Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

SEARCH AND RESCUE MANAGEMENT: MODELLING AND DEVELOPMENT OF HEURISTIC STRATEGIES WITHIN A SIMULATION ENVIRONMENT

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Operations Research at Massey University, Palmerston North, New Zealand.

Fiona Helen Wharton 2000

ij

Where such references to "man", "he", or "his" appear in the body of this thesis, they have been used only to avoid the awkwardness of "man/woman", "she/he", or "his/her" constructions, and as such should be understood in their generic context.

Abstract

The search for a lost person on land has been the subject of relatively little research to date in comparison to other search problems. This thesis addresses this imbalance by examining the search for a stationary object that does not attempt to avoid detection. The problem is defined as a synthesis of the coverage, routing, and allocation problems that exist in the literature, and its complexity and unique aspects are discussed.

A physical model of the search terrain is developed using a Triangulated Irregular Network (TIN). This model incorporates the vegetation and natural features of the terrain, and is extended to model access paths and traversal speeds between any two points. A visibility model is developed over the TIN in order to define a detection model for both a human subject and any clues placed by him. Correction factors are used to model visibility and traversal speeds under different search environments.

Methods to define search regions as components of the elements of the TIN are described. Heuristic resource allocation methods are then developed for both the reconnaissance and general phases of a search operation. These methods allocate search tasks to resources individually or in parallel, and in real-time. Dynamic heuristic search strategies to respond to changing search conditions and the discovery of new information are then developed.

A Discrete Event Simulation (DES) model of a Search and Rescue (SAR) operation is developed. This model incorporates: siting a search base; search resource deployment and searching; clue and subject detection; communication between resources and search management; flooding and resource deployment under adverse weather conditions; and responsiveness of the subject over time.

The simulation model is used to perform some preliminary computational experiments on a restricted set of resource allocation methods and search strategies. Initial trends indicated from these experiments are: the general superiority of methods which do not restrict the set of regions to be allocated for searching to an initial primary search area; the dominance of a night searching strategy; the dominance of using a sound detection method when a subject is responsive; and the benefits of applying diversifying search strategies.

Acknowledgements

The completion of this thesis has been achieved with the input, resources and encouragement of many people.

- Tony my husband and best friend, for his unending encouragement, love and understanding, and for his patient data entry and editing.
- My family for their years of support and continued attempts to understand what this "OR thing" is all about, and for their practical help with proofreading, editing and diagram creation.
- John Giffin my chief supervisor, for his perseverance and technical critique.
- *Mark Johnston* for his patience, time and practical expertise in sourcing, trialling and installing software for me, and showing me what to do with it. Particular thanks are due for creating the majority of the diagrams.
- Fana To'omaga my brilliant typist who deciphered my scrawlings and dictation to put many of these words on paper; and to *Workbridge* for providing her funding.
- Ross Gordon, Emergency Management Ltd. for his realist's point of view, total enthusiasm for the research, and the contacts he enabled with overseas SAR experts.
- New Zealand Police Search and Rescue personnel particularly Inspector John Meads, NZ SAR Coordinator, for allowing me access to Police resources and providing the opportunity to participate in the national SAR training course.
- Richard Rayner for initially showing me the ropes with C, LATEX and UNIX.

• My good friends - for keeping me sane. Special thanks to Kathryn Redhead, Shalome Campbell, Sharlene Pilkinton, Bernadette Murray and Nic Gidden, for their help with typing and proofreading in the final weeks.

Glossary of Terms

The following specific terms are referenced throughout this thesis:

- **Binary Search** A search method used to eliminate areas that the subject has not passed through.
- Coverage (C) The ratio of search effort to the size of the search area.
- **Critical Separation** The spacing of ground search resources at a distance equal to two times the visibility measure of that terrain.
- **Double Strip Search** A form of grid searching where a region is searched twice from two different angles.
- Hot Spots Likely places for physical clues to be detected.
- Lateral Range (x) The perpendicular distance between a search resource and the search object at the point on the resource's path which is closest to the object.
- Lateral Range Curve A curve depicting the cumulative probability of detection for a given search resource as a function of x, with one pass.
- Mattson Consensus Technique A technique which guides search management to a consensus decision in defining POA values for search regions.
- **PDEN** The Probability of Density. A measure used to rank search regions calculated on the POA value divided by the size of the search region.
- **Perimeter Cut** A search technique where resources search along the boundaries of the search area for clues.

