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Abstract
Let 7,(n) denote the number of representations of an integer n as a sum of k squares. We prove
that for odd primes p,

330 - 352
mi(p?) = 50" +1) - 22(—1)® 1)/2p4+3TH(p),

where H(p) is the coefficient of ¢” in the expansion of

)28

,::18

(1= (=g))"°(1 = ¢*)* + 32¢° H

j=1

This result, together with the theory of modular forms of half integer weight is used to prove that

9oL/ g P29 1\ pole/2l
2 1 [ P —1 _p<p) P —1 ]

r11(n) = Tn(n

where n = 2% Hp p*» is the prime factorisation of n and n’ is the square-free part of n, in the case

that n' is of the form 8k + 7. The products here are taken over the odd primes p, and (n> is the
p

Legendre symbol.
We also prove that for odd primes p,

4030 4, . 13936
=220 1)—2
gor P 1)~ 2607+ =g

7(p),

r1s(p®) =

oo
where 7(n) is Ramanujan’s 7 function, defined by ¢ H(l — @) = ZT(n)q". A conjectured
j=1 n=1
formula for 7o 1(p?) is given, for general k& and general odd primes p.

1 Introduction

Let 7 (n) denote the number of representations of n as a sum of k squares. The generating function

for r(n) is
k

S =Y mme

j=—o00 n=0

The study of ri(n) has a long and interesting history. Generating functions which yield the value
of ri(n) for k = 2, 4, 6 and 8 were found by Jacobi [18]. Glaisher [12] proved formulas for
k =10, 12, 14, 16 and 18, and Ramanujan [25, eqs. (145)—(147)] stated a general formula for
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ri(n) for arbitrary even values of k. Ramanujan’s formula was proved by Mordell [23] and a simple
proof was given by Cooper [4].

The problem of determining r(n) for odd values of k is more difficult, and not so well known.
The value of r3(n) was found by Gauss [11, Section 291]. Formulas for r5(n) and r7(n) for square-
free values of n were stated without proof by Eisenstein [9], [10]. These formulas were extended to
all non-negative integers n (again without proof) by Smith [30]. The Paris Academy of Sciences,
apparently unaware of Smith’s work [30], proposed as its Grand Prix des Sciences Mathématiques
competition for 1882 the problem of completely determining the value of r5(n). The prize was
awarded jointly to Smith [32] and Minkowski [22], who both gave formulas as well as proofs. An
interesting account of this competition and the controversy surrounding it has been given by Serre
[29]. Others to have worked on this problem are (chronologically) Stieltjes [33], Hurwitz [16], Hardy
[13], [14], Lomadze [20], [21], Sandham [27], [28] and Hirschhorn and Sellers [15]. More information
can be found in [7, Chapters VI-IX].

Eisenstein [8], [31] stated that the sequence of formulas for r(n) ceases for k > 9. As a result
of computer investigations [5], I found that there are in fact simple, closed form formulas for ro(n),
but only for certain values of n. The purpose of this article is to state and prove the corresponding
results for 711 (n). These results were also initially discovered as a result of computer investigations.

There appear to be no similar formulas for ri(n) for k¥ = 13, 15, 17,---. Formulae can be
given, but they all involve more complicated number theoretic functions.

2 Summary of results

Throughout this article p will always denote an odd prime, and Hp will always denote a product
over all odd primes p. Accordingly, let us denote the prime factorisation of n by

n:QAHp’\P,
P

where A and )\, are all nonnegative integers, only finitely many of which are non-zero. Let n’
denote the square-free part of n.
Hirschhorn and Sellers [15] proved that

[Ap/2]+1 _ 1 —n/ [Ap/2] _ 1

p n\p

r3(n) = rz(n’) I | [— - ( ) —} (2.1)
; p—1 P p—1

where n’ is the square-free part of n. The analogous results for r5(n), r7(n) and r9(n) were proved
by Cooper [5]. For sums of five squares we have

. |:23|_A/2j+3 -1 93[A/2] _ 1:|
5

rs(n) = P -1 ¢
3[Ap/2]+3 _ 1 / 3[Ap/2) _ 1:|
p no\p
T () 2.2
1;[[ pP—1 <p> pP—1 22)
where
0 ifn’ =1 (mod 8)
€= —4 ifn/ =2o0r3 (mod4) (2.3)
/

—16/7 ifn’=5 (mod 8).

