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Abstract

Agrichemical spray drift is an issue of concern for the orcharding industry. Shelterbelts sur-
rounding orchard blocks can signi�cantly reduce spray drift by intercepting droplets from the
air�ow. At present, there is little information available with which to predict drift deposits
downwind, particularly in the case of a fully-sheltered orchard block.

In this thesis, we develop a simple mathematical model for the transport of airborne drifting
spray droplets, including the e¤ects of droplet evaporation and interception by a shelterbelt.
The object is for the model to capture the major features of the droplet transport, yet be simple
enough to determine an analytic solution, so that the deposit on the ground may be easily
calculated and the e¤ect of parameter variations observed.

We model the droplet transport using an advection-dispersion equation, with a trapping term
added to represent the shelterbelt. In order to proceed analytically, we discretise the shelterbelt
by dividing it into a three-dimensional array of blocks, with the trapping in each block concen-
trated to the point at its centre. First, we consider the more straightforward case where the
droplets do not evaporate; solutions are presented in one, two and three dimensions, along with
explicit expressions for the total amount trapped and the deposit on the ground. With evapo-
ration, the model is more di¢ cult to solve analytically, and the solutions obtained are nestled
in integral equations which are evaluated numerically. In both cases, examples are presented to
show the deposition pro�le on the ground downwind of the shelterbelt, and the corresponding
reduction in deposit from the same scenario without the shelterbelt.
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Notation

Upper Case

C Droplet number concentration [# m�3]
DL Alongwind (longitudinal) dispersion coe¢ cient [m2 s�1]
DT Crosswind (transverse) dispersion coe¢ cient [m2 s�1]
DV Vertical dispersion coe¢ cient [m2 s�1]
DW Di¤usivity of water vapour in air [m2 s�1]
H Release height [m]
LL Dominant alongwind (longitudinal) turbulence length scale [m]
LT Dominant crosswind (transverse) turbulence length scale [m]
LV Dominant vertical turbulence length scale [m]
Lv Latent heat of vaporisation [J kg�1]
MW Molecular mass of water [kg mol�1]
Q Mass release [kg]
R Dimensionless function non-zero only within a region of trapping [-]
Rg Universal gas constant [J mol�1 K�1]
S Droplet settling speed [m s�1]
T Absolute temperature [K]
X0 release x coordinate [m]
Y0 release y coordinate [m]

Lower Case

a Droplet radius [m]
c Droplet mass concentration [kg m�3]
cp Speci�c heat of water [J kg�1 K�1]
d Droplet diameter [m]
fh Ventilation coe¢ cient for heat [-]
fw Ventilation coe¢ cient for water vapour [-]
g Gravitational acceleration [m s�2]
ka Thermal conductivity of moist air [W m�1 K�1]
kb Background trapping rate [s�1]
k E¤ective trapping rate [m3 s�1]
m Droplet mass [kg]
p Laplace transform variable [s�1]
psat Saturation pressure [Pa]
t Time [s]
u Mean wind speed (positive x direction) [m s�1]
x

y

z

9>=>; Cartesian coordinate system [m]



Bold

D Dispersion tensor [m2 s�1]
i Unit vector in the positive x direction [-]
j Unit vector in the positive y direction [-]
k Unit vector in the positive z direction [-]
u Mean wind velocity [m s�1]
v Droplet velocity relative to the origin [m s�1]

Greek

�a Dynamic viscosity of air [kg m�1 s�1]
�a Air density [kg m�3]
�w Droplet density (water) [kg m�3]
� Relative humidity (expressed as a fraction) [-]
 Spatial Fourier transform variable [m�1]
! Spatial Fourier transform variable [m�1]



Chapter 1

General Introduction

1.1 Background and Research Motivation

Crop spraying is a valuable production tool for the agricultural industry. In New Zealand,

estimates of the worth of hydrogen cyanamide (HC) spraying to the kiwifruit industry are as

high as $60�$200million per year (Manktelow et al., 2006; Ministry of Agriculture and Forestry,

2006). Yet the issue is often highly controversial: sprays contain a wide range of droplet sizes

and, because of their light weight, smaller droplets often remain airborne for a long time and

can be carried great distances by the wind. The issue is a particular concern for orchardists,

who use airblast sprayers such as the ones shown in Figures 1.1 and 1.2; the photographs in

these �gures, courtesy of Plant Protection Chemistry NZ, are from a series of spray drift trials in

kiwifruit and avocado orchards in New Zealand. Airblast sprayers propel droplets upwards and

into fruit trees with the assistance of air jets, so the potential for drift is high. O¤-target drift

of sprays containing chemicals may be hazardous to human or animal health in the surrounding

environment, therefore it is important to minimise such drift.

Most orchard blocks are surrounded by shelterbelts, such as the kiwifruit block shown in Fig-

ure 1.3. Not only do these protect crops from wind damage, they also provide one of the most

e¤ective means of reducing spray drift, by lowering windspeeds and �ltering droplets from the

air�ow. Windspeed is reduced by varying amounts both upwind and downwind of a shelterbelt;

experiments have found the zone of in�uence to be between about 5h upwind and 20h down-

wind, where h is the shelterbelt height (Ucar & Hall, 2001). The porosity of a shelterbelt is

one of the major factors a¤ecting both the zone of in�uence on windspeed, and the �ltration of

droplets from the air. For example, most of the air�ow is de�ected up and over the top of a very

1



1. General Introduction 2

Figure 1.1: Spray released from an airblast sprayer. Photograph courtesy of Plant Protection Chemistry
New Zealand.

Figure 1.2: An airblast sprayer in an avocado orchard. Photograph courtesy of Plant Protection Chem-
istry New Zealand.
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Figure 1.3: A kiwifruit orchard block surrounded by a shelterbelt. Photograph courtesy of Plant Pro-
tection Chemistry New Zealand.

dense shelterbelt, carrying any droplets with it to be deposited farther downwind, whereas a

very porous shelterbelt has little e¤ect on the air�ow, but also does not have enough vegetation

elements with which to �lter the droplets (Mercer, n.d.). Other in�uencing factors include shel-

terbelt species and droplet size. Various experimental studies have con�rmed the e¤ectiveness

of shelterbelts in reducing spray drift. Despite di¤erences in experimental methods, there is

a general agreement that reductions in drift of up to 90 % are possible downwind of a porous

shelterbelt. Arti�cial netting is observed to be similarly, though slightly less, e¤ective, with

reductions of up to 75 % (Hewitt, 2001; Ucar & Hall, 2001). In New Zealand, in a series of �eld

trials carried out in kiwifruit and apple orchards, measured drift levels with shelter were up to

8 times lower than those without shelter (P. Holland & Maber, 1991).

Whilst there has been some research aimed at evaluating drift reduction by shelterbelts, very

little information is available to quantify drift deposits downwind, particularly in the case of a

fully-sheltered orchard block. The more information that can be provided about predicted drift

deposits, the better growers and local or regional authorities will be able to identify hazards and

minimise drift impacts.

The research presented in this thesis came about following a problem brought to the Mathematics-
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in-Industry Study Group (MISG)1 in 2005, in which the author was a participant. The problem,

entitled �Predicting O¤-Site Deposition of Spray Drift from Horticultural Spraying Through

Porous Barriers on Soil and Plant Surfaces�, was presented by Lincoln Ventures Ltd2 and Plant

Protection Chemistry New Zealand (PPCNZ)3. The MISG was tasked with investigating a

mathematical model for the spray capture e¢ ciency of a shelterbelt, in order to produce a bet-

ter working model for use in a spray drift management system; the report may be found in

Mercer & Roberts (2005). With a continued interest in further study in the area of spray drift

reduction by shelterbelts, Lincoln Ventures Ltd have provided support for the research in this

thesis.

1.2 Literature Review

Spray Drift Modelling

The transport of spray droplets (with no shelterbelt) has been extensively studied. Models for

droplet transport from a sprayer may be broadly divided into Lagrangian, or particle-tracking,

models and Gaussian plume models. Lagrangian models simulate the trajectories of many indi-

vidual droplets; examples include Thompson & Ley (1983), Miller & Had�eld (1989), Walklate

(1992) and Holterman et al. (1997). Gaussian plume models are generally more applicable

away from the source, but can be used to provide an estimate of drift in the near-�eld (Craig,

2004). Further discussion of computer models and software packages for modelling spray drift

may be found in Ucar & Hall (2001), who point out that, without quanti�cation of o¤-site

transport under shelterbelt or windbreak conditions, tactics to minimise spray drift cannot be

fully exploited.

Shelterbelts as a Drift Mitigation Strategy

Published research into drift reduction by shelterbelts is comprehensively reviewed up to 2001

by Hewitt (2001) and Ucar & Hall (2001). These reviews cover theoretical considerations

and experimental results on: (i) windspeed attenuation and shelterbelt aerodynamics, (ii) the

amount by which drift can be reduced, (iii) the in�uence of shelterbelt species and structure,

and (iv) computational models and software packages for spray drift.

1Mathematics-in-Industry Study Group 2005 website http://misg2005.massey.ac.nz
2Lincoln Ventures Ltd website http://www.lvl.co.nz
3Plant Protection Chemistry New Zealand website http://www.ppcnz.co.nz
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There has been considerable research into the air�ow through and around a shelterbelt. Experi-

mental results on windspeed attenuation are summarised by Hewitt (2001). Models to simulate

the air�ow are numerical and computationally intensive, requiring solutions to the Navier-Stokes

equations with turbulence. H. Wang et al. (2001), for example, use a quasi-three-dimensional

model where the shelterbelt is in�nitely long across-wind but the air�ow may be fully three-

dimensional. Mercer & Roberts (2005) and Mercer (n.d.) use two-dimensional models which

are simpler but still capture the main features of the air�ow.

While there have been a number of experimental studies measuring the reduction in spray drift

downwind of a shelterbelt (P. T. Holland et al., 1997; Hewitt, 2001; Ucar & Hall, 2001), there

is very little information available to predict the reduction e¢ ciency of a shelterbelt from its

physical characteristics. Raupach et al. (2000, 2001) developed a model relating the particle

transmittance of a shelterbelt � (the fraction of particles which pass through without being

trapped) to its optical porosity � . They found that the relationship depended on particle size

and the diameter of the shelterbelt vegetation elements, but that for most applications involving

spray drift the approximation � = � works well. Mercer & Roberts (2005) evaluated the model

for use in a spray drift management system, and concluded that it was suitable over the typical

range of expected droplet sizes, windspeeds and vegetation element sizes.

There are also very few models which can be used to predict spray drift deposits downwind of a

shelterbelt. For particulates in general, Raupach et al. (2000) gain an idea of the concentration

in the air downwind of a shelterbelt using a very simple two-dimensional steady-state model, in

which particles are advected by the wind and disperse only vertically. The shelterbelt is assumed

to be immersed in a particle-laden air�ow, so that the upwind concentration is approximately

uniform with height. Lazzaro et al. (2008) take an empirical approach, using experimental data

to �t an exponential decay model for the variation in the amount of spray drift with distance

downwind. There are several assumptions which must hold for this model to apply; these

include that sprayer operating conditions are similar to those of the experiments, and that none

of the spray passes over the shelterbelt.

There is certainly scope for more investigation into modelling spray drift deposition, particularly

in the case of a fully-sheltered orchard block. The simpli�ed model in Raupach et al. (2000)

is only intended to provide an idea of particle concentration; it does not include detail such as

gravitational settling, nor does it allow for evaporation. The empirical model of Lazzaro et al.

(2008) may not be applicable if conditions are too dissimilar to those in the experiments upon

which it is based. Also, both of the models above are two-dimensional, so that the shelterbelt
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is modelled as in�nitely long across-wind; a three-dimensional model would be bene�cial, as it

would allow for �nite-size orchard blocks.

1.3 Research Objective

The aim of this research is to develop a simple mathematical model for the transport of airborne

drifting spray droplets, including the e¤ects of droplet evaporation and capture by a shelterbelt.

We seek, if possible, analytic solutions so that the capture of droplets by the shelterbelt and

the subsequent deposit on the ground may be easily calculated, and the e¤ect of parameter

variations estimated. We do not consider the spraying process itself, nor the crop; our focus is

on the small droplets which remain airborne and are carried by the wind.

Whilst the accuracy of analytical models is often limited by a number of inherent assumptions,

their simplicity gives them several advantages over numerical models. The e¤ects of parameter

variations are more readily observed, since all of the in�uencing parameters are explicitly ex-

pressed in a mathematically closed form (Lin & Hildemann, 1996; Essa et al., 2007). Lindstrom

& Boersma (1989) also note that:

� Analytical methods are probably the most e¢ cient alternative when the data necessary

for identi�cation of the system are sparse and uncertain.

� Where applicable, these methods are the most economical approach.

� They are always the most useful means for an initial order-of-magnitude estimation.

� Experienced modellers and complex numerical codes are not required.

1.4 Methodology

As stated above, our objective is to develop a simple analytic model for the transport of airborne

drifting spray droplets, including the trapping of these droplets by a shelterbelt. Our approach

is to consider the cloud of spray droplets as a continuum and formulate an advection-dispersion

model, including a sink term to represent the trapping. This approach is based upon previous

analysis of particle transport within a forest canopy by McKibbin (2006).
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A cloud of spray droplets in the air is advected by the wind and dispersed by turbulence, all

while falling under the in�uence of gravity. If the droplets are also evaporating, the loss of

mass will cause them to fall more slowly as time goes on. Within a shelterbelt, some of the

droplets may be trapped by impacting on the foliage, and these trapped droplets are removed

from the air�ow. Conceptually, the number of droplets trapped will depend upon how many

are in the shelterbelt and thus have the potential to be trapped. The situation is depicted

in Figure 1.4a; initially the droplet cloud is small and concentrated, then at later times it has

been blown further by the wind, fallen nearer to the ground, and become more spread due to

turbulence. Downwind of the shelterbelt, because some of the droplets have been trapped, there

is a smaller proportion to go on and deposit on the ground.

We model the droplet transport using an advection-dispersion equation. This type of equation is

widely-used in modelling particulate transport, as in many cases analytic solutions are possible.

Just a few examples of its application include contaminant transport in aquifers, pollen and

dust transport, and volcanic ashfall (Lindstrom & Boersma, 1989; Eltayeb & Hassan, 2000;

McKibbin, 2006; Lim, 2005). We include the shelterbelt in our model as a block within which

droplets are trapped at a rate proportional to the local concentration. The proportionality

constant, termed the background trapping rate, is a measure of the droplet capture e¢ ciency of

the shelterbelt, and is related to physical properties such as the foliage size and density.

Figure 1.4b is a conceptual illustration of our model as it is described above, with the shelterbelt

represented by a block of trapping. Continuous trapping of droplets throughout the block would

be the ideal scenario from a continuum viewpoint, unfortunately however it is di¢ cult to obtain

an analytic solution with this approach. Instead, we look to obtain an analytic solution by

discretising the shelterbelt as shown in Figure 1.4c: the discretisation is achieved by dividing

the block representing the shelterbelt into a three-dimensional array of smaller blocks, where

the e¤ect of trapping in each smaller block is concentrated to the point at its centre.

We solve the model for a cohort of droplets that are all of the same size, and released instan-

taneously from a point. The distribution of droplet sizes released from a sprayer would be

simulated by superposing solutions to the model, each for a di¤erent droplet size. Also, solu-

tions for other releases such as a line source can be constructed from the point release (in the

manner of Lim, 2005, and McKibbin, 2006).
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(a) Conceptual illustration of droplet transport with trapping by a shelterbelt.
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(b) Conceptual illustration of modelling droplet transport with a shelterbelt represented by
a block of trapping.
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(c) Conceptual illustration showing the trapping block above discretised using an array of
trapping �points�.

Figure 1.4: Sketches illustrating the advection-dispersion model for droplet transport with trapping in a
shelterbelt. t0 is the release time, and t1, t2 and t3 are later times.
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1.5 Thesis Overview

This thesis presents details of the development of our continuum model for spray drift transport

as outlined above. We begin in Chapter 2 with background information on the kinetics and

thermodynamics of individual droplets in the air. This material lays a foundation for the

continuum models in subsequent chapters. The �rst part of the chapter is devoted to the

kinetics of moving droplets; it includes the equations of motion describing a droplet�s trajectory

and the rate at which it falls towards the ground (that is, its settling speed), and also includes

calculated examples of droplet trajectories illustrating why small droplets are of the greatest

concern for spray drift. The second part of the chapter is devoted to the thermodynamics of

evaporating droplets; it includes expressions for the evaporation rate and droplet temperature

as a function of the relative humidity and ambient temperature, and also includes a calculated

example showing the e¤ect of evaporation on a droplet�s trajectory.

Chapters 3 �5 cover the development of, and solutions to, our advection-dispersion model in

the more straightforward case where there is no evaporation of the droplets. Chapter 3 contains

a full derivation of the model, along with the initial and boundary conditions used and some

discussion of the boundary condition on the ground. This is our idealised model where the

shelterbelt is represented by a block of continuous trapping (as per Figure 1.4b). The chapter

also features a summary of some typical parameter values, and an expression for the background

trapping rate determined from the Raupach, Woods, et al. (2001) model for the droplet capture

e¢ ciency of a shelterbelt.

Chapter 4 introduces the point representation for trapping, which will later be used to discretise

the shelterbelt. Two separate cases are considered: �rst, a special case where droplets disperse

only horizontally, followed by the general case where droplets disperse both horizontally and

vertically. In each case, we present solutions to the model with a single point representation for

trapping in one, two and three dimensions, along with explicit expressions for the total amount

trapped and the deposit on the ground. An interesting artefact of the point representation

becomes apparent: the droplet mass concentration is negative for a short time in a localised

area beneath the trapping point. Whilst a negative concentration is conceptually wrong, the

issue is magni�ed by the unrealistically high trapping rates used for illustrative purposes, and

is shown to be of little consequence with realistic trapping rates in Chapter 5.

Chapter 5 is the culminating chapter for the model in the absence of evaporation; in it we

describe the discretisation of the shelterbelt via the point representation from Chapter 4. Using
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the solutions that were obtained in that chapter, we construct the corresponding solutions for

trapping in the discretised shelterbelt. The resulting expressions for the total amount trapped

and the deposit on the ground allow us to plot deposition pro�les, and to calculate the reduction

in deposit downwind of the shelterbelt.

We draw to a close in Chapter 6 by introducing evaporation into our advection-dispersion model.

Attention is restricted to the single point representation for trapping, which could later be used

to construct solutions for the discretised trapping block in the same manner as in Chapter 5. The

same two cases are considered as in Chapter 4; that is, the special case of horizontal dispersion

only, followed by the general case of both horizontal and vertical dispersion. Obtaining analytic

solutions to the model with evaporation in the special case is relatively straightforward, whereas

the latter case is much more di¢ cult.

Finally, we conclude the thesis with Chapter 7, which contains a summary of the main points

from the development and analysis of the models in Chapters 3 �6, and o¤ers some suggestions

for future research.



Chapter 2

Preliminaries: Single Droplet
Kinetics and Thermodynamics

This chapter examines the kinetics and thermodynamics of an individual droplet moving in the

air; it is intended to provide background information to assist in understanding the continuum

models developed in the next and subsequent chapters. All of the theoretical material in the

chapter may be found in literature sources (as cited in the text), and the equations of the

kinetics are those upon which Lagrangian, or particle-tracking, models for spray drift are based

(see Bilanin et al., 1989; Brown & Sidhamed, 2001).

The chapter is divided roughly in two. Firstly, Sections 2.1 - 2.3 relate to the kinetics: we

look at the equation of motion which governs the droplet �ight, and the terminal velocity at

which it no longer accelerates. We also provide some calculated examples of droplet trajectories

without evaporation. The material in these three sections leads on to the continuum models

in Chapters 3, 4 and 5, which do not include evaporation. Secondly, Sections 2.4 - 2.5 relate

to the thermodynamics when there is evaporation: we show how expressions are derived for the

rate of mass loss and temperature of the droplet, and give a further example illustrating the

e¤ect of evaporation on the droplet trajectory. The material in these two sections leads on to

Chapter 6, which sees the introduction of evaporation to the continuum models.

2.1 Equation of Motion

An individual droplet in the air is subject to three external forces: a drag force due to relative

motion between the droplet and the air, a weight force due to gravity, and a buoyancy force

11
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due to the air displaced by the droplet. The droplet is much heavier than the air it displaces,

therefore the buoyancy force is negligible and can be ignored. Assuming that the droplet is

spherical, and behaves like a solid particle, these forces sum according to Newton�s second law

to give the following di¤erential equation for the velocity:

m
dv

dt
= ��

8
CD�ad

2 jv � uj (v � u)�mgk

= ��
8
CD�ad

2 jv � uj (v � u)� �

6
�wd

3gk (2.1)

where m [kg], �w [kg m
�3], d [m] and v [m s�1] are the droplet�s mass, density, diameter and its

velocity relative to the ground, respectively, CD is the drag coe¢ cient [-], u is the wind velocity

[m s�1], �a is the air density [kg m
�3], g is the gravitational acceleration [m s�2] and k is a unit

vector pointing vertically upwards.

The drag coe¢ cient CD is a function of the Reynolds number Re; for a spherical droplet, Green

& Perry (2008, p. 6-52) give

CD =

8>>>>>><>>>>>>:

24

Re
; Re < 0:1;

24

Re

�
1 + 0:14Re0:7

�
; 0:1 < Re < 1000;

0:447; 1000 < Re < 350000:

(2.2)

The Reynolds number Re is the ratio of inertial forces to viscous forces, and is given by

Re =
�a jv � uj d

�a
(2.3)

where �a is the dynamic viscosity of air [kg m
�1 s�1]. In the region of �ow for which CD =

24

Re
,

known as Stokes �ow, Equation (2.1) may be solved analytically to give the droplet velocity and

subsequently its displacement; according to Equation (2.2), Stokes �ow applies for Re < 0:1,

however some texts extend this to Re < 1 (for example Reist, 1993, p. 51).

2.2 Terminal Velocity

A droplet released into the air accelerates according to Equation (2.1) until the drag force

balances its weight, after which it continues at a constant terminal velocity denoted vT . Setting

the drag force equal to the weight in Equation (2.1) gives

vT = u�
4�wgd

3�aCD jvT � uj
k: (2.4)
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We write this as vT = u�Sk, where S is the downward settling speed. At its terminal velocity,

the droplet is therefore travelling with the wind horizontally and falling at speed S. From

Equation (2.4):

S =

s
4�wgd

3�aCD
: (2.5)

The drag coe¢ cient CD is itself dependent upon the droplet speed S, thus Equation (2.5) has

to be solved numerically. Figure 2.1 on page 14 shows the settling speed S for droplets with

diameter between 10 �m and 1000 �m; some speci�c values between 10 �m and 200 �m, along

with the corresponding Reynolds numbers, are then given in Table 2.1. The parameter values

used are �a = 1:23 kg m
�3, �a = 1:46�10�5 kg m�1 s�1, �w = 998:29 kg m�3 and g = 9:8 m s�2

(at standard atmospheric temperature and pressure).

2.3 Some Example Trajectories

Here we present some calculated examples of individual droplet trajectories. The trajec-

tory is determined from the coupled system of di¤erential equations, for the droplet velocity

v =(vx; vy; vz) and displacement x =(x; y; z), obtained from Equation (2.1):

dx

dt
= v;

dv

dt
= �3�aCD

4�wd
jv � uj (v � u)� gk: (2.6)

In the examples below, this system is solved numerically with MATLAB R
 Version 7 (The

MathWorksTM , n.d.), using the in-built solver ode15s designed for sti¤ problems. The sti¤

solver is more e¢ cient here because there are two distinct time scales involved: droplets reach

their terminal velocity quickly, but then take comparatively much longer to fall to the ground.

In both examples, the droplet is released horizontally with initial velocity v0 = (18; 0; 0) m s�1

(a typical release speed from a spray nozzle), from a height of 3 m above the ground into an

ambient wind with velocity u = (1; 0; 0) m s�1.

The �rst example (Figures 2.2 and 2.3 on page 16) is for a small droplet, with diameter d = 10 �m

and settling speed S = 0:003 m s�1. Figure 2.2 shows the droplet trajectory, and Figure 2.3

shows the individual components of the droplet velocity scaled to appear on the same axes. The

horizontal component initially decreases as the droplet decelerates from its release speed to the

ambient windspeed, and the vertical component initially increases as the droplet begins to fall

and then attains its settling speed S. Note that the droplet reaches terminal velocity almost
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Figure 2.1: Settling speed, as calculated from Equation (2.5), for a range of di¤erent droplet diameters.

Table 2.1: Settling speed, as calculated from Equation (2.5), for a range of droplet diameters between
100 �m and 200 �m.

Droplet diameter Settling speed Reynolds number

d [�m] S [m s�1] Re [-]

10 0:003 0:003

20 0:015 0:025

50 0:087 0:366

70 0:161 0:947

100 0:294 2:478

120 0:392 3:960

150 0:544 6:868

170 0:646 9:247

200 0:798 13:448
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immediately (both components of the velocity are constant after around 2 ms in Figure 2.3); it

then takes 807 s to hit the ground, by which time it has travelled just over 800 m horizontally.

The second example (Figures 2.4 and 2.5 on page 17) is for a larger droplet, with diameter

d = 200 �m and settling speed S = 0:798 m s�1. Once again, Figure 2.4 shows the droplet

trajectory, and Figure 2.5 shows the individual components of the droplet velocity scaled to

appear on the same axes. The 200 �m droplet in this example retains its initial velocity for

longer, but settles to the ground much quicker, than the 10 �m droplet in the �rst example:

the larger droplet takes around 0:4 s to reach terminal velocity, but it hits the ground after

only 3:9 s and travels just under 4:5 m horizontally. These two examples illustrate why small

droplets pose the greatest risk for spray drift: large droplets settle quickly and so do not travel

far horizontally, whereas small droplets settle slowly and are carried long distances by the wind.

2.4 Droplet Evaporation

As a droplet evaporates, liquid water at the droplet�s surface becomes water vapour which di¤uses

out through the surrounding air, and there is also a heat exchange which results in a decrease

in droplet temperature. The rate of evaporation and droplet temperature are interdependent;

formulae based on the di¤usion of water vapour are common and may be found, for example,

in Davies (1978), Pruppacher & Klett (1978, Chap. 13), Asman et al. (2003, Chap. 4) and

Lorenzini (2006). The analysis assumes that the droplet is evaporating in a large volume of air,

so that there is no e¤ect on the ambient conditions (that is, the ambient relative humidity and

temperature remain uniformly constant and are una¤ected by the evaporative mass and heat

loss).

Rate of Mass Loss by Evaporation

An expression for the rate at which a droplet loses mass by evaporation is found by examining

the di¤usion of water vapour from the droplet�s surface out through the surrounding air. This

is done by assuming that the droplet is stationary in still air; relative motion is accounted for

by introducing a ventilation coe¢ cient, as described later in the section.

The following derivation is adapted from Davies (1978, pp. 136-138). When the droplet begins

to evaporate, a changing distribution of water vapour is established around it, but this quickly
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Figure 2.2: The trajectory of an individual droplet, 10 �m in diameter, released horizontally at speed
18 m s�1 from a height of 3 m in a 1 m s�1 wind. The displayed time t = 807 s is the time at which the

droplet reaches the ground.
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Figure 2.3: Individual components of the droplet velocity over time, scaled to be displayed on the same
axes, for the release in Figure 2.2. vx is the horizontal component of the droplet velocity, and jv0j is the
release speed. vz is the vertical component of the droplet velocity, and S is the settling speed. Parameter

values are as for Figure 2.2.
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Figure 2.4: The trajectory of an individual droplet, 200 �m in diameter, released horizontally at speed
18 m s�1 from a height of 3 m in a 1 m s�1 wind. The displayed time t = 3:9 s is the time at which the

droplet reaches the ground.
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Figure 2.5: Individual components of the droplet velocity over time, scaled to be displayed on the same
axes, for the release in Figure 2.4. vx is the horizontal component of the droplet velocity, and jv0j is the
release speed. vz is the vertical component of the droplet velocity, and S is the settling speed. Parameter

values are the same as for Figure 2.4.
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becomes steady over a distance from the surface of up to a few radii. Assuming that it does

not vary with angle, the distribution of water vapour is described by the di¤usion equation in

spherical coordinates:
@w

@t
= DW

�
2

r

@w

@r
+
@2w

@r2

�
(2.7)

where w is the mass concentration of water vapour [kg m�3], DW is the di¤usivity of water

vapour in air [m2 s�1], and r is the radial distance from the centre of the droplet [m]. When the

distribution becomes steady so that
@w

@t
= 0, integrating the right-hand side of Equation (2.7)

gives

w (r) = w1 +
a

r
(wa � w1) (2.8)

where a is the droplet radius, wa = w (a) is the water vapour concentration at the droplet

surface, and w1 = w (1) is the water vapour concentration at r = 1 (that is the ambient

value). Using Fick�s law, the outward di¤usive mass �ux of water vapour per unit area is

�DW
dw

dr
; the rate of change in the droplet mass with respect to time is then

dm

dt
= 4�a2

�
DW

dw

dr

�
r=a

= �4�aDW (wa � w1) : (2.9)

Since the water vapour is almost a perfect gas, the concentration can be expressed in terms of

the vapour pressure and temperature:

w =
pMW

RgT
(2.10)

where MW is the molecular weight of water [18 � 10�3 kg mol�1], Rg is the universal gas

constant [8:315 J mol�1 K�1], p is the vapour pressure [Pa] and T is the absolute temperature

[K]. Equation (2.9) then becomes

dm

dt
= �4�aMWDW

Rg

�
pa
Ta
� p1
T1

�
: (2.11)

Environmental conditions are usually measured in terms of relative humidity, the ratio of the

actual amount of water in the air to the maximum amount it could hold at that temperature;

the relative humidity � is related to the vapour pressure p by p = �psat (T ), so that

dm

dt
= �4�aMWDW

Rg

�
psat (Ta)

Ta
� �psat (T1)

T1

�
(2.12)

where psat is the saturation pressure (which is a function of temperature). In Equation (2.12)

above, the relative humidity at the droplet surface is equal to one (since conditions there are

saturated), and � represents the relative humidity at r = 1, or in other words the ambient

value.
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The change in droplet size with respect to time may also be found from Equation (2.12). The

mass of the droplet in terms of its radius is m (t) =
4

3
��wa (t)

3, thus

dm

dt
= 4��wa

2da

dt
: (2.13)

Substituting Equation (2.12) for the rate of change in the mass with respect to time, the corre-

sponding rate of change in the droplet radius with respect to time is

da

dt
= �MWDW

Rg�wa

�
psat (Ta)

Ta
� �psat (T1)

T1

�
: (2.14)

So, both the rate at which a droplet evaporates and the subsequent rate at which it decreases in

size are dependent upon the relative humidity, and the ambient and droplet temperatures. The

temperature of an evaporating droplet is cooler than that of the surrounding air, as is discussed

further below.

Droplet Temperature

During evaporation, there is a heat exchange between the droplet and the surrounding air: heat

is lost from the droplet in order to evaporate some of the water, which results in a decrease

in the temperature of the droplet, and heat is then conducted to the cooler droplet from the

surrounding air. A steady state is rapidly reached where there is zero net heat exchange, and

the droplet remains at constant temperature but cooler than the surrounding air.

An expression for the droplet temperature is found by examining the heat exchange; once again

this is done assuming that the droplet is stationary in still air. Similar to the water vapour

concentration, when the droplet begins to evaporate a temperature gradient is established around

it, described by the heat equation in spherical coordinates:

@T

@t
=

ka
�wcp

�
2

r

@T

@r
+
@2T

@r2

�
(2.15)

where ka is the thermal conductivity of moist air [W m�1 K�1], and cp is the speci�c heat of

water [4190 J kg�1 K�1]. Once the steady-state has been reached where
@T

@t
= 0, the right-hand

side integrates to give

T (r) = T1 +
a

r
(Ta � T1) : (2.16)

The total thermal energy of the droplet is mcpTa; in the steady state, the rate of change in the

thermal energy is
dm

dt
cpTa =

dm

dt
Lv +

dm

dt
cpTa + 4�kaa

2

�
dT

dr

�
r=a

: (2.17)
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Table 2.2: Temperature of an evaporating droplet for various relative humidities and an ambient tem-
perature of T1 = 20 �C.

Relative Humidity � Droplet Temperature Ta

2 % 5:2 �C

20 % 8:5 �C

40 % 11:8 �C

60 % 14:7 �C

80 % 17:5 �C

100 % 20:0 �C

The �rst term on the right-hand side is the rate of change in thermal energy due to evaporation

of water from the droplet surface; Lv is the latent heat of vaporisation [J kg�1]. The second

term on the right-hand side is the rate of change in thermal energy due to the change in droplet

mass (the water evaporated from the droplet surface is di¤used out through the surrounding air,

taking its thermal energy with it), and the third term is the rate of change in thermal energy

due to heat conduction to the droplet from the surrounding air. Substituting for
dT

dr
from

Equation (2.16) and
dm

dt
from Equation (2.11), and simplifying, gives

T1 � Ta =
MWDWLv
kaRg

�
psat (Ta)

Ta
� �psat (T1)

T1

�
: (2.18)

Because the saturation pressure psat is a function of temperature, this equation has to be solved

numerically to obtain the droplet temperature Ta. It turns out that this temperature is very

close to the wet-bulb temperature (Asman et al., 2003, Chap. 4).

Table 2.2 above lists the temperature of an evaporating droplet, calculated from Equation (2.18),

for various relative humidities and an ambient temperature of T1 = 20 �C. The temperature

depression at low relative humidity (dry air) is much greater than that at high relative humidity

(moist air).

