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Abstract

The Dufling ‘twin-well” oscillator is investigated both experimentally and theo-
retically. The construction of a physical, nonlinear air-track oscillator with an
ultrasound position detection system permits observation of a wide range of os-
cillatory behaviours, including chaotic motion, on a human scale (amplitudes of
~ometre).

Phase space and Poincaré sections are constructed in real time and, in the case
of chaos, Lyapunov exponents determined. The range of control space conditions
which give rise to chaos is investigated. In particular, the boundaries between
chaotic and periodic motion are measured experimentally.

An analytic description of the primary boundaries of interest is constructed
via a harmonic-balance generated solution to the governing differential equation
and a perturbation style stability analysis. Successful theoretical prediction of the

chaos boundary is achieved without recourse to numerical methods.
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Introduction

If the simple harmonic oscillator (SHO) is of central importance to physics in de-
scribing. by virtue of a (Taylor) series expansion, small oscillations in the vicinity
of an equilibrium position, then, expanding the series to third order and inves-
tigating the resulting cubic’ oscillations is a natural next step. Harmonically

forced oscillations of a body. mass m, under such a restoring force are governed

by Duffing’s equation:
nF g - ar o+ dat = Deoswt (0.1)

where 2 = 2(t) is the position of the body and the Greek svmbols denote param-
eters of the system. In particular, viscous damping is characterised by « and the
excitation by T' and w (respectively. forcing amplitude and frequency). Syvstems
modelled by equation 0.1 exhibit a rich spectrum of phenomena including subhar-
monics, hysteresis, coexistence and chaos. What oscillations are possible depends
on the parameters.

Dufling’s [8] seminal work of 1918 establishes relationships between the fre-
quency and amplitude of periodic oscillations, relationships which he tested using
pendulum-spring combinations. Such apparatus allows investigation of the case
a < 0.3 > 0 (significant linear term, small cubic term) and slight damping.

Our interest is specifically the case where o and 3 are both positive. This
gives rise to the so-called "twin-well” potential, a system intuitively described by a
‘ball” confined to the symmetric potential depicted in figure 0.1, The linear term in
the restoring force contributes the ‘hump’ to the otherwise quartic potential., The
system has three equilibria, one unstable at x = 0, and two stable at 2 = i—v’(nTﬂ-

where the opposing linear and cubic components of the restoring force cancel.
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I'igure 0.1: Intuitive representation of a twin-well potential system.

To maintain motion in the face of light frictional damping, the system is driven
harmonically, the ball making cross-well transitions if it has sufficient energy.

Experimental Duffing oscillators are rare. Previous experimental systems have
most often been achieved with a ‘bending beam® apparatus. A twin-well potential,
in such cases, is established by making use of an external attractive field. Thus
Moon [18], for example, establishes a twin-well potential by suspending a ‘hack-
saw’ blade over two separated magnets - while Berger and Nunes [4] upright the
blade, making use of gravity to create the twin-well effect. Our air-track based
system employs springs and rods to effect a cubic restoring force and makes use of
an external field (gravity) to drive the oscillation. This latter technique minimises
the possibility of introducing a significant and negative .

That chaotic oscillations occur in the Duffing twin well system is well estab-
lished ([29], [13], [18]). Less well understood is the range of parameter values
which give rise to chaos and the boundary(s) in parameter space which mark its
onset. Varying only the forcing amplitude and frequency, the onset of chaos is
marked by a line in the (w, ') plane (Moon [18], [20]). This line is seen in figure
0.2 as the “V-shape’ located near w = v = 0.8, I’ = 0.07, where parameter values
below the line give rise to periodic motion in one well and those above, double-well
chaos.

Moon’s [19] experimental results suggest a possible fractal character to the
boundary, vet it is easily verified numerically. and we find /e experiment, that
this is not the case.

There have been several efforts made to analytically predict the chaos bound-

ary, most notably Kapitaniak [16], Janicki and Szempliriska-Stupnicka [14], Moon
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Driving amplitude, F

‘-‘F:a\‘ Melnikov criterion
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10 15 20
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Figure 4. Regions of existence of various attractors in the control space. [TIT], 1T SO exists below this
line; B, 2T SO; B, 3T SO; M@ 17 LO symmetric; 8, 1T LO unsymmetric; B, 3T LO symmetric; @, 3T LO
unsymmetric; B cross-well chaos. Bifurcations: f—fold (saddle-node), pd—period doubling, sb—symmetry
breaking.