The result for sums of seven squares is

, 25LA/2J+5 -1 25LA/2J -1
i) = ) [T e
5Ap/2]+5 _q ! 5Ap/2] _q
WA e
p>—1 P p>—1

p
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where
8 ifn =1or2 (mod4)
€= 0 ifn =3 (mod 8) (2.5)
—64/37 ifn' =7 (mod 8).
For squares, these formulas reduce to
Ap+1
2 pr -1 (p-1)/2P" — 1
r3(n®) = 6H[pT (=1~ >o1 | (2.6)
P
23)\+3 -1 p3x\p+3 -1 p3)\p -1
2
=1 — 2.
’r5(n) 0|: 23 _ 1 :| |: p3_1 pp3_1:|a (7)
25)\+5 -1 25)\ -1
B = 14
r7(n?) 55 1 —|—825_1
5\p+5 5\
p>rrT? —1 (p—1)/2, 207" — 1
— — (-'? — . 2.
xrp[[p5_1 (- (28)

Equations (2.6) and (2.7) seem to have been first been explicitly stated by Hurwitz [17] and [16],
respectively, and (2.8) is due to Sandham [27].
For sums of nine squares we have

2TIN/2]47 _ 1 p7[)\p/2j+7 -1 n p7p\p/2J -1
_ l 3
n=no) = P = (5) ] e
in the case that n' = (mod 8). Results for when n’ £ 5 (mod 8) were also given in [5], but

these involve additional and more complicated number theoretic functions.
The first purpose of this article is to prove that for odd primes p,

330 _ 352
r(p?) = S 07 +1) = 22(-1)P7V2pt + SEH(p),
where H(p) is the coefficient of ¢” in the expansion of
)28

,,:]8

(1= (=g))'°(1 = ¢*)* + 32¢° H

j=1

This result, together with the theory of modular forms of half integer weight, is then used to prove

29[ /2]+9 _q p9|_Ap/2J+9 -1 —n' pQLAp/QJ -1
_ l 4
ri1(n) = ri(n’) 29 1 . [ 2 —1 -D ( » ) 1 ] (2.10)
in the case that n’ =7 (mod 8). Some results for when n’ # 7 (mod 8) will also be given, but

just as for sums of nine squares, these involve additional and more complicated number theoretic
functions.
The value of r11(n’) for square-free n’ is given by

(n'=1)/2 , .
31680 3. .
ri1(n’) = 1 E (%) i3 —n'), ifn’=7 (mod8). (2.11)
=1

The second purpose of this article is to prove that for odd primes p,

4030, 4, . 13936
200 1)—2
gor P T 260"+ oy

7(p),

r1s(p®) =



40 R.L.IM.S. Vol. 3, April, 2002

where 7(n) is Ramanujan’s 7 function, defined by
q[Ja-¢)*=> r(n)g" (2.12)
j=1 n=1

We also compute the eigenvalues and eigenfunctions of the Hecke operators T),>. There does not
appear to be a formula like (2.1), (2.2), (2.4), (2.9) or (2.10) that expresses r13(n) in terms of just
r13(n’) and the prime factorisation of n, for any special cases of n'.

Finally, we offer a conjectured formula for the value of 79, 1(p?), for general k and a general
odd prime p.

3 Definitions

Let |¢| < 1 and set

(a:9)00 = [[(1 = ag’™").

j=1

Let

olg) = > ¢,

j=—o00

(oo}
o) = Y gUrIr
j=0
Let s and t be non-negative integers. We will always assume ¢ is a multiple of 4. Put

Buala) = 9la)” (24 *0(a”))
and let us write

¢s,t(Q) = Z ¢s,t(n)qn7

n=0

so that ¢, (n) is the coefficient of ¢" in the series expansion of ¢;.(q). Geometrically, ¢, (n)
counts the number of lattice points, that is, points with integer coordinates, on the sphere

s s+t
Zm? + Z (z; —1/2)* = n.
Jj=1 j=s+1

Let r5,(n) denotes the number of representations of n as a sum of s + ¢ squares, of which s are
even and t are odd. Then r, (n) has the generating function

i rsi(n)g" = <5 j t) (29)'¢(g")*¥(¢®) = (S j t) bs.0(q%).

n=0

Let

z = ¢(q)?
U(g*)*

ST
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Then [3] or [24, Ch. 16, Entry 25 (vii)]

By Jacobi’s triple product identity,

Therefore

221 — )
21 —x)

210x2(1 _ LC)2

2201 —2)

A = g (g
11—z = ( )4.
P(q)*

(%2 (-9

C(goi(dhdhh T (B2

2 2\24
a*;q%)2
(% %)
= 16—t 2%/
T =g a2
= 169(¢%* ¢*)e
2 (@%54%)2%8
- 256q( a;—q9)%
= 16q(—g; Z "7 (n)g",

where 7(n) is Ramanujan’s 7-function defined in equation (2.12).
Let H(q) and H(n) be defined by

H(q) = q(~a;:~9) (% ¢*)5 +32q( - ZH
Then
H(q) = %Gz'lox(l —2)(1 + 2z — 227).

41

We will require some facts about Hecke operators on modular forms of half integer weight. All

of the facts below can be found in [19].