Correction for a Moving Droplet

With relative motion between an evaporating droplet and the surrounding air, the transfer

of water vapour becomes convective rather than di¤usive, which tends to increase the rate of

evaporation, and the transfer of heat also becomes convective rather than conductive (Davies,

1978, p. 144). The e¤ect is described using ventilation coe¢ cients: fw [-], the ventilation
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coe¢ cient for water vapour, is the ratio of the mass �ux of water vapour for the moving droplet

to that of a stationary droplet, and similarly fh [-], the ventilation coe¢ cient for heat, is the

ratio of the thermal energy �ux for the moving droplet to that of a stationary droplet. For the

moving droplet, the expressions for the evaporation rate and droplet temperature become:

dm

dt
= �4�afwMWDW

Rg

�
psat (Ta)

Ta
� �psat (T1)

T1

�
; (2.19)

and Ta � T1 = �MWDWLvfw
kaRgfh

�
psat (Ta)

Ta
� �psat (T1)

T1

�
: (2.20)

The ratio fw=fh in Equation (2.20) is very close to one and changes little with droplet size (As-

man et al., 2003, Chap. 4), so the e¤ect of relative motion on the temperature of an evaporating

droplet is negligible and may be ignored. For fw, Figure 2.6 shows values calculated using three

di¤erent empirical formulae (given in Davies (1978, p. 146), Asman et al. (2003, Chap. 4) and

Bhalwankar et al. (2004)), for droplets with a range of diameters which are falling at terminal

velocity. For droplets less than around 100 �m in diameter, fw is close to one so there is little

e¤ect on the rate of evaporation, however, above 100 �m in diameter fw is greater than one

and the rate of evaporation is increased. Subsequently in this thesis, we use the formula for fw

given in Davies:
fw = 1 + 0:276 Re1=2Sc1=3 (2.21)

where Re is the Reynolds number (see Equation 2.3) and Sc =
�a

�aDW
is the Schmidt number.

Temperature-Dependent Parameters

In the expressions above for the droplet temperature and rate of evaporation, the parameters

DW , psat, ka and Lv are all temperature-dependent. For DW and ka we use the following

formulae from Asman et al. (2003, App. F), where T is the absolute temperature [K]:

DW = 2:5007� 10�5
�

T

298:15

�1:94
; (2.22)

and ka = 0:43812� 10�2 + 7:11756� 10�5T: (2.23)

For psat and Lv we �tted a curve to data from steam tables in Rogers & Mayhew (1980) over

the temperature range 0� 30 �C:

psat = 1:7785� 10�5e0:0637T ; (2.24)

and Lv = 3144� 103 � 2:3556� 103T (2.25)

where T is once again the absolute temperature [K].
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Figure 2.6: Ventilation coe¢ cient for water vapour fw [-], calculated using three di¤erent empirical
formulae, for droplets of various diameters falling in air at their terminal velocity.

2.5 An Example Trajectory with Evaporation

Here we present a calculated example of the trajectory of an individual evaporating droplet at

�ve di¤erent relative humidities. The trajectory is determined by solving the coupled system

of di¤erential equations for the droplet radius a, velocity v = (vx; vy; vz) and displacement

x = (x; y; z), all obtained from Equation (2.1) and Equation (2.14):

da

dt
= �MWDW fw

Rg�wa

�
psat (Ta)

Ta
� �psat (T1)

T1

�
;

dx

dt
= v;

dv

dt
= �3�aCD

8�wa
jv � uj (v � u)� gk: (2.26)

As for the earlier examples without evaporation, this system was solved numerically using the

in-built solver ode15s from MATLAB R
, Version 7. The droplet in this example is of medium

size, with initial diameter d0 = 100 �m, and the ambient temperature is T1 = 20 �C. The

release parameters are the same as for the earlier examples (see page 13).

Figure 2.7 shows the droplet trajectory. The e¤ect of evaporation on the trajectory is clearly
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visible: as the droplet becomes smaller its falling speed decreases, therefore it is blown further

by the wind before reaching the ground, and, if � is small enough it evaporates completely.

Termination of the trajectory lines above z = 0 indicates that the droplet has evaporated

completely before reaching the ground. Figure 2.8 shows the falling speed of the droplet,

jvzj, over time: initially the falling speed increases as the droplet begins to fall and quickly

accelerates towards its settling speed, but then evaporation takes e¤ect and the falling speed

starts to decrease as the droplet becomes smaller and lighter. Finally, Figure 2.9 shows the

change in droplet diameter over time; termination of the line above d = 0 for � = 80 % indicates

that the droplet does reach the ground before evaporating completely.
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Figure 2.7: Trajectory of an individual evaporating droplet, with initial diameter 100 �m, for �ve di¤erent
relative humidities. The droplet is released horizontally at speed 18 m s�1 from a height of 3 m in a

1 m s�1 wind. See the text for additional parameter values.

2.6 Chapter Summary

In this chapter we provided details of the kinetics and thermodynamics of an individual droplet,

in order to better understand the continuum models which are the focus of this thesis. The

material is widely available in the literature, and is included here as background information.
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Figure 2.8: Falling speed over time for the individual evaporating droplet in Figure 2.7. Parameter
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For the kinetics, we looked at the equation of motion governing the droplet �ight, found by

summing the forces acting according to Newton�s law, and the terminal velocity at which the

droplet no longer accelerates. At terminal velocity, the droplet is travelling with the wind

horizontally and falling towards the ground at its settling speed. To conclude, we showed two

calculated examples of trajectories, which illustrate that droplets in the size range of interest

reach their terminal velocity almost immediately, and that small droplets pose a greater threat

for spray drift because they settle slowly, and therefore travel long distances before depositing

on the ground.

For the thermodynamics, we showed how expressions are derived for the rate of mass loss and

temperature when the droplet is evaporating. The expressions are derived assuming the droplet

is stationary relative to the surrounding air, with a scaling factor introduced when the droplet is

moving; we observed that the e¤ect of relative motion on the droplet temperature is negligible,

and that the rate of evaporation is increased only for droplets greater than around 100 �m

in diameter. Finally, we gave an example of the trajectory of an evaporating droplet, which

illustrated that in some cases droplets can evaporate completely before depositing, whilst in

other cases the travel distances are increased.

To reiterate, the material in Sections 2.1 - 2.3 (covering the droplet kinematics) leads on to

Chapters 3, 4 and 5 where we develop continuum models without evaporation, and the material

in Sections 2.4 - 2.5 (covering the thermodynamics) leads on to Chapter 6 where we introduce

evaporation.



Chapter 3

Advection-Dispersion Model
Framework

In this chapter, we set up our advection-dispersion model to describe the transport of airborne

drifting spray droplets and their removal by trapping within a shelterbelt, in the more straight-

forward case where the droplets are not evaporating. The majority of the chapter covers a

full derivation of the model, with some discussion of the initial and boundary conditions used.

One of the key parameters appearing in the model is the background trapping rate, which is a

measure of the rate at which droplets are removed within the shelterbelt; this parameter is not

easily measured, so we show how it can be related to a recent model for the capture e¢ ciency

of a shelterbelt as a function of its more easily-measured optical porosity.

3.1 Model Derivation

A cloud of airborne droplets is advected by the wind and dispersed by turbulence, all whilst

falling towards the ground (settling) under the in�uence of gravity. Within a shelterbelt, some

of the droplets may impact on the foliage and adhere; this is referred to as trapping, and trapped

droplets are removed from the air�ow. The transport of airborne droplets may be modelled using

an advection-dispersion equation, and we represent the shelterbelt as a block in which droplets

are trapped at a rate proportional to the local concentration. Here we present a derivation of

this advection-dispersion model, obtained by applying the principle of conservation of mass.

We use a Cartesian coordinate system (x; y; z), such that the (x; y) plane is on the ground, the

positive x-axis points in the direction of the mean wind velocity, and z measures the height above

26



3. Advection-Dispersion Model Framework 27

the ground. The mass of droplets in the air per unit volume is denoted c (x; y; z; t) [kg m�3],

a function of both position and time; we assume that the droplets are all of the same size, and

therefore of the same mass, and that their volume fraction in the air is small (so that the motion

of the air is una¤ected). We also assume that the droplets are at terminal velocity immediately

upon release; since only small droplets contribute to drift (those with diameter less than around

200 �m, Thompson & Ley, 1983), and we showed in Chapter 2 that these small droplets reach

their terminal velocity very quickly.

Consider an arbitrary �xed volume of air, V , with surface area A. The mass of droplets

contained in V is ZZZ
V
c dV: (3.1)

The rate of change in the mass of droplets contained in V with respect to time is equal to the

net mass �ux through its surface area A due to advection, gravitational settling and dispersion,

plus the rates of mass addition by sources and removal by trapping.

Advection by the Wind

Advection describes the transport of droplets by the wind. The wind pro�le is considerably

in�uenced by the presence of a shelterbelt: windspeed within the shelterbelt is reduced, forcing

some of it to accelerate over the top, and leaving a �quiet zone�of reduced windspeed for some

distance downstream. Figure 3.1 on page 28, sourced from Cleugh (1998), shows a theoretical

pro�le of the air�ow for a single row shelterbelt; the streamlines show the reduced windspeed

through the shelterbelt, the accelerated �ow over the top, and the quiet zone downstream.

Experimental results indicate that the windspeed is most signi�cantly reduced between distances

of about 5h upwind and 20h downwind, where h is the shelterbelt height; the e¤ectiveness of the

shelterbelt in reducing windspeed, however, is dependent upon many factors such as its height,

length, width, foliage type and foliage density (Ucar & Hall, 2001).

Accurate simulation of the wind through and around a shelterbelt is di¢ cult and computationally

intensive (see for example H. Wang et al., 2001). It would be impossible to include the full

dynamics of the wind in our advection-dispersion model and still hope to gain an analytic

solution; thus, to simplify, we assume that the wind in our model is horizontal and uniform,

and �ows through the shelterbelt undisturbed. This may not be too signi�cant a simpli�cation,

as we are mostly concerned with a fully-sheltered orchard block, and therefore the windspeed
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Figure 3.1: Theoretical pro�les of the mean horizontal windspeed and streamlines for a single row shel-
terbelt oriented normal to the incoming wind. Source: Cleugh (1998).

will be low within the block and for some considerable distance downwind. Also, numerical

investigations by Mercer & Roberts (2005) indicate that for shelterbelts most likely to be used to

capture spray drift, most of the incoming wind will go through the full width of the shelterbelt,

therefore accelerating �ow over the top is unlikely to be a problem.

Returning now to our derivation, the mean wind velocity is denoted u = (u; 0; 0). For our

volume V , let dA be a small element of surface area A with outward unit normal n; the mean

wind velocity in the direction of n is then u � n; this may be considered as a volume �ux of air

per unit area [m3 s�1 m�2], thus the inward mass �ux of droplets through surface element dA is

�c (u � n) dA. Integrating over the entire surface area A, the total inward mass �ux of droplets

into volume V via advection is



ZZ
A
�c (u � n) dA: (3.2)

Gravitational Settling

Droplets fall towards the ground under the in�uence of gravity at a rate dependent upon their

shape, mass and size (diameter), and the air density; this rate is known as the settling speed,

denoted here by S. We have assumed that the droplets are identical, therefore they all have

the same settling speed. Since they are not evaporating the droplets do not change in size or

mass, thus the settling speed S remains constant.

In the direction of n, the settling velocity is �Sk � n, where k is a unit vector in the positive

z direction; thus, the inward mass �ux of droplets through surface element dA is c (Sk � n) dA.
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Integrating over the entire surface area A, the total inward mass �ux of droplets into volume V

via gravitational settling is



ZZ
A
c (Sk � n) dA: (3.3)

Dispersion due to Turbulence

Dispersion describes the spreading of a cloud of droplets due to turbulence in the air�ow. We

closely follow the treatment by McKibbin (2006): the turbulence eddy structures are assumed

to have some dominant length scales in the alongwind, crosswind and vertical directions, and

the dispersion coe¢ cients are de�ned as these length scales multiplied by the mean windspeed.

A dispersion tensor D re�ects the ability of the droplets to spread in the x, y and z directions.

Using a Fickian model for the dispersion, the mass �ux per unit area in the direction of n is

� (Drc) �n; thus, the inward mass �ux of droplets through surface element dA is (Drc) �n dA.

Integrating over the entire surface area A, the total inward mass �ux of droplets into volume V

via turbulent dispersion is



ZZ
A
(Drc) � n dA: (3.4)

Following McKibbin (2006), in general form the dispersion tensor may be written as

D =

266664
Dxx Dxy 0

Dyx Dyy 0

0 0 Dzz

377775 (3.5)

where the zero components arise because the mean wind velocity is assumed to be horizontal. If

the mean wind direction is at angle � to the x-axis, then under the Fickian model the dispersion

tensor becomes

D =

266664
DL cos

2 � +DT sin
2 � (DL �DT ) sin � cos � 0

(DL �DT ) sin � cos � DL sin
2 � +DT cos

2 � 0

0 0 DV

377775 (3.6)

whereDL, DT andDV are the dispersion coe¢ cients alongwind, crosswind and vertically. These

dispersion coe¢ cients are de�ned as (DL; DT ; DV ) = juj (LL; LT ; LV ), where juj is the mean

windspeed and LL, LT and LV are the dominant turbulence length scales. Left as it is, this form

of the dispersion tensor gives rise to cross-derivative terms which are di¢ cult to deal with in
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our �nal advection-dispersion model. To eliminate these terms, the coordinate axes are aligned

such that the positive x-axis points directly downwind (that is � = 0); the dispersion tensor

then simpli�es to

D =

266664
DL 0 0

0 DT 0

0 0 DV

377775 : (3.7)

In general, the rate of turbulent dispersion of a particulate cloud depends upon the cloud di-

mensions and turbulence intensity. It has been observed that as a particulate cloud becomes

larger, larger eddies come into play and so the rate of dispersion increases; accounting for this

e¤ect would require the dispersion coe¢ cients to depend upon the travel time or distance from

the source, which is very di¢ cult to deal with analytically (Moreira et al., 2005). Typically, the

dispersion coe¢ cients DL, DT and DV vary with height above the ground, and they are often

assumed to follow a power law pro�le. Here, we treat them as constant throughout the domain;

this assumption gives us much more traction analytically, and while it will limit the accuracy of

the model it will not greatly alter the qualitative behaviour.

Mass Source Term

Given a source of droplets with mass release rate per unit volume q (x; y; z; t) [kg s�1 m�3], the

rate of increase in the mass of droplets contained in volume V will beZZZ
V
q dV: (3.8)

In this thesis we use an instantaneous point release: mass Q is released at time t = 0 from the

point (X0; Y0;H). This can be expressed in terms of Dirac delta functions as

q = Q� (x�X0) � (y � Y0) � (z �H) � (t) : (3.9)

The Dirac delta function � (x� a) is non-zero only at x = a, it has dimensions of [x]�1 (that is

the inverse of the dimensions of x), and the fundamental property thatZ 1

�1
f (x) � (x� a) dx = f (a) (3.10)

for all functions which are continuous at x = a. With such a simple source term we are able to

seek analytic solutions to our advection-dispersion model, and other mass releases may later be

constructed by using a number of individual point releases and integrating the results, such as

in Lim (2005, Chap. 4) and McKibbin (2006).
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Trapping Within a Shelterbelt

Trapping occurs when droplets impact on the foliage of a shelterbelt and adhere. Trapped

droplets are removed from the air�ow, thus the shelterbelt acts like a mass sink. The conceptual

model here is that the trapping is proportional to the concentration c; this is because the amount

of material which is removed by trapping must be proportional to how much is actually available

to be trapped. Under this model, there is no decrease in the trapping ability of the shelterbelt

due to saturation. We also assume that the droplets either pass through the shelterbelt or are

trapped by the foliage; they are not �splashed� or disintegrated into smaller droplets with a

di¤erent settling speed.

The rate of droplet mass removal by trapping, per unit volume of air, is given by kbRc. The

rate of mass removal from volume V is thereforeZZZ
V
kbRc dV: (3.11)

The parameter kb re�ects the ability of the shelterbelt to trap droplets; it is called the background

trapping rate, and de�ned as the mass fraction of droplets trapped per unit time [s�1]. The size

of kb will depend upon factors such as the foliage type, windspeed and droplet size (for more

information see Section 3.3). The function R is dimensionless, and non-zero only within the

block which represents the shelterbelt; it is like a switching function which turns the trapping

on within the shelterbelt and o¤ elsewhere.

Governing Equation for the Model

The rate of change in the mass of droplets contained in volume V with respect to time is equal

to the net mass �ux through its surface area A (due to advection, gravitational settling and

dispersion) plus the rates of mass addition by sources and removal by trapping. Combining

Equations (3.1)�(3.4), (3.8) and (3.11) accordingly:

@

@t

ZZZ
V
c dV = �


ZZ
A
(cu� cSk�Drc) � n dA+

ZZZ
V
(q � kbRc) dV: (3.12)

Using Gauss�divergence theorem to convert the surface integral to a volume integral then gives

@

@t

ZZZ
V
c dV = �

ZZZ
V
(r � (cu� cSk�Drc)� q + kbRc) dV: (3.13)

Volume V is �xed in space, so the time derivative may be moved inside the integral on the

left-hand side. On the right-hand side, we have r � (Sk) = 0 because the settling speed
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S is constant, and r � u = 0 because the air�ow is incompressible (we are dealing only with

windspeeds of around 1�5m s�1, and air at 20 �C is incompressible at velocities up to 102m s�1,

�Incompressible Flow�, n.d.). Thus, Equation (3.13) simpli�es toZZZ
V

�
@c

@t
+ u � rc� Sk � rc�r � (Drc)� q + kbRc

�
dV = 0 (3.14)

and since V is arbitrary, this implies

@c

@t
+ u � rc� Sk � rc�r � (Drc)� q + kbRc = 0 (3.15)

or
@c

@t
+ u

@c

@x
� S @c

@z
= DL

@2c

@x2
+DT

@2c

@y2
+DV

@2c

@z2
+ q � kbRc: (3.16)

Finally, substituting the rate of mass release per unit volume for an instantaneous point source

as given by Equation (3.9),

@c

@t
+ u

@c

@x
� S @c

@z
= DL

@2c

@x2
+DT

@2c

@y2
+DV

@2c

@z2
+Q� (x�X0) � (y � Y0) � (z �H) � (t)� kbRc

(3.17)

over the domain

t > 0, �1 < x; y <1, and 0 � z <1:

Equation (3.17) is the advection-dispersion model upon which the remainder of this thesis is

based; it is to be solved subject to the initial and boundary conditions described in Section 3.2

below.

In the model as it stands above, the trapping is continuous throughout the block which represents

the shelterbelt; this is ideal from a continuum viewpoint but unfortunately it is di¢ cult to

proceed analytically. As a way around the di¢ culty, we discretise the shelterbelt by instead

representing it as an array of smaller blocks, with the e¤ect of trapping in each block concentrated

to the point at its centre. This point representation for trapping is a mathematical tool which

allows us to solve the model analytically and write explicit expressions for the total trapping

and the deposit on the ground. We begin in Chapter 4 with an analysis of the model for a

single trapping point, then consider the discretised shelterbelt in Chapter 5.

3.2 Initial and Boundary Conditions

The initial, horizontal and upper boundary conditions for Equation (3.17) are

c
�
x; y; z; 0�

�
= 0; and (3.18)

c (x; y; z; t)! 0 as x; y ! �1; and z ! +1: (3.19)
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These are straightforward conditions stating that the concentration is zero everywhere until the

instant of release, and that for any given time the concentration should drop to zero far away

in the domain.

The boundary condition on the ground is less clear. We assume that the ground is impervious

to the droplets, so that they cannot disperse through it; consequently, the vertical dispersive

�ux on the ground surface must be zero, which leads to the �nal boundary condition that

DV
@c

@z
(x; y; 0; t) = 0: (3.20)

There are two possibilities here: If vertical dispersion of the droplets is negligible compared

to horizontal dispersion, such that DV may be considered zero, then the boundary condition

is automatically satis�ed. Otherwise, if vertical dispersion of the droplets is signi�cant, then

the boundary condition must be satis�ed by setting
@c

@z
(x; y; 0; t) = 0. Realistically, vertical

dispersion is likely to be signi�cant because, this close to the ground, the air�ow will be a¤ected

by the surface topography (that is the crop and the shelterbelt) and will also have been disturbed

by the air-assisted spraying process.

Since the downward vertical �ux [kg m�2] is given by Sc + DV
@c

@z
, Equation (3.20) implies

that in our model droplets deposit on the ground via gravitational settling only. According

to literature sources, particle deposition to a vegetated ground surface is more complicated as

roughness elements (such as leaves and stems) protrude from the surface. It is generally thought

that the ground surface will act as a �mass sink�proportional to the local concentration, so that

the boundary condition is of the form (Calder, 1961):

Sc (x; y; 0; t) +DV
@c

@z
(x; y; 0; t) =Wc (x; y; 0; t) (3.21)

where W is the proportionality constant [m s�1] for the particle removal at the ground surface.

This is commonly written as

DV
@c

@z
(x; y; 0; t) = vdc (x; y; 0; t) (3.22)

where vd = (W �S) is the deposition velocity (Calder, 1961; Lin & Hildemann, 1997; Raupach,

Briggs, et al., 2001; Essa et al., 2007). Raupach, Briggs, et al. (2001) present a model for

the deposition velocity as the sum of contributions from three processes: gravitational settling,

inertial impaction and Brownian di¤usion. They show a comparison of their predicted values

(for a range of particle diameters) against experimental data and also the settling speed; this

comparison indicates that Equation (3.20), which implies that the droplets in our model deposit

with their settling speed, is not unreasonable over the applicable diameter range.
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3.3 The Background Trapping Rate kb

As introduced in Section 3.1, our conceptual model is that the trapping of droplets within a

shelterbelt is proportional to the local concentration. The proportionality constant is denoted

kb; we call this the background trapping rate, and it is de�ned as the mass fraction of droplets

trapped per unit time [s�1]. In this section we provide more information on kb, and show how

it can be related to the recent Raupach, Woods, et al. (2001) model for the droplet capture

e¢ ciency of a shelterbelt.

The capture e¢ ciency of a shelterbelt depends upon factors such as windspeed and droplet

size, and also upon physical characteristics of the shelterbelt such as its porosity and foliage

type. The porosity of a shelterbelt a¤ects the proportion of the air�ow which travels through

it. There is a trade-o¤ between porosity and capture e¢ ciency: Raupach, Woods, et al. (2001)

note that the shelterbelt must be dense enough to collect droplets e¢ ciently, but sparse enough

to allow air�ow through it so that droplets may enter and be trapped. Inside the shelterbelt,

large droplets are more e¢ ciently captured than small droplets; as droplet-laden air �ows around

the foliage elements, small droplets are carried with the �ow, whilst large droplets which have

greater inertia are more likely to deviate from the �ow and impact on the foliage (Mercer &

Roberts, 2005). It has also been observed that small foliage elements have a better capture

e¢ ciency, thus �ne-needled species are more e¢ cient than broadleaf species (Ucar et al., 2003).

The background trapping rate kb in our model is a measure of the capture e¢ ciency of the shel-

terbelt; in the paragraphs below we show how it can be related to the recent Raupach, Woods, et

al. (2001) model for the capture e¢ ciency. First, an outline of the Raupach, Woods, et al. (2001)

model is as follows. Their assumptions are that the wind �ows horizontally through the shelter-

belt, and that both the wind �ow and droplet concentration are uniform with height. Deposition

to the foliage elements occurs via gravitational settling, inertial impaction and Brownian di¤u-

sion; of these three processes only impaction is considered signi�cant, since large droplets with

appreciable settling speeds do not contribute to drift, and Brownian di¤usion is only signi�cant

for droplets smaller than the range of interest. The model is formulated as

DC

Dt
= ��gpC (3.23)

where C is the droplet number concentration per unit volume [# m�3], � is the frontal area of

the foliage elements per unit volume [m�1], and gp is the impaction conductance onto the foliage

elements [m s�1]. We use a capital D to indicate that this is a material derivative, because



3. Advection-Dispersion Model Framework 35

the model is formulated from a Lagrangian viewpoint. Equation (3.23) is integrated along a

trajectory to give

C1 = C0e
��gp

MXb
ub (3.24)

where C1 and C0 are the droplet number concentrations directly upwind and downwind of the

shelterbelt. The fraction
MXb

ub
represents a typical time for the droplets to cross the shelterbelt;

ub is the windspeed through the shelterbelt, known as the bleed velocity, Xb is the width of the

shelterbelt, and M is a meander factor set at 1:2 which accounts for the droplets following a

meandering path due to turbulence. Most �eld measurements of shelterbelt density are in terms

of the optical porosity � , which is related to � and Xb by � = e��Xb ; the transmittance of the

shelterbelt � =
C1
C0

is thus written as

� = �ME (3.25)

where E =
gp
ub
is the impaction e¢ ciency. An empirical formula for E based on the Stokes

number St is taken from Peters & Eiden (1992):

E =

�
St

St+ 0:8

�2
: (3.26)

The Stokes number St is given by

St =
�wd

2

18�a�a

2ub
de

(3.27)

where �a and �a are the density and kinematic viscosity of the air, �w and d are the density

and diameter of the droplets, and de is the average diameter of the foliage elements. It is noted

that, for d larger than around 30 �m and for de smaller than 30 mm, ME � 1 and the simple

approximation � = � works well.

Now to determine an expression for kb. Recall that in our model, the rate of mass removal per

unit volume within the shelterbelt is kbc (setting R = 1 within the shelterbelt). Thus, from a

Lagrangian viewpoint
Dc

Dt
= �kbc: (3.28)

The number concentration of droplets is given by C =
c

m
, where m is the mass of an individual

droplet. With m constant, Equation (3.28) becomes

DC

Dt
= �kbC: (3.29)

Direct comparison with Equation (3.23) shows that kb is related to the Raupach, Woods, et al.

model by kb = �gp; rewriting this in terms of the optical porosity � = e��Xb and the impaction

e¢ ciency E =
gp
ub
gives

kb =
ubE

Xb
ln

�
1

�

�
: (3.30)
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According to this equation, the background trapping rate kb depends upon the windspeed

through the shelterbelt, the optical porosity and width of the shelterbelt, and also the droplet

size (via the impaction e¢ ciency E).

Figures 3.2 and 3.3 on page 37 show the value of kb, as calculated from Equation (3.30), for

various droplet sizes and �ve di¤erent windspeeds through the shelterbelt. Figure 3.2 is for

a poplar shelterbelt with � = 0:2 and de = 100 mm; this is a moderately dense broadleaf

shelterbelt. Figure 3.3 is for a casuarina shelterbelt with � = 0:2 and de = 2 mm; this is a

�ne needled shelterbelt, also moderately dense. In both cases, the width of the shelterbelt is

Xb = 2 m. The values used for � and de are taken from Mercer & Roberts (2005).

3.4 Parameter Values

Table 3.1 (page 38) summarises some likely values for the parameters involved in our model.

Crop spraying usually takes place in low to moderate windspeeds, around 1 � 5 m s�1, and

growers are recommended to avoid spraying in windspeeds greater than 5 m s�1 (P. Holland

et al., n.d.; Wolf, 1997). Sprays contain a wide range of droplet sizes, approximately 10 �m �

1000 �m in diameter; we limit our attention to diameters less than 200 �m, since droplets larger

than this rarely contribute to drift as they have signi�cant settling speeds and therefore deposit

quickly (Thompson & Ley, 1983).

Analysis of the structure of turbulence within plant canopies has shown large coherent eddy

structures with length scales � h horizontally and � h=3 vertically, where h is the canopy

height (Finnigan, 2000). There are few speci�c measurements of turbulence length scales within

orchard blocks, however some values from an apple orchard and an almond orchard which agree

roughly with these length scales may be found in Walklate (1993) and Y. S. Wang et al. (1992).

Crop heights and shelterbelt characteristics naturally vary between di¤erent orchard blocks.

Some typical values for kiwifruit orchards are given in Palmer et al. (1993): crops are usually

around 3 m tall, and shelterbelts are frequently deciduous species such as poplar or willow, or

evergreen species such as casuarina; they can be as much as 20 m tall, but are generally around

8� 10 m tall, with a width of approximately 2� 4 m. Using Equation (3.30), the background

trapping rate kb is then likely to be < 2 s�1.
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Figure 3.2: Values of the background trapping rate kb [s�1], calculated from Equation (3.30), for various
droplet sizes and �ve di¤erent windspeeds through a moderately dense poplar (broadleaf) shelterbelt.

See the text for parameter values
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Figure 3.3: Values of the background trapping rate kb [s�1], calculated from Equation (3.30), for various
droplet sizes and �ve di¤erent windspeeds through a moderately dense casuarina (�ne needled) shelterbelt.

See the text for parameter values
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Table 3.1: Some typical parameter values

Parameter Description Range

u mean windspeed 1� 5 m s�1

d droplet diameter 10� 200 �m

S settling speed 0:003� 1:2 m s�1

LL; LT horizontal turbulence length scales � 8� 10 m

LV vertical turbulence length scales � 2� 3 m

kb background trapping rate < 2 s�1

3.5 Chapter Summary

In this chapter, we set up the framework for our advection-dispersion model to describe the

transport of airborne drifting spray droplets, in the absence of evaporation, including trapping

within a shelterbelt. The model is intended to be simple, in order to make an analytic solution

possible, yet still capture the major features of the droplet transport. A summary of the main

features and assumptions of the model, as described earlier in the chapter, is as follows:

� Drifting spray droplets are advected by the wind and dispersed by turbulence, all whilst

falling under the in�uence of gravity. Within the shelterbelt, droplets are removed by

trapping at a rate proportional to the local concentration there.

� The wind is assumed to be horizontal, and uniform in both speed and direction. It is also

assumed to �ow through the shelterbelt undisturbed.

� Turbulence in the air�ow is modelled as having some dominant length scales in the along-

wind, crosswind and vertical directions. These length scales are taken to be constant

throughout the �ow.

� The ground is approximately horizontal; it is assumed to be impervious to the droplets,

therefore they cannot disperse through it. As a result, there is zero vertical dispersive

�ux at ground level.

It remains, now, to determine an analytic solution for the model. As introduced earlier, the ideal

scenario of continuous trapping throughout the block representing the shelterbelt is di¢ cult to
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deal with analytically, so instead we proceed by discretising the shelterbelt using an array of

smaller blocks with the trapping in each block concentrated to the point at its centre. The next

two chapters cover the process of obtaining an analytic solution to the model for the discretised

shelterbelt, beginning with just a single point representation for trapping.



Chapter 4

A Point Representation for Trapping

Recollect that in our advection-dispersion model for the transport of airborne drifting spray

droplets in the absence of evaporation (Chapter 3), a shelterbelt is represented by a block of

continuous trapping. Seeking an analytic solution, we begin by looking at a mathematically

simpli�ed problem where the e¤ect of continuous trapping throughout a block is concentrated

to the point at its centre; this point representation for trapping gives us much more traction

analytically, and allows us to write explicit expressions for the total trapping and the subsequent

deposit on the ground. Later we will use the results from this point representation to construct

an analytic solution to the model with trapping in a discretised shelterbelt (see Chapter 5).

In this chapter we analyse our advection-dispersion model with a point representation for trap-

ping. We consider two separate cases: the �rst is a special case where vertical dispersion of

the droplets is negligible compared to horizontal dispersion, and the second is the more realistic

case where vertical dispersion is signi�cant. In each case the ultimate objective is a full three-

dimensional (3-D) solution to the model, but we also show solutions in one and two dimensions

(1-D and 2-D). The 1-D and 2-D solutions are stepping-stones towards the full 3-D solution,

but are also interesting in their own right: the 1-D solution behaves a little di¤erently from the

2-D and 3-D solutions, and the 2-D solution is useful for comparison, as other models for spray

drift deposition, described in the literature, are also 2-D.

As is explained in further detail in this chapter, an interesting artefact of the point representation

arises whereby the droplet mass concentration is negative for a short time in the vicinity of the

trapping point; this is a consequence of using Dirac delta functions to de�ne the point. Whilst

the issue seems alarming at �rst, it is magni�ed in this chapter by the unrealistically high

trapping rates used for demonstrative purposes. In Chapter 5 we show that the issue is of

40
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negligible e¤ect with realistic trapping rates, as the localised area in which the concentration is

negative becomes very small.

4.1 Advection-Dispersion Model

Let us begin by clarifying what is meant by a point representation for trapping: we assume that

there is continuous trapping of droplets within a small block, and then concentrate the trapping

to the single point at the centre of this block using Dirac delta functions.

Recall from Chapter 3 that the rate of mass removal by trapping per unit volume of air is

kbRc, where kb is the background trapping rate, and R is a dimensionless function which is non-

zero only where trapping occurs. Let the small block of continuous trapping have dimensions

�x��y ��z, and the point at its centre be denoted (X1; Y1; Z1); then R is de�ned as

R = �x�y�z� (x�X1) � (y � Y1) � (z � Z1) (4.1)

which is dimensionless and non-zero only at (X1; Y1; Z1). In this way, the rate of mass removal

per unit volume of air is kbc�x�y�z� (x�X1) � (y � Y1) � (z � Z1). Lastly, we de�ne

k = kb�x�y�z (4.2)

as the e¤ective trapping rate for the point (with dimensions of volume per unit time [m3 s�1]).

Substituting Equations (4.1) and (4.2) into (3.17), our advection-dispersion model with a point

representation for trapping is

@c

@t
+ u

@c

@x
� S @c

@z
= DL

@2c

@x2
+DT

@2c

@y2
+DV

@2c

@z2
+Q� (x�X0) � (y � Y0) � (z �H) � (t)

�kc (X1; Y1; Z1; t) � (x�X1) � (y � Y1) � (z � Z1) : (4.3)

This is to be solved subject to the initial and boundary conditions given in Chapter 3, Section 3.2.

