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Abstract 

Over the last decades, various studies have reported the occurrence of emissions of 

nitrous oxide (N2O) from aquatic ecosystems characterised by a high level of algal 

activity (e.g. eutrophic lakes) as well as from algal cultures representative of the 

processes used by the algae biotechnology industry. As N2O is a potent greenhouse gas 

(GHG) and ozone depleting pollutant, these findings suggest that large scale 

microalgae cultivation (and possibly, eutrophic ecosystems) could contribute to the 

global N2O budget. Considering the current rapid development of microalgal 

biotechnologies and the ubiquity of microalgae in the environment, this PhD research 

was undertaken to determine the biochemical pathway of microalgal N2O synthesis and 

evaluate the potential significance of microalgal N2O emissions with regard to climate 

change. 

 

To determine the pathway of N2O synthesis in microalgae, Chlamydomonas reinhardtii 

and its associated mutants were incubated in short-term (24 h) laboratory in vitro batch 

assays. For the first time, axenic C. reinhardtii cultures (i.e. culture free of other 

microorganisms such as bacteria) fed nitrite (NO2⁻) were shown to synthesise N2O 

under aerobic conditions. The results evidenced that N2O synthesis involves 1) NO2⁻ 

reduction into nitric oxide (NO), followed by 2) NO reduction into N2O by nitric oxide 

reductase (NOR). With regard to the first step, the results show that NO2⁻ reduction 

into NO could be catalysed by the dual system nitrate reductase-amidoxime reducing 

component (NR-ARC) and the mitochondrial cytochrome c oxidase (COX). Based on 

our experimental evidence and published literature, we hypothesise that N2O is 
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synthesised via NR-ARC-mediated NO2⁻ reduction under physiological conditions (i.e. 

low/moderate intracellular NO2⁻) but that under NO2⁻ stress (i.e. induced by high 

intracellular NO2⁻), N2O synthesis involves both NR-ARC-mediated and COX-

mediated NO2⁻ reductions. RNA sequencing analysis on C. reinhardtii samples 

confirmed that the genes encoding ARC, COX and NOR were expressed in NO2⁻-laden 

culture, although NO2⁻ addition did not trigger significant transcriptomic regulation of 

these genes. We therefore hypothesise that the microalgal N2O pathway may be 

involved in NO regulation in microalgae where NOR acts as a security valve to get rid 

of excess NO (or NO2⁻). 

 

To evaluate N2O emissions during microalgal cultivation, N2O emissions were 

quantified during the long term outdoor cultivation of commercially relevant 

microalgae species (Chlorella vulgaris, Neochloris sp. and Arthrospira platensis) in 50 

L pilot scale tubular photobioreactors (92 days) and during secondary wastewater 

treatment in a 1000 L high rate algal pond (365 days). Highly variable N2O emissions 

were recorded from both systems (0.0 – 38 μmol N2O·m-2·h-1, n = 510 from the 50 L 

photobioreactors; 0.008 – 28 μmol N2O·m-2·h-1, n = 50 from the high rate algal pond). 

Based on these data, we estimated that the large scale cultivation of microalgae for 

biofuel production in order to, for example, replace 30% of USA transport fuel with 

algal-derived biofuel (i.e. a commonly used sustainability target), could generate N2O 

emissions representing up to 10% of the currently budgeted global anthropogenic N2O 

emissions. In contrast, N2O emissions from the microalgae-based pond systems 

commonly used for wastewater treatment would represent less than 2% of the currently 

budgeted global N2O emissions from wastewater treatment. As emission factors to 



v 
 

predict N2O emissions during microalgae cultivation and microalgae-based wastewater 

treatment are currently lacking in Intergovernmental Panel for Climate Change 

methodologies, we estimated these values to 0.1 – 0.4% (0.02  ̶  0.11 g N-N2O·m-3·d-1) 

of the N load on synthetic media (NO3⁻) during commercial cultivation and 0.04 – 

0.45% (0.002  ̶  0.02 g N-N2O·m-3·d-1) of the N load during wastewater treatment. The 

accuracy of the emission factors estimated is still uncertain due to the variability in the 

