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ABSTRACT
A central and challenging problem in contemporary biology is how to
accurately reconstruct evolutionary trees from DNA sequence data.
This thesis addresses three themes from this endeavour -- comparison,
consistency and confidence intervals -- by analysing distributions arising

from phylogenetic trees.

Toward the first theme, the distribution of the symmetric difference

metric on pairs of binary and phylogenetic trees is studied, and a number
of new results obtained. These theorems, as well as a result on another
tree metric answer previous conjectures in this area. Also under the
theme of comparison, we analyse distributions on bicoloured trees arising
from the principle of parsimony. A streamlined proof is given of an

elegant theorem which allows an efficient comparison of how much better
a maximum parsimony tree fits given data than a randomly-chosen tree. A
dual distribution, where the tree is fixed and the data varies is also

analysed, answering a recent unsolved problem.

We then consider the theoretical accuracy of tree-building methods,
concentrating on the statistical property of consistency. Under a simple
stochastic model on bicoloured trees, conditions for the consistency of
frequently-used methods based on parsimony and compatibility are
examined. Itis shown that even in "best possible" conditions both
methods can be inconsistent, though a strong sufficient condition for

compatibility is given. The analysis is extended for a molecular clock.

Finally, procedures are described for placing confidence intervals around
phylogenies, and limitations on the sort of confidence intervals possible
are given. Ways to efficiently implement these procedures are then
considered -- in particular, approximate methods, applications to sets of

taxa of size four, and simplifications under a molecular clock.




The rate that sequence data must grow as a function of the number of taxa

for confidence intervals to converge to a single tree is also considered.

The arguments in this thesis are primarily combinatorial and stochastic.
In the hope that their implications will also interest biologists, some

space has been given to motivating and explaining the biological relevance

of the results presented.
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Introduction

"There is one unique, true hierarchical nesting pattern in nature, waiting
to be discovered. All that we have to do is develop methods for
discovering it," Richard Dawkins.

The last two decades have witnessed a flourishing of methods aimed at
constructing phylogenetic trees from genetic data. Yet despite the
extensive use of these procedures relatively little attention has been
paid to determining their accuracy. Consequently, disputes on how best
to reconstruct evolutionary trees have arisen (see for example Diamond
[1988]) and different data or different methods often give differing

trees, as the introduction of Felsenstein [1987], concerning the
Pan-Homo-Gorilla clade, makes clear. It is thus desirable to determine
how these methods perform under simple models which describe how
variations in the underlying genetic data arise on the evolutionary tree
linking the taxa in question.

This thesis considers these problems from a combinatorial and
stochastic viewpoint. Section one enumerates various classes and
properties of phylogenetic trees, and presents a solution of an open
problem by Day [1986]. This is followed by a streamlined proof of an
important new theorem from Carter et al. [1988], which is applied in
section five.

Section two examines the question of how similar one would expect
"randomly-chosen" trees to be, so as to better understand the
significance of disparities in tree reconstruction, mentioned above.
This continues work in Hendy, Little and Penny [1984], and Day [1983]
and settles two conjectures raised in the former paper, as well as
providing a deeper understanding of the metric used in that paper.

We then examine from a combinatorial viewpoint three issues related to
tree building: section three considers how the structure of subtrees
constrains the structure of the parent tree(s); section four quantifies

the loss of information in working with dissimilarity data rather than
sequence data, and section five examines combinatorial aspects of
parsimony, which is the principle behind the most widely-used tree
building method. In this section we give an efficient method for
measuring how much better the maximum parsimony tree fits data than
a "randomly-chosen" tree. A useful invariance result is also derived and
answers a dual question of how many edge changes are required to fit
"random" data to a tree.




These and other results are applied in sections six, seven and eight to
address the question of the theoretical accuracy of tree-building
methods under a simple model proposed in 1978 by James Cavender.
This model and its immediate consequences are outlined in section six.
In section seven, the statistical consistency of various classes of
tree-building methods is examined. Particular attention is paid to
parsimony and a closely related method, compatibility, and new
necessary and sufficient conditions for consistency are obtained.

In section eight the question of how to find confidence intervals around
trees is investigated. This question has received relatively little
attention as suggested in the recent and comprehensive review of
tree-building methods by Felsenstein [1988]. Finally the rate of
convergence (to a single tree) of these confidence intervals is examined
and a positive result obtained.

For the first half of this thesis, the arguments are mostly

combinatorial, relying on generating functions and tree decompositions,
combined with two technical results for which the reader is referred to
Goulden and Jackson [1983]--the principle of inclusion and exclusion
(for generating functions), and the Lagrange inversion formulae. Where
exact solutions appear intractable or difficult, asymptotic methods have
been used. From section six, probability-based arguments are exploited,
particularly properties of the multinomial distribution.
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Moore and Ingrid Rinsma.




Notation:

[x"1r(x) denotes the coefficient of xMin f(x). Similarly for

f’(%x) denotes the (formal) derivative of f(x).

f(n) = 0O(g(n)) means fin), is bounded as n->oo0,

a(n)

f(n) ~ g(n) means limn_>oof(”)

/g(n) =1,
~ means approximately equal to.

For a set X, [X], is the set of subsets of X of size k.
[n] = [{l,...n}.. [n]" is the set of even subsets of {1,..n} (including &).

an denotes the binomial coefficient n!/k!(n-k)!

%, X,... denotes vectors; j = [1,1,..., .

J denotes a square matrix with all entries +1.

®.4 is the inner product of x and y

x>y (resp. x=y) means %;>y; (resp. %;2y;) for all i.

xY = ﬂiini, [|[x-yl| is the Euclidean distance between ¥ and y.

Rk, (R+)k, NK denotes respectively k-tuples of reals, positive reals and
nonnegative integers (when k=1 the superscript is suppressed).
P(A) denotes the probability of event A.

E[X], Var[X] denote the expectation and variance of random variable X.
(x1o¢p)(ex3 . mox =) (e —1,0¢ ) denotes a binary caterpillar tree, J

endpoint labelled as shown in fig. O.1.
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§1: COUNTING TREES

"We have for twenty species more than a gram molecular weight of

evolutionary trees," Walter Fitch.

1.1 Introduction

A central problem involved in constructing phylogenies is the rate of
growth in the number of potential candidates as a function of the number
of taxa. We begin therefore by defining and enumerating the types of
trees suitable for phylogenetic analysis. The asymptotic distribution of
certain properties of these classes is then derived, solving an open
problem posed by Day [1986] and providing results which are used in
section two. The enumeration and properties of forests of phylogenetic
trees is also considered and compared with classical results. We then
consider the enumeration of binary trees according to the number of edge
changes required to fit a colouring to the endpoints. The results in
section one rely on tree decompositions, and in some cases, the Lagrange
inversion formula.

Trees

1.2 Definitions

connected
A tree is an acyclic simplejgraph.
Let L be a set of n=2 labels. A phylogenetic tree onlL , is a tree with n
vertices of degree one, called pendant vertices, each labelled with a
distinct element from L, and with the remaining (internal) vertices of
degree at least three, and unlabelled. For such a tree, the n edges
incident with a pendant vertex are called pendant edges, and the
remaining edges are internal. We let E(T) (resp. IE(T), IV(T)) denote the

set of edges (resp. internal edges, internal vertices) of T.




Two phylogenetic trees on L are considered equivalent if there is a graph
isomorphism between them which preserves the labelling on the pendant
vertices. More generally, if two phylogenetic trees are graph
isomorphic with their labellings supressed, we say they are

topologically equivalent.

Let PT(L,f) denote the set of phylogenetic trees with f internal edges on
label set L. Let PT(L) = U{PT(L,); 0<f<n-3}, and BPT(L)= PT(L,n-3), the

set of binary phylogenetic trees, for which each internal vertex has

degree three. For L = {1,..,n} denote these sets PT(n,f), PT(n) and BPT(n)

respectively. The following result is from Felsenstein [1978 (1), p.291.
1.3 Lemma

The size of PT(n,f) is determined recursively as follows:

|PT(N) = (n+r=2) [PT(n=11=1)| + (F+D|PT(h-1,1)|: n>4,

|PT(3,0)|=1, |PT(3,1)|=0, r>o0.

For n>3, lemma 1.3 gives
- - - _c) = (2n-4)!
[BPT(n)|= (2n-5)1 = 135, (2n-5) = (2Nl oy on-2

For convenience, we let b(n) = |BPT(n)| and p(n) = |PT(n)|.

1.4 Corollary

Let PTY(n) (resp. PT™(n)) denote the set of trees in PT(n) with an even
(resp. odd) number of internal edges. Then

IPT*() |- |PT ()| = (-0 -2 n23.




Proof: Letp(nx) =3 5o |PT(N)] x'. Bylemma 1.3,

p(n,%x) = ((N=Dx+1p(n-1,%) + (><2+><)d/dxp(n—1,><). Putting

x = -1 gives p(n,-1) = (2-n)p(n-1,-1), which together with p(3,-1) =1,
gives [PT*(n) |- |PT™(n)| =p(n,-1) = (-DNT(n-2)1 §

A central theorem in the enumeration of labelled trees is the following

result:

1.5 Theorem Moon [1970]

The number of trees on n labelled vertices of degrees d(1),...,d(n) is

n—zcd(])_] ,,,,, a(n)-1 if 2,;d(i) = 2n-2, and 0 otherwise. §

This theorem gives an alternative description of |PT(n,f)| as a sum of
f+1 terms, each expressed in terms of Stirling numbers of the second
kind. (Aigner [1979] gives a table of the Stirling numbers S(m,r) for

m,r<8).

1.6 _Theorem

[PT(ND| = Sgeger M T Ve (-1)85(n+-1-5,1+1-9).

(For example, | PT(6,2)| = 7CqS(7,3)-7C4S(6,2)+7C,S(5,1) = 105).

Proof:

Any TePT(n,f) has n+f+1 vertices, n of which are labelled and of degree |

and f+1 of which are unlabelled and of degree dy,..., dfy 23

Now only the trivial automorphism leaves every endpoint of a tree fixed

(Harary and Mowshowitz [1975]).




Thus if we regard this second set of vertices as labelled, apply theorem

1.5 and then "unlabel” these internal vertices we obtain:

[PT(D] = LD 'S (953, d.jeareny™ T V(DL (A1)

Thus, by the principle of inclusion and exclusion we have:

|PT(n,f)| = [(f+])[]_]xzs(_])5- f+1CSX

(n

z{x:(x(l)*...,><(f+l—s))21, K.j=n+f-1-s} +r-])!/x(l)!...x(f+l—s)! )

Now for positive integers m,k the summation

2 (x=(x(1). 02, 1.4 m) " /x(D1x(k)1 19 the number of ways of

placing m labelled objects into k labelled sets, so that each set contains
at least one element.

But S(n,k) is the number of ways of partitioning n objects into k

non-empty sets so that
— | .
KIS(NK) = 3= (x(1),...4(K))2], %= m) T /x(1)1.x(k)1 @S N Anderson

(1974, p.58].

Thus the summation term in (*) is

(n+f-l)!(f+l-s)!S(n+f-l-s,f+l-s)/( 1-9),
n+f-1-s)l

Substituting this into (*) gives the result. §

Frequently in following constructions, the labelling of trees is
unimportant. Thus it is useful to let pt(n), pt(n,f) and bpt(n) denote a
set of distinct representatives for the topological classes of PT(n),
PT(n,f) and BPT(n) repesectively. To enumerate bpt(n) we use the

following result.




1.7 Lemma

Let K(n) be the set of unlabelled trees with n vertices of degree <3.

Then for nx4, there is a bijection from bpt(n) to K(n-2).

Proof:

For Tebpt(n), let T’ be the unlabelled tree obtained from T by deleting all
its pendant vertices and pendant edges (T' is the derived tree of T in
Hendy, Little and Penny [1984]). Since T has n-2 internal vertices, we

have T'eK(n-2), and the process is clearly invertible. §

1.8 Corollary

| bpt(n) | ~be"/ns/2, where bx 003301, 6%2.4832535.

Proof:

The asymptotic value for | K(n) | is derived by Otter [1948, p.597-598] as

(539"9/2/4Jﬂ)en/n5/2, with values for e, (written as « ! by Otter),

and 8 given. Harding [1971] corrects an error in Otter’s calculations to

show Bx4.4220432. The result now follows by the previous lemma. §

1.9 Definition

For L'={1,..,n}u{e}, let RPT(Nn) be the set ofrooted phylogenetic trees on
n pendant vertices, defined as follows. By convention RPT(1) is the tree
consisting of a distinguished vertex (called a root) connected to a
labelled pendant vertex. For n>2, RPT(n) is the set of trees obtained by
distinguishing an internal vertex of TePT(n) or adding a distinguished
vertex to the midpoint of an edge of T. Define the set of rooted binary

trees on npendant vertices, denoted RBT(n), analogously.




It is easily shown that |RPT(n)| = p(n+1). Thus to count PT(n) it
suffices to count RPT(n), for which the appropriate tool is the
exponential generating function. Let x mark the number of non-root
pendant vertices, and R(x) denote the exponential generating function for

RPT(n). A standard tree decomposition gives the following result.

1.10 _Proposition Foulds and Robinson [1984]

2R(x) = exp(R(x)) - 1 + X,
Asymptotically we have the following result, where p = 2In(2)-1.

1.11_ Lemma

(a): D(n)/n! ~ pl—nn—5/2J<p/4Tr)
(0): p(N) (S5l |PTIND ) - np~(1-In(2)) = O(1)

(©): p(M) (5ol (F-[PT(NN|) - n2p™2(1-In(2))2 = O(n).

Proof:

These results follow from closely related results in Foulds and
Robinson [1984], the only modification required being that the first and
second moments corresponding to (b) and (c) are evaluated in that paper
with respect to the total number of vertices, v, rather than the number
of internal edges, f, requiring the substitutions: f = v - (n+1) and

f(f-1) = v(v-1) = 2(n+1)v + n2+3n+2. §

10




Resolved Subtrees

We now answer a question raised by Day [1986]. Given TePT(n) and a
subset A = {i,jk,1} of distinct elements of {l,..,n}, we say A is resolved
by T if the vertices can be paired such that the path between the first
pair is vertex disjoint from the path between the other pair.

Establishing the proportion T(n) of unresolved quartets for a
randomly-chosen tree in PT(n) is of interest to taxonomists because of
other results in Day’s paper. This paper reduces the evaluation of the
averages of various measures of similarity between randomly-chosen
phylogenetic trees to the evaluation of T(n). For example, proposition |
(1) of Day’s paper states that the expected proportion of resolved

quartets on which two phylogenetic trees do not conflict is

- 2 : ) o
2(1-z(n)) /3, while for binary trees the expected proportion is simply
2/3. The next theorem shows that these two values are asymptotically

equal, refuting a suggestion in Day [1986] that 1-z(n) might converge "to

a value close to, but distinct from, one.”

.12 _lLemma

For power series f(x),
(D: K17 (%) = 0.5k+DxKT(F'(x))2, where ' denotes differentiation
with respect to x.

(2): i XM1(%) ~ Top™ "0, then [xMF(x)2 ~ ry271p N,

Proof:
(1): Let g(x) = Sia! = (1'(x))2. Then since g'(x) = (1'(x)2) = 21 (x)7 (%)
we have [xK17 ()1 (x) = O.S[xk]g‘(x). But g'(x) = 2, iaixi_' so that

[xK1g'(x) = (k*DIxK*Ng(x), as required.

11
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(2): [®N1r(x)2 = ZOSisn[xi]f(x)[xn_i]f(x), and a careful but straightforward
analytical argument shows that asymptotically this expression is:

fozp_nzlskni_O'S (n—i)‘O-S - f02p‘“ ﬂ_]zlsk#1]/J((i/n)(l—i/n)) ”

-N dx N N
fo?p J1/ns><sl—1/n /L (x(1-x)) ~ To?p "0 §

1.13 Theorem

Let z(n) denote the expected proportion of unresolved 4-trees in a tree
randomly chosen from PT(n).

(Thus ©(5)= 25/5%26=0.1923, ©(6)=570/15%236=0.1610, as in table 4 of
Day [1986]).

Then with R(x) and p as above:

@: () = (2p(n)~ (=31~ 3R (x))2

(b): T(n) ~ L (PT/ 4.

Proof:

Let [n]4 be the set of all subsets of {1,..,n} of size 4, called quartets,
and let [[nl4] be the set of all subsets of [nl4 of size k. For Qellnls] let
U(Q) denote the number of TePT(n), such that T is unresolved on all the
quartets of Q (and possibly others).

Letting Uy, be the sum of U(Q) over all Qellnl4ly, and let U(x) = Zkukxk.

By the principle of inclusion and exclusion, E(x) = U(x-1) is the ordinary
generating function for the number of trees having precisely a given

number of quartets unresolved.

In particular, z(n) = E‘(])/nc4p(n), where ' denotes differentiation with

respect to . Thus T(n) = U‘(O)/”Cw(n) - UV”CqD(n)'
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Now U(Q) is clearly the same for any Qellnl4];, so choosing Qg = {1,2,3,4}

we have U, = NC,U(Qq). Hence z(n) = U(Qo)

/p(n) 0

Now suppose TePT(n) is unresolved on Qqg. Then there exists a unique
internal vertex v(T) of T linking the 6 paths joining pairs of pendant
vertices with labels in Qq.

Furthermore, T can be represented uniquely by one of the two trees in
fig. 1.1 (a),(b), where TieRPT(ni), i=1,.,4,n;x1, is a pendant subtree
containing the vertex labelled i, and rooted at a vertex v; adjacent to

v(T), and T* is one of the following:

Case 1: T*=% (so that in case (b), v* is a pendant vertex).
Case 2: T*e¢RPT(k), k=2, and the root is v(T) for T in fig.1.1(a) and v* in
fig. 1.1(b).

(a) (b)

Figure 1.1

Furthermore, any TePT(n) which is described by fig. 1.1 is clearly

unresolved on Q.




Using this decomposition, and letting r(k) = |[RPT(k)| we have,

U(Qg) = 2{nen: n-j=(ﬂ~4)}(n_4)cn;,n2,n3,n4 Thir(ny+1)

(case 1, tree representation (a))

* 2. (neN4: n.j:(n—S)}(n_4)Cn1,n2,n3,n4,1 Mir(ni+1)

(case 1, tree representation (b))

n-4
* 22 {k, neN%: k>2, n.j+k=(n-4)) ( )Cn1,n2,n3,n4,kﬂir(ni+])r(|<)
(case 2).
(Inall cases i ranges from 1 to 4, n.j=2in,and N ={0,1,2,..}).

Noting that r(1) = 1, rewrite the last two of the above three terms as

(n-4)

22.(keN, neN4: k=1, n.j+k=(n-4)) Crpngngng k TTir(niDr(k)

“Z(nen: =5 " P Cn g e T (P DFC)

Thus U(Qg) = (n-4)ix" (R (x))4(1+2R(x)~x). (2)
Now by proposition 1.10, 1+2R(x)-x = exp(R(x)). (3)
Dif ferentiating this equation with respect to x gives

2R'(x)-1= R’(X)exp(R(x)), so that R'(x) = (2—e><D(R(><)))_1. (4)

Differentiating again gives,
R"'(x) = R'(0)exp(R())/ (2-gp(R(x)))2 = e*P(R(x)/ (2-exp(R(x)))3 (PY (4)).

This together with (3) and (4) gives,
U(Qg) = (- HR()R"(x) = 0.5(n-3)IxN31(R'(x))2 by lemma 1.12 (a)

Combining this with (1) gives the required result.

(£): This now follows from part (%) lemma 1.11 and lemma 1.12 (b). §

14
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Forests
Let F(n,k), (resp. N(n,k)) denote the set of forests consisting of exactly k

rooted phylogenetic (resp. binary) trees having exactly n pendant

vertices in total. LetF(n) = ukF(n,k) and N(n) = ukN(n,k).

1.14 Theorem

(D:| F(n) | = 2p(n+1)

(2): 11 f(N)=|N(n) |, then f(n) = (2n-3)f(n-1) +f(n-2).
(3): f(N) ~ b(n+1)e.

(4): | N(nk) | = 2nmk=Dl e ie-niznk

Proof:
(1): exp(R(x)) is the exponential generating function for F(n), by the
"logarithmic connection” (Goulden and Jackson, [p.187, 1983]). But

exp(R(x)) = 2R(x)-1+x, by proposition 1.10, which gives (1).

(2): If B(x) denotes the exponential generating function for rooted binary

trees having n non-root pendant vertices, then by a standard tree
decomposition, B(x) = ]/282(><)+><, giving B(x) = 1-4/ (1-2x), as in Carter

et al. [1988]. Again, exp(B(x)) is the exponential generating function for
N(n).

Now it is easily checked that 1+B’(x) = (1-2x)(B"'(x) + B'(%)2), which can
be rearranged as:

(B'(%)2+B"'(x)) = (4B’'(x)+2%B’(x)2+2xB"(%))-3B"(x)*.

Multiplying by exp(B(x)) and integrating twice gives:

exp(B(r)) = 2xexp(B(r)) - 3Je><p(B(><)) +JJQ><D(B(><)), which translates

into the recursion in (2).
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(3): By the Lagrange inversion formula,

[tMexp(B(x)) = n~ AN Nexp(\)(1-2/,)™N

Thus f(n) = niltNlexp(B(x)) = 5 21+1=N (on-2-)I
i>0

il(n=i-1)!

= (2n-2)! ‘zo 21 (2n-2-DI(n-1)!

(n-1)12n~1 i(2n=-2)1 (n=i-n!

ThUS 1iMp-> oo f(n)/b(nﬂ) = S5 o(iD71 = e as required.

(4) is proved by Carter et al. [1988]. §

1.1S_Theorem

Let pp(n) (resp. py(n)) denote the average number of components in F(n)
(resp. N(n)).
() pp(r) = 0.5 + (AIFMD[=np)/ a1 v in2)

(2)2 }JN(D) ~3,

Proof:

(: Let F(xW) = e [P |37 = S s 1y REOKY | = exp(yR())-1.
Then pe() = [F() | 7In®/g [ o Fxy) = [F()] T InixMRG)exp(R(X).
Now exp(R(x)) = 2R(x) + 1 - %, and |F(n)| = 2p(n+1), thus

pe(n) = nixM(2R2(x) + R(x) =xR())/ op(ne1)-

But [F(n,2)| = niix"R2(x)/ 5, which gives the first part of (1).




t

Now by lemma 2 of Meir, Moon and Mycielski [1983], together with

lemma 1.11(a),

[xMR2(x) ~ 2R(p)p(n+l)/ml where R(p) = In(2), as shown by Foulds and

Robinson [1984]. Thus He(n) ~ 2In(2) = 0.5(1IMp-5eo M/ (u1y) + 0.5

and the result follows by lemma 1.11(a).

(2): By a similar argument, py(n) = f(n)~InIxNIB(x)exp(B(x)). By the
Lagrange inversion formula,

NxMB(x)exp(B(x)) = (N-DIAN N1+ )M (-2 /)™

= (=D TeM(1-1/2) ™"+ (n-1)IANT 21 (1-2/ )™,

Thus nI[xNIB(x)exp(B(x)) = f(n) + 21*2°N (2n-3-)I
0<i<n-2
il(n-2-i)!
f(n) + 2b(n+1) 3. 21 (2n-3-D1 (n-1)I
0<ign-2
i(2n-2)1I(n-i-2)!

~ f(n) + 2b(n*1e, and the result follows since f(n) ~ b(n+1)e. §

.16 Remark

The average number of labelled trees in all forests of p points

approaches 3/2 (Moon [1970]). For unlabelled trees the limit is

2.191837 (approx.) for rooted trees and 1.755510 (approx.) for

unrooted, (Palmer and Scwenk [1979])).
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Bicoloured Trees

1.17 Definition

For a+b=n, let fm(a,b) denote the number of trees TeBPT(n) in which the

pendant vertices labelled {1,....a} are coloured A, and the rest are coloured
B, so that a minimum of exactly m edges must have differently-coloured

endpoints in order to extend the colouring to all the vertices of the tree.

In Carter et al. [1988] it is shown that
f (ab) = (M=DX(2n-3m) |N(a,m) | |N(D,m)|b(n)/b(n_m+2); 0

where |N(k,m)| is the number of forests consisting of m rooted labelled

binary trees on a total of k endpoints, as given in theorem 1.14 (4).

A proof of this result, which is used in section five, is now given which
avoids both the messy calculations and the use of a computer package to

manipulate expressions in Carter et al. []988].

1.18 Notation

ka denotes the usual binomial coefficient, except for _ka (m>0)

which denotes [xK](1-x)™™ = M*K~Ic, (and not (-pk. M*kIc )

L19 Lemma

a"'XCa._kC — a+k“1c

-a-k
atyx = C

X

Proof: Immediate.

18




1.20 lemma

Let F(n,m)= [xm_]](I—x)zm_zn(l—x/z)'m n>2m.

Then Fnm) = X007 e )

Proof:

Let #(A) = (1I-1)2/(1-*/,). The solution of w(t) = t&(w(1)) with w(0)=0
isw=1-(+20)79-9 Let r(n) = (2n-1)71(1-2)"2N*1. By the Lagrange
inversion formula, [tMr(w) = m~ M )M (x) = m™IF(nm).

Thus F(n,m) = m(2n—1)'][tm](l+2t)(2n_])/2, and the result follows. §
(This lemma resembles lemma 2 of Carter et al. [1988], but does not

follow from it).

.21 Theorem

[ (ab) = (m—l)!(2n~—3m)lN(a,m)}%\l(b,m)lb(n)/b(n_mQ)

Proof:

Define generating functions T,T,, T3 for rooted binary trees (exponential
in x and y which mark pendant vertices coloured A and B respectively,
and ordinary in z which marks the number of edge changes), as in Carter
et al. Thus T, (resp. T,) enumerates those rooted binary trees in which
every minimal colouring (of the internal vertices of the tree) assigns
the root vertex the colour A (resp. B), while T3 enumerates all remaining
trees.

Removing the root vertex from a tree with more than one vertex to give
two smaller rooted trees, we have, by Fitch’'s algorithm (definition

5.18),

19
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Ty = ]/2T]2 + TyTz + X

T, ]/2T22 * TaT3 +y

T3=1/,T32+ 2T T,

as given by Carter et al.

Now (2n-3)f ,(a,b) = alblx@yPzMI(T+ T+ T5), (1)

since both sides count the number of rooted trees requiring m changes
to fit an a/b colouring, where the possible states of the root are left
unspecified. (This is a minor but useful departure from Carter et al. ).
We now use the multivariate Lagrange formula for monomials, rather
than the full multivariate Lagrange inversion formula as employed in by

Carter et al.

Applying this formula, (refer Goulden and Jackson, p.25):
[K1gK2ZK3)(T + T+ T ) =

(kikok3) 18 om0, 2,32 1 (0 A0 2y 5 gl Hill)_wsHizlediaki (2)
where A(«) is the determinant of [Sijki—pij(m)]ij,

9 = (1—W1/2‘W3)_], $, = (]-W2/2—W3)—], ¢ = W]WZ(I-W3/2)_], and

the second summation is over all matrices of the form

() = {}Jij(cx)] = k- kz3=81, O Ry
0 kz‘k3‘820< Xz
K3 K3 X3

-

With ®y,%p,83 20 and xitp+83 = K3~ 83, (the condition that ps=p3,=kz is

imposed by the vanishing of the product term in (2) corresponding to i=3

for all other values of sy and psp).




A(x) is then the determinant

k3+8‘0< 0 X4
0 k3+820< Xo
Kz K3 K3=X3

which takes the values

k3><1 (CX:]), k3><2 (0(32) and k32 (O<:3).

For the product term corresponding to i=1in (2) we have
[W1k1_k3‘81o<w3>41]<b1_k1 =

=(ky=k3=810¢) Ki~k3=80¢+¥ -k
27 (kiksm8ied KTk ThHiey g o < Chymkgm8 00k
= 2 (kikg=8ieq)  Zkikg=8iemie, | =2KitkstEie, by jemma 119,
1 1

By symmetry, the term corresponding to i=2 is obtained from this
expression by replacing ky with'k, and ¥y with x,.

For i=3 we have

[w 3w, K3w<"318:7K3 = [w4%3] (1—W3/2)“k3 - 2‘*3_“k3cx3

Thus the summation term in (2) for «=1is

T .~ 2Ktk —-2kp*K -k -X

where 8= |<3.2'<1"<3‘2ck]_] 2'<2“<3“ck2_] 27N+ 2K3*1 1 = K +k,, and the

summation is over all non-negative X = (X1,%,,X3) such that x;+x,*x3=ks.

Let P(x) = (1-x)"1. Then since P(x) = Z-Zo_rcjxj, (with 7I'cC

j . as in 1.18)

)
xd/der(x) = ij 0J 'rCJ-xj so that the sum in (3) is just
[xk3] (xd/dxp(x)2k1'k3'1)P(x)2k2-k3p(></2)k3_

But (97 4,P(x)2K17K™1) = (2K NP (x) 2K17Ks,
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Hence (3) is just By(2kik3-DIxK3TIP()2N"2Ksp(X/ K3 (4)

For «=2 the term is again given symmetrically, with appropriate 8.

For <=3, the term inside the summation sign of (2) is

-2ky+k -2k, +k -k -X
B3zx 1 3C><1 2 3C><1 3C><3 2743 (5)
where

33 = k322_(2n—2k3) 2k1_k3_]ck]_] 2k2_k3_]ck2_] and X1+X2+X3:k3‘1-

Hence (S) is just 63[><k3']]P(x)2”"2k3P(x/2)k3. (6)

Combining (1) to (6), (with ki=a, k,=b, k3=m) gives
fr(ab) = albl(2n-3)"(abm)~1(B1(2a-m-1)+B,(2b-m-1)+B3)F (n,m), with

F(n,m) as in lemma 1.20.

But By(2a-m-1)+ B,(2b-m-1)+B5 = (2N=3M)B3/

Hence f(ab) = F(nm)(2n-3)"1(2n-3m) 27 (2n-2m)

(2a-m—l)!(2D‘m“)‘/(a_m)|(b-m)l

and the result follows immediately from lemma 1.20, and theorem 1.14

(4). §

In view of the combinatorial nature of the factors in fm(a,b), and the

difficulties of extending the above approach to r-colourings, Carter et

al. ask for a structural derivation of fm(a,b). Such a decomposition is

now given for the special case: a=b=m.
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1.272 Lemma

Let H(nk) = Z{X:(X1 xn)zj:zixi:k}n Ri

""" 1<i<n

Then H(nk) = ~2Nc,_ ("N, as in 1.18).

Proof: For n>2, H(n,k) = ZjZOJ.H(n-l,k—j).

Thus if we let H(nx) = ¥ 5 gH(NK)xK we have for n22,
H(n,%) = H(n=1,%)(x+ 2%2+3x3+...) = H(N=1,8).%/ (1 _y 2.

Hence H(n,x) = (x/(]_x)z)(n_])H(l,x), and since

H(1,x) = x+2x2+3x3+... = x/(1—2><)2* we have H(n,x) = xN(1-x)~ 2N,

Thus H(nK) = [xKIH(nx) = [xK™N(1-%) 72N = _Zan_n as required. §

1.23 Lemma

(1): For TeBPT(2m), a colouring of the endpoints of T requires m edge
changes, if and only if there are m disjoint paths in T, each with

differently coloured endpoints.

(2): For such a colouring, the set of disjoint paths is unique.

Proof:
Part (1) follows immediately from Menger’s theorem (see Harary

(1969])).

For part (2) suppose there exist two path sets 1,1, with TT;=T,. For

i=1,2, T defines a permutation f; on S, defined by fi(x) =y, if x and |

are joined by a path in TT;. Note that f{(f;(x)) = x for all xeS.




Since =T, we have f,(f;(x)) = ¥ for some xeS. However regarding the
composition f,.fy as an element of the group of permutations on S, we
have (f,.1)N) = & for some integer N>1. Since f,.1;(x)=%, we can

represent T as in fig.1.2 where 174€TT; is the path joining ® and f,(x) and

TT2€TT, is the path joining fy(x) and f,.14(x), (with T,.14(x) a label of T,),
and the shaded edges indicate that Ty,....T,._; and T, ,y,..,Tg may or may

not exist, depending on the position along 11y of T,..

Now vertex v, shown in fig.1.2, lies on a path from both Ty and TT,, so

that no further paths from these sets can pass through v (thus (fz.f,)k(x)

is "trapped” in Tr for k>1). However this contradicts the equality

(.1 N(X) = % for some N>1, thereby refuting our initial assumption that

Mz, §

X f1(><)

Representation of T

Figure 1.2

.24 Lemma

k=231 7 )= K D17 2K = 1k 2)1-p)~ (2K 1)/2
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Proof:
This is just a special case of lemma 2 in Carter et al. [1988] with p=0,

i=k-2, j=2k. §

.25 Theorem

Proof 1:

Let F(m) be the set of trees in BPT(2m) requiring m edge changes to fit a

colouring, so that f,(mm) = |F(m)|. Inview of lemma 1.23, F(m) can

be constructed as follows: First joineach vertex from {1,...,.2m}
coloured A to a vertex coloured B--there are m! ways of doing this. Let
E be the set of edges so created. Replace each eekE with a new vertex
v(e) and join these vertices to each other and to k>0 new labelled
internal vertices of degree 3 so as to form a (not necessarily binary)

tree T’ whose endpoints form a subset of {v(e):e€E}.
Next, letting d(e) be the degree of v(e), construct Wed(e)! trees in F(m)

from T' by replacing each v(e) by the d(e)! possible ways of attaching
along e the edges that were incident with v(e). Finally unlabel the k new
internal vertices created above and take the union over all values of k.
An example of this process (with k=2) is illustrated in fig. 1.3.