[Migure 0.2: Numerical results reproduced from figure 4, Janicki and Szemplinska-
Stupnicka [14] for parameter values @ = 0.5, 5 = 0.5 and v = 0.1.

(18], [19], IHolmes [13] and Guckenheimer and Holmes [11]. Of these, [16] and
[14] are the most successful, but both, crucially, depend on numerical methods at
some point.

The aims of this thesis, then, are broadly these:

1. Construction of an experimental Duffing twin-well oscillator, enabling
measurement of the (w,I’) plane chaos boundary, and,
2. Mathematically modelling the system to obtain a theoretical

prediction of the above houndary.

[t is emphasised that the theoretical component of the project is not intended to
be a rigorous mathematical analysis. Indeed, high levels of rigour are unlikely to
produce useful results - as one may observe from the Holmes-Melnikov criterion
for the above boundary (refer [20], [11] or section 4.2.2). Here, we are led by the
experimental results and, through valid approximations, develop models which

predict the observed behaviour.
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Chapter 1

Cubic Oscillations

1.1 Cubic Oscillators

Lxperimental observation of cubic oscillations is achieved with an air track and
glider, using a position dependent restoring force on the glider established by the
rod/spring configuration shown in figure 1.3. Here the springs, tensioned vertically
and at a perpendicular distance L from the air track, are connected to the glider
by rods of length . The springs have length 2/, when at rest and tension! 7.

The restoring force on the glider is then:

= —4Tysinlcosy (1.2)

'Strictly speaking. the spring tension is y dependent. If the springs have force constant k,
and unstretched length 1. then the spring tension is T, = {2/y* +12 - 1,,)/k which, i y is
small becomes Ty = (21, — 1,,)/k. that is, a constant. We make this assumption.

@

WELAE.

[igure 1.3: Spring geometry (a) Glider orientation (b) Variables defined.
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/\

[Figure 1.4: Glider coordinates defined.

(I4+y)? =r=L* (1.3)

rearranging 1.3, we find, for small y:
(L.4)

climinating ¢, 6, and y we find for ;2 << (L? -+ {?)

: LA = L= -
r) = 1f L 1.8
fr) 0 (72~ 1201, (1.9)
f(r) therefore has the form

Flry = ar— 47 (1.6)

where v and 4 are constants defined by equation 1.5.
Driven oscillations are achieved by ‘see-sawing’ the track about a central pivot.
The Lagrangian for the glider, mass m, rotational inertia /. is then given by
1 i 1 - ) l ‘9 . r q o~
L= Smr + 5-};:(;'{;‘))" + 3[(_,)' — mgrsing — V(r) (1.7)
where (7, @) are the polar coordinates (figure 1.4) of the glider (origin at the pivot)
and V' (r) is the potential function associated with the spring displacement. V (r)
is related to the spring force function. f(r), by f(r) == —dV’/dr. As the dimensions
of the glider itself are small (0.3 m in length). we neglect the inertia term %]@2.

The equation of motion for the displacement is then
i = LY mre” - ngsing — —ar (1.8)

where ~vis the viscous drag coefficient. The sinusoidal variation of the track slope
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dh 1o A (b

Amplitude

|
[O76) (I‘JU (!). ®
<0, B3>0 o0<0,p=0 a<0, <0

[Migure 1.5: Typical response curves for (a) ‘Hard’” spring. (b) Linear spring. (c)
‘Soft” spring.
can be expressed as

stng = —pocos(wt) (1.9)

Thus the centrifugal term of equation 1.8 can be written
el = mr(wogsin (W) /(1 = ogcos (wt)) (1.10)

We shall see (section 2.2) that the amplitude of the drive term, ¢g, never exceeds
0.08 rad. and therefore the contribution of the centrifugal term, while being w-
dependent, is negligible (for example, with ¢y = 0.08 rad. w == 3, m = 0.352,
r = 0.5, mrefoy” & 1 x 1072). Neglecting the centrifugal term, the differential

equation for the motion of the glider is then Duffing’s equation
it v — o+ 9t = Leoswt (1.11)

where I' = mgey.

