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Abstract

Lameness in dairy cattle negatively effects the welfare of affected cows and is the third biggest
cause of economic loss to the dairy industry in New Zealand. As the cost and frequency of
lameness continues to increase, profitability will further decrease, unless a more effective and

efficient method of detecting cattle lameness is found.

The main objective of this study was to investigate whether differences between healthy and
lame cattle could be identified by capturing ground reaction forces when the dairy cattle walked
over the designed platform. The designed walkover platform (WoP) has four independent
platform segments, with each segment containing four ASB1000 shear beam load cells, a 24
bit sigma-delta analogue-to-digital converter and an ATmega328 microcontroller. Software was
developed in Python 2.7 to record the captured load cell signals and process them to determine
the three basic kinematic variables associated with lameness: force, position and duration.
Based on these variables a wide range of typical gait parameters such as stride length,
abduction, stance time, etc. were calculated. Laboratory testing of the positional and weight
accuracy of a platform segment found a maximum weight error of 0.4%, a X-position mean

error of 1.0 £ 2.2 mm and a Y-position mean error of 0.8 + 1.8 mm.

The WoP was tested on two farms during the winter of 2015. During this period approximately
9500 hooves landed on the platform from 200 cows. 95% of all hoof falls were captured implying
that the segment length and lead on platform were the correct dimensions for an averaged
sized herd of dairy cattle. The dynamic weighing of the cattle on the WoP showed a mean
deviation of -13.7 £ 7.5 kg. On farm and video analysis lameness scoring was conducted by a
trained observer. The lame and healthy cows were compared to see the differences in variable
values and signal signatures. Two-sample t-tests proved that the most significant variables are
a combination of weight, position and duration parameters with these being: asymmetry in front
limb weight, asymmetry in rear limb weight, asymmetry in diagonal weight, asymmetry in side
weight, average step overlap left-side, average step overlap right-side, asymmetry in step
overlap L Vs R, average step overlap, average abduction left-side, average abduction,
asymmetry in stance time left-side, asymmetry in stance time L vs. R, asymmetry in stance time
front hoof and asymmetry in stance time hind hoof. Statistical techniques were used to build
classification models based on significant variables associated with lameness. The model that
demonstrated the most promise is logistic regression using six predictor variables; this
technique correctly classified all 86 cow frials in relation to the observer score. Although there
is still much work to be done to provide an automated solution to lameness detection, this
research provides novel contributions towards the architecture of a commercial low cost system

that can determine cattle lameness in any limb.
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Chapter 1. Introduction

The work presented in this thesis was carried out in collaboration with Tru-Test (Auckland, NZ)
and the School of Engineering and Advanced Technologies (Massey University, Palmerston
North). Tru-Test is an agricultural manufacturing company that specialises in milk meters,
livestock scales and electric fencing. Funding for the project was provided by Callaghan

Innovation, Alma Baker Trust, Massey University and Ken & Elizabeth Powell Scholarships.

The New Zealand dairy industry is the country’s top merchandise export earner and in 2014
contributed $13.2 billion of export earnings (29% of the total value that New Zealand earned from
its merchandise exports). The industry directly contributes approximately 3% of New Zealand’s
GDP (Ministry for Primary Industries, 2013) and has continued to grow over the last 30 years, with
an average herd size of 419 cows per farm. The third biggest cause of economic loss to the
industry (behind mastitis and sub-fertility) is lameness; this costs the New Zealand dairy industry
approximately $250 million per annum (DairyNZ, 2015). Of concern is that the incidence of

lameness is increasing.

Traditionally, the identification of lame cattle has involved passive observation with the farmer
noticing a cow walking slower and with irregular steps. This identification method is very time
consuming and labour intensive and is not particularly efficient as it often results in a significant
delay between the onset and detection of lameness. This problem has been exacerbated by the
introduction of milk shed automation as the contact time between the farmer and the animal
(during which detection can occur) has become significantly reduced, thus in modern sized herds
it is difficult to identify lameness using this traditional method. As the cost and frequency of
lameness will continue to increase into the future, this problem will become worse, unless a more

effective and efficient solution is found to detect cattle lameness.

The idea to measure lameness electronically is a fairly recent concept and currently there is only
one commercial system available. The United States based company Bou-Matic has developed
the StepMetrix system which is an automated solution to cattle lameness detection. The
StepMetrix system generates scores based on the captured ground reaction forces produced by
an array of load cells as the animal walks over the platform. The score is then displayed to the
farmer who decides whether to take action and examine the cow further or let her keep walking.
The system supposedly averages over 85 % accuracy in detecting lameness in individual cattle
(BouMatic, 2015). The disadvantage of this system is that it only detects lameness in the hind
limbs and it requires reference data from each cow before it can compare differences.
Consequently, all animals need to walk over the system at least once when they are healthy
before lameness detection can occur. A study involving the StepMetrix system found that although

the system had a high specificity rate, the sensitivity rate was low, ranging between 20 — 35 %.



This means that many lameness cases are not being detected which lowers the farmers’

confidence in the system (Bicalho et al. 2007).

The major goal of this project is to calculate and determine the variables of significance in
detecting lameness in order to build an accurate classification model to identify lame and healthy
cattle. The work in this thesis includes the design and manufacture of a ground reaction force
based platform using an array of load cells to capture the three main kinematic parameters
associated with detecting lameness, with these being force, position and duration. From the three
parameters, gait variables can be found, such as stride length, to analyse differences in each hoof
of individual cattle. The hypothesis that a lame cow will produce a distinct signal signature that
will be distinguishable from a healthy cow firstly needs to be tested. The significance of the

variables will determine the role in which they are applied to statistical models.

The designed platform is intended to replace the current Tru-Test walkover weighing scales so it
has to be able to find the total cow weight as well as lameness related variables. The system

would ideally be low cost to manufacture in order to successfully commercialise it.

Testing the performance of the manufactured platform is an exciting development towards an
automated solution for lameness detection in New Zealand. The test data is to be captured from
a farm without any intervention to the natural flow of the cows leaving the milking shed. The
system needs to provide numerical information to access acute daily changes in the front and

hind limbs to monitor the health and wellbeing of dairy cattle.



Chapter 2: Background Information

This chapter provides an overview of lameness research, current automated solutions and
requirements for a practical system. The first subsection explains the significance of lameness in
the New Zealand dairy industry and how it is currently identified. The second subsection provides
background information on current lameness detection systems and the variables used to

associate lameness.
2.1. Lameness Research

2.1.1. The New Zealand Dairy Industry

Currently, New Zealand has over five million dairy cattle with an average herd size of 419 cows
per farm (DairyNZ, 2015). Figure 2.1 shows that although there has been a reduction in the
number of dairy herds in New Zealand, the average herd size has linearly increased over the last
30 years. The increase in herd size can be attributed to farm area expansion (largely due to South

Island growth) and automation technologies (DairyNZ, 2015).
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Figure 2.1: Trends in the number of dairy herds (DairyNZ, 2015)

2.1.2. Cause of Lameness

Lameness is due to trauma accompanied by secondary infection, with claw disorders accounting
for approximately 90% of lameness (Malmo et al, 2011). One of the main causes of lameness is
white line disease. This disease is related to the handling of cattle in yards/races and results in
abscess formation mainly in the lateral claw of the hind limb and often at the area just cranial to
the heel bulb. This occurs due to the penetration of stones into the claw resulting in infection of
the soft corium and significant discomfort to the cow (Malmo et al, 2011). The handling of cattle

has worsened in recent years as increased farm sizes have resulted in herds having to walk



further to the milking shed every day; this increases the wear on the cows’ feet and likelihood of

inflicting damage.

Another main cause of lameness relates to the maintenance state and surface structure of
yards/races. Yards are made of concrete, which can be rough and very abrasive resulting in
damage to the hooves and high incidences of lameness. Race surfaces which lead to the milking
shed can also be very uneven and stony resulting in additional hoof damage and further
development of lameness. Furthermore, if the stock herder is impatient and pushes the cattle too

hard incident rates will increase (Malmo et al, 2011).

2.1.3. Identifying Lameness — Point Scoring System

Presently lameness is categorised using the Locomotion Scoring (LS) System which is based on
observing cattle walking, with the emphasis on head bob and stride length. The scoring system in
New Zealand ranges from 0 to 3 (shown in Table 1), with 0 being normal and 3 being severely
lame. This method of visual scoring is very subjective and environment conditions such as a
sloped or muddy raceway can alter the natural walking rhythm of the cattle, which leads to an
incorrect score. Generally, trained large animal veterinarians are employed to score an entire herd

of cows, although the majority of farmers also know how to identify lame animals.

Table 1: Locomotion Scoring Criteria (Zinpro, 2015)

Score Description

0 Cow walks with a level back and long strides. Walks rapidly, confidently and no
apparent signs of lameness. The hind hoof lands in a similar location to the front hoof.

1 Cow shows no apparent signs of limping; however the cow will take shorter strides
and have a slightly arched back.

2 Cow’s head carried low or bobbing up and down. Signs of obvious arched back and
an obvious limp which favours the affected limb(s).

3 Cow has a very noticeable arched back, difficulty turning; moves slow and applies

little or no weight to the affected limb(s)

2.1.2.1 Accuracy and Consistency

LS between trained individuals scoring the same cows display a degree of variation. An
experiment involving seven experienced European observers viewing 58 video recordings of cows
was conducted. The distribution of healthy and lame cows was approximately equal to represent
the five level European LS system. A cow with score 1 walks normally whereas a cow with score
5 is an extremely lame cow. The observers were asked to score all 58 cows on two different
occasions, separated by four days or more. Within and between observer agreement was
investigated. Within observer agreement is the percentage of all the cows that were given an



identical score by an individual observer on both occasions. Between observer agreement is the
percentage of cows given the same LS by all seven observers (Schlageter-Tello et al, 2013). It
can be seen from Table 2 that both categories of observer agreement are less than conclusive.
Within observer agreement averaged 69.3% across the five levels and between observer
agreement averaged 55.3%. This makes designing an automated system even more important
considering that each observer has a different perspective on separate days. There is currently
no clear or accurate numerical information that can be given to compare a healthy and abnormal

cow gait, which frankly in this day and age is less than ideal.

Table 2: Locomotion Scoring - Within and between observer agreement (Schlageter-Tello et al, 2013)

) Within Observer Between Observer

Locomotion Score Agreement, % Agreement, %
(95% confidence interval) (95% confidence interval)

1 72.5 (64.4 - 80.6) 63.9 (60.3 - 67.6)

2 63.9 (56.9 - 70.9) 58.9 (55.9 - 61.6)

3 60.0 (51.7 - 68.2) 53.1 (49.6 - 56.5)

4 74.5(67.2-81.9) 62.1 (58.6 - 65.5)

5 75.6 (60.2 - 91.9) 38.7 (30.5 - 46.9)

Another example of varying locomotion scoring was witnessed during the scoring sessions of this
project. An experienced large animal locomotion scorer was employed to score the entire herd of
dairy cattle while they exited the rotary milking shed. A video camera (GoPro 3) recording at 1080p
(60fs) captured the same animals walking out of the milking shed. Some discrepancies were noted
in the original scoring data so the same veterinarian was given snippets of particular cow videos
to re-score. It was very interesting to find that some of the originally scored lame cows were re-

scored as healthy.

2.1.4. Cost of Lameness

Early identification and prevention of lameness would not only save farmers money but would
also improve animal health and performance for the rest of the season. According to Malmo et al
(2011), the world-wide incidence rates of lameness indicate that as many as 60% of cows in a
given herd may become lame at least once in a year. Estimated instances of lameness diagnosed
in New Zealand dairy farms are between 10% and 15% depending on the herd size and districts
at any one time during the year. Surveys based on cases treated by veterinarian’s state that only
around 25% of total cases of lameness are dealt with by professionals directly. Farmers and
stockpersons generally deal with lameness incidences so the rate of lameness is expected to be

a lot greater than reported (Malmo et al, 2011).



The estimated cost of a single case of lameness in New Zealand is $350; this is based on
treatment costs, increased chance of culling, loss of production and reduced reproductive
performance (Franklin Vets, 2013). This cost however can be considerably higher depending on
the season of the year and if the lameness negatively affects mating. Based on the estimated
instances of lameness in New Zealand dairy cattle (between 10% and 15%), it can be expected
that in a normal sized herd of 413 cows between 41 and 62 cows would be diagnosed with
lameness per year, resulting in an annual cost to the farmer of approximately $14350 to $21700.
This demonstrates the importance of individually monitoring each cow so that those displaying
mild lameness can be quickly detected and treated before the lameness becomes more severe
and the associated cost of lameness increases. Consequently, the relevant solution for the project
is to develop a lameness detector that could cost up to $3000 to manufacture and could sell for
at least $8000 if it lasted numerous years. The direct financial implications highlight the

significance of lameness and the need for a detection system to be developed.

2.1.5. Weight Distribution Patterns

Non-lame dairy cattle distribute 55 - 60% of their weight to the front limbs and 40 - 45% to the
hind limbs during walking (Van Nuffel et al, 2015). Even though the front feet carry a higher
percentage of the total weight, lameness is predominately in the hind limbs (80%) (Malmo et al,
2011). When an animal becomes lame, they tend to shift their body weight onto non-affected
limbs to reduce pain. According to Van Nuffel et al, (2015) the average ground reaction force was
found to decrease on the affected limb with an increase in locomotion score. A cow standing with
discomfort in one hoof primarily transfers this weight to the contralateral hoof. This suggests that
a cow showing signs of lameness in one limb would show a greater asymmetry in weight applied
to the pair of limbs (Singh et al, 2012).

Not surprisingly, other studies also agree with the finding that more weight is applied onto the limb
that is contralateral to the affected limb. Rushen et al, (2007) found that the greater the severity
of lameness, the clearer the relationship with the body weight distribution was. However, if
lameness occurred symmetrically (often with painful lesions), the detection of asymmetric weight
shifting was difficult to notice. When a cow is lame on both front limbs, it was found that some of
the weight was able to be transferred to the hind limbs (Neveux et al, 2006). Interestingly, weight
is seldom transferred from the hind limbs to the front limbs when both hind limbs are lame. By
using these findings of weight distribution it may be possible to distinguish between a healthy and

lame cow in this project.

2.1.6. Severity for Intervention

Treating lame cows takes a great deal of time and physical effort. Farmers try to keep the cost-
to-benefit ratio for treatment as low as possible; hence the majority of farmers in New Zealand

follow the guideline given below (Veterinary Clinic Morrinsville, 2015).



- Score 0: The cow is healthy, no further action is required.

- Score 1: The cow is slightly lame, closely monitor to detect the lame leg and ensure further
lameness does not develop. The farmer or foot trimmer may lift the leg and check for
signs of lameness if problems persist.

- Score 2: The cow is moderately lame and should be drafted and examined as soon as
practical to identify the lame hoof and treat accordingly. Depending on the farm
management the farmer/hoof trimmer or veterinarian will carry out the treatment.

- Score 3: The cow is severely lame and needs immediate treatment, usually by a
veterinarian. The lame cow should be kept on pasture close by and not be made to walk

far.

The focus for this project is to detect cattle with a score of 2 or above which is within industry
practise for treatment. Detecting lameness before it occurs (subclinical) is impractical since there

are no definitive clinical signs of laminitis.

2.2. Current Lameness Detection Systems

Currently there are only three systems that provide an automated solution to detect cattle
lameness using force measurement techniques. The only commercial system and the first to
develop the idea was a US based dairy automation company called Bou-Matic. The device they
developed is known as StepMetrix and is based on a ten year study with the help of the University
of Maryland (BouMatic, 2015). The second system is called the GAITWISE system and was based
on a development project with several Belgium institutes contributing to the findings. The third
system is a research/trial system developed by the Royal Veterinary College in London with the

intended purpose of early lameness detection.

2.2.1. The StepMetrix System

The StepMetrix system shown in Figure 2.2 comprises of an array of single axis load cells
embedded into a platform which is permanently installed in the return lane of a milking shed. The
platform has two parallel platform segments, one for left hand side legs and one for right hand
side legs. The advanced controller reads the radio frequency identification device (RFID) of
individual cattle and analyses their steps. The software then compares previous records of the
cows gait such as force, location and duration to the current signals detected. The StepMetrix
management software which is installed on a PC then generates lameness scores based on
determined ‘normal’ gait variables. This system has consistently averaged over 85% accuracy in
detecting lameness in individual cattle and retails for approximately $30,000 USD (BouMatic,
2015).



Figure 2.2: StepMetrix system components

The granted US patent for the StepMetrix system (Tasch et al, 2004) provides excellent
information regarding experimental setup. The physical concept they developed uses a load cell
in each corner of the two active platforms which is shown in Figure 2.3. The platform layout
consists of eight load cells sampling at 100Hz at known X, Y distances which makes it possible

to find the location of a force anywhere on the plate.
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Figure 2.3: StepMetrix platform layout found in patent (Tasch et al, 2004)

Currently, the StepMetrix system only detects lameness in the hind limbs and it requires reference
data from each cow before it can compare differences. For each limb, the system displays a daily
SMX score as well as a weekly graph to show how that particular cow is trending. The SMX score
is a numeric value calculated from the significant gait variables (these variables have not been
published). It is then up to the farmer to react to the daily scores and decide if the cow should be
examined further. A Cow Snapshot Report lists all the cows SMX scores in the herd in descending

order from severely lame to healthy (BouMatic, 2015). A study involving the StepMetrix system
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found that although the system had a high specificity rate, the sensitivity rate was low, ranging
between 20 — 35 %. This means that many lameness cases are not detected, therefore lowering

the farmers’ confidence in the system (Bicalho et al. 2007).

2.2.2. The GAITWISE System

The second lameness detection system is called the GAITWISE system and was developed by
Maertens et al (2011) in Belgium. It is yet to become a product on the market although it has
displayed promising results over the seven year period of the project. The system uses a pressure
sensitive walkway incorporated into a platform to monitor the cow’s gait using variables in four
dimensions (two spatial, one temporal and one force). The recorded data is then analysed against
10 basic gait kinematic variables with the use of MATLAB, with these variables being stride length,
stride time, stance time, step overlap, abduction, asymmetry in step width, step length, step time,
stance time and force. The system operates fully automatically and in real time and has been

extensively tested to 84 % accuracy in correctly classifying lame cattle (Maertens et al, 2011).

The pressure mat has an array of 384 sensor elements covering 1266 cm? and is 610 mm wide
by 4880 mm long. To protect the sensitive pressure mat multiple protective layers are required.
The first layer is a “1 mm thick ethylene propylene diene monomer flexible water and manure
proof cover,” (Maertens et al, 2011) followed by a second layer of a 10 mm thick rubber top surface
to provide skid resistance and mechanical protection. Measurements from the pressure mat are
output at 60 Hz.

The method of testing the system involved using a sample herd of 80 dairy cows milked twice
daily on a Belgium farm. A video camera (sampling at 30 frames per second) was mounted to
monitor the cows walking over the pressure mat platform. A trained observer then viewed the
recorded information and assigned a gait score of 1, 2 or 3. The results were compared to the
output of the GAITWISE system which also indicated scores in the same range. A gait score of 1
indicated the cow did not show any sign of lameness, 2 signified slight lameness, and 3 indicated
severe lameness. Van Nuffel et al (2009) also uses the gait scoring on a 3 point scale to assess
lameness via a video recording and evaluates against kinematic gait variables using a pressure
mat. For the GAITWISE system, the flow of the cows walking over the pressure mat is controlled
by a gate to only let one cow walk over the platform every 30 seconds. Reducing the natural flow
would not be appealing to managers of large farms in New Zealand who milk over 1000 cows

each session.

An important discovery made by this study was that out of all the gait variables used to decide if
a cow was lame, four variables contributed the most to the correct classification. The variables
were ‘asymmetry in step length’, ‘asymmetry in stance time’, ‘asymmetry in step time’ and
‘asymmetry in step width’ (Maertens et al, 2011). These variables resulted in a sensitivity of 85,

76 and 90 % using linear regression, for gait scores of 1, 2 and 3 respectively. According to Van
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Nuffel et al (2009) the four identical kinematic variables mentioned above showed a strong

correlation for detecting lameness.

2.2.3. Royal Veterinary College Lameness System

A London-based research team have recently developed an automated early lameness detection
system for dairy cattle (Royal Veterinary College, 2015). The system uses five force plates to
analyse the gait of dairy cattle. Over a two year period they collected over 500,000 foot strikes
from dairy cows exiting the milking shed. Of interest is that only 7.5% of the foot strikes (67,000)
could be used to extract data from. This was found to be the case when using a platform to
measure ground reaction forces; if the cow was not walking with a constant speed then the data
collected would be invalid. The StepMetrix and GAITWISE system also mentioned this finding.

The results of the Royal Veterinary College study (2015) found there was no single discriminatory
feature when identifying lameness. Using advanced statistical techniques it was found that vertical
forces were not as closely related to identifying lameness as stride variables. This result is
surprising considering that when a cow shows signs of lameness they try to shift their weight
distribution from the affected leg to ease the pain. Flower, Sanderson & Weary (2005) found
similar results with multiple variables contributing to lameness detection. They also found that
stride variables showed a higher correlation than vertical forces alone and that compared with
lame cows, healthy cows had shorter stride durations (1.26 £ 0.03 s vs. 1.48 £ 0.05 s), longer
strides (139.5 £ 2.1 cm vs. 130.0 + 3.2 cm) and walked faster (1.11 £ 0.03 m/s vs. 0.90 + 0.05
m/s) (Flower et al, 2005).

2.2.4. Common Variables Indicative of Lameness

An amalgamation of common gait variables that were found in the lameness detection systems
mentioned above is shown in Table 3. The variables are divided into three sections; force, spatial
and temporal. The definition of the variables is based on lameness parameters from Maertens et
al (2011) and Tasch et al (2004). Variables that are used by the StepMetrix System (SM) and
GAITWISE System (GW) are noted.