If the vertical dispersion coe¢ cient DV = 0, then the boundary condition on the ground is

automatically satis�ed and Equation (4.3) is relatively simple to solve analytically. However,

if DV 6= 0 then the boundary condition on the ground makes the solution process much more

complicated, and the solutions we obtain are nestled in integral equations.
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4.2 Total Droplet Trapping and Deposition

The quantities of particular interest are the total mass of droplets trapped at the point and

the subsequent deposit on the ground. Both of these quantities are found from the solution to

the advection-dispersion model; we will make frequent use of Laplace transforms in evaluating

them, via the property thatZ 1

0
c (x; y; z; t) dt =

Z 1

0
e�ptc (x; y; z; t) dt

����
p=0

= c (x; y; z; 0) (4.4)

where c (x; y; z; p) is the Laplace transform of c (x; y; z; t) with respect to t.

Total Droplet Trapping

The total mass of droplets trapped at the point, MTT [kg], is found by integrating the trapping

rate per unit volume with respect to space and time. The trapping rate per unit volume of air is

kbRc; with substitution of Equations (4.1) and (4.2) for the point representation, this becomes

kc (X1; Y1; Z1; t) � (x�X1) � (y � Y1) � (z � Z1). Integrating with respect to space and time:

MTT =

Z 1

0

Z 1

0

Z 1

�1

Z 1

�1
kc (X1; Y1; Z1; t) � (x�X1) � (y � Y1) � (z � Z1) dx dy dz dt

=

Z 1

0
kc (X1; Y1; Z1; t) dt

= kc (X1; Y1; Z1; 0) : (4.5)

The total mass of droplets deposited on the ground, MDT [kg], is simply what remains of the

original release after trapping, that is

MDT = Q�MTT

= Q� kc (X1; Y1; Z1; 0) : (4.6)

Droplet Deposition

The total mass of droplets deposited on the ground per unit area, MD [kg m�2], is found by

integrating the downward mass �ux per unit area with respect to time. At height z, the

downward mass �ux per unit area is Sc + DV
@c

@z
(made up of a settling �ux and a dispersive
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�ux). At ground level (z = 0) the boundary condition asserts that the dispersive �ux is zero,

thus droplets will only deposit via gravitational settling, and the downward mass �ux per unit

area is Sc (x; y; 0; t). Integrating with respect to time:

MD (x; y) =

Z 1

0
Sc (x; y; 0; t) dt

= Sc (x; y; 0; 0) : (4.7)

This method of evaluating the total trapping and deposition is particularly convenient, as we

make considerable use of Laplace transforms in solving our advection-dispersion model, and in

most cases the required transforms are readily available. Tables of the Laplace (and Fourier)

transforms used in this thesis may be found in Appendix B.

4.3 Case 1: Zero Vertical Dispersion

In this section we analyse our advection-dispersion model with a point representation for trap-

ping, in the case where vertical dispersion of the droplets is very small compared to horizontal

dispersion, such that the vertical dispersion coe¢ cient DV may be considered zero. This is a

special case of the model where the droplets can disperse only horizontally; the boundary con-

dition of zero vertical dispersive �ux on the ground is automatically satis�ed, and it is relatively

simple to determine an analytic solution. We present solutions in 1-D and 2-D, building up to

a full 3-D solution.

One-Dimensional Solution

In 1-D, and with DV = 0, our advection-dispersion model with a point representation for

trapping becomes
@c

@t
� S @c

@z
= Q� (z �H) � (t)� kc (Z1; t) � (z � Z1) (4.8)

with initial and boundary conditions

c
�
z; 0�

�
= 0 and c (1; t) = 0:

Conceptually this is now trapping at a plane, as shown in Figure 4.1. Mass Q per unit area is

released at time t = 0 from the plane (x; y; z) = (x; y;H). A thin layer of continuous trapping,

with thickness �z, removes droplets at mass rate per unit volume kbRc. We concentrate this
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Figure 4.1: Conceptual illustration of the 1-D model with trapping at a plane.

trapping to the plane (x; y; z) = (x; y; Z1) at the centre of the layer, so that R = �z� (z � Z1),

and the e¤ective trapping rate for the plane is k = kb�z. After release, the droplets simply fall

towards the ground with settling speed S; they do not disperse as they fall.

An analytic solution to Equation (4.8) may be found by taking Laplace transforms with respect

to t. The transformed solution is

c (z; p) =
Q

S
H (H � z) e�

p(H�z)
S � k

S
c (Z1; p)H (Z1 � z) e�

p(Z1�z)
S (4.9)

where the bar accent denotes the Laplace transform, and H (z) is the Heaviside function

H (z) =

8><>: 0; z < 0;

1; z > 0:
(4.10)

Note that this transformed solution contains the, as yet, unknown c (Z1; p) and has discontinu-

ities at z = H and z = Z1. To determine c (Z1; p) we let z ! Z+1 (that is, we let z approach

Z1 from above), since this corresponds to the droplet mass concentration which arrives at the

trapping plane, thereby in�uencing the amount trapped.

c (Z1; p) = lim
z!Z+1

c (z; p)

=
Q

S
H (H � Z1) e�

p(H�Z1)
S : (4.11)

Inverting the Laplace transforms:

For Z1 > H, c (z; t) =

8>><>>:
0; z > H;

Q � (z � (H � St)) ; z < H;

(4.12)
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and for Z1 < H, c (z; t) =

8>>>>>>>><>>>>>>>>:

0; z > H;

Q � (z � (H � St)) ; Z1 < z < H;

Q

�
1� k

S

�
� (z � (H � St)) ; z < Z1:

(4.13)

Above the release height the concentration is always zero; this is because there is no dispersion,

so the droplets do not move upwards. Below the release the concentration is non-zero only at

height z = H � St, which is the height the droplets have fallen to after time t. Because the

droplets simply fall downwards the concentration is the same at all heights, until the trapping

plane (provided it is below the release), whereupon some of the droplets are removed leaving a

lower concentration below.

Total Droplet Trapping and Deposition

The total trapping at the plane and the deposit on the ground are calculated by setting p = 0

in the transformed solution, as described in Section 4.2. The total mass trapped at the plane

per unit area [kg m�2] is
MTT = kc (Z1; 0)

=

8>><>>:
0; Z1 > H;

kQ

S
; Z1 < H;

(4.14)

and the density of deposit on the ground (mass deposited per unit area) [kg m�2] is

MD = Sc (0; 0)

=

8>><>>:
Q; Z1 > H;

Q

�
1� k

S

�
; Z1 < H:

(4.15)

Some points to note:

� There is no trapping if Z1 > H, that is, if the trapping plane is higher than the release.

This is because the droplets do not move upwards, therefore none will reach the trapping

plane if it is higher than the release.

� For Z1 < H the total mass trapped is independent of Z1. This is because, for Z1 < H,

all of the droplets will encounter the trapping plane no matter where it is, therefore the

same mass is always available to be trapped.
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A Physical Restriction on the Size of the Trapping Rate

For the model to remain physically sensible, the rate of mass removal at the trapping plane

must not exceed the rate of mass arrival; this places an upper limit on the size of the e¤ective

trapping rate k, and consequently on �z, the thickness of the layer which the trapping plane

represents. The rate of mass arrival at the trapping plane is Sc
�
Z+1 ; t

�
and the rate of mass

removal is kc
�
Z+1 ; t

�
, therefore we must have kc

�
Z+1 ; t

�
� Sc

�
Z+1 ; t

�
which requires

k � S: (4.16)

Since k = kb�z, this condition implies
�z � S

kb
: (4.17)

Equation (4.17) says that, given background trapping rate kb, the maximum thickness of trapping

layer which may be represented by a single trapping plane is
S

kb
. Satisfying Equation (4.17)

also ensures that MTT � Q and MD � 0; in other words, that the total mass trapped does not

exceed the original release and the density of deposit is non-negative.

Two-Dimensional Solution

In 2-D, and with DV = 0, our advection-dispersion model with a point representation for

trapping becomes

@c

@t
+ u

@c

@x
� S @c

@z
= DL

@2c

@x2
+Q� (x�X0) � (z �H) � (t)� kc (X1; Z1; t) � (x�X1) � (z � Z1)

(4.18)

with initial and boundary conditions

c
�
x; z; 0�

�
= 0, and

c (x; z; t)! 0 as x! �1, and z ! +1:

The conceptual situation is now trapping at a line of in�nite crosswind length, as shown in

Figure 4.2. Mass Q per unit length is released at time t = 0 from the line (x; y; z) = (X0; y;H).

A rectangular prism of continuous trapping with in�nite length, and cross-sectional area�x��z,

removes droplets at mass rate per unit volume kbRc. We concentrate this trapping to the line

(x; y; z) = (X1; y; Z1) through the centre of the prism, so that R = �x�z� (x�X1) � (z � Z1)

and the e¤ective trapping rate for the line is k = kb�x�z. After release, the droplets disperse

alongwind whilst travelling with the mean windspeed u and falling at settling speed S.
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Figure 4.2: Conceptual illustration of the 2-D model with trapping at a line.

An analytic solution to Equation (4.18) may be found using a combination of Laplace transforms

with respect to t and Fourier transforms with respect to x. The transformed solution is

bc (!; z; p) =
Q

S
H (H � z) e�

p(H�z)
S

�i!
�
X0+

u(H�z)
S

�
�!2DL(H�z)

S

� k
S
c (X1; Z1; p)H (Z1 � z) e

� p(Z1�z)
S

�i!
�
X1+

u(Z1�z)
S

�
�!2DL(Z1�z)

S (4.19)

where the bar accent denotes the Laplace transform with respect to t, and the hat accent denotes

the Fourier transform with respect to x, as de�ned by bf (!) = Z 1

�1
f (x) e�i!x dx. Inverting

the Fourier transforms:

c (x; z; p) =
Q

2
p
�SDL (H � z)

H (H � z) e�
p(H�z)

S
�S(x�X0�u(H�z)=S)

2

4DL(H�z)

� kc (X1; Z1; p)

2
p
�SDL (Z1 � z)

H (Z1 � z) e
� p(Z1�z)

S
�S(x�X1�u(Z1�z)=S)

2

4DL(Z1�z) : (4.20)

To determine the, as yet, unknown c (X1; Z1; p) we set x = X1 and let z ! Z+1 , since this

corresponds to the concentration which arrives at the trapping line, thereby in�uencing the

amount trapped.

c (X1; Z1; p) = lim
z!Z+1

c (X1; z; p)

=
Q

2S
p
�DLt1

H (H � Z1) e
�pt1� (X1�X0�ut1)

2

4DLt1 (4.21)

where t1 =
H � Z1
S

is the time for the droplets to fall to the height of the trapping line, assuming

it is below the release height. Inverting the Laplace transforms:
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For Z1 > H;

c (x; z; t) =

8>>>><>>>>:
0; z > H;

Q

2
p
�DLt

e
� (x�X0�ut)

2

4DLt � (z � (H � St)) ; z < H;

(4.22)

and for Z1 < H;

c (x; z; t) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0; z > H;

Q

2
p
�DLt

e
� (x�X0�ut)

2

4DLt � (z � (H � St)) ; Z1 < z < H;

"
Q

2
p
�DLt

e
� (x�X0�ut)

2

4DLt � kQ

4�SDL

p
t1 (t� t1)

�

e
� (X1�X0�ut1)

2

4DLt1
� (x�X1�u(t�t1))

2

4DL(t�t1)

�
� (z � (H � St)) ; z < Z1:

(4.23)

This solution is similar to the 1-D solution, in that the concentration above the release height is

zero and the concentration below the release is only non-zero at height z = H � St (the height

the droplets have fallen to after time t). Here, though, the use of delta functions in the model

to de�ne the trapping line results in a locally negative concentration beneath the trapping line.

This phenomenon was mentioned in the opening of the chapter, and is explained further below.

Examining the Negative Concentration

An artefact of using Dirac delta functions as we have done in this model to focus the trapping to

a single line, is that the droplet mass concentration becomes negative in a localised area beneath

the trapping line. For instance, consider the concentration immediately below the height of the

trapping line, that is, at z = Z�1 . The time at which the droplets reach this height is t = t+1 ,

and the concentration there as given by Equation (4.23) is

c
�
x;Z�1 ; t

+
1

�
=

�
Q

2
p
�DLt1

e
� (x�X0�ut1)

2

4DLt1 �

kQ

2S
p
�DLt1

e
� (X1�X0�ut1)

2

4DLt1 � (x�X1)
�
�
�
Z�1 �

�
H � St+1

�� (4.24)
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using the property that

lim
�!0+

e�
a2

�2

�
p
�
= � (a) : (4.25)

It is apparent from Equation (4.24) that, because of the � (x�X1) term, the concentration

immediately beneath the trapping line at (x; z) =
�
X1; Z

�
1

�
is in�nitely negative (unless k = 0

in which case there is no trapping).

The negative concentration occurs because we have focussed all of the trapping to an in�nitely

thin line. Essentially, the trapping is a negative release of strength kc (X1; Z1; t1) which occurs

from the line (x; z) = (X1; Z1) at time t = t1. Looking at Equation (4.23), the concentration

below Z1 is a superposition of the original release and this negative release. Immediately below

the trapping line, the negative release dominates and so the concentration is negative, but then

as the droplets continue to fall and disperse, after a while the original release dominates and

the concentration becomes positive everywhere again. The time it takes for the concentration

to recover and become positive again depends on the size of kc (X1; Z1; t1); the larger this is the

longer it takes, and therefore the larger the localised area beneath the trapping line where the

concentration is negative.

As an example, Figure 4.3 shows the �nite part of the mass concentration (the terms inside the

square brackets in Equation (4.23)) as a superposition of the original release and the negative

release which represents the trapping. The two heights, z = 1:9 m and z = 1:5 m, are below

the trapping line which is located at (X1; Z1) = (4; 2) m. The e¤ective trapping rate is k = 1

m2 s�1, which comes from kb = 25 s�1 and �x�z = 0:04 m2; this k value is unrealistically high

and is used only for demonstration purposes. The remaining parameters used are summarised in

Table 4.1 (page 52). At z = 1:9 m the negative release overpowers the original release and the

concentration is negative in the vicinity of X1, but by z = 1:5 m the original release is dominant

and the concentration is positive everywhere.

We recognise that a negative concentration is a physical impossibility, thus the model does not

accurately describe the situation immediately beneath the trapping line. However, the issue

is only signi�cant for unrealistically high values of k which result in a long recovery time. As

shown in the next chapter, for realistic values of k the concentration recovers very quickly, so the

localised area in which the concentration is negative is very small and the issue has negligible

e¤ect.
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(a) Finite part of the droplet mass concentration at height z = 1:9 m and time t = 5:5 s.
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(b) Finite part of the droplet mass concentration at height z = 1:5 m and time t = 7:5 s.

Figure 4.3: Cross-sections of the �nite part of the mass concentration c [kg m�3] at two di¤erent heights
below the trapping line which is at (X1; Z1) = (4; 2) m. The mass concentration is a superposition of the
original release, and a negative release (representing the trapping). At z = 1:9 m the negative release
dominates and the concentration is negative near the trapping line. By z = 1:5 m the original release

dominates and the concentration is positive everywhere.
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Total Droplet Trapping and Deposition

Following the procedure described in Section 4.2, the total mass of droplets trapped at the line

per unit length [kg m�1] is

MTT = kc (X1; Z1; 0)

=

8>><>>:
0; Z1 > H;

kQ

2S
p
�DLt1

e
� (X1�X0�ut1)

2

4DLt1 ; Z1 < H;

(4.26)

leaving a total deposit on the ground per unit crosswind length of MDT = Q�MTT [kg m�1].

The density of deposit on the ground [kg m�2] is

MD (x) = Sc (x; 0; 0)

=

8>>>>>>>>>><>>>>>>>>>>:

Q
p
S

2
p
�HDL

e
�S(x�X0�uH=S)

2

4DLH ; Z1 > H;

Q
p
S

2
p
�HDL

e
�S(x�X0�uH=S)

2

4DLH �

kQ

4�DL

p
SZ1t1

e
� (X1�X0�ut1)

2

4DLt1
�S(x�X1�uZ1=S)

2

4DLZ1 ; Z1 < H:

(4.27)

Some points to note:

� As in the 1-D solution there is no trapping if Z1 > H, that is, if the trapping line is higher

than the release.

� If Z1 < H then the total mass trapped decreases with increasing separation between the

trapping line and the release. For instance, if the alongwind separation jX0 �X1j is large

then few droplets will encounter the trapping line as most will deposit before travelling

far enough. Alternatively, if the vertical separation (H � Z1) is large then few droplets

will encounter the trapping line as they will be well-dispersed by the time they fall to that

height.

� For Z1 < H the total mass trapped increases with increasing trapping rate k. To ensure

thatMTT � Q, in other words that the total trapping does not exceed the original release,

requires

k � 2S
p
�DLt1e

(X1�X0�ut1)
2

4DLt1 (4.28)
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and consequently, since k = kb�x�z,

�x�z � 2S
p
�DLt1
kb

e
(X1�X0�ut1)

2

4DLt1 : (4.29)

An Illustrative Example of the Two-Dimensional Solution

The following example illustrates the 2-D solution described above. The parameter set used here

is given in Table 4.1. A settling speed of S = 0:2 m s�1 corresponds to droplets of approximate

diameter d = 44 �m, and a dominant alongwind turbulence length scale of LL = 2 m gives

dispersion coe¢ cient DL = uLL = 2 m2 s�1. In this example the position of the trapping

line, (X1; Z1), is slightly upstream of the centre of mass of the droplets at time t1, and the

e¤ective trapping rate for the line is k = kb�x�z = 1 m2 s�1. According to Equation (4.28),

the maximum allowable e¤ective trapping rate is 2:30 m2 s�1. Note that the value of the the

background trapping rate kb is unrealistically high and used only so that the e¤ect of trapping

may be more clearly observed.

Table 4.1: Parameter set used to generate Figures 4.4 and 4.5

u S LL Q (X0;H) kb �x�z (X1; Z1)

1 m s�1 0:2 m s�1 2 m 1 kg m�1 (0; 3) m 25 s�1 0:04 m2 (4; 2) m

Figure 4.4 shows cross-sections of the density of deposit [kg m�2], as calculated from Equa-

tion (4.27). The density of deposit with trapping is denoted MD and the value without trap-

ping (found by setting k = 0) is denoted M�
D. The corresponding percentage reduction in the

density of deposit as a result of this trapping is shown in Figure 4.5. There is a shadow region

of signi�cant reduction just downwind of the trapping line, then less e¤ect further downwind.

In this example the maximum reduction in density of deposit is 55 % which occurs at x = 12 m.

According to Equation (4.26) the total mass trapped at the line is MTT = 0:44 kg m�1.



4. A Point Representation for Trapping 53

­10 0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

x [m]

D
en

si
ty

 o
f D

ep
os

it 
[k

g 
m

­2
]

MD
*

MD

Figure 4.4: Cross-section of the density of deposit [kg m�2], resulting from a line release with zero vertical
dispersion and a line of trapping. MD denotes the density of deposit with trapping, and M�

D denotes
the corresponding value without trapping. Parameter values are given in Table 4.1.

­10 0 10 20 30 40
0

10

20

30

40

50

60

x [m]

P
er

ce
nt

ag
e 

R
ed

uc
tio

n 
in

 D
en

si
ty

 o
f D

ep
os

it 
[%

]

Figure 4.5: Cross-section of the percentage reduction in density of deposit as a result of the trapping in
Figure 4.4. Parameter values are the same as for Figure 4.4.
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Three-Dimensional Solution

In all three spatial dimensions, but with DV = 0, our advection-dispersion model with a point

representation for trapping becomes

@c

@t
+ u

@c

@x
� S @c

@z
= DL

@2c

@x2
+DT

@2c

@y2
+Q� (x�X0) � (y � Y0) � (z �H) � (t)

�kc (X1; Y1; Z1; t) � (x�X1) � (y � Y1) � (z � Z1) (4.30)

with initial and boundary conditions

c
�
x; y; z; 0�

�
= 0; and

c (x; y; z; t)! 0 as x; y ! �1, and z ! +1:

Recapping the conceptual scenario: mass Q is released at time t = 0 from the point (x; y; z) =

(X0; Y0;H), and a small block of continuous trapping with dimensions �x��y ��z removes

droplets at mass rate per unit volume kbRc. We concentrate this trapping to the point (x; y; z) =

(X1; Y1; Z1) at the centre of the block, so that R = �x�y�z� (x�X1) � (y � Y1) � (z � Z1) and

the e¤ective trapping rate for the point is k = kb�x�y�z. After release, the droplets disperse

horizontally (both alongwind and crosswind) whilst travelling with the mean wind speed u and

falling at settling speed S.

An analytic solution to Equation (4.76) may be found using a combination of Laplace transforms

with respect to t and Fourier transforms with respect to x and y; this is really just an extension

of the previous 2-D solution. The transformed solution here is

ebc (!;  ; z; p) = Q

S
H (H � z) e�

p(H�z)
S

�i!
�
X0+

u(H�z)
S

�
�i Y0�

(!2DL+ 2DT )(H�z)
S

� k
S
c (X1; Y1; Z1; p)H (Z1 � z) e

� p(Z1�z)
S

�i!
�
X1+

u(Z1�z)
S

�
�i Y1�

(!2DL+ 2DT )(Z1�z)
S :

(4.31)

The bar accent denotes the Laplace transform with respect to t, the hat accent denotes the

Fourier transform with respect to x, and the tilde accent denotes the Fourier transform with

respect to y. Inverting the Fourier transforms:

c (x; y; z; p) =
Q

4�
p
DLDT (H � z)

H (H � z) e�
p(H�z)

S
�S(x�x0�u(H�z)=S)

2

4DL(H�z)
� S(y�Y0)

2

4DT (H�z)

� kc (X1; Y1; Z1; p)

4�
p
DLDT (Z1 � z)

H (Z1 � z) e
� p(Z1�z)

S
�S(x�X1�u(Z1�z)=S)

2

4DL(Z1�z)
� S(y�Y1)

2

4DT (Z1�z) :

(4.32)
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To determine c (X1; Y1; Z1; p) we set (x; y) = (X1; Y1) and let z ! Z+1 to correspond with the

concentration which arrives at the trapping point, thereby in�uencing the amount trapped.

c (X1; Y1; Z1; p) = lim
z!Z+1

c (X1; Y1; z; p)

=
Q

4�St1
p
DLDT

H (H � Z1) e
�pt1� (X1�X0�ut1)

2

4DLt1
� (Y1�Y0)

2

4DT t1 (4.33)

where t1 =
H � Z1
S

is the time for the droplets to fall to the height of the trapping point.

Inverting the Laplace transforms:

For Z1 > H

c (x; y; z; t) =

8>>>><>>>>:
0; z � H;

Q

4�t
p
DLDT

e
� (x�X0�ut)

2

4DLt
� (y�Y0)

2

4DT t � (z � (H � St)) ; z < H;

(4.34)

and for Z1 < H

c (x; y; z; t) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0; z � H;

Q

4�t
p
DLDT

e
� (x�X0�ut)

2

4DLt
� (y�Y0)

2

4DT t � (z � (H � St)) ; Z1 � z < H;

�
Q

4�t
p
DLDT

e
� (x�X0�ut)

2

4DLt
� (y�Y0)

2

4DT t � kQ

16�2SDLDT t1 (t� t1)
�

e
� (X1�X0�ut1)

2

4DLt1
� (Y1�Y0)

2

4DT t1
� (x�X1�u(t�t1))

2

4DL(t�t1)
� (y�Y1)

2

4DT (t�t1)

�
� (z � (H � St)) ; z < Z1:

(4.35)

As in both the 1-D and 2-D solutions previously, the concentration is always zero above the

release height and only non-zero below the release at height z = H �St (the height the droplets

have fallen to after time t).

Being an extension from 2-D, this solution also exhibits a negative concentration in a localised

region beneath the trapping point. This may be explained as for the 2-D solution (refer

to page 48) by noting that, here, the trapping is essentially a negative release of strength

kc (X1; Y1; Z1; t1) which occurs from the point (x; y; z) = (X1; Y1; Z1) at time t = t1. As such,
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the concentration below Z1 is a superposition of the original release and this negative release, and

immediately beneath the trapping point the negative release is dominant. Once again, though

a negative concentration is physically wrong, the issue is only of signi�cance for unrealistically

high trapping rates.

Total Droplet Trapping and Deposition

Following Section 4.2, the total mass of droplets trapped at the point [kg] is

MTT = kc (X1; Y1; Z1; 0)

=

8>><>>:
0; Z1 > H;

kQ

4�St1
p
DLDT

e
� (X1�X0�ut1)

2

4DLt1
� (Y1�Y0)

2

4DT t1 ; Z1 < H;

(4.36)

leaving a total deposit on the ground of MDT = Q�MTT [kg]. The density of deposit on the

ground [kg m�2] is

MD (x; y) = Sc (x; y; 0; 0)

=

8>>>>>>>>>><>>>>>>>>>>:

SQ

4�H
p
DLDT

e
�S(x�X0�uH=S)

2

4DLH
�S(y�Y0)

2

4DTH ; Z1 > H;

SQ

4�H
p
DLDT

e
�S(x�X0�uH=S)

2

4DLH
�S(y�Y0)

2

4DTH �

kQ

16�2t1Z1DLDT
e
� (X1�X0�ut1)

2

4DLt1
� (Y1�Y0)

2

4DT t1
�S(x�X1�uZ1=S)

2

4DLZ1
�S(y�Y1)

2

4DTZ1 ; Z1 < H:

(4.37)

Some points to note:

� There is no trapping if Z1 > H, that is, if the trapping point is higher than the release.

� For Z1 < H, the total mass trapped decreases as the trapping point is moved farther from

the release. For instance, if either the alongwind separation jX0 �X1j or the crosswind

separation jY1 � Y0j is large, then few of the droplets will travel far enough to reach the

trapping point before depositing. Alternatively, if the vertical separation (H � Z1) is

large then the droplets will be well dispersed by the time they reach the trapping point.
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� For Z1 < H the total mass trapped increases with increasing trapping rate k. To keep

MTT � Q requires

k � 4�St1
p
DLDT e

(X1�X0�ut1)
2

4DLt1
+
(Y1�Y0)

2

4DT t1 (4.38)

and therefore, since k = kb�x�y�z,

�x�y�z � 4�St1
p
DLDT

kb
e
(X1�X0�ut1)

2

4DLt1
+
(Y1�Y0)

2

4DT t1 : (4.39)

4.4 Case 2: Non-Zero Vertical Dispersion

In this section we analyse our advection-dispersion model with a point representation for trap-

ping, in the case where vertical dispersion of the droplets is signi�cant compared to horizontal

dispersion (that is DV 6= 0). This is more likely to be the case in reality, because the air�ow

will have been disturbed by the sprayer, and with the proximity to the ground it will also be

a¤ected by the surface topography.

Finding an analytic solution to the model with DV 6= 0 is much more complicated due to the

boundary condition on the ground. This boundary condition, established in Section 3.2, requires

zero vertical dispersive �ux at ground level, that is

DV
@c

@z
(x; y; 0; t) = 0: (4.40)

For DV 6= 0 this implies
@c

@z
(x; y; 0; t) = 0. A similar model, with the same boundary conditions,

has been applied to volcanic ashfall (McKibbin et al., 2005; Lim, 2005). McKibbin et al. use an

alternative boundary condition c (x; y; z; t) ! 0 as z ! �1; this does not ensure zero vertical

dispersive �ux on the ground, but the overall dispersion pattern is not greatly changed and the

resulting analytic solution is simpler. Lim presents a method for �nding an analytic solution

with the original boundary condition via the use of a Greens function; we follow this method

and extend it to include the e¤ect of trapping. As in Case 1 where DV = 0, we build up to a

full 3-D solution by �rst �nding solutions in 1-D and 2-D.

One-Dimensional Solution

In 1-D, and with DV 6= 0, our advection-dispersion model with a point representation for

trapping becomes

@c

@t
� S @c

@z
= DV

@2c

@z2
+Q� (z �H) � (t)� kc (Z1; t) � (z � Z1) (4.41)
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with initial and boundary conditions

c
�
z; 0�

�
= 0, c (1; t) = 0 and @c

@z
(0; t) = 0:

See page 43 for a description of the conceptual situation, which is now trapping at a plane. After

release the droplets disperse vertically, whilst falling towards the ground with settling speed S.

A solution to Equation (4.41) may be found by following the method presented by Lim (2005,

Chap. 2), though the solution we obtain is nestled in an integral equation. The process is rather

lengthy; a brief outline is given here, with a full working in Appendix A.2. We begin by writing

c (z; t) = U (z; t) e
� Sz
2DV

� S2t
4DV (4.42)

in Equation (4.41), so that
@U

@t
�DV

@2U

@z2
= P (z; t) (4.43)

where

P (z; t) = Qe
SH
2DV � (z �H) � (t)� kc (Z1; t) e

SZ1
2DV

� S2t
4DV : (4.44)

Next, we write

V (z; t) =
@U

@z
� SU

2DV
(4.45)

and apply the operator
�
@

@t
�DV

@2

@z2

�
to obtain a di¤usion equation with homogeneous bound-

ary conditions, that is
@V

@t
�DV

@2V

@z2
=
@P

@z
� S

2DV
P (4.46)

with V (z; 0�) = V (0; t) = V (1; t) = 0. The Greens function solution for V (z; t) is

V (z; t) =

Z t

0
d�

Z 1

0

�
@P

@�
(�; �)� S

2DV
P (�; �)

�
GX10 (z; tj�; �) d� (4.47)

(Beck et al., 1992, p. 43) where GX10 (z; tj�; �) is given by

GX10 (z; tj�; �) =
1

2
p
�DV (t� �)

�
e
� (z��)2
4DV (t��) � e�

(z+�)2

4DV (t��)

�
: (4.48)

Integrating Equation (4.45) with respect to z gives U (z; t) in terms of V (z; t), then direct

substitution back into Equation (4.42) yields the desired solution c (z; t). The solution is

c (z; t) = Qf (z; t;H)�
Z t

0
kc (Z1; �) f (z; t� � ;Z1) d� (4.49)
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where

f (z; t;Z) =
e
� S2t
4DV

�S(z�Z)
2DV

2
p
�DV t

�
e
� (z�Z)2

4DV t + e
� (z+Z)2

4DV t

�
� Se

SZ
DV

2DV
erfc

�
z + Z + St

2
p
DV t

�
(4.50)

and erfc (z) is the complementary error function. Note that the solution in Equation (4.49)

contains the, as yet, unknown concentration at the trapping plane c (Z1; t) in the integrand.

Setting z = Z1 gives

c (Z1; t) = Qf (Z1; t;H)�
Z t

0
kc (Z1; �) f (Z1; t� � ;Z1) d� (4.51)

which is a linear Volterra equation of the second kind. Linz (1985) provides a good introduction

to these kinds of equations, and details various analytical and numerical solution methods. For

equations like this one where the integral is a convolution, analytic solutions can sometimes be

found by taking Laplace transforms, but in most cases the inversion is tricky and it is easier

to solve the equation numerically to begin with. Conveniently in our case, the quantities of

particular interest are evaluated directly using Laplace transforms (see Section 4.2), so there is

no need for inversion.

Total Droplet Trapping and Deposition

The total droplet trapping and deposition are found by taking Laplace transforms with respect

to t and then setting the transform variable to zero, as described in Section 4.2. The total mass

of droplets trapped at the plane per unit area [kg m�2] is

MTT = kc (Z1; 0)

=
kQf (Z1; 0;H)

1 + kf (Z1; 0;Z1)

=

8>><>>:
kQ

S + k
e
�S(Z1�H)

DV ; Z1 > H;

kQ

S + k
; Z1 < H;

(4.52)

and the density of deposit on the ground (mass deposited per unit area) [kg m�2] is

MD = Sc (0; 0)

= SQf (0; 0;H)� Skc (Z1; 0) f (0; 0;Z1)

=

8>><>>:
Q� kQ

S + k
e
�S(Z1�H)

DV ; Z1 > H;

QS

S + k
; Z1 < H:

(4.53)
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Some points to note:

� If Z1 > H, so that the trapping plane is above the release height, then the total mass

trapped decreases with increasing Z1. This is to be expected, since the droplets only

move upwards via dispersion, therefore the higher the trapping plane is, the less droplets

will disperse high enough to reach it.

� For Z1 < H the total mass trapped is independent of Z1. This is because, for Z1 < H,

all of the droplets must eventually encounter the trapping plane and so the total mass

available to be trapped over all time is the same.

� The total mass trapped increases with increasing trapping rate k. Contrary to the 1-D

solution with DV = 0 though, it does not continue to increase as k gets large; in fact

lim
k!1

MTT =

8><>: Qe
�S(Z1�H)

DV ; Z1 > H;

Q; Z1 < H;
(4.54)

so it is not possible to trap more than the original release. This, in turn, ensures that

MD � 0 (the density of deposit is non-negative).

A Numerical Solution Method

It may be of interest to evaluate the mass concentration c (z; t) as given by Equation (4.49);

however this equation cannot be evaluated directly because of the, as yet, unknown c (Z1; t)

in the integrand. In this section we present a simple numerical method to determine the

concentration c (z; t) at a number of discrete time steps.

