) =
ρgk

µ

∂ψ

∂z
, w(x, z) = −ρgk

µ

∂ψ

∂x
, (6.13)

and the corresponding velocity components in the (ξ, η) plane are

û(ξ, η) = −ρgk
µ

∂φ̂

∂ξ
, ŵ(ξ, η) = −ρgk

µ

∂φ̂

∂η
, (6.14)

û(ξ, η) =
ρgk

µ

∂ψ̂

∂η
, ŵ(ξ, η) = −ρgk

µ

∂ψ̂

∂ξ
. (6.15)

One special feature of the harmonic functions is that they satisfy Laplace’s equation, so the

following are Laplace’s equations for φ(x, z) and ψ(x, z)

∇2φ =
∂2φ

∂x2
+
∂2φ

∂z2
= 0, (6.16)

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂z2
= 0, (6.17)

and the corresponding Laplace’s equations for φ̂(ξ, η) and ψ̂(ξ, η) are

∇̂2φ̂ =
∂2φ

∂ξ2
+
∂2φ

∂η2
= 0, (6.18)

∇̂2ψ̂ =
∂2ψ

∂ξ2
+
∂2ψ

∂η2
= 0. (6.19)

The boundary conditions on the porous media and on the body in terms of φ(x, z) and ψ(x, z)

are similar to the Sections 3.5 and 3.6. The respective boundary conditions in terms of φ̂(ξ, η)

and ψ̂(ξ, η) in the (ξ, η) plane are same as for φ(x, z) and ψ(x, z) in the xz-plane.

As the bodies embedded in the porous media are impervious, so in terms of the velocity potential

φ, the normal components of velocity are taken to be zero and in terms of the stream function,

ψ is taken constant all over the body. It is evident from the Figures 6.4a-6.4c, that all pressure

lines strike normally to the impermeable horizontal wall placed in the (ξ, η) plane and the solid

walls of the diamond-shaped and elliptic cross-sections of the cylinder in the xz-plane.

Lastly, in Figures 6.4d-6.4f streamlines are wrapping around the impermeable horizontal wall
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placed in the (ξ, η) plane and around the two cross-sections of the cylinder placed in a uniform

stream of water flowing inside the rectangular xz- porous media with one entrance and one

exit. So in this case, we can see two layers of streamlines are separated above and below the

bodies.
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Figure 6.4: Graphs of the numerical solution of (a) isobars for the impermeable horizontal line embed-
ded in (ξ, η) plane; (b) isobars for the impermeable diamond embedded in the (x, z) plane; (c) isobars
for impermeable elliptic body embedded in the (x, z)-plane; (d) streamlines for the impermeable hori-
zontal line embedded in the (ξ, η) plane; (e) streamlines for the impermeable diamond embedded in the
(x, z) plane; (f) streamlines for the impermeable elliptic body embedded in the (x, z) plane.

6.3 Balance equation of two-dimensional heat advection-

dispersion in a porous medium

The problem under consideration is steady/unsteady forced convective flow over a dia-

mond/elliptic shape cylinder embedded in a rectangular domain, as illustrated in Figures 6.5

and 6.7. The cylinder is isothermally heated at a constant temperature TI and cooled by the

incoming external flow at temperature Tin. The confining horizontal walls have the same tem-

perature Tb and Tt which is equal to the temperature of the flow at the inlet. The confining

vertical walls are kept insulated. The fluid is incompressible. Thermal expansion and fluid

buoyancy effects are neglected. No heat generation occurs inside the porous medium. Based

on this setup there is both steady/unsteady heat advection and conduction.
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6.3.1 Governing equations for steady heat advection-conduction

The 2D governing equations for forced convection flow past a cylinder embedded in a porous

medium are based on the conservation of mass, momentum and thermal energy. It is assumed

that flow in the porous media is governed by Darcy’s law, and therefore inertial, thermal expan-

sion, and fluid buoyancy effects are negligible. The total heat flux, by advection, mechanical

dispersion, and thermal diffusion can be written in the form

qh = (ρc)waterTV − D∇T − κms∇T, (6.20)

where T [K] is the temperature, D is a second rank symmetric tensor called the coefficient of

mechanical dispersion, κms [W m−1 K−1] is the thermal conductivity (diffusion), c [J kg−1 K−1]

is the specific heat, and ρ [kg m−3] is the density of water. For the isotropic case, we have

D = DI, so Equation (6.20) becomes

qh = (ρc)waterTV − (DI + κmsI)∇T, (6.21)

qh = (ρc)waterTV − (D + κms)I∇T, (6.22)

qh = (ρc)waterTV − (D + κms)∇T, (6.23)

qh = (ρc)waterTV −Dh∇T, (6.24)

where Dh = (D + κms).

It is assumed that the mixture values are just weighted proportional to the component values,

i.e., porosity, thermal conductivity, density of water and the specific heat. In terms of the

component values, κ and (ρc) are written in the form:

κms = (1− n)κrock + nκwater,

also (ρc)ms = (1− n)(ρc)rock + n(ρc)water,

where the subscript m denotes mixture values for the fluid-saturated porous medium (subscript

s), and n is the porosity of the medium. The thermal energy equation of the porous media in
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steady-state form [14] is:

∇ · qh = 0, (6.25)

∇ · ((ρc)waterTV −Dh∇T ) = 0. (6.26)

Hence we have,

V · ∇T =
Dh

(ρc)water
∇2T, implies V · ∇T = Dth∇2T, (6.27)

where the (constant) thermal diffusivity Dth = Dh/(ρc)water. We are left with

ρgk

µ
∇φ · ∇T +Dth∇2T = 0, where V = (u,w) = −ρgk

µ
∇φ. (6.28)

The temperature in terms of the mapped coordinates is T = T̂ (ξ, η). The transformed equation

is:

ρgk

µ
∇̂φ̂ · ∇̂T̂ +Dth∇̂2T̂ = 0. (6.29)

Hence the steady-state problem with fluid velocity components written in terms of φ̂ and T̂ is:

ρgk

µ

(
∂φ̂

∂ξ

∂T̂

∂ξ
+
∂φ̂

∂η

∂T̂

∂η

)
+Dth

(
∂2T̂

∂ξ2
+
∂2T̂

∂η2

)
= 0, (6.30)

or

∂2T̂

∂ξ2
+
∂2T̂

∂η2
=

1

Dth

(
û
∂T̂

∂ξ
+ ŵ

∂T̂

∂η

)
, (6.31)
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subject to the boundary conditions:

T̂ (x, 0) = T̂b = 10, T̂ (x, b) = T̂t = 10, 0 ≤ x ≤ a, (6.32)

T̂I = 20, (on the cylinder), (6.33)

T̂in = 10, b1 ≤ z ≤ b2, (6.34)

∂T̂

∂x
(0, z) = 0, 0 ≤ z ≤ b1, b2 ≤ z ≤ b, (6.35)

∂T̂

∂x
(a, z) = 0, 0 ≤ z ≤ b3, b4 ≤ z ≤ b. (6.36)

T̂I = 20 T̂I = 20

T̂ = T̂b = 10
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∂ξ
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∂2T̂
∂ξ2

+ ∂2T̂
∂η2

= 1
Dth

(
û∂T̂
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∂η

)
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Figure 6.5: Schematic diagram of the physical domain for heat flow in the steady-state case.

6.3.2 Illustration: numerical solution for steady heat advection-

conduction

Steady-state Equations (6.31)-(6.36) have been solved numerically by using a relaxation

technique. Figures 6.6a-6.6b and Figures 6.6c-6.6d contain sample contour and surface plots of

the typical shapes of dimensionless fluid temperature for both, plate (in the (ξ, η) plane) and

diamond shape cylinders (in the (x,z) plane) respectively. Moreover, similar results are found

for different shapes of the cylinder.

From the illustration of the Figures 6.6c-6.6d, it can be noticed that the region in front of the

diamond shaped cylinder seems to be cooled, actually, there is present a very thin boundary

layer of heat and this is because the main flow from the entrance sweeps the hot fluid near the
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cylinder towards the exit. The regions behind the the cylinder have the highest temperatures

because of the separation point between cylinder and porous media.
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Figure 6.6: Representation of the solution of steady-state heat dispersion-advection with heated objects
inside a homogeneous porous medium with top and bottom boundaries at constant temperature, T̂b =
T̂t = 10 ◦C, with inlet temperature Tin = 10 ◦C, object TI = 20 ◦C, contours at 0.5 ◦C intervals, in the
form of: (a) contour plot for plate; (b) surface plot for plate; (c) contour plot for diamond; (d) surface
plot for diamond.

6.3.3 Governing equations for non-steady heat advection-conduction

The system is shown in Figure 6.7. A two-dimensional rectangular box of height b and length

a is taken in the form of a fluid filled porous media. In accordance with the homogeneous porous

media model, the first law of thermodynamics reduces to the 2D time dependent governing

equations of the system as [14]:

∂

∂t
((ρc)msT ) = −∇ · ((ρc)waterVT −Dh∇T ). (6.37)

Hence
∂T

∂t
+

(ρc)water
(ρc)ms

V · ∇T =
Dh

(ρc)ms
∇2T. (6.38)
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Which can be written as

∂T

∂t
+ σV · ∇T = αth∇2T, (6.39)

where

σ =
(ρc)water
(ρc)ms

and αth =
Dh

(ρc)ms
. (6.40)

In Appendix A

∂T

∂t
= σ

ρgk

µ
∇φ · ∇T + αth∇2T, (6.41)

where

V = (u,w) = −ρgk
µ
∇φ. (6.42)

The temperature in terms of the mapped coordinates is T = T̂ (ξ, η). The transformed equation

is:

1

J

∂T̂

∂t
= σ

ρgk

µ
∇̂φ̂ · ∇̂T̂ + αth∇̂2T̂ , (6.43)

where

J =

(
∂ξ

∂x

)2

+

(
∂ξ

∂z

)2

. (6.44)

Hence the unsteady problem with fluid velocity components written in terms of the velocity

potential is:

1

J

∂T̂

∂t
= σ

ρgk

µ

(
∂φ̂

∂ξ

∂T̂

∂ξ
+
∂φ̂

∂η

∂T̂

∂η

)
+ αth

(
∂2T̂

∂ξ2
+
∂2T̂

∂η2

)
, (6.45)

implies
1

J

∂T̂

∂t
= −σ

(
û
∂T̂

∂ξ
+ ŵ

∂T̂

∂η

)
+ αth

(
∂2T̂

∂ξ2
+
∂2T̂

∂η2

)
. (6.46)
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Figure 6.7: Schematic diagram of the physical domain for heat in the unsteady case.

6.3.4 Illustrations: solution for the non-steady heat equation

Example 6.3.1 A stream of 10 ◦C water enters in a rectangular porous duct, the temperature

of the horizontal wall is uniform and equal to 10 ◦C, whereas the vertical solid walls of the duct

are kept insulated. The duct cross-section is a 10 cm × 6 cm rectangle. An elliptic shaped hot

cylinder is embedded in the centre of the duct with a constant temperature of 20 ◦C. The major

axis of the ellipse has a length of 2 cm, and the minor is 1 cm long. Water is flowing through

the duct over the hot cylinder and leaves out from another opening.

(a) Plot the heat transfer from the duct, until the system becomes in a state of steady-state.

Assume that the thickness of the boundary layer that lines the inner surface of the duct is

much smaller than 10 cm.

(b) What are the effects of αth and σ on heat transfer?

(c) What are the other factors influencing the fluid flow and heat transfer through the porous

duct?

