Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Acceptance Sampling for Food Quality Assurance

Edgar Santos-Fernández

Supervisor: Dr. K. Govindaraju Dr. Geoff Jones

Institute of Fundamental Sciences Massey University

This dissertation is submitted for the degree of Doctor of Philosophy in Statistics

March 2017

Dedicated to my mother, Carmen Fernández Ferrer A ti madre querida, por ser ejemplo de dedicacion y amor.

"In God we trust, all others bring data.¹"

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements. This dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes, tables and equations and has fewer than 150 figures.

Edgar Santos-Fernández March 2017

Acknowledgements

This thesis is the result of the combined effort of several people for over three years. First, I would like to thank my supervisor Dr. K. Govindaraju. I will always be grateful for this opportunity and for the guidance, advice and support. My deepest gratitude to my co-supervisor Associate Professor Geoff Jones, for his valuable lessons and for encouraging me. Thanks to the members of the Statistics and Bioinformatics Group and especially to Professor Martin Hazelton. I would like to acknowledge the absolute support provided by the Institute of Fundamental Sciences, Massey University.

I am immensely grateful to the Primary Growth Partnership (PGP), which was funded by Fonterra Co-operative Group Limited and the New Zealand Government, for the financial support. I would like to show my gratitude to Roger Kissling from Fonterra, for his help and advice during execution of this project, for his constructive feedbacks and ideas, and for providing the data. Thanks to Steve Holroyd for reading several of these manuscripts in different stages and for his valuable suggestions. I also would like to thank other members of Fonterra Co-operative Group Limited involved in this work.

My gratitude extends to several Editors and anonymous referees for carefully reading the six works here exposed. Their suggestions and feedback allowed us to substantially improve this thesis.

Thanks to the present and past postgrad students and colleagues I had the pleasure of working with for over three years. Thanks to my colleague Nadeeka Premarathna.

Last but not the least, I am thankful to my family for the support and the encouragement. Gracias a mi madre por tantos años de excepcional educación. Por educarme en el camino hacia la ciencia y el descubrimiento. A mi hermana Laura, por estar siempre a mi lado y por toda la ayuda que me ha brindado a lo largo de los años. Agradezco ademas a mis hermanos, y al resto de mi familia.

Thanks to everyone that contributed to this project.

Palmerston North. December, 2016

Abstract

Acceptance sampling plays a crucial role in food quality assurance. However, safety inspection represents a substantial economic burden due to the testing costs and the number of quality characteristics involved. This thesis presents six pieces of work on the design of attribute and variables sampling inspection plans for food safety and quality. Several sampling plans are introduced with the aims of providing a better protection for the consumers and reducing the sample sizes. The effect of factors such as the spatial distribution of microorganisms and the analytical unit amount is discussed. The quality in accepted batches has also been studied, which is relevant for assessing the impact of the product in the public health system. Optimum design of sampling plans for bulk materials is considered and different scenarios in terms of mixing efficiency are evaluated. Single and two-stage sampling plans based on compressed limits are introduced. Other issues such as the effect of imperfect testing and the robustness of the plan have been also discussed. The use of the techniques is illustrated with practical examples. We considered numerous probability models for fitting aerobic plate counts and presence-absence data from milk powder samples. The suggested techniques have been found to provide a substantial sampling economy, reducing the sample size by a factor between 20 and 80% (when compared to plans recommended by the International Commission on Microbiological Specification for Food (ICMSF) and the CODEX Alimentarius). Free software and apps have been published, allowing practitioners to design more stringent sampling plans.

Keywords:

Bulk material, Composite samples, Compressed limit, Consumer Protection, Double sampling plan, Food safety, Measurement errors, Microbiological testing, Sampling inspection plan.

