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ABSTRACT 

This thesis reports the findings of a Monte Carlo simulation into the effect of sample bias on the 

parameters of the multinomial logit (MNL) choice model. At issue is the generalisability of 

parameter estimates obtained from biased samples to the balance of the population. An actual 

data set of 164 respondents was used to estimate an aggregate model. Using these parameters as 

the true coefficients of choice behaviour, an unbiased sampling distribution of the MNL 

parameters was derived by repeatedly fitting aggregate models to artificially generated sets of 

individual responses. Subsequently, the biased sampling distribution was derived by selectively 

eliminating those individuals at the tails of the sample distribution based on their correlation with 

one of the independent variables. 

The expected values of the biased and unbiased sampling distributions were compared to assess 

the sensitivity of the model to sample bias . The research found the biased coefficients changed by 

significantly more than the proportion of individuals removed . However, this sensitivity was 

predictable as the percentage change in the value of the coefficients was related to the size of the 

coefficient . It was also found that the coefficients of the unbiased variables were not significantly 

influenced by bias on another variable. The ratio between the unbiased variables was also 

maintained . It was concluded that although sensitive to bias, the estimates produced by the MNL 

model could be modified to reflect the different effect of the bias on the coefficients. Additionally, 

there was no evidence to suggest that the MNL estimates were not reflecting the effects of 

interest when calibrated on unbiased samples. 
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1.0 INTRODUCTION 

The multinomial logit (MNL) model is used by marketers to predict consumer product or brand 

choice behaviour as a function of that brand 's or product ' s attributes and the characteristics of the 

consumer. The MNL is a rando m utility model which assumes that choice consists of both a 

systematic (or explainable) component and a random component. It is widely used in industry, to 

guide strategy, and in academia, where it furnishes results which test specific knowledge claims 

about consumer behaviour. 

However, a number of potential sources of error exist in the estimation of the coefficients of the 

model. These include specification error, breaches of the assumptions underlying the model 

(namely, independence from irrelevant alternatives, IIA, and independently and identically 

distributed errors, 110), measurement error, aggregation bias, random sampling error, and 

systematic sampling error (or bias). The first five of these have already been investigated by a 

number of authors including Gordon, Lin, Osberg, and Phipps ( 1994 ), Ben-Akiva and Lerman 

( 1989), Jones and Landwehr ( 1988), Batsell and Polking ( 1985), Lee ( 1982), Horowitz ( 1981 ), 

and Chamberlain ( 1980). Systematic sampling error or bias has received the least attention. This 

is surpri sing given the fact that the MNL is nearly always calibrated on samples drawn from the 

population of interest . 

f n marketing, three of the more common sources of data used to estimate the MNL include retail 

scanner data, consumer panels, and experimental data. This data either describes actual market 

behaviour with associated product attributes and consumer characteristics or hypothetical choice 

behaviour with the alternative attributes and actual consumer characteristics of a selected sample 

of individuals. 

The main repercussion of calibrating the MNL on samples is the requirement that at the very least 

the model functions as expected in conditions of sampling error. It would appear that research 



specifically directed at examining the stability or otherwise of the MNL model in situations where 

sample bias is prevalent has not been attempted . This study investigates the behaviour of the MNL 

coefficients when estimated on biased samples. In particular, the Monte Carlo method is 

employed to generate biased sampling distributions which are compared with a benchmark 

unbiased sampling distribution. The bias is simulated by removing individuals who are most ( or 

least) highly correlated with one particular independent variable. 

Three main consequences of this simulated sample bias are explored. The effect on the biased 

variable is examined to determine if the coefficients vary by the same proportion as the bias . 

Ideally, the MNL' s biased coefficients would change by a proportionately less amount. This 

would mean that the MNL is producing estimates that reflect the effect being modelled more than 

the sampling error. If the coefficients change by proportionately more than the bias, then the 

stability of the model would be questioned . 

Another effect of interest is the change in the unbiased variables caused by the simulated bias . It 

would be desirable (and expected) for the unbiased variables to remain unchanged . As the Monte 

Carlo method used here generates individuals with no interactions between the independent 

variables, we would not expect any significant change to occur . However, if this does occur, then 

it would be a major handicap to the MNL. 

Finally, any change in the coefficients of the unbiased variables should not significantly impact on 

the ratio between them. If this does occur, then the difference in the coefficient sizes are both a 

reflection of the effect and the error. The MNL would therefore be unjustifiably sensitive to bias . 

If the MNL is found to be sensitive to sample bias, then not only is the collection of an unbiased 

sample important, but the assumptions underlying the model may be dubious. 
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2.0 LITERATURE REVIEW 

In marketing, discrete choice models (also known as quanta!, qualitative, or categorical models) 

are used to predict future demand for a product or service. These models' predictions are 

consistent with consumers employing a specific set of deci sion rules in aggregate when purchasing 

products or services and are made by measuring the impact of attributes on consumer choice 

between alternative products or services. Discrete choice models were initially developed by 

psychologists, such as Thurstone ( 192 7), whose comparative judgment models of individual and 

group behaviour initiated the concept of random or stochastic utility (Amemiya, 1981 , p 1490; 

McFadden, 1986, p 279). They have since been employed in a wide variety of disciplines from 

medicine to accounting. 

Two broad classes of discrete choice models exist . Compensatory models estimate consumer 

demand by assuming that consumers trade-off product or service attributes : " ... good features of 

an alternative compensate for the bad" (Johnson, Meyer and Ghose, 1989, p 255) . In contrast, 

noncompensatory models do not make this assumption and include decision rules where consumer 

choice depends on the product possessing one important attribute or the fact that a product does 

not contain one unsatisfactory attribute. Compensatory models have dominated the marketing 

lit erature with the multinomial logit model being the most used. This is in spite of evidence that 

consumer decisions are to some degree based on noncompensatory strategies (Johnson, Meyer 

and Ghose, 1989, p 255 ). The main reason given for the use of compensatory models is their 

ability to mimick a wide range of noncompenstory strategies although the research of Johnson, 

Meyer and Ghose ( 1989) suggests that in negatively correlated (non-orthogonal) research 

designs, thi s is not always the case. 

Choice models can be estimated at three levels: aggregate; disaggregate; and individual. An 

aggregate model is one estimated on macro level data. In marketing, this could be at segment 

level, such as geographic location or income level, or at the level of the total market (as 
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represented by the aggregated responses of the individuals in the sample) . Disaggregate models 

are estimated on micro level data, with the model being fitted to the individuals' responses to all 

the choice sets rather than their aggregated responses . Individual level models are fitted to 

separate individual ' s responses. 

Aggregate models are generally used to gain predictions of total market response and are 

preferable to disaggregate models as they provide a better fit to the data and the estimates contain 

less error. Furthermore, providing a sensible base for aggregation of the sample is selected (i.e 

one that restricts heterogeneity) , aggregate models allow for the estimation of more effects or 

levels for the same budget and sample size as a similar disaggregate model. However, when the 

sample population is heterogeneous with respect to their choices across segments, then 

aggregation may be dubious and a disaggregate model would provide more accurate estimates of 

effects. The main reason for estimating individual level models is explanation of individual 

consumer behaviour. 
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2.1 The Multinomial Logit Choice Model 

The multinomial logit (MNL) model was derived from a set of axioms about the choice process 

first developed by the mathematical psychologist Luce ( 1959). The model is fundamentally a 

regression model designed to treat discrete data . A discrete variable is one which takes only 

discrete values 0, I, 2, ... , n and not fractional quantities. This type of data is particularly relevant 

to the marketing environment where products, in the form of bundles of attributes, are off erred to 

consumers. The model calculates the probability that an individual or a group of individuals will 

select an alternative as a function of the attributes of the alternatives in the choice set . 

The MNL model relies on several assumptions. The first assumption is that each alternative j in 

the total set of available alternatives Sn has utility Uj for the individual k, equal to a deterministic 

component V.i and a random component e.i : 

uj, = vj, + e_j, . 

The deterministic component is calculated as a function of the observed attributes of the 

alternatives and/or the observed characteristics of the respondent . This represents the effect of 

these observables on the choice process. For the MNL, the deterministic component V.i, equals 

I 
V jk = I: Pij k X;j k , where : i is the ith attribute of alternative j, 

i= l 
p is the coefficient of attribute i, and 

X is the level of attribute i on alternative j . 

The random component represents the unobserved variables that impact upon choice from one 

occasion to the next as well as the stochastic error inherent in the choice process. 

Secondly, it is presumed that the individual chooses the alternative with the highest utility from 

the set of available alternatives on that occasion. Thirdly, the probability of any of the utilities 

being equal is zero : Uj * Un. 
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Therefore, the probability of individual k choosing j equals: 

P,U) Pr {Uj > Un, n E S0 } 

Pr { vj + Ej ~ V n + En, n E Sn} . 

Finally, the random components or errors are assumed to be independently and identically Gumbel 

distributed: 

-e -r 
e - oo < E < oo . 

Together, the four assumptions above combine to produce the MNL model, where P n U) is the 

probability that individual (or aggregated sample) n chooses alternative j , µ is an arbitrary scale 

parameter, and V is the deterministic component of the utility function associated with the 

observable characteri stics or attributes of the decision maker or alternative: 

P,U) = 

µV., e J 

In most cases, due to it s computational attractiveness, the utility function is assumed to be linear­

in-parameters (Ben-Akiva and Lerman, 1989, p I 08) . A linear-parameters utility function equal s: 

although a multiplicative utility function is sometimes used: 

Nevertheless, this condition is not as restrictive as it would seem as the coefficients can be 

transformed to improve the fit of the model by better representing the relationship between the 

dependent and independent variables (Amemiya, 1981 ). 
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2.2 Treatment of Errors 

The main distinguishing feature between the MNL and other choice models such as the linear 

probability (LP) model and the multinomial probit (MNP) model is the way in which the errors (E) 

are treated . 

The LP model assumes an independent and identical "uniform" distribution of the random 

components (Ei - En) · The model is usually estimated through ordinary least squares (OLS). 

Estimates obtained through OLS are consistent and unbiased but not asymptotically efficient due 

to heteroscedasticity in the variances of the errors. This heteroscedascity can be removed and an 

efficient estimator attained by dividing the independent variables and the constant by the standard 

deviation of the error variance (Hensher and Johnson, 1981 , p I 66) . The resulting estimator, 

weighted least squares (WLS) is consistent, unbiased, and asymptotically efficient. 

Nevertheless, the OLS and WLS estimates of the LP model do not always produce predictions 

that rest between zero and one as they theoretically should. Furthermore, the OLS and WLS 

estimators of the LP model suffer from their inability to yield normally distributed errors. The 

consequence of this is that the coefficients cannot be subjected to statistical tests (Hensher and 

Johnson, 1981 , p 168). 

The MNP model relaxes the assumption of independence from irrelevant alternatives ( discussed 

later in this section) and imposes a normal distribution on the disturbances (Ei and En). It achieves 

this by allowing each individual' s response to the product attributes to vary about a mean value. 

The MNP also permits correlation between the errors of different alternatives. This can be seen 

by examining the utility expression for the MNP ( adapted from Hensher and Johnson ( 1981 , p 

184): 
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where: 

J 

k 

uj. 
pij 

X;· • .I 

= 

= 

= 

= 

= 

the ith attribute of alternative j 

alternative j in choice set S
0 

the kth individual 

the utilty of alternative j for individual k 

the mean effect of attribute i on alternative j 

the attribute description i of alternative j for 

individual k 

the individual taste variation of the kth individual to 

the ith attribute of alternative k 

the stochastic error in kth individuals response to 

alternative j . 

Each individual 's response to the variable X;j. is allowed to vary by y iJ.. around the mean Pij 

representing individual taste variation. This results from the correlation between the errors of 

different alternatives. Also, the structure of the error term assumes the £.i• are normally 

di stributed enabling covariance between alternatives. 

The MNL model is preferred to the MNP for computation reasons, the normal distribution 

requiring estimates of a location parameter, µ , and a variance parameter, a, whereas the MNL 

requires only the former as the variance is fixed. In practice, this is significant for any problems 

requiring the estimates of more than two or three attributes (i) and alternatives (j). For example, a 

l\1NL problem where i = 4 and j = 4 would only require four estimates of the i P's. However, the 

MNP would also need i(i+ I )/2 (ten) estimates for the Yii.., and j(j+ I )/2 (ten) estimates of the 

elements of the covariance matrix for the £j• (Hensher and Johnson, 1981 , p 185 ). 

The MNL was developed to provide a tractable model for situations where estimation of the 

MNP would be infeasible. In order to achieve this the MNL model assumes Gumbel distributed 

errors, which does not allow for correlation between the errors of different alternatives or for 

covariance in the systematic components of the alternatives. The direct result of this restriction is 

the independence from irrelevant alternatives (IIA) property. The MNL model computes the 
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probability of choice for a particular alternative by determining the ratio of that alternative's utility 

to the sum of all utilities. Therefore, the addition of a new alternative to a choice situation should 

not impact on the ratio between the alternatives prior to the new alternatives inclusion. As 

Hensher and Johnson ( 1981) state, "this property is valid only if the new alternative competes 

equally with each existing alternative" (p 149). The IIA assumption is further discussed in section 

2.6.2. 

The Gumbel distribution of the MNL errors is also called the Weibull, the double exponential, or 

the type II extreme value distribution and is a close approximation of the normal distribution but 

with fatter tails. A number of authors claim that estimates produced by the MNL model do not 

differ markedly from those produced by the multinomial probit except for large samples 

(Chambers and Cox, 1967; Amemiya, 198 1, p 1487). The Monte Carlo study of Gordon, Lin, 

Osberg, and Phipps ( 1994) supported this to some extent. They found the probit estimates to be 

approximately 2. 5 percent higher than logit estimates for sample sizes of less than 4,000 

observations. However, beyond this the difference between the probit and logit estimates 

increased to about four percent for sample sizes up to 20,000. 

The normal and Gumbel distributions, of the MNP and MNL models respectively, are considered 

to be behaviourally superior to the uniform distribution of the LP model. The LP model produces 

probability predictions that are linear in the interval between the systematic components of the 

alternatives (Vi - V..) Outside of this interval, the LP model predicts either a zero or I 00 

probability of choice. Consequently, the LP model has the problem that it produces predictions 

that contradict the sample observations. This primarily involves alternatives where the model 

predicts a zero probability of selection, when in actuality the sample contains observations which 

select that alternative (Ben-Akiva and Lerman, 1989, p 94 ). The MNP and MNL models avoid 

this problem by imposing normal and Gumbel distributions respectively on the errors. The 

repercussion of this is the more behaviourally acceptable condition that the predicted probabilities 

outside of interval between the estimated systematic components (Vi - V 
0

) tend asymptotically 

toward zero and one. 
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2.3 The Scale Parameter 

The scale parameter has an important role in the value of predictions made by the MNL and is an 

inherent characteristic of random utility models . In the MNL, the random component is Gumbel 

distributed. The Gumbel distribution has a fixed variance equal to rr2/6µ 2
, whereµ is the scale 

parameter (Ben-Akiva and Lerman, 1989, p I 04). 

This feature of the Gumbel distribution impacts upon the probability estimates made by the MNL 

as the size of the parameter estimates dictates the amount of variance in the utility function 

explained by the systematic component. As the value of the scale increases, the P's are 

transformed into progressively larger values, and vice versa. Therefore, large values of the µ 

(and consequently the P's) lead to the systematic component dominating the random component: 

small values of the µ ( and therefore the P' s) see the random component dominating the systematic 

component (Chen and Anderson, 1993, p 238-39). 

The effect of this on the choice probabilities is marked. When the systematic component (V) 

dominates the random component (c), the utilities show greater levels of dispersion. As a result, 

the difference between the higher and lower attributes as measured by the p ' s increases and 

therefore, the MNL choice probabilities " .. . predict deterministically to the alternative with the 

highest systematic utility" (Swait and Louviere, 1993, p 306). When the random component 

dominates the systematic, the choice probabilities approach the unifo rm distribution, so each 

alternative will have the same probability of being selected (Chapman and Staelin, 1982). 

This problem is compounded by the fact that the scale parameter cannot be calculated for any one 

model due to " .. . confounding with the vector of utility parameters. Hence, it is arbitrarily set to 

one when dealing with any given model" (Swait and Louviere, 1993, p 305). In spite of this, in 

the case where the same vector of parameters are estimated on different data sets, the value of the 

ratio of the scale parameters can be determined between the models (Swait and Louviere, 1993 ). 
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2.4 MNL Estimation 

The parameters p1, P2, P3, ... , Pn of the logit model can be calculated from a sample of 

observations through the use of a number of estimators: maximum likelihood; minimum chi 

square, which is also called weighted least squares, Berkson, or Berkson-Theil; minimum Pearson 

chi square; maximum score; nonlinear least squares; and ordinary least squares. In marketing, the 

maximum likelihood (ML) estimator has been used in most applications though the minimum chi 

square has also been applied (Bunch and Batsell, 1989). 

Maximum likelihood estimates are those set of parameters which would produce the sample of 

observations more frequently than other possible estimates (Hensher and Johnson, 198 I , p 43 ). 

The estimates are gained in an iterative fashion by maximising the log of the likelihood function , 

SC*: 

where: P, 

k 

J 

S" 

Yik 

P ' xjk 

n 

= 

= 

= 

= 

= 

= 

= 

= 

the estimated coefficient of attribute i 

the kth individual in the total sample K 

the jth alternative 

the set of alternatives 

the individual k ' s response to alternative j 

the vector of estimates of the attributes of 

alternative j 

the nth alternative 

the vector of estimates of the attributes of 

alternative n 

(Ben-Akiva and Lerman, 1989, p 118). 

The log likelihood function is globally concave so if a solution exists, it will be unique. This is in 
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contrast to some estimators where a unique solution is not assured. Maximum likelihood 

estimates are consistent, asymptotically normal, and asymptotically efficient (Ben-Akiva and 

Lerman, 1989, p 22). A consistent estimator is one whose variance around the true value of the 

population parameter decreases as the sample size increases. An asymptotically normal estimator 

is one where the distribution of the estimates approaches the normal distribution as the sample 

size tends to 00 . An asymptotically efficient estimator is one whose variance "is less than or equal 

to that of any other estimator" (Ben-Akiva and Lerman, 1989, p 29). 

However, Ben-Akiva and Lerman ( 1989) point out that these are large sample properties and 

" maximum likelihood estimators are not in general unbiased or efficient" (p 22). A number of 

authors (McFadden, 1974, p 123; Malhotra, 1984, p 22 ;Ben-Akiva and Lerman, 1989, p 22; 

Chen and Anderson, I 993, p 23 8) also suggest that the small sample properties of the ML 

estimator are not well known. Malhotra (l 984) recommends that for small samples (n < 50) the 

ML estimator may be "inappropriate" (p 22). Unfortunately, Malhotra does not offer any 

empirical or statistical reasons for his definition of small samples. 

Chen and Anderson' s ( 1993) Monte Carlo study looked specifically at the small sample properties 

of the ML estimator with sample sizes ranging from 20 to 200. They found that the precision of 

the estimates improved as the degrees of freedom increased. Consistent with the study of 

Horowi tz ( 198 1) they also found this improvement occurred at a decreasing rate. Furthermore, 

Chen and Anderson ( 1993) observed that increases in the number of choice alternatives and 

smaller scale parameter values improved the precision of the estimates. This study apart, little 

empirical research exists to define the small sample properties of MNL estimators. However, this 

should not be detrimental to the findings of this study if the sampling distributions produced are 

large. 

The minimum chi square (MCS) estimator involves setting the value of the P ' s such that the 

relationship between the dependent variable, the log odds (In (Pdj)IP1.(n))), and the independent 

product attributes is maximised. It is asymptotically equivalent to ML but generally not as 
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computationally tractable as MCS estimators require a large number of observations per cell 

(Ben-Akiva and Lerman, 1989, p 95-97). Additionally, if cells equal zero or if all respondents 

respond positively, an arbitrary modification of the cell values is required (Malhotra, 1984, p 21 ). 

Again for small samples, the MCS estimator may be unsuitable as the small sample properties of 

MCS are not known (Malhotra, 1984, p 22) . 

The minimum Pearson chi square (MPC) is asymptotically equivalent to ML and MCS but is not 

as computationally attractive as the p ' s have to be determined through nonlinear optimization 

(Bunch and Batsell, 1989, p 59). The maximum score estimator (Manski, 1986) is generally not 

as efficient as other estimators, though in circumstances where the disturbances are 

heteroscedastic, it is preferable to other estimators such as ML and MCS which assume 

homoscedasticity. Nonlinear least squares (NLS) and ordinary least squares (OLS) are consistent 

but not asymptotically ML which would be preferable (Bunch and Batsell, 1989, p 59). The NLS 

estimator also requires nonlinear optimization to be solved . 

In the most comprehensive study of estimators in a marketing environment, Bunch and Batsell 

( 1989) found ML to be superior to MCS, MPC, NLS, and OLS. They based this conclusion on a 

comparison of the vector of Monte Carlo estimates produced by the different estimators with the 

true parameter vector. They also compared the ability of each of the estimators to predict the true 

probabilities in a holdout sample, and guaged the reliability of the statistical inferences made by 

the different estimators through an examination of the asymptotic normality of the estimates. 

Their results contradicted the findings of a number of previous studies (Berkson, 1955; Amemiya, 

1980) which suggested that MCS was superior to Ml... However, they corroborated the study of 

Smith, Salvin, and Robertson ( 1984) with regard to the validity of the statistical inferences of ML. 

