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Abstract

The class imbalance problem is a challenge in the statistical, machine learn-
ing and data mining domains. Examples include fraud/intrusion detection,
medical diagnosis/monitoring, bioinformatics, text categorization, insurance
claims, and target marketing. The problem with imbalanced data sets is that
the conventional classifiers (both statistical and machine learning algorithms)
aim at maximizing overall accuracy, which is often achieved by allocating all,
or almost all, cases to the majority class. Thus there tends to be bias against
the minority class in class imbalance situations.

Despite numerous algorithms and re-sampling techniques proposed in the
last few decades to tackle imbalanced classification problems, there is no
consistent winning strategy for all data sets (neither in terms of sampling, nor
learning algorithm). Special attention needs to be paid to the data in hand.
In doing so, one should take into account several factors simultaneously: the
imbalance rate, the data complexity, the algorithms and their associated
parameters. As suggested in the literature, mining such datasets can only
be improved by algorithms tailored to data characteristics; therefore it is
important and necessary to do data exploratory analysis before deciding on
a learning algorithm or re-sampling techniques.

In this study, we have developed a framework “Complexity Measurement”
(CM) to explore the connection between the imbalanced data problem and
data complexity. Our study shows that CM is an ideal candidate to be
recognized as a “goodness criterion” for various classifiers, re-sampling and
feature selection techniques in the class imbalance framework. We have used
CM as a meta-learner to choose the classifier and under-sampling strategy
that best fits the situation. We design a systematic over-sampling tech-
nique, Over-sampling using Complexity Measurement (OSCM) for dealing
with class overlap. Using OSCM, we do not need to search for an optimal
class distribution in order to get favorable accuracy for the minority class,
since the amount of over-sampling is determined by the complexity; ideally
using CM would detect fine structural differences (class-overlap and small
disjunct) between different classes.



iv

Existing feature selection techniques were never meant for class imbal-
anced data. We propose Feature Selection using Complexity Measurement
(FSCM), which can specifically focus on the minority class, hence those
features (and multivariate interactions between predictors) can be selected,
which form a better model for the minority class.

Methods developed have been applied to real datasets. The results from
imbalanced datasets show that CM, OSCM and FSCM are effective as a sys-
tematic way of correcting class imbalance/overlap and improving classifier
performance. Highly predictive models were built; discriminating patterns
were discovered, and automated optimization was proposed. The methodol-
ogy proposed and knowledge discovered will benefit exploratory data analy-
sis for imbalanced datasets. It may be taken as a judging criterion for new
algorithms and re-sampling techniques. Moreover, new data sets may be
evaluated using our CM criterion in order to build a sensible model.
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Chapter 1

Introduction

The class imbalance problem is a challenge in the statistical, machine learn-

ing and data mining domains, and significant research has been done in the

last few decades to overcome the issues. A classifier suffering from class

imbalance for a specific data set would see high accuracy overall but very

poor performance on the minority class [1]. The problem can appear in two

different types of data sets: two-class problems, where one class has many

more instances than the other [2], and multi-class problems where each class

contains a small fraction of the samples and we use one-vs-rest classification.

Data meeting one of these two criteria may have different misclassification

costs, either implicitly or explicitly for the different classes [3], and these

kind of data sets exist in many “real-world” problems. Examples include

fraud/intrusion detection [4], medical diagnosis/monitoring [5], bioinformat-

ics [6], text categorization [7], insurance claims and target marketing [8]. The

skewness of the class distribution can be severe. Some imbalanced data sets

will only have 1% or less minority class examples. In the literature, the prob-

lem of imbalance is also known as dealing with a rare class or with skewed

data [9].

Many statistical and machine learning algorithms have been found to pro-

duce unsatisfactory classification (low detection for the minority classes) for

imbalanced data sets. They tend to over-fit the majority class and regard

minority class examples as noise, of which the misclassification cost can be
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extremely high or even fatal. The machine learning algorithms are poor to

some extent because of the way they are designed, and to some extent be-

cause of the inappropriate performance measurements or evaluation metrics

they use [9, 10]. Firstly, modern classifiers assume that unseen data points

on which the classifier makes the prediction are drawn from the same distri-

bution as the training data [11]. If testing and validation samples are drawn

from different distributions, the model may give poor results because of a

faulty model [12]. Although many classifier algorithms assume an even dis-

tribution in the whole data set, training and test sets may not necessarily

have the same distribution [10]. Secondly, standard classifier algorithms are

designed to maximize overall accuracy by minimizing the overall error rate.

For example, logistic regression attempts to minimize the squared error rate

and support vector machine (SVM) tries to minimize regularized hinge loss.

Thirdly misclassification costs for different classes are different and may not

be known during the modeling phase [9].

A classifier based on above mentioned assumptions will always produce

poor accuracy (no or low detection for minority class) on an imbalanced data

set. A classifier that attempts to classify minority class examples correctly

will very likely see a significant decline in overall accuracy [11], because in

a class imbalance scenario, the overall accuracy of the classifier is under-

representing the value of classification accuracy of the minority class as com-

pared to the majority class. In most cases, we would prefer a classifier that

increases the accuracy of minority class even at the expense of majority class

accuracy.

From the perspective of performance evaluation, overall accuracy might

not be suitable, because class distribution and misclassification costs are

rarely uniform [4] and use of such measures might be misleading. The evalu-

ation criteria: accuracy and error rate: assume equal misclassification costs

[4, 13] which is not true for imbalanced data. Evaluation matrices that

take imbalance into account can improve classifier selection [10]. Alternative

measurements, details of which are given later, include ROC analysis, AUC,

precision, recall, geometric mean, F-measure, Precision Recall Break Even

Point (PRBEP) [9] and Matthews Correlation Coefficient [14]. Researchers
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use statistics like G-Mean [13] and area under receiving operating character-

istics (AUROC) [11], to better evaluate minority class performance.

The severity of the problem depends on the degree of class imbalance,

the overall size of the training data, and the model classifier involved. How-

ever, although many of the popular statistical or machine learning techniques

have been tried in imbalanced situations, e.g. Classification Trees (CT) [15],

Neural Networks (NN) [16], Support Vector Machines (SVM) [17], k-Nearest

Neighbor (kNN) [18] and Random Forests [19], none of them has been found

to be superior in general.

There have been many attempts to resolve the class imbalance problem.

Apparently, the most common approach for resolving class imbalance prob-

lems is to use some form of re-sampling to adjust the imbalance in the training

data [20]. Other approaches include: modification of existing algorithms, cost

sensitive learning, one class learning or a combination of the above [21, 22].

Theoretically [23] and empirically, there is general understanding that

different types of data require different kinds of classification. Not every

imbalanced data set can be a problem for learning [24, 25]. It seems that

the problem is rather with the small class in the presence of other factors

such as class overlap [22]. The experiment conducted by [24] also suggested

that degradation in classification modeling is not directly related to class

imbalance alone, but rather to small disjunct (small subsets of one class that

are separated from the largest subset of the same class).

1.1 Approaches for Dealing with Class

Imbalance

This section provides an overview of the most prominent approaches for deal-

ing with class imbalance problems. The first part of the discussion focuses

on the limitations of traditional learning methods. It is followed by prepro-

cessing strategies and algorithmic approaches.
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1.1.1 Limitations of Traditional Learning Techniques

As shown in the literature [24, 26, 27] most traditional machine learning

methods are affected by class imbalance. Among the existing methods, some

are affected more seriously than the others. Classification trees appear to

perform the worst when the data is imbalanced. This major drawback is

thought to be rooted in the pruning stage [28]. Conclusions found in Visa

and Ralescu [9] suggest that support vector machines (SVMs) algorithm is

not affected by the imbalance problem. Another study by Japkowicz [11]

found that the artificial neural networks (ANN) and SVMs are not sensitive

to the class imbalance problem, while decision trees are strongly affected by

the imbalance. These observations suggest the need for a goal of creating a

classifier that performs well over a range of situations [29]. The alternative

solution is to alter the data distribution (via preprocessing) such as to provide

a more appropriate class distribution in the training set.

1.1.2 Pre-processing Techniques

At the data level, the objective is to re-balance the class distribution by re-

sampling the data. This is the most direct solution for dealing with an imbal-

anced problem; i.e., to class-balance the training data. Numerous algorithms

have been developed, with the majority of efforts focused on proposing and

evaluating sampling techniques comparatively. However, it is important to

mention that many of them are effective only in certain situations (i.e. type

of rarity), and for a specific classifier. Here we describe the most important

sampling strategies.

Sampling techniques follow two major strategies: over-sampling and under-

sampling. Over-sampling reduces the imbalance rate by duplicating examples

from the under-represented class for inclusion in the training set. Important

drawbacks of over-sampling refer to the fact that it may lead to over-fitting,

increase the time required to build the classifier, and give no information gain

from the learning process [31]. Under-sampling performs balancing by remov-

ing examples from the majority class. While this is effective in correcting

class imbalance by reducing the data size, it may cause loss of information.
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An informative under-sampling scheme (not random but selected to serve

some purpose) could overcome this drawback. There is general disagreement

among researchers regarding which technique is better, some researchers be-

ing in favor of over-sampling [2] while others advocating under-sampling [32].

However, sampling should be considered in the broad scenario consisting

of the problem itself and an appropriate classifier for the problem. Different

classifiers perform better in conjunction with specific sampling techniques

[27]. Hulse et al. [27] stated that random under sampling (RUS) worked

well for classification tree (CT), while random over-sampling (ROS) being

more suitable for logistic regression (LR). Another important aspect which

influences sampling is the noise associated with the data, which has been

shown to affect the minority class more so than the majority class [10].

A comprehensive study of sampling techniques can be found in [26, 27].

Several informative over-sampling and under-sampling techniques are com-

pared. Sophisticated methods, resulting from the combination of different

basic techniques are briefly described, and thoroughly evaluated on bench-

mark data sets [33]. Although most of them yielded an increase in Classifi-

cation accuracy of minority class, as expected, there was no technique which

dominated all the others on all data sets. Moreover, based on the results of

the evaluations, it was concluded that “random over-sampling provided com-

petitive results with the more complex methods”. Another important study

by Japkowicz and Stephen [2] suggests that the improvements produced by

under/over sampling are more significant for highly imbalanced datasets.

A very important issue regarding sampling techniques refers to the appro-

priate amount of over/under sampling required [35]. A best class distribu-

tion is usually unknown and needs to be investigated [21, 34]. An appropriate

amount of over/under sampling is a non trivial problem, whether it is domain

(learning algorithm) and/or data-dependent. Most classification algorithms

adapt the class distribution of the available data. This assumption could be

wrong for the following reason: the real class distribution could be unknown

and it may not be the most appropriate class distribution for learning [36].

Hall and Joshi [35] suggested that using wrappers i.e., performing a search for

the correct percentage of under-sampling of the majority class or synthetic
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over-sampling of the minority class, may improve the performance of a par-

ticular classifier. Since this is a wrapper technique, the correct proportion of

under-sampling or over sampling may not be suitable for another classifier.

Another study by Weiss and Provost [36] proved that if there is a best distri-

bution for the training set, it needs more examples from the minority class

to form an appropriate model from the training set. Moreover, the same per-

formance could be acquired with a smaller training set, if the distribution is

balanced in favor of the minority class. It has been reported that over/under

sampling solved the ‘imbalance problem’ in some studies, but it did not help

in other studies [13, 37]. Possible reasons are that an inappropriate class

distribution for the data set, or other data features yet to be explored, has

degraded classifier performance.

Another data-related mechanism in handling imbalance is repetitive re-

sampling techniques designed to alleviate some of the problems associated

with re-sampling [38]. Repetitive re-sampling constructs an ensemble of mod-

els, each using a different sample from the majority class, hence reducing the

loss of information when only one subset of the majority class is used. Cluster-

based re-sampling techniques can be used in order to select majority class

examples from different regions of the data set. This way, we may isolate

the minority class in a single partition, which is assigned special treatment,

while for the other(s) regular reasoning methods (such as data segmenting of

majority class) are employed [10].

Re-sampling can be done in more sophisticated ways: Synthetic Minority

Over-sampling Technique (SMOTE) [31] creates and interpolates new minor-

ity class examples; Cluster-based over-sampling [24] rectifies class imbalances

between the majority class clusters and the minority class; Condensed near-

est neighbor (CNN) [39] chooses data near to the decision boundary to build

a sensible model for classification; Adaptive sampling is phase-wise learning,

where at each iteration a number of examples from the data set is added to

the model. In these techniques all those examples which have been misclas-

sified by a certain classifier are added to the final model [40]. Progressive

sampling [41] is a method for under-sampling of majority class by progres-

sively increasing the majority class sample size for training the model, as
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long as model accuracy improves. Importance sampling [42] concentrates

on the examples near to the decision boundary. The difference between the

CNN and Importance sampling is that CNN is based on nearest neighbor

technique and Importance sampling is a wrapper technique, i.e., it select all

those example which are misclassified by a certain classifier.

Cost-sensitive learning has been shown to outperform any kind of sam-

pling in class imbalance problems by increasing the accuracy of minority class

[43]. However, if the costs are not known or are not constant, it is not ap-

plicable [44]. The importance of cost sensitive learning is related to the cost

of acquiring data. Weiss et al. [43] demonstrated that for large data sets

a cost-sensitive approach did consistently better on minority class than any

sampling technique, but performed poorly for small data sets, for which the

cost information could not be accurately estimated. Unless the misclassifi-

cation cost is implemented to adapt to local density or small disjunct, cost

sensitive learning will not improve the classifier’s performance.

One-class learning has been claimed to be advantageous for imbalanced

data sets as it avoids over-fitting on the majority class [45]. One-class SVM

[46], SHRINK [1], and RIPPER [5] are examples of one class learning. A good

method could be to generate a model for each class, rather than generating

a complete model. However experiments from various researchers [18, 27]

proved that a classifier trained using only minority class examples will not

be as good as the result using minority and majority class examples. Thus,

unless one has only training samples known to be from one class and no other

information, one-class learning is unlikely to be a better approach.

Among the various pre-processing tasks, feature selection is the newest of

the techniques attempting to resolving the class imbalance problem. It not

only reduces the data dimensionality, by removing variables, thus reducing

the search space, but it also improves the classification models most of the

time [7]. Feature selection could be beneficial in such cases, by selecting the

features which can capture the high skew in the class distribution [9, 44].

Most of the research to date in feature selection for the class imbalance

scenario has been focused on text categorization [7, 48, 49]. One aim of this

thesis is to investigate feature selection in a wider range of applications, using
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various feature selection techniques.

1.2 Complexity Measurement Approach

Researchers have developed many techniques to attempt to overcome the

class imbalance problem, including re-sampling, new algorithms and feature

selection. Researchers working on different methods in different domains

have yet to agree on standard benchmark data sets or on a systematic ap-

proach to solving the problem. Given the suggestion that the skewed class

distribution may not be the only problem [10, 22, 24, 25], we see the need for

a systematic way of investigating and explaining what intrinsic features of

the data are affecting the degraded learning performance of an imbalanced

data set. We think that the answer could be found through exploratory

data analysis (EDA) or data complexity analysis, and that data complexity

measures can be used to devise a structured study for learning about class

imbalance problems. To our knowledge, no researcher has used complexity of

a data set as a criterion to devise a systematic strategy to overcome the class

imbalance problem. Some authors have considered complexity measurement

[50, 51, 52, 53] but never as a way to cater for imbalance, rather to indicate

the overall level of difficulty in the data sets.

The two workshops [29, 30] on Imbalanced Data Sets focused on three

aspects: sampling, new algorithm and feature selection; this thesis makes

new contributions associated with each of these areas, as outlined below.

1.2.1 Overview of Literature Review (Chapter 2)

This chapter reviews in detail the existing approaches to combating the class

imbalance problem. The references cited in the chapter will cover the major

theoretical issues, from which we identify some areas yet to be explored.
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1.2.2 Overview of Complexity Measurement

(Chapter 3)

It has been reported that re-sampling solved the imbalanced ‘problem’ in

some studies, but it did not help in other studies [13, 37]. Jo and Japkowicz

[24] suggested that class imbalance may yield small disjunct, causing degra-

dation in classification accuracy of minority class. Similarly, Prati et al. [54]

argued that class imbalance in the presence of class overlap causes problem.

We thought that Complexity Measurement (CM) would be a good approach

to clarifying what features of a data set lead to degradation of classification.

Data complexity can be described as an indicator that shows the level

of difficulty in class learning for a specific data set. Ho and Basu [50] pro-

posed some complexity measures for two-class classification problems. They

defined complexity measurement under three different headings: overlaps of

feature spaces from different classes, separability of classes and measures of

geometry, topology and density of manifolds. This study has been widely

used subsequently. In the literature we can see a number of studies using

data complexity as a measure to define the strength of their methodology or

to make a comparison between different classifiers using one or more of the

complexity measures introduce by Ho and Basu [50]. But their data com-

plexity measurement was never meant for the class imbalance problem, and

we found it an inadequate measurement for this situation, which is shown

in Chapter 3. This implied a good reason to introduce a new Complexity

Measurement (CM) for class imbalance problems and utilize CM to tackle

class imbalance problems in a systematic way.

1.2.3 Overview of Under-sampling Techniques in

relation to Complexity Measurement (Chapter

4)

An important theoretical result related to the nature of class imbalance is

presented in [2]. They concluded that the imbalance problem is a relative

problem, which depends on: (1) the imbalance ratio, i.e. the ratio of the num-



10 Introduction

ber of majority to the minority examples, (2) the complexity of the concept

represented by the data, (3) the overall size of the training set and (4) the

classifier involved. The experiments were conducted on artificially generated

data, in an attempt to simulate different imbalance ratios, complexities and

data set sizes. Hulse et al. [27] suggests that the usefulness of each particular

re-sampling technique depends on various factors as mentioned by Japkowicz

and Stephen [2] on real datasets. Several papers like [11] , [18], [21], [37] and

[57], have also studied this dependence during the last decade.

In this chapter we perform an investigation using our novel approach

Complexity Measurement (CM) on real world benchmark data sets, to study

the effect of the class imbalance problem on several classes of algorithms: De-

cision Trees, Neural Network, Logistic regression, Support Vector Machines

and ensemble methods. Our analysis focuses on the factors described in

[2]: data complexity and learning algorithm: in an attempt to address some

of the open questions presented there, related to the applicability of the

conclusions drawn on artificial data in real-world settings. We conducted

our experiments by evaluating various performance metrics (see Chapter 2).

We applied various under-sampling techniques for improving the behavior of

classifiers in imbalanced problems available in literature under different com-

plexity groups. The results of this study (first of its kind) suggest that a more

systematic analysis of classifier and re-sampling technique can be performed

by considering data complexity.

1.2.4 Overview of Over-sampling Techniques using

Complexity Measurement (Chapter 5)

As mentioned earlier, one of the recommendations of the Imbalanced Data

Sets workshops was the need for a new classifier, which would work entirely

on its own. The underlying difficulty associated with highly imbalanced clas-

sification problems suggests that an automatic classification system, working

entirely on its own, may not be a realistic goal in the near future. Rather,

we feel that a two step system will work better, with an automatic classi-

fication system to measure complexity (pre screening tool) followed by the
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re-sampling procedure. The first (pre-screening) step of classification is to

measure the complexity for the minority class. The aim is to make the exe-

cution of the more expensive re-sampling procedure (that is the second step)

affordable as the pre-screening step effectively narrows down the minority

class examples that need over-sampling. The specific goal of this chapter is

to show how our complexity measurement can be used in the pre-screening

step. Our study proves that it works better than the existing over-sampling

techniques and automatically optimizes the class distribution without the

need for a wrapper. This technique may be the answer to a very important

issue regarding sampling techniques, i.e., the appropriate amount of over/un-

der sampling required [21, 34, 35].

1.2.5 Overview of Feature Selection using Complexity

Measurement (Chapter 6)

In this chapter we will review the existing techniques of feature selection and

their application in the imbalance scenario. Researcher [7, 48, 49, 55] shows

that in high dimensional data sets, feature selection can by itself combat

the class imbalance problem. Our aim is to discover which feature selection

technique will be the most effective in increasing the classification accuracy

of the minority class. We avoid here the extreme feature selection problems,

such as microarray analysis [56] and text classification [48] which have more

features than cases. Our focus is on the performance of the techniques in

selecting from a relatively modest set of possible features when the main

concern is the classification accuracy of the minority class.

In our comparative study we found that existing feature selection tech-

niques did not produce satisfactory results on imbalanced data sets. We pro-

pose a novel feature selection algorithm using Complexity Measurement (CM)

to evaluate the extracted low-level features. Using the best feature subset

captured by Feature Selection using Complexity Measurement (FSCM), we

compare the performance of the proposed framework with the performance

of several other existing feature selection algorithms discussed above. We

used benchmark data sets from UCI [33] in conjunction with the well-known
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Classification Tree [15] classifier. Overall, our proposed framework performs

better than other feature selection methods over the chosen classifier, and

performs significantly better with highly imbalanced data sets.

1.3 Contribution of the Thesis:

When dealing with imbalanced classification problems there is no consistently

superior approach for all data sets (in terms of re-sampling, algorithmic or

feature selection techniques) in the existing literature. We believe Complex-

ity Measurement (CM) could be regarded as an emerging field in the class

imbalance research which pays attention to the distinctiveness of the particu-

lar data. We focus on a wider context by taking into account various factors,

such as data complexity and the algorithms and their associated parameters.

This thesis introduces a new complexity measure for imbalanced data and

shows that, in classification modeling with class imbalanced problems, CM

can play an important role and can be used to choose the appropriate classi-

fier, feature selection and re-sampling technique that best fits the situation.

This thesis makes new contributions associated with each of these areas:

sampling, new algorithm and feature selection.

The method, developed here are illustrated and tested by applying them

to the UCI datasets [33], which are regarded as benchmark datasets in the lit-

erature. In our final chapter we briefly examine the feasibility of the proposed

methodologies on much larger datasets.
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Chapter 2

Literature Review of Class

Imbalance Problem

In two-group classification problems, class imbalance occurs when observa-

tions belonging to one class/group heavily outnumber the cases in the other

class. In real-world applications, it has been often observed that class imbal-

ance (significant differences in class prior probabilities) may produce severe

deterioration of the classifier performance, in particular, with patterns belong-

ing to the minority classes. In many such cases, the minority class is the class

of interest. The severity of the deterioration depends on the degree of class

imbalance, the concept and overall size of the training data, and the model

classifier involved. Two main approaches have been suggested in the literature

to tackle class imbalance problems. The first is to ‘balance’ the ‘imbalance’

in the class distribution via sampling schemes, especially over-sampling of

minority cases and/or under-sampling the majority class. The second ap-

proach uses a cost-sensitive learning, mainly with high cost for misclassifying

minority cases compared to majority cases. This chapter will review various

techniques that have been proposed in the literature for handling class imbal-

ance problems in classification modeling. The references cited in the chapter

will cover the major theoretical issues, from which we identify some areas yet

to be explored.



22 Literature Review of Class Imbalance Problem

2.1 Introduction

Classification is known as discrimination is the statistical literature and su-

pervised learning in the machine learning and data mining literature. Clas-

sification modeling is, to build a function/rule from the training data, and

to use the rule to classify new data (with unknown class), into one of the ex-

isting categorical classes or groups. Classification is an important task both

in Statistics and Data Mining. Various classification techniques, such as,

classical discriminant functions, classification tree, neural network, Bayesian

classifier/network, nearest neighbor, support vector machines, and various

ensemble ideas, (e.g. bagging, boosting, random forests etc), have been well

developed and successfully applied to many domains. Maximizing classifica-

tion accuracy is the usual goal of these algorithms.

However, maximizing overall accuracy is not always the case in real world

data where one class might be represented by a large number of examples,

while the other is represented by only a few, such as oil spill detection [1],

fraud detection [2], network intrusion detection [3]. Most classification tech-

niques try to minimize the total misclassification error rate. They ignore

the differences between types of misclassification errors. In particular, they

assume that all misclassification errors cost equally. The result of these as-

sumptions is that classification modeling on imbalanced data sets produces

unsatisfactory classifiers. In many classifications tasks, it is the rare class-

es/cases that are of major interest (e.g., ‘claimants’ in Insurance data or

industry). Learning algorithms that do not consider class-imbalance tend

to be overwhelmed by the majority class and ignore the minority class [4].

Its importance grew as more researchers [2, 5, 6, 7, 8, 9, 10, 11] realized

that imbalanced cases cause poor classification performance on the minor-

ity class, and that most algorithms behave badly when data sets are highly

imbalanced.

Class imbalance problems can be found in many application domains,

such as medical diagnosis (e.g., rare disease and rare genes mutations), net-

working monitoring and behaviour profiling -intrusion, fraud detection (credit

card, phone call, insurance), risk management, helicopter gear-box fault mon-
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itoring, shuttle system failure, earthquakes and nuclear explosions, text clas-

sification and oil spill detection [12]. From a practical application point of

view, class imbalance can be categorized as ‘natural imbalance’, such as rare

disease and fraud cases or as ‘artificial imbalance’, where one class is too

expensive to obtain, such as shuttle system failure.

There has been a lot of research on the class imbalance problem in the last

few decades. There have also been a few good review papers, such as Visa

and Ralescu [12] who reviewed the current progress in the class imbalance

field and argued that the poor performance of existing classification (machine

learning) algorithms were due to three factors: using overall accuracy as

the criterion, assuming an even class-distribution and using equal cost of

misclassification error. Their reason given for this poor performance was

that the algorithms used rarely suited real world applications. Kotsiantis et

al. [13] reviewed various techniques for handling class imbalance problems,

while Batista et al., [10] discussed several issues, such as class overlapping

and various balancing strategies related to class imbalance problems. Weiss

[14] paid attention to differences and similarities between the problems of

rare classes (larger portion of rare cases) and rare cases (small subsets of one

class that are separated from the largest subset of the same class, also known

in literature as small disjunct [5]), and then discussed some of the common

issues and solutions in modeling imbalanced data sets.

The structure of this chapter is organized as follows: Section 2.2 gives

a review of two international conferences and a special issue of SIGKDD

Explorations 2004, on class imbalance problems; Section 2.3 describes the

various sampling techniques used in the literature to tackle the class imbal-

ance problem; Section 2.4 describes evaluation measures associated with class

imbalance and Section 2.5 gives overall conclusions and discusses opportuni-

ties for further research. Moreover, in the literature, researcher have used

various classification algorithm such as: Logistic Regression, Classification

Tree (also known as C4.5 algorithm), Neural Network, and Support Vector

Machine (SVM) for their studies. For a description of how a particular algo-

rithm works please see Appendix 2.7.
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2.2 Importance of Class Imbalance

Problems:

In recognition of class imbalance problems in various application domains,

there were two conferences in Artificial Intelligence and one special issue in

SIGKDD Exploration (2004) on dealing with the class imbalance problems.

The first was held at the American Association for Artificial Intelligence

(AAAI) conference in 2000 [15], and the second was held at International

Conference on Machine Learning conference in 2003 (ICML‘03)[16]. Weiss

[14] reviewed these conferences and different approaches to tackle class im-

balance problem in SIGKDD Explorations (2004).

At the AAAI 2000 workshop, the main debated topics from the workshop

were: how to evaluate learning algorithms; what learning evaluation mea-

sures should be used; one class learning vs discriminant methods; various

re-sampling methods; relation between class imbalance problems and cost

sensitive learning; and the goal of creating a classifier that performs well

over a range of situations.

The second workshops for the class imbalance problem was a part of

ICML‘03, where most of the research was based on the learning from the

first workshop, such as using ROC or cost curves as the evaluation matrices

rather than overall accuracy. Despite agreeing in the first workshops to look

for a new classifier, most of the papers focused on tuning the parameters

of the classification tree in order to perform better on imbalanced data sets,

and various re-sampling techniques under various aspects contributed almost

half of the papers and most debated topics. Japkowicz [6] questioned the fact

that the within-class imbalance is responsible for the problem. The main idea

of lack of representation of some important aspects (points near to decision

boundary) of the minority class can be referred to as class overlap.

In summary, the learning from the two imbalance data sets workshops

explored the approaches to overcome the class imbalance problem namely:

sampling, feature selection, and new algorithms (new classifier).

The sixth issue of SIGKDD Exploration (2004) was dedicated to the class

imbalance problem, in which Weiss [14] gave a review of research on class
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imbalance techniques, while other papers in the volume dealt with the issues

of re-sampling, feature selection, and one-class learning.

2.3 Dealing with Class Imbalance Problems

Four main approaches have been suggested in the literature to tackle class

imbalance problems. The first is to ‘balance’ the ‘imbalance’ in the class dis-

tribution via sampling schemes, especially over-sampling of minority cases

and/or under-sampling the majority class. The second approach uses a cost-

sensitive learning, mainly with higher cost for misclassifying minority cases

compared to majority cases. The justification for this is that the problem of

imbalanced data is often associated with asymmetric costs of misclassifying

elements of different classes. The third and fourth approaches involve ensem-

ble models for final classification and the relatively new approach of feature

selection. Class imbalance involving two classes has been the main focus of

studies in the literature. Reported work focuses on three aspects of the class

imbalance problem:

1. What is the nature of the class imbalance problem, i.e. in what situ-

ations can class imbalance hinder the performance of standard classi-

fiers?

2. What are the possible solutions in dealing with class imbalance prob-

lems?

3. What are the proper evaluation measures of classification performance

of the classifier?

2.3.1 Re-sampling Techniques

At the data level, the objective is to re-balance the class distribution by re-

sampling the data. This is the most direct method ways for dealing with class

distributions towards a more balanced distribution. These solutions include

many different forms of re-sampling such as random over-sampling, random
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under-sampling, active-sampling techniques (where random is replaced by

informed re-sampling techniques) and combinations of the afore-mentioned

techniques. Hulse et al. [17] suggest that the usefulness of each particular re-

sampling technique depends on various factors, including the ratio between

positive and negative examples, the characteristics of data, and the nature

of the classifier. Several papers [4], [6], [18], [19] and [20] have also studied

the approach of changing the class distributions. Japkowicz [21] compared

various re-sampling strategies and concluded that under-sampling and over-

sampling are very effective in dealing with the class imbalance problem.

2.3.1.1 Under-Sampling Techniques

The most simple method of under-sampling is Random Under-sampling [10].

Random Under-Sampling (RUS) is a non-heuristic method aimed to balance

the data set by eliminating examples of the majority class. One of the dis-

advantages of RUS is that it can throw away potentially useful information,

that could be useful for classifier.

There are many empirical under-sampling methods proposed, which can

be named as Neighborhood Cleansing Techniques. These are based on the

noise model hypothesis, which considers the examples near to the decision

boundary of the two classes as noise to be eliminated.

Condensed Nearest Neighbor Rule Hart’s Condensed Nearest Neigh-

bor Rule (CNN) [22] is used to find a consistent subset of examples. It is

based on the idea of a consistent subset of a sample set, which is a subset

which can correctly classifies all of the remaining examples in the training

sets, when used as a store reference to nearest neighbor rule. A subset X̂ ⊆ X

is consistent with X if using a 1-Nearest Neighbor classifier (1-NN, i.e., mini-

mum distance between data points, and if a case has a minimum distance to

an example from a different class, this case will be missclassified), X̂ correctly

classifies the examples in X. An algorithm to create a subset X̂ from X as

an under-sampling method is define as follows: first, randomly draw one ma-

jority class example and all examples from the minority class and put these

examples in X̂ . Afterwards, use a 1-NN classifier over the examples in X̂



2.3 Dealing with Class Imbalance Problems 27

to classify the examples in X. Every misclassified example from X is moved

to X̂. The notion behind this technique is to find a subset of the training

set, which can correctly classify all the remaining examples in the training

set, when X̂ is used for a nearest neighbor (NN) rule. The idea behind this

implementation of a consistent subset is to eliminate the examples from the

majority class that are distant from the decision border, since these sorts of

examples might be considered less relevant for learning. This method is only

effective in data sets having less overlap; in case of high overlap between the

class, no important reduction in the training set can be achievable.

Wilson’s Edited Nearest Neighbor Rule (ENN) [23] ENN removes

any example from the data sets whose class label differs from the class of at

least two of its three nearest neighbors.

Neighborhood Cleaning Rule Neighborhood Cleaning Rule (NCL)

[24] modifies the ENN in order to increase the data cleaning. For a two-

class problem the algorithm can be described in the following way: for each

example Xi in the training set, its three nearest neighbors are found. If Xi

belongs to the majority class and the classification given by its three nearest

neighbors contradicts the original class of Xi, then Xi is removed. If Xi

belongs to the minority class and its three nearest neighbors misclassify Xi,

then the nearest neighbors that belong to the majority class are removed.

This method is only effective in data sets having less class overlap; in case of

high overlap between the classes all majority class examples near to decision

boundary will be eliminated and the training set will result in a poor model

for the majority class.

Tomek links Tomek links[25] consider the examples near to the border-

line to be more important. The method can be defined as follows: given

two examples Xi and Xj belonging to different classes, and d(Xi, Xj) the

distance between Xi and Xj, a pair (Xi, Xj) is called a Tomek link if there is

not an example Xl, such that d(Xi, Xl) < d(Xi, Xj) or d(Xj, Xl) < d(Xi, Xj).

If two examples form a Tomek link, then either one of these examples is

noise or both examples form the borderline. Tomek links can be used as an

under-sampling method or as a data cleaning method. As an under-sampling

method, all those examples which form Tomek link and belonging to the
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majority class are eliminated, and as a data cleaning method, Tomek link

examples from both classes are removed. This must be used with caution in

highly imbalanced data sets in the presence of highly overlapped classes, as

we may end up heavily reducing the majority class, hence the accuracy of

majority class will be seriously affected.

One-sided selection (OSS) OSS [26] is an under-sampling method re-

sulting from the application of Tomek links followed by the application of

CNN. Tomek links is used as an under-sampling method and removes noisy

and borderline majority class examples. Borderline examples can be consid-

ered as unsafe, since a small amount of noise can make them fall on the wrong

side of the decision border. CNN aims to remove examples from the majority

class that are distant from the decision border. The remaining examples, i.e.

majority class examples and all minority class examples are used for learning.

CNN + Tomek links This is one of the methods proposed by Batista et

al. [18]. It is similar to the OSS, but the method to find the consistent subset

is applied before the Tomek links. Their objective is to verify its competi-

tiveness with OSS. As finding Tomek links is computationally demanding, it

would be computationally cheaper if it was performed on a reduced data set.

2.3.1.2 Random over-sampling

Random over-sampling involves duplicating examples of the minority class

in order to achieve a more balanced distribution. Both under-sampling and

over-sampling have known drawbacks: random over-sampling can increase

the likelihood of over-fitting, since most over-sampling methods make exact

copies of the minority class examples [7, 26]. There are several heuristic over-

sampling methods, such as SMOTE, and various variations of the SMOTE

algorithm.

Smote Synthetic Minority Over-sampling Technique (Smote) [7]

is an over-sampling method. Its main idea is to form new minority class

examples by interpolating between several minority class examples that lie

close together. Thus, the overfitting problem is avoided and causes the de-

cision boundaries for the minority class to spread further into the majority
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class space, in cases of class overlap.

Realizing the importance of borderline examples, i.e., that these examples

can be more easily misclassified than those far from the borderline, Han et al.

[27] presented a modification of the SMOTE technique, which they named

as Borderline-SMOTE (BSM). BSM selects minority examples which are

considered to be on the border of the minority decision region in the feature-

space and only performs SMOTE to over-sample those examples, rather than

over-sampling them all or a random subset. Their experiments show better

accuracy of the classifier for the minority class than original SMOTE or

random over-sampling.

Chawla et al. [28] suggested that boosting (see next section) may suffer

from the same problem as over-sampling (i.e., over-fitting). Instead of chang-

ing the distribution of training data by updating the weights associated with

each example they introduce SMOTEBOOST [28]. SMOTEBOOST alters

the distribution by adding new examples of the minority class using the

SMOTE algorithm.

2.3.1.3 Active Re-sampling Techniques

In comparison to random re-sampling techniques or neighborhood cleansing

techniques, the following are examples from active sampling techniques or

informed sampling.

Boosting is an iterative algorithm that places different weights on the

examples of the training set at each iteration. The purpose of the Boosting

algorithm [29] is to improve the classification accuracies of any “weak” learn-

ing algorithm. It weights each sample reflecting its importance and places

more weight on those examples which are more often misclassified. This

forces the learner to those samples that are hard to correctly classify. Since

boosting effectively alters the training distribution it can be regarded as an

active sampling technique.

Provost et. al [8] analyze methods for progressive sampling as long as

model accuracy improves. Progressive sampling starts with a small sample

and use progressively larger ones until model accuracy no longer improves.
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They use a learning curve to decide when the model has converged (i.e.,

accuracy of the model does not change with increase of the training sets).

A learning curve depicts the relationship between sample size and model

accuracy. In the case of class imbalance this methodology can be adapted to

using all the examples of minority class and a small subset of the majority

class to build up the model, then at each iteration increasing the examples

of the majority class until overall classification accuracy does not increase.

Hence this technique can be used to build up an optimal class distribution,

for a specific learning algorithm. But one of the drawbacks is that it is

dependent on the classifier used, i.e., the optimal class distribution may not

the optimum for another classifier.

Drown et al. [30] introduced Evolutionary Sampling Technique using the

Genetic Algorithm (GA) [31] (GA is a random search method that can effec-

tively explore large search spaces) to choose a reduced sample of the complete

data set to train a classification model. As one-sided sampling (OSS) [26] and

Wilson’s Editing (WE) [23] attempt to improve under-sampling by nearest

neighbor rule to determine which examples are redundant or noisy, Evolution-

ary Sampling tries to achieve the same goal using the Genetic Algorithm.

It should be noted that all the methods explained above are trying to fix

between-class imbalances. To deal with the problems of both between and

within class imbalances, Cluster-based over-sampling (CBOS) [32] attempts

to even out the between-class imbalance as well as the within-class imbalance

simultaneously. There may be subsets of the examples of one class that are

isolated in the feature-space from other examples of the same class, creating

a “within-class imbalance”. Small subsets of isolated examples are called

“small disjuncts”. Small disjuncts often cause degraded classifier performance,

and CBOS aims to eliminate them without removing data, i.e., it clusters

the majority class into k groups, selects the cluster with highest number of

observations, and balances the number of observations in remaining clusters

of majority class by over-sampling in each cluster. Similarly minority class is

clustered into k clusters and the number of the observations in each minority

class cluster is over-sampled in proportion to total number of observations in

majority class.
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Yuan et al. [33] proposed an approach called Support Cluster Machines

(SCMs). In their proposed approach, they first partition the majority class

examples into disjoint clusters, then train an initial SVMs [34] model using

the minority class examples and representatives (centroid of each cluster) of

the majority class clusters. From the initial SVMs, they can approximately

identify the support vectors and non-support vectors. A shrinking technique

is then used to remove the examples which are not support vectors. This

procedure of clustering and shrinking is performed iteratively several times

until the number of majority class examples are not more than five times

that of the minority class examples.

When the data is highly imbalanced, under-sampling and over-sampling

can be combined to improve the performance of the classifier [7, 18, 27, 24].

Batista et al. [18] propose the combination of various re-sampling strategies,

like Smote combining with Tomek links or Smote combining with ENN, for

highly imbalanced data sets.

2.3.2 Cost-Sensitive Learning

Class imbalance and cost-sensitive learning are related to each other. The

differences between different misclassification errors can be quite large. Cost

sensitive learning solutions incorporating both the data and algorithmic level

approaches assume higher misclassification costs for samples in the minority

class and seek to minimize these high cost errors. A cost-sensitive learn-

ing system can be used in applications where the misclassification costs are

known. Cost-sensitive learning systems attempt to reduce the cost of misclas-

sified examples, instead of classification error. These methods allow for the

fact that the value of correctly identifying the positive (rare) class outweighs

the value of correctly identifying the common class. For two-class problems

this is done by associating a greater cost with false negatives than with false

positives. This strategy is appropriate for most medical diagnosis tasks be-

cause a false positive typically leads to more comprehensive (i.e., expensive)

testing procedures that will ultimately discover the error, whereas a false

negative may cause a life-threatening condition to go undiagnosed, which
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could lead to death. Assigning a greater cost to false negatives than to false

positives will improve performance with respect to the positive (rare) class.