Table 3: Description of gait variables calculated from kinematic measurements (Maertens et al, 2011. Tasch et
al, 2004)

Gait variable General definition Significance for Variable
lameness detection used by
system
Force
Individual limb The mean ground reaction force Reluctance to bear SM, GW
weight exerted by an individual leg weight
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Total weight The total weight of the cow Reducing weight SM, GW
overtime
Normalised The individual limb weight A comparable weight SM
ground reaction divided by the total weight variable (always between
force (NGRF) 0-1)
Asymmetry in Mean difference in relative force Asymmetrical gait, SM, GW
limb weight exerted by the limbs between left | tenderness
and right hoof imprint
Asymmetry in Mean difference in relative force Asymmetrical gait, SM, GW
diagonal weights | exerted by the diagonal limbs tenderness
between LF,RH and RF,LH
Asymmetry in Mean difference in relative force Asymmetrical gait, SM, GW
side weights exerted by the limbs on the tenderness
opposite sides
Spatial
Front step length | Step length between front leftand | Asymmetrical gait, GW
right hoof imprints arched back
Hind step length Step length between hind leftand | Asymmetrical gait, GW
right hoof imprints arched back
Front step width | Step width between front leftand | Asymmetrical gait GW
right hoof imprints
Hind step width Step width between hind leftand | Asymmetrical gait GW
right hoof imprints
Stride length Distance between two Speed, arched back SM, GW
consecutive imprints of the same
hoof
Asymmetry in Mean difference in step length Asymmetrical gait GW
step length between left and right hoof
imprints (separate front and hind
limb)
Asymmetry in Mean difference in width between | Asymmetrical gait GW
step width left and right hoof imprints
Step overlap The lengthwise distance between | Speed, arched back GW
the front hoof and the hind hoof
on the same side
Abduction The sideways distance between Reluctance to bear GW
the front hoof and the hind hoof weight, tenderness
on the same side
Temporal
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Stance time Time during one step that hoofis | Speed SM, GW
on the platform
Asymmetry in Mean difference in time that hoof | Favouring a particular SM, GW
stance time is on the ground between leftand | side
right sides
Stride time Time between two consecutive Identify limb that has SM, GW
imprints on the same hoof least contact with
platform
Velocity Hoof speed (m/s) is stride length | Speed SM, GW
divided by stride duration

2.2.5. Requirements for a Practical Lameness Detection System

The required outcome of the project is the ability to detect lameness as well as being able to weigh
the cattle as they walk over the platform. Since this project is being developed with the aim of a
commercial application to replace a current product, it must be able to weigh the cattle if it is to
be successful. The system must also be cost effective so that farmers consider purchasing it.
Moreover, the designed system should ideally fit into the main stakeholder's current

manufacturing abilities.

The main kinematic measurements that need detecting are:

- Weight

- Position

- Duration
The weight measurement relates to individual limb weight and total body weight of the cow which
will be displayed in kilograms. The intended accuracy is to be 5 — 10 kg for an individual limb,
which is deemed reasonable considering that an average sized dairy cow weighs 450 kg
(DairyNZ, 2015). The position variable determines the central location of each foot fall within an
accuracy of 30 mm (Maertens et al, 2011) in vertical and horizontal directions. The duration of
each foot fall is measured in seconds with a resolution of milliseconds in order to determine
precise differences between limbs.

2.2.5.1. Tru-Test Products

Tru-Test Limited is the main stakeholder for this project, as well as funding all hardware
components. A technical meeting took place during the project concept development stage to
gather technical knowledge about their current walkover weigh system and how it works. A typical

walkover weigh system consists of the following:

- Platform: The platform has two load bars with each bar having a half-bridge strain gauge.

These two bars are then wired together to form a full bridge.
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- EID Antenna and EID Reader: The EID Reader has an ARM Cortex M3 microcontroller.
This interfaces with a single channel 24-bit ADC with a sampling rate of 50 Hz.

An important piece of information the engineers mentioned was that the cows could generate
signals up to five times their average weight when walking over the platform. For this reason they
recommended using 1000 kg rated single-point shearbeam load cells, specifically the ASB-1000
by PT Global. The engineers also suggested waterproofing the electronics, and to ensure that no
high pressure water came into direct contact with the load cells as this has caused load cell failure
in the past. It is interesting to note that although the load cells are IP-67 rated, these failures still

occurred.

2.2.5.2. Ground Reaction Forces

Current lameness detection systems measure ground reaction forces produced from the walking
cattle. Force transducers are required to determine ground reaction forces, with the following

options investigated:

- Load cell (used in the StepMetrix system by Bou-Matic)
- Load bar (used in walkover weigh platforms by Tru-Test)
- Pressure-sensitive mat (used in the GAITWISE system)

- Tactile sensors (piezoresistive and piezoelectric)

Load bars and load cells use strain gauges to measure an applied force. The difference between
them is that load bars are used to span a larger width, whereas load cells are designed for point
loads. There is no fundamental reason why a pressure-sensitive mat or tactile sensors could not
be used, although it would be more challenging to implement into the current walkover weigh
scales that Tru-Test offer. As stakeholders, Tru-Test has indicated they would prefer a load cell

based system due to the robustness and current use of strain gauges in production of scales.

2.5.5.3. Load Cell Principle of Operation

Aload cell is a force transducer and is used to transform an applied force into an electrical signal.
A load cell system typically comprises of three elements including: the load cell, which is a
mechanical arrangement; the strain gauge (a planar resistor); and a load cell amplifier (Bailey &
Gilman, 2005). When a force is applied to the load cell the strain gauge deforms/stretches which
changes the electrical resistance of the wire by an extremely small amount in proportion to the
force. The load cell amplifier takes the output of the strain gauge in the range of a few millivolts
and amplifies or converts the signals into a more useful voltage. The most common arrangement
for a load cell is a Wheatstone bridge configuration which consists of four strain gauges. Cheaper
and less accurate load cells are available with half bridge or quarter bridge strain gauges. For
best performance, a stable voltage reference source is supplied to both the bridge excitation and

the ADC reference (ratio-metric). The bridge output is directly proportional to the voltage reference
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and hence any drift in this produces a corresponding drift in the output voltage. The ratio-metric

arrangement removes the effect of drift and noise in the excitation source.

The selection of the type of load cell for the application is vital to make sure that the capacity and
structure is appropriate for the intended environment. Load cells can be divided into four main
types:

- "S”load cell

- Beam load cell

- Column load cell

- Diaphragm load cell

The load cells used in this project are shearbeam full bridge load cells rated to 1000 kg. ASB1000
load cells were purchased as they were a low cost option ($56 NZD) for a full bridge strain gauge.
The load cells were tested in the laboratory for reaction to vertical and horizontal forces before
being used on the project. It was found that this type of load cell only reacts to a vertical force and

not a horizontal force which what is required for the application.

2.5.5.4. Intellectual Property

As mentioned, various universities and agricultural related development companies have realised
the opportunity to develop a lameness detection system. A handful of patents have been filed

worldwide; therefore it is very important to research current patents in order not to infringe any.

In the New Zealand patent register two patents exist in regards to lameness detection. The first
is an international patent for the granted (June 2006) StepMetrix System (PCT/US2001/017322).
This system was discussed in Chapter 2.2.1 and is a similar concept to this project by making use
of multiple load cells. However, the claims of this patent relate more to the computer based
diagnostic system and do not protect the use of multiple load cells; as a result the patent will not

be infringed (under my understanding).

The second patent is also protected internationally and is held by Delaval Holdings Ab (filed in
2012). The claims from this patent relate to image processing and positioning of video cameras
to detect lameness. Image processing is not within the scope of this project and no cameras will

be used to develop processing algorithms, therefore the patent will not be infringed.
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Chapter 3: System and Hardware

3.1. Project Phases

The project involved multiple phases which can be seen in the block diagram in Figure 3.1. The
three main sections were the design and manufacture of the walkover platform (WoP), capturing
data and designing algorithms to deduce variables indicative of lameness, then using these
variables in conjunction with the manual locomotion scoring to find statistical models that correctly

classify the selected cows.

/ ' .~ Capture | ' \

Walkover and Statistical )
Platform "/ Apalyse |~ Inference
Data
— 1 I o+ Lameness

. [ Detection

Dairy Locomotion
Cows Scoring

N —

Figure 3.1: Project phases block diagram

3.2. Prototype Scales

The main concept of the project revolves around having a platform that is able to capture ground
reaction forces that are produced when cattle walk over the structure. The platform has four
individual platform segments which can be seen in Figure 3.2. For simplicity the sections were

labelled as A, B, C and D (please see 3.2.3 for the reason behind four individual segments).

A B C D

Figure 3.2: WoP concept with four sections

3.2.1. Requirements
The general mechanical design specifications that were established during the concept

development stage that the platform had to comply with include:

- The platform has to be capable of supporting at least 500 kg as the weight of the three
most common dairy cattle breeds in New Zealand is between 400 kg and 490 kg
(DairyNZ, 2015).
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- Each platform segment must be adjustable and easily moved to find the optimal stride

length between the gait ranges of 700 mm + 50 mm (Stephenson, 2006).

- The entire platform needs to fit within the standard width of a cattle race in a milking shed.

- The overall height of the platform must be kept as low as possible so the cattle do not

have to raise their legs higher than usual as this could alter the signals produced.

- The platform needs to be dimensionally similar to the current Tru-Test weight scales (700

mm overall width, 400 mm walking surface width, 100 mm high).

- There are to be no protruding bolts on the walking surface and no small crevices for

stones or foreign objects to accumulate.

- The platform needs to be manufactured for the intended environment (milking shed). For

example it needs to be able to handle high pressure wash down twice a day.

- Theload cells and electronics need to be enclosed to give a degree of waterproofing and

protection from direct high pressure water.

3.2.2. System Block Diagram

Section A

Section B

Section C

Section D

4 Channel
24-bit

ATmegad28

Arduino
Mega

(Slave A)
ADC

4 Channel
24-bit
ADC

Load Cell
1.4

ATmegad2i
(Slave B)

4 Channel
24-bit

Load Cell ATmega32s

2560
(Master)

Computer

1.4 (Slave C)

4 Channel
24-bit
ADC

Load Cell
1.4

ATmegad2s
(Slave ID)

Figure 3.3: Functional block diagram of system

The system block diagram (Figure 3.3) shows four independent platform sections, with these

sections labelled as A, B, C and D. Each platform section has three generic function blocks; these

consist of four ASB1000 shearbeam load cells (one in each corner), a 24 bit four-channel AD7193

ADC to interface the load cells and an ATmega328 microcontroller acting as a slave device. The

inter-block SPI communication between the ADC and the slave microcontroller is multi-directional

meaning that the ADC is able to be programmed (register based) and also transmit digitised load

cell data to the microcontroller. The master microcontroller (Arduino Mega) controls when to

request and

receive information from the four slave microcontrollers

via the RS485
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communication bus. This information is then sent serially to the PC running the analysis and
plotting software. The EID reader identifies which cow has walked over the platform and transmits
this data to the PC serially.

3.2.3. Mechanical Platform Development

The mechanical arrangement of the platform was designed in two stages; the initial prototype
platform segment then the conjunction of multiple segments to form a walkover platform. The
number of segments and the spacing between them is a critical component of the project. The
concept of having four separate segments should theoretically make the data analysis easier
knowing that only one foot will be on the segment at any one time. At least four segments are
needed for accurate walkover weighing to make sure there is enough time to get the cow’s total
weight. This was found to be the case in the Royal Veterinary College study where five segments

were needed to capture the total weight.

3.2.3.1. Platform Prototype

An initial full sized single segment was designed and manufactured to test how the load cell
signals responded and to test that centre of pressure could be accurately determined. The
prototype segment was designed to be 700 mm long by 500 mm wide so that it would fit within a
standard sized race. According to Stephenson (2006) the natural step distance of a dairy cow is
700 mm; this was found by measuring the ‘ruts’ that remained in the ground on farm raceways.
Consequently the initial platform was made to be the same distance that a healthy cow would
potentially step. The initial prototype included adjustable sliders to move the load cells to find the
optimal position. The optimal position was to have the load cells adjusted to be as close to the
corners as possible as this gives the most surface area. Figure 3.4 shows the manufactured steel
platform segment framing with one load cell bolted into each corner. See Appendix 1 —ASB1000

for a diagram and information about the load cells used.

Figure 3.4: Constructed prototype platform
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After completion of the initial prototype testing (See Chapter 6.1.1) a number of design changes
were implemented based on what had been learnt and observed. The main changes include:

- Removal of load cell sliders as they were not needed. The load cells were instead
positioned at a fixed location.

- The load cell sockets were welded onto the top sheet metal platform tray. This removed
the need for the top structural frame used in the initial prototype.

- The material used for the bottom structural frame that the load cells mounted to was
changed from 5 mm angle iron to 5 mm C-channel. This was done to increase the
torsional strength and provide waterproofing protection for the load cells.

- The section length reduced from 700 mm to 650 mm to meet the specification that the
gait distance could be optimized between the ranges of 700 mm + 50 mm so the cattle’s

natural gait was not altered.

The final prototype platform consisted of a 3 meter long mainframe which supports the four
sections at designated positions. The main reason for the mainframe is to easily attach the
sections at pre-determined spacing positions, with these being 650 mm, 700 mm and 750 mm
respectively. Further reasons for a main frame as opposed to single supporting sections was that
the side rails could be one continuous length and be attached to the main frame without interfering
with the load cell signals from each section. A single main structure was also easier to level at the
cow shed and required only 8 support feet instead of 16 if the platform sections were independent

units.

Figure 3.5 shows the platform segment spacing diagram for the 650 mm setup. The reference
location for the measurements is the bottom left corner centred on the load cell. A clearance of
10 mm was used between first the segment (A - B) and 20 mm on the following segments. The
reason for the larger clearance was only realised after manufacturing and positioning the first
segment. The extra 10 mm was added to make sure that neighbouring segments would not ‘jam
up’ when used in farm conditions of mud and manure. A 340 mm blanking spacer was inserted
before the first segment to fill in the gap in the main frame. The spacer was placed at the beginning
rather than the end of the platform as it was observed that the cattle took a large stride when
stepping up onto the platform. This location therefore yields the lowest disturbance to the captured

data.
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Figure 3.5: 650 mm platform segment spacing

Key design aspects of the CAD model seen in Figure 3.6 include:

The main frame is able to accommodate four platform sections at a maximum spacing
of 750 mm.

The 3 m long side rails are a safety feature and also guide the cows along the platform.
The side rails overlap the platforms by 50 mm to make sure that a cows hoof cannot
venture inside the load cell mounting positions otherwise the platforms could flip.

The 3 dividing bars seen between the platform sections are needed when the spacing’s
are 700 mm or 750 mm. This stops the cows hoofs getting trapped in the small gap left
by the platform sections and also encourages them to step over the gap which may alter
their gait.

The electrical boxes are mounted underneath the platform trays which will protect them

from direct high pressure water blasting.
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- The overall walking surface width is 400 mm and the height is 100 mm.

Figure 3.6: CAD model of final platform design

3.2.4. Signal Conditioning

The electronics for the project are based on taking the analogue signal that the load cells produce
and directly interfacing with an ADC. The digital signal is then communicated via SPI to an Arduino
microcontroller for processing. The aim of the initial prototype was to design a break-out board
that fits an Arduino Uno and is able to directly interface four load cells with a high precision
multichannel ADC. The required data is then able to be transmitted serially to a computer for

further processing.

3.2.4.1. Component Selection

The two main components required for the breakout board design was a highly stable voltage
reference for the load cells and an ADC. For compactness, surface mount components were
selected to ensure that the breakout board fitted within the header pins of the Arduino Uno
microcontroller. A small range of voltage reference devices existed that would provide a highly
stable reference voltage for the load cells. The AD7193 required an analogue voltage reference
between 3V and 5V and the ASB1000 load cell recommended a voltage between 5 and 12 volts;
consequently a reference voltage of at least 3 V was needed. A voltage of 4.096 was found to be
the closest to what was required and a common reference used by precision voltage devices.
Before looking for a suitable voltage reference device, the current drawn from each load cell was
calculated with ohms law, with V being the precision voltage reference and R the input resistance
of the ASB1000.
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Vv _ 4.096
R~ 410
Therefore four load cells require 40 mA supplied from the voltage reference device.

= 10mA

All manufacturers that produced a 4.096 voltage reference were explored and it was found that
the highest current that could be supplied was 30 mA. To increase the current a basic analogue
electronics voltage follower circuit was employed. Consequently the output current of voltage
reference devices was an unimportant factor as the op-amp supplied the necessary current at the
same voltage. Compared to other similar voltage reference devices the Texas Instruments
REF5040 had superior characteristics with the lowest temperature drift (3 ppm/°C) and lowest
noise (3 pVer/V). This made the REF5040 the most desirable and precise reference even though

it was only capable of sourcing 8 mA.

The voltage follower circuit required a high-precision op-amp that had low offset voltage drift
characteristics and was able to supply enough current. An AD8656 precision CMOS amplifier by
Analog Devices was chosen as it was able to retain a low offset voltage drift (0.4pV/°C) and supply

220 mA which was more than suitable for the application.

3.2.4.2. AD7193 ADC Investigation
A considerable amount of time was spent on understanding the AD7193 and all the features

associated with it. These features include:

- 24-bit sigma-delta ADC with 4 differential input channels

- Very low gain drift (1 ppm/°C) and offset drift (£5 nV/°C)

- Multiplexor with automatic channel sequencer which simplifies communication
- Simultaneous 50 Hz/60 Hz rejection and programmable filters

- Variable output data rate between 4.7 Hz and 4.8 kHz

- Programmable gain (up to 128)

- Averaging (up to 16)
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Figure 3.7: Functional block diagram of AD7193 (Analog Devices, 2015)

An internal block diagram of the AD7193 is shown in Figure 3.7. The AD7193 features a

temperature sensor, an internal clock, programmable gain array, multiplexor, and SPI interface.

The output of the 4 load cells are connected to AIN1 through to AIN8 and powered from REFIN1(+)

and REFIN(-) which is the analogue reference voltage of 4.096V.

The AD7193 communicates via the SPI bus which requires four wires, these being:

3.2.4.3.

DOUT/RDY: Master In/Slave Out (MISO). It functions as a serial data output pin to access
the output shift register of the ADC. The output shift register can contain data from any of
the on-chip data or control registers. In addition, DOUT/RDY operates as a data ready
pin, going low to indicate the completion of a conversion.

DIN: Master Out/Slave In (MOSI). This receives data from the microcontroller to configure
internal registers.

CS: Chip Select (active low). This is used to select the AD7193. In this case this line will
always be low to have this component selected.

SCLK: The serial clock which can be internal or external. The serial clock input is for data
transfers to and from the ADC.

The SYNC pin is tied high as no synchronisation with other devices is required for this

application.

Schematic Diagram and PCB

After thoroughly understanding the AD7193 datasheet an Altium schematic was designed for the

purpose of creating a compact and highly accurate break-out board.
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Figuré 3.8: Schematic diagram -of initial prototype

The circuit schematic shown in Figure 3.8 includes:
- The voltage reference (REF5040) to supply a stable 4.096 V.

- The voltage follower circuit using an AD8656 to boost the current supplied to the load

cells.
- The 24 bit AD7193.
- 100 nF filtering capacitors on all input channels to the ADC (AD7193 datasheet

recommendation).

- Allow impedance bead - used between the digital and analogue ground to separate the

high frequency switching on the digital line which helps smooth the input analogue signal.

3.2.4.4. Communications

As the overall system consists of four individual sections, some form of communication needed

to take place. Two types of communication interfaces were investigated that would allow for

connecting multiple devices, with these being 12C and RS-485.

RS-485 was chosen over I2C for this system mainly because RS-485 has superior noise immunity,

faster data transfer speeds, further data transfer distances and is an industrial standard. RS-485

line drivers/receivers were required for each device operating on the data lines. The MAX487 by

Maxim Integrated were found to be suitable for the task at hand. The MAX487 transceiver had

two communication lines (A and B), two switchable pins to set whether the transceiver should be

in transmit or receive mode, and two serial data lines.
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The RS485 communication circuit recommended using fail-safe biasing to terminate the line at
the furthest most point. Fail-safe biasing uses three resistors connected in series. The reason for
the resistors was to remove the undefined state on a standard RS485 bus and replace this with a

differential voltage between +200 mV so no false triggering could occur.

3.2.4.5. Final Prototype PCB
Successful testing of the communication protocol and initial PCB prototype meant that a final’
PCB was able to be designed. It was decided that the PCB would be housed inside each platform

section because:

- This makes repairing and fault finding easier as each section has its own unique ID.
- Sections could be assembled and tested individually.

- There would be less redesign work compared to a single PCB interfacing 16 load cells.

The final manufactured prototype PCB (shown in Figure 3.9) was designed to incorporate an
ATmega328 microcontroller acting as a slave device. The load cells are connected to the PCB
via waterproof cable glands; and a 4-wire power and communications cable was connected with
an IP-68 plug and socket for easy removal. The separate units were connected with a daisy
chained parallel configuration; meaning only one cable was needed for each PCB.

The schematic of the final prototype can be found in Appendix 7.
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Figure 3.9: Final prototype PCB (Dalbeth, 2014)
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3.2.5. Embedded Software

The microcontroller programming was done in the Arduino IDE, and is hardware-orientated. The
main purpose of the microcontroller programming was the capability to interface with the AD7193
(get a digitized signal of the load cell) and the MAX487 (transmitting the data via RS-485) devices.
There were three types of communication interfaces used with these being SPI (communication
between ATmega328 and AD7193), RS-485 to communicate between master and slave devices,
and serial communication between the master and computer. The Arduino Uno was used to

program the ATmega328 microcontroller before inserting it into the constructed PCB.

3.2.5.1. RS485 Communication Protocol

The master microcontroller queries each slave segmentin turni.e. A, B, C, D, A, B, C etc. (this is
also known as round-robin) as only one device was able to communicate on the RS-485 bus at a
time. The individual sections were always in receiving mode (once the master transmits a packet,
it goes into receive mode). The corresponding section received the packet, went into transmitting
mode, responded to the master with the corresponding data, then went back into receive mode.
It can be seen therefore that it was important to have some protocol between the master and

slave devices (Nel, 2015).