N2O emissions recorded and by consequence further research is needed. Nevertheless, 

further monitoring showed that the use of ammonium as N source and/or the cultivation 

of microalgae species lacking the ability to generate N2O (e.g. A. platensis) could 

provide simple mitigation solutions.  
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Thesis introduction 

In recent years, billions of dollars have been invested in microalgal biotechnologies1 

with the main belief that microalgae-based products (e.g. biofuels, animal feed) and 

services (e.g. pollution control) have intrinsic low carbon footprints. This is, however, 

without considering that microalgae can generate the potent greenhouse gas and ozone 

depleting pollutant, nitrous oxide (N2O)2. Although carbon neutrality may be achieved 

via the recycling of atmospheric carbon dioxide (CO2) during photosynthesis, N2O 

emissions during microalgal cultivation have not yet been properly investigated.  

 

The potential of microalgae to synthesise N2O is of broad significance due to potential 

adverse effects on the environment. However, the mechanisms involved and the 

magnitude of microalgal N2O emissions from microalgae-based engineered (and 

natural3) systems are largely unknown, raising research questions such as: How and 

why microalgae synthesise N2O? Could microalgal N2O emissions impact the 

sustainability of the microalgae industry? How could these emissions be mitigated? In 

order to answer these critical questions, this PhD thesis seeks to achieve the following 

objectives:  

1. Acquire knowledge on microalgal N2O biochemistry and understand the 

metabolism behind N2O synthesis. 

2. Evaluate N2O emissions from microalgal engineered systems. 

                                                 
1 Mascarelli, A.L. (2009). Gold rush for algae. Nature 461: 460–461. 
2 The ability of microalgae to synthesise N2O was suggested more than 40 years ago and demonstrated in 
two mid-1980 studies. 
3 As it will be discussed in Chapter 1, there is clear evidence that microalgal N2O emissions may be 
significant during microalgal cultivation but also from natural ecosystems which was to our knowledge 
completely dismissed among expert committees. 
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3. Evaluate the potential environmental significance of microalgal N2O emissions, 

and propose mitigation strategies.  

 

Chapter 1 defines the scope of the thesis and critically discusses the current knowledge 

about N2O synthesis in microalgae and N2O emissions from microalgae (eco)systems. 

Chapter 2 presents and discusses new findings about the biochemical pathway of N2O 

synthesis in microalgae. Chapter 3 presents the first long term investigations of N2O 

emissions from outdoor microalgal cultivation systems, followed by a discussion on 

significance, mitigation solutions, and future guidance. Chapter 4 then presents 

conclusions on all the findings obtained during this research and discusses future 

prospects.  
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List of abbreviations 

AOA: Ammonia-oxidizing archaea 

AOB: Ammonia-oxidizing bacteria 

AOX: Alternative oxidase 

ARC: Amidoxime reducing component 

CN-: Cyanide ion 

COX: Cytochrome c oxidase 

DAF FM Diacetate: 4-amino-5-methylamino-2`.7`-difluore-fluorescein diacetate 

DEA NONOate: diethylamine NONOate 

DCW: Dry cell weight 

DO: Dissolved oxygen 

E-flasks: Erlenmeyer flasks 

EFs: Emissions factors 

Fd: Ferredoxin 

GC: Gas chromatography 

GHG: Greenhouse gas 

HNO: Nitroxyl 

HRAP: High rate algae pond 

IPCC: Intergovernmental Panel for Climate change 

L-Arg: L-arginine 

L-NNA: Nω-nitro-L-arginine 

Log2FC: Log 2 fold change 

NAD(P)H: Nicotinamide adenine dinucleotide phosphate 

NH3: Ammonia 

NH4
+: Ammonium 

NiR: Nitrite reductase 

NO: Nitric oxide 

NOFNiR: Nitric Oxide Forming Nitrite Reductase 

NOR: Nitric oxide reductase 

NO2
-: Nitrite 

NO3
-: Nitrate 