PLS The Point Last Seen represents the last known location of a search object.

- **POA** The Probability Of Area.¹ The probability that the search object is located within a given search region.
- **POD** The Probability Of Detection. The conditional probability that if the search object is in the search region it will be detected by the search resource. We use the word detection in the context of detection with recognition.
- **POD**cum The cumulative probability of detection over a number of successive searches of a search region.
- **POS** The Probability Of Success of a search as measured by the detection of the search object and calculated as POA \times POD.
- POScum The cumulative probability of success over the search operation.
- **Priority Search Area** (G_P) The subset of the search region graph which is identified as having the highest likelihood of containing the subject and on which searching is concentrated. This area is of a size that is able to be searched by the search effort on hand within one search period.
- Probability Map A map of the search area depicting POA values in each subarea.
- **PSR** The Probable Success Rate. A measure of the rate of POS increase to be expected when searching a region.
- **Repeated Expansion** A search technique which begins by searching a small area centred on a specific reference point, and then successively re-searching this area in incremental expansions in an outwards direction.
- Risk Map A visual map identifying hazards over a given region.
- ROC Relevance Of a Clue to the search operation.
- **ROW** The Rest Of the World. A pseudo-region representing any area outside of the defined search area.
- Search Priority A myopic planning tool which ranks search regions for searching based on their contribution to POS and the time taken to achieve this.
- Search Effort (Z) The area which can be effectively swept by a given search resource given its sweep width and the distance travelled by the resource.

¹Also referred to in the literature as the Probability of Containment.

- Search Object The object of a search. This includes human subjects as well as organic and inorganic clues.
- Search Path The path of edges and/or triangular regions that a search resource is assigned.
- Search Region A well-defined region assigned to a search resource for searching.

Search Region Graph (G) The 2-D graph derived from the TIN.

- Search Resource A resource assigned to the search area to search for the search object. Such resources include human searchers, aircraft, dogs, and mechanical or electronic devices. Also referred to as a sensor, we refer particularly to a human searcher when using the term search resource within the body of the thesis.
- Sector Stripping A method which removes search resources from one search region in favour of searching an alternative region in order to increase POS.
- Sector Laddering A method which ranks search regions in a ladder formation with the top-most region having highest priority and regions being placed at the bottom of the ladder upon search completion. Regions whose priority is adjusted throughout the operation are moved to appropriate positions on the ladder.
- Sound Sweep A search technique where search resources moving in a grid formation aim to detect a responsive subject by calling out at regular time intervals and listening for a response.
- Sweep Width (W) The area under the lateral range curve "a measure of the amount of 'detecting' being done" [150, page 4-4]. The sweep width differs for different search objects, search resources, and search conditions.
- **TIN** Triangulated Irregular Network. A digital terrain model which geometrically partitions the terrain into triangles by a triangulation generated over a representative set of data points.
- Track Traps Ground cleared for the purpose of observing if fresh tracks are laid.
- Trail-Based POA A method of assigning POA values to a search area based on the possible behaviour of a subject initially known to have followed a marked path. POA values are estimated from the findings of a team who follow this path identifying and ranking decision points where the subject may have left the path.

The following variable definitions are utilized in the algorithm descriptions: $start_k$ = the starting position (vertex) of resource k resources = number of search resources $path_{k,j}$ = vertex at position j on the nodepath of resource k num_k = number of vertices in the path of resource k $time_k$ = amount of time required to complete the path of resource k $path_limit = the duration limit of any search path assignment$ $path_{I,j}$ = vertex at position j in the intended path of the subject num_I = number of vertices in the intended path of the subject $time_I$ = amount of time needed to complete the intended path of the subject $c_{i,j}$ = time cost of traversing edge (i, j) $stpath_{i,j}$ = shortest path from vertex *i* to vertex *j* $D_{i,j}$ = time length of shortest path from vertex *i* to vertex *j* PLS = point which the subject was last seen at $POS_{i,j} = POS$ value predicted from the search of edge (i, j)base = search base $limit_k = 1$ if resource k is at their search hour limit, = 0 otherwise $POA_i = POA$ of region i $POD_i = POD$ level at which region *i* is to be searched at $POD_{cum,i}$ = cumulative POD of region *i*

