Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Molecular and cellular analysis of the

endophyte Neotyphodium uncinatum and its

association with Festulolium

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science In Biotechnology

At Massey University, Palmerston North New Zealand

William Clayton

2013

Abstract

Epichloë and *Neotyphodium* endophytes are well known for the fitness benefits they impart on the cool-season grasses they inhabit. The production of secondary metabolites, in particular lolines, which deter insect predation, is one such benefit and is of particular interest in pastoral grass development. The identification, testing and implementation of novel endophyte-grass associations resulting in high production of lolines is highly valued in the development of grass cultivars in New Zealand.

An in depth analysis of the two simple sequence repeats (SSR) used to identify endophyte species showed that the repeat structure is unique for some endophyte species and that ancestral relationships of interspecific hybrids may be inferred from the repeat structure. One family of SSRs was found to be enriched in exonic regions of a number of genes and may be an important factor in gene innovation and adaptation. Levels of loline production by *N. uncinatum* was found to be strain specific with the highest production by the strain, U10. *N. uncinatum* colonising intergenic hybrids of *Festuca pratensis* and *Lolium perenne* (Festulolium) displayed incompatibility in older tissue through cell wall thickening, degeneration of cytoplasm and production of dense inclusions around hyphae and in the plant intercellular space. The production of dense inclusions actively degrading hyphae indicated a plant response to hyphal colonisation.

Results of this study indicate the importance of repeat structure in strain identification, repeat elements in genes, the testing of loline alkaloids *in planta* and the barriers to establishing novel endophyte-grass associations.

Acknowledgments

Firstly I would like to thank my supervisors, Barry Scott and Carla Eaton, for their guidance and support throughout my masters. A special thanks to Barry for introducing me to the world of fungal endophytes, I have enjoyed it thoroughly.

Thanks to the Scottbase members Arvina, Daniel, Gemma, Ruth, Conni, Tetsuya, Yvonne, Philippa, Alex and Yonathan for their help and guidance around the lab and making the lab an enjoyable place to work even when experiments are going wrong.

Thank you to Cropmark Seeds Ltd who made this study possible. Thank you to Nick Cameron for hosting me in Darfield and Tim for his help in the lab and testing of my many plant samples.

Thanks to IMBS and all the staff, especially Pat, Ann and Cynthia, who have helped along the way. Thanks to everyone at the Manawatu Microscopy and Imaging Centre, particularly Jianyu but also Jordan, Lawrie and Doug for their help with TEM and Confocal microscopy.

I would like to thank my partner Erin for supporting me through my masters and bringing me sanity with the many excursions away from Palmerston North to see her. Lastly thanks to my family for supporting me throughout my studies, it has meant a lot.

Table of Contents

Abstract		i
Acknowled	Acknowledgments	
List of Figu	ires	ix
List of Tab	les	xiii
Common A	Abbreviations	xiv
1. Ir	troduction	1
1.1 B	ackground	1
1.2 Fu	ungal endophytes of grasses	3
1.2.1	Growth and life cycle	4
1.2.2	Neotyphodium endophytes and N. uncinatum	7
1.2.3	Interspecific hybridisation in fungi	8
1.3 Id	lentification of endophytes	10
1.4 P	roduction of alkaloids by endophytes	12
1.4.1	Pyrrolizidines	13
1.4.2	Ergot alkaloids	17
1.4.3	Indole diterpenes	17
1.4.4	Pyrrolopyrazines	18
1.5 A	gricultural application of grass-endophyte associations	19
1.5.1	Natural associations	19
1.5.2	Establishing artificial associations	20
1.5.3	Festulolium hybrids	22
1.6 A	ims and objectives	24

1.6 Aims and objectives

2.1	Biolog	ical materials	27
2.2	Comm	on stocks, growth media and conditions	28
	2.2.1 0	Growth media	28
	2.2.1.1	Luria Bertani medium (LB)	28
	2.2.1.2	Malt extract agar	28
	2.2.1.3	Potato Dextrose medium (PD)	28
	2.2.1.4	Regeneration medium (RG)	28
	2.2.1.5	SOC medium	29
	2.2.2	Growth conditions	29
	2.2.2.1	Escherichia coli	29
	2.2.2.2	Epichloë festucae	29
	2.2.2.3	Neotyphodium uncinatum	29
	2.2.2.4	Plant growth conditions	30
2.3	Standa	ard <i>E. coli</i> methods	30
	2.3.1 I	DNA cloning into an E. coli plasmid vector	30
	2.3.2 <i>E</i>	E. <i>coli</i> transformation	30
	2.3.3	Screening of E. coli transformants	30
	2.3.4 H	Plasmid isolation	31
2.4	Standa	ard N. uncinatum cell methods	31
	2.4.1 H	Fungal DNA extraction	31
2.5	Standa	ard plant methods	32
	2.5.1 F	Plant inoculation	32
	2.5.2 I	mmunoblotting of plants	32
	2.5.3 F	Preparation of infected grass for Confocal microscopy	33
	2.5.4 0	Confocal microscopy	34