Fact 1

M(2k+1)/2(f0(4)) is the vector space consisting of all linear combinations of ¢oxyi1-4;4;(q), J =

0,1, -+, |k/2] [19, p. 184, Prop. 4].

Fact 2

The Hecke operators T2, where p is any prime, map M(a1)/2 (f0(4)) into itself [19, p. 206]. That

is,

f € Meaii1y2(To(4)) = Ty f € Miari1)2(To(4)).
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Fact 3
Suppose
fl@) = a(n)g" € Mei1)2(To(4)).
n=0

If p is an odd prime, then [19, p. 207, Prop. 13] implies
Tof — - 2\ n E—1 o ((=1)Fn n 2k—1 - 2\ n
2= ap*n)g" +p"1 > L, )emd +p > aln/p*)q",
n=0 n=0 n=0
while if p = 2, the note in [19, page 210] implies

T f = Z a(4n)q™.
n=0

4 Some preliminary lemmas

Lemma 4.1 Let

e = Y amyg"

n=0
1 oo
S at) = n;)b(mq"

1 oo
1—62536(1 —x) = Z c(n)q
—%26(1—x)(1—x+x2) =
-2 -2) =

Let n = 2* Hp p** be the prime factorisation of n. For any prime p=1 (mod 4), let z, and y,
be the unique pair of positive integers satisfying

2 2
xp+yp :p7 2|xp7

and define 6, by

tanﬁp:y—p, O<¢9<g.
Lp

Then
a(0) =5/4, b(0)=0, ¢(0)=0, d(0)=-1/8, €(0)=1/8

and forn > 1,

40w+ _ (1)t D p-1)/2
aln) — )12 [P
@ = Tl e

40 41) _ (1 Ot (p—1)/2
V'S pr (=1)P»
bm) = 2] i (—1)-D/2
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0, if A, is odd for anyp=3 (mod 4)
in4(1+X,)0
c(n) = n?(—1)* H mv otherwise

sin 40,
p=1 (mod 4)
SAp+5 1
27571 an is odd
ps —
— p
d(’ﬂ) - 30 x 25)\ 163 p5)\p+5 -1 ‘ ‘
— 55 1 P if n is even
5Apt5 _ |
e(n) = b 25A+5 _ 3 p5>\p+5 -1 .
— ﬁ p5——1 an 1S even.
Proof.
From [3] or [24, Ch. 17, Entry 17 (viii)] we have
5 > 2]41 + )4 2k+1
5
—2°(b—x)(1—2) = Z+Z 1—q2k+1 .

=0
Therefore a(0) = 5/4 and
afn) = 3 (~1E-D/g

dln

aodd
| (S POt — (Z1) Aot D12
pt— (=1)P—1)/2

p

Next, from [3] or [24, Ch. 17, Entry17 (iii)] we have
0 k.4qk
1+ q2k '

a25(4z + 2?) =
k=1

Therefore b(0) = 0 and
4
b — _yla=n/2 (7
m = X (5)
aodd
pr 40 +1) _( 1) A @-1)/2
E=NE

For the coefficients ¢(n), by (3.1) and one of the Macdonald identities for BCs (for example, see
[6]) we have

1 (q2.q2)14 1

~ .5 ) — 4 )0 _ 2 2 _ 52y,(a’+8%)/5
Pr(l-—z)=q———3 = Z af(a” — (%)q .
16 (_q’ _q)oo 6 a=2 (mod 5)
B=1 (mod 5)
Therefore ¢(0) = 0 and
1
c(n) = 6 Z af(a® - %)
a24p62=5n
«=2,8=1 (mod 5)
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0, if A\, isodd for any p=3 (mod 4)
_ nz(fl))‘ H sin4(1 4+ A,)0,

- , otherwise.
sin 40,

p=1 (mod 4)

The second part of this formula expressing c(n) in terms of 6, and A, was stated (without proof)
by Ramanujan [25, eq. (156)].

Lastly, from [3] or [24, Ch. 17, Entries 14 (iii) & (vi)] we have

L s 2 1 = (_1)kk5qk
——2°(1—2)(1 — = —=— —_—
1 —2)(1 -z +2?) < I; v
16 2 1 - (*UkkSQk
k=1
Therefore
d(n) _ Z(*l)(dJrn/d)dS
d|n
SApt5 _
H ]% if n is odd
p P !
— 30 x 25/\ 463 p5)\p+5 -1 . ]
55 1 ' o if n is even
en) = =) (-1
d|n
5Apt+5 _ |
p- =-- if n is odd
P p"—1
= 25>\+5 o 63 pS)\p+5 -1
—( 55 1 ) ) if n is even.
P
O
Lemma 4.2 If p is an odd prime then
ap) = ()41
dlp) = p°+1
ep) = P+ 1.
Proof.
These follow right away from Lemma 4.1. m|
Lemma 4.3 Each of a(n), b(n), c¢(n), d(n) and e(n) are multiplicative. That is, a(mn) =
a(m)a(n), if m and n are relatively prime; and similarly for b, ¢, d and e.
Proof.
These follow right away from Lemma 4.1. ]

