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Abstract

Acceptance sampling plays a crucial role in food quality assurance. However, safety inspection

represents a substantial economic burden due to the testing costs and the number of quality

characteristics involved. This thesis presents six pieces of work on the design of attribute and

variables sampling inspection plans for food safety and quality. Several sampling plans are

introduced with the aims of providing a better protection for the consumers and reducing the

sample sizes. The effect of factors such as the spatial distribution of microorganisms and the

analytical unit amount is discussed. The quality in accepted batches has also been studied,

which is relevant for assessing the impact of the product in the public health system. Optimum

design of sampling plans for bulk materials is considered and different scenarios in terms of

mixing efficiency are evaluated. Single and two-stage sampling plans based on compressed

limits are introduced. Other issues such as the effect of imperfect testing and the robustness

of the plan have been also discussed. The use of the techniques is illustrated with practical

examples. We considered numerous probability models for fitting aerobic plate counts and

presence-absence data from milk powder samples. The suggested techniques have been found to

provide a substantial sampling economy, reducing the sample size by a factor between 20 and 80%

(when compared to plans recommended by the International Commission on Microbiological

Specification for Food (ICMSF) and the CODEX Alimentarius). Free software and apps have

been published, allowing practitioners to design more stringent sampling plans.

Keywords:

Bulk material, Composite samples, Compressed limit, Consumer Protection, Double sampling

plan, Food safety, Measurement errors, Microbiological testing, Sampling inspection plan.
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