Given discrete time steps

t1 = 0; t2 = �t; t3 = 2�t; : : : ti = (i� 1)�t;

the �rst step is to solve for the unknown at each time step, that is c (Z1; ti), using Equation

(4.51). The integrand in this equation is singular at the upper end-point � = ti. Applying

the technique of product integration as in Linz (1985, Chap. 8), the integrand is split into two

parts: a non-singular part and a singular part. We write

c (Z1; ti) = Qf (Z1; ti;H)�
Z ti

0
kc (Z1; �)K (ti; �)P (ti; �) d� : (4.55)

The non-singular part is kc (Z1; �)K (ti; �) and the singular part is P (ti; �), where
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K (ti; �) =
e
�S2(ti��)

4DV

2
p
�DV

 
1� e�

Z21
DV (ti��)

!
� S

p
ti � �e

SZ1
DV

2DV
erfc

 
2Z1 + S (ti � �)
2
p
DV (ti � �)

!
(4.56)

and
P (ti; �) =

1p
ti � �

: (4.57)

The well-behaved part kc (Z1; �)K (ti; �) is approximated by its value at the beginning of each

time step. Thus, for the integral in Equation (4.55),

Z ti

0
kc (Z1; �)K (ti; �)P (ti; �) d� '

i�1X
j=1

kc (Z1; tj)K (ti; tj)

Z tj+1

tj

P (ti; �) d� : (4.58)

As there is no contribution to the summation from the �rst time step (c (Z1; t1) = c (Z1; 0) = 0

from the initial condition), c (Z1; ti) is approximated by

c (Z1; ti) ' Qf (Z1; ti;H)�
i�1X
j=2

kc (Z1; tj)K (ti; tj)

Z tj+1

tj

P (ti; �) d�

' Qf (Z1; ti;H)�
i�1X
j=2

2kc (Z1; tj)K (ti; tj)
�p

ti � tj �
p
ti � tj+1

�
: (4.59)

Thus, successive values for the concentration at the trapping plane are determined using values

from previous time steps. According to Linz this method (usually called Euler�s method) can

be expected to be of order O (�t). Other higher-order methods could also be used, such as

product integration based on the trapezium rule, but the advantage of this one is its simplicity.

The next step is to numerically evaluate Equation (4.49) for the concentration c (z; ti), using the

approximated values for c (Z1; ti). According to that equation

c (z; ti) = Qf (z; ti;H)�
Z ti

0
kc (Z1; �) f (z; ti � � ;Z1) d� (4.60)

where f (z; t;Z) is given by Equation (4.50). For z 6= Z1 the integrand is zero at each of the

end-points � = 0 (because of the initial condition) and � = ti. We apply a method based on

the trapezium integration rule, as in Linz (1985, Chap. 7), so that c (z; ti) is approximated by

c (z; ti) ' Qf (z; ti;H)��t
i�1X
j=2

kc (Z1; tj) f (z; ti � tj ;Z1) : (4.61)

Thus, successive values for the concentration are determined using values at the trapping plane

from previous time steps. According to Linz, this method can be expected to be of order

O (�t)2, but in this case the accuracy is probably reduced because the approximated values for

c (Z1; ti) already contain some error.
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Two-Dimensional Solution

In 2-D, and with DV 6= 0, our advection-dispersion model with a point representation for

trapping becomes

@c

@t
+ u

@c

@x
� S @c

@z
= DL

@2c

@x2
+DV

@2c

@z2
+Q� (x�X0) � (z �H) � (t)

�kc (X1; Z1; t) � (x�X1) � (z � Z1) (4.62)

with initial and boundary conditions

c
�
x; z; 0�

�
= 0;

c (x; z; t)! 0 as x! �1, and z ! +1, and
@c

@z
(x; 0; t) = 0:

Conceptually this is now trapping at a line of in�nite crosswind length, as described on page 46.

After release the droplets disperse alongwind and vertically, whilst travelling with the mean

windspeed u and falling at settling speed S.

An analytic solution to Equation (4.62) may be found by taking Fourier transforms with respect

to x and then following the method used to obtain the 1-D solution. The transformed equation

is

@bc
@t
� S @bc

@z
+
�
!2DL + i!u

� bc = DV
@2bc
@z2

+Qe�i!X0� (z �H) � (t)

�kc (X1; Z1; t) e�i!X1� (z � Z1) : (4.63)

We then write bc (!; z; t) = bU (!; z; t) e� Sz
2DV

� S2t
4Dv

�(!2DL+i!u)t (4.64)

so that the transformed equation becomes

@ bU
@t
�DV

@2 bU
@z2

= bP (!; z; t) (4.65)

where

bP (!; z; t) = Qe
SH
2DV

�i!X0� (z �H) � (t)

�kc (X1; Z1; t) e
SZ1
2DV

+ S2t
4DV

+!2DLt�i!(X1�ut)� (z � Z1) : (4.66)

Equation (4.65) is now in the same form as Equation (4.43) in the 1-D solution, thus to �nd

an expression for bU (!; z; t), and subsequently bc (!; z; t), we follow the steps outlined in the 1-D
solution. The result is

bc (!; z; t) = Q bf (!; z; t;X0;H)� Z t

0
kc (X1; Z1; �) bf (!; z; t� � ;X1; Z1) d� (4.67)
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where

bf (!; z; t;X;Z) = e�i!(X+ut)�!
2DLt

24e� S2t
4DV

�S(z�Z)
2DV

2
p
�DV t

�
e
� (z�Z)2

4DV t + e
� (z+Z)2

4DV t

�

�Se
� SZ
DV

2DV
erfc

�
z + Z + St

2
p
DV t

�35 : (4.68)

At this point we would like to invert the Fourier transforms, but a di¢ culty arises at z = Z1

where the integrand in Equation (4.67) has a singularity of the form (t� �)�1=2 at the upper

endpoint. Ignoring this for now and simply inverting under the integral:

c (x; z; t) = Qf (x; z; t;X0;H)�
Z t

0
kc (X1; Z1; �) f (x; z; t� � ;X1; Z1) d� (4.69)

where

f (x; z; t;X;Z) =
e
� (x�X�ut)2

4DLt

2
p
�DLt

24e� S2t
4DV

�S(z�Z)
2DV

2
p
�DV t

�
e
� (z�Z)2

4DV t + e
� (z+Z)2

4DV t

�

�Se
SZ
DV

2DV
erfc

�
z + Z + St

2
p
DV t

�35 : (4.70)

Once again we observe that the concentration becomes negative as an artefact of using Dirac

delta functions to focus all of the trapping to an in�nitely thin line. In this case the concentration

is negative in a localised area around the trapping line (both above and below), whereas for

DV = 0 it was only negative below. Similar to the explanation on page 48, the trapping here is

essentially a continuous negative release of strength kc (X1; Z1; t) from the line (x; z) = (X1; Z1),

and the concentration as given by Equation (4.69) is a superposition of the original release and

the summed e¤ect (up to the present time) of this negative release. Near the trapping line the

negative release overpowers the original release for a short time; the size of the area over which

this occurs depends on the size of k.

The solution in Equation (4.69) contains the, as yet, unknown c (X1; Z1; t) in the integrand.

Setting (x; z) = (X1; Z1) gives

c (X1; Z1; t) = Qf (X1; Z1; t;X0;H)�
Z t

0
kc (X1; Z1; �) f (X1; Z1; t� � ;X1; Z1) d� ; (4.71)

and now the di¢ culty mentioned in regard to inverting the Fourier transform becomes apparent:

f (X1; Z1; t� � ;X1; Z1) has a singularity of the form (t� �)�1 at the upper endpoint, thus the

integral is divergent, and the Laplace transform f (X1; Z1; p;X1; Z1) is not de�ned classically.

However, an expression may be found for the transform via distribution theory as covered by

Zemanian (1987, Chap. 8).
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Total Droplet Trapping and Deposition

Following Section 4.2, the total mass of droplets trapped at the line per unit crosswind length

[kg m�1] is
MTT = kc (X1; Z1; 0)

=
kQf (X1; Z1; 0;X0;H)

1 + kf (X1; Z1; 0;X1; Z1)
; (4.72)

which leaves a total mass deposit per unit crosswind length of MDT = Q�MTT [kg m�1], and

the density of deposit on the ground (mass of droplets deposited per unit area) [kg m�2] is

MD (x) = Sc (x; 0; 0)

= SQf (x; 0; 0;X0;H)� Skc (X1; Z1; 0) f (x; 0; 0;X1; Z1)

= SQf (x; 0; 0;X0;H)�
SkQf (X1; Z1; 0;X0;H) f (x; 0; 0;X1; Z1)

1 + kf (X1; Z1; 0;X1; Z1)
: (4.73)

Provided (x; z) 6= (X;Z), the required transform is

f (x; z; 0;X;Z) =
e
u(x�X)
2DL

2�
p
DLDV

�
e
�S(z�Z)

2DV

�
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�
��1 (x; z)

2
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��
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�S(��Z)
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�
(4.74)

where

� =

s
u2

DL
+

S2

DV
, �1 (x; z) =

s
(x�X)2

DL
+
(z � Z)2

DV
, �2 (x; z) =

s
(x�X)2

DL
+
(z + Z)2

DV
;

and K0 is a modi�ed Bessel function of the second kind of order zero (Weisstein, 2002). The

transform f (X1; Z1; 0;X1; Z1) is not de�ned classically because it requires the Laplace transform

of t�1. Using the formula for the Laplace transform of t�1 given by Zemanian (1987, p. 348 No. 4)

we obtain

f (X1; Z1; 0;X1; Z1) =
1

2�
p
DLDV

�
�1
2

�
ln

�
�2

4

�
+ 


�
+K0

�
�Z1p
DV

�

� S

DV

Z 1

Z1

e
�S(��Z1)

2DV K0

�
� (� + Z1)

2
p
DV

�
d�

�
(4.75)

where 
 = Euler�s constant = 0:57722 : : : (Zemanian, 1987, p. 346). It is not so easy to analyse

the total trapping directly from Equation (4.72) because of the more complicated transforms.
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However, looking at various calculated examples we observe the expected behaviour; that is,

the total trapping increases with increasing trapping rate k, and decreases if the trapping line

is moved further from the release.

An Illustrative Example for the Two-Dimensional Solution

The following example illustrates the 2-D solution with DV 6= 0 described above. The parame-

ter set used here is given in Table 4.2; these are the same values as used previously for the 2-D

solution with DV = 0. A settling speed of 0:2 m s�1 corresponds to droplets of approximate

diameter d = 44 �m, and dominant turbulence length scales of (LL; LV ) = (2; 1) m give disper-

sion coe¢ cients (DL; DV ) = u (LL; LV ) = (2; 1) m2 s�1. The e¤ective trapping rate for the line

is k = kb�x�z = 1 m2 s�1; note that the value used for kb is unrealistically high, and is used

only for demonstration purposes.

Table 4.2: Parameter set used to generate Figures 4.6 and 4.7

u S (LL; LV ) Q (X0;H) kb �x�z (X1; Z1)

1 m s�1 0:2 m s�1 (2; 1) m 1 kg m�1 (0; 3) m 25 s�1 0:04 m2 (4; 2) m

Figure 4.6 shows cross-sections of the density of deposit [kg m�2], as calculated from Equa-

tion (4.73); the density of deposit with trapping is denoted MD, and the value without trapping

is denoted M�
D (found by setting k = 0). One notable feature is the �elongated tail�, that

is, the deposition pro�le is not symmetric. This is because of the vertical dispersion: droplets

which are dispersed upwards spend longer in the air, and therefore travel further with the wind

before depositing.

The corresponding percentage reduction in density of deposit as a result of the trapping is

shown in Figure 4.7. In the previous example for DV = 0 there was signi�cant reduction

just downwind of the trapping line; but then strength of reduction decreased quite rapidly with

increasing downwind distance. Here, though the deposit is not reduced by as great a percentage,

the e¤ect persists much further downwind. According to Equation (4.72), the total trapping in

this case is MTT = 0:13 kg m�1; this is considerably less than the previous example for DV = 0

where it was 0:44 kg m�1.
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Figure 4.6: Cross-section of the density of deposit [kg m�2], resulting from a line release with non-zero
vertical dispersion and a line of trapping. MD denotes the density of deposit with trapping, and M�

D

denotes the corresponding value without trapping. Parameter values are given in Table 4.2.
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Figure 4.7: Cross-section of the percentage reduction in density of deposit as a result of the trapping in
Figure 4.6. Parameter values are the same as for Figure 4.6.
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Three-Dimensional Solution

In all three spatial dimensions, our advection-dispersion model with a point representation for

trapping is as given by Equation (4.3); that is

@c

@t
+ u

@c

@x
� S @c

@z
= DL

@2c

@x2
+DT

@2c

@y2
+DV

@2c

@z2
+Q� (x�X0) � (y � Y0) � (z �H) � (t)

�kc (X1; Y1; Z1; t) � (x�X1) � (y � Y1) � (z � Z1) (4.76)

with initial and boundary conditions

c
�
x; y; z; 0�

�
= 0

c (x; y; z; t)! 0 as x; y ! �1 and z ! +1, and
@c

@z
(x; y; 0; t) = 0:

The conceptual scenario is recapped on page 54. After release the droplets disperse horizontally

(both alongwind and crosswind) and vertically, whilst travelling with the mean windspeed u and

falling at settling speed S.

An implicit analytic solution to Equation (4.76) may be found by taking Fourier transforms with

respect to x and y then following the method used to obtain the 1-D solution; this procedure is

really just an extension from that used in 2-D. The transformed equation is

@ebc
@t
� S @

ebc
@z
+
�
!2DL + i!u+  

2DT

�ebc = DV
@2ebc
@z2

+Qe�i!X0�i Y0� (z �H) � (t)

�kc (X1; Y1; Z1; t) e�i!X1�i Y1� (z � Z1) :
(4.77)

We then write

ebc (!;  ; z; t) = ebU (!;  ; z; t) e� Sz
2DV

� S2t
4DV

�(!2DL+i!u+ 2DT )t (4.78)

so that the transformed equation becomes

@
ebU
@t
�DV

@2
ebU

@z2
=
ebP (!;  ; z; t) (4.79)

whereebP (!;  ; z; t) = Qe
SH
2DV

�i!X0�i Y0� (z �H) � (t)

�kc (X1; Y1; Z1; t) e
SZ1
2DV

+ S2t
4DV

+!2DLt�i!(X1�ut)+v2DT t�i Y1� (z � Z1) :
(4.80)

Equation (4.79) is now in the same form as Equation (4.43) in the 1-D solution; thus to �nd

an expression for ebU (!;  ; z; t), and subsequently ebc (!;  ; z; t), we once again follow the steps

outlined in the 1-D solution. The result is
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ebc (!;  ; z; t) = Q
ebf (!;  ; z; t;X0; Y0;H)� Z t

0
kc (X1; Y1; Z1; �)

ebf (!;  ; z; t� � ;X1; Y1; Z1) d�
(4.81)

where
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�35 : (4.82)

As in the 2-D solution, at this point we would like to invert the Fourier transforms, but a

di¢ culty arises at z = Z1 where the integrand in Equation (4.81) has a singularity of the form

(t� �)�1=2 at the upper endpoint. Ignoring the singularity and inverting the transforms:

c (x; y; z; t) = Qf (x; y; z; t;X0; Y0;H)�
Z t

0
kc (X1; Y1; Z1; �) f (x; y; z; t� � ;X1; Y1; Z1) d�

(4.83)
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Being an extension from 2-D, this solution also exhibits a negative concentration for a short

time in the vicinity of the trapping point (refer to page 63).

Setting (x; y; z) = (X1; Y1; Z1) to determine the, as yet, unknown c (X1; Y1; Z1; t) which appears

in the integrand of Equation (4.83) gives

c (X1; Y1; Z1; t) = Qf (X1; Y1; Z1; t;X0; Y0;H)

�
Z t

0
kc (X1; Y1; Z1; �) f (X1; Y1; Z1; t� � ;X1; Y1; Z1) d�: (4.85)

In Equation (4.85), f (X1; Y1; Z1; t� � ;X1; Y1; Z1) has a singularity of the form (t� �)�3=2 at the

upper endpoint, thus the integral is divergent, and the Laplace transform f (X1; Y1; Z1; p;X1; Y1; Z1)

does not exist classically. As in the 2-D solution an expression may be found for the transform

by using distribution theory, and in this way we are still able to directly evaluate the total

trapping and deposition.
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Total Droplet Trapping and Deposition

Following Section 4.2, the total mass of droplets trapped at the point [kg] is

MTT = kc (X1; Y1; Z1; 0)

=
kQf (X1; Y1; Z1; 0;X0; Y0;H)

1 + kf (X1; Y1; Z1; 0;X1; Y1; Z1)
; (4.86)

leaving a total mass deposit on the ground of MDT = Q�MTT [kg]. The density of deposit on

the ground [kg m�2] is

MD (x; y) = Sc (x; y; 0; 0)

= SQf (x; y; 0; 0;X0; Y0;H)� Skc (X1; Y1; Z1; 0) f (x; y; 0; 0;X1; Z1)

= SQf (x; y; 0; 0;X0; Y0;H)�
SkQf (X1; Y1; Z1; 0;X0; Y0;H) f (x; y; 0; 0;X1; Y1; Z1)

1 + kf (X1; Y1; Z1; 0;X1; Y1; Z1)
:

(4.87)

Provided (x; y; z) 6= (X;Y; Z), the required transform is
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where
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The transform f (X1; Y1; Z1; p;X1; Y1; Z1) is not de�ned classically because it requires the Laplace

transform of t�3=2; using the expression obtained via distribution theory in Zemanian (1987,

p. 348 No. 2) gives
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: (4.89)
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Again, it is not so easy to analyse the total trapping directly from Equation (4.86) because of

the more complicated transforms, but looking at various calculated examples the total trapping

increases with increasing trapping rate, and decreases if the trapping point is moved further

from the release as expected.

An Illustrative Example for the Three-Dimensional Solution

The following example illustrates the 3-D solution withDV 6= 0 described above. The parameter

set used here is given in Table 4.3. A settling speed of 0:2 m s�1 corresponds to droplets of

approximate diameter d = 44 �m, and dominant turbulence length scales of (LL; LT ; LV ) =

(2; 2; 1) m give dispersion coe¢ cients (DL:DT ; DV ) = u (LL; LT ; LV ) = (2; 2; 1) m2 s�1. The

e¤ective trapping rate for the point is k = kb�x�y�z = 10 m3 s�1; this comes from an

unrealistically high background trapping rate kb, which we use only to make the e¤ect of trapping

more easily observed.

Table 4.3: Parameter set used to generate Figures 4.8, 4.9 and 4.10

u S (LL; LT ; LV ) Q (X0; Y0;H) kb �x�y�z (X1; Y1; Z1)

1 m s�1 0:2 m s�1 (2; 2; 1) m 1 kg (0; 0; 3) m 1250 s�1 0:008 m3 (4; 2; 2) m

Figure 4.8 shows contours of the density of deposit [kg m�2] without trapping, calculated by

setting k = 0 in Equation (4.87). The corresponding contours with trapping are shown in

Figure 4.9; there is not much visible e¤ect on the contour lines, but they are bent slightly near

the trapping point. Note the oval shape of the contours in both �gures; they are elongated in the

downwind direction as a result of the vertical dispersion - droplets which are dispersed upwards

spend longer in the air, and are blown further by the wind before depositing. Figure 4.10 shows

the percentage reduction in density of deposit as a result of the trapping. The maximum

reduction in density of deposit is around 31 %, which occurs in the clearly evident shadow

area behind the trapping point. According to Equation (4.86), the total mass trapped is

MTT = 0:14 kg.
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Figure 4.8: Contours of the density of deposit [kg m�2], resulting from a point release (marked with a
�) with non-zero vertical dispersion and no trapping. The spacing between contours is 0:00027 kg m�2,
with the outer contour at 0:00027 kg m�2 and the inner contour at 0:00243 kg m�2. Parameter values

are given in Table 4.3.
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Figure 4.9: Contours of the density of deposit [kg m�2], resulting from a point release (marked with a
�), with non-zero vertical dispersion and trapping at a point (marked with a ?). The spacing between
contours is 0:00025 kg m�2, with the outer contour at 0:00025 kg m�2 and the inner contour at 0:00225

kg m�2. Parameter values are given in Table 4.3.
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Figure 4.10: Contours of the reduction in density of deposit between Figures 4.8 and 4.9 as a result of the
trapping. The maximum reduction is 30:95 % (the inner contour). The release point is marked with a
�, and the trapping point is marked with a ?. Parameter values are the same as for Figures 4.8 and 4.9.

4.5 Chapter Summary

In this chapter we simpli�ed our advection-dispersion model, which was derived in Chapter 3,

so that the e¤ect of trapping is concentrated at a single point. The bene�t of this point

representation for trapping is that it allowed us to solve the model analytically, and �nd explicit

expressions for the total trapping and the resulting deposit downwind. The material presented

in subsequent chapters is built upon this point representation.

We analysed the model in two cases: �rst the simple case of negligible vertical dispersion, and

second the more realistic case of signi�cant vertical dispersion. In each case we found solutions

to the model in one- and two-dimensions, building up to a full three-dimensional solution.

For the case of zero vertical dispersion, the solutions were readily obtained following standard

Laplace and Fourier transform methods; but for non-zero vertical dispersion the process was

more complicated and involved the use of Green functions. Although the solutions obtained for

the model with non-zero vertical dispersion turned out to be nestled in integral equations, we

were still able to �nd explicit expressions for the total trapping and deposition.



4. A Point Representation for Trapping 73

It was found that an artefact of the point representation for trapping is that it causes the

droplet mass concentration to become negative in the vicinity of the trapping. We recognise

that in this vicinity the model does not accurately represent the conceptual situation, however

the unrealistically high trapping rates in this chapter exaggerate the issue. In the next chapter

we will use the point representation to construct a discretised shelterbelt, and it becomes clear

that the issue of a negative concentration has negligible e¤ect with realistic trapping rates.



Chapter 5

Trapping in a Discretised Shelterbelt

Here we use the results obtained in the previous chapter to construct an analytic solution to

our advection-dispersion model with trapping in a discretised shelterbelt (in the absence of

evaporation). Recall that the shelterbelt in our model as it was originally derived in Chapter 3

is represented by a block of continuous trapping, but since it is di¢ cult to solve the model

analytically with this approach we discretise the shelterbelt as a way in which to advance.

In this chapter we analyse our advection-dispersion model with trapping in a discretised shelter-

belt. We consider the same two cases as for the single trapping point in the previous chapter:

�rst, a special case where the droplets can disperse only horizontally, and second, the more

realistic case where the droplets also disperse vertically. Once again, the ultimate objective in

each case is a full three-dimensional (3-D) solution, which we work towards by �rst determining

solutions in one and two dimensions (1-D and 2-D).

The solutions in this chapter inherit the issue identi�ed in the previous chapter (refer to pages 48

�49), whereby the concentration becomes negative as an artefact of using Dirac delta functions

to focus the e¤ect of trapping in each block to an in�nitely small point. We show how this issue

may be avoided by making the trapping continuous horizontally within the shelterbelt (that is,

only discretising it vertically), however it becomes clear that there is very little e¤ect on the

total trapping and deposit.

5.1 Discretising a Shelterbelt

We discretise a shelterbelt by building upon the point representation for trapping in the previous

chapter. The shelterbelt is conceptualised as a three-dimensional array of small equally-sized

74
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Figure 5.1: A rectangular shelterbelt discretised by dividing it into a three-dimensional array of blocks,
N blocks wide � L blocks long � M high, with a trapping point at the centre of each block.

blocks of continuous trapping. Following the approach in Chapter 4, we concentrate the e¤ect of

trapping in each block to the point at its centre, so that the shelterbelt is represented by a three-

dimensional array of trapping points. Figure 5.1 shows a rectangular shelterbelt discretised in

such a manner; each small block has dimensions �x � �y � �z, the array is N blocks wide

alongwind � L blocks long acrosswind � M blocks high vertically, and the point at the centre

of each block is denoted (Xn; Yl; Zm), 1 � n � N; 1 � l � L; 1 � m �M .

In each block, the rate of mass removal by trapping per unit volume is kbRc, where kb is

the background trapping rate and R is a dimensionless function which is non-zero only where

trapping occurs. Following the approach in Chapter 4, we concentrate the e¤ect of trapping in

each block to the point at its centre by de�ning

Rnlm = �x�y�z� (x�Xn) � (y � Yl) � (z � Zm) ; (5.1)

which is dimensionless and non-zero only at (Xn; Yl; Zm). The e¤ective trapping rate k =

kb�x�y�z is the same for each point, because kb is assumed constant and all of the blocks

are equally-sized. In this way, the rate of mass removal per unit volume of air for each point
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is kc (Xn; Yl; Zm; t) � (x�Xn) � (y � Yl) � (z � Zm). The total rate of mass removal per unit

volume of air by the discretised shelterbelt is the summed e¤ect of all of the points; that is

NX
n=1

LX
l=1

MX
m=1

kc (Xn; Yl; Zm; t) � (x�Xn) � (y � Yl) � (z � Zm) : (5.2)

5.2 Advection-Dispersion Model

Our advection-dispersion model with trapping in a discretised shelterbelt is

@c

@t
+ u

@c

@x
� S @c

@z
= DL

@2c

@x2
+DT

@2c

@y2
+DV

@2c

@z2
+Q� (x�X0) � (y � Y0) � (z �H) � (t)

�
NX
n=1

LX
l=1

MX
m=1

kc (Xn; Yl; Zm; t) � (x�Xn) � (y � Yl) � (z � Zm) :

(5.3)

This is to be solved subject to the initial and boundary conditions given in Chapter 3, Section 3.2.

As for the analysis of a single trapping point in Chapter 4: if DV = 0 then the boundary

condition on the ground is automatically satis�ed and Equation (5.3) is relatively simple to

solve analytically, otherwise, if DV 6= 0 the boundary condition is not automatically satis�ed

and the solution is more complicated.

5.3 Total Trapping in the Shelterbelt and Deposit on the Ground

The quantities of particular interest are the total trapping by the discretised shelterbelt and the

subsequent deposit on the ground. Both of these quantities are found from the solution to the

advection-dispersion model, we evaluate them using Laplace transforms via the property

Z 1

0
c (x; y; z; t) dt =

Z 1

0
e�ptc (x; y; z; t) dt

����
p=0

= c (x; y; z; 0) (5.4)

where c (x; y; z; p) is the Laplace transform of c (x; y; z; t) with respect to t.
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Total Droplet Trapping by the Shelterbelt

The total mass of droplets trapped by the discretised shelterbelt, MTT [kg], is found by inte-

grating the rate of mass removal per unit volume of air with respect to space and time. The

rate of mass removal per unit volume of air is given by Equation (5.2); integrating with respect

to space and time:

MTT =

Z 1

0

Z 1

0

Z 1

�1

Z 1

�1

NX
n=1

LX
l=1

MX
m=1

kc (Xn; Yl; Zm; t) � (x�Xn) � (y � Yl) � (z � Zm)

dx dy dz dt

(5.5)

which simpli�es to

MTT =
NX
n=1

LX
l=1

MX
m=1

Z 1

0
kc (Xn; Yl; Zm; t) dt

=
NX
n=1

LX
l=1

MX
m=1

kc (Xn; Yl; Zm; 0) : (5.6)

The total mass of droplets deposited on the ground, MDT [kg], is simply what remains of the

original release:

MDT = Q�MTT

= Q�
NX
n=1

LX
l=1

MX
m=1

kc (Xn; Yl; Zm; 0) : (5.7)

Droplet Deposit on the Ground

The total mass of droplets deposited on the ground per unit area, MD [kg m�2], is found by

integrating the downward mass �ux per unit area on the ground with respect to time. At height

z the downward mass �ux per unit area is Sc+DV
@c

@z
; on the ground this reduces to Sc, because

of the boundary which requires zero vertical dispersive �ux at ground level. Integrating with

respect to time:

MD (x; y) =

Z 1

0
Sc (x; y; 0; t) dt

= Sc (x; y; 0; 0) : (5.8)
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The transforms required here are the same as those for the single trapping point. Most are

standard formulae readily available in transform tables, but for DV 6= 0 some of the transforms

must be sourced from generalized calculus.

5.4 Case 1: Zero Vertical Dispersion

In this section we analyse our advection-dispersion model with trapping in a discretised shelter-

belt, in the case where vertical dispersion of the droplets is very small compared to horizontal

dispersion, such that the vertical dispersion coe¢ cient may be considered zero. This is a special

case of the model, where the droplets can disperse only horizontally and the boundary condition

on the ground is automatically satis�ed.

We present solutions to the model with DV = 0 in 1-D and 2-D, building up to a full 3-D

solution. The 1-D case is conceptually very simple, and in fact we can determine a solution

with continuous trapping in that particular case. A common feature of all of these DV = 0

solutions, as for those with DV = 0 in the previous chapter, is that the concentration is always

zero above the release height and only non-zero below the release height at the level of the

droplets after time t. This is because the droplets do not spread vertically; they fall as a sheet.

One-Dimensional Solution with Discretised Trapping

In 1-D, and with DV = 0, our advection-dispersion model with trapping in a discretised shel-

terbelt becomes

@c

@t
� S @c

@z
= Q� (z �H) � (t)�

MX
m=1

kc (Zm; t) � (z � Zm) (5.9)

with initial and boundary conditions

c
�
z; 0�

�
= 0 and c (1; t) = 0:

The conceptual situation here is a plane release with trapping at a number of planes stacked

atop each other, as shown in Figure 5.2. Mass Q per unit area is released at time t = 0 from

the plane at (x; y; z) = (x; y;H). A shelterbelt �slab�of in�nite length and width is discretised

by dividing it into M layers of equal thickness �z; these are labelled m = 1; : : : ;M , and the

midpoint of each is denoted z = Zm. The highest layer is m = 1 and the lowest is m = M .
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Figure 5.2: Illustration of a shelterbelt �slab�, shaded in grey, discretised by dividing it into M layers
with the trapping in each layer concentrated to the mid-plane.

Each layer removes droplets at mass rate per unit volume kbRmc; we concentrate the e¤ect of

trapping in each layer to the plane at (x; y; z) = (x; y; Zm), so that Rm = �z� (z � Zm) and the

e¤ective trapping rate for the plane is k = kb�z. After release the droplets simply fall towards

the ground with settling speed S; they do not disperse as they fall.

The solution to the Laplace transform of Equation (5.9) with respect to t may be constructed

from the transformed solution for a single trapping plane on page 44:

c (z; p) =
Q

S
H (H � z) e�

p(H�z)
S �

MX
m=1

k

S
c (Zm; p)H (Zm � z) e�

p(Zm�z)
S (5.10)

where H (z) is the Heaviside function

H (z) =

8><>: 0; z < 0;

1; z > 0:
(5.11)

Equation (5.10) contains theM , as yet, unknowns c (Z1; p) ; : : : ; c (ZM ; p), and has discontinuities

at z = H and z = Z1; : : : ; ZM . To determine c (Zm; p) we let z ! Z+m to correspond with the

concentration which arrives at the mth trapping plane.

c (Zm; p) = lim
z!Z+m

c (z; p)

=
Q

S
H (H � Zm) e�ptm �

m�1X
i=1

k

S
c (Zi; p) e

�p(tm�ti) (5.12)
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where tm =
(H � Zm)

S
is the time for the droplets to fall to the mth trapping plane. If the

mth trapping plane is above the release height, then the concentration there is zero because no

droplets move upwards from the release. Otherwise, if the mth trapping plane is below the

release height, then the concentration there depends upon the trapping planes between it and

the release.

Some values of Equation (5.12) at consecutive trapping planes below the release height are given

in Table 5.1. It is assumed that m = J is the highest trapping plane below the release height;

this accounts for the possibility that some of the trapping planes are above the release height

and some are below. Note that the values at consecutive trapping planes in Table 5.1 give a

sequence of polynomials in
k

S
of increasing degree; in fact we can write the following:

For Z1; : : : ; ZM > H, so that all of the trapping planes are above the release height,

c (Zm; p) = 0; m = 1; : : : ;M; (5.13)

and for ZM ; : : : ; ZJ < H, 1 � J � M , so that the highest J � 1 trapping planes are above the

release height and the remaining M � (J � 1) trapping planes are below,

c (Zm; p) =

8>>><>>>:
0; m = 1; : : : ; J � 1;

Q

S
e�ptm

�
1� k

S

�m�J
; m = J; : : : ;M:

(5.14)

Equation (5.14) may be proven by induction, though the details are not included here. Finally,

using the formula for the �nite sum of a geometric progression (Gradshteyn & Ryzhik, 2000,

p. 1)
MX
m=1

qm�1 =
qM � 1
q � 1 ; q 6= 1 (5.15)

and inverting the Laplace transforms, we obtain the following:

For Z1; : : : ; ZM > H, so that all of the trapping planes are above the release height,

c (z; t) =

8>><>>:
0; z > H;

Q� (z � (H � St)) ; z < H;

(5.16)
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and for ZM ; : : : ; ZJ < H, 1 � J � M , so that the highest J � 1 trapping planes are above the

release height and the remaining M � (J � 1) trapping planes are below

c (z; t) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

0; z > H;

Q� (z � (H � St)) ; ZJ < z < H;

Q

�
1� k

S

�m�J
� (z � (H � St)) ; Zm+1 < z < Zm;

m=J+1;:::;M�1

Q

�
1� k

S

�M�J
� (z � (H � St)) ; z < ZM : (5.17)

Droplets are removed at each successive trapping plane below the release height, leaving a smaller

concentration underneath.

Total Droplet Trapping and Deposition

As described in Section 5.3, the total mass of droplets trapped and the subsequent deposit on

the ground are calculated by setting p = 0 in the transformed solution. The total mass of

droplets trapped by the discretised shelterbelt �slab�per unit area [kg m�2] is

MTT =

MX
m=1

kc (Zm; 0)

=

8>>><>>>:
0; Z1; : : : ; ZM > H;

Q�Q
�
1� k

S

�M�J+1
; H > ZJ ; : : : ; ZM

1�J�M

(5.18)

leaving a density of deposit on the ground [kg m�2] of MD = Q�MTT . The notes on the total

trapping for a single plane (page 45 in the previous chapter) also apply here:

� Nothing is trapped if all of the trapping planes are above the release height.

� If all of the trapping planes are below the release height, then the total trapping is inde-

pendent of their placement.