Bunch and Batsell ( 1989) reasoned that previous studies which found that MCS was superior to 

ML could be attributed to the bioassay nature of the experimental conditions which contrast to 

marketing applications which consist of more alternatives in the choice set and greater numbers of 

explanatory variables . This finding provides tentative support for the use of ML in this study. 
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2.5 Data Sources: Stated and Revealed Preference 

For a MNL model to provide estimates of the trade-off between attributes, data needs to be 

collected that captures not only the choice made by an individual or population of interest, but 

also the attributes of the available alternatives and/or the characteristics of the consumers who 

selected that alternative. Two separate streams of data have been used to achieve this : revealed 

preference (RP) data which describes actual consumer behaviour (Ben-Akiva, Bradley, 

Morikawa, Benjamin, Novak, Oppewal, and Rao , 1994) and stated preference (SP) data which 

imitates choice by exposing respondents to hypothetical choice sets . Models based on SP data 

therefore reflect behavioural intentions as they don ' t require respondents to change their actual 

behaviour (Adamowicz, Louviere, and Williams, 1994 ). 

Two of the more prevalent forms of RP data include retail scanner data and consumer panels . 

Scanner data can be collected at the individual, store, or aggregate level. For individual data, 

each purchase made of a product is assumed to have been made by a separate individual from the 

set of available products in the category. These individuals can then be aggregated . Store and 

aggregate level scanner data represents the total sales of each brand in a product category. 

Consumer panels take many forms but generally yield information on the purchase behaviour of 

individuals or households, their characteristics ( e.g. number of individuals in the household), and 

the nature of the purchase environment (e.g. competing brands, relative price) . Information on 

purchase behaviour can either be collected directly by the reseacher from scanner information or 

indirectly from the respondent . The individual or household information from the consumer panel 

can be aggregated for models of total market response. 

Although RP data is restricted to "observations on past or present actual market choice 

behaviour" (Ben-Akiva et al , 1994), SP data takes many more forms including: 

Stated Intention expected future choice behaviour 
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Stated Choice 

Stated Judgment Ratings 

Attribute Ratings 

Similarity Ratings 

Attitudinal Ratings 

hypothetical choice behaviour 

overall attractiveness of actual or hypothetical 

choice alternatives considered one at a time 

attractiveness of various attributes of real or 

hypothetical choice alternatives 

perceived amount of similarity between pairs of real 

or hypothetical choice alternatives either overall or 

attribute by attribute 

respondents feelings about a market situation 

(Ben-Akiva et al , 1994, p 336) 

Despite the range of methods for collecting SP data, caution should be taken. Ben-Akiva et al 

( 1994) suggest that the context and format of the choice sets has an affect on the response (p 

3 3 7) Furthermore, they state: "Artificially framed SP tasks, such as rating, ranking, or trade-off 

exercises, tend to detract from the validity of survey responses" (Ben-Akiva et al , 1994, p 3 3 7) . 

The results of McFadden and Leonard ( 1992) would support this claim as they found the model ' s 

estimates to be sensitive to different formats , questions and information provided (Ben-Akiva et 

al , 1994, p337) 

The validity of SP data also presents a problem that is not inherent in RP data . SP methods are 

criticised because actual behaviour is not observed or may not change (Adamowicz et al, 1994, p 

3 3 7) Therefore, models fitted to SP data may in fact be producing predictions of preferences or 

intentions rather than actual behaviour. 

However, RP data suffers from a few major disadvantages, mainly ( 1) the need to make an 

assumption about the structure of preferences which in some cases can not be tested, (2) 

colinearity in the independent variables, and (3) a limited range of attributes and in particular, 

levels ( Adamowicz et al, 1994; Ben-Akiva et al, 1994). 
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Consequently, SP methods are used to overcome all these problems. Furthermore, combining 

both SP and RP data has become popular and presents an opportunity to develop more powerful 

models . Ben-Akiva et al (1994) and Louviere and Swait (1993) discuss the issues related to 

combining multiple data sources while Adamowicz et al ( 1994) present an empirical example of 

this. The approach of Adamowicz et al ( 1994) involves comparing the MNL predicted 

probabilities of the RP and SP parameter estimates to ascertain if they originate from the same 

preference structure. They found a distinct linear relationship between the predictions of the two 

data sets and could not reject the null hypothesis that the parameters are equal. A log likelihood 

ratio test ( see Swait and Louviere, 199 3) was then performed to determine if the scale parameters 

of the two data sets were different. They found that the scale parameters were different at the 99 

percent level of confidence. The RP and SP data sets were then concatenated and the SP data 

rescaled relative to the RP data This was achieved by finding a constant value that maximised the 

joint log likelihood of the combined data sets but that did not produce a log likelihood for the 

combined model that was significantly different from the separate log likelihoods of the RP and 

SP MNL models . The joint model parameter estimates could then be used. 
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2.6 Empirical Applications of the MNL 

The fact that the MNL can treat discrete data and is computationally attractive compared to the 

LP and MNP models has meant the logit model has been widely used for a number of different 

applications in a variety of disciplines. These include: 

Medicine: 

where Marshall, Shroyer, and Grover ( 1994 ), Agresti ( 1993 ), and Chester, Kaufman, and 

Wolff ( 1992) looked at issues relating to the impact of different treatments on patient 

recovery and risk assessment in coronary bypass operations. 

Education: 

in which Kerkvliet ( 1994 ), Dey and Astin ( 1993 ), Leppel ( 1993 ), Bunn, Caudill , and 

Gropper ( 1992), Kodde ( 1986) , Fuller, Manski, and Wise ( 1982), and Bishop ( 1977) 

investigated problems relating to college enrolment decisions, cheating behaviour, and 

education demand. 

Agriculture/Horticulture: 

where Linden, Rita, and Svojala ( 1996), Garcia, Woodard, and Lee ( 1995), Kanninen and 

Khawaja ( I 995), Kling and Herriges ( 1995), Ferguson and Yee ( 1995), and Bell, Roberts, 

and Park ( 1994) analysed questions relating to salmon fishing, lethal temperatures in 

apple, prediction of human caused forest fires, participation in ag/hort programmes, and 

statistical issues relevant to ag/hort. 

Real Estate: 

Iwarere and Williams (1 99 1), Hayashi, Isobe, and Tomita (1 986), and Jud (1983) looked 

at the issues of industry location behaviour, residential housing demand, and tenure 

choice. 
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Finance/Banking: 

where Lawrence and Arshadi ( 1995), Aguilera and Gonzalez ( 1993), Billensley and 

Thompson ( 1985), Ederington ( 1985), Hasbrouck ( 1985), and Marsh ( 1982) examined 

loan repayment, problem loan resolution, bond ratings, bank stock repurchases, 

debt/equity choice of companies, and the characteristics of takeover targets. 

Geography: 

where Krieg (1993), Khraif(1992), Nijkam and Reggiani (1992), and Waddell (1992) 

investigated problems of migration, and race and urban structure. 

Human Resource Management : 

Lewis ( 1986), Borjas ( 1984), Kolchin and Hyclak ( 1984), Berger, Olsen, and Boudreau 

( 1983 ), Killingsworth and Reimers ( 1983 ), Vanderporten and Hall ( 1983 ), Ehrenberg and 

Marcus ( 1982), Mauro ( 1982), Perloff ( 1981 ), and Gunderson ( 1980) analysed the 

problems of labour force participation, gender and promotion, labour turnover, union 

participation, effect of unions on job satisfaction, race differences and pay/promotion, 

collective pay negotiations, minimum wages, strikes, and unemployment . 

Transportation: 

Mandel , Gaudry, and Rothengatter ( 1994 ), Glaister ( 1983), Lioukas ( 1982), Levin ( 1978), 

and Thompson ( 1977) confronted issues relating to rail commuter demand, transportation 

planning, freight transportation, and transit route structure. 

Economics: 

where economists such as Jung ( 1993 ), Tzeng, Chen, and Lan ( 1991 ), Asch, Malkiel, and 

Quandt ( 1986), Cecchetti ( 1986), Dalton and Marcis ( 1986), Lo ( 1986), Morgan ( 1986), 

Cameron {I 985), Fields and Mitchell ( 1984), Grossman ( 1984), Stewart, Harris, and 

Carleton (1984), Hannan (1983), Shields and Tsui (1983), Banerjee (1982), Falaris 

(1982), Finn and Rappaport (1982), Greenspan and Vogel (1982), Hughes and 
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McCormick ( 1981 ), and Figlewski ( 1979) have found the MNL model particularly 

amenable to the problems they face. These have included analysis of energy conservation 

and demand, job satisfaction, pricing, corporate bankruptcies, the impact of government 

policy, merger behaviour, migration effects, market entry decisions, birth probabilities, 

imports, debt indicators, and market efficiency. 

And Marketing: 

where Gensch and Soofi ( l 995), Horowitz and Louviere ( l 995), Neelankawil, 

Mummalaneni, and Sessions ( 1995), Chintagunta ( 1994), Gupta and Chintagunta ( 1994), 

Jobber (1994), Fader (1992), Gonul and Srinvasen (1993), Horowitz and Louviere 

( 1993 ), Perkins and Roundy ( 1993 ), Swait and Louviere ( 1993 ), Fader, Lattin, and Little 

( l 992), Johnson, Meyer, and Ghose ( 1989), Jones and Landwehr ( 1988), Gatignon and 

Reibstein ( 1986 ), Malhotra ( 1984 ), Guadagni and Little ( 1983 ), Louviere and Hensher 

( I 983 ), Louviere and Woodworth ( 1983), Chapman and Staelin ( I 982), Currim ( 198 l ), 

Gensch and Recker ( 1979), Green, Carmone, and Wachpress ( 1977) and many others 

have investigated a number of issues including consideration sets, advertising copy, brand 

positioning, estimation and estimators, segmentation, heterogeneity, tests of competing 

specifications, experimental design, the use of different sources of data, the scale 

parameter, and forecasting of demand for different products and brands in different 

markets. 
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2. 7 Sources of Error in the Estimation of the MNL Choice Model 

Error in the process of estimating the coefficients of discrete choice models arises in varying 

degrees from six sources: specification error; breaches of model assumptions; measurement error; 

aggregation bias; random sampling error; and systematic sampling error or bias (adapted from 

Hensher and Johnson, 1981 , p 224-226). Each of the six sources "can be difficult to separate out 

in an analysis of errors" (Hensher and Johnson, 1981 , p 224), especially, for example, breaches of 

the assumptions implicit in the model, some of which can be solved through the addition of 

explanatory variables, and thus could be considered as specification error. These errors impact 

not only on the estimated coefficients but also the standard errors associated with these and the 

ensuing fo recasts in the form of choice probabilities. 
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2. 7.1 Specification Error 

When constructing a model at the individual or aggregate level, one cannot expect to capture the 

behavioural process in its entirety. Theoretic, economic, and practical considerations impact on 

the degree to which a model can be precisely specified. For example, household interactions 

account for variation in the choice of breakfast cereal, but due to a lack of theoretical or empirical 

information, may not be able to be included in a model. Such simplification of the processes 

influencing actual behaviour are reflected in specification error (Hensher and Johnson, 198 1, p 

224) 

Five main types of misspecification may be present in any MNL model: omitted structure where 

relevant explanatory variables are excluded (Lee, 1982; Horowitz, 1981 ; Manski, I 973 ); inclusion 

of irrelevant variables (Horowitz, 198 1 ); cross-sectional variation in preferences w here the 

functional form of the utility varies across the sample which includes heterogeneity bias (Jones 

and Landwehr, 1988; Horowitz, 198 1; Chamberlain, 1980; Manski, 1973); instrumental variab les 

which are unsuitable surrogates of actual variables (Hensher and Johnson, 1981 , p 224; Manski, 

1973 ), and; poorly defined alternatives (Hensher and Johnson, 1981 , p 225) . This review 

discusses the first three in detail as they seem to have been the most researched. 

Omitted Relevant Variables 

Analysis of omitted structure has concentrated on the omissio n of relevant variables and the 

inclusion of irrelevant variables. This is of particular importance to this study as the sample bias 

simulated in this study is the same as partially omitting a variable. In his mathematical analysis of 

omitted variable bias, Lee ( 1982) investigated the conditions upon which the omission of a 

relevant explanatory variable will not produce bias in the estimates of remaining variables. Lee 

compared a correctly specified two variable model with a misspecified one variable model which 

had one of the original variables removed. Two propositions were forwarded and subsequently 
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supported by a series of proofs . 

The first proposition suggested that bias would not occur if the omitted variable z was 

independent of the included variable x, conditional on the response variable y (Lee, 1982, p 199). 

This is similar to the linear regression model except that the independence between the omitted 

variable z and the included variable x is not conditional on the dependent variable (Lee, 1982, p 

208). However, Lee ( I 982) does indicate in a footnote that the constant term will be biased but 

does not investigate thi s further (p 203 ). 

The second proposition explored the direction of bias when the "omitted variable z is 

dichotomous, and the included variable x is discrete" (Lee, 1982, p 207). In the linear regression 

model, the direction of bias depends upon the sign of the coefficient of the omitted variable and 

the correlation of the included and omitted variable (Lee, 1982, p 208). For the lo git model, Lee 

( 1982) proved that the coefficient of the included variable x would be: 

(i) biased upward if either pi >O and <\>O, or Pi <O and ok<O, 

(ii) biased downward if either P. >O and ok<O, pi <O and ok>O, 

(iii) unaffected if either Pi =O or ok=O" (p 207)", 

where Ok is a measure of the association between the omitted and included variable conditional on 

the dependent variable . 

Horowitz ( 198 1) examined the impact of the omission of a relevant explanatory variable on the 

choice probabilities produced by the legit model. He concluded that inconsistent forecasts would 

result from the exclusion of a relevant variable unless one of five conditions is satisfied: 

" (l) The omitted variable must be distributed independently of the included variable. 

(2) Either the omitted variable must have equal mean values in all alternatives, or else 

alternative specific constants must be included in the utility function to represent 
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the effects of the alternative specific means of the omitted variable. 

(3) Either the omitted variable must be 11D across alternatives or else a more general 

model must be used . 

( 4) The omitted variable must have the same distribution in the population for which 

the forecasts are made as in the population from which the values of the models 

parameters are estimated. 

( 5) The omission of the relevant variable must not substantially alter the parametric 

form of the random component of the utility function ." (Horowitz, 1981, p 427) . 

Furthermore, Horowitz ( 1981) used Monte Carlo simulation to investigate this problem. He 

assumed that the correct model was V(X;, Y;) = SX; + Y; with the misspecified model being V(X,) 

= aX; With an absolute standard deviation of 0.32 and a maximum absolute error of 0.85, he 

concluded that the lo git model was particularly sensitive to omission of relevant variables (p 434 ). 

This is surprising as the stochastic error term is supposed to capture some of this specification 

error, and the estimation of the effects was independent . Nevertheless, Horowitz ( 1981 ) may not 

have controlled for the scale parameter differences which could explain this surprising result . 

Another form of specification error studied by Horowitz ( 1981) was '"correlated random utility 

components and explanatory variables" (p 428) . This is a unique case of omitted variable bias 

where its occurrence results in inconsistent parameters and choice probabilities (Horowitz, 198 1, 

p 428) For example, consider a model of cereal choice, where package size is an independent 

variable with the utility function equal to Uj. = a;j1-~1. + ej. . If family size ( an omitted variable) 

impacts on choice and is correlated with package size, then Ej1. and X,j., will also be correlated. If 

family size was included in the model then the Ej1- and X;j1- would not be correlated. 

The only available methods at present to control for this effect are to discover the causes of the 

correlation and account for these variables in the specification or to use a more general model 

such as probit . Despite this, the legit model appears to be robust against correlated utility 

components. In his Monte Carlo example, Horowitz ( 1981) compared the true probit model 
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where the utility function U (~,Y) = 5~ +Yi + E\ and 0 .95 correlation between e1 and e2 with a 

lo git model where the utility function V(~, Y) = a~ + b Yi· The root mean square difference 

between the probability forecasts produced by the legit model and the true probit model equaled 

0 .022 with a maximum error of 0 .074 Nevertheless, this result should be treated with caution as 

the scale parameter was not accounted for . 

Included Irrelevant Variables 

The impact of including irrelevant variables was also discussed by Horowitz. An irrelevant 

explanatory variable is one with a utility coefficient of zero . Horowitz ( 1981) suggested that the 

maximum likelihood estimation procedure produces consistent estimates of the utility parameters 

and as a result will not cause inconsistent or biased estimates (p 421 ). Additionally, though the 

parameters will not be affected, sampling errors will increase as a result (Horowitz, 1981 , p 421 ). 

However, increases in the value of the sampling errors is restricted to models with linear-in­

parameters utility functions . 

For nonlinear-in-parameters models, inconsistent estimates can be produced but this " depends on 

whether there exist values of the parameters of the erroneous model that cause the true and 

erroneous models to coincide" (Horowitz, 1981 , p 421 ). If these exist, sampling errors will 

increase but the model will remain consistent. If not , the model will produce inconsistent 

forecasts For example, if the true model of choice equals U = aX , an incorrectly specified model 

U = aX Y" will yield consistent estimates whereas the incorrectly specified model U = aX b Y 

will yield inconsistent estimates (Horowitz, 1981 , p 428). Horowitz ( 1981) presents an example 

of the increase in the sampling error as a result of including an irrelevant variable (pp 421-22). He 

compared the sampling error in a true model where P1= 1 / (1 + expa) with an irrelevant variable 

model where P 1 = 1 / [ 1 + exp ( a + b X) and the irrelevant variable is X. The resulting sampling 

errors in the misspecified model were twice that of the true model. 
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Cross-sectional Variation in Preferences 

There has been comparatively little analysis of the problems relevant to cross-sectional variation in 

preferences in the MNL model. This more than likely represents acceptance that solutions to this 

problem are statistically cumbersome. Heterogeneity bias has received most attention with studies 

of particular relevance being those by Chamberlain ( 1980), Horowitz ( 1981 ), and Jones and 

Landwehr ( 1988) Jones and Landwehr ( 1988) state that "not accounting for heterogeneity when 

estimating logit choice models .. . may lead to biased parameter estimates and more severely biased 

choice probability estimates" (p 41 ). 

Chamberlain ( 1980) was one of the first to control for heterogeneity in homogenous models 

although the logit model was not particularly considered . He developed three algorithms for 

analysing grouped data : the joint likelihood function, the conditional likelihood function, and the 

marginal likelihood function . Chamberlain was interested in estimating the parameters common to 

all groups . But the effect of incidental parameters in fixed effects homogeneous models such as 

the basic logit model are not estimated and therefore, biased estimates can result (Chamberlain, 

1980, p 225) . The MNP, by allowing correlation between alternatives, avoids this problem. 

Chamberlain ( 1980) attempts to develop an estimation procedure that estimates incidental 

parameters ( ex;) which capture the group effects and removes bias from the fixed parameter 

estimates common to all groups. The primary objective was to find estimators of p that converged 

as the number of groups increased, even if the observations in each group were small 

(Chamberlain, 1980, p 236). 

Chamberlain found that the joint likelihood maximum likelihood estimator produced inconsistent 

parameter estimates. Estimates produced by the conditional likelihood function were consistent. 

The conditional likelihood function exploits the independence from irrelevant alternatives 

assumption by conditioning on sufficient statistics for the incidental parameters (i .e. the intercept). 

In other words, the MNL estimates are conditional on the shared or similar intercept of the 
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individuals. 

The main advantage of this approach is that the likelihood function does not rely on the incidental 

parameters and so standard asymptotic theory for maximum likelihood estimation applies. The 

final method investigated was the marginal likelihood function which proved to produce 

consistent estimates. With this approach, the incidental parameters are assumed to follow a 

distribution. As discussed below, this approach can however result in more biased estimates than 

those produced by the joint likelihood function (Jones and Landwehr, 1988, p 43 ). 

Horowitz ( 1981) referred to heterogeneity bias as " random taste variation" (p 424). In the MNP 

utility function Ujk = Pij X;jk +(µii. X;jk + cjd, the individual taste parameters are represented by µik· 

lf these fluctuate randomly in a manner that is not accounted for by the X;' s, then the parameter 

estimates will also vary randomly (Horowitz, 1981, p 424) . Consequently, the random taste 

variations will cause the lo git model to produce inconsistent estimates of parameters and choice 

probabilities (Horowitz, I 981 , p 425). However, Horowitz ( I 979) found that in the case of linear­

in-parameters utility functions, the logit yields consistent estimates of the mean values of the taste 

parameters but inconsistent choice probabilities. Horowitz ( 1981) suggests the only methods 

available to account for this form of error are to add more variables to the utility function to 

account for individual taste variation or to use a more general model such as probit (p 426). 

In his simulation study, Horowitz ( 1981) compared a three alternative probit model with the 

utility function specified as U (X;, Y;) = ax, +PY, +c; with an incorrectly specified logit model 

V (X;,Y;) = aX; + bY; (p 432) . As mentioned in section 2.1, the logit model does not allow for 

random taste variation. With a maximum absolute error of 0. 18 between the predicted 

probabilities of the logit and probit models, Horowitz ( 1981) judged the choice probabilities 

estimated by the logit model to be sensitive to random taste variations. Again, it would appear 

that Horowitz ( 1981) did not control for the scale parameter. 

Jones and Landwehr ( 1988) extended the research of Chamberlain by removing heterogeneity bias 
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from logit model estimation through the use of a conditional likelihood function . They contend 

that Morrison (1966) first implemented the concept of heterogeneity by proposing to model it 

with a probability distribution. This was achieved by modelling the distribution of the household 

specific intercept terms (Jones and Landwehr, 1988, p 42) . In contrast, Jones and Landwehr 

estimate specific values for the household intercepts. They do this based on the research of 

Heckman and Singer ( 1982) which suggested that structural models are extremely sensitive to 

assumed choices of the distribution of the unobservables. Jones and Landwehr (1988) do not 

impose any distribution on the household specific intercepts and thus avoid biasing the estimates 

of the parameters (p 43). 