The reason for this somewhat circuitous construction is that it allows

us to use theorem 1.5 which gives the number of trees having m vertices

of degree dj,...d,, and k vertices of degree 3 as (m+k_2)!/ﬁ(di—1)!2k.

where k+5:d;=2m-2 (the number of internal vertices of any TeBPT(2m)).

25




Thus [ F(m) | = miZ K2 5 % Zgzj . = 2mk-2)TT9

mlzk(m+k_2)!/2kk! x ~2Mc 5 by lemma 1.22.

+=2 1 =2Me.
ml(m-2)! Z{IJ i+j:m—2}m I Cm_22 CJ

mi(m-2)! [xm"z]m—x/z)-(m-l)(]_x)—Zm

and the result follows by lemma 1.24. §

v(ey) v(e,) v(ey) v(e,)

v(es) v(es) vies) v(es)

Figure 1.3

26




27

Proof 2:

We now give a more direct proof (though one which is likely to be of
less use for extension to r-colourings whenr>2) of theorem 1.25.
For a partition P of {1,...2m} into m sets of size two, let G(P), denote
those trees in BPT(2m) which have a set of m disjoint paths whose
endpoints comprise the sets of P. Then G(P)NG(P")=9¢ if P=P' by the

argument used to establish lemma 1.23 (2), while

UPG(P) = BPT(2m), by a straightforward inductive argument.

Now |G(P)| is clearly (by symmetry) dependent only on m. Thus, since

there are (ZK)!/ka partitions of X into k sets of size two (Anderson

(1974, p.22), we have

|G(P)| =B2m)y oy (since b(k+2) = (2, k),

23 = ' '
By lemma 1.23, f,(mm) = ¥pep | G(P) | where and Pq is the collection
of all partitions P of {1,..,2m} of type (1,xy), (2,%2),...., (m,xm) where

{818} = {M+1,.,2m). Clearly |Pg| =m!so that f,(m,m) =

1.26 Summary

The proofs of the major results in this section (theorems 1.13 and 1.21)
demonstrate the usefulness of using generating functions to solve
enumerative tree problems. Furthermore theorems 1.5 and 1.25
illustrate that in proving results about our primary object of
interest--binary phylogenetic trees--it is sometimes necessary to work
with more general classes of trees, a theme that reappears in later
sections. Clearly there is further work to be done in enumerating binary
trees by the weight of r-colourings, for r>2. While the appropriate set of
(2'-1) simultaneous quadratic equations can be written down for the
generating functions, (as in theorem 1.21 for r=2) it is not clear how
they could be solved, or indeed whether there is a convenient expression
for their solution. Itis possible that structural approaches, such as
those used in the proof of theorem 1.25 may be more useful.
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§2: DISTRIBUTION OF THE
SYMMETRIC DIFFERENCE METRIC

"It seems feasible and would be desirable, to estimate by Monte Carlo
simulation the means and variances of [the symmetric difference metric]
for large values of n," W.H.E. Day, 1983.

2.1 Introduction

The symmetric difference metric defined on phylogenetic trees is a
special case of symmetric difference metrics on sets studied by Restle
[1959], and Marczewski and Steinhaus [1958]. The tree metric has been
useful in testing evolutionary hypotheses and in examining the methods
used to build evolutionary trees as discussed by Penny and Hendy [1985].
An optimally efficient algorithm has been developed by Day [1985] to
compute the metric, and its distribution amongst pairs of small trees is
described by Day [1983] and Hendy, Little and Penny [1984].

This section extends results from these last two publications to obtain
bounds on the distribution of pairs of arbitrarily-large binary trees a
given distance apart. As a result, the asymptotic distribution is shown
to be Poisson, with e~ 88% of all pairs of binary trees maximally
distant, which answers a conjecture by Hendy, Little and Penny [1984].
Asymptotic bounds on the distribution and a monotonicity result are
derived, and the distribution is described "from below". The distribution
of the metric on the full class of phylogenetic trees is also examined.
In particular, the asymptotic mean and variance of this metric is
derived, and this confirms a second conjecture by Hendy, Little and Penny
[1984].

This section expands on and extends results by Steel [1988]. Some
results from that paper have been substantially improved with more
elegant proofs and several new theorems.

Properties of the symmetric difference metric on binary trees make it

useful for hypothesis testing involving trees derived from homologous

DNA sequences, as in Penny, Foulds and Hendy [1982]. The resulting trees
may be expected to be similar and it is useful to have a metric for which
most trees are far apart. This section concludes with a brief discussion

of other metrics.
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Distribution Generating Functions
2.2 Definitions

The symmetric difference metric d, which Bourque [1978] and Robinson
and Foulds [1981] applied to phylogenetic trees, is defined on PT(n), and
so on BPT(Nn), as follows. For TePT(n), deletion of an internal edge of T,
e€lE(T) induces a two-set partition 11(T,e) of {I,..,n} corresponding to
the labels on the two connected components of T with e deleted. For
T1ePT(N,Ty), T2ePT(Ny,f5) and ﬂ(T,,eJ = 11(T,,e,) We call eg,e, an
equivalent pair of edges . If T, T, have exactiym equivalent pairs of
edges then d(T,, T,) = f+f,=2m. In particular for T,,T,eBPT(n),

d(T,T,) =2(n-3-m).

For TePT(n) we recall from Hendy, Little and Penny [1984] the generating
functions: P(T,%) = Zkzopk(T)xk

Q(T,x) = ZKZOqK(T)xk
where Dk(T) (resp. qk(T)) is the number of trees in PT(n) (resp. BPT(N)) at

distance k from T. Thus for TePT(n,f), Q(T,x) has degree n+f-3 and is an
even or odd polynomial of parity equal to the numerical parity of its

degree.

For TePT(n), s>0 let q(s,T) denote the number of binary trees having s

equivalent edge pairs with T, and let q(s,n) be the average value of
b(n)~'q(s,T) over BPT(n). Thus q(s,n) = D(n)_zzTeBPT(n)Q(S’T) is the
probability that two trees randomly-chosen from BPT(n) have exactly s

equivalent pairs of edges. We show that q(s) = lim n->00d(8,N) has a

Poisson distribution in s with mean ]/8'




We begin by noting that for TePT(n), P(T,x) and Q(T,x) do not depend on
the labelling of T, only on its topology. We shall frequently write these
and other tree-valued functions which are invariant under topological
equivalence without specifying the labelling of the tree. With this in

mind we now state from Hendy, Little and Penny [1984]:
2.3 Theorem

Let e be an internal edge of TePT(n). Let T/ebe the tree formed by
contracting e, and let T, T, be the maximal subtrees of T withe as a
pendant edge. Then:  P(T,x) = xP(T/e,x) + (1-x2)P(T,x)P(T ,%)

Q(T,%) = xQ(T/ex) + (1-x2)Q(T,%)Q(T,,%). §

We now give a constructive description of Q(T,x). Let TePT(n,f) and let E
be a set of internal edges of T. For each edge e€E cut e in half and place

new pendant vertices oneach of the two "ends” of e. In this way E
defines a collection of trees, Ti, having n; pendant vertices, for
=1, | B[ +1 (with T\=T, i1 E=¢). Clearly, 2j<i< ||+ N =N+ 2 |E].

Let #(E) be the sequence (nl""’nlElﬂ)' taken in some order, and let

<®(E)> =TT D(ni). Define r(s,T) to be the sum of <&(E)> over

I<i<|E|+1
all sets of internal edges, E, with |E| =s. Finally, let

R(T) = R(TX) = s g (s, Tx®

q(T) = q(T %) = Pg5 (s, T)x®

(so that q(T.x) = x(N3+1)/2q(T x71/2)),
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2.4 Lemma

For TePT(n), TLePT(n,0),

(a): q(T,%) = R(T,x-1)
(b): In the notation of theorem 2.3

(i) R(T) = R(T/e) + sR(TR(T,)

(ii) q(T) = q(T/e) + (x=1) a(Ta(T,)
(c): R(T,0) = R(T.%) = b(n).

Proof:
(a): Let TeBPT(n) and let E be a set of s internal edges of T.
Under the above construction, for each edge e€k, new pendant vertices

V,Vo are attached to the ends of a bisection of e.
For i=1,2, label Vi with the set of labels of those pendant vertices of T
which are no longer joined by a path to Vi when e is cut. Each tree, Ti,

(i=1,..,s+1) defined by E, thus has a natural label set L(i) for its pendant

vertices, so that T;eBPT(L(i)). This process is illustrated for s=2 in fig.

2.1 by the tree Jg with two distinguished edges.
Now, let B(TE) be the set of trees in BPT(n) having internal edges

equivalent to edges in E. We construct a bijection, F, from B(TE) to
TBPT(L(1)). Given T'eB(TE), performing the above edge splitting and
labelling procedure on T’ produces the label sets L(1),..,L(s+1) and hence

an element of F(T’) eWiBPT(Li). The inverse of F, takes

(Ty.ns Ts+l) € TTiBPT(L(i)) and identifies all pairs of pendant vertices

ViV, labelled with sets A,A, such that AjUA,=L, the identified vertices

then being suppressed to give a tree in B(T,E).
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{3,4,5,6}

/ (1,2}

{4,5,6)

{1,2,3}

(a) (b)

Figure 2.1

Now if [L(D)| = N then| BPT(L;) |= b(ny), so the bijection gives
|B(T,E)| = <&(E)>. By the principle of inclusion and exclusion, r(T,x-1)
is then the (ordinary) generating function for the number of binary trees

equivalent to T on an exact number of internal edges, establishing (a).

Part (b)(i) can be proved directly, or from theorem 2.3 by noting
Q(T,%) = xn_3+fR(T,x"2-1). Part (b)(ii) follows from (a), while part (c)

follows from the definition of R(T,x). §
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2.0 Example

For the caterpillar tree JgeBPT(6);

R(Jg.%) = b(6) + (2b(3)b(S)+b(4)?)x + 3b(3)2b(4)x2 +b(3)2x3
= 105 + 39% + 9x2 + 83,

q(Je.%) = R(T,x=1) = 74 + 24% + 6x2 + 3

Q(Jg,8) = 1+ 682 + 244 + 74%6_ §

The following result is easily proved by induction on N for each k using

b(npb(ny) < b(n=1b(ny+1) for 3=Mi=n,.
2.6 Llemma

For positive integers t>3, Nk;

>t} = b(t)K Ib(N=-(k-D1).

maX{ﬂISiSkD(xi) I I

2.7 Theorem

For TePT(n,f), n>3, s>0,
(1): q(s,T)=0, for s>T,
(2): q(f,T) = ﬁib(ai), where (9,..., 8f+]) is the degree sequence of the

internal vertices of T, and

(3): q(s,T) sfcsb(n—s).

Proof:

we have a(s.T) < 815008 e als+iT) = r(sT).
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Thus q(s,T)<r(s,T) = 0 for s>f, giving (1), while for (2) we have from
lemma 2.4(a), q(f,T) = S, De r(1+,T) = r(1,T) = T b(3)). For (3)
we may assume from (1) that s<f<n-3, so that for a set, E, of s internal
edges of T, if $(E) = (Ny,...Ng+¢), then 3ini = n+2s > 3(s+1) > min{n;}.s.
Applying lemma 2.6 with t=3, N=n+2s, k=s+1, gives:

<$(E)> < b(3)°b(n-s) = b(n-s).

Since there are rCS possible choices for E, r(s,T) < rCS.D(n—s), which

together with q(s,T) < r(s,T)gives the result. §

Distribution on pairs of trees

We now consider the distribution of d on pairs of trees.
2.8 Lemma

For eze,ele(T), if 1(T,e) = (VW) and 11(T,ep) = (VW) with |V |=] V'],
then VN\V'=9,

Proof:

We canrepresent T as in fig. 2.2 (refer to following page) where r>1,

T e Tr’ TO<,T‘B,are pendant subtrees of T, each with at least one pendant

vertex, and without loss of geﬁeralitg V= \/er(TCX), the set of vertices

of T..

Now V' = \/er(TB) or V' = \/er(TO<) UlsiSrver(Ti)' and since
UicicpVer(T) | zrzt, and |V |=]V’|, we have V' = Ver(Tg), so that

VAV'=d. §
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Figure 2.2

We now present the analogue of lemma 2.4 for pairs of trees.

2.9 Definition

For ks“/z, Q = {Sy,...5,} with Sieln], for i=1,..r, let B(Q) denote the

set of pairs of trees T,,T,¢BPT(n) having among their pairs of equivalent
edges a set of size r for which Q is the collection of the sets of labels

on the smaller of the induced maximal subtrees.

For kﬁn/z, let 8(nk,r) denote the sum of[B(Q)[over all sets Qelln], ...

2.10 Theorem

(D: Blnk,r) = (02(k+1/y, ) D2N=R=DNY ()i

In particular,

(2): BINK+2.1)/p2(1) = o(n~K)

(3): Himp 5 00 B(N2,1) = D2(n-r)n!/(n_2r)!r!2r_
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Proof: (1): Suppose that B(Q)=é. By lemma 2.8, we have Siﬂsj:¢> for izj.

For ie{l,...r}, let L(i) = S;U{{1,..,n}=S;} and L(0)=(S;,...S,}V(1...,n}-U;S;. Then

there is a bijection from TT BPT(L(i))xBPT(L(i)) to B(Q) defined as

o<i<r

follows. For ((Tg,Ty...., T), (To" T\, Tr‘)) e 11 BPT(L®))xBPT(L(i)), and

0<i<r
for i=l,..,r, identify the pendant vertex of T; and Tq labelled with sets which
form a two-set partition of {1,...,n}, and suppress the identified vertex to

obtain a tree TBPT(n). Repeating this procedure for Ty and Tq' gives a

second tree T,eBPT(n). By construction (T,T,)eB(Q) and the process is

clearly invertible as required. Now since |L(i)|=k+1and |L(0)|= r+n-kr,

(since SinSJ-:@ for izj) we have:

|B(Q) | = blk+1)2 b(n-(k-1r)2, if $iNS;=¢ for i=] (B(Q)=% otherwise). Now
there are (kr)!/(k!)rr! ways to partition kr elements into r sets, each of size
k, (Anderson [1974, theorem 3.1, p.22]) and anr ways to choose kr elements

from a set of size n, giving m/(k!)rr!(n—kr)! choices for Q in which B(Q)=0.

The result follows, and gives (2) and (3) immediately. §

2.11 Theorem

Q(S) = ”mn—->ooq(svn) = Q—]/B/SSS!

Proof:
The proportion of pairs of trees which have at least one pair of
equivalent edges partitioning {1,..,n} into two sets, both of which have

at least four elements is bounded above (by Bonferroni’s inequality,

refer Bender [p.491, 1974]) by Zk23,8(n,k,l) =o(nh.
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Thus, asymptotically, we need only consider the contribution to q(s) by
pairs of equivalent edges which partition the two trees into sets of size

{2,n-2).

If No(x) = Zr,B(n,Z,r)xr, by the principle of inclusion and exclusion the

expected proportion of pairs of binary trees which have exactly r

equivalent edges of this type is asymptotically b(n)™21x" IN(x-1).

- 2(n- .

Now b~ 2(n)g(n,2,r) = P“(N r)m/zr(n—Zr)!r!DQ(n) which converges to
]/Srrl uniformly for 0<r<yn, so that by corollary 4.2 (page 491) of
Bender [1974], (taking A(n) :]/8, f(n) =t and I(n) = Y n) we have

b(n) ™ 2[x" INp(x-1) converges to 9'1/8/8rr!. §

2.12 _Corollary

If v(n) is the expected distance between two trees in BPT(n), and o2(n)
the variance, then

(a): (2n-6)-v(n) ~ 0.25.

(b): o2(n) ~ 0.5.

Proof:

(a): v(n) = 2 4q(s,n)(2n-6-28),
thus (2n-6)-v(n) = (2n-6)(1-2.49(s,n)) + 22 454(s,n)
= 22.¢84(s,n)  since 2.44(s,n) =1,

and 1im_s 00 2.559(8,n)= 2 5q(s) = ]/8, by theorem 2.11.

(b): o2(n)= 2 5a(s,n)((2n-6-25)-v(n))?

= ((2n-6)-v(n))? 2.5q(s.n) = 4(2n-6-0(n))2 sa(s.n) + 43 52q(s,n).
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Letting n->c0, using (a) and noting that > ¢s2q(s)=0.125 + (0.125)? (by

theorem 2.11) gives the result. §

2.13 Remark

Corollary 2.12 (a) confirms the observation in Hendy, Little and Penny

19841 that O/, _cy~1. More generally, for TeBPT(n), let v(T) be the

average distance from T to all other trees in BPT(n). Clearly v(T)
depends only on the topological class of T. We now establish further
properties of v(T).

Abselute (nen-asymptotic) inegualities

2.14 Theorem

i (T _1 ~
() mingeapT(m)” "/ (2n-6) 2 1= (2n-5) ~ !
(2): For all integers k=1, there exists a positive integer n and a set

Scbpt(n) of size k, on which v(T) is constant.

Proof:
(1): By theorem 2.3, differentiating Q(T,x) and setting %=1, gives

o(T) = u(T/e) + 1 - 20(BMN2)/ s where TieBPT(n)), To€BPT(n,).
By induction, o(T) = v(T,) + (n-3) - 2r(1,T)/D(n), for T,ePT(n,0).

Now Q(T %) = b(n)sxN~3 so that u(Tp) = n-3.

Thus 2(T) - 2

/(2n-6) 7| "o myan-6)
As in theorem 2.7, r(1,T)<(n-3)b(n-1) giving U(T)/(2n_6) > - ]/(2n—5)’

as required.




(2): For neven, and TeBPT(n), write

r(1,T) = Z]-22,2i5naT(i)b(i+l)D(m+1—i), where a1(i) is the number of
internal edges of T partitioning its pendant vertices into sets of size |
and n-i.

In particular, r(1,T) is determined by {a1(i): Zsisn/Z}. Clearly iat(i)=<n,
so that aT(i)sn/i, and thus if R(n) is the number of possible values r(1,T)
can take as T ranges over BPT(n),

RN < T icpn/oa1(D) = (V)(V3)..(N/(n)5)) = (V)7 Lan/ 27!
Applying Stirling’s approximation gives an asymptotic upper bound on
R(n) of (‘/(29))“/«/(27“13)- By corollary 1.8, |bpt(n)| is asymptotically
proportional to n™9/ 26N where 6 >/ (2e), so that R(ﬂ)/k(n)mo, which

gives result (2), since r(1,T) determines v(T), as in part (1). §

2.15 Remark

For k=2, the non-uniqueness of part (2) of this theorem is realized for
n =11, by the two trees given in fig. 2.3 (refer to following page). For
each tree we have

r(1,T) = 4b(3)b(10)+b(4)b(9)+2b(5)b(8)+b(6)b(7), giving v(T) = |5.432
Although v(T) does not characterize the topology of T, it is not known

whether Q(T,x) (equivalently R(T,x) by lemma 2.4) does. §
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2/
b :

7N

5 6 11

Two trees in BPT(11) having the same average
distance (/5.482, approx.) to all
other trees in BPT(11).

Figure 2.3

We now establish some interesting properties of q(0,T) and g(1,T) which

are required later in this section.

2.16 _Theorem

Forany T e PT(n),
(1):q(0,T) < q(0,T/e).
(2): q(0,T) = 2q(1,T).
(3): q(1,T)= q(1,T/e).

Proof:

(1) follows immediately from lemma 2.4 (b)(ii).

For (2), suppose TCXEBPT(n) and T have exactly one pair of equivalent

edges (eyey). Represent T as T _(e)) = (T4Tp)(T3T4), as in fig. 2.4(a).




41

[+ 4 ¢4
T
(a) (b)

~ ~J
2 B,VC, B,’UA,’ $ C,
By'VAY B,’UA,’
Ay A, 2 VA2
A Ny o A
€4 ! — €z
() (o) A A
Y Tl T v o
Bug, X B,UC, G Tglea) Co
(c)
Figure 2.4

Let T *(e) = (TyT3)(T,T4) and T_**(ey) = (T4T4)(T,T3), which are two

trees maximally distant from T. To prove (2) we need to establish that

these pairs are distinct for different choices of T




That is, we must check that the pair T _*(ey), T _**(e;) do not arise from

a different tree T‘BZTO< having exactly one equivalent pair of edges

(ep,er') With T,

Case one: if ey'=e,’ then T and TB have equivalent edge pair (ej,e;) so

that it {T, *(en), T *(e)} n {Tg*(ea), Tg>**(e2)}=¢ then T =Tg.

Case two: if e'jzep’ and (T *(ep), T, **(ep) N {Tﬁ*(ez), Tﬁ**(ez)}zé, we

may suppose, without loss of generality, that TO<*(Q1) = TB*(QZ).

Represent T as in fig. 2.4(b), where A,B,C are the pendant labels on the

subtrees induced by ey, e,’. Represent T, as To<(e1), TB as Tﬁ(ez) and

T, *(ey) and TB*(QZ) as in fig. 2.4(c), where AjUA, = AJ'UA,' = A,

B,UB, = B{'UB,'= B and C4UC,=C;'UC,’'=C. By construction we have
A,A,,Cy,Co'zd. Suppose T(X*(e1)=TB*(e2). Then since Az9, and since
T,'. T4 do not contain elements of A we have T=Ty' (so that T,=T,') or
Ti=T3' (so that T,=Ty4'"). Similarly, T3 = T3 or T3 =Ty

Thus there are two cases:

(@) T{=T, for i=l,..4.

(D) T=T3", To=Ta’, T3=Ty, Ta=Ty

In both cases it is easily checked from fig. 2.4(c) that B4=B,=9, so that

B=%, a contradiction.

Thus if {T_*(ey), T **(ep} n {TB*(QQ), Tﬁ**(eg)}zé we have ej;=e, and

To~ Tﬁ as required.
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For (3) we have from lemma 2.1(b)(ii),
q(1,T) = q(1,7/e) + q(0,Ty) q(0,T2)-q(1,T1)q(0,T2)-q(0,T1)q(1,T2). Applying
part (2) we have

q(1,T) = q(1,T7/e) - q(0,Ty) Q(O,Tz)(l-]/z—]/z) > q(1,T/e), as required. §

Asymptotic range of the distribution

Having found the asymptotic average value over BPT(n) of b(n)’1q(s,T),

we now calculate its asymptotic range.

2.17 Definition

For TePT(n), a binary vertex is an internal vertex which is adjacent to
exactly two pendant edges. Let a(T) denote the number of binary vertices
of T and let T/, be the tree obtained by collapsing all internal edges of T
not incident with a binary vertex. Finally let BS(n,a) € pt(n,a) be the tree
obtained by attaching pairs of pendant vertices to a pendant vertices of a

star tree in pt(n-a,0). Thus T/, is topologically equivalent to BS(n,a(T)).

2.18 Theorem

(1: q(s,B5(n,@) = 3 S5 (DL (@78)c, b(n-s-i).
(2): Let np(a) = | {TeBPT(n): a(T)=a}|, and let

Y(s,n) = 2 ,4(s,BS(n,a))nn(@). Then Y(s,n) = b(n)~2[xSINy(x-1), with Ny(x)

as in the proof of theorem 2.11.
(3): For TePT(n), s>0, n>4,
(s,T _q(s,BS(n,a ,
q )/D(n) =g ( ))/D(ﬂ) +8(s,T), with

a=a(l), [8(sT) <38/ 5050 0y
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Proof:
(1) follows from lemma 2.4, while (2) follows from the principle of
inclusion and exclusion, and (3) follows from theorem 2.3. More

detailed proofs can be found in Steel [1988]. §

2.19 Remarks

(1): This theorem gives an alternative proof of the asymptotic Poisson
distribution for the symmetric difference metric on BPT(n).

(2): Although we do not require it, there is a closed-form expression for

Mn(@) derived by Hendy and Penny [1982] who show that:
M@ = [N (n-2a)aia-2)122372 | for 2<as(M/,)].

0, otherwise.

The proof relies on a recurrence for mu(a) which can be written
Th(®) = (N=4 + nx=x)T - (%) + 2(><—><2)d/den_](x), where

Th(®) = 22 0Mp(@x%. §

The next theorem completes our aim of describing the asymptotic range

of D(n)']q(s,T) over BPT(n).

2.20 Theorem

SUPmsn. TeaPT(myD(M'a(s, T} ~ I 5=0
{ e 1/4 /4351, >0
N>, TeBPT(m) (DM ™ 'a(s,T) ~ e /4 s=0
{ 0 s>0
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Proof:

Consider a sequence T(n)eBPT(n). Since a(T(n))/n is bounded, it has a
convergent subsequence a(T(nk))/m< whose limit we denote as ¥.

Let a(k) = a(T(ny)).

By theorem 2.18 (1) we have:

Q(S,Bs(nk,a(k)))/b(nk) =

(S!)_IZ (- a(a-1)..(a-s-i+1)

>0

il (2n-5)..(2n-2i-25-3)

where a = a(k) and n = ng. Writing the second quotient term in this sum
as

(a/n)((a-1)/n)._.((a~(s+i—l))/n) 5=5-1

(1-54p)..(1-(21+25+3) /., )
we see that for fixed s and i, the i-th term in this sum tends to

(5!1'!)_]("]/2)ib’S+i as k->00, and so q(s,BS(nk,a(k)))/D(nk) ~ 5507872/

as k->c0, By theorem 2.18 (3) we have

.7 /b(n, ) ~ a(s,85(n.alk)) /b (), as k->co.

Thus limk_>wQ(5'T(”k))/b(nk) = 559—5/2/5!.

Now for any tree TeBPT(n), we have 0< a(T) 5”/2, so that 0555]/2.
Furthermore for the caterpillar trees J, which have a(T) = 2, we realize
this lower bound of 0, while the upper bound of ]/2 is realized by the
family of binary trees, K,,ebpt(2n), obtained by attaching pairs of
pendant edges to every pendant vertex of a caterpillar tree TeJn. Then

we have a(K2n)/20 :]/2, and the result follows. §




Monotoniscity

This subsection and the next further extends results in Steel [1988].

We first show that q(0,n) is monotone increasing in n.

For s20 let G(s,n) = {(T,T"): T,T'eBPT(n), d(T,T’) = 2n-6-25},

so that q(s,n) =] G(s,n) [ /()2

Given (T,T’) e BPT(n)xBPT(n) there are (2n-3)2 ways of attaching a new
pendant vertex v (labelled n+1) to the edges of T and T’ by a new

pendant edge. In this way (T,T’) defines a subset

$(T,T") € BPT(n+1)xBPT(n+1) of size (2n-3)2.

2.21 Lemma

For (T.T) e G(s,n), | $(T.TING(j,n+1)| = (n+s, for j=s+I,
0, for j>s+l.

Proof: The only way to increase the number of equivalent edges

between T and T’ is to bisect an existing one (by adjoining v, to one

of the s equivalent edge pairs) or create a new one (by adjoining Vh+to

pendant edges corresponding to pendant vertices with the same label).

In both cases one new equivalent edge pair is produced, and the result

follows. §

2.22 Theorem

q(0,n) is monotone increasing in n.
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Proof:

We first show that if (T,7")eG(1,n), then |95(T,T’)HG(O,n+1) | > 8(n-3).

For (T,T")eG(1,n) , let (e,e’) be the equivalent pair of edges and let Ty, T,
(resp. T{,T,") be the two maximal subtrees of T (resp. T') with e (resp.e’)

as pendant edge, and with the labels on T, and T} corresponding for
i=1,2. Since T, and T, are binary they have the same number of edges
(not including e), n;. Now the equivalent edge pair (e,e’) is destroyed
and no others produced precisely if v, is adjoined to Ty—e and T,'-e’ or

to Tpo-e and T4'-e’, which occurs in 2mn, cases. Now n; + n,=2n-4 and

NiNy>2, so that 2nin,>8(N-3) as required.

Combined with lemma 2.21 (with s=0), this gives
G(0,n+1) 2 ((2n-3)2-n)G(0,n) *+ 8(n-3)G(1,n); thus

q(o,n+1) = q(o,n) + [8(n-3)q(l,n)—nq(0,n)]/(2n_3)2,

Finally we show that the term in square brackets is positive, completing
the proof. By theorem 2.5 (1), q(0,T) < q(0,85(n,a)), and so

q(0,n) < ¥(0,n), where ¥(s,n) is given by theorem 2.18. By theorem 2.16
(3), q(1,T) = q(1,BS(n,a)) and hence q(i,n) > ¥(1,n).

Comparison of the first few terms of ¥(0,n) and ¥(1,n), shows that

\P(l,n)/q,(o,n) > n/8(0_3) for n>16 and since q(0,n) is monotone

increasing for n<16, by table 4 of Hendy, Little and Penny [1984], the

theorem follows. §

2.23 Conjecture

For each s>0, q(s,n) is monotone decreasing in n.
(This conjecture holds for n<17, by table 4 of Hendy, Little and Penny
[1984])).




Desecription of the metric from below
In this section we consider the-distribution of binary trees a fixed

distance away from a given binary tree. Formally we consider the
coefficients g (T) of Q(T,x) (see definition 2.2), which are related to
the coefficeints q(s,T) of q(T,x) by q2k(T) = q(n-3-k,T).

[t is easily shown that qQ(T) = 2n-6. We now derive an exact expression

for q4(T) and its average value q4(n) over BPT(N).
2.24 lemma

For TeBPT(n), n24, let «(T) be the number of pairs of adjacent internal
edges of T. Then «x(T) = n-a(T)-6, where a(T) is the number of binary
veckices of T (definition 2.17).

Proof:
For ie {0,1,2} let Ni denote the number of internal vertices of T which

are adjacent to exactly i pendant vertices. Then Ny+N,+Ng is the number
of internal vertices (n-2), Ny*2N, is the number of pendant vertices (n)
and N,=a(T). Now the number of pairs of adjacent internal edges is just

Ni+3Ny. The result follows immediately. §

2.25 Lemma [Steel, 1988]

For mn(a) defined as in theorem 2.18 (2), T,(x) = Zann(a)xa,

and th(s) = d%/ 4, s(TH()) | 4=}, We have t(s) = 27° b(n=s) NI/ (_pg),
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2.26 Theorem

q4(T) = 4N73C,, + 6(n-6+a(T))

qa(n) = 4N73C, + 6(n-6) + 3NN/ o

Proof:

a4(T) = r(n-5,7) - ("D __cr(n-4,1) + M3)c__cr(n-3,7), by lemma 2.4
and the identity q4(T) = q(n-5,T).

Now r(n-5,T) = x(T)b(S5)+8(T)b(4)2 where «x(T) is the number of adjacent
pairs of internal edges, and 8(T) = (n_B)Cg-cx(T) is the number of
nonadjacent pairs. Since r(n-4,T) = (n-3)b(4), and r(n-3,T) = 1, the
expression for q4(T) follows by lemma 2.24. The expression for qq4(n)

follows from lemma 2.25 with s=1. §

Notice that as n->eo, q(T) ~ 21.073¢, and qu(T) ~ 22N73¢,. The next

result establishes this pattern for q, (T).

2.27 Theorem

For any sequence T(n) ¢ BPT(N), as n->c,

o (T(N) ~ 2XN73¢, ~ (2n)k/,,

Proof:
By definition, q2k(T) = q(n-3-k,T), so that by lemma 2.4(a),

401 (T) = 20 <i<k ('])i-(n_3—k+i)C(n_3_k)r(ﬂ-3—k+i,T).

We first show that r(n-3-j,T(n)) ~ (n_3)CJ-31 as N->oo,

49



50

For TeBPT(n), let A(i(1),i(2),..; T) be the family of all sets E of n-3-j
internal edges of T for which &(E) has i(r) copies of r+3 forr =12,....

Thus
r(n-3-1T) = ;| AGT) | WJZ4D(J‘)'(J) ,
and |AG,T)| = 0 unless i(1)+2i(2)+3i(3)+... = j, since the n-3 internal

edges of T are partitioned by each element E ¢ A(i;T) into two sets: (a)
the n-3-j internal edges in A, and (b) the union (over r) of the sets of r

internal edges of the i(r) subtrees of T of size r+3, induced by A.

For subtrees of size four induced by a set E € A(j,0..0;T), selecting the
middle edge of these subtrees gives a bijection between A(j,0..0; T)
and the seft of ways of choosing j internal edges of T with no two
edges adjacent (this is generally called the number of j-matchings of T).

By Bonferroni's inequality (Bender [p.491, 1974]) we have that

| A(j,0..0; T) | lies between (n_3)CJ- and (n_3)CJ- - o<(T).(n—5)Cj_2. By
lemma 2.24, «(T) = O(n) so that | A(j,0...0,T(N))| ~ (”_3)CJ-, as N—>o0,
Now | AT | < T 4,0 3cyy (N9)-212)731E))e o
Furthermore, (n_B)Ci(r) < (-3 ang

(N3)-20(2)3i) ¢ 5 < (1-3))"202313)-..

Thus |AGT)|< (n-3))" I(t) 5o that it i(1)=0 for some t>1, then
limn_m|A(i'T(”))\/(”‘3)cj = 0. Thus r(n=3-5T(n) ~ (""3)c 3) as
n->o0, since for fixed j the above summation is finite (clearly i(r) = O
for r>j). Thus qo (T(N) ~ 2 5<ick (_])i_(n—3—k+i)c(n_3_k) (n—3)Ck_i3k_i,
as n—>o0, (since the range of this sum is again independent of n),

and this sum is (n_3)Ck3k.ZO§i§k kCi (_]/3)i = (n_3)Ck2k , as required. §




Distribution on PT(n)

We now consider the distribution of the symmetric difference metric on
PT(n). The normalized distance between two trees T, T' € PT(n) is d(T,T")
divided by the maximum possible distance, 2n-6. Theorem 2.28 (below)
shows that, asymptotically, the normalized distance becomes
increasingly peaked about its mean p(n), which is shown to be less than

I, confirming a conjecture by Hendy, Little and Penny [1984].
2.28 Theorem

Let pu(n) and o2(n) denote respectively the mean and variance of the

normalized distance between two trees in PT(n).
(1): p(n) ~ (“'“(2))/p ~ 7943

(2): 52(n) = o(n™ M.