� The total trapping increases with increasing trapping rate k. A restriction on the size of

k is necessary in order to keep the trapping within its physical bounds (see below).
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Table 5.1: Transformed concentration at a number of consecutive trapping planes below the release
height. c (Zm; p) is the Laplace transform with respect to t of the concentration at the mth trapping
plane. It is assumed that m = J , 1 � J �M , is the highest trapping plane below the release height.

m c (Zm; p)

J c (ZJ ; p) =
Q

S
e�ptJ

J + 1 c (ZJ+1; p) =
Q

S

�
1� k

S

�
e�ptJ+1

J + 2 c (ZJ+2; p) =
Q

S

�
1� 2k

S
+
k2

S2

�
e�ptJ+2

J + 3 c (ZJ+3; p) =
Q

S

�
1� 3k

S
+
3k2

S2
� k3

S3

�
e�ptJ+3

J + 4 c (ZJ+4; p) =
Q

S

�
1� 4k

S
+
6k2

S2
� 4k

3

S3
+
k4

S4

�
e�ptJ+4

J + 5 c (ZJ+5; p) =
Q

S

�
1� 5k

S
+
10k2

S2
� 10k

3

S3
+
5k4

S4
� k5

S5

�
e�ptJ+5
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A Physical Restriction on the Trapping

For the model to remain physically sensible, the rate of mass removal at each trapping plane

must not exceed the rate of mass arrival; this places an upper limit on the size of the e¤ective

trapping rate k, and consequently on the thickness of the layers into which the shelterbelt is

divided, �z. The rate of mass arrival at the mth trapping plane is Sc (Z+m; t), and the rate of

mass removal there is kc (Z+m; t). As a consequence we must have

kc
�
Z+m; t

�
� Sc

�
Z+m; t

�
, which requires k � S: (5.19)

Since k is positive, this condition also ensures that 0 � MTT � Q in Equation (5.18), in other

words that the total trapping is no greater than the original release.

Recall that the e¤ective trapping rate is de�ned as k = kb�z; since the value of the background

trapping rate kb is intrinsic to the shelterbelt and we have no control over it, the condition of

k � S must be satis�ed by an appropriate choice for �z, the thickness of the layers into which

the shelterbelt is divided. In other words the number of layers M must be chosen so that the

thickness of each layer satis�es

�z � S

kb
: (5.20)

One-Dimensional Solution with Continuous Trapping

It is generally di¢ cult to solve our advection-dispersion model analytically with continuous

trapping, however, in this particular 1-D case we can determine a solution and it is presented

here for comparison with the discretised solution obtained above.

Suppose the shelterbelt �slab� shown in Figure 5.2 extends vertically between z = ZB and

z = ZA, where ZA > ZB. The rate of mass removal per unit volume of air is kbRc, where R is

a dimensionless function which is non-zero only within the shelterbelt; here R can be expressed

in terms of Heaviside functions as

R = H (z � ZB)�H (z � ZA) : (5.21)

With the droplet mass concentration denoted cc (z; t) [kg m�3] to indicate continuous trapping,

our advection-dispersion model in 1-D and with DV = 0 becomes

@cc
@t

� S@cc
@z

= Q� (z �H) � (t)� kbcc (H (z � ZB)�H (z � ZA)) (5.22)
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with initial and boundary conditions

cc
�
z; 0�

�
= 0 and cc (1; t) = 0:

We solve Equation (5.22) in three regions: above the shelterbelt, within the shelterbelt and below

the shelterbelt; matching the downward �ux Sc (z; t) at the interface between each region. There

are three possible scenarios: (i) the release height is below the shelterbelt, (ii) the release height

is within the shelterbelt, and (iii) the release height is above the shelterbelt.

(i). For H < ZB, so that the release height is below the shelterbelt,

cc (z; t) =

8>><>>:
0; z > H;

Q� (z � (H � St)) ; z < H:

(5.23)

(ii). For ZB < H < ZA, so that the release height is within the shelterbelt,

cc (z; t) =

8>>>>>><>>>>>>:

0; z > H;

Qe�kbt� (z � (H � St)) ; ZB < z < H;

Qe�kbtB� (z � (H � St)) ; z < ZB:

(5.24)

(iii). For ZA < H, so that the release height is above the shelterbelt,

cc (z; t) =

8>>>>>>>>>><>>>>>>>>>>:

0; z > H;

Q� (z � (H � St)) ; ZA < z < H;

Qe�kb(t�tA)� (z � (H � St)) ; ZB < z < ZA;

Qe�kb(tB�tA)� (z � (H � St)) ; z < ZB;

(5.25)

where tA =
H � ZA

S
and tB =

H � ZB
S

are the times for the droplets to fall to heights ZA and

ZB respectively. From Equations (5.24) and (5.25) it is clear that with continuous trapping the

concentration decreases exponentially as the droplets fall through the shelterbelt.



5. Trapping in a Discretised Shelterbelt 85

Total Droplet Trapping and Deposition

With continuous trapping, the total mass of droplets trapped by the shelterbelt per unit area,

denoted MTTc [kg m�2], is the integral of the mass rate of removal per unit volume with respect

to space and time:

MTTc =

Z 1

0

Z 1

0
kbcc (z; t) (H (z � ZB)�H (z � ZA)) dz dt

=

8>>>>>><>>>>>>:

0; ZB > H;

Q
�
1� e�kbtB

�
; ZA > H > ZB;

Q
�
1� e�kb(tB�tA)

�
; H > ZA:

(5.26)

The density of deposit on the ground, MDc [kg m�2], is simply what remains of the original

release, that is Q�MTTc.

Note the parallels between the total trapping here and in the discretised solution: once again

there is no trapping if the shelterbelt is completely above the release height, or, if the shelterbelt

is completely below the release height its position has no e¤ect on the total trapping. In

Equation (5.26) however, 0 � MTTc � Q so it is not possible to trap more than the original

release.

Comparison with the Discretised Solution

In this section we compare the solutions with continuous and discretised tapping, for a varying

number of trapping planesM in the discretised solution. The shelterbelt �slab�extends between

ZB = 0:5 m and ZA = 2:5 m, with background trapping rate kb = 0:5 s�1, and the release

parameters are S = 0:2 m s�1, Q = 1 kg m�2 and H = 3 m.

Figure 5.3 (page 87) shows the �nite part of the concentration (which appears at height z only

at time t =
H � z
S

) as the droplets fall through the shelterbelt. The solid line represents

the solution with continuous trapping, cc (z; t), and the asterisks represent the solution with

discretised trapping, c (z; t) (calculated midway between each trapping plane). Note thatM = 5

is the minimum number of trapping planes required for the e¤ective trapping rate to satisfy k �
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S. This �gure illustrates that the discretised solution does indeed approximate the continuous

solution, and that the �t between the two improves as M increases.

A measure of the accuracy of the discretised solution is shown by the dimensionless ratio

MTT =MTTc in Figure 5.4, where MTT is the total trapping in the discretised solution [kg m�2]

andMTTc is the corresponding value in the continuous solution. The accuracy of the discretised

solution increases with the number of trapping planes, though the total trapping always remains

a little higher than in the continuous solution. In this example, even with the minimum number

of trapping planes MTT is only larger than MTTc by 0:7 %.

Two-Dimensional Solution with Discretised Trapping

In 2-D, and with DV = 0, our advection-dispersion model with trapping in a discretised shel-

terbelt becomes

@c

@t
+ u

@c

@x
� S @c

@z
= DL

@2c

@x2
+Q� (x�X0) � (z �H) � (t)

�
NX
n=1

MX
m=1

kc (Xn; Zm; t) � (x�Xn) � (z � Zm) (5.27)

with initial and boundary conditions

c
�
x; z; 0�

�
= 0, and

c (x; z; t)! 0 as x! �1 and z ! +1:

As shown in Figure 5.5 on page 88, this is now a line release with trapping at a number of

lines stacked in a 2-D array. Mass Q per unit length is released at time t = 0 from the line

(x; y; z) = (X0; y;H). A rectangular shelterbelt of in�nite crosswind length is discretised by

dividing it into a 2-D array of prisms, each with cross-sectional area �x�z; these are labelled

by alongwind index n = 1; : : : ; N and vertical index m = 1; : : : ;M , and the midline of each is

denoted (Xn; y; Zm). The highest row of prisms in the array is m = 1 and the lowest is m =M .

Each prism removes droplets at mass rate per unit volume kbRnmc; we concentrate the e¤ect

of this trapping to the line (x; y; z) = (Xn; y; Zm), so that Rnm = �x�z� (x�Xn) � (z � Zm)

and the e¤ective trapping rate for the line is k = kb�x�z. After release the droplets disperse

alongwind, whilst travelling with the mean windspeed u and falling at settling speed S.
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Figure 5.3: Comparisons between the solutions for continuous and discretised trapping, with a varying
number of trapping planes M in the discretised solution. The solid line represents the solution with
continuous trapping, and the asterisks represent the solution with discretised trapping (calculated midway

between each trapping plane). See the text for parameter values.



5. Trapping in a Discretised Shelterbelt 88

10 20 30 40 50 60 70 80 90 100
1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

M

M
TT

/M
TT

c  [
­]

Figure 5.4: A measure of the accuracy of the discretised solution, illustrated by the dimensionless ratio
MTT =MTTc, as the number of trapping planes M increases. MTT [kg m�2] denotes the total trapping
in the discretised solution, and MTTc is the corresponding value in the continuous solution. Parameter

values are as for Figure 5.3.
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Figure 5.5: Illustration of an in�nitely long rectangular shelterbelt, shaded in grey, discretised by dividing
it into N �M prisms with the trapping in each concentrated to the mid-line.
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The solution to the Laplace transform of Equation (5.27) with respect to t may be constructed

from the transformed solution for a single trapping line on page 47:

c (x; z; p) =
Q

2
p
�SDL (H � z)

H (H � z) e�
p(H�z)

S
�S(x�X0�u(H�z)=S)

2

4DL(H�z)

�
NX
n=1

MX
m=1

kc (Xn; Zm; p)

2
p
�SDL (Zm � z)

H (Zm � z) e
� p(Zm�z)

S
�S(x�Xn�u(Zm�z)=S)2

4DL(Zm�z) :

(5.28)

This transformed solution contains the N �M , as yet unknowns c (X1; Z1; p) ; : : : ; c (XN ; ZM ; p)

and has discontinuities at z = H and z = Z1; : : : ; ZM . To determine c (Xn; Zm; p) we set

x = Xn and let z ! Z+m, since this represents the concentration which arrives at the n;m
th

trapping line.

c (Xn; Zm; p) = lim
z!Z+m

c (Xn; z; p)

=
Q

2S
p
�DLtm

H (H � Zm) e
�ptm� (Xn�X0�utm)2

4DLtm

�
NX
j=1

m�1X
i=1

kc (Xj ; Zi; p)

2S
p
�DL (tm � ti)

e
�p(tm�ti)�

(Xn�Xj�u(tm�ti))
2

4DL(tm�ti)

(5.29)

where tm =
H � Zm

S
is the time for the droplets to fall to the height of the mth row of trapping

lines. If the n;mth trapping line is above the release height, then the concentration there is zero

because no droplets move upwards from the release. Otherwise, if the n;mth trapping line is

below the release height, then the concentration there depends upon the rows of trapping lines

between it and the release (note that other trapping lines at the same level have no in�uence).

In the 1-D solution we were able to write an explicit expression for c at each trapping plane,

but because of the alongwind dispersion here it is di¢ cult to go any further than the recursive

formula above. The �rst term corresponds to the concentration at the n;mth trapping line due

purely to the original release, and the second term compensates for the mass which has been

removed at the trapping lines above.

Inverting the Laplace transforms:
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For Z1; : : : ; ZM > H, so that all of the rows of trapping lines are above the release height,

c (x; z; t) =

8>><>>:
0; z > H;

Q

2
p
�DLt

e
� (x�X0�ut)

2

4DLt � (z � (H � St)) ; H > z;

(5.30)

and for ZM ; : : : ; ZJ < H, 1 � J �M , so that the highest J � 1 rows of trapping lines are above

the release height and the remaining M � (J � 1) rows are below,

c (x; z; t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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(5.31)

Below the release height the concentration distribution alongwind is Gaussian until the level of

the trapping lines, where some of the droplets are removed at each successive row of trapping

lines, leaving a smaller concentration underneath and altering the distribution.

This solution inherits the issue identi�ed in Chapter 4 (see page 48), where, due to the interaction

of delta functions, the concentration becomes negative as one nears the trapping lines from below.

In the next section we show how this issue can be resolved by making the trapping continuous

alongwind (thus spreading it out over a �nite width which removes one of the delta functions).

After performing some comparative examples however, it becomes clear that the issue has very

little e¤ect on the total trapping and deposit.
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Total Droplet Trapping and Deposition

Following Section 5.3, the mass of droplets trapped by the discretised shelterbelt per unit length

[kg m�1] is

MTT =
NX
n=1

MX
m=1

kc (Xn; Zm; 0) (5.32)

where c (Xn; Zm; 0) is given by Equation (5.29) with p = 0. This leaves a total mass deposit on

the ground per unit crosswind length of MDT = Q�MTT [kg m�1]. The density of deposit on

the ground (mass of droplets deposited per unit area) [kg m�2] is

MD (x) = Sc (x; 0; 0)

=
Q
p
S

2
p
�DLH

e
�S(x�X0�uH=S)

2

4DLH

�
NX
n=1

MX
m=1

k
p
Sc (Xn; Zm; 0)

2
p
�DLZm

e
�S(x�Xn�uZm=S)2

4DLZm : (5.33)

To evaluate the total trapping MTT and the density of deposit MD, one must solve the system

of N �M equations formed by Equation (5.29) at each of the trapping lines. For each trapping

line, Equation (5.29) is calculated using only values from higher rows of trapping lines; thus

the system does not have to be solved simultaneously, it can be solved directly by forward

substitution (working downwards from the highest row of trapping lines).

Two-Dimensional Solution With Continuous Trapping Alongwind

In this section, we show how the issue of the concentration becoming negative in the discretised

solution can be resolved by making the trapping continuous alongwind. In the discretised

solution, the shelterbelt was divided into anN�M array of prisms (each with cross-sectional area

�x�z), with the trapping in each prism concentrated to the mid-line at (x; y; z) = (Xn; y; Zm).

To make the trapping continuous alongwind we let N ! 1 which, in turn, makes �x ! 0.

Conceptually, this means that the shelterbelt is now divided into M layers vertically, with the

trapping in each layer concentrated to the sheet through the middle of the layer.

Here, we denote the Laplace transform of the concentration with respect to t by cc (x; z; p), to

indicate that it applies to continuous trapping alongwind. Letting �x! 0 in Equation (5.28)
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gives

cc (x; z; p) =
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(5.34)

Note the use of the background trapping rate kb, rather than the e¤ective trapping rate k =

kb�x�z. The second term above is the limit of a Riemann sum, and can be written as a

de�nite integral; assuming that the shelterbelt extends alongwind between x = XA on the left

and x = XB on the right:
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(5.35)

which contains the M , as yet, unknowns cc (x;Z1; p) ; : : : ; cc (x;ZM ; p), and has discontinuities

at z = H and z = Z1; : : : ; ZM . To determine cc (x;Zm; p) we let z ! Z+m, to correspond with

the concentration which arrives at the mth trapping sheet.

cc (x; Zm; p) = lim
z!Z+m

cc (x; z; p)

=
Q

2S
p
�DLtm

H (H � Zm) e
�ptm� (x�X0�utm)2

4DLtm
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kb�z cc (�;Zi; p)

2S
p
�DL (tm � ti)

e
�p(tm�ti)�

(x���u(tm�ti))
2

4DL(tm�ti) d� (5.36)

where tm =
H � Zm

S
is the time for the droplets to fall to the height of the mth trapping sheet.

If the mth trapping sheet is above the release height, then the concentration there is zero.

Otherwise, if the mth trapping sheet is below the release height, then the concentration there

depends upon the trapping sheets between it and the release. We can calculate Equation (5.36)

analytically for the �rst two trapping sheets which are below the release height, but beyond that

the integral has to be evaluated numerically.

Inverting the Laplace transforms:
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For Z1; : : : ; ZM > H, so that all of the trapping sheets are above the release height,

cc (x; z; t) =

8>><>>:
0; z > H;
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2

4DLt � (z � (H � St)) ; z < H

(5.37)

and for ZM ; : : : ; ZJ < H, 1 � J � M , so that the highest J � 1 trapping sheets are above the

release height and the remaining M � (J � 1) sheets are below,

cc (x; z; t) =
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(5.38)

This solution behaves in much the same way as the discretised solution: the concentration

distribution alongwind is Gaussian below the release height, until the level of the trapping

sheets, where some of the droplets are removed at each successive sheet. Here, though, the

concentration does not become negative provided the number of layers (and also trapping sheets)

M is chosen such that �z � S

kb
. This is the same condition as for the discretised solution in

1-D.
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Total Droplet Trapping and Deposition

With continuous trapping alongwind, we denote the total mass of droplets trapped per unit

crosswind length by MTTc [kg m�1]. It is given by the limit as �x! 0 in Equation (5.32):

MTTc = lim
�x!0

NX
n=1

MX
m=1

kb�x�z cc (Xn; Zm; 0)

=
MX
m=1

Z XB

XA

kb�z cc (x;Zm; 0) dx (5.39)

where cc (x;Zm; 0) is found from Equation (5.36) with p = 0. The total deposit on the ground

per unit crosswind length is MDTc = Q �MTTc [kg m�1], and the density of deposit on the

ground [kg m�2] is

MDc (x) = Scc (x; 0; 0)

=
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To evaluate the total trapping MTTc and the density of deposit MDc, one must solve the system

ofM integral equations formed by Equation (5.36) at each trapping sheet. As in the discretised

solution, Equation (5.36) is calculated for each trapping sheet using only values from higher

trapping sheets, thus the system does not have to be solved simultaneously.

An Illustrative Example for the Two-Dimensional Solution

The following example illustrates the 2-D solution with discretised trapping. It also shows that

the issue of the concentration becoming negative has negligible e¤ect given the realistic trapping

rate used. The parameter set is given in Table 5.2: a settling speed of S = 0:2m s�1 corresponds

to droplets of approximate diameter d = 44 �m, and a dominant alongwind turbulence length

scale of LL = 2 m gives dispersion coe¢ cient DL = uLL = 2 m2 s�1. The shelterbelt extends

vertically between ZB = 0:5 m and ZA = 8:5 m, and alongwind between XA = 4 m and

XB = 8 m.
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Table 5.2: Parameter set used to generate Figures 5.6 and 5.7.

u S LL Q (X0;H) kb

1 m s�1 0:2 m s�1 2 m 1 kg m�1 (0; 4) m 0:5 s�1

Figure 5.6 shows cross-sections of the density of deposit [kg m�2] for both discretised trapping,

withM = 40 and N = 2, and continuous trapping alongwind (that is N =1) also withM = 40.

The densities of deposit with discretised and with continuous trapping alongwind are denoted

MD and MDc respectively, and the corresponding value without trapping is denoted M�
D. Note

that with continuous trapping alongwind, M = 20 is the minimum number of trapping sheets

required to ensure that the concentration does not become negative. The percentage reduction

in density of deposit as a result of the trapping is shown in Figure 5.7.

Looking at these two �gures, the values for discretised and for continuous trapping alongwind

are almost identical, which shows that the issue of the concentration becoming negative in the

discretised solution has very little e¤ect. In fact, the total mass of droplets trapped is the same:

MTT = MTTc = 0:78 kg m�1 according to Equations (5.32) and (5.39). There is signi�cant

reduction in the density of deposit downwind of the shelterbelt; in this example the maximum

reduction is 87 % which occurs at x = 11:5 m.

Three-Dimensional Solution

In all three spatial dimensions, but with DV = 0, our advection-dispersion model with trapping

in a discretised shelterbelt becomes

@c

@t
+ u

@c

@x
� S @c

@z
= DL

@2c

@x2
+DT

@2c

@y2
+Q� (x�X0) � (y � Y0) � (z �H) � (t)

�
MX
m=1

NX
n=1

LX
l=1

kc (Xn; Yl; Zm; t) � (x�Xn) � (y � Yl) � (z � Zm)

(5.41)
with initial and boundary conditions

c
�
x; y; z; 0�

�
= 0; and

c (x; y; z; t)! 0 as x; y ! �1 and z ! +1:

The conceptual situation is as described in Section 5.1. To recap: a rectangular shelterbelt is

divided into a 3-D array of blocks, each with volume �x�y�z; these are labelled by alongwind
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Figure 5.6: Cross-section of the density of deposit [kg m�2], resulting from a line release with zero
vertical dispersion and an N �M array of trapping lines. MD and MDc are the densities of deposit with
discretised, and continuous trapping alongwind, and M�

D is the corresponding value without trapping.
Parameter values are as given in Table 5.2.
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Figure 5.7: Cross-section of the percentage reduction in density of deposit as a result of the trapping in
Figure 5.6. Parameter values are the same as for Figure 5.6.
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index n = 1; : : : ; N , crosswind index l = 1; : : : ; L and vertical index m = 1; : : : ;M . The e¤ect

of trapping in each block is concentrated to the midpoint (Xn; Yl; Zm). After release from the

source the droplets disperse horizontally (both alongwind and crosswind), whilst travelling with

the mean wind speed u and falling at settling speed S.

The solution to the Laplace transform of Equation (5.41) with respect to t is constructed from

the transformed solution for a single trapping point on page 54:
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Q

4�
p
DLDT (H � z)
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#
: (5.42)

The transformed solution above contains theN�L�M , as yet unknown values of c (X1; Y1; Z1; p)

: : : ; c (XN ; YL; ZM ; p) and has discontinuities at z = H and z = Z1; : : : ; ZM . Setting (x; y) =

(X1; Y1) and letting z ! Z+m to correspond with the concentration which arrives at the n; l;m
th

trapping point:
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35 (5.43)

where tm =
H � Zm

S
is the time for the droplets to fall to the height of the mth sheet of trapping

points. If the n; l;mth trapping point is above the release height, then the concentration there is

zero. Otherwise, if the n; l;mth trapping point is below the release height, then the concentration

there depends upon the sheets of trapping points between it and the release.

As in the 2-D solution, the dispersion both alongwind and crosswind makes it di¢ cult to go any

further than the recursive formula above. The �rst term corresponds to the concentration at

the n; l;mth trapping point due purely to the original release, and the second term compensates

for the mass which has been removed at at higher trapping points.
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Inverting the Laplace transforms:

For Z1; : : : ; ZM > H, so that all of the sheets of trapping points are above the release height,
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(5.44)

and for ZM ; : : : ; ZJ < H, 1 � J � M , so that the highest J � 1 sheets of trapping points are

above the release height and the remaining M � (J � 1) sheets are below,
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(5.45)

Similar to the 2-D solution, the horizontal concentration distribution is Gaussian until the level

of the trapping points, where some of the droplets are removed at each successive layer of points,

leaving a reduced concentration underneath and altering the distribution.
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This 3-D solution also inherits the issue of the concentration becoming negative. It is possible

to resolve the issue by making the trapping continuous horizontally (both alongwind and cross-

wind), and this can be done by letting both N and L ! 1 following the procedure described

in 2-D. The solution with continuous trapping horizontally is not included here, however, as

again it makes little di¤erence to the total trapping and deposit.

Total Droplet Trapping and Deposition

Following Section 5.3, the total mass of droplets trapped by the discretised shelterbelt [kg] is

MTT =
NX
n=1

LX
l=1

MX
m=1

kc (Xn; Yl; Zm; 0) (5.46)

where c (Xn; Yl; Zm; 0) is given by Equation (5.43) with p = 0. This leaves a total mass deposit

on the ground of MDT = Q�MTT [kg]. The density of deposit on the ground [kg m�2] is
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To evaluate the total trapping MTT and the density of deposit MD, one must solve the system

of N �L�M equations formed from Equation (5.43) at each of the trapping points. For each

trapping point, Equation (5.43) is calculated using only values at the sheets of trapping points

above it; this means that the system can be solved by working downwards from the highest sheet

of trapping points, without having to solve simultaneously.

5.5 Case 2: Non-Zero Vertical Dispersion

In this section we analyse our advection-dispersion model, with trapping in a discretised shelter-

belt, in the more realistic case where vertical dispersion of the droplets is signi�cant compared

to horizontal dispersion (that is DV 6= 0). In this case the boundary condition of zero vertical

dispersive �ux on the ground requires
@c

@z
(x; y; 0; t) = 0, and the form of the solution is more

complicated.
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As in Case 1 where DV = 0, we present solutions in 1-D and 2-D, building up to a full 3-D

solution. Once again, the 2-D and 3-D solutions inherit the issue identi�ed in Chapter 4,

where, due to the interaction of delta functions, the concentration is negative for a short time

in the vicinity of the trapping. The issue can be resolved by making the trapping continuous

horizontally in the same manner as for the DV = 0 solutions, though the computation process

is made much more di¢ cult by the vertical dispersion. Whilst we have determined solutions

with continuous trapping horizontally in this case, they are not included here as it was shown

in Case 1 that there is little e¤ect on the total trapping and deposit with a realistic trapping

rate (thus no bene�t to the extra computational di¢ culty).

One-Dimensional Solution With Discretised Trapping

In 1-D, and with DV 6= 0, our advection-dispersion model with trapping in a discretised shel-

terbelt becomes

@c

@t
� S @c

@z
= DV

@2c

@z2
+Q� (z �H) � (t)�

MX
m=1

kc (Zm; t) � (z � Zm) (5.48)

with initial and boundary conditions

c
�
z; 0�

�
= 0; c (1; t) = 0 and @c

@z
(0; t) = 0: (5.49)

The conceptual situation is now a shelterbelt �slab� discretised using a number of trapping

planes, as described on page 78. After release from the source the droplets disperse vertically,

whilst falling towards the ground with settling speed S.

A solution to Equation (5.48) is constructed from the solution for a single trapping plane on

page 58:

c (z; t) = Qf (z; t;H)�
MX
m=1

Z t

0
kc (Zm; �) f (z; t� � ;Zm) d� (5.50)

where

f (z; t;Z) =
e
� S2t
4DV

�S(z�Z)
2DV

2
p
�DV t

�
e
� (z�Z)2

4DV t + e
� (z+Z)2

4DV t

�
� Se

SZ
DV

2DV
erfc

�
z + Z + St

2
p
DV t

�
: (5.51)

Note that the M , as yet, unknowns c (Z1; t) ; : : : ; c (ZM ; t) appear inside the integrand in Equa-

tion (5.50). Setting z = Zm gives

c (Zm; t) = Qf (Zm; t;H)�
MX
i=1

Z t

0
kc (Zi; �) f (Zm; t� � ;Zi) d�: (5.52)
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Thus, the concentration at the mth trapping plane depends upon all of the other trapping planes

(both above and below it). The �rst term represents the concentration at the mth trapping

plane due purely to the original release, and the second term compensates for the mass removed

at all of the trapping planes up until the present time.

The concentration c (z; t) can be evaluated numerically, by solving Equation (5.52) at each

trapping plane using the procedure described for the single trapping plane in Chapter 4 (see

page 60). The advantage of that particular method is that the concentration at each time step

is calculated using values already calculated at previous time steps, thus the system does not

have to be solved simultaneously. Other higher order methods which could also be applied may

be found for instance in Linz (1985, Chap. 8); as the order increases however, so too does the

complexity involved in the computation.

Total Droplet Trapping and Deposition

The total trapping and deposition are found by taking Laplace transforms with respect to t

and then setting the transform variable to zero, as described in Section 5.3. The total mass of

droplets trapped by the discretised shelterbelt �slab�per unit area is

MTT =
MX
m=1

kc (Zm; 0) (5.53)

where

c (Zm; 0) =
Qf (Zm; 0;H)

1 + kf (Zm; 0;Zm)
�

MX
i=1
i6=m

kc (Zi; 0) f (Zm; 0;Zi)

1 + kf (Zm; 0;Zm)

=
Q

S + k
e
�S(Zm�H+jZm�Hj)

2DV �
MX
i=1
i6=m

kc (Zi; 0)

S + k
e
�S(Zm�Zi+jZm�Zij)

2DV : (5.54)

The density of deposit on the ground (mass of droplets deposited per unit area) [kg m�2] is then

Q�MTT . To evaluate the total trapping and the density of deposit, one must solve the system

of simultaneous equations formed by Equation (5.54) at each trapping plane.

One-Dimensional Solution With Continuous Trapping

Though complicated by the vertical dispersion, it is still possible in 1-D to determine an analytic

solution with continuous trapping. We present this solution here for comparison with the

discretised solution obtained above.
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The rate of mass removal by the shelterbelt �slab�per unit volume is kbRc, where R is dimen-

sionless and non-zero only within the shelterbelt. As in Case 1 where DV = 0, assuming that

the shelterbelt extends vertically between z = ZB at the base and z = ZA at the top, R can be

expressed in terms of Heaviside functions as

R = H (z � ZB)�H (z � ZA) : (5.55)

With the concentration denoted by cc (z; t) [kg m�3] to indicate that it is for continuous trapping,

our advection-dispersion model in 1-D and with DV = 0 becomes

@cc
@t

� S@cc
@z

= DV
@2cc
@z2

+Q� (z �H) � (t)� kbcc (H (z � ZB)�H (z � ZA)) (5.56)

with initial and boundary conditions

cc
�
z; 0�

�
= 0, cc (1; t) = 0 and

@cc
@z

(0; t) = 0:

We solve Equation (5.56) by taking Laplace transforms with respect to t in three regions: above

the shelterbelt, within the shelterbelt and below the shelterbelt. The concentration cc (z; t) and

the downward vertical �ux Scc (z; t) + DV
@cc
@z

(z; t) must match at the interface between each

region. The Laplace transform is

cc (z; t) =

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

�1 (p) e
r2z +

Qe�r1(H�z)

DV (r1 � r2)
H (H � z)� Qe�r2(H�z)

DV (r1 � r2)
H (z �H) ; z > ZA;

�2 (p) e
r3z + �3 (p) e

r4z

� Q

DV (r3 � r4)
�
e�r3(H�z) � e�r4(H�z)

�
H (z �H) ; ZA > z > ZB;

�4 (p)

�
er1z � r1

r2
er2z

�
� Q

DV (r1 � r2)
�
e�r1(H�z) � e�r2(H�z)

�
H (z �H) ; ZB > z;

(5.57)

where

r1 =
1

2DV

�
�S +

p
S2 + 4pDV

�
, r2 =

1

2DV

�
�S �

p
S2 + 4pDV

�
;

r3 =
1

2DV

�
�S +

p
S2 + 4 (p+ kb)DV

�
, and r4 =

1

2DV

�
�S �

p
S2 + 4 (p+ kb)DV

�
:

The four unknown functions �1 (p), �2 (p), �3 (p) and �4 (p) are determined by solving the

following equations which come from the matching conditions between regions:
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cc
�
Z+A ; p

�
= cc

�
Z�A ; p

�
and

@cc
@z

�
Z+A ; p

�
=
@cc
@z

�
Z�A ; p

�
;

cc
�
Z+B ; p

�
= cc

�
Z�B ; p

�
and

@cc
@z

�
Z+B ; p

�
=
@cc
@z

�
Z�B ; p

�
:

The Laplace transform cc (z; p) does not appear to be analytically invertible, however, it does

lead directly to the quantities of particular interest, that is, the total trapping and deposit.

Total Droplet Trapping and Deposition

With continuous trapping, the total mass of droplets trapped by the shelterbelt �slab�per unit

area is denoted MTTc [kg m�2], and it is found by integrating the rate of mass removal per unit

volume with respect to space and time:

MTTc =

Z 1

0

Z 1

0
kbcc (z; t) (H (z � ZB)�H (z � ZA)) dz dt

=

Z ZA

ZB

kbcc (z; 0) dz: (5.58)

There are three possible scenarios: (i) the release height is below the shelterbelt, (ii) the release

height is within the shelterbelt, and (iii) the release height is above the shelterbelt.

(i). For H < ZB, so that the release height is below the shelterbelt,

MTTc = kb

�
r4

�
�2 (p)�

Qe�r3H

DV (r3 � r4)

��
er3ZA � er3ZB

�
+r3

�
�3 (p) +

Qe�r4H

DV (r3 � r4)

��
er4ZA � er4ZB

��
p=0

: (5.59)

(ii). For ZB < H < ZA, so that the release height is within the shelterbelt,

MTTc = kb

�
r4

�
�2 (p)�

Qe�r3H

DV (r3 � r4)

�
er3ZA + r3

�
�3 (p) +

Qe�r4H

DV (r3 � r4)

�
er4ZA

� Q

DV
� r4�2 (p) er3ZB � r3�3 (p) er4ZB

�
p=0

: (5.60)

(iii). For ZA < H, so that the shelterbelt is below the release height,

MTTc = kb
�
r4�2 (p)

�
er3ZA � er3ZB

�
+ r3�3 (p)

�
er4ZA � er4ZB

��
p=0

: (5.61)

The density of deposit on the ground is then MDc = Q�MTTc [kg m�2], that is, what remains

of the original release.
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Figure 5.8: A measure of the accuracy of the discretised solution, illustrated by the ratio MTT =MTTc,
as the number of trapping planes M increases. MTT [kg m�2] is the total trapping from the discretised
solution, and MTTc is the corresponding value from the continuous solution. See the text for parameter

values.

Comparison with the Discretised Solution

Here we compare the total trapping from the discretised solution, for a varying number of

trapping planes, against the total trapping from the continuous solution. The parameter values

used are the same as those for the comparative example with DV = 0 in Case 1; these are

S = 0:2 m s�1, DV = 1 m2 s�1, Q = 1 kg m�2 and H = 3 m for the release, and ZB = 0:5 m,

ZA = 2:5 m and kb = 0:5 s�1 for the shelterbelt �slab�.