If for example this misclassification cost ratio is 3:1, then a space that has

ten majority class examples and four minority class examples will nonethe-

less be labeled as the minority class. Thus non-uniform costs can bias the

classifier to perform well on the minority class, where in this case the bias is

desirable. One problem with this approach is that specific cost information

is rarely available. This is partially due to the fact that these costs often de-

pend on multiple considerations that are not easily compared. For example,

in the medical diagnosis task the considerations involve the probability that

an undiagnosed condition will lead to death, the “cost” of a false positive on

a patient’s well being, etc. Thus, without specific cost information, it may

be more practical to only predict the rare class and generate an ordered list

of the best minority predicting rules. Then one can decide where to place

the threshold after data mining is complete. In mathematical notation, let

the (i, j) entry in a cost matrix C be the cost of predicting class i when

the true class is j. If i = j then the prediction is correct so cost of correct

classification is zero, i.e., C(i, i) = 0, while if i �= j the prediction is incorrect.

The optimal prediction for an example x is the class i that minimizes.

L(x, i) = ΣjP (j|x)C(i, j) (2.1)

For each i, L(x, i) is a sum over the alternative possibilities for the true

class of x. In this framework, the role of a learning algorithm is to produce a

classifier that for any example x can estimate the probability P (j|x) of each

class j being the true class of x. For example making the prediction i means

acting as if i is the true class of x. It is noteworthy that the outputs of the

research on class-dependent cost-sensitive learning have been good solutions

to learning from imbalanced data sets [7, 14]. Cost-Sensitive learning has

been suggested as a good solution to these class-imbalance tasks, yet it is not

clear how the class-imbalance affects the cost sensitive classifier.

Liu and Zhou [35] gave an empirical study for the influence of class im-

balance on Cost-Sensitive Learning. From their experiment they conclude
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that class imbalance often affects the performance of cost sensitive classifiers.

Cost-sensitive classifiers generally favour the original class distribution when

misclassification costs differ slightly, while a balanced class distribution is

more favorable when costs differ seriously.

MetaCost [36] is another method to make the classifier cost-sensitive.

This classifier is equivalent to passing the base learner to Bagging (see sec-

tion 2.4), which is in turn passed to a cost-sensitive classifier operating on

minimum expected cost i.e., Equation 2.1. The difference is that MetaCost

produces a single cost-sensitive classifier of the base learner. It is a two

phase procedure, where in the first stage, an internal cost sensitive model is

learned using a base cost sensitive learning algorithm. In the second stage the

MetaCost procedure estimates class probabilities using bagging, relabels the

training examples with minimum expected cost classes, and finally rebuilds

the model using the modified training set.

AdaBoost (see section 2.3.4) has been made cost sensitive [37], so that

examples belonging to the minority class that are misclassified are assigned

higher weights than those belonging to the majority class. The resulting

system, Adacost, has been shown empirically to produce lower cumulative

misclassification costs than Adaboost.

2.3.2.1 Tuning parameter for Classifiers

Drummond and Holte [38] reported that using classifier C4.5 [39] at its de-

fault setting, over-sampling is ineffective, often producing little or no change

using modified cost sensitive technique or class distribution. Moreover they

noted that over-sampling prunes less, therefore generalizes less, than under-

sampling, and modification of C4.5’s parameters to increase the influence of

pruning and avoidance of other factor such as over-fitting, can improve the

performance of over-sampling. Similarly Japkowicz and Stephen [40] argued

that, for severely highly imbalanced data sets, unpruned C4.5 models are

better than the pruned versions. Wu and Chang [41] proposed an algorithm

for Support Vector Machine (SVM) by changing the kernel function to im-

prove the accuracy of the minority class. Veropoulos et al. [42] proposed
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that using a different penalty constant for different classes will improve the

accuracy of the minority class. On the basis of these studies we can argue

that tuning the classifier’s parameter (detail is given in Appendix 2.7) can

help in building better models for imbalanced data sets.

Kaizhu Hang et al. [43] presented Biased Minimax Probability Machine

(BMPM) to solve imbalance problem. With reliable mean vectors and co-

variance matrices for the minority and majority class, BMPM can derive the

decision hyper-plane by adjusting the lower bound of the real accuracy of the

testing set.

2.3.2.2 One class learning

One class learning is recognition based learning, where a model can be cre-

ated with examples from the target class only. This learning provides an

alternative to discriminant analysis. One-class SVM [44] is an example of

one-class learning, for which Manevitz and Yousef [44] found one-class SVM

to be competitive with two-class learning. However they believe that the

results from a classifier trained using only positive class examples will not be

as good as the result using positive and negative class examples.

Kubat et al. [26] introduced a technique “SHRINK” to cope with the

problem of imbalance. This technique is another example of one class learn-

ing. This system labels a mixed space (where both minority and majority

class examples are found) as the positive (minority class) regardless whether

the positive examples prevail in the region or not, which changes the learner’s

focus: Then it searches the best positive space, i.e., the one with the best

positive to negative ratio.

Ripper [45] is a rule induction method that uses a divide-and-conquer

approach to build rules on the training set iteratively. Each rule is grown

by adding new conditions until no majority class examples are found. It

normally generates rules for each class, so it can be viewed as one class

learning.

Raskutti and Kowalczyk [46] compare one-class SVM and two class SVM,

suggesting that one class learning is useful in the presence of extremely un-



2.3 Dealing with Class Imbalance Problems 35

balanced data sets composed of high-dimensional feature space. They argue

that one-class learning is related to the feature selection method (see below),

but is more practical as feature selection is too expensive to apply.

2.3.3 Feature Selection

The goal of feature selection is to select a subset of features that allow the

classifier to reach optimal performance. Generally feature selection meth-

ods can be divided into two groups: wrapper-based and filter-based feature

selections. For wrapper-based techniques a classifier is involved in feature

selection. The major disadvantages of wrapper-based methods are high com-

putational cost and risk of over fitting. Whereas, in filter-based selection

techniques, inherent characteristics of the data are used to select the feature.

Their major disadvantage is to ignore the interaction between the features,

as this technique selects each feature independently of the other.

Using feature selection for imbalanced data sets is a recent development

with the majority of the work focused on text classification and web cate-

gorization domains [47, 48]. Forman [47] investigated multiple filter-based

feature ranking techniques.

Zheng at al. [49] observed that the existing measures used for feature

selection are not appropriate for class imbalanced data sets. They proposed

selecting features for positive and negative classes separately, and then explic-

itly combining them. They used a filter-based technique to create one-sided

and two sided metrics; one sided metrics select only positive features on their

scores, and two sided metrics select both positive and negative features based

on the absolute value of their scores. They then compared the performance

of one sided and two sided metrics with different ratios of best positive and

negative features. The ratio selection method results in better performance,

compared to one and two sided metrics. Thus both positive and negative

features are important to build a model. Castillo and Serrano [50] also used

feature selection as the part of their studies. They used Genetic Algorithm

[31] along with a filter-based feature selection method.
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2.3.4 Ensemble Classifiers

An ensemble classifier uses a collection of base classifiers, instead of one sin-

gle classifier, to make predictions. Breiman [51] used Bagging one of the

ensemble methods, to reduce the prediction error by 20% on average over

various problems. Boosting and Bagging are the most successful approaches

of ensemble classification. The general ensemble approaches still have the

same problem (low classification accuracy of minority class) in class imbal-

ance applications but have been extensively used to handle class imbalance

problems.

The AdaBoost (Adaptive Boosting) algorithm [29, 52] is an effective

boosting algorithm to improve classification accuracies of any “weak” algo-

rithm. It increases the weight of each example which has been misclassified

by the preceding classifier. This forces the following classifier to focus on

those examples which are more often misclassified. The AdaBoost algorithm

is stated to be immune to over-fitting [53]. Therefore, Boosting is an at-

tractive technique in dealing with class imbalance problems. In the 2-class

problems some variants of the AdaBoost have been reported: AdaCost [37],

Cost-sensitive Boosting (CSB1 and CSB2) [54], AdaC1, AdaC2 and AdaC3

[55]. These algorithms use cost information, also regarded as cost-sensitive

boosting algorithms. As Boosting still suffer from low classification accuracy

of minority class, the following variants are proposed for boosting algorithm:

SMOTEBOOST [28] instead of increasing weights of any misclassified class

creates synthetic examples for minority class; RareBoost [56] uses compari-

son of True Positive (TP) and False Positive (FP) and True Negative (TN)

and False Negative (FN) (TP, FP, TN and FN are explained in next section)

in determining the weights of each misclassified example and RUSBoost [57]

uses random under-sampling of majority class before boosting algorithm.

Chan and Stolfo [58] ran multiple experiments to find the ideal class

distribution for building the training model and then used re-sampling to

generate multiple training sets with the desired distribution. Each training

set includes all the minority class examples and a subset of the majority

class examples, where each majority class example is guaranteed to occur in
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at least one training set, hence no information is lost. The classifier is applied

on each data set and a meta-classifier is used to form a composite classifier

from the resulting classification.

The same basic approach for partitioning the data into n subsets and

learning multiple classifiers has been used in a study conducted by Yan et al.

[59]. Yan et al. [59] investigate SVM (Support Vector Machine) ensembles

built with partitioning and various techniques for combining n models to

make the final classification decision. They propose hierarchical SVMs for

aggregating the outputs of SVM ensembles.

Molinara et al. [60] investigate partitioning using two splitting methods:

random splitting and clustering. Random splitting simply separates the ma-

jority class into n independent disjoint random partition, then n models are

constructed each using one partition of the majority class and the entire mi-

nority class. For the clustering approach, they used k-means clustering to

partition the majority class into k partitions. Each of the majority class par-

titions are combined with the entire minority class to create k training data

sets. Random under-sampling or over-sampling is used in each of the k train-

ing sets to balance the class distribution. Their results showed that random

splitting is superior to the cluster based approach. This is to be expected,

since in k-clustering we can not control the number of majority class exam-

ples in each cluster, and we may find a number of clusters where the majority

class examples are less than the minority class. Moreover k-means is highly

dependent on the choice of k, which is still an open question. Other cluster-

ing approaches have been proposed to decompose complex decision boundary,

e.g., non-linear separable boundary into linear separable boundary [61] and

using clustering for under-sampling of the majority class [62, 63].

2.4 Evaluation Measures

Evaluation measures play a crucial role in both assessing the classification

performance and guiding the classifier modeling. Traditionally, accuracy as

define below is the most commonly used measure for these purposes. How-

ever, for classification with the class imbalance problem, accuracy is no longer
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a proper measure since the rare class has very little impact on accuracy as

compared to the prevalent class [14]. For example, in a problem where a rare

class is represented by only 1% of the training data, a simple strategy can

be to predict the prevalent class label for every example. It can achieve a

high accuracy of 99%. However, this measurement is meaningless in some

applications where the learning concern is the identification of the rare cases.

When dealing with a binary classification problem we can always label one

class as a positive and the other one as a negative class. The test set consists

of P positive and N negative examples. A classifier assigns a class to each

of them, but some of the assignments are wrong. To assess the classification

results we count the number of True Positive (TP), True Negative (TN),

False Positive (FP) (actually negative, but classified as positive) and False

Negative (FN) (actually positive, but classified as negative). TP is also called

‘hit’, whereas FP is called ‘miss’ [64]. In biomedical applications, TP/P is

called ‘sensitivity’ whereas TN/N is called ‘specificity’ [65].

It holds that

TP + FN = P (2.2)

and

TN + FP = N (2.3)

The classifier has assigned TP + FP examples to the positive class and

TN + FN examples to the negative class. Let us define a few well-known

and widely used measures:

specificity =
TN

N
⇒ 1 − specificity =

FP

N
= FPR (2.4)

sensitivity =
TP

P
= TPR = recall (2.5)

Y rate =
TP + FP

P + N
(2.6)

precision =
TP

TP + FP
(2.7)
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accuracy =
TP + TN

P + N
(2.8)

missclassification error (MER) = 1 − accuracy =
FP + FN

P + N
(2.9)

Precision, recall and accuracy (or MER) are often used to measure the

classification quality of binary classifiers. The FPR (false positive rate) mea-

sures the fraction of misclassified examples. The TPR (true positive rate) or

recall measures the fraction of correctly classified examples. Precision mea-

sures that fraction of positive examples classified that are true. Lift tells

how much better a classifier predicts compared to a random selection. It

compares the precision to the overall ratio of positive values (Yrate) in the

test set.

lift =
Precision

P/(P + N)
=

Sensitivity

Y rate
(2.10)

2.4.1 Probabilistic Classifiers

Probabilistic classifiers assign a score or a probability to each example. A

probabilistic classifier is a function f : X → [0, 1] that maps each example

x to a real number f(x). Normally, a threshold t is selected for which the

examples with f(x) ≥ t are considered to be target example and the others

are considered non-target examples.

This implies that each pair of a probabilistic classifier and threshold t

defines a binary classifier. Measures defined in the section above can therefore

also be used for probabilistic classifiers, but they are always a function of the

threshold t. Note that TP(t) and FP(t) are always monotonic descending

functions. For a finite example set they are stepwise, not continuous. By

varying t we get a family of binary classifiers.

Note that some classifiers return a score between 0 and 1 instead of a

probability. For the sake of simplicity we shall call them also probabilistic

classifiers, since an uncalibrated score function can be converted to a proba-
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bility function.

2.4.2 F-measure

As mentioned earlier, accuracy is not suitable to evaluate imbalanced data

sets, as accuracy places more weights on the majority class than on minority

class, which makes it difficult for a classifier to perform well on the minority

class. Due to this reason, additional metrics are coming into widespread use.

F-value (or F-measure) is a popular evaluation metric for imbalance prob-

lems [66]. If only the performance of the positive class is considered, two

measures are important: True Positive Rate (TPR) and Positive Predictive

Value (PP value). In information retrieval, True Positive Rate is defined as

recall denoting the percentage of retrieved objects that are relevant. Van

Rijsbergen [67] defined the E-measure as a combination of Recall (R) and

Precision (P) satisfying certain measurement theoretic properties:

E = 1 − (1 + β2)PR

(β2)P + R
(2.11)

F-measure also depends on the β factor, a parameter that takes a value

between 0 and infinity and correspond to relative importance of precision

vs recall. It can be shown that when β = 0 then F-measure reduces to

precision and conversely when β → ∞ then F-measure approaches to recall.

A β of 1 corresponds to equal weighting of recall and precision. To get

a single measure of effectiveness where higher values correspond to better

effectiveness, and where recall and precision are of equal importance, Lewis

and Gale [68] define Fβ=1 = 1 − Eβ=1.

F-measure (F ) is suggested to integrate Recall and Precision as an aver-

age

F-measure =
2RP

R + P
(2.12)

In principle, F-measure represents a harmonic mean between recall and

precision

F-measure =
2

1/P + 1/R
(2.13)
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The harmonic mean of two numbers tends to be closer to the smaller of

the two. Hence, a high F-measure value ensures that both recall and precision

are reasonably high.

2.4.3 G-mean

When the performance of both classes is concerned, both True Positive Rate

(TPR) and True Negative Rate (TNR) are expected to be high simultane-

ously. Kubat et al. [26] suggested the G-mean defined as

G-mean =
√

TPR × TNR (2.14)

2.4.4 Receiver Operating Characteristic (ROC)

Perhaps the most common metric to assess overall classification performance

is Receiver Operating Characteristic (ROC) analysis and the associated use

of the area under the ROC curve (AUC) [69]. When we want to assess the

accuracy of a classifier independent of any threshold, ROC analysis can be

used. In ROC space, one plots the False Positive Rate (FPR) on the x-axis

and the True Positive Rate (TPR) on the y-axis. Some classifiers, such as

Bayesian network inference or some neural networks, assign a probabilistic

score to its prediction. Class prediction can be changed by varying the score

threshold. Each threshold value generates a pair of measurements of (FPR,

TPR). By linking these measurements with the False Positive Rate (FPR) on

the X-axis and the True Positive Rate (TPR) on the Y -axis, an ROC graph

is plotted, please see Fig 2.1. An ROC graph is defined by a parametric

definition [70]

x = 1 − specificity(t), y = sensitivity(t) (2.15)

The ideal model is one that obtains 1 True Positive Rate and 0 False

Positive Rate (i.e., TPR = 1 and FPR = 0). A model that makes a random

guess should reside along the line connecting the points (TPR= 0, FPR = 0),

where every instance is predicted as a negative class, and (TPR = 1, FPR
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Figure 2.1: ROC Curve: the points on the curve represent the per-
formance of the classifier. The ideal model is one that obtains a True
Positive Rate of one and a zero False Positive Rate (i.e., TPrate = 1 and
FPrate = 0, point A in figure. A worst case scenario would be point B,
coordinates (1,0), where TPR is zero and FPR is a maximum. A model
that makes a random guess should reside along the line connecting the
points (TPrate = 0, FPrate = 0), where every instance is predicted as
a negative class, and (TPrate = 1, FPrate = 1), where every instance is

predicted as a positive class.

= 1), where every instance is predicted as a positive class. An ROC graph

depicts relative trade-offs between benefits (true positives) and costs (false

positives) across a range of thresholds of a classification model. An ROC

curve gives a good summary of the performance of a classification model.

To compare several classification models by comparing ROC curves, it is

hard to claim a winner unless one curve clearly dominates the others over

the entire space. The ROC representation allows an experimenter to see

quickly if one classifier dominates another and therefore, using the convex

hull, to identify potentially optimal classifiers visually without committing

to a specific performance measure.

Each binary classifier (for a given test set of examples) is represented by

a point (1-specificity, sensitivity) on the graph. By varying the threshold of
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the probabilistic classifier, we get a set of binary classifiers, represented with

a set of points on the graph. The ROC curve is independent of the P : N

ratio and is therefore suitable for comparing classifiers when this ratio may

vary. Note that the Precision-Recall curve can also be computed, but Davis

and Goadrich [71] showed the curve is equivalent to the ROC curve.

Area under ROC curve is often used as a measure of quality of a prob-

abilistic classifier. The area under an ROC curve (AUC) provides a single

measure of a classifier’s performance for evaluating which model is better on

average. It has been shown in the literature that there is a clear similarity

between AUC and well-known Wilcoxon statistics [72]. It is close to the per-

ception of classification quality that most people have. AUC is computed

with the following formula:

AUC =

∫ 1

0

TP

P
d
FP

N
=

1

P.N

∫ N

0

TPdFP (2.16)

A random classifier (e.g. classifying by tossing a coin) has an area under

curve of 0.5, while a perfect classifier has 1. Classifiers used in practice

should therefore be somewhere in between, preferably close to 1. What does

AUC really express? For each negative example count the number of positive

examples with a higher assigned score than the negative example, sum it up

and divide everything by P ×N . This is exactly the same procedure as used

to compute the probability that a random positive example has a higher

assigned score than random negative example.

AUC = P (Scoretarget > Scorenon-target) (2.17)

2.5 Discussion

It has been observed in studies like [17, 73], that in some domains, standard

classifiers are capable of inducing a good model, even when using a highly

imbalanced training set. Hence it can be argued that class imbalance may not

be the only reason for poor accuracy of the minority class, but that there are
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some other factors as well. Studies conducted by Japkowicz [74] suggested

that not only class imbalance between classes but also within class imbalance

is also relevant. Jo and Japkowicz [32] suggested that class imbalances may

yield small disjunct, causing degradation. Similarly Prati et al. [11] argued

that class imbalance in the presence of class overlap causes problem.

Hence there is general understanding that class imbalance in the pres-

ence of other factors such as small disjunct, within class imbalance or class

overlap etc, is the cause of degradation in the accuracy of the minority class.

However none of studies have been specifically design to tackle these prob-

lem, although there is some suggestion that using clustering techniques [32]

attempts to even out the between-class imbalance as well as the within-class

imbalance simultaneously. Clustering techniques in our opinion are too vague

to apply, as different studies have resulted in mixed results using clustering

techniques [60]. Moreover, none of studies found a particular classifier or

learning algorithm that works consistently better in the class imbalance sce-

nario. There are however some suggestions that re-sampling works better in

increasing the accuracy of minority class with certain classifiers [17]. There

are a great many re-sampling approaches proposed in the literature, that

work better with some imbalanced data sets but not with every imbalanced

data set, hence future research should examine this issue specifically.

2.6 Conclusion

The Class Imbalance problem is an important issue in the data mining and

machine learning community. Our survey of techniques shows that there has

been lot of research in this area especially from the last two decades. There

seems to be a need for a structured study to delineate and understand the

problems with imbalanced data. A deeper understanding of the data sets,

through quantification of the relative degree of class learning difficulty among

data sets, will help us to design better methods or to use existing methods

in a better way for dealing with the class imbalance problem. There is lot of

research in re-sampling or cost sensitive algorithms, but we find only a few

studies that use feature selection in class imbalance problems. Hence there is



2.6 Conclusion 45

need for more research in this field, specifically in class imbalance situations:

to design feature selection methodology that suits class imbalance scenarios.
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2.7 Appendix “Classification Methods”

2.7.1 Logistic regression

For a binary response and p quantitative predictors x1, ..., xp, (some of them

may be dummy variables for coding qualitative variables), the LR model

assumes that the probability of the target response is

π(x1, ..., xp) =
eβ0+β1x1+...+βpxp

1 + eβ0+β1x1+...+βpxp
(2.18)

The glm function in R (Venables and Ripley [75]) tries to compute the

maximum likelihood of the p + 1 parameters by an iterative weighted least

squares (IWLS) algorithm. There are several inferential procedures to test

the statistical significance of the whole model and the individual significance

of each variable. The model may also be interpreted and a great family of

diagnostics criteria are available to identify influential and outlying observa-

tions. LR can be fully embedded in a formal decision framework but, in order

to realize a comparison with the other models, including measures such as

the accuracy, we have the necessity of specifying a threshold probability to

assign a case to one of the two classes, which corresponds to varying the prior

classes probabilities. Given a fixed threshold probability pc, the classification

Y of a vector x will be classified as positive (1) or negative (0) through the

rule: [
1 π̂(x) ≥ pc

0 π̂(x) < pc

]
We will considered possible values for pc: 0.05, 0.10, 0.15, . . . ,0.95. The

logistic regression model will be fitted to each training set.

2.7.2 Classification Trees

A classification tree (CT) is a set of logical if-then conditions, which drive

each instance to a final decision. These conditions can be easily plotted help-

ing us to understand the model. A binary CT is grown by binary recursive

partitioning using the response in the specified formula and choosing splits
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from the set of predictor variables. The split that maximizes the reduction in

impurity (a measure of diversity for the outcome in a specific set of nodes) is

chosen, the data set is split and the process is repeated. Splitting continues

until the terminal nodes are too small to be split. The classification for a

vector is computed by a majority class vote in its terminal node. We used

the rpart package of R (Therneau and Atkinson [76]), which implements the

CART methodology as proposed by Breiman et al. [77]. We used the Gini

index (default impurity measure) as the splitting criterion. Given that large

trees can lead to over fitting the data, with a loss in the generalization capa-

bility for new data, the user must tune a fundamental parameter (pruning):

the number of terminal nodes, called the size of the tree. The rpart function

computes, for each size, both the cross-validated (10-fold) estimate of the

error and a standard deviation for error. The 1sd rule advises one to choose

the smallest tree whose cross validated estimated error is less than minimum

error+1 standard deviation. All of these measures are available from the R

objects computed by the rpart function.

2.7.3 Multilayer perceptron

Artificial Neural Networks (ANN) are a computational paradigm provid-

ing a great variety of mathematical nonlinear models, and are useful for

tackling different statistical problems. Several theoretical results support

a particular architecture, namely the multilayer perceptron (MLP); for ex-

ample, the universal approximate property, as in Bishop [78]. Following

this result, we considered a three-layered perceptron with the logistic ac-

tivation function g(u) = êu/êu + 1 in the hidden layer and the identity

function as the activation function for the output layer. Denoting by H

the size of the hidden layer, vih, i = 0, 1, 2, ..., p, h = 1, 2, ..., H the synaptic

weights for the connections between the p-sized input and the hidden layer,

whj, h = 0, 1, 2, ..., H, j = 1, 2, ..., q the synaptic weights for the connections

between the hidden and the q-sized output layer, the outputs of the neural

network are

oj = w0j +
∑H

h=1 ωhjg
(
υ0h +

∑p
i=1 υihxi

)
, j = 1, 2, ...., q
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In our classification problem the response was codified by a vector z =

(z1, z2) formed by two dummy variables 0 and 1, one for each class, so the

number of outputs was q = 2. For an input vector to the net, the classification

was that class corresponding to the dummy variable achieving the maximum

of the two predictions of the net. An estimation of the probability of the

class j, j = 1, 2, ..., q is easily computed with the softmax expression:

P̂ [j] = eoj∑q
r=1 eor

The nnet R function (Venables and Ripley [75]) fits single-hidden-layer

neural networks by the BFGS procedure, a quasi-Newton method also known

as a variable metric algorithm, published in 1970 by Broyden, Fletcher, Gold-

farb and Shanno, which tries to minimize a least squares criterion that allows

a decay term intending to avoid over fitting problems. The BFGS algorithm

can be found in Bishop [78]. Defining W as the vector of all the M coeffi-

cients of the net, the BFGS method is applied to the following non-linear

least squares problem:

minW

∑n
i=i ‖Zi − ẑi‖ + λ(

∑M
i=i W

2
i )

A major disadvantage of MLP is the fact that there are no known pro-

cedures assuring us to obtain a global solution, and usually at most one

of the many possible local minima is obtained. The R implementation of

a MLP model requires the specification of two parameters: the size of the

hidden layer (H) and the decay parameter (λ), and therefore we fix H=4

and decay(λ) = 0.01. In future we will search over a grid. defined as

5, 10, 15 × 0, 0.01, 0.05, 0.1, 0.2, ..., 1.5.

2.7.4 Support vector machines

Support Vector Machines (SVM) are a family of supervised machine learning

techniques. They were originally introduced by Vapnik and other co-authors

(Boser et al. [79]) and several extensions were successively proposed. When

used for a two-class classification problem where the set of binary labeled

training patterns is linearly separable, the SVM separates both classes with a
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hyperplane that is maximally distant from them (‘the maximal margin hyper-

plane’). If linear separation is not possible, the feature space is enlarged

using basis expansions such as polynomials or splines. However, explicit

specification of this transformation is not necessary, but a kernel function

that computes inner products in the transformed space is required. We have

fitted the SVM models with the svm function available in the library e1071

of the R system (Dimitriadou et al. [80]), which offers an interface to the

award-winning C++ implementation, LIBSVM, by Chan & Lin. The data set

is described by n training vectors xi, yi, i = 1, 2, ..., n where the p-dimensional

vectors xi contain the predictor features and the n labels yiε{−1, 1} identify

the class of each vector. Among the several variants of SVM existing in the

R library e1071, following Meyer (2004) we have used C-classification with

the Radial Basis Kernel because of the small number of parameters to be

tuned (only two). The primal quadratic programming problem to be solved

is:

minω,b,ξ
1
2
ωtω + C

∑n
i=1 ξ i = 1, 2, ..., n

C > 0 is a parameter controlling the trade-off between margin and error, and∑n
i=1 ξ is an upper bound on the sum of distances of the wrongly classified

cases to their correct plane. The dual problem is

minα
1
2
αtQα − etα 0 ≤ α ≤ C

ytα = 0
where e is the n-vector of all ones, and Q is a positive semi-definite matrix

defined by Qij = yiyjK(xi, xj), i, j = 1, 2, ..., n, being K(xi, xj) = φ(xi)φ(xj)

the kernel function. No explicit construction of the nonlinear mapping φ(x)

is needed, what is called the kernel trick. A vector x is classified by the

decision function

sign(
∑n

i=1 yiαiK(xi, x) + b)

depending on the margins mi =
∑n

i=1 yiαiK(xi, x) + b, i = 1, 2, ..., n. The

greater the absolute value of the margin, the more reliable is the computed

classification. The exploratory analysis of the margins could help to enlighten

the SVM model (Furey et al. [81]). The Radial Basis Function (RBF) was

our choice for K:
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K(u, v) = exp(−γ‖u − v‖2)

Note that the solution to the quadratic programming problem is global,

avoiding the non optimality of the neural network training algorithms. So,

two parameters must be tuned: C and γ. An estimation of the probability

of both classes can be computed with the following expressions:

P̂ [Class labeled “0”] = 1
1+emi

; P̂ [Class labeled “1”] = emi

1+emi

Currently we used default value for the parameter C and γ of the svm

function in the R library e1071, defined as 1/p, with p being the number of

predictors, while C = 1.



Chapter 3

Measurement and Visualization

of Data Complexity for

Classification Problems with

Imbalanced Data

We introduce a complexity measure for classification problems that takes ac-

count of deterioration in classifier performance due to class imbalance. The

measure is based on k-nearest neighbors. We explore the choices of k and

the distance metric through a simulation study, and illustrate the use of our

measure, and related data visualization techniques, with real data sets from

the literature.

3.1 Introduction

Theoretically [1] and empirically, there is general understanding that different

types of data require different kinds of classification. Not every imbalanced

data set can be a problem for learning [2, 3]. It seems that the problem

is rather with the small class in the presence of other factors such as class

overlap [4]. The experiment conducted by Jo and Japkowicz [2] also suggested

that degradation in class learning is not directly related to class imbalance
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alone, but rather to small disjunct (small subsets of isolated examples).

Given the suggestion that the imbalanced class distribution may not be

the only problem, we see the need for a structured way of investigating and ex-

plaining what intrinsic features of the data are affecting the degraded learning

performance of an imbalanced data set. We think that the answer could be

found through data complexity analysis or exploratory data analysis (EDA),

and that data complexity measures can be used to devise a structured study

for learning about class imbalance problems.

The classification error of an optimum Bayes classifier is an important

parameter for pattern classification (the science of making inferences from

perceptual data) and feature selection [5]. This parameter is recognized as a

benchmark for other classification techniques and also as a “goodness” crite-

rion for feature selection used in the classification. The Bayes error provides

the lower error bound that can be achieved by any pattern classifier [6, 7].

This error rate will be greater than zero whenever class distributions over-

lap. When all the class priors and conditional likelihoods are completely

known, in theory the Bayes rate can be obtainable [7], but only in simple

situations and for Gaussian distributions can it be calculated directly. To

measure the divergence between two Gaussian distributions the statistical

literature suggests: Mahalanobis distance, Euclidean distance (most popu-

lar), J-Coefficient, Kullback-Leibler divergence, χ2 divergence, Minkowsi L2

distance, Hellinger coefficient and Bhattacharyya distance. For more details

see H.-H. Bock [8], Chapter: Dissimilarity Measures for Probability Distribu-

tions. However when the pattern distributions are unknown, the Bayes error

cannot be readily computed. Thus, one cannot know how much classification

error is due to class density overlap and how much is due to limitations of

the training data (such as class imbalance) or deficiencies in the classifier. It

is important to not only design a good classifier but to have a limit or bound

on the achievable classification rate for a given data set [9]. Such an estimate

will help researchers to decide whether to improve the current classifier, to

use another classifier on the same data set or to acquire more data.

In the literature data complexity measures have been reviewed by Ho

[10], who composed different complexity methods and was able to uncover
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different data structures in real data sets, observing a relationship between

the overall classification performance and data complexity. Details of these

measures are given below. Another work by Weng and Poon [11] also looked

at data complexity and tried to analyze classifier performance using the data

complexity measurements of Ho [10]. They looked at just two data sets so

did not do any correlation analysis to make the relation more explicit.

In this chapter we utilize data complexity to investigate the relationship

between the degradation of classifier performance and certain features of the

training data, specifically class imbalance and class overlap. Unlike alterna-

tive performance measures such as G-Mean and Sensitivity, our complexity

is independent of the choice of the classifier. Data complexity in our context

is the quantification of the degree of difficulty in class learning from a given

data set. In this study we investigate class imbalance with theoretical known

Bayes error. Our approach is also motivated geometrically in that we are

looking at the location of cases as data points in a suitable space and how

they are distributed within each class. This approach leads naturally to the

consideration of data visualization as an additional tool for examining data

complexity. We propose a new complexity measure designed to be sensitive

to class imbalance, and investigate its properties and uses.

In the next section we review existing complexity measures. We then

introduce our proposed measure based on k-Nearest Neighbors for estimation

of Bayes error, and discuss visualization methods. Section 3.4 compares the

properties of several complexity measures via a simulation study. In section

3.5 we illustrate our methodology using real data sets from the literature.

We conclude with a discussion and suggestions for further research.

3.2 Data Complexity

In the literature a number of different but related approaches have been taken

to measure the complexity of data sets. In this section we will review the

current study on data complexity.
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3.2.1 Studies on Data Complexity

Data complexity can be described as an indicator that shows the level of

difficulty in class learning for a specific data set. Ho and Basu [12] proposed

some complexity measures for binary classification problems. They classified

complexity measurement under three different headings: overlaps of feature

spaces from different classes, separability of classes and measures of geom-

etry, topology and density of manifolds. This study has been widely used

subsequently. In the literature we can see a number of studies using data com-

plexity as a measure to define the strength of their methodology or to make a

comparison between different classifiers using one or more of the complexity

measures introduce by Ho and Basu [12]. For example studies conducted

by Bernado-Mansilla and Ho [13], Li et al. [14], Baumgartner and Somorjai

[15] and Garcia et al. [16] used complexity measures. They were not dealing

with imbalanced data sets. Sanchez et al. [17] however compared different

classifiers using artificial data sets with different degrees of imbalance, but

no real data. Hence their study cannot infer an explicit relationship between

data complexity and classifier performance in real data sets in imbalance

cases. The core of the question is how some of the data complexity measures

are related to the accuracy of the classification algorithms, and which data

complexity measures appear to better describe the behavior of a classifier.

Our aim is to investigate the utility of these measures in class imbalance

scenarios.

3.2.2 Data Complexity Measures

Data complexity measures used in Ho and Basu [12] are summarized in Table

3.1.

In our simulation study, where the overlap is controlled and all dimensions

are, by construction, equally important, we will use N1 and N2 to measure

the separability of the classes. In our analysis for real data sets only F1, L3

and N1 measure of the 12 presented in Table 3.1 proved to be informative fol-

lowing the methodology explain in section 3.5. These measures are explained

below.
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Table 3.1: Data Complexity Measures by Ho and Basu

Groups ID Details
Measure of overlap in feature F1 Maximum Fisher discriminant ratio
values from different classes F2 Volume of overlap region

F3 Maximum (Individual) feature efficiency
Measure of separability of
Classes

L1 Minimized sum of error distance by linear pro-
gramming

L2 Error rate of linear classifier by linear program-
ming

N1 Fractions of points on class boundary
N2 Ratio of average intra/inter class NN distance
N3 Error rate of 1NN classifier

Mearsures of geometry, topol-
ogy

L3 Nonlinearity of linear classifier by linear pro-
gramming

and density of manifolds N4 Non-linearity of 1NN classifier
T1 Fraction of points with associated adherence

subsets retained
T2 Average number of points per dimensions

N1: Fractions of points on class boundary: The use of this measure

was inspired by the test proposed by Friedman and Rafsky [18] for

whether two multivariate samples are from the same distribution. This

is given as the percentage of points on an edge connecting two opposite

classes in the Minimum Spanning Tree (MST) connecting all training

samples. In simple terms it is a measurement obtained by counting

the number of boundary points, i.e. each of these points is a case con-

nected to an example from a different class. The count is normalized

as a proportion of total cases to give a value between 0 and 1: a value

close to 0 means the data is separable and vice versa. According to Ho

[10] this measure is sensitive to both the separability of the classes and

the clustering tendency of the points of each class.

N2: Ratio of intra- versus inter-class nearest neighbors: This measure

compares the dispersion within each class to the dispersion between the

classes. In other words it compares the average distances between cases

within each class to those in different classes. To compute this mea-

sure, first measure the average distance between points within a class
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(intra-class) and the average distance from each point to its neighbors

outside the class (inter-class). Dividing the intra-class average distance

by the inter-class average distance, we get a ratio. A value close to

zero indicates that cases are well differentiated into classes, and if the

value is near to, or greater than, 1 it indicates that cases are highly

overlapped.

F1: Maximum Fisher’s discriminant ratio: A classical measure of the

discriminative power of the covariates, or features, is Fisher’s discrimi-

nant ratio:

f =
(μ1 − μ2)

2

σ2
1 + σ2

2

(3.1)

where μ1, μ2, σ2
1 and σ2

2 are the means and variances of the two classes,

respectively. For multidimensional problems, it is not necessarily the

case that all features contribute to class discrimination, so the maxi-

mum f over all features can be used. However, a zero maximum f does

not necessarily mean that the classes are not separable, as it could just

be that the separating boundary is not parallel to an axis in any of the

given features [10].

L3: Nonlinearity of nearest neighbor or linear classifier: Hoekstra and

Duin [19] proposed a nonlinearity measure for a classifier with respect

to a data set. The measure is computed by randomly choosing pairs

of points from the same class and creating an artificial case between

them by linear interpolation. Then apply a nonlinear classifier on the

artificial point and on one of the original pair of cases. If the classifier

(e.g. a support vector machine with the linear kernel) disagrees on the

two points then this is taken as evidence of nonlinearity. This measure

is sensitive to the smoothness of the classifier’s decision boundary as

well as the overlap of the convex hulls of the classes.

If the complexity measures described above are based on Euclidean dis-

tance, this restricts them to situations in which all the features to be used in

classification are numerical, as opposed to categorical, variables. Moreover,

they are mostly based on a 1-Nearest Neighbor (1-NN) approach. Since each
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reports a single complexity measure, they do not take account of the differ-

ential performance of classifiers across different classes, as is known to occur

in situations where there is class imbalance. In the next section we propose

and motivate some alternatives.

3.2.3 Complexity, Overlap and Imbalance

Let us assume the simple situation illustrated in Figure 3.1 where a single

feature x is used to classify cases into Class 1 or Class 2. We assume perfect

information in that the probability distributions of x conditional on class

membership are known, say f1(x) in Class 1 and f2(x) in Class 2. In Figure

3.1, p1 represents the portion of the probability density function of Class 1

for which f1(x) < f2(x); this represents the probability that a case actually

coming for Class 1 has an x value that makes it seem more likely to come

from Class 2. Such cases would thus be expected to be misclassified even with

perfect information on the conditional densities. Similarly, p2 represents the

probability that a case coming from Class 2 looks as if it really came from

Class 1.

p2 p1

µ1 µ2x

Class 1 Class 2

Figure 3.1: Overlap for two classes with a single feature, x

We measure the overlap of the probability density functions by p1 +p2. It

will depend on the distance μ2 − μ1 separating the means of the conditional

distributions relative to the standard deviations. In Figure 3.1 the distri-

butions are assumed to be normal with equal standard deviations, so that
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p1 = p2, and these probabilities are easily calculated given the means and

standard deviations. We can also easily calculate the separation | μ2−μ1 | re-

quired to give prescribed values for p1 and p2. If instead we consider unequal

standard deviations, multivariate features, or non-normal probability densi-

ties, it may not be possible to perform these calculations exactly. We can

however, still assuming the densities are known, approximate p1 by Monte

Carlo integration, simulating a large number of cases from f1 and calculating

the proportion for which f1(x) < f2(x); similarly for p2.

Suppose now that a proportion π of cases in the population come from

Class 2. Then the proportion of cases misclassified with perfect information

will be (1 − π)p1 from Class 1 and πp2 from Class 2, thus a total of (1 −
π)p1 +πp2; this represents the total classification error rate if we have perfect

information and use likelihood to classify (unadjusted by prior information

on class membership). Note that this depends on both the overlap and on

the degree of class imbalance (unless p1 = p2).

In reality we do not have perfect information and training data must

be substituted for knowledge of the conditional probability densities. If the

classes are perfectly balanced (π = 0.5) then the likelihood criterion f1(x) <

f2(x) can be approximated by examining the k nearest neighbors of x for

odd k and making a majority decision. However class imbalance distorts this

test, tending to always favor the majority class.