Proof:
(1): A straightforward argument using lemma 1.11 (a) gives a constant

Cy such that:
if N.NL>3, Ni+Ny=n+2, then D(”I)D(”2)/D(n) <Cy/n (2)
Let TePT(n,f) and let p(T) = p(n)_]d/de(T,x) | «=1 be the expected

distance between T and trees in PT(n).

By theorem 2.3,

Y/ auPT ) gy = P(T /1) + 974 P(T /) | 4oy = 2P(TLDP(T,.1).
Hence, pu(T) =1+ p(T/e)—ZD(”1)D(”2)/D(n), where T1ePT(ny), ToePT(n,).
By contracting T to T,ePT(n,0), (2) gives:

u(T) = f+p(T ) - (T), where O<E(T)<2C1r/n. (3).
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Averaging (T) over PT(n), and dividing by (2n-6) to obtain pu(n), gives
pn) = (M) [PTIND )+ 1T = M (on-g) (D

with 0<e(n)<2C,.

Now the trees at distance f from any T,¢PT(n,0) are precisely those with
f internal edges. Thus

R(T) = o718 0T | PT(N |, and

p(n) = 2u(Ty) - €N/ (on-g):- (5)

Result (a) now follows by lemma 1.11 (a),(b).

(2): The variance o?(n) of the normalized distance is the average value
of (d(T'T')/(2n_6)—p(n))2 over all pairs T,T'ePT(n). Thus letting D = d/dx’
o2(n) = 21epT(M2KK*PR(T p(ny(2n-6)2 = H3(N) =
CrepT(nP?PT 0 4= * ZTepT(MPPT R 4=/ p(n)(2n-6) = H2(N) (6)
From theorem 2.3,
D2P(T %) | 4= = D2P(T/ex) | y=1 + 2 DP(T/ex) | 4=

— 4 DUP(TIP(T2,%)) | = = 2P(T1,DP(T,1)

(7)

Now p(n)™'D((P(T0P(T280) | =g < 2(2n—8)p(n1)p(n2)/p(n), (where
T€PT(ny), ToePT(N,)) since for T'ePT(m,f), C]/de(T',x) | = is clearly

bounded above by (m+f=3)p(m) < (2m-6)p(m).

Let TePT(n,f). Dividing (7) by p(n) gives,
p(n)"1D2P(T %) [ p(n)']DzP(T/e,x)| o=+ 21(T/e) - €(T), with

0<e(T)<e(n) = O(1) by (2).
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Reducing T to T,ePT(n,0), and using (3),
p(n)~1 D2P(T %) | < =

p(N) 1 D2P(T ) | oy + 28 g<rraro (T R(TH)) = €x(T)  (8)

with 0<e,(T)< ¢i(n) = O(n).

Now D2P(T %) | y=1= 2¢T(f=1)| PT(n,f)|, while the second term in (8) is
f(r=1+2ru(T,). Averaging (8) over PT(n) gives,

2p(N) I SAE-D|PT(NA | + 2p2(T) - ex(n), with €5(n) = O(n).
Substituting this into (6), and noting that

JJ(n)/(%_@, and

ZTeF’T(n) d/de(T’x) | X=1 /p(n)(2n—6)2 =
2;12(Tn)/(2n_6)2 - 0.5u(n) = o(n™N (from (5)), we have:
o2(n) = 2 f(-DPT(ND )/ (on-g)2 ~ 0.5p2(n) + e3(n)

with e3(n) = O(n_]). The result now follows from part (a) and lemma

111, §

2.79 Remark

Applying Chebyshev's inequality to theorem 2.28 shows that for any
number k, the probability that two trees in PT(n) have k or %ewer
equivalent edges tends to zero as n becomes large. This is in contrast

to the binary case for which most trees are a maximal distance apart.

Finally, as for BPT(n), we consider briefly the distribution of the d on
PT(n) "from below”. We evaluate only P(T), though P,(T), P3(T)...., could

inprinciple be evaluated by similar though more lengthy arguments.




2.30 Theorem

For TePT(n), Py(T) = O.SZVE]V(T)Za(V) - (n+21+1), where IV(T) is the set

of the internal vertices of T and 3(v) is the degree of v.

Proof:

If d(Ty,T) =1, either T, is obtained from T by collapsing an edge of T (in f

ways) or T is obtained from T, by collapsing an edge, in which case T, is
obtained from T by replacing an internal vertex v of degree 3(v) by a tree

in PT(3(v),1). From theorem 1.6 we have |PT(k,1)| = 2K Tk-1. The

result now follows from the identitites: zveIV(T)a(V) = n+2f, and

[ IV(T)| = f+1. §

Comparison with other metrics:

At least two other metrics have been proposed for comparing
phylogenetic trees. One, oftenreferred to as the nearest neighbourhood
interchange (NNI), or "crossover” metric, d* was defined and studied
independently by Robinson [1971] and by Moore, Goodman and Barnabas
[1973]. Waterman and Smith [1978], (see also Smith and Waterman

[1980]) have attempted to analyse this metric further. For T;,T,eéBPT(n),
d*(Ty,T2) is the minimum length of any chain (T} of binary trees joining

Tyand T, with d(T,Ti4p) = 1for all i. A useful comparison of d and d*
is given by Day [1983] and Penny and Hendy [1985].

Another metric, d’, based on quartets, and described by Estabrook et al.
[1985], has also been applied to phylogenetic analysis. One disadvantage
of these metrics over d is that the diameter of BPT(n) under both d* and
d' is not known in general, (though the diameter of d* is reported to be
O(nlogn), (Day [1983]), and is given, for n < 9, in the same paper; while
the diameter of d’ for n<10 is given by Bandelt and Dress [1986]).




Furthermore there is no recursive or constructive description of the
distribution of d* or d' analogous to theorem 2.3 or lemma 2.4, and in
the case of d*, there is no efficient method known for even calculating
d*(T4,T,). However as pointed out by Bandelt and Dress [1986], d' has a
possible advantage over d of being relatively insensitive to the position
of a single taxon. Also since d' and d* have larger diameters than d, they
may provide a finer measure for comparing trees than d. The precise
relationship between these three metrics is unknown, apart from
d(T,To) < 2d*(T,T,), implied by the triangle inequality for d. One might
ask, for example, whether d(T;,T,) = d(T;,T3) implies a corresponding
inequality for d* or d’.

It is worth noting that by theorem 3 of Robinson and Foulds [1981], d on
PT(n) satisfies the property: for all T, T,ePT(n), there exists a T'ePT(n)
with d(T,T,) = d(T,T") + d(T",T,). By definition d* satisfies the same
property on BPT(n), so that (PT(n), d) and (BPT(n), d*) are isomorphic to
the distance space of graphs (refer Harary [1975, p.24]).

Finally, all of these metrics are defined on unweighted trees, where edge
lengths are irrelevant in any comparisons. For weighted trees, the
symmetric difference metric has been adapted to provide a meaningful
metric by Robinson and Foulds [1979].

2.31 Summar

This section has described a number of features of the distribution of the
symmetric difference metric on phylogenetic trees. In contrast to other
metrics, this metric is amenable to analysis, particularly atthe

asymptotic level. Essentially there are two properties which allow this.
First, there are structural descriptions of the metric's distribution (as

given in lemma 2.4(a) and theorem 2.10) which manifest in recursive
descriptions such as theorem 2.3 and lemma 2.4(b)(ii). Second, the
distribution on BPT(n) quickly becomes dominated (as n increases) by the
number of equivalent pairs of binary edges between trees (edges
partitioning the label set into sets of size 2 and n-2). This is ultimately
due to the rate at which the number of binary trees, b(n), grows. The
second property allows an asymptotic description of the metric (theorems
2.10, and 2.18) leading to Poisson distributions (theorems 2.11 and 2.20).
Finally, while much is now known regarding this metric, a number of
important questions remain concerning the distribution and diameter of
other tree metrics, and their relationship to each other.
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§3: Sulbtree constraints

"The analysis of large data sets could proceed by division into overlapping
subsets which are classified separately and then recombined to provide a
single classification," A. D. Gordon 1986.

3.1 Introduction

This section examines the restriction on sets of trees in BPT(L) which
arises from fixing the structure of some of the subtrees induced by

subsets of L. The motivation for this problem is as follows: most tree
building methods choose the tree (or trees) which optimizes some
criterion. However, for several methods this has been shown to be an
NP-complete problem. An alternative approach is to determine the
structure of the subtrees of a fixed size of T, which then define a set of
trees which are compatible with this induced structure. When all the
subtrees of a fixed size are known this presents no problem. However in
the reconstruction of phylogenies using statistical methods it is likely

that only certain subtrees will be resolved at a statistically-significant

level. This raises important questions of how to efficiently describe the

set of trees which are consistent with these subtrees, or at least

calculate properties of this set, such as its size or its consensus tree.
Some of these questions have been considered briefly by a number of
authors, in particular Meacham [1983], Constantinescu and Sankoff [1986],
Colonius and Schulze [1981], Bandelt and Dress [1986] and Gordon [1986].
We begin this section by considering the extent to which two binary trees
can lack common subtrees of a fixed size.

Induced subtrees and minimal similarity

3.2 Definition

Given TePT(L), SCL, let T(S) be the minimal subtree of T containing S, and
let T[S] be T(S) with all vertices of degree two suppressed. Thus

T[SJePT(S), the phylogenetic subtree of T induced by S.
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3.3 Lemma

For k>2, let fi(k) be the smallest value of nsuch that for all TeBPT(m),
m=>n, there exists a path in T of at least k vertices. Then
fi(k) = j3.2k/2'2 +1; if k is even,

| 2(D/2 40 i s oda.

Proof:

Let g(k) be the maximum value of n for which there exists a tree TeBPT(n)
having longest path at most k-1, and let G(k) be the set of such trees.
Then f(k) = g(k)+1.

For TeG(k), let T2eBPT(2k) be the tree obtained from T by attaching pairs
of new pendant vertices and edges to each pendant vertex of T. Define a
sequence QT(k) of trees by QT(k+2) = QT(k)?, with QT(3) = BPT(2),

QT(4) = BPT(3), as shown in fig. 3.1,

l
I

|
==

e
<ok

The family QT(k) for 2<k<10

Figure 3.1
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We first show by induction that G(k) = {QT(k)}. For TeG(k+2), consider the
binary tree T# obtained by removing all pairs of adjacent pendant edges
and their pendant vertices (this is less pruning than the derivation
discussed in the proof of lemma 1.7). Now for any binary tree, a path of
maximal vertex length has as its endpoints, pendant vertices, each of
whose associated pendant edge is adjacent to another pendant edge.
Thus the paths of T# have maximal vertex length k=1. Furthermore
T#eG(k), for otherwise if T# has ng pendant vertices there exists
T1eBPT(ny), with ni>ng and T4eG(k). But then T42 ¢ BPT(2n;) and T2 has a
path of maximal length k+1, so that g(k+2) = 2n;. Now T has < 2ng pendant
vertices and TeG(k+2), giving g(k+2) < 2ng, and so Ng=ny, @ contradiction.
Applying the hypothesis G(k) = {QT(k)}, to T#eG(k) we deduce that T
consists of QT(k+2) with perhaps some of its pendant vertices and edges
deleted. But clearly (all of) QT(k+2) has maximal path length k+1, so that
G(k+2) = {QT(k+2)}, as required. Now QT(k+2) has twice as many pendant
vertices as QT(k), giving g(k) = 2g(k-2), which together with g(3) = 2,
g(4) = 3, and f(k) = g(k)+1, establishes the lemma. §

The next theorem says that a common induced subtree of size k = 4,5,...

can always be found amongst any two sufficiently large (depending on k)

binary trees.

3.4 Theorem

k=1, In=n(k): VT, T,eBPT(m), m>n, 3Selm]y, with T4[S] = T,[S].

Proof:

There exist functions fy, f, such that:
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(1: every TeBPT(m), m=fy(n) has a path on n vertices,

(2): any two sequences of length m=f,(n) have a subsequence of length n of
the same or reverse order.

Lemma 3.3 gives f4(n), while the existence of f, follows from Ramsey's
theorem, though Erdos and Szekeres [1935] show we can take

fo(n) =n2-2n+ 2,

Let n(k) = f1(f1(f,(k))), and suppose T{,T,eBPT(m), m=n(k). Then T, has a

path on a set of f{(f,(k)) vertices V. For each vertex veV select exactly

one label in {1,...n(k)} as follows: if v is a pendant vertex select its label,

otherwise choose the label of any pendant vertex of T, whose path back to
v is not incident with any other vertex of V. Let S be the set of labels so
generated. Then T,[S] has a path on f,(k) vertices. Using this path, select
a subset S’ of S in the same way as before. Then T4[S'] and T,[S'] are both
caterpillar trees in BPT(S’), with | S'|= T,(k). Then there is a subset S” of
S’ of size k such that T[S"] = T,[S"], completing the proof. §

3.0 Corollary

vk,r21, 3n=n(k,r): VPCBPT(m), mzn, |P |=r, 3Selm], with T[S] the same for

all TeP.

Proof:

Straightforward from the previous theorem. §

3.6 _Proposition (Constaninescu and Sankoff [1986])

For SCL, and T4¢BPT(S), we have | {TeBPT(L): TISI=T )| = b L] )/D( s|)




60

3.7 Definition

For T,,T,eBPT(n), let A(T,Tok) = |{56Ln]k and T4[S] = T,[S1}], and let

p(n,k) = min{A(T,T2,k): T, T,eBPT(N)}.

3.8 Theorem

(1): The average value of A(T,,T,,k) over all pairs of trees in BPT(n) is
n
(2): p(n,k)/r‘q< is monotone increasing in n, bounded above by ]/D(k)v and

has a non-zero limit, p(k) as n->co.

(3): p(k+1) < pk).

Proof:

(1) has been established for k=4 by W.H.E. Day (reported by Bandelt and

Dress [1986]). For the general case consider the set V(nk,r) = [[n], ], that
is, the collection of all sets {Sy...,S.}, where S;,..,S,. are distinct subsets
of {I....n} of size k. For TeV(nk,r), T = {Sy,...5.}, let G(T') denote the set
of all pairs of trees Ty,T2eBPT(n), with T4[S;] =T,[S;] for i=1,..r.

Let Ny = S rev(nk,r)CT N(x) = 205 onpx™ and E(x) = N(x-1). By the

principle of inclusion and exclusion, [x"JE(x) is the number of pairs of

trees T,, T, inBPT(n) for which A(T;,T,k) =r. Thus the expected value of

A(T,To.k) over all pairs of trees in BPT(n) is b(n)—z[xr]d/de(x) ’ g=1 = Ni.
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Now My = 2s¢[n], | {T1.TeBPT(n): T{[S] = T,IS]}|

= 2seln) 2T e8PT(n) | (T2eBPT(N): T[S = TolS]}|

anD(n). (D(n)/b(k)), by proposition 3.6, and the result follows.

The first part of (2) follows by essentially the same argument that
Bandelt and Dress [1986] use to establish this result in the case k=4.
Specifically, choose T, T,eBPT(n) with A(T,T2,k) = p(n,k), and suppose

n>m>k. Consider the set Q of pairs {S,w} where

choosing w (in A(T,T,.k) = p(n,k) ways) and then S (in n_ka_k ways) to
give | Q= p(nk).""Mc . On the other hand we can undercount Q by
first choosing S (in nCm ways) and then choosing wcS such that

TilSlw] = Tolsllw] (in A(T[S],TL[S]k) ways). Since A(T[S],To[S]k) = p(m,k)
we have p(n,k).n_kcm_k > "¢ p(mk), which gives the required result.

The upper bound of ]/D(k) in (2) follows immediately from (1), while the

last part of (2) follows from theorem 3.4.
For (3) consider for Ty, T, €BPT(n), the set Q; of pairs {S,x} where Seln], _;

can undercount Q; by pulling out common subtrees of T;,T, of size k and
selecting one label (in kC1 ways) as %, and the remaining set as S to give a
pair {S,x}. In this way we have: A(T,,Tz,k)kQ < A(T,,Tz,k—1)n_k+]c1.
Choose T, T, so that A(T;,T,,k=1) = p(n,k=1). Then

p(ﬂ,k—])/ﬂck_] > A(T1’T2’k)k/(ﬂ—k+]) an_]Z p(n,k)/nck

since A(T,Tp,k) > p(nk), as required. §
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3.9 Conijecture

limn_>oo p(ﬂ,k)/an = ]/D(k)
(The first nontrivial case, k = 4 is conjectured by Bandelt and Dress

[1986)).

Spanning Sets

3.10 Definitions

Given Ly,...L EL, and TeBPT(L;) for 1<i<k. For Q = {T;,..., Ty}, define the

span of Q, denoted <Q>, as {TeBPT(L): T;=TIL;]}). Q is realizable if <Q>=¢

and Q defines TeBPT(L) if <Q>={T}. Q is a minimal defining set for T if Q

defines T, but no proper subset of Q defines T.

Henceforth we consider subtrees of size four.

A quartet spectrum, Q, is any set of binary 4-trees with labels chosen
from {1,..,n}. If everysubset of {1,.,n} of size four labels exactly one
tree, the quartet spectrum isfull. Let Q denote the set of all quartet

spectra, and for TePT(L), let Y¥(T) = (T[S] :SelLl41NQ.

3.11 Proposition (Bandelt and Dress [1986], Prop. 2(a))

For any TeBPT(n), ¥(T) defines T.
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3.12 Theorem

(1): If QeQ defines TeBPT(L), |L |2 4, then |Q|z]|L|-3.
(2): For TeBPT(L), there exists a quartet spectrum Q of size |L|-3 which

defines T.

Proof:

(1): The result holds for |L|= 4; suppose it holds for |L|=k, and that Q
defines TeBPT(Ly), |L1 | = k+1. Choose an adjacent pair of pendant edges
whose incident pendant vertices are labelled «,8, let L, = L1-{8} and let Q*
be the set of quartets obtained by replacing (xy)(z8) with (xy)(z) for all
x,.U.Z€L, ZZox, and deleting (xy)(xB) for all x,yeL.

Let T'eBPT(L,) be the tree obtained from T by removing the pendant vertex
labelled B and its incident pendant edge. Clearly T'e<Q*>. Suppose T'=T"
are both in <Q*>. Then attaching a new pendant vertex labelled 8 to the
pendant edge of T incident with the pendant vertex labelled « gives a
tree T1e<Q>, Ty=T, a contradiction. Thus Q* defines T’, so by hypothesis

| Q*| = k-3. Now by the construction, | Q|2|Q*|, with equality if and
only if («B)(xy) is not in Q, for any x,yeL. But if (xB)(xY) is not in Q for
any x,yeL, then representing T' as in fig. 3.2 (a) (refer to following page),
we see that the trees («T)(BT2), (xT2)(BTy) and T= («B)(T4To) infig. 3.2
(b), (¢), (d) are also in <Q>, a contradiction. Thus |Q |2 (k+1)-3, as

required.

(2): Again we use induction on |L|=k. For k=4 the result holds, so
suppose it holds for |L| <k, and TeBPT(L), |L|=k*l. From T choose a
pair of adjacent pendant edges whose incident pendant vertices are
labelled «,B8 (so that T is represented by fig. 3.2 (d)) and define T' as

before.
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(b)

(c)

Figure 3.2

Then since T'eBPT(L'), |L'| =k, there is a set Q* of size k-3 which defines
T'. Represent T’ as in fig. 3.2 (a), and let ¥ be the label of a pendant vertex
in Ty, and y a label of a pendant vertex in T,. Let Q = Q*U{(x$)(xyY)}. Then
Te<Q>, and if Tze<Q>, then since Q*CQ, we have Tze<Q*>,

If Tz’ is obtained from Tz by deleting the pendant vertex labelled 8, and
its associated pendant edge, then since Q* defines T’ we have T3'=T'. The
position of the new pendant vertex labelled § is now fixed by («xB8)(XY)eQ,

so that Tz=T, and hence <Q>= {T}, as required. §

The proof of part (b) of this theorem gives a constructive (and efficient)
method for finding a minimal defining set for T. A natural question is
whether amongst quartet spectra, all minimal defining sets for a tree have
the same cardinality, a suggestion supported by considering trees with
less than 7 pendant vertices. The next example shows that the answer to
this question is no.
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3.13 _Example

Let Q = {(35)(67), (13)(45), (16)(23), (57)(12), (72)(34)}. Then <Q> = (T},
where T is the caterpillar tree (16)(273)(45). However, deleting the i-th

element of Q as they are ordered above for i=1,..,5 gives sets Q; which do
not define T. Specifically, (16)(342)(57)eQ;, (16)(274)(35)eQy,
(26)(173)(45)eQs, (45)(321)(67)€Qg4, (23)(145)(67)eQs. Thus Q is a

minimal defining set of T of cardinality five, which is one more than the

cardinality of the set constructed by the previous theorem. §

3.14 Remark

On the basis of considering small examples one might also conjecture
that if |LjnL;[ <1 for all iz}, then Q is realizable. This is not so
however, for consider a projective plane of order 3, which has 13 points
and 13 lines each with 4 points (Hall [1986]). Taking the lines to be our

Ly,....Ly3, We have | LiﬂLj| = 1, i=j, and there are 313 possible choices of
Q = {T;....T43} since there are three possible trees on each label set (i

Now clearly if Q=Q' then <Q>N<Q'>=9¢, so that if each of the sets Q were
realizable, b(13) > 3'3. But it can be easily checked that in fact

b(13) < 313,
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Gonsensus Trees

3.15 Definition

For subsets L,Lp of L, if {L;,Ly) = {®,L} or {LyL,} = 11(T,e) for some internal
edge of T, then L; is said to be acluster of T and Ly,L, are complementary

clusters. §

By Proposition 1(a),(b) of Bandelt and Dress [1986], the clusters of T
define T, and the conditions on a family of subsets of L to be a cluster of
a tree are such that the clusters common to all of a set of trees gives a
treelike cluster, thereby allowing the following definition due to Sokal

and Rohlf [1981].

3.16 Definition

Given a set of trees X={T,,.,T| JSPT(L), the strict consensus of X, CX is

the tree in PT(L) whose clusters are precisely those clusters belonging to

all trees in X. If X=9¢, define CX to be the star tree.

We now give a description of <Q> in terms of C<Q>.
Consider the set IV(C<Q>) of internal vertices of the consensus tree of

the span of a quartet spectrum Q. If velV(C<Q>) has degree dv>3, let

L(v) = {LyL2L3.L4....Lg, ) De the collection of sets of labels on the pendant
vertices of the pendant subtrees of T having v as an endpoint. Replacing v
in C<Q> by a binary tree T(v)eBPT(L(v)) gives a new tree [T(v),C<Q>]ePT(L).
Let N(v) = {T(V)eBPT(L(V)): Q¥ ([T(v),<C(Q)>N}.
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Now for Te<Q>, and v € IV(C<Q>), 9v>3, T defines a specific tree
T(v) € BPT(L(v)), since T is binary. If we denote this tree by (T,Q,v),

consider the function

H:<Q> => T,y (c<qx)N(V). defined by H(T),, = (T,Q.v).

3.1/ Theorem

H is a bijection. In particular [<Q>[=TT,,1\,(c<q>)P(Ny). where n,, < 3(v).

Proof:

H has the following inverse, K. Given T(v)eN(v) replace v by T(v) for each
VEIV(C<Q>) to obtain a tree TgeBPT(L). Suppose Tq is not in <Q>, so that
Q is not € Y¥(Tg). Let (ij)(kDeQ, (ik)(jDey(Ty). Consider the tree
Ty=C<Q>[S] e PT(S), where S= {ijkl}. There are two cases to consider
(a): Ty is a binary tree, (b): T, is a star tree.

In the first case, if we replace velV(C<Q>) by T(v) for any T(v)eN(v) then,
by definition, QCY¥[T(v),<C(Q)>] so that (ij)(kl) € Y[T(v),<C(Q)>].
Replacing the other internal vertices to obtain Tq, we clearly still have
(ij)(k1)ey(Tg) a contradiction.

In case (b), let vg be the unique vertex of C(<Q>) where the paths 1t(i,j)
and 1r(k,1) meet. Replacing vq by T(vg)eN(vg) we have QCY[T(vg),<C(Q)>],
and again we find that (ij)(k1)ey(Tg), a contradiction. Thus TgeC<Q>.

Clearly then HK and KH are identity maps, as required. §
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Elficiensy

An interesting question is whether there is an efficient way of deciding
whether QeQ is realizable--that is whether there is an algorithm for
deciding this question whose running time is bounded above by a
polynomial function of n. One approach might be to observe that if Q is
realizable then there must be a pair i,jel, with {(ix)(jy):x,yeL}NQ=9. We
might then replace the pair (i,j) by new label «(i,j) and replace all
occurrences of i or jin Q by «(i,j) (removing any occurence of (ij)(xy)) to
obtain a quartet spectrum Q; on a set Ly of | L | -1 labels. Repeating the

procedure, eventually either all the labels will get used up and a tree will

be constructed, or at the r-th stage no pair with {(ix)(ju):x,yeL}NQ,=¢ will
exist, or {(xy)(zw),(x2)(yw)}CQ, for some %,4,z,WeL,., either of which

imply that Qr is not realizable. All this canbe efficiently implemented,

but this method depends on making the right choices for which pairs (i,j)

to select at each stage. For if the wrong choices are made, at some later

stage we may find {(xy)(zw),(xz2)(yw)}<CQ,, even though Q is realizable.

Another approach is suggested by the characterization of when a full

quartet spectrum is realizable to which we now turn.

3. 18 Definition

Given a quartet spectrum Q, define the closure of Q, cl(Q), to be the
minimal set containing Q with the property:

for all (ij)(k1),(ik)(Im)ecl(Q), we have (ij)(km), (jk)(Im)ecl(Q).

Note that cI(Q) can be efficiently constructed from Q, cl(cl(Q)) = cI(Q) and
<Q>=<cl(Q)>, so that Q is realizable if and only if cl(Q) is. Also observe

that cI(y(T)) = ¥(T).
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3.19 Lemma

A full quartet spectrum is realizable if and only if its closure does not

contain (xy)(zw) and (xz)(yw).

Proof:
This follows directly from similar results due to Colonius and Schulze

(1981], and Bandelt and Dress [1986]. §

For non-full quartet spectra, the example in remark 3.14 shows that even
with c1(Q)=Q, Q may still be unrealizable. Indeed using Q from example
3.1'and adjoining (24)(56) gives a set Q' with <Q’>=% but with cI(Q’) = Q’,
since Q' consists of five of the blocks of the biplane on seven points

given by Hall [p. 321,1986].

We now show that the question of whether or not Q is realizable is

equivalent from an efficiency viewpoint to two related questions.

3.20 Lemma

[f L =L4ULy, LiNL,=9, and for each i,jely, and k,leL, <QU{(ik)(j1)}> = ¢ and
<QuU{(il)(jk)}> = &, then for any Te<Q>, L; is a cluster of T.

Proof:

If Q satisfies the above condition, then for Te<Q>, TI{i,j,k,1}1=(ij)(k!), so
that the path joining i and j has no common vertex with the path joining k
and |. Since this holds for all i,jeL; k,leL, it follows (refer Bandelt and

Dress [p.318, 1986]) that Ly is a cluster of T. §
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3. 21 Theorem

If one of the following has an efficient algorithm, so do the others:
(1): Deciding whether Q is realizable.
(2): Deciding whether Q is realizable, and if so constructing Te<Q>.

(3): Constructing C<Q>.

Proof:

Clearly efficiency for (2) implies that for (1). Conversely, given Q, and an
efficient algorithm for (1), if Q is realizable, Q can be efficiently
extended to a full quartet spectrum by choosing at each stage a quartet
{i,jk,1} not already in the realizable spectrum so far constructed Q’, and
testing the realizablity of Q' U{(ij)(kD}, QU{(ik)(j1)}, QU{(i(k))}. Since

Q’ is realizable, at least one of these extensions is realizable and the
process can be repeated until a full andrealizable quartet spectrum Qg is
obtained. Now given Qgq, there is an efficient inductive method for
building the tree T with $(T)=Qq by using Qg to decide where each
additional pendant vertex should be attached to the tree so far
constructed. Thus efficiency for (1) implies efficiency for (2), as

required.

To obtain anefficient algorithm for (3), efficiently construct (by (2)) a
tree Te<Q>. By definition, the pairs of complementary clusters {L;,L,} of
C<Q> are a subset of the complementary clusters of T.

For each internal edge e of T, let 11(T,e) = {Ly,L,}, and for each pair i,jeL;,
k,leL,, use the efficient algorithm from (1) to check whether or not
QU(ik)(j1) or QU(il)(kj) is realizable. If either is realizable (for any

i,jk,1) then clearly Ly is not a cluster of C<Q>.
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On the other hand if none of these spectra are realizable, then by lemma
3.20, Ly is a cluster of C<Q>. and thus the clusters of C<Q> canbe
efficiently generated. The clusters of C<Q> can thenbe used to
efficiently construct C<Q>, by a method such as "TREE POPPING" due to
C.A. Meacham, and described in Dress and Bandelt [p.317, 1986].

Finally, an efficient algorithm for (3), gives an efficient algorithm for (1)
as follows. Given quartet spectrum Q on label set L, let L'=LU{,B8}, with
o, B new labels not in L. Let Q'=QU{(«B)(xy): ,yeL}. If <Q>=¢ then

<Q’>=¢, and so by definition C<Q'> is a star tree. If <Q>=¢, choose Te<Q>
and join one end of a new edge eq to any edge of T, and attach two
pendant vertices labelled «,B by two new edges to the other endpoint of
eg, giving a tree T'eBPT(L’). Thus <Q'>=z¢, and by lemma 3.20, {«,8} is a
cluster of C<Q’>, so that C<Q’> is not a star tree. Thus <Q>=¢ precisely

if C<Q'> is not a star tree, giving an efficient algorithm for (1). §

3.22 Summary

The problem considered in the first part of this section is the extent to
which two trees can lack common subtrees of a given size, k. Even for k=4
this appears to be a difficult problem (it is equivalent to calculating the
diameter of the metric d' discussed in 2.31). After establishing that
sufficiently large trees always share a tree of size k (theorem 3.1) we
generalized (from k=4) some known results aimed at providing lower
bounds for the number of shared subtrees of size k (theorem 3.8).

We then addressed the question of how many subtrees of a parent tree are
necessary to define it, obtaining both positive and negative results
(theorem 3.12 and example 3.13, respectively).

A description of the span of a set of trees of size four is then given in

terms of its consensus tree (theorem 3.17). This raises the question of
whether one can efficiently construct this consensus tree, a question

which is shown (in theorem 3.21) to be equivalent to efficiently deciding

the realizability of sets of four-trees. It would be useful to find an

efficient algorithm for this question, or else show that it is NP-hard.
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§4: Sequence and Dissimilarity
Data.

4.1 Introduction

This section defines sequence data and dissimilarities, and derives basic
properties of the transformation from the former to the later, required in
later sections. We also examine, from an enumerative viewpoint, how
much information is lost by this transformation, improving on results by
Penny [1982].

4.2 Definitions

A premetric f: {1,..,n}x{1,..,n}=>R, is any function satisfying f(i,i) = 0,

f(i,j) = 0, for all i,je{1,...n}.

Given a set ¥={¥...., b’r} of r colours, a sequence space of length ¢ onr

sequence of colours, which for r = 4, might represent a DNA sequence, or

for r=2 the same sequence in terms of purine and pyrimidine bases).

Given a sequence space, (S,%,c,r), let 8”- be the number of components,

called sites, of ¥ at which Xj and ] differ. It is easily checked that

{Sij} is a pseudometric. §
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GConstraints with two colours

4.3 Definitions

Let C(n) denote the set of all 2" two-colourings of {1,..,n}, and let Q(n)
denote the set of the 2”‘]partitionsc?—subsets of {1...,n} containing 1. A
colouring XeC(n), induces a partition corresponding to the elements of
{1,...,n} coloured the same colour as 1. Conversely, for a partition o,

there are precisely two XeC(n) which induce ¢. For a sequence space, and

geQ(n), let Xg be the number of occurrences of ¢. Denote {1,..n¥eQ(n)

Dg Go-g O)(Bé o a\>uge oQ— {Q%‘m\no(a@j W ch\k @&_Q(n) N
Qo&\%iﬁor\ veconse O and s @M?\Qmenk Qm’\—\\&on L, ...)ni)‘

We have 8jj = ZOGQ(n)cx(i,j,G)Xg where «(i,j,0) = 0 if i and j are either

both in ¢ or neither in g, and «(i,j,d) = 1 otherwise.
Indexing the unordered distinct pairs {i,j} and ordering Q(n) we have for

the associated vectors § and X, & = MX, with M a "C,x2N~1 0-1 matrix.

4.4 RBemark

[t is easily shown (though we do not require it) that MMt = 2N73(1+ ),
which is invertible so that for any se RNN"1/2 |otting

X = MMM T8 we have MX = 6. The restrictions on dissimilarities §
derived from sequence data arise from the requirement that § = MX for

x=0.

