Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

ACETYL-COA CARBOXYLASE IN PHOTOSYNTHETIC TISSUE

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at MASSEY UNIVERSITY

BASIL JOHN NIKOLAU

ABSTRACT

Acetyl-CoA carboxylase catalyses the rate-limiting reaction in <u>de novo</u> fatty acid biosynthesis in a wide variety of organisms. In plants however, the significance of this enzyme in regulating <u>de novo</u> fatty acid biosynthesis is unknown.

In this investigation acetyl-CoA carboxylase of maize, barley and spinach leaves has been studied in order to compare some features of this enzyme in the three plants. In maize, acetyl-CoA carboxylase is located in chloroplasts, where it occurs as a soluble enzyme in the stromal fraction. Both mesophyll and bundle sheath cells also exhibit acetyl-CoA carboxylase activity. Activities of acetyl-CoA carboxylase in isolated chloroplasts have been compared to rates of lipid synthesis from acetate in order to investigate the role of acetyl-CoA carboxylase in regulating de novo fatty acid biosynthesis from acetate. Although acetyl-CoA carboxylase activity was higher than that expected from the rate of acetate incorporation into lipids of isolated chloroplasts of maize and barley, the opposite was found for chloroplasts isolated from spinach. In chloroplasts from the emerging leaves of maize seedlings, lipid synthesis was maximal with chloroplasts isolated from the leaf segment corresponding to leaf greening. However, a relationship between leaf development and acetyl-CoA carboxylase activity was less apparent. Consequently a regulatory role for acetyl-CoA carboxylase in de novo fatty acid biosynthesis could not be directly established from a comparison of the rates of lipid synthesis and acetyl-CoA carboxylase activities.

An alternative approach to the establishment of a regulatory role for acetyl-CoA carboxylase was to purify the enzyme from maize and barley leaves, and study its response to variable concentrations of substrates, products and certain cellular metabolites. Purification of both enzymes was per-

formed by identical procedures, including polyethylene glycol fractionation, hydrophobic chromatography and gel filtration. Acetyl-CoA carboxylase from both maize and barley leaves appeared to be an integral enzyme, as no evidence for its dissociation was found, contrary to the findings of the bacterial enzyme. The kinetic properties of the partially purified enzyme from maize and barley were very similar. The apparent Michaelis constants for the substrates, acetyl-CoA and HCO₃, were about 0.1mM and 2mM, respectively for both enzymes. The enzymically active form of the substrate, ATP, was found to be Mg.ATP. Furthermore, free ATP inhibited enzymic activity, while free Mg²⁺ activated the enzyme from both plant sources. Monovalent cations, particularly K⁺, were positive effectors of acetyl-CoA carboxylase, on the other hand, the products of the acetyl-CoA carboxylase reaction, malonyl-CoA and ADP were inhibitors. ADP inhibition was competitive with respect to ATP, but uncompetitive with respect to acetyl-CoA. Inhibition of acetyl-CoA carboxylase activity by CoA was noncompetitive with respect to acetyl-CoA, while palmitoyl-CoA inhibition was uncompetitive with respect to acetyl-CoA.

From the view point of regulation of acetyl-CoA carboxylase activity, the observed response of activity to changes in pH, and the concentrations of Mg^{2+} , K^+ , ATP and ADP <u>in vitro</u>, may be of significance. Changes in the chloroplastic levels of these effectors of acetyl-CoA carboxylase activity have been reported to occur during light-dark transition of chloroplasts, and would be consistent in regulating acetyl-CoA carboxylase activity in the light and dark.

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr J C Hawke, for his invaluable advice, encouragement and assistance throughout the course of this study. I am also indebted to Dr C R Slack of the Plant Physiology Division, DSIR, for his advice and assistance, particularly during the absence of Dr Hawke.

I would like to thank Mr I J Warrington of the Plant Physiology Division, DSIR, for helpful advice in the use of the climate control rooms for the growing of maize and barley plants.

In addition, particular thanks is extended to Ms Joy Watson for typing this manuscript.