3.2.4 Bayes Error

For a given dimension, the Bayes error rate can provide a lower bound on

the error rate that can be achieved by any pattern classifier acting on that di-

mension [6, 7]. This rate is greater than zero whenever the class distributions

overlap. When all the priors and class conditional likelihood are completely

known, one can, in theory, obtain the Bayes error directly [7].

Let us assume a situation where a given pattern vector x needs to be

classified into one of Y classes. Let p(yi) denote the prior class probabilities

of class i, 1 ≤ i ≤ Y , and p(x|yi) denote the likelihood i.e., the conditional

probability density of x given that it is belongs to class i. The probability of
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the pattern x belonging to specific class i, i.e., posterior probability p(yi|x)

is given by the Bayes rule:

P (yi|x) =
p(x|yi)p(yi)

p(x)
(3.2)

where p(x) is the probability density function of x and is given by:

p(x) =
Y∑

i=1

p(x|yi)p(yi) (3.3)

The classifier that assigns a vector x to the class with the highest posterior

is called the Bayes classifier. The error associated with this classifier is called

Bayes error, which is expressed [7] as:

EBayes = 1 −
Y∑

i=1

∫
Yi

p(yi)p(x|yi)dx (3.4)

where Yi is the region where class i has the highest posterior. Obtaining

the Bayes error from equation 3.4 requires evaluating the multi-dimensional

integral of possibly unknown multivariate density functions. Since it is very

difficult to estimate, the Bayes error can be computed directly only for very

simple problem, e.g., problems involving Gaussian class densities with iden-

tical covariances. Alternatively, one can estimate the densities using general

techniques (e.g., through Prazen windows [20]). Since this is not simple and

error can be introduce during estimation, attention is focused on approxi-

mations and bounds for the Bayes error, which is either calculated through

distributional parameters or estimated using training data .

3.2.4.1 Parametric Estimate of the Bayes Error

A simple bound for the Bayes error can be obtained from the Mahalanobis

distance measure [6]. For the two class problem, let
∑

be a non singular,

average covariance matrix (
∑

= p(y1)
∑

1 +p(y2)
∑

2), and μi the class mean
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vector, i = 1, 2. Then the Mahalanobis distance M given by:

M = (μ1 − μ2)
tΣ−1(μ1 − μ2) (3.5)

provides the following bound on the Bayes error [6].

EBayes ≤ 2p(y1)p(y2)

1 + p(y1)p(y2)M
(3.6)

The Mahalanobis distance is an easy and quick way of obtaining an ap-

proximation of Bayes error. However, it is not a particularly tight bound

[21].

Another bound for a two class problem can be obtain from the Bhat-

tacharyya distance given by [6]:

ρ = − ln

∫ √
p(x|y1)p(x|y2)dx (3.7)

Assuming that the class densities are Gaussian, the Bhattacharya distance

is given by [7]:

ρ =
1

8
(μ2 − μ1)

t

(∑
1 +

∑
2

2

)−1

(μ1 − μ2) +
1

2
ln

∣∣∣∑
1 +

∑
2

2

∣∣∣√|∑1 ||
∑

2 |
(3.8)

Using the Bhattacharyya distance the following bounds on the Bayes error

can be obtain [6].

1

2
(1 −

√
1 − 4p(y1)p(y2) exp(−2ρ) ≤ EBayes ≤ exp(−ρ)

√
p(y1)p(y2) (3.9)

In general Bhattacharyya distance gives a tighter bound on the Bayes error

than the Mahalanobis distance, but it has drawbacks. It requires knowledge

of class densities and is more difficult to calculate. Even if the class distri-

bution is known calculation for equation 3.7 is not generally practical. For

more discussion see [22]. A tighter upper bound than Mahalanobis distance

and Bhattacharyya distance based bounds is provided by Chernoff bound

[7, 21]. Since Chernoff bound is computationally expensive and usually Bat-
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tacharyya distance is preferred [5], we will restrict our computation of Bayes

bound to Mahalanobis and Bhattacharyya based distances.

3.2.4.2 Non-Parametric Estimates of the Bayes Error

The computation of the bounds of two class problems presented in the last

section depends on knowing (or estimating) certain class distribution param-

eters, such as priors, class means and covariance between classes. A method

for estimating the Bayes error without requiring the class distributions of the

data set is based on the nearest neighbor technique (NN). The Bayes error

can be given in terms of the error of the NN classifiers. Given a two class

problem with sufficiently large training data, the following results hold [23]:

1

2
(1 − 2

√
1 − 2ENN) ≤ EBayes ≤ ENN (3.10)

where ENN is the error rate of nearest neighbors (majority class label of the k

nearest neighbors is form other class). This result is independent of distance

metric chosen.

3.3 Methodology: Data Complexity

Measurement based on K-Nearest

Neighbors

As stated earlier the Bayes error bound can be computed with the help of

nearest neighbors (NN). We now extend it to the imbalance scenario. Note

that in the binary class case equation 3.4 can be written as:

EBayes = P1

(
1 −

∫
Y1

p(x|y1)dx

)
+ P2

(
1 −

∫
Y2

p(x|y2)dx

)
(3.11)

where P1 and P2 are the prior probabilities for class 1 and class 2.

When two pattern classes are to be separated, errors occur in one of

the two ways: either a pattern vector from class 1 is assigned to class 2 or
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pattern vector from class 2 assigned to class 1. Let Pi be the prior probability

of class yi and p(X|yi) be the conditional probability density of pattern vector

X when it comes from class yi. Applying the pattern vectors to an optimum

Bayes classifier, the first error rate can be written as:

E1 = Prob {P (Y1)p(X|y1) < P (Y2)p(X|y2) | X ∈ y1} (3.12)

and the second error rate as:

E2 = Prob {P (Y1)p(X|y1) > P (Y2)p(X|y2) | X ∈ y2} (3.13)

The total error rate is then:

E∗ = E1 + E2 (3.14)

Our approach focuses on the local information for each data point via

nearest neighbors, and uses this information to capture data complexity. Cal-

culation involves finding the k nearest neighbors of every data point in the

class, where k is odd. If the majority of the neighbors are in the same class,

this point is designated as easy to classify; if most of the neighbors are in the

opposing class, it is difficult. Complexity can be measured as follows:

For a single point (case j) in class Yj with neighborhood Nj

CMk(j) = I

(
number of patterns j′ in Nj with Yj′ = Yj

k
≤ 0.5

)
(3.15)

where I(.) is the indicator function. The overall measure is

CMk =
1

n

n∑
j=1

CMk(j) (3.16)

The overall complexity measure is the proportion of points classified as diffi-

cult, but this can be decomposed into separate measures for the complexity

of each class corresponding to decomposition in equation 3.11 and 3.14.
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CMk,i =
1

ni

∑
Yj=i

CMk(j) (3.17)

Typically k should be large enough to use this approach properly (i.e., we

can seen the trend in error rate for the various choices of k). We recommend

using an odd number for k to avoid ties. Deciding on k is a non trivial

problem in the literature. We suggest:

k = argmin
k′

(CMk′ − CMk′−2) ≤ α (3.18)

where α is a chosen threshold value. Our experiments suggest that low over-

lap needs only a low value of k, whereas for higher overlap the complexity

measure only stabilizes at higher k. Solving for k in equation 3.18 analyt-

ically is not possible so we use a data driven approach, increasing k until

CM does not increase appreciably (see Figure 3.2 for visualization). This

formulation will be materialized specifically in section 3.5.

3.3.1 Distance metric

The identification of nearest neighbors presupposes a distance metric that

uses the available features or variables to measure the dissimilarity between

cases. A complimentary concept is proximity, that measures the degree to

which a pair of cases are similar. A proximity measure can easily be converted

into a distance, and vice versa. In our study we examine both Euclidean

distances and proximity measured by the Random Forest [24] technique to

find nearest neighbors. We now discuss their relative merits for our purpose

from a theoretical perspective.

Euclidean Distance : This is widely used and intuitively appealing. In

two or three dimensions, it is easily visualized as the length of the straight

line connecting two points x and y. In p dimension the Euclidian distance is

defined as:

d(x, y) =

√√√√ p∑
i=1

(xi − yi)2 (3.19)
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where x = (x1, . . . , xp) and y = (y1, . . . , yp).

One problem with this method is that Euclidean distance is sensitive to

large values: in other words, it is sensitive to outliers. Secondly this method

is scale dependent: if we multiplied all the values of one feature by a constant,

for example changing height from meters to centimeters, this would change

its contribution to the overall distance and possibly affect the set of nearest

neighbors. Thirdly it is not suitable for data with categorical features since

it requires all contributing variables to be numerical.

Another area needing extra attention is that when the scales of original

variables are widely different, it is commonly recommended to standardized

the original variables first, before applying Euclidean distances, in order to

alleviate the adverse effect of different scales associated with the original

variables. We use standardization of variables for all data sets for this chapter

and throughout the thesis, before applying Euclidean distances.

Random Forest: A Random Forest [24] is a collection of classification

trees generated randomly using a two-step process. First a bootstrap sample

of cases is taken from the training data set. Secondly, a classification tree is

grown in which features are selected from a randomly chosen subset at each

node. It is used as a classifier by combining the individual classifications

from each tree in the “forest”.

This process can be used to calculate a proximity measure as follows. The

original data are labeled as class 1, and a synthetic data set is constructed by

simulation and labeled as class 2 . We then try to classify the combined data

with a Random Forest. There are two ways to simulate the class 2 data:

1. The class 2 data are sampled from the product of the marginal distribu-

tions of the variables (by independent bootstrapping of each variable).

2. The class 2 data are sampled uniformly from the hypercube containing

the data (by sampling uniformly within the range of each feature).

In the Random Forest algorithm, Breiman [24] constructs similarity ma-

trix as follows:

1. Send all learning examples down each tree in the forest
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2. If two examples land in the same leaf, increment corresponding element

in similarity matrix by 1

3. Normalize the matrix with the number of trees.

Breiman [24] stated that the proximities between cases n and k form a

matrix {prox(n, k)}. From the definition, it is easy to show that this matrix

is symmetric, positive definite and bounded above by 1, with the diagonal

elements equal to 1. It follows that the values 1 − prox(n, k) are squared

distances in a Euclidean space of dimension not greater than the number of

cases.

The idea here is that the real (i.e., ‘class 1’) data points that are similar

to one another will frequently end up in the same terminal node of a tree.

The proximity matrix gives, for each pair of cases, the proportion of trees in

the forest for which the two cases are in the same terminal node. This can

be converted to a dissimilarity matrix by subtracting all the elements from

1. Liaw and Wiener [25] showed how clustering or multi-dimensional scaling

using this dissimilarity measure can be used to divide the original data points

into groups for visual exploration. We use random forest proximity measure

for its many theoretical advantages (for more detail see Shi and Horvath,

[26]).

3.3.2 Visualization

For a given distance metric, the corresponding dissimilarity matrix can be

used to represent the data in low-dimensional space. For this we use Multidi-

mensional Scaling (MDS), a statistical technique originating in psychometrics

[27]. The data used for MDS are dissimilarities between pairs of objects. The

main objective of MDS is to represent these dissimilarities as distances be-

tween points in a low dimensional space such that the distances correspond

as closely as possible to the dissimilarities. This representation can then be

displayed visually using graphical techniques.

Visualization of data based on distances is a powerful methodology (“a

picture is worth a thousand words”). It gives excellent training in visual
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thinking/cognition “. . . us(ing) not language but mental graphics system,

with operations that rotate, scan, zoom, pan, displace, fill-in . . . ” (Pinker,

1994, p73) [28]. Visualization is primarily dependent on the analogy between

similarity and proximity (and hence between dissimilarity and distance) and

can be enhanced by movement/interaction and color.

In our situation, visualization can be used in conjunction with our com-

plexity measure to see the degree of overlap between two class. It can help

us to analyze the performance of classifiers on a given data set, and reveal

structures in the data that affect this performance.

3.4 Simulation Study

In our simulation study we want to investigate the following:

• Quantification of complexity based on k-nearest neighbor for various

choices of k;

• Effect of degree of overlap and class imbalance on complexity;

• Comparison with existing techniques for data complexity;

• Comparison of Random Forest distance with Euclidean distance.

3.4.1 Design

Simulation data were generated from two p-dimensional multivariate normal

distributions with equal covariance matrices Σ and with μ0 = (0, 0, ..., 0)′

and μ1 = (m,m, ..., m)′. Scenarios are defined by Δμ the vector of mean

differences for the classes. We varied the class size n1 and n2, where n1+n2 =

N , to give different imbalance scenarios. (However, this generalizes by a

change of co-ordinates to any system with equal covariance and different

means.) For a given Δμ and equal sample sizes i.e., n1 = n2, the optimal (i.e.

Bayes) error rate is:

EBayes = 1 − Φ

(
1

2
Δμ ×√

p

)
(3.20)
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Table 3.2: k-Nearest Neighbor Simulation Design

Bayes Error Δμ n1 n2

0.4 0.29 1000 1000, 500, 300, 200, 90
0.3 0.61 1000 1000, 500, 300, 200, 90
0.1 1.48 1000 1000, 500, 300, 200, 90

where Φ is the CDF of the standard normal distribution. In general the

estimated error rates should be interpreted as optimistic because the analysis

uses appropriate models for the data; for real data one does not know what

classification methods are appropriate. In case of imbalance equation 3.20

becomes:

EBayes = 1 − Φ

(
log(P1) − log(P2)

4 × Δμ

+
1

2
Δμ ×√

p

)
(3.21)

where P1 and P2 are the prior probabilities for class 1 and class 2.

Table 3.2 shows the values of Bayes error, n1 and n2 chosen for the ex-

periments. We verified the Bayes error using Monte Carlo integration by

equation 3.12 and 3.13.

For dimensions p: 2, 5 and 10, multivariate normal distributions were also

simulated and analyzed, but due to similar nature of pattern/results, these

are not presented.

All programs were written in the statistical environment R [29] and rel-

evant R function are given in Appendix 7.2. For the construction of tree

models we used the RPART package [30], for nearest neighbor based on Eu-

clidean distance we used R package class [31], with a little modification of

the input and output and to compute Random Forest distances we used the

R package randomForest [24].

3.4.2 Results

Detailed results for p = 3 are tabulated in Appendix 7.2. Here we discuss

our main findings and give illustrative graphical summaries. One finding

of the study is that the complexity measures based on N1 tend to over-
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estimate the theoretical overlap, whereas complexity measures based on k-

NN where k > 2 , like 5NN and 7NN, improve estimation of the overlap.

A typical example for p = 3 is shown in Figure 3.2 for the balanced case

(n1 = n2 = 1000, top left). The complexity measure is shown first for

Class 1, then for Class 2, for 3-, 5-, 7-and 9-NN, with error bars to show

variability across simulations. B1, B2 give the Bayes error, i.e., knowing the

probability distributions of the two classes. N1 represents the complexity

measurement proposed by the Ho and Basu [12] but here decomposed into

separate measure for each class. From Figure 3.2 we can see that, if we

have high overlap for the balanced distribution, complexity is the same for

both classes, and as we increase the number of neighbors it becomes more

compatible with actual degree of overlap (B1 and B2). When we reduce

the degree of overlap, complexity measurement for both classes decreases as

expected, and the results for different values of k become more similar. This

is also true for the complexity measurement N1: with less overlap we get

lower N1 values for both the classes although it is overestimating the Bayes

error. Another complexity measure proposed by Ho and Basu [12] N2 gives

0.98±0.01 for all degrees of overlap, so is insensitive to the degree of overlap.

We can see from Figure 3.2 how complexity of the minority class becomes

high, in comparison to the majority class, when class imbalance increases in

the presence of overlap. The class overlap is shown by the corresponding

Bayes error of respective classes. For the severe imbalance data sets (minor-

ity class under 10%, Figure 3.2, bottom right), the Bayes error is near zero

for class 1, when there is severe class imbalance and high overlap. When this

is compared to our proposed complexity measure, its complexity become zero

when k increases. This corresponds to the domination of the majority class

when we classify severely imbalanced data sets. Similarly for the other Bayes

error (less overlap) scenario (see the Figure 3.2, top right and bottom left),

we can find relatively less complexity for minority class and more complexity

for the majority class. This indicates that class imbalance with high overlap

is fatal for minority class accuracy. When comparing to the existing com-

plexity measurements (proposed in the literature by Ho and Basu [12]) we

find that these complexity measurement are insensitive to class imbalance in
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Figure 3.2: Complexity measurement for simulated 3 dimensional nor-
mal multivariate distributions. The different panels show different de-
gree of imbalance from the balanced distribution 1000 observation is
each class(top left), imbalanced data set 1000 observation in class 1 and
500 in class 2 (top right), imbalanced data set 1000 observation in class 1
and 300 in class 2 (bottom left), to severely imbalanced 1000 observation
in class 1 and 90 in class 2 (bottom right). The complexity measure is
shown first for Class 1, then for Class 2, for 3-, 5-, 7- and 9-NN with error
bars to show variability across simulations. B1, B2 give Bayes error and

N1 gives fraction of points on class boundary.
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overlapped cases, i.e., N1 give the same complexity for both of the classes

even though in reality complexity of minority class should be much higher

than the majority class. This measure is sensitive to class overlap, but not

class imbalance. However, N2 gives us complexity of 0.67 ± 0.02 in all the

overlapped cases, so this measure is insensitive to class overlap. Both N1

and N2 depend on the total number of observations but not the class sizes,

making them unsuitable in class imbalance situations.

When we applied Random Forest distances from balanced to severe imbal-

anced data sets we obtained results similar to those for Euclidean distance.

We also did further simulations, not shown here, using the Random Forest

based complexity measure on mixed type data sets (some continuous and

some categorical features) that gave broadly similar results.

To summarize the findings of this simulation study:

1. k-nn where k > 2 may be used in order to capture the complexity of

classes with imbalanced data;

2. The complexity measures proposed by the Ho and Basu [12] work well

for balanced data but cease to capture complexity in imbalanced data

sets. N1 and N2 are insensitive to class imbalance, which is a disad-

vantage as severe imbalance (minority class ≤ 10%) seriously degrades

classifier performance;

3. As k increases, k-nn becomes more consistent with the Bayes error;

4. As the imbalance increases our complexity measure for the minority

class increases appropriately.

The main purpose of our complexity measure is to see the effect of class

imbalance with different levels of complexity. As N1 is insensitive to class

imbalance, so we have to consider a higher nearest neighbor approach to

measure actual complexity for each class.
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3.5 Real Data Sets

3.5.0.1 Threshold to regulate k in Complexity Measurement

(CM)

The choice of number of nearest neighbors, k, can be informed by the finding

of the simulation study. For low overlap we prefer lower k, because increasing

the nearest neighbor gives the same result. For higher overlap the complexity

measure will stabilize at higher k, so we use the k where the complexity

for the minority class does not change appreciably with further increase.

For example Fig 3.2, we can see there is not much difference between the

complexity measure by k=7 and k=9, so we prefer k=7. That is why we put

the condition as define in equation 3.18. We fix the threshold as:

α = 0.025 × number of observations in minority class (3.22)

We keep increasing k until the complexity for a specific data set does not

change by more than α; then k satisfies equation 3.18. We choose 0.025 as

a rule of thumb, which we have found appropriate for the data sets we are

using, but of course it can be changed to a more appropriate value, if we have

some prior knowledge about the data sets, or if the misclassification cost is

known. We make it adaptive for different imbalanced data sets by including

the number of observations of minority class, i.e., for relative high minority

class size α will be high, and for severe imbalances cases α will be low.

To investigate the performance of our complexity measure with real data,

we have used 20 data sets from the UCI data repository [32]. Since there is

only a limited number of binary class problems available, we have transformed

multi-class data sets using a 1-vs-others approach. By using different choices

for class 1, the same data set can be used to create different degrees of

imbalance and complexity. Information about these data sets is summarized

in Table 3.3, where Size is the total number of observations, Attributes is the

number of dimension, Target is the minority class while the majority class is

the union of all other classes. �Min and �Maj are the sizes of the minority

and majority class, and %Min shows the proportional size of the minority
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Table 3.3: Description of UCI data sets

Data sets Size Attributes(p) Target �Min �Max %Min

Abalone1 4177 8 Ring=7 391 3786 9.4
Abalone2 4177 8 Ring<7 448 3729 10.7
Abalone3 4177 8 Ring=19 32 4145 0.77
Balance 625 4 Balance 49 576 7.8
Car 1728 6 acc 384 1344 22.2
Cmc 1473 9 class 2 333 1140 22.6
Haberman 306 3 class 2 81 225 26.5
Ionosphere 351 34 bad 126 225 35.9
Letter 20000 17 A 789 19211 3.9
Pima 768 8 class 1 268 500 34.9
Satimage 6435 36 class 4 626 5809 9.7
Vehicle1 846 19 opel 212 634 25.1
Vehicle2 846 19 saab 217 629 25.7
Vehicle3 846 19 bus 218 628 25.8
WDBC 569 34 malignant 212 357 37.3
WPBC 198 34 recur 47 151 23.7
Yeast1 1484 8 nuc 429 1055 28.9
Yeast2 1484 8 ME3 163 1321 11
Yeast3 1484 8 exc 35 1449 2.4
Yeast4 1484 8 ME1 44 1440 3.0

class. In order to preserve the class ratio, stratified 5-fold cross validation

was used to obtain training and test subsets (ratio 4:1) for each data set.

In order to produce unbiased results we used Classification Tree (CT) as

a base learner. We applied CT to each data set and measured the learning

performance on the smaller class by the sensitivity (accuracy of minority

class) and G-Mean. Table 3.4 illustrates the results using the sensitivity

(accuracy of minority class) and G-Mean along with complexity proposed by

Ho and Basu (F1, L3, N1) [12] and our proposed complexity measurement

(CM). Sensitivity is chosen because we are interested in accuracy for the

minority class rather than overall accuracy. We evaluated the algorithms

using the metric G-Mean defined as
√

TP × TN [33], which corresponds

to the geometric mean between the correct classification rates for positive

(sensitivity) and negative (specificity) examples, respectively. All analyses

were done with 5-fold cross validation with the resulting sensitivity values

averaged to a single score. We use these scores as the general indicator of

whether a data set is easy or difficult to learn. We want to see how well the



3.5 Real Data Sets 83

Table 3.4: This tables compares Sensitivity values and G Mean on
UCI Imbalanced data sets. Mean values for each data set were calcu-
lated for 5 runs with different test subsets obtain from stratified 5 fold
cross validation The first column lists the data sets used. The following
columns(2-3) shows the ratio of minority class in the data set, columns
(4-6) the complexity measure used in the literature and column(7) our

proposed complexity measure.

Data Set % Min IR F1 L3 N1 CM Sensitivity G-Mean
WDBC 37.258 1.684 3.568 0.007 0.831 0.080 0.880 0.910
Ionosphere 35.897 1.786 0.609 0.980 1.129 0.405 0.620 0.870
Pima 34.896 1.866 0.576 0.500 1.008 0.427 0.620 0.680
Yeast1 28.908 2.459 0.242 0.500 0.879 0.564 0.480 0.629
Haberman 26.471 2.778 0.185 0.0.497 1.024 0.346 0.390 0.540
Vehicle3 25.768 2.881 0.169 0.368 0.049 0.037 0.944 0.951
Vehicle2 25.650 2.899 0.381 0.0.231 0.284 0.452 0.456 0.623
Vehicle1 25.059 2.991 0.186 0.351 0.936 0.566 0.560 0.690
WPBC 23.737 3.213 0.142 0.780 0.931 0.745 0.440 0.580
Cmc 22.607 3.423 0.245 0.500 0.908 0.718 0.290 0.500
Car 22.222 3.500 0.749 0.380 0.940 0.290 0.840 0.890
Yeast2 10.984 8.104 2.751 0.5 0.679 0.325 0.720 0.830
Abalone2 10.725 8.324 2.947 0.520 0.365 0.489 0.590 0.750
Satimage 9.728 9.280 0.375 0.500 0.556 0.345 0.570 0.740
Abalone1 9.361 9.683 0.879 0.650 0.489 0.903 0.200 0.430
Balance 7.840 11.755 0.001 0.500 0.971 1.000 0.000 0.000
Letter 3.945 24.349 17.518 0.980 0.686 0.000 0.910 0.950
Yeast3 2.965 32.727 4.198 0.500 0.122 0.273 0.625 0.781
Yeast3 2.358 41.400 2.302 0.500 0.594 0.486 0.400 0.612
Abalone3 0.766 129.531 0.530 0.500 0.731 1.000 0.100 0.196

complexity measures correlate with this sensitivity measure.

Our simulation experiment suggested that using k-NN instead of 1-NN

gives better behavior, moreover choosing k > 1 eliminates the influence of

outliers [34], so we have used k-NN for our complexity measure of real data

sets.

Table 3.4 is organized by Imbalance Ratio (IR), defined as the number of

negative class examples divided by the positive class examples.

We examined the relationship between our complexity measure for the

minority class and the sensitivity of classification with respect to the minor-

ity class. This relationship between data complexity measures and learner
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performance for the minority class is illustrated in Figure 3.3. From Figure

3.3 (top left), it is clear that there is a strong linear relationship between

our CM and sensitivity value, but a weak or low relationship among other

complexity measure with sensitivity value. The resulting correlation of data

complexity and learning performance was found to be -0.93 for sensitivity val-

ues and -0.90 for G-Mean. In contrast the correlation analysis for the other

complexity measures is very low: Fisher Discriminant ratio (F1) and sensi-

tivity or G-Mean have a correlation of 0.43, which is the strongest among the

proposed complexity measures of [12]. There is very little or no correlation

found using L3 or N1.

We employed MDS to visualize the data and to demonstrate the geomet-

rical significance of our complexity measure. The degree of correspondence

between the distances among points implied by MDS map and the matrix

input by the user is measured (inversely) by a stress function. Here we mea-

sured the stress of the MDS plot, not for the sake of dimension choice (i.e.,

how many dimension will be appropriate for representation), but to compare

the stress functions of the two different distance metrics. In our case these are

Euclidean and Random Forest distances. The smaller the stress, the better

the representation. However, the problem with stress is that with increasing

dimensions, you must estimate an increasing number of parameters to obtain

a decreasing improvement in stress. The result is a model of the data that

is nearly as complex as the data itself. In other words for high dimension we

may end up in measuring a high stress value.

We discuss results for two of the data sets in detail (one easy and one

hard).

The Winconsin Diagnostic Breast Cancer (WDBC) from the UCI Ma-

chine Learning Repository has 32 variables computed from a digitized image

describing the characteristics of the cell nuclei present in each of 569 images.

The class variable of interest here is the diagnosis, either benign (majority

class) or malignant (minority), with particular emphasis on the detection of

the minority class. Excluding patient ID and diagnosis (class label) columns,

we used 30 features for our analysis. All variables in the data sets standard-

ized before measuring Euclidean distances.
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Figure 3.3: Scatter plot for Sensitivity values and Complexity Measure-
ment for UCI data set, top left is our proposed Complexity Measurement
(CM), top right is Fisher Discriminant Ratio (F1), bottom left is Non-
linearity of nearest neighbor or linear classifier (L3) and bottom right
shows Fractions of points on class boundary (N1). Every data set is

represented by its name
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Figure 3.4: Visualization by MDS of Euclidean distance (left) and Ran-
dom forest distances (right) for UCI breast cancer dataset. The symbols
and color combination shows two different classes: B (Maroon) benign
cases and malignant cases (minority class) shown by the number of 3-
nearest-neighbours (Black=3, Purple=2, Blue=1 and Red=Overlapped)

Figure 3.4 plots each case by 2-d MDS using the class variable as the

plotting symbol and the number of 3-nearest neighbors belonging to the

minority class. Figure 3.4 shows two separate clusters. When we apply our

complexity technique using 3NN method (k determined by equation 3.18),

we can classify each case of the minority class according to how many of its

neighbors are of the same class. Thus those points not on the boundary are

represented by 3, points nearest to the decision boundary are represented

by 2, 1 or 0 (Overlap), where 2 is more tilted towards its own class, 1 and

0 points are more tilted to other class, these being points more vulnerable

to misclassification. Cases scoring zero are denoted “Overlap” as they are

surrounded by cases from the opposing class. Note that this method (CM)

is completely general and can be applied to any distance function. Figure

3.4 suggests that there is not much overlap between the classes, so this data

set can be labeled as easy, in that we expect most classifiers to perform well

in this scenario. Indeed, Table 3.4 shows that our classifier gives reasonable
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accuracy for the minority class with sensitivity of 88%. We measure the stress

function to show how well the (first 2 dimension) MDS plot represents the

data. A stress value of stress= 12.01, seems to be high, but this is expected, as

this is a high dimensional data set, and the stress function is highly dependent

on number of dimensions. Although this stress function is high, we can

visualize that these two dimension are appropriate for representation, as we

can see two separate cluster of classes and our complexity measurement is

also estimating a low value. Recall that our CM measures the complexity of

the original 30- dimensional data set.

When we use Random Forest distance in place of Euclidean distance for

the WDBC data set, we get a similar conclusion, but the visualization, shown

in the right panel of Figure 3.4, is dramatically different. Random Forest

based MDS shows the structure of the data in a very different light, with the

cases more separated in space and a clearer view of the boundary, that runs

diagonally across the right hand side. This is indicated by our complexity

measure taking the values 2, 1 and overlap. The stress is 16.58 for the

Random Forest distances, which is higher than the Euclidean distance stress

measurement. However we can see a similar pattern in both MDS (Euclidean

and Random Forest distances) plots.

Next we consider a more severely imbalanced data set, Abalone (Age=7).

We can determine precisely the age of an abalone by cutting the shell through

the cone, staining it and counting the number of rings through a microscope.

However this task is cumbersome and time consuming. Thus we want to

predict the age of an abalone from physical measurements which are easier

to obtain. These measurements include sex and seven other features such

as length, diameter and height. The original response variable of this data

sets is the age of abalone, ranging from one to 29, which we use to divide

the whole data set into two classes. We use age=7 for the minority class,

resulting in 391 (9.4%) cases out of 4177 samples in the minority class.

If we visualize the data set using Euclidean MDS as in Figure 3.5, there

is no visible separation between the two classes. One explanation may be

that these two dimensions may not be appropriate to show the separation

between the classes or to visualize the decision boundary. But the stress is



88
Measurement and Visualization of Data Complexity for

Classification Problems with Imbalanced Data

−1.0 −0.5 0.0 0.5 1.0

−0
.2

−0
.1

0.
0

0.
1

0.
2

Metric MDS Standardized (stress=2.83)

Coordinate 1

C
oo

rd
in

at
e 

2

G

GG

G

G

G

G
G

G

G G
G G

GG

G

G
G

G

G

G G

GG

G

G
G

G

G

G

G
G

G

G

G

G

G

G
G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

GG
G

GG

G

G

G

G

G

GG

G

G

G

G

G

G

G
GG

G

G

G

G

G G

G

G

G
GG

G

G

G

G

G

G

G

G
G

G

G
G

G
G

G

G
G

G

G

GG

G

GG

G

G
G

G
G

G

G

G

GG

G G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

GG G

G

G

G

G G

G

G

G

G G

G G
GG

G
G

G G

G

G

G

G

G

G
G

G

G

G

G

G

GG

G

G

G

G

G
G

G

G
G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G G

G

G
G G

G

G
G

G

G
G

G

G G

G

G

G
G

G
G
G

G

G G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G
G

G

G

G

G

G

G
G

G

G

G

G

G
G

G

G

G

G

G
G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G
G

G

G

G

GG G

G

G

G
G G

G

GG

G G
G

G

G

G

G

G GG

G

G
G

G

G

G

G G

G

G

G

G

G

G

G
G

G

G

G

GG

G
G

G
G

G
G

G
G

G

G

G

G
G

G

G

G

G

G

G

G

G G
GG

G

G

G

G G

G

G

G

G
G

G

G

G

G

G

G

G

GG

G

GG

G

G

G

G

G

G

G

G
G

G
G

G
G

G

G
G

G

G

G

G

G

GG

G

G

G

G

G

G

G
G

G

G
G

G

G

G
GG

G

G

G
G

G

GG

G
G

G
G

G

G
G

G

G

G

G

G

G

G

G

G

GG
G

G

G

G

G

G G
G

G

G

G

G

G

G

G G

G

G G

G
G

G

G

G
G

G
GG

G

G

G

GG

GG

G

GG

GG
G

G

G
G

G

G

G

G
G

GG

G

G

G
GG

GG
G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G G

G
G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G
G

G

G

G
G

G

G G G

G

G

G

G

G
G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

GG

G

G
G

G

G

GG

G

G

GG

G

GG

G

G

G

G

GG

G

G

G
G

G

G
G

G

G

G

G

G
G

G

G

G
G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG
G

G

G

G

G

G

G

G
G

G

G
GG

G
GG

G

G

G

GG

G

G

G
G

GG

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G
G

G
G

G
G

G
G

G
G
G

G

G

G

G G
G

G

G

G

G
G

G
G

G

G

G

G

G
G

G

G

G

G

G
G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

GG
G
G
G

G

G
G
G
G
GGGG

GG
GG

G
GG

GG
GGGG G

G

G

G
G

G

G

G

G

G

G

G

G
GGG

G

G

G

G

G

G

G

G

GG

G G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

GG

G G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G G
G

G

G

G

G
G

G

GG

G

G

G

G

G
GGG

G
GG G

GGGGG
GGGG

G

G
G

G

G
G

G
G

G
G

G

G

G

GG

G

G
G

G

G
G

G

G
G

G

G

G

GG
G

G GG

G

G

G

G

G

G
G

G

G

G

G

G

G

G G
G

G

G

G
G

G

G

G

G

G
G

G

G

G
G

G

G
G

G

G

G

G
GG

G

G

G

G

G

G
G

G
G

G
G

G G

G

G
G

G

G

G G

G

G

G

G

G

G

G

G

G

G

GGGG
G

G
GG

G

G

GG
G

GG
GG

G
GGG

G
G

G GGG

G
G

G

G
G

G G

G GG

G G

G

G
G

G G GG

G

G

G
GG

G

G

G

G

G

G G

G
G

G

G
G

G

G

G
GG

G

G

G

G
G

GG

G

G

G
G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

GG

G

G

G

G
G

G

G
G

G

G
G

G

G

G

G

G
G

G

G

GG

G

G

G G

G

G

G

G

G G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

GG

G

G
G

G

G

G G

G

G
G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G
G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G
G

GG

GG
G

G

G

G
G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G
G

G
G

G

G

G
G

G

G

G

G GG

G

G

G

G

G

G

G
GG

G
G
G

G
GG
G

G
G

GG

G

G

G

G G

G
G

G

G
G

G

G

G

G

G

G

G

G GGGG

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G
G

G

G

G
G

G

G

G
G

G
G

G

G

G

G
G

G

GG

G

G

G

G

G

G

G G
G G

G

G

G

G

G

G
G

G

G

G
G

G

G

G

G

G

GGG
G

G

G G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G
G

G

G

G G

G

G G

G

G

G

G

G G
G

G

G

G

G

G

G

G
G

G

G

G G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G
G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G G

G

G

G

G

G

G

G

GG

G
GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G G

G

G

G

G

G

G

G

G
G

G

G

G

G

G
G

G G

G

G

G

G

G
G

GG

G

G

G G

G

G

G

G

G

G

G
G

G

G

G

G
G

G

G

G

G
G G

G

G

G GG

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G G
GG

G

G

GG
G

G

G

G

G
G

G
G

G

G
G

GG
G

G

G

G
G

G

G

G

G

G
G

G
G

G

G

G

G

G

G

G

G

G

G G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G
G

G

G
G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G
G

GG

G

G

G
G
G

G
G

GG

G

G
G

G
G

G

G

G

G
G

G

G G

G

G

G

G

G
GG

G

G

G
G

G
G

G G

G
GGG

G

GG G

G

G

G

G

G

G

G

G

G

G

G G

G
G

G

G G

G

G

G

G

G G

G

G
G

G

GG

G

G

G

G

G

G

G

G

GG
GG

GG

G

G

G

G
G

G

G

G

G

G G

G

G

G

G
G

G

G

G

G
G

G

G

G

G

G

G

G G

G G

G

G

G

G G
G

G

G
G

G
G

G

G

G

G

G

G

G

G

G

G

GG
G

G
G

G

G G

G

G

G

G
G

G

G

G

G

G

G
G

G

G G

G

G

G

G

G

G

G
G

G

G

G

G

G
G

G
G

G

GG
G

G

G G

G
G

G

G
G

G

G

G

G

G G

G

G

G G
G

G

G

G

G

G

G

G

G
G

G

G

G G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G
G

G
G G

G

G
G

G

GG
G G

G

G

G

G

GG

G

GG

G

G

G

G

G
G

G

G GG

G
G

G

G

G

G

G

G

G

G G

G

G

G
G

G

G

G

G
G

G

G

G

G

G
G

G

G

G

GG

G

G

G G

G

G
GG

G G

G
G

GG

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G
G

G

G

G
G GG

G

G
G

G
G

G

G

G

G

G

G

G GG

G

G

G

G

G

G

G

G

G

G

G
G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G
GG

G

G

G

G

G

G

G

G

GG
G G

G

G

G

G

G

G

G

G

G

GG
G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G
G

G

G

G
G

G
G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

GG

G

G

GG

G

G

G

G

G

G

G

G

G
G

G

GG
G

G

G

G

G

G

G

G

GG

G

G

G
GG

GG
G

GG

GG G

G

G
G

G
GG

G

G
G

G

G

G

G

G

G

G

G

GGG

G

G

G
G

G

G

G

G

G

G
GG

G

G

G

G

G

G
G

G

G

G

G

G G

G

G

G

G
G

G
G

G

G

G

G

GG
GG

G

G

G

G

G

G

G

G

G

G G

G

G G
G

G

G

G

G

G

G

G

G

G

G

G
GG

G

G

G

G
G

G

G

G

G

G

G
G

G

G

G

G
G

G

G

G

G

G

G

G

G
G

G

G

G

G

GG GG
G

G

G

GGG

G

G

G
GG

G
G

G

G

G

G

G

G

G

G

G

G

G
G

G G
G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G
G

G

G

G

G
GG

G G

G
G

GG

G

G

G

G
G

G G

G

G

G

G

GG

G

G

G

G

GG

G
G

G

G

GG

G

G

G

G

G

G

G

G

GG

G

G

G
G

G G

G

G

G

G

G

G

G

G
G

G

GG

G

G

G
G

G

G

G

G
G

G

G

GG
G

G G
G

G

G
G

G

G
G

G G

G

G G

G

G

G

G

G
G

G
G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

GG

G
G

G

G

G
GG

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G G

G
G

GG

G
G

GG

G

G
G

GG

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G
G

G

G
G

G

G
G

G

G

G

G

GG

G

G

G
G

G

G

G
G

G

G

G

G

G

G

G

G G

G

G

G

G

G

G

G

G

G

G

G

GG
G

G G

G
G G G

G

G

G

GG

G

G

G

G

G G

GG G

G G

G

G

G

G
G

G

G

G
G

G

G

G

G

G

G

G
G

G
G

G
GG

G

G

G

G
G

G

G

G
G

G G

G

G
G G

G

G G

GG

G

G

G

G G

G

G

GG

GG

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G G
G

G

G

G

G

G

G

G

G

G
G

G

G

G G
G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G G
G

G

G
G

G

G

G

G

G
G

G

GG

G

G

G

G

G

G

G

G

G

G
G

G

G

G
G G

G
G

G G

G

G

G

G

G

G

G

G G
G

G

GG
G G

G

GG

G

G
G

G

G

G
G

G

G

GG

G

G
G

G

G

G

G

GG

G

G
G

G

G

G

GG

G

G

G

G
G

G
G

G

G

G

G

G

G
G

G

G

G

G

G

G
G

G

G

G

G
G

GG

G

GG

G
G

G

G

G

G

G

G

G

G

G

G
G

G
G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G G

G

G

G

G

G

G
G

G

GG

G
G G

G

G

G

G

G

G

G

G
G G

G

G

G

G

G

G
G
G

G

G
G G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G G

G

G

G

G

G
G

G

G

G

G

G G

G G
G

G

G G
G

G
GGG

G
G

G

G

GG

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G
G

G

G
G

G

G GG

GG GGG
G

G

G

G

G

G

G
G

G

G

G

G
GG

G
G

G
G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G
G

G

G

G G

G

G

G

G

G

G

G G
G

G

G

G

G

G

G

G

G

G G G

G
G

G

G
G

G

G

G

G

G

G
G

G

G
GG

G

G

G

G

G G
GG

G G
G

G

G

G

G

G

G

G
G

G

G

G

G
G

G

G

G

G

G
G

G

G

G

G

G

G

G G

GG

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G G

G

G

G

G

G

G
GG

G
G

G

G

GG
G

G

G

G

G

G

G

GGG
G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G
G

GG

G
G

G

G
G

G

G
G

G

G
G

G

G

G G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G G

G

G

G

G
G

G

G

G

G

G

G

G
G

G
G

G

G

G

G

G

G

G
G

G

G

GG

G

G

G

G

G

G
G

G

G

G G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G G

G

G

G

G

G

G

G G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GGG
G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G
G G