Recommended citation

Santos-Fernández, Edgar (2016) Acceptance Sampling for Food Quality Assurance. *PhD dissertation. Massey University.*

```
BIBT<sub>F</sub>X
```

```
@PhdThesis{SantosFernandezPhD2016,
    title = {Acceptance Sampling for Food Quality Assurance},
    author = {Santos-Fern\'andez, Edgar},
    school = {Massey University},
    year = {2016},
    note = {{PhD} dissertation}
    }
```

EndNote

```
%0 Book
%T Acceptance Sampling for Food Quality Assurance
%A Santos-Fernández, Edgar
%D 2016
%I Massey University
%Z PhD dissertation
```

Declaration

This thesis complies with the 'Guidelines for Doctoral Thesis by Publications' and with the requirements from the Handbook for Doctoral Study by the Doctoral Research Committee (DRC), Massey University. January 2011. Version 7.

Disclaimer

The opinions, findings and conclusions in this thesis are solely those of the author(s). Under no circumstances will the author(s) be responsible for any loss or damage of any kind resulted from the use of these techniques. The software codes and the apps produced by this research are licensed under GPL ≥ 2.0 and it comes without warranty of any kind.

Table of contents

List of figures xv List of tables xxi		
1.1	Food safety and assurance	1
1.2	Acceptance sampling	2
1.3	Microbiological sampling plans	5
1.4	Scientific problem and research objectives	6
1.5	List of publications/manuscripts	8
Qua	ntity-Based Microbiological Sampling Plans and Quality after Inspection	9
2.1	Abstract	9
2.2	Introduction	9
2.3	Concentration-based sampling plan	11
	2.3.1 Single batch microbial risk assessment.	11
	2.3.2 Average quality in accepted batches	18
2.4	Variables sampling plan	25
	2.4.1 Sampling plan design	25
	2.4.2 Average quality in accepted batches using variables plan	26
2.5	Discussion and conclusions	26
App	endix 2.A Table of symbols	29
App	endix 2.B The convolution theory	29
Con	pressed Limit Sampling Inspection Plans for Food Safety	31
3.1	Abstract	31
3.2	Introduction	32
3.3	Good Manufacturing Practices (GMP) limits	33
3.4	Two-class compressed limit attribute plans for known σ	34
3.5	Three-class compressed limit attribute plan	38
3.6	Numerical results	42
3.7	Economic evaluation	44
3.8	Robustness and nonnormal-based compressed limit plans	45
	st of f st of f Intro 1.1 1.2 1.3 1.4 1.5 Qua 2.1 2.2 2.3 2.4 2.5 App App Com 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	st of figures st of tables Introduction 1.1 Food safety and assurance

	3.9	Summ	ary and conclusions	48
	App	endix 3.	A Glossary of symbols and definitions.	50
	App	endix 3.	B R Software code	50
	App	endix 3	.C Optimum compression constants (t) , sample size (n_t) , acceptance	
		numbe	er (c_t) and the corresponding quantile (q_t) for given two points of the OC	
		curve		53
	App	endix 3.	D Optimum compression constant (t_1) , (t_2) , sample size (n_t) and accep-	
		tance r	numbers (c_{t_M}) and (c_{t_m}) for three-class compressed limit plan	54
4	New	' two-sta	age sampling inspection plans for bacterial cell counts	57
	4.1	Abstra	ct	57
	4.2	Introdu	uction	58
	4.3	Materi	als and methods	59
		4.3.1	Statistical models	59
		4.3.2	Compressed limit plans	60
		4.3.3	Double sampling plans	61
		4.3.4	Two-stage sampling plan based on compressed limit	61
	4.4	Evalua	tion of double sampling plan with compressed limit in the first stage	64
		4.4.1	The homogeneous case	64
		4.4.2	The heterogeneous case modelled with the PLN distribution	66
		4.4.3	The heterogeneous case modelled with the PG distribution	67
		4.4.4	Iterative algorithm to obtain the optimum sampling plan	67
		4.4.5	Comparison with the single compressed limit plan	69
		4.4.6	Assessing the robustness of the plans	69
	4.5	Practic	cal results	71
	4.6	A web	-based application	73
	4.7	Discus	sion and conclusions	73
	App	endix 4.	A Markov chain Monte Carlo (MCMC) method	75
	App	endix 4.	B OpenBUGS codes used for the simulations	76
		4.B.1	Negative binomial	76
		4.B.2	Poisson-lognormal	76
		4.B.3	Poisson	77
5	Effe	cts of in	nperfect testing on presence-absence sampling plans	79
	5.1	Abstra	ct	79
	5.2	Introdu	uction	80
	5.3	Materi	als and methods	82
		5.3.1	Discretization and the analytical unit	82
		5.3.2	The sampling distribution	83
		5.3.3	Statistical sample size (n)	83
		5.3.4	The population of microorganisms	84