When o < 0 (the normal simple harmonic oscillator case), the cases 3 > 0
and 5 < 0 correspond to third order Taylor approximations to ‘hard’ and ‘soft’
springs respectively. Of these two cases, our apparatus would permit investigation
of the former by choosing the rod length /, such that { < L. [igure 1.5 shows
the typical response curves of amplitude versus frequency of both cases with the
driven simple harmonic oscillator (SHO) (3 = 0) for comparison. Thus, the famil-

iar SHO response curve ‘tilts” to the right or left depending on the sign of ;. In
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|
—

Amplitude

o O
«<0,$>0

[ligure 1.6: IHysteresis sequence A-B-C-D-IS illustrated for the ‘Hard’ spring case.

cach case. the response curves are centred at the linear-approximation, ‘resonance’
frequency. wy == /—dma — 292/2m.

As [' increases so does the degree of tilt; the curves become multivalued for cer-
tain w (as in the cases illustrated), the broken-line sections in figure 1.5 indicating
unstable solutions of equation 1.11. In such cases, a hysteresis effect is observed
with the amplitude making a sudden ‘jump” as the frequency changes. The jump
points correspond to the response curve having vertical tangents. [Figure 1.6 sum-
marises this behaviour in the case of the ‘hard’ spring: As w is increased from
point A, the amplitude increases until point B is reached where, having ‘nowhere
to go’, it suffers a sudden drop to point C. Decreasing w from this point (or any
higher frequency) results in the amplitude increasing sharply until the curve is
vertical - at D, whercupon it jumps up to the top - point I, An equivalent process

occurs for the soft spring case.

1.2 Pure cubic oscillator

From equation 1.5 we sece that when | = L, a = 0 and the restoring force is purely
cubic. This case is considered in Whineray [32] and Whineray et el. [33] for relax-
ation (damped. undriven) and driven oscillations respectively. The experimental
response curve obtained in [33] is shown in figure 1.7. Like the ‘hard’ spring
case, the response curve tilts to the right by comparison with the driven SHO,

but, as a = 0 there is no fixed natural frequency for small undriven oscillations.
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(2]

054
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03

0 21

Displocement amplitude (m)

or| !

Angular frequency {rads™')
Figure 1.7: Experimental response curve from [32].

The frequency of such oscillations is amplitude dependent and has the important
property that the period-amplitude product, T4 is approximately constant. This

accounts for the linearity evident in the amplitude-frequency plot of figure 1.7.

1.3 Duffing’s method of solution

Periodic solutions r = 7(t) of equation 1.11 are not harmonically pure and conse-
quently, in the preceding discussion, the term ‘amplitude’ has been used loosely.
The presence of these higher harmonics in the solution of equation 1.11 is a direct
result of the nonlinear term. An approximate method of solution, employed by

Duffing [8], for the case v = 0 illustrates this: We rewrite equation 1.11 as follows
mit = ar — Br + Ceoswt (1.12)
and substitute in an initial approximation to the solution, 7 (t) = Acoswt, giving

: , 1 ,
mry = (a.d — :;/)’A" + IMeoswt — 1,3‘43(:053@ (1.13)
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Integrating equation 1.13 twice (and dividing by m) recovers the second approxi-

mation, specifically,

347 — ot = Ueovat + ——— 3 cos3wt (1.14)

i 3 - !
i RTINS

The original amplitude, A, is equated to the new coswt coefficient giving
3 Q13 2 I
0= 1,5.4 - Ale+mw?) =T (1.15)

This relationship between A and the parameters of the system produces curves
similar to those of figure 1.5. Iiquation 1.14 indicates that the solution is domi-
nated by the fundamental and hence its amplitude, A, is taken to be indicative
of the ‘size” of the oscillation. In the particular case of the undriven, undamped,
pure cubic oscillator (v = 0, e = 0, 8 > 0. T = 0) of section 1.2, equation 1.15
can be rearranged to the following

; [or e
TAwdr f— 1.16
"W (1.16)

where T = 27 /«. This is the T4 = constant result obtained in [33] and elsewhere
via an elliptic integral. There's a pattern here: for a quadratic potential (SHO),
T is constant: for an ' potential, TA is constant: for an 2% potential T A? is

constant; ctc.