Lemma 4.4 Under the change of variables

T
1/2, I —
r—1

z—z2(l—1x)
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the functions

210(52° + 411x* — 211823 + 426222 — 42752 + 1710) and
212(438702082° — 1318301162° + 162785487x* — 1057809502
416256599527 — 1316106242 4 43870208)

are invariant and

2%2(1157 — 1157z + 1008z2)
changes sign.

Proof.
This follows by straightforward calculation. a

Lemma 4.5 The g-expansions of

210(525 + 411x* — 211823 + 426222 — 42752 + 1710) and
212(4387020825 — 1318301162° + 162785487z — 1057809503
416256599522 — 1316106242 + 43870208)

contain only even powers of q, and the q-expansion of
202(1157 — 1157z + 1008z%)

contains only odd powers.

Proof.
This follows from the Change of Sign Principle [3, p. 126] or [24, Ch. 17, Entry 14 (xii)]. 0

Lemma 4.6

[P)2°(1 + 2)(1 + 142 + 2?)(1 — 34z +2%) = —264(p° +1)
[¢P] 2'% [441(1 + 14 + 2°)® + 250(1 + x)*(1 — 34z + 2°)?] = 65520(p"" +1).

Proof.
From [3] or [24, Ch. 17, Entries 13 (iii) and (iv)], followed by [2] or [24, Ch. 15, Entry 12 (iii)] we
have
0 kqu
2001+ 2)(1+ 142+ 2®)(1 — 34z + %) = M(q)N(q) = 1 — 264 -
il

The coefficient of ¢? in this is readily seen to be —264(p® + 1).

Also, from [3] or [24, Ch. 17, Entries 13 (iii) and (iv)] followed by [2] or [24, Ch. 15, Entry
13 (i)] we have
4412"2(1 4 142 + 2°)3 + 250212 (1 + 2)2(1 — 342 + 22)?

jllqj

_ 3 2 _
= 441M(q)® + 250N (q)* = 691 + 65520 » -t

j=1

The coefficient of ¢? in this is readily seen to be 65520(p'* + 1). O
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5 The value of ry;(p?) for odd primes p

Theorem 5.1 If p is an odd prime and H(p) is defined by equation (3.5), then

330

2 S +1) —22(—1) P2t 4

- H(p).

2
r11(p”) = 3

Proof.
Let us write

11
2 _ 2
p° = E x5,
i=1

There are three possibilities: either one, five or nine of the x; are odd, and the others are even.
Accordingly, we have

. 22 . 22 .
(@) = 22 ) T1o,o(p2—32)+g > 7"6,4(192—92)4'3 > rasp® —5%)
jodd jodd jodd
B 22 (10
= [Q”2 JQ} {22¢(q4)1° + =% (4) x 16¢*¢(¢")°¥(¢%)*
j odd

- % x (18()) x 162q8¢(q4)2¢(q8)8}
= 2 3 [ (ot () x 1sastar ey

5 odd
= () < weearuay |

- o) () ()

J

I
=]

[
NE

[qj(p—j)} 2°(11 + 462z + 5522).

<.
I
o

In general we have

P Lk/2]
rapsr (p?) = Z[qj(p—j)]zk (Z (if::i)xl) ) (5.2)

j=0 i=0

Now
11 2 264
25(11 4 462z + 552%) = 325(5 —z)(1—z)+ 55—825(4x +2%) + %z%(l — ).

Using this together with Lemmas 4.1, 4.2 and 4.3 gives

ni?) = Z(%a(ﬂp—ﬁﬂ@b(ﬂp—j)) 42524c<j<p—j>>)
5=0
88 88 44 &
= U050 KJZ
4
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= 2y Bl (16 - a0 - 0))

+ B2 (61425(4:5 + x2)> Ty i) <lz5x(1 - x)) :

11
= —22(—1)P=D/2pt 4 Z[qp]zw(Qgc‘* + 2022 — 122 + 5).