2.5	5.6	PCR test of endophyte localisation in plant	
2.6	Stand	lard DNA methods	
2.6	5.1	Measurement of DNA concentration	
2.6	5.2	DNA sequencing	
2.6	5.3	Polymerase Chain Reaction (PCR)	
	2.6.3.1	Standard PCR	
	2.6.3.2	Phusion high fidelity PCR	
2.6	6.4	Gel electrophoresis	
2.6	5.5	A-tailing PCR fragments	
2.7	Stand	lard RNA methods	
2.7	.1	RNA isolation	
2.7	.2	RT-PCR	
2.8	Lolin	e Analysis	
2.8	8.1	Growth and harvest of plant material	
2.8	8.2	Loline extraction	
2.8	3.3	Statistical analysis	
2.9	Bioin	formatic methods	
2.9	9.1	Sequence comparison and domain characteristics	
2.9	0.2	Sequence comparison of SSRs	
3.	The u	se of SSR loci sequences to distinguish Epichloë endophytes	
3.1	Local	isation and polymorphism of B10 and B11 SSRs	
3.1	.1	The B10 SSR	
3.1	.2	The B11 SSR	
3.1	.3	The B10 SSR repeat is found within a hypothetical protein	
3.1	.4	Additional B10-like repeat within a copper sensing	
		transcription factor	

3.1.:	5 B10-like repeats are enriched within exons of the <i>Epichloë</i> genome	45
3.2	<i>N. uncinatum</i> strains vary in morphology and SSR repeat groupings according to ecotypes	58
3.3	N. uncinatum B10 and B11 repeats are conserved within ecotypes	61
	but sequence structure may indicate ancestral species	
3.3.	1 Repeat structure of <i>N. uncinatum</i> strains	61
3.3.2	2 <i>N. uncinatum</i> B10 repeat shows similarity to ancestral species	62
3.4	Discussion	66
4.	Analysis of loline production by various <i>N. uncinatum</i> strains in association with meadow fescue	73
4.1	<i>N. uncinatum</i> grows within leaf and pseudostem but not within root tissue	73
4.2	N. uncinatum strains vary in production of total lolines	75
4.3	Level of different lolines in plant tissue	78
4.4	Endophyte inoculation of plant does not affect loline production	80
4.5	Discussion	82
5.	The growth, stability and transmission of <i>N. uncinatum</i> in both natural and synthetic host associations	86
5.1	N. uncinatum U2 growth in meadow fescue is stable	86

5.2	Low levels of vascular bundle colonisation observed in inoculated seedlings	91
5.3	N. uncinatum may possess a unique cell wall structure	92
5.4	<i>N. uncinatum</i> may show incompatibility in outer leaf layers of Festulolium hybrids	94
5.5	Naturally infected Festulolium hybrid also displays incompatibility	104
5.6	Colonisation of a hybrid cultivar causes lower loline production	115
5.7	Discussion	116
6.	Conclusions	125
7.	Appendices	127
7.1	B10-like gene identifiers	127
7.2	Light micrographs of U3 and U4 in meadow fescue	129
7.3	TEM analysis of U3 and U4	131
8.	Bibliography	132

viii

.

List of Figures

Figure 1.1	Endophyte growth in planta	5
Figure 1.2	Life cycle of Epichloë endophytes	7
Figure 1.3	The structure of different loline alkaloids produced by	14
	Neotyphodium uncinatum	
Figure 1.4	Proposed biochemical pathway for the production of lolines	16
Figure 3.1	Overview of the B10 SSR	47
Figure 3.2	Overview of the B11 SSR	48
Figure 3.3	Consequences of B10 repeat changes on peptide sequence	49
Figure 3.4	Amino acid alignment of bZIP transcription factor within	50
	Epichloë endophytes	
Figure 3.5	Amino acid alignment of bZIP transcription factor between	51
	Epichloë festucae Fl1 and related fungal species	
Figure 3.6	Expression of the bZIP transcription factor in E. typhina	52
Figure 3.7	Overview of the B12 SSR	53
Figure 3.8	Amino acid alignment of the putative copper sensing	54
	transcription factor within Epichloë endophytes	
Figure 3.9	Amino acid alignment of the putative copper sensing	55
	transcription factor across the Sordariomycetes	
Figure 3.10	B12 repeat in N. uncinatum.	56
Figure 3.11	Colony morphology of N. uncinatum ecotypes	59
Figure 3.12	Calcofluor white stained fluorescent microscopy of N.	60
	uncinatum strain U2	