Figure 5.8 shows the dimensionless ratioMTT =MTTc for a varying number of trapping planesM ;

MTT is the total trapping [kg m�2] from the discretised solution, andMTTc is the corresponding

value from the continuous solution. The accuracy of the discretised solution increases with the

number of trapping planes, though it rapidly reaches a consistent level. In contrast to Case 1

where DV = 0, MTT is always a little lower here than MTTc. In this example, even with only

a single trapping plane MTT is only less than MTTc by 4:2 %.
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Two-Dimensional Solution With Discretised Trapping

In 2-D, and with DV 6= 0, our advection-dispersion model with trapping in a discretised shel-

terbelt becomes

@c

@t
+ u

@c

@x
� S @c

@z
= DL

@2c

@x2
+DV

@2c

@z2
+Q� (x�X0) � (z �H) � (t)

�
NX
n=1

MX
m=1

kc (Xn; Zm; t) � (x�Xn) � (z � Zm) (5.62)

with initial and boundary conditions

c
�
x; z; 0�

�
= 0;

c (x; z; t)! 0 as x! �1, and z !1, and
@c

@z
(x; 0; t) = 0:

Page 86 contains a description of the conceptual situation, which is now trapping at an in�nitely

long rectangular shelterbelt discretised using a 2-D array of trapping lines. After release from the

source the droplets disperse alongwind and vertically, whilst travelling with the mean windspeed

u and falling at settling speed S.

A solution to Equation (5.62) is constructed from the solution for a single trapping line on

page 63:

c (x; z; t) = Qf (x; z; t;X0;H)�
NX
n=1

MX
m=1

Z t

0
kc (Xn; Zm; �) f (x; z; t� � ;Xn; Zm) d� (5.63)

where

f (x; z; t;X;Z) =
e
� (x�X�ut)2

4DLt

2
p
�DLt

24e� S2t
4DV

�S(z�Z)
2DV

2
p
�DV t

�
e
� (z�Z)2

4DV t + e
� (z+Z)2

4DV t

�

�Se
SZ
DV

2DV
erfc

�
z + Z + St

2
p
DV t

�35 : (5.64)

Note that the N �M , as yet unknown values of c (X1; Z1; t) ; : : : ; c (XN ; ZM ; t) appear inside

the integrand in Equation (5.63). Setting (x; z) = (Xn; Zm) gives

c (Xn; Zm; t) = Qf (Xn; Zm; t;X0;H)�
NX
j=1

MX
i=1

Z t

0
kc (Xn; Zm; t� � ;Xj ; Zi) d�: (5.65)

Thus, the concentration at the n;mth trapping line depends upon all of the other trapping lines.

The �rst term represents the concentration at the n;mth trapping line due purely to the original
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release, and the second term compensates for the mass which has been removed at all of the

trapping lines up until the present time.

As mentioned in the opening of Case 2, this solution inherits the issue identi�ed for the single

trapping line in Chapter 4 (see page 63), where the concentration is negative for a short time in

the vicinity of the trapping. It is possible to resolve the issue by making the trapping continuous

alongwind following the procedure described in 2-D for Case 1, though this is not included here.

Total Droplet Trapping and Deposition

Following Section 5.3, the total mass of droplets trapped by the discretised shelterbelt per unit

crosswind length [kg m�1] is

MTT =
NX
n=1

MX
m=1

kc (Xn; Zm; 0) (5.66)

where

c (Xn; Zm; 0) =
Qf (Xn; Zm; 0;X0;H)

1 + kf (Xn; Zm; 0;Xn; Zm)
�

NX
j=1

MX
i=1

(j;i) 6=(n;m)

kc (Xj ; Zi; 0) f (Xn; Zm; 0;Xj ; Zi)

1 + kf (Xn; Zm; 0;Xn; Zm)

(5.67)

leaving a total mass deposit per unit crosswind length of MDT = Q �MTT [kg m�1]. The

density of deposit on the ground [kg m�2] is

MD (x) = Sc (x; 0; 0)

= SQf (x; 0; 0;X0;H)�
NX
n=1

MX
m=1

Skc (Xn; Zm; 0) f (x; 0; 0;Xn; Zm) : (5.68)

To evaluate the total trapping MTT and the density of deposit MD, one must solve the system

of simultaneous equations formed by Equation (5.67) at each trapping line.

For (x; z) 6= (X;Z), the required transform is

f (x; z; 0;X;Z) =
e
u(x�X)
2DL

2�
p
DLDV

�
e
�S(z�Z)

2DV

�
K0

�
��1 (x; z)

2

�
+K0

�
��2 (x; z)

2

��

� S

DV

Z 1

z
e
�S(��Z)

2DV K0

�
��2 (x; �)

2

�
d�

�
(5.69)

where
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Otherwise, for (x; z) = (X;Z) the required transform is
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�
: (5.70)

In Equations (5.69) and (5.70), 
 = Euler�s constant = 0:57722 : : : (Zemanian, 1987, p. 346) and

K0 is a modi�ed Bessel function of the second kind of order zero (Weisstein, 2002).

An Illustrative Example of the Two-Dimensional Solution

The following example illustrates the 2-D solution with discretised trapping. The parameter

set used here is given in Table 5.3. A settling speed of S = 0:2 m s�1 corresponds to droplets of

approximate diameter d = 44 �m, and dominant turbulence length scales of (LL; LV ) = (2; 1) m

give dispersion coe¢ cients (DL; DV ) = u (LL; LV ) = (2; 1) m2 s�1. The shelterbelt extends

vertically between ZB = 0:5 m and ZA = 8:5 m, and alongwind between XA = 4 m and

XB = 8 m. The size of the array of trapping lines into which the shelterbelt is divided is

N�M = 2�40, thus there are 80 trapping lines each with e¤ective trapping rate k = 0:2 m2 s�1.

Table 5.3: Parameter set used to generate Figures 5.9 and 5.10.

u S (LL; LV ) Q (X0;H) kb N �M �x�z

1 m s�1 0:2 m s�1 (2; 1) m 1 kg m�1 (0; 4) m 0:5 s�1 2� 40 0:4 m2

Figure 5.9 shows cross-sections of the density of deposit [kg m�2] as calculated from Equa-

tion (5.66); the density of deposit with trapping is denoted MD, and the corresponding value

without trapping is denoted M�
D. This �gure features the �elongated tail� as a result of the

vertical dispersion � the deposition pro�le is not symmetric because droplets which disperse

upwards spend longer in the air and are blown further before depositing.

The corresponding percentage reduction in density of deposit as a result of the trapping is shown

in Figure 5.10. There is signi�cant reduction downwind of the shelterbelt, and this strength of

reduction persists much further downwind than for the example with DV = 0. According to
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Equation (5.66), the total trapping here is MTT = 0:61 kg m�1, whereas in the example with

DV = 0 it was MTT = 0:78 kg m�1.

Three-Dimensional Solution With Discretised Trapping

In all three spatial dimensions, and with DV 6= 0, our advection-dispersion model with trapping

in a discretised shelterbelt is given by Equation (5.3); that is

@c

@t
+ u

@c

@x
� S @c

@z
= DL

@2c

@x2
+DT

@2c

@y2
+DV

@2c

@z2
+Q� (x�X0) � (y � Y0) � (z �H) � (t)

�
NX
n=1

LX
l=1

MX
m=1

kc (Xn; Yl; Zm; t) � (x�Xn) � (y � Yl) � (z � Zm) (5.71)

with initial and boundary conditions

c
�
x; y; z; 0�

�
= 0;

c (x; y; z; t)! 0 as x; y ! �1, and z ! +1, and
@c

@z
(x; y; 0; t) = 0:

To recap, a rectangular shelterbelt is discretised by dividing it into a 3-D array of blocks with the

trapping in each block concentrated to the mid-point (see Section 5.1). After release from the

source the droplets disperse horizontally (both alongwind and crosswind) and vertically, whilst

travelling with the mean windspeed u and falling at settling speed S.

A solution to Equation (5.71) is constructed from the solution for a single trapping point on

page 68:

c (x; y; z; t) = Qf (x; y; z; t;X0; Y0;H)

�
NX
n=1

LX
l=1

MX
m=1

Z t

0
kc (Xn; Yl; Zm; �) f (x; y; z; t� � ;Xn; Yl; Zm) d�

(5.72)

where

f (x; y; z; t;X;Y; Z) =
e
� (x�X�ut)2

4DLt
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4DV t + e
� (z+Z)2
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�Se
� SZ
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�
z + Z + St

2
p
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�35 : (5.73)
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Figure 5.9: Cross-section of the density of deposit [kg m�2], resulting from a line release with non-zero
vertical dispersion and an N � M array of trapping lines. MD denotes the density of deposit with
trapping, and M�

D denotes the corresponding value without trapping. Parameter values are as given in
Table 5.3.
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Figure 5.10: Cross-section of the percentage reduction in density of deposit as a result of the trapping in
Figure 5.9. Parameter values are the same as for Figure 5.10.
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The N �L�M , as yet unknown values of c (X1; Y1; Z1; t) ; : : : ; c (XN ; YL; ZM ) appear inside the

integrand in Equation (5.72). Setting (x; y; z) = (Xn; Yl; Zm) gives

c (Xn; Yl; Zm; t) = Qf (Xn; Yl; Zm; t;X0; Y0;H)

�
NX
j=1

LX
r=1

MX
i=1

Z t

0
kc (Xj ; Yr; Zi; �) f (Xn; Yl; Zm; t� � ;Xj ; Yr; Zi) d�:

(5.74)
Thus, the concentration at the n; l;mth trapping point depends upon all of the other trapping

points. The �rst term represents the concentration at the n; l;mth trapping point purely due to

the original release, and the second term compensates for the mass removal at all of the trapping

points up until the present time.

This solution, being an extension from 2-D, also exhibits a negative concentration for a short

time in the vicinity of the trapping. It is possible to resolve the issue by making the trapping

continuous horizontally (both alongwind and crosswind), and this can be done by letting both

N and L ! 1 following the procedure described in 2-D for Case 1. We do not pursue this

further here, as the issue has negligible e¤ect on the total trapping and deposit with realistic

trapping rates (see page 94).

Total Droplet Trapping and Deposition

Following Section 5.3, the total mass of droplets trapped by the discretised shelterbelt [kg] is

MTT =

NX
n=1

LX
l=1

mX
m=1

kc (Xn; Yl; Zm; 0) (5.75)

where

c (Xn; Yl; Zm; 0) =
Qf (Xn; Yl; Zm; 0;X0; Y0;H)

1 + kf (Xn; Yl; Zm; 0;Xn; Yl; Zm)

�
NX
j=1

LX
r=1

MX
i=1

(j;r;i) 6=(n;l;m)

kc (Xj ; Yr; Zi; 0) f (Xn; Yl; Zm; 0;Xj ; Yr; Zi)

1 + kf (Xn; Yl; Zm; 0;Xn; Yl; Zm)
:

(5.76)

This leaves a total mass deposit on the ground ofMDT = Q�MTT [kg]. The density of deposit

on the ground [kg m�2] is

MD (x; y) = Sc (x; y; 0; 0)

= SQf (x; y; 0; 0;X0; Y0;H)

�
NX
n=1

LX
l=1

MX
m=1

Skc (Xn; Yl; Zm; 0) f (x; y; 0; 0;Xn; Yl; Zm) : (5.77)
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To evaluate the total trapping MTT and the density of deposit MD, one must solve the system

of simultaneous equations formed by Equation (5.76) at each trapping point.

For (x; y; z) 6= (X;Y; Z), the required transform is

f (x; y; z; 0;X;Y; Z) =
e
u(x�X)
2DL

4�
p
DLDTDV

"
e
�S(z�Z)

2DV

 
e�

1
2
��1(x;y;z)

�1 (x; y; z)
+
e�

1
2
�2(x;y;z)

�2 (x; y; z)

!

� S

DV

Z 1

z
e
�S(��Z)

2DV
e�

1
2
��2(x;y;�)

�2 (x; y; �)
d�

#
(5.78)

where

� =

s
u2

DL
+

S2

DV
, �1 (x; y; z) =

s
(x�X)2

DL
+
(y � Y )2

DT
+
(z � Z)2

DV
, and

�2 (x; y; z) =

s
(x�X)2

DL
+
(y � Y )2

DT
+
(z + Z)2

DV
:

Otherwise, for (x; y; z) = (X;Y; Z) the required transform is

f (X;Y; Z; 0;X;Y; Z) =
1

4�
p
DLDTDV

�
��
2
+

p
DV

2Z
e
� �Zp

DV

� Sp
DV

Z 1

Z

1

(� + Z)
e
�S(��Z)

2DV
��(�+Z)

2
p
DV d�

�
: (5.79)

with � as given above.

An Illustrative Example of the Three-Dimensional Solution

The following example is intended to illustrate the 3-D solution with discretised trapping. The

parameter set used here is given in Table 5.4. A settling speed of S = 0:2 m s�1 corre-

sponds to droplets of approximate diameter d = 44 �m, and dominant turbulence length scales

of (LL; LT ; LV ) = (2; 2; 1) m give dispersion coe¢ cients (DL; DT ; DV ) = u (LL; LT ; LV ) =

(2; 2; 1) m2 s�1. The shelterbelt extends vertically between ZB = 0:5 m and ZA = 8:5 m, along-

wind between XA = 4 m XB = 8 m, and crosswind between YA = �4 m and YB = 4 m. The

size of the array of trapping points into which the shelterbelt is divided is N�L�M = 2�4�40,

thus there are 320 trapping points and the e¤ective trapping rate for each is k = 0:4 m3 s�1.
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Table 5.4: Parameter set used to generate Figures 5.11, 5.12 and 5.13.

u S (LL; LT ; LV ) Q (X0; Y0;H) kb N � L�M �x�y�z

1 m s�1 0:2 m s�1 (2; 2; 1) m 1 kg (0; 0; 4) m 0:5 s�1 2� 4� 40 0:8 m3

Figure 5.11 shows contours of the density of deposit [kg m�2] without trapping, calculated by

setting k = 0 in Equation (5.77). Note the oval shape of the contours; they are elongated in the

downwind direction as a result of the vertical dispersion �droplets which are dispersed upwards

spend longer in the air, and are blown further before depositing. The corresponding contours of

the density of deposit with trapping are shown in Figure 5.12; the contour lines are compressed

and bent as the density is reduced behind the trapping points.

Figure 5.13 shows the percentage reduction in density of deposit as a result of the trapping; the

shadow area of reduced deposit downwind of the shelterbelt is clearly visible. According to

Equation (5.75), the total mass trapped here is MTT = 0:45 kg.

5.6 Chapter Summary

In this chapter we took the solution to our advection-dispersion model with a point representa-

tion for trapping, described in Chapter 4, and used it to construct a solution for trapping in a

discretised shelterbelt. The discretisation was achieved by dividing the shelterbelt into a 3-D

array of smaller blocks, with the trapping in each block concentrated to the point at its centre.

As for the single trapping point in the previous chapter, we analysed the model with trapping in a

discretised shelterbelt for two separate cases: zero and non-zero vertical dispersion. In each case

we presented solutions in 1-D and 2-D, building up to a full 3-D solution. In 1-D, we were also

able to determine analytic solutions with continuous trapping for comparison with our discretised

solutions. It was observed that the 2-D and 3-D solutions exhibit negative concentrations in

the vicinity of the trapping �this is an artefact of the point representation for trapping carried

over from Chapter 4, and caused by focusing the trapping at an in�nitely small point. We

showed how the problem can be resolved by making the trapping continuous horizontally within

the shelterbelt, thus spreading it out over a �nite area rather than an in�nitely small point.
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Figure 5.11: Contours of the density of deposit MD [kg m�2], resulting from a point release (marked
with a �) with non-zero vertical dispersion and no trapping. The spacing between contour lines is
0:00018 kg m�2, the outermost contour has value MD = 0:00018 kg m�2, and the innermost contour has

value MD = 0:0016 kg m�2. Parameter values are as given in Table 5.4.
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Figure 5.12: Contours of the density of depositMD [kg m�2], resulting from a point release (marked with
a �), with non-zero vertical dispersion and trapping at a 2�4�40 array of points. The region containing
the trapping points is shaded in grey. The spacing between contours is 0:00015 kg m�2, the outermost
contour has value MD = 0:00015 kg m�2, and the innermost contour has value MD = 0:0014 kg m�2.

Parameter values are as given in Table 5.4.
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Figure 5.13: Contours of the percentage reduction in density of deposit between Figures 5.11 and 5.12 as
a result of the trapping. The release point is marked with a �, and the region containing the trapping

points is shaded grey. Parameter values are the same as for Figure 5.11 and Figure 5.12.

However, comparative examples showed very little di¤erence in the total trapping and deposit

because the region in which the concentration is negative is very small.

One could spend a considerable length of time experimenting with various parameter values and

array sizes for the discretisation of the shelterbelt, and we leave this as a subject for further

study.



Chapter 6

Trapping With Evaporation

The previous models in Chapters 3 �5 apply to droplets which are not evaporating. In this

chapter, we take the information on droplet evaporation from Chapter 2, and incorporate it into

our advection-dispersion model with the point representation for trapping from Chapter 4.

We begin by setting up the model with evaporation, and then introduce approximations for

the droplet mass and settling speed to simplify calculation later in the chapter. Following the

analysis of the previous models we seek analytic solutions, �rst in the simple case where vertical

dispersion is negligible compared to horizontal dispersion, and then in the more realistic but

also more di¢ cult case of signi�cant vertical dispersion. For each case, we present solutions

in one and two dimensions, working towards a full three-dimensional solution. Fully analytic

solutions for the case of signi�cant vertical dispersion could not be found; instead the solutions

are embedded in integral equations which we evaluate numerically.

The solutions in this chapter also inherit the issue of a negative concentration in the vicinity

of the trapping, which was identi�ed in Chapter 4 as an artefact of the point representation

for trapping. We do not discuss the issue any further in this chapter, as it was shown in the

previous chapter to have little e¤ect with realistic trapping rates (see pages 91 �95).

6.1 Advection-DispersionModelwithTrapping andEvaporation

With evaporation of the droplets, it is convenient to solve our advection-dispersion model in

terms of the number concentration rather than the mass concentration. The advantage of using

the number concentration is that there is no evaporation (or mass loss) term in the model. All

115
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droplets count the same in the number concentration no matter their mass; in fact, we continue

to count even droplets which have completely evaporated �these are just considered as droplets

with zero mass.

A cloud of evaporating droplets is still advected by the wind and dispersed by turbulence, all

whilst falling under the in�uence of gravity, however the rate at which the droplets fall decreases

with time as they become smaller and lighter. We assume that the relative humidity and

ambient temperature are uniform, and that the evaporating droplets do not a¤ect the relative

humidity; as a result, the amount of evaporation from a droplet is only dependent on the length

of time it spends in the air. The number concentration of droplets per unit volume of air is

denoted C (x; y; z; t) [# m�3]; our advection-dispersion model in terms of C, with evaporation

and a point representation for trapping, is:

@C

@t
+ u

@C

@x
� S (t) @C

@z
= DL

@2C

@x2
+DT

@2C

@y2
+DV

@2C

@z2

+
Q

m0
� (x�X0) � (y � Y0) � (z �H) � (t)

�kC (X1; Y1; Z1; t) � (x�X1) � (y � Y1) � (z � Z1) (6.1)

where m0 is the initial mass of each droplet, and the remaining parameters are as de�ned in the

previous models in Chapters 3 �5. The unit of k [m3 s�1] is the same as in the previous models

(since it is de�ned by k = kb�x�y�z, and kb is a ratio of droplets trapped per unit time). In

theory, the size of k should change with time as the droplets evaporate (smaller droplets are less

e¢ ciently trapped, see Section 3.3). At present, we assume that k remains constant; this could

be a topic for future research. The initial and boundary conditions are also the same as those

for the previous models. Note that evaporation only appears indirectly in Equation (6.1) via

the settling speed S (t), which decreases with time as the droplets become smaller and lighter.

Equation (6.1) may be derived following the argument in Chapter 3, but with conservation of

number rather than mass. Some important points to note are: (i) we assume that evaporation

does not a¤ect the dispersion, that is, the droplets are dispersed independently of their size, and

(ii) the situation is greatly simpli�ed by the choice of an instantaneous release, which means

that at any given instant, all of the droplets have been in the air for the same length of time,

therefore they have all experienced the same amount of evaporation, and consequently all have

the same settling speed. If the release were not instantaneous, the air would contain droplets

which have been airborne for di¤ering lengths of time, and so there would be a distribution of

droplet sizes with an associated distribution of settling speeds.
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At any time t, the mass concentration c (x; y; z; t) [kg m�3] is related to the number concentra-

tion by c = m (t)C. Multiplying Equation (6.1) by the mass m (t), our advection dispersion

model with evaporation and a point representation for trapping becomes, in terms of the mass

concentration:

@c

@t
+ u

@c

@x
� S (t) @c

@z
� E (t) c = DL

@2c

@x2
+DT

@2c

@y2
+DV

@2c

@z2

+Q� (x�X0) � (y � Y0) � (z �H) � (t)

�kc (X1; Y1; Z1; t) � (x�X1) � (y � Y1) � (z � Z1) (6.2)

where E (t) c =
1

m

dm

dt
c is the evaporation term. The evaporation term acts as a mass sink,

where the rate of removal depends upon the local concentration. If there is no evaporation, then

E (t) = 0 and S (t) = S = constant, and Equation (6.2) is the same as the model in Chapter 4.

6.2 Total Droplet Trapping and Deposition

Once again, the quantities of particular interest are the total amount trapped at the point and

the subsequent deposit on the ground. Whilst in the previous models these quantities were

evaluated using Laplace transforms (see Section 4.2), the time-dependent mass and settling

speed rule out that technique here.

Total Droplet Trapping

The number of droplets trapped per unit time, per unit volume, [# s�1 m�3] is

kC (X1; Y1; Z1; t) � (x�X1) � (y � Y1) � (z � Z1) :

The total number of droplets trapped at the point, NTT [#], is the integral of this rate per unit

volume with respect to space and time:

NTT =

Z ts

0

Z 1

0

Z 1

�1

Z 1

�1
kC (X1; Y1; Z1; t) � (x�X1) � (y � Y1) � (z � Z1) dx dy dz dt

=

Z ts

0
kC (X1; Y1; Z1; t) dt (6.3)

where ts is the disappearance time, that is, the time at which the droplets have evaporated

completely. Since all of the droplets have the same mass at any given time, the total mass of

droplets trapped at the point, MTT [kg], is
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MTT =

Z ts

0

Z 1

0

Z 1

�1

Z 1

�1
m (t) kC (X1; Y1; Z1; t) � (x�X1) � (y � Y1) � (z � Z1) dx dy dz dt

=

Z ts

0
m (t) kC (X1; Y1; Z1; t) dt: (6.4)

Deposition on the Ground

At ground level, the downward number �ux of droplets per unit area [# m�2 s�1] is

S (t)C (x; y; 0; t) :

The number density of deposit on the ground, ND [# m�2], is the integral with respect to time:

ND (x; y) =

Z ts

0
S (t)C (x; y; 0; t) dt: (6.5)

Once again, since all of the droplets have the same mass at any given time, the mass density of

deposit on the ground MD [kg m�2] is

MD (x; y) =

Z ts

0
m (t)S (t)C (x; y; 0; t) dt: (6.6)

6.3 Approximations for the Mass and Settling Speed

Expressions for the settling speed and evaporation rate of a droplet were given in Chapter 2

(Equations 2.5 and 2.19), however these expressions both require numerical evaluation. To

simplify calculation in this chapter we use approximations for the mass and settling speed; it

should be noted, though, that the solutions presented later in the chapter could be used with

formulae other than these approximations.

Referring back to Section 2.4 (Equation 2.19), the evaporation rate of a droplet of radius a is

given by
dm

dt
= �4�afwMWDW

Rg

�
psat (Ta)

Ta
� �psat (T1)

T1

�
: (6.7)

The ventilation coe¢ cient fw is very close to one for droplets with diameter less than around

100 �m, rising to around 1:7 at diameter 200 �m (see Figure 2.6); for the purposes of this

chapter we will assume that fw = 1, and write
dm

dt
= �Ea where

E =
4�MWDW

Rg

�
psat (Ta)

Ta
� �psat (T1)

T1

�
= constant. (6.8)
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The droplet mass is m =
4

3
�w�a

3; di¤erentiating with respect to time gives 4�w�a
2da

dt
= �Ea,

and therefore

a (t)2 = a20

�
1� t

ts

�
(6.9)

for 0 � t � ts, where a0 = a (0) is the initial droplet radius, and

ts =
2�w�a

2
0

E
(6.10)

is the disappearance time, or the time at which the radius is zero and the droplet evaporates

completely. The droplet mass as a function of time is then

m (t) = m0

�
1� t

ts

�3=2
(6.11)

where m0 = m (0) =
4

3
�w�a

3
0 is the initial mass.

We approximate the settling speed by the Stokes �ow settling speed. Stokes �ow describes very

low Reynolds number �ows, where viscous forces dominate inertial forces; this is appropriate for

small droplets moving at low speed. In Stokes �ow the drag force is equal to �3��d (v � u)

(Reist, 1993), notation as in Chapter 2, and Equation (2.5) for the settling speed becomes

S (a) =
4ga2

18�
(�w � �a) : (6.12)

Substituting Equation (6.9) for the droplet radius, the settling speed as a function of time is

S (t) = S0

�
1� t

ts

�
(6.13)

where S0 = S (0) =
4ga20
18�

(�w � �a) is the initial settling speed. Figure 6.1 compares the settling

speed calculated according to Equation (2.5) with the Stokes �ow settling speed calculated

from Equation (6.12); the two compare well up to around 100 �m in diameter, where the

di¤erence is approximately 26 %; for larger droplets, the Stokes �ow approximation increasingly

overestimates the settling speed.

6.4 Case 1: Zero Vertical Dispersion

In this section we present 1-D, 2-D and 3-D solutions to our advection-dispersion model, with

evaporation and a point representation for trapping, in the case of negligible vertical dispersion.

As in the models without evaporation in Chapters 4 and 5, this is a special case where the droplets
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Figure 6.1: Comparing the actual settling speed (Equation 2.5), with the Stokes �ow settling speed
(Equation 6.12), for droplets with diameter between 10 �m and 200 �m.

can disperse only horizontally, and the boundary condition on the ground is automatically

satis�ed. Since the droplets do not spread vertically there are two possibilities: either they will

all deposit on the ground, having lost only part of their mass by evaporation, or they will all

evaporate completely during �ight, in which case there is no deposit on the ground.

We obtain the solutions presented here by changing to a coordinate system which moves down-

wards with the droplets; this eliminates the time-dependent settling term from the model, and

makes the solution process quite straightforward. Also, this method is �exible in that it may

be applied independently of the form of the settling speed S (t).

One-Dimensional Solution

In 1-D, and with DV = 0, our advection-dispersion model with evaporation and a point repre-

sentation for trapping is

@C

@t
� S (t) @C

@z
=

Q

m0
� (z �H) � (t)� kC (Z1; t) � (z � Z1) (6.14)
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Figure 6.2: Illustration of the 1-D model in the moving coordinate system (Z; t). The droplets are at
height Z = 0. The ground and the trapping plane are rising at the same rate; after time t they are at
heights Z = �H + f (t) and Z = Z1 �H + f (t) respectively. Time t1 is when the trapping plane and

the droplets meet, and time tg is when the ground and the droplets meet.

with initial and boundary conditions

C
�
z; 0�

�
= 0 and C (1; t) = 0:

The conceptual situation here is a plane release with a plane representation for trapping, as

described for the 1-D model in Chapter 4 (see Section 4.3). To solve Equation (6.14) we change

to a moving coordinate system (Z; t), where Z = z � H + f (t) with f (t) =
Z t

0
S (�) d� . In

this coordinate system, we denote the number concentration by C� (Z; t), and Equation (6.14)

becomes

dC�

dt
=

Q

m0
� (Z) � (t)� kC� (Z1 �H + f (t) ; t) � (Z � Z1 +H � f (t)) (6.15)

with initial and boundary conditions C� (Z; 0�) = 0 and C� (1; t) = 0. Relative to the new

coordinate system the droplets are no longer falling; however the ground and the trapping plane

are moving upwards to meet them. The droplets are released at time t = 0 from height Z = 0

and remain there; the ground is initially at height Z = �H and the trapping plane is initially

at height Z = �H + Z1, and both move upwards with speed S (t). After time t, the height of

the ground is Z = �H + f (t) and the height of the trapping plane is Z = Z1 �H + f (t). See

Figure 6.2 for a sketch of this scenario.



6. Trapping With Evaporation 122

Using the property of the delta function that

� (g (t)) =
X
i

� (t� ti)
jg0 (ti)j

(6.16)

where the ti�s are the zeros of the function g (t), Equation (6.15) can be re-written as

dC�

dt
=

Q

m0
� (Z) � (t)� kC� (Z; tZ)

S (tZ)
� (t� tZ) (6.17)

where tZ = F (Z +H � Z1) is the time at which the trapping plane reaches height Z, with F

being the inverse of function f , as de�ned on page 123. Integrating with respect to time:

C� (Z; t) =
Q

m0
� (Z)H (t)� kC� (Z; tZ)

S (tZ)
H (t� tZ) : (6.18)

The, as yet unknown C� (Z; tZ) is the concentration at height Z at the time at which the trapping

plane arrives there. To determine C� (Z; tZ) we let t ! t�Z , since this gives the concentration

which the trapping plane meets upon arrival.

C� (Z; tZ) = lim
t!t�Z

C� (Z; t)

=
Q

m0
� (Z)H (tZ) : (6.19)

Substituting Equation (6.19) back into Equation (6.18) gives

C� (Z; t) =
Q

m0
� (Z)H (t)� kQ

m0S (t1)
� (Z)H (t1)H (t� t1) (6.20)

where t1 = F (H � Z1) is the time at which the trapping plane and the droplets meet. Looking

at the sketch in Figure 6.2: if �H + Z1 < 0 as shown then t1 > 0, but if �H + Z1 > 0 then

t1 < 0. In other words, if the trapping plane is below the release height (Z1 < H) then t1 > 0,

but if the trapping plane is above the release height (Z1 > H) then t1 < 0. Returning to the

original coordinate system:

For Z1 > H, C (z; t) =

8>><>>:
0; t < 0;

Q

m0
� (z �H + f (t)) ; t > 0;

(6.21)

and for Z1 < H, C (z; t) =

8>>>>>>>><>>>>>>>>:

0; t < 0;

Q

m0
� (z �H + f (t)) ; 0 < t < t1;

Q

m0

�
1� k

S (t1)

�
� (z �H + f (t)) ; t > t1:

(6.22)
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The concentration is zero until the release at t = 0, and after that it is non-zero only at height

z = H � f (t) which is the height of the droplets at time t. At time t1 some of the droplets are

removed at the trapping plane (provided it is below the release height).

The solution above may be applied for general S (t), however, use of the Stokes �ow approxi-

mation from Equation (6.13) does lead to simple formulae for f and its inverse F as follows: if

A = f (t), so that consequently t = F (A), then

f (t) =

Z t

0
S (�) d� = S0t

�
1� t

2ts

�
(6.23)

and

F (A) = ts

 
1�

r
1� 2A

S0ts

!
: (6.24)

The examples in this chapter are calculated using the expressions above for f and F , and

Equation (6.10) for the disappearance time ts. In the case of no evaporation, S (t) = S0 =

constant and ts =1, and the expressions above reduce to f (t) = S0t and F (A) =
A

S0
.

Total Droplet Trapping and Deposition

The total amount trapped and the deposit on the ground are calculated according to Section 6.2.

The total mass of droplets trapped at the plane per unit area [kg m�2] is

MTT =

Z ts

0
m (t) kC (Z1; t) dt

=

8>>>>>><>>>>>>:

0; Z1 > H;

0; Z1 < H, ts < t1

m (t1) kQ

m0S (t1)
; Z1 < H, ts < t1:

(6.25)

There is no trapping if Z1 > H because no droplets move upwards from the release height.

There is also no trapping for Z1 < H if the droplets completely evaporate before reaching the

trapping plane (that is ts < t1).

The density of deposit on the ground [kg m�2] is

MD =

Z ts

0
m (t)S (t)C (0; t) dt:
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For Z1 > H this gives

MD =

8><>:
0; ts < tg;

m (tg)Q

m0
; ts > tg;

(6.26)

and for Z1 < H,

MD =

8><>:
0; ts < tg;

m (tg)Q

m0

�
1� k

S (t1)

�
; ts > tg

(6.27)

where tg = F (H) is the time for the droplets to reach the ground. There is no deposit if ts < tg,

that is, if the droplets completely evaporate before reaching the ground. Otherwise the deposit

depends upon the height of the trapping plane through the parameter t1.

Two-Dimensional Solution

In 2-D, and with DV = 0, our advection-dispersion equation with evaporation and a point

representation for trapping becomes

@C

@t
+ u

@C

@x
� S (t) @C

@z
= DL

@2C

@x2
+

Q

m0
� (x�X0) � (z �H) � (t)

�kC (X1; Z1; t) � (x�X1) � (z � Z1) (6.28)

with initial and boundary conditions

C
�
x; z; 0�

�
= 0, and

C (x; z; t)! 0 as x! �1, and z ! +1:

This is now a line release with a line representation for trapping (see the description for the 2-D

model in Chapter 4, Section 4.3). To solve Equation (6.28) we employ the moving coordinate

system from the 1-D solution; so that C (x; z; t) ! C� (x;Z; t), where Z = z � H + f (t) with

f (t) =

Z t

0
S (�) d� . Equation (6.28) becomes

@C�

@t
+ u

@C�

@x
= DL

@2C

@x2
+

Q

m0
� (x�X0) � (Z) � (t)

�kC� (X1; Z1 �H + f (t) ; t) � (x�X1) � (Z � Z1 +H � f (t)) : (6.29)

Relative to this coordinate system, the droplets are released from the line at (x;Z) = (X0; 0)

at time t = 0; they remain at that height whilst travelling with the wind and also dispersing

alongwind. The ground and the trapping line rise with speed S (t) to meet them.
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Using the property of the delta function in Equation (6.16), Equation (6.29) can be rewritten as

@C�

@t
+u

@C�

@x
= DL

@2C

@x2
+
Q

m0
� (x�X0) � (Z) � (t)�

kC� (X1; Z; tZ)

S (tZ)
� (x�X1) � (t� tZ) (6.30)

where tZ = F (Z +H � Z1) is the time at which the trapping line reaches height Z. Taking

Fourier transforms with respect to x, integrating with respect to t, and then inverting the Fourier

transforms:

C� (x; Z; t) =
Q

2m0

p
�DLt

e
� (x�X0�ut)

2

4DLt � (Z)H (t)

� kC� (X1; Z; tZ)

2S (tZ)
p
�DL (t� tZ)

e
� (x�X1�u(t�tZ))

2

4DL(t�tZ) H (t� tZ)
(6.31)

The, as yet unknown C� (X1; Z; tZ) is the concentration which the trapping line encounters when

it arrives at height Z. To determine C� (X1; Z; tZ) we set x = X1 and let t! t�Z , to correspond

with the concentration met by the trapping line on arrival.