Now

11 5 22
Z(2$4 +202% — 122 4 5) = —mpl(m) + ﬁpg(x) + p3(x)
where
pr(zr) = (14 z)(1+ Lo+ 2%)(1 — 34z + 2?)
pa(z) = 2(1—x)(1 42z — 22?)
1
p3(z) = m(&c5 + 4112* — 21182 + 426222 — 42752 4 1710).
This, together with Lemmas 4.5, 4.6 and Equation (3.6) gives
) 22
r(p?) = —22(=1)P=D/2pt o1 X (F2649)(0° + 1) + 37 X 16H(p) +0
2
= 200 1 1) - (-2t D),

Remark 5.3 The coefficients H(n) have some interesting properties.
1. H is multiplicative. That is, H(mn) = H(m)H(n) for any pair of relatively prime positive
integers m and n.
2. |H(n)| < n®2d(n), where d(n) is the number of divisors of n. In particular,
|H(p)| < 2p°"° (5.4)

for primes p. Ramanugjan [25, §28] made some conjectures concerning the orders of some
sitmilar functions. See his equations (157), (160) and (163). See also Berndt’s commentary
[26, p. 367] for references and more information.

6 The Hecke operator 7, when p = 2 for eleven squares

Theorem 6.1
Tab110 = ¢110 + 33074 + 165938
Tagra = 33674 + 176¢3s
Tipss = 320¢74 + 192¢33s.
That is,
$11,0(4n) = onon) + 330¢74(n) + 165¢35(n)
(]5774(471) = 336(}5774(”) + 176(]5378(71)
(,25378(471) = 320(,25774(71) 192@25378(’&)
Proof.

Let us consider ¢11,9 first. By Facts 1 and 2, we have

Tad11,0 = 1P11,0 + Q2074 + A3P3 8,
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for some constants a1, ag, az. By Fact 3, we have

Tipr1,0 = Z $11,0(4n)q
n=0

Therefore

Z¢1104n —0412¢110 n)q" +042Z¢74 n)q" +0432¢38

n=0 n=0 n=0 n=0

Equating coefficients of 1, ¢ and ¢? gives

a1 =1
22a71 + 162 = 5302
2200 + 22400 + 2563 = 116380

and so
a1 = 1, Qo = 330, a3 = 165.

This proves the first part of the Theorem. The results for Ty¢7 4 and Tu¢s g follow similarly. O

Lemma 6.2 The eigenfunctions and eigenvalues of Ty are

X111 = Bbllg1ig — 682¢74 + 187¢ss, A =1,
Xi1,2 = 20074 + 1losg, Ay = 512,
X11,3 = P14 — ®3,8, Az = 16.

These coefficients satisfy many interesting properties. Some of these are summarised in

Theorem 6.3
32x11,1(n) — 33x11,2(n) 0 ifn=1o0r2 (mod4)
512x11,1(n) —17x112(n) = 0 ifn=3 (mod 8)
15872x11,1(n) +495x112(n) = 0 ifn=7 (mod 8)
x11,3(n) = 0 ifn=7 (mod8).
Proof.
A proof of Theorem 6.3 has been given by Barrucand and Hirschhorn [1]. o
As a consequence of the previous results we have
Theorem 6.4
99A+9 _
11 (42 8k + 7)) = Wm(sk + 7).
Proof.
7“11(4/\(8k + 7))
= 11,04 Bk + 7))
1
= m (31)(1171(4)\(8]6 + 7)) =+ 495)(1172(4)\(8]6 =+ 7)) + 11242X1173(4/\(8]€ + 7)))

1
= m (31X11,1(8k + 7) + 495 x 512)\){11,2(8/{ + 7) 411242 x (16)/\)(1113(8/6 + 7)) .
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Applying Theorem 6.3 gives
1

r(4 8k +7) = STRTI (31x11,1(8k + 7) — 15872 x 512* 11,1 (8k + 7) +0)

—1
- m(mA+1 —1)x11.1(8k + 7).

Taking A = 0 in this gives
r11(8k +7) = —x11,1(8k + 7)

and so
99A+9 _

29 —1
as required. a

1
11 (4 (8k 4+ 7)) = 51(512”1 —Dri 8k +7) = r11(8k +7),

7 The Hecke operator 7, when p is an odd prime for sums of eleven
squares

By Facts 2 and 3 we have

Tp2p110 = Z¢110 (P*n)q" +p4z ( > ¢11,0(n)¢" +PQZ¢11»0(”/192)Q"
n=0

_ eruao(a) + extrala >+C3¢38<q (1)
Tpdra = i(bm(pzn)q” +p4z ( n) ¢74(n)g" +p32¢74 n/p*)q"
_ drpurol) + datra(d) + )+ s o). o (12)
Te¢ss = i(bs,s(p%)q” +p4z ( n) ¢3,8(n)q" +pgz¢3s (n/p*)q"
) extd) - esinnta) - (73)

for some constants ¢y, ca, c3, di, do, d3, €1, ea, e3. Equating the constant terms in each of the
three equations above gives

o = pP+1
d = 0
e =

Equating the coefficients of ¢ in (7.1)—(7.3) gives

22¢c) +16ca = ¢110(p%) + 22(—1)(17’1)/2]94
22d1 =+ 16d2 = ¢774(p2) + 16(—1)(p_1)/2p4
22e1 + 1662 = ¢35(p?).
By Theorem 5.1 we have
330 _ 352
Bri0(p?) = S (0 + 1) = 22(=1) /2t 1 22 (), (74)
By the same methods it can be shown that
320 _ 176
Gra?) = S0P+ 1) = 16102 4 S H () (75)
320 320
¢3,5(p%) Sy 07 +1) = Z=H(p). (7.6)