Figure 3.13	B10 SSR from N. uncinatum strains	64
Figure 3.14	B11 repeat found within different N. uncinatum ecotypes	65
Figure 3.15	SSR repeat structure conservation between proposed	72
	ancestor species	
Figure 4.1	Colonisation pattern of endophytes within plant	74
Figure 4.2	Analysis of loline production by N. uncinatum strains	76
Figure 4.3	Comparison of loline levels in various tissues by <i>N</i> .	77
	uncinatum strains	
Figure 4.4	Comparison of loline variant accumulation in plant tissue	79
Figure 4.5	Effect of colonisation process on loline production	81
Figure 5.1	Growth of <i>N. uncinatum</i> strain within a <i>Festuca pratensis</i>	88
	host	
Figure 5.2	Light micrograph of Festuca pratensis pseudostem infected	89
	with <i>N. uncinatum</i>	
Figure 5.3	Transmission electron micrographs of Festuca pratensis	90
	containing N. uncinatum	
Figure 5.4	Transmission electron micrographs of vascular bundle	92
	colonisation in manually infected plants	
Figure 5.5	Transmission electron micrographs of <i>E. festucae</i> and <i>N</i> .	93
	uncinatum within Festuca pratensis	
Figure 5.6	Confocal microscopy analysis of single leaf layers of	97
	Festulolium plants infected with N. uncinatum	
Figure 5.7	Light micrograph of Festulolium hybrid pseudostem infected	98
	with <i>N. uncinatum</i>	
Figure 5.8	Light micrograph of Festulolium pseudostem infected with	99

N. uncinatum showing incompatibility in outer leaf layers

- Figure 5.9Light micrograph of Festulolium pseudostem infected with100N. uncinatum showing decreased colonisation and
incompatibility in outer leaf layers
- Figure 5.10Transmission electron micrographs of *N. uncinatum*101colonising inner leaf layers of a Festulolium hybrid
- Figure 5.11Transmission electron micrographs of N. uncinatum102colonising Festulolium in outer leaf layers
- Figure 5.12 Transmission electron micrographs of *N. uncinatum* within 103 the outer layers of a Festulolium hybrid shows a dense outer wall coverage
- Figure 5.13 Light micrograph of Festulolium (FL1466) naturally infected 106 with *N. uncinatum*
- Figure 5.14 Light micrograph of Festulolium (FL1436) naturally infected 107 with *N. uncinatum*
- Figure 5.15 Light micrograph of Festulolium (FL1432 A) naturally 108 infected with *N. uncinatum*
- Figure 5.16 Light micrograph of Festulolium (FL1432 B) naturally 109 infected with *N. uncinatum*
- Figure 5.17 Transmission electron micrographs of *N. uncinatum* showing 110 regular hyphae within seed infected Festulolium plants
- Figure 5.18 Transmission electron micrographs of *N. uncinatum* showing 111 cell wall thickening of hyphae
- Figure 5.19Transmission electron micrographs of N. uncinatum from112seed infected Festulolium showing presence of dense

inclusions within intercellular spaces

Figure 5.20	Transmission electron micrographs of N. uncinatum from	113
	seed infected Festulolium showing dense accumulations	
	around hyphal cell walls	

- Figure 5.21 Transmission electron micrographs of *N. uncinatum* from 114 seed infected Festulolium showing degeneration of cytoplasm
- Figure 5.22 Loline production by *N. uncinatum* in meadow fescue and 115 Festulolium
- Figure 7.2 Light micrograph of meadow fescue infected with *N*. 129 *uncinatum* strain U3
- Figure 7.3Light micrograph of meadow fescue infected with N.130uncinatum strain U4
- Figure 7.4 Transmission electron micrographs of *N. uncinatum* strain 131 U3 and U4 colonising meadow fescue

List of Tables

Table 1.1	Endophyte allele groupings from SSR PCR assays	12
Table 1.2	Alkaloid profiles from grass-endophyte associations	13
Table 2.1	Bacterial strains, fungal strains and plant material	27
Table 2.2	Primers used in this study	36
Table 3.1	B10-like repeat search in fungal species	57
Table 3.2	B10 and B11 alleles of <i>N. uncinatum</i> and proposed ancestors	58
Table 7.1	Identifiers for genes containing repeats within E. festucae and	127
	E. typhina	

Common Abbreviations

Amp	Ampicillin
bp	Base pairs
BLAST	Basic Local Alignment Search Tool
BLASTn	Nucleotide database search using a nucleotide query
d	Days
°C	Degrees Celsius
cDNA	Complementary DNA
cv	Cultivar
DNA	Deoxyribonucleic Acid
dNTP	Deoxynucleotide triphosphate
EDTA	Ethylene diamine tetra-acetic acid
g	Gravity
gDNA	Genomic DNA
h	Hours
H ₂ O	Dihydrogen Monoxide
kb	Kilo base pairs
LB	Luria-Bertani medium
М	Molar
min	Minutes
μg	Micro-gram
mg	Milli-gram
μL	Micro-litre
mL	Mill-litre
μΜ	Micro-molar
mM	Milli-molar
NCM	Nitrocellulose membrane
NRPS	Non-ribosomal peptide synthetase
NAL	N-Acetylloline
NFL	<i>N</i> -Formylloline
NML	N-Methylloloine
NANL	N-Acetylnorololine
PCR	Polymerase chain reaction

PD	Potato dextrose medium
RNA	Ribonucleic Acid
rpm	Revolutions per minute
RT-PCR	Reverse transcriptase PCR
SDS	Sodium dodecyl sulfate
SNP	Single nucleotide polymorphism
SSR	Simple Sequence Repeat
TBE	Tris Borate EDTA buffer
v/v	Volume/volume ratio
WGA	Wheat Germ Agglutinin
W/V	Weight/volume ratio