C� (X1; Z; tZ) = lim
t!tZ

C� (X1; Z; t)

=
Q

2m0

p
�DLtZ

e
� (X1�X0�utZ)

2

4DLtZ � (Z)H (tZ) :
(6.32)

Substituting this result back into Equation (6.31) gives

C� (x;Z; t) =
QH (t)

2m0

p
�DLt

e
� (x�X0�ut)

2

4DLt � (Z)

� kQH (t1)H (t� t1)
4m0S (t1)�DL

p
t1 (t� t1)

e
� (X1�X0�ut1)

2

4DLt1
� (x�X1�u(t�t1))

2

4DL(t�t1) � (Z) :

(6.33)

where t1 = F (H � Z1) is the time at which the trapping line and the droplets meet. As for the

1-D solution, Z1 > H corresponds to t1 < 0 and Z1 < H corresponds to t1 > 0. Returning to

the original coordinate system:

For Z1 > H,

C (x; z; t) =

8>>>><>>>>:
0; t < 0;

Q

2m0

p
�DLt

e
� (x�X0�ut)

2

4DLt � (z �H + f (t)) ; t > 0;

(6.34)



6. Trapping With Evaporation 126

and for Z1 < H,

C (x; z; t) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0; t < 0;

Q

2m0

p
�DLt

e
� (x�X0�ut)

2

4DLt � (z �H + f (t)) ; 0 < t < t1;

"
Q

2m0

p
�DLt

e
� (x�X0�ut)

2

4DLt � kQ

4m0�S (t1)DL

p
t1 (t� t1)

�

e
� (X1�X0�ut1)

2

4DLt1
� (x�X1�u(t�t1))

2

4DL(t�t1)

�
� (z �H + f (t)) ; t > t1:

(6.35)

Again, as in the 1-D solution, the concentration is non-zero only after the release, and then only

at height z = �H + f (t) which is the height of the droplets at time t. Provided it is below the

release, some of the droplets are removed at the trapping line when they reach it at time t1.

Total Droplet Trapping and Deposition

The total mass of droplets trapped at the line per unit length [kg m�1] is

MTT =

Z ts

0
m (t) kC (X1; Z1; t) dt

=

8>>>>>><>>>>>>:

0; Z1 > H;

0; Z1 < H, ts < t1;

m (t1) kQ

2m0S (t1)
p
�DLt1

e
� (X1�X0�ut1)

2

4DLt1 ; Z1 < H, ts > t1:

(6.36)

Nothing is trapped if Z1 > H because the droplets do not move upwards. There is also nothing

trapped for Z1 < H if ts < t1, because this means that the droplets evaporate completely before

reaching the trapping line.

The density of deposit on the ground [kg m�2] is

MD (x) =

Z ts

0
m (t)S (t)C (x; 0; t) dt:

For Z1 > H this gives

MD (x) =

8>>><>>>:
0; ts < tg;

m (tg)Q

2m0S (tg)
p
�DLtg

e
� (x�X0�utg)

2

4DLtg ; ts > tg;

(6.37)
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and for Z1 < H,

MD (x) =

8>>>>>>>>>>><>>>>>>>>>>>:

0; ts < tg;

m (tg)Q

2m0

p
�DLtg

e
� (x�X0�utg)

2

4DLtg �

m (tg) kQ

4m0�S (t1)DL

p
t1 (tg � t1)

e
� (X1�X0�ut1)

2

4DLt1
� (x�X1�u(tg�t1))

2

4DL(tg�t1) ; ts > tg:

(6.38)

where tg = F (H) is the time the droplets take to reach the ground. There is once again no

deposit if ts < tg, since this means the droplets completely evaporate before reaching the ground.

An Illustrative Example of the Two-Dimensional Solution

The following example is intended to illustrate the 2-D solution described above. The parameter

set used here is given in Table 6.1. The droplets, with initial diameter d0 = 100 �m, have

initial mass and settling speed m0 = 5:23 � 10�10 kg and S0 = 0:37 m s�1 respectively, and

are at temperature Ta = 14:7 �C; they reach the height of the trapping line at t1 = 2:9 s

with mass m (t1) = 4:25 � 10�10 kg, and deposit on the ground at tg = 10:6 s with mass

m (tg) = 2:0 � 10�10 kg. The disappearance time according to Equation (6.10) is ts = 22:2 s.

Note that the background trapping rate kb = 25 s�1 is unrealistically high, and we have in�ated

it to make the e¤ect of trapping more visible; a realistic value would be < 2 s�1.

Table 6.1: Parameter set used to generate Figure 6.3.

u LL � T1 d0 Q (X0;H) kb �x�z (X1; Z1)

1 m s�1 2 m 60 % 20 �C 100 �m 1 kg m�1 (0; 3) m 25 s�1 0:04 m2 (4; 2) m

Figure 6.3 shows cross-sections of the density of mass deposit on the ground, �rst with neither

evaporation nor trapping, then with evaporation but no trapping, and �nally with both evap-

oration and trapping. The deposit with evaporation is signi�cantly lower than that without

evaporation, since the droplets are smaller and lighter upon reaching the ground. Also, the

peak in deposit with evaporation is shifted slightly downwind, as the smaller droplets are blown

further by the wind. Trapping further reduces the deposit; with the parameter values chosen

here there is a maximum reduction of around 43 % in the density of deposit with evaporation

when the trapping line is added.
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Figure 6.3: Cross-sections of the density of deposit on the ground [kg m�2], with and without evaporation
and/or trapping, resulting from a line release with zero vertical dispersion and a line representation for

trapping. Parameter values are as given in Table 6.1.

Three-Dimensional Solution

In all three spatial dimensions, but with DV = 0, our advection-dispersion model with evapora-

tion and a point representation for trapping becomes

@C

@t
+ u

@C

@x
� S (t) @C

@z
= DL

@2C

@x2
+DT

@2C

@y2
+

Q

m0
� (x�X0) � (y � Y0) � (z �H) � (t)

�kC (X1; Y1; Z1; t) � (x�X1) � (y � Y1) � (z � Z1) (6.39)

with initial and boundary conditions

C
�
x; y; z; 0�

�
= 0, and

C (x; y; z; t)! 0 as x; y ! �1 and z ! +1:

Once again, we employ the moving coordinate system from the 1-D solution; so that C (x; y; z; t)!

C� (x; y; Z; t), where Z = z�H + f (t) with f (t) =
Z t

0
S (�) d� . Equation (6.39) then becomes

@C�

@t
+ u

@C�

@x
= DL

@2C�

@x2
+DT

@2C�

@y2
+

Q

m0
� (x�X0) � (y � Y0) � (Z) � (t)

�kC� (X1; Y1; Z1 �H + f (t) ; t) � (x�X1) � (y � Y1) � (Z +H � Z1 + f (t))
(6.40)
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The droplets are released at time t = 0 from (x; y; Z) = (X0; Y0; 0) in the new coordinate system.

Relative to this coordinate system the droplets do not fall, but are transported by the wind and

disperse horizontally, while the ground and the trapping point rise with speed S (t).

Following the procedure laid out for the 2-D solution, Equation (6.40) may be rewritten using

the property of the delta function (Equation 6.16), and then solved by taking Fourier transforms

and integrating with respect to t. The result is

C� (x; y; Z; t) =
Q

4m0�t
p
DLDT

e
� (x�X0�ut)

2

4DLt
� (y�Y0)

2

4DT t � (Z)H (t)

� kC� (X1; Y1; Z; tZ)

4� (t� tZ)S (tZ)
p
DLDT

e
� (x�X1�u(t�tZ))

2

4DL(t�tZ)
� (y�Y1)

2

4DT (t�tZ)H (t� tZ)
(6.41)

where C� (X1; Y1; Z; tZ) is the, as yet unknown concentration met by the trapping point when

it reaches height Z. We set (x; y; Z) = (X1; Y1; Z) and let t ! t�Z to correspond with the

concentration met by the trapping point on arrival:

C� (X1; Y1; Z; tZ) = lim
t!t�Z

C� (X1; Y1; Z; t)

=
Q

4m0�tZ
p
DLDT

e
� (X1�X0�utZ)

2

4DLtZ
� (Y1�Y0)

2

4DT tZ � (Z)H (tZ)
(6.42)

where tZ = F (Z +H � Z1) is the time at which the trapping point rises to height Z, with F

being the inverse of function f . Consequently,

C� (x; y; Z; t) =
QH (t)

4m0�t
p
DLDT

e
� (x�X0�ut)

2

4DLt
� (y�Y0)

2

4DT t � (Z)� kQH (t1)H (t� t1)
16m0�2S (t1) t1 (t� t1)DLDT

�

e
� (X1�X0�utZ)

2

4DLtZ
� (x�X1�u(t�t1))

2

4DL(t�t1)
� (Y1�Y0)

2

4DT t1
� (y�Y1)

2

4DT (t�t1) � (Z)

(6.43)

where t1 = F (H � Z1) is the time when the trapping point and the droplets meet. As for

the 1-D and 2-D solutions, Z1 > H corresponds to t1 < 0 and Z1 < H corresponds to t1 > 0.

Returning to the original coordinate system:

For Z1 > H,

C (x; y; z; t) =

8>>>><>>>>:
0; t < 0;

Q

4m0�t
p
DLDT

e
� (x�X0�ut)

2

4DLt
� (y�Y0)

2

4DT t � (z �H + f (t)) ; t > 0;

(6.44)
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and for Z1 < H,

C (x; y; z; t) =

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

0; t < 0;

Q

4m0�t
p
DLDT

e
� (x�X0�ut)

2

4DLt
� (y�Y0)

2

4DT t � (z �H + f (t)) ; 0 < t < t1;

�
Q

4m0�t
p
DLDT

e
� (x�X0�ut)

2

4DLt
� (y�Y0)

2

4DT t � kQ

16m0�2S (t1)DLDT t1 (t� t1)
�

e
� (X1�X0�ut1)

2

4DLt1
� (Y1�Y0)

2

4DT t1
� (x�X1�u(t�t1))

2

4DL(t�t1)
� (y�Y1)

2

4DT (t�t1)

�
� (z �H + f (t)) ;

t > t1:

(6.45)

The concentration is once again zero before the release, and only non-zero after the release at

height z = �H + f (t) which is the height of the droplets after time t. Some of the droplets are

removed at the trapping point when they reach it at time t1 (provided it is below the release

height).

Total Droplet Trapping and Deposition

Following Section 6.2, the total mass of droplets trapped at the point [kg] is

MTT =

Z ts

0
m (t) kC (X1; Y1; Z1; t) dt

=

8>>>>>><>>>>>>:

0; Z1 > H;

0; Z1 < H, ts < t1;

m (t1) kQ

4m0�S (t1) t1
p
DLDT

e
� (X1�X0�ut1)

2

4DLt1
� (Y1�Y1)

2

4DT t1 ; Z1 < H, ts > t1:

(6.46)

Once again, there is no trapping if Z1 > H because the droplets do not move upwards, and

there is also no trapping for Z1 < H if ts < t1 because this means that the droplets evaporate

completely before reaching the trapping point.

The density of deposit on the ground [kg m�2] is

MD (x; y) =

Z ts

0
m (t)S (t)C (x; y; 0; t) dt: (6.47)
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For Z1 > H this gives

MD (x; y) =

8>><>>:
0; ts < tg;

m (tg)Q

4m0�S (tg) tg
p
DLDT

e
� (x�X0�utg)

2

4DLtg
� (y�Y0)

2

4DT tg ; ts > tg;

(6.48)

and for Z1 < H,

MD (x; y) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

0; ts < tg;

m (tg)Q

4m0�tg
p
DLDT

e
� (x�X0�utg)

2

4DLtg
� (y�Y0)

2

4DT tg � m (tg) kQ

16m0�2S (t1) t1 (tg � t1)DLDT
�

e
� (X1�X0�ut1)

2

4DLt1
� (Y1�Y0)

2

4DT t1
� (x�X1�u(tg�t1))

2

4DL(tg�t1)
� (y�Y1)

2

4DT (tg�t1) ;
ts > tg:

(6.49)

where tg = F (H) is the time the droplets take to reach the ground. Again, there is no deposit

if ts < tg, since this means the droplets completely evaporate before reaching the ground.

6.5 Case 2: Non-Zero Vertical Dispersion

In this section, we present 1-D, 2-D and 3-D solutions to our advection-dispersion model, with

evaporation and a point representation for trapping, in the case where vertical dispersion is

signi�cant (DV 6= 0). As in the previous models without evaporation, the boundary condition

of zero vertical dispersive �ux on the ground requires
@C

@t
(x; y; 0; t) = 0.

With evaporation and DV 6= 0, the non-constant settling speed S (t) combined with the bound-

ary condition on the ground make it extremely di¢ cult to solve the model analytically. We

attempted a number of di¤erent methods with a varying degree of progress. The method which

proved the most successful, described in the 1-D, 2-D and 3-D solutions below, combines a Greens

function with the moving coordinate system from Case 1. Unfortunately the solutions obtained

are embedded in integral equations, and require the numerical inversion of a Fourier transform,

however they still allow for easy parameter variation and are not speci�c to a particular form

for S (t).
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Solution Approaches

We tried a number of approaches in solving our advection-dispersion model with evaporation

and DV 6= 0. Two methods which were ultimately unsuccessful but warrant a little discussion

are (i) Laplace transforms with respect to z rather than t, and (ii) a time-varying �underground�

image source.

Laplace Transforms

Initially we experimented with solving the model by taking Laplace transforms with respect to

z. Interestingly, this results in a transform which cannot be inverted. As a simple example,

consider the model in 1-D and with dispersion only (that is S (t) = 0 and k = 0); in this case

the model is
@C

@t
= DV

@2C

@z2
+

Q

m0
� (z �H) � (t) (6.50)

for which the known solution is

C (z; t) =
Q

2m0

p
�DV t

�
e
� (z�H)2

4DV t + e
� (z+H)2

4DV t

�
: (6.51)

Taking the Laplace transform of the model with respect to z
�
C (z; t)! C (p; t)

�
, gives an

integral equation for C (p; t):

C (p; t) =
Q

m0
ep

2DV t�pHH (t)�
Z t

0
pDV C (0; �) e

p2DV (t��) d� : (6.52)

As it stands, the transform C (p; t) cannot be inverted because ep
2DV t has no inverse transform.

There is a way around the problem, however, if the integration in time is carried out �rst

using the form of C (0; t) from Equation (6.51); the transform can then be inverted to give the

same answer as Equation (6.51). Unfortunately, for the full model with settling, trapping and

evaporation, C (0; t) is unknown and no way around the problem could be found.

Method of Images

A method of images approach, with a time varying image source placed underneath the ground,

worked well in 1-D but not in 2-D or 3-D. The solution is of the form C = Cs + Ci, where Cs

is the contribution from the original source, and Ci is the contribution from the image source.

Because there is no vertical dispersive �ux at z = 0, none of the droplets from the image source
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will cross into the aboveground domain, and therefore the image source does not a¤ect the

solution other than to ensure the boundary condition on the ground is met.

The 1-D model is

@C

@t
� S (t) @C

@z
= DV

@2C

@z2
+

Q

m0
� (z �H) � (t)� kC (Z1; t) � (z � Z1) (6.53)

with initial and boundary conditions C (z; 0�) = 0, C (1; t) = 0 and
@C

@z
(0; t) = 0. The

contribution from the original source, Cs, is found by solving Equation (6.53) with homogeneous

boundary conditions C (�1; t) = 0:

Cs (z; t) =
Q

2m0

p
�DV t

e
� (z�H+f(t))2

4DV t �
Z t

0

kC (Z1; �)

2
p
�DV (t� �)

e
� (z�Z1+f(t)�f(�))

2

4DV (t��) d� : (6.54)

The contribution from the image source, Ci, is found by solving

@Ci
@t

� S (t) @Ci
@z

= DV
@2Ci
@z2

+ q (t) � (z +H) (6.55)

with initial and boundary conditions Ci (z; 0�) = 0, and Ci (�1; t) = 0, where q (t) [kg m�2 s�1]

is the strength of the time-varying plane source (placed at z = �H, however the placement is

arbitrary provided it is below the ground):

Ci (z; t) =

Z t

0

q (�)

2
p
�DV (t� �)

e
� (z+H�f(t)�f(�))2

4DV (t��) d� : (6.56)

A system of equations to evaluate q (t) and C (Z1; t) is formed from C (z; t) = Cs (z; t)+Ci (z; t)

by applying the boundary condition
@C

@z
(0; t) = 0, and by setting z = Z1; the system can then

be evaluated numerically at discrete time steps using, for instance, a trapezium rule integration.

This method generally works well in 1-D, although the numerical evaluation is sensitive to the

parameter DV .

Unfortunately, the method does not work so well in 2-D (or 3-D). For example, a time-varying

line source of strength q (t) [kg m�1 s�1] placed at (x; z) = (X0;�H) gives

C (x; z; t) =
Q

4m0�t
p
DLDV

e
� (x�X0�ut)

2

4DLt
� (z�H+f(t))2

4DV t

+

Z t

0

q(t)

4�(t��)
p
DLDV

e
� (x�X0�u(t��))

2

4DL(t��)
� (z+H+f(t)�f(�))2

4DV (t��) d�

�
Z t

0

kC(X1;Z1;�)

4�(t��)
p
DLDV

e
� (x�X1�u(t��))

2

4DL(t��)
� (z�Z1+f(t)�f(�))

2

4DV (t��) d�

(6.57)
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but the subsequent expression for q (t) obtained by applying the boundary condition
@C

@z
(x; 0; t) =

0 is not independent of x. An alternative may be to make the time-varying source a planar

source, with strength q (x; t) [kg m�2 s�1]; however this has not been pursued.

One-Dimensional Solution

In 1-D, and with DV 6= 0, our advection-dispersion model with evaporation and a point repre-

sentation for trapping becomes

@C

@t
� S (t) @C

@z
= DV

@2C

@z2
+

Q

m0
� (z �H) � (t)� kC (Z1; t) � (z � Z1) (6.58)

with initial and boundary conditions

C
�
z; 0�

�
= 0,

C (1; t) = 0, and @C
@z

(0; t) = 0:

This is conceptually a plane release with a plane representation for trapping (see the description

for the the 1-D model without evaporation in Section 4.4). Our solution to Equation (6.58)

involves two stages; �rst, the moving coordinate system as used in Case 1 reduces the problem

to a di¤usion equation, which we then solve by modifying a powerful Greens function technique.

A full working of the solution may be found in Appendix A.3.

In the moving coordinate system as used in Case 1, the number concentration is denoted C� (Z; t)

where Z = z �H + f (t) with f (t) =
Z t

0
S (�) d� , and Equation (6.58) becomes

@C�

@t
= DV

@2C�

@Z
+

Q

m0
� (Z) � (t)� kC� (Z1 �H + f (t) ; t) � (Z +H � Z1 � f (t)) (6.59)

with initial and boundary conditions
C�
�
Z; 0�

�
= 0,

C� (1; t) = 0 and @C
�

@Z
(�H + f (t) ; t) = 0:

The problem is now one of di¤usion only, but with a moving boundary. The droplets are

released from Z = 0, at time t = 0, and disperse vertically whilst the ground and trapping plane

rise with speed S (t) to meet them. The boundary condition requires zero vertical dispersive

�ux on the moving ground.

We note that Equation (6.4) is similar in many ways to a Stefan problem. Stefan problems

usually involve heat transfer with a phase change that results in a moving boundary; for example
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Figure 6.4: Solution space (shaded in grey) in the moving coordinate system (Z; t).

a melting block of ice � the boundary of the ice recedes as the block melts. Generally the

objective is to determine the path of the moving boundary, however, in our case, we know the

path of the moving boundary and wish to use it to solve for the concentration. With some

modi�cation, a Greens function method described for Stefan problems in Crank (1984) will work

to provide a solution, albeit one nestled in an integral equation.

The solution space is t > 0 and �H + f (t) � Z < 1, as shown by the grey-shaded region in

Figure 6.4. The method as described in Crank (1984, pp. 117-119) requires a Greens function

which obeys the boundary conditions. There is no (known) Greens function matching the

condition on the moving boundary; instead, we modify the technique by knowingly using a

Green function which does not match, and this results in an extra term in the integral equation.

The Green function used is

GX00 (Z; tj�; �) =
1

2
p
�DV (t� �)

e
� (Z��)2
4DV (t��)H (t� �) (6.60)

(Beck et al., 1992) which is for the in�nite space �1 < Z <1, and obeys boundary conditions

GX00 (�1; tj�; �) = 0. Beck et al. (1992, pp. 40-43) show how to combine GX00 and C� (�; �)

to give

G
@C�

@�
+ C�

@GX00
@�

= DV

�
GX00

@2C�

@�2
� C�@

2GX00

@�2

�
+
Q

m0
GX00� (�) � (�)� C�� (� � z) � (� � t)

�kC� (Z1 �H + f (�) ; �)GX00� (� +H � Z1 � f (�)) : (6.61)
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Now, following Crank (1984), we integrate with respect to � between �H + f (t) � � <1, and

with respect to � between 0 and t+ " where " is a small positive number:

Z t+"

0

Z 1

�H+f(�)

@

@�
(C�GX00) d� d� =

Z t+"

0

Z 1

�H+f(�)
DV

�
GX00

@2C�

@�2
� C�@

2GX00

@�2

�
d� d�

+

Z t+"

0

Z 1

�H+f(�)

�
Q

m0
GX00� (�) � (�)� C�� (� � Z) � (� � t)

�
d� d�

�
Z t+"

0

Z 1

�H+f(�)
kC� (Z1 �H + f (�) ; �)GX00� (� +H � Z1 � f (�)) d� d�

(6.62)

The �rst term of Equation (6.62) is simpli�ed by changing the order of integration. The second

term is simpli�ed using integration by parts, and the third and fourth terms may be integrated

directly. Letting "! 0, the result is

C� (Z; t)H (Z +H � f (t)) = Q

m0
GX00 (Z; tj0; 0)

+

Z t

0
C� (�H + f (�) ; �)

�
DV

@GX00
@�

(Z; tj �H + f (�) ; �)� GX00 (Z; tj �H + f (�) ; �)

F 0 (f (�))

�
d�

�
Z t

0
kC� (Z1 �H + f (�) ; �)GX00 (Z; tjZ1 �H + f (�) ; �) d�

(6.63)

where F is once again the inverse of f . Returning to the original coordinate system, and

substituting Equation (6.61) for GX00, the integral equation solution to our advection-dispersion

model with evaporation and a point representation for trapping is

C (z; t)H (z) = Q

2m0

p
�DV t

e
� (z�H+f(t))2

4DV t

+

Z t

0

C (0; �)

2
p
�DV (t� �)

e
� (z+f(t)�f(�))2

4DV (t��)

�
z + f (t)� f (�)

2 (t� �) � 1

F 0 (f (�))

�
d�

�
Z t

0

kC (Z1; �)

2
p
�DV (t� �)

e
� (z�Z1+f(t)�f(�))

2

4DV (t��) d�: (6.64)

The, as yet unknowns, C (0; t) and C (Z1; t) appear inside the integrals, which are not true

convolution integrals, and the term involving C (0; t) occurs as a consequence of GX00 not

obeying the boundary condition on the ground. Note, too, the de�nition of the Heaviside

function as in Abramowitz (1964):
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H (z) =

8>>>><>>>>:
0; z < 0;

1
2 ; z = 0;

1; z > 0;

(6.65)

so that on the ground H (z) = H (0) = 1=2. Though not an ideal solution (as the integrals must

be evaluated numerically), Equation (6.64) is at least mostly analytical. A relatively simple

numerical procedure is described below, based upon the method in Chapter 4 (page 60), which

gives good accuracy with minimum computational di¢ culty.

A Numerical Evaluation Method

The following is a simple numerical scheme for evaluating C (0; t) and C (Z1; t). From Equa-

tion (6.64), the system for C (0; t) and C (Z1; t) is

C (0; t) = 2g1 (0; t) +

Z t

0
(2C (0; �) g2 (0; t; �)� 2kC (Z1; �) g3 (0; t; �)) d�

C (Z1; t) = g1 (Z1; t) +

Z t

0
(C (0; �) g2 (Z1; t; �)� kC (Z1; �) g3 (Z1; t; �)) d�

(6.66)

where

g1 (z; t) =
Qe

� (z�H+f(t))2
4DV t

m0

p
�DV t

; g2 (z; t; �) =
e
� (z+f(t)�f(�))2

4DV (t��)

2
p
�DV (t� �)

�
z + f (t)� f (�)

2 (t� �) � 1

F 0 (f (�))

�

and g3 (z; t; �) =
e
� (z�Z1+f(t)�f(�))

2

4DV (t��)

2
p
�DV (t� �)

:

(6.67)

When z = 0, g2 is singular at the upper end-point of the integration � = t, and when z = Z1, it is

g3 that is singular at the upper end-point. The same product integration technique as described

in Chapter 4 can be used here for the singular integrals, whilst the non-singular integrals can

be handled by a trapezium integration (see pages 60 �61). Given discrete time-steps

t1 = 0; t2 = �t; t3 = 2�t; : : : ti = (i� 1)�t; (6.68)

the system in Equation (6.66) is approximated by

C (0; ti) ' 2g1 (0; ti) +
i�1X
j=2

[4C (0; tj)�0 (ti; tj) (
p
ti � tj �

p
ti � tj+1)

�2k�tC (Z1; tj) g3 (0; ti; tj)
�

C (Z1; ti) ' g1 (Z1; ti) +
i�1X
j=2

�
�tC (0; tj) g2 (Z1; ti; tj)

�2kC (Z1; tj)�1 (ti; tj) (
p
ti � tj �

p
ti � tj+1)] (6.69)
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where �0 (ti; tj) and �1 (ti; tj) are the parts of g2 (0; ti; tj) and g3 (Z1; ti; tj) that are non-singular

when tj = ti; that is

�0 (ti; tj) =
e
� (f(t)�f(�))2

4DV (t��)

2
p
�DV

�
f (t)� f (�)
2 (t� �) � 1

F 0 (f (�))

�
, and �1 (ti; tj) =

e
� (f(t)�f(�))2

4DV (t��)

2
p
�DV

: (6.70)

With this method of numerical evaluation, both C (0; ti) and C (Z1; ti) are calculated using only

values from previous time steps, so there is no need to solve simultaneously.

Total Droplet Trapping and Deposition

Following Section 6.2, the total mass of droplets trapped per unit area [kg m�2] is

MTT =

Z ts

0
m (t) kC (Z1; t) dt: (6.71)

Equation (6.71) must also be evaluated numerically; this can be done using any numerical

integration scheme, with values for C (Z1; t) at discrete time steps calculated according to Equa-

tion (6.69).

The density of deposit on the ground [kg m�2] is

MD =

Z ts

0
m (t)S (t)C (0; t) dt: (6.72)

Similarly, this must be evaluated numerically using values for C (0; t) at discrete time steps

calculated according to Equation (6.69).

Two-Dimensional Solution

In 2-D, and with DV 6= 0, our advection-dispersion model with evaporation and a point repre-

sentation for trapping becomes

@C

@t
+ u

@C

@x
� S (t) @C

@z
= DL

@2C

@x2
+DV

@2C

@z2
+

Q

m0
� (x�X0) � (z �H) � (t)

�kC (X1; Z1; t) � (x�X1) � (z � Z1) (6.73)

with initial and boundary conditions

C
�
x; z; 0�

�
= 0;

C (x; z; t)! 0 as x! �1 and z ! +1;

and
@C

@z
(x; 0; t) = 0:
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The conceptual situation is a line release with a line representation for trapping (see page 62).

We solve Equation (6.73) using Fourier transforms combined with the method described for the

1-D solution. Taking Fourier transforms with respect to x (so that C (x; z; t) ! bC (!; z; t)),
and then substituting bC (!; z; t) = bV (!; z; t) e�(!2DL+i!u)t gives
@ bV
@t

� S (t) @
bV
@z

= DV
@2 bV
@z2

+
Q

m0
e�i!X0� (Z) � (t)� kC (X1; Z1; t) e�i!(X1�ut)+!

2DLt� (z � Z1)

(6.74)

with initial and boundary conditions

bV �!; z; 0�� = 0, bV (!; z; t)! 0 as z !1, and @
bV
@z

(!; 0; t) = 0:

Equation (6.74) is now in the same form as Equation (6.59) in the 1-D solution; by following

the method laid out for the 1-D solution we obtain

bV (!; z; t)H (z) = Q

2m0

p
�DV t

e
�i!X0� (z�H+f(t))2

4DV t

+

Z t

0

bV (!; 0; �)
2
p
�DV (t� �)

e
� (z+f(t)�f(�))2

4DV (t��)

�
z + f (t)� f (�)

2 (t� �) � 1

F 0 (f (�))

�
d�

�
Z t

0

kC (X1; Z1; �)

2
p
�DV (t� �)

e
�i!(X1�u�)+!2DL��

(z�Z1+f(t)�f(�))
2

4DV (t��) d� (6.75)

and subsequently,

bC (!; z; t)H (z) = Q

2m0

p
�DV t

e
�i!(X0+ut)�!2DLt� (z�H+f(t))2

4DV t

+

Z t

0

bC (!; 0; �)
2
p
�DV (t� �)

e
�(!2DL+i!u)(t��)� (z+f(t)�f(�))2

4DV (t��)

�
z + f (t)� f (�)

2 (t� �) � 1

F 0 (f (�))

�
d�

�
Z t

0

kC (X1; Z1; �)

2
p
�DV (t� �)

e
�i!(X1+u(t��))�!2DL(t��)�

(z�Z1+f(t)�f(�))
2

4DV (t��) d�:

(6.76)

The integrals in Equation (6.76) have singularities of the form (t� �)�1=2 at the upper end-point.

Inverting the Fourier transform at this point results in integrals in the inverse transform which

have singularities of the form (t� �)�1 at the upper end-point. The di¢ culty of numerical

evaluation around these singularities is avoided by following the procedure described below,

where the integration in time is carried out before inverting the transform.
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Numerical Evaluation

As in the 1-D solution, both integrals in Equation (6.76) have singularities of the form (t� �)�1=2

at the upper end-point (the �rst integral when z = 0 and the second when z = Z1); accordingly,

we evaluate Equation (6.76) using the same numerical procedure as on page 137.

Discrete ! values !n = !1+(n� 1)�!, where n = 1; : : : ; N , are chosen to cover a broad enough

range between �1 and1 so that bC (!1; z; t) and bC (!N ; z; t) are both very small in magnitude.
Then, at discrete time-steps ti = (i� 1)�t where i = 1; 2; 3; : : :

bC (!n; 0; ti) ' 2g1 (0; ti) e�i!n(X0+uti)�!2nDLti
+

i�1X
j=2

h
4 bC (!n; 0; tj) e�(!2nDL+i!nu)(ti�tj)K0 (ti; tj) (

p
ti � tj �

p
ti � tj+1)

�2k�tC (X1; Z1; tj) e�!
2
nDL(ti�tj)�i!n(X1+u(ti�tj))g3 (0; ti; tj)

i
(6.77)

and,

bC (!n; Z1; ti) ' g1 (Z1; ti) e
�i!n(X0+uti)�!2DLti

+
i�1X
j=2

h
�t bC (!n; 0; tj) e�(!2nDLti+i!nu)(ti�tj)g2 (Z1; ti; tj)

�2kC (X1; Z1; tj)K1 (ti; tj) e
�!2nDL(ti�tj)�i!n(X1+u(ti�tj)) (

p
ti � tj �

p
ti � tj+1)

i
(6.78)

with g1, g2, g3, K0 and K1 as on page 137. At each time step ti, after calculation of Equa-

tion (6.78), the Fourier transform must be numerically inverted to obtain C (X1; Z1; ti) for use

at the next time step. We use a trapezium integration to invert the Fourier transform, so that

for any (x; z)

C (x; z; ti) '
�!

2�

N�1X
n=2

bC (!n; z; ti) ei!nx: (6.79)

Total Droplet Trapping and Deposition

The total mass of droplets trapped per unit area [kg m�1] is

MTT =

Z ts

0
m (t) kC (X1; Z1; t) dt (6.80)

which we evaluate using discrete values of C (X1; Z1; t) calculated from the numerical inverse

Fourier transform of Equation (6.78).
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The density of deposit on the ground [kg m�2] is

MD (x) =

Z ts

0
m (t)S (t)C (x; 0; t) dt (6.81)

which is similarly evaluated using discrete values of C (x; 0; t), calculated according to Equa-

tion (6.77) with a numerical inversion of the Fourier transform.

An Illustrative Example of the Two-Dimensional Solution

The following illustrative example uses the same parameters as the previous example in Case 1,

but with DV 6= 0. The initial values for the droplets are diameter d0 = 100 �m, mass m0 =

5:23�10�10 kg and settling speed S0 = 0:37m s�1, and the remaining parameters are summarised

in Table 6.2. To reiterate, the unrealistically high value for k is used only to make the e¤ect of

trapping more visible. According to Equation (6.10), the disappearance time is ts = 22:2 s

Table 6.2: Parameter set used to generate Figure 6.3.

u (LL; LV ) � T1 Q (X0;H) k �x�z (X1; Z1)

1 m s�1 (2; 1) m 60 % 20 �C 1 kg m�1 (0; 3) m 25 s�1 0:04 m2 (4; 2) m

Figure 6.5 shows that the mass density of deposit, obtained by numerically evaluating Equa-

tion (6.81) without evaporation (S (t) = S0, ts = 1), is the same as that obtained from the

analytical result in Chapter 4.