31 31
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It follows that

22 22
o = 73*1(;0 +1)+3*1H(p)
20
dy = 31( +1)+ H()
20 20
ez = 31( +1)**H()

Next, equating coefficients of ¢* in (7.1)-(7.3) gives

b11,0(4p%) 4 5302(—1)P=D/2pt = 5302¢; 4 5376¢, + 5120c3
b7.4(4p%) 4+ 5376(—1)P~Y/2pt = 5302d; + 5376dy 4 5120ds
b3.8(4p?) +5120(—1)P~V/2pt = 5302¢; 4 5376eq + 5120e3.

By Theorem 6.1 and equations (7.4)—(7.6) we have

d110(4p*) = ¢11,0(p%) + 33097 4(p*) + 165¢3 5(p°)
158730 5632
= (p° 4+ 1) — 5302(—1)P~D/2pt L "2 [ (p).
31 31
Similarly,
163840 _ 2816
brap?) = —— 0" +1) = 5376(-1)"2p + == H(p)
163840 _ 5120
$as(4p®) = —— " +1) =5120(-1)""V/2p* — === H(p).
31 17
It follows that
22 22
= 1) — —H
6 = S+ 1) - H)
11
dz3 = 31( +1)—3—1H()
s = 20+ 1)+ 2aEp).
AT 31
The above results may be summarised as
Theorem 7.7 Let
a=p’+1, B=H(p).
Then
Tp2¢11,0 | [ Ble —220+228 220 - 2283 b11.0
Tp2¢774 = ﬁ O 200{ + 115 110{ — 116 (;57,4
Tp2¢3.s 0  20a—208 1la+203 b3.8

Corollary 7.8 The eigenfunctions and eigenvalues of Tp2 are
Ci1,1 := @11,0 — 2¢7.4, A=«
Ci1,2 1= 20974 + 11¢3 8 = X11,2, Ao =«
(11,3 = @74 — 03,8 = X11,3, Az = 8.
That is,
T2Cin = (0 + 1)

Tp2Ci12 = (P9+1)<11,2
Tp2Ciiz = H(p)Ciis.
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Using Fact 3, together with Corollary 7.8, we have

a9t (1) Goal) +5°Ga(0fp?) = 7+ Dl (79)
Gii2(pn) +p! <_?fl) Guio(n) +p°Cip(n/p?) = (" +1Die2(n) (7.10)
Guus(p?n) +p! (%) Gus(n) +p°Cis(n/p®) = H(p)Gs(n). (7.11)
Tterating (7.9)—(7.11) we obtain
Theorem 7.12 If p? fn, then
9u+9 _ op _
G1a(p™n) = [p; 7 ! —p' (f) Z;: 11} Ci1,1(n)
Iu+9 _ 1 _ o 1
i~ [ ()t
Ga(P*n) = [ea(n)rf + ca(n)rh] Ciia(n),
where
.~ HO)+ VAPR)
v 2
_ H(p) - VA(@p)
T2 = 9

Alp) = H(p)*—4p°.
Remark 7.13 Equation 5.4 implies A(p) < 0.

It is possible to express r11(n) in terms of ri1(n®) and (11 3(n°), where n° is the odd-square free
part of n, that is, n° is the greatest divisor of n which is not divisible by an odd square. Let

o1 (om p -
Ip.pm = O -1 ) PP 1

p
hppm = Cl(m)rit+02(m)7’5,

where c1, co, 71, T2 are as for Theorem 7.12. If p? Jm then

ri1(p**m) = [31¢11,1 (™M) + 2C11,2(p*m) + 22(11,3(p*m)]

1
[319p,11,mC11,1 (M) + 2Gp,4,mC11,2(m) + 22hp 4y mCr1,3(m)]

[319p,10,mC11,1 (M) + 2Gp,u,mC11,2(M) + 229 1,mC11,3(m)]

22
+3_1 [Appasm = Gp,p,m] C11,3(M)

22
= Gppumrin(m) + 31 [Appism = Gp,u,m] Ci1,3(m).