There are three methods for treating heterogeneity in the logit model (Jones and Landwehr, 1988, 

p 42) : 

Homogeneity 

Explainable Heterogeneity 

Household-Specific 

Heterogeneity 

both household specific intercepts and parameters 

are constant . 

both household specific intercepts and parameters 

are constant with variation in choice across 

households being explained by variables used to 

describe households . 

intercept varies across households while parameters 

remain constant. 

Jones and Landwehr adopt the household-specific heterogeneity approach to remove bias. They 

contend that " there is variation in preference between households that cannot be explained by 

knowing sufficient amounts of household specific data" (p 42) . Their paper uses Chamberlain' s 

( 1980) conditional logit estimation technique and extends it to variable length purchase strings 

and multinomial choice. Within the context of a two parameter model, Jones and Landwehr 

compare the results produced by the traditional homogenous maximum likelihood estimation with 

those of the heterogeneous conditional maximum likelihood technique. 
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They compared the fit as measured by the proportion of explained variance of the two techniques 

and found the conditional method with a fit of 0.81 (n=200) was superior to the homogenous 

model (fit = 0.11 , n=3205). The parameter estimates for the two methods were also compared. 

For the Last Purchase coefficient, both models predicted relatively similar values of 2.045 for the 

conditional approach and 2.008 for the homogenous method. In both cases this parameter was 

significant at the 0.0 I level. The Relative Price coefficients exhibited greater variation. The 

conditional logit estimate of0.380 was less than that returned by the homogenous model (0.641). 

Additionally, a predictive test of the models was undertaken. They compared the two models ' 

predictions and the actual shares of Brand A for each week of the data and found little difference 

between the homogeneous and heterogeneous models. 

Jones and Landwehr ( 1988) concluded that the heterogeneous model is most appropriate when 

explanation, not prediction is the primary purpose of the model (p 55). This is due to the 

household-specific intercept terms which are only estimated for the sample and cannot be 

transferred to the population. The fixed effects model is more suitable when estimating the impact 

of changes in the explanatory variables on the probability of purchase (Jones and Landwehr, 1988, 

p 55). 

However, the heterogeneous model assumes if a household does not purchase a brand in the 

estimation set, then it never purchases that brand . Additionally, if a household always purchases 

the same brand, then it is always assumed to purchase that brand . Households like this could be 

removed from the data set. However, there are two consequences of removing households that 

never switch brands from the data set (Jones and Landwehr, 1988, p 55). The first is that the 

model is based on evoked sets rather than all possible brands. Secondly, the variables that affect a 

consumers choice on the margin such as relative price and promotions should be included. But 

variables that affect whether the brand will be purchased at all ( e.g. product quality, household 

income) should not be included as the model is predicting if the brand will be purchased on the 

next occassion due to these variables rather than whether it will be purchased at all . Clearly, the 

method that can be used to account for heterogeneity depends upon the purpose and type of 
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model being constructed. 
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2.7.2 Breaches of the MNL's assumptions 

Arguably, the two main assumptions underlying the Luce-based random utility models such as the 

MNL model are independence from irrelevant alternatives (IIA) and independently and identically 

distributed (11D) random utility components . Violation of either of these impacts upon the 

precision of the estimates and forecasts produced . 

Independence from Irrelevant Alternatives {IIA) 

The most scrutinized assumption of the logit model is the independence from irrelevant 

alternatives axiom. This is a direct corollary of the conditional probability axioms developed by 

Luce ( 1959) In essence, IIA means that if alternatives are added to or removed from a choice set, 

then the ratios of the choice probabilities between alternatives should remain the same. It is 

explained best by Ben-Akiva and Lerman ( 1989), "for any two alternatives, the ratio of their 

choice probabilities is independent of the systematic utility of any other alternatives in the choice 

set " (p 130) This assumption is advantageous in terms of computational tractability over more 

general models such as probit or elimination-by-aspects. Of course, IIA can be considerably 

unrealistic . 

The regularly cited blue bus/red bus problem is an example. Suppose that a commuter is faced 

with the choice of either a car or a blue bus to travel to work. The consumer assigns a probability 

of 0. 5 to each. If an additional choice of a red bus was added to the set, then it would be 

conceivable that the consumer would still travel by car 50 percent of the time and 25 percent each 

on blue bus or red bus. However, IIA would be violated in this case and a Luce type model 

would assign values of one-third to each. It is therefore important that alternatives presented in 

the choice sets are distinct (McFadden, 1974, p 113; Ben-Akiva and Lerman, 1989, p 52) though 

what is meant by distinct can only be determined by comparing the estimates from the full data set 

and subsets. 
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Batsell and Polking ( 1985) have identified three main problems with the IIA assumption : the 

similarity problem; the dominance problem; and violation of regularity (p 178). The similarity 

problem was illustrated above in the red bus/blue bus example. The dominance problem occurs 

when one product dominates another. Batsell and Polking ( 198 5) give the example of a market 

containing three products, Coke, Pepsi and 7-Up . For all choices between a cola and a 7-Up, the 

market shares are equal 0 .5 and 0 .5. However, when confronted with a choice between the two 

colas, Coke is dominant with 95 percent share. A Luce-type model cannot capture this 

dominance. Violation of regularity arises when the choice ratios are not allowed to change. In a 

widely used example, a choice between two bottles of wine, a consumer may be indifferent. But 

if the shop owner adds another bottle which is the same as the first bottle, the consumer may 

favour the single bottle over one of the identical pair. A Luce model is constrained to maintain the 

constant ratio between the alternatives. Of course, this problem could be viewed as 

misspecification due to failure to include a "uniqueness" variable. 

Most academic attention in this area has focused on providing researchers with statistical tests to 

ascertain the legitimacy of the IIA assumption for the sampled choices . McFadden, Tye, and 

Train ( 1977) explored the issue of IIA tests and this research was subsequently extended by Small 

and Hsiao (1982) and Hausman and McFadden (1984) . Tests ofIIA involve comparing the 

parameter estimates from the full data set with those from models estimated on subsets of 

alternatives (Ben-Akiva and Lerman, 1989, p 184). If IIA is a legitimate assumption, then the 

model estimated on the full set should be similar to that gained from restricted sets . The most 

effective of these tests are discussed by Ben-Akiva and Lerman ( 1989) and all involve the 

comparison of the log likelihood value adjusted parameter estimates from the full sample with 

those from the restricted sets. 

The IIA problem can be avoided through the use of the nested lo git model. The nested lo git can 

be used when the alternatives share some unobserved and observed attributes. For example, for a 

model of biscuit choice, the dependent variable choice is predicted as a function of package size, 

price, and stochastic error. However, the choice alternatives include both chocolate and non-
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chocolate brands. If a joint model was estimated, then IIA would be breached. A nested logit 

model allows for covariance between the utilities of subsets of alternatives with a common 

attribute (Ben-Akiva and Lerman, 1989, p 286). This is achieved by dividing the total error into 

two independent components, shared (package size and price) and non-shared (chocolate and 

non-chocolate) . The model is estimated sequentially. 

Independently and Identically Distributed (11D) Errors 

In the multinomial lo git model, the structure of the random utility components is assumed to be 

independently and identically distributed across the alternatives . The assumption that the errors 

are independently and identically Gumbel distributed places a key restraint on the values of the 

utilities . The fact that the random components are Gumbel distributed is not considered to be a 

major restriction as this approximates the normal distribution of the MNP model (Ben-Akiva and 

Lerman, 1989, p I 04) though some empirical evidence suggests that different values of the 

parameters are estimated (Gordon et al , 1994). Nevertheless, 11D does constrain the ensuing 

errors to have the same scale parameter which leads to the assumption of "homoscedastic 

disturbances" (Ben-Akiva and Lerman, 1989, p 107). The repercussion of this is that each 

disturbance has the same variance which is clearly not always the case. Ben-Akiva and Lerman 

( 1989) discuss tests of heteroscedastic random utilities which are a violation of the IID 

assumption of homoscedastic disturbances . 

For example, consumer choice of breakfast cereal may be influenced to some extent by brand 

considerations. If consumers prefer Kellogg ' s cereals, then a model that did not account for this 

factor in its specification would violate 11D. The random utility of non-Kellogg' s cereals would 

tend to be negatively correlated with each other and the Kellogg ' s cereals positively correlated. 

The mistaken assumption that the random utility components are IID leads to an incorrectly 

specified relationship between the independent variables and the choice probabilities and 

consequently, biased estimates and forecasts (Horowitz, 1981, p 423). 
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I. 

In spite of this, the assumption of independence is not entirely groundless. "This assumption may 

not always be met in reality since the unobservable E's may be correlated among certain 

individuals. However, this assumption is made ... for the sake of convenience, since it would be 

usually impossible to specify a correct correlation structure" (Amemiya, 1981, p 1491 ). 

Horowitz ( 1981) addressed the problem of non-IID random utility components and found the 

logit model to be stable in their presence (p 434) . The correct three alternative probit model with 

utility function U (X;,Y;) = SX; + Yi+ f\ was compared with a logit model V(X;,Y;) = aX; + bYi. 

The random components were normally distributed with means of zero and variances of one and 

the E1's and E2's were 95 percent correlated (Horowitz, 1981, p 431-32) It should be reiterated 

that the probit model allows for correlation between the errors of different alternatives and 

therefore, 11D is not as restrictive for the probit model (see section 2.2) . The standard deviation 

of the differences between the probit and logit probability predictions equaled 0 .022 with a 

maximum error of 0.074 . Furthermore, Horowitz investigated the stability of the logit model 

predictions in conditions where the random utility components had unequal variances . The model 

performed favourably with a root mean square error of 0. 02 7 and a maximum error of 0. 13 

(Horowitz, 1981 , p 43 I) . It would therefore appear that the concern with the 11D assumption may 

not be a critical issue . 
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2.7.3 Measurement Error 

Measurement error is a negligible source of error in the estimation of the MNL. As Hensher and 

Johnson ( 198 I) suggest, "since the dependent variable is quanta!, we have no measurement error 

from this variable" (p 224). Consequently, measurement error is restricted to the occasions where 

group means are used for explanatory variables (Horowitz, 1981 , p 429) and the rare situation in 

which individuals are compelled to indicate their position in socio-economic categories and 

perform this task incorrectly (Hensher and Johnson, 1981, p 225). The only exception is 

recording errors by researchers . 

Horowitz ( 1981) appears to have been the only author to address this problem in respect to 

discrete choice models . He investigated the use of "group-mean values of explanatory variables" 

though he contends that this is a special case of omitted variable bias where the omitted variable is 

the difference between the individual and group mean value (Horowitz, 1981, p 429) . This type of 

error will lead to inconsistent estimates of choice probabilities for individuals and also at the 

group mean level. However, consistent estimates will be produced in two circumstances. First, 

where the group explanatory variables are not correlated with any nongrouped variables that are 

included in the specification. And second, "when the grouped variables have the same joint 

distribution function in each group, both in the estimation data set and the set used for 

forecasting" (Horowitz, 1981 , p 429). 

In his numerical example, Horowitz compared a correctly specified three alternative logit model 

with one where the data had been grouped into sets of five and the group mean value was used . 

The effect on the choice probabilities was considerable with a root mean square absolute error of 

0 .11 and a maximum error of 0.35 which is significant when compared to other errors 

investigated by Horowitz ( 1981, p 431 ). Again, scale parameter differences, not accounted for by 

Horowitz, could have produced this result. 
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2. 7.4 Aggregation Bias 

Aggregation is driven by the need for decision-makers to make predictions about the behaviour of 

groups of individuals in response to different marketing variables under their control, rather than 

individuals per se (Hensher and Johnson, 1981 , p 194; Ben-Akiva and Lerman, 1989, p 131 ). 

Instead of modelling the behaviour of individuals, it is more judicious in terms of prediction to 

model their aggregate behaviour. However, the process of aggregation can lead to bias in the 

estimates and forecasts produced by the model. In this context , aggregation bias has a well 

defined meaning : 

"The correct approach is to use the values of the independent variables that are directly 

relevant to each individual in the affected population, to predict the individual 

probabilities, and then to sum these probabilities. The predictions obtained by the 

individual disaggregative approach ... [the enumeration method] .. will be more accurate 

than those obtained by the aggregate approach ... [naive aggregation method] .. because 

the average of a non-linear function is not equal to the function evaluated at the average of 

the explanatory variables. The difference between the predictions obtained by the 

enumeration method and the naive method is referred to as the aggregation bias" (Hensher 

and Johnson, 1981 , p 195) 

Aggregation bias occurs at a number of levels but Hensher and Johnson ( 1981) underscore the 

importance of two : the application of group and between group averages to bound the dimensions 

of the independent variables for each individual, and the use of the average individual level of a 

variable to obtain choice probabilities "both before and after a policy change" (pp 196-197). 

The first type of error is " minimal" according to the research by McFadden and Reid (1975) if a 

random sample is used and the effect being measured is homogeneous within a group . 

Furthermore, Koppelman ( 1975, 1976, 1976a) following his extensive research into the second 
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type of aggregation bias concluded that in practice the size of the bias was small compared to 

other sources of error. Nevertheless, Hensher and Johnson ( 1981) advise that these findings 

should be accepted with caution given the limited nature of the respective investigations. 

Hensher and Johnson ( 198 I) suggest that the most flexible method for overcoming aggregation 

problems associated with the "non-linearity of the choice function" is to use the sample 

emuneration method: 

"This approach involves: 

(i) predicting the behaviour of each individual in a sample drawn from the 

population and taking the average of those predictions; 

(ii) predicting the after behaviour for each individual and taking the average; 

and 

(iii) identifying the differences between those averaged predictions to obtain the 

aggregate policy effect" (Hensher and Johnson, 1981 , p 199). 

The main problem with this approach is the prohibitive costs involved. Other methods w hich exist 

involve approximation of the empirical di stribution through the use of a mathematical distribution, 

a histogram, and Taylor series expansions of the statistical moments. 
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2.7.5 Systematic Sampling Error 

Systematic sampling error or bias is an outcome of defects in the process of sample selection. 

This type of error is the principal focus of this study. Although specification and measurement 

error as well as aggregation bias are other sources of systematic sampling error (Hensher and 

Johnson, 1981 , p 225 ), they are treated separately in this research . Hensher and Johnson ( 1981) 

summarise the conventional sources of systematic sampling error 

(a) deliberate selection of an average sample; 

(b) sampling on the basis of an attribute that is correlated with one or more 

properties of the observational unit; 

( c) selection of a random sample in which the random selection process is not 

strictly adhered to; 

( d) the substitution of additional members of the population when difficulties 

are encountered in sampling the original sample observation; and 

(e) nonresponse (p 225) 

All of these are widespread in survey research with the final three sources becoming more 

prevalent . Surprisingly, there has apparently been little research into the effect of systematic 

sampling error or bias on the estimates produced by the logit model. 
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2. 7 .6 Random Sampling Error 

Random sampling error reflects the probabilistic nature of the sample selection procedure It is an 

indication of the random differences between the sample and the population from which it was 

drawn. "Random sampling error (rse) is, all other things being constant, approximately 

proportional to the inverse of the square root of the sample size" (Hensher and Johnson, 1981 , p 

226) . Random sampling error is a consequence of sample size and population variance (Hensher 

and Johnson, 1981, p 226) and can be reduced by either increasing the sample size or through 

exploiting the variance characteristics of groups of individuals in the population. 

The bootstrap research of Gordon, Lin, Osberg, and Phipps ( 1994) looked specifically at the issue 

of random sampling error. In particular, they investigated two important issues associated with 

the application of dichotomous lo git and probit choice models, namely instability in the estimation 

of parameters and standard errors, and variation between the quantitative results generated by 

these different models . They used an existing data set of 18 ,350 observations to construct a 

model of female labour force participation with 22 independent variables and the dependent 

variable being the dichotomy participant/not a participant. 

Random subsets of observations converging toward the full sample size were drawn from the 

complete data set and a model fitted to these. The resultant paths of convergence for one of the 

independent variables demonstrated that probit parameter estimates were not stable until sample 

sizes of over 10,000 were attained while the standard errors approached a stable level after 4000 

observations (Gordon et al, 1994, p 19-20). This analysis was not undertaken for logit. 

Further to this, Gordon et al ( 1994) examined stability by computing for logit, probit, and OLS 

models the number of times out of twenty independent runs that the estimated parameter value lay 

within the 95% confidence interval of the full sample-value of the parameter. They found for all 

three methods that " samples of 9,000 to 10,000 observations are required before the researcher 
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can be reasonably certain of obtaining coefficient estimates within a 95 percent confidence interval 

around the full-sample estimates" (p24). 

In comparing the lo git and pro bit models, Gordon et al ( 1994) compared the marginal effects of a 

given change in the independent variable of interest on the predicted probabilities of labour force 

participation (p26). The results showed the logit model predicted marginal effects 2.5 percent 

higher than the probit model for small sample sizes but as the sample increased over 10,000 

observations, the difference increased to four percent (p 29) . 

This study is promising but requires further extension as only one of the independent variables has 

been analysed and it is unknown if the patterns can be generalised to the remaining variables. 

More importantly, the use of an actual data set confounds the generalisability of the results as 

effects such as interactions between the independent variables and misspecification have not been 

controlled for in the design . Monte Carlo simulation through the use of artificially generated data 

sets could resolve this issue. Nevertheless, the differences appear to substantial given the sample 

sizes of most MNL studies. 
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2.7.7 Summary 

There has been comparatively little research on the effect of the possible sources of error on the 

MNL estimates and probability forecasts . This is probably an acknowledgement that solutions to 

these problems are complicated and costly to implement in practice. The more general MNP 

model is rarely used in marketing mainly for these reasons . Surprisingly, of the six sources of 

error, systematic sampling error or bias has been the least researched . The performance of the 

MNL model in conditions of bias is important given that in marketing, it has been calibrated on 

samples drawn from the population of interest. 

Furthermore, the stability of the MNL model when exposed to sample bias (as well as the other 

errors) is an important consideration because it provides some indication of the soundness or 

otherwise of the assumptions underlying it. 
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2.8 Monte Carlo Research 

Monte Carlo or simulation studies investigate the relationship between actual or postured data 

and simulated data from an assumed model. The simulated data is generated by drawing random 

samples from a known population distribution. The Monte Carlo method serves two main 

purposes. First, the likeness of the real and simulated data serves as an indication of the 

"goodness-of-fit" or reliability of the model (Ripley, I 987, p 4). Second, the Monte Carlo 

method can be used to derive the sampling distribution of the test statistic in cases where the 

distribution in the population is known (Noreen, 1989, p 44) . 

"The key element in the Monte Carlo sampling method, as in conventional parametric methods, is 

the population that is specified in the null hypothesis" (Noreen, 1989, p 49) . Populations that can 

be sampled include the normal, exponential, log, and uniform distributions. Monte Carlo is similar 

to bootstrapping in that random samples are drawn from a known distribution to yield a sampling 

distribution. The main difference is bootstrapping takes samples from an actual data set collected 

from the population and therefore imposes the distribution of the actual data set on the 

subsequent sampling distribution . 

Monte Carlo methods are usually employed to address mathematical problems that have proved 

intractable and unmanageable to other forms of analysis . These methods have been used to 

analyse the bias and variance properties of estimates, the power of different tests, compute 

unbiased predictors in nonlinear models and a number of other inferential statistical applications 

(Gourieroux and Monfort, 1993, pp 5-6). In the field of discrete choice analysis, the Monte 

Carlo method has been employed on a number of occasions (Chen and Anderson, 1993 ; Horowitz 

and Louviere, 1993; Bunch and Batsell, 1989; Johnson, Meyer, and Ghose, 1989; Horowitz, 

1981 ; Wittink and Cattin, 1981 ). 

Chen and Anderson ( 1993) used Monte Carlo to investigate the small sample properties of the 
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logit maximum likelihood estimator. The utility of each alternative was generated by randomly 

drawing values of the parameters of the independent variables from a normal distribution, 

summing these values, and adding an exponential deviate (Chen and Anderson, 1993, p 243). 

Then, the individual response was determined for each choice set by assigning a value of 1 to the 

alternative with the highest utility for each individual and 0 to the other alternatives . Their 

reasons for sampling in this way are not clear but may be due to the fact that they were trying to 

control the value of the scale parameter for each model, and this process allowed this . 

The MNL is frequently evaluated by using the estimates it makes to predict the choices in a 

holdout sample. Horowitz and Louviere (I 993) used Monte Carlo to examine the finite-sample 

properties of a test they developed to compare predicted and observed choices (p 271 ). They 

generated estimation and test data sets " ... by randomly sampling from a specified MNL model" 

for sample sizes of 100, 250, and 500 and repeating the process 1000 times to gain estimates of 

the size of the tests (Horowitz and Louviere, 1993, p 275). They concentrate on drawing random 

values of parameters rather than random individuals from a known distribution . 

Bunch and Bat sell ( 1989) used Monte Carlo to determine the relative precision of the estimates 

produced by the maximum likelihood, minimum chi square, minimum Pearson chi square, 

nonlinear least squares, and ordinary least squares estimators (p 57). Two factors were varied in 

a controlled fashion in the generation of the data : the scale parameter ( 40 percent explained 

variance and 70 percent explained variance) and the replication factor representing the number of 

responses in each cell ( I 0, 40, and 80) . "Repeated selections were simulated by first calculating 

the true choice probabilities for each subset and then drawing multinomial random vectors with 

the appropriate replication factor r" (Bunch and Batsell, 1989, p 60) . The reasons for this 

distribution and method are not explained. 

