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Abstract 

M A DS-box genes encode tran scription factors that are i nvolved in various aspects of  

p lant development, by regulating target genes that control  morp hogenesis .  Over the last 

decade, p lant MADS-box genes have been studied extensively to reveal their control of 

±loral development, especially in the model plants Arabidopsis and Antirrhinum. Their 

functions are however, not restricted to the flower but are involved in various aspects of 

p lant development (Rounsley et  aI . ,  1 995 ; Jack, 200 1 ). By virtue of their extensive roles 

in the flower, these genes are expected to function in  fruit development, which i s  a 

pro gression from flower morphogenes is .  The aim of thi s  study  was to examine the role 

of MADS-box genes during flower and fruit development. 

Two new members of the tomato MADS-box gene family ,  TADO and T/,o,'129 were 

i denti fied .  TM29 was isolated from a young fruit cDNA l ibrary by screening with 

homologous M ADS-box fragments and TMf 0 was ampl ified by polymerase chain 

react ion from fruit cDNA templates .  These genes were characterised by sequence and 

RNA expression patterns and their  functions examined using molecular genet i c  

techniques.  Sequence analyses confirmed that both genes belong to the MADS-box 

1�ll11i I y. 

TM29 shows 68% ammo ac id sequence identity to Arabidopsis SEP 1 MADS-box 

protein .  Tlvf29 express ion  pattern showed s imilari t ies as wel l  as d i fferences to SEP f 
(F lanagan and Ma. 1 994) .  n.d29 i s  expressed in  shoot, inflorescence and floral 

m eristems unlike SEP 1, which i s  expressed exclusively in floral meri stems  ( Flanagan 

and Ma, 1994). TAn9 i s  expressed in all the four whorls of the flower. During f loral 
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organ development, it is highly expressed at early stages of the organ primordium but 

decreases as the organ differentiates and matures .  I n  the mature flower bud, TM29 i s  

expressed in the  anther and ovary pericarp. D uring fruit development, TM29 i s  

expressed from anthesis ovary to fruit of 14  days p ost-anthesis with its transcript 

localised  to the pericarp and p lacenta. 

TM I O  showed 64% amino acid identity to Arabidopsis AGL 1 2, across the entire 

sequence. This notwithstanding, TMlO expression differed from AGL12. TAIl0 was 

expressed in shoot tissues of tomato and was not detected in roots. In contrast, the 

AGL12 gene transcript was only present in the roots of Arabidopsis (Rounsley et a l . ,  

1 995) .  Expression was detected in  leaves, shoot growing t ips ,  floral  buds and fruit. 

During fruit development, TMlO is expressed in  anthesis ovary and in  fruits at d i fferent 

growth stages. 

The functions of Tjl;f29 and 7MJO were examined by transgenic techniques and 

phenotypes generated were consistent with their spatial and temporal gene expression 

patterns. Tlvf29 transgenic phenotypes suggested i t  might be involved in the c ontrol of 

sympodial growth, transition to fl owering, proper development of flora l  o rgans, 

parthenocarpic  fruit development and maintenance of floral meri stem identity . Tlvfl 0 
affected apical dominance and flowering time, development of floral organs and 

parthenocarpic fruit development. 
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