G

G

G

G

G

G

G

G

G

G
G

G

G

GG

GG

G

G

G

G

G

G

GG

G

G

G G

G
G

G

G

GG

G

G

G

G
GG
GG

G

G

G

GG

GG

G G

G
G

GG

G

G

G

G

G

G
G

G

G

G

G
G G

G

G
G

G

G G

G G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G G

G

G

G

G G

G

G

G

G

G

G G

GG
G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G
G

G

GG

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G
G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G
G

G
G

G

G

G

G

G

G

G

G

G

G

G

GG G

G

G
G

G

G

G

G

G G
G

G

G

G
G

G

G
G

G

G

G

G

G

G
G

G1
2

1O1

O

O

2

O

2

1

O

2

1

2
O

O

O

O

2

OO

O
1O

1
1

2
1

O

2
O

2

O1
O

O

O

O

2

O

O

O

2

1
O

O

2

1

O
1

O

OO

1

O

22
1

1
2 2

O
1

1

2
O

2 O
1

1

11

1

2

1
1 1

21

O

3

O

3 O

1

O

O

1

1
O

O

1

1

1

O

O1

1 1

1
O

1
1

1
1

O 1
O

2

O

1

2

O

OO

O1

O
O

21

O
1

1

O
1

O2

O

O

O

2
2

3

O

1
1

1
1

2

22

1

2

2
O

1

O

O
OO 1
O

1

O

1

2

1 O3

2

OO
O1

O

O

O

1

O

1

O

O

2

1

1

1

3

1

O
1

1
2
2 1

1

O

O

2

O

O

O 3

1 1 1
1

1 1

2 O

O 1
2 3

1

O
2

O
1

2

O

1

1

1

1

2

2

1
2

O

1

O

O

O

O

O
O

2

11
O

1
1

21

1
O

O

1

1 1
2 1

O

O

O
3

2

1

2

1

O O

O

O
1
1

2

O

O

1
2 O1

O

O

1
O

O

O1
2

2O

1

1
1

O
2

1

O

22

O

O

1 O

O

1

2

1 O

2

2

O

1

O
1

O O

2

2
2
3

O

O
1

O

O

1

O
O

1

2

1

1
O

1
1
O

1

O

O

O
1

O 1
1

2

O
1

12

OO

O

O
2 O

1 O O
1

O

1 O

O

O

O

O

1

1
2

1

O

1

2

2

O

O
1 O

1

2
1

2

1

1
2

O

O

1

2
2

1

1

O
O

2

2

1
2

1
O

O
1

1

2
1

−0.4 −0.2 0.0 0.2

−0
.4

−0
.2

0.
0

0.
2

Abalone Data:MDS (Random Forest: stress=8.86)

Coordinate 1

C
oo

rd
in

at
e 

2

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G
G

G

G

G

G

G
G

G

G

G

G GGG

G

G

G

G

G

G

G

G GG

G

G

G

G G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

GGG
G

GG

G

G

G

G

G

G
G

G
G

G

G

G

G

G

G

GGG

G

G

G

G
G

G

G

G

G

G
G

G

G

G

G

G

G

GG

G

G

G

G

G

G
G

G

G
G

G
G G

G

G

G

G

G

G
G

G

G

GGG

G

G
G

G
G

G

G

G

G

G

G

GG

G
G

GGG
GG

GG GG

G

G

G
GG

G

GG

G

G
G

G G

G

G
G

G

GG

G

G

G
G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G G
GG

G

G

G

G
GG

G

GG
G

G

G

G

G

G

G
G

G

G

G

G

G

G GG
G

G

G G
G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G
G

G G
G

G

G

G

G

G
G

G

G
G

G

G

G

G

G

GG
G

G

G

G

G

G G
G

G

G

G

G

G

G

G

G
G

G G

GG
G

G
G

G G

G

G

G

G

G

G

GG

G
GG

G
G

G
G

G
G

G

G

G

G

G
G

G
G

G

GGGG G
G

G
G

G
G

GG

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G
G

G

G

G

GG

GG

G
G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G
GG

G

G

G

G

G

G

G

G

G

GGG

G

GG
G G

G

G

G

G

G

G

G

G
G

GG

G
G

G

G

G

G

G

G

GG

G

GG
G

G

G

G
G

GG

G
G

GG G

G

G

G G

G

G

G

G
GG

G

GGG G
G

G

G
G

G
G

G

G

G

G

G
G

G

G
G

G

G

G

G
G

G

G

G

G
G

GG

G

G

G

G

G

G

G

GG

GG

G

G

G

G

G

G

G

G

G

G

G
G

G
G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G
G

G

G

G

G

G

G

G

GGG

G

GG

G
G

G

G

G

G

G

G

G

G

GG

G

G

G

GG

G

G

G

G

G

G

G

GG

G

G

G G

G

G

G
G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

GG

G

G

G

G

G
G

G

G G

G
G

G
G

G

G G
G

G

G
G

GG

G

G
G

G

G

G

G

G

G

G

G

G

GGG

G

G

G

G

G

G

G
G

G

G

G

G

G
G

G
G

GG

G
G

G

G

G
G

G

G

G

GG

G

G
GG

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

GG

GG

G

G

G

G

G G

G

G

G

G

G

G

G

G

G

G

G

G

G

GGG

G

G

G
G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

GG

G
GG

G
G

G

G

G

G

G
G

GG

G

G

GG

G

GGG
GGG

G

G G
G

G GG

G
G

G G
G GG GGGG

G

G
GGGGGGGG

G
GGGGG

G
G

G
G
G

G

G

G

G

G

G

G

G

GG
G

G

G

G

G

G

GG

G

G
GG

G

GG

G

G

G

GG

G

G

GG
G

G

G

G
G
G

G

G

G

G
GG
G

G
GG GG

G

GG
G

G

G

G

GG

GG
GGG
GGGG
G

GG GG G
GG

G
G G

G
GG GG

G
G

GGG

G

G
GGG G
GGG

GGGGG
G

G
G

GG

GG GG
GGGGG G

GGG
G

G
G
G

G

G

G

G

G

G

G

G

G

G

G

G

GGG

G

GG
G

G

G

G
G

G

G

G

GG

G
G G

G

G

GGG
G

G

G

G

G

GG
G

G

G

G
G

G
G

G

G

G
G

G

GG GG
G
GG GG

GG
G
G

G
G GG

G

G

G
G

G
G G

G

G

G

GG

G
G

GGG G G
GGGGGGGGG

G
G

G
G

GG
GG

G
GGGGGG
G

G

G

GGGG
G

G

G GGGGG
G

G
G

GGG

G
GG
G

G

G

G
GG

G
G

G

G
G

G

G

G

GG

G

G

G
G

G

G

G
GG

G
G

GGG

G

GG

G
G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G
G

G G
GG
G

G

G

G

G

G
G

G

GGGG

GG

G

G

G
GG

G

G

G

G
G

G

G

G

G

G

G

G

G
G

G
GGG G

G

G

G

GG

G

G
G
G G

G
G

G

G

G

GG

G

G
G

G

G

GG
GG

G
GG G

G GG
GG

GG
GGG

GG
GG

GG G

G

G G GG
G GG

GGG
G

G G GG
GG

G
G

GGG

G

GG
GG
GG
GG

GG
GG

G

GG

G

G

G

GG

G
G

G

G
G

G

G

G G
G

G

G

G

G

G

G

G
G

G

G

G

G

G

G
G

G

G
GGG

G
G G

G

G

GG

G
G
G
G

G

G

G
G

G

G

GG
G

G

G
G

G
G

GG G
GGGG GGG

G

G

G
G G

G
G GGGGG GGGG

G
GG

G
GGGGG

G
G

GG

G
G

G

G

G

G

G

G

G
G

G

G

G

GG

G

G

G

G

G
G

G
GG
G

GG
G

G

G

G

GG

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G
G

G
G

G

G

GG

G

GG

G

G

G

G

GG GG

G

G

G

G

G

GG

G

G

G

GG
G

G

G

G

G

G

G
GGG

G
G

G
G
GG

G G
G

GGG
GG

G

G
G

G

GG

G

G
G

GGGG G
G

G

G

G

G
G

GGGG

G

G
G

G G
G

GG
G

G GGG
G G

G
G

G
GG GGG

GG GG
G GG

G

GG GGG
G

G GG
G
GGG

G
G
G GGGG GGG

GG
GGG

G
GGGGGGGGG

GG

G

G

G

G

G

G

G

G

GGG
G
G

G

G

G
G

G

G

G

G
GG

GG

G

G

G
G

G

G

G
GGGG

GGG G
G

GG
G

G G GGGGG G
G

G
G

G

GG

GG

G G
G
G

G

G

GG

G

G

G

G
G
G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G
G

G

G

GG

GG

G

G

G

G

G

G

G

G

G

G

G
G

GG
G

G
G

G

GG

G

G

G

G

G

GG

G
GG
G G

GG
G

G

G

G

GG

G

G
GG

G

G

GG

G
G

G
G
G

G
G GG

G
G

G

G

G

G
GG G

GG
G

G
G

G

G

GGG G
G G G

GG
G

G
G G

GG
G

G G
GGG

G
GG

G
GGGGG

GG
G

G
G

G
GGGGGG

GG

G

G
G

G

G

G
G

G
G

GG

G

G

G G

G

G

G

G

G

G
G

G
G

G

G

G

GG

GGG GG G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

GG

G

G

G

G

G

G
GG

GGGG
GGG G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G
G G

G

G

G

G

G

G

G
GGG

G

G

G

G

GG

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G
GG

G

G

G

G

G
G

G

G

GG

G

G

GGG
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G G

G

G

G

GG

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G G

G

G
G

G

G

G

G

G

G GG

G

G

G
G

G

G G

G

G

G G
G G

GG

G
G

G

G

G

G

G G

G

G

G

G

G

G

GG

G

GG

G

G

G

G
G

G

G

G

G

G

G

G

G

G
GG

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G G

G

G

G G

G

G

G

GG

G

G

G

G

G

G

GG

G

G

G

G

G

G

GG

G

GG
G

G GG

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G
G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G G
G

G
G

G

G

G

G

G

GG

G

G

G

G

G

G
G

G

G

G

G

G
G

G G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G G GGG G

G

G

G

G

G

G

G
G

G

G

G

G

G

G
G G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G G

G
G

G

G
G
GG

GG GGGGG G
GG
G

G

GGGGGG GG

GG

G

G

G

G

G

G

G

GG
G

G

G
G

G

G

GG

G
G
G
G

G
GG

G

GGG
G

G
G

G G
G
G

GG
G

G
GG G

G
GGGGG

G
GG

GGG

G

G

GG

G
G

G

G

GG
GGGG

G

G

GG

G

G

G

G

G

G

G

G G

G

G
G

G
G
GG
G

G

G GGG
G GG

G
G

G

G
G

G

G
G

G

G

GG
G

G

GGGG
G GGG

G
GGGGG

GG
GGG

GGG

G

G

G

G

G

G

G

G

G

GG

G

GG

GG

G

G

G
G

G

GG G

G

G
G

G

G

G
G

G

G

G

G

G

G

G

G
G
G

G

G

GG
G

G

G

G
GG

G

G

G

GG

G

G
GG G

GG

G
G

G
G G

GG

G

GGGGGGG
G

GG

GGGG

G
G
G

GG

G

G

G

GGG

G

G

G

G
G
G

G

GGG
GG

G

GGG
G

GG
G G

G
GGG

GG
GG

GGGG

G

G

G

G

G

G
G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

GG G
GG
GG

G

G

G

G

G
G G

G

G
G

G
G

G
G

G
G

G
G

GG

G G

G

G

G
G

G G

G

G

GG GG
G

G
G G

G
G

G

GGGG GG GG GGGGGG GGG
GGGG G

G

G

G

G
G

G

G

G

G

G

GG

G

G

G

G

G

G G

G
G

G

GG

G

G
G GGGG

GG

G
G

G
GG

G

G

GG
G G

G

G

G

G
G

G

GG

G

G

G

G

G
G

G

G
G

G

GG

GG

G

G
G

G

G
G G

GG

G

G

G

G

GGG G
GG GG

G
G

G GG
G GG
GGG
GGGGG

GGG

G

G

G

G G

G

G

G

G

G

G

G

G

G

G
G

G

GG

G
G

G

G

G

G

G

G

G

GGG

G
G G

G

G

GGG

G

GG

G

G

G

G

G

G
G

G

G

G

G

G
GG G

G

GG
G

G

G

G

G
G

G

G

G

G

G
G

G
GG

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G
GG

G

G

G

G

G

G

G
G

G

G

G
G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

G
G
G

G

G
G

G
G G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G

GG

G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
GGG

GG

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G G

G

G

G

GG
G

G

G

G

G

G

G

G

G

G

G

G

G

G G

G

G

G

G

G

G

G
GG

G

G

G

G

G

G

G GG G

G

G

G

G

G

G

G

G

G G

G

G

G

G
G

G

G

G

G

G

G

G

G
G

G
G

G

G

G

GG

G

G

G GG

G

GG
G

G

GGG

G
G

GG
G

G

G

G

G

G

G

G

G

GG

G

G

G
G

G

G

G
GG

GG GG
GGGG

GG

G

G
G

G

G

G

G

G

G

G

G

G

G

G
GG

G

G

G
GG

G

G

GGG
G

GGG
G

GGGG
GGG

GGGGG

GG
G

GGG
G

G

G

G

G

G

G

G

G

G

G

G

G

G
G
G

G
GGGG

G

G

G

G

GG

G

G

G

G

G
GGG
G

G G
G

G

G

G
G

G G

G

G
G

G
G

G
G

G

G

G

GG
G

G

G

GG G
GG

G

G

G

G

G

G

G

G

G

G
G

G
GG

G

G

G
GGG

GG GGG
G

G

G
GG G

G

G

G

G

G

G

G

G

G

GG
G

G
G

GG

G

G

G

G

G

G

G

G

GG

G

G
GG

G

G

GGG
G

GGG

GGG
G

G
GG

G
G

G

G

GG
GGG G

G GGG
G

GGG
GG GG

GG
G

G
G GGG
GG

G

G

GG

G

G
GG

G

G

G
G

G

G

G

G

G

G
GG

G
GG

GG

G

G

G

GG

G

G
G

G

G

G

G

G

G

G

G

G

G
GGG

G

GG
G

G

GG

G

G

GG

G

GGG
GG

GG
G

GGGGGG
G

G
GG

G

G

G

G

G

G

G
G
G

G

G

G

G

G

GG

G
GG

G

G

G

G

GGGG

G

G

G

G

G

G

G
G

G
G

G

G
GG

G

G

G

G

G
G G

G

G

G

G

G

GG

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
GG

G

G

GG

G

G

G

G

G

G

G

G

G
G

G

G

G

G
GG

G

G

G
G

G

G

GGGGG

G GGGG

G

G

G

G

G
G

G

G

G

G
G

G

G
G

GG GG G G
GG

G

G

G

GG

G

G

G

G
G

G

GG
G

G
GG

G

GG
G

G

G

GG
GGG

GG

G

G

G
G

G

G

GG

G

G
G

G
G

G

G

G

G

G

G
G

G

GG

GG

G
GGG

G

G

G

G
G

G

G

G

G

GGG

G

GG

G

G

GG

G

G

G

G
G

G
G

GG

G
G

G
GG

G

G GGG G
G

G
GGGG

G

G

G

G

G

G

G
G

GG

G

G

G
GG

G

G
G

G

G

GG

GG G

G
G

G
G

G
G

GGGGGGG

G

GG

G

G

G

G

G

G

G

GG

G

G
GG

G

G

G
G

G

G G
G

1

2

1

1

O

O

1

O

O

2

1

O

O
1

1

O

OO

O

O

1

1

O

1

2

2O

1

1

O

11

2

O

1

1

1
O

O2 O

O

1

O
1

O 1

1

1

122 O1

1

1

11

2

1

1

1

O

2

1

O

222

O

2

O

1

1

O

1

1

O

2

O

O

3

13 O
O O

O

2

O
O

O

1O

O

O

O

O

1

2

2
1

O

1

1

2
1

1

O

1

2 2
1

1

O1

O

1

O1

11

O2

21
2

1
2

1

2

O

O

O

3

O
1

O

O

1

2

2

2

1

3
2
O1

O

OOO
1

1

O12
13

1

O

2

O

1

O
2

O

1

O

O

O

O

OO

22

1 1
2

O

O

2

O

1

1

1

1

O

1

2

O

O

OO
1

O
O

3

1

O

2

2

1

1
2

2

2

1

1

O

1

1

O

1

1

2 1

O

O 12

1

2

O

O

2

O

1

O

1

O

11
O

2

2

O

2

O

O

1
1

3

1

1

1
O

1

2

1

O

O

1

1

OO

O

2

1

2

1

O

2

O

OO

1

O

1

1

O

1

1
O

2

1

11

O

1

1

2

O

11

1

O

3
O

O

O

2

1
1

2

O

O

1

1

O

1
O

1

1

O
1

O

1

2

1

O

O

O

O

1

1

O

111

O
O

2

O

O

1

1O 1

1

O

O

1

O

1
O

O
O

O
O
1
O

1

O

1

1

1

O

O

O1

O

O

1

3

1

O

O

1

2

O

O

O

O

O

O
1

1

1

1

1

OO

1

1

2

O

1

1

O

2

3

O

2

O

2

O

O

1

1

2

Figure 3.5: Visualization by MDS of Euclidean distance (left) and
Random forest distances (right) UCI abalone dataset.. The symbols
and color combination shows two different classes:G (Red) shows the
majority class, where as minority class (Age=7) shown by the number

of 3-nearest-neighbours (Black=3, Purple=2, Blue=1 and Red=O)

2.83 for this 2-d MDS plot, which is much lower than stress in the WDBC

data sets. This lower stress value is due to lower number of dimensions which

in this case is 8. If we apply our complexity measure on the abalone data

set, as expected we have a lot of overlap for the minority class, as shown

by a lot of “O” (red) and “1” (blue) which represent respectively those data

points of the minority class being surrounded by the majority class with

only zero or one out of three belonging to the same class respectively. Hence

these data points are more vulnerable to misclassification. Since this data set

has more overlap, which is evident from Figure 3.5 and from our complexity

measure, we are not expecting much classification accuracy for the minority

class, which can be validated from Table 3.4.

Using the Random Forest distance gave us the same overall picture, i.e.,

high overlap between the minority and majority class, stress is 8.86 which is

higher than the Euclidean distance. Visualization using Random Forest dis-

tance, shown in Figure 3.5 (right panel), reveals some unexpected structure
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in the data that requires further investigation.

3.6 Discussion and Future Work

In this chapter we have further explored work done by Weng & Poon [11] and

extended work done by Ho and Basu [12] in data complexity measurement,

specifically for the scenario of imbalance. In this chapter our focus is to

explore the connection between the imbalanced data sets problem and data

complexity. Therefore we have focused more on tools for quantification of

the problem associated with the imbalance data sets rather than solving the

problem, which we see as the first step for answering questions such as:

1. What is the nature of the class imbalance problem, i.e. in what situa-

tions and to what extent does class imbalance hinder the performance

of standard classifiers.

2. What are the possible solution in dealing with class imbalance problems,

and how well do they perform? For example, when should we employ

over-sampling or under-sampling instead of fixing a class distribution

or size.

Our simulation study showed that in cases of imbalance our complexity

measurement is within the proposed bounds of Bayes error given in literature,

such as Mahalanobis bounds, Battacharayya distance [7] (see Table 3.5). It

is close to the lower bound in the case of class imbalance and almost lower

bound in cases of severe imbalance. Although the nearest neighbor technique

is used in the literature [23] to estimate Bayes error, our contribution is to

extend it to class imbalance situations and using the Random Forest distance

matrix for categorical and mixed type data sets.

Unlike previous authors, we calculate a complexity measure for each class,

being the proportion of difficult cases belonging to that class, where ‘difficult’

means having a majority of k nearest neighbors in the opposing class. This

idea could perhaps be extended by weighting each case according to the
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proportion of neighbors in the other class, rather than making a majority

decision.

We have shown that our complexity measure is able to capture a reason-

able amount of data complexity despite the diverse nature of data sets. We

used simulated data sets to build up a complexity model and to describe

different types of imbalance data sets. Using MDS enables us to visualize

the data sets and to visually interpret some of the findings of our complex-

ity measures. From the existing data complexity measures proposed by Ho

and Basu [12] only Fisher Discriminant analysis ratio (F1) showed some

correlation, which is interesting because it has been found useful studies of

prototype selection [35] and it is showing some correlation in our analysis in

the imbalance framework as well.

By basing our measure on k-NN where k > 2 we are able to identify

the points near the decision boundary. This information could be useful in

interactively changing some aspect of a data set, or a parameter of a learning

algorithm. For example if we select points near to the decision boundary, we

can see what effect it can produce on the decision boundary if we over-sample

these data points by SMOTE [36] or any other over-sampling technique, or

under-sample the majority class near to these data points. We can then

see how the decision boundary changes for various classifiers and explore its

effect on accuracy for the minority class.

Another advantages of using k-NN with k > 2 is to extend the idea of

COG (classification using local clustering) [37] using our complexity measure.

They cluster large classes into small clusters using a standard clustering

algorithm and then classify each cluster against the minority class. The

motivation behind their clustering idea is to get more balance and to divide

the complex concepts into simpler ones (i.e., nonlinear decision boundaries to

linear separable boundaries). This may not be appealing when there is a high

degree of overlap between the class distributions, since their methodology will

result in large misclassification error in either of the classes, and we may get

better results for the minority at the expenses of majority class. Using the

complexity concept we could divide the space into more manageable parts by

dividing into different clusters based on nearest neighbor misclassification; for
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example, our 3NN approach will give us 4 clusters based on how many nearest

neighbors of the minority class cases are in the majority class (0, 1 ,2 or 3).

Thus we could separate difficult clusters from easy ones, so that the learning

process is more flexible and adaptive. For example over-sampling or under-

sampling can be done more purposefully instead of randomly. Moreover by

doing so we can capture intra vs inter class imbalance and small disjunct

as discussed by Jo [2]. The importance of different levels of complexity can

be found in the study of Lim and Sohn [38], where they used cluster based

approach (k mean algorithm) to define each cluster likely to have a different

level of complexity, for their case study to classify a borrowers credibility.

In addition we hope that our complexity measure will help us to decide

which classifier should be used for a specific data set. We have notice that

if there is high overlap, a linear classifier appears to produce much better

results than nonlinear; however this needs further extensive investigation.

Under-sampling or over-sampling based on our complexity measure seems to

be a promising approach and will be investigated in Chapters 4 and 5. The

effect of dimension reduction on the complexity and on the accuracy of the

minority class is another direction and will be investigated in Chapter 6.
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3.7 Appendix

3.7.1 R Codes

The nearest () function is simply a wrapper for knn function. The purpose

is to give the complexity “nearest” for each data point so we can use it as

a measure of complexity of each class. The number of nearest neighbors is

specified with the k= argument.

1 nea r e s t <− f unc t i on (X, n , k )
# Find k nea r e s t ne ighbors o f X[ n , ] in the data frame or matrix

X, u t i l i z i n g func t i on knn k−t imes .
3 {

N <− nrow (X)
5 # inds conta in s the i n d i c e s o f nea r e s t ne ighbors

inds <− c (n) ; i <− 0
7 whi le ( i < k ) {

# use knn1 f o r one index . . .
9 j <− as . i n t e g e r ( knn (X[− inds , ] ,X[ n , ] , 1 : (N−l ength ( inds )

) ) )
# For f a s t e r computation use d as d i s t ance matrix then

we can use min func t i on f o r one index . . .
11 j =as . i n t e g e r ( which . min (d[− inds , n ] ) )

# . . . and change to true index o f ne ighbor
13 inds <− c ( inds , s e t d i f f ( 1 :N, inds ) [ j ] )

i <− i+1
15 }

# return nea r e s t ne ighbor i n d i c e s ( without n , o f course )
17 re turn ( inds [ −1])

}

The following codes are for measuring Bayes error or Δμ the vector of

mean differences for the classes.
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Dim. and . mean . d i f f . 2 . bayes . e r r o r<−f unc t i on (Dim, mean . d i f f ) {
2 # given dimension with means d i f f e r i n g by mean d i f f each , what

i s bayes e r r o r ra t e ?
1−pnorm( sq r t (Dim∗mean . d i f f ∗mean . d i f f ) / 2 ,0 , 1 ) ;

4 }

6 bayes . e r r o r . and .Dim . 2 . mean . d i f f<−f unc t i on ( bayes . e r ro r , Dim) {
# given dimension with bayes e r ror , what i s means d i f f e r i n g by

mean d i f f each ?
8 qnorm(1−bayes . e r r o r ) ∗ 2 ∗ s q r t (1 /Dim) ;
}

3.7.2 Results for 3 Dimensions:

The following tables give detailed analysis of simulation results for the three

continuous variables case. These results are averages of 100 simulation results.

Here n1 and n2 are the numbers of observations for class1 and class2, with

Bayes Error representing the theoretical minimum error bounds, B1 and B2

are the estimated error bound by Monte carlo integration and where the Com-

plexity(class)(k) for various classes, e.g, Complexity11 represent complexity

for class 1 and k=1 for kNN approach, similarly Complexity21 represents,

complexity for class 2 and k=1.
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Chapter 4

An Empirical Comparison of

Under-Sampling Techniques in

Relation to Data Complexity

This chapter studies the influence of both the imbalance ratio and the classi-

fier on the performance of different under-sampling strategies to handle imbal-

anced data sets. A common approach to deal with the problem of imbalanced

data sets is the use of a preprocessing step. In this study we analyze the useful-

ness of a data complexity measure associated with the minority class in order

to predict the behavior of under-sampling methods. The study focuses on data

complexity measure evaluation of how learning is affected when different re-

sampling algorithms transform the original imbalanced data into artificially

balanced class distributions. Experiments over 18 real data sets using seven

different classifiers, ten re-sampling algorithms, six iterative sampling and

three performance evaluation measures are studied to complete characteriza-

tions of the data sets and the differences among the different under-sampling

results.
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4.1 Introduction

In this Chapter, we will compare various under-sampling techniques to show

that data complexity is useful to analyze the effect of the preprocessing in

imbalanced data sets. We will identify which under-sampling method and

classifier works better under different regions (groups) of data complexity

space. Among the most intensely studied solution to the imbalance problem

are data level solutions, which consist of artificially re-sampling the original

data set until classes are approximately equally represented. The best class

distribution for a data level solution for the class imbalance problem is still an

open question and conclusions about it in the literature are divergent. Hulse

et al. [1] suggest that the usefulness of each particular re-sampling technique

depends on various factors, including the ratio between positive and negative

examples, the characteristics of data, and the nature of the classifier. Several

papers [2], [3], [4], [5] and [6] have also studied this dependence during the

last decade. Nevertheless, their conclusions should be carefully interpreted

because most of them are based on narrow learning frameworks.

This study significantly extends previous works by increasing the scope

and detail at which is studied the influence of the imbalance ratio and the

classifier on the effectiveness of the most popular under-sampling strategies.

We will compare various under-sampling strategies and show that data com-

plexity is useful to analyze the effect of preprocessing in imbalanced data

sets. To this end, we will carry out a collection of experiments over 18 real

databases with different levels of imbalance, employing seven classifiers, 10

re-sampling techniques and three performance metrics.

The rest of the chapter is organized as follows: Section 4.2 provides a

brief overview of the existing under-sampling approaches and algorithms, in

Section 4.3 various complexity measures are defined, in Section 4.4 the exper-

imental set-up is described and results of our experiments are summarized,

and Section 4.5 discusses the validity of the results. Finally, Section 4.6 gives

conclusions and suggestions for future work.
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Table 4.1: Under-Sampling Techniques

Methods Algorithms References Pros Cons
Random Under-sampling Random Undersampling Kubat et al, 1997 Effective in correct Lost information

Japkowicz, 2001 class imbalance;
Probability localized

Neighborhood Cleaning Tomek Link Tomek, I, 1976 Builds better Computational expensive
Techniques CNN Rule Harts, P. E., 1968 classification Models

OSS Kubat et al., 1997
NCL Rule Wilson, D. L., 1972

Active Learning Progressive Learning John and lanley, 2003 More efficient;
Adaptive Sampling Lyengar et al, 2000 No information lost

Importance Sampling Breiman et al, 1999 No increase in
Selective Learning Ertekin et al, 2007 computational cost

Repetitive Under-Sampling Easy Ensemble Lui et al. 2006 More efficient Increase in
RUSBoost Seiffert et al., 2008 computational cost

Cluster based Under-Sampling Lee et al, 2006 Depends on k
Classification using J. Wu et al., 2010

lOcal clusterinG(COG) Zhang et al., 2010

4.2 Current Under-Sampling (US)

Approaches

Under-sampling has been the most investigated area in the classification,

statistics, and data mining communities for dealing with imbalanced data.

The main aim of under-sampling is to select a subset of majority class ex-

amples, eliminating other examples with least loss of information. Under-

sampling can significantly improve the efficiency of the resulting classifier

models and often builds a model that generalizes better to unseen points [6].

In the classification situation, under-sampling can be divided into four

broad categories: Random under-sampling, Neighborhood cleansing tech-

niques, Active Learning and Repetitive sampling methods. Table 4.1 pro-

vides a summary of under-sampling techniques used in classification, giving

advantages and disadvantages of each technique, as well as references for the

most common algorithms.

Weiss and Provost [7] noted that in many real data sets the original

distribution of classes is not always the best distribution to use for a given

classifier, and different re-sampling approaches try to modify the “original”

distribution to another that is closer to the optimal one (i.e., class distribution

size that favors all the classes in the data sets in terms of classification results).

This can be done by over-sampling the minority class, under-sampling the
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majority class, or combining simple over-and under-sampling techniques [8, 9].

All these strategies can be applied to any classifier, since these can be done

at the data level, allowing the classifier to receive the training examples as

if they belonged to a balanced data set. Thus any bias towards the majority

class due to the different proportion of examples per class would be expected

to be eliminated.

While these methods can result in greatly improved results over the use of

original data set, they have also shown several important drawbacks. Under-

sampling techniques may results in loss of valuable information. Moreover

under-sampling of majority class modifies the prior probability of the classes,

and can lead to a decrease in the accuracy of the negative class.

In order to minimize the loss of information, as randomly under-sampling

may throw away valuable information, various Active Learning techniques

have been investigated, from Neighborhood Cleansing techniques to Cluster-

based under-sampling. We believe that the motivation behind the neighbor

cleansing techniques is to reduce class overlap between the two classes. This

may be the reason that most of the algorithms mentioned in Table 4.1 use

1-NN (kNN classifier, where k=1) to classify an example, and if a minority

class example has its nearest neighbor from the majority class, it is elim-

inated. This algorithm is repeated a number of times, until no minority

class examples are being misclassified. These methods however can seriously

compromise the accuracy of majority class examples, if there is high overlap

between the classes.

Active learning is phase-wise learning, where at each iteration a number

of examples from the data set is added to the model. In these techniques all

those examples which have been misclassified by a certain classifier are added

to the final model [10]. These techniques requires a number of iterations of

adaptive re-sampling which increases its computational cost. Furthermore

this learning is tailored towards specific algorithms, hence a selected data set

may not be ideal for other classifiers to build a model.

Repetitive under-sampling techniques are designed to alleviate some of

the problems associated with random under-sampling (loss of information)

[11]. Repetitive under-sampling constructs an ensemble of models, each using
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a different sample from the majority class, hence reducing the loss of infor-

mation when only one subset of the majority class is used. Cluster-based

under-sampling technique is used in order to select majority class examples

from different regions of the data set. In the clustering approach, the major-

ity class is partitioned into k cluster. Each of the majority class partitions is

combined with the entire minority class to create k training datasets, from

which an ensemble of models is constructed. Clustering based under-sampling

is more complex than random partitioning, as it depends on k, and how to

fix k (number of clusters) is still a open question.

In this study we evaluate 11 different methods of under-sampling to bal-

ance the class distribution on the training data. In this section, we introduce

those specific algorithms that we use later in our performance comparison.

There are many under-sampling algorithms available in the literature. Here,

several of the most popular algorithms are selected, with representation of

all the categories mentioned in Table 4.1.

4.2.1 Random under-sampling (RUS):

This method aims to balance the data set by eliminating randomly selected

examples of the majority class. Random under-sampling can throw away

potentially useful information. The following under-sampling methods are

devised to overcome the drawbacks of random under-sampling.

4.2.2 Neighborhood Cleansing Techniques (NCT)

4.2.2.1 Tomek links:

Tomek links [12] can be defined as follows: given two examples Xi and Xj

belonging to different classes, denote by d(Xi, Xj) the distance between Xi

and Xj . An (Xi, Xj) pair is called a Tomek link if there is not an example Xl,

such that d(Xi, Xl) < d(Xi, Xj) or d(Xj, Xl) < d(Xi, Xj). If two examples

form a Tomek link, then either one of these examples is noise or both exam-

ples are borderline. Tomek links can be used as an under-sampling method or

as a data cleaning method. As an under-sampling method, only examples be-
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longing to the majority class are eliminated, and as a data cleaning method,

examples of both classes are removed. This must be used with caution in

a highly imbalanced data set in the presence of highly overlapped classes,

since we may end up heavily reducing the majority class, hence accuracy of

majority class will be seriously affected.

4.2.2.2 Condensed Nearest Neighbor Rule:

Hart’s Condensed Nearest Neighbor Rule (CNN)[13] is used to find a consis-

tent subset of examples. A subset X̂ ⊆ X is consistent with X if using a

1-nearest neighbor, X̂ correctly classifies the examples in X. An algorithm

to create a subset X̂ from X as an under-sampling method is the following:

First, randomly draw one majority class example and all examples from the

minority class and put these examples in X̂ . Afterwards, use a 1-NN over

the examples in X̂ to classify the examples in X. Every misclassified example

from X is moved to X̂. It is important to note that this procedure does not

find the smallest consistent subset from X. The idea behind this implemen-

tation of a consistent subset is to eliminate the examples from the majority

class that are distant from the decision border, since these sorts of examples

might be considered less relevant for learning.

4.2.2.3 One-sided selection (OSS):

OSS [14] is an under-sampling method resulting from the application of

Tomek links followed by the application of CNN. Tomek links are used as an

under-sampling method to remove noisy and borderline majority class exam-

ples. Borderline examples can be considered as unsafe, since a small amount

of noise can make them fall on the wrong side of the decision border. CNN

aims to remove examples from the majority class that are distant from the

decision border. The remaining examples, i.e. majority class examples, and

all minority class examples are used for learning.



4.2 Current Under-Sampling (US) Approaches 107

4.2.2.4 Neighborhood Cleaning Rule (NCL):

Neighborhood Cleaning Rule (NCL)[15] uses the Wilson’s Edited Nearest

Neighbor Rule (ENN)[16] to remove majority class examples. ENN removes

any example whose class label differs from the class of at least two of its three

nearest neighbors. NCL modifies the ENN in order to increase the data clean-

ing. For a two-class problem the algorithm can be described in the following

way: for each example Xi in the training set, its three nearest neighbors are

found. If Xi belongs to the majority class and the classification given by

its three nearest neighbors contradicts the original class of Xi, then Xi is

removed. If Xi belongs to the minority class and its three nearest neighbors

misclassify Xi, then the nearest neighbors that belong to the majority class

are removed. This may result in a poor model for the majority class, as all

the majority class near to the class boundary will be eliminated.

4.2.3 Active Learning

4.2.3.1 Progressive Learning:

Provost et. al. [9] analyze a method for under-sampling by progressive sam-

pling as long as model accuracy improves. They use a learning curve to decide

when the model has converged (i.e., accuracy of the model does not change

with increase of the training sets). A learning curve depicts the relation-

ship between sample size and model accuracy. They analyze the efficiency

of progressive sampling relative to the accuracy with all observations and

conclude that a geometric sampling schedule (i.e., by increasing sample size

in geometric progression) is asymptotically optimal. They provide empirical

comparison between different sampling techniques and conclude that progres-

sive sampling is most efficient. Although they did not use imbalanced data

sets, we modify their algorithm to suit our problem of class imbalance. We

start with all the examples from the minority class and a small subset of the

majority class random selected, and keep increasing the sample size of ma-

jority class, until accuracy of the majority class is greater than the accuracy

of the minority class. Hence we can determine the ideal class distribution of
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the data sets. One of the disadvantages of this technique is its dependence

on the classifier, i.e., the optimal class distribution for one classifier may not

be ideal for another classifier.

4.2.4 Repetitive Under-Sampling

4.2.4.1 EasyEnsemble:

EasyEnsemble [17] repeats the random under-sampling approach n times,

increasing the likelihood that each example will be included in the train-

ing of part of the ensemble. The author [17] used the balanced 50:50 class

distribution, but any under-sampling approach can be used. After the under-

sampling any classifier can be used, but the author used AdaBoost [18] as a

classifier which itself creates an ensemble of models. As such, we also used

AdaBoost in conjunction with a classification tree (CT).

4.2.4.2 RUSBoost:

RUSBoost [19] modifies the existing Ada.Boost.M2 [18] algorithm by per-

forming under-sampling prior to construction of each model. A model is

then constructed and, based on the model’s performance, weights of the en-

tire training datasets are modified as in the original AdaBoost Algorithm.

The principle which we can see in this algorithm, is to include all those

examples of the majority class which have been misclassified by the model.

Hence a more efficient model can be built up. As far as weights of the minor-

ity class are concerned, modifying the weights does not have any real effect

as the whole minority class will be used to form the training model.

4.2.4.3 Classification using lOcal clusterinG (COG):

Wu et al. [20], suggest a method to solve the minority class problem by Clas-

sification using lOcal clusterinG (COG). They cluster the majority class into

small clusters using a standard k-mean clustering algorithm. An ensemble

model is then constructed by classifying each majority class cluster against

the minority class. The motivation behind their clustering idea is to get more
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balance and to divide the complex concepts into simpler ones (i.e., non lin-

ear separable classes into linear separable class). This may not be appealing

when there is a high degree of overlap between the class distributions, since

their methodology will result in large misclassification error in either of the

classes, and we may get better results for the minority at the expense of

majority class.

4.2.5 Cluster-based Under-sampling

4.2.5.1 Clustering Undersampling:

Zhang et al., [21] propose a method of under-sampling method using cluster-

ing. They cluster majority class examples into k cluster using the k-means

algorithm [22]. Suppose the number of majority class is Nmaj and for each

cluster we have the number of examples as Nmaji
for 1 ≤ i ≤ k, then let

the proportion of majority class in each cluster be ri = Nmaji
/Nmaj. From

each cluster the number of examples for majority class will be selected as

si = Nmin ∗ ri where Nmin is the number of minority class examples. The

motive behind this technique is to get a balanced distribution to minimize

the loss of information due to under-sampling, and to select the majority

class examples from different regions of data sets.

The effectiveness of these re-sampling approaches has been investigated

in previous studies with respect to different data sets and classification mod-

els. However, most of them have focused on some specific learning factors

(classifiers, data sets, performance metrics, re-sampling strategies), but dis-

regarding the effect of others.