Mathematically, we have to solve the equation

1

J

∂T̂

∂t
= −σ

(
û
∂T̂

∂ξ
+ ŵ

∂T̂

∂η

)
+ αth

(
∂2T̂

∂ξ2
+
∂2T̂

∂η2

)
, (6.47)
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subject to the boundary conditions:

T̂ (x, 0) = T̂b = 10, T̂ (x, b) = T̂t = 10, 0 ≤ x ≤ a, (6.48)

T̂I = 20, (on the cylinder), (6.49)

T̂in = 10, b1 ≤ z ≤ b2, (6.50)

∂T̂

∂x
(0, z) = 0, 0 ≤ z ≤ b1, b2 ≤ z ≤ b, (6.51)

∂T̂

∂x
(a, z) = 0, 0 ≤ z ≤ b3, b4 ≤ z ≤ b. (6.52)

(a) For the numerical solution, first of all a conformal mapping is found, which maps a horizon-

tal plate in the ξη-plane into the elliptic cylinder in the (x, z) plane, as shown in Figure 6.3a

and 6.3c, then the fluid flow equation is solved in terms of φ and ψ. Darcy velocities are

calculated all across the duct and over the cylinder by using one sided finite difference

and central difference formulae in terms of φ. After calculation of the Darcy velocities,

the non-steady heat Equation (6.47) subject to boundary conditions (6.48)-(6.52) has been

solved numerically by using finite difference methods and the results are similar to the

steady-state case, as discussed above in Subsection 6.3.2.

Figures 6.8a-6.8b show the temperature contour and surface plots around the plate and

Figures 6.8c-6.8d show the temperature contour and surface plots for the elliptic cylinder.
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Figure 6.8: Representation of the solution of the unsteady heat dispersion-advection equation, with
αth = 0.01, σ = 1, with heated objects inside a homogeneous porous medium with temperature contours
the same as in Figures 6.6, in the form of (a) contour plot for plate; (b) surface plot for plate; (c)
contour plot for ellipse; (d) surface plot for ellipse.

(b) Now to show the effect of σ and αth on heat advection-conduction, consider the following

graphs.
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Figure 6.9: Representation of the solution of the unsteady heat dispersion-advection equation, with
αth = 0.001, σ = 1, with heated objects inside a homogeneous porous medium with temperature contours
the same as in Figures 6.6, in the form of: (a) contour plot for plate; (b) surface plot for plate; (c)
contour plot for ellipse; (d) surface plot for ellipse.
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Figure 6.10: Representation of the solution of the unsteady heat dispersion-advection equation, with
αth = 0.01, σ = 10, with heated objects inside a homogeneous porous medium with temperature contours
the same as in Figures 6.6, in the form of: (a) contour plot for plate; (b) surface plot for plate; (c)
contour plot for ellipse; (d) surface plot for ellipse.

For a very small value of αth, and/or for a very large value of σ, the dispersion of heat is

very low, and most of the heat transfer is due to advection, as is clear from Figures 6.9, and

6.10, where in the former, the value of αth is taken 10 times smaller than that in Figure 6.8

and in the latter, the value of σ is taken 10 times larger than that in Figure 6.8.

Figure 6.11 gives a quantitative analysis of the importance of αth and σ in the observed

long-time plume behaviour. The graph of Figure 6.11a shows that, for a fixed value of σ,

the width of the heat plume increases gradually as the parametric value of αth increases

steadily. However, Figure 6.11b illustrates that for a fixed value of αth, the width of the

plume decreases suddenly when σ increases from 0.5 to 2, then the spread of plume decreases

slowly as σ increases further.

173



0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
1

1.5

2

2.5

3

3.5

4

Graph between  α
th

  and width of the heat plume, when  σ=1

α
th

w
id

th

(a)

0 1 2 3 4 5 6 7 8 9 10 11
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Graph between  σ  and width of the heat plume, when  α
th

=0.01

σ

w
id

th

(b)

Figure 6.11: Representation of the relationship between (a) αth and the width of the heat plume when
σ = 1; (b) σ and the width of the heat plume when αth = 0.01.

(c) It is also observed that the size, shape and burial depth of the cylinder affect the pres-

sure drop, as well as the pollutant and/or the heat transfer. Moreover, the rate of dis-
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persion/advection and pressure drop depends on the permeability structure and the fluid

speed.

Example 6.3.2 Repeat part (a) of Example 6.3.1 with all solid boundaries insulated.

In this case, the mathematical formulation of the problem is given below.

Unsteady heat Equation (6.46) subject to boundary conditions will be solved numerically:

∂T̂

∂z
(x, 0) = 0,

∂T̂

∂z
(x, b) = 0, 0 ≤ x ≤ a, (6.53)

T̂I = 20, (on the cylinder), (6.54)

T̂in = 10, b1 ≤ z ≤ b2, (6.55)

∂T̂

∂x
(0, z) = 0, 0 ≤ z ≤ b1, b2 ≤ z ≤ b, (6.56)

∂T̂

∂x
(a, z) = 0, 0 ≤ z ≤ b3, b4 ≤ z ≤ b. (6.57)

Provided the boundaries of the aquifer are not very close to the object, non-steady heat Equa-

tion (6.46) subject to boundary conditions (6.53)-(6.57) have been solved numerically by using

finite difference methods. It is observed that the constant temperature boundaries (as discussed

in Example 6.3.1 and illustrated in Figure 6.8) and insulated boundaries in Figure 6.12 effec-

tively give the same results, as the boundaries are far away from the cylinder.

Figures 6.12a-6.12b show the temperature contour and surface plots around the plate and

Figures 6.12c-6.12d show the temperature contour and surface plots for the elliptic cylinder.

Moreover, after a long time of numerical simulation, the steady-state solution of both the sys-

tems is equivalent.
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Figure 6.12: Representation of the solution of the unsteady heat dispersion-advection equation, with
αth = 0.01, σ = 1, with heated objects inside a homogeneous porous medium with insulated boundaries.
The temperature contours are the same as in Figures 6.6, in the form of: (a) contour plot for plate;
(b) surface plot for plate; (c) contour plot for ellipse; (d) surface plot for ellipse.

Due to the fact that there are a number of parameters involved to consider, only a general

review of heat transfer study has been discussed here. Moreover, because so many options

for the boundary conditions on the porous medium as well as on the hot body are possible, a

complete analysis of all of them is not practicable in this study.
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Chapter 7

Summary and Conclusions

The present study has numerically investigated the characteristics of fluid flow rates, pollu-

tant and heat transport from objects embedded in groundwater aquifers. This includes a fully

numerical two- and three-dimensional modelling to determine:

• the effects of size and shape of an object or set of solid or partially pervious objects

embedded in a porous medium on the local speed and shape of the flow;

• when heat and/or a pollutant is released from, or removed by the object(s), the depen-

dence of subsequent dispersal through a groundwater aquifer on the various parameters

involved (e.g., the object size, object’s burial depth, the aquifer’s depth, the fluid flow

rates, etc.);

• the effect of the non-homogeneity in matrix properties (e.g., permeability or hydraulic

conductivity) in the case of layered aquifers.