_

ACP	acyl-carrier protein
ADP	adenosine 5'-diphosphate
AMP	adenosine 5'-monophosphate
ATP	adenosine 5'-triphosphate
ВССР	biotin carboxyl-carrier protein
BSA	bovine serum albumin
chl	chlorophyll
ρ-CMB	<pre>p-chloromercuribenzoate</pre>
CoA	coenzyme A
DTT	dithiothreitol
EDTA	ethylenediamine tetraacetic acid
Нереѕ	N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid
Mes	2[N-Morpholino] ethane sulphonic acid
NADH	$\beta\text{-nicotinamide}$ adenine dinucleotide, reduced form
NADPH	nicotinamide adenine dinucleotide phosphate, re- duced form
NEM	N-ethylmaleimide
PEG	polyet hylene glycol
PEP	phosphoenolpyruvate
2-PGA	2-phosphoglyceric acid
3-PGA	3-phosphoglyceric acid

POPOP 1,4-bis[2(5-phenyloxazolyl)] Benzene

ppGpp guanosine 5'-diphosphate-3'-diphosphate

- PPO 2,5-diphenyloxazole
- pppGpp guanosine 5'-triphosphate-3'-diphosphate
- RNA ribonucleic acid
- RuDP ribulose 1,5-diphosphate
- TEMED N,N,N',N'-Tetramethylethylenediamine
- TLC thin-layer chromatography
- Tricine N-tris[Hydroxymethyl]-methyl glycine
- Tris tris (hydroxymethyl) aminomethane

TABLE OF CONTENTS

			page
ABSTRACT	Г		ii
ACKNOWLI	EDGEMI	ENTS	iv
LIST OF	ABBRI	EVIATIONS	v
TABLE OI	F CON	TENTS	vii
LIST OF	FIGU	RES	xiii
LIST OF	TABL	ES	xviii
CHAPTER		INTRODUCTION General Background	1
	1.2	Acetyl-CoA Carboxylase from Animal Sou	rces
		<pre>1.2.1 Molecular properties 1.2.2 Regulation of catalytic activit 1.2.2.1 Long-term control of</pre>	-
		1.2.2.2 Short-term control of acetyl-CoA carboxylase	e 4
	1.3	Acetyl-CoA Carboxylase from Escherichi	a coli
		<pre>1.3.1 Molecular properties 1.3.2 Regulation of catalytic activit</pre>	8 -y _. 9
	1.4	Acetyl-CoA Carboxylase from Yeast	10
	1.5	Acetyl-CoA Carboxylase from Plants	11
	1.6	Acetyl-CoA Carboxylase from Other Sour	ces 12
	1.7	Acetyl-CoA Carboxylase as a Biotin Enz	zyme 14
	1.8	Fatty Acid Biosynthesis in Plants	15

CHAPTER 2 MATERIALS

2.1 Plant Materials

vii

CHAPTER	3	METHODS	
	3.1	Preparation of Acyl-CoA Esters	22
	3.2	Enzyme Assays	23
	3.3	Preparation of Cell-free Extracts	25
X	3.4	Preparation of Chloroplasts	26
	3.5	Preparation of Mesophyll Protoplasts and Bundle Sheath Strands	26
	3.6	Preparation of <u>E</u> . <u>coli</u> Acetyl-CoA Carbox- lase Components	28
	3.7	Incorporation of $[1-1^{14}C]$ Acetate into Lipids	
		3.7.1 [1- ¹⁴ C] acetate incorporation into lipids by isolated chloroplasts	29
		3.7.2 [l- ¹ ⁴ C] acetate incorporation into lipids by leaf slices	29
	3.8	Preparation of Maize Leaf Sections	30
	3.9	Preparation of Sepharose-N-Propane	30
	3.10	Polyacrylamide Gel Electropheresis	30
	3.11	Centrifugation	31
	3.12	Analytical Methods	
		3.12.1 Determination of protein	32
		3.12.2 Determination of chlorophyll	32
	3.13	Determination of Radioactivity	33
	3.14	Chromatographic Procedures	
		3.14.1 Gel filtration chromatography	33
		3.14.2 Thin-layer chromatography	33
	2 15	3.14.3 Paper chromatography	33
	3.15	Purification of Acetyl-CoA Carboxylase from Leaves	34