• Japkowicz and Stephen [5] discussed the performance of basic resam-

pling methods when using a C5.0 decision tree (Classification Tree)

induction system over a reduced number of artificial and real-world

data sets. The error rate on each class was recorded to carry out this

study.

• Drummond and Holte [6] presented the performance of basic re-sampling
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methods when using a C5.0 decision tree over four real data sets. Ten

fold cross validation estimated the mean performance of the classifier.

• Barandela et al. [23] investigated several under- and over-sampling

techniques. The experiments were constrained to five real data sets us-

ing the nearest neighbor rule for classification and the geometric mean

as the performance evaluation metric.

• Estabrooks et al. [2] studied random strategies at different resampling

rates with C4.5 classifiers. They evaluated the performance on seven

artificial and five real data sets by means of the overall error rate and

the error on each class.

• Batista et al. [24] conducted a broad experimental analysis with 13

databases and 10 resampling methods, but conclusions were limited to

the C4.5 decision tree and the use of the area under the ROC curve for

assessing the results.

• Hulse et al. [1] addressed the imbalance problem with 35 different

data sets, seven sampling techniques and 11 commonly-used learning

algorithms using four evaluations matrices for assessing the results.

4.3 Empirical Study:

To relate the performance of existing under-sampling methods to data com-

plexity with real data, we have used 18 data sets from the UCI data repository

[25]. For every binary data set generated we computed the data complexity

measure over the complete data set before the processing and splitting of

the data. CM as define in Chapter 3 is our Complexity Measurement for

the minority class, whereas F1, L3 and N1 are the complexity measurements

proposed by Ho [26]; IR (Imbalance Ratio) defined as the number of nega-

tive class examples, divided by the positive class examples is usually used

to show the degree of imbalance [1]. We use CM as the general indicator of

whether a data set is easy or difficult to learn, and the examples are arranged
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accordingly, due to fact that it has been shown to be highly correlated with

the performance of the classifier on a minority class, in comparison to any

other complexity measurement.

Table 4.2: Description of UCI data sets

Data Set Size Target Size of Min Size of Maj %Min IR F1 L3 N1 CM
Vehicle3 846 bus 218 628 25.8 2.88 0.169 0.368 0.049 0.037
WDBC 569 malignant 212 357 37.3 1.68 3.568 0.007 0.831 0.080
Yeast4 1484 ME1 44 1440 3.0 32.73 4.198 0.500 0.122 0.273
Yeast2 1484 ME3 163 1321 11.0 8.10 2.751 0.500 0.679 0.325
Satimage 6435 class 4 626 5809 9.7 9.28 0.375 0.500 0.556 0.345
Haberman 306 class 2 81 225 26.5 2.78 0.185 0.497 1.024 0.346
Ionosphere 351 bad 126 225 35.9 1.79 0.609 0.980 1.129 0.405
Pima 768 class 1 268 500 34.9 1.87 0.576 0.500 1.008 0.427
Vehicle2 846 saab 217 629 25.7 2.90 0.381 0.231 0.284 0.452
Yeast3 1484 exc 35 1449 2.4 41.40 2.302 0.500 0.594 0.486
Abalone2 4177 Ring<7 448 3729 10.7 8.32 2.947 0.520 0.365 0.489
Yeast1 1484 nuc 429 1055 28.9 2.46 0.242 0.500 0.879 0.564
Vehicle1 846 opel 212 634 25.1 2.99 0.186 0.351 0.936 0.566
Cmc 1473 class 2 333 1140 22.6 3.42 0.245 0.500 0.908 0.718
WPBC 198 recur 47 151 23.7 3.21 0.142 0.780 0.931 0.745
Abalone1 4177 Ring=7 391 3786 9.4 9.68 0.879 0.650 0.489 0.903
Balance 625 Balance 49 576 7.8 11.76 0.001 0.500 0.971 1.000
Abalone3 4177 Ring=19 32 4145 0.8 129.53 0.530 0.500 0.731 1.000

4.3.1 Learning algorithms

We have tried to tackle two-class classification problems from a wide per-

spective taking into account different supervised techniques existing in the

machine learning field, leading us to consider four base classification models,

belonging to very different approaches: Logistic Regression (LR), Classifica-

tion Trees (CT), Artificial Neural Networks (ANN) and Support Vector Ma-

chines (SVM). For more detail how each particular classification approach

works, see Appendix 2.7.

LR is one of the most used statistical models to predict binary outcomes

and has interesting properties (see Appendix 2.7) concerning the interpreta-

tion of the coefficients [27]. CT has connections with the Social Sciences [28]

and the Artificial Intelligence (AI) fields [29]; CT stand out for the ease of
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interpretation of the obtained model. The Artificial Intelligence (AI) com-

munity has developed a powerful computational paradigm, the ANN [30],

which has been progressively incorporated into statistical practice [31, 32],

but their black-box nature makes the interpretation of the resulting models

very difficult. SVM emerged from Statistical Learning Theory, or Vapnik-

Chernovenkis theory [33], which is one of the most investigated topics in

machine learning. An excellent survey of SVMs can be found in [34]. The

four models are freely available in the R system [35] which also provides the

user with a powerful statistical programming language. Ihaka and Gentle-

man [36] present an introduction to the main characteristics of the R system.

The programming resources of this system are very suitable for programming

ensemble methods, where a certain number of models are constructed by re-

sampling the set of cases and/or the set of predictors, aggregating the models

by majority voting (see Appendix 4.6).

4.3.1.1 Ensemble classification methods

Several methods to combine different classification models have been pro-

posed. They are based on the combination of models fitted from samples

and sets of variables generated from the original data set. We consider the

following ensemble methods: Random Forests, Bagging and Boosting. Bag-

ging and boosting are meta-algorithms that pool decisions from multiple

classifiers.

Random Forests have been proposed by Breiman [37] as a way to combine

many different trees. A number of trees are constructed. Each one is grown

over a bootstrap sample of the training data set, and a random selection

of variables is considered to choose splits in each node. As in bagging, the

trees are combined by majority voting. Bagging [18] is a voting method

that uses slightly different training sets (generated by bootstrap) to make

different base learners, whereas the Boosting algorithm [18] aims to improve

the classification accuracies of any “weak” learning algorithm. It weights each

sample reflecting its importance and places more weight on those examples

which are more often misclassified. This forces the learners to emphasize
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those samples that are hard to correctly classified.

4.3.1.2 Clustering

Clustering has been recognized as a useful spatial data mining method. In

statistics as well as in machine learning many efforts exist to identify and to

describe groups of similar objects [38]. The key idea to utilize clustering tech-

niques for under-sampling purposes, is to select only a few representatives

from each cluster of similar objects (majority class). This set of representa-

tives then forms the output of majority class selection. In this study we use

the CLARA algorithm, where CLARA is a sampling-based algorithm which

implements Partition around Mediods (PAM) on a number of sub-data sets

[39]. i.e., CLARA draws a sample of the data set, applies PAM on the sam-

ple, and finds the medoids (the most centrally located object) of the sample.

The point is that, if the sample is drawn in a sufficiently random way, the

medoids of the sample would approximate the medoids of the entire data set.

To come up with better approximations, CLARA draws multiple samples and

gives the best clustering as the output. Here, for accuracy, the quality of a

clustering is measured based on the average dissimilarity of all objects in the

entire data set, and not only of those objects in the samples. Experiments

[39] indicate that five samples of size 40 ± 2k give satisfactory results. This

allows for faster running times when the number of observations is relatively

large.

4.3.2 Study Design

All the preprocessing (under-sampling) techniques considered for our experi-

ment were employed on each of the training partitions in order to reduce the

effect of class imbalance. In total, five-fold CV runs times 18 data sets gives

90 different training/testing data sets, then 13 under-sampling techniques

plus raw data sets were used for each of the 90 training datasets, resulting

in 90×13=1170 data sets, each of which is used for classification. Since we

used 7 learning algorithms, a total of 1170×7= 8190 models were constructed

and considered in this study for Random Under Sampling and Neighborhood
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Cleansing Techniques (NCT).

We consider two random under-sampling ratios, i.e., balanced class dis-

tribution and minority class as 35% of the whole training set. The purpose

of considering only two under-sampling ratios is to keep the study simple.

Other studies [1, 3] have considered many imbalance ratios. However, we

found that these two ratios were adequate to learn about the minority class

in highly imbalanced data sets. Moreover we have investigated optimal class

distribution other than these two (balance and 35%) by Learning Curve (LC)

as described in section 4.2.3.

For ensemble models we use ten iterations, with ten repetitions of under-

sampling technique, resulting in 100 models being constructed for one data

set, as proposed in [19].

We use Sensitivity (the accuracy of the minority class) to measure the

performance of a classifier. Sensitivity is chosen because we are most inter-

ested in accuracy for the minority class rather than overall accuracy. We also

evaluate the algorithms using the metric G-Mean defined as
√

TP × TN [40],

which corresponds to the geometric mean between the correct classification

rates for positive (sensitivity) and negative (specificity) examples, respec-

tively. We also use the Area Under the ROC (receiver operating characteris-

tic) curve (i.e., AUC) [41] to evaluate the selected classification models. AUC

is considered the preferred criterion when interest is the minority class [5].

All analyses were done using 5-fold cross validation, i.e., a random par-

tition of the data into five sets of 20%, with the combination of 4 of them

(80%) as training and the remaining one as the test set. For each data set we

consider the average results of the five partitions. This partition was done

as stratified (class based partition) to preserve the original imbalance ratio

between the classes.

All programs were written in the statistical environment R [35] (for rele-

vant R codes see Appendix 4.6). For the construction of tree models we used

the RPART package [42]; for nearest neighbor based on Euclidean distance we

used R package class [43]; with a little modification of the input and output

to compute Random Forest distances we used the R package randomForest

[37]; for svm and glm we use R package e1071 [44], and for Bagging and
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Boosting we use R package adabag [45]. For comparison among different

classifier we conducted the following statistical test.

4.3.3 Statistical Analysis: Friedman Test

The Friedman test [46, 47] is a non-parametric equivalent of the repeated-

measures Analysis of Variance (ANOVA). It ranks the classifier for each data

set separately, the best performing classifiers getting the rank of 1, the second

best rank 2, and so on. In case of ties average ranks are assigned. Let rj
i be

the rank of the j-th of k classifier on the i-th of N data sets. The Friedman

test compares the average ranks of classifiers, Rj = 1
N

∑
i r

j
i . Under the null-

hypothesis, which states that all the classifier are equivalent and so their

ranks Rj should be equal, the Friedman statistic

χ2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
(4.1)

is distributed according to χ2
F with k − 1 degrees of freedom, when N and

k are big enough (as a rule of a thumb, N > 10 and k > 5). For a smaller

number of algorithms and data sets, exact critical values have been computed

[48, 49].

Iman and Davenport [50] showed that Friedmans χ2
F is undesirably con-

servative and derived a better statistic

FF =
(N − 1)χ2

F

N(k − 1) − χ2
F

(4.2)

which is distributed according to the F-distribution with k − 1 and (k −
1)(N − 1) degrees of freedom. The table of critical values can be found in

any statistical book.

As for the two-classifier comparisons, the (non-parametric) Friedman test

has theoretically less power than (parametric) ANOVA when the ANOVA’s

assumptions are met, but this does not need to be the case when they are

not.
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4.3.4 Results:

In our analysis only F1, L3 and N1 measure of the 12 measure presented in

Table 3.1 proved to be more correlated with the sensitivity in our data sets.

Figure 4.1 shows the relationship between the different complexity measures

and the sensitivity values (average sensitivity value from different classifiers).

There is high correlation between the sensitivity and CM values. For all

the raw data sets, pooling results from the different classification techniques

used, empirically, pooling (ensembles) tend to yield better results when there

is a significant diversity among the models [51, 52]. Many ensemble meth-

ods, therefore, seek to promote diversity among the models they combine

[53]. We found the correlation between the complexity measurement and the

sensitivity values, for CM, IR, F1, L3, and N4 to be -0.90, -0.41, 0.42, -0.27

and -0.27 respectively.

Hulse et al. [1] suggested grouping datasets using percentage of minority

class as thresholds to show the effectiveness of the base classifier and the

effectiveness of preprocessing techniques for the different imbalance scenarios.

We will follow their approach, but using CM thresholds to define groups.

Since CM is highly correlated with the sensitivity values, this makes CM

an obvious candidate for defining thresholds. In our case then we are using

CM thresholds to characterize the effectiveness of the different models and

under-sampling techniques. We choose four CM ranges for our comparisons,

defined as: CM ≤ 20%, 30% < CM ≤ 40%, 40% < CM ≤ 50% and CM >

50% respectively. An initial analysis was carried out on the data grouped by

complexity (CM), into the categories presented in Table 6.2. One range of

CM values was not found in the data sets we evaluated: 20% < CM ≤ 30%

did not occur.
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Figure 4.1: Scatter plot for Sensitivity values (average sensitivity value
from different classifiers) and Complexity Measurement for UCI data
set, top left is our proposed Complexity Measurement (CM), top right is
Imbalance Ratio (IR), bottom left is Fisher Discriminant Ratio (F1) and
bottom right shows Fractions of points on class boundary (N1). Every

data set is represented by its name
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Table 4.3 presents a summary of the results obtained by the learning al-

gorithms on the different categories of problems. In the columns we show

the different CM groups we used in this study, and for every group various

evaluation matrices have been calculated. We can visualize performance of

the different classifiers presented in Table 4.3 from Fig. 4.2. The diagrams

in Fig.4.2 present the performance of the different classifiers, under different

evaluation metrics along with their 95% confidence interval (shown by an

error line at the top of each bar), on the problem categories which affect

their learning capacity. The accuracy alone is not a good measure of per-

formance. The analysis should instead focus on the following criteria: high

values for Sensitivity, GM, and AUC indicate a good classification, while

high Specificity values in comparison to Sensitivity values reveal a classifi-

cation which is biased towards the majority class. Moreover, the larger the

difference between the Specificity and the Sensitivity, the more biased the

classification process is. This is the reason we are considering Sensitivity,

GM and AUC values to make the following comments. Even though we are

not interested in specificity and overall accuracy of the data sets, we can’t

disregard these factors as they show the biases of different under-sampling

technique against majority class. The results agree with the different imbal-

ances concept presented in [54]. The value of the CM plays an important

role in the performance of the classifiers. An increase in complexity leads

to classifier performance degradation on the minority class; while one would

expect that high complexity significantly affects the capacity of classifiers

to achieve acceptable performance scores, it must be kept in mind that CM

is independent of any classifier and evaluation measure used. As it can be

observed from Fig. 4.2 the behavior of classifiers on less complex data sets is

better and more uniform than on categories of problems of higher complexity:

in group CM <20 almost all classifiers seem to be robust to the imbalance

problem, with the uniform 95% confidence interval across the data sets used

for this group. With high complexity shown by the various CM groups all

the classifiers are behaving in a similar way across various evaluation mea-

sures, with uniform 95% confidence interval. We carried out Friedman test to

see any significant differences among classifiers between datasets within the
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Figure 4.2: A summary of the results obtained by the learning algo-
rithms on the different categories of problems. Each panel shows the
results for a different range of complexity (CM) with each classifier eval-
uated by five different measures along with their 95% confidence interval

(shown by an error line at the top of each bar).



122
An Empirical Comparison of Under-Sampling Techniques in

Relation to Data Complexity

B
O

O
 −

 B
AG

C
T 
− 

B
AG

LR
 −

 B
AG

N
N

 −
 B

AG
R

F 
− 

B
AG

S
V

M
 −

 B
AG

C
T 
− 

B
O

O
LR

 −
 B

O
O

N
N

 −
 B

O
O

R
F 
− 

B
O

O
S

V
M

 −
 B

O
O

LR
 −

 C
T

N
N

 −
 C

T
R

F 
− 

C
T

S
V

M
 −

 C
T

N
N

 −
 L

R
R

F 
− 

LR
S

V
M

 −
 L

R
R

F 
− 

N
N

S
V

M
 −

 N
N

S
V

M
 −

 R
F

−0.5

0.0

0.5

1.0

Boxplots (of the differences for CM > 50)

BOO − BAG  ; P= 0.995
CT − BAG  ; P= 0.999
LR − BAG  ; P= 0.33
NN − BAG  ; P= 0.957
RF − BAG  ; P= 0.33
SVM − BAG  ; P= 0.431
CT − BOO  ; P= 0.912
LR − BOO  ; P= 0.757
NN − BOO  ; P= 0.653
RF − BOO  ; P= 0.076
SVM − BOO  ; P= 0.845
LR − CT  ; P= 0.116
NN − CT  ; P= 0.999
RF − CT  ; P= 0.653
SVM − CT  ; P= 0.171
NN − LR  ; P= 0.03
RF − LR  ; P= 0
SVM − LR  ; P= 1
RF − NN  ; P= 0.912
SVM − NN  ; P= 0.048
SVM − RF  ; P= 0.001

Figure 4.3: A difference obtained by the learning algorithms on the
different data sets for group CM > 50. The result for a differences of
AUC values among the classifier evaluated by Friedman Test. On x-
axis all possible combination of difference between classifier, where as in

legend relative p-values of post hoc test is given.

group on the value of AUC. We found significant difference among classifiers;

by the posthoc test we found that LR is significantly different for the CM

groups i.e, 30% < CM ≤ 40% and 40% < CM ≤ 50% and LR and SVM

for the group CM > 50 (shown graphically in Fig 4.3). SVM performance

rapidly degrades (increasingly difference between sensitivity and specificity)

with increasing complexity, which shows that SVM is sensitive to complexity

group with class imbalance. LR in most of the cases performed poorly. This

is the reason that we find Friedman’s test for various classifier, within the

various complexity groups, statistically significant.

For illustration Friedman test for differences among classifiers on AUC

value between different data sets for CM > 50 is shown in Fig 4.3. From Fig

4.3 it is clear that Friedman’s test is significant due to poor performance of

LR and SVM and in comparison to the NN and RF. The rest of the classifier

are not significantly different.

The results prove that the learning capabilities of the classifiers considered

are affected by an increased CM. It can be observed that Neural Network
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(NN) is generally more robust than Classification Tree (CT) to the imbalance

problem. Moreover, NN achieves relatively high Sensitivity, GM and AUC

values in most cases (in higher CM groups), and NN yields at least the second

best performance in all cases, which makes it the most robust out of all the

classifiers evaluated. None of the LR results were relatively good in any of the

cases studied, which makes it suitable only for baseline problem assessment.

The above observations provide an affirmative answer to one of the open

questions in [54] (their study found that NN is the most robust classifier

under different class imbalances domains), namely whether the conclusions

presented there can be applied to real-world domains.

However, our results also indicate that SVM is the most sensitive to

CM groups (shown by the increasingly difference between sensitivity and

specificity by various CM groups). This means that, for the particular case

of SVMs, the conclusion drawn from experiments on synthetic data cannot

be extended to real data sets. A reason for this could be the following: in

the case of synthetic data sets, even for large Imbalance Ratios (IRs), the

examples which represent reliable support vectors are present in the data, due

to the systematic data generation process, while in the case of real problems,

these vital learning elements might be missing. This makes SVMs the weakest

classifiers in most real-world imbalanced problems.

The results suggest that our complexity measure (CM) represent a good

(i.e. monotonic) indicator of influence on accuracy of the minority class

in the classification process. A relation between complexity and classifier

performance is revealed, i.e. the higher the complexity, the greater the per-

formance degradation. This suggests that complexity is a useful concept to

explain and predict classifier robustness when faced with imbalance problems

in real world situations.

We observed that for CM < 20, all the classifiers perform well, so this

group is not considered further. Tables 4.4, 4.5, 4.6 depict the average re-

sults for GM, Sensitivity and AUC for various undersampling techniques and

Neighborhood cleansing Techniques (NCT) as described in section 4.2.1, from

the four base classifier i.e., CT, LR, NN, and SVM and ensemble classifier RF

for all the data in a certain CM group. Results for the best Sensitivity, Geo-
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Figure 4.4: A summary of the results obtained by the learning algo-
rithms on the different categories of problems using the under-sampling
technique that gave the best sensitivity along with their 95% confidence
interval (shown by error line at top of each bar). The left hand graphs
represent the best random under-sampling techniques, whereas right

hand shows best NCT techniques.
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metric Mean and AUC have been used to select which tecnique/methodology

performs best within each CM group. The following abbreviation has been

used in the tables for represent the best technique: for RUS, Balanced means

random under sampling (RUS) is done on the majority class to achieve bal-

anced class distribution for training data, 35% represent that minority class

is 35% of the whole training data sets, and LC (Learning Curve) as explained

in section 4.2.3. Whereas for the NCT, various abbreviations is explained in

section 4.2.2. It is interesting to note that in most of the cases if the classi-

fier has high sensitivity value, it will be accompanied by high GM and AUC

values. It is understandable that high GM and AUC can only be achieved

if we have high sensitivity and specificity values. We can see that all the

base classifiers prefer a balanced distribution, which implies that due to the

increased degree of class learning difficulty (represented by our CM values)

accompanied by the class imbalance, classifiers do need a reasonable amount

of examples from the minority class to build a model on it. But it comes

at the cost of accuracy of the majority class. For the neighborhood cleaning

techniques (NCT), NCL proves to be the best techniques. This is due the

fact that this technique removes all the majority class examples for the train-

ing data sets that are misclassified by the k nearest neighbor (k=3), as it

forces the decision boundary to favor the minority class. This is an effective

technique if there is low overlap between the classes. This technique should

be handled with care when we have severe imbalance along with high overlap

between the classes, as it may result in heavily reducing the majority class

examples which will result in a poor classification model for the majority

class.

The results for Tables 4.4, 4.5, 4.6 has been summarized as follows.

• From Table 4.3 for complexity 30%<CM≤40%, we have average speci-

ficity of 94% and sensitivity of 53% across all the data sets. Using

RUS (Balanced) techniques, the specificity decreases by 11%, with the

increase in sensitivity of 27%; for the NCL, specificity decreases around

9% while the increase in sensitivity is around 22%. Similarly increases

for the GM for Balanced and NCL are 12% and 9% respectively, and

for AUC 9% and 6% respectively.
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• For complexity 40%<CM≤50% (Table 4.3) we have average specificity

of 90% and sensitivity of 57% across all the data sets, which shows

the increased degree of overlapped between the classes. The average

decrease in the specificity for a balanced training set is around 11%

with the increase in the sensitivity of 22%; for the NCL decrease in

the specificity is around 9% with the increase in sensitivity of 13%.

Similarly increase for the GM for balanced and NCL are 8% and 4%,

and AUC 6% and 3% respectively.

• For complexity > 50% Table 4.3 we have average specificity of 91% and

sensitivity of 20% across all the data sets. These data sets are extremely

difficult to learn for the minority class and any under-sampling attempt

in improving the accuracy of minority class will result in severe decrease

in the accuracy of majority class. This can be judged from Table 4.5,

4.4, 4.6: specificity decreases by 29% with the increase in sensitivity

of 48%; for the NCL decrease in specificity is around 39% with an

increase in sensitivity of around 26%. Similarly increase for the GM

for balanced and NCL are 32% and 16% respectively, and for AUC 10%

and 5%. NCL is not giving compatible results in these cases in due the

fact, that because of high overlap between the classes, this techniques is

severely under-sampling the majority class. For higher CM value there

is a compromise between the sensitivity and specificity, so in order to

increase the classification accuracy of minority class, we find a high

decrease in the classification accuracy of majority class.

For illustration, Figure 4.4 gives the results for the RUS (Balanced, left

panels) or NCT (NCL, right panel) which produced the best sensitivity values

along with 95% confidence interval shown by the error line on top of each bar,

which show the variation within classifier from different data sets. From the

figure, it is clear that there is no significant difference between the classifiers,

as most of the 95% confidence intervals for different classifiers overlap. It

is apparent that with increasing CM, there is a compromise between the

sensitivity and specificity values. If we want a higher sensitivity value, the

corresponding specificity value will suffer accordingly. This may imply that
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we are seriously compromising the accuracy of the majority class, especially

for the data sets where CM > 50, where we are losing accuracy of the majority

class of around 29% for a gain in minority class accuracy of around 48%.

Moreover in this situation sensitivity is now greater then specificity, which

shows that extreme bias in the classifier is introduced in favor of minority

class, hence these situations warrant a better re-sampling technique.

For the active sampling (informed sampling techniques), NCL provided

the best sensitivity values among all the Neighborhood Cleansing Techniques

(NCT) as described in section 4.2.2. In these cases we can see that the

accuracy of the majority does not suffer as much in comparison with the

US techniques in various CM groups, but the accuracy of minority is lower.

For group CM > 50, we found that the decrease in specificity is more in

comparison to RUS technique considered in this group, whereas the increase

in minority class sensitivity is also less. This again strengthens the inference

that with increased overlap (as reflected by CM), improving the accuracy of

the minority can seriously compromise majority class accuracy. Hence better

re-sampling techniques are needed in these cases.

Among the classifiers, we can see from Fig. 4.4 that SVM performs the

best on the bases of high sensitivity, GM and AUC values, when classes are

relatively balanced by under sampling, whereas CT and NN prove to be more

robust with increasing CM. NN outperforms the other classifiers especially

for cases CM > 50, which again strengthens the conclusion that NN is the

most robust out of all the classifiers evaluated.

These results concur with similar findings in the studies conducted by

Hulse et al. [1] and Jo and Japkowicz [54] for the severe imbalance problem.

From the above we may conclude that with increasing complexity (CM), all

the base classifiers prefer a balanced class distribution for the training set.

This supports recent studies preferring balanced class distribution for the

training sets [17, 19, 20, 21].

Ensemble models (bagging, boosting and Random Forest) do better than

the base classifier, supporting authors [17, 19] who prefer boosting. EasyEnsem-

bles [17] combines the models by summing the posterior probabilities of all

models and normalized to achieve the range from 0 to 1; this was the approach
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applied in our studies. We are using the boosting classification technique for

the clustering based techniques to give a fair comparison with the repetitive

models, with posterior probabilities of all models combined to make deci-

sions. Table 4.7 presents the average evaluation measures for all the ensem-

ble methodologies considered in the study. In addition to Bagging, Boosting,

EasyEnsemble and RUSBoost, Clus(bal) [21] is used to select a balanced

class distribution from the majority class cluster, and Clus(ind) as proposed

by Wu et al. [20]. In all the repetitive models in Table 4.7, accuracy of the

minority class is better than the majority class. This is due to the fact that

all these techniques are using balanced data for their training sets, except the

Clus(ind) [20], which mainly depends on k-mean clustering. We use ‘k’ (i.e.,

k=
Nmaj

Nmin
) as proposed by Wu et al. [20] to roughly balance the classes, and

obviously it does not produce reliable results, hence a different selection of

‘k’ should be considered to get reasonable models. The results are illustrated

in Figure. 4.5. The relative comparison can be summarized as below.

• Easy Ensemble, RUSBoost, and CLUS(bal), are producing almost iden-

tical results for the groups with CM < 50, where accuracy of the mi-

nority class is slightly better than the majority class.

• For group CM > 50 the results for EasyEnsemble and RUSBoost are

better than CLUS (bal). Overall these techniques makes classifier bi-

ased in favor of the minority class, and as a result specificity is far less

than sensitivity.

• Clus(ind) proposed by [20] should be avoided in all cases, or selection

of ‘k’ in k-mean clustering should be handled with extreme care. This

technique depends on k, which can’t be determine easily.

• Overall EasyEnsemble and RUSBoost work better than clustering based

techniques and this finding can be supported by the study conducted by

Molinara et. al. [55], where their results showed that random splitting

is superior to the cluster based approach.

From the above results it shows that if we have CM < 50, repetitive under-

sampling is resulting in a satisfactory model with Sensitivity and Specificity
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Figure 4.5: A summary of the results obtained by the Repetitive un-
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Measure is represented by its names



130
An Empirical Comparison of Under-Sampling Techniques in

Relation to Data Complexity

both greater than 80%. But when CM > 50, this method is not doing well,

by severely under-estimating the majority class. Better sampling techniques,

perhaps a combination of over-sampling and under-sampling, need to be

considered in this situation.

4.4 Discussion

From the above results a number of conclusions can be drawn. We use CM

as the complexity measure to describe the difficulty of class learning, in com-

parison to complexity measurement proposed by Ho [26]. In previous studies

the class imbalance ratio (IR) was used as the threshold [1, 3], to describe the

level of difficulty between different datasets. But our experiments prove that

IR is not an adequate threshold variable to describe the effectiveness of any

preprocessing techniques. For example in our second group 30%<CM≤40%,

a number of data sets have minority class just under 10%, e.g., Yeast4 (mi-

nority class just 3% of the whole data set) and Sat (minority class 9.4%).

Nevertheless accuracy of the minority class is relatively better than that of

the larger minority class. In contrast, the consistency and uniform behavior

of base classifiers within each CM group proves that this may be an appro-

priate grouping criterion.

For CM ≤ 20, there is no need of any preprocessing of data sets, since

every classifier considered in the experiment was able to predict classes ad-

equately, with ensemble models performing relatively better than the base

classifiers. For 30< CM ≤ 50, all the classifiers prefer a balanced class distri-

bution, in comparison to the other under-sampling ratios considered. This is

due to the fact that with class imbalance and increased overlap between the

classes, the classifier is overwhelmed by the majority class, hence we have

high accuracy for the majority class at the expense of minority class. Pre-

processing in this group produces acceptable results for the minority class

(i.e., accuracy of minority class > 80%) without losing much accuracy for

the majority class. For CM> 50, which needs much greater consideration,

since techniques that worked for lower CM values were not effective in this

group. The balancing act of training data sets severely under-sampled the
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majority class, which resulted in losing its accuracy by around 30% and re-

sulted in specificity lower then sensitivity. For this CM region we recommend

a combination of over-sampling and under-sampling techniques, which may

help in gaining better accuracy for both the majority and minority class.

In chapter 5 we have shown that in the overlapped regions over-sampling

works better than just under-sampling. A combination of over-sampling and

under-sampling potentially creates ideal classifiers [8, 9].

One of the most important conclusions that can be drawn is the failure

of the active sampling techniques, like CNN, OSS, WE and Cluster based

under-sampling. While NCL and Tomek link produce comparatively bet-

ter results, these techniques should be used only after careful examination

of the data sets, since for example with highly overlapped and severely im-

balanced data sets, these techniques will result in severe under-sampling of

the minority class, as can be seen from our results. While these techniques

seem to be promising in class imbalance situations, we find that simpler tech-

niques like RUS perform better, and these can be used more effectively in

the repetitive under-sampling techniques, like EasyEnsemble and RUSBoost

tecniques, which produce much better results in comparison to any other

technique considered in this study.

4.4.1 Validity of Results:

Here we again refer to the study conducted by the Hulse et al. [1], where

they mentioned two types of threats to the validity of the results, namely,

internal and external threats. Internal threats refer to unaccounted influ-

ences that may impact on the results, whereas external threats refer to the

generalization of results outside of the experimental setting.

As mentioned earlier all experiments have been conducted using freely

available software in the R system (R Development Core Team, 2004) [35]

which also provides the user with a powerful statistical programming lan-

guage. For different classifiers R packages have been used which are fre-

quently used in the machine learning and data mining community supporting

the internal validity of our results.
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External validity refers to the reliability and generalization of experimen-

tal results. We used 18 UCI data sets in our experiments containing differ-

ent degrees of imbalance and different sizes, thus providing a diverse test

bed. Our results can be compare with other studies conducted by various

researchers, [1, 3, 19], in terms of UCI data sets and creating imbalances

within a data set, different evaluation values likes sensitivity, specificity and

GM and general conclusions about preprocessing techniques.

For random under-sampling we considered a number of partitions, and

used Learning Curve (LC) to find the optimal class distribution for train-

ing; our work showed that with increased complexity and class imbalance,

classifiers prefer the balanced distribution, which was also found by Hulse

et al., [1] for severe Imbalance Ratio (IR). The consistency of our results

suggest that they are generalizable for implementation outside the range of

the experiments, as there is generally the same behaviour among the among

the classifiers within different CM groups, making the results more reliable.

There is no attempt made to make a particular technique optimal, as OSS

and Cluster based under-sampling described how to remove majority class

examples; we followed methodology of authors presented in papers, so there

was no ability to alter the level of sampling. Hence comparisons with other

techniques are reasonable.

4.5 Conclusion

In this work we have analyzed the effect of under-sampling techniques for

imbalanced data sets by means of a data complexity measure (CM). We used

four base classifiers, three ensemble classifiers with 18 UCI data sets contain-

ing different degrees of imbalance and of different sizes, thus providing a di-

verse test bed. The objective of the research is to compare the methodologies

of under-sampling techniques in the existing imbalance literature, and to pro-

vide guidance to data miners/researchers building models with imbalanced

data sets. From the experiment it is very clear that preprocessing is very

important in improving classifier performance, especially when measured by

Sensitivity and Geometric Mean. Using the CM as threshold we notice that
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most classifiers are behaving very similarly with different under-sampling

techniques, which shows the effectiveness of preprocessing techniques. This

suggests that we don’t have to use different classifiers for the imbalanced data

sets, although an ensemble classifier can be used along with preprocessing to

improve the result. Since RUS gives better results compared to other more

complicated techniques considered in this study, we recommend repetitive

under-sampling as a good choice, for least loss of information due to under-

sampling of the majority class. In future work, we will explore more and

larger data sets, especially for more the complex CM region i.e, CM > 50,

where both under-sampling and over-sampling may be advantageous.
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4.6 Appendix

4.6.1 R codes

1 #####################################################
# Co l l e c t i o n o f Examples o f the d i f f e r e n t a lgor i thms that are

a v a i l a b l e to bu i ld c l a s s i f i c a t i o n models in R.
3 #

# inc l ud e s :
5 #

# Log i s t i c Regres s ion
7 # Neural Network

# Support Vector Machine
9 # Dec i s i on Tree

# Random Fore s t s
11 # Adaptive Boost ing and Bagging

#####################################################
13 # I n s t a l l r e l e van t packages

#####################################################
15 l i b r a r y ( e1071 )

l i b r a r y ( rpar t )
17 l i b r a r y ( nnet )

l i b r a r y ( randomForest )
19 l i b r a r y ( f i e l d s )

l i b r a r y ( adabag )
21 l i b r a r y (QuantPsyc )

23 #####################################################
# Confusion Matrix (Be Care fu l f o r the in t e r chang ing c e l l number

f o r s e n s i t i v i t y and s p e c i f i c i t y f o r d i f f e r e n t data s e t s )
25 #####################################################

conf . mat <− f unc t i on ( true , new)
27 {

t <− t ab l e ( true , new)
29 s <− sum( t )

spe <− t [ 1 , 1 ] /sum( t [ 1 , ] )
31 i f ( t [ 2 , 1 ] /sum( t [ 2 , ] ) ==1) { sen<−0} e l s e { sen <− t [ 2 , 2 ] /sum( t

[ 2 , ] ) }
g<−s q r t ( spe ∗ sen )
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33 acc <− round ( ( sum( diag ( t ) ) ) /s , 2)
auc<−(1+sen−(1−spe ) ) /2

35 r e s <− l i s t ( conf = t , accuracy = acc , s p e c i f i c i t y=spe ,
s e n s i t i v i t y=sen , G mean=g , AUC=auc )

}
37

#####################################################
39 # 1. SETUP DATA

#####################################################
41

#c l e a r worksace
43 rm( l i s t = l s ( a l l = TRUE) )

45 #Data cons ide r ed
wdbc <− read . csv ( ’D: / Class imbalance /Data Sets /wdbc data .R ’ ,

header=F) #de f i n e pathway o f your data s e t s
47 colnames (wdbc)<−c ( ”ID” , ” Diagnos i s ” , ”X1” , ”X2” , ”X3” , ”X4” , ”X5” , ”X6”

, ”X7” , ”X8” ,
”X9” , ”X10” , ”X11” , ”X12” , ”X13” , ”X14” , ”X15” , ”X16” , ”X17” , ”X18” , ”

X19” , ”X20” ,
49 ”X21” , ”X22” , ”X23” , ”X24” , ”X25” , ”X26” , ”X27” , ”X28” , ”X29” , ”X30” )

51 wdbc = wdbc [ , −1]
head (wdbc)

53 summary(wdbc)
t ab l e (wdbc$ Diagnos i s )

55

# To make Data Standardized . . .
57 wdbcstd<−Make . Z(wdbc [ , −1 ] )

wdbcstd<−data . frame ( wdbcstd )
59 wdbc<−cbind (wdbc [ , 1 ] , wdbcstd )

colnames (wdbc) [ 1 ]<−” Diagnos i s ”
61 wdbc<−data . frame (wdbc)

63

#Clas s e s
65 wdbcmin <− subset (wdbc , wdbc$ Diagnos i s==”M” )

wdbcmaj <− subset (wdbc , wdbc$ Diagnos i s==”B” )
67 wdbcmin$ Diagnos i s <− f a c t o r (wdbcmin$ Diagnos i s )
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wdbcmaj$ Diagnos i s <− f a c t o r (wdbcmaj$ Diagnos i s )
69 dim(wdbcmin ) ; dim(wdbcmaj )

head (wdbcmin ) ; head (wdbcmaj )
71

#l e t in t roduc ing common names
73 dd<−wdbc # f o r the whole data s e t

colnames (dd) [ 3 0 ]<−” Class ” #change the c l a s s name acco rd ing ly
75 ddmin<−wdbcmin

colnames (ddmin ) [ 3 0 ]<−” Class ” #change the c l a s s name acco rd ing ly
77 ddmaj<−ddmaj

colnames (ddmaj ) [ 3 0 ]<−” Class ” #change the c l a s s name acco rd ing ly
79

81 #Test : Train data (5− f o l d cv )
s e t . seed (1234)

83 n <− nrow (ddmin )
t a i l l e <− n%/%5

85 a l ea <− r un i f (n)
rang<−rank ( a l ea )

87 cv id <− ( rang−1) %/% t a i l l e + 1
cv id<−as . f a c t o r ( cv id )

89 pr in t ( summary( cv id ) )
ddmin = cbind (ddmin , cv id ) #minor i ty data with cv id s

91 s e t . seed (12345)
n <− nrow (ddmaj )

93 t a i l l e <− n%/%5
a l ea <− r un i f (n)

95 rang<−rank ( a l ea )
cv id <− ( rang−1) %/% t a i l l e + 1

97 cv id<−as . f a c t o r ( cv id )
ddmaj = cbind (ddmaj , cv id ) #major i ty data with cv id s

99 head (ddmin ) ; head (ddmaj )
t ab l e (ddmin$ cv id ) ; t ab l e ( ddmaj$ cv id )

101

103 #####################################################
# 2. s e t the formula

105 #####################################################
theTarget <− ” Class ”
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107 #theFormula <− as . formula ( paste (” as . f a c t o r (” , theTarget , ”) ˜ .
”) )

theFormula <− as . formula ( paste ( theTarget , ” ˜ . ” ) )
109 l i b r a r y ( caTools ) #requ i r e ed f o r AUC ca l c

111 #####################################################
# 3. Now ju s t apply the a lgor i thms

113 #####################################################
#Raw data ana ly s e s

115 clsmtxCTraw = NULL
clsmtxNNraw = NULL

117 clsmtxRFraw = NULL
clsmtxSVMraw=NULL

119 clsmtxLRraw = NULL
clsmtxBAGraw = NULL

121 clsmtxBOOraw = NULL

123

#Loop f o r Cross−Val idat i on
125 f o r ( i in 1 : 5 ) {

ddmintst = subset (ddmin , cv id==i , s e l e c t =1: nco l (dd ) )
127 ddmintrn = subset (ddmin , cv id !=i , s e l e c t =1: nco l (dd ) )

ddmajtst = subset (ddmaj , cv id==i , s e l e c t =1: nco l (dd ) )
129 ddmajtrn = subset (ddmaj , cv id !=i , s e l e c t =1: nco l (dd ) )

t e s t s e t = rbind ( ddmajtst , ddmintst )
131 t r a i n s e t = rbind ( ddmajtrn , ddmintrn )