4.5 Example (n=4, r=2).

Let 8 = [812,813.814.503.824.834]%, and let X = [X,X12,X13.X123.X14. X124, X 1341
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Then § = MX, where

M =T

- — O — O O
- O — O —T O
o - — O o —

oo —« — —
o - - - — O
—_ = - —
—_ —_ 00 — -

Let ¢c* denotes the number of.sites where all taxa are not the same colour
and let 8§’ be the vector obtained from & by adjoining ¢* as a seventh

component. Let M;be the 7x7 matrix whose first six rows are M, and

whose last row is the vector [1,1,..,1]. Then §'= MX, and M Iexists.
Indeed, -
MTl=05 |0 0 0 -1 -1 -1 2
0 1 | I 10 =2
I O I 0 1 =2
-1 -1 0 -1 0 O 2
I I 0 o 1 1 =2
-1 0 -1 0 -1 0 2
i o -1t -1 0 0-1 2

Now §'is induced by a sequence space precisely if for X = M~ 18, we have

XGEZ+ for all ceQ(4). In view of the expression of M™! this condition is

equivalent to two conditions on the vector §°.
(i): x> (Sij+8jk+6ik)/2 ¢ 7"
(iD): (a) c* < (513+514+523+624)/2 7"
(b) cx< (512+514+623+634)/2 ¢ 7t
(c) c*< (512+513+524+534)/2 €eZ”.

Notice that if § is induced by a sequence space on two colours, § does not

determine c¥*, though the conditions shown give bounds for c*, such as

1(8)< ¢* < 2.1(8), where 1(8) = max; j{sij}, a result required in section 7.
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4.6 Theorem

(1): If r=2, § satisfies the following property:

P: for any triple i,jk, Sij + 5j|< - §, Is an even, non-negative integer.

(2): Any premetric on three or four points satisfying property P in (1) is
induced by a sequence space on two colours.

(3): If & is induced by a sequence space (S,%,c,r), |S | =n, then
i j5ij < cn2(1-r7 1), and this bound may be realized for all values of ¢ and

r.

Proof:

(D: For ¥={%,,%>}, t=1,...c, let xi(t) denote the t-th component of xieb’c.

For i=1,..k, let S(1) ={t: x(t) = ;). Then 8= | S(HVS())|, where V

denotes symmetric difference. The result now follows since for

arbitrary sets, A and B, we have | AVB|=|A|+|B|-2]|AnB].

(2): The case for n=3 is straightforward. For n=4, we show that property
P implies that §, (together with a suitable value for ¢*) satisfies the
conditions in example 4.5, which are sufficient for § to be induced by a
sequence space on two colours.

I § satisfies property P, then (8ij*8 j*8ik)/, = (Bif 858/ +5, ez2*

for all i,j, and condition (i) can be satisfied by taking c* =

maxj ; k{(gij+8jk+5ik)/2}. Furthermore for condition (ii)(a),

813+814+823%824 = (813 *814 ~834) + (8,3%824834)* 2834

so if § satisfies property P, (513+514+523+824)/2 €2”, and similarly for

(ii)(b) and (ii)(c).
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Finally since § satisfies P, and thereby the triangle inequality, the

expressions on the right hand side of (ii)(a),(b),(c) are all less than
maxi'j{(gijJ"Sjk*gik)/z} = ¢*, satisfying that the inequality conditions in

(ii).

(3): Define €(i,j,t) = 0 if xi('t):xj(t), otherwise €(i,j,t)=1.

Then &= 2te(i ), and so 2 i85 = 2 | 2t€(i).0) = 24 2 €0

For s=1,...r, let Ng(t) = | (i (=g} |. Then

20 €00 = 25 gngms N (DNg (1) = n2 = S Ng(1)2, since T Ng(t) = n.

Using this constrant, an elementary application of the method of Lagrange

multipliers shows that Zi J-e(i,j,t) is maximized when Ns(t) = n/r for

s=1,...r, in which case 2 je(i,j,t) = n2(1-r~ 1) and the result follows. §

Lower bounes on ihformation loss

We now consider how much information is lost in converting sequence data

to dissimilarities.

4.7 Theorem

(1): Let h(n,c) denote the number of metrics d on {1,..,n} of diameter <c.
242 e

Then h(3,c) = ¢(¢?*3¢-2) /5

(2): Let h*(n,c) denote the number of pseudometrics on {1,....n} of

diameter <c.
Then h*(3,c) = h(3,c+1)- 3¢(c*D, = hE.e)lexD),

(3): Let f(n,c) denote the number of metrics on {1,..n} of diameter <c

induced by some sequence space on two colours.




Then f(3,c) = h(3'C)/2, if ¢iseven

(c—l)(2c2+llc+l)/8, if ¢ is odd.

(4): For n =1, 3 (mod 6),
h(n,c) < h(3,)NN=D/6 s c) < hx(3,c)NN-1)/6
f(n.c) < 1(3,c)n(N-1)/6,

(For other values of nsimilar results apply).

Proof:

(1): We distinguish three cases depending on dy,, dp3, di3.

(a): all three distances are the same,

(b): two of the distances are the same and strictly larger than the other,
(c): the largest distance, denoted dy, is strictly larger than the other two,

denoted d,,ds.

Clearly (a) arises in ¢ ways and (b) arises in 3C,.€C, = 3C(C_])/2 ways (in
these cases the triangle inequality is not a constraint). For case (c), let
do+ds = k+dy. By the triangle inequality k=0, while since d,,d3<d;, we have
k<d;-2. Now for fixed dy, and k in this range this equation has d-1-k

solutions in d,,ds with d,,ds<d;. Thus over the range 0<k=<dy-2 there are
d1(d1_])/2 solutions. Letting dyrange from 2 to ¢ and noting that
ZszSCjCZ = C*lc,, and that there are three possible choices (from dip,

d,3, di3) for dy, we have 3¢*!cs ways case (¢) can arise. The result

follows immediately.

(2): Given a metric of diameter < c+1, we obtain a pseudometric of

diameter <c by replacing d(i,j) by d(i,j)-1, except when
d(i,j) = d(i,k)+d(k,j), for some i,j,ke{1,2,3}, which occurs in 3c(c+l)/2

ways.

77




78

Conversely, if d(i,j) is a pseudometric of diameter <c, d(i,j)+1 is a metric

of diameter <c+I. The result follows immediately.

(3): Theorem 4.6 (parts (1) and (2)), give the additional constraint on d.
The result now follows by the same decomposition as inpart (1) of

theorem 4.7, and a more lengthy, albeit elementary argument.

(4): First we recall the existence of a 2-(n,3,1) design when n=1 or 3

(mod 6), noting that such a design has n(n-l)/6 blocks, (Hall [1986]).

{I....n} is a metric on all the sets A; (though clearly the converse does

not always hold). Thus the number of metrics on {1,..,n}, h(n,c) is

bounded above by h(3,c)"N"1D/6 ang similarly for h* and f. §

4.8 Remark

This theorem shows that (for n =1,3 mod 6), the proportion of premetrics
on n taxa of maximum diameter ¢, which are in fact metrics is bounded

above by
(C(C2+3c-—2)/2)n(n—])/6

cn(n=1)/2

n(n-1)/6 Similarly the proportion

which is asymptotically (inc), 2~
induced by a sequence space on two colours is (asymptotically in c)
bounded above by 2N("=1/3 Similar results hold for pseudometrics. We
now apply theorem 4.7 to obtain a lower bound on a crude measure of how

much information is lost in reducing sequence data to dissimilarities.
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We adopt as our measure, the ratio of the number of "essentially

distinct” sequences spaces to the number of distinct dissimilarity

matrices [Sij] these sequences generate--this gives the average

compression of the transformation.

We must first define when two sequence spaces are to be regarded as
distinct, (the following definition is motivated by the fact that most
tree-building methods do not take account of the order of the sites and

treat the four nucleotide bases equally).

4.9 Definition

Call two sequence spaces Q4,Q, of length ¢ on the same set of colours ¥,

equivalent if Q;is obtained from Q, by permuting ¥ and the order of the

components in ¥C. Let Ar(n,c) be the set of equivalence classes of

sequence spaces of length ¢ onr-colours and n taxa.

4. 10 Lemma

| A(ne)|= I(n,r)+c~1cc, where I(n,r) = Zt(t”/“)(dr—t/(r_t)!) ,
with d; the number of derangements oni objects.
(Note that d; = ilzosjsi(—l)j/“, as in Hall [1986]. Thus I(n,2) = 2" and

I(n,4) = (Zn_]+l)(2n_2+l)/3, providing convenient expressions for the

sums of the first two columns, and first four columns respectively of the

table given by Penny (1982, p.134].)
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Proof:
The number of distinct ordered n-tuples %e¥" under permutations of ¥, is

simply the number of orbits of ¥ under the action of the full symmetric

group G on ¥. By Burnside's lemma this is (r!)—lzgeeF(g), where F(g) is

the number of elements of ¥ fixed by g. Now G has exactly rCtdr_t
elements which fix precisely t elements of ¥, and hence t" elements of

¥N. Thus Inr) = 4t/ )=t/ (eopy)). §

4. 11 _Example

Let <I>:A4(n,c)—>Rn(”_])/2 be the map transforming sequences into

dissimilarities, and consider l A4(nc) ' / | (A 4(n,C)) | By theorem 4.7,

this ratio is at least | 24(nc)] /%(n,c) Which we denote by z(n,c). Table

one lists values for 10gyz(9,c). Thus for sequences of length 100 on 9
taxa there are, on average, at least 1078 essentially distinct sequence
spaces to every dissimilarity matrix. A similar table has been published

by Steel et al. [1988].

C l0gi07(9,C)
15 8.9

20 .. 18.0

29 28.6

o0 .. 799

100 .. 178.0
250 .. 4368
o00 .. 7989
1000 .. 1390.5

Table One: Logarithms of lower bounds on the average information
loss involved in converting sequence data of length ¢ on nine taxa to
dissimilarities.




4.12 Summary

This section characterizes dissimilarities arising from two-coloured
sequences on four taxa (example 4.5 and theorem 4.6 (1,2)) and provides
constraints in the more general cases of n taxa and r-colours (theorem 4.6
(1,3)). We also examine the redundancy involved in transforming
sequences to dissimilarities by exploiting some of the constraints on
induced dissimilarities. While we have neglected some constraints (such
as theorem 4.6 (3)) it is likely that a more exact enumerative approach to
this problem would be difficult and of little value since the lower bounds
given in example 4.11 are already huge. A more valuable exercise would be
to determine the nature of this redundancy, particularly as it relates to
phylogeny reconstruction. Some initial work in this direction appears in
Penny [1982].
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§5: Combinatorics of Parsimony.

"Parsimony is another name for economic meanness, " Richard Dawkins.

5.1 Introduction

Methods based on principles of parsimony are the most frequently-used
method for constructing phylogenetic trees from aligned DNA sequence
data (Felsenstein, [1988]). While the problem of finding the tree (or trees)
of maximum parsimony is NP-hard (Foulds and Graham [1982]), a branch
and bound algorithm has been developed by Hendy and Penny [1982], along
with various heuristic methods. In this section, by restricting attention

to two character states, we give conditions for when a set of edge changes
is minimal for the colouring it induces. We then examine from a
combinatorial viewpoint two distributions which arise, in the first case

from fitting trees to data, and in the second case from fitting data to

trees, in both cases so as to minimize the number of edge changes
("steps") required. Using results from section one, and another tree
decomposition, we obtain useful descriptions of these distributions.

Finally we set out a combinatorial result which is pivotal to much of the
stochastic theory in section six and seven.

Vector spaces of edge sets

9.2 Definitions

For TeBPT(n), and CCE(T), let p(C)eQ(n), denote the labels (including "1”)
of those pendant vertices of T whose unique path to the the pendant
vertex labelled 1 passes through an even number of edges of C. Define an

equivalence relation, ~, on 2E(T) by C~C' precisely if p(C) = p(C").

9.3 Lemma

If C~C’, D~D’ then CVD ~ C'VD’ where V denotes symmetric difference.
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Proof:

For pendant vertex of T labelled ¥ and CCE(T), let f(x,C) be the number of
edges of C on the unique path from 1 to . Then

f(x, CVD) = f(x, C) + (%, D) - 2f(x, CND) = f(x, C)+f(x, D) (mod 2).

Now if C~C’, D~D’, then f(x,C) = f(x,C") (mod 2) and f(x,D)=f(x,D’) (mod 2)
so that f(x, CVD) = f(x, C'VD’) (mod 2), for all ¥, giving CVD~C'VD'. §

0.4 Corollary
C'~C precisely if C' = CVCqy Where Cyv9.

Proof:
If C'~CletCqy=CVC. ThenC' =CVC(Cyandby lemma 9.3,
Co =CVC' ~ CVC =9. Conversely if Cog~9, by lemma 5.3, CVCy~CVd = C. §

Now TI(T) = ZE(T), under V, forms a vector space over Z,. Let
Mo(T) :{CEZE(T): C~%}. By lemma 5.3, TTo(T) forms a subspace of TI(T). For
VeIV(T), let E(v) be the set of the three edges of T incident with v.

2.9 Lemma

E(V) = {E(v): velV(T)} forms a basis for TTo(T).

Proof:

Regard a set CCE(T) as inducing a two-colouring of all the vertices of T.
Then for any fixed geQ(n), colouring the n-2 internal vertices of T in all
2N"2 possible ways gives 2"~ 2 edge sets E with p(E)=0. Taking 6=0,,
gives | TTo(T)| = 2"72, and so To(T) has dimension n-2 over Z,. Since E(V)

has n-2 elements we need only check it is linearly independent.
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If not, we have {E,,...E| JCE(V), k21, with E{V..VE, = &.
But for any {E;,..., E,) CE(V), a simple inductive argument on k gives that

|E1V..VE |2 k+2 23, as required. §

(Weakly-) Connecting trees and forests

5.6 Definitions

For FCE(T), TeBPT(n), let
w(F) = min{|F’|: F'CE(T) and F'~F}, and
L(F) = {(F'CE(T): F’~F and|F’| = w(F)).

F is minimal if FeL(F), and strictly minimal if L(F) = {F}.

Given FCE(T), and a (not necessarily binary) subtree T* of T, let &£(F,T*)

denote the number of edges of F incident with a vertex of T. For a forest

K of vertex disjoint subtrees of T define &(F,K)= 3 1x&(F,T).

S.7 Definitions

A connecting tree for F is a subtree T* of T, not necessarily binary with
|V(T*) | < 28(F,T*)-2.

A weakly-connecting forest K is a forest of k subtrees of T with

(1): no two trees both incident with any edge of T.

(2): | V(K) | = 2&8(F K)-2k.

Let z(F) be the the set of weakly-connecting forests of F, including the
empty forest ¢.

A weakly- (Addech‘q? Tree (s o wéak\a‘-go{m@%{aﬁ

jCO(\QS%) W\g“ss‘*"& of  a %‘-Aa o Avee




85

2.8 Example

Fig. S.1 shows an example of a set FCE(T), TeBPT(8), with five
weakly-connecting forests (in fact trees), given by ¢, (v3,v4), (V,V5,V3,V4),

(V3,V4,Vs5,Vg), (V,V2,V3,V4,Vs,Vg).

N
1T TT TN

A tree with a minimal set F of four
distinguished edges, having five

weakly-connecting trees.

Figure 5.1

9.9 Theorem

For FCE(T), TeBPT(n),
(1): F is minimal precisely if F has no connecting trees.
(2): F is strictly minimal precisely if F has no weakly-connecting trees.

(3): If F is minimal, there is a bijection between L(F) and ©(F).

Proof:
(1): Suppose F has a connecting tree T* on vertices v;,v,,..., Vie-
Let C = E(v)V..VE(vy). Then |CVF|=|C|+|F|-2|CnF|. Now |C|=k+2,

while 2| CnF | = 2&(T*F) > k+2, so that |CVF|<|F|. Furthermore since
CeTo(T), C~9, so that CVF~F. Thus F is not minimal.
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Conversely, suppose F is not minimal. Then for some CeTlo(T),

|CVF|<|F|,so that |C|<2]|CNF|. By lemma 5.5 there is a unique

subset E(vy),....E(v ) of E(V) such that C = E(v))V..VE(v,).

Consider V'={vy,..,v } and join v; by an edge to Vi if vi and vjare adjacent

in T. In this way V' defines a forest of subtrees Ty,.., T, of T. Let n(i) =

have|e(T;)|=n(i)+2. Now |C| =Z;|e(Tp|and |CnF | = SE(F.T) since
for i=j, e(TPNe(T=¢ . Thus, since [C| < 2| CnF |, ¥i(n()+2-2&(F,T{))>0
so for at least one ie{l,...,r}, n(i)+2-2&(F,T;)>0, which, by definition,

means that T; is a connecting tree.

(2): This follows by essentially the same argument as for (1), using

weakly-connecting trees rather than connecting trees.

(3): For LeL(F), we have LVF~® so that L=FVC where

C=Vio kv )E(Vr,j) where {vr,j:j=l,...,o<(r)} forms the

j=1 L (r
component trees of the forest K generated by Ur,j{vr,j} under the rule that
v and v’ are adjacent in the forest precisely if they are adjacent in T. Now
since LeL(F), |L|=|F|+|C|-2|LnF|=]|F][, sothat |[C|=2]|LNF|. Also
|V(K) | =5,ox(r), so that |C| =3 ((r)+2) = | V(K) |+2k and so

28(FK) = |LnF | =|V(K) | +2k, so that Kez(F). This process is clearly

invertible, establishing (c). §

5.10 Remark If F is minimal and K;,K,e(F), K; and K, are not

necessarily vertex disjoint, as example 5.8 shows.
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o.11 Theorem

(a): If F is minimal and ACF then A is minimal.
(b): If F is strictly minimal and ACF then A is strictly minimal.

(c): If F is minimal and A,BCF, with A~B, then A=B.

Proof:
(a): Suppose A is not minimal. Then A has a connecting tree T* by
theorem 5.9. Now since ACF, &(F,T*)>E(A,T*), so that T* is a connecting

tree for F, and so applying theorem 5.9 again, F is not minimal.

(b): Essentially the same argument as for (a), except using

weakly-connecting trees.

(c): Suppose A~B, AzB. Then AVB~AV A=, by lemma 5.3, and AVB=¢.
Let E = FV(AVB). Since AVB~®, E~F, by corollary 5.4. But AVBCAUBCF,
so that E = F-(AVB) which has less edges than F since | AVB|>0. §

We now give a sufficient condition for FCE(T) to be strictly minimal by

requiring the edges of F to be separated by at least three other edges.

5.12 Definition

For 9cV(T), x.yeS, let A(x,y) denote the number of edges of T on the path

between ¥ and y.
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5.13 Lemma

Suppose a tree has n vertices, including a set S of k=2 distinguished

vertices with A(x,y)=3 for all x,yeS. Then n>2k.

Proof:

We use induction on k. For k=2 the tree has a path with at least 4

vertices so the result holds. Suppose the result holds for all k<kg>2. For
atree T with a set S of kg+1 distinguished vertices, select a vertex vgeS,

and an adjacent vertex vynot in S. Represent T as in fig. 5.2, where the

dotted edges (and incident trees Tj,..., Tpoand T ---'Ts) may or may not

r+l

exist depending on the degree of vg and vj.

Figure 5.2

Replace T by the tree T’ shown in fig. 5.2. Then T’ has kg=1 of the original
distinguished vertices from T, and furthermore T’ satisfies the conditions
of the theorem, so that by induction T’ has at least 2ky vertices. But T

has exactly two more vertices than T’, completing the induction step. §
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2.14 Remark The bound n = 2k is realized, for example, by a

hair-comb-shaped tree with distinguished vertices of degree one.

D.19 Lemma

If F has a weakly-connecting tree T* then F has a weakly-connecting tree

T with E(T')NF=9.

Proof:
(1) Suppose T* weakly connects F, and E(T*)NF=$. Delete E(T*)NF from
E(T*) and for each deleted edge remove one of the two incident vertices

from V(T*) (together with the other edge incident with that vertex) to

obtain a forest of trees Ty,..,T,, with r=2.

Thus [V(T*)| =r +&; | V(T)|, and &(F,T*) = $,E(F,T,), and since
| V(T*)|< 2E(E, T*)-2 we have
2il VT < E28(F,T) - 2 - r < $,(2E(F,T)-1). Thus for at least one |

| V(T)| < 2E(F,T{)-2, so that T, is a weakly-connecting tree with

E(T{)NF=9, as required. §

9.16 _Theorem

Let F=EM.
For x,yeF, let A(x,y) denote the number of edges of T between % and y.

If A(XY)>2 for all x,yeF, F is strictly minimal.

Proof:
Suppose F is not strictly minimal. Then F has a weakly-connecting tree

T*, by theorem 5.9. By lemma 5.15 we may suppose E(T*)NF=9.
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Distinguish the set S of vertices of T* that are incident with an edge of F.

Then, by the A condition on F, A(x,y)>3 for all x,yeS. By lemma 5.13,
| V(T*)|= 2&(F, T*), which contradicts the assumption that T* is

weakly-connecting. §

o.17 Remark

It is immediate from theorem 5.9 that if F is minimal (resp. strictly
minimal) then A(x,y)>1 (resp. 22). These are clearly not
sufficient--indeed the stronger second condition is not sufficient to
imply minimality, as illustrated by the tree T in fig. 5.2, with a set F of

five edges for which w(F) = 4.

1IN\ Z1 I\

Figure 5.3

Distributions arising from parsimony

We now examine the distribution of binary phylogenetic trees according to
the number of edge changes ("steps") required to fit data to the tree. An
efficient method is given for calculating the mean of this distribution.

This gives a simple measure of how much better a tree of maximum
parsimony fits data than a randomly chosen tree. A useful invariant
property of a related dual distribution is derived, allowing a complete
description of this distribution and the calculation of its mean and
variance. Either distribution gives a precise expression for the expected
number of steps required to fit random data to any tree.
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9.18 Definitions

(1): Given 0eQ(n), let w(o,T) be the minimum number of edge changes
required to fit ¢ to T. Thus w(o,T) = min{|C|: CCE(T), p(C)=c). For a
colouring XeC(n), w(X,T) is defined similarly.

In this section data refers to a sequence space on two colours

(definition 4.3), that is, an ordered sequence of two-colourings
D = (Dy,...D¢), Dj€C(n), and we let |D | denote the length of the sequence (in

this case |D|=c). Thus D might be a collection of aligned DNA sequences
(where the four bases have been paired in some way). For convenience we
do not impose the equivalence relation described in definition 4.9.

For data D, the minimum number of steps required to fit D to a fixed tree

TeBPT(n) is leis ' D ' w(Di,T), which we denote by w(D,T).

(2): Fitch’s algorithm.

For a colouring XeC(n) and TeBPT(Nn), Fitch [1971] ( see also Hartigan

[1973] for a formal justification) gives an efficient method for

calculating w(X,T), and for finding a minimal colouring of the internal
vertices. We describe part of this procedure now. Root T on the midpoint
of any edge and direct all edges away from the root, denoted vy, to give a
rooted tree T*. Assign to each internal vertex v the set {A},{B} or {A,B)
recursively as follows: pendant vertices are assigned the set containing
their colour under X, and for each vertex directed towards two vertices
V1,V whose sets $54,S, have already been chosen assign vertex v the set

S(v) = [ SiNS,; if this set is nonempty,
S1U52; if 51052:¢).
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Then

(1D: w(X,T) is the number of internal vertices v (including the root vg) for
which S(v) is defined by the second option (5;NS,=9).

(2): S(vq) is the set of colours vy can take over all colourings of minimal

weight of the internal vertices of T*. §
We examine the following two dual distributions:

(M*): For TeBPT(n), let M(T,ck) = [{D:|D|=c and w(D,T) = k}|.
(N*): For data D, let N(Dk) =|{TeBPT(n): w(D,T) = k}|.

We consider first the distribution N*,
For | D=1, N(Dk) = f, .(m(D),n-m(D)), where f,(a,b) is described in section

one, and given by theorem 1.21. For |D|>1, we now calculate the mean

value of N(D,k).

5.19 Definition

For a colouring X, let m(X) = min{|C;|,| C |}, where C; (resp. C,) is the

set of elements from {l,..,n} coloured A (resp. B) under X.

For data D, let X(D,a) = | {i: m(Dj)=a}| and let

¥(.2) = S0 kBN

Note that by theorems 1.21 and 1.14 (4), for any n, ¥(n,1) = 1, while for

fixed a, lim_sq Y(n,a) = a,
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9.20 Theorem

Let (D) denote the mean value of w(D,T) averaged over BPT(n).

Then u(D) = 3,5 oX(D,a)¥(n,a).

Proof:

p() =) 1 w(D,T)
{TeBPT(Nn)}

=b(n)”! ¥ > w(D,T)
{TeBPT(N)} 20

=b(n) 1Y 2. 2. 2, kK
a0 k20 ({TeBPT(n)} {i: m(Dj)=a, w(Dj,T)=k}

=b(n)” 1S > > k. [ {TeBPT(n): w(D;,T)=k}|
az0 k20 ({i:m(Dj)=a}

] §>o kgékrk(a'n_a)/b(n)) | (i m(Dj)=a} |

=5  X(D,a)y(n,a). §

a=0

9.21 Remark

Theorem 5.20, together with theorem 1.21 and values for log(f,(a,n-a))

derived from log(t) =2 i<log(i), and 1og(b(1)) =2 3<i<10g(2i-5), give

values for y(n,a) which can be efficiently calculated for large values of n,
allowing p(D) to be readily calculated in practice.

Table two (refer Appendix) lists the values of Y(n,a) for n<20. §
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We now consider the dual distribution M*.

9.22 Theorem

(1): Let Ho(w) = Ss 0" KCpy€ and G(y) = Hy(2y) + Hiy-(20).
Then for any TeBPT(n), M(T,c k) = [UKI(GL(W))C.

In particular, M(T,1k) = ("Ke, + N7K7Ic, )2k

(2): For TeBPT(n), the mean u(T,c), and variance g2(T,c) of the normalized

distribution of M(T’C’k)/zkzof"l(T,C,k) are given by:

(a): u(T,c) = C“(T)/Zn, where u(T) = ZXEC(n)W(X,T),
o

(b): H(T) = 2((3n-2)2" "+ (-)M)/g ~ "% (as n->co),

(c): g%(T,c) = c(6n+2 - (6n+1)(=2)! "N -2272N)/ g ~ 2C€N/ (a5 n->o0),

Proof:

Consider a fixed tree TeBPT(n) and a colouring X.

Represent T as in fig. 5.4 (a) (refer to following page), where the
endpoints of T,,T, have the colouring induced by X, and y,z denote the

respective colouring by X of the endpoints shown. Consider the two

cases Y=z and y=z. In the first case if wereplace T by the tree

T'eBPT(n-1) in fig. 5.4 (b), with the colouring X* as indicated, then
w(X,T) = w(X>,T'). Conversely, such a X* defines uniquely a colouring of
T. In case y=z, replacing T by T"" with the colouring X** indicated in fig.
5.4 (c), so that w(X,T) = w(X**,T") + 1. In this case precisely two
colourings of T induce the same X** corresponding to the cases

(y,z) = (a,b) and (b,a).
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(0 :

T, X

O
C

. O=®
@

(b) (c)

Figure 5.4

In this way, M(T,1,k) = M(T",1,k) + 2M(T"",1,k-1). Since T' and T"' have
resFactivelg n-1 and n-2 endpoints, induction on n shows that M(T,1,k) is
the same for all TeBPT(n).

Thus we can let M(n,1,k) denote M(T,1,k) for any TeBPT(n), and let

Gr(Y) = S MTLKYK giving G(Y) = Gr_y(W) + 24Gp o (Y).
A simple inductive argument with G,(y) = 2+2y, Gz(y) = 2+6y, shows that
Gn(yY) = Hy(2y) + H_1(2y), where HL(x) is defined as in the statement of

the theorem.

,,,,,

so that M(n,c.,k) is the coefficient of yK in Gn(g)c, as required.

(2)(a): We first note that 3, M(T,c.k) = G, (1)< =2"<.

Now u(T.c) = 27N/ 6, (W°] =) = 27"Cc6, (N6, (1) = 27NeG (D).

But, u(T) = ZXEC(n)W(X'T) = G'(1), establishing (a).
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(b): From the above recurrence for G (y),
Gn'(1) = G (1) + 2G_5'(1) + 2G,,_5 (1). Now G(1) = 2", and the
solution to this recurrence can be shown by induction to be

Gn'(1) = 2((3n-2)2"" (—l)n)/g, which gives u(T) as required.

(c): Similarly, G, (1) = G—1"(1) + 2GH_5"(1) + 4G,_, (1), which for
G,"(1) = G3”'(1) = 0, and G'(1) given as above, has solution

Gy (1) = 8(n-1)X((3n-8)2"73 + (-1)")/ 5. The result for g2(T,c) follows by

| _en 32
noting that g2(T,c) = (27N 0 /52y Gn(Y©| y=p + K(T.c) - p3(T,c), and

9%/ 82y Bn(WC | 4= = cle=NBLISTAG, (N2 + c6 (N6, (1). §

0.23 Remark

This independence of the underlying tree T in this theorem does not
generalize to r-colourings of BPT(n) or two-colourings on PT(n). Indeed
even |(T,c) depends on T if BPT(n) = PT(n,n-3) is replaced by PT(n,n-4), as
the counterexample T4, T,ePT(6,2) in fig. 5.5 shows.

M(T4,1,k) = 2, k=0
16, k=1

38, k=2
8, k=3

(T =116

M(T,,1,k) = 2, k=0
16, k=1
34, k=2
12, k=3

N

o |
/S

U(Tz) =132

Figure 5.5
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The next result gives an asymptotic expression for the expected weight of
random data, answering a question posed by Joe Felsenstein and Jim

Archie (private communication, Asilomar, June 1988).

0.24 Corollary

Let w(D) = min{w(D,T): TeBPT(n)}, and let w(c,n) be the average value of

w(D) over all sets of data of length ¢ on n taxa.
Then limC_>o<,W(C’r‘)/C = ((3n-2) - (—2)]_n)/9. Thus asymptotically
(in ¢) the average weight of random data on its best fit binary tree is the

same as the weight of random data on any fixed binary tree (or indeed on a

randomly-chosen binary tree).

Proof:

Since w(D) < w(D,T) for any fixed TeBPT(n), part 2 of the previous theorem
gives

wlen), < u(Te)y = ((3n-2) - (-2)!")/,, (1

Let ¢ = k2", and let X(D,¥) be the number of occurrences of colouring X in
D. For €>0, let G(n,c,e) = {D: |D|=c, | X(D.X)-k| < ce for all XeC(n)).

Then 1im._5,,2 "¢ G(nc.e)| = 1. (2)

This essentially follows from the weak law of large numbers, though we

give a combinatorial proof as follows.

For any XeC(n) we have |[{D: |D|=c, X(D,x)=r}| = “C.(2"-N<"", so that
Q‘HCZ{D: 0| :C}((X(D,X)‘k)/cﬂ = 2-nczr((r-k)/c)2 € (2N-1NC"T which is

asymptotically (in ¢) equal to O.
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Now

2 "% D =C}((X(D’X)'k)/c)2 > €227 NC|{D: |D|= ¢, |X(DY)-K)| 2ce}], so
that 1im._5 02 "< | {D: |D]=c,|X(D,X)-k)| 2ce}| =0, and since
G(n,c.e) = {D: |D|=c) - Uyec(n)(D: |D|=c, | X(D,X)-k| =ce), we have

122N 6(nece| =1- Zyec(n)2 " 0: D] =, [ X(.X)-K)| zce}| ~1, as

c->c0, @s required.

For each data set D choose T(D)eBPT(n) such that w(D) = w(D,T(D)).

Thus T(D) is a maximal parsimony tree for D. Then

w(en) = 27" . || =W O.T(0) 2 27X peg(n,c,eyW(O. (D) 2
27 NC6(n,ce) | (k& xec(mWX.TD)) - ce("/5) | cn) ),

since 0 < w(X,T(D)) <"/, for any XeC(n).

Thus, by (2), 1im_seW(SN/ > kZXW(X’T(D))/C- e("/,)2"
= ((3n-2) - (-2)!™M)/g - €("/)2".

Since this holds for any €>0 we have

wlen), > ((3n-2) - (-2)"")/qg (3).

The result now follows from the inequalities (1) and (3). §

2.20 Remark
Regarding u(T,c) as the expected number of steps required to fit random

data to a binary tree, we can compare u(T,c) with the expected number

J;'(Tn,c) of steps required to fit random data of length ¢ to a star tree

T,ePT(n,0) having no internal edges.




As before u'(T,.c) = C“'Un)/zn, where p'(T ) = ZXEC(D)W(X'TD) and

clearly, W'(Tp) = 2 g<k<pminlk,n-k}NC, .
It can be shown (Michael Carter--personal communication) that this sum
is n(2"-26,,)/5 where
5, = Mges I M= 2k,
(2 - e it n=2ke2,
In either case, W'(T,.c) ~ cn/z, compared with u(T(n),c) ~ Cn/3 for a

binary tree T(n) in BPT(n).

Table three lists p(T(n)), p'(T ) and their ratio.

n H(T(n)) 2T P/ (T )
4 18 20 .9

o 46 o0 92

6 114 132 .8636

7 270 308 .8766

8 626 744 .8414

9 1422 1674 .8495

10 3186 3860 8254

1 7004 8492 .8307

12 10474 19032 8131

Values for u(T(n)) and p’(Ty), with their actual and

asymptotic ratio.