Each slave section had four load cells connected to it; the master would query the section and
the slave responded to the master with the corresponding data. The master had to be capable of
selecting individual slaves that were able to:
- Set a sampling rate of the AD7193.
- Request data from the slave device. This could be the digitized values of the load cells,
or the current temperature the REF5040 was reporting.

- Turn on the heating circuit.

Various pre-existing RS-485 protocols were investigated but were found to be complex.
Consequently, it was decided to make a custom data transfer protocol, as this allowed a specific
protocol to be designed for this system. The designed protocol was named the AJ convention

(Aaron and Johann) and a packet consisted of three characters (Nel, 2015).

A diagram of an AJ packet transmitted by the master microcontroller to the slave microcontrollers

is shown below and is transmitted as ASCII characters:

Slave ID Command Termination

Where:

- Slave ID is either, A, B, C, D or E, with E being all slaves selected
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- Command

- R =Read data (Slave will respond with digitized values).

- Fx = Change frequency (set the sampling rate of AD7193), x specifies the sampling rate.
- T =Read REF5040 temperature.

- Termination is simply a new-line character \n’

A diagram of an AJ packet transmitted by a slave microcontroller to the master microcontroller is
shown below and is transmitted as ASCII characters:

Slave ID Data CRC-32 Termination

Where:
- Slave ID is the ID of the device that is responding to the master.
- Data, this is either the digitized values of the load cells (CH1:xxx CH2:xxx CH3:xxx
CH4:xxx), where xxx is the AD7193 values or the temperature of the REF5040.
- CRC-32 used for data integrity.

- Termination is simply a new-line character \n’.

Every time a slave responds to the master, it also transmits the character ‘M’. The master
microcontroller uses this as a mechanism to query the next slave device. The designed protocol
was extensively tested in the laboratory making use of the four PCB’s (see Figure 3.10). A bench-
top power supply was set to 12V; the current limit was set to 400mA and connected to the
incoming power terminals of slave A. The 12V and ground is looped in parallel to the other three
PCB boards’ power terminals which is how the final system is powered. The RS-485
communication lines (A and B) are also connected in parallel on the PCB boards. The Arduino
Mega has its own MAX487 connected to it, and simply connects in parallel to the A and B lines.
It was decided to make use of an Arduino Mega as it has more than one serial port on it. One
serial port was used to send and receive data from the slave devices; another serial port was then

used to send the data from the microcontroller to the computer for further processing.

& B e Tty UE
=

Figure 3.10: RS-485 Test setup of master/slave
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3.2.5.2. AD7193 Programming and Sampling Rate

The complete process of configuring, reading and communicating with the AD7193 is detailed in
Appendix 4. The overall layout of the program to capture data from the load cells can be seen in
Figure 3.11. When the program starts, there are multiple initializations that take place. The first
being the serial initialization, this is where the baud-rate is set for serial data transmission. When
the SPI initialization takes place, SPI communication is started, the data mode is set, which was
found to be mode 3 after inspecting the datasheet. The clock divider was set to 4 MHz, and the
bit order was set to output the most significant bit first.

Serial Initialization

SPI
Initialization

§ 1[0)
Initialization

AD7193
Initialization

Figure 3.11: Program layout of AD7193

The sampling rate of the AD7193 can be configured to one of seven following modes shown in
Table 4. The true sampling rate when multiple channels are used depends on the number of
enabled channels. For example when four load cells are connected to the ADC all the available

channels are being occupied. Equation 1 is used to determine the output frequency per channel:

s lina Rate = AD7193 Data Rate (1)
amplng kate = o ber of Enabled Channels

27



Table 4: Sampling rate modes of AD7193

Mode Sampling rate of AD7193

A 50Hz

B 60Hz

© 150Hz
D 300Hz
E 960Hz
F 2400Hz
G 4800Hz

The RS-485 communication operates in half-duplex mode (data can’t be transmitted and received
simultaneously). The master has to request data from one slave device at a time, as only one
device can use the data bus at a time. For this reason the overall sampling rate at which data is
being received from each section is significantly reduced when multiple slaves are connected on

the RS-485 bus. The rate of which data is ideally received from the system is given in equation 2:

AD7193 Data Rate 2)
No.of Enabled Channels X No.of Slave Devices

Data Rate;y =

Where:
- AD7193 data rate is the sampling rate the AD7193 is set to.
- No. of enabled channels is the number of load cells being interfaced (usually four).

- No. of enabled slaves is how many platform segments are active (usually four).

During testing it was found that the actual communication frequency per platform segment was
not consistent when sampling at higher frequencies. The data from the slave platforms at 4.8 kHz
and a baud rate of 115200 oscillated between the period of 0.008 s — 0.005 s. Figure 3.12 shows
the data received from the four platform sections plotted against frequency. It can be seen that
there are spikes every 4-5 readings which is partially due to the ADC’s not being synchronised to
a common clock during initialisation. At an ADC frequency of 4800Hz the settling time per channel
using the Sinc 4 filter is 0.83 mS per channel. This equates to 3.32 mS for all four load cells to
complete the conversion. As the ADC for each platform is continuously cycling each channel and
polling for end of conversion there is an inherent delay depending on when the slave has a request

for data from the master.

28



Actual communication frequency per
platform segment

220
200 A
180 A A

160 -

140 -

Frequency (Hz)

120

100  r T 1 T T T 1T 1111 17 1T 1T 71T T 1T 17177717 1T7°"1T 1T 71T 71T T T 1T T T T T1
ABCDABCDABCDABCDABCDABCDABCDABCDABCD

Platform Segment

Figure 3.12: Actual data rate received per slave segment

A pin on the Arduino Mega (master) was programmed to toggle each time data was being received
to verify the incoming data rate. The results are shown in Table 5. At sampling speeds of 2.4 kHz
and 4.8 kHz the measured frequency of the incoming data was less than the theoretical speed
given in equation 2. The time between switching slaves and waiting for new data to arrive was
longer than the time to send the data. Equation 2 does not take into account the 4 ms switching
delay of the slave devices at this frequency. Using a baud rate of 250kb/s increased the overall
data communications speed but at the cost of system reliability. Therefore at the highest sampling
speed of the ADC, each load cell is being sampled at 568 Hz (142 multiplied by 4). To increase
the sampling frequency and reach the theoretical values in equation 2 full duplex RS485 would
need to be engaged. It was decided that the current sampling rate would be sufficient for the

project’s needs (nearly 10 times faster than the GAITWISE system sampling).

Table 5: Comparison of calculated and measured incoming data frequencies

AD7193 Data Rate (Hz) Calculated Frequency (Hz)  Measured Frequency (Hz)

50 SHIS 3.72

60 3.75 4.84

150 9.40 10.05

300 18.75 20.47

960 60.00 60.50

2400 150.00 142.90

4800 300.00 198.40 Peak
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3.3. PC Software Test Harness
Various software tools were created using Python 2.7 programming language to help detect
lameness, these include: capturing the load cell values, processing them and calculating the basic

kinematic variables. The main tasks the test harness software had to perform were:

- Able to capture the ADC values from each section and translate it into useful data.
- Remove offset on individual load cells.

- Transfer data from the master microcontroller to the computer.

- Plot the force vs time signal.

- Plot centre of pressure on the platform.

- Record data to a file for post-processing.

3.3.1. Load Cell Calibration

When a new load cell is purchased from the manufacturers a load cell calibration certificate
accompanies it which states the tested strain gauge characteristics. One of the main
characteristics on this certificate is the full scale output voltage factor which is used to determine
the scale factor. Each load cell certificate contains a serial number of the load cell which is unique
to that load cell. From the 16 load cells purchased it was found that the full scale output varies
from 1.998 mV/V to 2.002 mV/V. A scale factor based on the median (2.000 mV/V) could be used
throughout the load cells but this could create an error of 8.2 yV when a 1000 kg load was applied.
Although this error sounds very small it would equate to at least a 5 kg difference between the
lowest and highest full scale output load cells. Consequently, five separate scale factors were
determined to make the system as accurate as possible. See Appendix 5 for experimental setup

and results of the load cell calibration.

3.3.2. Calculating Load Cell Weight

An issue encountered after calibrating the load cells was that each load cell had different offset
values due to the slight differences in the strain gauges. This meant that the offset value when no
load was applied had to be individually calculated then removed from the respective incoming
channel before an accurate force could be determined. An algorithm was designed to tare the
load cells so that the initial readings were zero. The algorithm works by taking a sample of 100
data points per platform segment and averages each channel by the incoming data. This
effectively zeros the entire platform and any weight associated with the rubber mat or

accumulation of manure.

To calculate the weight being experienced on each section, the mean of each channel is deducted

from the current channels ADC value and multiplied by the scaling factor, see equation 3.

LC = (ADCygqye — LCprean) X Scaling Factor (3)
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Where:

LC is the load cell value scaled in kilogram
ADCvalue is the raw incoming ADC value of a specific channel
L Cwean is the mean value calculated from the raw ADC values under no load

Scaling Factor is the calculated factor to convert to kilograms

The resultant force experienced on each load cell in each segment is now scaled in kilograms.
To calculate the total weight being experienced on a section, the force experienced on each load

cell is summed together, see equation 4.

4
Z Total Weight = LC, (4)

n=1

3.3.3. Calculating Centre of Pressure

One of the most significant variables to correctly classify lameness is related to the position of the
force applied. The position variables can be used to determine irregularities in stride length, step
overlap and step abduction. These variables provided a strong correlation for classification in
Maertens et al (2011) study.

To determine the centre of pressure (COP) location on the platform an algorithm was designed to
find the X and Y positions using the four load cell signals. When the load cells are under pressure,
reaction forces are generated. These forces, F1, F2, F3 and F4, are shown in Figure 3.13. This
figure also shows how the reaction forces correspond to the position of the load cells, with LC1
representing load cell 1. The distance between LC1 and LC2 or LC3 and LC4 on the x axis is the
width measurement and the distance between LC1 and LC3 or LC2 and LC4 on the y axis is the
length measurement. The total force (Ft) on the platform is found using the previously calculated
summation of the four load cell signals, with these being F1 + F2 + F3 + F4. The COP is a
coordinate (X, Y) that can occur at any position within the dotted line perimeter and is calculated
using equations 5 and 6 (Nel et al, 2015).

F2 + F4
xo F2HFD

X Width (5)
FTotal
(F3+F4)
Y =———= X Length (6)
FTotal
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Figure 3.13: Centre of pressure calculation diagram

Using these equations a force applied anywhere inside the dotted line perimeter can be located

with x, y coordinates given in mm from the origin, which is the point occupied by LC1. The value

of 435 mm was the width between the load cells and 575 mm was the length between the load

cells for the four platform segments. The testing of the algorithm and the accuracy of the

coordinates can be found in Chapter 6.1.1.

3.3.4.

Recording Data

The software records relevant data received from all four platform segments and writes it to a text-

file using the following format:

TIME, SLAVE, CH1, CH2, CH3, CH4, Total Weight, X-Position, Y-Position, Peak

Where:

TIME is the timestamp that the data was captured in microsecond resolution

SLAVE is the ID of the section

CH1 — 4 is the force (kg) experienced on each load cell rounded to 2 decimal places

Total Weight is the total weight experienced on the section (kg)

X-Position/Y-Position is the centre of pressure on the section (mm)

Peak indicates whether a new peak weight has occurred or not. A ‘P’ is written to indicate

a new peak occurred, otherwise an ‘0’ is written to the file.

An example is given below of how the data is stored in the text-file.
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TIME,SLAVE,CH1,CH2,CH3,CH4,WEIGHT,X,Y,PEAK
10:32:06.692000,A,2.48,3.78,1.79,0.02,8.08,339.39,303.67,P
10:32:06.723223,A,3.99,9.62,4.08,1.00,18.71,318.80,247.95,P
10:32:06.770478,A,11.42,20.10,4.72,3.26,39.52,349.44,234 .47 ,P
10:32:06.801198,A,17.91,30.00,5.99,6.55,60.47,347.13,226.93,P

Examining the first line from the example it can be seen that data was captured in the morning at
10:32:07, it was coming from section A, the total weight was 8.08kg and the centre of pressure
was at 339 mm (x) and 303 mm (y). Data will only be recorded if more than 5 kg of force is
experienced on any segment. This is to ensure that any build-up of mud or manure will not cause

the program to start recording.

3.3.5. Plotting Weight and Position

A script was created that plotted the data from the text-file displaying the four load cell signals and
the location of that force in the same graph. The program reads the text-file, determines whether
the data belongs to section A, B, C, D then simply extracts the time, weight, x and y positions and
plots it. Figure 3.14 shows an example of the plotted data; the signal signature seen is the author’s
natural walking pattern. It can be seen that the weight signals correspond to the same colour
positional signals shown in each segment. The beginning peak seen on each segment is the heel
landing and the second peak on the segment is the toe pushing off. The first foot was placed on
segment A on the left side and the next foot is the right foot shown in green. A pattern of left-right,
left-right can be seen in the positional segment which shows the movement of the author with the
straight lines being drawn on each segment. These positional points are not clustered together in
a single point as the weight on each foot is shifting. This reveals the ‘walking signal signature’ of

the author and the inherent characteristics of a heel-toe movement in humans.
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Figure 3.14: Author walking across platform - load cell signals and positions
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To find the steady state noise that exists in the system, the author stood on one platform section
and stayed as motionless as possible to capture the static weight. The processed weight signal
was zoomed into at steady state (approximately 63.2 kg) and is shown in Figure 3.15. The signals
are fluctuating between 62.7 kg and 64.2 kg as marked by the dashed black lines (1.5 kg range).
The reason for this is from the noise induced by the inherent nature of the sigma-delta ADC as it

converts the analog signal using pulse density modulation to a digital signal.

It was found that with a gain of 128 at 4.8 kHZ using the Sync 4 digital filter, the ADC has a peak-
to-peak noise of 2.6 pV and an effective resolution of only 15 bits (Analog Devices, 2015).
Therefore, to find the noise in kilograms the full scale output voltage is divided by the noise ratio

and multiplied by the scale factor of the load cell.

load cell full scale 8.192 mV

Noise (kg) = * scale factor = % 0.0004724 = 1.48 kg

peak—to—peak noise

2.6 WV

Figure 3.15: Steady-state noise
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Chapter 4. System Integration and Methods

This chapter describes the statistical techniques that were used to reduce variables and classify
the cows. Dairy cattle identification and locomotion scoring are discussed. The final section

describes the experimental setup and methods used during the on-farm testing.

4.1. Statistical Analysis Techniques

To determine lameness, reference data from healthy and lame cows is needed to compare
differences in variables. As a starting point, basic statistics of averages, standard deviations,
correlations etc. were used to form an understanding of the expected data to be observed and
processed. Further statistical techniques were investigated in order to reduce redundant variables

to help build models to classify lameness. These techniques included:

- Two sample T-test

- Novelty Detection

- Principal Component Analysis
- Discriminant Analysis

- Logistic Regression

4.1.1. Two Sample T-test

A two sample t-test is used to determine whether the means of two independent groups are
significantly different from each other, in this case healthy vs. lame. A confidence interval is
calculated by testing the hypothesis of the difference between two sample means. A value is
significant if the P-value is less than 0.05 (5%). The procedure is based on the t-distribution which
assumes that the drawn samples come from a normal or close to normal distribution (Minitab,
2015). The significant variables found from the T-test will later be used in models to classify

lameness.

Using this technique Van Nuffel et al (2013) published a paper using the GAITWISE System to
find the variables that were the most significant in determining lameness. A healthy group of 10
non-lame cows’ variables were evaluated with 10 lame cows noticed by the farmer. The significant
variables were stance-time RH, stance-time RF, force LH, step-overlap and total time. Applying
this technique by itself does not determine lameness unless threshold values are set and a smart
algorithm is written. In my opinion, the mentioned study is biased and the cows were most likely
selected to alter the results to make their system perform better than it actually is. See Chapter

6.4.2 for T-test results from the farm trials.

4.1.2. Novelty Detection
Novelty detection is a machine learning system that can identify new or unknown data that the
system was not previously aware of through the aid of statistical based approaches. This

technique is commonly used in signal processing, pattern recognition, data mining and disease
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detection. In this project, novelty detection was investigated using the raw weight signals from the
load cells (signal signatures) that each cow produces when they walk over the platform. A training
set of healthy cow hoof falls from each platform segment were used to form a ‘healthy boundary’
based on the mean + X standard deviations, where X was found so that all healthy cows fell inside
the boundary. Lame cow signals were then added to the model and the percentage of time outside
of the boundary was found which would determine the amount of outliers and the severity of

lameness. See Chapter 6.4.1 for novelty detection results from the farm trials.

4.1.3. Principal Component Analysis

Principal Component Analysis (PCA) is a variable reduction method which reduces the data set
of the matrix to a smaller number of variables called principle components. The purpose of PCA
is to reduce the number of original variables by deleting redundant information. PCA is a very
powerful method and is used as a tool in exploratory data analysis and industries such as the
medical field. For example it is very helpful for a doctor to be able to narrow down 15 symptoms
of a disease to three basic variables for quicker diagnoses. In the context of the project, PCA was
used to reduce the number of variables associated with detecting lameness into a combination of

new variables.

Using Minitab 17 statistical package it was found that from the 32 main variables PCA could
reduce these to 10 new variables which could explain 90% of the variance of the original data.
Although using ten variables would make the algorithms easier to develop, the computation power
that modern day computers possess makes it not worthwhile to reduce variables if information is

being lost in the process. PCA was therefore not required to be investigated further for this project.

4.1.4. Discriminant Analysis

Discriminant analysis (DA) is a statistics tool used to characterise two or more classes of objects
or events. This method looks for linear or quadratic combinations of variables which best explain
the data, with the assumption that independent variables are normally distributed. It is very similar
to regression analysis and PCA, although DA explicitly attempts to model the difference between
the classes of data and produce an outcome for each observation (Eberly College of Science,
2015). This type of classification method is exactly what is needed for the project; to be able to
take an unspecified number of variables and generate a result of healthy or lame for that particular

animal.

Minitab 17 statistical package was used to find the discriminant functions and classify the cows
based on the significant variables indicated from the t-test. Models with all the variables and
combinations of selected significant variables were examined to try and find a model that gave
the best results. A prior probability can also be used to increase the model accuracy. In this case,

it is known that on average 90% of a herd will be healthy and 10% will be lame at any given time
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in New Zealand (Malmo et al, 2011). Minitab also uses cross validation to estimate
misclassification probabilities (false positive and false negative) which is a more robust model
validation technique. The program finds the equations for the categories by systematically leaving
one data point out of the calibration model and then adds this data point back to the model to see
what classification it would be. This is basically finding a model with the supplied calibration data
then testing the model by removing each data point at a time. An example of an equation for a
linear discriminant function for a healthy and lame cow is shown below. The equation consists of
a constant and multiplication factors for each predictor variable in the model. In this case, seven
variables associated with weight are used in the equation. A linear score function is obtained from
each equation to find a single value (202.3 and 205.2).

Healthy (x) = —6633.6 + 6650.9 * NGRF LF + 7002 * NGRF RF + 7092 * NGRF LH + 5539 *
NGRF RH + 0.1 * frontlimb + 6.7 * rearlimb + 1.3 * diagonal = 202.3

Lame (x) = —6716.3 + 6762 x NGRF LF + 6919 * NGRF RF + 7183 * NGRF LH + 5573 *
NGRF RH + 0.2 * frontlimb + 6.6 x rearlimb + 1.3 * diagonal = 205.2

Minitab then uses decision rules to compare the two values to determine the classification. In this
instance Lame > Healthy, therefore the cow belongs in the lame category. See Chapter 6.4.3 for

discriminant analysis results from the farm ftrials.

4.1.5. Logistic Regression

Binomial logistic regression (BLR) is a statistics tool used to predict the probability that an
observation falls into one of two categories, such as win/lose, pass/fail or healthy/lame. The BLR
model is used to estimate the probability of a binary response based on one or more predictor
variables by using a cumulative logistic distribution (Artificial Intelligence in Motion, 2013). The
model is a very similar method to DA, although BLR makes no assumption of the distribution of
the independent variables; consequently the model will predict the probability more accurately for
a skewed distribution. It is commonly used in many fields, including engineering and medical
(Laerd Statistics, 2013). SPSS 23 statistical software was used to categorise the cattle into
healthy and lame groups based on a combination of significant predictor variables. See Chapter

6.4.4 for logistic regression results from the farm ftrials.

4.2. Cattle Identification

In the New Zealand Dairy Industry all animals are required to have a National Animal Identification
and Tracing (NAIT) Radio Frequency Identification (RFID) tag to comply with regulations. This
allows farmers to keep track of their animals and to enhance New Zealand’s ability to respond
quickly to biosecurity outbreaks. To read the tag, an RFID reader is used to identify the unique
electronic identification number which is a 12 digit number. An RFID system on the farm consists

of:
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- Tag: small transponder located in the right ear that holds and sends information.

- Antenna: energises the transponder of the tag to receive information.

- Reader: processes and stores the information from the antenna and provides an output
of data visually and externally.

An XRP2 EID reader and a large RF antenna were supplied by Tru-Test to read the ear-tags from
cows as they walked over the system. In the farm trials, the RF antenna was positioned near the
middle of the platform as this is the most common mounting place for walkover weigh scales (see
Figure 4.1). The EID reader was connected serially (RS-232) to a computer at a baud rate of 9600

and it transmitted 8 data bits with no parity and one stop bit.

Antenna

A B c D

==

Walking Direction

Figure 4.1: RF antenna positioned in middle of platform

4.2.1. Video Recording

To capture each milking session a waterproof sports camera (Go Pro Hero 3+) was used to record
a video at 1080p 60fs with a wide angle lens. The video camera was positioned 2 m from the
platform on a 1 m high rail which was located centrally so that it could see the cows walking
towards the platform and also exiting. Each cow was videotaped from her right side and at least
four strides per cow were captured every day. The videos were stored for gait scoring of the cows
by a trained observer afterwards.