		5.3.5	The sampling method	85
		5.3.6	Testing pooled or composite units	86
	5.4	Single	(isolated) batch risk assessment	87
		5.4.1	Building a hierarchical model based on p	87
		5.4.2	Hierarchical model based on the rate λ	89
		5.4.3	Hierarchical model for semi-continuous data based on the zero inflated	
			lognormal (ZILN) distribution	90
	5.5	Bayesi	an data analysis	90
		5.5.1	One sample of 300g vs. 30 samples of 10g each	92
	5.6	Cost ar	nalysis	94
	5.7	Discus	sion and conclusions	96
	Appe	endix 5.	A Glossary of symbols and definitions	98
	Appe	endix 5.1	B Reported values of sensitivity and specificity	99
	Appe	endix 5.	C Models in JAGS for the numerical integration	100
		5.C.1	R codes to obtain the P_a using numerical integration $\ldots \ldots \ldots$	100
		5.C.2	R codes to obtain the P_a using numerical integration using n_i composite	
			samples	100
		5.C.3	R codes to obtain the P_a , p and p_e in the accepted batches using MCMC	100
		5.C.4	R codes to obtain the P_a using numerical integration based on μ and σ .	100
		5.C.5	R codes to obtain the P_a using numerical integration based on the zero	
			inflated Poisson-lognormal distribution with μ and σ	101
		5.C.6	R codes used for the MCMC simulation (Scenario 1) $\ldots \ldots \ldots$	101
	Appe	endix 5.1	D Shiny app to estimate the risk for presence-absence tests	101
6	A Ne	ew Varia	ables Acceptance Sampling Plan for Food Safety	103
	6.1	Abstra	ct	103
	6.2	Introdu	uction	103
	6.3	Materia	al and methods	105
		6.3.1	The Operating Characteristic (OC) curve	105
		6.3.2	Variables plans for food safety	105
		6.3.3	New plans based on the <i>sinh-arcsinh</i> transformation	106
		6.3.4	Simulation algorithm	106
	6.4	Results	3	107
	6.5	The mi	sclassification error	109
	6.6	Examp	le	109
	6.7	Assess	ment of robustness	111
	6.8	Discus	sion	113
	6.9	Conclu	sions	113
	Anna	andir 6		
	App	enuix 0.	A Effect of the parameters in the sampling performance	115
	Арра	endix 6.	A Effect of the parameters in the sampling performance	115 118

	Appendix 6.D Step-by-step guide	119
	Appendix 6.E Symbols and definitions	121
	Appendix 6.F Justification of chosen constant for sinh-arcsinh transformation	121
7	Variables Sampling Plans using Composite Samples for Food Quality Assurance	123
	7.1 Abstract	123
	7.2 Introduction	123
	7.3 Food safety and composite samples	126
	7.4 Imperfect mixing	127
	7.5 Variables plan for composite samples	129
	7.6 Design of the variables sampling plan based on composite samples	131
	7.7 Three-class variables plan	136
	7.8 Conclusions	137
	Appendix 7.A Glossary of symbols and definitions	141
	Appendix 7.B Sampling plan design	142
	Appendix 7.C Sampling plan guide	142
8	General conclusions and future perspectives.	143
	8.1 Future plan of work	144
Re	eferences	145
Ap	opendix A Contributions to publications	157
In	dex	163