CHAPTER 4 RESULTS

2.2 Reagents

		TURES AND STABILITY OF LEAF CARBOXYLASE	
4.1		l Features of Acetyl-CoA Carboxy- ctivity	36
4.2	in Cell	ization of Acetyl-CoA Carboxylase L-Free Extracts by Sulfhydryl Pro- g Agents	42
	FION OF AIZE LE <i>P</i>	ACETYL-COA CARBOXYLASE ACTIVITY AVES	
4.3		on of Acetyl-CoA Carboxylase in plasts of Maize Leaves	46
4.4		lity of Maize Chloroplastic Acetyl- rboxylase	48
4.5		on of the Biotin Prosthetic Group proplastic Acetyl-CoA Carboxylase	51
4.6	Betweer	oution of Acetyl-CoA Carboxylase n Mesophyll and Bundle Sheath Cells ze Leaves	55
LEVEI LEAVI		CETYL-COA CARBOXYLASE ACTIVITY IN	
4.7	Leaf De	igation of the Relationship Between evelopment, Acetyl-CoA Carboxylase ty and [l- ¹⁴ C]acetate Incorporation ipids	55
	4.7.1	1	60
	4.7.2	by maize leaf slices Incorporation of [1- ¹⁴ C] acetate into lipids by isolated chloro- plasts from developing maize	00
	4.7.3	leaves Acetyl-CoA carboxylase activity in cell-free extracts of develop-	60
		ing maize leaves	62

.

ix

	4.7.4	Acetyl-CoA carboxylase activity in isolated chloroplasts from develop- ing maize leaves	65
4.8	Acetyl-	-CoA Carboxylase Activity and Lipid	00
	Synthes Spinacl	sis in Leaves of Maize, Barley and n	65
4.9		of Light on Acetyl-CoA Carboxylase ty in Maize Leaves	70
PURI	FICATION	N OF LEAF ACETYL-COA CARBOXYLASE	
4.10		cation of Acetyl-CoA Carboxylase aize Leaves	70
4.11		cation of Acetyl-CoA Carboxylase arley Leaves	83
KINE		PERTIES OF ACETYL-COA CARBOXYLASE	
4 1 2	Fffort	of Acetyl-CoA and HCO ₃ Concentra-	
1.12		on Acetyl-CoA Carboxylase Activity	84
4.13		of ATP and MgCl ₂ Concentrations cyl-CoA Carboxylase Activity	92
4.14	-	icity of the Divalent Metal Ion ed for Acetyl-CoA Carboxylase	
	Activit	-	105
4.15	Effect Activit	of pH on Acetyl-CoA Carboxylase ty	105
4.16		of Temperature on Acetyl-CoA ylase Activity	107
4.17		tion of Acetyl-CoA Carboxylase	
	Activi	ty by Monovalent Cations	107
4.18	Substra Carboxy	ate Specificity of Acetyl-CoA ylase	111
4.19		tion of Maize Leaf Acetyl-CoA ylase by Malonyl-CoA	111

4.20	Effect of ADP on Acetyl-CoA Carboxylase Activity	116
4.21	Effect of CoA on Acetyl-CoA Carboxylase Activity	116
4.22	Effect of Palmitoyl-CoA on Acetyl-CoA Carboxylase Activity	125
4.23	Effect of AMP, Phosphoenolpyruvate, Oxaloacetate and Citrate on Acetyl-CoA Carboxylase Activity	125
4.24	Effect of Sulfhydryl Reacting Reagents on Acetyl-CoA Carboxylase Activity	128
CHAPTER 5	DISCUSSION .	
5.1	Acetyl-CoA Carboxylase - its General Features and Stability	130
5.2	Cellular Location of Acetyl-CoA Carboxy- lase in Maize Leaves	132
5.3	Relationship Between Acetyl-CoA Carboxy- lase Activity and Lipid Synthesis in Isolated Chloroplasts	135
5.4	Relationship Between Acetyl-CoA Carboxy- lase Activity, Lipid Synthesis and Leaf Development	137
5.5	Purification of Acetyl-CoA Carboxylase	139
5.6	Kinetic Properties of Acetyl-CoA Carboxy- lase	
	5.6.1 Effect of substrates on acetyl-CoA carboxylase	142
	5.6.2 Substrate specificity of acetyl- CoA carboxylase	143
	5.6.3 Effectors of acetyl-CoA carboxy- lase activity	144
5.7	Light-Dark Modulation of Acetyl-CoA	
	Carboxylase Activity	146

xi

5.	8 Su	ımmary	and	Suggestions	for	Further	
	St	udy					148
BIBLIOGRAP	ΗY						151

÷

.