) ] 8
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By induction on j, it follows that if py, p, - -, p; are distinct odd primes, and p? }/m for 1 <i < j,
2 2 2/
ru(py pa" - ‘le 'm)

then
J 929 J J
= H Ipipiom | T11(M) + 31 H hpipiom | — H Ipipim | | C11,3(m).
i=1 i=1 i=1
Consequently, if n° is the odd-square free part of n and either p?*» || n or p?*»*1 || n, then

ru(n) = rll(nO)H{w_p4(no>&]

L1 p ) p-1

22 . p9,ufp+9 _ 1 4 _no pgﬂp — 1
Jrﬁ(ll,?)(n ) |;l;[ hp,,up,n" - H < P —1 —D D P 1 :

p

If n°® = 4#(8k 4 7) for some nonnegative integers p and k, then Theorem 6.3 implies (11 3(n°) = 0.

In this case we have
Ip+9 _ 1 __ O pp __ 1
p 4 n p
ri1(n) = ri1(n°) [7 —-p (—) 7] :
( ( 1;[ p9 -1 P p9 -1

This, together with Theorem 6.4 implies

Theorem 7.14 Let n = 2* Hp p*r be the prime factorisation of n and let n' be the square-free
part of n. If n' is of the form 8k + 7 then

L 201249 [pgp,,/zjw _1 . (—n’) pPe/2) _ 1]

29— 1 PP —1 p ) pPP-1

7“11(?’7/) =Tri1(n

8 The value of r3(p*) for odd primes p

Theorem 8.1 If p is an odd prime and 7(p) is defined by equation (2.12), then

4030 13936

it 11 1—265
gor P T 260"+ gy

7(p)-

ri3(p?) =
Proof.
We proceed in a similar way to Section 5. Taking k = 6 in (5.2) gives

P
r13(p?) = Z[qj(p_j)}zﬁ {13 + 1287z + 7152° + 2° } . (8.2)

j=0
Now

2%(13 + 12872 4 71522 + 2®)
= 10142°(1 — 2)(1 — = + 2%) — 10012°(1 — 2)(1 — 2?)
+22%2(1157 — 1157z + 100822). (8.3)

Therefore Lemmas 4.1, 4.2 and 4.3 give

7“13(192)

= 8112 d(j(p—j)) 8008 _e(i(p—3) +0
j=0 j=0
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—16224d(0)+-16224d(0yup)-81122§:d(jyap-—j)
j=0

—16016¢(0) + 16016e(0)e(p) — 8008 XP: e(j)e(p — )
§=0

2

—%ﬁ—8ﬂ%ﬂ<—%ﬂl—@u—x+ﬁ0 —m%mﬂ<%%1—@u—z%>

= fmm?fgfpu@mglfm%17z+ﬁf+lmu1f@%1fﬁfy

Now
1
—gqul—m%l—x+ﬁf+lmul—m%1—ﬁf)
31 871
_ o 4
501 6017 (@) T GopP2(®) +ps(2); (8.4)
where
pi(z) = 441(1 + 14z + 2%)3 + 250(1 + 2)*(1 — 34x + 22)?,
pa(z) = z(l—zx),
ps(z) = 17;132(43870208x6——131830116x5—%162785487m4——105780950m3

+ 1625659952 — 1316106242 + 43870208) .

Therefore Lemmas 4.5, 4.6 and Equation (3.4) give

31 871
2 5 11
= -2 O X 65520 1+ x16 0
r13(p”) P+ 57601~ (p'* + )+6m}< 7(p) +

4030 4, - 13936

= — 1) — 26p° + -
691(p +1) —26p” + oL 7(p),

as required. a

Remark 8.5 The coefficients T(n) satisfy some well-known interesting properties.

1. 7 is multiplicative. That is, T(mn) = 7(m)7(n) for any pair of relatively prime positive
integers m and n.

2. |T(n)| < n'Y2d(n), where d(n) is the number of divisors of n. In particular,
I7(p)| < 2p"2
for primes p.

Both properties were conjectured by Ramanujan [25, Egs. (103), (104) and (105)]. The first was
proved by Mordell and the second by Deligne. See Berndt’s commentary [26, p. 367] for references
and more information.

9 The eigenvalues and eigenfunctions for the Hecke operators 7). for
thirteen squares

In this section we give the analogues of the results in Sections 6.1 and 7 for the Hecke operator
T, for thirteen squares. The methods of proof are identical with those in Sections 6.1 and 7, and
therefore we omit them.



o4

Theorem 9.1

Corollary 9.2 The

X13,1
X13,2
X13,3
X13,4

Typ130 = @130 + Tld¢gs +
Typgs = T44¢9 4 +
Tapss = 768094 +
Tiprg = 512¢9 4 +
eigenfunctions of Ty are
= 1414477¢139 — 2298777¢g4
= 256¢9 4
= w4
= Wog 4
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1287¢5,8 + ].3(1)1’12
1296¢58 + 8112
12805 s

153665 5.

400842755 — 20156110
+ 434058 + ?1,12
- (W+2)pss + 201,12
- @+2)¢ss + 201,12

and the corresponding eigenvalues are A\ = 1, Ay = 2048, A3 = 4w, \y = 4w, where w = —3 +

v —119.