1.4 Twin-Well Oscillator

[For | # L, the restoring force contains both linear and cubic terms, the case
I > L (a>0.5 = 0). giving rise to the so-called ‘twin-well’ potential. V' (r) =-

— [ f(r)dr. for which the rod/spring configuration has three equilibria:

r=0,=vI{* - L* (1.17)
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10, .
(b) ;

-10-

[Migure 1.8: (a) Restoring force f(z) vs  and (b) Potential V' () vs x for a = 7.21

In considering this case, it is convenient to scale equation 1.11

(1.18)

Pt ek —ar(l - &%) = Leost

:‘VC% and ' = I‘v.'i/n/’m, Now the stable

where a = a/m, ¢ = v/m, x =

cquilibria are located at o = £1, the force function is f(x) = ax(1 — 2?) and the

(2! — 22?) (see figure 1.8). The Hamiltonian is therefore

potential V(x) = & (&
Ly o, .
[{:__—51' ———rr"l@“—?) (1-19)
It is helpful to write equation 1.18 in the following form
1X \ ,
L G(X,L) (1.20)
dt

where G is a vector function of the phase-space vector X = (2. v, =) and the set

of parameters L = (a, ¢, I,w). The above system of differential equations (1.20)
is then

PR
v = Feosz+ ax(l — 7} = cv (1.21)

=
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The eigenvalues of the Jacobian matrix, Mum = 53, determine the nature of

solutions in the vicinity of critical (equilibrinm) points?. We obtain

0 1 0
M= | a(l -32%) —c —Isinz (1.22)
0 0 0

Consider the undriven system (7= (). M then has two eigenvalues given by

t T _
A= ( ek f o da(l - :3.:—-’}) (1.23)
[or the Hamiltonian case (¢ = 0) equation 1.23 gives rise to the ecigenvalues

X = £/v2a, at the critical points x = £1. This imaginary pair indicates stable
centres. That is, the local solutions take the form z = Acosv2at + Bsiny/ 2at.
Thus v2a is the natural frequency of small oscillations confined to one well,

At 2 = 0 we obtain A = £/a, a real pair, indicating an unstable saddle point.
Local solutions take the form x = Aexp(y/at) + Beap(—+/at). These local be-
haviours are illustrated in figure 1.9 where the curves are obtained by plotting v
vs x for the Hamiltonian function (equation 1.19).

For ¢ # 0, ¢* < 8a, the system is no longer Hamiltonian but the local be-
haviours can still be determined. The critical point at = 0 remains a saddle, but
at x —= =1, the cigenvalues are the complex conjugate pair A = %(—Ci I8 — 2},
Here the imaginary part contributes the oscillatory character of the solution
and the real part the exponential decay. Local solutions take the form z =
63:17])(—{'!/2_}(.'-'1(7('),‘&{5\/8(! — %t + Bs-.i'n._'}\/éﬁu — ¢?t), that is, a stable spiral. The in-
troduction of damping to the system then, has the effect of ‘collapsing’ the stable
centres of figure 1.9 to asymptotically stable spirals. Figure 1.10 depicts the new
situation where the curves indicate the local behaviour at each respective critical
point.

The spirals cause adjacent trajectories to converge whercas the saddle can

cause. depending on initial conditions, neighbouring trajectories to converge or

*Refer to Kreyszig [17] for example.
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[igure 1.9: Phase plane (v vs x) behaviour for ¢ == 0, ' = 0, a = 7.21, from the

Hamiltonian, equation 1.19, for H = 1.2,

0, —0.4d and —1.2.

N\

1'.5|]l {@ r\-ols\; 0

P

L ;
1\ ¥ j1.5
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NS

[igure 1.10: Phase plane character near

critical points for ¢ # 0, FF = 0, a — 7.21.
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diverge. The exponents which characterise the rate of growth or decay of the
separation of neighbouring trajectories in the phase plane are the local Lyapunov
exponents. Since, in general, these exponents vary throughout the phase plane,
the average rate of separation ‘scen’ by any given orbit must be evaluated numer-
ically along the entire trajectory. These techniques are employed in section 3.3
where such exponents are used to diagnose - i.e. provide a measure of - chaos.
When I # 0, corresponding to the driven oscillator, the solution becomes
more complex. As a ‘first look” we apply Duffing’s method (again with v = ()

specifically to the twin well case, starting with
x(t) = I + Acoswt (1.24)

Differentiating and substituting equation 1.24 in equation 1.12 gives, on expansion

and use of trigonometric identities:

Z=Icos(wt)+aAcos(wt)+all— I(L A3 cos(3wt)

3. , ‘ : . )
ik A cos(wt) — ga AP Ecos(2wt) — ga AL ~3aAcos(wt) E?