List of figures

1.1	Types of acceptance sampling schemes	3
2.1	OC contour plots of two-class concentration-based sampling plans with $n = 10$ and 30. The batch probability of acceptance is obtained from the Poisson-	
	lognormal distribution.	14
2.2	Effect of batch inhomogeneity on the OC curve ($n = 10, c = 0$). Cases 1 and 2	
	refer to homogenous and inhomogeneous contamination respectively.	15
2.3	Effect of using composite samples with $n_I = 4$ increments using the plan ($n = 10$,	
	c = 0) for the cases of homogeneity and inhomogeneity	16
2.4	(a) Incoming concentration (λ) is represented by the solid line. The mean	
	concentration after the inspection for Cases 3 and 4 are shown as dashed and	
	dotdashed lines. (b) Estimates of prevalence in the incoming and in the accepted	
	batches. (c) Probability of acceptance for the homogeneous and inhomogeneous	
	batches, before and after inspection.	22
2.5	Increased analytical unit amount $w = 25g$. (a) Incoming concentration (λ) is	
	represented by the solid line. The mean concentrations after inspection for Cases	
	3 and 4 are shown as dashed and dotdashed lines. (b) Estimate of the prevalence	
	of the contamination in the incoming and in the accepted batches. (c) Probability	
	of acceptance for the homogeneous and inhomogeneous batches, before and	
	after inspection	24
2.6	OC curve of the variables plan with $n = 10$ and $\sigma_w = 0.8$ for $w = 5$ and 25g. This	
	figure shows that an increased analytical unit amount reduces the consumer's risk.	26
2.7	(a) Incoming concentration of the contamination (represented by the solid line)	
	in relation to μ . The concentration after the inspection is given by the dashed	
	line. (b) It compares the batch probability of acceptance for a single batch and	
	for the series of batches.	27
3.1	Illustration of the GMP limit (m) in relation to the regulatory limit (M) for the	
	normal distribution.	33
3.2	Illustration of the compressed limit approach in the normal distribution.	35
3.3	Illustration of the three-class compressed limit approach for the normal distribution.	40
3.4	OC contour plot of the three-class compressed limit approach.	42