Johnson, Meyer, and Ghose ( 1989) examined the performance of the compensatory MNL model 

in non-compensatory environments. A number of different decision rules were simulated 

including elimination by aspects, lexicographic, conjunctive, phased EBNcompensatory, random, 
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and additive compensatory. Of particular interest to this study is the last decision rule. Individual 

reponses in this situation were simulated by drawing samples from a normal distribution of 

parameter estimates. Furthermore, Johnson, Meyer, and Ghose ( 1989) introduced variance in the 

choices by adding random noise to the parameters on each trial (p 258). This was achieved by 

sampling from a normal distribution with a mean of zero and a variance of 0.2. "Our simulations 

therefore can be thought of representing the choices made by a homogenous segment of decision 

makers whose decision criteria contain a reasonable and realistic amount of random error" 

(Johnson, Meyer, and Ghose, 1989, p 259). This study was one of the few to explicitly discuss 

the nature of their method. 

In the most comprehensive Monte Carlo study to date, Horowitz ( 1981) explored the impact of 

sampling, specification and data errors on the choice probability estimates produced by legit 

models . He generated a data set of 1000 observations for each type of problem investigated 

though the method he utilises to generate the data set is not clear. Furthermore, Horowitz ( 1981) 

does not seem to account for the scale parameter which could confound his results. 

Wittink and Cattin ( 198 1) use Monte Carlo to assess the predictive validity of models fitted to 

data generated under varying conditions. They used preference rank order data at the individual 

level in their investigation which is not entirely legitimate as the logit performs best on choice 

based data at the aggregate level. Again, their method for generating data is not lucid. 
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3.0 OBJECTIVES 

The overall objective of this research was to fill the apparent gap in the existing modelling 

literature by examining the effect of systematic sampling error ( or bias) on the parameter 

estimates made by the multinomial logit (MNL) choice model. At issue is the sensitivity of the 

logit model to this form of error and consequently, the generalisability of the estimates it makes to 

other similar populations. In marketing, it is customary for the MNL to be fitted to samples . It 

would be desirable, for practitioners and academics alike, if in the presence of sample bias, the 

MNL model produced estimates that were strongly representative of the effects being measured . 

Evidence of this nature would support the MNL 's calibration on moderately biased samples, as 

the researcher would be confident that the effect being measured was being reflected in the 

parameter estimates more than the error. Furthermore, the assumptions underlying the MNL 

would to some extent be corroborated, thus providing tentative support of the robustness of the 

model in predicting choice. 

In this study, an insensitive model is one whose estimates reflect the effect being measured rather 

than the error or bias present in the data . A sensitive model is one which in the presence of error 

produces estimates that reflect that error more than the effect For example, a binary logit model 

(n= I 00) estimated on an error-free sample produces the following estimate V (X;, Y;) = IO X; + 

SYi· A sensitive model estimated on a biased sample, such that the ten consumers most 

responsive to variable X are missing, would yield, for example, the estimate V (X;, Y;) = 6 X; + 

SYi (i .e. the inability to sample the highest ten percent of the population on variable X produced a 

greater than ten percent change in the parameter estimate of X). Conversely, an insensitive model 

estimated on this same sample might produce the parameters V (X;, Yi)= 9.9 X; + SYi. 

Furthermore, if the sample is biased on one independent variable (as in the previous example 

where bias occurred on X), then it would be desirable for the estimation of other effects (such as 

Y above) to occur independently of this. That is, the estimate of Y should not be influenced by 
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the bias on X. If it is, it indicates further instability in the model. It is not clear, a priori, whether 

this independence should hold for the MNL model, nor under what circumstances. 

The specific objectives of this study were: 

I. To verify that the Monte Carlo method used in this study recovered the original or ' true ' 

parameter values by comparing these original estimates with the expected values of the 

unbiased sampling distribution: 

H01 The expected values of the coefficients in the unbiased sampling 

distribution equal the original (or ' true') coefficients, and; 

H 11 The expected values of the coefficients in the unbiased sampling 

distribution are significantly different from the original coefficients at the 

95 percent level of confidence. 

2. To determine if the effect of biasing a sample by a fixed proportion on one variable created 

the same proportional change in that variable ' s coefficient estimates: 

H02 The change in the normalised expected value of the biased variable from 

the unbiased to the biased sampling distribution equals the proportion of 

sample bias being simulated, and; 

H 12 The change in the normalised expected value of the biased variable from 

the unbiased to the biased sampling distribution is greater than the 

proportion of sample bias being simulated at the 95 percent level of 

confidence. 

3. To determine if biasing a sample by a fixed proportion on one variable produced no 

change in the coefficient estimates of the other independent variables: 
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H(13 The change in the normalised expected values of the variables upon which 

sample bias did 1101 occur, from their value in the unbiased to the biased 

sampling distribution equals zero, and; 

H 13 The change in the normalised expected values of the variables upon which 

sample bias did not occur from the unbiased to the biased sampling 

distribution is significant at the 95 percent level of confidence. 

4. To ascertain if the ratio between the unbiased independent variables is not changed by the 

simulated sample bias. Stated differently, this tests if some variables are more sensitive to 

the simulated sample bias than others : 

H0~ The change in the normalised expected values of the variables upon which 

sample bias did 1101 occur is not significantly different from other equivalent 

variables, and; 

H,~ Any change in the normalised expected values of the variables upon which 

sample bias did not occur is significantly different from other equivalent 

variables at the 95 percent level of confidence. 

And, as an aside to the main issue of sensitivity of the MNL coefficients to bias: 

5. To establish the accuracy of the sampling errors predicted by the MNL estimation 

software by comparing them with the standard deviation of the unbiased sampling 

distribution. 
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4.0 METHOD 

This study used the Monte Carlo method to examine the behaviour of the MNL model when 

calibrated on biased samples. Specifically, the impact on the parameter estimates of removing 

varying proportions (five, ten and fifteen percent) of simulated individuals from both tails of the 

sample distribution was investigated. The extent to which marketing researchers fail to sample 

individuals at the extremities is unknown. Nevertheless, examining the variability of the MNL 

estimates in these conditions, arguably, provides a more rigorous test of the model's stability than 

removing individuals nearer the centre of the distribution. 

The Monte Carlo method produces a sampling distribution for a particular statistic by drawing a 

sufficient number of random samples from a defined population with a specified distribution. In 

this case, the population is defined in terms of the parameter estimates gained from a ' true' MNL 

model of vacation destination choice behaviour. This true model was derived by calibrating the 

MNL on a sample of 164 individual's aggregated responses to the twelve dichotomous choice 

sets ( see section 4. I for more details on the design) . The model calculated the effect of nine 

attributes of vacation destination and the intercept on choice. 

Consequently, these true estimates were used in combination with the MNL to calculate the 

probability that the first alternative in each choice set in the original design would be selected. 

These probabilities were retained as the ' true' likelihood of a simulated individual selecting the 

first alternative. A computer programme was written in Fortran 77 to generate samples of 

simulated individuals. 

For each simulated individual, twelve random (uniform) numbers were produced representing that 

individual's response to the twelve choice sets. If the random number was less than or equal to 

the true likelihood for the first alternative, then the individual was deemed to have selected the 

first alternative. Conversely, if the random number was greater than the true likelihood, then the 
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second alternative was judged to have been chosen. To produce one simulated individual, this 

process was performed for each of the twelve choice sets and twelve respective random numbers. 

Each simulated individual is produced so that the interaction between the attributes equals zero. 

This is because this study is primarily interested in the impact of bias on the nine main effects 

rather than any interactions between them. Consequently, constraining the interactions to zero 

controls for any possible confounding effect they may have on the results. 

Initially, an unbiased sampling distribution of the MNL coefficients was created. The expected 

values of this sampling distribution served two purposes. First, they were compared with the true 

estimates used to produce the simulated individuals. This acts as a guide to the Monte Carlo ' s 

ability to recover the true population values. Second, these expected values were the benchmark 

to which the expected values in biased sampling distributions could be compared. Furthermore, 

the characteristics of the unbiased sampling distribution as expressed by the kurtosis, skewness, 

and range were used to test the normality of the estimates. This is important as the estimation 

software used assumes that the coefficients are normally distributed when computing the standard 

errors. 

The unbiased sampling distribution was produced by repeatedly fitting the MNL to randomly 

generated unbiased samples of 164 simulated individuals . The individuals were created as 

described above and their responses to the twelve choice sets were aggregated. The MNL was 

estimated by regressing these aggregate responses with the design matrix using the NTELOGIT 

estimation programme. In total, the MNL was fitted to I 0,000 samples of 164 individuals. 

Biased sampling distributions of the MNL coefficients were created for each type of sample bias 

under investigation. Sample bias was simulated by eliminating those individuals whose responses 

were most (or least) highly correlated with one of the nine explanatory variables (the intercept is 

not included). This resulted in 54 different sampling distributions being produced (bias on nine 

variables at the tails of the distribution at three levels: 9 X 2 X 3 = 54). The biased sampling 

distributions were created by repeatedly fitting the MNL to randomly generated biased samples of 
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164 simulated individuals. A biased sample was created by generating 173, 182, and 193 

simulated individuals for five, ten, and fifteen percent bias respectively, then removing those who 

were most ( or least) highly correlated with one of the nine explanatory until 164 individuals 

remained . 

In this study, the MNL is always fitted to samples containing 164 simulated individuals. This 

permits a direct comparison of the various biased sampling distributions with the benchmark 

unbiased sampling distribution . Moreover, it enables a comparison of the parameter estimates and 

standard errors in the original data set of 164 individuals with the expected values and standard 

deviations in the unbiased sampling distribution (objectives one and five) . 

Two other methods could have been used to address the objectives of this study, namely calculus 

and bootstrapping. A review of the research revealed that mathematically solving problems 

relevant to the MNL had only been undertaken for limited independent variables (usually two) and 

for dichotomous choice. For a problem of this size with nine independent variables and a variety 

of different methods for biasing the sample, the Monte Carlo approach was viewed as offering a 

more flexible procedure. Bootstrapping involves drawing random sub-samples from an actual set 

of data to derive the theoretical sampling distribution . lt was rejected as a method for deriving 

the unbiased and biased sampling distributions as the results would have been confounded with 

other factors such as interactions between the independent variables and as such, the 

generalisability of the results of this type of study would have been questionable. 

The following sections outline in more detail than above, the original design and true model , the 

method used to generate individuals and samples, the procedure used to simulate sample bias, the 

procedure used to produce the unbiased and biased sampling distributions, the Fortran 77 

programme, and the scale parameter normalisation. 
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4.1 Experimental Design and Calibrated MNL Model 

To produce results that were relevant to the MNL model ' s application in a marketing 

environment, the results of a study on destination choice were used to generate the required 

sampling distributions. This study had examined nine variables and their impact on the choice of 

vacation destination. These variables included : 

- total cost of the vacation; 

- the distance to travel to the vacation destination; 

- the number of activities available at the destination that the respondent likes to do; 

- weather and climate; 

- the need for concern about food and/or water; 

- the ease of undertaking the vacation without learning a new language; 

- the beauty of the scenery; 

- safety with regard to crime and terrorism, and; 

- whether the destination had new or different things to see and experience. 

A 29 fractional factorial , main effects design was used by the original researchers to estimate the 

coefficients of these nine variables (see table I for the design). All main effects were balanced 

across the design. The fact that main effects alone and not interactions were examined in this 

research is not viewed as being to the detriment of the results and their generalisability. Although 

one of the reasons given for measuring the values of the interactions is to reduce the level of bias 

in the parameter estimates (Louviere, 1988, p 40), the method used to generate individuals in this 

study means that all interactions should be equal to zero. Nevertheless, using a design that 

estimates the interactions as well as the main effects may reduce the overall sensitivity of the 

MNL model to bias. The extent to which this could be the case is unknown. 
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Table l. Design of the 12 Choice Sets in the 29 Factorial Main Effects Vacation 

Destination Choice Experiment. 

P1 P2 PJ P .. Ps p6 P1 Ps p9 
Choicc S..:t How much How long is How many How good Need for Eas..: of Ho,, much Is it safe New 

Alt..:mativ..: is the total cost thc trip to things I like bad is the conc..:rn getting bv beautiful from crime different 

of a vacation go.:t there to do can I do \-veatht:r abo ut food ,,ithout anew scenery is terrorism things to see 

climatc and or water language th..:re cxperi..:nc ..: 

I A LOW LONG MANY BAD LITTLE HARD MUCH UNSAFE MANY 

18 H!GI l SHORT FEW GOOD MUCII EASY LITTLE SAFE FEW 

2A LOW SHORT MANY BAD LITTLE EASY LITTLE SAFE MANY 

2B Hl(il-1 LONG FEW (iOOD M1 JCI I ! !ARD MlJCH UNSAFE FEW 

.1 /\ lll(iH I.ONG FEW 8/\.D J,ITTLE !!ARD LITTLE SAFE FEW 

.18 LOW SIIORT MANY (iOOD MlJCI I EASY MlJCII UNSAFE MANY 

4 A HIGH SHORT MANY GOOD LITTLE HARD MUCII SAFE FEW 

48 LOW LONG FEW BAD MUCH EASY LITTLE UNSAFE MAN Y 

5A LOW SHORT FEW BAD MUCH 1-IARD MUC H UNSAFE FEW 

58 HIGH LONG MANY GOOD LITTLE EASY LITTLE SAFE MANY 

6A HIGH LON(i FEW CiOOD LITTLE EASY MUCII lJNSAFE MAN Y 

6B LOW SI IORT MAN Y BAD MlJCH !!ARD LITTLE SAFE FEW 

7A I ll( il-1 SIIORT MANY GOOD M1JCII IlARD LITTLE UNSAFE MANY 

7B LOW I.ONG FEW BAD LITTLE EASY MUC! l SAFE FEW 

XA lll(il-! SIIORT FEW BAD MUCII EASY MUCII SAFE MANY 

8B LOW LONG MANY CiOOD LITTLE IlARD LITTLE UNSAFE FEW 

9A LOW SIIORT FEW CiOOD LITTLE EASY LITTLE UNSAFE FEW 

9B lll(iH LONG MANY BAD M1JCI I IlARD MUCH SAFE MANY 

I0A LOW LON(i FEW CiOOD MlJCII !!ARD I.ITTLE SAFE MANY 

1013 Hl(ill SIIORT MANY BAD LITTU·: EASY MlJCI I UNSAFE FEW 

II A LOW LON(i MANY 000D MUCI I EASY MUCH SAFE FEW 

II 8 HIGH SHORT FEW BAD LITTLE HARD LITTLE UNSAFE MANY 

12A HIGH LONG MANY BAD MUCH EASY LITTLE UNSAFE FEW 

12 8 LOW SHORT FEW GOOD LITTLE HARD MUCH SAFE MANY 
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In the original study, a total of 164 individuals responded to all twelve of the dichotomous choice 

situations. The data set consisted of their aggregate responses. These were used to estimate a 

logit model by regressing their aggregated responses against the design matrix using the 

NTELOGIT estimation programme. This yielded the coefficient estimates in table 2. Variable 

seven (scenery) has the greatest impact on vacation destination choice than the other variables; 

cost (variable one) has the least impact . The presence of two variables has a negative impact on 

vacation destination choice, variable one (cost) and variable nine (newtodo). It is not surprising 

that cost decreases the chances of choosing a particular destination, but it is unexpected that "a 

location with more new activities" has less chance of being selected. The asymptotic t-values for 

the nine independent variables and the intercept indicate that the hypothesis that the coefficients 

are equal to zero can be rejected at the 95 percent level of confidence. With an adjusted rho­

squared of . 9 1, this model has an excellent fit to the data and is a more than adequate 

representation of choice in this market. 

Table 2. MNL Model of Vacation Choice Behaviour Estimated on the Original Set of 

164 Individuals 

VARIABLE COEFFICIENT STD ERROR T 

P1 scenery .... 0.965684 ..... . . 0 .07 1767 13.4558 

P2 long . ... . .. . ... 0 .880865 . . . . . . . 0.070605 12.4759 

P~ todo ........... 0.874663 ... . ... 0.067876 12.8861 

P~ climate ...... . .. 0.599239 . . ..... 0.070007 ...... 8.5597 

Ps safety ....... . .. 0.466055 . ...... 0 .071382 . . . ... 6.5290 

P6 language .... .. .. 0.429348 .. . . . .. 0 .07192 1 ...... 5.9697 

p9 newtodo . .. ... . -0.31284 1 . . . . ... 0.060666 . .... -5 .1568 

Ps food . . . .. .... . . 0 .269242 . . .. . . . 0.069957 .. . ... 3.8487 

Po intercpt .. .. . . ... 0.231840 .. .. . . . 0 .067090 ..... . 3.4557 

p1 cost .. . ... . ... -0. 130643 . . . . . . . 0.064260 . .... -2.0330 

L(ZERO): . . . . . ... . -472.49 

-2(L(0)-L(B)): . . . . . 884.00 

RHO SQ: . . . . . . . . . . . 93 546 

L(BET A): . .. ... . ... -30.49 

D.F.: ... .... .... . ..... 10 

ADJUSTED RHOSQ : . . 91430 
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The parameter estimates gained from this aggregate MNL model were treated as the 'true' values 

for vacation destination choice behaviour in the Monte Carlo study and were retained for use in 

the generation of individual level responses. In effect, we are assuming that the MNL is the true 

model of vacation choice behaviour. The main consequence of this is that the sampling 

distributions produced in this thesis represent a group of consumers with homogenous MNL 

preferences. This is restrictive in that most consumer markets consist of individuals or groups 

with heterogenous preferences. Therefore, the potential for sampling bias is greater if the 

heterogeneity is not accounted for. As a result , if the MNL is found in this study to be relatively 

insensitive to bias, this does not mean that this is also the case for heterogenous markets. 

However, if the MNL is found to be sensitive to sampling bias in this instance, then it is likely to 

be more sensitive when calibrated in heterogenous markets . 
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4.2 Generating Individuals and Samples 

After fitting the MNL model to the original set of 164 individuals ' aggregated responses and 

assuming that the subsequent estimates were true, a method for producing simulated individuals 

and samples was required . This was accomplished by using the original estimates (table 2) and 

the MNL to calculate the probability that the first of the two alternatives in each of the twelve 

choice sets in the original design would be selected. These probabilities or ' true' likelihoods were 

then used as ' cutoff values in the generation of random individuals. The cutoff values for the 

twelve choice sets were: 

Choice Set One = .66372888; Choice Set Two = .92773445; 

Choice Set Three = .17265963 ; Choice Set Four = .95538925; 

Choice Set Five = .04968568; Choice Set Six = .64 114886; 

Choice Set Seven = .50192799; Choice Set Eight = .45641192 : 

Choice Set Nine = .41982691 ; Choice Set Ten = .63221849; 

Choice Set Eleven = .94095225; Choice Set Twelve = .08343799. 

For each new individual , 12 random numbers (0 ~ X ~ I) were generated and represented that 

individual ' s response to the twelve choice sets. If the first random number was less than or equal 

to the cutoff for choice set one, then the simulated individual was treated as having selected the 

first alternative. Conversely, if the first random number was greater than the cutoff for choice set 

one, then the simulated individual was treated as having selected the second alternative. For each 

individual, this was continued for all remaining eleven respective choice sets using the random 

numbers and cutoffs. The result was a simulated individual and their responses to the twelve 

choice sets. 

This process is analogous to individuals whose responses were drawn from a Bernoulli 

distribution: "This serves as a model for any situation in which we can think of a trial being made 

with probability p of ' success' and probability ( 1 - p) of 'failure' " (Cooke, Craven, and 
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Clarke, 1990, p l 09) . This would seem appropriate for the process being modeled in this case; as 

we assumed the MNL to be the true model of vacation behaviour, the individual choice of an 

alternative in a choice set depended upon a predetermined probability of success and failure . The 

use of this Bernoulli distribution should not impact upon the distribution of the MNL coefficients 

as the maximum likelihood estimator produces asymptotically normal estimates regardless of the 

distribution being sampled (Ramanathan, 1995, p 76). 

The number of individuals generated depended on the type of bias being simulated . For the 

unbiased sampling distribution, samples of 164 were required . For five percent bias, samples of 

173 were required so that nine individuals could be removed from the sample in order to simulate 

sample bias. For ten percent bias, samples of 182 were needed so that 18 people could be 

deleted. For fifteen percent, samples of 193 were generated so that 29 individuals could be 

removed . 
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4.3 Biasing the Sample 

The individuals were removed from the sample on the basis of their 'score ' on one of the 

independent variables . An individual with a ' high score' was someone whose choice was highly 

correlated with the particular indepedent variable An individual with a ' low score' was the 

opposite and is analogous to someone whose choice is not influenced by that particular 

independent variable . As the experimental design was perfectly balanced, each effect appeared in 

the design 24 times, 12 times for each level ( these levels were comparable to the presence or 

absence of the effect) . Consequently, an individual ' s ' score ' was determined by calculating the 

number of times a respondent had selected an alternative that contained the independent variable 

upon which the sample was being biased when that variable was ' present '. 

Individuals were then removed from the sample on the basis of their score. If bias at the top of 

the distribution was being simulated, then individuals were first removed if they had a score of 

twelve until the required number had been deleted . If the number of people with a score of twelve 

was less than the number that had to be removed , then individuals were then removed if they had 

a score of eleven. This process was continued until the desired number of people had been 

deleted . 
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4.4 Generating the Unbiased Sampling Distribution 

The unbiased sampling distribution was generated by fitting the MNL to 10,000 random samples 

of 164 simulated individuals . This involved: 

1. Calculating for the first alternative in the twelve choice sets, the probability that that 

alternative would be chosen : 

where : xA 

p 

A.x 
e p A 

A.x p A 

e + 

the attribute descriptions of the first alternative 

the attribute descriptions of the second alternative 

the vector of true MNL regression coefficients . 