The work included in this thesis is based on the following assumptions:

• the groundwater, which is in a single liquid phase, is assumed to be incompressible,

irrotational and at low temperature;

• the flow domain which is rigid and non-deformable is considered to be a rectangle in the

two-dimensional case and in the case of a three-dimensional domain, it is regarded as

cuboidal;
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• the parameters that contribute to the governing Laplace’s equation with initial and bound-

ary conditions in the flow domain are assumed to be φ (3D) and ψ (2D);

• the objects embedded in the groundwater aquifer are impermeable and pervious, which

mainly depend on two parameters, βps, and a constant inside pressure, φI ;

• non-homogeneous aquifers have a horizontal as well as a vertical layered structure;

• the pollutant advection-dispersion equation that models the transport problem is in linear

and non-linear form;

• in the case of the heat advection-dispersion phenomenon, the modelling includes a complex

variable technique, namely conformal mapping to map simple geometries on complex

configurations.

Following is a short discussion about the above objectives and assumptions.

7.1 Effect of presence of impermeable objects

When modelling fluid flow and heat transport in groundwater aquifers, one needs to observe

the influence of the presence of solid (impermeable) objects embedded in underground aquifers.

These objects may be due to natural occurrences such as deep geological formations, or some

man-made constructions, like engineering reservoirs, etc.

The results presented in Chapters 3, 4 and 6 provide a better understanding of fluid and

heat flow rates in the presence and absence of impermeable objects embedded in groundwater

aquifers. It is found that the presence of these objects alters significantly the steady/unsteady

hydrodynamic and thermal behaviour in the aquifers.

In spite of the fact that in this thesis, the results have been calculated with finite differences for

fluid flow in groundwater aquifers for some regular shaped objects, its results can be used and

generalized for any kind of numerical method, shape of embedded objects and porous media.
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7.2 Effect of presence of pervious objects

When it is a matter of pollutant leaking from some underground buried formations, there

is a need to formulate the geometrical configurations, suitable boundary conditions and a list

of parameters/variables that will be used to describe the state of the system.

In this thesis, a mixture of Neumann- and Dirichlet-type boundary conditions is used to de-

scribe the boundary conditions on the pervious walls of rectangular objects. In these boundary

conditions, normal components of pressure gradient, ∂φ/∂n are assumed to be proportional to

the constant inner pressure φI of the object. φI is the parameter involved in the calculations,

whose value describes the injection or removal of groundwater from the embedded objects.

The non-negative parameter βps is supposed to be a proportionality constant, whose value spec-

ifies the perviousness of the object; a zero value of βps indicates the object is impermeable. A

detailed discussion about the influence of βps on fluid flow for a pervious wall has been included

in Chapters 3 and 4. It is noted that, for a larger value of βps, the fluid ignores the presence of

the wall.

7.3 Effect of layering

Generally, the porous media comprising groundwater aquifers are rarely homogeneous with

respect to their permeability. Layered systems have evolved after centuries during continu-

ous geological eruptions/processes and can be differentiated with varying thicknesses. Physical

properties (like porosity, permeability, hydraulic conductivity, etc.) are assumed to be constant

within each sub-layer, but can be different in each of the various layers of the system.

In a multi-layered system, fluid flows faster in a region of higher permeability. Results for

fluid flow have been presented in Chapter 4 for impermeable and pervious objects embedded

in non-homogeneous aquifers. It was observed that, for a multi-layer system (with varying

permeabilities), parallel to the plane of the flow, fluid flow occurs under the influence of the

varying pressure gradient. For a system perpendicular to the plane of flow, the flow is assumed

to be nearly uniform.

In the advection-dispersion model, for pollutant leaking from embedded bodies in the aquifers,

transport of pollutant across layer interface may take place due to different permeability struc-
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ture within adjacent layers. Some results have been discussed in Chapter 5 for three-layer

aquifers for pervious objects.

7.4 Effect of dispersion coefficients

The coefficient of mechanical dispersion D appearing in the advection-dispersion equation

that models the transport problem of pollutant concentration C has been studied by many

researchers. It is found that D mainly depends on flow patterns (e.g., velocity) and on some

basic medium properties, like porosity, permeability and hydraulic conductivity, etc.

Across any cross-section of a pore, the velocity of fluid varies in both magnitude and direction,

with the greatest velocity at some internal point. Due to the shape of the interconnected pore

space, the maximum velocity itself varies according to the pore size.

Thus spreading of pollutant in an aquifer depends on two factors, flow and a pore system

through which the flow takes place [13]. In spite of the fact that spreading takes place in both

the longitudinal (in the direction of average flow) and transverse (normal to average flow) di-

rections, it is mostly in the former direction. In the transverse direction, very little spreading

can occur by only velocity variation. Moreover, this velocity variation is not the only factor re-

sponsible for spreading normal to the direction of flow. In order to explain this latter spreading,

we have to go into more detail. A number of researchers (e.g., Nikolaevskii; 1959; Bear, 1961;

Scheidegger, 1961; Bear and Bachmat, 1967) derived a relationship between the coefficient D,

flow velocity and porous matrix formation.

In Chapter 5, a detailed discussion about the dispersivity of the porous medium (αL, and αT )

has been included. The parameter αL, which is the longitudinal dispersivity of the isotropic

porous medium, is responsible for the longitudinal spreading and αT , which is the transverse

dispersivity of the isotropic porous medium, is the parameter responsible for the lateral spread-

ing. Moreover, a short study about the cases when αL is equal to αT and when both have some

averaged relationship has also been included. It was also found that, for a significantly high

speed of fluid, the spread of pollutant concentration plume in the transverse direction becomes

more prominent and greater.
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7.5 Conformal mapping

A procedure has been developed for mapping simple geometries (in the ξη-plane) on com-

plex configurations (in the xz-plane) by using a complex variable technique, namely conformal

mappings. In Chapter 6, an analytical derivation of steady-state and time-dependent heat

equations for the transformed ξη-plane has been added by using conformal mappings. Later,

to find a mapping, solution of the fluid flow problem and heat transport, a numerical algorithm

has been developed using finite differences.