133 LOGISTIC model <− glm ( theFormula , fami ly=binomial ( l i n k=” l o g i t ” ) ,
data=t r a i n s e t )

Neural model<− nnet ( theFormula , data= t r a i n s e t , s i z e =3, decay
=0.01 , maxit=1000)

135 #try s i z e =2 ,4 ,9 ,18 and decay =0 .001 ,0 . 01 , 0 . 1 , 1
SVM model <− svm( theFormula , data=t r a i n s e t , type=’C ’ , k e rne l=’

r a d i a l ’ , p r obab i l i t y = TRUE)
137 TREE model <− rpar t ( theFormula , data=t r a i n s e t , method=” c l a s s ” )

minsplt=round ( ( nrow ( ddmintrn ) ) ∗ 0 . 05 )
139 CT model <− rpar t ( theFormula , data=t r a i n s e t , method=” c l a s s ” ,

c on t r o l=rpar t . c on t r o l ( m in sp l i t=minsplt , cp=0.0001) )
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FOREST model <− randomForest ( theFormula , data=t r a i n s e t , n t r ee
=500)

141 dd . l og<− conf . mat( t e s t s e t $Class , round ( p r ed i c t (LOGISTIC model ,
type=” response ” , t e s t s e t ) ) )

dd . nn<− conf . mat( t e s t s e t $Class , p r ed i c t ( Neural model , t e s t s e t ,
type=” c l a s s ” ) )

143 dd . svm<− conf . mat( t e s t s e t $Class , p r ed i c t (SVM model , t e s t s e t ,
p r obab i l i t y = TRUE) )

dd . conf<− conf . mat( t e s t s e t $Class , p r ed i c t (CT model , t e s t s e t , type
=” c l a s s ” ) )

145 dd .RF<− conf . mat( t e s t s e t $Class , p r ed i c t (FOREST model , t e s t s e t ,
type=” c l a s s ” ) )

dd . bg <− bagging ( theFormula , data=t r a i n s e t , mf ina l =10, c on t r o l=
rpar t . c on t r o l ( m in sp l i t=minsplt , cp=0.0001) )

147 dd . adaboost <− adaboost .M1( theFormula , data=t r a i n s e t , boos=TRUE,
c o e f l e a r n=’ Breiman ’ , mf ina l =10, c on t r o l=rpar t . c on t r o l ( m in sp l i t
=minsplt , cp=0.0001) )

dd . bag<− conf . mat( t e s t s e t $Class , p r ed i c t . bagging (dd . bg , t e s t s e t ) $
c l a s s )

149 dd . boo <− conf . mat( t e s t s e t $Class , p r ed i c t . boos t ing (dd . adaboost ,
t e s t s e t ) $ c l a s s )

151

153 clsmtxLR<−cbind (dd . l og $acc , dd . l og $G mean , dd . l og $ s e n s i t i v i t y , dd .
l og $ s p e c i f i c i t y , dd . l og $AUC)

clsmtxNN<−cbind (dd . nn$acc , dd . nn$G mean , dd . nn$ s e n s i t i v i t y , dd . nn$
s p e c i f i c i t y , dd . nn$AUC)

155 clsmtxSVM<−cbind (dd . svm$acc , dd . svm$G mean , dd . svm$ s e n s i t i v i t y , dd .
svm$ s p e c i f i c i t y , dd . svm$AUC)

clsmtxCT<−cbind (dd . conf $acc , dd . conf $G mean , dd . conf $ s e n s i t i v i t y ,
dd . conf $ s p e c i f i c i t y , dd . conf $AUC)

157 clsmtxRF<−cbind (dd .RF$acc , dd .RF$G mean , dd .RF$ s e n s i t i v i t y , dd .RF$
s p e c i f i c i t y , dd .RF$AUC)

clsmtxBAG<−cbind (dd . bag$acc , dd . bag$G mean , dd . bag$ s e n s i t i v i t y , dd .
bag$ s p e c i f i c i t y , dd . bag$AUC)

159 clsmtxBOO<−cbind (dd . boo$acc , dd . boo$G mean , dd . boo$ s e n s i t i v i t y , dd .
boo$ s p e c i f i c i t y , dd . boo$AUC)
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161

clsmtxLRraw<−rbind ( clsmtxLRraw , clsmtxLR )
163 clsmtxNNraw<−rbind ( clsmtxNNraw , clsmtxNN)

clsmtxSVMraw<−rbind ( clsmtxSVMraw , clsmtxSVM)
165 clsmtxCTraw<−rbind ( clsmtxCTraw , clsmtxCT )

clsmtxRFraw<−rbind ( clsmtxRFraw , clsmtxRF )
167 clsmtxBAGraw<−rbind ( clsmtxBAGraw , clsmtxBAG)

clsmtxBOOraw<−rbind ( clsmtxBOOraw , clsmtxBOO)
169 }

colnames ( clsmtxCTraw )<−c ( ”Accuracy” , ”G mean” , ” S e n s i t i v i t y ” , ”
S p e c i f i c i t y ” , ”AUC” )

171 rownames ( clsmtxCTraw )<−rep ( ”CT” ,5)
colnames ( clsmtxRFraw )<−c ( ”Accuracy” , ”G mean” , ” S e n s i t i v i t y ” , ”

S p e c i f i c i t y ” , ”AUC” )
173 rownames ( clsmtxRFraw )<−rep ( ”RF” ,5)

colnames ( clsmtxNNraw )<−c ( ”Accuracy” , ”G mean” , ” S e n s i t i v i t y ” , ”
S p e c i f i c i t y ” , ”AUC” )

175 rownames ( clsmtxNNraw )<−rep ( ”NN” ,5)
colnames ( clsmtxLRraw )<−c ( ”Accuracy” , ”G mean” , ” S e n s i t i v i t y ” , ”

S p e c i f i c i t y ” , ”AUC” )
177 rownames ( clsmtxLRraw )<−rep ( ”LR” ,5)

colnames ( clsmtxSVMraw)<−c ( ”Accuracy” , ”G mean” , ” S e n s i t i v i t y ” , ”
S p e c i f i c i t y ” , ”AUC” )

179 rownames ( clsmtxSVMraw)<−rep ( ”SVM” ,5)
colnames ( clsmtxBAGraw)<−c ( ”Accuracy” , ”G mean” , ” S e n s i t i v i t y ” , ”

S p e c i f i c i t y ” , ”AUC” )
181 colnames ( clsmtxBOOraw)<−c ( ”Accuracy” , ”G mean” , ” S e n s i t i v i t y ” , ”

S p e c i f i c i t y ” , ”AUC” )

183 clsmtxcombine<−rbind ( clsmtxCTraw , clsmtxRFraw , clsmtxSVMraw ,
clsmtxNNraw , clsmtxLRraw , clsmtxBAGraw , clsmtxBOOraw)

d i sp l ay r e s u l t s ( )
185 l i b r a r y ( x l sx ) # to export the r e s u l t s d i r e c t l y in to the Excel

f i l e
wr i t e . x l sx ( clsmtxcombine , f i l e=”D: / Class imbalance /Data Sets /

C l a s s i f i c a t i o n r e s u l t s o f WDBC. . x l sx ” , sheetName=”WDBC” , row .
names=FALSE)



Chapter 5

Complexity Measure: A

Systematic Approach to

Over-sampling of Minority

Class in Imbalanced Data Sets

Traditional classification algorithms can be inadequate in their performance

on extremely imbalanced data. In this chapter we use a complexity measure as

a tool for over-sampling of the minority class examples, which can determine

the amount of over-sampling in minority class and fix the parameters for the

Synthetic Minority Over-sampling Technique (SMOTE). Experiments show

that our approach achieves better TP (true positive: minority class accuracy)

and G-mean than original SMOTE, Border-Line SMOTE and random over-

sampling methods.

5.1 Introduction

Complexity Measure (CM) can be used in two ways: to measure the level of

difficulty in imbalanced data sets and as a tool to help cater for the problem.

This chapter will introduce how CM can be used to devise a structured study

for learning about class imbalance problems. To date, no researcher has
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used complexity of a data set as a measure to devise a systematic strategy

to overcome the class imbalance problem. Some authors [1, 2, 3, 4], have

considered complexity measurement but never as a way to cater for imbalance

rather to indicate the level of difficulty in data sets. In this chapter, we

propose a systematic approach for over-sampling which will adjust to different

data sets according to their complexity. Data complexity in our context is

the quantification of the degree of difficulty in class learning from a given

data set.

The underlying difficulty associated with highly imbalanced classification

problems suggests that an automatic classification system, working entirely

on its own, may not be a realistic goal in the near future. Rather, we feel

that a two step system will work better, with an automatic classification sys-

tem to measure complexity (pre-screening tool) followed by the re-sampling

procedure. The first step of classification is to find the geometric location

of the minority class. The aim is to make the execution of the more ex-

pensive re-sampling procedure (that is the second step) affordable as the

pre-screening step effectively narrows down the minority class examples that

need over-sampling. The specific goal of this chapter is to present a com-

plexity measurement to be used in the pre-screening step. We develop our

approach through the well known k-nearest neighbor (kNN) approach.

The Bayes error provides the lower error bound that can be achieved by

any pattern classifier [5, 6]. This error rate will be greater than zero whenever

class distributions overlap. When all the class priors and conditional likeli-

hoods are completely known, in theory the Bayes rate can be obtainable [5].

In spite of this importance, Bayes error has not been used directly in class

imbalance situations. However when the pattern distributions are unknown,

the Bayes error cannot be readily computed. Thus, one cannot know how

much classification error is due to class density overlap and how much is due

to limitations of the training data (such as class imbalance) or deficiencies

in the classifier. It is therefore important to not only design a good classifier

but to have a limit or bound on achievable classification rate for a given data

set [7]. Such estimates will help researchers to decide whether to improve the

current classifier, to use another classifier on the same data set or to acquire
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more data using some re-sampling technique. A method for estimating the

Bayes error without requiring the class distributions of the data set is based

on nearest neighbors (k-NN) [8]. The Bayes error can be given in terms of

the error of the NN classifiers. We chose kNN because of its simplicity and

its natural inability to address class imbalance problems (because it adopts

a local based estimation procedure that suffers significantly from the scarcity

of training samples). In this way it is possible to assess the effectiveness of

proposed complexity measurement in very critical conditions. The novelty

of the proposed approach can be found in the following.

1. We calculate a complexity measure (CM) for each class, being the pro-

portion of difficult cases belonging to that class, where ‘difficult’ means

having a majority of k nearest neighbors in the opposing class. Other

complexity measures used in the literature [2] give a single value that

cannot be used in structured over-sampling.

2. We propose a kNN approach for addressing the detection problem in

class imbalance classification. For data sets with highly imbalanced

class sizes, we advocate the kNN approach as a pre-screening tool, after

which each minority class example will be re-sampled in proportion

to its k-nearest-neighbor complexity. Then we apply a classification

procedure to this data set in order to increase the accuracy on minority

class examples.

3. As calculation of CM depends on a distance metric, we use Euclidean

distance for continuous data and Random Forest distance for categori-

cal or mixed data.

In order to assess the effectiveness of the proposed approach, we use

simulation in addition to 13 UCI data sets [9]. Experimental results confirm

that the method presented is capable of increasing both the accuracy and

robustness of classification in imbalanced data sets.

This chapter is organized in four sections. In Section 5.2, the proposed

re-sampling scheme based on complexity measurement is presented. Section

5.3 describes the data sets used in the experiment and the results obtained
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by the proposed approach, as well as some specific issues in implementation.

Section 5.4 summarizes our conclusions and gives suggestions for future work.

5.2 Over-sampling using Complexity

Measure (OSCM)

Our aim is to develop a classification rule Ĉ(x, TS) with high accuracy for

the minority class, in high class imbalance cases. Here TS = {(yi, xi), i =

1, 2, , 3, ....N} is the training set of size N , xi = (xi1, xi2, xi3, ...xip) is the

vector of p explanatory variables for the ith observation in TS, and yi is

the class indicator. Since we are studying two-class problems, yi can takes

binary values: when yi = 0, the corresponding case belongs to the majority

class and when yi = 1 the corresponding case belongs to the minority class.

The classification rule Ĉ(x, TS) is to predict the class of a future case with

explanatory variable x.

In a classification problem, the loss function L(y, ŷ) gives the cost of

misclassification between actual response y and predicted value ŷ. Since we

have a binary class, we use the 0/1 loss function i.e., the loss function has

a value one when the predicted value is different from the actual class and

zero otherwise. This loss function can be expressed as: L(y, ŷ) = I(y �= ŷ)

where I(.) is the indicator function. Given the loss function, the prediction

error(PE), also the generalization error of the classification rule Ĉ(x, TS), is

defined as [18]:

PE(Ĉ) = EOF EF [L(Y, Ĉ(x, TS))] (5.1)

where EF is the expectation over selection of the training set TS, whose mem-

ber are i.i.d and EOF is the expectation over selection of the test observation

(Y, x).

Since we are most interested in the accuracy of the minority class, we

divide the prediction error into two parts: the false positive rate (FP ) and

the true positive rate (TP ). FP is the expected rate of misclassification

of majority class as minority class examples, and TP the expected rate of
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correct detection of minority class examples. According to the definition

of the prediction error given in Equation (5.1), the true positive and false

positive alarm rate of Ĉ(x, TS) can be defined as:

TP (Ĉ) = EOF{EF [1 − L(Y, Ĉ(x, TS))]|Y = 1} (5.2)

FP (Ĉ) = EOF{EF [L(Y, Ĉ(x, TS))]|Y = 0} (5.3)

We use a kNN approach to serve as a pre-screening tool, to analyze the

geometric situation, especially for the minority class, in the original data set.

Re-sampling in specific regions of the minority class will results in enhanced

true positive rate for minority class. It is known that increasing the TP of a

classifier will generally lead to increase in the FP as well. Thus we need to

regulate the FP to be below a specific percentage value while increasing the

true positive rate. Since we are using a kNN approach, this process can be

modeled as a local estimation of the posterior probabilities of class based on

the relative frequency of the class labels in the neighborhood (defined by the

k closest training samples). Given the variable xi, the kNN estimate P̂ (Yi|xi)

of the conditional posterior probability P (Yi|xi) is obtained according to the

analysis of labels of the k samples (included in the TS) closest to xi (which

define the neighborhood Ni). The classification rule can be written as:

Xi ∈ Y if and only if

Y = argmax
Yi

(
number of patterns ∈ Yi in Ni

k

)
(5.4)

It is worth noting that the kNN technique is mostly unsuitable as a clas-

sifier for severe imbalance classification problems. However, in this study, we

are just using kNN to construct a complexity measure in order to re-sample

the minority class, thus increasing the accuracy for the minority class more

efficiently.
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5.2.1 Complexity measure

In our approach, we calculate a complexity measure for the minority class

only. Calculation involves finding the k nearest neighbors of every data point

in the class, where k is odd. If the majority of the neighbors are in the same

class, this point is designated as easy to classify; if most of the neighbors are

in the opposing class, it is difficult. Complexity can be defined as:

CMk(xi, Yi) = I

(
number of patterns ∈ Yi = 1 in Ni

k
≤ 0.5

)
(5.5)

The overall complexity measure is the proportion of points classified as diffi-

cult, but this can be decomposed into separate measures for the complexity

of each class. Typically k should be large enough to use this approach prop-

erly. We recommend to use an odd number for k to avoid ties in deciding

the complexity measure. Deciding on k is a difficult problem. We formulate

our k in the kNN approach as:

k = min{k ≥ 3 : (CMk − CMk−2) ≤ α} (5.6)

where α is a suitable small threshold to regulate k (for more detail, see

chapter 3, section 3.5.1), which eventually controls the amount of re-sampling

of minority class and helps in regulating FP . Simulation experiments from

chapter 3 suggest that for low overlap, higher nearest neighbor will give us the

same complexity, so we prefer lower k, and for higher overlap the complexity

measure will stabilize as k increases. Hence we determine k according to

equation 5.6. Solving this optimization problem analytically is not possible,

so we solve it using a data driven approach, increasing k until the complexity

stabilizes.

5.2.2 SMOTE

Researchers have dealt with class imbalance by over-sampling of minority

class or under-sampling of majority class [24, 25]. The effect of over-sampling

is to more clearly define regions in the feature space as the decision region of
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the minority class [11].

SMOTE (Synthetic Minority Over-sampling Technique) was proposed to

counter the effect of having few observation of the minority class in a data

set [11]. This technique is operated in the feature space rather than the data

space, creating synthetic observations of the minority class.

Since this technique depends on distance matrices, we need to deal with

nominal (or discrete) and continuous variables differently in SMOTE. Dif-

ferent distance functions can be used for determining the nearest neighbor

computation, the simplest and most common way being to use the heteroge-

neous Euclidean/overlap metric (HEOM) [14] as proposed in [12]. Tsymbal

et. al. [13] show that Random Forest distances are better than the com-

monly used heterogenous Euclidean/Overlap metric (HEOM) of Wilson and

Martinez [14] for the categorical or mixed type data sets. In HEOM, the

Euclidean distance is used with numeric features, and the overlap distance

with categorical features in order to find a distance between two examples.

The Euclidean distance for numeric features and the overlap distance for

categorical were demonstrated to be robust and difficult to compete with

in many applications, see for example [14]. We use Euclidean distance for

the continuous variables, and Random Forest distance [15] for the nominal

variables/mixed datasets. The new synthetic minority class examples are

created as follows:

For the continuous variables

• Take the difference between a minority class variables vector and one

of its k nearest neighbors (minority class);

• Multiply this difference by a random number between 0 and 1;

• Add this difference to the variable value of the original variable vector

thus creating a new variable vector.

For the categorical variables

• Take the statistical mode of the variable in consideration over its k

nearest neighbors(minority class). In case of tie choose at random.
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• Assign that value to the new synthetic minority class.

Using this technique, a new minority class example is created along the

line segment joining the minority class and its nearest neighbor. Hence using

SMOTE, a more general region is learned for the minority class that allows a

classifier to better predict test examples belonging to minority class. A com-

bination of SMOTE and under-sampling creates potentially ideal classifiers

[11, 16].

5.2.3 SMOTE using complexity measure: (SCM)

In this chapter we propose an algorithm that combines Synthetic Minority

Over-sampling Technique (SMOTE) and the complexity measure. We want

to utilize SMOTE for improving the accuracy of the minority class and we

want to utilize complexity measure to not sacrifice the accuracy over the

entire data set and to be able to adapt to the different natures of data

sets. The major goal is to better model the minority class in the data set,

by providing the classifier not only minority class examples in the data set

that were difficult to learn (values detected by complexity measure), but

also broader representation of those observations. We want to improve the

overall accuracy of the minority class by focusing on the difficult minority

class examples, as we want to model this class better. Our goal is to improve

accuracy for the minority class.

In the literature all the over-sampling schemes like simple random over-

sampling, SMOTE [11], Borderline SMOTE [17] give equal weights to all

minority class examples. We believe not every minority class example needs

to be over-sampled equally, but proportional to its complexity (level of dif-

ficulty). Han et al. [17] presented a modification of SMOTE technique [11]

known as borderline-SMOTE (BSM). BSM selects minority class examples

which are considered to be on the border of the minority decision region in

the feature-space and only perform SMOTE to over-sample those instances,

rather than over-sampling all or a random subset, but once again all the ob-

servations which are considered as borderline are over sampled equally using

SMOTE. Moreover if none of nearest neighbors of a minority class example
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are from the same class, it will be regarded as noise and not over sampled.

For more detail see [17]. In fact, if we have a severe imbalanced data set,

we will see the majority of the minority class completely surrounded by the

majority. If we ignore these examples for over sampling we are not adding

much of the information about these examples in the classifier, which will

result in a much lower predictive model for these examples and we have to

heavily over-sample the rest of the examples to achieve a good predictive

model for the minority class.

Since our aim is to reduce the bias against the minority class inherent in

the learning procedure due to class imbalance, we need to increase the sam-

pling weights for the minority class. By introducing the SMOTE procedure

proportional to the complexity measurement, we are particularly interested

in increasing the probability of selection for the difficult minority class cases

that are dominated by the majority class points. It is a well known fact that

SMOTE has two parameters; number of nearest neighbors (k) and amount of

over-sampling (N), usually at the user’s discretion. In SMOTE and Border

line SMOTE the nearest neighbors (k) is fixed as 5 and a number of iterations

are used to decide the optimal level of over-sampling (N). In our approach,

once the threshold for the complexity measure CM i.e. α is decided the rest of

the procedure will be automatic, i.e., no decision about the number of nearest

neighbors and over-sampling is required. Unlike the existing over-sampling

methods our methods only over-sample or strengthen those examples which

are very difficult to learn. The details of our procedure are outlined below.

First calculate the complexity of each observation for the minority class.

For those observations whose nearest neighbor majority is from the other

class, synthetic examples are generated in proportion to number of examples

from the other class, and added to the original training set. As defined earlier,

the whole training data is TS, the minority class in TS1 and the majority

class is TS0 where

TS1 = {TS11, TS12, ..., TSn1}, and TS0 = {TS01, TS02, ..., TSn0}

where n1 is the size of minority class and n0 is the size of majority class.
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Step 1 For every TS1i (i = 1, 2, ..., n1) in the minority class TS1, we cal-

culate its k nearest neighbors in the whole training data TS. The

complexity of a minority class data point is measured as:

CM1i = I

(
number of patterns ∈ TS1i=1 in TS

k
≤ 0.5

)
(5.7)

The number of majority class among the k nearest neighbor is denoted

by ń0.

Step 2 In this step we generate ń0 minority class examples using SMOTE.

For each CM1i, we calculate k nearest neighbors in TS1. Using SMOTE

as define in Section 5.2.2.2 we generate TS1SMOTE = CM1i ∗ ń0.

Step 3 TS1new = TS1 ∪ TS1SMOTE

Step 4 We repeat the above procedure for each CM1i.

It should be kept in mind that we already determine k i.e. number of

nearest neighbors using equation 5.6. According to the definition of SMOTE,

new synthetic data are generated along the line between the minority class

examples and their nearest neighbor from the same class. In another varia-

tion, we use simple over-sampling using our complexity measure of minority

class, i.e. instead of using SMOTE for difficult minority class examples we

use simple over-sampling in proportion to number of majority class examples.

5.2.4 Performance measure for over sampling using

SMOTE:

We can quantify the advantage of an over-sampled classifier over its base

classifier by two measures [18]: Aggregation effect(AE) and Variance of the

base classifier (V ar). AE is define as:

AE = PE(Y, Ĉ) − PE(Y, ĈCM) (5.8)

From Equation 5.8 we can note that AE is the reduction in prediction error

of the classifier using complexity measurement over-sampling ˆCCM over the
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base classifier Ĉ. As we are dealing with severe imbalance and we are more

interested in true positive (TP ) and false positive (FP ), so the aggregation

effect can be decomposed into TP and FP as:

AETP = TP (ĈCM) − TP (Ĉ) (5.9)

AEFP = FP (ĈCM) − FP (Ĉ) (5.10)

The variance of the base classifier is define as:

V ar(Ĉ) = PE(Ĉ, ĈCM) (5.11)

= EF EOF{L(x, Ĉ)|Y = 1} (5.12)

When using the 0/1 loss function, V ar(Ĉ) is the expected rate at which

the classifier predicts the class differently from the over sampled classifier

using complexity measure. As usual high variation in the predictions will

shows instability of the classifier. Section 5.3 and Section 5.4 will illustrate

how much prediction improves in UCI data sets [9], when we over-sample the

difficult class by using complexity measure instead of randomly over-sampling

the whole data set.

5.3 Experiments

As stated earlier Bayes error can be computed in terms of the error of the

nearest neighbor (NN) classifiers. In our simulation study we want to investi-

gate with known optimal Bayes error and different class imbalances scenarios:

How k-NN will behave in capturing the complexity of the data sets (Bayes

error)? Can k be determined? First we investigate with the simulation study

and then use these general rules in the real data sets (UCI).

5.3.1 Choice of k

For detailed results of the simulation study, see chapter 3. Fifteen sce-

narios with Bayes error of (0.4,0.3,0.1) and with imbalances ratio (IR) of
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(1,2,2.9,5,11.1) were considered. Here IR is defined as the number of major-

ity class examples divided by the number of minority class examples.

To summarize the findings of this simulation study:

1. k-nn where k > 2 may be used in order to capture the complexity of

classes with imbalance data;

2. The complexity measures proposed by the Ho and Basu [2] work well

for balanced data but cease to capture complexity in imbalance data

sets. This is a disadvantage as severe imbalance (minority class ≤ 10%)

seriously degrades classifier performance;

3. As k increases, k-nn becomes more consistent with the Bayes error;

4. As the imbalance increases our complexity measure for the minority

class increases appropriately;

5. The choice of number of nearest neighbors, k, for CM is fixed as defined

in Chapter 3, section 3.5.1.

The main purpose of our complexity measure is to see the effect of class

imbalance with different levels of Bayes error.

We use the condition as define in equation 5.6, and fix the threshold as

(see section 3.5.0.1 for more detail):

α = 0.025 × number of observations in minority class (5.13)

5.3.2 Real Data Examples

To investigate the performance of OSCM with real data, we have used 13 data

sets from the UCI data repository [9]. Information about these data sets is

summarized in Table 5.1. In order to have the same minority and majority

class ratio, stratified 5-fold cross validation was used to obtain training and

test subsets (ratio 4:1) for each data set.

To improve the performance of the classification tree (CT)[19] in imbal-

anced applications, CT was used as a base classifier in all experiments con-

ducted. Furthermore we compared our algorithm with the over-sampling
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Table 5.1: Description of UCI data sets

Data sets � of Attributes Size Target �Min �Max %Min
Abalone 8 4177 Ring=7 391 3786 9.4
Abalone 8 4177 Ring<7 448 3728 10.7
Balance 4 625 Balance 49 576 7.8
Car 6 1728 acc 384 1344 22.2
Cmc 9 1473 class 2 333 1140 22.6
Haberman 3 306 class 2 81 225 26.5
Ionosphere 34 351 bad 126 225 35.9
Pima 8 768 class 1 268 500 34.9
Satimage 36 6435 class 4 626 5809 9.7
Vehicle 19 846 opel 212 634 25.1
WDBC 34 569 malignant 212 357 37.3
WPBC 34 198 recur 47 151 23.7
Yeast 8 1484 ME3 163 1321 11

strategy known as Border-line SMOTE (BSM)[17], due to fact that Han et

al.[17] have already shown superiority of their technique over SMOTE [11].

Moreover we extended their technique to included categorical variables using

Random Forest distances. For all classification tree classifiers, we use pruned

trees (see Appendix) in all the runs for each data set. Thus the algorithms

could be compared without the influence of CT parameters (they are fixed

for all the data sets). For the Border-line Smote algorithm the percentage

of minority class over-sampling for each data set is shown in Table 5.2. The

parameter k for the complexity measurement (CM) algorithm was set empir-

ically from Equation 5.6, along with resultant amount of over-sampling using

Smote or simple random over-sampling. For the categorical or mixed type of

data sets we used Random Forest distance matrices for SMOTE and OSCM,

and Euclidean distance matrices for data sets with only numerical variables.

All programs were written in the statistical environment R [20], and rel-

evant R codes for our algorithm are provided in Appendix 5.6. For the con-

struction of tree models we used the RPART package [21], for nearest-neighbor

based on Euclidean distance we used R package class [23] with a little mod-

ification of the input and output, and to compute Random Forest distances

we used the R package randomForest [22].
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Table 5.2: Characteristics of the 13 data sets we used in experiment:
Nature of Variables and Class difference. For some data sets the class la-
bel in the parentheses indicate the target class we chose. Moreover, this
table shows the choice of optimal over-sampling shown by % Over and
relative figure show percentage amount of oversampling in the minority
class for Border line Smote and our Complexity Measurement (CM) al-
gorithm with parameter k along with resultant amount of over-sampling

Data sets Attributes Class Difference % Over k � of Examples Added
Abalone (7) numerical 3394 700% 7 1931

Abalone (<7) numerical 3280 400% 7 1148
Balance Categorical 527 400% 3 133

Car Categorical 960 300% 3 281
Cmc Categorical 807 300% 3 468

Haberman numerical 144 300% 3 61
Ionosphere numerical 99 100% 3 51

Pima numerical 233 100% 3 114
Satimage numerical 5148 400% 5 546
Vehicle numerical 522 200% 3 274
WDBC numerical 145 200% 3 40
WPBC numerical 104 300% 3 93
Yeast numerical 1158 400% 3 131

After the setting of parameters for CT, CT performance was evaluated

using the appropriate metrics for imbalanced classification. For each metric,

the mean and standard deviation were calculated from 5 runs with different

training and test subsets obtained from stratified 5-fold cross validation. The

metrics used in the evaluation process and the average results achieved for

the test set are presented in detail in Section 5.3.2.1 below.

5.3.2.1 Results

Table 5.3 illustrates the results using the sensitivity measure (accuracy of

minority class). Sensitivity is chosen because we are interested in accuracy

for the minority class rather than overall accuracy. Note that in all of the

13 UCI data sets, our algorithm achieved better results than BSM and the

original Classification Tree (the best results are marked in bold).

It is worth to note that in the case of the Abalone(7) and Balance data

sets both characterized by a huge degree of imbalance, the original Classi-

fication Tree was unable to give satisfactory sensitivity values, whereas our
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Table 5.3: Sensitivity comparison of methods applied to UCI data sets.
Figures gives mean (standard deviation) of sensitivity values calculated

using stratified 5 fold cross validation

Data sets Classification Tree SMOTE using CM OS using CM BSM
Abalone(7) 0.2(0.071) 0.68(0.062) 0.8(0.026) 0.67(0.026)
Abalone(<7) 0.59(0.03) 0.73(0.004) 0.85(0.015) 0.78(0.029)
Balance 0(0) 0.53(0.103) 0.78(0.122) 0.53(0.08)
Car 0.84(0.064) 0.96(0.036) 0.96(0.024) 0.95(0.017)
CMC 0.29(0.041) 0.66(0.044) 0.62(0.042) 0.67(0.031)
Haberman’s 0.39(0.043) 0.58(0.042) 0.66(0.058) 0.47(0.121)
IonoSphere 0.86(0.041) 0.89(0.041) 0.91(0.038) 0.86(0.09)
Pima 0.62(0.107) 0.69(0.0357) 0.71(0.029) 0.67(0.035)
SatImage 0.57 0.65 0.62 0.63
Vehicle 0.56(0.085) 0.69(0.0184) 0.78(0.025) 0.69(0.073)
WDBC 0.88(0.021) 0.9(0.025) 0.9(0.037) 0.88(0.017)
WPBC 0.44(0.141) 0.76(0.066) 0.86(0.045) 0.6(0.184)
Yeast 0.72(0.035) 0.73(0.052) 0.88(0.058) 0.71(0.044)

algorithm worked well. Moreover, notice that in all cases over-sampling (OS)

using Complexity Measurement is performing very well, in comparison with

SMOTE algorithm using Complexity Measurement (SCM) or BSM. If we

compare SCM and BSM since both are using SMOTE, out of 13 data sets,

11 times (including two ties) our algorithm performs better than BSM, al-

though all the results are very close. It must be kept in mind that we are

not controlling the class distribution of the data: once k is fixed by using the

equation 5.6, the rest of the process is automatic. Conversely, SMOTE and

BSM need optimization and user discretion to fix the class distribution. As

shown in Table 5.2, column (% Over), shows the percentage of over-sampling

using SMOTE in minority class in order to get competitive results in compar-

ison to our proposed algorithm. It is known that in imbalanced data, when

we want to increase true positive (TP ), false positive (FP ) also tends to

increase, so our aim is to increase the accuracy of the minority class without

sacrificing much of the accuracy of majority class.

In Table 5.4 we evaluated the algorithms using the metric G-mean defined

as
√

TP × TN [10], which corresponds to the geometric mean between the

correct classification rates for positive (sensitivity) and negative (specificity)

examples, respectively. Hence we want to see how much accuracy of the ma-
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jority class suffers due to over-sampling of the minority class. As shown in

Table 5.4, over-sampling using the complexity measurement produced better

results when compared to original Classification Tree and BSM algorithms.

Our algorithm’s performance was superior especially for data sets with higher

imbalance, which is seen more frequently in real world problems. If we com-

pare SMOTE using our algorithm and BSM, although the results are very

close, out of 13 UCI data sets, 9 times our method is better including 3 ties

and in 4 data sets BSM is slightly better.

Table 5.4: G-means comparison of methods applied to UCI data sets.
Figures gives mean (standard deviation) of sensitivity values calculated

using stratified 5 fold cross validation

Data sets Classification Tree SMOTE using CM OS using CM BSM
Abalone(7) 0.43(0.068) 0.75(0.001) 0.8(0.0001) 0.77(0.0002)
Abalone(<7) 0.75(0.016) 0.82(0.002) 0.87(0.01) 0.85(0.0002)
Balance 0(0) 0.66(0.051) 0.82(0.059) 0.67(0.045)
Car 0.89(0.037) 0.95(0.0002) 0.94(0.023) 0.94(0.01)
CMC 0.5(0.034) 0.72(0.0004) 0.67(0.007) 0.72(0.019)
Haberman’s 0.54(0.039) 0.68(0.002) 0.74(0.029) 0.60(0.083)
IonoSphere 0.87(0.028) 0.9(0.026) 0.9(0.037) 0.86(0.05)
Pima 0.68(0.039) 0.71(0.009) 0.71(0.023) 0.71(0.028)
SatImage 0.74 0.76 0.76 0.75
Vehicle 0.69(0.05) 0.74(0.023) 0.79(0.029) 0.74(0.038)
WDBC 0.91(0.023) 0.91(0.012) 0.94(0.012) 0.92(0.017)
WPBC 0.58(0.085) 0.70(0.004) 0.79(0.012) 0.65(0.104)
Yeast 0.83(0.022) 0.83(0.031) 0.92(0.029) 0.82(0.023)

Average ROC (Receiver Operating Characteristics) curves [26] were plot-

ted for all data sets and gave similar results. The ROC curve for a binary

classifier shows the true positive rate as a function of false positive rate when

the decision threshold varies. To illustrate, Fig 5.1 shows an example from

the Pima Indian Diabetic data set. Note that our algorithm generates better

a ROC curve than BSM and original Classification Tree.

This can be validated from the area under curve (AUROC) which can be

obtained from the following equation:

AUC =
∫ 1

0
TP
P

dFP
N

= 1
P.N

∫ N

0
TPdFP

The mean AUC for original classification tree (CT) is 0.74, for Smote us-

ing Complexity Measure 0.79 (SCM), BSM 0.77, and over-sampling using
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Figure 5.1: Average ROC curve for test set obtained from Pima Indian
Diabetic data sets

Complexity Measure (OSCM) 0.77.
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5.4 Discussion:

In this section we indicate the advantages of having over-sampling by com-

plexity measure (OSCM), by quantifying the improvement in prediction per-

formance. The aggregation effect and variance of a base classifier, as defined

in Equations 5.9 to 5.12, indicate the advantages of OSCM over simply using

a base classifier.

The aggregation effect ̂AE(C) can be obtained by taking the difference in

prediction of minority class between the base classifier and OSCM classifier.

The prediction error for the minority class is given by

̂PE(ĈTP ) =
1

N

N∑
i=1

(∑CV
i=1 L(Yi = 1, Ĉ(xi, TScv))

CV

)
(5.14)

where N is population size of the test set (having the same ratio of minority

to majority class as the original data set) and TScv is the training set. We

use a cross validation method for multiple test sets, where we average the

prediction errors from individual test sets. Similarly the prediction error for

the OSCM is given by

̂PE(ĈCM(TP )) =
1

N

N∑
i=1

(∑CV
i=1 L(Yi = 1, ĈCM(xi, TScv))

CV

)
(5.15)

Then the aggregation effect is:

AETP = PE(ĈTP ) − PE(ĈCM(TP )) (5.16)

Note that the order of difference of AE between OSCM and the base clas-

sifier is changed from the original definition of aggregation effect, to ensure

that a positive value of AE indicates improved prediction accuracy over the

base classifier. The variance of the base classifier defined in Equation 5.11

is the rate at which the base classifier differs from the OSCM, when using

0/1 loss function. If the resulting variance is high, it indicates that the base

classifier is unstable. The variance of base classifier is obtain as
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̂V ar(Ĉ) =
1

N

N∑
i=1

⎛⎝∑CV
i=1 L

(
ĈCM(xi, TScv), Ĉ(xi, TScv)

)
CV

⎞⎠ (5.17)

The variance of True Positive (V arTP ) can be obtain in a similar way.

Table 5.5: Over-sampling Effect: True Positive and False Positive of
the minority class and Variance of base classifier for True Positive and

False Positive

Data sets AETP AEFP V arTP V arFP

Abalone(<7) 0.13688844 0.04187922 0.5478618 0.0217451
Haberman 0.1910714 -0.03999998 0.5090195 0.139613
Pima Indian 0.07174774 0.018 0.3604534 0.1323391
SatImage 0.0758294 0.0743432 0.6224784 0.0163339

For illustration we present in Table 5.5 the aggregation effect for True

Positive and False Positive of the minority class (column 2 and 3) and vari-

ance of base classifier for True Positive and False Positive (columns 4 and 5)

for four data sets. The results show a noticeable increase in the detection

power for the minority class when over-sampling using complexity measure

is used. For example for the Abalone data set OSCM classifies the age less

than 7 by 13.7% more than the base classifier, whereas false positives have

risen only by 4.2%. For the Haberman data set minority class accuracy has

risen by 19.1% and the accuracy of the normal cases has actually increased

by 4%. It is obvious that the increase from the over-sampled classifier over

the base classifier is more significant in its true positive rate than its false

positive rate.

It can be seen from the Table 5.5 that between 36% to 55% (column 3)

of predictions are different between the base classifier and the over-sampling

classifiers in detection of minority class. The base classifier show a high

variation in false positive rate as well. It is reasonable to conclude that the

base classifier is not suitable for generating a stable prediction model for

these class imbalance data sets.
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5.5 Conclusions and Future Work

It is well known that representativeness in the training data is the most im-

portant step to have a classifier with high generalization performance. How-

ever in most classification problems, representation is not only costly but a

very cumbersome task. In general data sets available are small, sparse, with

missing values and with highly imbalanced prior probabilities.

In order to address the problem and to bring some structure to over-

sampling within the data sets, we have proposed two new methods of over-

sampling: synthetic over sampling technique using complexity measure and

random over-sampling using complexity measure. Experimental results for

several imbalanced data sets has indicated that the proposed algorithm can

result in better prediction of minority class, whereas prediction performance

of majority class does not suffer much. Data sets used in our experiments

contained different degrees of imbalance and different sizes, thus providing a

diverse test bed.

Introducing complexity measure (CM) as a pre-screening tool helps us

to identify difficult examples belonging to minority class, and simple over-

sampling or SMOTE algorithm improves the performance of a classifier on

these minority class examples. Therefore, over-sampling these difficult ex-

amples forces the classifier to focus more on the difficult examples that be-

long to minority class rather than to the majority class. By introducing

over-sampling proportional to the level of difficulty we were able to dictate

the amount of SMOTE or over-sampling, which is still an open question in

the data mining community. Unlike SMOTE or BSM we do not need opti-

mization or iterative over-sampling in order to get favorable accuracy of the

minority class. Experiment has indicated that our proposal leads to better

behavior (high accuracy of minority class), which validates the efficiency of

our methods.

In the next chapter we will examine feature selection, and its effect on

the complexity measurement.



References

[1] Weng, C. G. and Poon, J., A data complexity anylysis on imbalanced

datasets and an alternative imbalance recovering strategy, Proceeding

of the IEEE/WIC/ACM International Conference on Web Intelligent,

2006.

[2] Ho, T. K., Basu. M, Complexity measures of a supervised classification

problems, IEEE Trans Pattern Analysis, Machine learning, Vol. 24,

no.3, pp. 289-300, 2002.

[3] Bernado-Mansilla, E., Ho, T., K., Domain of competence of XCS clas-

sifier system in complexity measurement space. IEEE Trans Evol Com-

putation, Vol. 9, no. 1, pp. 82-104, 2005.