Table Three

MASSEY UNIVERSITY,
LIBRARY
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5.26 Remaining questions

It would be desirable to extend the above results in two directions.

Firstly, the biologically-interesting case of four (or more generally r>2)
colours rather than just two might be considered. Secondly, an efficient
means of calculating from data D the variance of the distribution of trees
according to w(D,T), even for two-colours, would be desirable. One
approach would be to look for a suitable "closed form" analogue of theorem
1.6 for pairs of colours (with m(a) and n replaced by four parameters one
of which is required to measure the "overlap" of the two colourings).

Path/Edge Duality

5.27 Definitions

(a): Let [n]" denote the set of all even subsets of {1,...n}.

For Xe[n]™ and TeBPT(n), let 11(T,X) denote the set of edges Ve TT(1L%),

where 11(1,%) is the set of edges of T on the path joining vertices labelled
I 'and % (with 71(1,1) = ¢), and V denotes symmetric difference.
Since T is binary, the sets consisting of ¢ and the disjoint paths linking

endpoints of T form a group under V, so that 11(T,X) is a set of disjoint

paths, T1(X%2), T0(X3,%4),.. (Ko _ X0 ), where Ui{xi} = {1,...,n}.

(b): For TeBPT(n) with edge set E=E(T), assign an indeterminate x, to each
edge eekg.

For ECEq, let [E.Eg] =TT 1T

ceb¥e!oer -£(17¥e)-

+ = —_
For Xeln]™, let ry= TTQETT(T,X)(] 2><e).




The next theorem, which is exploited in section six, was stated in a
probabilistic setting by Hendy [1988]. The following proof is essentially a

combinatorial restatement of the original proof, with minor variations.

5.28 Theorem

(1): S (xepnyty - DXl = (g for o=g’

(N = 2" for o=0",

(Thus H = [(-1) | onx l l5 x is Hadamard).
(2): For any ceQ(n) there is a formal power series identity:

2(ECEy: p(E)=o)EEol = 2170 ety (IR0 T

Proof:

(]) Clearlg I[n]+ | = ZKZODCZK = Zn_].

Now [n]" forms an abelian group under symmetric difference V. For

041,0,€Q(n), consider the homomorphism

¢P: (N, V)->({1,-1}, )
O(x) = (-NIFINK|+|T2NX]

If o=0’, then ¢ is onto, since we can choose ¥eT -0, OF XeT,-T4, and

letting X = (1,x} gives 9(X) = -1. Thus |[n]"| = 2| ker9 | and the result

follows.

(2): We first show that for ECEg,
|ENTT(T,X)| = |p(E)NX| mod (2) (i)
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we have [ENTI(T,X)| = | VyexTTURINE | = | Ve (T(LX)NE) |

Result (i) now follows since xep(E) precisely if | 1w(1,x)NE =1 (mod 2).

For FCEg, and xe{0,1}, let
AR = 2(ECEq: | EnF | = % (mod 2))EEol (i)
Then
Ap(0) + Ap(D) = Z{E_C_Eo}ﬂeeExgﬂeeEo-E(]_XQ) - HQEEO(XQ+(]_XQ)) = 1.
(iii)
Also, if e € Eg-F,
Arue)(D = 2(ECEq: | En(FULe)) | = T (mod 2))EEo]
= 2(ECEq: e€E, |ENF|=0 (mod 2)){E.Eo]
* 2(ECEq: e€Eq-E, |ENF | =1 (mod 2))E:Eo]

= g2 (ECEo-(e): | ENF | 20 (mod 2))(E-Eo~(e)]

* (I780)2.(ECEqg—(e): | ENF | =1 (mod 2)}EEo~(el]
Multiplying both terms by (x,+(1-x,)) and expanding gives
Aeu(e)(D) = ®Ap(0) + (1=RNE(1) (iv)
By (iii) and (iv) it follows by induction on |F | that
A (x) = /o104 (CORTT c(1-2,)). (v)
Now we canre-write Ag(x) from (ii) as

Ap(x) = z<5fsQ(n)z{Eg_E0: p(E)=0 and |ENF | = % (mod 2)EEo) (Vi)

Furthermore, in view of (iii),

Ap(1) = /501 = Ap(0) +Ap(1)). (vii)
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Suppose F = 77(T,X). Then substituting (vi) into (vii) and using part (i),

A ()= /50~ Zaeam OIS ek )=o) 1EEoD

Identifying this expression for Ag(1) with that given by (v) gives

SoeamD T Siece: per=o)EE) = 1y

The result now follows by part (1). §

9.29 Corollary

Order the edges of T, and Q(n) and let x ,x’ denote vectors of

indeterminates indexed over the edges of T. Let s(X) be the vector of

values of Z{ECEO:D(E):O}[E’EO]’ and similarly for s(x’).

We may suppose Q(n) is ordered so that for N = on=1 sN(x) corresponds to
the uniform colouring induced by E=¢. Then under the usual inner product,

s(x).s(x’) = SN(Z) with z, = %, + ®'g - 2%%" 5.

Proof:

Using both parts of theorem 5.28,

s(x).s(x") = 2]_nz{XE[n]+}ﬂQEﬂ'(T,X)(]_ZXQ)HQETI'(T,X)(]_zx,Q)

- 2]_nZ{XE[n]+}ﬂQETI'(T,X)<]_2X8)(l_2xle)

2]_DZ{XE[DV}ﬂemT(T,x)O_zze)

SN(Z), by the second part of the theorem. §




5.30 Summary

In this section we have presented a number of attractive and useful
properties of parsimony on bicoloured binary trees. In particular we have
seen that the distribution of data on such trees is independent of the tree
topology, and have derived an exact expression for this distribution
(theorem 5.22). This leads to an asymptotic expression for the weight of
"random" data on its tree of maximal parsimony (corollary 5.24). We have
shown the usefulness of the elegant formula from theorem 1.21, by giving
an effective method for comparing the maximum parsimony tree with a
randomly-chosen tree (theorem 5.20).

A number of structural results have also been derived by exploiting the
vector space structure on edges and paths. A useful exercise would be the
extension of these results (and the others discussed above) to r-coloured
binary trees, for r>2.
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§6: Analysis of Cavender's

model.

"The matter unfortunately comes down to questions of the philosophical
foundations of statistics, which biologists are unlikely to resolve on their
own," J. Felsenstein 1988.

"Every probability is in reality a conditional probability, " Alfred Renyi.

6.1 Introduction

A statistical approach to the problem of reconstructing phylogenies,
presupposes a stochastic model describing how variations in sequence
data arose between different taxa. This model M, will have as a discrete
parameter the underlying tree T linking the taxa in question, and other
(generally continuous) parameters I'Clg. For any given tree T and variable
sequence data, X, the model M = M(T,I') will assign a unique probability to
the event of observing that X takes a particular value %, denoted

P(X=%; M(T,I')). Clearly if we wish to be able to always infer the unknown
underlying tree we require the following uniqueness condition:

P(X=x; M(T,I")) = P(X=x; M(T",T")) for all ¥ implies T=T";

(for otherwise we could not stochastically distinguish T from T', for
appropriate I',I""). From here there are (at least) three directions which

can be taken.

(1): Maximum Likelihood:
Given x and T let f(T,x) = max{P(X=x; M(T,T)): TCly} and let
(%) = max{f(T,x): TeBPT(n)}. Maximum likelihood selects those trees T

with 7(T,%) = f(%).
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The concept of maximum likelihood in general has been championed by
A.W.F. Edwards [1972] and frequently advocated for phylogenetic analysis
by J. Felsenstein (see, for example, Felsenstein [1983]; for a history of
this approach dating back to pioneering work by A.W.F Edwards and
L.L.Cavalli-Sforza in 1964, see Felsenstein [1988]).

Maximum likelihood has desirable statistical properties, such as
consistency and statistical efficiency. However the use of maximum
likelihood for phylogenetic analysis raises fundamental difficulties
(discussed briefly in section eight) in constructing confidence intervals.
Determining exactly (rather than heuristically) the maximum likelihood

tree, for a large number of taxa, is also computationally intensive.

(2): Prior distribution D on M*={M(T,I'):TeBPT(n), I'Clg}:

Regarding P(X=x; M(T,I')) as a conditional probability P(X=x|M(T,I')), a
distribution (with density function f(T,I')) on M* allows the use of Bayes
rule to calculate a modified (conditional) distribution.

We can then calculate the probability that any presented tree Ty is the

underlying tree, T given the data, as

P(Te= T %) = J'Fof(T,F)P(x=x; M(T.T))dr

ZT'eBPT(n)JFOP(X* M(T".0))F(T",T)dT.

This approach, can be incorporated into a "Bayesian” approach to
phylogenetic analysis, and can also be used classically by postulating a
biologically-meaningful prior distribution D, based on branching

processes.
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This type of approach has been discussed by Felsenstein [1983, p. 248]

and prior distributions on BPT(n) motivated by biological considerations
have been derived by Harding [1971]. One greatly appealing feature of this
approach is that one can talk about, and in principle calculate P(T =T | X).
A major disadvantage is that this approach involves two models, M and D,
and so places more assumptions on nature than approaches (1) or (3). The
calculation of P(T=T, | %) would also be difficult in general. This approach
and its difficulties have beenreferred to by Farris [1973] and Felsenstein

[1983], and we shall not consider it further.

(3): Confidence intervals:

Given the data, X, and given a pre-set «e(0,1), confidence intervals of
trees are constructed from X and «, so that no matter what values T and T
take in M(T,T), (1): « is a lower bound on the probability that the data
stochastically generated by M(T,T') will be such that the method will
construct a confidence interval containing T, and (2): these confidence
intervals eventually contain just T, with probability tending to one, as the
length of the sequences tends to infinity.

For such confidence intervals to exist, one requires M to satisfy certain
properties, for which sufficient conditions are certain independence
assumptions discussed below. This approach has been successfully
applied in special cases by Cavender [1978] and Felsenstein [1985], and is

developed in section eight.
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Stechastic preliminaries

6.2 Lemma

(1): For any family of events {E;,..E} ina probability space,

Proof: P(ﬂ]E]) = ]‘P((ﬂiEi)') = ]—P(UiEi')Z 1“ZIP(E") = 1= Zl(]”‘P(E]))

(2): Markov's inequality: For a non-negative random variable X,

P(X>o)< E[XK)/ k.

(3):1f X = (Xj,...X§) has a multinomial distribution with parameters A
and c, then:
(a): \/ar[><i] = C)\i(]—ki), COV[X]',XJ'] = ‘C>\i>\j, iZ].

(b): if g is a continuous real-valued function on X, then

liM o> P (| g(X/C)=g(A\) | <€) = 1 for all €>0.
(c): The conditional distribution of (Xj,..., XN_]) given that Xy =k is
multinomial with parameters ?‘/(I—XN) and c-k.

Ceal)2 . .
(d): let X2 = 'Zi(xi csj) /cs;. Then with N small, ¢ large and minj{cs;} not

too small, (eq. N = 4, c=1000, csj 2 5), X2 is approximated by a chi-square
distribution with N-1 degrees of freedom.

Proof: For (a), (c) and (d) refer Johnson and Kotz [1969], for (b) refer

Bishop, Findberg and Holland [1975, p. 465-472].
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The Model

We assume the model proposed in Cavender's seminal paper [1978], which
relates to earlier work by Farris [1973]. The model is based on simple if
strong assumptions involving independence, which make the model at least
partially tractible to analysis, as we show. The model also has a number

of desirable properties, for example it satisfies (by lemma 6.13 (4)) the
uniquenss condition described in the introduction.

Cavender’s model assumes an underlying evolutionary tree T4 linking the
set of species under consideration, with internal vertices representing
hypothetical ancestors. For each site z on the the aligned DNA sequences,
and at each internal vertex of T it is assumed that the corresponding
binary state, which belongs to the set {A,B}, is a random variable.

On edge e = [v,V,] let E(e,z) be the event that the state at site z and v;
differs from the state at site z at v,. The original model has the
following additional assumptions:

(1): {E(e,z2): 1=z<c, ecE(Ty)} are independent events.
(2): {E(e,z): 1=z<c} have the same probability, denoted p(e).
(3): 0<p(e)<0.5.

6.3 Remark

If assumption (1) fails in general it may hold if the sites are chosen
randomly and reasonably far apart. Assumption (3) expresses the belief
that a change from one state to the other in a given unit of time is as
likely as the reverse change--a belief partially supported by the relatively
equal proportion of the four DNA bases.

6.4 Definitions

(1) A weighted binary tree is a pair (T,w) where TeBPT(n), and w is
function from E(T) to RTu{0}. Let WBT(n) be the set of weighted binary
trees with n pendant vertices.

In Cavender’'s model we call p(e) the edge weight and indexing p(e) over

the edges of any TeBPT(n) gives avector p and a tree (T,p)eWBT(n).
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(2): For (T,p)eWBT(n), and one site on the aligned DNA sequences, denote
the probability of observing a given partition ceQ(n) by s(o; T,p) (or just
s(o) if the underlying tree is clear), and let s(T,p), (or just s(p)) be the

associated vector.

(3): Suppose the state along edge e of the underlying tree Ty changes

according to a Poisson process with rate j,. Then if t; is the temporal

length of edge e, p,t, is the expected number of changes on e, and the
endpoints of the e have a different state precisely if the number of
changes is odd. It is easily shown that p,t, = -0.5In(1-2p(e)), for

p(e)<0.5.

(4): Motivated by the Poisson model we call q(e) = u,t, theespected

number of changes on edge e, or more simply the edge length of e and let

q be the associated vector of edge lengths.

(S): For convenience let s(o; T | q) denote the partition frequencies on T

having edge weights for which q is the associated vector of edge lengths.
Thus s(o; T | q) = s(o; T,p) where Pg = 0.5(1 - Q-qu)_ Let s(T | q) be the

associated vector for g indexed over Q(n).

(6): Because temporal time is additive over the tree, the assumption that

Mg is the same on each edge of T (pe:u) imposes linear restrictions on the

Components of q, (and thus polynomial restrictions on the components of
p). Such a weighted tree is said to be subject to a molecular clock

discussed by Zuckerkand! and Pauling [1962].
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Central Observations:

6.5 Proposition

(1): For (T,p)ewWBT(n), and aligned sequences of length ¢ stochastically
generated by (T,p), let X(c) be the random vector obtained by indexing the

partition frequencies (the XO'S) over Q(n). By assumption (2) of

Cavender’s model and the assumption of the independence of changes at
different sites, (implied by assumption (1)), the probability of observing a
given value % for X, P(X=x; T,p), has a multinomial distribution, with
parameters ¢ and s(T,p). Thus an event (i.e. a set of possible values for

X), E, has probability

P(E: TP)=0 g gP(X=xi T,p) = Sy (g(C'7, )s¥

(2): We have s(0: T.P) = 2cce(T): p(C)=0)TeecPe Teee(T)-c1-Pe)

by the assumption of independence of changes on different edges.
Theorem 5.28 gives a useful alternative description of s(o: T,p), and the
corollary to that theorem, expressed in terms of edge lengths, becomes

s(T]q).s(T|q) = s(0¢: T|q+q"). Inparticular |Is(T|q)lI2 = s(cg: T|24q).

(3): (Induced weighted subtrees and aggregate data)
Frequently we wish to build trees by deciding the structure of subtrees.
Thus given a tree TeBPT(n) with edge weights p and partition probabilities

s we must relate these weights and probabilities to the partition

probabilities on the subtree T[S] (defined in 3.2) induced by a subset Selny

of the taxa.
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Let A(e) be the path in T consisting of the set of edges which collapse to
ecE(T[S]) under the map from T to T[S]. Then by a straightforward
argument (see for example Hendy [1988]), the probability that the

endpoints of the path A(e) are differently coloured is
O.S(I—TTQ,EA(Q)(I—2DQ-)). Thus the induced edge weights, denoted p[S], and

induced edge lengths q[S] are given by

p[Slg = 0.5(1- Ty p()(172Pg ). AlSlg = 2pveA(e)de"

Given SE[ﬂ]k, to discuss the induced partition probabilities it is

convenient to relabel the taxa so that S = {1,...k}.

The independence assumption in Cavender’s model allows us to calculate
s(g; T[S1,p[S]) from the s(T,p) by summing out all the possible states of
pendant vertices not labelled from S. A straightforward argument gives

the following result.

6.6 Proposition

For geQ(k), S = {1....k}

s(ay; TISLPISD) = 2(5eq(n): o,co)5(T: TP,

6.7 Definition

Finally given partition frequencies X and S = {1,...k} we obtain induced
partition frequencies X[S], on S defined by X[Sly = Z{O‘EQ(n): sco o

theaggregate of the data relative to S. Aggregating data allows us to
relate the probability of events generated by the weighted induced tree

T[S, p[S] to events generated by the weighted parent tree T,p.
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lnvariants

This section generalizes to WBT(n) results of Hendy [1988] and Cavender
and Felsenstein [1987] which describe invariants of Cavender's model on
WBT(4).

6.8 Definitions

(1): An admissible set S, is a collection of disjoint sets Xj,..., X[ each

belonging to [n]* (the set of even subsets of {1,...n}).

(2): Given an admissible set S = {X;,...,X, }, TeBPT(L) and ecE(T) define

v(s.T.e) to be | (j eem(T.X)} .

(3): Define relations ~T (resp. <1) as follows:

S~1S’ (resp. S<TS‘) precisely if for each ec¢E(T), v(S,T,e) = v(S',T,e),

(resp. v(S,T,e) = v(S',T,e) and v(S,T,e) < v(S',T,e) for at least one ecE(T)).

(4): Given admissible sets S,S’ let (o) be an indeterminate for each

ceQ(n), and let p(S,S’) be the polynomial with integer coefficients defined
by:
p(5,50(%) = Ty, o2 (1) [onX (o) - Myeseg(-1) [0nX (o).

Note that no tree structure is used in defining this polynomial.
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6.9 Theorem

For admissible sets (S,5') we have:

(1): If S=S’ then p(S,S’) is not the zero polynomial.

(2): S~1S’ precisely if p(5,5)(x) =0 for all x = s(T,p), DE[O,O.S]Zn_3.

(3): S<1S’, precisely if p(S,5')(x) > 0 for all x = s(T,p), pe(0,0.5)2N73,

(4): The collection of all pairs of admissible sets (5,S’) for which S~1S,

characterizes T.

Proof:
(1): For XS{1,...n), et 4x) = S geqqm(-N | 9% k(o)

and suppose q(X;) = Aq(X,), for A= z1. Identifying the coefficient of %(c)
for o={1}, {1,2}, (1,3},...{1,n} in q(X;) and q(X,) gives:
X1 = Yo, iT A=1 Xy = XoU{1} or X, = Xu{1}, if A= -1 ()

P(5,50(%) = TT i 9% = T << :a(Y). Thus if P(5,5')(x) is the zero

polynomial we have n]siskq(xi) = ﬂ-lsiSk‘q(Yi) ) in 2[x(o),..., ><(o‘N)].

But this ring is a unique factorization domain (Herstein [1975, p.166]) and

for any XC{1,..,n}, q(X) is a prime element of this ring, so that if

p(5,5)(%) = 0 then for some permuation of © of {I,...n}, q(xi) = tq(Yt(i)),
for i =l..,n. Finally since X; and Y (j) are sets of even cardinality we

must have X; = Y’U(i) by (*), as required.
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(2):(=) It Xelnl", geQ(n), then by theorem 5.28,

ZG(—I) | oNx | s(o; T,p) = ﬂem’(T,x)O_ZDe)’ so that

MyesS oD T s(o: 1) = T, g py-20) S TB. ()

Since the right-hand side of this equation depends only on v(S,T,e), the

result follows.

(<) For an edge eqeE(T) set p, = 0, Tor all e=eq, and set Py = (]_‘X)/z,

giving We(l—ZDQ)V(S’T’Q) = V(S.T20) Thus if p(S,5")(s) = 0, the equation

(*) above gives «¥(S:T:€0)= o V(S'.T.80) 55 that for «=0,1,
V(S,T,Qo) = V(S',T,Qo).

Since this holds for all eqeE(T), we have S~1S'.

(3)(=): The proof mirrors (2), noting that (l—ZDQ)V(S'T'Q)>(l—ZDQ)V(S"T'Q)
if v(S,T,e)<v(s',T,e), for pee(0,0.5)2”_3.

(<): A similar proof as in (2), except that since pe(0,0.5)2”_3, we must

take pg:e>0 for all ezey and DQo = (]"“)/2, «x=z0,1, and let € tend to zero.

(4): Suppose ((S1,S,): Sy~7S2) = {(51,52): Sy~ 1S5}, where (S4,S;) are

admissible sets. If T=T’ there exists by proposition 3.11 a set Se[L]4 with
TISI=T'[S]. Suppose T[S] = (xy)(zw), while T'[S] = (xz)(yw). Let

S1= {{x,y,w,2}} and S, = {{x,u}, {w,z}}. ThenS;, S, are admissible sets and

51“’T52 but 51<T’52' which gives the required contradiction. §
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6.10 Example

For n=4, the admissible sets are ¢, ({i,j}}, (i,j=1,...,4), S; = {{1,2},{3,4}},

S, = {{1,3},{2,4}}, 55 = {{1,4},{2,3}} and S4 = {{1,2,3,4}).

For T =(12)(34), we have Sy~7S4<1S2™v 153

Order Q(4) as {1}, (1,2}, {1,3}, {1,2,3}, (1,4}, (1,2,4}, (1,3,4}, {1,2,3,4} and

order (41" as &, (1,2}, (1,3}, (2,3}, (1,4}, (2,4}, (3,4}, (1,2,3,4).

Let r =r(T,p) be the vector of values of ﬂQEﬂ'(T,X)(]_ng) with X indexed
over [4]" ordered as above, so that the above relations become:

Folg =g, 4l's = '3, Mg = 4r's, as described by Hendy [1988]. Furthermore
we have ri=1,and riz0 for all i. We now show that with two more
conditions these are sufficient for a vector reR8 to be induced by edge
change probabilities. This then characterizes the image of

{s(T,p); pel0, 0.5)°}, since s and r are related by an invertible linear

transformation given in theorem 5.28.

6.11 Lemma

For T =(12)(34), {r(T,p) : p €[0, 0.5)5} is precisely the set of real 8-tuples
satisfying:
(D:ry=1,r,>0 for i>l.
(2):(a)r, < min{r4/r3, r3/r4}
(b) r7 < min {rS/r3, r3/,,5}
(c) g = Nals

(3) Fore =g, glg=rzlg.
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Proof:

Neccesity is easily checked, so suppose ry,...,rg satisfies conditions

(1) to (3). Let p; = In(ry), and let K be the matrix:

F}

00000

1000

I 01 01

o1 1 01

1001 1

o1 01 1

001 11

1110
Now let D be the 5 by S submatrix of K onrows 2,3,4,5,8.
ThusD=[1 1 0 0 0] and D7!1=05 [1 1 -1 00
01 0 1 I =11 00
o1 1 01 =11 0-1 1
001 1 -1 =10 1 1

1110 [0 O 1

-

Using (1) and (3) to eliminate py, pg and pr, and applying D™' to the
resulting subvector p’ of p it follows from the conditions in (2) that

D"p‘ <0 so taking pj = 0.5(1-exp( D"p'i) we have 0<p;<0.5 so that

P = [P1P2.P3.P4.Ps] can be regarded as edge change probabilities. But

p = -2Kq, where q; = -0.5In(1-2p;), so that if the edges of T = (12)(34) are

ordered so that pendant edges have the same label as their incident
pendant vertex and the central internal edge is the fifth edge then p

induces r(T,p), as required. §

6.12 Remarks

(a): Conditions (1) o (3) imply r; <1 for i=1,..8.

(b): For the other two trees in BPT(4) one gets corresponding image sets

in the natural wauy.
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Partition probabilities

The following results are required in sections seven and eight.

6.13_ Lemma

(1): s(Tq: T,p) is a strictly decreasing function of each of the components
of p.

(2): For o=z0y, s(Tg: T,p) 2 s(0; T,p), with equality precisely if p = 0.5].

(3): For fixed T, the function p->s(p) is one-to-one on [0,0.5)2N73,

(4): For T=T", p € (0,0.5)2N73, p’€[0,0.512"73, we have s(T.p) = s(T".p").

(S): For any event E=9, if po>0 on each pendant edge of T, then P(E; T,p)>0.
(6): P(o; T,p) is the same for all TeBPT(n) and all ceQ(n), (in which case
P(o; T,p) = 27Ny it and only if at least one edge onevery path linking

each pair of pendant vertices has weight 0.5.

Proof:

(1): By theorem 5.28, s(Tq) = Z{X "), where

ry = T[QET{'(T,X)(]_ZDQ)’ which immediately implies (1).

(2): By theorem 5.28, s(g) = 2! T ey | onX| Iy, and for o=ag
there is a set Xe[n]” for which |onX| is odd (indeed, by theorem 5.28 (1),
}( ) | onx | =0). Comparing this with the expression in the proof

Z{Xe

of (1) for oy gives (2).

:ror e n),le e e the y n-3) matrix
(3): For TeBPT(n), let K = [K(X:2)ly [n]* ceg(T) D€ the 2" 'by (2n-3) mat

defined by K(X,e) = 1if ee1r(T,X), 0 otherwise. Then kK = 2“‘3(I+J),

(Hendy [1988]) which is full rank. Hence K is one-to-one.
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Now by theorem 5.28, s = ]/8Hr with H = [(-1) l onx I ](j Y (as in theorem
5.28 (1)), r = exp(-2KQq), where q, as in definition 6.4 (4), is given by
qQp= - O.SIn(l-ZDQ) (itis here that p,<0.5 is required).

Thus s is a composition of one-to-one functions, and so is one-to-one.

(4): Suppose T=T'. Then there exists a set SCL, |S|=4 with T[S]=T'[S], by
proposition 3.11. By proposition 6.5 (3), it suffices to prove the result
for WBT(4). But this follows immediately from the invariants described

in example 6.10.

(5): Since E=d, we can choose %¢E. Then
P(E; T,p) 2 P(X=x; T,p) = (m!/xl)sx. Now for any ceQ(n), let F(c) be the

set of pendant edges incident with the pendant vertices having labels in C.

Then s(o) > WQEF(O)DQWQEE(T)—F(O)(]_DQ) >0. Thus s(T,p) >0 so that

P(E; T,p)>0, as required.

(6): By theorem 5.28, if s(cg) = 2~ then
I= Z{Xe[n]+}r>< = ]+Z{><e[n]+:><z<1>}r><' so that (1-2p,) = O for at least one

eeTr(T,X) and all Xeln]™.

Conversely, suppose this condition holds. Then for any ceQ(n), by

theorem 5.28, s(o) = 27 N*I 2 (xe[n1D | onX| Ve 27N+l g

Finally we strengthen part (4) of the previous lemma to obtain a result
which is required in section seven. Define s™(T,p) to be the vector s(T,p)

with the component s(cq: T,p) deleted. We show s”™(T,p) defines T.
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6.14 Theorem

If T=T", p,p’ € (0,0.5)2N73, BeR, then s™(T,p) = Bs™(T"p").

Proof:

As in part (4) of the previous theorem it suffices to prove this result for
n=4. Let T = (12)(34), T' = (13)(24), and order the paths on T and T’ as
70(T,X) (resp. 11(T',X)) where the sets X are ordered as in example 6.10.
Lets;=s"(T,p), sy =s™(T'p’), and suppose s; = Bsy".

Thens(T,p) = [51,50]t, s(T',p’) = [,Bs‘,so‘]t, (where [x,a)l is the vector
obtained from % by adjoining a).

Since the components of both vectors sum to 1 we have

B = (1-s¢ )/(]_50)'

Using the notation of example 6.10, we have r(p) = Ht[s1,so]t. If Hyis the
submatrix of H on the first 7 rows, we have r(T,p) = H1ts1+50j (where

i = 0,100, while r(T,p") = BH;'sy*sq’].

Thusry" = Bry +sg'=Bsg = fri +A, where A = (50"50)/(]_50).

we show B>1 and B<I, a contradiction. First sincerg' = rz'rg’ we have
B2r3rg*t BA(r3+rg)-Brg*A2-1=0. Now B+A=l, so this equation becomes:
B(B(rs3rg-r3-rg+)+(r3+rg-rg-1)) = 0. Since §=0, we have

_ (I+rgr3- = (M+rgmrzr
g="rgrs r6)/(l+r3r6—r3—r5)" (I*rg=rs 6)/(1—r3)(l—r6)'

Now rg>rsrg so that (1+rg-rz-rg) > (I+r3rg-rs-rg) = (1-r3)(1-rg). Thus the
numerator of f exceeds the denominator, which is positive since rz,rg<l,
giving $>1. Now this holds for any p and p’ and if s™(T,p) = 8s™(T',p") we
have s™(T'p) = B_]s"(T,p). Thus repeating the argument (replacing T and

T') we would deduce that B_]>l, which contradicts 8>1, as required. §
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6.15 _Theorem

Any linear combination of the coordinates of s(T,p) is nonzero except on
an algebraic subset of p values in [0,0.5]2n_3.

(Recall that UcRK is algebraic precisely if U = {x: p(x) =0} for some

non-zero polynomial p € R[xj,..., xk]).

Proof:

Suppose 269\05(6; T,p) =0 for all pe[O,O.S]zn_3. Applying theorem 5.28,
2 (xe[n]*}dx % = 0 for all p, where dy = ZO(—I)|Om>< | Ag. We show dy=0
by induction on | X|. For |X|=0, let p,=0.5 for all ecE(T), giving dg= 0.

For |X| =2k, setp, = 0 for eem(T,X), and p, = 0.5 for eeE(T)-7r(T,X). Then

dy + ZX’CX,X‘ZXGX‘ = 0. Since the sets being summed over in this
equation have cardinality less than 2k, we can apply the induction
hypothesis to deduce that dy, = 0. Thus for all Xeln]”, dy = 0,and since A 4

= zl‘ﬂz{xdnm(-])lgmx | dy, we have A5 = 0 for all g, a contradiction.

Thus f(p) = 2 5A5s(T: T,p) €RIpy...ppn-3), With T(p) not = 0, so that p

lies in an algebraic set. §

The previous theorem implies that, except for exceptional values for p,
2. 5Cgs(0: T,p) =, implies c5 = %. Thus 2 5s(0; T,p) = | is essentially the

only linear relationship between the components of s (except for

exceptional values of p).

We now give bounds on s(cg; T,p), the probability of observing a uniform

colouring on (T,p).
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Choose a pendant vertex vy of T as root, and direct all edges of T away
from v,. Let p;be the weight of the pendant edge incident with vy and for
each internal vertex velV(T) let {v(1), v(2)} be the two edges of T incident

with, and directed away from v.

6.16 Lemma

W e (mdu()u(2) = 8(T0: TP = Ty 1y Ty (v () Iv(2) Pu(1)Py(2)):

where do == Po-

Proof:

The left hand inequality is just the statement that a sufficient condition

for all the pendant vertices of T to be the same colour is that there are no
colour changes on any of the edges of T. The right hand inequality is
proved by inductiononn. For n < 3 the result/holds. Suppose the result is
true for all n<k, k>3. For TeBPT(k+1), choose a pendant vertex vi. Then
since every TeBPT(n), n=4 has at least two binary edges (definition 2.17),
we can.choose two pendant vertices v,,v3, both distinct from vy, which
have pendant edges incident with a common internal v of T. Deleting v,

and vz and their incident edges, and labelling v and the other pendant

vertices from the set L gives a tree T'eBPT(k). If O, is the partition of T’

corresponding to all labels other than the label on v, and p’ is the

restriction of p to T, we have
s(Toi TP) = Ay (1NAy(2)5(Tas T'P") * Py(1)Py(2)s(Tr T'.PY).

But by lemma 6.13 (2), s(oy; T,p") < s(Tg: T',p"), which establishes the

induction step. §
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6.17 Corollary

If each edge of TeBPT(L) has edge weight >p, then
s(Sg: T,p) < q(q2+p2)" "2 where n =|L|, q =1-p.

Proof:

By lemma 6.13 (1) we may assume each edge has weight p. The result now

follows from the previous lemma. §
6.18 lLemma

For k >0, C>k/2, let p(n) = Cln(n)/n, S(n) = nk(1-2p(n)+2p2(n)N~2,

Then S(n) ~ 0.

Proof: Choose n sufficiently large so that x(n) = 2p(n)-2p2(n) lies

2
between 0 and I. Then since In(1-y) < -y+9°/, for ye(0,1),

IN(s(n)) < kin(n) + (n—2)(—x(n)+x2(n)/2) -> -c0 a5 N->00, as required. §

The last theorem in this section is an illustration of the use of some of

the above results, and is referred to in section eight. We show that if the
number of sites grows no faster than a polynomial function of the data,

and the edge lengths of the underlying trees don’t go to zero too quickly

then with increasing certainty, all partitions (including the uniform

partition gq) will occur at most once.
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6.19 Theorem

For (T(n),p(n)) e WBT(N), suppose
(1): min{npe(n)/ln(n): eeE(T(N))} ->0, as N->c0,
(2): ¢ grows as a polynomial function of n.

Let A, be the event that XO(C) <1 for all geQ(n).

Then P(An; T(N),p(N)) ~ 1.

rooil:
Let 2(X) =2 geqmXa? = Xg)
Thus on (T,p)ewBT(n), E[Z2(X)] = ZOEQ(D)E[XO2] - ZO’EQ(D)E[XO]'

Now zGeQ(n)E[XG] = ¢, the number of sites being sampled,

while, 2 gean)EXa?l = Zaeam)(VarlX gl + ElX51%)

= 2.5eq(n)cs(0)(1-s(a))+c2s(0)?, by lemma 6.2 (3a).