—a (1.25)
Integrating the above twice with respect to t we obtain:

1 . 1 3, .
x = (-—3(1!3"%- S(LE— I(LA‘E)#%—CM-%CQ

I ad _aAL? N 3a AB) (wi) + Jeos(2utya AT E
S —t+ - ——) cos(wt) + = ——————
w? o w? w? 1 8 w?
3
1 oeos(3u .UGA (1.26)
36 T

where € and Cy are constants of the integration. Ilquating coeflicients of equa-

tions 1.24 and 1.20, we obtain:

E=0F =1~

y . 3.
Aul s —F—aA+3aALE? + T A (1.28)
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Equation 1.27 is obtained by demanding that the coefficient of 2 in equation 1.26
be zero. Equation 1.28 results from equating the coeflicient of coswt in equation
1.26 with A. Eliminating I from equations 1.24 and 1.28 gives

[ 5,

_j;j(f) o j:V[ —_ 5‘.42 + .‘l(’OSC&’t (129)

(= —--{a.-i"t + A(w? = 2a)+ F (1.30)

Lqguation 1.30 relates the amplitude, A, to the parameters of the system and
therefore, for I # 0, the solution x(t) describes local oscillations in either well.
Comparing equation 1.30 with equation 1.15 (settingm = 1, ' = I', & = —2a, 8 =
—ba) , we sce that the response has the character of a ‘soft” spring as the 3 value
implied is negative. We shall see (sections 4.1, 4.3) that the accuracy of equation
1.30 in describing the twin-well behaviour, while not great, does nevertheless give
a qualitative indication of single well response. Roots for A4 in equation 1.30
for certain parameter values may be obtained via a Newton-Raphson method or
other such numerical technique. As we will need to plot more complex response
curves, the algorithm given in appendix B.4 was constructed. It employs interval
bisection to find roots without the need for differentiation. [Figure 1.11 is a plot
of [4] vs w from equation 1.30. Similar to the response curve of a driven STO,
the lack of damping in the system causes a discontinuity in the response (unlike
the continuous response peaks of figure 1.5). Thus the magnitude of A is plotted
since the sign of A may be positive or negative?; the upper branch of the response

curve has the negative sign.

1.4.1 Numerical Analysis

The smooth and continuous nature of the force function (equation 1.6) ensures
that Duffing’s equation (1.11) is readily integrated by numerical methods. Indeed,

many studies have been based entirely on data so obtained. The paper of Ueda

Sef. undamped SHO response where the solution suffers a 180° phase change as the system
passes through resonance.
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[igure 1.11: Response curve given by roots to equation 1.30 for a = 7.21, I =
1.51.

[29], for example, explores the many oscillations possible for different system pa-
rameters.

It is not the intention of the present investigation to repeat such analyses.
However, occasionally, use is made of numerical algorithms for the purpose of
comparison with experimental or theoretical results. An example is the chaos
boundary measurement of chapter 3. Determining this boundary numerically
(computer) requires changing parameters ‘on the run’, waiting for transient oscil-
lations to die down and ‘back-tracking’ if parameter changes have been too hasty.
While it is relatively simple to code numerical routines such as ‘fourth-order Runge
Kutta” (RIK4) in a high-level programming language like Pascal, such algorithms
do not normally afford the advanced level of user interaction here described. IFor
this reason, use was made of the software package Chaotic Dynamics Workbench
(CDW) [26]. CDW integrates Duffing’s equation, while meeting the above re-
quirements and displaying the phase plane trajectories in real time. The software
performs RIK4 integration and, when necessary, Lyapunov exponent computation

is made using conventional techniques (such as the algorithm of Wolf et al. [36]).



Chapter 2

Experimental Apparatus

This chapter describes the nonlinear oscillator and associated apparatus used to
realise, in the laboratory, the oscillations described in chapter 1 - particularly the
Dutting twin-well oscillation.

The basic rod/spring configuration which gives rise to the twin well potential
has been described in section 1.1. Iarmonically driven oscillations in such a
potential are established experimentally using an air track which pivots about
its midpoint. Sinusoidal variation of the track slope, achieved using a stepping
motor, applies a sinusoidal force on the glider whose position, z(t), is governed by
Duffing’s equation 1.18. The position of the glider is measured in real time using

an ultrasound detection system called V-scope [31].