3.5	Compressed limit OC curves for Case 12 plan of the ICMSF. The dark solid OC curve represents attribute plan with $n = 20, c = 0, \ldots, \ldots, \ldots$	44
3.6	Lognormal, gamma and Weibull (a) probability density functions and (b) cumu-	
	lative distribution functions matched by the mode and the density	46
3.7	Compressed limit OC curves equivalent to the ICMSF (2002) Case 12 ($n =$	
	$20, c = 0$) for known σ (a) and unknown (b). The assumed distribution is	
	lognormal when the true underlying model is lognormal, gamma and Weibull	47
4.1	Operation of the proposed two-stage sampling plan: first approach	63
4.2	Operation of the proposed two-stage sampling plan: approach two	63
4.3	Operating Characteristic (OC) curve of the reference single plan $n = 5$, $c = 0$	
	(solid line). The dashed and dotdash line gives the double plan with compressed	
	limit in Stage 1	65
4.4	Average sample number (ASN) of the plans $n = 5$, $c = 0$, $n_1 = 3$, $n_2 = 2$, $a_1 = 0$,	
	$r_1 = 2, r_2 = 2$ and $n_1 = 2, n_2 = 5, a_1 = 0, r_1 = 2, r_{1m} = 1, r_2 = 2.$	65
4.5	Average Inspection Time (AIT) of the plans $n = 5$, $c = 0$, $n_1 = 3$, $n_2 = 2$, $a_1 = 0$,	
	$r_1 = 2, r_2 = 2$ and $n_1 = 2, n_2 = 5, a_1 = 0, r_1 = 2, r_{1m} = 1, r_2 = 2.$	66
4.6	Operating Characteristic (OC) curve of the reference single plan $n = 5$, $c = 0$	
	(solid line) assuming heterogeneity, with $\sigma = 0.8$. The dashed and dotdash lines	
	give double plans with compressed limit in Stage 1	67
4.7	Operating Characteristic (OC) curve of the reference single plan $n = 5$, $c = 0$	
	(solid line) assuming heterogeneity, modelled with the Poisson-gamma distri-	
	bution with dispersion parameter $K = 0.25$. The dashed and dotdash lines give	
	double plans with compressed limit in Stage 1	68
4.8	Operating Characteristic (OC) curve of the reference single plan ($n = 5, c = 0$,	
	m = 50) (in solid line). The dashed line gives the double plan with compressed	
	limit in Stage 1 while the dotdash line represents the single compressed limit	
	plan $(n = 4, c = 1, m = 50, t = 44)$.	69
4.9	Average sample number (ASN) of the plans $n = 5$, $c = 0$; $n_1 = 2$, $n_2 = 3$, $a_1 = 0$,	- 0
4.4.0	$r_1 = 2, r_2 = 2, CL = 41$ and $n = 4, c = 1, CL = 44$.	70
4.10	Operating Characteristic (OC) curve of the reference single sampling plan $n = 5$,	
	c = 0, m = 50 modelled with the negative binomial distribution with $K = 2.17$.	
	The dashed line represents the double plan $n_1 = 3$, $n_2 = 3$, $a_1 = 0$, $r_1 = 2$, $r_2 = 2$,	
	$m = 50$, $CL = 28$. The dotdash line represents the plan $n_1 = 3$, $n_2 = 3$, $a_1 = 0$,	70
4 1 1	$r_1 = 2, r_{1_m} = 0, r_2 = 2, m = 50, CL = 33.$	12
4.11	Screenshot of the online app for matching single concentration-based sampling	
	bttng://adapreentosfder.chinyonng.io/Deuble	74
1 1 2	Posterior densities of the fit to the negative binomial distribution. The personator	/4
4.12	Posterior densities of the fit to the negative binomial distribution. The parameter P is the reciprocal of the dispersion perspector $V(P = 1/V)$	76
	A is the recipiocal of the dispersion parameter \mathbf{A} ($\mathbf{A} = 1/\mathbf{A}$.)	10