Thus E[2(X)] =c + (CZ_C)ZO’EQ(I’\)S(O)2 -c< C2ZOEQ(D)S(O)2

By corollary 5.29,

2.5e0(n)8(T3 Tp)? = s(0gi T,p"), where py’ = 2p,(1-pg), and from corollary
6.17, s(Cg; T,p’) < o<”'2(l—p‘), where « =1-2p'+2p'2, and p' = 2p(1-p), and

D = min{pe: eeE(T)).

Applying this to T(n),p(n) gives

E[Z(X)] < C20<n_2(l-p'n) < 2«2 where « :1-2p'n+2p'n2, and

P’ = 2P (1=Pp). Pp = Min{p,(n): ecE(T(N))).

Now since nDn'/m(n) > MPn/)(ny=>e0 @s n=>e0, if € = o(nK), then by lemma

6.18, 1M _5 o E[Z(X): T(n),p(n)] = 0.
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Since Z(X)20, Markov's inequality, (lemma 6.2 (2)) gives
P(Z(X)=1; T(n),p(n)) < E[Z(X); T(n),p(nN)]. Thus P(Z(X)=1; T(n),p(n)) ~ 0. But

Ap, is precisely the event that Z2(X)<1, which gives the required result. §

6.20 Summary
Cavender's model is at the same time simple yet powerful, being based on

assumptions of independence. These reduce much of the theory in section
seven to the analysis of the partition frequencies s. Cavender's model
guarantees that these partition frequencies characterize not only the edge
weights on a tree (lemma 6.13 (3)) but also the tree itself (lemma 6.13 (4),
theorem 6.9), allowing for the consistent recovery of trees from the
sequence data they generate. Indeed not all of the s vector is necessary to
characterize the tree (theorem 6.14). It would be interesting to know just
how much of s characterizes T and/or its edge weights. For example one
might consider just the partitions induced by deleting edges of T.




§7: Conslstency

"Nothing general is known about what the conditions for consistency (of
parsimony} might be..." J. Felsenstein 1988.

7.1 Introduction

Many of the methods used to build phylogenetic trees are based on the
principle of parsimony. One version of this principle, sometimes called
Wagner parsimony, is to fit data to that tree (or trees) requiring the
fewest number of mutations on its edges. Another version, sometimes
called compatibility, or the "clique method", is that data should be fitted

to the tree(s) having the largest number of sites which fit the tree with at
most one edge change (i.e. without duplications). A major motivation for
these principles is the belief that changes (mutations) at DNA sites are
rare, so that only changes that are absolutely necessary to explain the
variation in the data should be allowed. Underlying this belief of rare
events is the inherent assumption of a probability model, which we take
to be Cavender's model. In this case, Felsenstein [1978 (2)] has shown that
with four taxa Wagner parsimony and compatibility are not always
consistent. Consistency is the desirable statistical property that as the
number of DNA sites sampled tends to infinity, the probability that the
chosen tree (derived from data generated under Cavender's model) is the
underlying tree that produced the data, tends to 1.

Felsenstein's example requires an interplay of short and long edges to
achieve inconsistency. We first exploit the essentials of why his
counterexample works to show that two general classes of tree-building
methods will fail to be consistent in general on four taxa. Then
concentrating on parsimony, and extending the analysis to trees on n taxa,
we show that even if all edges are the same length consistency can fail.
In the process we show that Wagner parsimony can fail to be consistent
under conditions where compatibility will be consistent. It is shown that
imposing a molecular clock does not improve matters, extending work by
Hendy and Penny [1988].

A second major result in this section is the establishing of sufficient
conditions for the consistency of compatibility on all trees. The
corresponding question for Wagner parsimony is also considered, though it
appears more difficult.

We begin by making precise what we mean by a method for choosing trees,
and then derive some general results before concentrating on parsimony.
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Selection Procedures

7.2 Definition

A selection procedure ¢, is a function, ¢: Az(n,c)->28PT(n), where A,(n,c)

is as defined in 4.9.

7.3 Remark

Certain statistical selection procedures (for example the one described by
Cavender, [1978]) may not select a tree (corresponding to the {¢} option)
if the data significantly rejects all trees, suggesting that the model itself
is inerror. At the other extreme all trees may be selected if there is

insufficient data to reject any tree.

Gonvergence and Gonsistency

7.4 Definitions

Let X(c) be a sequence space of length ¢ stochastically generated by

(Tq.P). A selection procedure 9 converges to TeBPT(n) on (Tq,p) if
M o5 0oP(PX(C)) = {T) To.p) = 1.

A selection procedure ¢ is consistent on (Tq,p) if § converges to Ty.
A selection procedure is always consistent if it is consistent on (T,p) for

all TeBPT(N) and all pe(0,0.5)2N73,

7.5 Remark

An alternative definition of consistency, (implicitly suggested in

[Felsenstein, 1978 (2)]) is P(lim._5 o, P(X(c) = {Tg}i Tg,p) = 1.
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This says that with probability 1, there exists a natural number cg such
that if X(c) are the partition frequencies for the initial segment of length
c of a collection of infinitely-long, aligned sequences, randomly generated

under Cavender's model, then 9(X(c)) = {T}, for all c>cq. Thus the

selection procedure is guaranteed to eventually converge to the true tree
and remain so from that point on. While the results in this section will
work under either definition, we will take consistency to be the former
version since under the latter version only the existence ¢y can be proved
using probabilistic arguments--never a bound for it. However the former
version allows the assignment of lower bounds on relevant probabilities
for any fixed length of sequence, given (Tq,p). This is illustrated in

section eight.

7.6 Definition

(1): A selection procedure is linear if to each partition o and to each
tree TeBPT(N), a real-valued weight W(g,T) is assigned such that:

(a): for any two trees T4,2T,, there exists a ceQ(n) with W(c,T)=zW(C,T,),
(b): the trees selected are those that minimize > ;W(0,T)X 5.

(2): A selection procedure is central if it depends only on those

partitions o with 2<| o | < n-2 and c=0q.

7.7 Examples : (Compatibility and Wagner Parsimony)

Wagner parsimony and compatibility are both linear, and the former
procedure is also central in the above sense. For Wagner parsimony
W(o,T) = w(o,T) (the number of steps required to fit o to T, as in section
five), while for compatibility, W(o,T) = -1if ¢ is induced by deleting an
edge of T, and W(c,T) = 0 otherwise.
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Note that if we index Q(n) to obtain a vector W(T), then for compatibility
<W(T),W(T,)> = 2n—3—d(T1’T2)/2, where d is the symmetric difference

metric from section two. Among other major methods of tree
reconstruction, those using dissimilarity are sometimes linear. For
example in selecting a tree in BPT(4), one approach, based on the four
point condition (see Bandelt and Dress [1986] for a description of this
property) is to choose T= (ij)(k1) if d(i,j)+d(i,k) = min{d(x,y)+d(z,w):
{x,u,z,w}={1,2,3,4}}.

Since § is linearlg'related to X (example 4.5), this procedure is linear.
Statistically-based methods such as maximum likelihood (Felsentein,

[1973]) are generally neither linear nor central.

/.8 Theorem

For data stochastically generated by (Tq,p), any linear procedure

converges to that tree T (if any) which strictly minimizes

ZOW(G,T)S(O; To.P). Such a tree exists except on an algebraic set of

values for p.

Proof:

First suppose at least two trees Ty, T, minimize 3, ;W(0,T)s(0: Tg,p). Let
Ag = W(0,T1)-W(0,T,). By part (a) of the definition, A\ ;=0 for some ©.
Now by theorem 6.15, 267\65(0; To.p) = 0 only on an algebraic set for p.
Otherwise we may suppose ZOW(O,T)S(O; To,P) is strictly minimized by a
tree Ty. For Te BPT(n), and any vector v indexed over Q(n),

let 2(T,Ty,v) = 2 5(W(o,T)-W(0,Ty))vg, so that T, is selected precisely if

2(T,T,X)>0 for all T=T,.
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Now P(Z(T,T1,X)>0; Tq,p) = P(2(T,T,X/c) = 0; To.p)
> P(| 2(T, T X/¢) =2(T,Ty.8) | < 2(T,T1,8): To.P),
where s = s(Tq,p).

Since 2(T,T,5(Tq,p))>0, and E[ 2(T,T4,X/c)] = 2(T,T;,s) lemma 6.2 (3b) gives

liM -5 P(Z2(T, T1,X)>0) =1. The result now follows from lemma 6.2 (1). §

7.9 Theorem

Linear and central methods are not always consistent, even on four taxa.

Proof:

For the tree T as in fig. 7.1 set p1=p3=«, P2=P4=Ps =B, with x2=8(1-8) so
that sy,=543. Interchange pendant vertices 2 and 3 on T, leaving all the
edges and their weights unchanged, to obtain a weighted tree T', with
central partition probabilities s'ip, s'i3, S'14, S1234 the same as those for
T. Thus for a central procedure ¢,

P(P(X) = (T} T,p) = P(P(X)={T}; T",p) < 1=P(P(X)={T"}; T',p).

In particular P(P(X) = (T}; T,p) and P(P(X)=(T'}; T',p) cannot both tend to |

as ¢ tends to infinity. Thus ¢ cannot be always consistent.

1 3

P1 D3

Ps

P2

Figure 7.1
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Suppose now there is a linear selection procedure ¢ which is always
consistent.

Let §(T,T,,0) = W(T1,0)-W(T,,0). Then by theorem 7.8,

Mo os P2 gXg8(T1.T2,0)<0: Ty.p) = 0 if 3 55(5)8(T1,T2,0)>0

For i=1,..,4, let Ty = (12)(34) and T, = (13)(24). Assign weight p to the
edge of Ty, and T, incident with the pendant vertex labelled i, and assign

weight € on all the other edges, giving a edge weight vector p(i).

If o; denotes the partition induced by the colouring {{i}, L4={i}}, then

2.58(a: T1p())6(T1,T,,0) = 8(T1,T2,0(i))p + O(e).

By choosing € sufficiently small, the consistency condition for T;requires
that §(T,T,,0(i))<0. Repeating the argument for T, gives §(T,,T,0(i))<0.
But §(T,,T1,0(i)) = =6(T,,T,,0(i)), hence §(T,T,,c(i))=0 for i=1,2,3,4.

Taking p = €], we have 2, ;s(0; T,p)8(T},T2,0) = 8(T1,T2,09) + O(e), and by a
similar argument, §(T,,T,,0¢) = 0. It follows that any consistent linear

method is central contradicting the first part of the theorem. Hence there

cannot be a consistent linear selection procedure on n>4 taxa. §
The next result shows that if a selection procedure is always consistent
on four taxa it can be turned into a selection procedure which is always

consistent in general. We apply this result shortly.

/.10 Lemma

Suppose a selection procedure ¢ is always consistent on four taxa. For

Nn>4 taxa define
P*(X) = <U56[n]4<p(><[5])>, where <Q> is given in definition 3.10, and X[S]

is the aggregate of X relative to S.

Then ¢* is always consistent on n taxa.
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Proof:

By proposition 3.11, <USe[n]4T[S]> = {T}, so that

PIP*(X(c)) = {T)) 2 P(Ng (), PX[SI(c) = TIS]: TSLpIS]) which tends to 1 as

c->c0 by lemma 6.2 (1) and the consistency of ¢, as required. §

7.11 Remark

While linear selection procedures are in general inconsistent there exist
selection procedures which are always consistent and which are quadratic

in the sense that the procedure chasses that tree T minimizing
2gW(o, TIX 5 + 201,02W(O"62'T)X01X02 for suitable weights W(o,T),

W(04,0,,T). Such procedures arise from the quadratic invariants described
in section six. An explicit example of a quadratic selection procedure is
"closest tree” (Hendy [1988]. For a proof that it is quadratic in the above

sense see Hendy [1989]).

Consistent recovery of trees from dissimilarities

One problem which arises from attempts to consistently infer phylogenies
from dissimilarities is that frequently the number of sites, ¢, which could
have changed is unknown. Indeed even the number ¢* which actually
changed may also be unknown, since the dissimilarity matrix gives only
bounds on c*, asillustrated in example 4.5. We now show that using just
the dissimilarity matrix, and without knowledge of ¢ or ¢*, (and without
assuming a molecular clock) there exist procedures for consistently
recovering trees. This is not entirely obvious in view of the loss of
information involved in converting sequences to dissimilarities, as

described in section four.
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By lemma 7.10 it suffices to consider only trees with four taxa.

Consider the truncated vectors X and s™(T,p) defined by X = [X7, XOO]t,

s = [s™(T,p), S(OO)]t. Write the dissimilarity matrix as a vector §, so that

c* and § determine X~ as in example 4.95.
Given §, let 1(8) = maxij{sij}. For each tree T on the four taxa, assign

edge weights p(T) and a value ¥=Y(§, T) for c*, with 1(8§)<¥<21(8) so that

for the associated partition frequencies X~ = X*(8,9(T)) we minimize
A(T) = ||X™ o = (1=5o(T.p(T)) ™'~ (T.p(T))||. Finally let ¢ be the procedure

which selects that tree (or trees) that minimizes A(T).

7.12 Theorem

¢ always converges to the underlying tree Tq as 1(8)->co.

Proof:

First note that 1(§)->c precisely if c*->c0,

Let s7=5"(Tg,pg) and sq = s(Tg: Tq.Pg).

Let g = min{ll(1-s¢)™'s™ = B(1-5o(T,p))™'s™(T,p)Il: T=T¢, Pe(0,0.5)5,B€R).
By theorem 6.14, €¢>0.

Let Ey = E4(c*) be the event that

%7/ cx = (1=5g) 87| < €0/,

let E, = E»(c*®) be the event that A(Tg) < 60/4

and let E3=E3(c*), E4=E4(c*) be respectively the events that
AT, A(T,) 2 60/4, for the other two trees T;,T,eBPT(4).

Finally let Es = Es(c*) be the event that A(Tg) < min {A(Ty), A(T,)}, that is,

that ¢* selects Tg. We wish to show 1im x_s P (Es(c*)) =1.
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Since ¢* lies between 1(8) and 2.1(8), as shown in example in 4.5, we have
EiCE,. Also EoNE3zNE4 CEs so that EyNEsNE4CEs. Thus

P(Es) > P(E4NE3NE4). (*)

For i= 3,4 let Ei' be the complement of Ei. Thus Ez' is the event that

1% /’b’(T1) - (I—SO(T1,D(T1))']s"(Ti,p(T))II < €0/,. But this implies

1X7/ ox = 8'(1=5o(T1p(TY) 18 (T1p (Tl < €0%(T1)/ , s where 8=F(T1/ .,
and this is <50/2 since ¢*>1(8) (example 4.5) and J(Ty) is chosen <2.1(§).

Then by the triangle inequality for Euclidean distance, and the definition

of €y, we see that EjNE3’ requires
||(l—50)'1 A—B'(]—SO(T1,D))_]SA(T1,D)|I < 360/4, which cannot occur by

definition of €g. Thus E/NE3’ =, and similarly E\NEz’ = ¢, so that
EiNE3NE4 = E;.Combining this with (*) we have

P(Es) 2 P(Ep. (%)

But by lemma 6.2 (3¢) X~ has a multinomial distribution with parameters
c*,and s7/(1=sg).  Thus M se_s oo P(|[X™/ o = (1-50)-13"“ <e¢)=1for all
€>0, by lemma 6.2 (3b). Inparticular, taking e=¢4 we have

1M s _s P (Ef(c*)) = 1, s0 that, by (**), limasx_sP(Es(c*)) =1, as

required. §
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Consistency of Parsimony and Gompatibility.

We now establish conditions for the consistency of Wagner parsimony and

compatibility.

7.13 Definition

Let e be anedge of TeBPT(n). Then e partitions the labels of the
endpoints of T into two sets, Ly(e), Ly(e), corresponding to the two
component subtrees of T-e.

Then for ceQ(n), o isinduced by e, if =L (e) or Ly(e). We let QI(T)
(resp. QP(T)) be the set of ceQ(n) induced by an internal (resp. pendant)
edge of T, and Q(T) = QUT)UQP(T)U{Tg}, the "treelike” partitions of T.

7.14 lemma

Under Cavender's model, for sequence data stochastically generated on
(Tg.P)eWBT(N),

(1): compatibility converges to a tree TeBPT(n) if T strictly maximizes
ZOEQ(T)S(O; To.P).

(2): Wagner parsimony converges to a tree TeBPT(n) if T strictly
minimizes ZGEQ(n)W(O,T)s(O; To.P).

(3): Inboth cases such a tree T exists except for an algebraic set of

weights for p.

Proof:

This lemma follows immediately from theorem 7.8. §
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/.15 Example

For T=(12)(34) with edge weights as given in fig. 7.1, the condition for
consistency of both types of parsimony given by theorem 7.14 is
s12 > max{s3, S14}, Which translates by theorem 5.28 into:

1 (W W2 W3W4) (Wiworw3wa)
Wg < min { /((010)3 /((1)10)4

+(.02(.04)' +(l)2(l)3)}’

where wi:l—Zpi.

Thus, for any assignment of edge weights to the pendant edges, Wagner
parsimony and compatibility are consistent if the central edge weight is
not too small. Setting p1=p3=c, P=p4=ps=§ the requirement becomes
«2<B8(1-B) as given by Felsenstein [1978 (2)]. §

We now show that Wagner parsimony fails even in the case where all edges
have equal length, by generalizing Felsenstein's example which achieved
inconsistency by separating two long edges and two short edges by a short

internal edge. We replace the long edges by a large tree, whose edges have
the same length as the previous short edges.

Z.16 Definitions:

(: For 2 € {({A}, (B}, {AB}}, and TeBPT(n), let V(T,2) be the set of
colourings of the pendant vertices of T in which Z is the set of possible

colourings of the root in any minimal colouring of T.

(2): Let T(k) be a rooted binary tree with oK endpoints and aroot (of
degree 2), defined recursively by taking T(1) to be two edges each incident
with a root vertex and T(j) for j>1 to be the tree obtained by joining the
roots of two copies of T(j-1) to a new root by two new edges, as shown
in fig. 7.2 (refer to following page). The labelling of the pendant vertices

of T(k) is arbitrary and unimportant in what follows.
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-2

3

4

T(k) ‘ © K

Figure 7.2

7.17 Remark

For k> 5, there are colourings in V(T(k),{A}) in which the majority of
endpoints are coloured B. Indeed if we let f(k) be the minimum number of

endpoints of T(k) that are coloured A over all XeV(T(k),{A}), we have:

7.18 Theorem

f(k) = f(k=1) + f(k=-2); f(0) =1, (1) = 2.
Thus 7(k) is the (k+1)-th Fibonacci number, F ., and so for each €>0 there

is ak,and a XeV(T(k),{A}) for which the proportion of endpoints of T(k)

coloured A by X is <e.

Proof: Refer to Appendix.
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7.19 Definition

Let RWT(n) denote the set of weighted rooted binary trees on label set
{1,...n}. For TeRWT(n), let S(T), (resp. D(T),E(T)) denote the probability that
a colouring of the pendant vertices of T lies in V(T,{A}) (resp. V(T,{B}),
V(T,{AB}), where A is the actual colour of the root of T. Thus, for
example, S(T) is the probability that the endpoints of T are coloured so
that all minimal extensions of that colouring to the vertices of T will
assign the root its actual colour, A. Note that S(T) + D(T) + E(T) = 1.

Given T1eRWT(Nny), ToeRWT(N,), let T{*T,(py,p2) € RWT(N*n,) be obtained by
joining the roots of Ty and T, to a new root, and assigning edge

probabilities py, p, respectively to the new edggls.

7.20 Lemma

For T = T]*Tz(D],Dz)i qi:]_Di, S]:S(T]), D]=D(TI), EI :E(TI) for i=1,2:

S(T) = (q1Sy + PiD(A2S, + PaDy) + E1(Q2S2 + paD2) + Ex(qiSy + pyDy)
D(T) = (pyS; *+ gD D(P2S, *+ q2D2) + Ei(peS, + q2D2) + Eo(qiDy + piSy)
E(T) = EE, + (5D, + D1S)(q1q, *+ Pip2) * (DD, + $1S2)(P1Q2 + P2qy).

Proof: The four possible actual stat.es, -- (A,A), (AB), (B,A), (B,B) -- of

the roots of T,T,, have probability g9z, Qip2, P19y, PP, respectively. The
results now follow from 5.18 (2), by considering when Fitch’s algorithm

will assign the root of T the set {A}, {B} or {A,B} in terms of the

corresponding set assigned to the roots of Ty and T,.

7.21 Corollary

(1): s(T)>D(T)
(2): E(T)=<0.5.
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Proof:

S(T)-D(T) = (41927P1P2)(S$152-DiD2) * E(a27P2)(S2-D2) *+ E»(q=p1)(S1-Dy), and
(1) follows immediately by induction, since q;>py, 42>p,.

(2) can be established by standard analytic optimization. §

7.22 Theorem

Assign edge weight p to all the edges of T(k).
Let S(k) = S(T(k)), D(k) = D(T(k)), E(k) = E(T(k)). Then

(0: if P21/ g, 1My 500 S(K) = 1My _5 00D (K) = 1My _5 o E(K) = /3
(2): if p<l/g,

s = lim _5 6 S(K) = (I—2x+‘/<A)/<]_2D))/2

6 = limy s eD(K) = (1-2x=Y B/ o)/

e = limp_s ooE(k) = 2%

where ¥ = D/(I—ZD) and A = (1 - 6x)(1- 2%).

Proof:

From lemma 7.20 we have:

S(k+1) = (S(k)q + D(kIP)(S(k)q+D(k)p+2E(k))

D(k+1) = (S(KIP*D(IQ(SK)p + D(K)q+ 2E(K))

E(k+1) = E2(k) + 2(S(k)q + D(K)p)(S(KIp + D(k)Q).

Let s, (resp. d,e) denote the limit of S(k) (resp. D(k),E(k)) as k->co. The
real numbers s,d,e then satisfy:

(1):s = (sq + dp)(sq+dp+2e)

(2):d = (sp+dq)(sp + dq+ 2e)

(3):e=e2+ 2(sq +dp)(sp + dq).
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We show that the only solutions to these equations are those given in the

theorem. From (1) and (2) we have:

2e = S/(5q+dp)—(5q+dD) = d/(5D+dq) - (sp*dq). (4)

Let Q = (sg+dp)(sp+dq). Then the second equality in (4) gives:

(s2-0%)/ . = (s-a)(1-2p), which is (s-a)({S* P/ -(1-2p)) = 0.

Thus either s = d or (s+d) = (]_ZD)Q/D. In the first case, we have from (4),

2e = 1-s. Since s+d+e=1 we have S:d:Q:l/3.

In case (s+d) = (]"ZD)Q/D, let u = s+d, so that (3) becomes

e = (1-u) = (1-u)2 + 2Q, which is u2 - u = -2Q. Replacing Q by UD/(l—ZD)’ we
have u(u-(1- 2P/(1-2p))) = 0. But u=0 by corollary 7.21(2). Thus, letting
><=D/(]_2D), we have

s+d = 1-2x = (]_2D)Q/D. Let a = (sp+dq), b = (sq+dp), so that

atb=s+d, ab = Q. Thus we have: a+b = 1-2x, ab = D/>< _2D2/><2-

Solving the associated quadratic equation (for a and b) and noting that a>b

by 7.21 (1), then solving for s and d gives:
= (1o (O g = (1-oy- (A
s = (1-2%+ ( )/(1-2[3))/2’ d = (1-2x v/ )/(1‘2!)))/2’
and so e=1-s-d =2x.
Now for p>'/8, A<0, so the only solution to (1), (2) and (3) is s=d=e='/3.

For D<]/8, there are two possible solutions so consider §(k) = S(k)-D(k).

Then writing p = (]_6)/8, €>0, and using p+q=1 and S(k)+D(k)+E(k)=1, it is

easily checked that
s(k+1) = (1-2p)(1+E(K))8(K) = (3+26)(]+E<k))5(k)/4.




Now if 1imy _5 o E(k) =]/3, we have 5(k+])/5(k)> (l+25/3) -€/5 =1+ 6/3, for
infinitely many k, which implies lim, _5 ,,8(k) = o0, a contradiction, since
§(k)<S(k)<1. This eliminates the solution (s,d,e) = ('/3, '/3, ]/3), as

-

required. §
The previous theorem is applied shortly to study the consistency of Wagner
parsimony. First we derive analogous results which are required for

analysing the consistency of compatibility.

7.23 Definition

For TeRWT(n), let Q(T) denote the probability that the endpoints of T are
all the same colour as the root, and P(T), the probability that they are all

the opposite colour to the root. We now present the analogue of lemma

7.20.

7.24 Lemma

For T =T*To(py,p2)i 45=1-pj, Q=Q(T;), $;=S(T}), for i=1,2:

Q(T) = (q1Q; + PiP1)(Q2Q2*P2P2)
P(T) = (pyQ; + @iP1(P2Q2+q2P2).

Proof:
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Considering the four possible states of the roots of T4, T, gives the lemma

immediately. §
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7.25 Corollaru

(M: P(T) <Q(T)
(2): Q(T) < min{Q(Ty), Q(THL
Proof:

(1) follows by induction, using lemma 7.24, while (2) follows from (1). §
7.26 Theorem

Assign edge weight p to all the edges of T(k), and let
Q) = Q(TK)), P(K) = P(T()) and z(k) = KD/ g Then
T = 1M s e TK) =11, if p 2]/4,

(N - f(>\2‘4))/2, it p<!/ 4, where A= <292_4D+])/D2.

Proof:

N 2
(p+qz(k)) /(qrpe (k)2 Where

By lemma 7.24, t(k+1) = (DQiqﬁ)z/mQ‘:Dpk)z =
q=1-p, Q.= Qlk), P = PK),

Set 1= (PT%/ ye which is:
(x=1)(x2-A%+1) = 0, where A = <2D2_4D+l)/D2' Now the discriminant of the
quadratic factor is A = A2-4= (A-2)(A+2) which is negative if and only if
A<2,and this occurs precisely when p>]/4. Thus the only real solution
for ¥ when p>]/4 is x=1. For D=]/4, the cubic equation becomes (x-1)3=0,
which again has the unique solution x=1.

For D<]/4, and hence A>2, the only solution for x =1, with x<1 (required

by corollary 7.24 ) is & = O‘_‘/0\2_4))/2.
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Now for &(t) = (D+qt)2/(q+pt)2, we have ¢'(t) > 0 on [0,x] (since g>p), so

that ¢(t) is monotone increasing and continuous on [0,x] and x is the only
fixed point of (t) in this interval, so by an elementary argument, = (k)

converges to ¥, as required. §

7.27 Definition

Let T1(k)eBPT(2k+]+2) consist of two copies of T(k), whose roots are
identified to v, and v4 of the tree T = (v{v)(V3vy,). Assign labels 1 and 3
to vy and vs respectively, and label the rest of T(k) arbitrarily.

For p = [pppap3.pall, let Ti(k,p)eWBT(n) be T(k) with edge weight p4 on all

the edges of the two copies of T(k) and the other edge weights as shown
in fig. 7.3. For i=1,2,3 let wi:(l—Zpi). Let Tz(k)eBPT(2k+]+2) be the tree

obtained from T,(k) by performing a nearest neighbour interchange so as

to join the two copies of T(k).

T=(12)(34)

N XS V3 T @

Figure 7.3
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7.28 Theorem

Under Cavender's model, for data derived from T,(k,p),

(1): Wagner parsimony favours To(k) over T,(k) precisely if
W3(W2+w,2)(S2(k)+D2(k)) - 2w wx(S2(k)-D2(k)) + 2w3(w,2-w2)S(k)D(k)>0.
(2): Compatibility favours T,(k) over T,(k) precisely if
W3(W12+w22)(Q2(k)+P2(k)) - 2w 1wo(Q2(k)-P2(k)) + 2w3(w,2-w2)Q(k)P(k)>0.
[where S(k), D(k), Q(k), P(k) are as in theorems 7.22 and 7.26, with p = p4]

Proof:

(1): Denote the state of the v, by A, and let B be the other colour.
For geQ(n) let Ay = w(T(k),0)-w(T,(k),0), and let X, and X4 be the

induced colouring of the two copies of T(k) attached to v,,v4 respectively.

By Fitch's algorithm (5.18(2)) there are precisely two cases for which

Ag =0.

Case One: I X3,X4 €V(T(k),{B}) and vz is coloured A, then A4=1. Denote
the set of such ¢ as Q.

Case Two: If Xpe V(T(k),{A}) and X4eV(T(k),{B}), vz is coloured B, then A 4

= -1. Denote the set of such ¢ as Q,.

Now the probability of case one arising on T,(k,p) is,

S2(k)syz + D2(K)sip34 + S(K)D(k)(si23 * S134), Where s5= s(Tg; T,p), with
T = (vyvp)(v3vy) and p given in fig. 7.3.

The probability of case two arising from T(k,p) is,

520()512 + D2(k)514 + S(k)D(k)(S1+5]24).
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Then letting 2(k) = ZOeQ(n)kGXO/c' we have

E[Z0)) = 25eq(n)ro8(0) = 25eq,5(9)~ 2.5¢q,5(0).

52(Kk)sy3 * D2(K)sip34 + S(KID(k)(S123+5134)
- (52(k)sy, + D2(K)s14 + S(K)D(K)(s1*S124)).

stu(k), where
u(k) = [-S()DK), =S2(k), S2(k), S(K)D(K), ~D2(k), -S(k)D(K), S(k)D(K), D2(K)I!
and s' = [51,512,513.5123,514:5124.5134.51234).

Now, letting w; = (1-2p;), and using the notation (and ordering of Q(4) and

[417) of example 6.10 we have
F =11 W05 w203, 1 1WWws3, 11WWs3, 203, Wi,y w2w,2]t and
r=Hls,

Now since s =]/8Hr, where H = [(-1) I anx I ]O v (as in theorem 5.28) we

have E[Z(k)] = ]/8stu(k) = riHlu(k), and it is easily checked that
Htu(k) = 20, D2(k)-52(k), (S(k)*D(k))2, 0, 0, (S(k)-D(k))2, D2(k)-S2(k), 01!
giving:
E[Z(k)] = 0.25(w3(w2+w,2)(S2(k)+D2(k)) - 2w w,(S2(k)-D2(k)) +
2w 3(Wy2-w2)S(k)D(K)).

The result now follows from lemma 7.14.

(2): Let 2*(k) = ZOEQ(Tl(k))XG/C_ ZO’EQ(TZ(k))Xd/C = ><<5]/C - ><<52/C say,
where o, = {1,V,}, with V, the labels on the copy of T(k) whose root is
identified with v,, and g, = {1,3}.

Since E[2*(k)] = s(oy) - s(T5), the result now follows by a similar

argument to part (1), and from lemma 7.14. §
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7.29 Corollary

(1): Wagner parsimony is inconsistent on Ty(k,p) if

p = Dz(k)/(sz(k)+D2(k))'

Thus Wagner parsimony is inconsistent on T,(2,p)ewWBT(10) for
p>p;=0.39076, and on T(k,p) for p>p,=0.116413, and k sufficiently large
(dependent on p).

(2): Compatibility is inconsistent on T(k,p) if

p<P 0/ 200020y

Thus compatibility is inconsistent on T,(2,p) for p>p3~0.436154, and on

Ti(k,p) for p>p4=~0.245122, and k sufficiently large (dependent}bn p).

Proof:

Setting p;=p, for i=l,...4, so that w; = (1-2p) = w (sag); the expression in
the statement of theorem 7.28 for Wagner parsimony becomes
w(2w?2(S2(k)*+D2(k))-2w(52(k)-D2(k))) which is positive precisely if
> (5200702 (21, pagu o eauivalentiy, p<C* K/ 504y, p2)y
For compatibility, the analogous requirement is

D<P2(k)/<Q2(k)+p2<k)) = ‘/(w(k)—z), (where z(k) is defined in theorem
7.26).

Now for any real-valued function, f defined on positive integers,

(in particular f(k) = E[Z2(k)], and E[Z*(k)]/Qz(k)), if

limy -0 (k) >0, then for some integer kg we also have f(kq) >0.

Thus the values p, and p4 are obtained by solving the equations

p = dz/(52+d2), and p = l/(l+t_~2)' respectively, where s,d are given by

theorem 7.22, and T is given by theorem 7.26.
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. , 2
The values py, and pz are obtained by solving p = D(2) /(52(2)+D2(2)) and

b= P2(2)/(Q2(2)+P2(2))' where S(2), D(2), P(2) and Q(2) given (in terms of

p) by lemmas 7.20 and 7.24. §

7.30 Remark

An example of a T4(2,p) is given in fig. 7.4. For p>0.4, (resp. p>0.25)

Wagner parsimony (resp. compatibility) will be inconsistent.

2 10 1 3
9
1
2
4
'\T/l 8
<p
Z\L \, 7
10 S
3
9 8 7 6
6
4 5 T2,p) T,(2)

Figure 7.4

Sufficient Conditions

In view of the above results it is natural to ask whether parsimony
methods will sometimes fail for equal edge weights below those
prescribed in corollary 7.29. We show that in the case of compatibity this
is not so--indeed if the edge weights are "sufficiently small and
sufficiently equal” (in a sense to be made precise) compatibility is
consistent.
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7.31 Lemma

For any TewBT(n), and CCE(T), if p(C) = T, then

s(0: Tp) = s(ag: T.p) T, (Pe/(1-py)).