4.3. Farm Trials

Three separate on-farm trials were conducted with the aim of capturing data to test how the
system performs. The initial trial was carried out at a farm with a control group of 10 cows to test
the weighing algorithm. The system was moved to a large farm with a rotary shed to capture three
weeks of data from an entire herd in the aim to determine lameness. The final trial involved one

week of data capturing and analysis of a control group of cows.

4.3.1. Trial 1 Setup
The WoP was installed in the exit race of a 20 aside herringbone milking shed operated by Massey

University in Palmerston North (see Figure 4.2). The 160 strong dairy herd was made up of an
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assortment of breeds of cows including Holstein-Friesian, Holstein-Friesian / Jersey crossbreed
and Jersey. 10 cows were randomly selected from the herd after milking to form a control group
to test the walkover weigh algorithm. Each cow was carefully moved to stand on the platform and
wait with minimal movement for at least 3 seconds before they were allowed to walk off. The static
weight of each cow was then found and recorded against the EID tag number. The group of cows
were then made to walk over the platform as naturally as possible by an approved stock handler
at least 10 times. This task was completed as quickly as possible before the cows became
agitated and sick of walking around in circles. The captured dynamic data was post-processed to

find the walkover weight compared to the static weight. See Chapter 6.2 for testing results.

Figure 4.2: WoP installed at milking shed

4.3.2. Trial 2 Setup

The WoP was shifted to a large farm located in Kairanga, Palmerston North, which milked
between 200 and 800 cows everyday throughout the year. When the WoP was installed in July
2015, approximately 200 cows were being milked twice a day in the winter milking herd, with more
being added each day due to calving. During calving the incidence rates of lameness are higher
due to additional stresses being placed on the cows’ body (R. Laven, personal communication,
March 20, 2015). The 2015 winter season was particularly wet and muddy which also increased
the lameness likelihood; consequently it was a perfect time to capture data for the project. Cows
walked out of the 60 bail rotary milking shed individually along a 20 m raceway to feed sheds

which accommodated 200 cows per shed (four in total). Figure 4.3 shows a feed shed which has
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concrete flooring with a herd of cows eating down both sides. The majority of the herd were
Holstein-Friesian or Holstein-Friesian / Jersey crossbreed, which are the two most common
breeds (34% and 46% respectively) in New Zealand (DairyNZ, 2015). After half an hour of being

in the feed shed the herd were moved to pasture, sometimes a walk as far as 3 km one way.

The WoP was installed in the middle of the 20 m raceway under a structure with an arched tin
roof. An existing chicane made of metal tubing was 2 m before the platform which helped slow
down and single out the cows. A continuous rubber mat was laid over the length of the platform

to hide the platform segments so that it seemed like one long platform to the cows (see Figure

Figure 4.3: Herd of cows in feed shed

4.4). The most suitable time to conduct on-farm assessments of dairy cattle gait is after milking
(Flower, 2006) therefore data from the entire herd was captured at this time continuously over a
three week period. The morning milking data was not captured (driving to the farm twice a day
was not feasible), although the herd still walked over the platform. The cows were not pushed or
disturbed while walking over the platform as the idea of this trial was to capture data as naturally

as possible without any intervention.

Figure 4.4: WoP during use in raceway
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The platform was calibrated each day before data was captured to make sure that the correct
weight was being displayed. This simply involved the author standing on each section and making
sure the static weight was constant and approximately 62 kg. Half way through the three week
data gathering trial, Lisa Hine, who is a trained lameness scorer from the Massey University Large
Animal Veterinarian Department, visited the farm. Eight final year vet students accompanied her
to help with tag reading, writing scores and commenting on particular issues. Each cow was
scored after walking over the WoP and down the raceway to the feed shed. A video camera also
recorded the scoring session in case particular cows needed to be examined further. See Chapter

6.3.1 for scoring results.

4.3.3. Trial 3 Setup

Three weeks after the initial analysis of trial 2, a further week of data was captured and analysed
from the herd, with the focus being on a control group of cows. The control group contained 25
cows - 10 randomly selected healthy (level 0) cows, 3 randomly selected level 1 cows and all
identified lame (level 2) cows (12 in total). No level 3 cows were found in the herd during the video
analysis scoring. The main reason to focus on a small group of cows instead of the entire herd
was to be confident that the scored cows were ‘gold standard’ for their lameness level.
Specifically, the lameness scorer was certain that the selected animals’ scores would be a good
representation of the population to base the statistical calibration models around. See Chapter

6.4 for results.
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Chapter 5: Data Exploration

This chapter describes the algorithms developed in this project and how the data is written to a
file. Numerous post-processing algorithms are discussed as well as how the gait variables are

determined.

5.1. Post Processing Algorithms
The post-processing software tools were created using Python 2.7 programming language. The

main tasks this software had to perform were:

- Splitting the peaks in the weight signal to distinguish between front and rear legs
- Determining left and right hoof

- Calculating the dynamic weight on individual legs

- Calculating the total walkover weight

- Determining the gait variables and associated lameness variables

- Writing the variables to an Excel file

5.1.1. Splitting Peaks

One of the first algorithms designed was the ability to split the two weight signals that occurred on
each platform segment. The platform was designed to capture two separate signals of the cow on
the same side under normal walking conditions. The first signal is therefore recognised as the

front leg and the second signal is the rear leg.

The method developed makes use of the weight of the peak that occurs (y-axis) by setting an
arbitrary threshold value. Figure 5.1 gives an example of how the algorithm works with a threshold
level set at 100 kg. Any weight above the threshold is true and any weight below is set as false.
The algorithm makes use of the fact that at the start of a peak the transition from false to true
occurs and on the way back down true to false occurs. Two Boolean values are used to hold the
current value and the previous value to determine when a valid signal occurs. This gives the ability
to individually keep track of each weight value assigned to a limb in an array which will be used
in future algorithms to calculate dynamic limb weight. Another advantage is also removing false
peaks that can occur when a cow half steps onto the platform and then steps off again if the
threshold weight is set at a reasonable value. Acknowledgements to Johann Nel for designing

this algorithm.
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Figure 5.1: Example of splitting peaks on segment A (Nel, 2015)

5.1.2. Detecting Hoof Side

A simple algorithm was developed to determine whether a left or right hoof is on a segment. This
was achieved by comparing the front hoof placements on the beginning two segments by taking
the average X-position data on segment A and the average X-position data on segment B. An
example of the positional data experienced when a cow walks over the platform is shown in Figure
5.2. If segment A X-position data (shown in red) is less than segment B X-position data (shown in
blue) then the left hoof must stand on segment A first. The comparison is only tested on the first
two segments as the cow will continue to stride in the same pattern on the remaining two
segments. Only the front hooves are considered as the rear hooves should land in a similar
position as the front. The weight signals experienced anywhere on the platform can now be
assigned to either hoof (front/rear) on either side (left/right).
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Figure 5.2: Positional data from walking cow on segments A and B
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5.1.3. Walkover Weigh Algorithm Development
In order to calculate the total weight of a cow while moving across the platform an algorithm had
to be developed to find the dynamic weight. Various filtering algorithms were examined with the

most common techniques of moving average and weighted average being explored.

A moving average (or running average) is calculated by taking the arithmetic mean of a given set
of values. The moving average ‘window size’ determines how much of the data is being examined
for each calculation. For example a moving average with a window size of 6 will take the previous
5 data points and the current data point and average them to form one value. This averaging
technique is commonly used with time series data to smooth out short-term fluctuations and can

be considered as a low pass filter (Statistics How To, 2016).

A weighted average is similar to a moving average apart from a multiplying factor that assigns
different weights to data depending on the importance of each data point. Mathematically it is the
convolution of the data points with a fixed weighting function, usually between 0 and 1. The
weighted average technique responds faster than the moving average technique using the same
sample data. For the purpose of this project it was decided that the data would be most stable
and closest to the correct weight at the centre of the data set, therefore the data in the middle of
the dataset was given the most weight and that on the edges the least weight. To calculate a

weighted average the following steps are performed:

- Multiply each value by its weight.
- Add up the weighted values.
- Add up the weights for each value.

- Divide the total of the weighted value by the total of the weights.

The two techniques were developed using inbuilt functions in Python’s Numpy mathematical
package. The moving average window size was experimentally evaluated and set at 3. The
weights for the weighted average increased in incremental values depending on the array size
from 0 — 1 — 0, with 1 being the central data point. The algorithms were tested in the laboratory
by statically weighing myself then walking over the platform ten times at varying speeds to capture
the dynamic signals. The static weight was found to be an average of 62.3 kg. The total weight
will always be on one segment or between two segments at any one time, therefore the total

weight between sections AB, BC, and CD needs to be resolved to find an average weight.

A graphical example of the signals experienced on sections B and C is shown in Figure 5.3. This
shows two steps taken on the platform, with the red signal and blue signal showing the raw values
experienced on section B and section C respectively. The green signal is the summation of both
raw signals at each point in time and the magenta signal is the moving average of the combined

weight. Notice how smooth the magenta signal is compared to the other three signals.
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Figure 5.3: Signal showing moving average while author walking over platform

Overall, the weighted average technique produced the best results with an average of 61.8 + 0.2
kg which is half a kilogram less than the static weight. Figure 5.4 illustrates the average calculated
weights of the two techniques across the 3 sections. The running average is approximately 700 g

less accurate than the weighted average. See Appendix 2.3 for full results of each test.

Average Walkover Weight Method
Comparison
62.000
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é B Running Average
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Figure 5.4: Walkover weight method comparison

Three methods to calculate the average weight of the cow on any two sections were developed.

The methods are very similar, although each one uses a different combination of signals that
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occur between the platform segments. All three methods were tested making use of the running
average and weighted average techniques to see what differences could be identified. The

methods are explained below:

The first method looks at the two peaks that occur on each section i.e. section A and section B.
The first peak that occurs on section A is added with the first peak that occurs on section B (both
front legs). The second peak that occurs on section A is added with the second peak that occurs
on section B (both rear legs). A running/weighted average of the combined first peak is taken and
a running/weighted average of the second peak is taken. The results are added together and

divided by two as the load is shared over two sections.

The second method takes the two peaks that occur on the first section (front and rear legs) on
section A and adds them together and takes the two peaks that occur on the next section i.e.
section B and adds them together. A moving/weighted average of section A’s result and a
moving/weighted average of section B’s result is added together and divided by two as the load

is shared over two sections.

The third method is to simply take a running/weighted average of the whole signal that occurs on
section A and a running/weighted average of the whole signal on section B, with the resultant

signals being added together.

To simulate how the algorithm would respond when a cow walked over the platform, two heavier
people were used to ‘move like a cow’ and place two feet onto each platform segment. The
moving/weighted average only considers weights above a certain threshold in order to remove
the noise in the rising and settling time of each signal. The threshold limit for this application was
set to 90 kg and above as the combined static weight was found to be 233.4 kg (approximately
115 kg per person). Ten walkover trials were conducted at varying speeds to determine which
algorithm and method produced the closest results to the static weight. Figure 5.5 illustrates the
weight signals and positional data of one trial run with the threshold level used by the algorithm

shown by the dashed black line.
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Figure 5.5: Simulating a cow walking pattern to test algorithm

The average result from the ten trials using the three methods described above is displayed in
Figures 5.6 and 5.7. It is quite obvious looking at Figure 5.6 that method 3 produces the results
closest to the static weight, with the section BC average of 228.4 kg being 5 kg less than the static
weight. The weighted average results in Figure 5.7 show that the methods are very similar,
although method 3 is slightly more accurate. The mean error and StDev of section BC is -4.7 +
1.9 kg. It should also be noted that in both the running/weighted average results that section BC
weight is higher compared with AB and CD. The reason for this is that section BC is a level walking
surface, whereas AB contains a step onto the platform and CD a step off the platform which alters

the weight distribution slightly.
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A field trail was conducted (see Chapter 6.2) to test the accuracy of the algorithms on actual dairy
cattle. It was found that the fixed threshold did not perform well when dynamically weighing the
dairy cattle. In most instances the calculated walkover weight was at least 100 kg less than the
static weight of the animal, which is not accurate enough for the required task. It was noted from
the field trial data that the weighted average technique is a poor representation of the original
signal, as can be seen in Figure 5.8. This figure shows blue signals which are the raw combined
weight signals and green signals which are the weighted average output signals. These triangle
shaped output signals are a poor interpretation of the original signal, which is why, when
averaged, they produce a value which is far less than the desired amount. Consequently, an
algorithm using dynamic thresholds and running averages was developed to optimise the
acquired cattle signals.
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Figure 5.8: Example of how weighted average signal behaves

5.1.3.1. Dynamic Threshold Algorithm

The progression and optimisation of this algorithm came from observing the shape
(peaks/troughs) of the captured field trial data and modifying the parameters to suit. Experimental
testing of different window sizes and scale factors was explored to smooth the output signal to an

acceptable level before finding an average value. The steps involved for each individual signal
are listed below:

- Find the mean of the original signal and use this value as the dynamic threshold (at 100%

of calculated average).

- Use all the data above the threshold and find the moving average of these points (new
array) with a window size of 3.

- Find the average of the new array to calculate the weight value for each individual limb.

- Do this for both limbs (front /rear) on same segment to find a combined average weight.

- Repeat steps 1 — 4 for the next platform segment and divide the combined results by 2.
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A graphical example of how the algorithm works is given below. The accuracy of this method was
found to be within 15 kg of the static weight which was deemed acceptable for the project. For

testing results see Chapter 6.2.

Figure 5.9 illustrates the signals experienced while calculating the weight of an individual limb, in
this case the front right. The blue signal is the original data (mean = 249.1 kg), the brown signal
is taking the running average (mean = 256.6 kg) of the original signal and the green signal is the
running average after thresholding, shifted to the left (mean = 278.0 kg). The brown signal

demonstrates why a threshold level is needed to get more stable and accurate results.
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Figure 5.9: Example of front right limb signals

Figure 5.10 illustrates the signals experienced while calculating the weight of a right rear limb.
The blue signal is the original data (mean = 206.3 kg), the brown signal is taking the running
average (mean = 211.9 kg) of the original signal and the green signal is the running average after
thresholding (mean = 273.3 kQ).
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Figure 5.10: Example of rear right limb signals

Figure 5.11 shows the previous two signals on the same graph as well as the combined moving
average signal (section A). The light blue signal shows the filtered data from combining the green
and purple signals; the average weight is 551.7 kg (static weight 562 kg).
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Figure 5.11: Moving average of combined signals
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5.1.4. Calculating Variables Indicative of Lameness
Python scripts were developed to deduce the required variables that may be associated with
discovering lameness. All the variables were found using the three main kinematic parameters of

weight, position and time.

5.1.4.1. Force Related Variables

Individual limb weight and total weight: Explanation of these can be found in the previous chapter.

Normalised ground reaction force (NGRF): The individual limb weight divided by the total body
weight.

Limb_x1 (7)

NGRF = ————
total weight

Asymmetry in limb weight: Absolute difference in relative force exerted by the limbs between left

and right hoof imprint.

Asymmetry in limb weight = |RF — LF| (8)

Asymmetry in diagonal weights: Absolute difference in relative force exerted by the diagonal
limbs between LF,RH and RF,LH.
Asymmetry in diagonal weights = |(RF + LH) — (LF + RH)| 9)

Asymmetry in side weights: Absolute difference in relative force exerted by the limbs on opposite
sides.
Asymmetry in side weights = |(RF + RH) — (LF + LH)| (10)
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5.1.4.2. Spatial Related Variables

Figure 5.12 illustrates the positional locations of a cows walking pattern, with coordinate

definitions for each platform section. These definitions will be used to explain how different

variables are calculated.
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Figure 5.12: Positional data with coordinate definitions

Front step length: Step length between the front left and front right hoof imprints (see Figure

5.13).
Front step length = yB1 — yAl (11)

Hind step width: Step width between hind the left and right hoof imprints (see Figure 5.13).
Hind step width = |xB2 — xA2| (12)
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Figure 5.13: Example showing step length and step width

Step overlap: The lengthwise distance between the front hoof and the hind hoof on the same side

(see Figure 5.14).
Step overlap = yAl — yA2 (13)

Abduction: The sideways distance between the front hoof and the hind hoof on the same side

(see Figure 5.14).
Abduction = |xA1 — xA2]| (14)
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(A positive value indicates that the rear hoof lands on the outside

of the front hoof which is ‘normal’)
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Figure 5.14: Example of step overlap and abduction
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Stride length: Distance between two consecutive imprints of the same hoof (see Figure 5.15).

Stride length = yC1 — yA1l

(15)
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Figure 5.15: Example showing stride length
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Three methods to filter the positional coordinates were developed to find the actual location of the

hoof when the maximum pressure is applied. These methods of threshold, peak and radius are

explained below.

Threshold method — The most obvious method is to set a weight threshold and remove any points

that fall below this level. The threshold must be set high enough so that it eliminates the outliers

created from placing and removing the hoof but low enough to capture the most stable part of the

signal. An average of the remaining data points above the threshold is taken to find the centre of

pressure (mm). The disadvantage with this method is that an accurate threshold limit needs to be

established to get adequate filtering of the data points.
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Peak method — This method finds the peak weight value that occurs in each signal and takes a
certain number of points either side of the peak. The corresponding positional coordinates are
then averaged to find the centre of pressure at the maximum weight. The number of points used
depends on how many samples are in the signal and what spread needs to be examined to get a
reasonable interpretation of the position. If too many points are used, then the next peaks signal
will be combined into the average location which will yield incorrect results. Depending on where
the peak value was found, if there are an insufficient number of points, a completely wrong position

may also be calculated.

Radius method — The final method works by calculating the average location of the signal and
then setting a specified radius around this location. All the data points inside this will be averaged
again to find the centre of pressure. This method should be the most reliable as only outliers
outside the radius will be removed from the data set; there is no bias as to whether the data was

from the peak weight or the minimum weight.

5.1.4.3. Temporal Related Variables

Stance time: The time during one step that the hoof is on the platform (see Figure 5.16).

(T, =T+ (T, —Ts) (16)
2

Stance time =

Asymmetry in stance time: Mean difference in time that the hoof is on the ground between the
left and right sides (see Figure 5.16).
Asymmetry in stance time = |(T, — Ty) — (T, — T5)| 17)

Stride duration: Time between two consecutive imprints on the same hoof (see Figure 5.16).
Stride duration = (T, = T;) + (T, — T3) (18)

Velocity: Hoof speed (m/s) is stride length divided by stride duration.

. Stride length o)
Velocity = Stride duration
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Figure 5.16: Example of hoof duration variables

5.1.5. Writing Variables to Excel File

In order to focus on an individual cow the text file recorded for each milking session had to be
manually examined to split the data correctly. Attempts were made to automate this process with
the aid of state machines but the variability and natural flow of the cattle made this a time
consuming task outside the scope of this project. Therefore the decision was painfully made to
manually search for the required EID tag, validate the data to see if it would be useful (i.e. check
that not more than one cow was on the scale at a time) and copy and paste the data into a new
text file. These individual text files were processed by the main Python program to produce an
Excel File that contained the 82 desired variables. The inbuilt functions inside the xIsxwriter library
were used to write the variables into the preferred locations. Other variables included in the Excel
sheet were the leading leg (left/right), location in herd (%) and asymmetry of the majority of the
variables to compare (left/right and front/rear). The main reason the data was organised in Excel
rather than Python is that data in Excel spreadsheets are quicker and easy to arrange, format and
graph. Statistical information such as, average, StDev, max, min and range could be effortlessly
found for each variable, or a combination of variables. An example of an Excel spreadsheet with

actual data can be found in Appendix 6.

Chapter 6: Experimentation and Results

This chapter presents the results from the laboratory testing and the results obtained during the
farm trials. Section 6.1 presents the laboratory testing of the weight and positional accuracy of the
platform. Section 6.2 describes how accurately the dynamic weight of cows can be found from
the first on-farm trial. Section 6.3 reports on the findings from the second farm trial including
lameness scoring and variable correlations. Section 6.4 presents the statistical findings from the
controlled case study and the classification results. Section 6.5 discusses practical considerations

and the findings from the farm trials.

6.1. Laboratory Testing
A series of tests were conducted on the assembled platform to measure its response and

accuracy before installation in the milking shed. These tests included:

- Positional coordinate accuracy
- Calculating the total weight on the platform
- Step length accuracy

- Determining how a rubber mat affects the dynamic response

6.1.1. Positional Coordinate and Weight Accuracy
This test involved determining how accurately the system could measure the weight of an object

placed anywhere within a platform section and whether the centre of pressure could be calculated
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correctly. A 20 kg calibration weight and a manufactured 25 mm circular point load stand were
used as the test weight (see Figure 6.1). A laser cut test jig was made with 25 mm cut outs at 50
mm spacings so the point load stand could be placed accurately across the entire segment (Figure
6.2). The weight and positional coordinates were recorded at each test point location. Please see

Appendix 3.1 for all the results that were recorded while conducting the experiment.

® © 0 0 0 0 ¢
® ® 00 ¢ 60 0

Figure 6.1: Calibration weight on point load stand Figure 6.2: Laser cut test jig

The statistical results of the centre of pressure and weight accuracy can be seen in Table 6 and
Table 7 respectively. The overall X-position accuracy was calculated to be within 1.0 £ 2.2 mm
and the Y-position accuracy was calculated to be within 0.81 + 1.8 mm. This is remarkably
accurate considering that such a small signal (0.005% of full load) was experienced by the load

cells.