LIST OF FIGURES

Figure		Page
1	Structural classification of biotin containing enzymes	16
2	Identification of the product of acetyl-CoA carboxylase assay by TLC	37
3	Identification of the product of the acetyl- CoA carboxylase assay by paper chromatography	38
4	Dependence of acetyl-CoA carboxylase activity on protein levels of cell-free extracts of maize leaves	40
5	Effect of time on acetyl-CoA carboxylase activity in cell-free extracts of maize leaves	41
6	Stabilization of acetyl-CoA carboxylase activity in cell-free extracts of maize by $\beta\mbox{-mer-captoethanol}$	43
7	Stabilization of acetyl-CoA carboxylase activity in cell-free extracts of barley by $\beta\text{-mer-captoethanol}$	44
8	Distribution of enzymes, chlorophyll and pro- tein following the centrifugation of purified maize chloroplasts in a sucrose density gradient	47
9	Representative field of a preparation of iso- lated maize chloroplasts	49

í.

xiii

Figure

10	Distribution of enzymes, chlorophyll and protein following the centrifugation of dis- rupted maize chloroplasts in a discontinuous sucrose density gradient	50
11	Representative field of a preparation of iso- lated maize mesophyll protoplasts	58
12	Representative field of a preparation of maize bundle sheath strands	59
13	Effect of light on the activity of acetyl-CoA carboxylase in maize leaves	71
14	Elution of acetyl-CoA carboxylase of maize from Sepharose-N-Propane	77
15	Gel filtration of acetyl-CoA carboxylase of maize on Ultrogel AcA22	78
16	Gel filtration of acetyl-CoA carboxylase of maize on Ultrogel AcA22	80
17	Polyacrylamide gel electropheresis of acetyl- CoA carboxylase of maize leaves	81
18	Relationship between HCO_3 , acetyl-CoA concentrations and the activity of maize leaf acetyl-CoA carboxylase	86
19	Relationship between HCO_3 , acetyl-CoA concentrations and the activity of barley leaf acetyl-CoA carboxylase	87
20	Lineweaver-Burk analysis of the effect of acetyl-CoA on the activity of maize leaf acetyl-CoA carboxylase	88

Page

Figure

21	Lineweaver-Burk analysis of the effect of acetyl-CoA on the activity of barley leaf acetyl-CoA carboxylase	89
22	Relationship between HCO_3 , acetyl-CoA concen- trations and the activity of maize leaf acetyl-CoA carboxylase	90
23	Relationship between HCO_3^- , acetyl-CoA concen- trations and the activity of barley leaf acetyl-CoA carboxylase	91
24	Lineweaver-Burk analysis of the effect of HCO_3 on the activity of maize leaf acetyl-CoA carboxylase	93
25	Lineweaver-Burk analysis of the effect of HCO_3^- on the activity of barley leaf acetyl-CoA carboxylase	94
26	Effect of $MgCl_2$ on the activity of maize leaf acetyl-CoA carboxylase	95
27	Effect of $MgCl_2$ on the activity of barley leaf acetyl-CoA carboxylase	96
28	Effect of ATP on the activity of maize leaf acetyl-CoA carboxylase	97
29	Effect of ATP on the activity of barley leaf acetyl-CoA carboxylase	98
30	Relationship between ATP, MgCl ₂ concentrations and the activity of maize leaf acetyl-CoA carboxylase	100