 $area_i$ = area of region i

nregions = number of regions in the search region graph

find_team = resource which detects the subject

urgency = urgency level of the search

 $period_start = commencement time of the next search period$

 $period_end$ = time at which the current search period will be completed

down_time = amount of non-searching time between consecutive search periods

weather_level = level of current weather conditions

new_weather = predicted weather level arising at *weather_clock*

 $flood_time =$ the time at which regions of the TIN susceptible to flooding will flood and become impassable

 $lost_region =$ the region of the TIN in which the subject is located

cost_change = array which monitors the fraction of the current search task completed under differing environmental conditions, for each active resource

periodct = index of search periods

recall = indicator of whether or not resources are being recalled to the search base

suspend = indicator of whether or not the operation is being suspended

Table of Contents

A	cknowl	edgements	vii
G	lossary	of Terms	ix
Ta	able of	Contents	xv
Li	st of F	igures	xix
Li	st of T	ables	xxiii
Li	st of A	lgorithms	xxix
1	Intro	luction	1
	1.1	Introduction	1
	1.2	Thesis Objectives and Approach	2
2	Searc	h Concepts	7
	2.1	Search Theory	7
	2.2	Application to Land SAR	9
	2.3	Subject Movement and Location	10
	2.4	Search Object Detection	27
	2.5	Success of a Search Operation	34
	2.6	Location Probability Distribution Update	35
	2.7	Search Measurements	36
3	Curre	ent Search Methods	39
	3.1	New Zealand SAR Organization	40
	3.2	Urgency	41
	3.3	Definition of the Search Area	42
	3.4	Search Base Location	43

	3.5	Search Resources	44
	3.6	Communication	48
	3.7	Resource Allocation	50
	3.8	Clue Detection	60
	3.9	Search Methods and Tactics	61
	3.10	Rescue	71
	3.11	Search Suspension	71
	3.12	The Global Positioning System	72
	3.13	Computerized Search Planning	74
	3.14	Limitations of Current Land SAR Approaches	79
4	Mode	elling The Search Terrain	81
	4.1	Geographical Information Systems	81
	4.2	Digital Terrain Models	83
	4.3	The Topography	98
	4.4	Cost Structure	99
	4.5	Visibility and Sound Measures	101
	4.6	Weather and Light Conditions	104
	4.7	Search Regions	106
5	Detec	tion And Clue Modelling	109
	5.1	Detection Models	109
	5.2	Modelling the Path of the Subject	129
	5.3	Clue Modelling	132
6	Placir	ng The SAR Problem In Context	145
	6.1	Dynamism	145
	6.2	Coverage	146
	6.3	Vertex Routing	155
	6.4	Arc Routing	158
	6.5	Arc and Vertex Routing	164
	6.6	Partitioning	165
	6.7	Scheduling	166
	6.8	The SAR Problem	167
	6.9	Problem Formulation	170
	6.10	Unique Aspects of the Problem	185
7	The l	Reconnaissance Search: Edge Routing	187
	7.1	Preamble	187
	7.2	Modelling Current Search Practices	188
	7.3	Additional Search Heuristics	204
	7.4	Adapting Approaches In the Literature	213
	7.5	A Special Case	218

	7.6	Improvement Strategies	221
	7.7	Bilevel Routing	222
8	Gener	al Search Phase	225
	8.1	Prior Edge Searching	225
	8.2	Methods of Individual Region Coverage	230
	8.3	Modelling Traversal of a Triangular Region	239
	8.4	Search Region Definition	240
	8.5	Search Region Definition Heuristic	244
	8.6	Resource Allocation	250
	8.7	Heuristics	255
	8.8	Path Generation	258
9	Dynar	nic Search Strategies	279
	9.1	Real-Time Decision Problems	279
	9.2	Solution Approaches	280
	9.3	Real-Time Decision Systems	282
	9.4	Relevance of Solution Approaches in the Literature	288
	9.5	Dynamic Strategies	290
10	Search	And Rescue Simulation	299
	10.1	Introduction	299
	10.2	Problem Description	300
	10.3	The Simulation Model	301
	10.4	Assumptions of the Model	306
	10.5	Inputs To The SAR Simulation	307
	10.6	Simulation Objectives	310
	10.7	Implementation	311
11	Simul	ation Modules	317
	11.1	Initialization	317
	11.2	Search Base Allocation	319
	11.3	Search Urgency	321
	11.4	Search Periods	324
	11.5	Event Functions	327
	11.6	Utility Functions	333
	11.7	Communication	333
	11.8	Resourcing	335
	11.9	Resource Redeployment	336
	11.10	Subject Detection	343
	11.11	Subject Rescue	345