2. Generating a 164 X 12 matrix (RANDn,:) of random numbers (~) to represent each 

individual ' s response to the twelve choice sets (0 < ~ < 1 ). 

3 . Converting the matrix of random numbers above into a discrete format (0, 1) where 1 is 

equivalent to a positive response, or selection of the first alternative ( and hence, a negative 

response to the second alternative), and O represents non-selection of the first alternative 

(and therefore, a positive response to the second) 

If RANDn,: ~ P(AES") 

If RANDn,: > P(AES") 

then 

then 

Where: J = 1 to 164 

K = 1 to 12 
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4. The individuals' responses to each choice set were aggregated : 

164 

AGGRESPn.: = E1 RESPn,: 

5. This aggregate matrix was combined with the design matrix and the NTELOGIT 

estimation yielded the unbiased estimates of P- These ten estimates were then written to 

file . 

6. This process was repeated 10,000 times to yield an unbiased sampling distribution of the 

complete MNL model (nine independent variables plus the intercept) . 
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4.5 Generating the Biased Sampling Distribution 

The biased sampling distributions (n = l 0,000) were generated using a similar procedure: 

1. Calculating for the first alternative in the twelve choice sets, the probability that that 

alternative would be chosen : 

where : XA = 

Xs = 

p = 

P·x e .1 

A.x 
I-' A 

e + 

the attribute descriptions of the first alternative 

the attribute descriptions of the second alternative 

the vector of true MNL regression coefficients. 

2. Generating a T X 12 matrix (RANDnJ of random numbers(~) to represent each 

simulated individual's response to the twelve choice sets (0 < ~ < l ). The size of T 

depended upon the level of bias being investigated . In this case, T equaled : 

I 73 when the level of bias was fi ve percent; 

182 when the level of bias was ten percent , and ; 

193 when the level of bias was fifteen percent. 

3. Converting the matrix of random numbers above into a discrete format (0, 1) where l is 

equivalent to a positive response, or selection of the first alternative ( and hence, a negative 

response to the second}, and 0 represents non-selection of the second alternative (and 

therefore, a positive response to the first) : 

If RANDn,: ~ P(AES") then RESPn,: = 1 
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If RANDn.: > P(AESn) then 

Where : J = 1 to T 

K = 1 to 12 

RESPn.: = 0. 

4. Removing T - 164 simulated individuals from the matrix RESPlk For each individual, 

create a new variable (SCORE) which equals the number of times they selected an 

alternative that contained the independent variable (attribute) upon which the sample was 

to be biased. This was achieved by comparing their response to the first alternative with 

the design of that alternative . If they selected the first alternative (RESP n.: equals 1) and 

the alternative contained the bias variable at the required level (DESIGNu., equals 1 ), then 

one would be added to their score. Alternatively, if their response to alternative A was 

negative (RESP_r;,: equals 0) and alternative A didn ' t contain the bias variable at the 

required level (DESIGNn.: equals 0), then as the design was balanced and the choice a 

dichotomy, this was treated as equivalent to that individual selecting the bias variable in 

the second alternative, so one was added to their score. 

If RESP n,: = DESIGND,l then SCORE.fh = SCOREn.: + I 

Where : J = 1 to T 

K = 1 to 12 

L = 1 to 12 

M = bias variable (from 1 to 9) 

DESIGN is the design of the nine attributes of alternative A 

The individuals to be removed to simulate bias are then ' marked ' so they are not 

aggregated in the RESP matrix in the next step. This was achieved by changing each Jin 

the matrix RESP n.: to -1 for those individuals to be removed . The individuals to be 

deleted were determined by their score from above and the type of bias being simulated. 

If individuals were being removed from the top (bottom) of the distribution, then those T-
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164 individuals with the highest (lowest) score were marked. 

5. After biasing the sample, the remaining individuals ' responses to each choice set were 

aggregated : 

16~ 

AGGRESPJK = ~
1 

RESP_ri-,: 

6. This aggregate matrix of responses was added to the design matrix and the NTELOGIT 

estimation program regressed it against the design matrix to yield the unbiased estimates 

of P These ten estimates were then written to a file . 

7. This process was repeated 10,000 times to yield biased sampling distributions of the 

complete model (nine independent variables plus the intercept) . 
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4.6 FORTRAN 77 Computer Programme 

A computer programme was written in FOR TRAN 77 to produce the MNL coefficient estimates 

required for the biased and unbiased sampling distributions. The Monte Carlo programme written 

was basically a shell around the existing FOR TRAN 77 lo git estimation programme called 

NTELOGIT The main change to this was in the command input subroutine (SUBROUTINE 

CMDINP) which reads the information from a pre-written command file each time before it 

estimates the model. This command file sets the format and characteristics of the data and design 

matrices of the MNL model. As these variables were identical for the models estimated in this 

study, rather than having the estimation programme read the command file before each 

calibration, the characteristics were fixed within the estimation programme to decrease time 

requirements. The output was also adapted so that the only information being returned was the 

ten coefficient estimates. 

The Monte Carlo programme consisted of two main subroutines. The first , SUBROUTINE 

GENERA TE produced the 164 x 12 matrix of aggregated biased or unbiased responses to the 

first alternative in the twelve choices. The second SUBROUTINE ESTIMATE consisted of the 

modified NTELOGIT estimation programme. The other main feature of the programme is the 

FUNCTION RANDOM which is the Applied Statistics Algorithm AS 183 ( 1982) that returns a 

psuedo-random number between zero and one. 

The programme is in Appendix A and contains extensive comments explaining its structure. 
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4. 7 Scale Parameter Normalisation 

As mentioned in the literature review, the scale parameter has a direct impact on the size of the 

coefficients estimated by the MNL model. The scale parameter is inversely related to the error 

variance (Ben-Akiva and Lerman, 1989, p 104). As the variance approaches infinity, the scale 

parameter tends towards zero . Conversely, the scale parameter tends toward infinity as the 

variance approaches zero. The effect of this on the P's is not a minor consideration. Large scale 

values generate large P's and vice versa. Consequently, the scale of the P's determines the 

amount of variance explained by the systematic component of the utility function relative to the 

random component. 

The value of the scale parameter of the P' s is especially important when MNL models estimated 

on different samples are being compared (Swait and Louviere, 1993). This is because any 

observed disparity between the models ' estimates could be as a result of scale parameter variation 

rather than actual sample choice differences . Therefore, it is reasonably clear that scale parameter 

differences have to be removed before any variation in the coefficients from separate samples can 

be examined . 

In this study, the expected values of the ten coefficients in the unbiased and biased sampling 

distributions are normalised as follows: 

Normalised E(Pbiased) = E(Pbiased) X 

where: \ E(Pb) \ 

\E(Pu) I = 

u=I 

the absolute value of the expected values of the 

coefficients in the biased sampling distribution; 

the absolute value of the expected values of the 

coefficients in the unbiased sampling distribution, 

63 



u and b 

Normalised EcPunhiast:d) 

where: I E(Pu ) I 

u and b 

and; 

the coefficients in the unbiased and biased sampling 

distributions from I to 8, excluding the biased 

variable and the intercept from the ten estimated in 

the MNL model. 

the absolute value of the expected value of the 

coefficients in the unbiased sampling distribution; 

the absolute value of the expected value of the 

coefficients in the biased sampling distribution, and; 

the coefficients in the unbiased and biased sampling 

distributions from I to 8, excluding the biased 

variable and the intercept from the ten estimated in 

the MNL model . 

This normalisation procedure assumes that the expected values of the coefficients in the unbiased 

and biased sampling distributions are linearly related . Therefore, the scale parameter differences 

between the two sampling distributions can be controlled for by a multiplicative scalar, 

representing the slope of the best fit straight line to the combined coefficients. Consequently, to 

adjust for the scale differences between the unbiased and biased sampling distributions, the 

expected values of all the independent variables are adjusted for by the slope of a straight line 

fitted to the expected values of the coefficients of the unbiased variables. 

The biased variable and the intercept were not included in the normalisation formula. The biased 

variable is excluded as the effect of the sample bias on its coefficient would be confounded with 
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that of the scale parameter. As a result, it would be unwise to introduce other potential errors in 

the normalisation procedure. The intercept is excluded on the basis of the research by Lee ( 1982) 

and Swait and Louviere ( 1993 ). Lee ( 1982) found the intercept was biased in conditions where a 

relevant variable had been omitted. Swait and Louviere ( 1993) also found that the relationship 

between the constants of two different data sets was not consistent with the other coefficients. 

The reason for this is connected with the role of the intercept in maintaining the aggregate shares 

of the alternatives (Swait and Louviere, 1993, p 311) rather than measuring any distinct effect in 

the choice situation. It should be noted, however, that for the normalisation of the original 

coefficients and the expected values of the unbiased samplinf distribution ( section 5. 1 ), all 

unbiased variables were included . 

This normalisation procedure is not ideal for a number of reasons . First, the use of the expected 

values of the sampling distributions may introduce error into the process. A better method would 

involve normalising each of the 10,000 estimates of the unbiased variables in the unbiased 

sampling distribution with regard to their value in the biased sampling distribution. The average 

of these 10,000 normalised coefficients could then be used in the analysis . This would reduce the 

error in the normalisation as each model ' s distinct scale parameter would be included in the 

calculation. Despite this, it is speculated that any error introduced here would not be substantial 

Second, a more suitable method that returns consistent estimates of the relative scale parameter 

between two data sets was proposed by Swait and Louviere ( 1993) The assumption is made that 

the MNL model is the true model of choice behaviour and that the specification of the model is 

the same for both samples. The data and design matrices of the two samples are then 

concatenated and a joint MNL model estimated . Following from this, the scale parameter of the 

first sample is fixed to one while for the second sample, the scale is changed until the log 

likelihood of the joint model is maximised. When this has been achieved, a consistent estimate of 

the relative scale has been attained. 

Neither of these methods for adjusting for the scale parameter are employed in this study due to 
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the complexity of calculation for the large sampling distributions used here. However, any 

replication should attempt to test the effectiveness of the normalisation function used here relative 

to these better methods. 
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5.0 RESULTS AND DISCUSSION 

5.1 Recovery of the original parameter values 

Initially, a comparison was made between the 'original ' or true coefficients from the MNL model 

estimated on the original 164 individuals and the expected values of the same coefficients in the 

unbiased sampling distribution. These original coefficients were used to generate the unbiased 

Monte Carlo sampling distribution and subsequent biased sampling distributions . Therefore, if the 

Monte Carlo method used in this study has any empirical validity, it should be able to produce a 

sampling distribution of parameter estimates with a mean ( or expected value) closely 

approximating the original or true coefficients used to construct it. If not, then the sample bias 

effects being simulated later could be confounded with the inherent variability of the Monte Carlo 

method . 

As previously mentioned, the 'original ' coefficients were obtained by estimating a MNL model on 

the aggregated set of 164 actual individuals ' responses to the 12 choice sets . An unbiased 

sampling distribution of the coefficients (n= I0,000) was then created by randomly generating a 

response to each of the 12 choice sets in the design (based on the original coefficients) for the 164 

simulated individuals, aggregating these individual's responses, and fitting the MNL to the 

ensuing data and design matrices. The expected values of the unbiased sampling distribution 

produced by the Monte Carlo method and the original sample parameters are shown in table 3. 

As the expected values of the unbiased sampling distribution and the original coefficients varied 

consistently and linearly, it was hypothesised that the deviation was a result of scale parameter 

differences (see section 4 . 7 for a discussion of scale parameter normalisation) . The expected 

values and original coefficients were then normalised to account for the difference in the 

respective scale parameters and these are also shown in table 3. Ideally, the normalisation would 
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have been performed separately for each of the I 0, 000 coefficients in the unbiased sampling 

distribution relative to the original coefficients. This would have provided a more accurate 

estimate of the variation between the scale parameters as each of the I 0,000 MNL model ' s 

coefficients have a different scale. However, and consistent with all scale parameter normalisation 

in this study, the expected values of the coefficients in the unbiased sampling distribution are used. 

The error introduced by this is conjectured to be smaller than the effects being measured. 

Table 3. How well does the Monte Carlo method recover the original coefficients? 

Indepedent Original Monte Carlo Normalised Normalised Difference in 
Variable Coellicicnt Expected Value Coet'ticient Expected Value Normalised Estimates 

0 Intercept ... 0.232 0.238 0.11 7 0.11 8 +0.00 1 

I Cost . . . . . . -0.3 13 -0.3 17 -0. 158 -0.157 +0.00 1 

2 Long -0. 13 1 -0.137 -0.066 -0.068 -0.002 
, 
.) Todo 0.881 0.894 0.445 0.443 -0.002 

4 Climate .. . 0.875 0.893 0.442 0.442 +0.000 

5 Food .. .... 0.599 0.6 10 0.302 0.302 0.000 

6 Language . .. 0.269 0.269 0. 136 0.133 -0.003 

7 Scenery .... 0.429 0.442 0.2 17 0.219 +0.002 

8 Safety ...... 0.966 0.985 0.487 0.488 +0.00 1 

9 Newtodo ... 0.46 1 0.466 0.233 0.23 1 -0.002 

No dilforl!nccs signilicanl at the 95 pt!rccnl kvcl of contidcncc 

In all cases, the discrepancy between the original coefficients and the normalised Monte Carlo 

expected values is minimal. Furthermore, for the normalised coefficients these differences are not 

significant at the 95 percent level of confidence so the null hypothesis Hot is confirmed. It could 

therefore be safely concluded that the mean coefficient point estimates produced by the Monte 

Carlo method have performed as expected (subject to a linear transformation) and any future 
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variance in their value can be attributed to the controlled experimental differences. 
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5.2 Impact of Sampling Bias upon the Parameter Estimates of the Biased 

Variable 

The degree to which sampling bias affects the coefficient estimates of the biased variables was 

determined by comparing their normalised expected values in the unbiased and biased sampling 

distributions. Biased sampling distributions were created under conditions where each sample of 

individuals on which the MNL model was to be calibrated was biased on each of the nine 

independent variables at each of the levels of interest. As a result , a total of 54 sets of biased 

sampling distributions (n = 10,000) were available for comparison, each one representing a 

specific variable upon which the sample was biased (nine), a different condition (individuals 

removed from the top or bottom) of bias, and a distinct level (five, ten, or fifteen percent 

removed) . Again, to maintain consistency in this study, all MNL models were fitted to samples of 

size 164. 

Table 4 illustrates the percentage change in the normalised expected values of the parameter 

estimates caused by the various forms of bias simulated . In other words, to what extent did the 

coefficients deviate between their unbiased and biased values in the respective sampling 

distributions . This was calculated as follows : 

Percentage change 

where : N E(Pu) 

N E(Pu) - N E{Ph) 

N E(Pu) 

is the normalised expected value of the biased variable in the 

unbiased sampling distribution, and; 

is the normalised expected value of the biased variable in the 

biased sampling distribution. 
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Table 4. How much does bias affect the value of the biased variable? 

Coetlicient of the T):'.pe of Bias 
variable on w hich Top Five Bottom Five Top Ten Bottom Ten Top Fitieen Bottom Filieen 

the sample ,,·as biased Pen;cnt Percent Pen:ent Pt:rcent Pen:cnt Percent 

l Cost -24.59 % +25 .35 % -42 .31 % +45 .00 % -62.39 % +62 .03 % 

2 Long -62 .12 +62 .57 -I 09 .38 + 104.64 -150.58 + 152.32 

3 Todo -8 .95 +7.72 -16.16 + 13 .22 -22 .22 + l 9.78 

4 Climate -9.40 +8.50 -16.50 + 14. 74 -22.45 +21 .95 

5 Food -14 .28 + 13.38 -23 .96 +23.53 -34.62 +33 .15 

6 Language -33 .90 +33 .09 -56 .68 +54.97 -79.26 +76.92 

7 Scenery ... -19. 74 + 18 .54 -33.90 +31 .66 -47 .28 +46 .31 

8 Safety .. . . . . -8.41 +8.00 -14.81 + 13 .54 -20.25 + l 9.64 

9 Newtodo -I 9.69 + 17.02 -28 .87 +30.04 -45 . 91 +41 .86 

All dift~n:nccs arc sig:nticant a t the 99 percent k Yd of confidence 

It would appear to be obvious that the estimates produced by the MNL are sensitive to bias. For 

the overwhelming majority of cases, the percentage change in the value of the parameters far 

exceeds the proportion of individuals removed from the sample. The null hypothesis H02 is not 

supported by these results . That is, when ten percent of the sample is removed, the expected 

change (ten percent) in the value of the coefficient is surpassed . 

Also significant is the fact that all the coefficients move in the expected direction. When the 

individuals who are particularly influenced by one variable are removed, the parameter estimates 

would be expected to decline and vice versa. This is important as it proves that the MNL 

estimates behave predictably even if their movement is somewhat greater than expected. 

Another interesting finding is the greater than 100 percent change in the coefficient of variable 

two when exposed to ten and fifteen percent bias. It not only increases two-fold in value, but 

when sample bias of ten and fifteen percent occurs at the bottom, the coefficient changes signs 
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from negative to positive. Additionally, there is a noticeable difference between the effect of 

removing individuals from the top from that of the bottom of the distribution. Despite a few 

exceptions, most notably for the coefficients with negative effects (variable one and two), deleting 

individuals from the top of the distribution has a greater effect than removing individuals from the 

bottom. This difference could not be explained by the standard errors, the kurtosis, or the 

skewness of the sampling distributions of the biased coefficients. 

Of most importance is the finding that the effect of the sampling bias depends upon the size of the 

respective parameters. Table 5 is a duplicate of the previous table except that the variables are 

ordered by the size of their coefficient (from largest to smallest). A plot of size of the original 

coefficients with the percentage effect of bias is shown in figure 1. 

Table 5. Does the affect of the bias depend upon the value of the coefficient of the 

biased variable? 

Codfa:icnt of the T)'.p~ Qf Bias 
, ·a ria hie on ,,·hich Top Five 8 0110111 Five Top Ten 80110111 Ten Top Filleen 80110111 Fillccn 

the sam ple \\as hiased Percent Percent Percent Percent Percent Percent 

8 Safety .. ... . -8.41 % +8.00% -14.81 % + 13.54% -20.25% + 19.64% 
.., _, Todo .. ' ... -8.95 +7.72 -16. 16 + 13 .22 -22.22 + 19.78 

4 Climate .... -9.40 +8.50 -1 6.50 +14.74 -22.45 +21.95 

5 Food ... -14.28 + 13 .38 -23 .96 +23 .53 -34.62 +33 . 15 

9 Newtodo -19.69 + 17.02 -28.87 +30.04 -45 .9 1 +41.86 

7 Scenery ... -19.74 + 18 .54 -33 .90 +31.66 -47.28 +46.3 1 

1 Cost ...... -24.59 +25.35 -42.31 +45.00 -62.39 +62.03 

6 Language -33 .90 +33 .09 -56.68 +54.97 -79.26 +76.92 

2 Long ..... -62. 12 +62.57 -109.38 + 104.64 -150.58 +152.32 

All <litfrrenccs arc sign1icanl al the 99 percent lcYd of con!i<li.:nce 
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Figure 1. Plot of Coefficient with Percentage Effect of Bias 
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Table 5 and figure 1 above demonstrate that the proportional amount of change in the parameter 

estimates would appear to be explained by the relative value of the coefficient. A subsidiary null 

and alternative hypothesis is therefore developed as a result of this unexpected finding: 

H02_, the size of the effect of the sample bias on the normalised expected values 

of the biased variables is associated with the relative size of the biased 

variable's coefficient, and; 

H 12_, there is no relationship between the size of the effect of sample bias on the 

biased variable and the relative size of the biased variable ' s coefficient. 

As the plot showed a distinct relationship, non-linear regression was undertaken to quantify this 

relationship . The dependent variable was the percentage effect of sample bias on the normalised 

expected value coefficient of the biased variable. The independent variable was the normalised 

expected value of the biased coefficient with the equation being solved equal to : 

b, 
Percentage Bias = a0 ( N E(Pi,) ) 

where : = intercept; 

= the normalised expected value of the biased variable in the 

unbiased sampling distribution, and; 

b1 = the gradient. 

The nonlinear regression used an iterative procedure where the best estimate of the coefficients a0 

and b1 occured when the relative change in the sum of squares of the residuals was less than or 

equal to l .0E-8. For each type and level of bias, a nonlinear model was fitted yielding six 

different estimates of ao and b1• Table 6 shows the estimated coefficients, standard errors, and fit 

of the respective models. 
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Table 6. Nonlinear regression: is the size of the coefficient a good predictor of the 

effect of sample bias? 

Regression T;ip~ Qf Bias 
Cocllicient Top Five Bottom Five Top Ten Bottom Ten Top Filleen Bottom Fitleen 

and Model Fit Percent Percent Percent Pen;ent Percent Percent 

ao -4.35 3.82 -6.86 6 .9 1 -10.46 9.54 

S .E .a 0 .30 .19 .41 .26 .39 .24 

bt -1 .00 -1.05 -1.04 -1.02 -1 .00 -1 .04 

S .E .bt .03 .02 .03 .02 .02 .01 

R2 .99 .99 .99 .99 .99 .99 

Model Percentage Effect of Bias a., X Normalised Unbiased Coetlic1ent Expected Valueb1 

No est11nates ofh1 \\ere s1g111licantl~ d1 tkrent bet\,cen models at the 95 perci:nt lc,el ofcontidcnce 

The results show that the size of the coefficient explains over 99 percent of the variation in the 

amount of sample bias However, it should be noted that the model is only predicting nine data 

points with two parameters Furthermore, none of the estimates of bt are significantly different at 

the 95 percent level of confidence, supporting the claim that there is a standard relationship 

between the independent and dependent variables (and the null hypothesis H02_\) -

Consequently, these results suggest that although the earlier null hypothesi s H02 was rejected at 

the 99 percent level of confidence, the sensitive nature of the MNL estimates to bias is 

predictable. The reason for this predictable sensitivity is not clear. However, it could be linked to 

the nonlinear relationship between the MNL choice probabilities and the parameter estimates. 