xv

Page

Figure

Page

31		Relationship between ATP, MgCl2 concentrations and the activity of barley leaf acetyl-CoA carboxylase	101
32		Analysis by Hill-plot of the relationship be- tween ATP, MgCl ₂ concentrations and the activity of maize leaf acetyl-CoA carboxylase	102, 103
33		Analysis by Hill-plot of the relationship be- tween ATP, $MgCl_2$ concentrations and the activ- ity of barley leaf acetyl-CoA carboxylase	104
34		Effect of divalent metal ions on the activity of maize leaf acetyl-CoA carboxylase	106
35	,	Effect of pH on the activity of maize leaf acetyl-CoA carboxylase	108
36		Effect of pH on the activity of barley leaf acetyl-CoA carboxylase	109
37		Effect of temperature on the activity of maize leaf acetyl-CoA carboxylase	110
38		Effect of KCl on the activity of maize leaf acetyl-CoA carboxylase	112
39		Specificity of carboxylation by maize leaf acetyl-CoA carboxylase	114
40		Effect of malonyl-CoA on the activity of maize leaf acetyl-CoA carboxylase	115
41		ADP inhibition of the activity of maize leaf acetyl-CoA carboxylase	117

		xvii
Figure		Page
42	Lineweaver-Burk analysis of the effect of ADP on the activity of maize leaf acetyl-CoA carboxylase	118
43	Analysis by Dixon-plot of the effect of ADP on the activity of maize leaf acetyl-CoA carboxylase	119
44	ADP inhibition of the activity of maize leaf acetyl-CoA carboxylase	120
45	Lineweaver-Burk analysis of the effect of ADP on the activity of maize leaf acetyl-CoA carboxylase	121
46	CoA inhibition of the activity of maize leaf acetyl-CoA carboxylase	122
47	Lineweaver-Burk analysis of the effect of CoA on the activity of maize leaf acetyl-CoA car- boxylase	123
48	Analysis by Dixon-plot of the effect of CoA on the activity of maize leaf acetyl-CoA car- boxylase	124
49	Palmitoyl-CoA inhibition of the activity of maize leaf acetyl-CoA carboxylase	126
50	Lineweaver-Burk analysis of the effect of palmitoyl-CoA on the activity of maize leaf acetyl-CoA carboxylase	127

Table		Page
I	Protomer-polymer transition of animal acetyl-CoA carboxylase	5
II	Cofactor requirements of acetyl-CoA carboxy- lase activity in cell-free extracts of maize	39
III	Acetyl-CoA carboxylase activity in cell-free extracts of spinach leaves	45
IV	Preparation of biotin carboxylase from <u>E</u> . <u>coli</u>	52
V	Cofactor requirements for the carboxylation of the biotin prosthetic group in maize chloro- plasts by biotin carboxylase of \underline{E} . <u>coli</u>	53
VI	Malonyl-CoA formation from carboxyl-biotin by maize chloroplasts	54
VII	Distribution of the biotin prosthetic group in chloroplasts isolated from the leaves of three plants	56
VIII	Distribution of enzymes between mesophyll proto plasts and bundle sheath strands	- 57
IX	Effect of leaf development on [l-14C] acetate incorporation into lipids by leaf slices of maize	61
х	Effect of leaf development on [1-14C] acetate incorporation into lipids by isolated chloro-plasts of maize	63

Table

Table		Page
XI	Acetyl-CoA carboxylase activity in cell-free extracts obtained from sections of maize leaves	64
XII	Acetyl-CoA carboxylase activity in chloro- plasts isolated from sections of maize leaves	66
XIII	[1- ¹⁴ C] acetate incorporation into lipids of chloroplasts and acetyl-CoA carboxylase activities in cell-free extracts and chloro- plasts from maize, barley and spinach	67
XIV	Acetyl-CoA carboxylase in maize and spinach leaves	69
XV	Purification of acetyl-CoA carboxylase of maize leaves using procedure I	73
XVI	Purification of acetyl-CoA carboxylase of maize leaves using procedure II	74
XVII	Interaction of acetyl-CoA carboxylase with Sepharose-N-C $_{\rm X}$	75
XVIII	Stability of partially purified acetyl-CoA carboxylase	82
XIX	Purification of acetyl-CoA carboxylase of barley leaves using procedure I	85
ХХ	Activation of maize leaf acetyl-CoA carboxy- lase by monovalent cations	113
XXI	Inhibition of maize leaf acetyl-CoA carboxy- lase activity by sulfhydryl reacting reagents	129

xix