12 5	Simula	tion Experimentation	351
1	12.1	Introduction	351
1	12.2	TIN Generation	351
1	12.3	SAR Problem Instance	357
1	12.4	Computational Experiments	363
1	12.5	Problem Instance A	367
1	12.6	Problem Instance B	391
]	12.7	Problem Instance C	409
1	12.8	Clue Analysis	424
]	12.9	Analysis of Resource Allocation Methods	431
1	12.10	Comparison of Problem Instances	439
1	12.11	Conclusion	440
13 (Conclu	usions And Avenues For Further Research	443
1	13.1	The Physical Terrain Model	443
1	13.2	Visibility, Detection and Clue Modelling	445
]	13.3	Resource Allocation Methods and Search Strategies	446
]	13.4	Simulation Model	449
1	13.5	Conclusion	451
Bib	liogra	phy	453

List of Figures

3.1	Double strip search.	66
3.2	Sector search by an aircraft	66
3.3	Repeated expansion search after three searches. \ldots \ldots \ldots \ldots	67
4.1	Triangulated Irregular Network (viewed from above).	85
4.2	Empty circle criterion.	92
4.3	Constrained Delaunay triangulation.	94
4.4	Lawson's local optimization procedure.	95
5.1	Lateral range curve of the definite range detection model	110
5.2	Lateral range curve of the M – Beta detection model	111
5.3	Lateral range curve of the inverse cube model of detection under ideal search	
	conditions	112
5.4	POD vs. coverage comparison of classical detection models	114
5.5	Lateral range curve for the critical separation detection model	115
5.6	Two searchers spaced at critical separation.	116
5.7	POD vs. coverage comparison of the critical separation detection model	116
5.8	Non-symmetric lateral range curve.	124
5.9	Distance representation of the visual detection of a subject.	128
5.10	Exit vertex determination for a triangular region.	131
5.11	Path generated in line with historical POA values	131
5.12	Physical clue placement.	132
5.13	Subject and clue lateral range curves	136
5.14	Clue position for a resource entering an edge region at vertex b	138
5.15	Clue position for a resource entering a triangular region at vertex c and exiting	
	at vertex <i>a</i>	139
5.16	POA update upon clue detection	141
5.17	Updating location probabilities for an altered subject route.	143

7.1	Edges adjacent to the intended path of the subject.	198
7.2	Search path of alternating moves.	199
7.3	A perimeter search by two search resources when subject intentions or PLS are $% \left({{{\left[{{{\rm{B}}_{\rm{T}}} \right]}}} \right)$	
	known	202
7.4	A perimeter search by four search resources, from an interior search base, when	
	no intended path or PLS information is known.	203
7.5	Division of a WPP tour into k components	216
7.6	Partitioning the primary search area via the regions incident to an interior base	
	vertex ,	217
7.7	k search paths over k matched edges.	219
7.8	An original matching compressed to pseudo-vertices and then expanded to give	
	three search paths.	220
7.9	A search path from the search base through a pseudo-vertex	220
7.10	A search path beginning from a vertex of degree two	220
8.1	Paint brush analogy of the visibility cover arising from edge searching	226
8.2	A triangle reduced in depth along the two searched edges.	227
8.3	"Y-shape"	228
8.4	"Curved" triangle	228
8.5	"Arrow shaped region"	228
8.6	Triangle with a "bite" removed.	229
8.7	Pattern of searcher spacing when conducting a sweep of a triangular region.	231
8.8	Width Strip Search	232
8.9	Recursive Perimeter Search.	233
8.10	Pivoting between successive perimeters.	234
8.11	Medial axis of a triangular region	236
8.12	Simple triangulation of a triangular search region.	236
8.13	Delaunay triangulation of the initial medial axis triangulation.	237
8.14	Petal traversal to cover a triangular region.	237
8.15	Bisection Triangulation — first, second and third bisection.	238
8.16	Hill search as one component.	239
8.17	Traversal approximation of a triangular region.	240
8.18	'Close to equiangular triangles' partition of a region.	245
8.19	Amalgamation of adjacent triangular regions into a single search region.	246
8.20	Trail based POA segmentation method	248
8.21	Segmentation of a triangular region.	249
8.22	Local optimization procedure to select the orientation of a region search when the	
	region is added to the end of an existing path.	254
8.23	Binary tree through a TIN	254
8.24	Creation of a primary search area.	267
8.25	The cheapest insertion of a region into a search path.	270