Table 6: Mean and standard deviation of X & Y Position errors

X-Position Y-Position

Mean Error 1.005mm Mean Error 0.814mm
Standard Deviation 2.172mm Standard Deviation 1.788mm
Minimum -4.279mm Minimum -2.437mm
Maximum 5.377mm Maximum 3.512mm

Table 7: Mean and standard deviation of Weight errors

Mean Error 20.087kg
Standard Deviation 0.034kg
Minimum 20.024kg
Maximum 20.180kg
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It can be seen from Table 7 that the weight accuracy was calculated to be 20.08 + 0.03 kg, with
the mean weight error calculated to be 0.44 % of the 20 kg weight. The slight variation in weight
could be due to the contribution of the RMS noise of the ADC, the load cell signal output (2mV/V
1 0.1 %) and the voltage reference drift (4.096 V £ 0.05 %). Only one segment was tested as it

was assumed that the other three would behave in a similar way.

6.1.2. Step Length Accuracy

An investigation was conducted to determine how accurately known step lengths could be
measured with the three methods discussed in Chapter 5.1.4.2. Three step lengths of 600, 650
and 670 mm were used as the test lengths as these are values between the expected cattle step
length of 600 — 700 mm. Four 50 mm circular blocks were positioned at the measured locations
on alternating sides to act as point load representations of cows’ hooves (see Figure 6.3). Five
walkover runs for each step length were simulated (two humans moving like a cow), giving two
foot falls per platform segment. For each run, six measurements were calculated using the three
methods, with these being the front footsteps of AB BC CD and the rear footsteps of AB BC CD.

An example of the measurements produced by the three methods for the same test run is shown
in Figure 6.4. The 50 mm circular blocks were spaced at 600 mm distances to each other which
are illustrated in Figure 6.5. It can be seen that the three methods yield similar results for each
step, although the distance between steps is as much as 30 mm in this case (between AB front
and BC front). When comparing like steps (front/rear of same platform segment) the result is very

similar which is to be expected as the same circular block takes both the feet at the same location.

“ - y % g N 3 R

Figure 6.3: Step length testing setup (GoPro 3 wide angle lens)
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Figure 6.4: Test results from one trial of 600 mm step length
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Figure 6.5: 600 mm layout

The results from the three step lengths were averaged over each trial run and can be seen in
Figures 6.6, 6.7 and 6.8. The main point of interest between the figures is that the measurements
between runs seem to vary by an average of 5 mm; the most logical reason for this is that the
person did not always stand centrally or squarely on the block which would shift the centre of
pressure. The overall result between tests is very similar, with Table 8 showing the average mean
deviation and standard deviation across the three step lengths. In summary, on average, the
measured step length was approximately 3 mm less than the actual measurement. The threshold
method produced the largest standard deviation and range, whereas the peak method was the
closest of the three algorithms. Therefore, it was found that using the peak or radius method for
future filtering of positional data would deliver more accurate results. Please see Appendix 3.2 for
the full test results.

Table 8: Summary of step length testing

Mean Error (kg) Standard Deviation (kg)
Threshold -2.66 10.25
Peak -2.40 8.95
Radius -2.57 9.70
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Average Simulated Step Length (600 mm)
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Figure 6.6: Average simulated step length (600 mm)
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Figure 6.7: Average simulated step length (650 mm)
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Figure 6.8: Average simulated step length (670 mm)
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The step length experiment was not ideal in terms of accuracy, although it gave a fair idea of how
the algorithms compare for the same controlled data. Of concern was the large standard deviation

between step lengths which could be due to the following reasons:

- Measurement error in combination with human error to incorrectly mark out the stride
positions, approximately £ 2 mm

- The assumption that each platform has exactly the same load cell spacing — this was
found to be incorrect and was mainly due to manufacturing errors and human error when
aligning the platforms square with the main frame; these factors contributed an error of
approximately £ 3 mm.

- When standing on the front of the feet to act as point load, it was sometimes hard to

always stand on the circular blocks squarely in the centre.

These aforementioned factors could contribute an error of approximately 10 mm during some

movements which may be why some steps fluctuate more than others during testing.

6.1.3. Dynamic Response

A test was performed to assess the dynamic response of the load cells on one section and
compare the signals that were produced when a rubber mat was attached to a section. The aim
was to see whether the rubber mat would affect the signals and by how much. Figure 6.9 shows
the signals that were produced by the section when stepping onto the section without a rubber
mat attached. It can be seen that the total weight (black signal) has two spikes of 70 kg (which is
8kg above the average weight) when stepping onto, then off of the section. Note the y-axis scale

in this figure goes from 0 — 80 kg.

ADT193 Four channel test (Section B)

Top Right
Bottom Right
Top Left
Bottom Left
Total Weight

70

60

40

Weight (kg)

201

Time (s)

60



Figure 6.9: Dynamic response without rubber mat

When the same test was conducted with a rubber mat attached the two peaks were reduced to
some extent. Figure 6.10 shows the signals produced by the section with a rubber mat when
stepping onto, then off of the section. The key difference compared to the previous figure is that
the peaks are reduced by 5 kg, therefore it was noted that the rubber mat dampens an impulse
by approximately 8 %. As well as providing more grip for the cows while they walked over it, the
rubber mat would also help smooth the signals which would help with the accuracy of the total
weight algorithm.

ADT7193 Four channel test (Section A)
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Figure 6.10 Dynamic response with rubber mat

6.2. Farm Trial 1 Results

The ten walkover trials were done with ten cows with body weights of 388, 455, 501, 522, 550,
550, 552, 562, 595 and 616 kg, respectively. The cows were weighed statically before dynamic
weighing. Table 9 displays the static weights, average dynamic weights calculated from each of
the trials and the average error compared to the static weight. Taking an overall average of all the

cows’ trials combined, it was found that the mean error and standard deviation were:

- Section AB = -20.14 £ 13.78 kg
- Section BC = -10.69 + 10.57 kg
- Section CD = -10.15 £ 12.36 kg

- Combined Sections = -13.66 £ 7.52 kg

The closest resultant arrangement of platform sections is taking an average of all three sections

(Combined Sections); this provides the lowest StDev and also contains the smallest range of 17.2
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kg. Section BC gives the next best results with an average error closer to the static weight but
with a larger spread of values. Section AB performs the worst out of the four arrangements with
an average error of 20 kg less than the static weight. Therefore using the Combined Section
weight, it would be considered that the total weight of the cow is within 15 kg of the static weight.

See Appendix 3.3 for further results.

Table 9: Comparison of dynamic weight to static weight of 10 dairy cows

Cow EID Static Weight (kg) | Average Dynamic Weight (kg) | Error (kg)
982 091001734424 550.00 534.70 -15.30
982 091001734362 552.10 536.20 -15.90
982 000124839853 562.00 549.60 -12.40
982 091001734048 500.70 491.30 -9.40
942 000015200296 455.10 440.50 -14.60
982 123464531778 387.60 376.20 -11.40
982 000091411599 550.20 535.60 -14.60
982 000091482234 594.60 580.70 -13.90
982 091001734420 522.10 512.80 -9.30
982 000091411587 616.00 596.20 -19.80

The walkover weight algorithm depends highly on how the animal walked over the platform. On
clean runs when the cow walked normally without stopping or swinging her head then the weight
calculated was closer to the static weight. When a cow walked slower than normal the signals
captured displayed a longer plateau which made the algorithm find a weight closer to the static
weight. When a cow was skittish, the signals were more erratic which reduced the peak times and

hence the dynamic threshold would be set lower which affected the weight calculated.

It was interesting to see that on individual trials Section AB always found a weight that was
approximately 10 - 20 kg less than the next two sections. The main reason for this is that the cow
had to step up 100 mm onto the platform which slightly alters her weight distribution; more weight
is spread to the hind legs which are placed on the ground. Section BC and CD produced similar
results as the cow is walking on a level surface, although the step down from the platform on

Section CD slightly increased the weight during some trials.

To compare how well the WoP and algorithm performs an industrial equivalent walkover platform
would have ideally been tested. This was not possible at this location as no weigh scale was
present. Further work could be focused in the area of walkover weigh algorithms to calculate the
dynamic weights more accurately. Although this is only a small part of the project it has a huge
significance on determining differences in weights applied to limbs compared with total body

weight.
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6.3. Farm Trial 2 Results

Three weeks of data was captured from the herd of dairy cows and subsequently analysed and
compared to the manual lameness scores for each animal. During the first week after the
installation of the WoP the cows were apprehensive about walking over it as they were not used
to walking over a platform as the farm had no scales. The cows continually stopped on the platform
and walked over in large groups which made it very hard to separate the data captured for each
cow. Consequently the data captured during the first week was not used in the analysis. From
this observation it should be noted that the settling period of a week needs to be applied for new

farm installations.

6.3.1. Lameness Assessment

Each cow in the herd was individually scored for lameness by a trained observer, with the resultant
scores being displayed in Figure 6.11. The majority of the herd were scored as healthy (0, n =
141), 33 were scored as level 1 (slightly lame), 21 were scored as moderately lame, and 3 were
scored as severely lame. Therefore, 12% of the herd were classified as lame and were examined
further. This is within New Zealand’s expected lameness incident rate of 10 — 15% at any given
time (Malmo et al, 2011).

29th July Lameness Scoring (n = 198)

160

140 —

120 —

100 —
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40—
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LamenessScore

Score0 MScorel Score2 MScore3

Figure 6.11: Manual lameness scoring results from trained observer

6.3.2. Data Analysis

All of the cows with a lameness score of 2 and above were identified and each day of clean data
was manually extracted from the recorded text file. Clean data is classed as a successful
measurement, meaning the animal walked over the WoP at a natural speed without stopping. A
total of five days of data per cow were analysed (if possible) centred about the lameness scoring
date, i.e. two days before scoring and two days after. The reason this time period was analysed
is because the lameness level of a cow can change quickly and using two week old data may

provide invalid results. During analysis, the plotted raw weight and position signals for each day
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gave a fair visual indication of whether each cow was healthy or showing signs of lameness. For
example, Figure 6.12 displays a signal signature of a healthy cow (ID: 55) and Figure 6.13 displays

== Right Front Hoof
»—s Right Back Hoof
=—= Left Front Hoof
w—a Left Back Hoof

Figure 6.12: Weight and positional signal signature of a healthy cow (ID: 55)

a signal signature of a lame (level 2) cow (ID: 123).

The differences between Figure 6.12 and Figure 6.13 are fairly obvious. Figure 6.12 shows clean
signals that reach the same peaks (front and rear) with the same duration in time, which are
symmetrical to the contralateral limb. Conversely, Figure 6.13 illustrates weight signals that are

dispersed and erratic with the front and rear hoof signals reaching the same peaks. The black

#—+ Left Front Hoof
s—s Left Back Hoof
== Right Front Hoof
*—= Right Back Hoof

Figure 6.13: Weight and positional signal signature of a lame cow, RH (I1D: 123)

64



signal (RH) has less weight being applied for a shorter duration of time compared to the LH hoof

which indicates reluctance to bear weight.

Taking the previous two cows as examples, the differences in lameness related variables on the
same day is graphically shown in the figures below. Cow 55 is the healthy cow ID and Cow 123

is the lame cow.

Cow 55 NGRF Cow 123 NGRF
0.600 0.700
0.500 0.600
0.400 0-00
0.400
0.300
0.300
0.200
0.200
0.100 0.100
0.000 0.000
NGRFLF NGRFRF NGRFLH NGRFRH NGRFLF NGRFRF NGRFLH NGRFRH
Figure 6.14: NGRF of a healthy cow Figure 6.15: NGRF of a lame cow (RH)

Figures 6.14 and 6.15 illustrate the NGRF of each limb, with Cow 55 showing front leg distributions

of 56 % of body weight and rear leg distributions of 41 — 43 %; this is considered to be a normal

Cow 55 Asymmetry in Cow 123 Asymmetry
Weights in Weights
100.00 100.00
E 80.00 E 80.00
z 60.00 z 60.00
20 o
2 40.00 v
= = 40.00
20.00 20.00
0.00 L s 0.00
B Asymmetry in Weight Front Limb (kg) B Asymmetry in Weight Front Limb (kg)
B Asymmetry in Weight Rear Limb (kg) B Asymmetry in Weight Rear Limb (kg)
I Asymmetry in Diagonal Weights (kg) m Asymmetry in Diagonal Weights (kg)
B Asymmetry in Side Weights (kg) B Asymmetry in Side Weights (kg)
Figure 6.16: Asymmetry in weights of healthy cow Figure 6.17: Asymmetry in weights of lame cow
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weight distribution (Van Nuffel et al, 2015). Cow 123 is showing front leg distributions of 56 — 59
% and hind limb distributions of 54% on the LH limb and only 31% on the RH limb (lame leg). The
contralateral hind leg is now taking 10% more of the total body weight than the healthy cow

equivalent.

Figures 6.16 and 6.17 show the asymmetry in weight with four different variables. Cow 55 shows
that all the variables have a difference less than 20 kg with the largest being asymmetry in
Diagonal Weights at 14 kg. On the other hand, Cow 123 presents large asymmetry in weights,
with the total difference in Side Weights being over 100 kg. The weight difference shown here is
an extreme example; the usual average is a 35 kg difference. Further illustrations comparing

variables can be found in Appendix 3.4.

6.3.3. Score 3 Cows

The signal signatures of the three level 3 cows were observed and their variables were found
when possible. In most cases though it was very hard to find the variables due to the way the
algorithms were designed to split the peaks and also wanting two foot falls per segment. When
two foot falls were not observed, the algorithms were not able to produce a result and
subsequently crashed. An example of what a lame level 3 cow signal signature looks like is shown
in Figure 6.18. Looking at the first section (red signal) there is only one peak captured which last
for four seconds at a peak weight over 350 kg. This is showing that the cow placed her first foot
onto the section then without moving that foot the next front foot landed on the same section. The
same shape signal can also be seen on section D. The positional data on sections A, C and D
also shows significant fluctuations. This may have been caused by the cow dragging her hooves
along the platform due to discomfort or the algorithm trying to resolve the COP when two hooves
are on the same sections. Sections B and C have two distinct foot falls, although section C (blue

signal) portrays tenderness in both limbs (lame side). The second blue signal shows the hoof was
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Figure 6.18: Lame level 3 cow signal signature
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placed onto the platform very slowly judging by the slope of the signal. There is currently no
variable that looks at the slope of the signal, therefore in the analysis and modelling in future
chapters no level 3 cows’ data is included. Such a variable could be found by taking the derivative.

Implementing an algorithm to find this in future improvements may prove to be a useful tool.

6.3.4. Lameness Assessment — Part 2

During the analysis of the scored lame cows some discrepancies were noticed with at least half
of the group. The signal signatures and calculated variables of 12 of the cows appeared to be
reasonably healthy. This observation of healthy signals compared to lame signals could be made
due to the scale of data that had been observed. It was also found that one of the scored healthy
cows produced results similar to a lame cow which suggests that it may actually be lame and was
misclassified during scoring. For these reasons, the recorded video of the lameness scoring day
was used to find and snip the 21 level 2 cows as well as a selection of level 0 and level 1 cows.
The mixed recorded files were given to the same trained locomotion scorer, who had no
knowledge of my findings, and they scored all the cows. Not surprisingly, the rescored results
differed from the original scores. Only 9 cows scored as moderately lame after the video analysis

which is an adjustment of over 50%.

After mentioning these differences to the trained observer the response was that when the cows
were scored on the farm the viewing location was not ideal. The raceway was slightly downhill
over a muddy surface with small stones which shortened the strides of some of the cows, giving
the appearances of lameness. With the aid of the video however, each cow could be analysed in
slow motion and replayed multiple times to make sure the assigned score was correct. The video
was also taken when the cows were walking on a level and clean section of the raceway which
was water blasted twice a day, hence no stones were present. Given that there were no certainties
that all the other cows were scored correctly, another trial was conducted to make sure the
confidence level was high in order to calibrate models.

6.4. Farm Trial 3 Results

The third farm trial involved collecting one week’s worth of data and analysing a control group of
cows selected by the trained observer. Video assessment of the control cows’ condition was
analysed daily by the trained observer to make sure that the given score closely matched the
lameness level selected. It was hoped that by focusing on a small group of cows with the aid of
video playback that the lameness scorer could be confident in their decision. The control group
contained 25 cows - 10 randomly selected healthy (level 0) cows, 3 randomly selected level 1
cows and all identified lame (level 2) cows (with this being 12). From the lame group of cows 3
were lame in the LF, 4 were lame in the RF, 3 were lame in the RH, and 2 cows were not in any

obvious group.
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6.4.1. Novelty Detection Results

After calculating the variables of all the control cows, the first technique attempted was novelty
detection. This is essentially a method where a boundary envelope is placed around the mean of
a healthy set of cows and this is used to characterise a cow as healthy. Exceptions are detected
when individual readings fall outside this envelope. It is a useful method to show the shape and

spread of data visually by overlapping many signals by normalising weight and time.

Using the 10 healthy control cows, the first two days of data were taken from each cow and a file
was built with 20 independent trials in total (2 days X 10 cows). Figure 6.19 shows the plotted
weight signals of the 20 trials which were normalised to be a maximum of one and all start at the
same time on section A. The green signals are from section A, blue are section B, black are C
and red are section D. Even though the signals start at the same point in time the finishing

locations are different as they depend on the speed of the cow (4 — 5 s average).
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Figure 6.19: 20 independent healthy cow trials (weights normalised)

The time signals were normalised by applying linear interpolation to 100 points to make all the
signals start and end at the same point. Each platform section was made to start at the same
time, therefore 80 individual front/rear hoof falls overlap one another. Figure 6.20 displays the 80
healthy normalised signals, with the green signals indicating the left side of the cow and the blue
signals indicating the right side of the cow. Large proportions of signals overlap and follow the

same shape which is promising, although a number of outliers still exist.
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Figure 6.20: 80 independent healthy cow signals normalised

The mean of all 80 signals in Figure 6.20 was calculated and one standard deviation either side
of the mean was plotted. These two limits form the boundary of the healthy set of data. The scaling
factor on the standard deviation was increased until the majority of the signals were inside the
envelope. Figure 6.21 illustrates what the boundary (red signal) looks like compared to the data
at + 5 standard deviations. The shape of the envelope is interesting; it is very thin near the top of
the peak as all the signals tend towards one and it is reasonably wide during the transition from

the front hoof to the back hoof where the data are spread.
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Figure 6.21: Healthy signal boundary envelope
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To calculate the optimum boundary condition and the percentage of time the signals were inside
the boundary a script was written that incremented the standard deviation between the ranges of
1 to 6. Each signal at all 100 time intervals was tested to see if it was inside the boundary at the
given standard deviation. An example of the healthy signals experienced outside the boundary on
platform B is shown in Figure 6.22. At 1 StDev approximately 60% of the signals fall outside the
envelope which is less than ideal. At 4 StDev and beyond the slope flattens out showing that only
20% of the time the signal would be outside the boundary. On average at 6 StDev, 95% of the
healthy signals were within the boundary at all times.

Platform B Healthy Cows
% Outside Boundary vs Standard Deviation

% Outside Boundary

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Standard Deviation

Figure 6.22: Healthy cow signals percentage of time outside boundary

The 12 lame cow signals from the same day were added to the healthy cow boundary which can
be seen in Figure 6.23. The red signals are the lame cows and the blue signals are the healthy
cows. There are a number of red signals which do not follow the shape of the healthy envelope
which shows that there is a difference between healthy and lame signal signatures. On the other
hand, there are also a number of lame signals within the healthy envelope. This reduces the
percentage of time the signal is outside of the boundary and hence will likely produce a false

negative.
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Figure 6.23: Lame cow signals (red) with healthy cow envelope

The amount of time outside the healthy boundary envelope on all platform sections for the lame
cows is shown in Figure 6.24. Compared to the healthy cows in Figure 6.22 the lame cows have
a reasonable linear relationship and the data were spread further. This indicates that there are
considerable differences in profiles between the signal signatures of each lame limb. At 6 StDev
the percentage of time outside the boundary is approximately 20%, although the range of signals
is largely spread (2% - 70%).

12 Lame Cows All Segments

% Outside Boundary vs Standard Deviation
100

% Outside Boundary

Standard Deviation

Figure 6.24: Lame cow signals percentage of time outside boundary

71



The average percentage of time outside the healthy envelope from each platform segment is
compared between the healthy and lame group in Figure 6.25. The healthy signals are grouped
tightly illustrating no significant differences between segments, whereas the lame signals are
spread which is to be expected from Figure 6.24. The area between 4 standard deviations shows
the largest separation between the two groups. Therefore taking this value, approximately 24 %
of the lame cow signals would be classed as healthy (false negative) and 12 % of the healthy
signals would be classed as lame (false positive). For this method to function more effectively the
difference between the two groups of signals needs to show more separation over the standard
deviation range. Large amounts of overlap exist between signals consequently making the

implementation of this method not very effective.
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Figure 6.25: Average percentage of time outside of boundary

6.4.2. T- Test Results

Minitab 17 statistical software was used to find the p-values in two sample t-tests between the
healthy and lame cows in the control group. The calculated 82 variables associated with lameness
were reduced to 29 variables by averaging or removing multiples related to the same kinematic
measurement. For example, strong correlations between the variables of front step AB, front step
BC, front step CD and step overlap were found and reduced to step overlap solely. The averaged
variables were double ups due to two sets of hoof falls per cow on the platform. Table 10 displays
the results from the two sample T-test using all 50 trials of healthy cow data and all 36 trials of

lame cow data. In total there were 15 variables of significance, with these being:
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- Force: NGRF LH, asymmetry in weight front limb, asymmetry in weight rear limb,

asymmetry in diagonal weight, asymmetry in side weight.

- Spatial: Average step overlap left-side, average step overlap right-side, asymmetry in
step overlap L Vs R, average step overlap, average abduction left-side, average

abduction.

- Temporal: Asymmetry in stance time left-side, asymmetry in stance time L vs. R,

asymmetry in stance time front hoof, asymmetry in stance time hind hoof.