In the first step of numerical simulations, a mapping of a horizontal line into complex shapes,

such as diamond and elliptic cylinders, has been formed. Secondly, a solution has been found

for Laplace’s equation for fluid flow in a homogeneous aquifer. Following the solution of fluid

flow, steady-state as well as time-dependent heat equations have been solved for these objects

in the ξη-plane and then in the xz-plane.

It is found that transformed domains as well as heat transfer rates are different for both the

bodies. In the case of a diamond-shaped cylinder, the dimensions of the transformed domain

are slightly less than that of elliptic cylinder; probably it is due to the sharper edges of the

diamond. The work is still in progress due to the limitation of conformal mapping to 2D objects.

7.6 Effect of boundary conditions

Boundary conditions play a vital role in the solution of differential equations. Although in

this model aquifers are assumed to be rectangular with finite dimensions, in real situations,

they are usually situated over a scale of kilometres.

The scope of this thesis is to elaborate general features of some real situations, so in some

places only the effect of boundary conditions has been discussed. In Chapter 6, for example,

for heat transfer from a heated cylinder, insulated and constant temperature boundaries give

the same steady-state solutions because of the boundaries which are located far away from the

hot object.
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Appendix A

A.1 Derivation of the non-steady state heat advection-

conduction equation for the (ξ, η)-plane

If we need to find the non-steady state heat equation in terms of the mapped coordinates ξ

and η, we proceed as follows:

In a fluid-saturated porous media, transport of heat (released by embedded hot objects) occurs

by conduction and advection. The model is based on the assumptions that the fluid speed is

very slow and fluid buoyancy and thermal effects are negligible. The unsteady heat equation

in the xz-coordinate system is:

∂T

∂t
= σ

ρgk

µ

(
∂φ

∂x

∂T

∂x
+
∂φ

∂z

∂T

∂z

)
+ αth

(
∂2T

∂x2
+
∂2T

∂z2

)
, (A.1)

where φ(x, z) is a velocity potential for the flow. Now temperature in fluid region T (t, x, z) is

expressed in terms of the mapped coordinates as

T (t, x, z) = T (t, x̂(ξ, η), ẑ(ξ, η)), (A.2)

= T̂ (t, ξ, η). (A.3)

182



Transformation of the heat equation

For a steady flow, the Darcy velocity vector is V = (u,w). In terms of φ(x, z), u =

−(ρgk/µ)∂φ/∂x, w = −(ρgk/µ)∂φ/∂z. Then, for the conformal mapping (x, z) = (x̂(ξ, η), ẑ(ξ, η)):

∂ξ

∂x
= −∂η

∂z
, and

∂ξ

∂z
=
∂η

∂x
, (A.4)

also

∂2ξ

∂x2
+
∂2ξ

∂z2
= 0, and

∂2η

∂x2
+
∂2η

∂z2
= 0. (A.5)

Writing T (x, z) = T̂ ((ξ, η), and φ(x, z) = φ̂((ξ, η), differentiation gives:

∂φ

∂x
=

∂ξ

∂x

∂φ̂

∂ξ
+
∂η

∂x

∂φ̂

∂η
, (A.6)

∂φ

∂z
=

∂ξ

∂z

∂φ̂

∂ξ
+
∂η

∂z

∂φ̂

∂η
, (A.7)

∂T

∂x
=

∂ξ

∂x

∂T̂

∂ξ
+
∂η

∂x

∂T̂

∂η
, (A.8)

∂T

∂z
=

∂ξ

∂z

∂T̂

∂ξ
+
∂η

∂z

∂T̂

∂η
. (A.9)

Further differentiation of (A.8) and (A.9) gives:

∂2T

∂x2
=

∂T̂

∂ξ

∂2ξ

∂x2
+

(
∂ξ

∂x

)2
∂2T̂

∂ξ2
+
∂T̂

∂η

∂2η

∂x2
+

(
∂η

∂x

)2
∂2T̂

∂η2
, (A.10)

and

∂2T

∂z2
=
∂T̂

∂ξ

∂2ξ

∂z2
+

(
∂ξ

∂z

)2
∂2T̂

∂ξ2
+
∂T̂

∂η

∂2η

∂z2
+

(
∂η

∂z

)2
∂2T̂

∂η2
. (A.11)

Adding Equations (A.10) and (A.11) and simplification using Equations (A.4) and (A.5) leaves:

∂2T

∂x2
+
∂2T

∂z2
=

[
∂2T̂

∂ξ2
+
∂2T̂

∂η2

][(
∂ξ

∂x

)2

+

(
∂ξ

∂z

)2
]
. (A.12)

Putting the values of Equations (A.6), (A.7), (A.8), (A.9) and (A.12) into Equation (A.1)
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we get:

∂T̂

∂t
=

[(
∂ξ

∂x

)2

+

(
∂ξ

∂z

)2
][

σ
ρgk

µ

(
∂T̂

∂ξ

∂φ̂

∂ξ
+
∂T̂

∂η

∂φ̂

∂η

)
+ αth

(
∂2T̂

∂ξ2
+
∂2T̂

∂η2

)]
,

which implies

∂T̂

∂t
= J

[
σ
ρgk

µ

(
∂T̂

∂ξ

∂φ̂

∂ξ
+
∂T̂

∂η

∂φ̂

∂η

)
+ αth

(
∂2T̂

∂ξ2
+
∂2T̂

∂η2

)]
, (A.13)

where J =

(
∂ξ

∂x

)2

+

(
∂ξ

∂z

)2

is the Jacobian. (A.14)

Hence Equation (A.13) becomes

1

J

∂T̂

∂t
= σ

ρgk

µ

(
∂T̂

∂ξ

∂φ̂

∂ξ
+
∂T̂

∂η

∂φ̂

∂η

)
+ αth

(
∂2T̂

∂ξ2
+
∂2T̂

∂η2

)
,

which implies

1

J

∂T̂

∂t
= −σ

(
û
∂T̂

∂ξ
+ ŵ

∂T̂

∂η

)
+ αth

(
∂2T̂

∂ξ2
+
∂2T̂

∂η2

)
. (A.15)

Equation (A.15) is the unsteady heat advection-conduction equation in the (ξ, η)-plane.