Proof:
We use inductionon|C|. If|C|= 0, the result holds, so suppose it holds
for all C with|C|=k-120,and let |C|=k, C’=C-{e} for eeC, and suppose

p(C") = o'. If e=[vy,v,], consider the conditional probabilities,

x=P(0 | X(v1)ZX (V)i T,p), B=P(c | X(v1)=X(v,): T.p), where X(v)e{AB) is the
colour of v, i=1,2, (where, by convention, A denotes the colour of the
pendant vertex of T labelled 1).

Then s(T; T,p) = pyoct(1-pg) B, s(07: T,p) = (1-pgloctp, B.

Thus, since (l—pg)’é‘ > Dez’ we have s(0; T,p) 2 s(0"; T,p)p,/ (1-p,,).

Applying the inductive hypothesis we see that the result holds for | C | =k,

as required. §

7.32 Definition

For real numbers A>0 and L21, and integer n>3, let B(n,\,L) be the set of
trees TeWBT(n) whose edge lengths are all < A and whose set of ratios of

edge lengths is bounded above by L.

Let B(A,L) = U B(NAL), and B(A) = U B(AL).
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/.33 Theorem

For C>1, choose 0<X\g<I so that

(1): C¥3+2C2g+1-C=0, (2): 2CAg(1+CAQ)=1, (3): €2/ (14 1y,

[Such a choice is possible since for C>1 fixed, the inequalities all become
strict as Ag tends to zero.]

Suppose (T,p)eB(A), A<Ag. Then

(1):if o=0g, s(o; T,p) < s(Tg: T.PICA,

(2): if w(o,T)>1, s(a; T,p) <s(Tgi T,p).2C2A2(1+CN).

Proof:

(1): We first note that by the first condition on Ag, and A<Ag we have:
1+C2\ < 1+C2Ng < C-C2Ag-C4N o3 < C, thus

(a): 1+C2\ < C.

We prove the theorem by induction on | T|, the number of pendant vertices
of T. For |T | = 2, if g=0g, then s(o; T,p) = p, where p is the edge weight
on the unique edge of T, while s(Tg; T,p) = (I-p). Now by condition (3),
O\O/(Hcy\o) 2N o2A2p, giving p s (1-p)CA, as required.

Suppose the results holds for all trees with | T | <k, where k>3, and

suppose TeB(N), | T|=k.

Case One: Suppose w(o,T) =1.,
If o is induced by an internal edge e of T, let Ty,T,T3,T4 be the four
pendant subtrees of T having endpoints incident with e, as in fig. 7.5(a)

(refer to following page).

Fori=1,...,4, let s; (resp. d;) be the probability that the original

endpoints of Ti are all the same colour, (resp. the opposite colour) to the

new endpoint incident with e.
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(a) (b)

Figure 7.5

Then s(o; T,p) = peo<+(1-pe)B, where

x= (51525354 +d1dpd3dy), B= (515,d3d4+d1d,S354), SO that

s(0: T,p) < 54525354(p, + C¥N4 + 2(1-p,)C2A2), by the induction hypothesis.
Now s(Tg: T,p) = (I-pg)ex+p, B, and s(T; T,p) is maximized when Po= 0,
(lemma 6.13 (1)), so that s(0g; T,p) < 515,5354. Thus, since p, <\, we have

s(0; T,p) £ 5(Tgs TP + C4N4 + 2C2A2) < s5(Tg; T,P)CA, since
1+CHNS + 2C2\ < C.

Similarly, if ¢ is induced by a pendant edge e, represent T as in fig. 7.5(b).
For i=1,2 let S, (resp. di) be the probability that the original endpoints of
Ti are all the same colour, (resp. the opposite colour) to the new endpoint

incident with e. Then

s(05 T,p) = Ppsis2 * (1-py)didy < 515p(A+C2A2) < s(Tg: T,P)CA, by (a).
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Case Two: w(o,T) >1.
For o with w(o,T) = k>2, there exists by Menger's theorem (refer Harary
[1969]) two disjoint paths between differently coloured endpoints of T so

that we can represent T as in fig. 7.6.

For i=1,...4, let 0{(2), ze{a,b}, denote the colouring induced by ¢ on the

pendant subtrees T; with its distinguished pendant vertex (circled in fig.

7.6) coloured z. Let o5(x,y) denote the colouring of the central tree Ts

with its two distinguished endpoints coloured x,\.
For i=1,.,4, let 1;(x) = s(0y: Ty, Py, and Ts(x,y) = s(Ts: Ts,py), where p; is
the restriction of p to the edges of T;.

Thus s(o; T,p) = fi(a)f,(a)fz(a)f4(a)fs(a,a) + F1(b)f,(b)fs(a)f 4(a)fs(b,a) +
f1(a)f2(a)f3(b)f4(D)fs(a,b) + f1(D)f2(D)f3(b)f4(b)f5(b,b).

99 oo

%

N J
N N

Figure 7.6
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Now for any assignment of x,y, at least one of w(c4,Ty), and w(T,,T5) is
>1, and at least one of w(o3,T3),w(0T4,T4) is 21. Furthermore, if x=y,

w(o's(x,4),Ts)>1. By induction
s(0: T,P) < 5152535455(C2A2 + CIN3+C3N3+C2AN2), where s is the probability
that the endpoints of Ti are all the same colour. Furthermore s(cg: T,p) 2

5159535455, thus s(G; T,p) < s(Cg; T,p)2(C2A2+C3A3) < s(Tg: T,p)CA,

since CA+C2A2< Chg(1+Chg) <175

(2): This follows by induction on | T| by using part (1) and repeating the
argument used above to establish case two of part (1), since in the last
step of this proof we have

s(0; T,p) < s(Tg; T,P)2C2A2(1+CA). §

7.34 Theorem

For all L>1 there exists Ag>0, such that compatibility is consistent on

B(A,L) for all A=hg.

Proof:

By lemma 7.14, compatability is consistent for data generated by the

Cavender model on tree (Tq,p) precisely if T=Tg strictly maximizes
ZGEQ(T)S(O; To.P). This is clearly equivalent to saying T=T, strictly
maximizes ZOEQO(T)S(O; To.P), where Qq(T) = Q(T)-{og}.

Choose Ag>0, C>1 so that:

(D: L7 > 2C205(1+Chg), (2): CHA3+2C20 g+ 1-C<0, (3): 2CAq(I+CAQ)<],

(4): CZ]/(I—XO)'
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Then if p = max{py: e€E(Tg)}, p<hg, we have

(a): if 0eQq(Ty), (Qq defined as in this proof above) then lemma 7.31 gives
s(0i ToP) 2 5(Tgi TaPIpg/(1-pg) = pus(Tg: To,p) 2 (P/)s(Tg: To,p).

(b): if ¢ is not in Qq(Tg), so that w(c,Tg)>1, then by theorem 7.33, (with
A=p), we have s(S; Tq,p) < s(0g: Tg.p). 2C2p2(1+Cp).

Let s9.i, = min{s(T: T,p): 5eQo(Tol}, 8! 5y = max{s(a: T,p): 5eQ(n)-Q(To)),
The condition L1 > 2C2ng(1+CAg) implies L7l > 2C2p(1+Cp) since p<Aig, SO
that eliminating s(cg; Tg,p) from (a) and (b), we have

$%min > S'may:
Thus

EOEQO(TO)S(O; To.P) - ZGGQO(T)S(O; To.P)

- ZOEQO(TO)‘QO(T)S(G; ToP) - zOEQo(T)—Qo(To)S(O; To.P),

0 . _al = k(g0 . gl

> ks in~ks'max = k(8% in~8'may) Where

k=] Quo(T)-2(Te) | = |Q0(Te)-Qo(T)| (since | Qo(T)|=|Q0(To)|= 2n-3).
Now if T=2Tg we have k=1 so that

ZGEQO(TO)S(Gi To.p) >ZGEQO(T)S(O§ To.P), as required. §

7.35 _Example

For L=1, taking C = 2.18, A\ = 0.12, it is easily checked that conditions (1)
to (4) in the previous theorem are satisfied. Thus if the edge weights are
all equal and less than 0.12, compatibility is consistent on all trees. In
particular, by corollary 7.29 (1) there are weighted trees (such as T(k,p)
for 0.117<p<0.12, and k sufficiently large) on which compatibility is

consistent but Wagner parsimony is not.
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A considerably weaker result for Wagner parsimony is the following:

7.36_Theorem

For all nand for all L, there exists a Ag, for which Wagner parsimony is

consistent on B(n,\q,L).

Proof:
By theorem 7.33 (2), and lemma 7.31, given n and L we can choose \g so

that if (T,p)eB(n,\q,L) then
min{S(G; To,D)Z OEQ](TO)} >zO€Q(ﬂ)‘Q(T)W(O’TO)S(G; To,D),
since w(o,T)>1if ceQ(nN)-Q(T). Then

2. gW(0,Tg)s(a: Tg,p) <

zOEQ](To)S(O; To,D) + ZOEQP(TQ)S(O; To,D) + min{S(O; To,D)Z OEQI(T)} (*)

Now if T=Tg, then w(o,T)=1 for all ceQl(Tq) and w(o,T)>2 for at least one

ceQl(Tg), while w(o,T) =1 for geQP(Tq). Thus
25eQ(n)W(9.T)s(a: Tq,p) 2

2 5eQi(Tg)3(T: TaP) + min(s(o: To.p):0eQl(To)) + 2 5eqp(T,)5(T: Ta.P) >
2.5e0(nW(T.Tg)s(T: Tg,p), by (*).

Thus 2 5eq(n)W(T.T)s(0; T.P) > 2 geq(n)W(T.T)s(0; To,p) for all T=Tg 50

that Wagner parsimony is consistent on (T,p) by lemma 7.14, as required. §
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7.37 Remark

In view of the previous two theorems it is tempting to ask whether
Wagner parsimony is consistent on B(\,L) for sufficiently small A=x(L).
One approach might be to show that any colouring of a given weight on a
tree in B(A,L) is more probable than any other colouring of greater weight
on that tree for A=X(L) sufficiently small, thus generalizing the result for
colourings of weight one. However, the next theorem gives a
counterexample to this suggestion, and sheds more detail on the subtle

relationship between weight of colourings and their probability.

7.38 Theorem

Even for L=1, there are no constants § A,k>0 for which the following
statement holds for all (T,p)eB(X\):
"w(go,T)<w(c’,T)+k implies s(o; T,p) = &§s(c’; T,p).”

Proof:
Consider the two partitions 04,0, of the caterpillar tree, Jon+ 2K defined

by the colourings:
(AAB,B,AABBAA,..) and (A A A,.[2k times],B,A,B,AB,A,...BA),
respectively as in fig. 7.7 (refer to following page), where in all cases

{x,x'} = {A,B}.
Then W(O1,J2n+2k) = n+k-1, while W(Oz,J2n+2k) =N.
Let Jop 49 denote the tree obtained from Jo .o DY deleting pendant

vertex labelled 2n+2k and its associated pendant edge e and distinguishing

the vertex v incident with e.




For o, as before, let ;" (resp. o) denote the colouring of v and the

pendant vertices of J2n+2k* in which the pendant vertices are coloured

as in Jon.p Under oy, and v is assigned the same colour (resp. the

opposite colour) as the pendant vertex labelled 2n+2k-1. For T,, define
o, and o,  analogously. These definitions are also illustrated in fig.

7.7.

(&)
1 2n+2k
\ / (x)
) ,////, ‘\\\\\
2 ; 2n+2k-1
12 LB B T s
(=) 3 4 5 6 (%)
(A)
1 2n+2k
\ / (x)
g, / ] .o \
2 » 2n+2k-1
. ey e T oy
() 3 4 5 6 (x")
W
\ : (x) o,*
+ - - " v 4V 1
61 ! 01 / l l ] l o o0 [ (x’) 61—
2 G @ ey e (x),
> 4 5 6 2n+2k- |
1 (&)
. + o— . . o s V (X) d;
2’2 / l o o o l l oool (XI)O';
2(n) ) @ Lt e (x)
3 2k 2k+1 2k+2° 2k+3  2n+2k-1

Figure 7.7
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Assign edde change probability p to all the edges of J,. 5>, and let s1(n),
(resp. di(n)) denote probability of the colouring oy’ (rgsp.'. Jy ) onthe
weighted tree (Jopn.p*.PJ). Define s,(n),dy(n) for o, similarly. Then a
straightforward probability argument gives:

[s1(n+1), di(n+NI' = Clsy(n), dy(n))!

[5o(n+1), do(n+ 1)1 = D2sH(n), do(M]L, where

C ={(pg3+p2q?) (q%+pqd) = pa? q(p3+qd)
(p3g+p2q2) (p3q+p2q2) P2q p2q

D =|pq q2 so that D2 = pq.2 D Q2
Pq p? p2q p(p3+q3)| with q=1-p.

C and D2 have characteristic equations: ¥x2-pqx-p2q2(x-pq) = 0 and
x2-p(x+q2)%-p2q2(pq-) = 0, respectively, where «=p3+q3. For i=1,2, let
A 2, denote the eigenvalues of C, and let A,*>X,~ denote the
eigenvalues of D2

H'Then

At = 0.5(pqx/ (p2q2+4p2q2(oc-pQ))),

A" = 0.5(p(x*+q?)xy (p2(x+q2)2+4p2q2(pq-ox))).

It is easily checked that for 0<p<0.5, and i=1,2, >\i+z>\i_, so that C and D2

are similar to diagonal matrices. Thus for i=1,2,
si(n) = a0 + by and
di(n) = ¢+ d;(\ M, with a;bj,c;,d; independent of n (but with

a,,bs,Cy,d, depend on k).

Now
S(O 1 JoneorP)) = 51(n-1(q%p+p2q) + dy(n-1)(g3+p3), while

5(02i JoneoiP]) = 52(N-1)(q%p+p2q) + dp(n-1)(q2p+p2q), where q =1-p.
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Thus S(O1§ J2n+2k,D]) = 8‘1(>\1+)n + D‘1(>\1_)n
(02 JonepiPl) = '+ b (),
for new constants ai‘,bi‘, so that
s(O1i Jon+oi:P)/8(02i Jonioi.Pi) ™ (‘;"3“/82‘)(9\1+/>\2+)n since >\i+>>\i_.

+ + + 2+ 2 X~
Now A, /a,* = (4% (42+4q%(x-pq))) /(x+ @2+ ((x+q2)2+4q2(pg-o))) SO

that limD_>O>\1+/>\2+ = (1+«f5)/2, the "golden ratio”. Thus we can

certainly choose pg>0 so that for all p<pyg, >\1+/>\2+>1, (in fact we can take

pg = 0.5, though this is not necessary for the proof).

Thus as n=>e0, s(T1; Jon4o PI/S(T2i Jopiok. PJ) => o, even though

W(C1,doneoi) = W(T2,don4oi) * (K-1), as required. §

7.39 Remark

We now offer an intuitive explanation for the motto "heavier colourings
can be more probable, even on trees with equal edge weights," which was
formally demonstrated above.

Recall that (o Tp)) = Sicce(ry: picy=oip | ¢ - [EMI=IC] <

(-pEMIS L ooy [{ECEM:p(C) = 0, ¢ |= k| K, where e = P/,

so that 0<e<l.

Regard s(o) = s(o; T,pj) as a polynomial in €, ordered in increasing powers
of €. Then although w(c;,T)>w(0,,T), (so that s(o;) begins with higher
powers of € than s(0,)), if the first nonzero coefficients of s(gy) are
relatively much larger than those of s(c,) then we may still have
s(oy)>s(0,) for suitable € (though clearly for T fixed, as € tends to zero,

we will force s(o)<s(g5,)).
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Thus w(o,T)>w(T,,T) and s(o4,T)>s(0,,T) suggests many more ways to fit

oyto T with = w(g,T) edge changes than to fit g, to T with the same or a

lesser number of edge changes. For example, take 0y, G, and T = Jo 9| as

in the previous theorem, and consider just the first non-zero coefficients

ki, ko of s(0y), s(oy), respectively. For i=1,2 choose C;CE(T) so that p(C;)

= 0, (where p is defined in 5.2). Then it is easily checked that C, has no

weakly-connecting trees and so by theorem 5.9, C, is strictly minimal, so

that k,=1.

Now the weakly-connecting trees of C; consist of the n+k-2 pairs of
adjacent internal vertices of T which are both adjacent to pendant
vertices of the same colour.

Thus the weakly-connecting forests of T consist of all collections of
weakly-connecting trees, no two of which are adjacent to a common
vertex. Since the n+k-2 weakly-connecting trees are arranged in a line,
the number of weakly-connecting forests is precisely the number of ways
of selecting a subset of n+k-2 ordered objects so that no two are
consecutive. But this is enumerated in example 2.2.23 of Goulden and

Jackson [1983, p.43], in terms of {0,1} sequences, as the (n+k-1)-th
Fibonacci number, Fp 1. Thus, by theorem 5.9 (3), ki = Fp 4 -y,
(compared with k,=1) so that as n grows the first nonzero coefficient of

s(o) greatly exceeds the corresponding coefficient of s(g5,). §

7.40 Conjecture

Wagner parsimony is consistent on B()\) for A sufficiently small.
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Consistency under a molecular clock

Hendy and Penny [1988] give an example is of a tree (a T,(2)) with edge

weights arbitrarily small and subject to a molecular clock for which

Wagner parsimony and compatibility are inconsistent. The authors observe
that for this to happen one edge length must be asymptotically

proportional to the square of the length of another edge, as both edge
lengths tend to zero. To find a "best possible" condition under which we
might hope for parsimony and compatibility to be consistent under a
molecular clock we might try and rule this out.

In fact we will see that even assuming a molecular clock, inconsistency
can occur even in the "best possible" condition that does not in itself
constrain the set of possible trees. Specifically suppose the Cavender
model is subject to a molecular clock. The first attempt at a "best

possible constraint" on the edge lengths might be to assume that they are
all equal. However unlike the clock-free case, this assumption constrains
the tree topology and a fortiori constrains the number of taxa to be a
power of two.

Similar topological constraints follow from supposing that the edge length
ratios are bounded above by a constant which is independent of the number
of taxa. On the other hang, if the ratio of the edge lengths of rooted trees
with n pendant vertices is bounded above by some function K(n), there are
no constraints on the possible trees, precisely if K(n) > n-1. This suggests
the following definition.

7.41 Definition

Call a rooted binary tree with n pendant vertices balanced if

(1): it has additive edge lengths—-i.e. the length of all the paths from the
root to pendant vertices are the same (this is the height of the tree).

(2): the rafio of the edge lengths is bounded above by n-1.

Let BE(A) be the set of balanced (rooted) trees, with edge lengths bounded
above by A, and let BH(A) be the set of balanced (rooted) trees of height A.




Then for the counterexample by Hendy and Penny [1988], if the tree T,(2) is

balanced, consistency is regained for sufficiently small edge lengths, or
sufficiently small height. We now show that for any given bound on the
edge lengths or the height there are always trees for which both types of
parsimony fail to be consistent.

7.42 Theorem

(1): For all A, Wagner parsimony and compatibility are inconsistent on
some trees in BE(\).
(2): For all A, Wagner parsimony and compatibility are inconsistent on

some trees in BH(\).

Proof:

Let RTi(k,\) be the tree obtained by rooting Ty(k) (definition 7.27) at the
midpoint of its central edge, and assigning length (as in 6.4 (4)) A to all
the edges except the two pendant edges incident with the central edge
which are éssigned length A(k+1). Then since RT(k,\) has 2K*12 pendant

vertices, RT(k,\) is balanced for all k>1.

(1): Regarding the tree as unrooted, and using the notation of theorem
7.28, we have for Wagner parsimony,
4E[Z(K)] = w3(w12+w2)(S2(k)+D2(K)) - 2w 1w (S2(k)-D?(k)) +
2w 3(Wy2-w42)S(k)D(K).
As in the proof of corollary 7.29 it suffices to show

limy —> o0 E[Z(k)]>0 since then E[Z(kg)]>0 for some integer kq.

Now w=e 2N, ws=e M w, = e~ 22K D) 56 that 1My Zs 00 w2=0.

Thus, letting s = limy _5,S(k), d = limy _5 i, D(k),

limy _s 0o 4E[Z(K)] = 20 3(s2+d?-2wsd) >2w*(s-d)2>0, and the result

follows by theorem 7.28.
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For compatibility, again using the notation of theorems 7.28, and 7.26

imy s AE12400)

/Q2(k) ~ 2w3(1+T2-2wT) > (1-7)2 2 0, and the result

follows by theorem 7.28.

(2): We have YRTi(kM/ (,)) € BHQA). For TeRT (k2 /(4p)),

"N/ K+2) g = o7 AN/ (k*2) “2A(k*1)/(k+2).

wy=e , Wo= e

Thus 1M s oo @ = 1M s 03 = 1, 1My s oo 0o = e” 2,

For Wagner parsimony we have

1My _5 00 4E[Z(K)] = (1+279M)(s2+42) - 227 4N (52-02) + 25d(e”4N-1)
= (s-d)2 + (302+2sd-52)e” 4,

Now if the second term in this sum is strictly positive we have

limk_>o<,E[Z(k)]>O, as required. If the second term is <0 we have

4E[Z(k)] = (s-d)? + (3d2+2sd-s2) = 4d2 >0, by theorem 7.22, as required.

4E[Z2* (k)]

For compatibility, limy _s /Q2(k) = (ImT)2 + (3r2+27-1)e” A

which by a similar argument is strictly positive, since T>0 by theorem

7.26. §

7.43 Remarks

(1): The previous theorem shows that imposing a molecular clock in no way
restores consistency for parsimony-based methods. Indeed comparing
theorems 7.42 and 7.34, a molecular clock is more problematic for the
consistency of compatibility than the assumption of equal edge weights.

(2): From example 7.35, compatibility can be consistent under conditions
which lead to the inconsistency of Wagner parsimony. Itis not known
whether the converse can occur, or whether compatibility is consistent for
sets of edge lengths of greater Lebesgue measure than Wagner parsimony.
It is worth noting that because compatibility uses fewer partitions to
evaluate each tree than Wagner parsimony, the former method may be less
robust (i.e. more sensitive to errors) when applied to relatively short
sequences.
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(3): The above results hold an important message for taxonomists -- while
compatibility may be consistent for a particular set of taxa, the method is
not necessarily consistent on a subset of those taxa. Equivalently,
although compatibility may fail to be consistent for a collection of taxa, if
that set is expanded to a larger set of taxa, consistency may be regained,
so that if compatibility selects tree T, the phylogeny of the original set S

of taxa can be consistently recovered as T[S]. This approach would succeed
if the larger set of taxa is chosen so that all edges of the underlying tree
have (approximately) equal (and small) edge weights, though knowing
which additional taxa to choose to achieve this goal is clearly a problem.
We illustrate this relativity of consistency by the following example.

/.44 Example

Consider the rooted binary tree T(k+2) € RWT(2K*2) with edge lengths of A

on each edge, except for the two edges incident with the root, which are

assigned edge length 9‘/2, as illustrated on the following page in fig.

7.8(a) (where the shaded subtrees are copies of T(k)). Thus the edge
lengths of T(k+2) are subject to a molecular clock, while if T*(k+2)
denotes the weighted binary tree obtained from T(k+2) by suppressing the
root, T*(k+2) has equal edge lengths of A on each edge. Select a subset S
= {s4,55,53,53,55,5g) of {I,..., 2K*2) of size 6 as indicated in fig 7.8(a). Then
the tree T*(k+1)[S] has induced edge lengths as indicated in fig. 7.8(b). In
the notation of definition 7.27, T*(k+2)[S] is a T(1,p) where

P = (P1.P2.P3.P4), Py = P3 = 0.5(1-w), py = 0.5(1-wkK*), P4 = 0.5(1-wK), with

w=e 2N

Then in the notation of theorem 7.28,

P(1) = p4220.25(1-wX)2, and Q(1) = (1-p4)2=0.25(1*wK)2, wzws=w,
o)2=<ok+], so that by theorem 7.28, the condition for compatibility to be
consistent on T4(1,p) is that

(kw) = w(w2+w2K ) ((1-wk)4+(1+wk)) -20K 2((1+wK)4-(1-0K)4) +

2(0(0)2k+2—w?)(l—wk)2(1+wk)2 >0.
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2. Se S T(k+2) 53 Sa Ss T*(k+2)[8S]
(a) (b)
S / S3
S, S4
(c)
Figure 7.8
Letting y = w2K we have (ko) = 402y.(Sw-4-y(4-2w-wy)).

Since Iimk_>oowk = 0, we see that if ®w>0.8, (that is if

py = 0.5(1-e”2M) < 0.1) we can choose k so that f(k,w)>0, implying that
compatibility will be inconsistent for the taxa set S. But this range for
contains the range for which we have estabished that compatibility will

be consistent on the weighted parent tree (T*(k+2), pyj).




In particular taking k = 7, and A=0.05 (so that w=0.9048) we have:
(a): p<0.1 (so that compatibility is consistent on T*(k+2),p;j) and
(b): f(7,w)>0 (so that compatibility is not consistent on on the weighted

subtree induced by S).

Thus for sequence data derived under Cavender's model from the
bifurcating tree T(9) on 512 endpoints (!) with an expected number of
change of 0.1 on each edge, compatibility will consistently recover the
original phylogeny of the 512 taxa, but consistency will fail if applied to

some of the subsets of the taxa.

Examples of this phenomena using considerably less taxa are possible if

edge lengths on the parent tree are not required to satisfy a molecular

clock. Indeed for the caterpillar tree Jy, on 12 taxa, with weight p on

each edge, and S = {s;,55,53,54} as shown in fig. 7.8(c), the weighted

subtree T[S] induced by S has edge weights as shown in fig. 7.8(d), where
* = 0.501-(1-2p)).

Then by Felsenstein’s criterion (refer to example 7.15), compatibility will
fail to be consistent on T[S]if (p*)2>p(1-p).
Taking p =0.1 (so that compatibility is consistent on T) this condition is

satisfied. §
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7.45 Summary

In this section we have derived some necessary and sufficient conditions
for selection procedures to be consistent under Cavender's model.
Necessary conditions have been given both for general classes of
procedures (theorem 7.9) and for parsimony and compatibility (theorems
7.28 and 7.42). We see that for both methods consistency can fail in
conditions that might be expected to be most favourable for consistency
(i.e. equal edge weights or a molecular clock). Basically both methods fail
because they undercount the true amount of change which is likely to
occur on the tree. Regarding sufficient conditions, we showed that
(without assuming a molecular clock) phylogenies can be consistently
recovered from dissimilarities (theorem 7.12). Perhaps most importantly
nontrivial sufficient conditions for the consistency of compatibility have
been established (theorem 7.34). The problems involved in extending this
approach to parsimony have been discussed, and clearly there is an
interesting and important open problem in settling conjecture 7.40.
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§8: Gonficdence Intervals

"The question of how to obtain confidence intervals and carry out
Statistical tests is in a relatively primitive state ... but is of greater
practical importance to the molecular evolutionist," J. Felsenstein 1988.

8.1 Introduction

Consistency is certainly a desirable property for a selection procedure, but
by itself, under finite sampling, it is essentially useless for putting
confidence intervals on the trees so constructed. In this section we
consider three questions related to the construction of trees:

(1): Among selection procedures, what sort of confidence intervals, which
converge to the true tree (as c->0) are possible, independent of the
underlying tree (T,p)?

(2): Can these confidence intervals be described efficiently, thatis in
polynomial time?

(3): How fast must the data grow as a function of the number of taxa in
order to retain a given level of accuracy in reconstructing the underlying
tree T,?

The construction of confidence intervals in the case of parsimony with
four taxa has been solved by Cavender [1978] and Felsenstein [1985]. In
general however there are problems with these and other methods which
have been proposed for constructing confidence intervals from sequence
data or dissimilarities, as detailed in Felsenstein [1988]. Constructing
confidence intervals using maximum likelihood ratios is also theoretically
difficult for two reasons, as is frequently pointed out by J. Felsenstein
(see for example Felsenstein [1988]). These difficulties are that the
hypotheses being decided between are not nested within each other, and
that likelihood ratio results are asymptotic (in the length of the
sequences).

We begin by answering the first question and show that under Cavender's
model only selection procedures that build (arbitrarily large) sets of trees
can have pre-set confidence intervals, and describe such a procedure. The
desire to always select a single "best tree" is thus incompatible with the
desire to be confident that one has always selected the correct tree,
amongst those chosen.
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Confidence Intervals

8.2 Definition

A family of selection procedures, ¢ , «€(0,1) has convergent confidence
intervals (CCl) if for all «:

(8): 9o (XITY ( (X) I x<ox”
in-3
(0): P(TeP, (X); T.p)21-ox, for all (T,p) e WBT(n), p € (o, 0:8) ",

(¢): 9, converges (as defined in 7.4).

8.3 Lemma

Ir {9 «€(0,1)} is a family of CCl selection procedures, then @ is

consistent for each «e(0,1).

Proof:

From property (c), there exists a number ¢ (dependent on T,p,e and «):
POL P (X =1: Tp) 2 1-€/2, and P(| 9 /3(X) | =15 T,p)>1-6/3,
for all for all c>cg.

Now if 0<¢/3<ccand |9 (X)]|=] 9P, ,3(X)|=1and TeP, ,z(X), then by
property (a), ¢ _(X) = {T}. Thus for O<E/3<o<, and c>cy,

P(P(X) = (Th T.p) = P(Te, ,3(X)&| P (X) | =1&] P )3(X)|=1; T.p) 2 1-¢

by lemma 6.2 (1), and property (b). Since this holds for all e: O<E/3<o< (for

appropriate choice of cy), limC_>ooP(<,00<(><) ={T}; T,p) =1, as required. §
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While condition (b) succeeds in replacing the asymptotic nature of
consistency by actual probabilities, condition (c) does not give any control
over the size of P(X) for finite values of c. The reason, as shown next, is
that no such control is possible -- in particular there can be no CCI
procedure that always selects exactly one tree.

Indeed even if we were only to apply the procedure if the data was in some
sense "good" enough we still cannot have control on |$(X)|. This last
consideration amounts to considering conditional probabilities, and
motivates the following definition, (where P(A|B) is the conditional
probability of A given B).

8.4 Definition

A Tamily 9, x€(0,1) of selection procedures has bounded confidence
intervals (BCI) if

(@): P o (XISP (X IT xzox

(b): P(Tesoa(x)& |9 o (X)] <k | E;. T,p) = h(ex,n,k), for all (T,p) and some event

E (possibly dependent on nk,«), and some function h with

limo<_>oh(o<,n,k) = 1 for at least one positive integer k<b(n).
(Re:-e {'E p) e WRT() ) oo p ¢ (o o.s)ln-?>>

8.9 Remark

This definition is intended to generalize the particular example of a BCI

procedure satisfying condition (a) and P(Te _ (X) | |9 (X)| =1)= 1-oc. Here
E is the event |<PO<(><) | =1. As another example we might take E to be the

event that for some T€BPT(n), X5 = 0 precisely if ceQ(Ty).

8.6 Lemma

Let F:2%->R*. Then

Zuex (A xeAcK Ak} FIA) < kKara: acx |al<k) FA)
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Proof:

Reversing the order of summation,
2xeX 2 A: xeAC | Al<k) FA) =

2 (A Ak A<k ATFA) = Zea: ack jal<kik FIA). §

8.7 Theorem

(1): CCl selection procedures exist.

(2): BCl selection procedures do not exist.

Proof:

(1): Define a selection procedure tP(X as follows:

Let s be any function from 2BPT(N) ¢4 BPT(n) such that s(P)eP for all
PCBPT(N).
For each tree TeBPT(n), let
e(T,X) = min{||%/ -s(T,p)Il : P[0,0.512N "5} and let
P (X) ‘—{T: e(T,X) Sl/f(ch)}; if thisset is ¢

s({T: e(T,X) = min{e(T",X): T'eBPT(N)}), otherwise.
We show ¢ _ is a CCl. Condition (a) is clearly satisfied.
For (b), if Tg,Pg is the underlying tree, py € (0, 0.5)2“'3)
E[IIX/C—S(TO,DO)IIQ] = ¢ 2 > g(Xg=cs(oi Tg,pg)?] =
C_zsz[(Xd—Cs(o’; To.Po)?] = C_ZZG\/ar[Xd]. Now since X has a

multinomial distribution, by lemma 6.2 (3)(a), Var[X 4] = cs(c)(1-s(g)), so

that E[|%/ o=s(T,p)II2] = (1 - Sgs(c))/c = 1/ . ()
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Now P(Toe® (X)) 2 P(e(To.X) <!/ r(co)
> P>/ ~s(Topall2s!/ ) = 1= PUR/ =s(To,podlI2>1/ o) 2 1 - o, by

Markov's inequality (lemma 6.2 (2)) establishing condition (b).
For (c), let § = min{||s(T,p)-s(Tq.po)ll : pe[0,0.5]2H_3,TzTO}. Then §>0 by
lemma 6.13 (4). By Markov's inequality (lemma 6.2 (2)) and (*) we have,

P(le/C_S(To,DO)” 25/2) < 4/82C. Now if for any tree T=Tg, Te9  (X), then
for some p, ||X/C—S(T,D)|| SI/J(ch) and for c>4/820<, the triangle
inequality gives llx/c—s(To,pg)H > 8/2. Thus 1M _5 o PAT=Te:TeP (X)) = 0.
It thus remains to show that lim._5 ,P(Tge9 (X)) =1. Inview of the
definition of <PO< we need only check that

limC_>ooP(e(To,X) <min{e(T,X):T=Tg}) =1.

NOW 1iM <5 oo PUIR/ o=5(To.p)ll <8/5) =1, while if ||X/ -s(Tp)Il < 8/, for
any T=Tg and some p, the triangle inequality, together with the definition
of § gives ||X/C—5(T0,D0)|| 25/2, an event which has probability tending to

zZero as ¢c—>o00, 3s required. §

(2): Suppose a BCIl procedure exists. Given TeBPT(n), let T(e)ewWBT(n) have
edge weight € on all internal edges and 0.5-¢ on all pendant edges. We
first note from lemma 6.13 (S) that for any event E, P(E; T(¢))=0, so that

we may form all conditional probabilites.