[4] Li, Y., Member, S., Dong, M., Kothari, R., Classificability-based omni-

variate decision trees, IEEE Trans Neural Netwrok, Vol. 16, no. 6, pp.

1547-1560, 2005.

[5] Fukunga, K., Introduction to Statistical Pattern Recognition, 2nd edi-

tion. Boston: Academic Press, 1990.

[6] Devijer, P. A., and Kittler, J., Pattern Recongnition: A Statistical

Approach. Englewood Cliffs, NJ: Prentice-Hall, 1982.

[7] Tumer, K., and Ghosh, J., Bayes Error Rate Estimation Using Classi-

fier Ensembles, Smart Engineering System Design, Vol. 5, pp. 95-109,

2003.

[8] Cover, T. M., and Hart P. E., Nearest Neighbor pattern classification.

IEEE Transactions on Information Theory, Vol. 13, pp. 21-27, 1967.



168 REFERENCES

[9] UCI KDD archive.http://kdd.ics.uci.edu/databases/covertype/covertype.html,

2005.

[10] Kubat, M., and Matwin, S. Addressing the Curse of Imbalanced Data

Sets: One Sided Sampling. In the Proceedings of the Fourteenth In-

ternational Conference on Machine Learning, Nashville, pp. 179-186,

1997.

[11] Chawla, N., Bowyer, K.,Hall, K., Kegelmeyer, P., SMOTE: Synthetic

Minority Over-Sampling Technique, Journal of Artificial Intelligence

Research, Vol.16), pp. 321-357, 2002.

[12] Tsymbal A., Puuronen S. Bagging and boosting with dynamic integra-

tion of classifiers. In: Zighed, D.A., Komorowski, J., Źytkow, J. (eds.),
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5.6 Appendix

5.6.1 R Codes

A typical example for the Abalone data set
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1 #####################################################
#Nearest func t i on us ing d i s t anc e matr i ce s

3 #####################################################
neare s t <− f unc t i on (X, n , k )

5 ## Find k nea r e s t ne ighbors o f X[ n , ] in the data frame
## or matrix X, u t i l i z i n g func t i on which . min k−t imes .

7 {
N <− nrow (X)

9 # inds conta in s the i n d i c e s o f nea r e s t ne ighbors
inds <− c (n) ; i <− 0

11 whi le ( i < k ) {
# use knn1 f o r one index . . .

13 j =as . i n t e g e r ( which . min (d[− inds , n ] ) )#d=1−aba . r f \$proximity
#j <− as . i n t e g e r ( knn (X [− inds , ] , X[ n , ] , 1 : (N−l ength (

inds ) ) ) )
15 # . . . and change to true index o f ne ighbor

inds <− c ( inds , s e t d i f f ( 1 :N, inds ) [ j ] )
17 i <− i+1

}
19 # return nea r e s t ne ighbor i n d i c e s ( without n , o f course )

re turn ( inds [ −1])
21 }

23 d<−as . matrix ( d i s t ( aba [ , −8 ] ) )# f o r Eucl idean Dis tances without
Class

aba . r f <− randomForest ( aba [ , −8 ] , n t r ee =500 , mtry=3, proximity=
TRUE) # f o r Random Forest Di s tances

25 d<−1−aba . r f \$proximity
# To f i nd the number o f nea r e s t ne ighbor o f minort iy c l a s s . . .

27 m<−2
k<−which ( aba\$Rings==”G1” )# ind i c a t e your minor i ty c l a s s

29 NN<−c (3 , 5 , 7 , 9 , 11 )
Complexity1<−0

31 aaa<−numeric (0 )
f o r (m in 1 : l ength (NN) )

33 {
aa<−numeric (0 )

35 f o r ( j in 0 :NN[m] ) {
a<−numeric (0 )
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37 f o r ( i in 1 : l ength (k ) ) {
at<−t ab l e ( aba [ nea r e s t ( aba [ , −8 ] , k [ i ] ,NN[m] ) , ]\ $Rings==”G1” ) [ ”

TRUE”]==j
39 a<−c ( a , at )

}
41 aa<−cbind ( aa , a )

}
43 a s s i gn ( paste ( ”NN” ,NN[m] , sep=”” ) , c ( l ength ( which ( i s . na ( aa [ , 1 ] ) ) )

, colSums ( aa [ , −1 ] , na . rm=T) ) )
a s s i gn ( paste ( ”Complexity” ,NN[m] , sep=”” ) ,sum( get ( paste ( ”NN” ,NN[

m] , sep=”” ) ) [ 1 : ( (NN[m]+1)/ 2) ] ) )
45 i f (sum( get ( paste ( ”Complexity” ,NN[m] , sep=”” ) ) )−sum( get ( paste ( ”

Complexity” ,NN[m]−2 , sep=”” ) ) ) <(0.025∗nrow ( abamin ) ) ) stop (
p r i n t (NN[m]−2) )

47 aa f<−aa
}

49 #####################################################
#Replac ing e x i s t i n g f a c t o r by complexity measure

51 #####################################################

53 k0<−which ( i s . na ( aa f [ , 1 ] ) )
f o r ( i in 1 : ( nco l ( aa f )−1) ) {

55 a s s i gn ( paste ( ”k” , i , sep=”” ) , which ( aa f [ , i +1]==1)) }

57 f o r ( j in 0 : ( nco l ( aa f )−1) ) {
wdbcnear<−numeric (0 )

59 f o r ( i in 1 : l ength ( get ( paste ( ”k” , j , sep=”” ) ) ) ) {
wdbcnear<−rbind ( wdbcnear , wdbc [ nea r e s t (wdbc [ , −1 ] , get ( paste ( ”k” ,

j , sep=”” ) ) [ i ] ,NN[m]−2) , ] )
61 a s s i gn ( paste ( ”wdbc” , j , sep=”” ) , wdbcnear )

}}
63 #####################################################

#R codes f o r SMOTE on Complexity
65 #####################################################

xsm<−numeric (0 )
67 f o r ( j in 0 : ( nco l ( aa f ) /2−1) ) {

nrpt=NN[m]−(2+ j )
69 z0 <− d [ get ( paste ( ”k” , j , sep=”” ) ) , get ( paste ( ”k” , j , sep=”” ) ) ]
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s e t . seed (54)
71 #fo r ( J in 1 : nrpt ) {

x<−abamin [ get ( paste ( ”k” , j , sep=”” ) ) ,−8]
73 f o r ( k in 1 : nco l ( z0 ) ) {

xodr <− x [ order ( z0 [ , k ] , d e c r ea s ing=F) , ]
75 f o r ( i in 1 : nrpt ) {

xo <− ( ( xodr [1 , ] − xodr [ i +1 , ] ) ∗ r un i f (1 ) )+xodr [ 1 , ] #copy
without Class

77 xo = cbind ( xo , ”G1” )
names ( xo ) [ 8 ] = ”Rings”

79 xsm <− rbind (xsm , xo ) }}}

81 nrow (xsm)
#####################################################

83 #Over sampling us ing Complexity measurement
#####################################################

85 xcrnd<−numeric (0 )
f o r ( j in 0 : ( nco l ( aa f ) /2−1) ) {

87 nrpt=NN[m]−(2+ j )
x<−abamin [ get ( paste ( ”k” , j , sep=”” ) ) , ]

89 s e t . seed (54)
#f o r ( k in 1 : nrpt ) {

91 nn = nrpt∗nrow (x )
samp <− sample ( nrow (x ) ,nn , r ep l a c e=T)

93 xo <−x [ samp , ]
xcrnd = rbind ( xcrnd , xo ) }

95 nrow ( xcrnd )



Chapter 6

Feature Selection for

Classification Problems with

Imbalanced Data

Two challenges often faced in data mining are the presence of excessive or

irrelevant features in a data set and unequal numbers of examples in the two

classes in a binary classification problem. Most existing feature extraction

methods are performed using a criterion function based on the classes. Al-

though these methods work relatively well for balanced data, generally they are

not optimal in any sense for imbalanced data sets. In this chapter, we pro-

pose a novel approach to feature selection for imbalanced data. This technique

consists of an independent evaluation criterion based on a data complexity

measure associated with the minority class. We first investigate the complex-

ity measurement for the minority class in the feature space and find that there

exist much better feature sets for which complexity for the minority class is

relatively low. Then we propose an algorithm to find such features. Exper-

iments show that the proposed algorithm consistently provides better results

compared with the existing feature extraction algorithms, especially when the

data set is highly imbalanced.
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6.1 Introduction

Researchers have developed many techniques to try to overcome the Class

Imbalance problem, including re-sampling, new algorithms and feature se-

lection. Re-sampling and development of new algorithms are at the core of

study to rectify the class imbalance problem, whereas feature selection is a

relatively new development to combat class imbalance [1, 2]. In this chapter

we will review the existing techniques of feature selection and their appli-

cation in the Imbalance scenario. Research [1, 2, 3, 4] shows that in high

dimensional data sets, feature selection can by itself combat the class imbal-

ance problem. Our aim is to discover which feature selection technique will

be the most effective in increasing the accuracy of the minority class. To this

end we will apply existing techniques on the UCI datasets [5] to test their

effectiveness. The UCI data sets are often used in the Imbalance data liter-

ature, with many researchers using these data sets to show the strength of

their proposed technique. We avoid here the extreme feature selection prob-

lems, such as text classification [1] and microarray analysis [6] which have

more features than cases. Our focus is on the performance of the techniques

in selecting from a relatively modest set of possible feature when the main

concern is the classification accuracy of the minority class.

In this chapter, we propose a novel feature selection algorithm using Com-

plexity Measurement (CM) to evaluate the extracted low-level features. Us-

ing the best feature subset captured by Feature Selection using Complexity

Measurement (FSCM), we compare the performance of the proposed frame-

work with the performance of several other existing feature selection algo-

rithms discussed above using benchmark data from UCI [5] under the well-

known Classification Tree (CT) classifier. Overall, our proposed framework

performs better than other feature selection methods over the classifier, and

performs significantly better with highly imbalanced data sets.

The rest of the Chapter is organized as follows: Sections 6.2 and 6.3

provide a brief overview of the existing feature selection approaches and

algorithms, Section 6.4 explains the motivation and methodology of our pro-

posed algorithm, and Section 6.5 follows with the results of our experiments.
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Finally, Section 6.6 gives conclusions and future work.

6.2 Current Feature Selection (FS)

Approaches

Feature selection has been an ongoing research area in the classification,

statistics, and data mining communities. The main aim of feature selec-

tion is to select a subset of input variables by eliminating features with little

or no predictive information. Feature selection can significantly improve the

efficiency of the resulting classifier models and often build a model that gener-

alizes better to unseen points (test set). The advantages of feature selection

are manifold, the most important being:

• to avoid overfitting and improve predictions;

• to gain deeper understanding of underlying processes that generate the

data;

• to provide fast and comprehensive models.

It is often the case that finding the correct subset of predictive features is

an important problem in its own right. For example, a physician may make

a decision based on the selected medical tests/features whether a dangerous

surgery is necessary for treatment or not. The search for a subset of relevant

features introduces an additional complexity in the modeling task. Instead

of just optimizing the parameters of the classifier for the full model, we now

need to find the optimal features and then optimize the parameters for the

optimal sub-model. There is no guarantee that optimal parameters for the

full set will be equally optimal for the subsets [7]. Feature selection techniques

are different from each other, in the way they incorporate the subsets into

the model selections.

In the classification situation, feature selection can be divided into three

categories: filter methods, wrappers and embedded methods. Table 6.1 pro-

vides a summary of feature selection techniques used in classification, the ad-
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Table 6.1: Feature Selection Techniques

Methods Advantages Disadvantages Methodology
Filter Fast Ignores feature dependencies χ2

Scalable Ignore interaction with Information gain,
Independent of classifier classifiers gain ratio,

symmetrical uncertainty
Pearson Correlation
Co-efficient(PCC)
Relief (Algorithm)

Wrapper Deterministic
Simple Risk of over fitting Sequential forward selection
Interacts with the classifier More prone than randomized Sequential backward elimination
Models features dependencies algorithm to getting stuck in a Branch and Bound algorithms
Less computationally intensive local optimum
than randomized methods Classifier dependent selection
Randomized
Less prone to local optima Computationally intensive Simulated annealing
Interacts with the classifier Classifier Dependent Selection Randomized Hill Climbing
Models features Dependencies Higher risk of over fitting Genetic Algorithm

than deterministic algorithms
Embedded Interacts with the classifiers Classifier dependent selection Random Forest

Better computational Feature selection using
than wrapper methods the weight vector of SVM

PCA Dimension reduction not a feature selection method Principal component analysis
compress the data
filter some of the noise
in the data

Proposed Fast computationally Intensive Feature selection
Technique Independent of classifier Risk of over fitting by Complexity measurement

simple
Models feature dependencies
works for class imbalance

vantages and disadvantages of each technique, and the most common method-

ologies.

A filter technique is univariate and assesses each variable individually on

the specified criterion. The most common criterion is correlation with the

classes where only those variables which have high correlation with the classes

are selected for model building. Advantages of filters are that they can han-

dle high dimensional data sets, they are computationally fast and simple and

they are independent of the classifier algorithm. Therefore, they need to be

performed only once, after which different classifiers can be applied. This

feature selection technique is very popular in genetics and bioinformatics [8]

and text classification [3]. The main disadvantage of this method is that it
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ignores feature dependencies, which may lead to worse classification perfor-

mance in comparison to the other feature selection techniques. An analysis

of the CoIL Challenge 2000 by Elkan[9] found that feature selection met-

rics were not good enough for this task, instead the interaction between the

different features also needed to be considered in the selection phase. The

biggest mistake that he observed was that most feature selection methods

did not select highly correlated variables, because they were considered to be

redundant. Guyon and Elisseeff [10] show that apparently irrelevant features

can be useful in conjunction with other features, and the combination of two

highly correlated features can be even better than each feature independently.

Wrappers and embedded methods are feature selection method that con-

sider interaction between the features during the selection process. In this

setup, a search procedure in the space of possible subsets of features is de-

fined, and various candidate subsets are generated and evaluated. The eval-

uation procedure for a specific subset is obtained by training and testing a

specific classification algorithm, hence this technique is tailored to a specific

classification model. To search all possible subsets of features a search al-

gorithm is then wrapped around the classification model. The advantage of

this technique is the interaction between features and classification algorithm.

However, it suffers from two primary problems in high dimensional data sets.

Firstly, the space for the feature subsets grows exponentially with the number

of features; secondly, a subset selection method may find a feature selection

that overfits the training data and produces even worse prediction than the

baseline model [11]. In comparison to the Filter techniques, these techniques

have a higher risk of overfitting and are computationally intensive, especially

if the classifier has high computational cost.

In another class of the feature selection techniques, termed as embedded

techniques, the search of the optimal subset of features is built into the

classifier algorithm, such as Random Forest (see section 6.3.2.2). Just like

the wrapper technique, this technique is tailored to a specific classification

algorithm. The advantages of this technique is that it is less computationally

intensive than the wrapper techniques.
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6.2.1 Feature Selection in Class Imbalance

The curse of dimensionality tells us that if many of the features are noisy the

cost of the classifier can be very high, and the performance may be extremely

degraded [12]. If Class Imbalance is accompanied by high dimensionality of

the data set [12], applying feature selection is clearly necessary. However we

think that in the case of highly imbalanced data, feature selection should

not be constrained to just high dimensional data sets, such as the cases of

micoarray data and text classification, but used even for comparatively low

dimensional data sets, to select better predictive features for the minority

class. Forman [1] noted a similar observation for highly imbalance data

sets and stated “no degree of clever induction can make up for a lack of

predictive signal in the input space”. In cases of class imbalance, when

we are primarily interested in the accuracy of the minority class, the input

space can be divided into class wise spaces, to reflect our bias in favor of the

minority class. Researchers [1, 2, 3, 4] show that in high dimensional data

sets, feature selection can alone combat the class imbalance problem. Our

aim then is to use feature selection techniques to increase the classification

accuracy of the minority class.

Feature selection has long been a part of machine learning and has been

thoroughly researched [10], but its application in class imbalance problem is

a relative recent development. Most of the research has been done in the

last eight years and mostly for classifying text data sets using the filter meth-

ods mentioned in Table 6.1. Mladenic and Grobelnik [3] used the Yahoo

web hierarchy and used filter feature selection methods. Forman [1] used the

text sets from the TREC competitions, MEDLINE, OHSUMED and Reuters

databases. Using the filter feature selection methodologies, he trained linear

Support Vector Machine (SVM) and evaluated their performance using ac-

curacy, precision, recall and F1-Measure. Zheng et al. [2] analyzed how

the types of selected features affected classification performance. They used

chi-square (CHI), information gain (IG) and odds ratio (OR) algorithms.
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6.3 Feature selection Algorithms

In this section, we introduce those algorithms that we use later in our per-

formance comparison. There are many feature selection algorithms available

in the literature. Several of the most popular algorithms representing the

various categories mentioned in Table 6.1 are selected for study here.

6.3.1 Filter-Based Feature Ranking Techniques

The procedure of feature ranking is to score each feature according to a

particular criterion, based on which the best set of features is selected. The

five standard filter-based feature ranking techniques used in this work include

Statistics-based Feature Selection i.e., chi-square (CS), information gain (IG),

gain ratio (GR) and symmetrical uncertainty (SU), as well as Relief algorithm

introduced by Kira and Rendell [13]. The Statistics-based Feature Selection

can handle either binary or nominal data. The UCI data sets [5] we study

include continuous data, therefore we must pre-process the data before apply-

ing these techniques. We follow the method proposed by Guyon and Elisseeff

[10]. First we find the mean feature value for the two classes, then we set a

threshold at the midpoint between the two mean values. The feature is then

binarized according to this threshold [10].

6.3.1.1 Chi-square

The Chi-square χ2 (CS) test [14] evaluates features by ranking the chi-square

statistic of each feature with respect to the class. The null hypothesis is that

there is no correlation; i.e., each value is as likely to have examples in any

one class as any other class. The χ2 statistic,

χ2 =
n∑

i=1

C∑
j=1

(Oi,j − Ei,j)

Ei,j

(6.1)

measures how far away the actual value is from the expected value, assuming

the null hypothesis. Here, n is the number of different values of the feature,

C is the number of classes (in our work, C = 2), Oi,j is the observed number
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of examples with value i which are in class j, and Ei,j is the expected number

of examples with value i and class j. The larger this χ2 statistic, the more

likely it is that the distribution of values and classes are dependent; that is,

that the feature is relevant to the class.

6.3.1.2 Entropy based techniques

An Information Entropy Function is a measure of the uncertainty associated

with a random variable. Information gain, gain ratio, and symmetrical un-

certainty are measures based on the concept of entropy from Information

Theory [15]. The Information gain (IG) measure scores features by comput-

ing their information gain with respect to the class. IG is the information

provided about the target class attribute Y, given the value of another at-

tribute X. IG measures the decrease of the weighted average impurity of the

partitions compared to the impurity (a measure of diversity for the outcome

in a specific set of nodes) of the complete set of data. A drawback of IG

is that it tends to prefer attributes with a larger number of possible values,

i.e., if one attribute has a larger number of distinct values, it will appear to

gain more information than those with fewer values, even if it is actually no

more informative. One strategy to solve this problem is to use the gain ratio

(GR), which penalizes multiple-valued attributes. Symmetrical uncertainty

(SU) is another way to overcome the problem of IGs bias toward attributes

with more values, by dividing by the sum of the entropies of X and Y.

6.3.1.3 Relief

Relief is a case-based feature ranking technique introduced by Kira and Ren-

dell [13]. Relief evaluates each feature by its ability to distinguish the neigh-

boring cases. It randomly samples the examples and checks the cases of the

same and different classes that are near to each other. An exponential func-

tion governs how rapidly the weights degrade with the distance. ReliefF [16]

is an extension of the Relief algorithm that can handle noise and multiclass

data sets, and is implemented in the R package FSelector [17].
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6.3.2 Wrapper-based Feature Selection Techniques

Feature selection using a wrapper provides an alternative way of selecting

feature subsets, incorporating the classifier into the search and thus selecting

more efficient subsets. Wrapper technique uses the method of classification

to measure the importance of subsets of features; hence the features selected

depend on the classifier technique used. Wrapper methods generally result

in better performance than filter methods because the feature selection pro-

cess provides opportunities to construct a more accurate classifier. However,

wrapper methods are highly computational for large dimensional databases

since all possible feature subsets must be evaluated with the classifier algo-

rithm used. We test two very popular wrapper-based techniques in this work,

Genetic Algorithm (GA) [18] and Random Forest [19].

6.3.2.1 Genetic Algorithm (GA)

Genetic Algorithm (GA) [20] is a random search method that can effectively

explore large search spaces, which is necessary in the case of feature selec-

tion. Further, unlike many search algorithms, which perform a local, greedy

search, GA performs a global search. A genetic algorithm (GA) is a search

algorithm inspired by the principle of natural evolution. The basic idea is to

evolve a population of individuals, where each individual is a candidate solu-

tion to a given problem. GA mainly comprises of three operators: reproduc-

tion, crossover, and mutation. Reproduction selects good strings; crossover

combines good strings to try to generate better offspring; mutation alters a

string locally to attempt to create a better string. In each generation, the

population is evaluated and tested for termination of the algorithm. If the

termination criterion is not satisfied, the population is operated upon by the

three GA operators and then re-evaluated. This procedure is continued until

the termination criterion is met. In our application of GA, the population

evaluation criterion is to minimize the error rate for the minority class.
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6.3.2.2 Random Forest (RF)

A Random Forest [21] is an ensemble method that combines several indi-

vidual classification trees in the following way: several bootstrap samples

are drawn from the training set, and an unpruned classification tree is con-

structed for each bootstrap sample. During construction of each tree, at each

node, a small random subset of predictor variables or features are tried to

split that node. From the complete forest the status of the response variable

is predicted as an average or majority vote of the predictions of all trees.

Random forests can greatly increase the prediction accuracy as compared to

individual classification trees. Unpruned trees have low bias and high vari-

ance but the variance is reduced by averaging the bootstrapped trees. The

interpretation of a random forest is not as straightforward as that of an indi-

vidual classification tree, where the influence of a predictor variable directly

corresponds to its position in the tree. Thus, alternative measures for vari-

able importance are required for the interpretation of random forests.

A simple variable importance measure to use in tree-based ensemble methods

is to just count the number of times each variable is selected by all individual

trees in the ensemble. More complex variable importance measures incorpo-

rate a (weighted) mean of each individual tree’s improvement in the splitting

criterion produced by each variable [22]. An example in classification for

such a measure is the “Gini index” available in random forest implementa-

tions. The Gini index describes the improvement in the “Gini gain” splitting

criterion. Another variable importance measure available in random forests

is the “permutation accuracy importance” measure. It is based on the fol-

lowing idea: by randomly permuting the predictor variable Xj, it should no

longer have an association with the response Y. When the permuted variable

Xj, together with the remaining predictor variables (unpermuted), is used

to predict the response, the prediction accuracy (i.e. the number of obser-

vations classified correctly) decreases significantly, if the original variable Xj

was associated with the response. Thus, variable importance is measured by

the difference in prediction accuracy before and after randomly permuting

Xj. Random Forest permutation accuracy importance has advantages over
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filter methods (for feature selection) in that it covers the impact of each pre-

dictor variable individually as well as in multivariate interactions with other

predictor variables.

6.3.2.3 Boruta Algorithm

Here we discuss the main theme of the Boruta Algorithm; for more details

see Kursa and Rudnicki [23]. Boruta Algorithm is a wrapper built around

the random forest classification algorithm [19]. It uses Z score as an im-

portance measure of a feature attribute, obtained as the loss of accuracy of

classification caused by random permutation since it takes into account the

fluctuations of mean accuracy loss among trees in the forest. Since Z scores

can not be computed directly, feature importance returned by the Random

Forest algorithm does not have a standard normal distribution [24]. The

Boruta Algorithm has the following steps.

1. Extend the information system by adding copies of all variables (the

information system is always extended by at least 5 shadow attributes,

even if the number of attributes in the original set is lower than 5).

2. Shuffle the added attributes individually to remove their correlations

with the response.

3. Run a random forest classifier on the extended information system and

gather the Z scores computed.

4. Find the maximum Z score among shadow attributes (MZSA), and

then assign a hit to every attribute that scored better than MZSA.

5. For each attribute with undetermined importance perform a two-sided

test of equality with the MZSA.

6. Deem the attributes which have importance significantly lower than

MZSA as ‘unimportant’ and permanently remove them from the infor-

mation system.
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7. Deem the attributes which have importance significantly higher than

MZSA as ‘important’.

8. Remove all shadow attributes.

9. Repeat the procedure until the importance is assigned for all the at-

tributes, or the algorithm has reached the previously set limit of the

Random Forest runs.

We use Boruta Algorithm instead of RF variable importance, due to fact

that RF will give just a ranking of variables, after which we make a subjective

decision on the number of variables to be used, whereas Boruta Algorithm

will recommend variables deemed important . Moreover we want to analyze

the efficiency of Boruta Algorithm in imbalanced data sets.

6.3.3 Transformation-based Feature Selection

Principal Components Analysis (PCA) transforms the set of features to the

eigenvector space. Since each eigenvalue gives the variance along the corre-

sponding axis, we could use such a special coordinate system that depends on

the cloud of points with a certain variance in each direction. All the compo-

nents could be used as new features but the first few would account for most

of the variance in the data set. Rather than pick a subset of features, this

method picks a small set of linear functions of the features. The basic idea

when using PCA as a tool for feature selection is to select variables according

to the magnitude (from largest to smallest in absolute values) of their coeffi-

cients (loadings). PCA seeks to replace p (more or less correlated) variables

by f < p uncorrelated linear combinations (projections) of the original vari-

ables. The f principal components are ranked by importance through their

explained variance, and each variable contributes with varying degree to each

component. Using the largest variance criteria would be akin to feature ex-

traction, where principal components are used as new features, instead of the

original variables. However, we can decide to keep only the first component

and select the m < p variables that have the highest absolute coefficient; the

number m might be based on a proportion of the number of variables (e.g.,
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keep only the top 10% of the p variables), or a fixed cutoff (e.g., considering a

threshold on the normalized coefficients). We select a fixed cutoff of at least

90% of total variation accounted for by m principal components.

6.4 Proposed Algorithm

For classification, it may be optimal to use the minimum achievable error,

the Bayes error, as a criterion [25]. However, the Bayes error cannot be easily

expressed in an analytical form except in special cases. Instead, an estimate

of the Bayes error is often used as a criterion. For instance, wrapper tech-

niques are based on the minimum classification error, where the classification

error is measured by misclassification over the training samples. The near-

est neighbor technique is used in the literature [26] to estimate Bayes error.

We have thoroughly studied the k-NN approach to estimate Bayes error in

the class imbalance scenario, focusing on the local information for each data

point in the minority class via nearest neighbors, and using this information

to define a data complexity measure, known as Complexity Measurement

(CM). We have found a strong correlation between CM and misclassification

of the minority class. Based on this assumption, we propose to approximate

the classification error using the CM as a minimization criterion. A benefit

of this approach is that the number of features necessary for classification

without serious information loss can be predicted (please see section 6.5.2 for

more detail). The proposed method is designed to deal with feature selection

for imbalanced data, focusing specifically on accuracy of the minority class.

The proposed methodology consists of two basic steps.

1. We are interested in the accuracy of the minority class, hence we will

measure the complexity of the minority class.

2. Only those features will be selected which minimize the overall com-

plexity of minority class.

We begin the development of the feature extraction algorithm by consid-

ering two-class problems. It can be extended to multiclass problems using a 1-

vs-rest approach. Let Xp×1 be an observation vector and ωl a feature selection
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vector, such that a single feature is ωt
lXp×1, where sum of the elements Σp∗

ωlp∗ = 1 and ωlp∗ ∈ {0, 1} (except for PCA). Matrix ω = (ω1, ω2, . . . , ωṕ)p×ṕ,

transforms an observation vector X in the p-dimensional space into a new

ṕ-dimensional feature vector F,

F = ωtX = (ω1, ω2, . . . , ωṕ)
tX (6.2)

where ṕ ≤ p. Consequently, the estimate of the classification error in the

subspace depends on the matrix ω. In other words, the criterion is given by

Jω = CMj,k,ω (6.3)

where CMj,k,ω) is an estimate using k-NN of the classification error based

on the CM in the subspace spanned by ω for class j. Here we take j to be

the minority class, and determine k as in section 3.5.0.1, so we abbreviate

to CMω. In order to find a solution for ω that minimizes Jω, we use an

algorithm that employs heuristic search.

6.4.1 Heuristic Search

Searching the space of feature subsets within reasonable time constraints is

essential, if a feature selection algorithm is to operate on data with a large

number of features. One simple search strategy, called greedy hill climbing,

considers local optimum to the current feature subset. Often, a local optima

is simply the addition or deletion of a single feature from the subset. When

the algorithm considers only additions to the feature subset it is known as for-

ward selection; considering only deletions is known as backward elimination

[27, 28].

6.4.1.1 Sequential Forward Selection Using CM

Starting from the empty set, sequentially add the feature x+ that results in

the lowest objective function J(ωl +x+) when combined with the features ωl

that have already been selected.
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Algorithm: Sequential Forward Selection

1. Start with the empty set ωl = ∅, and l = 0

2. Select the next best feature; x+ = argminx+ /∈ωl
[J(ωl + x+)].

3. Update ωl+1 = ωl + x+; l = l + 1.

4. Store CMl+1 = J(ωl+1).

5. Go to 2.

The minimum CMl will determine ω. We have found that the Forward

selection method performs best when the optimal subset has a small number

of features; The main disadvantage of this is that it is unable to remove

features that become obsolete after the addition of other features.

6.4.1.2 Sequential Backward Selection Using CM

Sequential Backward Selection works in the opposite direction of sequential

forward selection. Starting from the full set, sequentially remove the feature

x− that results in the smallest increase in the value of the objective function

J(ωl − x−). Notice that removal of a feature may actually lead to a decrease

in the objective function J(ωl − x−) < J(ωl).

Algorithm: Sequential Backward Selection

1. Start with the full set ω0 = X.

2. Remove the worst feature x− = argminx−∈ωl
[J(ωl − x−)].

3. Update ωl+1 = ωl − x−; l = l + 1.

4. Store CMl+1 = J(ωl+1).

5. Go to 2.
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Subspace/subset feature ω will correspond to the minimum value of CMi,

i.e., those features will be selected which give the minimum of CMl. Back-

ward selection works best when the optimal feature subset has a large number

of features, since backward selection spends most of its time visiting large sub-

sets. The main limitation of backward selection is its inability to re-evaluate

the usefulness of a feature after it has been discarded.

Another option for the sequential selection is stepwise forward and back-

ward selection, i.e., if we remove a particular feature and our evaluation

criterion increases, so we should not remove this particular feature. However

stepwise forward and backward selection was not working in our situation.

If we added a particular feature, our algorithm again selected this feature

for removal. Hence feature selection was not going anywhere. Instead of

getting local optima we are more interested in getting global optima, so we

prefer sequential forward and backward selection so we can go through all the

features and selected those features which are having favorable multivariate

interactions with other features, by providing global minimum value of CMl.

Despite respective disadvantages of the sequential backward or forward

selection, we are content with the procedure due to following reasons.

1. The only way to ensure the best possible selection is to evaluate all

possible combination of features, which is not computationally feasible

if there are a large number of features.

2. The above procedure is quick for up to moderate number of features,

e.g, 40. For higher dimension parallel computing could be used.

3. For variable selection purposes the advantage of the FSCM as compared

to filter based methods is that it covers the impact of each predictor

variable individually as well as in multivariate interaction with other

predictor variables.

4. Its uses an independent evaluation criterion under the wrapper method,

hence once the features have been selected, these can be used with any

classifier.
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For feature selection in the example consider below, we fix k = 5, to make

the process quick while giving good results. But different values of k could

be used according to the nature of the data set.

6.5 Experiments:

6.5.1 Artificial Data Set:

We have used many simulated data sets in order to test our algorithm, how-

ever we found one simulation study particularly interesting. In this study the

four variables in the Iris data set are complemented with 36 random variables.

Variable selection should find the four original variables back, an example

used by Ron Wehrens [29]. When we applied our proposed methodology for

various classes of Iris data sets, only one feature was found interesting to best

discriminate the classes. We plotted a scatter plot for this variable, shown in

Fig 6.1. Comparison is also made with the Multidimensional Scaling of the

original data sets.

From Fig 6.1 left panel it is clear that Iris class ‘setosa’ is quite different

from the other classes, and this is a reason that no classifier misclassified this

class. For the classes ‘versicolor’ and ‘viriginica’ we can see some overlap

along the y-axis, and this is a reason that we find misclassification from

‘versicolor’ to ‘viriginica’. Note that the x-axis is arbitrary in the left panel

of Fig 6.1. We can visualize the Iris data set by MDS on Euclidean distance

from Fig 6.1 right panel, where we can see the same pattern along the x-axis,

but no pattern along the y-axis. We measure the stress function to show how

well the 2-dimension MDS plot represents the data, stress= 2.813, which is

expected, as this is a low dimensional data set (i.e., 4 dimension only), so

stress is small, which warrants the representation by MDS plot. Hence we

can argue that only one dimension is necessary to visualize the classes and

this dimension is ‘Petal.width’. Moreover, there was a no loss of information,

when we use a learning algorithm for classification using this variable only.
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Figure 6.1: Visualization by One dimension selected by proposed algo-
rithm (left) and MDS (right) for UCI Iris data set. The names and color

combination shows different classes.

6.5.2 Real Data Sets

To compare the performance of existing feature selection methods and our

proposed methodology with real data, we have used 9 data sets from the

UCI data repository [5]. Information about these data sets is summarized

in Table 6.2. All analyses were done using 5-fold cross validation with the

resulting sensitivity values averaged to a single score. We use CM as the

general indicator of whether a data set is easy or difficult to learn, and the

examples are arranged accordingly.

All programs were written in the statistical environment R [30], and rel-

evant R codes for our algorithm are provided in the Appendix 6.7. For

the construction of tree models we used the RPART package [31], for nearest-

neighbor based on Euclidean distance we used R package class [32] with a

little modification of the input and output, and to compute Random Forest

distances we used the R package randomForest [21]. For Feature Selection

we used R package FSelector [17] for filter feature selection method, R pack-

age genalg [29] for Genetic Algorithm with fitness function set to improve



6.5 Experiments: 191

Table 6.2: Description of UCI data sets

Data Set Feature(p) Size Target Size of Min Size of Maj %Min CM Sensitivity
WDBC 30 569 malignant 212 357 37.3 0.080 0.88
Ionosphere 34 351 bad 126 225 35.9 0.405 0.62
Pima 8 768 class 1 268 500 34.9 0.427 0.62
Vehicle 16 846 opel 212 634 25.1 0.566 0.56
WPBC 31 198 recur 47 151 23.7 0.745 0.44
Yeast 8 1484 ME3 163 1321 11.0 0.325 0.72
Abalone2 8 4177 Ring<7 448 3729 10.7 0.489 0.59
Satimage 37 6435 class 4 626 5809 9.7 0.345 0.57
Abalone1 8 4177 Ring=7 391 3786 9.4 0.903 0.2

Data sets Methodology Feature Accuracy G Mean Sensitivity Specificity AUC
WDBC Nil 30 0.920 0.910 0.880 0.940 0.910

FSCM 6 0.948 0.939 0.914 0.966 0.940
RF(B) 30
GA 5 0.946 0.938 0.914 0.963 0.939
Chi 6 0.926 0.915 0.876 0.955 0.916
IG 6 0.926 0.915 0.876 0.955 0.916
GR 6 0.924 0.912 0.871 0.955 0.913
SU 6 0.924 0.913 0.876 0.952 0.914
RReliefF 6 0.944 0.938 0.919 0.958 0.938
PCA 7PC 0.948 0.941 0.914 0.969 0.942

Table 6.3: Sensitivity and AUC comparison of Feature Selection meth-
ods applied to WDBC data sets. Rows gives the various Feature Selec-
tion methodologies is used. Figures gives mean values calculated using

stratified 5 fold cross validation

sensitivity, and R package Boruta [23] for Boruta Algorithm.

6.5.3 Results:

We consider the data sets ranked according to the CM measurement. The

Winconsin Diagnostic Breast Cancer (WDBC) from the UCI Machine Learn-

ing Repository has 32 variables computed from a digitized image describing

the characteristics of the cell nuclei present in each of 569 images. The class

variable of interest here is the diagnosis, either benign (majority class) or

malignant (minority), with particular emphasis on the detection of the mi-

nority class. Excluding patient ID and diagnosis (class label) columns, we

considered 30 features for our analysis.
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Data sets Methodology Feature Accuracy G Mean Sensitivity Specificity AUC
Yeast Nil 8 0.940 0.830 0.720 0.970 0.845

FSCM 2 0.942 0.834 0.719 0.970 0.845
RF(B) 5 0.942 0.827 0.706 0.970 0.838
GA 3 0.880 0.000 0.000 0.985 0.492
Chi 1 0.922 0.808 0.688 0.952 0.820
IG 3 0.942 0.806 0.669 0.973 0.821
GR 3 0.942 0.806 0.669 0.973 0.821
SU 3 0.942 0.806 0.669 0.973 0.821
RReliefF 6 0.942 0.827 0.706 0.969 0.838
PCA 6 0.922 0.770 0.625 0.955 0.790

Table 6.4: Sensitivity and AUC comparison of Feature selection meth-
ods applied to Yeast data sets. Rows gives the various Feature selection
methodologies is used. Figures gives mean values calculated using strat-

ified 5 fold cross validation

Table 6.3 illustrates the results using the sensitivity (accuracy of minority

class) and AUC. Feature stands for number of feature used in the model. Note

that in all of the nine methodologies used, only Boruta algorithm failed to

select important features, as it considered all features as equally important.

Whereas our proposed algorithm (FSCM), Genetic Algorithm (GA) and PCA

achieved better results than the original Classification Tree, with PCA the

winner based on AUC value (the best results are marked in bold). Overall

we can say that feature selection was successful in this data set by increasing

the accuracy of minority class by 3%.

Consider next the Yeast data set, which concerns determination of protein

cellular localization sites. This data set has 1484 observations with 8 feature

and 7 classes. We select the class of sequence types ME3 (membrane protein,

no N-terminal signal with 163 examples) vs Rest reducing the classification

problem to a binary decision. This is a small data set with regard to standard

feature selection, but has the advantages that we can easily evaluate all

possible subsets.

Table 6.4 gives the results obtained from the various feature selection

methodologies. All methodologies were able to identify the important feature

except GA which failed in this data set (no detection for minority class). The

variables proposed by the GA were not able to predict any of the minority

class. This also reflects the restive nature of the randomized feature selection
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Figure 6.2: Visualization by 2 dimension selected by proposed algo-
rithm (left) and MDS (right) for UCI yeast dataset. The symbols and
color combination shows two different classes: M (ME3) minority class

and R (Rest of classes: majority class).

techniques like GA. We need a lot of iterations to get any sensible model. Of

particular interest is the feature selection by our proposed algorithm, in which

only two out of the 8 features were selected without loss of information. If

we plot these two features (Figure 6.2) we can see clear separation between

the two classes (left panel of Fig 6.2), along the two axes; x-axis (alm: Score

of the ALOM membrane spanning region prediction program) and y-axis;

(mcg: McGeoch’s method for signal sequence recognition). We can see some

overlap in the datasets, due to which there are a number of false negative

cases, which results in a fall in accuracy of minority class. If we compare

with the Multidimensional Scaling (MDS) visualization, we can see a cluster

of minority class (black), but no clear separation between the classes. The

stress function for this MDS presentation is 36.243, which is very high, and

due to this reason we can not see any clear separation between the classes.

Turning now to some highly imbalanced data sets, Satimage and Abalone

(minority class < 10%), once again our proposed algorithm FSCM proves to

be a consistent technique performing really well in these cases as well. Table
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6.5 gives the results.