A.2 Derivation of the steady-state heat advection-conduction

equation for the (ξ, η)-plane

Putting ∂T̂ /∂t = 0 in Equation (A.15) we get:

αth

(
∂2T̂

∂ξ2
+
∂2T̂

∂η2

)
= σ

(
û
∂T̂

∂ξ
+ ŵ

∂T̂

∂η

)
, (A.16)

which implies

∂2T̂

∂ξ2
+
∂2T̂

∂η2
=

σ

αth

(
û
∂T̂

∂ξ
+ ŵ

∂T̂

∂η

)
, (A.17)
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which leads to

∂2T̂

∂ξ2
+
∂2T̂

∂η2
=

1

Dth

(
û
∂T̂

∂ξ
+ ŵ

∂T̂

∂η

)
, (A.18)

where 1/Dth = σ/αth.

In terms of û = −(ρgk/µ)∂φ̂/∂ξ, and ŵ = −(ρgk/µ)∂φ̂/∂η, Equation (A.18) gives:

∂2T̂

∂ξ2
+
∂2T̂

∂η2
= − 1

Dth

ρgk

µ

[
∂T̂

∂ξ

∂φ̂

∂ξ
+
∂T̂

∂η

∂φ̂

∂η

]
, (A.19)

which implies

ρgk

µ
∇̂φ̂ · ∇̂T̂ +Dth∇̂2T̂ = 0. (A.20)

Equation (A.20) is the steady-state heat advection-conduction equation in the (ξ, η)-plane.
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Appendix B

1. Numerical solution of the time-dependent heat equation

Example B.0.1 Consider a thin rectangular plate OABC, with length a and width b as

shown in Figure B.1. The edges of the plate are kept at zero temperature, while the initial

temperature of the plate is given by f(x, z). Let T (x, z, t) be the temperature at any point

(x, z) of the plate at any time t. Compute the solution by separation of variables and compare

with the numerical solution.

In this case, the mathematical formulation of the problem is given below.

Unsteady heat Equation (6.46) subject to boundary conditions will be solved numerically:

∂T

∂t
= αth(

∂2T

∂x2
+
∂2T

∂z2
), 0 < x < a, 0 < z < b, t > 0, (B.1)

T (x, 0, t) = 0, 0 < x < a, t > 0, (B.2)

T (x, b, t) = 0, 0 < x < a, t > 0, (B.3)

T (0, z, t) = 0, 0 < z < b, t > 0, (B.4)

T (a, z, t) = 0, 0 < z < b, t > 0, (B.5)

T (x, z, 0) = f(x, z), 0 < x < a, 0 < z < b. (B.6)
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T (x, 0, t) = 0

T (x, b, t) = 0

T (0, z, t) = 0 T (a, z, t) = 0

T (x, z, 0) = f(x, z)

∂T
∂t

= αth(
∂2T
∂x2

+ ∂2T
∂z2

)

a

b

C

O

B

A

z

x

Figure B.1: Schematic diagram of the physical domain for heat in the unsteady case.

First, we solve the problem by separation of variables and then we will compare the analytic

and numerical solutions.

Let T (x, z, t) = X(x)Z(z)T (t), then Sturm-liouville systems in X(x) and Z(z) are obtained

as

X ′′ + λ2X = 0, 0 < x < a, X(0) = 0 = X(a),

Z ′′ + µ2Z = 0, 0 < z < b, Z(0) = 0 = Z(b).

Eigenpairs of these systems may be written as

λ2
n =

n2π2

a2
, Xn(x) =

√
2

a
sin

nπx

a
,

µ2
m =

m2π2

b2
, Zm(z) =

√
2

b
sin

mπz

b
,

where m and n are positive integers.

What remains is an ODE in T(t), namely,
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T ′ + αth(λ
2
n + µ2

m)T = 0, t > 0,

with general solution

Tmn(t) = Amne
−αth(λ2n+µ2m)t.

To satisfy the initial condition T (x, z, 0) = f(x, z), the separated functions are superposed

in the form

T (x, z, t) =
∞∑
n=1

∞∑
m=1

[
Amne

−αth(λ2n+µ2m)t

√
2

a
sin

nπx

a

√
2

b
sin

mπz

b

]
, (B.7)

and according to the initial temperature f(x, z) at t = 0, it requires that

f(x, z) = T (x, z, 0) =
∞∑
n=1

∞∑
m=1

[
Amn

√
4

ab
sin

nπx

a
sin

mπz

b

]
, 0 < x < a, 0 < z < b.(B.8)

To find out the value of Amn, we multiply (B.8) successively by
√

2
a
sinMπx

a
and

√
2
b
sinNπz

b
,

then integrate with respect to x and z and use orthogonality conditions. Hence the value of

Amn is

Amn =
4

ab

∫ b

0

∫ a

0

f(x, z)sin
nπx

a
sin

mπz

b
dxdz.

Hence, inserting the value of Amn into (B.7) gives the required solution. For example, we

set the value of f(x, z) to be

f(x, z) = T (x, z, 0) = Rsin
πx

a
sin

πz

b
. (B.9)
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Amn =
4R

ab

∫ b

0

∫ a

0

sin
πx

a
sin

πz

b
sin

nπx

a
sin

mπz

b
dxdz, (B.10)

=
4R

ab

[∫ a

0

sin
πx

a
sin

nπx

a
dx

] [∫ b

0

sin
πz

b
sin

mπz

b
dz

]
, (B.11)

= R, when m = 1 and n = 1, (B.12)

and Amn = 0 when m 6= 1 or n 6= 1.