Table 10: Two sample T-test between all healthy and lame cows

Healthy Cow (N = Lame Cow (N =
Variable 10) 12)
P-
Mean StDev Mean StDev value Significant

NGRF LF 0.561 0.017 0.563 0.052 0.847 NS
NGRF RF 0.557 0.015 0.549 0.046 0.336 NS
NGRF LH 0.442 0.017 0.462 0.037 0.006 Yes
NGRF RH 0.441 0.016 0.423 0.049 0.114 NS
Asymmetry in Weight Front Limb (kg) 7.4 5.6 33.8 21.1 0.000 Yes
Asymmetry in Weight Rear Limb (kg) 7.8 6.0 23.9 23.3 0.000 Yes
Asymmetry in Diagonal Weights (kg) 10.9 7.2 43.2 28.8 0.000 Yes
Asymmetry in Side Weights (kg) 11.5 8.0 42.1 30.4 0.000 Yes
Average Stride Left Side (m) 1.430 0.075 1.419 0.080 0.558 NS
Average Stride Right Side (m) 1.403 0.085 1.439 0.085 0.085 NS
Asymmetry in Stride Length L Vs R (m) 0.068 0.050 0.082 0.062 0.285 NS
Average Stride Length (m) 1.417 0.069 1.429 0.065 0.444 NS
Average Step Overlap Left Side (mm) 8 34 -24 48 0.002 Yes
Average Step Overlap Right Side (mm) 15 37 -12 49 0.010 Yes
Asymmetry in Step Overlap L Vs R (mm) 32 26 49 39 0.042 Yes
Average Step Overlap (mm) 12 29 -18 37 0.000 Yes
Average Abduction Left Side (mm) 2 24 20 36 0.012 Yes
Average Abduction Right Side (mm) 31 30 44 40 0.119 NS
Asymmetry in Abduction L Vs R (mm) 39 27 44 37 0.550 NS
Average Abduction (mm) 17 20 32 28 0.007 Yes
Average Stance Time Left Side (s) 0.994 0.133 1.009 0.175 0.685 NS
Average Stance Time Right Side (s) 1.004 0.130 0.956 0.154 0.161 NS
Asymmetry in Stance Time Left Side (s) 0.054 0.043 0.094 0.100 0.036 Yes
Asymmetry in Stance Time Right Side (s) 0.073 0.058 0.087 0.052 0.273 NS
Asymmetry in Stance Time L Vs R (s) 0.034 0.033 0.079 0.073 0.001 Yes
Asymmetry in Stance Time Front (s) 0.046 0.035 0.096 0.101 0.007 Yes
Asymmetry in Stance Time Hind (s) 0.045 0.037 0.081 0.065 0.006 Yes
Walking Duration (s) 4.366 0.488 4.372 0.696 0.967 NS
Walking Velocity (m/s) 0.482 0.055 0.497 0.089 0.398 NS
Number of trials 50 36
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The four differences in weight variables show a strong significance level at 0.000. This is most
apparent in diagonal and side weights with the lame cows being on average 30 kg different. The
NGRF LH variable is showing as significant because there are no cows in the group that are lame
in the LH limb. When all the trials of the lame cows were averaged the cows that were lame in
RF, LF and RH were shifting the balance of the remaining LH limb, giving the appearance that it

was lame. See Appendix 3.5 for tables of lame cows that were filtered into groups by which leg

was lame so as to not balance out the average value of the variables.

The four step overlap variables showed strong significant differences between the healthy and
lame cows. On average, a healthy cow’s hind hoof would land 12 mm behind where the front hoof
had previously been, which is basically landing in the exact same position. Conversely, with a

lame cow the hind hoof would land on average 18 mm in front of the front hoof.

The average abduction on the left hand side and the overall average abduction showed strong
significance indicating that a lame cow tends to walk with their back legs slightly further apart. A
healthy cow’s hind leg would be an average of 20 mm outside of the front hoof placement,
compared to 30 mm for a lame cow’s leg. Although 10 mm does not seem like much of a

difference, it is noticeable when watching a lame cow walk with that abduction amount.

The differences in stance times were also significant which was expected. The lame cows
produced differences of 80 — 90 ms between limbs while the healthy cows showed differences
between contralateral limbs of approximately 45 ms. On average, the tender limb of a lame cow
was in contact with the ground for 30 — 40 ms less than the opposite limb. The overall walking
velocities of the lame cows were not significant which is odd considering that lame cows walk
slower in general. It should be noted that most of the healthy cows in the herd appeared to walk

slowly, i.e. they were never in a rush and walked naturally at their own pace.

6.4.3. Discriminant Analysis Results

Minitab 17 was used to classify each trial from the control group of cows using the variables that
had been calculated. Each trial was considered as a separate cow in terms of data that Minitab
was using, therefore a total of 86 cows were used to build the model. Different combinations of
predictor variables were ftrialled in order to find models which produced the best classification

results. Combinations of variables included:

- All 82 variables

- All T-test variables

- Weight variables only

- Spatial variables only

- Temporal variables only

- Statistically significant variables
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The result when all the T — test variables were used as predictors is shown below in Table 11. All
the outputs from the Minitab software are classified using a cross validation technique discussed
in Chapter 4.1.4. Table 11 shows that 48 of the 50 healthy cows passed as healthy and 2 were
classified as lame, giving a 96 % success rate. Out of the 36 lame cows, 15 were classified
correctly and 21 were said to be healthy, giving a 58 % success rate. Considering that 86 cows
were used in the model and 69 were correctly classified, the proportion correctly classified was
80.2 %.

Table 11: Linear discriminant analysis classification (29 variables)
Healthy Lame

Healthy 48 21
Lame 2 15
Total N 50 36
N Correct 48 21

Proportion 0.96 0.583

When all weight related variables were used to predict the model the proportion correct was found
to be 76.9 %. It was found that when fewer predictor variables were used in the model, the
proportion correct became higher (to an extent). Using the six predictor variables of asymmetry in
weights front/rear, asymmetry in side/diagonal weights, average step overlap and average

abduction, the proportion correctly classified was 84.6 %.

The most accurate model found using linear discriminant analysis involved five predictor
variables. These were: asymmetry in weights front limb, asymmetry in weights rear limb,
asymmetry in step overlap L vs. R, asymmetry in abduction L vs. R, and walking velocity. Table
12 shows the classification output using these predictor variables. There is only one false positive
but nine false negative classifications, giving a proportion correct of 88.4 %. One third of the lame
cow group is being misclassified which is fairly high considering the application is aimed towards
commercialisation. It was interesting to find that time/stance variables were not featured in the

classification models that provided the highest proportion correct.

Table 12: Linear discriminant analysis classification using five predictors

Healthy Lame
Healthy 49 9
Lame 1 27
Total N 50 36
N Correct 49 27
Proportion 0.98 0.75
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Quadratic discriminant analysis was explored using the same combinations of predictor variables
to see what effect quadratic equations would have. The prior probability conditions of 10 % lame
and 90 % healthy at any given time are still valid in this model. It was found that a quadratic model
with the same predictor variables as the best performing linear model was more accurate. Table
13 below shows the output of the quadratic model with only three misclassifications from all 86
cows. Only one false positive and two false negatives occur in this model, giving the proportion

correct at 96.5 %. The five predictor variables were:

- asymmetry in weights front limb
- asymmetry in weights rear limb
- asymmetry in step overlap L vs. R

- asymmetry in abduction L vs. R

- walking velocity

Table 13: Quadratic discriminant analysis classification using five predictor variables

Healthy Lame

Healthy 49 2
Lame 1 34
Total N 50 36
N Correct 49 34

Proportion 0.98 0.944

6.4.4. Logistic Regression Results

Binomial logistic regression was examined with the aid of SPSS 23 to see if more accurate models
could be developed to classify the cattle as healthy or lame. The benefit of BLG is that the
variables do not have to be normally distributed, which in some instances was necessary as
predictor variables were skewed. The same combinations of predictor variables were trialled as
DA to compare which method produced the best model. It was found that BLG is more successful
and could handle a greater number of predictor variables to correctly classify the cattle. Using all
the T-test variables resulted in a 100 % correct classification in both healthy and lame groups
even though some of the predictor variables were not significant. Table 14 shows the significance
of each variable calculated by SPSS during analysis of the model, with this being similar to the
two sample T-test results. Seven variables are not seen as significant to the equations and have

therefore been given less importance.

76



Table 14: Significance of predictor variables in the Binary Logistic Regression model

Score of Sig.
Step 0 Variables  RatioMGRFFront 38.2: 1 0oo
RatioMGRFBack 15909 1 000
AsymmetryFront 39.380 1 00D
AsymmetryRear 18.748 1 000
AsymemetryDia 35.656 1 000
AsymmetrySide 31.538 1 000
Asymmetry Stridel vsR 1.811 1 78
AverageStride 018 1 an4
Stepowverlapleft 12.821 1 000
StepowerlapRight G447 1 On
AsymmetryStepOverlap 5614 1 18
AverageStepOverlap 13.718 1 00D
AbductionLeft 2827 1 083
AbductionRight 1.857 1 188
AsymmetryAbduction a8 1 A4
AverageAbduction 3880 1 048
Stanceleft 4473 1 034
StanceRight 408 1 522
AsymmetryStacel vsR 10.152 1 001
AsymmetryStanceFront B.880 1 0z
AsymmetryStanceReaar 4 814 1 28
WalkingWelocity aa7 1 414

The predictor variables were reduced to see what combinations still gave 100 % classification
with the least number of variables required. It was discovered that using six predictor variables
gave the desired outcome of correct classification, with these variables being:

- Asymmetry in front weights

- Asymmetry in rear weights

- Asymmetry in diagonal weights

- Asymmetry in stance L vs. R

- Average step overlap

- Average abduction

Table 15 illustrates the classification table that is produced by SPSS for the six predictor variables.
The variable that had the most influence in the equation is asymmetry in stance L vs. R, which is
interesting considering that no time-based variables were used in the DA models. The model was
able to predict the classification with certainty as the probabilities tended towards the boundary of
the logistic curve. This meant that there were obvious differences between the two groups for the
equation to identify and hence the lame cow probabilities were in the order of 0.99, whereas the
healthy cows were around 0.01. Very few values were located in the ‘S’ region of the logistic curve
meaning that the cows were assigned into the respective groups without any chance of false

positives.
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Table 15: Classification table summary of Binary Logistic Regression (SPSS output)

Classification Table

Predictad
Classify Percentage
Ohbsarved Healthy Lame Comect
Step 1 Classify  Healthy 50 0 1000
Lame a o] 100.0
Cwerall Percentage 100.0

6.5. Farm Trial Discussion
The aim of the farm trials was to see if the designed WoP would be able to capture the required
data in the intended environment over a period of time. The second goal was to use the data and

calculate the variables associated with lameness in order to classify between healthy and lame

COWwS.

The WoP successfully endured the harsh environmental conditions that are inherent of milking
sheds and was tested on two farms during the winter of 2015, capturing approximately 9500 hoof
falls on the platform. The WoP was cleaned daily with high pressure water and calibrated to make
sure the load cells and electronics were functioning correctly. It was discovered during a
calibration test near the end of the farm trials that one platform segment was displaying aberrant
results. The farm trial for that day had to be cancelled and the WoP had to be taken apart to
investigate what was causing the issue. Figure 6.26 shows the behaviour of the signals that were
captured during calibration, with section C showing increasing weight even when no load was
being applied. It was found that the top metal platform tray on section C had moved slightly which
nicked two load cell cables and allowed water to enter. The water made its way to the strain gauge
which negatively affected it. The two load cells had to be removed and replaced with new ones

before the system was operational again.
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Figure 6.26: Load cell calibration issue (platform C)

It was observed during the first farm trial that when the cows exited the herringbone shed they

would bunch together and have to be manually persuaded to walk over the platform. This caused
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a number of issues as the group of 20 - 40 cows would walk/run over the platform closely following
each other creating an unnatural flow. This made it very difficult and sometimes not possible to
split data manually, especially if the cows were in a hurry as the EID reader would occasionally
miss tags. A practical solution would need to be developed or the cows would need to be trained
to walk individually if the system was to be commercialised. A possible solution would be to
develop an algorithm to decode the hoof falls and track where the cow is and how many cows are
on the platform. A state machine could be used to track where each leg is at any time, although

this would not solve the issue of cows bunching and consequently stopping on the platform.

The method of finding the individual limb weights worked reasonably well although the calculated
weight was always less than the static weight. Acceleration and deceleration forces were not
taken into account when designing the algorithm and should not be neglected as they contribute
properties to the signal. In future designs, a simpler method to calculate the total cow weight
should be considered by taking the summation of weight of all sections at the same point in time.
Figure 6.27 illustrates the shape of the resultant signal (similar to current Tru-Test walkover weight
signal) for a cow as she walks over the platform. The total weight of the cow is experienced on
the platform along the second plateau and a filter could simply be applied between the two red

marks to smooth out the signal, possibly producing more accurate results.

Total Weight———é

Segment 4

Segment 3

Segment2 AT

Segment 1

Figure 6.27: Total cow weight signal by taking summations of platform segments

On farm and video analysis lameness scoring was conducted by a trained observer with varying
results. The visual observation method of scoring is very subjective and often results in missing

symptoms or misclassifying the level of lameness. The scorer only has a short period of time to
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view the cow before the next one exits the milking shed. The observation area of the herd was
along the raceway to the feed shed which was sloped slightly downhill causing the cows to shorten
their stride. In future testing situations, more trained observers need to be used to average out

the scores which could be influenced by environmental factors and individual opinions.

The findings from the data analysis and T-test results make it possible to draw conclusions about
the usefulness of the variables and what the expected averages should be. For example the stride
length variables did not show any significance which is not surprising considering that from weekly
time series graphs of healthy cows the values fluctuated daily. The fluctuations could be due to
natural variation depending on which leg was leading onto the platform and the speed of
movement. A healthy cow average stride length was found to be 1417 + 69 mm, whereas a lame
cow tended to have a longer stride length of 1429 + 65 mm. This finding is contrary to (Van Nuffel
et al, 2013) who found that the stride length of a lame cow tended to decrease on average. The
average step length of 697 + 37 mm for a healthy cow is in agreement with an experiment at
Massey University conducted by Stephenson (2006) who found that ruts in raceways made by
dairy cows were 700 mm. Further investigation of the positional data discovered that 95 % of the
hoof falls landed on a platform section, the other 5 % were between the segment gaps in the ‘dead
zone’. The high success rate implies that the lead on (blank) platform and the actual segment

lengths are the correct dimensions for capturing foot falls of an average sized herd of dairy cattle.

The findings of the T-tests are in agreement with studies conducted by Maertens et al (2011) and
Van Nuffel et al (2013), which also found that asymmetry in step length (step overlap), asymmetry
in stance time and asymmetry in step width (abduction) were significant variables. The
significance of the asymmetry in weight variables could not be verified with other studies as the

data provided by the StepMetrix system was limited.

One of the main difficulties and time consuming tasks was manually validating and splitting the
raw data based on where the EID tag was captured in the recorded text file. This had to be done
to ensure that the analysed data was true and that the algorithms would actually be able to
function. Basing the algorithms around capturing two hoof falls per segment was not ideal,
particularly for severely lame cows which sometime struggled to stand up onto the platform and
walk along it.

Of particular interest was observing that healthy cows have slight variations in their gait and signal
signatures daily. For this reason, a system that bases the decision solely on one trial and not on
the cows past data would produce more false positives. For example, a stone may get wedged
into the hoof of a healthy cow and produce variables that indicate lameness, but the next day the
stone may fall out and the variables would be back to normal. For a practical system, the farmer
wants as few false negatives and false positives as possible; therefore the system needs to keep
track of current and past results of that particular cow to make the decision more robust. False

negative results are worse than false positives as the farmer will lose faith in the system if they
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notice a lame cow that has not been identified. The system does not currently use past information

about a cow in the logistic equation to determine the classification.

The performance of the calibration classification model is extremely dependent on the training
data set supplied. The healthy cow data that was used was a stereotypical representation of how
a normal cow naturally walks. The data collected on level 1 scored cows was not used in any
models. It is unknown how adding level 1 cows to the data would affect the classification models.
In a commercial system, level 1 cows would ideally be classified as healthy unless they are
showing symptoms to suggest they are heading towards level 2, in which case treatment would
be required.

The discriminant analysis model was found to correctly classify 96 % of all cows and 94 % of the
lame cows in the control group. Comparatively, the GAITWISE system discriminant model
averaged 84 % accuracy in correctly classifying lame cattle based on a case control study with
two months of data from 80 dairy cows. The accuracy of the GAITWISE model is less than this
study mainly due to classifying three levels of lameness (1, 2 and 3) which would consequently
lower the average success rate. The StepMetrix system supposedly averages over 85 % accuracy

in detecting lameness in individual cattle, although no scientific studies on the product were found.

The performance of the logistic regression model is excellent and is the best method of
classification of this type of data. It would be very interesting to see how this model behaved when
more data is available in future iterations. According to the set-up procedures of SPSS it is
recommended that at least 400 samples/trial are used to build the calibration model. The more

data that are available the more reliable and robust the model will become.

Reasons why this study has better results than similar studies could include:
- More load cells are used at a faster sampling rate, hence supplying more data to give a
better representation of the actual signals.
- Novel mechanical arrangement of force plates.
- The data were captured naturally without intervention or separation gates which may
reveal more information about the animal.
- Less data have been analysed — only compared a small sample group of healthy and

lame cows.
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Chapter 7. Conclusions and Future Improvements

The main objective of this study was to investigate whether differences between healthy and lame
cattle could be identified by capturing ground reaction forces when the dairy cattle walked over
the designed platform. Statistical techniques were used to build classification models based on

calculated variables associated with lameness.

Although the developed WoP meets the specified requirements and functions as intended, there
are still numerous areas for future enhancements. One key area is the optimisation of the
mechanical design to make the platform more robust and use fewer parts. This can be achieved
by using the optimal step length of 700 mm and fixing the platform sections in one place. This
would remove the need for the four separate sub-frames and the load cells could be fixed straight
to the main frame. The main framing structure could then be designed based on these
measurements with box section or a similar material with a large second moment of area; this
would increase the stiffness so that less twisting occurs. This twisting can have an effect on the
weight being reported on the other sections which was seen when packers were not installed
under the framing. The side rails and the base platform could then be folded from one continuous

piece of sheet-metal, similar to the current Tru-Test walkover weigh platform.

Another possible hardware enhancement is to investigate using only one 24 bit 16 channel ADC
in pseudo differential mode so only one electrical box with one microcontroller would be needed.
The benefits of this design is the reduced complexity, no communication protocol is required, and
fewer components would be needed which would make the system more reliable. The only
disadvantage of this is that all 16 load cells would need to be routed to one electrical box meaning

that longer cable lengths would be needed.

The algorithms developed to calculate average weight, stride lengths and hoof duration function
as intended, however there are a couple of issues. These algorithms assume that only two peaks
will occur on each section, therefore further improvement of these algorithms is required. The
software can be improved by adding more exception handling code, so if invalid data were passed
to the algorithm it does not crash. An algorithm for determining variables of level 3 cows also

needs to be developed to classify the most obvious lame cows.

In future on-farm lameness scoring a minimum of three trained observers need to be present to
score the herd, followed by averaging of their results. It would also be interesting to get the
veterinarians to check the hooves of the lame cows above level 2 to say what disease or issue
caused the lameness. It may be possible to teach the program to look for specific traits associated

in the signals and determine what type of lameness it is.

To be certain of the BLR model more data are required to prove that it can classify level 1 cows

and a range of cows from different farms. Using the same cows in the model over multiple days
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and assuming that they are independent is not as statistically strong as using 36 completely

different cows.

The successful outcome from this project has been the development of a robust platform to be
used in the milking shed. The WoP uses an array of load cells to measure the three main kinematic
variables (force, position and time) which are related with lameness. The information from each
platform segment is transmitted to the computer and recorded for post-processing algorithms to
determine specific gait parameters. The WoP system was manufactured with four independent
platform sections, with each section consisting of four ASB1000 shearbeam load cells (one in
each corner), a 24 bit four-channel sigma-delta analogue-to-digital converter (ADC), and an
ATmega328 microcontroller. The components were researched thoroughly before purchasing to
ensure that the system used high quality components and would last numerous seasons in the
harsh milking shed environment. The total cost to build the WoP and electronics was $1900, which
is a reasonably low price considering retail prices of standard walkover weight scales are

approximately $5000.

The analogue signals of the 16 load cells were digitized and the total weight and centre of pressure
on each section was able to be calculated. The total weight on the tested platform segment was
calculated with a maximum error of 0.4 %. The x and y coordinates were captured and tested to
demonstrate the behaviour and accuracy when exposed to static and dynamic loads. It was found
that the X-position mean error was 1.0 + 2.2 mm and the Y-position mean error was 0.8 £ 1.8 mm.
The sections were so sensitive that a finger could be placed lightly on the segments surface and
moved around and the same pattern would be drawn on the computer monitor (the segment can

be thought of as a large touchpad).

The laboratory testing of the step length algorithms found that the three methods produced very
similar results, although the most accurate was the Peak method. The overall step length mean
error and standard deviation is summarised below:

- Threshold Method: -2.66 £ 10.25 mm

- Peak Method: -2.40 + 8.95 mm

- Radius Method: -2.57 £ 9.70 mm

The first field trial involving 10 dairy cows found that the calculated dynamic weight was on
average 15 kg less than the cow’s static weight. The mean error and standard deviation of

combined platform segments is summarised below:

- Section AB = -20.14 £ 13.78 kg
- Section BC = -10.69 + 10.57 kg
- Section CD = -10.15 £ 12.36 kg

- Combined Sections = -13.66 £ 7.52 kg
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The second field trial involved 200 cows which were lameness scored by a trained observer. The
captured data were analysed to compare variations in signals and variables between healthy and
lame cows. The lame cow signal signatures had distinguishable differences compared to healthy
cows, demonstrating that the original hypothesis was true. Weekly time series trends of variables
between groups of level 0 and level 2 cows also showed noticeable differences indicating that
measurable parameters change between groups. An important discovery was that 95 % of the
time the hoof falls landed on one of the four segments, implying that the segment length and

spacing’s were correct.