9.1	A general architecture for the SAR problem	287
10.1	A broad schema of the SAR simulation model	312
10.2	Path representation	313
10.3	State changes over search task execution	314
10.4	Incomplete assignments.	315
11.1	Visual representation of consecutive search periods	324
11.2	Search interruptions.	335
11.3	Redeployment from within a triangular region	341
12.1	The range of z -coordinates (in m) for each grid square of the TIN construction	
	grid	353
12.2	Allocating a triangle spanning several grid squares, to a single grid square	353
12.3	The TIN used in experimental computation	357
12.4	The edge classifications of the TIN used in experimental computation	358
12.5	Simulated weather conditions under weather scenario one. \ldots	361
12.6	Simulated weather conditions under weather scenario two.	361
12.7	The growth of $\ensuremath{\text{POS}_{\text{cum}}}$ under the benchmark method from the exterior base with	
	night searching strategy.	386
12.8	The growth of $\operatorname{POS}_{\operatorname{cum}}$ under the single task method from the exterior base.	386
12.9	The growth of $\ensuremath{\text{POS}_{\text{cum}}}$ under the path scan method from the exterior base	387
12.10	The growth of $\ensuremath{\text{POS}_{\text{cum}}}$ under the primary search area method from the exterior	
	base	387
12.11	Comparison of the growth of $\operatorname{POS}_{\operatorname{cum}}$ over resource allocation methods from the	
	exterior base for problem instance A	388
12.12	Adjacency of the <i>lost_region</i> to regions in which clues are detected	427

xxii

List of Tables

2.1	The cause of NZ land SAR operations.	18
2.2	The activities resulting in NZ land SAR operations	19
2.3	The subjects of NZ land SAR operations	19
2.4	The highest rating categories of injuries received by subjects of NZ land SAR	
	operations	20
2.5	The status of equipment carried by subjects of NZ land SAR operations	20
2.6	The intention record left by subjects of NZ land SAR operations. \ldots .	20
2.7	The weather conditions of NZ land SAR operations	24
2.8	The total operation hours of NZ land SAR operations. \ldots	24
2.9	Generalities for USA land SAR operations	24
2.10	Probability decision data for determining trail-based POA values	25
2.11	$Wartes' field \ trial\ POD\ data\ for\ ground\ searchers\ in\ moderately\ dense\ underbrush.$	31
2.12	USA AFRCC POD data for air searches of lost people	32
3.1	The utilization of volunteers in NZ land SAR operations	41
3.2	Matching of sweep search technique to subject type	70
4.1	Visibility and sound measures	104
5.1	Coverage and effort values for different searcher spacings for the critical separation	
	detection model	117
5.2	Wartes' field data in critical separations.	119
5.3	High visibility sweep data for dense coniferous forest in winter	120
5.4	Standard visibility sweep data for dense coniferous forest in winter.	120
5.5	Low visibility sweep data for dense coniferous forest in winter	124
5.6	Body sweep data for dense coniferous forest in winter.	125
5.7	Quiet voice response sound sweep data for dense coniferous forest in winter. $% \left({{{\left[{{{\left[{{\left[{{\left[{{\left[{{\left[{{\left[$	125
5.8	Environmental degradation factors of clue detectability.	137