Hence the required solution is

T (x, z, t) = R

√
4

ab
sin

πx

a
sin

πz

b
e−αth(π

2

a2
+π2

b2
)t. (B.13)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x 

z

(a)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x 

z

(b)

Figure B.2: Representation of the analytical solution of the unsteady heat equation, with αth = 0.01,
R = 5, in the form of: (a) contour plot; (b) surface plot.
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Figure B.3: Representation of the numerical solution of the unsteady heat equation represented in
Example B.0.1, with αth = 0.01, R = 5, in the form of: (a) contour plot; (b) surface plot.

From Figure B.2 and Figure B.3, it is clear that the analytical and numerical solutions are

in good agreement. Moreover, as all the four boundaries of the plate have zero temperature,
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so temperature contours move in an elliptical way from the centre of the plate towards outer

boundaries.

2. Numerical methods to solve the equations

In this thesis, a standard second order finite difference scheme with a uniform square mesh is

used. The finite difference formulae given below are based on the following assumptions [23]:

• The numerical derivatives will be computed on a grid of n+ 1 equispaced points: e.g.

in the x-direction, x1, x2 = x1 +h, x3 = x1 +2h,..., xn = x1 +(n−1)h, xn+1 = x1 +nh.

• Due to lack of space, the function values will be written shortly as: f(xk) = fk,

f(xk+3) = fk+3, f(xk−2) = fk−2 and so on.

Table B.1: Finite difference formulae for f ′(x).

Type Difference Formula LTE

Forward
−3fk+4fk+1−fk+2

2h O(h2)

Backward
fk−2−4fk−1+3fk

2h O(h2)

Centered
−fk−1+fk+1

2h O(h2)

Table B.1 gives the finite difference formulae in standard form. One can use them according

to the need of the problem. For example, for a one-dimensional problem, the one-sided

forward difference formula can be written as:

f ′1 =
−3f1 + 4f2 − f3

2h
. (B.14)

Similarly, in terms of second derivatives, Table B.2 gives some formulae

190



Table B.2: Finite difference formulae for f ′′(x).

Type Difference Formula LTE

Forward
2fk−5fk+1+4fk+2−fk+3

h2 O(h2)

Backward
−fk−3+4fk−2−5fk−1+2fk

h2 O(h2)

Centered
fk−1−2fk+fk+1

h2 O(h2)

Here, some part of computer code is included for the sake of explanation. For convenience,

a numerical code for ∇2φ(x, z) = 0 subject to boundary conditions (as discussed in Subsec-

tion 3.5.3 and for Figure 3.8a only) is given as follows:

? For the interior of the domain, ∂2φ/∂x2 + ∂2φ/∂z2 = 0 is solved by a second-order central

difference formula, which is in fact a truncated Taylor’s series, i.e.,

for j = 2 : M

for k = 2 : N

φ(j, k) =
(φ(j,k−1)+φ(j,k+1)

dx2
+ φ(j−1,k)+φ(j+1,k)

dz2
)

2
dx2

+ 2
dz2

; (B.15)

end

end

? on the left-hand side, ∂φ/∂x = 0 is solved by a second order, one-sided forward difference

formula, i.e.,
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for j = [1 : jb1 − 1 jb2 + 1 : M + 1]

φ(j, 1) =
4φ(j, 2)− φ(j, 3)

3
; (B.16)

end

? on the right-hand side, ∂φ/∂x = 0 is solved by a second order, one-sided backward differ-

ence formula, i.e.,

for j = [1 : jb3 − 1 jb4 + 1 : M + 1]

φ(j,N + 1) =
4φ(j,N)− φ(j,N − 1)

3
; (B.17)

end

? on the top, ∂φ/∂z = 0 is solved by a second order, one-sided backward difference formula,

i.e.,

for k = M + 1, 2 : N

φ(M + 1, k) =
4φ(M,k)− φ(M − 1, k)

3
; (B.18)

end

? on the bottom, ∂φ/∂z = 0 is solved by a second order, one-sided forward difference for-

mula, i.e.,

for k = 1, 2 : N

φ(1, k) =
4φ(2, k)− φ(3, k)

3
; (B.19)
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end

? and lastly, the values of the scaled dynamic pressure in the entrance, b1b2 and exit, b3b4

are assigned in this way:

φ(jb1 : jb2 , 1) = φL;

φ(jb3 : jb4 , N + 1) = φR.

Similarly, the computer code could be generated for steady-state as well as time-dependent

heat and pollutant equations by using finite difference formulae as discussed in Tables B.1

and B.2.

a. A discussion of the relaxation method

In a system of linear equations with some specified boundary conditions, we have to find

the solution of the system, which is unknown. The overall idea of relaxation method

is that, first we have to guess the unknown solution of the system, which may contain

all trivial values. Then we use some kind of repeated iterative process to improve the

solution.

Now in the case of linear equations, we know that all of the equations would be satisfied.

We also know how to solve them all simultaneously, so, in theory, we can set it up as an

massive linear algebra problem. Then we just do an inversion of large matrix and just

check the equations straight away. Most of the time, if we cannot get the determinant

or we cannot find the inverse of this matrix, then the problem is called ill-conditioned.

In our case, we may have thousands of lines in the matrix, so the idea is that, at each

point, we have found some way of relating the values at that point to nearby values. If

we take the Laplace’s equation in the start, we have written down the equation in terms

of finite differences at each point. What we have to do next, is to go through iteratively

in an organised way, so using the formula and the present values we put in there, we

calculate new values for all of these; we call them improved values or new values. We did

not do the instant replacement of the old values in terms of new values, but we are using
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all the old values and calculating a new set of improved values and then taking some

weighting of the old and new values to calculate an update. That is called relaxation

and that’s the way a relaxation factor r comes along. The relaxation technique is:

improved values=(1− r) new values +r old values.

If r = 1, then we calculate all the improved values by just plugging them all in and

replacing them all at once and then do it all again. But if we relax it, then we take a

bit of the old values and build the new values getting it slowly to improve each time.