The implication of this for marketers is that if they know the extent to which the sample they are 

fitting the MNL to is biased, then the coefficients can be transformed to remove this bias. 

However, the degree to which the nonlinear regression results of this study can be used to achieve 

this is unknown. They address fairly specific types of sample bias which may or may not be 

prevalent in practice. A number of other forms of sample bias (and for that matter sampling error 
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in general) and model forms need to be evaluated before a reliable procedure can be used. 
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5.3 Impact of Sample Bias upon the Parameter Estimates of the Unbiased 

Variables 

Despite the finding that the MNL estimates of the biased variable appear to be sensitive to sample 

bias, the effect of the bias on the coefficients of the unbiased variables in the biased sampling 

distributions remains important . The MNL could still be modelling the error, but doing so for the 

coefficients of the unbiased variables. If this is the case, then we would observe a significant 

change in the normalised expected values of the coefficients of the unbiased variables relative to 

their value in the unbiased sampling distribution (alternative hypothesis Hu) -

This would be unexpected given the mathematical analysis of omitted variable bias by Lee ( 1982) 

who found that omitting a relevant variable had no effect if there was no association between the 

omitted and included variables. The sample bias examined in this study is similar to the omitted 

variable bias analysed by Lee ( 1982), the difference being that the relevant variable is only 

partially omitted. Additionally, the method used here generates individuals with no interactions 

between the independent variables, so Lee' s ( 1982) findings should also hold . Therefore, it can 

be viewed as an extension of Lee ' s (1982) research employing a different methodology and a 

greater number of independent variables in the model. 

Consequently, the null hypothesis (H03 ) states that there is no variation in the value of the 

unbiased coefficients in conditions of sample bias. This question is addressed by computing the 

average change in the unbiased coefficients caused by the sample bias on each of the independent 

variables. Table 7 shows the average change in the unbiased variables caused by sample bias on 

each of the nine independent variables. 

The results indicate that none of the changes are significant at the 95 percent level of confidence 

meaning the null hypothesis (H03) cannot be rejected . However, the direction of the change is 

consistently postive and progressively rises as the amount of bias increases. The reason for this is 
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not clear but could be due to the less than accurate normalisation of the expected values of the 

coefficients to account for scale parameter differences. 

Table 7. How much does bias on one variable affect the value of the other variables? 

Trnc of Bias 

Biased Top Five Bottom Five Top Ten Bottom Ten Top Fitteen Bottom Fitiei:n 

Variahlc Pen.:ent Percent Percent Percent Percent Percent 

l Cost + l.38 % + l.37 % + 1.56 % + l.92 % + 1.79 % +2. 72 % 

2 Long ..... +0.99 +0.84 + 1.55 + l .02 + 1.94 + 1.17 

3 Todo . . ... +0.58 +0 .62 +0.84 + 1.29 +0.95 + 1.70 

4 Climate ... +0 .80 +0.49 + l.07 + l.09 + l. 11 + 1.95 

5 Food ..... + 1.22 + 1.19 + 1.44 +2.13 + 1.66 +3.04 

6 Language + I. 13 + 1.39 + 1.68 + 1.75 +2.00 + 1.94 

7 Scenery .. +0.98 +0.68 + 1.12 +0.87 + 1.31 + 1.45 

8 Safety .... +0.50 +0.44 + 1.01 +0.60 + 1.02 + J.90 

9 Newtodo .. + I. 15 +0.49 +0.94 +0.58 +2. 14 +0.57 

Average ... . .. +0.97 +0.83 + 1.25 + 1.25 + J.55 + 1.83 

No uitkrcnccs signilicant at the 95 pcrc..:nt k\\!l of conJidcncc. 

Additionally, there does appear to be some inherent order to the degree of effect . Sample bias on 

variables one, five, and six consistently has a greater impact on the coefficients of the unbiased 

variables. Conversely, sample bias on variables three and eight consistently has the least effect . 

The possible cause of this cannot be identified by the standard deviation, kurtosis, or skewness of 

the sampling distribution of the biased variable or from the size of the coefficients. Nevertheless, 

despite the regular pattern being distinct and unexpected, it is not significant. 

In summary, the results would suggest that the unbiased variables are not significantly affected by 

sample bias on another variable. This is consistent with expectations and again the null 
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hypothesis, that the MNL estimates of the unbiased coefficients are not sensitive to sample bias in 

another variable, cannot be rejected at the 95 percent level of confidence. 
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5.4 Sensitivity of the Unbiased Variables to Sampling Bias 

The sensitivity of the unbiased coefficients to sample bias is investigated in this section. This 

contrasts with the previous section which investigated whether sample bias on some variables had 

a greater impact on the resulting coefficients than others. Ideally, the ratio between the expected 

values of the MNL estimates of the unbiased variables should not change in conditions of sample 

bias on one variable . 

The previous section found that the amount of change in the unbiased variables was minimal 

(except possibly for scale parameter effects) . Obviously, we would expect these findings to be 

evident in this section as well . Furthermore, the null hypothesis (H0J suggests that the percentage 

changes experienced by each variable as a result of the sample bias should not be significantly 

different as this would mean that the ratio between the unbiased variables had not been 

maintained. In other words, if the effects are significantly different, then the effect of the sample 

bias would not be similar across the variables. In effect, such a finding would not only mean that 

the MNL model shifts the sampling error to the unbiased variables, but the extent to which this 

occurs depends upon factors other than the bias per se. This type of instability would not be 

desirable. 

Table 8 shows the average change in the unbiased variables in the presence of sample bias. As 

expected, none of the differences between the effects of sample bias on the variables are 

significant at the 95 percent level of confidence. However, the average change in the coefficients 

of the unbiased variables progressively increases (albeit insignificantly). This indicates that even if 

the MNL' s estimates of the unbiased variables reflect the level of bias, the ratio between the 

variables is maintained. 

Again, the reason for the differences ( caused by the proportional increase in bias from five to 

fifteen percent) evident in Table 8 are not clear. However, as previously suggested, they are 
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probably a result of changes in the value of the scale not accurately accounted for by the 

normalisation procedure. 

Table 8. How sensitive is each variable to bias in other variables? 

T~pe of Bias 
Unhiased Top Five Bollom Five Top Ten Bollom Ten Top Fitleen Bollom Fittecn 

Variahlt: Percent Percent Percent Percent Percent Percent 

I Cost ' . . . . . -0 .2 1% 1.01% -0.62% -0.32% -0.65% -0. 12% 

2 Long . . . . . . . 1.41 -0 .62 1.85 -1.51 1.34 -3 .24 

3 Todo ....... 0.17 -0. 18 0 .35 0 .04 0.56 0 .20 

4 Climate . . . . . O. 04 -0.09 -0.03 -0. 18 0.01 -0 .33 

5 Food ... 0 .07 0.06 0.06 0 .07 -0.09 -0 .05 

6 Language -0.03 0.90 0.43 2 .18 1. 18 3 .79 

7 Scene1y ... -0.49 0. 14 -0 .82 -0.42 -1 . 17 -1.07 

8 Safety ...... 0.23 -0 .01 0.35 0 .05 0.43 0.04 

9 Newtodo -0.77 -0 .02 -I.OS -0. 15 -1.42 0 .12 

Ave. Change 0 .38 0.34 0.62 0.55 0.76 1.00 

No signiticant ditlcrenccs at the 95 level of contidcncc. 

Further to this, there also appears to be some degree of order to the amount of change 

experienced by each variable. Variables two and six are consistently the most affected by the bias 

while four, five, and eight are generally the least affected. The reasons for this are not clear but 

could again be a result of the incorrect normalisation. Nevertheless, these differences are not 

significant at the 95 percent level of confidence. 

The results suggest that the null hypothesis (H05) that all unbiased independent variables are 

equally affected by sample bias cannot be rejected at the 95 percent level of confidence. 
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5.5 Theoretical Standard Errors versus Standard Deviation of the Unbiased 

Sampling Distribution 

A comparison of the theoretical standard errors of the coefficients of the original MNL model and 

the standard deviations of the unbiased sampling distribution was undertaken. Their likeness or 

otherwise serves as a guide of the accuracy of their reported values . The theoretical standard 

errors are those calculated by the software on the original data set of 164 individuals. These 

estimates are only asymptotically valid (Hensher and Johnson, 1981 , p 48) when using ML 

estimation and assume a normal distribution of the parameter estimates. The asymptotic standard 

errors are computed by first , determining the second partial derivatives of the log likelihood with 

regard to the P' s, second, calculating the negative of the inverse of the matrix of these partial 

derivatives (this is the covariance matrix for the ML estimates), and finally, taking the square root 

of the diagonal components of this to yield the standard errors (Hensher and Johnson, 1981 , p 

48). 

The standard errors of the coefficients in the unbiased sampling distribution are equal to their 

standard deviation. The method used here was specifically designed so that the calibration sample 

size of the original estimates of 164 was maintained. This meant these Monte Carlo standard 

deviations were directly comparable with the theoretical, asymptotic standard errors . 

It would be desirable for these Monte Carlo standard deviations to approximate the asymptotic 

standard errors as they are theoretically identical. Nevertheless, if they do not, then one would 

have to question the use of asymptotic standard errors for smaller samples. The reported standard 

errors and the standard deviations of the unbiased sampling distributions are shown in table 9. 

Also included in this table are the measures of the normality of the Monte Carlo coefficients, 

namely, the kurtosis and skewness (the reason for which is explained below). 
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Table 9. Are the Asymptotic Standard Errors accurate? 

Independent Asymptotic Monte Carlo Kurtosis Ske\\ness 

Variable Standard Errors Standard Deviations Dilforcncc (Nom1al 3) (Nonnal 0) 

0 Intercept 0.06 1 0.085 +0.024 0.461 0.236 

Cost ....... 0.064 0.066 +0.002 0.015 -0.038 

2 Long ...... 0.071 0. 136 +0.065 206.070 -8.938 

3 Todo .. ... 0 068 0 086 +0 0 18 0 360 0.322 

4 Climate .... 0.070 0. 126 +0 .056 287.662 11 .568 

5 Food ...... 0.070 0. 137 +0 067 195 983 8.597 

6 Language ... 0 .072 0. 137 +0.065 195.671 -8.599 

7 Scenery .... 0.072 0. 128 +0.056 265.412 10.899 

8 Safety ...... 0.071 0.125 +0.054 281.339 11.367 

9 Newtodo . .. 0.067 0.089 +0.022 0.428 -0. 192 

Clearly, the software underestimates the size of the error in the coefficient estimates. 

Nevertheless, it would appear that this variation is to a large extent caused by the non-normal 

nature of the distribution of the coefficients in the Monte Carlo unbiased sampling distribution as 

indicated by the kurtosis and skewness. Generally as the distribution of the coefficients nears 

normality, the discrepancy between the reported and actual standard errors decreases. 

This finding, that the Monte Carlo generated sampling distributions are generally not normal, is 

unexpected given the fact that maximum likelihood estimators are asymptotically normal,"even if 

the distribution from which the observations were drawn is not normal" (Ramanathan, 1995, p 

76). More disturbing is the fact that there is no clear explanation for some coefficient 

distributions (namely variable zero, one, three, and nine) being substantially more normal than 

others. Given the "dispersion-reducing tendencies of maximum likelihood estimation" for 

bootstrap estimates resulting in error in the estimates of the distribution (Efron, 1992, p 10 l ), 

these Monte Carlo estimates of kurtosis and skewness could be expected to be exaggerated (that 

is if Efron ' s finding can be generalised to this method) . This appears to occur for the sampling 
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distributions of the coefficients of variables two, four, five, six, seven, and eight, though again, no 

apparent explanation can be given for the other four coefficients having distributions less 

concentrated about the mean. 

The effect of the scale parameter on the standard errors is not clearly explained in the modelling 

literature. Therefore, the standard errors reported above in table ttt have not been normalised as 

no obvious method for performing this is known. The results would suggest however, that the 

reported differences are more likely to be associated with the erroneous assumption of normality 

than scale differences . The fact that the differences are not linearly related would support this . 

Nevertheless, the truth or otherwise of this claim can only be known with certainty by controlling 

for scale parameter differences in future . 

One of two conclusions can be made in the light of these results. First, the assumption of 

normality may be reasonable asymptotically, but unrealistic for the sample sizes commonly used in 

marketing. Coefficient normality is not evident here for samples of size 164. The question of the 

required sample size necessary to gain accurate estimates of the asymptotic standard errors seems 

to be important to solve. 

Conversely, the Monte Carlo method employed in this study may be producing asymptotically 

non-normal sampling distributions. In other words, the Monte Carlo method may not be a viable 

technique for testing the accuracy of the standard errors. This assertion could be tested by 

generating Monte Carlo sampling distributions of coefficients where the MNL calibration sample 

size (in this case 164) is increased to a larger value, for example 10,000 or 100,000. If the Monte 

Carlo sampling distributions are still non-normal in these seemingly asymptotic conditions, then 

the Monte Carlo method could be deemed incapable of testing the accuracy of the standard 

errors. In either case, more needs to be known about the performance of the theoretical standard 

errors . 
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6.0 CONCLUSION 

This study evaluated the sensitivity of the estimates produced by the MNL model to sample bias. 

The behaviour of the MNL in these conditions is important given the fact that the model is 

prevalently fitted to samples drawn from the population. A Monte Carlo approach was used to 

generate biased sampling distributions of the MNL coefficients. Sample bias was simulated by 

removing those individuals from the sample whose responses were most (or least) highly 

correlated with one of the independent variables . Therefore, this bias is analogous to partially 

omitting a relevant variable . An unbiased sampling distribution was also created as a benchmark. 

Initially, the validity of the Monte Carlo method was considered . This was done by comparing the 

original or true coefficients with the expected value of the unbiased sampling distribution. As the 

Monte Carlo used the original coefficients to generate the unbiased sampling distribution, there 

should have been no significant differences between them (the null hypothesis H 0 1) . The null 

hypthesis was confirmed at the 95 percent level of confidence subsequent to a linear adjustment of 

the values to account for the assumed scale differences. 

Once the Monte Carlo method was corroborated, the main issues of interest were confronted . 

First, the effect of bias on the biased variable was investigated . The null hypothesis H02 stated that 

the percentage change in the value of the biased variable should be equal to the proportion of bias 

being simulated . The null hypothesis was unexpectedly rejected at the 99 percent level of 

confidence indicating the MNL coefficients are sensitive to bias. In some cases the sample bias 

changed the value of the biased coefficients by a massive 152 percent. Generally, the coefficients 

changed by between 50 and 100 percent more than the simulated bias. For example, when the 

sample was biased by five percent, the biased variable changed by ten percent. This is clearly not 

desirable. 

Nevertheless, the biased variables moved in the expected direction. When the sample was biased 
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by removing those simulated individuals with a high correlation, the value of the coefficient 

declined in value and vice versa. Removing individuals with a low correlation with the biased 

variable consistently had a lesser effect on the coefficients than removing those with a high 

correlation. This difference could not be explained by the standard errors, the kurtosis, or the 

skewness of the sampling distributions of the biased coefficients. 

However, there was an unexpected finding with regard to the sensitivity of the biased variables . 

A strong relationship was found between the percentage change in the normalised expected values 

of the biased variables and the relative size of their coefficients. Put simply, larger coefficients 

were less susceptible (although still sensitive) to sample bias than smaller coefficients. The reason 

for this relationship is not clear. In fact , the literature does not appear to recognise it. However, 

it could result from the nonlinear connection between the MNL predicted probabilities and the 

attributes of the alternatives, but this is speculation at this stage. An effect of this size could 

probably not be attributed to the imperfect scale parameter normalisation. 

This is an important result as it suggests that although the MNL is sensitive to sample bias, the 

effect of the bias appears to be predictable and could be removed, or at the least minimised . More 

research could be undertaken to develop a method that adjusts the value of the parameters when 

the researcher recognises that the MNL calibration sample is biased . 

The behaviour of the unbiased variables in response to the simulated sample bias was also 

examined . The average change in the value of the unbiased variables was not significant at the 95 

percent level of confidence, supporting the claim that any change was independent of the bias (and 

confirming the null hypothesis H03 ) . Despite this, the direction and magnitude of the changes 

were consistent, although incorrect normalisation for the scale parameter could possibly account 

for this. 

Additionally, the overall sensitivity of each variable to sample bias was examined. The results 

showed no variables were more prone to change as a consequence of sample bias. In the vast 
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majority of cases, the ratio between the coefficients of the unbiased variables was maintained 

supporting the null hypothesis Ho.t· 

Although the expected values of the coefficients in the unbiased sampling distribution were close 

to their true or original values, the distributions of these estimates were not normal as expected, 

given the apparent asymptotic qualities of the maximum likelihood estimator. As a consequence, 

the asymptotic standard errors as reported in the software significantly underestimated the 

standard deviations of the variables in the unbiased sampling distribution. Further research may 

be required here to ascertain the reasons for the Monte Carlo not producing normally distributed 

coefficients. It could be due to the calibration sample size of 164 or the method used to generate 

individuals. As the standard errors play a prominent role in making statistical inferences about the 

coefficients, it is important that the minimum sample size required to yield reliable standard errors 

is determined. 

Overall, the results suggest that the MNL is sensitive to sample bias. However, although they still 

fluctuate by more than expected, the larger effects are less sensitive to sample bias than the 

smaller ones. This is desirable and indicates that the larger effects are more reliable estimates of 

choice behaviour than smaller effects. It also means that reduction of error in the estimates would 

be better achieved by concentrating on gaining unbiased samples of the lesser effects. 

Despite this, the effect of the bias is predictable being related to the size of the coefficient. This 

seems to convey the message that the sensitivity of the model to sample bias is more a reflection 

of its assumptions than of the variability in choice per se. The apparent independence of the 

estimation of the unbiased variables from the error supports this contention. 

Furthermore, the model does appear to be measuring the effects it should. If the model was not 

reflecting the underlying choice behaviour of the sample, then it would produce estimates that 

varied randomly regardless of the size of the effect or the amount of bias. The predictable 

reaction of the biased variable's coefficients to sample bias and the independence of estimation of 
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the unbiased effects indicates that the model is producing estimates of effects where the ratio 

between them is maintained. This would suggest that when fitted to an unbiased sample, the 

model will produce estimates that reflect the effect being measured. The estimates of the smaller 

effects will also be more reliable in these circumstances than if gleaned from a biased data set . 
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c**************************************************************************** 

c* 
c* 
c* 
c* 
c* 
c* 
c* 
c* 
c* 
c* 
c* 
c* 
c* 
c* 
c* 

BIASLOG.FOR BIASLOG.FOR BIASLOG.FOR * 
BIASLOG.FOR BIASLOG.FOR BIASLOG.FOR * 
BIASLOG.FOR BIASLOG.FOR BIASLOG.FOR * 
BIASLOG.FOR BIASLOG.FOR BIASLOG.FOR * 
BIASLOG.FOR BIASLOG.FOR BIASLOG.FOR * 

* 
Programme designed to measure the effect of sample bias * 
on the estimates produced by the MNL choice model. * 
Produces sampling distributions of MNL estimates under * 
different conditions of sample bias. * 
Written in FORTRAN 77 . * 

BELL, FOX, and WRIGHT 
1995 

* 
* 

* 
c**************************************************************************** 

REAL RANRSP 
REAL*8 COEFF(10) ,FSETS(24, 12) 
INTEGER AGGINT(12) ,IX,IY,IZ,TOTBIS ,TOTDEL,BISVAR 
CHARACTER*12 OUTFILE 

c************************************************************************************** 

c* The commands above set the characteristics of variables mentioned * 
c* and set aside the appropriate amount of memory to store their * 
c* values within the programme. * 
c* RANRSP The random response to each choice set. * 
c* COEFF(10) The 10 coefficient estimates from the NTELOGIT * 
c* estimation program. Each time the random set of 164 * 
c* individuals' aggregated responses to the 12 choice * 
c* sets is produced , it is written into the design * 
c* matrix. The NTELOGIT program then estimates the * 
c* 10 coefficients (intercept plus nine indepedent vars) * 
c* and these are transferred back to the main program * 
c* through the matrix COEFF(10) . * 
c* FSETS(24, 12) The matrix containing the aggregated random * 
c* responses to the twelve choice sets and the design . * 
c* Column 1 contains the choice set number, 2 the * 
c* aggregated responses to the 12 choice sets, 3 the * 
c* value of the intercept, 4-12 the presence (1) or * 
c* absence (0) of the 9 independent variables . * 
c* Odd rows represent the first alternative in each * 
c* choice set. Even rows represent the second * 
c* alternative in each choice set. * 
c* AGGINT(12) The matrix of aggregated responses to the first * 
c* alternative in the twelve choice sets. * 
c* IX,IY,IZ The integer values of between 1 and 30000 required * 
c* for the FUNCTION RANDOM. Before each sampling * 
c* distribution is generated , these values should be * 
c* changed to ensure that each set of distributions is * 
c* not being produced from the same string of psuedo- * 
c* random numbers. * 
c* TOTBIS The total number of individuals to be created . This * 
c* should include the base number of individuals to be * 
c* produced (in this case 164), plus the number of * 
c* individuals that will be deleted to simulate bias. * 
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c• TOTDEL The total number of individuals to be removed in • 
c• order to simulate bias. . 
c• BISVAR The index of the variable on which the sample is to • 
c• be biased. • 
c• OUTFILE The name of the file to which the parameter • 
c• estimates produced by NTELOGIT will be written . • 
c************************************************************************************** 

PARAMETER (TOTBIS=182,TOTDEL=18,BISVAR=5,OUTFILE='V5BOT1 0.DA T') 

c•••••••••••••••••• .. •••• .. •••••••••••••••••••••••••••••••• .. •••••••••••••••••••••••••••••••••••••••••••••• 
c• THE FOLLOWING CHANGES CAN BE MADE TO TYPE OF BIAS SIMULA TED BY * 
c• MAKING THE FOLLOWING CHANGES TO THE ' PARAMETER' COMMANDS • 
c• DIRECTLY BEFORE THIS MESSAGE. • 
c• 
c• To set the level of bias: 
c• UNBIASED: 
c• 
c• FIVE percent bias: 
c· 
c• TEN percent bias: 
c• 
c• FIFTEEN percent bias: 
c• 
c• 

set TOTBIS equal to 164 
set TOTDEL equal to 0 
set TOTBIS equal to 173 
set TOTDEL equal to 9 
set TOTBIS equal to 182 
set TOTDEL equal to 18 
set TOTBIS equal to 193 

set TOTDEL equal to 29 

c• To bias different variables , change BISVAR to: 
c• 1 - COST (coef -.3128, std err .6066) 
c• 2- DISTANCE (coef-.1306, std err .6426) 
c• 3 - NUMBER (coef .8809, std err .7061) 
c• 4 - CLIMATE (coef .8747, std err .6788) 
c• 5 - FOOD (coef .5992, std err . 7001) 
c• 6 - SPEAK (coef .2692, std err .6996) 
c• 7 - SCENERY (coef .4293, std err .7192) 
c• 8 - CRIME (coef .9657, std err .7177) 
c• 9-VARIETY (coef .4661 , stderr .7138) 
c• 
c• OUTFILE dictates the name of the file to which the coefficients 
c• are stored. 