Let ECA,(n,c), E=®. Then for any TeBPT(N), lemma 6.13 (6), and the
continuity of P(o; T,p) as a function of p imply that IimE_>OP(E; T(e)) is

positive and independent of T. Thus for any tree T9%BPT(n), any event £

and any 8>0 we can choose €>0 so that |P(E; T(e))-P(E; TO(¢)) | <.
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NOW 2.7 gpT(n)P(TEP (XD & |9 (X)] <kBE; T(e)) <

2. TeBPT(MP(TEP (X & |9 (X)] <kEE: TO(e)) +b(n)s =

LTeBPT(MEATeA, | A | kPP (AIEEI TOO) +b(n)s <

KE A al<kPPoc ((AIEE: TO())*b(n)8, by lemma 8.6.

= kP(] 9, (X)| k& E; TOe)) + b(n)s. Now if ¢ _ has BCl, we have

P(TeP (X) 19 (XD <k%E: T(€)) 2 h(oe,nk)P(E: T(e))

> h(o,NKIPC P L (X <kBE; T(e)).

Thus 21egpT(n)P(TEP o (X) & 19, (X)) <k&E; T(e)) 2

(N KT egp ()PP o (X <kEE: T(€))

> N(oenKIDNI(P(| 9 (X) | <kEE; TO(e))-6). Combining this with the previous
calculation we have, letting 8 = P(|9_ (X)|<k&E; TO(e)),

KB + ()8 2 heenkD(N)(B-8), giving heonk)s (KBTDINE)/ o oo ot s

->0 (choosing €=¢(8)>0 as §->0). Then since 8 does not tend to zero by

lemma 6.13 (5), we have h(«x,nk) < k/b(n) for all «, so that ¢ is not BCI. §

We now address the question, raised in the construction of a CCI procedure

in the previous theorem, of how to locate the closest point in s-space.

Approximate metheds

Suppose the edge weights are assumed to be small, so that the product of

any two edge probabilities can be neglected. One way to encapsulate this

notion formally is to regard the edge weights p; as indeterminants and
work with the algebra A over R generated by {p;};, subject to the formal

identities Pipj = 0 for all i,j.
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Then for any tree T we can solve exactly for the closest point in s-space,
and the "best fit tree" is given by a combinatorial condition similar to that
for compatibility. After presenting this result we show that such

procedures are basically unsound for the following reason: even on four
taxa, no matter how small the edge weights really are, inconsistency can

still arise using this method.

8.8 Lemma
In the algebra A, s(o; T,p) = "Po if edge e induces ©
Y 1 ZeeE(T)De' if =0
0, otherwise.
Proof:

The lemma follows immediately from

s(0: TP) = 2p(g)=0TTeeePeToee(T)-e(IPe)- §

8.9 Theorem

Assume that X satisfies max{X4: 0=} < c(n—2)/2(n_]).

Let o(T) = 2 geq(n)-a(Mia <2(T) = 25eqn)-a(T)c>

(1): For any tree, T, the edge weights p that minimize the distance
||X/C—S(T,D)|| in s—space under A (i.e. with s(o) replaced by its value in A)
are given by:

Pe = c><1(T)/C(ZD—Z) a(e)/,

where o(e) is the partition induced by deletion of e.
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(2): The trees in BPT(n) which minimize (over BPT(n)) the minimum

distances given in (1) are precisely those trees T which minimize the sum
2
oi(T) /(Zn-Z) + o(T) over BPT(N).

(By comparison recall that compatibility choses that tree minimizing

x1(T) over BPT(n)).

Proof:

(1): By lemma 8.8, in A,
a/apeHX/c—sH? = ~2(Xg(g)~CPg) * 2(X g~ c(I=Zpeg(T)Pe)). Where o(e) is
the partition corresponding to deletion of the edge e.
The linear system, 8||></C_5”2/8D[2 =0 for all eeE(T), can be written

- =1 _ N\ : .
(I+Jd)p = ¢ '(X* (XOO c)j), where X# is the vector (Xs(e)leeg(T) and J is

the square matrix having 1 in each position. Since 1+ T=1-(Cn-2)71J

the solution to this linear system is:

Pe = (C_X(50+(2n—Z)XG(Q)—ZQEE(T)XG(Q))/C(ZD"2)'

But ¢ = ZQEE(T)XG(Q) + XGO +o¢i(T). Thus Pg = “'(T)/C(Zn—Z) + ><<5(Q)/C.

In particular p,>0, and since x(T)<c, pe<(2n—2)" + (l—(n—l)_])/z < 0.5,

as required for a feasible solution.

Now 02 HX/C‘S”Q/aanpQ. = 4c if e=e’; 2C if eze’, so that the Jacobian of
||X/C—s||2 is 2c(J+1) which is positive definite, so the solution for p

minimizes ||X/C—s||2, completing the proof of (1).

(2): The minimum distance in A is ZGEQ(n)—Q(T)XQ’2 *

2.0cE(T) X (e) CPe)?* (Xgo- c(1=2g¢E(T)Pe))? , which from part (1) is

(2n-3)o(T)2,

2.5eQ(n)-Q(T)Y s’ * (2n-2)2 +°<2(T)/(2n_2)2, giving (2). §
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8.10 Corollary

Let ¢ 5 be the procedure which selects that tree which has an edge weight

minimizing the Euclidean distance from s to X/C, under A. Then ‘PA is not

consistent, even on four taxa, no matter how small the edge weights
might be. Thus ‘PA differs from another linearized procedure, "closest

tree” described by Hendy [1988].

Proof:In view of the previous theorem, we see that ‘PA is a central

procedure, and the result now follows by theorem 7.2. Closest tree, on

the other hand, is consistent by lemma 6.2 (3b). §

8.11 Remarks

(1): Although computationally appealing as indicated by Hendy and Penny
[1988], closest tree does not give a family of CCI procedures in the way

Euclidean distance in s-space does in theorem 8.7.

(2): While 9 5 is not consistent, it may nevertheless be useful in giving an

initial iteration value py for numerical methods aimed at finding the value

of p which minimizes the Euclidean distance from ></C to s(T,p). This

value for pyis given by theorem 8.9 (1).

(3): The restriction on X in theorem 8.9 is very mild, for unless Xg<<c for

all o=0yg, there would be no justification for assuming the edge weights

were small, and thereby working in A.
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Exact Solutions: (n=4)

Consider the case of four taxa. If the value of p which minimizes

f(p) = ||X/C-s(T,p)|] lies in (0,0.5)°, p is given by the solution of the

nonlinear system of eight equations in five variables: af(D)/ape =0. The

next theorem shows that this system can be reduced to finding the
solution of two equations, each in one variable, thereby allowing faster
numerical methods. Furthermore we show that if there is a minimum in
(0,0.5)°, it is unique. Of course if the minimum lies on the boundary of

[O,O.S]Zn'3 further analysis is required.

8.12 Theorem

If poe(0,0.5)° is a critical point of 1(p) = ||/ .~s(T,p)Il then

(1): pg can be found by solving two algebraic equations, each in one
variable.

(2): pg is unique.

Proof:

t

(1): Using the notation of example 6.10, since r = H's and H is Hadamard,

the value of p which minimizes ||X/C—s]| is the same value which
minimizes lIr - r9||, and hence ||r - 9|2, where r0 = Ht(x/c).

Let wj= (1~2pj) and x = [|r - rO||2 = 5.(ry - r% )2

Then dx/dwj = 224(ri-r0, )ari/acoj

ZzieK(j) (ry-r9 )ri/coj, where K is the matrix in the

proof of lemma 6.11, and K(j)= {i: Kijzl}.

Thus d></d¢oj = 0 for all jprecisely if ZieK(j) (ri- rOi )ri=0forall j
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Letuj = (ry-r9)ry, for ix1, so thatry = (r9 = f((roi)2-4 U;))/2. In fact
the conditions r;>0, exclude the negative roots. For if u;<0, then the
negative root gives r;<0, while if u;>0, the condition u;=(r;-r%)r; and

i>r0i' which again requires the positive root.

r]->0, implies r
Then since uy = 0, letting Ky be K with the top row deleted, these

conditions become K1t u=0. Now ker K1t = [a,b,-b,-b,b,a,-alt, which
0.)2-4 y. . . .
together with r; = Crop+ ¥ ((r%)2-4 Ul))/Z gives the following conditions

on a,b, from which u and hence r can be derived:

f(2) = (% + / ((r%)2 + 42)) -

0.5(r0, + / ((r)2-42)((r0 + / ((r)2-4a))) = 0;
QD) = (04 +  ((r04)2+4D))(r 0 + ¥ (r06)2+4D))-

(105 +  ((r93)2-4D))((r% +  ((%)2-4b)) = 0.

(2): Since (1), and g(t) are monotone increasing int, there exists at most
one solution to the system f(a) = 0, g(b) = 0, establishing the required

uniqueness. §
8.13 _Example

Consider X = [><1.><12,><13,><123,><14,><124,><134,><1234]t =
[189,58,1,8,5,7,47,1403]t, taken from the EMBL data bank of nucleotide
sequences (Hamm and Cameron [1986]), and derived from18S RNA
ribosomal sequences of length ¢c=1718 for nematode (1), brine shrimp (2),
xenopus (3) and mouse (4).

Applying theorem 8.12 for the tree T = (12)(34) we find a=-0.00200,

b=-0.00175, giving a minimum distance in s-space of 0.00214 (approx). §
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Efticiency (1)
Two problems arise from using the CCI procedure <PO< described in theorem

8.7. Firstly, as we have seen, approximate solutions, are statistically

unsound. Secondly, finding <PO<(><) involves a search among all trees in

BPT(n), and so is not efficient.

In fact most of the more widely-used selection procedures have been
shown to be NP-complete. These include, parsimony methods (Foulds and
Graham [1982]; Day, Johnson and Sankoff [1986]), as well as

compatibility (Day and Sankoff [1986]) and dissimilarity methods (Day

[1987]). Of course by theorem 8.7, there is no family {300<:o<e(0,1)} of

selection procedures which is both efficient in constructing ¢ (X), and

CCl, because |9 (X)|=b(n) for « sufficiently small, and b(n) in not

bounded above by a polynomial function of n. We now demonstrate the

existence of CCl families having the property that for every tree TeBPT(n)

it can be efficiently decided whether TesUCX(X).

8.14 Definitions

Let Q be a quartet spectrum on label set L. The restriction of Q, denoted
(Q)pps is the set of trees TeBPT(L) with y(T)NQ = ¢.

The dual of Q, denoted §(Q), is the minimal set defined by the rule: if
(xy)(zw)eQ, and (xz)(Yw)eQ, then (xw)(yz)es(Q).

Note that for any such Q, (Q),,.N<Q> = ¢, and for any binary tree T,

res
(¢(T)) = ¢, by theorem 3.8 (2), with k=4. Furthermore, clearly,
(Q)ppsC<8(Q)>, and taking Q = Y(T), so that 8(Q) = ¢, and <&(Q)>= BPT(L),

we see that this containment is, in general, strict.
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Now given any family of CCl selection procedures ‘ch on sequence spaces

on four taxa, consider the following families <P*O<, <P**O< defined on
sequence spaces on n taxa. Define g(o,n) = %/NCy,, and let

Q.7 uSE[L]4BPT(S)—ﬂpg(m,n)(X[S]). Finally, let

P* (X)) = (Q )ppg and 9** _ (X) = <8(Q,)>, so that ¢* _(X)c9>** _ (X).

8.19 _Theorem

P . and P> _ are CCl selection procedures, and for each TeBPT(Nn) it can

be efficiently (in n) decided whether Teg*  (X), P> _ (X).

Proof:

One can efficiently decide whether Tecp*o((x), <P**O<(X), since
Q. can be efficiently (in n) constructed and one can then efficiently decide

whether or not TE(Q(X) and Te<8(QO<)>.

Regarding CCI properties suppose «<cp, soO that since ¢ is a CCl

procedure, 9 q(q, n)(XISD & Pq(o, n)(XIS). hence Q< Q.

Now if ACB then (B)rQSS(A)rQS so that <P*O<2(X)_Q<P*o<1(><), as required.
Now Tep*_(X) precisely if T[S]“BPT(S)—(PQ((xm(X[S]) = ¢ for all Selll,.
Now P(TISINBPT(S)~ Py (o )(XISD) = ) 2 P(TISIEP () (XISD) = T-glecn)

Thus by lemma 6.2 (1), P(TesO*O((X)) > |-, as required.
Convergence follows from the observation that

(Vs BPT(S)-TISDpeg= (T). The argument for ¢** is similar. §
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Efficiency (ll):
We now consider the third question of how fast the number of sites must

grow as a function of the taxa, so as to accurately reconstruct phylogenies.

8.16_Definition

Let ¢ be a selection procedure, and let C_C__unWBT(n).

We say Pefrficiently recovers C if:
(1): For each TeBPT(n) and partition frequencies X it can be efficiently
decided whether TeP(X).

(2): There exists a function f: R*x N ->R™ polunomial in n, such that

for all €0, and all (T,p)eCNWBT(n)
P(P(X(c))=(T} T,p) >1-¢, for all c=f(e,n).

8.17 Remark

The motivation for calling a selection procedure efficient under these
conditions is as follows. Consider a biologist building phylogenies for
progressively larger sets of species, in the hope that these match the
unknown underlying tree. Suppose a selection procedure, ¢, of order
O(nsct) which efficieritly reconstructs the (unknown) class of trees being
sampled is used, and suppose the associated function fis O(nY). Then for
fixed €, the number of steps required to build a tree in BPT(n) which has
probability >1-¢ of being the tree which produced the data, does not grow
exponentially in n (it is O(ns+tu)), and thus the accurate construction of
large trees may be feasible.

Since b(n+2) is asymptotically proportional to n12"y/ n, it is perhaps

surprising that any infinite set of binary trees can be efficiently

recovered. Clearly, UnWBT(n) cannot be efficiently recovered, by theorem

8.7 (2), though trivially any finite subclass can be.
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We now show that the class of balanced trees of height A, BH()),
(definition 7.41) which contains all rooted trees (with suitable edge
weights) can be efficiently recovered. For convenience we assume a
molecular clock. That is we assume the edge lengths on the underlying
tree are additive as in definition 6.4. The general case (without a clock)
is essentially the same, though the calculations are messy, and tend to

obscure the result. For the remainder of this sectionrecall (from

definition 6.4 (5)) that s(T|q) = s(T,p), for p, = 05(1-¢” 29p).

8.18 Definition

For any vector xe(R™)4, indexed over Q(3) ordered as {1}, {1,2}, {1,3},
{1,2,3,4} and the rooted tree T = (1)(23), let q = q(X) = [41,9,,4,-q;]) € [0,00]3

(where Qg = ¢ is formally taken to mean p, = 0.5) denote the edge lengths

on the edges of T, as illustrated in fig. 8.1(a), which minimize the
Euclidean distance A(T,x,q) = [|s(T|@)-#]|.

Let A(T,%) denote this minimum distance.

q2-Gs gz = Q2-q4

dz 42

(a) (b)

Figure 8.1
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8.19 Lemma

In the notation of definition 8.18, sUppose 1 > Xip3 > X1,%12.%13, 4=q(%) and

let

w = [w,wel, where wi:e_zqi, for i=1,2. Then
W = \[RFRioz= K2R3, K1z~ Xl 0T ><1Z(xffxf£)/2

gL, if xis(x12+x13)/2, where 8§ = (3><123‘><1‘><12’><13)/3_

Proof:
A simple application of theorem 5.28 gives for s = s(T | q)

s = (]*@1_2(1)2)/4
512:513:(1—0)1)/4 Q)

S1234 = (1+w]+2w2)/4_

Let A = A2(T,%,q). Then A = ZGEQ@)(XG - 55)?2 so that

aA/acoj = —ZZO(xg—sd)asg/awj and for jke{1,2},

%8 /80 pwy = 285(3%5/80 )(O%a/3w,), since 2*55/8w Bw = 0. Thus

the Jacobian matrix [SZA/aw-awk]-k of A is diagonal with leading entries

) )

]/2,1, so that any critical points of A are minima.

Solving the system aA/an = 0 for j=1,2 gives the unique solution

Wy = ¥FR1237 8127813, W2 = X237 4.
For this to be a feasible solution we require ©>q,>q:>0, that is

12w=w,>0. Since 1>X123>Xy, by hypothesis, these conditions translate

into the given condition xq > (X12+X13)/2. [f this does not hold then (since

there is only one critical point for A), A is minimized subject to qi=qp,

that is w; = w, = w (say).
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Solving the equation aA/aw =0 gives w = (3><123—x1—><12—><,3)/3’ which lies

between 0 and 1 by hypothesis and so is feasible, as required. §
8.20 lLemma

For Ty =(3)(12), with edge lengths q = [q;,92,93), 93 = q,-q; as in fig. 8.1(b),
and T = (1)(23), let &y = A(T,s(Ty| Q).

Then Ay = e_2q1(l—e_ZQ3)/f6

Proof:

Lety; = e~ 29i for i=1,2. Then for s* = s(T;|q) we have
5% = 513% = (]_91)/4

5% = (MU 242)/

S1p3> = (]+Q1+292)/4.

Applying lemma 8.19 with Kg =S5 we find that x; < (><12+><13)/2 since
Y=Yz, and K23 = X,%12,%13. Thus the value for q' which minimizes
A(T,s*,q") is given (in terms of w) by w = B[1,1] where

8 :(3><123‘><1"><12"x13)/3 = (Ur*2U2) /- substituting this value gives

NP2 = (91_92)2/6, as required. §

Consider the following selection procedure, 9. For each triple S={i,jk}
choose that rooted binary tree (or trees) T on S which minimizes
A(T,X[S]). If all of the trees so produced are consistent with exactly one

rooted tree Ty, then select T, otherwise select 9.
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8.21 Theorem

For TgeRBT(n) with edge lenghts q subject to a molecular clock, let § be
the mininum edge length on Tg, and q the the height of T4 (i.e. the expected

number of changes from the root to the endpoints). Then

P(‘P](X) = {TO}; TO,Q) >1- 9nC3Q4q/2C82(]_8)2

Proof:
For each Seln]s consider the event E(S) that T=Ty[S] strictly minimizes

A(T, X[S]). Then the event that §; selects Tq is precisely the event
nSe[n]3E(S)'

Let e(S) =

min{||s(Tg[S] l q(s]) - s(T; | qyll = qq =[q1,92,92-q;)€[0,0]3, T1eRBT(S), Ti=Tols)

By lemma 8.20, ¢(S) 2 e_2q1(l—e_2‘13)//6 for appropriate values of
41,42,93 = 42~-qy (depending on S). Thus €(S) > 22_2(18(1-8)//6, since q;<q,
CEE t—t2/2, (for t>0) and g3 2§, and this holds for all Se[nls.

Let E4(S) be the event that ||s(Tq[S]]|qlS]) —X[S]/Cll < e'2q8(l—8)//6.

Since e'2q8(1—8)/f6 < E(S)/z we have, by the triangle inequality for
Euclidean distance, that E;(S)CE(S) so that P(HSE[n]3E(S)) > PmSe[n]3El(S))’

and thus PmSe[n]3E(5)) > 1- ZSE[H]3(I-P(E1(S)), by lemma 6.2 (1). (*)

The complement of E(S) is precisely the event that

|Is(TolST| qlsS]) ~X[5]/C||2 > e‘4q52(1-5)2/6, so that by Markov's inequality
(lemma 6.2 (2)), 1= P(E((3)) < (627 52(1-5)2)¥

where % = E[||s(Tols]| qls)) -*13l/ 2.
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writing s(TqlS]|qlS]) as [sy,..54], X[S] as [Xy,...X 4] we have
¥ = €15, (Ki7CSD?/ o] = 725 El(%i-cs)2] = ¢ 725 VarlX;]
Now X has a multinomial distribution with parameters ¢ and s so that

Var[X;] = csi(l—si), by lemma 6.2 (3a). Thus by proposition 6.5 ((2)
¥ =(1-5,52)/ < = (1 - s(0g: TIS1] 2Q))/ o < 3/ 4,
since s(0g; T[S]| 2q) > ]/4, by lemma 6.3 (2).

Thus ¥'< 3/40 Combining this with (), gives the result. §

8.22 Corollary

For any AeR™, ¢, efficiently recovers BH(A) (in the sense of 8.16).

Proof:

For each TeRBT(n), it can certainly be efficiently decided whether Te¢(X).
We must now construct a function f, as in definition 8.16. Let

(T,q)eBH(N\). Since the ratio of the edge lengths of any tree in
BH(A)NWBT(n) is bounded above by n-1, the shortest edge length on such a

tree is at least A/(n-l)' By the previous theorem (taking § = x/n, for
convenience, and q = A) we have

P(P(X(c) ={TE T,.Q >1- 9n2.nC3.e4>‘/2C>\2(]_>\/n)2 so that we can take
f(e,n) = 9n2.”C3.e47\/2>\E in definition 8.16, which is polynomial in n (of

degree S5), as required. §
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8.23 Remarks

(1): Consider a family of trees T(k)eRBT(2X), (definition 7.16) and assign
all edges of T(k) length M/, Then {(T(k), (M/)}): k=1,2,..)CBH(A), so that

P,efficiently recovers this class, yet the probability that there is a
partition with more than than one occurrence tends to zero, by theorem
6.19. This suggests the usefulness of aggregation-based approaches such

as quartet (and in this case triplet) methods.

(2): The degree of n(namely 5) for the function f constructed in the
previous corollary is due to the coarse nature of ¢;. It is likely that
functions of lower degree in n satisfying definition 8.16, could be
constructed by using a more subtle procedure, which does not require the
structure of all "Cs triples to be known in order to select some tree. The
value of corollary 8.22 lies in demonstrating that polynomial bounded
procedures (in the sense of 8.16) exist even though BPT(n) grows much

faster than any polynomial function.

A %2 test: (Melecular clock)

We have seen that Markov’s inequality gives a method for putting
confidence intervals on selected trees by using Euclidean distance in
s-space. One drawback with this approach is that the confidence
intervals are not very tight unless ¢ is large, as Markov’s inequality
exploits only the variance of a distribution. In general, if X has a

multinomial distribution, with parameters c, A, there is little one can say

about the distribution of the Euclidean distance |Ix/c-?\||2. However by
lemma 6.2 (4d), a tight distribution exists (approximately) on a

centralized variant, obtained by replacing Zi(xi/c‘?\i)z by

Zi(xi/c—?\i)2<c/7\i).
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8.24 Definitions

For Selnls, S=(1,2,3}, T = (1)(23), choose q = [4;,9,,92~q;]° as in fig. 8.1 (a)
so as to minimize:
X(T.SX.9) = 2 geq3)(XISI(0)- cs(oi T @)/ cg(q: T q)

Let X(T,S,X) be this minimum value.

Let X3 be a chi-square random variable with three degrees of freedom, and
for «>0 choose B(x) so that let P(X3>8(x)) < </NC5.

Given a set Q of rooted binary trees on sets in [n]3 define the restriction

of Q, (Q),44 in the analogous way as for unrooted binary trees trees on
sets in [n]4 (definition 8.14). Thus

(Q)ppg = {(TeRBT(N): TISINQ=% for all Selnlz}

(where for S={i,jk}, T[S] = (i)(j,k), (j)(i,k) or (k)(i,j)).

Finally let Q'_= uSE[n]3{TeBPT(S): X(T,5,X,9)>B(x)} and define

P (X)) =(Q' pps. Thus P (X) CRBT(n).
8.25 Lemma

9. has convergent confidence intervals.

Proof:

A straightforward argument similar to theorem 8.15. §
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8.26 Theorem

Write [$1,512,513,5123] @s [51,52,53,54] and X[S] as [xy,X2,%3,84]. Then the s;

Xz +Xx3
values that give X(T,5,X) are given as follows: Let v il J‘C( 2 3)/2>

Case I:If ;> ¥ , X42%;, then

= X1
S /(X] t Xg t 215)
— X4aS

S, =53 = (]—51—54)/2.

Case 2: If X1 = ¥, x4q2X
_ 2 2 2
S1= 52783 = B/(1+3B) where 8 = x4 ]J[(x1 * Rt T K3 )/3]

54 = ]_35].

Case 3: If X4<x127Y

e -2 , _ _
Sp = 83 = 2/2(a1+a2)' where a; =  (%12+%42), ap = + (%52+%32)

Case 4:If Xg4<x<¥

s1=52:s3:s4=]/4.

(Cases other than | arise because an edge length required to minimize
X(T,S,X,q) is negative and this is disallowed. Not surprisingly, in these
cases, the resulting X(T,5,X,q) values are large -- the trees are the wrong

way around. This is illustrated in example 8.27.)




189

Proof:
As in lemma 8.19 we have

s = (l+w1—2w2)/4
Sip = 813 = (l—co1)/4 (1)

Sip3a = (l+w1+2w2)/4.

. o 2 .
we wish to minimize X = 2;(%i"/c2s; - 2% +Csj) subject to 0<wy<w;<I.
These conditions imply 12s4>5125,=532>0.

We first solve ax/awj = 0 subject to s>0.

ax/a(l)] = Z](C - Xi2/C2Si2)aSi/an

= - C_ZZi(xi2/si2)asi/8w-, since Ziasi/aw

j = 0.

J

3 - : o %2 _ %42 _
Now X/8w2 = 0 precisely if "1 /512 4 /542 =0 (2)

3 - - o Kp2 _ Xp? _ ®33 X 42 -
and X/Scm = 0 precisely if "1 /512 2 /522 3 /532 + %4 /542 0. (3)
Now if the s/’s are positive, (1) implies

1S4 = X4S (4)

Furthermore, since s,=s3, (1) and (2) give:

X1So = S1J‘{(X22+X32)/2} (S)
Finally, by (1), s, = (7 81754)/,, 50 that letting o = / ((*2°*%3%)/.}, (4) and

(S) give, 517 X1/(><1+><4+2b))'

Now for jke{1,2}, 82X/8coj8cok = c'zzi(xi2/si3)(85i/8wj )(asi/awj ),

since azsi/awjawk= 0.

Thus, letting A; = (x,2/5,3)/1g -2, the Jacobian matrix for X is
’A1+A2+A3+A4 ‘“2A1+2A4 ]
J= |
—2A1+2A4 4A]+4A4J
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2
Now for for s >0, the Ai‘s are positive so that 3 X/8w12 >0 and detJ >0,

so that J is positive definite, and thus the unique critical point

s* = [51%,5,%,53%,54%] of X in the positive s-quadrant corresponds to a
minimum of X.

Now Wy =1-4s,, w, =1-251=25,, and we require 0<w,<w<Il. For s* we
have w<l, and w,<w;precisely if s*>s,* which holds if and only if X>9,

while 0w, precisely if x4>%y. This gives the result for case 1.

For case 2, if X;<¥ and X4>¥Xy, then for s*, w>w,>0. Since s* is the only

critical point of X in the posifive s-quadrant, X is maximized in case 2
(subject to wsw,) on the plane w,=w;. In this case sl=52:s3=(]_w1)/4 and
54:(]+3w1)/4.
3 — 1E~m (%2232 _ 3x%42

Then OX/g, = 162X M7 RT/ ) va = 384770154 32)
which equals zero when s4=s,=53= ﬁ/(|+35)’ where

_ oy (%2 + %2+ %32) —1-
B =xg W/ (W7 T KT T3/ o) and s4 =1-3s;. Clearly these s values are all
positive and 3 X/82w1 >0 in the positive s-quadrant, so that the critical

point corresponds to a minimum, as required.

In case 3, if 2% and x4<Xy, a similar argument applies -- in this case X is
minimized subject to w,=0. In case 4, X is minimized subject to the
conditions of cases 2 and 3, but these imply w=w,=0, which confine the

set of feasible s values to one point.
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Example 8.27

For the EMBL data X on four taxa, listed in example 8.13, let us construct

P 005(X) by the above procedure.

We require P(X3>8) < 0.00125, so that we can take 8 = 16.7, (Burington
and May (1970, p.387]). Then we have the following table:

S T X(T,X[S]) T,.T53 X(TX[S)) (i =2,3)
{1,2,3) (1(23) 2.5 (2)(13), (3)(12) 115.9
{1,2,4} (1(24) 1.7 (2)(14), (4)(12) 105.2
{1,3,4} (1)(34) 0.4 (3)(14), (4)(13) 336.2
{2,3,4) (2)(34) 1.2 (3)(24), (4)(23) 17.5

Thus ‘pO.OOS(X) = (Q)rgs where Q is the set of all 8 trees in the fourth

column of the above table. Thus 94 5g5(X) = {T} where T is the tree

shown in fig. 8.2.

1 2 3 4

1 = nematode, 2 = brine shrimp
3 = Xenopus, 4 = mouse

Figure 8.2




8.28 Summary
The theme of this section has been the construction of confidence

intervals on phylogenies by constructing such intervals on subsets of the
taxa of size three or four. These smaller cases often have simple analytic
properties (theorem 8.12 and 8.26) and the confidence intervals generated
can then be combined by lemma 6.2 (1) to give confidence intervals on the
parent phylogeny. This lemma is sufficient to prove the existence of
procedures with desirable theoretical properties (theorem 8.15, lemma
8.25 and corollary 8.22) and its appeal lies in the absence of any
independence assumptions regarding the events involved. A more subtle
approach would be to consider the dependence between these events
arising from the constraints imposed on edge lengths of subtrees by the
requirement that they must all fit together on some parent tree in their
span. More specifically, although a binary tree with n endpoints is defined
by n-3 subtrees of size four (theorem 3.12), and each of these subtrees has
5 edge lengths, the resulting 5(n-3) edge lengths are subject to a number
of linear constraints since the parent tree has precisely 2n-3 edge lengths
(linear combinations of which give the 5(n-3) edge lengths).
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Appendix

Proof of theorem 7.18

Let g(k) be the minimum number of endpoints of T(k) that are coloured A
over all XeV(T(k),{A,B}). We prove the following two statements
simultaneously by induction on k:

(1: g(k) = (k-1

(2): 7(k) = 1(k-1) + f(k=2); T(0) =1, 7(1) = 2.

The results hold for k<2 so suppose both results are true for k<m-1, m>3.
Firstly let X; € V(T(m),{A,B}) realize g(m).

By Fitch’s algorithm (refer 5.18 (2)), the two trees T(m-1) whose roots
are joined to the root of T(m) must have colourings X;, X, both in
V(T(m-1), {A,B}) or with one in V(T(m-1),{A}) and the other in
V(T(m-1),{B}).

In the first case, g(m) > 2g(m-1). By the induction hypothesis on (1), we
have g(m-1) = f(m-2), and by the induction hypothesis on (2) we have that
f(m-1) is the m-th Fibonacci number, so that f(m-1)<2f(m-2). Combining

these we have for the first case that g(m) > f(m-1).

In the second case, we can suppose X realizes f(m-1) and that X, assigns
colour B to every pendant vertex so that g(m) = f(m-1).
Thus the second case achieves a lower value for g{m), and hence

establishes the induction step for (1) that g(m) = f(m-1).

We now establish the induction step for (2). Let X; € V(T(m-1),{A}) realize
f(m-1), Xo€ V(T(m-2),{A}) realize f(m-2). Assign colour B to all the
pendant vertices of one copy of T(m-2), colour another copy of T(m-2) by
X2, join their roots to a third root to obtain a colouring for T(m-1) in

V(T(m-1),{A,B}).
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Then join this tree to another copy of T(m-1) coloured by X;, and again
join their roots to obtain a colouring X of T(m), which by Fitch’s
algorithm is in V(T(m),{A}).

[N this way, f(m) < f(m-1) + f(m-2). (>*)

Conversly, let X realize V(T(m),{A}). By Fitch’s algorithm, the induced
colourings Xi, X, of the two copies of T(m-1) joined to the root of T(m)
"~ are either both in V((m-1),{A}) or one is in V((m-1),{A}) and the other is in
V(T(m-1),{A,B}).

In the first case, f(m) > 2f(m-1), which combined with the previous
inequality, (*) gives f(m-1)<f(m-2), a contradiction, since by the inductive
hypothesis on (2), f(m-1) and f(m-2) are respectively the m-th and
(m-1)-th Fibonacci numbers, so that f(m-1) > f(m-2).

In the second case we have:

f(m) = f(m-1) + g(m-1), and since g(m-1) = f(m-2), by the inductive

hgbothesis on (1), the result follows. §
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17

18

19

20

195

3 4 6 7 8 9 10
1.67
1.80
1.86 2.31
1.89 252
1.91 2.64 2.97
1.92 2.71 3.22
1.93 275 3.37 3.63
1.94 2.79 3.48 3.90
1.95 2.81 355 4.09 4.29
1.95 2.83 3.61 4.22 457
1.96 2.85 3.65 432 4.78 4.96
1.96 2.86 3.69 4.40 4.94 SIVAS)
1.96 2.88 3.72 4.46 5.07 5.47 5.62
1.97 2.89 3.74 451 S.17 5.65 5.92
1.97 2.89 3.76  4.56 39.25 5.80 6.16 6.29
1.97 2.90 3.78 459 5.31 5.91 6.35 6.59
1.97 2091 3.79 462 5.37 6.01 6.51 6.84 6.95

Values of ¥(n,a) for 4<n<20.
$(n,1) = 1, ¥(n,a) = 0, 2a>n.

Table Two (Refer Pﬂ3)
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