The two sample T-tests found that there were 14 significant variables associated with determining
lameness and they could be categorised into force, spatial and temporal parameters as shown
below:
- Force:
0 Asymmetry in weight front limb
o Asymmetry in weight rear limb
o Asymmetry in diagonal weight
0 Asymmetry in side weight
- Spatial:
0 Average step overlap left-side
Average step overlap right-side
Asymmetry in step overlap L Vs R

Average step overlap

O O O O

Average abduction left-side
0 Average abduction

- Temporal:
0 Asymmetry in stance time left-side
0 Asymmetry in stance time L vs. R
0 Asymmetry in stance time front hoof
o]

Asymmetry in stance time hind hoof

Data from a control group of 25 cows were captured and analysed over a week period with the
aim of classifying the cows using discriminant analysis and logistic regression. Only 22 out of the
25 cows were used in the models because the level 1 cows could not be defined as either healthy
or lame. The models currently look at only one set of data for each cow and decide if it is lame or
healthy. Future iterations of software should include at least the previous day of information

collected about the particular cow to make a more informed decision.

The discriminant analysis models found that when less predictor variables were used the

classification probabilities increased. A Quadratic discriminant model with prior probabilities
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specified was found to be the best DA model with a proportion correct of 96.5 %. The five predictor
variables used in the model were:

- Asymmetry in weights front limb

- Asymmetry in weights rear limb

- Asymmetry in step overlap L vs. R

- Asymmetry in abduction L vs. R

- Walking velocity

Logistic regression was found to be the best method for classification with all 86 trials correctly
classified as either healthy or lame. Unlike DA, logistic regression could use over 20 predictor
variables, some with no significance at all, to build a model that had a 100 % success rate. The
minimum amount of predictor variables that gave a perfect outcome was six, with these variables
being:

- Asymmetry in front weights

- Asymmetry in rear weights

- Asymmetry in diagonal weights

- Asymmetry in stance L vs. R

- Average step overlap

- Average abduction

A number of recommendations were appointed for future improvements of the system. All the
project aims were achieved, however more testing needs to be conducted over a longer period of
time at more than one farm to validate the binary logistic regression model with more data. The
logistic equation does not use the previous day’s information of a particular cow, it solely
determines lameness based on the one trial. The main advantages of this system is that a farm
without an EID scanner could use the WoP to determine lameness, compared to the StepMetrix
system which requires a scanner. A predictor variable of the previous day lameness score could
be used in the model similar to the StepMetrix, although the results suggest that this is not
necessary at this stage. Another benefit is that the natural flow of cows out of the milking shed
was not disturbed with the WoP compared to the pressure sensitive GAITWISE system which
required a stop gate. The WoP overall architecture may one day be used industrially to improve

animal well-being and save farmers money in New Zealand and internationally.
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Appendices

Appendix 1: Critical Component Datasheets

AD7193 Datasheet

ANALOG
DEVICES

4-Channel, 4.8 kHz, Ultralow Noise,

24-Bit Sigma-Delta ADC with PGA

AD7193

FEATURES

Fast settling filter option
4 differential/8 pseudo differential input channels

Pressure measurement
Temperature measurement
Flow measurement

RMS noise: 11 nV @ 4.7 Hz (gain = 128) Weigh scales

15.5 noise-free bits @ 2.4 kHz (gain = 128) Chm_ma‘mgmplhr e s "
Up to 22 noise-free bits (gain =1) Medical and scientific instrumentation
Offset drift: +5 nV/*C GEMERAL DESCRIPTION

Gain drift: +1 ppm/*C

Specified drift over time

Automatic channel sequencer
Programmable gain (1to 128)
Output data rate: 4.7 Hz to 4.8 kHz
Internal or external clock
Simultaneous 50 Hz/60 Hz rejection
4 general-purpose digital outputs

The AD7193 is a low noise, complete analog front end for high
precision measurement a]:l]:lli.:,a.ti.uns. It contains a low noise,
24-hit sigma-delta (£-A) analog-to-digital converter (AD(C).
The on-chip low noise gain stage means that signals of small
amplitude can interface directly to the ADC.

The device can be configured to have four differential inputs or
cight pseudo differential inputs. The on-chip channel sequencer

Power supply allows several channels to be enabled simultancously, and the
AVoo: 3V to 5.25V AD7193 sequentially converts on each enabled channel, simplifying
DVep: 2.7 Vio 525V communication with the part. The on-chip 4.92 MHz dock can

Current: 4.65 mA

Temperature range: =40°C to +105°C
28-lead TSSOP and 32-lead LFCSP packages
Interface

be used as the dock source to the ADC or, alternatively, an external
clock or crystal can be used. The output data rate from the part
can be varied from 4.7 Hzto 4.8 kHz

The device has a very flexible digital filter, including a fast

3-wiva sarkl ; settling option. Variables such as output data rate and settling
5P, QISI'I"_, MICROWIRE™, and DSF compatible time are dependent on the option selected. The ADT193 also
Schaitt trigger an SCLK includes a zero latency option.
APPLICATIONS The part operates with a power supply from 3 V to 5.25 V. It
PLC/DCS analog input modules consumes a current of 4.65 mA, and it is available in a 28-lead
Data acquisition TSSOP package and a 32-lead LFCSP package.

Strain gage transducers

FUNCTIONAL BLOCK DIAGRAM

AVpg AGND DWpg

DGEND

REFIN1[+) REFIH1{-}

ADT183

PGA

SERIAL DOUTHRDY
INTERFACE i)

AND
CONTROL sCLM
LOGIC

CIRCUITRY
MCLK1 WCLK2
Flgure 1.

[

PWREFIND|-) PAREFINZ[+)

The full datasheet for the AD7193 24-bit ADC can be found at:
http://www.analog.com/media/en/technical-documentation/data-sheets/AD7193.pdf accessed on
26 May 2015.
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REF5040 Datasheet

i3 Texas - REF5010, REF5020
INSTRUMENTS REF5025, REF5030
REF5040, REF5045, REF5050
woww.ti.com SBOS410F —JUNE 2007-REVISED DECEMBER 2013
Low-Noise, Very Low Drift, Precision
Voltage Reference
Check for Samples: REF5010, REF5020, REF5025, REF5030, REF5040, REF5045, REF5050

FEATURES DESCRIPTION

- LOW TEMPERATURE DRIFT: The REF50xx is a family of low-noise, low-drift, very

high precision voltage references. These references

= High-Grade: 3ppm/°C (max) are capable of both sinking and sourcing, and are

- Standard-Grade: 8ppm/°C (max) very robust with regard to line and load changes.

* HIGH ACCURACY: Excellent temperature drift (3ppm/°C) and high
= High-Grade: 0.05% (max) accuracy (0.05%) are achieved using proprietary
- Standard-Grade: 0.1% (max) design technigues. These features, combined with

2 N very low noise, make the REF50xx family ideal for
LOW NOISE: 3pVpp/V use in high-precision data acquisition systems.

+ EXCELLENT LONG-TERM STABILITY:
Each reference voltage is available in both standard-

= 45ppm/1000hr (typ) after 1000 hours and high-grade versions. They are offered in MSOP-8
= HIGH OUTPUT CURRENT: £10mA and SO-8 packages, and are specified from —40°C to
+ TEMPERATURE RANGE: —40°C to +125°C +125°C.
MODEL OUTPUT VOLTAGE
= 16-BIT DATA ACQUISITION SYSTEMS e Py
« ATE EQUIPMENT REF5025 28y
« INDUSTRIAL PROCESS CONTROL REF5030 a.0v
* MEDICAL INSTRUMENTATION REF5040 4 086V
= OPTICAL CONTROL SYSTEMS REF5045 4.5V
= PRECISION INSTRUMENTATION REF5050 5.0V
REF5010 10.0v

Input o
Signal © DHCHY E 8 | DNC™
oV to 4V
Voo Vi IE 7 | MO
ADS8326 REFS50xx

£ TEMP | 3 6| W

N REF GHND o
J_ GND | 4 5 | TRIMMNR
REF5040 S50-8, MSOP-8
+8V Ve Vour
Cavress G, MOTES: (1) DNC = Do not connact.
22uF (2) MC = No intemnal comnnection.

L
"o T

The full datasheet for the REF5040 voltage reference can be found at:
http://www.ti.com/lit/ds/sbos410f/sbos410f.pdf accessed on 18 June 2015.
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AD8656 Datasheet

ANALOG
DEVICES

Low Noise,
Precision CMOS Amplifier

AD8655/AD86356

FEATURES

Low noise: 2.7 nV/yHz at f= 10 kHz

Low offset voltage: 250 pV max over Ve

Offset voltage drift: 0.4 uV/"C typ and 2.3 pV/"C max
Bandwidth: 28 MHz

Rail-to-rail input/output

Unity gain stable

2.7V to 5.5V operation

—40°C to +125°C operation

Qualified for automotive applications

APPLICATIONS

ADC and DAC buffers

Audio

Industrial controls

Precision filters

Digital scales

Automaotive collision avoidance
PLL filters

GENERAL DESCRIPTION

The ADBE55/ADEASE are the industry’s lowest noise, precision
CMOS amplifiers. They leverage the Analog Devices DigiTrim*®
technology to achieve high de accuracy.

The ADB655/ADBASE provide low noise (2.7 nV/Hz at 10 kHz),
low THD + N (0.0007%), and high precision performance
(250 pV max over Vou) to low voltage applications. The ability
to swing rail-to-rail at the input and output enables designers
to buffer analog-to-digital converters {ADCs) and other wide
dynamic range devices in single-supply systems.

PIN CONFIGURATIONS

T]NC outa[T]fe ve
%\u -m.-.]é ADBES58 %uuu
0 a3 TOPwIEW

BT, SR

MC = NO CONNECT

Figure 2. ADBE 56

Figure 1. ADB6S5
E-Lead MSOF (RM-8) 8-Lead MSOP (RM-8)
8-Lend S0IC (R-8) 8-Lead SOIC (R-8)

The high precision performance of the ADBA55/ADBE56 improves
the resolution and dynamic range in low voltage applications,
Audio applications, such as microphone pre-amps and andio
mixing consoles, benefit from the low noise, low distortion, and
high output current capability of the AD8655/ADB656 to reduce
system level noise performance and maintain audio fidelity. The
high precision and rail-to-rail input and output of the ADBE55/
ADB656 benefit data acquisition, process controls, and PLL
filter applications.

The AD8655/ADE656 are fully specified over the —40°C to
+125°C temperature range. The ADB655/ALB656 are available
in Pb-free, 8-lead MSOP and SOIC packages. The AD8655/
ADB656 are both available for automotive applications.

The full datasheet for the AD8656 amplifier can be found at:
http://www.analog.com/media/en/technical-documentation/data-sheets/AD8655 8656.pdf

accessed on 25 June 2015.
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MAX487 Datasheet

maxim

I MAX481/MAX483/MAX485/
integrated.

MAX487-MAX491/MAX1487

Low-Power, Slew-Rate-Limited
RS-485/RS-422 Transceivers

General Description

The MAX4B1, MAX483, MAX4B5, MAX48T-MAXAD1, and
MAX 1487 are low-power transceivers for AS-485 and RS-
422 communication. Each part contains one driver and one
receiver. The MAX483, MAX4B7 MAX4BE, and MAX4BI
feature reduced slew-rate drivers that minimize EM| and
reduce reflections caused by improperly terminated cables,
thus allowing error-free data transmission up to 250kbps.
The driver slew rates of the MAX481, MAX485, MAX490,
MAX491, and MAX 1487 are not limited, allowing them to
transmit up to 2.5Mbps.

These transceivers draw between 120pA and 500pA of
supply current when unloaded or fully loaded with disabled
drivers. Additionally, the MAX481, MAX483, and MAX4BT
have a low-current shutdown mode in which they consume
only 0. 1A All parts operate from a single SV supply.
Drivers are short-circuit current limited and are protected
against excessive power dissipation by thermal shutdown
circuitry that places the driver outputs into a high-imped-
ance state. The receiver input has a fail-safe feature that
guarantees a bogic-high output if the input is open circuit.
The MAX487 and MAX1487 feature quarter-unit-load
receiver input impedance, allowing up to 128 MAX487/
MAX1487 transceivers on the bus. Full-duplex communi=
cations are obfained using the MAX4B8=-MAX491, while
the MAX481, MAX483, MAXABS MAXABY, and MAX1487
are designed for half-duplex applications.

Applications

Low-Power R2-485 Transceivers

Low-Power RS-422 Transceivers

Level Translators

Transceivers for EMI-Sensitive Applications
Industrial-Control Local Area MNetworks

__ Next Generation Device Features

+ For Fauli-Tolerant Applications
MAX3430: +80V Fault-Protected, Fail-Safe, 1/4
Unit Load, +3.3V, RS-485 Transceiver
MAX3440E-MAX3444E: +15kV ESD-Protected,
+60V Fault-Protected, 10Mbps, Fail-Safe,
RS-485/J1708 Transceivers

+ For Space-Constrained Applications
MAX3460-MAX3464: +5V, Fail-Safe, 20Mbps,
Profibus RS-485/RS-422 Transceivers
MAX3362: +3.3V, High-Speed, RS-485/RS-422
Transceiver in a SOT23 Package
MAX32B0E-MAX32B4E: +15kV ESD-Protected,
52Mbps, +3V to +5.5V, SOT23, RS-485/AS-422,
True Fail-Safe Receivers
MAX3293/MAX3294/MAX3295: 20Mbps, +3.3V,
50T23, RS-485/A5-422 Transmitters

+ For Multiple Transceiver Applications
MAX3030E-MAX3033E: +15kV ESD-Protected,
+3.3V, Quad RS-422 Transmitters

+ For Fail-Safe Applications
MAX3080-MAX3089: Fail-Safe, High-Speed
(10Mbps), Slew-Rate-Limited RS-485/RS-422
Transceivers

+ For Low-Voltage Applications
MAX3483E/MAX3485E/MAX3486EMAX34B8E/
MAX3490E/MAX3A91E: +3.3V Powered, £15kV
ESD-Protected, 12Mbps, Slew-Rate-Limited,
True RS-485/R5-422 Transceivers

Ordering Information appears at end of data sheet.

Selection Table

part | Harrue | PATA | o eweraTE LOW- RECEIVER/ | QUIESCENT | NUMBER OF PIN

NuMBER | DUPLEX RATE LIMITED POWER DRIVER | CURRENT | RECEIVERSON [ ..
{Mbps) SHUTDOWN | ENABLE (uA) BUS

MAX481 Hall 25 Mo Yes Yes 300 az g
MAX483 Half 0.25 Yes Yes Yes 120 a2 8
MAX485 Hall 2.5 Mo Ma Yes 300 a2 B
MAX487 Hall 0.25 Yes Yes Yes 120 128 B
MAX488 Full 0.25 Yes Ma Mo 120 a2 8
MAX489 Full 0.25 Yes Ma Yes 120 a2 14
MAX430 Full 2.5 Mo Ma Mo 300 a2 8
MAX491 Full 2.5 Mo Ma Yes 300 a2 14
MAX1487 Hall 2.5 Mo Mo Yes 230 128 B

For pricing, delivery, and ordering information, please contact Maxim Direct at

1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com. 19-01.22; Rev 10; 914

The full datasheet for the MAX487 RS-485 Transceiver can be found at:
http://datasheets.maximintegrated.com/en/ds/MAX1487-MAX491.pdf accessed on 13 June
2015.
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ATmega328 Datasheet

Atmel

ATmega48A/PA/BBA/PAI/168AIPAI328/P

ATMEL 8-BIT MICROCONTROLLER WITH 4/8/16/32KBYTES
IN-SYSTEM PROGRAMMABLE FLASH

DATASHEET

Features

s High Performance, Low Power Atmel®AVR® 8-Bit Micracontroller Family
» Advanced RISC Architecture

131 Powerful Instructions — Most Single Clock Cycle Execution
32 x & General Purpose Working Registers.

Fully Static Operation

Up to 20 MIPS Throughput at 20MHz

On-chip 2-cycle Multiplier

# High Endurance Non-volatile Memory Segments

4/8/16/32KBytes of In-System Self-Programmable Flash program memory
256/512/512/1KBytes EEPROM
512 KN Kf2ZKBytes Intemnal SRAM
Wiite/Erase Cycles: 10,000 Flash/100,000 EEFROM
Data relention: 20 years at 85°C/100 years at 25°C'"
Optional Boot Code Section with Independent Lock Bits
# In-System Programming by On-chip Boot Program
= True Read-While-Write Operation
Programming Lock for Software Security

o Atmel® QTouch® library support

Capacitive touch buttons, sliders and wheels
QTouch and QMatrix® acquisition
Up to 64 sense channels

» Peripheral Features

Two B-bit Timer/Counters with Separate Prescaler and Compare Mode
One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and
Capture Mode
Real Time Counter with Separate Oscillator
Six PWM Channels
8-channel 10-bit ADC in TQFP and QFN/MLF package

« Temperature Measurement
G-channel 10-bit ADC in PDIP Package

e Temperature Measurement
Programmable Serial USART
Master/Slave SPI Senal Interface
Byte-oriented 2-wire Serial Interface (Philips I°C compatible)
Programmable Watchdog Timer with Separate On-chip Oscillator
On-chip Analog Comparator
Interrupt and Wake-up on Pin Change

The full datasheet for the ATmega328 microcontroller can be found at:

http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-

88PA-168A-168PA-328-328P_datas

heet Complete.pdf accessed on 30 May 2015.
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ASB1000 Datasheet

LOW COST SHEARBEAM LOAD CELL

Asuperb low cost weighing solution, yet surprisingly
accurate with good long life features.

The ASB is a shearbeam load cell with M8 threads
on the |25kg model and M!2 threads on the
balance of the range.

This is one of the most cost effective shearbeam
cells available.

Robustly constructed in design with carefully selected high strength aircraft aluminium, it is an ideal selection
for most weighing applications.

Used extensively in the agricultural industry it has proved to be a rugged long life load cell.

Marine grade anodised the ASB has an excellent protection rating of IP67 and is backed by o three-year
warranty.

Many of the metric accessories throughout our accessory range can be used with this modei.

APPLICATIONS FEATURES

@® Lower cost weighing Marine grade anodised

applications

@ Agricultural and harsh
environments

Robust construction
Most competively priced

@ All general industrial weighing Wide capacity range 125kg ~ It

@ Both tension and compression Simple installation

@ Suitable for most installation

Specifications
Hote: All specificotions are @ maximum, a5 o % (=] of full lood, unless otherwise stoied.
Morminal Capacity 125kg ~ It Safe Lesd 125% of Rated Capacity
Signal Output st Capacity 2mviv £ 01% Ultimate Load 300% of Raved Capacity
Linearity Error = 0.025% F5O Imput Resistanes 4100 MNormiral
Mon-Repeatabilicy < 0.O0I0% F5O Output Resistance 35200 Nominal
Combined Error = 0.030% F5O Irsulation Resistance (bridge te ground) = 5000 MO ar |00V DC
Hystereis = D010% F5O Excitation Voltage 5 IV ACIDC
Creep/Zere Return {30 mins) = 0.035% f0.005% FSO  Excitation Volage (Maximum) 15V AC/DC
Fero Balance = 3.000% Capacity Storage Temperature Range =50 - TOC
Temperature Effect on Span/10°C = 0.015% F5O Cable Type 4mm, Sereened, PVC Sheath
Termperature Effect on Zeraf 10°C < 0.020% Capacity 4 Core x 0.0%mm® (28 AWE)
Compensated Termnperature Range =10~ 40°C Cable Length 3 Metres
Opersting Termperature Range =30~ FO°C Material Alurririum
Service Load 100% of Rated Capacity Finish FMarine Anodned
6-'?.-‘ Mo 56
N Maonufactured in New Zealand

— Model ASB —

PT Limired®

The full datasheet for the ASB1000 load cell can be found at:

http://s3-ap-southeast-2.amazonaws.com/ptglobal-

cdn/assets/54/WEB_ASB_804.pdf?AWSAccessKeyld=AKIAJEAX2FF3ZMX66G3Q&Expires=14

33124212&Signature=HxAu84TZ7sm%2BB2r5Qg%2BaTX5byLY%3D accessed on 15 May

2015.
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Appendix 2: Experimental Results

2.1. Load Cell Calibration Experiment

Weight (kg) ADC Reading Weight (kg) ADC Reading

0 11 0 11
1 2100 1 2100
2 4250 2 4200
5 10650 > 10600
10 21050 10 21200
20 42400 20 42500
30 63700 30 63800
40 84600 40 85250
50 105800 >0 106500
Scale 0.000472443 Scale 0.000469303
Factor Factor

Weight (kg) ADC Reading Weight (kg) ADC Reading
0 11 0 11
1 2100 1 2100
2 4200 2 4200
5 10600 5 10600
10 21200 10 21200
20 42750 20 42700
30 64200 30 64200
40 85700 40 85400
50 106850 50 107000
Scale 0.000467150 Scale 0.000467308

Factor Factor



Weight (kg) ADC Reading
0 11.2705
1 2100
2 4200
5 10600
10 21400
20 43000
30 64500
40 85000
50 106500
Scale 0.000469060
Factor




2.2. Load Cell Serial Numbers and Positions

Scaling

Section | Loadcell | Serial Number mV/V Factor
1 1169001 1.998 0.0004724
A 2 180018 2.001 0.0004673
3 1169035 2.000 0.0004661
4 1169101 1.998 0.0004724
1 1370170 2.000 0.0004661
B 2 1370093 1.999 0.0004693
3 1370132 2.001 0.0004673
4 1370141 1.998 0.0004724
1 1370182 2.000 0.0004661
C 2 1370125 2.000 0.0004661
3 1370174 1.999 0.0004693
4 1370133 1.999 0.0004693
1 1169051 2.002 0.0004691
D 2 1169074 2.001 0.0004673
3 1169192 2.000 0.0004661
4 0113117 1.998 0.0004724
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Walking this way
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2.3. Test Results from First Human Walkover Dynamic Weighing