Data sets Methodology Feature Accuracy G Mean Sensitivity Specificity AUC
Sat Nil 37 0.920 0.741 0.573 0.957 0.765

CM 28 0.920 0.763 0.611 0.952 0.782
RF(B) 37
GA 6 0.92 0.653 0.436 0.978 0.703
Chi 18 0.900 0.716 0.545 0.941 0.743
IG 18 0.890 0.702 0.526 0.938 0.732
GR 18 0.900 0.727 0.564 0.937 0.750
SU 18 0.900 0.743 0.588 0.940 0.764
RReliefF 18 0.920 0.748 0.583 0.959 0.771
PCA 8 0.880 0.730 0.578 0.921 0.749

Abalone Nil 8 0.880 0.430 0.200 0.940 0.570
CM 5 0.874 0.455 0.221 0.942 0.581
RF(B) 8
GA 3 0.878 0.396 0.167 0.952 0.560
Chi 8
IG 8
GR 8
SU 8
RReliefF 7 0.870 0.435 0.205 0.938 0.571
PCA 2 0.880 0.443 0.208 0.947 0.577

Table 6.5: Sensitivity and AUC comparison of Feature selection meth-
ods applied to highly imbalanced Satimage and Abalone data sets. Rows
gives the various Feature selection methodologies is used. Figures gives

mean values calculated using stratified 5 fold cross validation

For the Satimage data set our algorithm selected 28 out of the 37 pos-

sible features, which increased the accuracy of the minority class by 4%.

Wrapper based method Boruta and GA were not able to provide any signif-

icant features, maybe due to randomization and these algorithms needing

high numbers of iterations to provide any sensible solutions. Whereas filter

selection methods were able to half the number of features, without much

decrease in the AUC values. PCA proved to be useful, since only accuracy

of the majority class suffered. For the Abalone data set, our proposed algo-

rithm performed well, by increasing the accuracy of the minority class by 2%,

whereas most of the other feature selection methods failed to deliver. PCA

once again proved to be useful. Detailed results for all data sets described in

the UCI archive Table 6.2 are given in the Appendix.

Our proposed algorithm Feature Selection using Complexity Measure-
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ment (FSCM) performs consistently well in all UCI data set (moderate to

highly imbalanced). In terms of AUC values, FSCM often works better than

other feature selection techniques as well as the model using all the features.

In terms of sensitivity values sometimes it shows dramatic improvement. This

is probably due to fact that FSCM is focusing primarily on reducing the noise

for the minority class. Moreover, using CM as the criterion, we develop an

independent criterion of feature selection for wrapper selection, which is lack-

ing in the literature [8]. Hence the features once selected can be used with

different classifiers to build a number of classification models.

6.6 Discussion and Future Work:

Feature selection for highly imbalanced data is a major challenge in Data Min-

ing and Statistics. We have proposed a sequential feature selection method

using complexity measure (CM) to deal with this problem. To evaluate the

effectiveness of the proposed method, we have applied our technique on the

well known UCI data sets from the class imbalance literature. We use the

complexity measurement (CM) criterion which is independent of the clas-

sifier hence selected features can be used with different classifiers to build

a number of classification models. Using Feature Selection using Complex-

ity Measurement (FSCM) as a criterion we can specifically focus on the

minority class, hence those features (and multivariate interactions between

predictors) can be selected, which form a better model for the minority class.

We compared the new method to three approaches - (i) Filter based fea-

ture ranking (ii) Wrapper based feature feature selection and (iii) Dimen-

sion reduction. The experimental results demonstrate that (1) our proposed

method performed consistently better than the other approaches; and (2) the

performance strength of our proposed method over other methods becomes

increasingly evident as the class imbalance becomes more serious. The con-

clusions obtained in this chapter regarding the effectiveness of the proposed

feature selection approach are based on the experiments conducted on data

sets from UCI data sets. Future work will involve more experiments on data

sets from different domains. Moreover, in order to improve the feature selec-
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tion of existing techniques we will consider data sampling when the data sets

have unequal numbers of examples in the two classes; different data sampling

techniques can also be considered.
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6.7 Appendix

6.7.1 R Codes

#####################################################
2 # Nearest func t i on f o r the Complexity

#####################################################
4 nea r e s t <− f unc t i on (X, n , k=5)

## Find k nea r e s t ne ighbors o f X[ n , ] in the data frame
6 ## or matrix X, u t i l i z i n g func t i on which . min k−t imes .
{

8 N <− nrow (X)
# inds conta in s the i n d i c e s o f nea r e s t ne ighbors

10 inds <− c (n) ; i <− 0
whi l e ( i < k ) {

12 # use knn1 f o r one index . . .
j =as . i n t e g e r ( which . min (d[− inds , n ] ) )#d=1−wdbc . r f $proximity

14 #j <− as . i n t e g e r ( knn (X [− inds , ] , X[ n , ] , 1 : (N−l ength (
inds ) ) ) )

# . . . and change to true index o f ne ighbor
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16 inds <− c ( inds , s e t d i f f ( 1 :N, inds ) [ j ] )
i <− i+1

18 }
# return nea r e s t ne ighbor i n d i c e s ( without n , o f course )

20 re turn ( inds [ −1])
}

22

24 ################################################
# main loop f o r va r i ab l e e l im ina t i on back ward #

26 ################################################
#Let

28 x<−X
rvar<−numeric (0 )

30 r e c<−numeric (0 )
f o r (N in 1 : nco l (X) ) {

32

#get complexity measurement/ data e r r o r s
34 d<−as . matrix ( d i s t ( x ) )

a<−numeric (0 )
36 k<−which (Y==” v e r s i c o l o r ” )#de f i n e your minor i ty c l a s s

f o r ( i in 1 : l ength (k ) ) {
38 at<−t ab l e (Y[ nea r e s t (x , k [ i ] ) ] )

a<−rbind (a , at )
40 }

a<−as . matrix ( a )
42 ove ra l lVar i ab l e Impor tance=length ( which ( a [ ,2 ] <3) )

com<−numeric (0 )
44 f o r ( I in 1 : nco l ( x ) ) {

d<−as . matrix ( d i s t ( x [ ,− I ] ) )
46 a<−numeric (0 )

k<−which (Y==” v e r s i c o l o r ” )
48 f o r ( i in 1 : l ength (k ) ) {

at<−t ab l e (Y[ nea r e s t (x , k [ i ] ) ] )
50 a<−rbind (a , at )

}
52 a<−as . matrix ( a )

com<−c (com , l ength ( which ( a [ ,2 ] <3) ) ) }
54 VariableImportance<−com
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#remove the worst v a r i ab l e
56 Z <− order ( VariableImportance , d e c r ea s ing = FALSE)

IND <−Z [ 1 ] #seems the t a r g e t w i l l always be index 1
58 var to remove <− names (x [ IND ] )

x [ IND ] = NULL
60 r e c<−c ( rec , min ( VariableImportance ) )

rvar<−c ( rvar , var to remove )
62 #repor t

cat ( ”\nOveral lComplexity ” , ove ra l lVar i ab l e Impor tance )
64 cat ( ”\nComplexity ” ,min ( VariableImportance ) )

cat ( ”\nremoving va r i ab l e ” , var to remove )
66 f l u s h . conso l e ( )

}
68 names (x )

nco l ( x )
70 rvar

r ec
72 cat ( ”\ nSe l ec t ed v a r i a b l e s : ” , rvar [−c ( 1 : which ( rec==min ( rec ) ) [

l ength ( which ( r ec==min ( rec ) ) ) ] ) ] )
################################################

74 # main loop f o r va r i ab l e e l im ina t i on forward #
################################################

76 #Let
X<−data . frame (X)

78 xf<−X
x<−NULL

80 rvar<−numeric (0 )
r ec<−numeric (0 )

82 f o r (N in 1 : nco l (X) ) {
#overa l lVar i ab l e Impor tance=complexity (y . 1 , x )

84 com<−numeric (0 )
f o r ( I in 1 : nco l ( x f ) ) {

86 d<−as . matrix ( d i s t ( cbind (x , x f [ , I ] ) ) )#[ , c ( vs , I+C) ] ) )
a<−numeric (0 )

88 k<−which (Y==” v e r s i c o l o r ” )#de f i n e your minor i ty
f o r ( i in 1 : l ength (k ) ) {

90 at<−t ab l e (Y[ nea r e s t ( cbind (x , x f [ , I ] ) , k [ i ] ) ] )
a<−rbind (a , at )

92 }
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a<−as . matrix ( a )
94 com<−c (com , l ength ( which ( a [ ,2 ] <3) ) ) }

VariableImportance<−com
96 yt<−x

#add the best v a r i ab l e
98 Z <− order ( VariableImportance , d e c r ea s ing = FALSE)

IND <−Z [ 1 ] #seems the t a r g e t w i l l always be index 1
100 var to add <− names ( x f [ IND ] )

rvar<−c ( rvar , var to add )
102 x = X[ , rvar ]

x f=xf [ ,−IND ]
104 r e c<−c ( rec , min ( VariableImportance ) )

#t e s t s e t [ IND ] = NULL
106 #cat (”\ nOveral lComplexity ” , ove ra l lVar i ab l e Impor tance )

cat ( ”\nMin Complexity ” ,min ( VariableImportance ) )
108 #cat (”\ntestAUC ” , testAUC [ i ] )

cat ( ”\nAdding va r i ab l e ” , var to add )
110 # cat (”\ nafterComplex ity ” , a f t e rVar iab l e Impor tance )

f l u s h . conso l e ( )
112 }

names (x )
114 nco l ( x )

rvar
116 r e c

rvar [ c ( 1 : which ( r ec==min ( rec ) ) [ 1 ] ) ]
118 F<−order ( r e c )

cat ( ”\ nSe l ec t ed v a r i a b l e s : ” , rvar [ 1 : F [ 1 ] ] )
120 F<−order ( r e c )

#####################################################
122 #fo r f e a t u r e s e l e c t i o n us ing the backward and forward s e l e c t i o n

#####################################################
124 subset<−names (X[ , rvar [−c ( 1 : which ( r ec==min ( rec ) ) [ l ength ( which ( r ec

==min( rec ) ) ) ] ) ] ] )
f <− as . s imple . formula ( subset , ” Class ” )

126 pr in t ( f )

128 ## fo r forward s e l e c t i o n
subset<−names (X[ , rvar [ c ( 1 : which ( rec==min( rec ) ) [ 1 ] ) ] ] )

130 f <− as . s imple . formula ( subset , ” Class ” )
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pr in t ( f )

6.7.2 Results
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Data sets Methodology Feature used Accuracy G Mean Sensitivity Specificity AUC
WDBC Nil 30 0.920 0.910 0.880 0.940 0.910

CM 6 0.948 0.939 0.914 0.966 0.940
RF(B) 30
GA 5 0.946 0.938 0.914 0.963 0.939
Chi 6 0.926 0.915 0.876 0.955 0.916
IG 6 0.926 0.915 0.876 0.955 0.916
GR 6 0.924 0.912 0.871 0.955 0.913
SU 6 0.924 0.913 0.876 0.952 0.914
RReliefF 6 0.944 0.938 0.919 0.958 0.938
PCA 7PC 0.948 0.941 0.914 0.969 0.942

Sat Nil 37 0.920 0.741 0.573 0.957 0.765
CM 28 0.920 0.763 0.611 0.952 0.782
RF(B) 37
GA 6
Chi 18 0.900 0.716 0.545 0.941 0.743
IG 18 0.890 0.702 0.526 0.938 0.732
GR 18 0.900 0.727 0.564 0.937 0.750
SU 18 0.900 0.743 0.588 0.940 0.764
RReliefF 18 0.920 0.748 0.583 0.959 0.771
PCA 8 0.880 0.730 0.578 0.921 0.749

Pima Nil 8 0.710 0.680 0.610 0.760 0.685
CM 5 0.726 0.700 0.634 0.774 0.704
RF(B) 8
GA 3 0.638 0.552 0.404 0.764 0.584
Chi 3 0.706 0.648 0.528 0.800 0.664
IG 6 0.716 0.690 0.630 0.756 0.693
GR 6 0.716 0.690 0.630 0.756 0.693
SU 6 0.716 0.690 0.630 0.756 0.693
RReliefF 6 0.706 0.668 0.581 0.770 0.676
PCA 6 0.694 0.661 0.585 0.748 0.666

Abalone Nil 8 0.880 0.430 0.200 0.940 0.570
CM 5 0.874 0.455 0.221 0.942 0.581
RF(B) 8
GA 3 0.878 0.396 0.167 0.952 0.560
Chi 8
IG 8
GR 88
SU 8
RReliefF 7 0.870 0.435 0.205 0.938 0.571
PCA 2 0.880 0.443 0.208 0.947 0.577

Yeast Nil 8 0.940 0.830 0.720 0.970 0.845
CM 2 0.942 0.834 0.719 0.970 0.845
RF(B) 5 0.942 0.827 0.706 0.970 0.838
GA 3 0.880 0.000 0.000 0.985 0.492
Chi 1 0.922 0.808 0.688 0.952 0.820
IG 3 0.942 0.806 0.669 0.973 0.821
GR 3 0.942 0.806 0.669 0.973 0.821
SU 3 0.942 0.806 0.669 0.973 0.821
RReliefF 6 0.942 0.827 0.706 0.969 0.838
PCA 6 0.922 0.770 0.625 0.955 0.790

Iono Nil 34 0.894 0.884 0.856 0.916 0.886
CM 6 0.918 0.910 0.880 0.942 0.911
RF(B) 34
GA 5 0.862 0.828 0.752 0.920 0.836
Chi 13 0.890 0.870 0.808 0.938 0.873
IG 34
GR 34
SU 34
RReliefF 16 0.870 0.857 0.824 0.898 0.861
PCA 5 0.638 0.592 0.488 0.724 0.606

Vehicle Nil 18 0.780 0.690 0.560 0.850 0.705
CM 6 0.760 0.643 0.495 0.848 0.671
RF(B) 18 0.000
GA 3 0.694 0.479 0.286 0.832 0.559
Chi 10 0.760 0.667 0.533 0.837 0.685
IG 16 0.796 0.706 0.576 0.870 0.723
GR 16 0.796 0.706 0.576 0.870 0.723
SU 16 0.796 0.706 0.576 0.870 0.723
RReliefF 18
PCA 8 0.746 0.630 0.486 0.832 0.659

WPBC Nil 31 0.636 0.426 0.244 0.753 0.499
CM 16 0.646 0.558 0.444 0.707 0.576
RF(B) 4 0.642 0.418 0.267 0.753 0.510
GA 3 0.642 0.421 0.244 0.760 0.502
Chi 31
IG 31
GR 31
SU 31
RReliefF 13 0.656 0.470 0.311 0.760 0.536
PCA 9 0.688 0.561 0.422 0.767 0.594

Aba<7 Nil 8 0.920 0.750 0.590 0.960 0.775
CM 5 0.928 0.764 0.604 0.965 0.785
RF(B) 8
GA 3 0.926 0.760 0.598 0.966 0.782
Chi 8
IG 3 0.924 0.733 0.557 0.968 0.763
GR 3 0.924 0.733 0.557 0.968 0.763
SU 3 0.924 0.733 0.557 0.968 0.763
RReliefF 7 0.928 0.753 0.587 0.968 0.777
PCA 3 0.926 0.764 0.609 0.963 0.786
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Chapter 7

Discussion

Data Mining and Statistical/Machine learning techniques have problems han-

dling imbalanced data sets that frequently arise in real-world applications.

Researchers have developed many new techniques for tackling the class imbal-

ance problem. Despite numerous new algorithms and re-sampling techniques,

the class imbalance problem yet is to be solved. These methodologies help

in solving the ‘imbalance problem’ in some studies, but did not help in other

studies [1, 2]. Researchers like Jo and Japkowicz [3] suggested class imbal-

ances may yield small disjunct, causing degradation, and Prati et. al. [4]

argued that class imbalance in the presence of class overlap causes problems.

Given the suggestion that the imbalanced class distribution may not be the

only problem [5, 6, 3, 7], to the best of our knowledge there is no study that

has systematically studied, what intrinsic features of the data are affecting

the degraded learning performance of an imbalanced data set in real world

situations.

It is important to not only design a good classifier, but to have a limit or

bound on the achievable classification for a given data set. To this end, we

have presented “Complexity Measurement (CM)” for systematic study of the

class imbalance problem. We have focused more on tools for quantification

of the problem associated with imbalance data sets rather than solving the

problem, which we see as the first step for answering questions such as:

1. What is the nature of the class imbalance problem, i.e. in what situa-
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tions and to what extent does class imbalance hinder the performance

of standard classifiers?

2. What are the possible solutions in dealing with class imbalance prob-

lems, and how well do they perform? For example, when should we

employ over-sampling or under-sampling instead of fixing a class distri-

bution or size?

An important theoretical result related to the nature of class imbalance

is presented in [8, 9]. The experiments there were conducted on artificially

generated data, in the attempt to simulate different imbalance ratios, com-

plexities and data set sizes. In general the estimated error rates from artificial

data sets should be interpreted as optimistic because the analysis uses appro-

priate models for the data; for real data one does not know what classification

methods are appropriate. Hence the important question is: how to measure

data complexities in real data sets? Unless data complexities can be mea-

sured in real world data sets (a common criterion for artificial and real data

sets), the conclusion drawn from experiments on synthetic data cannot be

extended to real data sets.

Data complexity is not a new concept in the data mining literature. Ho

and Basu [10] proposed various complexity measures for binary classification

problems. But these measurements were never meant for class imbalance

data sets and should be carefully interpreted. Hence application in a class

imbalance scenario is debatable. This may be the reason that none of the

studies [11, 12, 13] found these measurements useful, to describe the way a

classifier behaves or why any re-sampling techniques does/doesn’t work.

We see a need for an independent data complexity measure (CM), by

which we can arrange the data sets according to their level of difficulty. By

considering the level of difficulty, we can decide which learning algorithm or

re-sampling technique works better. Hence CM can be used as meta-learner

to decide which learning algorithm or re-sampling technique will be worth to

apply and which situations need more consideration. Our study shows that,

in an imbalanced problem, the CM can be used to choose the appropriate

classifier, feature and re-sampling techniques that best fit the situation.
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7.1 Discussion and Conclusion of Chapter 3

In this chapter our focus is to explore the connection between the imbal-

anced data problem and data complexity proposed in the literature [10] and

our novel approach “Complexity Measurement” (CM). Our study showed

that in cases of imbalance our complexity measurement (CM) is better than

commonly used complexity measures in the literature [10], being within the

proposed bounds of Bayes error given in the literature, such as Mahalanobis

bounds and Battacharayya distance [14]. It is close to the lower bound in the

case of moderate class imbalance. For severe imbalance where we choose a

larger k (for kNN approach) it is even closer. Although the nearest neighbor

technique is used in the literature [15] to estimate Bayes error, our contri-

bution here is to extend it to class imbalance situations by decomposing the

overall error into contributions from each class. Different distance functions

can be used for determining the nearest neighbor computation. Tsymbal

et. al. [16] show that Random Forest distances are better than the com-

monly used heterogenous Euclidean/Overlap metric (HEOM) of Wilson and

Martinez [17] for the categorical or mixed type data sets. We use Euclidean

distance for continuous variables, and Random Forest distance [18] for nom-

inal variables/mixed data sets.

We have shown that CM is able to capture a reasonable amount of data

complexity despite the diverse nature of data sets. We used simulated data

sets to build up a complexity model and to describe different types of im-

balanced data sets. Using multi-dimensional scaling (MDS) enables us to

visualize the data sets and to visually interpret some of the findings of our

CM. We extended the complexity analysis from synthetic data to real data

sets and found a strong correlation between the sensitivity value and CM

irrespective of classifier/learning algorithm used, making it an ideal meta-

learner. From the existing data complexity measures proposed by Ho and

Basu [10] only Fisher discriminant analysis ratio (F1) showed some correla-

tion in our analysis of imbalanced data sets. A possible reason is that it

calculates mean and variance for each class separately, hence considering the

class distribution within each data set, which is important in class imbalance
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situations. It is interesting to note that F1 was also found useful in feature

selection [19].

We believe that our CM will be an ideal candidate to be recognized as a

“goodness criterion” for various classifiers, re-sampling and feature selection

techniques in the class imbalance framework. As mentioned earlier, our CM

is within theoretical bounds of Bayes error, and this parameter is recognized

as a benchmark for other classification techniques and also as a “goodness”

criterion for feature selection used in classification [20]. This error rate will be

greater than zero whenever class distributions overlap. Hence measurement

of our CM, can cover the data complexity concept of class overlap [4] and

small disjunct [3], more effectively than the vague concept of clustering which

itself is highly dependent on k (number of nearest neighbors), to cater for

the small disjunct concept.

7.2 Discussion and Conclusion of Chapter 4

Despite numerous algorithms and re-sampling techniques proposed in the

last few decades to tackle imbalanced classification problems, there is no

consistent winning strategy for all data sets (neither in terms of sampling, nor

learning algorithm). Special attention needs to be paid to the data in hand.

In doing so, one should take into account several factors simultaneously:

the imbalance rate, together with data complexity, the algorithms and their

associated parameters. We have used CM as a meta-learner to choose the

classifier and under-sampling strategy that best fits the situation.

From the experiment it is very clear that by using CM as threshold (group-

ing criterion) we notice the performance of most classifiers is similar on all

data sets within a particular CM group. This suggests that we don’t have

to use different classifiers for different CM groups; some are relatively worse

than others, but not significantly (except Logistic Regression). The results

for our complexity measure for different classifiers can be validated by the re-

sults for artificial data sets displayed by Figure 7.1 in which, with a range of

different classifiers, for severe imbalanced data sets (minority class < 10% of

the whole data set), we are getting 100% accuracy for the majority class and
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Figure 7.1: Classification for Severe Imbalance distribution. Accuracy
of majority class (specificity) is shown by triangles (red) and Accuracy
of minority class (sensitivity) is shown by the circle (black) over different

level of overlap

no classification of the minority class in the presence of high overlap. This

supports our argument that we can measure the complexity of data set more

effectively in real world situations. The consistency and uniform behavior

of classifiers within each CM group proves that this may be an appropriate

grouping criterion.

All classification algorithms are affected to some extent by the class im-

balance problem. The results on real world benchmark data indicate that

the Neural Network (NN) is the most robust to the imbalance. This comes

as a confirmation to the conclusions presented in [8]. On the other hand,

the SVM is largely affected by the imbalance in our experiments. This con-

tradiction with previous studies may be explained through the nature of the

experimental data: on artificial data, the SVMs performed well because the

systematic process of generating the data allows the existence of good sup-

port vectors (even at high imbalance ratios), whereas the existence of such

vectors in real world imbalanced data sets is less probable.

In previous studies the class imbalance ratio (IR) was used as the thresh-

old to describe the level of difficulty [21, 22]. But our experiments prove that
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IR is not an adequate threshold variable to describe the effectiveness of any

preprocessing techniques.

For imbalanced data-sets with CM < 50, under-sampling techniques can

produce acceptable results for the minority class (i.e., accuracy of minority

class > 80%) without losing much accuracy for the majority class. But for

imbalanced data sets with CM> 50, which needs much greater consideration,

techniques that worked for lower CM values were not effective in this region.

The balancing act of training data sets severely under-sampled the majority

class, which resulted in losing its accuracy by around 30% and resulted in

specificity lower than sensitivity. For this CM region we recommend a com-

bination of over-sampling and under-sampling techniques, which may help in

gaining better accuracy for both the majority and minority class. In Chapter

5 we have shown that in the overlapped regions over-sampling works better

than just under-sampling.

Comparison between US and OS for CM >50

Evaluation Measures
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Figure 7.2: Comparison between balanced under-sample and Over-
sampling using CM for CM > 50

We have applied our proposed OSCM (over-sampling using complexity

measurement) on all the data sets with CM > 50. Relative performance is
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displayed in Fig. 7.2, where we can see that OSCM is better than balanced

under-sampling of the training set for all evaluation measures for more com-

plex data sets i.e., CM > 50. Hence it can be concluded that for imbalanced

data sets with high complexity, random over-sampling works better than ran-

dom under-sampling techniques. But a combination of over-sampling and

under-sampling potentially creates ideal classifiers [7, 23]. A combination of

these two methodologies will be considered in our future work.

7.3 Discussion and Conclusion of Chapter 5

It is well known that representativeness in the training data is the most

important step to having a classifier with high generalization performance [5].

However in most classification problems, representation is not only costly but

a very cumbersome task. In general data sets are small, sparse, with missing

values and with highly imbalanced prior probabilities.

In order to address the problem and to bring some structure to over-

sampling within the data sets, we have proposed two new methods of over-

sampling: synthetic over-sampling technique using complexity measure and

random over-sampling using complexity measure. Experimental results for

several imbalanced data sets have indicated that the proposed algorithms can

result in better prediction of minority class, whereas prediction performance

of majority class does not suffer much. Data sets used in our experiments

contained different degrees of imbalance, different sizes and different data

complexities (as shown by CM value).

Introducing complexity measure (CM) as a pre-screening tool helps us

to identify difficult examples belonging to minority class, and simple over-

sampling or SMOTE algorithm improves the performance of a classifier on

these minority class examples. Therefore, over-sampling these difficult exam-

ples forces the classifier to focus more on the difficult examples that belong

to minority class rather than to the majority class. Unlike standard boosting

where all misclassified examples are given equal weights, our approach cre-

ates examples from the minority class (by SMOTE or over-sampling), thus

indirectly changing the updating weights and compensating for imbalanced
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distributions. Moreover this is not a wrapper technique like boosting, so the

resultant training set can be used with any classifier. By introducing over-

sampling proportional to the complexity of data sets, we were able to dictate

the amount of SMOTE or over-sampling within a data set. The appropri-

ate amount of over/under sampling required is still an open question in the

data mining community [24, 25, 26]. Unlike existing methods like random

over-sampling, SMOTE [23] or BSM [27], we do not need to search for an

optimal class distribution in order to get favorable accuracy of the minor-

ity class since the amount of over-sampling is determine by the complexity.

Experiment has indicated that our proposal leads to better behavior (high

accuracy of minority class), which validates the efficiency of our method.

By basing our complexity measure on k-NN where k > 2 we are able

to identify the minority class points near the decision boundary. This in-

formation can be useful in interactively changing some important aspect of

a data set like intra vs inter class imbalance and small disjunct [3] or class

overlap [4]. Using CM, we can identify and select points near to the decision

boundary, then see the effect it can produce on the decision boundary when

we over-sample these data points by SMOTE or by random over-sampling

technique, which leads to better accuracy of the minority class.

7.4 Discussion and Conclusion of Chapter 6

Feature selection for highly imbalanced data is a major challenge in Data Min-

ing and Statistics. As mentioned earlier, our CM can be used as the “good-

ness criterion”, so we have proposed a sequential feature selection method

using complexity measure (CM) to focus on the class imbalance problem.

Feature selection is a relatively new technique to tackle class imbalance prob-

lems. To evaluate the effectiveness of the proposed method, we have ap-

plied our technique on well known UCI data sets from the class imbalance

literature. Using the CM criterion which is independent of the classifier, se-

lected features can be used with different classifiers to build a number of

classification models. We have also compared the new method to existing

techniques/approaches. The experimental results demonstrate that (1) our
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proposed method performed significantly and consistently better than the

other approaches; and (2) the performance strength of our proposed method

over other methods becomes increasingly evident as the class imbalance be-

comes more serious. The results also strengthen the claim that this parameter

(CM) should be recognized as a benchmark for other classification techniques

and also as a “goodness” criterion for feature selection used in classification.

7.5 Large data sets

The data sets used in our investigation have been of modest size by data

mining standards. The question arises of the feasibility and performance of

the methods on large data sets. For brief illustration with large data sets, we

use two real data set (Motor Insurance and Forest Cover Type), description

of which is given in Appendix 7.7. For the Forest Cover Type data set, 10

quantitative variables were used. The binary class target of two classes is

formed by the majority species Spruce-Fir with 211840 observations denoted

by class ‘0’, whereas the minority class is formed by combining two classes

Cottonwood/Willow (2747) and Aspen (9493) denoted by class ‘1’. Hence

we get a majority class with 211840 (94.5%) observations and minority class

with 12240 (5.5%) observations. Motivation behind this analysis is to select

two large data sets with similar degree of imbalance and to exhibit their

different natures. Our CM gives 100% (i.e., all examples in the minority class

are classified as difficult to learn) for the Motor Insurance data set, hence

showing complete overlap for minority class, whereas CM for the Forest data

set is at around 9%.

Table 7.1 contains the specificity and sensitivity for the prediction com-

puted from the test data (40% of whole data set). It is clear from the results

that none of the classification techniques is able to predict the minority class

for Motor Insurance, even though the minority class has approximately the

same number of observations i.e. 14701 in comparison to Forest Cover Type

data set. This might be indicating that there is large overlap between the

classes or non-separable classes, as shown by our CM values. Whereas for the

Forest Cover Type data set, it is clear that all of the classification techniques
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are able to predict the minority class, with fairly high accuracy. Although

the minority class has approximately the same proportion of observations as

that of Motor Insurance data, this data set has a low CM value.

Table 7.1: Confusion Matrices for the Motor Insurance Data set (No
Claims: 285,299 (95.1%); Claims: 14,701 (4.9%)) and Forest Cover Type
Data set (Spruce-Fir(‘0’): 211,840 (94.5%); Cottonwood/Willow and As-

pen (‘1’), 12,240 (5.5%))

Motor Insurance Forest Cover Type
Classification Model No claims (0) claims (1) Class(0) Class (1)

Specificity Sensitivity Specificity Sensitivity

Classification Tree 1 0 99.44 87.85
Random Forest 1 0 99.91 94.91
Neural Network 1 0 99.37 90.54

Support Vector Machine 1 0 98.51 95.28

Forest Cover Type data has high accuracy from all classifiers, hence will

not be considered for further processing. Since all classification techniques

are unable to predict the minority class for Motor Insurance, we want to

examine iterative sampling techniques to help classifying the minority class.

We divide the entire majority class into 19 random partitions to get roughly

balanced training sets, and conduct 10 fold cross validation. Table 7.2 shows

the mean (variance) of specificity and sensitivity for the test set.

Table 7.2: Confusion Matrix for the Motor Insurance Data sets:
Roughly Balanced Random Partition (No Claims:15015 (50.5%);Claims:

14,701 (49.5%))

Classification Model No claims (0) claims (1)

Specificity Sensitivity

Classification Tree 55.2 (1.04) 57.3 (0.63)
Random Forest 51.5 (0.54) 63.7 (0.18)
Neural Network 38.8 (2.22) 77.9 (1.55)

Support Vector Machine 62.5 (1.02) 57.1 (0.22)

As expected Table 2 shows that all the classification techniques are now

able to predict the minority class but at the expense of accuracy of majority

class. Since CM is very high for this data set, it is a compromise between
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sensitivity and specificity. None of the techniques proves to be different from

the others. This preliminary study suggest that data characteristics remain

the same for comparatively large data sets.

7.6 Conclusions and Future Work:

In this work we have analyzed the classifier and preprocessing effect in the

framework of imbalanced data sets by means of data complexity. We present

a Complexity Measurement (CM) for systematic study of class imbalance

problems. CM can be be used in two ways: to measure the level of difficulty

in imbalanced data sets and as a tool to help cater for the problem. The

major challenge in analyzing highly imbalanced data is that usually a small

number of minority class are mixed with an overwhelming majority class.

We have tackled almost every aspect that we think is critical to making a

good prediction for a class-imbalanced data set, including choices of classifier,

feature selection and both up and down sampling techniques when generating

a training set.

The result in the thesis is that CM can be used as a meta-learner in order

to choose the classifiers and sampling techniques that best fit the situation.

We have observed that Imbalance Ratio (IR) and complexity measure pro-

posed by Ho and Basu [10] considered as measures of data complexity are not

enough to predict when a particular classifier or re-sampling technique will

perform well or badly. As an alternative we introduce CM for imbalanced

data sets in order to obtain ranges of complexity in which classifier, feature se-

lection and re-sampling techniques perform well or badly. From these ranges

or groups we draw conclusions which have wide support and show a signif-

icance difference with respect to the global methods of performance (across

all data sets within range of complexity).

We have finally obtained two groups from the initial ones (i.e., CM < 50

and CM > 50), which are simple and precise to predict either good or bad

performance of the classifier and re-sampling techniques. These two groups

are capable of identifying good or bad data sets for re-sampling techniques.

An interesting consequence of the characterization obtained by these groups
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is that we can select re-sampling techniques capable of preprocessing data

sets more successfully for any classifier. These two groups may be taken as a

judging criterion for new algorithms and re-sampling techniques. Moreover,

new data sets may be evaluated using these groups in order to build a sensible

model.

The use of a cost-sensitive classifier is another way of addressing the class-

imbalance problem [28]. A cost-sensitive approach assign a higher cost to a

misclassified minority class than to a false alarm of a majority class, to en-

force the priority of predicting minority class. The methodology introduced

in Chapter 5, of adding data proportional to its complexity when applying the

off-the-shelf methods, could in fact be regarded as a cost-sensitive classifier.

However we observed that with just cost reassignment, the resulting classi-

fier is not as capable as our proposed method. In OSCM, the over-sampling

technique can to some extent be comparable to the idea of cost-sensitivity;

the difference is that the over-sampling adjusts the class-sizes so that mis-

classification cost directly applied to the data is not needed. For a classifier

to work well for highly imbalanced data especially for data sets where CM >

50, OSCM recommended by our research seem to be critical and necessary.

Existing feature selection techniques are not adequate for imbalance data

sets. These feature selection techniques were never meant for class imbalance

problems, hence it was deemed necessary to devise a strategy/technique to

select features that work in the class imbalance scenario. We have proposed a

novel technique, Feature Selection using Complexity Measurement (FSCM),

which works more efficiently and consistently across different data sets. We

were able to increase the accuracy of the minority class without compromising

the accuracy of majority class. Complexity Measurement (CM) is adequate

evaluation criterion for wrapper methodology, which was lacking in the liter-

ature. CM gives error estimation for the particular class, independent of the

classifier used.

Ultimately we will say that if someone has the task of classifying imbal-

anced data sets, we strongly advise to measure the complexity measurement

CM of the data, which will give an idea of level of difficulty in class learning.

Such an estimate will help researchers/users to decide whether to improve
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the current classifier, to use another classifier on the same data set or to

acquire more data. We will definitely recommend our proposed method like

OSCM and FSCM in order to increase the accuracy of the minority class,

without seriously compromising the accuracy of majority class. Over all, we

can say that there is no well established, proven, method for generally han-

dling class imbalance and our research is to develop an approach which works

for most cases. We proposes a framework Complexity Measurement (CM)

for systematic study of class Imbalance Problems. CM can be used in two

way: to measure the level of difficulty in imbalanced data sets and as a tool

to help cater for the problem.

In our future work we intend to make our proposed method available

in an R package (Important R codes/functions are already provided in the

Appendices), which can be applied to class-imbalance problems that often

appear in real-world data mining. We want to investigate using complexity

measure as an under-sampling scheme, to eliminate noisy examples. If we

SMOTE between noisy examples, will it lead to driving the noise towards

the correct labeled examples? In the presence of mislabeling of positive class

examples as negative class examples, we expect complexity measurement

would be able to identify these examples so that we can eliminate them

and force the classifier to focus more on the minority class. Although a new

classifier for imbalanced data sets is not yet feasible, a meta-learner tool such

as we advocate in this Thesis should be applicable in improving the accuracy

of minority class. Despite the success of proposed complexity measurement

(CM) in efficiently quantifying the level of difficulty of imbalanced data sets,

there is still much room (a great need as well) to further improve. We need

efficient re-sampling and feature selection techniques to improve accuracy of

minority class especially for the group CM>50, via innovative future research.
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7.7 Appendix

Motor Insurance Data set

The Motor insurance data shows records of 300,000 claims from a UK

comprehensive motor portfolio i.e. for standard full cover car insurance. The

only real difference in cover for NZ compared to the UK is that ACC picks

up any personal-injury claims. The data set shows the number of claims

(fields include ”CLMS” in their names), and their incurred cost (fields include

”INCUR” in their names) in the following categories:

• WS = windshield

• AD = accidental damage (to third parties)

• FT = fire and theft

• PD = personal damage

• PI = personal injury

The ”FROMDATE” and ”TODATE” give the period of time over which

each policy was insured with the characteristics described by the other fields

on the record. for this study it have been changed to Duration which in-

dicates number of days for each policy insured. The number of attributes

used for this study are USAGE,MILEAGE,SEX ,EXCESS,PRIMAGE, MI-

NAGE, DRIVERS, (FROMDATE and TODATE) convert to Duration, CAR-

GROUP, CAR AGE, (WSCLMS, ADCLMS, FTCLMS, PDCLMS and PI-

CLMS) convert to binary target variable claims, RECORD EXPOSURE and
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DURATION of the original 27 attributes. The claims is our target variable

with number of non claimant”1” is 285,299 (95.1%) and number of claimant

is 14,701 (4.9%).

Forest cover type data set

A large data set, forest cover type data set from UCI KDD archive was

used. The following seven forest cover type classes used in a classification

problem were:

• C1: Spruce/fir (Picea engelmannii and Abies laciocarpa),

• C2: Lodgepole pine (Pinus contorta),

• C3: Ponderosa pine (Pinus ponderosa),

• C4: Cottonwood/willow (Populus angustifolia, Populus deltoides, Salix

bebbiana, Salix amygdaloides),

• C5: Aspen (Populus tremuloides),

• C6: Douglas-fir (Pseudotsuga menziesii),

• C7: Krummholz (Engelmann spruce (Picea engelmannii), subalpine fir

(Abies lasiocarpa) and Rocky Mountain bristlecone pine (Pinus aris-

tata)).

The forest cover type for the 30-30m cells obtained from US Forest Ser-

vice (USFS) Region 2 Resource Information System (RIS) data represents

the primary dominant tree species currently found in four wilderness areas

(Neota with 3904 ha, Rawah with 29628 ha, Comanche Peak with 27389 ha,

Cache la Poudre with 3817 ha) located in the Roosevelt National Forest of

northern Colorado. In these areas, the existing forest cover types are primar-

ily a result of natural ecological processes which experienced relatively little

human disturbances in the past. Some interesting background information

for these four wilderness areas are the mean elevational value and the primary

tree species found there. Neota area has the highest mean elevational value

and a primary major tree species spruce/fir (C1). Rawah and Comanche

Peak areas would have a lower mean elevational value and lodgepole pine
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(C2) as their primary tree species, followed by spruce/fir (C1) and aspen

(C5). Cache la Poudre areawould have the lowest mean elevational value

and Ponderosa pine (C3), Douglas-fir (C6) and Cottonwood/willow (C4).

From US Geological Survey (USGS) and USFS original data, a total num-

ber of 581,012 observations with 54 attributes was defined in the cover type

data set (UCIKDD archive, 2005). The distribution of seven data classes is

presented as class C1 with 211,840 observations, class C2 with 283,301 obser-

vations, class C3 with 35,754 observations, class C4 with 2747 observations,

class C5 with 9493 observations, class C6 with 17,367 observations and class

C7 with 20,510 observations. The forest cover type data set was treated

as a multi-class classification problem with imbalanced number of observa-

tions in the last five classes. The total number of 54 attributes of cover type

data availably include the following 12 measures defined with 10 independent

quantitative variables, four binary wilderness areas and forty binary soil type

variables. The quantitative variables are:

• Elevation in range 1859.3858 (m).

• Aspect (azimuth from true north) in range 0.360 (azimuth).

• Slope in range 0.66 (.).

• Horizontal Distance To Hydrology in range 0.1397 (m).

• Vertical Distance To Hydrology in range .173.601 (m).

• Horizontal Distance To Roadways in range 0.7117 (m).

• Hillshade 9 a.m. in range 0.255 (index).

• Hillshade Noon in range 0.255 (index).

• Hillshade 3 p.m. in range 0.255 (index).

• Horizontal Distance To Fire Points in range 0.7173 (m).

In observations, the wilderness area designation and soil type information

are defined with binary variables treated as multiple binary values where
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a value ’0’ would represent an absence and a value ’1’ would represent a

presence of a specific wilderness area or soil type.