5.1	Mindmap of the structure of the article (clockwise)	81
5.2	Effect of the grid size in the standard deviations and the proportion nonconform-	
	ing. The grids split the batch into 1 g (a) units and 4 g (b) units respectively. $\ \ .$	82
5.3	Operating Characteristic (OC) curves of the plans $n = 10$, $c = 0$ and $n = 9$, $c = 0$,	
	se = sp = 0.95	84
5.4	Process of forming a composite sample (Y_1) by subsampling a big composite	
	(J_1) composed by several primary units (X_1) .	86
5.5	Marginal posterior densities of the proportion nonconforming for the batches	
	where the pathogen was not detected (p_0) and detected (p_1)	92
5.6	(a) Marginal posterior density of every chain of the sensitivity (se). The red solid	
	line represents the density of the prior beta distribution, $Beta(a = 99, b = 1)$. (b)	
	Marginal posterior density of every chain of the specificity (<i>sp</i>). The red solid	
	line represents the density of the prior beta distribution, $Beta(a = 99, b = 1)$.	92
5.7	Operating Characteristic (OC) curves of the plans $n = 1$, $c = 0$, $w = 300$ g and	
	n = 30, c = 0, w = 10g. The OC curve of the proposed plans $n = 3, c = 0$	
	with $w = 100g$ and $w = 300g$ are also shown. The contamination is assumed	
	heterogeneous and it is described using the Poisson-lognormal distribution.	93
5.8	Sampling cost function of the plans $n = 1$, $n = 3$ and $n = 30$ assuming $se = 0.995$	
	and $sp = 0.996$.	95
5.9	Sampling cost function vs the \log_{10} concentration of the contamination in 10mL	
	assuming $se = 0.995$ and $sp = 0.996$. The black solid line represents the plan	
	n = 1, c = 0, w = 300 and the dashed line gives the $n = 30, c = 0, w = 10$. The	
	proposed plan $n = 3$, $c = 0$, $w = 300$ is also shown.	96
6.1	Comparison of Operating Characteristic (OC) curves for $n = 10, AQL = 0.1\%$	
	and different values of producer's risk. The OC curves of the log and sinh-	
	arcsinh transformations are shown in solid and dashed lines respectively. The	
	new approach offers better consumer protection by lowering the consumer's risk	
	at poor quality levels.	108
6.2	Comparison of Operating Characteristic (OC) curves at a false positive misclas-	
	sification error of 1% for $n = 10$, $AQL = 0.1\%$ and different values of producer's	
	risk. The OC curves of the <i>log</i> and <i>sinh-arcsinh</i> transformations are shown in	
	heavy solid and dashed lines respectively.	110
6.3	Effect in the OC curves when the true distribution is gamma (displayed in thicker	
	line width). The difference in the LQL at a β risk for the Z ₂ statistic is much	
	smaller than that of Z_1	112
6.4	Effect in the OC curves when the true distribution is contaminated lognormal	
	(displayed in thicker line width). The Z_2 statistic shows a much smaller reduction	
	in LQL than Z_1	114

6.5	Comparison of OC curves at a producer's risk (α) of 0.01 for different combina- tions of sample size and AQL. The common cause situation is assumed to be the	116
6.6	Comparison of OC curves at a producer's risk (α) of 0.05 for different combina- tions of sample size and AQL. The common cause situation was modelled in the	110
6.7	lognormal distribution using $\mu = 0$ and $\sigma = 1$, both in log scale Lognormal probability density function with $\mu = 0$ and $\sigma = 1$ in solid line matched with the gamma ($c = 1.5, b = 0.75$) and Weibull ($\kappa = 1.3, \lambda = 1.14$) distributions through the mode and the density. The gamma and Weibull distri-	117
6.8	bution are in dashed and dotdashed line	120
	based on <i>sinn-arcsini</i> reduces the <i>LQL</i>	122
7.1 7.2	Illustration of the Operating Characteristic (OC) curve. $\dots \dots \dots \dots$ Formation of n_c composite samples each one by mixing n_I primary samples. \dots	125 127
7.3	Comparison of the OC curves for $n_c = 20$, $\alpha = 0.01$, $AQL = 0.01$ with $n_I = 1$, 4 and 8. The thin solid line gives the OC curve when the units are tested individually ($n_I = 1$) and the heavy solid line shows the case in which the composite samples are formed under perfect mixing. The other OC curves are associated with imperfect composites described using a Dirichlet distribution with $a = 0.1$ (dotted), $a = 1$ (dashed), and $a = 10$ (dotdash). P_a is the probability	
7.4	of acceptance	132
7.5	and noncentral hypergeometric distribution (dotted and dotdashed) Comparison of the OC curves for $n_c = 20$, $\alpha = 0.01$, $AQL = 0.01$ with $n_I = 1$, 4 and 8. The thin solid line gives the OC curve when the units are tested individually ($n_I = 1$) and the heavy solid line shows the case in which the composite samples are formed under perfect mixing. The other OC curves are associated with imperfect mixing described by negative binomial distribution	133
	with shape (d) and scale (b)	134
7.6	Illustration of the three-class plan using a lognormal distribution with two micro- biological limits.	136
7.7	(a) OC contour plot and (b) OC surface of the three-class variables plans using $n = 10$ primary samples $AQI_{12} = 0.001$ $AQI_{22} = 0.01$ and $q = 0.01$	138
7.8	OC contour plot of the three-class variables plans using composite samples assuming a perfect mixing with $n_1 = 4$, $n_c = 10$, $AOL_1 = 0.001$, $AOL_2 = 0.01$	130
	and $\alpha = 0.01$.	139