• 
• 
• 

• 
• 
• 
• 
• 
• 

• 

• 

• 

• 
c********************************************************************************************************* 

INTEGER RESP(TOTBIS, 12),DELREC(TOTBIS),DESIGN(12,9),DATUNT 

c ........................................................................................................... .. 

c• More commands above which set the characteristics of variables • 
c* and set aside the appropriate amount of memory to store their • 
c* values within the programme. • 
c* RESP(TOTBIS, 12) The matrix of random responses to the first • 
c• alternative of the 12 choice sets for the • 
c* TOTBIS individuals being generated. • 
c• DELREC(TOTBIS) The matrix that contains information used to • 
c* determine the individuals to be removed . This • 
c• information is the total number of times that • 
c* each individual choose an alternative which • 
c* contained the variable (BISVAR) upon which • 
c* the sample was being biased. • 
c• DESIGN (12,9) The design of the first alternative in the • 
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c* twelve choice sets. The nine values are the * 
c* presence (1) or absence (0) of each independent * 
c* variable for that alternative. * 
c* DATUNT The number of the unit to which data is read/ * 
c* written . * 
c************************************************************************************** 

DATA DESIGN/0,0, 1, 1,0, 1, 1, 1,0,0,0, 1, 1,0, 1,0,0, 1,0, 
+0,0, 1, 1, 1, 1, 1,0, 1,0,0, 1,0,0,0, 1, 1,0,0,0, 1,0, 1, 1,0, 1, 1, 1,0, 1, 1, 
+1 , 1,0, 1,0,0, 1,0,0,0,0, 1,0,0,0, 1,0, 1, 1,0, 1, 1, 1,0,0, 1, 1, 1,0, 1,0, 
+0,1 ,0,0,1,1,1,0,0,0,1,0,1,1,0,1,1 ,0,0,0,1,1 ,1,0,1,0,0/ 

c************************************************************************************** 

c* DESIGN: The experimental design. Reads in the design matrix of 
c* ONLY the first alternative in the twelve choice sets by 
c* column then row. Only the design of the first alternative 
c* is included because the second alternative is the exact 
c* opposite of the first. 

• 
• 
* 

c••••••••••••••••••••••••••••********************************************************** 

IX=146 
IY=535 
12=21198 

c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c* 
c* 
c* 

IX, IY, and IX are the parameters of the random number 
generator FUNCTION RANDOM(IX,IY,IZ). These must be set 
to an integer between 1 and 30000. 

* 
* 

c ******************************************••••••••••••••••••••••••******************** 

c***debugging*** write (6,*) 'Starting .... ' 

DATUNT=11 

DO 80 1=1 ,12 
11=2*1-1 
FSETS(II , 1 )=I 
FSETS(I I+ 1, 1 )= I 
FSETS(ll ,3)=1 .0 
FSETS(ll+1 ,3)=0.0 
DO 81 J=1,9 

FSETS(ll ,J+3)= FLOAT(DESIGN(l ,J)) 
FSETS(ll+1 ,J+3)=1 .0-FLOAT(DESIGN(l ,J)) 

81 CONTINUE 
80 CONTINUE 

c* ... ******************************************************************************************** 

c* The above commands initialise the matrix FSETS(24, 12) to make it * 
c* compatible with the NTELOGIT estimation program. * 
c* COLUMN 1 - the number of the choice set * 
c* COLUMN 2 - this is left blank at this stage and once the * 
c* random individuals have been created and bias * 
c* simulated, the aggregated responses to the 12 * 
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c* 
c• 
c• 
c* 
c* 
c* 
c* 
c* 

choice sets (AGGINT(12)) are read into this 
column. 

COLUMN 3 - the intercept, 1 for 1st alternative (odd rows) 
0 for 2nd alternative (even rows) . 

COLUMNS 4-12 - the presence (1) or absence (0) of the remainung 
nine independent variables. Odd rows are equal to 
the DESIGN(12,9) matrix, even rows are the inverse 
of the preceeding odd rows. 

* 
* 
* 
* 
* 
* 
* 
* 

c************************************************************************************************ 

OPEN(8,FILE=OUTFILE) 
999 FORMAT(1 0f10.5) 
20 FORMAT('+',i7) 

c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c* OPENs the OUTFILE and sets the FORMAT of the results. The value 
c* of the estimated coefficients (COEFF(10)) is written to this file 
c* later in this main programme. 

• 

• 
c************•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c***debugging••• write (6,*) 'Calling Generate .... ' 

c************************************************************************************** 

c• The PRODUCT of n and nn sets the number of parameter estimates • 
c* returned by this programme. To help the user keep track of the * 
c* number of parameters produced , the value of n is printed on the • 
c* screen at each pass. * 
c******************************************************•••••••••••••••••••••••••••••••• 

do 100 n=1 ,1000 
do 110 nn=1,10 

c***************••••••••••••••••••••••••••••••••••••••••***************************************** 

c• CALLS the SUBROUTINE GENERATE which returns the random aggregated 
c* responses to the first alternative for the twelve choice sets, AGGINT(12) 

• 
• 

c*******************••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

CALL GENERA TE(IX, IY, IZ, TOTBIS, TOTDEL,BISVAR,AGG I NT ,RESP ,DELREC, 
+ DESIGN) 

c***debugging*** 
c***debugging*** 
c***debugging*** 

write out datafile 
open(11,file='VAC.DAT',STATUS='new') 

121 format (13,14, 1013) 

do 120 i=1 ,12 

c***debugging*** 
c***debugging*** 

write (11,121) I,AGGINT(I) , 1,(DESIGN(i ,j) ,j=1 ,9) 
write (11,121) I, 164-AGGINT(l) ,0,(1-DESIGN(i ,j),j=1,9) 

c•••••••••••••••**********'************•••••••************************•·•******'******"**** 
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c* Writes the randomly generated aggregated responses from the * 
c* SUBROUTINE GENERATE into the matrix FSETS. * 
c* 
c* 
c* 

FSETS contains the data and design matrices which are used 
by the MNL estimation programme NTELOGIT in the 
SUBROUTINE ESTIMATE. 

* 
* 
* 

c**************************"***************************•••••••••••• .. •••••••••••••••••** 

11=2*1-1 
FSETS(l 1,2)=FLOAT(AGG INT(I)) 
FSETS(ll+1 ,2)=164.0-FLOAT(AGGINT(I)) 

120 continue 

c************************************************************************************** 

c* 
c* 
c• 

CALL's the SUBROUTINE ESTIMATE which fits the MNL to 
the randomly generated data and design (FSETS). Returns 
the estimates of the 10 coefficients through COEFF. 

• 
• 
* 

c************************************************************************************** 

CALL ESTIMATE(COEFF,FSETS) 

c***debugging*** write (6,*) 'Returned from Generate ... .' 

c******************************************************************************** 

c* The datafile is deleted when closed within the estimation routine . • 
c**************************•••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c**************************************************************************** 

c* 
c· 

WRITES the 10 COEFFS to the datafile, 
OUTFILE. 

• 
• 

c••••••••••••**************************************************************** 

WRITE(8,999) (COEFF(i),i=1 , 10) 
110 continue 

c*************** ************************************************************* 

c• 
c• 

WRITEs n on screen so user can keep 
track of number of estimates produced 

• 
* 

c**************************************************************************** 

write (6 ,20) n 

100 continue 

c***debugging*** write (6,*) 'Should end now .... .' 

CLOSE (8,STATUS='KEEP') 

END 

c***************************************** ... ************************************** 

c* 
c* 

THE END OF THE MAIN PROGRAMME 
THE END OF THE MAIN PROGRAMME 

* 
* 
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c* 
c* 
c* 

THE END OF THE MAIN PROGRAMME 
THE END OF THE MAIN PROGRAMME 
THE END OF THE MAIN PROGRAMME 

* 
* 
* 

c********************************************************************************* 

c********************************************************************** 

c* SUBROUTINE GENERATE * 
c********************************************************************** 

SUBROUTINE GENERATE(IX,IY,IZ,totbis ,TOTDEL,bisvar,AGGINT, 
+ resp ,delrec,DESIGN) 

c************************************************************************************************ 

c* 
c* 
c* 
c* 
c* 
c* 
c* 
c* 
c* 
c* 

IX,IY and IZ are used by the random number generator 
TOTBIS is the total number of individuals generated 
TOTDEL is the number of individuals deleted 
BISVAR is the number of the variable used for biasing the sample 
AGGINT is the aggregated output matrix of 12 numbers giving 

the number of individuals (out of 164) that responded 
positively to the first alternative 

RESP is the working area holding all responses from the full sample 
DELREC is a working area to hold biasing information 
DESIGN contains the experimental design 

* 
* 
* 
* 
* 
* 
* 
* 

* 
c************************************************************************************************ 

REAL RANRSP ,CUTOFF(12) 

INTEGER TOTBIS,BISVAR,TOTDEL 
INTEGER RESP ,AGGINT(12) ,DESIGN(12,9) 
INTEGER FINRSP(164, 12),DELREC(TOTBIS) ,IND 
INTEGER DELCOU,IP,FIN ,i 

DIMENSION RESP(TOTBIS , 12) 

c***debugging*** 
c***debugging*** 
c***debugging*** 
c***debugging*** 
c***debugging*** 

OPEN(9,STATUS='NEW' ,FILE='DESIGN.DAT') 
DO 73 J=1 ,12 

WRITE(9 ,'(912)') (DESIGN(J ,l) ,1=1 ,9) 
73 CONTINUE 

CLOSE (9 ,STATUS='KEEP') 

c*********************************************************************************************** 

c* Parameter estimates gained from VAC.DAT used to yield probabilities 
c* for the two alternatives within each choice set. CUTOFF(1) is the 
c* is the probability that AL TERNA Tl VE ONE will be chosen from 
c* CHOICE SET ONE based on the original NTELOGIT parameter estimates. 

* 
* 
* 
* 

c*********************************************************************************************** 

c***debugging*** write (6,*) 'Starting Generate ... . ' 

CUTOFF(1 )= .66372888 
CUTOFF(2)=. 92773445 
CUTOFF(3)= .17265963 
CUTOFF(4)= .95538925 
CUTOFF (5)=. 04968568 
CUTOFF(6)= .64114886 
CUTOFF(7)= .50192799 
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CUTOFF(B)=.45641192 
CUTOFF(9)= .41982691 
CUTOFF(10)=.63221849 
CUTOFF(11)= .94095225 
CUTOFF(12)= .08343799 

c**************************************************************************** 

c* Sets the matrix RESP(i , j) . * 
c**************************************************************************** 

DO 30 i=1 ,totbis 
DO 40 j=1 ,12 

RESP(i ,j) = 0 
40 CONTINUE 
30 CONTINUE 

c**************************************************************************** 

c* Sets the matrix DELREC(i) . 
c**************************************************************************** 

DO 20 i=1 ,totbis 
DELREC(i) = 0 

20 CONTINUE 

c***debugging*** write (6,*) 'Initialization complete .. ' 

c*********************************************************************************************** 

c* Uses the random number function to generate an array of TOTBIS x12 
c* random 0/1 responses . Changes the original uniform random numbers 
c* into a discrete format using CUTOFF's. 

* 
* 

c**********************************~************************************************************ 

DO 100 i=1 ,totbis 
DO 50 j=1,12 

RANRSP = RANDOM(IX,IY,IZ) 
IF(RANRSP.LE .CUTOFFU)) THEN 

RESP(i ,j)=1 
ELSE 

RESP(i ,j)=0 
ENDIF 

50 CONTINUE 
100 CONTINUE 

c***debugging*** write (6,*) 'Random array generated ... .' 

c**************************************************************************** 

c* Calculates the number of times that each simulated * 
c* individual selects an alternative containing the independent * 
c* variable upon which the sample is being biased . This is the * 
c* same as computing the correlation between the bias variable * 
c* and each individuals responses to the twelve choice sets. * 
c* Each time the individual (RESP) selects an alternative in * 
c* the DESIGN containing the bias variable (BISVAR) , one is * 
c* added to DELREC. DELREC records for each individual the* 
c* number of times the reponse and design correspond . * 
c* DELREC ranges from 0 representing a simulated individual * 
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c* who did not select one alternative containing BISVAR, to 12 * 
c* representing an individual who selected all alternatives * 
c* containing BISVAR. IND equals the count (from 1 to TOTBIS) * 
c* of the number of the individual in the matrix RESP. * 
c ............................................................................... . 

IND=0 

do 291 ind=1 ,totbis 
DO 290 i=1 , 12 

IF(RESP(ind,i) .EQ.DESIGN(i ,bisvar)) THEN 
DELREC(IND)=DELREC(IND)+1 

ENDIF 
290 continue 
291 CONTINUE 

c***debugging*** write (6,*) 'Successfully past first GOTO loop ... .' 

c**************************************•************************************* 

c* Simulates sample bias by removing those individuals whose * 
c* responses are highly or lowly correlated with the bias * 
c* variable (BISVAR). The programme searches through and • 
c* marks those individuals in the array DELREC(IND) whose • 
c* record equalled LIM until the number required to be • 
c* removed (when DELCOU equals TOTDEL) had been • 
c* reached. • 
c* 
c* IND = 
c* 

number of individuals in array DELREC from 
1 to TOTBIS. 

c* 
c* 
c* 
c* 

DELREC = for each IND, the number of times an alternative* 
containing the BISVAR had been selected. • 

LIM = sets the type of bias to be simulated. • 
LIM is set to 12 when individuals are to be • 

c* removed from the top of the sample distribution , • 
c* 0 for the bottom. • 
c* DELCOU = counts the number of individuals in the array 
C- DELREC(IND) whose record equalled LIM. • 
c**************************************************************************** 

300 IND=0 
DELCOU=0 
LIM=0 

320 IND=IND+1 

c ................................................................................................. .. 

c* Marks each individual (IND) whose DELREC equalled LIM * 
c* with and -1 . * 
c ............................................................................................... . 

IF(DELREC(IND).EQ.LIM)THEN 
DELCOU=DELCOU+ 1 
DELREC(IND)=-1 

ENDIF 

c******* ........................................................................................................ .......... 

c* Stops marking individuals for deletion when the number * 
c* required to be deleted (TOTDEL) is reached (DELCOU). * 
c******* ............................................................................................................. . 
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340 IF(DELCOU.EQ.TOTDEL)THEN 
GOTO 360 

ENDIF 

c**************************************************************************** 

c* Once the array DELREC(IND) has been searched but the * 
c* number required to be deleted has not been reached , LIM is * 
c* either reduced by 1 (for top bias) or increased by 1 (for * 
c* bottom bias) . The array DELREC(IND) is then searched * 
c* again and individuals marked until TOTBIS is reached. * 
c**************************************************************************** 

IF(IND.EQ.totbis)THEN 
LIM=LIM+1 
IND=0 

ENDIF 

350 GOTO 320 

360 CONTINUE 

c***debugging*** write (6,*) 'Successfully past second GOTO loop ... .' 

c*********************••••••••••••••**********************••••••••••••••••••• 

c* Copies RESPO to FINRSPQ missing out those individuals * 
c* who had been marked for deletion in the matrix DELRECQ. * 
c******************•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

ind=1 
do 700 i=1 ,totbis 

if(delrec(i).ge.0) then 
do710j=1 ,12 

FINRSP(ind,j)=RESP(l ,j) 
710 continue 

ind=ind+1 
endif 

700 continue 

c**************************************************************************** 

c* Aggregates the results of the array FINRSP(164, 12). • 
c**********************************************"****************************** 

DO 810j=1 ,12 
AGGINTO) = 0 

810 CONTINUE 

DO 950 i=1 ,164 
0O940j=1 ,12 

AGGINT0) = AGGINTO) + finrsp(i ,j) 
940 CONTINUE 
950 CONTINUE 

c***debugging*** 
c***debugging*** 
c***debugging*** 
c***debugging*** 

OPEN(8,FILE='AGG') 
WRITE(B,999) (AGGINTO),j=1 , 12) 
999 FORMAT(I4) 
CLOSE (8,STATUS='KEEP') 
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RETURN 

END 

c********************************************************************** 

c* FUNCTION RANDOM 
c********************************************************************** 

FUNCTION RANDOM(IX,IY,IZ) 

C*********************************************************************************************** 

c· Algorithm AS183 from Applied Statistics 31 : 188-190 (1982) . Returns 
C* a psuedo-random number between 0 and 1. The parameters IX, IY, and 
c· IZ must be set to integer values between 1 and 30000 before the 
c• first entry . Integer arithmetic up to 30323 is needed. The dummy 
C* parameter is not used. 

• 
• 
• 
• 
• 

c······························································································· 

IX=171 *MOD(IX, 177)-2*(1X/177) 
IY=172*MOD(IY, 176)-35*(1Y/176) 
IZ=170*MOD(IZ, 178)-63*(1Z/178) 
IF (IX.L T.0) IX=IX+30269 
IF (IY.L T.0) IY=IY+30307 
IF (IZ.L T.0) IZ=IZ+30323 
RANDOM=AMOD(FLOAT(IX)/30269.0+FLOAT(IY)/30307.0+ 

+ FLOAT(IZ)/30323.0, 1.0) 

RETURN 

END 

c **************************************************************************** 

c* SUBROUTINE ESTIMATE * 
c**************************************************************************** 

SUBROUTINE ESTIMATE(COEFF ,FSETS) 

REAL*8 COEFF(10) 

c··············································· ... ······················ 
c NTELOGIT MNL ESTIMATION PROGRAMME 
C MULTINOMIAL LOGIT BY ITERATIVELY REWEIGHTED LEAST SQUARES 
C 
C VERSION 4.0 GEORGE G. WOODWORTH 2/07/88 
C COMMAND INPUT BY CAROL GILBERT 
C Extended Format to 512 Characters - ber 89060 
C Add DELETE - ber 89061 
C Add BETSET Michael Fox 25 Aug 89 
C Replace END with EXECUTE 
C and STOP Michael Fox 14 Nov 89 
C 
C DIMENSIONS ARE AT LEAST: 
C ZPZ(NVARS*(NVARS-1)/2),BETA(NVARS-2),XPB(ALTMAX),PHAT(ALTMAX) 
C ZTOT(NVARS-1),Z(AL TMAX,NVARS),AL TPTR(ALTMAX), 
C VARPTR(NVARS),SWEPT(NVARS-1),VARNAM(NVARS), 
C NZPTR(NVARS) 
C 
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C*********************************************************************** 

PARAMETER (NVARMAX=13, NAL TMAX=S) 
REAL *8 ZPZ(NVARMAX*(NVARMAX-1 )/2) ,Z(NAL TMAX,NVARMAX), 

+ BET A(NVARMAX-2) ,ZTOT(NVARMAX-1) ,XPB(NAL TMAX) , 
+ PHAT(NALTMAX) ,TOLEPS,CVGEPS,LRCHIS ,LRCH1 , 
+ RBUF(NVARMAX),FSETS(24,12) 
INTEGER 

VARPTR(NVARMAX) ,SWEPT(NVARMAX-1),ALTPTR(NAL TMAX) ,CMDUNT, 
+ DATUNT,AL TMAX,NVARS,JGRP ,JFRQ,DFERR,NZPTR(NVARMAX), 
+ PAGENO,LOGUNT,LSTUNT,PAGSIZ,ROWPAG,COLPAG,NDEL, 
+ DMASK(NVARMAX) ,NSETS 
CHARACTER*8 VARNAM(NVARMAX) , DELNAM(NVARMAX) , RJVNAM(NVARMAX) 
CHARACTER*64 CMDFIL 
CHARACTER*127 ERRMSG 
CHARACTER*512 DATFMT 
LOGICAL ERROR,CONVRG,COVMAT,COVR4T,POISON 
DATA CMDUNT,DATUNT,LOGUNT,LSTUNT/10,11 ,6,6/, 

# TOLEPS,CVGEPS,MAXITR/1.D-10, 1.0-6,20/, 
# PAGSIZ,ROWPAG,COLPAG/58,53 ,6/ 

CMDFIL='VAC.CMD' 
c OPEN (CMDUNT,FILE=CMDFIL,STATUS='OLD') 

200 ITER = 0 
LOGUNT = 6 
LSTUNT = 6 
ERROR= .FALSE. 
AL TMAX = NAL TMAX 
DO 300 K=1 , NVARMAX-1 

SWEPT(K) = 1 
300 CONTINUE 

NVARS = 0 
NDEL=O 
DO 310 K=1 , NVARMAX-2 

BETA(K)=0 .0D0 
310 CONTINUE 

CALL CMDINP(CMDFIL,CMDUNT,DATUNT,DATFMT,NVARMAX, 
# NVARS,VARNAM ,VARPTR,BETA,ERROR,ERRMSG , 
# LOGUNT,LSTUNT,PAGSIZ,ROWPAG ,COLPAG ,COVMAT, 
# COVR4T,POISON ,NDEL,DELNAM,DMASK) 

IF (ERROR) GO TO 900 

c write (6,*) ' Commands input .. .' 