8.1	An example problem for the PSR allocation heuristic.	260
11.1	Urgency response level	322
11.2	Time durations of communication events	334
11.3	Redeployment path duration limits	338
11.4	Path cost factors for gradient changes between edge traversals	349
12.1	The percentage limit of the number of grid squares classified by each terrain type.	354
12.2	The number of regions classified by terrain type	356
12.3	Resource allocation methods for problem instance A from the interior base located	
	at vertex 0	368
12.4	Resource allocation methods for problem instance A from the exterior base located	
	at vertex 27	369
12.5	Path scan method of resource allocation for all resource criteria, for problem	
	instance A from the interior base located at vertex 0	372
12.6	Path scan method of resource allocation for all resource criteria, for problem	
	instance A from the exterior base located at vertex 27	373
12.7	Ranking of secondary selection criteria for the hybrid path scan method for prob-	
	lem instance A.	374
12.8	Hybrid path scan methods of resource allocation for problem instance A from the	
	interior base located at vertex 0	376
12.9	Hybrid path scan methods of resource allocation for problem instance A from the	
	exterior base located at vertex 27	377
12.10	Sound sweep search method for a responsive subject in the first two periods, for	
	problem instance A from the exterior base located at vertex 27.	378
12.11	Sound vs. visual searching strategies from the exterior search base. \ldots .	379
12.12	Sound sweep search method for an unresponsive subject for those methods de-	
	tecting a responsive subject via sound within the first two periods, for problem	
	instance A from the exterior base located at vertex 27	380
12.13	Sound sweep search method for a responsive subject in the first four periods using	
	the search priority region criterion, for problem instance A from the exterior base	
	located at vertex 27.	382
12.14	Sound sweep search method for an unresponsive subject in the first four periods	
	using the search priority region criterion, for problem instance A from the exterior	
	base located at vertex 27	382
12.15	Permitting re-searching of a region within the same search period, for problem	
	instance A from the exterior base located at vertex 27	384
12.16	Not permitting re-searching of a region within the same search period for the single	
	task allocation method, for problem instance A from the exterior base located at	
	vertex 27	385
12.17	Performance ratios for visual search resource allocation methods for problem in-	
	stance A when deploying from the exterior base.	389

12.18	Performance ratios for visual search resource allocation methods for problem in-	
	stance A when deploying from the interior base	39 0
12.19	Performance ratios comparing sound and visual searching resource allocation	
	methods for problem instance A when deploying from the exterior base. \ldots	39 0
12.20	Resource allocation methods for problem instance B from the exterior base located	
	at vertex 27	393
12.21	Resource allocation methods for problem instance B from the interior base located	
	at vertex 13	394
12.22	Ranking of secondary selection criteria for the hybrid path scan method for prob-	
	lem instance B.	396
12.23	Hybrid resource allocation methods for problem instance B from the exterior base	
	located at vertex 27.	397
12.24	Hybrid resource allocation methods for problem instance B from the interior base	
	located at vertex 13.	398
12.25	Primary search area restrictions for the path scan allocation method, for problem	
	instance B from the exterior base located at vertex 27	400
12.26	Re-searching options for the path scan allocation method, for problem instance	
	B from the exterior base located at vertex 27	400
12.27	Resource criteria for the path scan allocation method, for problem instance B	
	from the exterior base located at vertex 27	401
12.28	Comparison of selected resource allocation methods for problem instance B from	
	the interior base located at vertex 13, under visual and sound sweep searching for	
	both weather scenarios.	403
12.29	Resource allocation methods for problem instance B from the exterior base located	
	at vertex 27, when no intended route knowledge is known.	406
12.30	Resource allocation methods for problem instance B from the interior base located	
	at vertex 0, when no intended route knowledge is known	407
12.31	Resource allocation methods for problem instance B from the interior base fixed	
	at vertex 13, when no intended route knowledge is known	408
12.32	Performance ratios for visual search resource allocation methods for problem in-	
	stance B when deploying from the exterior base	409
12.33	Performance ratios for visual search resource allocation methods for problem in-	
	stance B when deploying from the interior base	409
12.34	Comparison of resource allocation methods for problem instance C under weather	
	scenario one, from the exterior base located at vertex 27	412
12.35	Comparison of resource allocation methods for problem instance C under weather	
	scenario two, from the exterior base located at vertex 27	413
12.36	Comparison of resource allocation methods for problem instance C under weather	
	scenario one, from the interior base located at vertex $0.$	414
12.37	Comparison of resource allocation methods for problem instance C under weather	
	scenario two, from the interior base located at vertex 0	415