That’s why when we have a very small relaxation factor, it takes a long time because we

only take a little change every time. Sometimes, if we take r too big, then it goes unstable.

b. A discussion of how the system is linear and why the iterative method is

chosen over the direct computation of the system

The system of finite difference equations is linear, but the boundary conditions, and the

layering of the porous medium make it a non-homogeneous problem, the set of equations

to solve is very complicated. So, it is difficult to solve using separation of variables and

therefore the iterative method is chosen over direct computation of the underlying system

of linear equations.

A detailed discussion about solution of linear equations and their convergence will come

in Section B.1.

c. How the time domain solution is calculated by time stepping methods

The time stepping method is the same as the relaxation method. It is just we use the

all old values and then we take a little time step and calculate a new set of values and

then do it again and again. If we continue to do this, eventually it will converge and it is

called “steady-state”. So, the time stepping method is just like relaxation and if we are

looking for steady-state, we can think about it as time stepping or we can think about

it as relaxation. However, in time stepping we think about what the time was at each

step.
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So, the time stepping method is essentially the same as the relaxation method, that we

are just advancing the solution by a small amount at each time.

B.1 Solution of a system of linear equations

Problems involving linear systems of equations play a prominent role in engineering, physics,

chemistry, computer science, and economics. Consider an N ×N real matrix A and a real N -

vector b. The problem is to find x ∈ RN such that

Ax = b. (B.20)

Equation (B.20) is a linear system, A is the coefficient matrix, b is a right-hand side constant

vector and x is a vector of unknowns.

There are two main methods for solving linear systems: direct elimination and iterative tech-

niques. Direct methods are also known as exact methods, which enable the finding of an exact

solution of the system in a finite and predictable number of operations. This number depends

on the order of the system and in general, a nonsparse N×N system of matrix is considered [31].

These methods includes Cramer’s rule, the Gaussian method, LU decomposition, the method

of principal elements, the method of square roots, etc.

Iterative methods, which are also known as indirect methods give only approximate solutions

and within the available limit of accuracy, this approximation can be made as fine as we wish.

The number of iterations may depend strongly on the quality of the initial guess of the solution.

Moreover, the number of iterations depends on the values of the coefficients in the equations

which specify the rate of convergence per iteration. The number of operations per iteration

corresponds to N2.

Among the iterative methods, there are the Jacobi iterative method, the Gauss-Seidel iterative

method and relaxation methods. The rate of convergence of the Jacobi and Gauss-Seidel it-

erative methods is usually slow, particularly for large systems of equations. Detailed study of

Jacobi and Gauss-Seidel iterative methods can be found in any numerical analysis books, here,

a small discussion of relaxation methods is given below.
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Relaxation methods were developed for solving large sparse linear systems, which arose as finite

difference discretizations of Elliptic Partial Differential Equations [59, 55]. In this scheme, the

general ith equation is given by

x
(m+1)
i =

1

aii

[
bi −

i−1∑
j=1

aijx
(m+1)
j −

N∑
j=i+1

aijx
(m)
j

]
, i = 1, 2, 3, ...N. (B.21)

Suppose we let x∗i denote the ith component of the solution obtained by the Gauss-Seidel

method (Equation (B.21)). Let r be the so-called relaxation parameter or relaxation factor.

The convergence rate of iterations can be improved by defining the weighted average

x
(m+1)
i = (1− r)x(m)

i + rx∗i , (B.22)

= x
(m)
i + r(x∗i − x

(m)
i ), (B.23)

= x
(m)
i + r∆xi. (B.24)

Then replacing x∗i by Equation (B.21) gives the general ith equation:

x
(m+1)
i = x

(m)
i + r

[
1

aii

(
bi −

i−1∑
j=1

aijx
(m+1)
j −

N∑
j=i+1

aijx
(m)
j

)
− x(m)

i

]
, i = 1, 2, 3, ...N. (B.25)

Relaxation methods include Successive Over-Relaxation (SOR) and Successive Under-Relaxation

(SUR) methods. These methods differ only in the value of the relaxation factor r. If 0 < r < 1,

the procedure is called under-relaxation and if 1 < r < 2, this technique is called over-relaxation,

and if r = 1, the system becomes similar to the Gauss-Seidel method. So this method is merely

a developed version of the Gauss-Seidel method, which is in turn is just a modification of the

Jacobi iterative method [31]. The rate of convergence of relaxation methods depends on the

choice of relaxation factor; if r is chosen properly, then the system may converge faster than

the other two iterative methods [1]. While writing the numerical code for relaxation methods,

one should always consider the relaxation parameter as an input.

Finally in this discussion, there are two separate criteria on which the algorithm for relaxation

methods can be stopped: (i) satisfaction of iteration convergence tolerance, and (ii) exceeding

the maximum permitted number of iterations. The second of these is more important, because
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no one knows ahead of time whether the convergence to the required tolerance level can be

obtained. If due to round off errors, it cannot be achieved, then iterations would continue for-

ever unless they are forcefully stopped because of exceeding the maximum designated allowed

number [31].

B.1.1 Convergence of linear methods

In this subsection, a short summary about the convergence of iterative methods is given

in the form of a table. In Table B.3, the preferred solution method is given with the required

storage for a typical implementation, and total floating-point arithmetic required to obtain the

solution and presented in terms of N , the order of the system.

It is known [31] that the convergence rate of relaxation methods is highly dependent on the

optimal value of relaxation factor r. Clearly, this is an disadvantage. For an optimal value of

r, only O(N1.5) ∼ O(N) arithmetic operations are required in 2D. But for other than optimal

values of r, as many as O(N2) arithmetic operations are needed.

On the other hand, it is important to note that the number of operations per iteration of re-

laxation methods is far less than that for essentially any other method. Although its rate of

convergence may be smaller than any other method, it is often still used because of its simple

numerical coding.

Analytically, the optimal value of r can be derived for Poisson/Dirichlet problems in a rectan-

gular domain [31]. Thus the treatment of relaxation methods is mainly efficient for constant

coefficient Dirichlet problems.

Table B.3: Summary for convergence of linear systems.

System matrix Preferred method Storage Arithmetic
Nonsparse Direct elimination O(N2) O(N3)
Sparse Iteration, e.g., SOR O(N2) O(N1.5) ∼ O(N)
Sparse, compactly banded Sparse band LU decomposition O(N2) O(N)
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