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Abstract

MADS-box genes encode transcription factors that are involved in various aspects of
plant development, by regulating target genes that control morphogenesis. Over the last
decade, plant MADS-box genes have been studied extensively to reveal their control of
tloral development, especially in the model plants Arabidopsis and Antirrhinum. Their
functions are however, not restricted to the flower but are involved in various aspects of
plant development (Rounsley et al., 1995; Jack, 2001). By virtue of their extensive roles
in the flower, these genes are expected to function in fruit development, which is a
progression from flower morphogenesis. The aim of this study was to examine the role

of MADS-box genes during flower and fruit development.

Two new members of the tomato MADS-box gene family, 7M/0 and TM29 were
identified. 74429 was isolated from a young fruit cDNA library by screening with
homologous MADS-box fragments and 7A//() was amplified by polymerase chain
reaction from fruit cDNA templates. These genes were characterised by sequence and
RNA expression patterns and their functions examined using molecular genetic
techniques. Sequence analyses confirmed that both genes belong to the MADS-box

family.

TM29 shows 68% amino acid sequence identity to Arabidopsis SEP1 MADS-box
protein. 74729 expression pattern showed similarities as well as differences to SEP]
(Flanagan and Ma, 1994). 747129 1s expressed in shoot, inflorescence and floral
meristems unhke SEPI, which is expressed exclusively in {loral meristems (Flanagan

and Ma, 1994). TM29 1s expressed in all the four whorls of the flower. During floral



organ development, it is highly expressed at early stages of the organ primordium but
decreases as the organ differentiates and matures. In the mature flower bud, 7M29 is
expressed in the anther and ovary pericarp. During fruit development, 7M29 is
expressed from anthesis ovary to fruit of 14 days post-anthesis with its transcript

localised to the pericarp and placenta.

TM10 showed 64% amino acid identity to Arabidopsis AGL12, across the entire
sequence. This notwithstanding, TM/0 expression differed from AGLI2. TMI10 was
expressed in shoot tissues of tomato and was not detected in roots. In contrast, the
AGL12 gene transcript was only present in the roots of Arabidopsis (Rounsley et al.,
1995). Expression was detected in leaves, shoot growing tips, floral buds and fruit.
During fruit development, 7M10 is expressed in anthesis ovary and in fruits at different

growth stages.

The functions of 7M29 and TMI!(0 were examined by transgenic techniques and
phenotypes generated were consistent with their spatial and temporal gene expression
patterns. 7M2 9 transgenic phenotypes suggested it might be involved in the control of
sympodial growth, transition to flowering, proper development of floral organs,
parthenocarpic fruit development and maintenance of floral meristem identity. 7M/0)
affected apical dominance and flowering time, development of floral organs and

parthenocarpic fruit development.
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