12.38	Ranking of region criteria under the primary search area method for problem	
	instance C	416
12.39	Comparison of hybrid resource allocation methods for problem instance C under	
	weather scenario one, from the exterior base located at vertex 27	417
12.40	Comparison of hybrid resource allocation methods for problem instance C under	
	weather scenario two, from the exterior base located at vertex 27	418
12.41	Rankings of secondary selection criteria for the hybrid path scan method from	
	the exterior base located at vertex 27	419
12.42	Comparison of subject detection times between weather scenarios when deploy-	
	ment is from the exterior base located at vertex 27	421
12.43	Comparison of subject detection times between weather scenarios when deploy-	
	ment is from the interior base located at vertex 0	421
12.44	Performance ratios for visual search resource allocation methods for problem in-	
	stance C, when deploying from the exterior base under weather scenario one	423
12.45	Performance ratios for visual search resource allocation methods for problem in-	
	stance C, when deploying from the interior base under weather scenario one	423
12.46	Performance ratios for visual search resource allocation methods for problem in-	
	stance C, when deploying from the exterior base under weather scenario two	423
12.47	Performance ratios for visual search resource allocation methods for problem in-	
	stance C, when deploying from the interior base under weather scenario two.	423
12.48	Clue placement and detectability for problem instance A	424
12.49	Clue placement and detectability for problem instance B	425
12.50	Clue placement and detectability for problem instance C	425
12.51	Clue detection under the benchmark method from the exterior base, under night	
	searching and least hours resource criterion.	426
12.52	Benchmark allocation method with least hours resource criterion, for problem	
	instance B from the exterior base located at vertex 27, under night searching	
	when no clues are detected in region 137	428
12.53	Benchmark allocation method with least hours resource criterion, for problem	
	instance B from the exterior base located at vertex 27, under night searching	
	when clue detection in region 137 is assured	428
12.54	Clue detection and subsequent POA update for problem instance C when clues	
	were detected outside of the $lost_region$ by the primary search area method	432
12.55	Ranking of resource criteria for the benchmark method by problem instance	432
12.56	Ranking of region criteria for the single task method by problem instance. $\ .$.	433
12.57	Best solution ratios for each region selection criterion for the single task method	
	by problem instance.	433
12.58	Ranking of region criteria for the primary search area method by problem in-	
	stance	434
12.59	Best solution ratios for each region selection criterion for the primary search area	
	method by problem instance	435
12.60	Ranking of region criteria for the path scan method by problem instance	435

12.61	Best solution ratios for each region selection criterion for the path scan method	
	by problem instance.	436
12.62	Ranking of secondary region criteria for the hybrid path scan method by initial	
	criterion and problem instance.	437
12.63	Best solution ratios of secondary region criteria for the hybrid path scan method	
	by initial criterion and problem instance.	438
12.64	Average CPU time (in seconds) for each resource allocation method by problem	
	instance	439

List of Algorithms

5.1	function responsiveness_level()	129
7.1	function follow_path(PLS)	191
7.2	function incident_PLS(<i>PLS</i> , <i>tnum</i>)	192
7.3	function towards_PLS(PLS, tnum)	194
7.4	function hazard_route(resource)	195
7.5	$function hazard_parallel(tnum)$	196
7.6	function intersecting_path($tnum$)	200
7.7	function perimeter($tnum$)	201
7.8	$\mathbf{function} \ \mathrm{hedging_search_path}(k, obj) \ \ldots \ $	206
7.9	function minisum_time(candidate, ct, t, start)	207
7.10	function minimax_time(candidate, ct, t, start)	208
7.11	function minisum_static(candidate, ct, start)	209
7.12	function minimax_static(candidate, ct, start)	210
7.13	function base_arc_allocation()	212
7.14	function nearest_neighbour(partition)	213
8.1	function $PSR_heuristic(k)$	261
8.2	function primary_search_area()	268
8.3	function generate_path($resource, cost$)	271
8.4	function generate_kpaths(resources, ct, cost)	272
8.5	function alternative_path(resource, limit, cost)	273
9.1	function POA_response()	293
9.2	function reactive_modify()	296
9.3	function incremental_modify()	297
9.4	$function deliberative_modify() \ \ldots \ $	297
11.1	function begin_search_operation()	320

11.2	function base_allocation()	320
11.3	function urgency()	323
11.4	$function urgency_upgrade() \dots \dots \dots \dots \dots \dots \dots \dots \dots $	324
11.5	function begin_search_period()	325
11.6	function end_search_period()	328
11.7	function next_period() \ldots	329
11.8	function redirect $(a, b, resource)$	3 40
11.9	function return_to_base(resource)	342
11.10	function flood_check(resource)	344
11.11	function subject_located()	345
11.12	function rescuers_required()	347
11.13	function subject_carry_out()	348
12.1	function vegetation_allocation()	354