The coefficients in the expansions of ¢13,0, ¢9.4, @58 and ¢1,12 satisfy some interesting properties:
Some of these are summarised in

Theorem 9.3
Ifn=2o0r3 (mod4) then
8¢9,4(n) — 995,8(n) + ¢1,12(n) = 0
64@1)13,0(’)1) — 104(]59’4 (n) + 39(]55’8(”) = 0.
Ifn=1 (mod 8) then
P58(n) — P112(n) =
2048¢1370(’I’L) — 3328¢9,4(n) + 1313¢5,3(n) =
Ifn=5 (mod 8) then
64¢9.4(n) — 57¢s58(n) — Td1,12(n) =
14336¢1370(7’L) — 23488(b9,4 (n) + 9369¢57g (n) =
Proof.
A proof of Theorem 9.3 has been given by Barrucand and Hirschhorn [1]. 0
For odd primes p we have
Theorem 9.4 Let
a=p''+1, B=1(p).
Then
T2 13,0 691a —871a+ 8713 871a — 8713 0 0130
Tp2 9,4 _ b 0 256 + 4358 434 — 4346 o —f $9.4
Tedss | 691 0 2560 — 2563 434a+2573 a - 5.5
Th21,12 0 256 — 25683 434 — 4348 « + 6900 01,12
Corollary 9.5 The eigenfunctions and eigenvalues of Tp2 are
Ci3,1 := 691¢130 — 871gg 4 + 87155, M=«
C13,2 1= 25609 4 + 434058 + d1,12 = X13,2, A2 =
€133 = @94 — 058 = X133, Az =p
(134 = P58 — P1,12 = X134, Ay = .
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That 1is,
T2Cis1 = (" +1)Gsa
T2Cize = (P + 132
Tp2Cizz = 7(p)(i33
Tp2Ciza = 7(p)Ci3,4-

10 Sums of an odd number of squares

It is interesting to compare the values of rj(p?) for various k. We have:

r1(p?) 2 (10.1)
ra(p?) = 42+ (1) D2 (10.2)
r3(p?) = 6(p+1-—(-1)P7/2) (10.3)
ra(p?) = 8(p*+p+1) (10.4)
rs(p?) = 10(p° —p+1) (10.5)
re(p?) = 120"+ (—1)PD2p% 4 1) (10.6)
re(p?) = 140" — ()PP 4 1) (10.7)
rs(p?) 16(p° +p° +1) (10.8)
o) = 207+ 1) - 185" + 226(p) (10.9)
o) = TP+ (- ><p*1>/2p4+1>+35—2c<p2> (10.10)
) = 20041 - 220ty P2 ) (10.11)
ri2(p?) = 8(p'°+p° +1)+16Q(p?) (10.12)
riz(p?) = %(p“Jrl) 26p +12’3—3167(p). (10.13)
where
> b(n)g" = q(—q;—q)io(qQ;qz)§o=%st(l—l’)
n=1
— N al
e = alf T = e )
& 2. ,2\2
T;H(n)q” = q(—q;—q)ig(qz;q2)io+32q2%
_ %zlox(l—x)(1+2x—2x2)
D0 = aldie)E = et
S = a0 = g0,

Observe that formulas (10.9)—(10.13) are significantly more complicated in nature than (10.1)-
(10.8). This is a vivid illustration of Eisenstein’s remark [8], [31].

Equation (10.1) is trivial. Equations (10.2), (10.4), (10.6), (10.8), (10.10) and (10.12) follow
readily from the well known formulas for ro(n), r4(n), r¢(n), rs(n), r1io(n) and riz2(n); see, for
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example, [4]. Equations (10.3), (10.5) and (10.7) follow right away from (2.6)—(2.8). Direct proofs
of (10.5) and (10.7) are given in [5], and it is possible to prove (10.3) in the same way. Equations
(10.11) and (10.13) are Theorems 5.1 and 8.1, respectively. Equations (10.7), (10.9), (10.11) and
(10.13) are originally due to Sandham [27], [28]. Slightly different proofs of (10.7) and (10.9) were
given in [5], and the proofs we have given here of (10.11) and (10.13) are different from Sandham’s.
Results for 795 (p?) can be written down immediately from the general formulas for 7ox(n) in, for
example, [4].

For sums of an odd number of squares, we have

Conjecture 10.14

roep1(p®) = Ap(@®T 4 1) — (4k + 2)(—1)FP-D/2ph
Lk/2] 8k—24j

3 (—4—9)

p I 2]

+[q ] L Ci.kq (q2'q2)g§_24j s
J= ’

where Ay, and cj i are rational numbers and

Ay +ci = 4k + 2.
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