Figure 6.6 illustrates the e¤ect of evaporation on the deposition pro�le. The highest of the

dashed lines represents the mass density of deposit with neither evaporation nor trapping. The

second of the dashed lines is with evaporation but without trapping, and the solid line is with

both evaporation and trapping. One again, the deposit with evaporation is signi�cantly reduced

over that without. Adding the trapping further reduces the deposit, however the degree of

reduction is less than in the previous example where DV = 0. Here the maximum reduction is

around 23 % as opposed to around 43 % with DV = 0.
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Figure 6.5: Cross-sections of the density of depositMD [kg m�2] obtained from the numerical evaluation of
Equation (6.81), with no evaporation and no trapping, compared with the analytic result from Chapter 4

(MD analytic, Equation 4.73). Parameter values are as given in Table 6.2.
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Figure 6.6: Cross-section of the density of deposit on the ground [kg m�2], with and without evaporation
and/or trapping, resulting from a line release with non-zero vertical dispersion and a line representation

for trapping. Parameter values are the same as for Figure 6.5.
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Three-Dimensional Solution

In all three spatial dimensions, and with DV 6= 0, our advection-dispersion model with evapo-

ration and a point representation for trapping is as given by Equation (6.1), that is

@C

@t
+ u

@C

@x
� S (t) @C

@z
= DL

@2C

@x2
+DT

@2C

@y2
+DV

@2C

@z2

+
Q

m0
� (x�X0) � (y � Y0) � (z �H) � (t)

�kC (X1; Y1; Z1; t) � (x�X1) � (y � Y1) � (z � Z1) (6.82)

with initial and boundary conditions

C
�
x; y; z; 0�

�
= 0;

C (x; y; z; t)! 0 as x; y ! �1 and z ! +1;

and
@C

@z
(x; y; 0; t) = 0:

We solve Equation (6.82) following the same method as used in the 2-D solution; that is, by

taking Fourier transforms with respect to x and y (so that C (x; y; z; t) ! ebC (!;  ; z; t)), and
then making the substitution ebC (!;  ; z; t) = ebV (!;  ; z; t) e�(!2DL+i!u+ 2DT )t. The result is

ebV (!;  ; z; t)H (z) = Q

2m0

p
�DV t

e
�i!X0�i Y0� (z�H+f(t))2

4DV t

+

Z t

0

ebV (!;  ; 0; �)
2
p
�DV (t� �)

e
� (z+f(t)�f(�))2

4DV (t��)

�
z + f (t)� f (�)

2 (t� �) � 1

F 0 (f (�))

�
d�

�
Z t

0

kC (X1; Y1; Z1; �)

2
p
�DV (t� �)

e
�i!(X1�u�)+!2DL��i Y1+ 2DT ��

(z�Z1+f(t)�f(�))
2

4DV (t��) d� (6.83)

and subsequently,

ebC (!;  ; z; t)H (z) = Q

2m0

p
�DV t

e
�i!(X0+ut)�i Y0�(!2DL+ 2DT )� (z�H+f(t))2

4DV t

+

Z t

0

bC (!;  ; 0; �)
2
p
�DV (t� �)

e
�(!2DL+i!u+ 2DT )(t��)� (z+f(t)�f(�))2

4DV (t��)

�
z + f (t)� f (�)

2 (t� �) � 1

F 0 (f (�))

�
d�

�
Z t

0

kC (X1; Y1; Z1; �)

2
p
�DV (t� �)

e
�i!(X1+u(t��))�i Y1�(!2DL+ 2DT )(t��)�

(z�Z1+f(t)�f(�))
2

4DV (t��) d� :

(6.84)

As in the 2-D solution, the integrals in Equation (6.84) have singularities of the form (t� �)�1=2

at the upper end-point, and inverting the Fourier transforms at this point results in integrals in
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the inverse transform which have singularities of the form (t� �)�3=2 at the upper end-point.

We avoid the di¢ culty caused by these singularities by numerically evaluating Equation (6.84)

using the same procedure as described for the 2-D solution (the only di¤erence is that two

Fourier transforms must be inverted after each time step).

Total Droplet Trapping and Deposition

The total mass of droplets trapped [kg] is

MTT =

Z ts

0
m (t) kC (X1; Y1; Z1; t) dt (6.85)

and the density of deposit on the ground [kg m�2] is

MD (x; y) =

Z ts

0
m (t)S (t)C (x; y; 0; t) dt; (6.86)

both of which are evaluated numerically using discrete values of C (X1; Y1; Z1; t) and C (x; y; 0; t)

calculated according to the numerical procedure from the 2-D solution.

6.6 Partial Evaporation (Solid Core)

In reality the droplets will be a mix of water and an active ingredient; the active ingredient

does not evaporate, thus, after all of the water has evaporated, a small �solid core� of active

ingredient will remain. Generally it is assumed that evaporation occurs as though the droplets

were purely water, until only the solid core remains, after which there is no further evaporation

(Thompson & Ley, 1983; Miller & Had�eld, 1989).

We include the solid core phenomenon in our model by using piecewise functions for the droplet

mass and settling speed. The initial volume of each droplet is V0 =
4

3
�a30; if the volume fraction

of active ingredient in the droplet is I [-], then the radius of the droplet when only the active

ingredient remains is

aI =

�
3IV0
4�

�1=3
= I1=3a0: (6.87)

Using Equations (6.9) �(6.13), the time at all of the water evaporates is

tI = ts

�
1� I2=3

�
; (6.88)
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the mass of each droplet at this time is

mI = m0

�
1� tI

ts

�2=3
(6.89)

and the settling speed is

SI = S0

�
1� tI

ts

�
: (6.90)

We de�ne piecewise functions for the mass and settling speed, so that up until time tI the mass

and settling speed decrease as the droplet evaporates, and after time tI they remain constant as

there is no further evaporation:

m (t) =

8>><>>:
m0

�
1� t

ts

�3=2
; t < tI ;

mI ; t � tI

(6.91)

and

S (t) =

8><>:
S0

�
1� t

ts

�
; t < tI ;

SI ; t � tI :

(6.92)

Each of the solutions in the previous sections may be calculated with these piecewise functions

for m (t) and S (t).

The volume fraction of active ingredient in the droplets I can vary widely with di¤erent applica-

tions; less than 10 % would be a reasonable value [A. Forster, personal communication, 24 Sep-

tember, 2008]. The example below is in 2-D, with DV 6= 0, and is calculated for droplets which

have I = 5 %. The droplets have initial diameter 100 �m with initial mass m0 = 5:23�10�10 kg

and initial settling speed S0 = 0:37 m s�1; the time at which all of the water evaporates leaving

only the active ingredient is tI = 19:2 s, with mI = 2:62� 10�11 kg and SI = 0:05 m s�1. The

remaining parameters are the same as those in Table 6.2. Figures 6.7 and 6.8 show the number

and mass densities of deposit respectively. The droplets with a solid core (partial evaporation)

deposit over a greater distance, because the core is small and light and therefore carried further

by the wind. The e¤ect is not easily visible for the mass deposition density however, as the

core is so much lighter than the original droplet.

6.7 Chapter Summary

In this chapter we took our advection-dispersion model with the point representation for trapping

from Chapter 4, and rede�ned it in terms of the droplet number concentration to include the
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e¤ect of evaporation. Using the number concentration, rather than the mass concentration,

meant that evaporation only in�uenced the model via the time-dependent settling speed.

We began by establishing the model in terms of the number concentration and relating it back to

the mass concentration. Subsequently, we presented solutions in one, two and three dimensions

for two separate cases: zero vertical dispersion, and non-zero vertical dispersion. The case

of zero vertical dispersion was relatively straightforward, and the solutions were obtained by

introducing a moving coordinate system. In the case of non-zero vertical dispersion the model

was very di¢ cult to solve analytically; we achieved the most success by combining the moving

coordinate system with a Green function technique.

For each case, we presented an example to show the signi�cant reduction in the mass density

of deposit as a result of evaporation. These examples were calculated for droplets which were

100 % water, and therefore could evaporate until nothing remained. Approximations for the

droplet mass and settling speed, based on the information in Chapter 2, were used to make

the calculation simpler. To conclude the chapter, we considered a further example with only

partial evaporation since, realistically, droplets contain a small amount of pesticide, and this

remains as a solid core after all of the water has evaporated. With partial evaporation, the drift

distances of droplets were much greater, since the solid core which remains after all of the water

has evaporated is very small and light, and is therefore blown far by the wind before depositing.



Chapter 7

Thesis Summary

7.1 Summary

The object of this thesis was to develop a simple analytical model for the transport of drifting

spray droplets, including the trapping of these droplets within a shelterbelt. Building on the

approach of McKibbin (2006) in previous analysis of particle transport within a forest canopy,

we applied an advection-dispersion model for the droplet transport and added a sink term to

represent trapping within the shelterbelt.

The model was derived under the assumptions that:

� The rate at which droplets are removed by trapping is proportional to the local concen-

tration. The proportionality constant is related to the shelterbelt characteristics and the

droplet size.

� The mean wind �ow through and around the shelterbelt is horizontal and uniform in both

speed and direction.

� Turbulence in the air�ow is characterised by some dominant length scales alongwind,

crosswind and vertically, and that these length scales are uniform in space and time.

� The ground is approximately horizontal, and is impervious to the droplets so that they

cannot disperse through it.

� The droplets are all of the same mass and are released instantaneously from a point

source. To simulate a distribution of droplet sizes we would run the model for a number

of di¤erent droplet sizes and superpose the results. Results for di¤erent source types can

also be constructed from those for the point release.

148
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In order to solve the model analytically we discretised the shelterbelt. This was done by

representing the shelterbelt as a three-dimensional array of blocks, with the trapping in each

block concentrated to the point at its centre. First, we considered the more straightforward

case where there was no evaporation of the droplets; we determined solutions to the model with

just a single point representation for trapping, and then built upon those results to determine

a solution for trapping in the discretised shelterbelt. Finally, we considered the more di¢ cult

case where there was evaporation; in this case we analysed only the single point representation

for trapping.

In each case above we determined solutions in one, two and three dimensions for: (i) zero

vertical dispersion, and (ii) non-zero vertical dispersion of the droplets. For the model without

evaporation, the solutions with zero vertical dispersion were obtained using standard transform

methods. With non-zero vertical dispersion the solutions obtained were embedded in integral

equations, however, we were able to use Laplace transforms to explicitly evaluate the total

amount trapped and the deposit on the ground. In two and three dimensions some of the

Laplace transforms had to be sourced from generalised calculus. To solve the model with

evaporation we introduced a moving coordinate system; it was relatively straightforward to

obtain solutions with zero vertical dispersion, but with non-zero vertical dispersion the solutions

obtained were nestled in integral equations which had to be evaluated numerically.

As a consequence of focusing all of the trapping within a volume to an in�nitely small point,

we observed that in the solutions to our model the concentration of droplets became negative

in the vicinity of the trapping. In this vicinity the model does not accurately re�ect the

conceptual situation. However, with realistic trapping rates this issue has very little e¤ect on

the calculated total amount trapped and the deposit on the ground, since the vicinity in which

the concentration is negative is very small.

7.2 Analyses

In each of the solutions described above, we were able to write expressions for the total amount

trapped and the subsequent deposit on the ground. In two and three dimensions, we presented

calculated examples of the deposition pro�le on the ground, and the percentage reduction in

deposit as a result of trapping. A shadow area of reduced deposit was clearly visible downwind

of the trapping in each example; the reduction was greater with zero vertical dispersion, but

persisted much further downwind with non-zero vertical dispersion.
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7.3 Further Research

Some suggestions for future research following this thesis include:

� Extension of the model with evaporation to include trapping in a discretised shelterbelt.

At this stage solutions to the model with evaporation have only been determined for the

single point representation for trapping. These solutions could be combined to construct

solutions to the model with trapping in a discretised shelterbelt, in the same manner as

in Chapter 5.

� Possible use of an alternative boundary condition. In an advection-dispersion model for

volcanic ashfall McKibbin et al. (2005) used an in�nite solution space �1 < z <1, with

the concentration set to zero at z = �1. This did not ensure that the condition of zero

vertical dispersive �ux at ground level is met, however the form of the solution was much

simpler, and the deposit on the ground was not greatly altered. This approach may result

in a simpler form for the solution to our model with evaporation and non-zero vertical

dispersion; if so, and if the deposit on the ground is not greatly altered, this may provide

a better alternative.

� Experimentation with the shelterbelt discretisation. In Chapter 5 we discretised the shel-

terbelt by dividing it into a three-dimensional array of blocks; N blocks wide by L blocks

long by M blocks high. For a given shelterbelt, there are many possible combinations for

N , L and M ; it appears from the examples in Chapter 5 that the number of blocks used

vertically has a greater e¤ect on the total trapping and deposit than the number of blocks

used horizontally. Possible questions include: is there an optimum number of blocks, and,

if so, how does this change with shelterbelt size?

� Exploration of the parameter space. Most of the solutions presented in this thesis result

in expressions for the total trapping and deposition which are explicitly expressed in terms

of the in�uencing parameters. These expressions could be used to explore the e¤ects of

variations in these parameters, and to identify which parameters have the greatest e¤ect.

7.4 Publications

The author has presented material from this thesis at a number of New Zealand and interna-

tional conferences, and was recipient of the T. M. Cherry Prize, awarded for the best student

presentation, at the annual Australia and New Zealand Industrial and Mathematics (ANZIAM)
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conference in Fremantle, Australia, 2007. The author also received highly commended in the

Aitken Prize, awarded for the best student presenation at the New Zealand Mathematics Col-

loquium in Palmerston North, New Zealand, 2005, and highly commended in the T. M Cherry

Prize at the annual ANZIAM conference in Sydney, Australia, 2008.

Material from Chapter 5 of this thesis may be found published in the Gazette of the Australian

Mathematical Society (Harper, 2007), subsequent to the award of the T. M. Cherry Prize, and

further material from this thesis will be published at a later date.



Appendix A

Selected Workings

A.1 The Dispersion Tensor

This section contains a derivation of the dispersion tensorD as used in Section 3.1 [R. McKibbin,

personal communication, 15 September, 2006].

Figure A.1 shows the mean wind velocity u = (u; v; 0) in the horizontal plane; L is a unit vector

parallel to the wind, and N is a unit vector perpendicular to the wind.

x

y

u

θ

u

v

L
N

0

Figure A.1: Mean wind velocity u in the horizontal plane

Unit vectors L and N are given by

L =
u

juj i+
v

juj j+ 0k, and (A.1)

N = � v

juj i+
u

juj j+ 0k: (A.2)
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Assuming that the dispersion may be described according to Fick�s Law, the dispersive �uxes

of droplets alongwind, crosswind and vertically are

qL = �DL (L � rc)L,

qT = �DT (N � rc)N and

qV = �DV (k � rc)k,

where DL, DT , and DV are the dispersion coe¢ cients in each direction, and L � rc, N � rc and

k � rc are the concentration gradients. The result is:

qL = �
DL

juj2

�
u2
@c

@x
+ uv

@c

@y

�
i� DL

juj2

�
uv
@c

@x
+ v2

@c

@y

�
j; (A.3)

qT = �
DT

juj2

�
v2
@c

@x
� uv @c

@y

�
i+

DT

juj2

�
uv
@c

@x
� u2 @c

@y

�
j and (A.4)

qV = �DV
@c

@z
k: (A.5)

The total dispersive �ux of droplets per unit area, qD = qL + qT + qV , is then

qD = �
�
DL

u2

juj2
+DT

v2

juj2

�
@c
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�
DL

uv

juj2
�DT

uv
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j�DT

@c
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k: (A.6)

If the x, y and z components of qD are denoted qx, qy and qz (so that qD = qxi + qyj + qzk),

then Equation (A.6) may be rewritten as follows:266664
qx

qy

qz

377775 = �
266664
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

377775

266666664

@c

@x

@c

@y

@c

@z

377777775
= �Drc (A.7)

where the dispersion tensor D has components

Dxx = DL
u2

juj2
+DT

v2

juj2
; Dxy = Dyx = (DL �DT )

uv

juj2
;

Dyy = DL
v2

juj2
+DT

u2

juj2
; Dxz = Dzx = 0;

Dzz = DV ; Dyz = Dzy = 0:

If the wind is blowing at angle � (as shown in Figure A.1) then u = juj cos � and v = juj sin �;

the dispersion tensor becomes

D =

266664
DL cos

2 � +DT sin
2 � (DL �DT ) sin � cos � 0

(DL �DT ) sin � cos � DL sin
2 � +DT cos

2 � 0

0 0 DV

377775 : (A.8)
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A.2 A Point Representation for Trapping with DV 6= 0

This section contains a full working of the 1-D solution, as presented in Section 4.4, for the

advection-dispersion model with DV 6= 0 and a point representation for trapping.

One-Dimensional Solution (Section 4.4, page 57)

In 1-D, our advection-dispersion model for the droplet mass concentration c (z; t) is

@c

@t
� S @c

@z
= DV

@2c

@z2
+Q� (z �H) � (t)� kc (Z1; t) � (z � Z1) (A.9)

with initial and boundary conditions

c
�
z; 0�

�
= 0;

c (1; t) = 0, and @c

@z
(0; t) = 0:

Applying the method used for a similar model in Lim (2005, Chap. 2), we begin by writing

c (z; t) = U (z; t) e
� Sz
2DV

� S2t
4DV (A.10)

so that Equation (A.9) becomes

@U

@t
�DV

@2U

@z2
= P (z; t) (A.11)

with

P (z; t) = e
Sz
2DV

+ S2t
4DV (Q� (z �H) � (t)� kc (Z1; t) � (z � Z1))

= Qe
SH
2DV � (z �H) � (t)� kc (Z1; t) e

SZ1
2DV

+ S2t
4DV � (z � Z1) : (A.12)

We then write

V (z; t) =
@U

@z
� SU

2DV
(A.13)

and apply the operator
�
@

@t
�DV

@2

@z2

�
to obtain a di¤usion equation with zero boundary

conditions; that is
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with V (z; 0�) = 0, and V (0; t) = V (1; t) = 0. This form of di¤usion equation has a known

Green�s function; following Beck et al. (1992, p. 43) the solution is

V (z; t) =

Z t

0
d�

Z 1

0

�
@P

@�
(�; �)� S

2DV
P (�; �)

�
GX10 (z; t j �; �) d� (A.15)
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where

GX10 (z; t j �; �) =
1p

4�DV (t� �)
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e
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Integrating by parts in Equation (A.15) gives
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and since P (0; �) = P (1; �) = 0 this becomes
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Substituting for P (�; �) from (A.12):
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After inserting GX10 and
@GX10
@�

and doing a little rearranging we obtain
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Armed now with a solution for V (z; t), we work backwards to obtain the desired result c (z; t).

First, we return to Equation (A.13) and solve for U (z; t) using the integrating factor technique:

e
� Sz
2DV U (z; t) =

Z z

0
e
� S�
2DV V (�; t) d� + U (0; t) : (A.21)

Next, we require an expression for U (0; t). Di¤erentiating Equation (A.13) with respect to z

and then setting z = 0:
@V

@z
(0; t) =

@2U

@z2
(0; t)� S

2DV

@U

@z
(0; t) : (A.22)
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Also, setting z = 0 in Equation (A.11):

@U
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(0; t)�DV

@2U

@z2
(0; t) = P (0; t) : (A.23)

Equations (A.22) and (A.23) combine to give
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which simpli�es to
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since P (0; t) = 0 and V (0; t) = 0, therefore
@U
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(0; t) =

S
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U (0; t) by Equation (A.13). An

expression for U (0; t)may be found by solving Equation (A.25) using the integrating factor

technique:
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Returning now to Equation (A.21), we have for U (z; t)
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Back-substituting this into Equation (A.10):
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Inserting V (z; t) from Equation (A.20):

c (z; t) = �Qe
� S2t
4DV

p
4�DV t

Z z

0
e
�S(��H)

2DV

��
S

2DV
+
� �H
2DV t

�
e
� (��H)2

4DV t

+

�
� S

2DV
+
� +H

2DV t

�
e
� (�+H)2

4DV t

�
d�

+

Z z

0

Z t

0

kc (Z1; �) e
�S(��Z1)

2DV
�S2(t��)

4DVp
4�DV (t� �)

��
S

2DV
+

� � Z1
2DV (t� �)

�
e
� (��Z1)

2

4DV (t��)

+

�
� S

2DV
+

� + Z1
2DV (t� �)

�
e
� (�+Z1)

2

4DV (t��)

�
d� d� +

Z t

0
DV

@V

@z
(0; �) e

S2�
4DV d� :

(A.29)

Equation(A.29) above may be further simpli�ed; in lines 1 and 2 we perform the following

integrations by parts:Z z
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then in lines 3 and 4 we interchange the order of integration and perform the same integrations

by parts, but with H replaced by Z1 and t replaced by t� � . After simplifying,
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This is as far as Lim�s 2005 method takes us, but we are able to go one step further by ap-

plying the boundary condition c (1; t) = 0; this gives us an expression for the terms which are

dependent only on t. Applying the boundary condition to Equation (A.30) gives
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Using this result to substitute for the terms dependent only on t in Equation (A.30), then

simplifying:
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Alternatively, the integrals in � may be written as complementary error functions, so that

c (z; t) =
Qe

� S2t
4DV

�S(z�H)
2DV

p
4�DV t

�
e
� (z�H)2

4DV t + e
� (z+H)2

4DV t

�
� QS

2DV
e
SH
DV erfc

�
z +H + St

2
p
DV t

�

�
Z t

0

kc (Z1; �) e
�S2(t��)

4DV
�S(z�Z1)

2DVp
4�DV (t� �)

�
e
� (z�Z1)

2

4DV (t��) + e
� (z+Z1)

2

4DV (t��)

�
�kc (Z1; �)S

2DV
e
SZ1
DV erfc

 
z + Z1 + S (t� �)
2
p
DV (t� �)

!
: (A.33)

Note that many of the terms inside the convolution integral are the same as those outside, but

with H replaced by Z1 and t replaced by t� � . Thus, in a much simpler form

c (z; t) = Qf (z; t;H)�
Z t

0
kc (Z1; �) f (z; t� � ;Z1) d� (A.34)

where

f (z; t;Z) =
e
� S2t
4DV

�S(z�Z)
2DV

2
p
�DV t

�
e
� (z�Z)2

4DV t + e
� (z+Z)2

4DV t

�
� S

2DV
e
SZ
DV erfc

�
z + Z + St

2
p
DV t

�
: (A.35)
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A.3 A Point Representation for Trapping With Evaporation
and DV 6= 0

This section contains a full working of the 1-D solution, as presented in Section 6.5, for the

advection-dispersion model with DV 6= 0 and a point representation for trapping.

One-Dimensional Solution (Section 6.5, page 134)

In 1-D, our advection-dispersion model for the droplet number concentration C (z; t) with evap-

oration is

@C

@t
� S (t) @C

@z
= DV

@2C

@z2
+

Q

m0
� (z �H) � (t)� kC (Z1; t) � (z � Z1) (A.36)

with initial and boundary conditions

C
�
Z; 0�

�
= 0,

C (1; t) = 0, and @C
@z

(0; t) = 0:

We solve Equation (A.36) by changing to a moving coordinate system and employing a Greens

function technique. In the moving coordinates C (z; t) ! C� (Z; t), where Z = z � H + f (t)

with f (t) =
Z t

0
S (�) d� , and Equation (A.36) becomes

@C�

@t
= DV

@2C�

@Z2
+

Q

m0
� (Z) � (t)� kC� (Z1 �H + f (t) ; t) � (Z +H � Z1 � f (t)) (A.37)

with initial and boundary conditions

C�
�
Z; 0�

�
= 0,

C� (1; t) = 0, and @C
�

@Z
(�H + f (t) ; t) = 0:

In this coordinate system the problem is one of di¤usion only, but with a moving boundary. The

droplets are released at time t = 0 from Z = 0; they do not fall, but disperse (vertically) whilst

the ground and trapping plane rise with speed S (t) to meet them. Initially, the ground is at

Z = �H and the trapping plane is at Z = Z1�H; their positions after time t are Z = �H+f (t)

and Z = Z1 �H + f (t) respectively. A diagram of the solution space is given in Figure 6.4 on

page 135.

We now employ a Green function technique modi�ed from Crank (1984, pp. 117-119). The

technique as described by Crank requires a Green function which obeys the boundary conditions.
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As there is no (known) Green function which satis�es these conditions, we modify the technique

by knowingly using a Green function which does not satisfy the condition on the moving ground

boundary.

Take the Green function for a 1-D di¤usion equation in an in�nite region �1 < Z < 1 with

zero boundary conditions:

GX00 (Z; tj�; �) =
1

2
p
�DV (t� �)

e
� (Z��)2
4DV (t��)H (t� �) (A.38)

(Beck et al., 1992). This Green function is a solution to

@GX00
@t

= DV
@2GX00
@Z2

+ � (Z � �) � (t� �) , t > � (A.39)

with boundary and initial conditions

GX00
�
Z; 0�j�; �

�
= 0, and GX00 (�1; tj�; �) = 0.

Note that it does not satisfy
@GX00
@Z

(�H + f (t) ; tj�; �), which is the condition on the moving

ground boundary.

We combine Equations (A.37) and (A.39) following Beck et al. (1992, pp. 40-43). First, the

reciprocity relation GX00 (Z; tj�; �) = GX00 (�;�� jZ;�t) is applied to Equation (A.39) to give

�@GX00
@�

= DV
@2GX00

@�2
+ � (� � Z) � (� � t) : (A.40)

Next, the change of variables Z = � and t = � is applied to Equation (A.37) so that

@C�

@�
= DV

@2C�

@�2
+

Q

m0
� (�) � (�)� kC� (Z1 �H + f (�) ; �) � (� +H � Z1 � f (�)) : (A.41)

Multiplying Equation (A.40) by C� (�; �), and Equation (A.41) by GX00 (Z; tj�; �), then sub-

tracting the two:

GX00
@C�

@�
+ C�

@GX00
@�

= DV

�
GX00

@2C�

@�2
� C�@

2GX00

@�2

�
+
Q

m0
GX00� (�) � (�)� C�� (� � Z) � (� � t)

�kC� (Z1 �H + f (�) ; �)GX00� (� +H � Z1 � f (�)) :(A.42)

Now, following Crank (1984, pp. 117-119), we integrate only over the domain of interest, that

is �H + f (�) � � <1 and 0� < � < t+ " where " is a small positive number:
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Z t+"

0

Z 1

�H+f(�)

@

@�
(C�GX00) d� d� =

Z t+"

0

Z 1

�H+f(�)
DV

�
GX00

@2C�

@�2
� C�@

2GX00

@�2

�
d� d�

+

Z t+"

0

Z 1

�H+f(�)

�
Q

m0
GX00� (�) � (�)� C�� (� � Z) � (� � t)

�
d� d�

�
Z t+"

0

Z 1

�H+f(�)
kC� (Z1 �H + f (�) ; �)GX00� (� +H � Z1 � f (�)) d� d� :

(A.43)

The left-hand side of Equation (A.43) may be simpli�ed by changing the order of integration:

Z t+"

0

Z 1

�H+f(�)

@

@�
(C�GX00) d� d�

=

Z �H+f(t+")

�H

Z F (�+H)

0

@

@�
(C�GX00) d� d� +

Z 1

�H+f(t+")

Z t+"

0

@

@�
(C�GX00) d� d�

=

Z �H+f(t+")

�H

h
C�GX00

iF (�+H)
0

d� +

Z 1

�H+f(t+")

h
C�GX00

it+"
0

d�

(A.44)

where F is the inverse of function f , so that if � = f (�) then � = F (�). Equation (A.44)

reduces toZ t+"

0

Z 1

�H+f(�)

@

@�
(C�GX00) d� d�

=

Z �H+f(t+")

�H
C� (�; F (� +H))GX00 (Z; tj�; F (� +H)) d�

(A.45)

because of the initial condition C� (�; 0�) = 0, and also because GX00 (Z; tj�; t+ ") = 0. We

introduce the change of variable � = F (� +H); then f (�) = � + H and
d�

d�
= F 0 (� +H) =

F 0 (f (�)), and Equation (A.45) becomes

Z t+"

0

Z 1

�H+f(�)

@

@�
(C�GX00) d� d�

=

Z t+"

0
C� (�H + f (�) ; �)GX00 (Z; tj �H + f (�) ; �)

d�

F 0 (f (�))
:

(A.46)

Returning to Equation (A.43), the �rst double integral on the right-hand side may be simpli�ed

using integration by parts:
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Z t+"

0

Z 1

�H+f(�)
DV

�
GX00

@2C�

@�2
� C�@

2GX00

@�2

�
d� d�

=

Z t+"

0
DV

�
GX00

@C�

@�
� C�@GX00

@�

�1
�H+f(�)

d�

=

Z t+"

0
DV C

� (�H + f (�) ; �)
@GX00
@�

(Z; tj �H + f (�) ; �) d�: (A.47)

The second double integral on the right-hand side of Equation (A.43) may be integrated directly:

Z t+"

0

Z 1

�H+f(�)

�
Q

m0
GX00� (�) � (�)� C�� (� � Z) � (� � t)

�
d� d�

=
Q

m0
GX00 (Z; tj0; 0)� C� (Z; t)H (Z +H � f (t)) : (A.48)

Note that we use the de�nition of the Heaviside function as in Abramowitz (1964), that is

H (Z +H � f (t)) =

8>>>><>>>>:
0; Z < �H + f (t) ;

1
2 ; Z = �H + f (t) ;

1; Z > �H + f (t) :

(A.49)

The value of H (Z +H � f (t)) = 1
2 at Z = �H + f (t) results from the de�nition of the Dirac

delta function � (� � Z) as a Gaussian distribution which is centred at � = Z and has zero

variance, that is

� (� � Z) = lim
�!0+

e�
(��Z)2

�2

�
p
�

:

If Z = �H + f (t), then Z 1

�H+f(t)
� (� � Z) d� = 1

2
(A.50)

because the distribution is centred at � = �H + f (t) and so the integral is capturing only half

of the area under the distribution.

Returning once again to Equation (A.43), the third double integral on the right-hand simpli�es

to

�
Z t+"

0

Z 1

�H+f(�)
kC� (Z1 �H + f (�) ; �)GX00� (� +H � Z1 � f (�)) d� d�

= �
Z t+"

0
kC� (Z1 �H + f (�) ; �)GX00 (Z; tjZ1 �H + f (�) ; �)H (Z1) d� : (A.51)

We will assume that Z1 > 0 so that H (Z1) = 1.
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Substituting the results from Equations (A.46) �(A.48) and (A.51) back into Equation (A.43),

then letting "! 0 and rearranging gives

C� (Z; t)H (Z +H � f (t)) = Q

m0
GX00 (Z; tj0; 0)

+

Z t

0
C� (�H + f (�) ; �)

�
DV

@GX00
@�

(Z; tj �H + f (�) ; �)� GX00 (Z; tj �H + f (�) ; �)

F 0 (f (�))

�
d�

�
Z t

0
kC� (Z1 �H + f (�) ; �)GX00 (Z; tjZ1 �H + f (�) ; �) d�; Z1 > 0:

(A.52)

Returning to the original coordinate system (z; t) and substituting Equation (A.38) for GX00:

C (z; t)H (z) = Q

2m0

p
�DV t

e
� (z�H+f(t))2

4DV t

+

Z t

0

C (0; �)

2
p
�DV (t� �)

e
� (z+f(t)�f(�))2

4DV (t��)

�
z + f (t)� f (�)

2 (t� �) � 1

F 0 (f (�))

�
d�

�
Z t

0

kC (Z1; �)

2
p
�DV (t� �)

e
� (z�Z1+f(t)�f(�))

2

4DV (t��) d�; Z1 > 0: (A.53)



Appendix B

Laplace and Fourier Transforms

B.1 Laplace Transforms

Table B.1 contains formulae for the Laplace transforms which have been used in this thesis.

Numbers 1 � 9 are from Roberts & Kaufman (1966), and Numbers 10 � 11 are generalised

Laplace transforms from Zemanian (1987).

Table B.1: Table of Laplace transforms

f (t) f (p) =

Z 1

0
e�ptf (t) dt Conditions

1 f 0 (t) pf (p)� f (0)

2 f 00 (t) p2f (p)� pf 0 (0)� f (0)

3 e�atf (t) f (p+ a)

4

Z t

0
f (�) g (t� �) d� f (p) g (p)

5 � (t� a) e�ap a � 0, Re p > �1
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f (t) f (p) =

Z 1

0
e�ptf (t) dt Conditions

6
1p
t
e�

a
t

r
�

p
e�2

p
ap Re a � 0, Re p > 0

7
1

t3=2
e�

a
t

r
�

a
e�2

p
ap Re a > 0, Re p > 0

8 t�e�
a
t 2

�
a

p

� �+1
2

K�+1

�
2
p
ap
�

Re a > 0, Re p > 0,

K� = modi�ed Bessel function

of order �:

9 ea
2t erfc

�
a
p
t+

bp
t

�
1

p
p
�p
p+ a

�e�2b(pp+a) Re b2 � 0,

Re p > 0 if Re a � 0,

Re p > max
�
0;Re a2

�
if Re a < 0:

10
1

t
�
 � ln (p) Re p > 0, 
 = Euler�s constant

11
1

t3=2
�2p�p Re p > 0
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B.2 Fourier Transforms

Table B.2 contains formulae for the Fourier transforms which have been used in this thesis.

These formulae are from Haberman (1998).

Table B.2: Table of Fourier transforms

f (x) bf (!) = Z 1

�1
f (x) e�i!x dx

1 f 0 (x) i! bf (!)
2 f 00 (x) �!2 bf (!)
3 � (x� a) e�i!a

4 e�
x2

2�2
p
2��e�

!2�2

2
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