100 CALL WCSSP(DA TUNT, DA TFMT, VARPTR,AL TMAX, NVARS,RBUF ,BET A,ZPZ, 
# LRCHIS,DFERR,Z,ZTOT,XPB,PHAT ,AL TPTR,POISON,ERROR, 
# ERRMSG,NZPTR,NDEL,DMASK,LRCH1 ,NSETS,FSETS) 

IF (ERROR) GO TO 900 

c write (6,*)' WCSSP returned successfully.' 

CALL UPDATE(ZPZ,BETA,NVARS,VARPTR ,TOLEPS,CVGEPS,MAXITR, 
# ITER,CONVRG,SWEPT,ERROR,ERRMSG) 

IF (ERROR) GO TO 900 

c write (6,*)' UPDATE returned successfully.' 

IF (.NOT. CONVRG) GO TO 100 
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c ENDIF 

900 continue 
c900 WRITE (LOGUNT,*)' ' 
c WRITE (LOGUNT,'(6X,A72)') ERRMSG 
c IF (LOGUNT.NE.6) THEN 
c WRITE (6 ,'(1X,A72)') ERRMSG 
c ENDIF 

910 CONTINUE 
C910 CLOSE (11 ,STATUS='DELETE') 

C 

c Copy results to the return matrix 
C 

do 920 i=1 , 10 
coeff(i)=beta(i) 

920 continue 

c IF (LOGUNT.NE.6) THEN 
c CLOSE (LOGUNT,STATUS='KEEP') 
c ENDIF 
c IF (LSTUNT.NE.6) THEN 
c CLOSE (LSTUNT,STATUS='KEEP') 
c ENDIF 
C 

c IF(.NOT.ERROR) GO TO 200 
c CLOSE(CMDUNT,STATUS='KEEP') 

END 

C----------------------------------------------------------------------
C COMMAND INPUT SUBROUTINE 
C * 
C CAROL GILBERT 6/17/86 
C----------------------------------------------------------------------

* 

* 

SUBROUTINE CMDINP( CMDFIL,CMDUNT,DATUNT,FORMAT,NVMAX, 

* 
* 

* 

* 

# NV,VARNAM ,VARPTR,BETA,ERROR,ERRMSG , 
# LOGUNT,LSTUNT,PAGSIZ,ROWPAG ,COLPAG ,COVMAT, 
# COVR4T,POISON,ND,DELNAM,DMASK) 

LOGICAL ERROR.TEST ,COVMA T ,LSTPTR,LOGPTR,GRPSET,FRQSET,BETSET 
LOGICAL NODATA,COVR4T,POISON 
INTEGER CMDUNT, DATUNT, LOGUNT, LSTUNT,PAGSIZ,ROWPAG ,COLPAG , 

# VARPTR(1), K, NV, ND, DMASK(1) 
CHARACTER*1 BUFARR(512),CHR 
CHARACTER*8 VARNAM(1),STATS(7),KEYWRD,GRPVAR, 

# FRQVAR,DEVICE,DELNAM(1) 
CHARACTER*64 CMDFIL,DATFIL 
CHARACTER*20 PTRNAM 
CHARACTER*512 FORMAT,BUFSTR 
CHARACTER*127 ERRMSG 
REAL*8 BETA(1) 

EQUIVALENCE(BUFSTR, BU FARR) 
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ERROR=.FALSE. 
TEST= .TRUE. 
LSTPTR= .FALSE. 
LOGPTR=.FALSE. 
COVMAT= .FALSE. 
COVR4T=.FALSE. 
POISON= .FALSE. 
GRPSET= .FALSE. 
FRQSET=.FALSE. 
BETSET=.FALSE. 
NODATA= .TRUE. 
NV=0 
ND=0 
10=0 

10 NV=12 

20 VARNAM(1)='GROUP ' 
VARNAM(2)='FREQ ' 
VARNAM(3)='INTCEPT' 
VARNAM(4)='COST ' 
VARNAM(5)='LONG ' 
VARNAM(6)='TODO ' 
VARNAM(7)='CLIMATE ' 
VARNAM(8)='FOOD ' 
VARNAM(9)= 'LANGUAGE' 
VARNAM(10)= 'SCENERY ' 
VARNAM(11)='SAFETY ' 
VARNAM(12)='NEWTODO ' 

C 
C 
C 

C 

30 FORMAT='(F3.0,F4 .0, 1 0F3 .0)' 

40 DATFIL= 'VAC.DAT' 

Don't need to open this , as it is still open after writing it . 
OPEN (DATUNT,FILE=DATFIL,ST ATUS='OLD') 

NODATA=.FALSE. 
REWIND(DATUNT) 

50 GRPVAR='GROUP ' 
grpset= .true . 

JGRP=1 

60 FRQVAR='FREQ ' 
frqset= .true . 
JFRQ=2 

* STOP **** Added 14 Nov. 1989 MFF 
* 

250 CONTINUE 
c ERROR= .TRUE. 
c ERRMSG = ' End of Command File reached ' 

do 70 i=1 ,12 
VARPTR(i)=i 

70 continue 

RETURN 

END 
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C ......................................................................... *********•••••• 

C WCSSP (WEIGHTED, CENTERED SUMS OF SQUARES AND PRODUCTS) • 
C INPUTS: * 
C DATUNT = UNIT NUMBER OF DATA FILE • 
C DATFMT = DATA FORMAT * 
C VARPTR = VECTOR OF POINTERS TO GROUP,FREQ,X{1) , ... ,X(BETDIM) * 
C AL TMAX = MAXI MUM NUMBER OF ALTERNATIVES IN ANY GROUP * 
C NVARS = NUMBER OF VARIABLES (INCLUDING GROUP AND FREQ) * 
C BETA = CURRENT PARAMETER VECTOR * 
C OUTPUTS: * 
C ZPZ = WEIGHTED Z'Z IN TRIANGULAR STORAGE MODE * 
C DFERR = DEGREES OF FREEDOM FOR ERROR * 
C NSETS = NUMBER OF CHOICE SETS IN DATA FILE 
C WORK ARRAYS: * 
C Z = WORK AREA FOR DAT A SUBMATRIX 
C ZTOT = WORK AREA FOR RUNNING TOTALS 
C XPS = WORK AREA FOR X'BET A 
C PHAT = WORK AREA FOR FITTED PROBABILITIES 
C ALTPTR = WORK AREA FOR ALTERNATIVE POINTERS • 
C NZPTR = WORK AREA FOR NONZERO ELEMENT POINTERS * 
C ERROR REPORTS: * 
C ERROR = ERROR FLAG (LOGICAL) * 
C ERRMSG = ERROR MESSAGE ASSOCIAGED WITH ERROR FLAG * 
C*********************************************************************** 

SUBROUTINE WCSSP(DATUNT,DATFMT,VARPTR,ALTMAX,NVARS,RBUF,BETA, 

* 
C 

# ZPZ,LRCHIS,DFERR,Z,ZTOT,XPB,PHAT.AL TPTR,POISON, 
# ERROR,ERRMSG,NZPTR,NDEL,DMASK,LRCH1 .NSETS,FSETS) 
LOGICAL EOD,ERROR,POISON 
INTEGER NVARS,VARPTR(NVARS),AL TMAX,DATUNT,DFERR,AL TPTR(AL TMAX), 

# ALTERN,BETDIM,IZOLD,IZ,IZPZ,IALT,JZ,JGRP,JFRQ, 
# JC,JR,JB,JCOL,JROW,JCBASE,NALT,NZPTR(NVARS),NNZ, 
# NDEL,DMASK(NVARS),NREAD,NSETS,LINE 
REAL*4 GROUP,LSTGRP 
REAL *8 ZPZ(NVARS*(NVARS-1 )/2),Z(ALTMAX,NVARS),BETA(NVARS-2), 

# ZTOT(NVARS-1 ),XPB(ALTMAX),LRCHIS,LRCH1 ,RFACT,FSETS(24,12), 
# PHAT(ALTMAX) ,PTOT,FTOT,FHAT,ZROW,ZCOL,WTOT,RBUF(NVARS) 
CHARACTER*512 DA TFMT 
CHARACTER*127 ERRMSG 

INITIALIZE 
REWIND (DA TUNT) 

EOD = .FALSE. 
GROUP = -9999. 
AL TERN= 0 
IZOLD = 0 
BETDIM = NVARS - 2 
JGRP = VARPTR(1) 
JFRQ = VARPTR(2) 
DFERR = -BETDIM 
LRCHIS = 0.000 
LRCH1 = 0.0000 
NREAD = NVARS + NOEL 
NSETS = 0 
LINE=0 

DO 90 IZPZ = 1,NVARS*(NVARS-1)/2 
ZPZ(IZPZ) = 0.D00 

90 CONTINUE 
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* FILL DATA BUFFER UNTIL GROUP NUMBER CHANGES 
100 LSTGRP = GROUP 

IZ = MOD(IZOLD,ALTMAX)+1 
C*********************************************************************** 

C Add the capability to delete unwanted variables from input stream 
C - BER 89.06 .04 

c······································································· 

C 
C Read the entire dataline, delete the unnecessary data 
C 
c IF (NOEL .GT. 0) THEN 
c READ (11 ,DATFMT,END=110,ERR=110) (RBUF(J) ,J=1 ,NREAD) 
c DO 105 J=1 ,NVARS 
c Z(IZ,J) = RBUF(DMASK(J)) 
c 105 CONTINUE 
c ELSE 
C 
C 
C 
C 

Use all the data, DELETE option NOT specified, avoid unnecc. proce 

WRITE(*,*) 'Before read .. . ' 
LINE=LINE+1 
DO 106 J=1 ,12 
Z(IZ,J)=FSETS(LINE,J) 

106 CONTINUE 
IF(LINE.EQ.24) GOTO 110 

C READ (11 ,DATFMT,END=110,ERR=110) (Z(IZ,J),J=1 ,NVARS) 
C WRITE(*,*) 'After read , IZ = ', IZ 
c ENDIF 

C IF NOT AT END OF DATA FILE THEN 
GROUP = Z(IZ,JGRP) 

C IF (MOD(INT(GROUP) ,10000).EQ .0) WRITE(6,*) 'Processing ',GROUP 
c WRITE (6,*) 'Processing ',GROUP 

IF (LSTGRP .EQ. GROUP) THEN 
IZOLD = IZ 
AL TERN= ALTERN+1 
IF(ALTERN .GT. ALTMAX)THEN 

ERROR = .TRUE. 
ERRMSG =' Problem in DATAFILE: Too many alternatives' 
RETURN 

END IF 
AL TPTR(AL TERN) = IZ 
GO TO 100 

END IF 
GOTO 120 

C ELSE (AT END OF DATA FILE) 
110 EOD = .TRUE. 

C END IF 

·-----------------------------------------------------------------------
* INCREMENT Z'Z MATRIX 
120 IZOLD = IZ 

NAL T = AL TERN 
IF (NAL T .GT. 0) THEN 

NSETS = NSETS + 1 
DFERR = DFERR + NAL T - 1 
PTOT = 0.D00 
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FTOT = 0. 
WTOT = 0.D00 

DO 125 JZ = 1 , NVARS 
ZTOT(JZ) = 0.D00 

125 CONTINUE 

DO 140 IAL T = 1 , NAL T 
IZ = AL TPTR(IAL T) 
XPB(IAL T) = 0.D00 
JB = 0 
DO 130 JB = 1,BETDIM 

JZ=VARPTR(JB+2) 
XPB(IALT) = XPB(IALT) + Z(IZ,JZ)*BETA(JB) 

130 CONTINUE 
PHAT(IAL T) = DEXP(XPB(IAL T)) 
PTOT = PTOT + PHAT(IAL T) 
FTOT = FTOT + Z(IZ,JFRQ) 

140 CONTINUE 

LRCH1=LRCH1 + RFACT(FTOT,POISON) - FTOT*DLOG(FLOAT(NALT)) 
LRCHIS=LRCHIS + RFACT(FTOT,POISON) 
DO 190 IAL T = 1 , NAL T 

IZ = AL TPTR(IAL T) 
PHAT(IAL T) = PHAT(IAL T)/PTOT 
FHAT = FTOT*PHAT(IAL T) 
LRCHIS = LRCHIS - RFACT(Z(IZ,JFRQ) ,POISON) 

+ + Z(IZ,JFRQ)*DLOG(PHAT(IAL T)) 
LRCH1 = LRCH1 - RFACT(Z(IZ,JFRQ) ,POISON) 
Z(IZ,JFRQ)= XPB(IAL T) + Z(IZ,JFRQ)/FHA T -1. 
WTOT = WTOT + FHA T 

JCBASE = -1 
NNZ = 0 
DO 180 JC= 2, NVARS 

JCOL = VARPTR(JC) 
JCBASE = JCBASE + JC - 2 
ZCOL = Z(IZ,JCOL)*FHAT 
IF (ZCOL .NE. 0) THEN 

NNZ = NNZ + 1 
NZPTR(NNZ) = JC 
ZTOT(JCOL) = ZTOT(JCOL) + ZCOL 
DO 170 JNZ = 1, NNZ 

JR = NZPTR(JNZ) 
JROW = VARPTR(JR) 
IZPZ = JR + JCBASE 
ZPZ(IZPZ) = ZPZ(IZPZ) + Z(IZ,JROW)*ZCOL 

170 CONTINUE 
END IF 

180 CONTINUE 
190 CONTINUE 

JCBASE = -1 
DO 210 JC= 2, NVARS 

JCOL = VARPTR(JC) 
JCBASE = JCBASE + JC - 2 
ZCOL = ZTOT(JCOL)/WTOT 
DO 200 JR = 2, JC 
JROW = VARPTR(JR) 
IZPZ = JR + JCBASE 
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ZPZ(IZPZ) = ZPZ(IZPZ) - ZTOT(JROW)*ZCOL 
200 CONTINUE 
210 CONTINUE 

END IF . _________ .,. _____ .,. ___________ .,. _________________________________________ _ 

IF (.NOT. EOD) THEN 
AL TERN= 1 
AL TPTR(AL TERN) = IZOLD 
GO TO 100 

ELSE 
RETURN 

END IF 
END 

c···································································· 
C UPDATE * 
C UPDATES THE BETA VECTOR. 
C INPUTS: * 
C ZPZ (MODIFIED) * 
C BETA (MODIFIED) * 
C NVARS * 
C VARPTR * 

* 

C TOLEPS, CVGEPS TOLERANCE AND CONVERGENCE EPSILONS 
C MAXITR MAXIMUM NUMBER OF ITERATIONS * 
C ITER (MODIFIED) * 
C OUTPUTS: * 
C CONVRG .TRUE. WHEN BETA CONVERGES * 
C ERROR,ERRMSG * 

c···································································· 
SUBROUTINE UPDATE (ZPZ,BETA,NVARS,VARPTR,TOLEPS,CVGEPS, 

# MAXITR,ITER,CONVRG,SWEPT,ERROR,ERRMSG) 

* 

INTEGER NVARS,VARPTR(NVARS),MAXITR,ITER,SWEPT(NVARS-1),JPIVOT 
REAL*8 ZPZ(NVARS*(NVARS-1)/2) ,BETA(NVARS-2),TOLEPS,CVGEPS, 
#DEL TA,MODDL T 
LOGICAL CONVRG,ERROR 
CHARACTER*127 ERRMSG 

CONVRG = .FALSE. 
ITER = ITER + 1 

DO 100 JPIVOT = 2,NVARS-1 
CALL SWEEP(ZPZ,NVARS-1 ,JPIVOT,SWEPT,TOLEPS,ERROR,ERRMSG) 
IF (ERROR) RETURN 

100 CONTINUE 

c write (6,*) ' UPDATE: Step 1 .... .' 

C TESTFORCONVERGENCE 
MODDL T = 0.000 
DO 110 JB = 1, NVARS-2 

DELTA= BETA(JB) 
JZPZB = JB*(JB+1)/2+1 
JZPZV = JZPZB + JB 
BETA(JB) = -ZPZ(JZPZB) 
DELTA= (DELTA-BETA(JB))**2/ZPZ(JZPZV) 
MODDL T = MODDL T + DELTA 

110 CONTINUE 
MODDL T = DSQRT(MODDL T/(NVARS-2)) 

c write (6,*) ' UPDATE: Step 2 .... .' 
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IF (MODDL T .LE. CVGEPS) THEN 
CONVRG = .TRUE. 

END IF 

IF (ITER .GT. MAXITR) THEN 
CONVRG = .TRUE. 
ERROR = .TRUE. 
ERRMSG = 'MAXIMUM ITERATIONS EXCEEDED.' 

END IF 

RETURN 
END 

SUBROUTINE SWEEP(Z,IORDER,IP,SWEPT,EPS,ERROR,ERRMSG) 
C***************************************************************** 

C REVERSIBLE UPPER TRIANGULAR SWEEP FROM J.H. GOODNIGHT, * 
C THE SWEEP OPERATOR: ITS IMPORTANCE IN STATISTICAL COMPUTING * 
C * 
C GEORGE WOODWORTH 6/3/85 
C***************************************************************** 

DOUBLE PRECISION Z(1) ,EPS,B,C,D 
INTEGER SWEPT(1) 
LOGICAL ERROR 
CHARACTER*127 ERRMSG 
IZP = IZADR(IP,IP) 
D = Z(IZP) 
IF (D .LT. EPS) THEN 

ERROR= .TRUE. 
ERRMSG = 'DESIGN MATRIX IS SINGULAR.' 
RETURN 

ENDIF 

DO 100 IR= 1, !ORDER 
IF (IR .NE. IP) THEN 

IZB=IZADR(IR,IP) 
B = Z(IZB)/D 
IF (IR .GT. IP) THEN 

B = SWEPT(IR)*SWEPT(IP)*B 
ENDIF 
DO 90 IC = IR, !ORDER 
IF (IC .NE. IP) THEN 

IZC = IZADR(IC,IP) 
C = Z(IZC) 
IF (IC .LT. IP) THEN 
C = SWEPT(IC)*SWEPT(IP)*C 

ENDIF 
IZ = IZADR(IR,IC) 
Z(IZ) = Z(IZ) - B*C 

ENDIF 
90 CONTINUE 

ENDIF 
100 CONTINUE 

DO 200 IR= 1, !ORDER 
IF (IR .NE. IP) THEN 

IZ = IZADR(IR,IP) 
Z(IZ) = Z(IZ)/D 
IF (IR .LT. IP) THEN 

* 
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Z(IZ) = - Z(IZ) 
ENDIF 

ENDIF 
200 CONTINUE 

Z(IZP) = 1/D 
SWEPT(IP) = -SWEPT(IP) 

RETURN 
END 

FUNCTION IZADR(l1,I2) 
C----------------------------------------------------------------
C RETURNS ROW-MAJOR UPPER TRIANGULAR ADDRESS FOR ROW 11, COL 12 . 
C 
C GEORGE WOODWORTH 6/3/85 
C----------------------------------------------------------------

I R =MI N0(l 1, I2) 
IC=MAX0(l1 ,I2) 
IZADR=IR+(IC*(IC-1 ))/2 
RETURN 
END 

SUBROUTINE UPCASE(LEN ,LETTER) 

INTEGER LEN 
CHARACTER*1 UCASE(26) ,LCASE(26) 
CHARACTER*1 LETTER(LEN) 

DAT A UCASE/'A' , 'B' ,'C' , 'D' , 'E' ,'F' , 'G' , 'H' ,' I' , 'J', 'K' ,'L' , 'M' 
+ ,'N 1,'O' ,'P' ,'Q','R' ,'S' ,'T' ,1U1

,
1V1

,
1W' ,'X', 1Y1

,
1Z'/ 

DAT A LCASE/'a' , 'b' , 'c' , 'd' , 'e' ,'f , 'g' ,'h' , 'i' , 'j ' ,'k' , 'I' , 'm' 
+ ,'n' , 'o' ,'p' ,'q 1

, 'r' ,'s' ,'t' ,'u 1 ,'v' ,'w' ,'x' ,'y' ,'z'/ 

DO 100 N=1 ,LEN 
DO 110 J=1 ,26 

IF(LETTER(N).EQ.LCASE(J)) LETTER(N)=UCASE(J) 
110 CONTINUE 
100 CONTINUE 

RETURN 
END 

REAL*8 FUNCTION RFACT(VAL,POISON) 
REAL*8 VAL 
LOGICAL POISON 

RFACT=0.0D0 
IF (.NOT.POISON.AND.VAL.GT.1 .SD0) THEN 

DO 100 N=2,INT(VAL+0.5D0) 
RFACT=RFACT +DLOG(FLOAT(N)) 

100 CONTINUE 
ENDIF 
RETURN 
END 
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