7.9	OC contour plot of the three-class variables plans using composite samples	
	assuming the mixing as imperfect with $a = 0.1$, $n_I = 4$, $n_c = 10$, $AQL_1 = 0.001$,	
	$AQL_2 = 0.01$ and $\alpha = 0.01$	139
7.10	OC contour plot of the three-class variables plans using composite samples	
	assuming the mixing as imperfect with $a = 1$, $n_I = 4$, $n_c = 10$, $AQL_1 = 0.001$,	
	$AQL_2 = 0.01$ and $\alpha = 0.01$	140
7.11	OC contour plot of the three-class variables plans using composite samples	
	assuming the mixing as imperfect with $a = 5$, $n_I = 4$, $n_c = 10$, $AQL_1 = 0.001$,	
	$AQL_2 = 0.01$ and $\alpha = 0.01$	140

List of tables

2.1 2.2	Detection probability according to different methods for $\sigma = 0.8$ Number of analytical samples (<i>n</i>) to be tested when the contamination is mod- elled by the Poisson lognormal distribution for a desired probability of detection	17
	given μ , σ and analytical portion (in g)	18
2.3	Number of analytical samples to be tested <i>n</i> and the critical distance <i>k</i> given μ , σ_w and <i>w</i> values. $T = w \times n$ represents the total amount to be tested	25
3.1	Compressed limit alternatives for σ known and unknown matching AQL and LOL of two class ICMSE plans	12
3.2	Zero acceptance number compressed limit alternatives to the two-class ICMSF plans for the known σ case.	43
4.1	Comparison in terms of LQL between the proposed plans, the regular single sampling plan and the single compressed limit plan. The quality is expressed in	70
4.2	terms of $log_{10}(\lambda)$	/0
4.3	tions	71
	with $(n = 5, c = 0)$.	15
5.1	Batch probability of acceptance (P_a) , proportion nonconforming (p) and apparent proportion nonconforming (p_e) .	89
5.2	Means of the batch probability of acceptance (P_a), proportion nonconforming (p), apparent proportion nonconforming (p_e) and rate (λ) as a function of μ and σ .	90
5.3	Means of the batch probability of acceptance (P_a), proportion nonconforming (p_e), apparent proportion nonconforming (p_e) and rate (λ) as a function of θ , μ	
	and σ	90
6.1	Calculated estimates of the critical distance factor (k) for two values of pro-	107
	ducer s fisk, an $AQL = 0.001$ and $O = 1. \dots \dots \dots \dots \dots \dots \dots \dots \dots$	107

6.2	Result of five samples in aerobic colony count in poultry from ICMSF (2002).
	The second and third row express the count using log_{10} and <i>sinh-arcsinh</i> trans-
	formations respectively
6.3	Monte Carlo estimates of the critical distance factor (k) for three values of
	producer's risk and $AQL = 0.01$
6.4	Calculated estimates of the critical distance factor (k) for three values of pro-
	ducer's risk and $AQL = 0.0001118$
6.5	Glossary of symbols and definitions
7.1	Estimates of the required sample size and the critical distance for the lognormal
	distribution using individual units and composite samples with $n_I = 4$. The
	contribution for an imperfect mixing is modelled using the Dirichlet distribution. 135
7.2	Estimates of the required sample size and the critical distance for the lognormal
	distribution using individual units and composite samples with $n_I = 8$. The
	contribution for an imperfect mixing is modelled using the Dirichlet distribution. 142