Running Section | Section | Section
Average AB BC cb
Run1 60.99 61.06 60.50
Run 2 60.58 61.43 60.21
Run 3 61.27 60.64 60.50
Run 4 60.92 60.96 60.14
Run 5 61.20 60.73 61.05
Run 6 60.69 61.51 60.80
Run 7 61.33 61.33 60.80
Run 8 61.39 61.23 60.97
Run 9 59.58 60.93 59.78
Run 10 60.31 61.23 60.39
Average 60.83 61.10 60.51
Min 59.58 60.64 59.78
Max 61.39 61.51 61.05
Range 1.81 0.87 1.27
StDev 0.56 0.29 0.40
Error -1.99 -1.08 -1.91
Weighted Section | Section | Section
Average AB BC cb
Run 1 61.59 61.77 61.19
Run 2 61.21 62.04 60.91
Run 3 61.82 61.46 61.46
Run 4 61.63 61.85 60.80
Run 5 61.99 61.50 61.99
Run 6 61.21 62.14 61.65
Run 7 61.80 61.80 61.35
Run 8 61.78 61.71 61.22
Run 9 60.64 61.71 60.66
Run 10 61.03 61.91 61.23
Average 61.47 61.79 61.25
Min 60.64 61.46 60.66
Max 61.99 62.14 61.99
Range 1.35 0.68 1.33
StDev 0.43 0.21 0.40
Error -0.83 -0.51 -1.05
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Appendix 3: Farm Trial Results

3.1.Test Results from Weight/Position Trial

Difference | Difference

Difference in X |in Y
Position Actual Position | Weight | Measured in  Weight | Position Position
(mm) (mm) (kg) Weight (kg) | (Kg) (mm) (mm)
X Y X Y
0 0 1.972 0.275 20 20.053 0.053 1.972 0.275
50 0 51.585 1.091 20 20.025 0.025 1.585 1.091
100 0 103.636 | 0.650 20 20.024 0.024 3.636 0.650
150 0 153.848 | 1.952 20 20.053 0.053 3.848 1.952
200 0 201.532 | 1.756 20 20.052 0.052 1.532 1.756
2125 |0 211.928 | 1.027 20 20.045 0.045 -0.572 1.027
250 0 251.429 | 1.107 20 20.083 0.083 1.429 1.107
300 0 301.392 | 0.266 20 20.124 0.124 1.392 0.266
350 0 350.581 | 0.845 20 20.109 0.109 0.581 0.845
400 0 401.170 | 0.255 20 20.095 0.095 1.170 0.255
425 |0 422.549 | 0.122 20 20.131 0.131 -2.451 0.122
0 50 1.647 53.154 | 20 20.101 0.101 1.647 3.154
50 50 53.328 |52.933 |20 20.059 0.059 3.328 2.933
100 50 103.120 | 53.265 | 20 20.026 0.026 3.120 3.265
150 50 153.191 | 51.910 | 20 20.069 0.069 3.191 1.910
200 50 203.960 | 52.342 | 20 20.078 0.078 3.960 2.342
250 50 252.293 | 53.067 | 20 20.077 0.077 2.293 3.067
300 50 300.651 | 53.098 | 20 20.031 0.031 0.651 3.098
350 50 350.993 | 52.030 |20 20.029 0.029 0.993 2.030
400 50 398.994 | 53.436 | 20 20.118 0.118 -1.006 3.436
425 | 50 420.721 | 52.466 | 20 20.126 0.126 -4.279 2.466
0 100 3.332 102.792 | 20 20.112 0.112 3.332 2.792
100 100 102.306 | 103.512 | 20 20.105 0.105 2.306 3.512
200 100 200.498 | 103.259 | 20 20.134 0.134 0.498 3.259
300 100 297.897 | 100.571 | 20 20.073 0.073 -2.103 0.571
400 100 397.131 | 102.153 | 20 20.110 0.110 -2.869 2.153
425 100 | 422.017 | 103.445 | 20 20.093 0.093 -2.983 3.445
0 200 2.025 201.039 | 20 20.068 0.067 2.025 1.039
100 200 102.132 | 199.461 | 20 20.062 0.062 2,132 -0.540
200 200 201.658 | 203.174 | 20 20.082 0.082 1.658 3.174
300 200 299.556 | 202.553 | 20 20.084 0.084 -0.444 2.553
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400 200 398.813 | 201.912 | 20 20.080 0.080 -1.187 1.912
425 200 421.803 | 201.772 | 20 20.063 0.063 -3.197 1.772
0 300 1.439 301.916 | 20 20.062 0.062 1.439 1.916
100 300 103.648 | 301.386 | 20 20.065 0.065 3.648 1.386
200 300 202.660 | 298.810 | 20 20.032 0.032 2.660 -1.190
212.5 | 300 212.887 | 301.265 | 20 20.058 0.058 0.387 1.265
300 300 302.460 | 298.500 | 20 20.090 0.090 2.460 -1.500
400 300 401.482 | 298.051 | 20 20.103 0.103 1.482 -1.950
425 300 424.841 | 299.358 | 20 20.068 0.068 -0.159 -0.642
0 400 5.377 400.723 | 20 20.126 0.126 5.377 0.723
100 400 104.308 | 400.390 | 20 20.102 0.102 4.308 0.390
200 400 202.051 | 399.015 | 20 20.097 0.097 2.051 -0.986
300 400 303.057 | 397.921 | 20 20.090 0.090 3.057 -2.079
400 400 401.651 | 398.019 | 20 20.149 0.149 1.651 -1.981
425 400 425.072 | 397.563 | 20 20.093 0.093 0.072 -2.437
0 500 4.392 502.123 | 20 20.146 0.146 4.392 2.123
100 500 104.034 | 500.571 | 20 20.136 0.136 4.034 0.571
200 500 199.232 | 500.446 | 20 20.106 0.105 -0.768 0.446
300 500 300.265 | 498.478 | 20 20.067 0.067 0.265 -1.522
400 500 398.350 | 497.744 | 20 20.109 0.109 -1.650 -2.256
425 500 423.086 | 498.367 | 20 20.089 0.089 -1.914 -1.633
0 600 1.731 599.670 | 20 20.180 0.180 1.731 -0.330
100 600 100.962 | 601.556 | 20 20.119 0.119 0.962 1.556
200 600 200.114 | 598.454 | 20 20.119 0.119 0.114 -1.546
212.5 | 600 212.353 | 600.309 | 20 20.093 0.093 -0.147 0.309
300 600 298.996 | 598.805 | 20 20.104 0.104 -1.005 -1.195
400 600 399.980 | 597.615 | 20 20.091 0.091 -0.020 -2.385
425 600 422.682 | 598.298 | 20 20.069 0.069 -2.318 -1.702
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3.2.Test Results from Stride Length Trial

600 mm Overall Results

Threshold Method (40kg) Average Range StDev Error
Run 1 599.66 19.52 7.84 -0.34
Run 2 597.68 17.93 6.58 -2.32
Run 3 595.90 27.93 9.28 -4.10
Run 4 595.90 18.18 7.25 -4.10
Run 5 597.47 32.22 13.09 -2.53
OVERALL 597.32 23.16 8.81 -2.68
Peak Method (3 Points) Average Range StDev Error
Run 1 599.47 17.22 5.73 -0.53
Run 2 599.72 16.63 6.26 -0.28
Run 3 596.48 28.67 9.96 -3.52
Run 4 595.78 22.25 8.15 -4.22
Run 5 596.04 26.51 9.48 -3.96
OVERALL 597.50 22.26 7.92 -2.50
Radius Method (10mm) Average Range StDev Error
Run 1 599.63 17.89 7.28 -0.37
Run 2 597.79 17.87 6.56 -2.21
Run 3 596.18 26.11 8.91 -3.82
Run4 595.87 15.29 6.48 -4.13
Run 5 597.71 28.51 11.66 -2.29
OVERALL 597.44 21.14 8.18 -2.56

650 mm Overall Results
Threshold Method (40kg) Average Range StDev Error
Run 1 645.87 17.60 7.03 -4.13
Run 2 647.04 20.48 7.61 -2.96
Run 3 644.90 48.84 18.72 -5.10
Run 4 646.42 20.53 7.21 -3.58
Run 5 645.95 10.83 3.99 -4.05
OVERALL 646.04 23.66 8.91 -3.96
Peak Method (3 Points) Average Range StDev Error
Run 1 645.99 14.89 4.98 -4.01
Run 2 647.81 16.21 6.07 -2.19
Run 3 643.93 23.08 8.21 -6.07
Run4 647.23 16.74 6.70 -2.77
Run 5 645.85 10.36 4.90 -4.15
OVERALL 646.16 16.25 6.17 -3.84
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Radius Method (10mm) Average Range StDev Error
Run1 645.82 15.65 6.26 -4.18
Run 2 647.40 23.47 8.40 -2.60
Run 3 645.25 26.97 11.49 -4.75
Run4 646.49 21.65 7.58 -3.51
Run 5 646.23 11.66 4.05 -3.77
OVERALL 646.24 19.88 7.55 -3.76

670 mm Overall Results
Threshold Method (40kg) Average Range StDev Error
Run 1 668.56 20.16 6.70 -1.44
Run 2 667.92 26.59 9.54 -2.08
Run 3 665.14 63.38 22.06 -4.86
Run 4 667.14 28.67 9.58 -2.86
Run 5 673.80 40.92 17.31 3.80
OVERALL 668.51 35.94 13.04 -1.49
Peak Method (3 Points) Average Range StDev Error
Run 1 668.41 11.54 4.25 -1.59
Run 2 668.42 21.42 8.24 -1.58
Run 3 664.79 66.90 23.31 -5.21
Run 4 669.04 26.30 9.95 -0.96
Run 5 675.07 43.24 18.01 5.07
OVERALL 669.15 33.88 12.75 -0.85
Radius Method (10mm) Average Range StDev Error
Run 1 668.77 19.22 6.41 -1.23
Run 2 668.49 31.61 11.39 -1.51
Run 3 664.99 63.70 22.14 -5.01
Run 4 667.08 28.63 9.72 -2.92
Run 5 673.76 41.33 17.15 3.76
OVERALL 668.62 36.90 13.36 -1.38
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3.3.Trial 1 — Static and Dynamic Results

Cow EID Static Weight (kg) | Average Dynamic Weight (kg) | Error (kg)
982 091001734424 550.00 534.70 -15.30
982 091001734362 552.10 536.20 -15.90
982 000124839853 562.00 549.60 -12.40
982 091001734048 500.70 491.30 -9.40
942 000015200296 455.10 440.50 -14.60
982 123464531778 387.60 376.20 -11.40
982 000091411599 550.20 535.60 -14.60
982 000091482234 594.60 580.70 -13.90
982 091001734420 522.10 512.80 -9.30
982 000091411587 616.00 596.20 -19.80
Averages of all 10 cow runs combined
Section AB | Section BC | Section CD | Combined

Min 533.40 553.77 551.13 551.49

Max 565.93 575.33 579.63 568.76

Range 32.53 21.57 28.50 17.27

StDev 13.78 10.57 12.36 7.52

Error -20.14 -10.69 -10.15 -13.66
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3.4.Trial 2 — Data Analysis

Distance (mm)

Step
Overlap Overlap Overlap Overlap
Left Side Right LeftSide Right

Step Step Step

(mm) Side
(mm)

(mm) Side
(mm)

Cow 55 Stride Length Cow 123 Stride
15 Length
1.45 1 1.450
14 4 1.400
1.35 1 1.350
1.3 - 1.300
1.25 - 1.250
1.2 4 1.200
Stride Stride Stride Stride Stride  Stride  Stride  Stride
Length LF Length LH Length RF Length RH Length LF Length Length RF Length
(m) (m) (m) (m) (m)  LH(m) (m)  RH(m)
Cow 55 Step Overlap Cow 123 Step Overlap
40
20

Distance (mm)
oy
o

-160
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Cow 55 Abduction

40

30

20

10

Cow 123 Abduction

90

80

70

60
50

40

30
20
10

Distance (mm)

Cow 55 Asymmetry in
Stance Times

0.140

0.120
0.100

0.080

0.060

Time (s)

0.040

0.020
0.000

Cow 123 Asymmetry
in Stance Times

0.180

0.160
0.140
0.120
0.100
0.080
0.060
0.040
0.020
0.000

Time (s)
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3.5.Trial 3—Two Sample T-test

Lame LF
Variable Healthy Cow ( N =10) | Lame Cow LF (N =3)
Mean StDev Mean StDev P-value | Significant

NGRF LF 0.561 0.017 0.491 0.027 0.000 | Yes
NGRF RF 0.557 0.015 0.548 0.030 | 0.215 NS
NGRF LH 0.442 0.017 0.484 0.033 0.000 | Yes
NGRF RH 0.441 0.016 0.469 0.025 | 0.000 | Yes
Asymmetry in Weight Front Limb (kg) 7.4 5.6 28.8 23.6 | 0.000 | Yes
Asymmetry in Weight Rear Limb (kg) 7.8 6.0 20.9 12.9 | 0.000 | Yes
Asymmetry in Diagonal Weights (kg) 10.9 7.2 36.5 18.4 | 0.000 | Yes
Asymmetry in Side Weights (kg) 11.5 8.0 31.7 36.5 | 0.004 | Yes
Average Front Step Length (m) 0.697 0.037 0.702 0.039 | 0.727 | NS
Average Hind Step Length (m) 0.691 0.038 0.666 0.028 | 0.075 | NS
Asymmetry in Front Step Length (m) 0.129 0.068 0.139 0.068 | 0.699 | NS
Asymmetry in Hind Step Length (m) 0.140 0.065 0.260 0.101 | 0.000 | Yes
Average Stride Left Side (m) 1.430 0.075 1.368 0.069 | 0.030 | Yes
Average Stride Right Side (m) 1.403 0.085 1.460 0.078 | 0.077 | NS
Asymmetry in Stride Length L Vs R (m) 0.068 0.050 0.110 0.053 | 0.031 | Yes
Average Stride Length (m) 1.417 0.069 1.414 0.061 | 0.920 NS
Average Step Overlap Left Side (mm) 8 34 -52 61 | 0.000 | Yes
Average Step Overlap Right Side (mm) 15 37 4 33 | 0.443 | NS
Asymmetry in Step Overlap L Vs R (mm) 32 26 79 42 | 0.000 | Yes
Average Step Overlap (mm) 12 29 -24 33 [ 0.003 | Yes
Average Abduction Left Side (mm) 2 24 55 39 | 0.000 | Yes
Average Abduction Right Side (mm) 31 30 43 36 | 0.331 | NS
Asymmetry in Abduction L Vs R (mm) 39 27 44 26 | 0.642 | NS
Average Abduction (mm) 17 20 49 27 | 0.000 | Yes
Average Stance Time Left Side (s) 0.994 0.133 1.161 0.089 | 0.001 | Yes
Average Stance Time Right Side (s) 1.004 0.130 1.035 0.089 | 0.514 | NS
Asymmetry in Stance Time Left Side (s) 0.054 0.043 0.190 0.141 | 0.000 | Yes
Asymmetry in Stance Time Right Side (s) 0.073 0.058 0.087 0.024 | 0.481 | NS
Asymmetry in Stance Time LVs R (s) 0.034 0.033 0.129 0.084 | 0.000 | Yes
Asymmetry in Stance Time Front (s) 0.046 0.035 0.180 0.147 | 0.000 | Yes
Asymmetry in Stance Time Hind (s) 0.046 0.035 0.083 0.053 | 0.016 | Yes
Number of runs 50 9
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Lame RF

Healthy Cow (N =
Variable 10) Lame Cow RF (N = 4)

Mean StDev Mean StDev P-value | Significant
NGRF LF 0.561 0.017 0.605 0.034 0.000 | Yes
NGRF RF 0.557 0.015 0.508 0.024 0.000 | Yes
NGRF LH 0.442 0.017 0.460 0.028 0.015 Yes
NGRF RH 0.441 0.016 0.437 0.025 0.601 | NS
Asymmetry in Weight Front Limb (kg) 7.352 5.639 46.046 20.945 0.000 | Yes
Asymmetry in Weight Rear Limb (kg) 7.842 6.048 10.665 10.695 0.264 | NS
Asymmetry in Diagonal Weights (kg) 10.905 7.199 36.706 18.775 0.000 | Yes
Asymmetry in Side Weights (kg) 11.491 8.031 56.231 26.622 0.000 | Yes
Average Front Step Length (m) 0.697 0.037 0.687 0.018 0.403 | NS
Average Hind Step Length (m) 0.691 0.038 0.673 0.021 0.124 | NS
Asymmetry in Front Step Length (m) 0.129 0.068 0.190 0.093 0.019 | Yes
Asymmetry in Hind Step Length (m) 0.140 0.065 0.202 0.047 0.004 | Yes
Average Stride Left Side (m) 1.430 0.075 1421 0.030 0.709 | NS
Average Stride Right Side (m) 1.403 0.085 1.406 0.054 0.927 | NS
Asymmetry in Stride Length L Vs R (m) 0.068 0.050 0.058 0.040 0.552 | NS
Average Stride Length (m) 1.417 0.069 1.414 0.025 0.886 | NS
Average Step Overlap Left Side (mm) 8.280 34.485 -28.653 51.349 0.007 | Yes
Average Step Overlap Right Side (mm) 15.032 37.222 -27.046 52.488 0.004 | Yes
Asymmetry in Step Overlap L Vs R (mm) 32.081 26.462 31.184 24.864 0.919 | NS
Average Step Overlap (mm) 11.656 29.311 -27.850  47.716 | 0.001 | Yes
Average Abduction Left Side (mm) 1.789 24.352 -0.309 24.738 0.799 | NS
Average Abduction Right Side (mm) 31.326 29.789 64.952 50.416 0.008 | Yes
Asymmetry in Abduction L Vs R (mm) 38.963 27.203 65.261 47.449 0.023 | Yes
Average Abduction (mm) 16.557 19.724 32.322 31.843 0.049 | Yes
Average Stance Time Left Side (s) 0.994 0.133 0.971 0.123 0.604 | NS
Average Stance Time Right Side (s) 1.004 0.130 0.972 0.115 0.454 | NS
Asymmetry in Stance Time Left Side (s) 0.054 0.043 0.045 0.041 0.495 | NS
Asymmetry in Stance Time Right Side
(s) 0.073 0.058 0.067 0.045 0.731 NS
Asymmetry in Stance Time LVs R (s) 0.034 0.033 0.038 0.033 0.683 | NS
Asymmetry in Stance Time Front (s) 0.046 0.035 0.058 0.063 0.402 NS
Asymmetry in Stance Time Hind (s) 0.046 0.035 0.049 0.032 0.821 | NS
Walking Duration (s) 4.366 0.488 4.301 0.460 0.688 NS
Walking Velocity (m/s) 0.482 0.056 0.490 0.058 0.640 | NS
Number of runs 50 12

108



Appendix 4: AD7193 Programming Flow Diagrams

SPI
Initialization

/0
Initialization

Start SPI Set Slave Select

as Output

Write a LOW

Set Data to Slave Select

Mode

Set SYNC as
Output

Set Clock
Divider

Write a HIGH
to SYNC

Return

SPI initialization process 1/0 initialization
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AD7193
Initialization

Reset ADC

Read ID
Register

Validate ID

Initialize Mode
Register

Initialize
Configuration
Register

Initialize
GPOCON
Register

Return

A

AD7193 Initialization process

Validate ID

Return

Error
Message

Forever Loop
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Read ADC and transmit to computer
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Appendix 5: Load Cell Calibration
The five scaling factors were determined experimentally making use of a range of known weights
varying from 1kg to 50kg. An aluminium plate to support the calibration weights (150mm x 150mm

X 6mm) was made in the workshop which could bolt into the load cell.

50kg weight on load cell

MATLAB was used to capture and plot the ADC readings from each load cell when a calibration
weight was placed on the load cell. The figure produced by MATLAB was then enlarged and
analysed to find the average ADC reading for each calibration weight. The average was used as
there is a small percentage of noise present due to the operation of the sigma-delta ADC. The
average values obtained from the load cells with various full scale output characteristics at various

calibration weights were entered into Excel and the slope of the line was calculated (Nel, 2015).

An example of the experimental results for load cells with a full scale output of 2.000mV/V is

shown in Table 16. A linear slope is expected because of the strain gauge characteristics.
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Table 16: Experimental calibration results for full scale output of 2.000mV/V

Scaling Factor
120000
100000
oo 80000
£
-]
(5]
& 60000
O
a
< 40000
20000
0
0 10 20 30 40 50 60
Weight (kg)
Full Scale Output of 2.000mV/V
Calibration Weight (kg) ADC Reading
0 11
1 2100
2 4200
5 10600
10 21200
20 42750
30 64200
40 85700
50 106850
Scaling Factor 0.00046715
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SIN £ 1370133

Model : ASB
Capacity : 1000 kg
mvVNvV © 1.999

Type : Aluminium Shear Beam

PT Limited

P O. Box 102041 NSMC
Auckland, New Zealand

P.0. Box 7205 Baulkham Hills
BC. NSW 2153, Australia
salos @ piglabal com

CALIBRATION CERTIFICATE

Full Scale Output(mV/V) :  1.999

Zero Load Output(%FS) : 0.84

Non Repeatability(%FS) :<0.010

Non Linearity (%FS)  :<0.025

Creep(%FS in 30min.) :<0.035

Combined Error (%FS).<0.030
(per VDI/VDE 2637)

WIRING CODE

RED : + Excitation
BLACK - Excitation
GREEN : + Signal
WHITE :- Signal
BROWN : +Sense
BLUE -Sense

Recommended Excitation(

<Mt watas by dosigal

V) :5to 12V

Operating Temperature{C)  :-30 to 70

Thermal Zero TC(%FS/C)
Thermal Span TC(%FS/C)
Input Resistance(ohms)

Output Resistance(ohms)

<0.0020
:<0.0015
411.9
352

Insulation Res.(Mohm @50V) : >5000

Year of manufacture
IP Rating (IEC 529:1977)

Cauton: Ale
c € ion: ms.-:‘w‘uummnmwmm ‘ '
www.ptglobal.com

ASB-1000 Load cell calibration certificate

:Nil
167
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