2.1 Physical Description

Photographs of the apparatus are seen in figures 2.12 - 2.15. A standard lab-
oratory air track is used, the glider is essentially a length of v-section aluminium.
Air, pumped into the hollow track, escapes through small holes in the track sur-
face. This efflux creates a cushion of air on which the glider floats. Bolted to the
underside of the air track is an aluminium frame which supports the vertically ori-
ented springs, positioned a distance L, from the track. Horizontal fibre-glass rods
connect the springs to the glider and pivot freely at both ends. This entire struc-

ture (air track + frame + springs/rods + glider) is attached to a cradle and axle

13
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Figure 2.12: Overview of the apparatus. The stepping motor cable and counter-
weight are seen in the top left of the figure.

Figure 2.13: Close-up view of the air track showing the spring geometry and
V-scope receiver towers.
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Figure 2.14: Detail of the glider showing the V-scope ‘button’ transmitter, rod
connections and, on the side, the damping magnet attachment.

Figure 2.15: (left to right) PC2, PC1, stepping motor (between table legs, near
the floor), control box, power supplies and V-scope microprocessor.
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Figure 2.16: Schematic of the experimental apparatus.

with the pivot point of the axle being level with the path of the glider - thereby
minimising inertial effects. A steel cable, attached to the perimeter of a wheel
on the stepping motor axle leads, via pulleys on the ceiling, to a counter-weight.
Part way up, the cable is attached to the end of the air track. Sinusoidal variation
by the stepping motor of the cable’s vertical displacement thereby translates to
sinusoidal variation of the track slope and hence a sinusoidal force on the glider.
This driving force is, we note, in addition to but independent of the position-
dependent restoring force from the springs. A magnet attached to the side of the
glider induces eddy currents in the track surface and hence damps the oscillations

(see figure 2.14). Table 2.1 gives the physical dimensions of the apparatus.

Table 2.1: Apparatus Dimensions and Parameters.

Rod length { (.855 m
Spring position L 0826 m
Glider mass m  0.352 kg
Glider length h 0.300 m
Air track Length L, 2.030m

Spring Length (Tensioned) [, 0.965 m

Figure 2.16 is a block diagram of the main electronic components which can be

broadly divided into two groups, namely ‘drive’ or ‘detection’. Those associated
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with the driving force include a DC power supply, stepping motor and stepping
motor control box which in turn is controlled by an AT computer, PC1. In addi-
tion, a small ‘laser pointer’ (not depicted in figure 2.16) mounted on the air track
assists in levelling the track on start-up.

On the detection side is the V-scope apparatus which includes a small ‘button’
pulse transmitter on the glider itself and a ‘tower’ ultrasonic receiver at the end
of the track which is connected to the V-scope microprocessor control box. This
control box communicates, via RS-232 protocol, with PC2 which is a 486 DX2
66MHz IBM compatible. A linear potentiometer attached to the side of the air
track provides a measure of the track slope in the form of an analogue 0-5V DC

signal, which is fed into the V-scope control box analogue input.

2.2 The Stepping Motor Drive System

Previous drive systems employed electric motors attached to the end of the air
track via a ‘scotch yoke’” mechanism (Whineray «f al. [32], Reid and Whineray
[25]). Such systems allow control of the motor speed and hence the driving fre-
quency, w, by variation of the supply voltage or gearing ratios. In the present
work, both frequency and driving force amplitude are to be varied thereby al-
lowing measurement of ‘control space’ boundaries between the oscillatory modes.
This latter requirement is difficult to implement with conventional electric mo-
tors because it involves physically ‘re-bolting’ the coupling between motor and air
track for each new amplitude. Although this was attempted, it did not permit
continuous variation of the forcing amplitude. Short of building a more elaborate
mechanical system, a computer controlled, stepping motor system was designed.
Through software control, the forcing amplitude can be set (at a resolution de-
termined by the stepsize of the motor) while retaining continuous, ‘on the run’,
frequency control. In addition, as this frequency is driven by the computer clock,
it is very precise - an improvement on previous systems which always suffered

from the minor speed fluctuations inherent in conventional electric motors.
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2.2.1 Stepping Motor Control

The sinusoidal displacement of the end of the air track is obtained by controlling
the timing and number of pulses to the stepping motor!. Lew-distortion? sinu-
soidal motion is achieved when the total vertical displacement of the track end is

made up of a sufficiently large number of motor steps. Table 2.2 lists the motor

Table 2.2: Parameters associated with the stepping motor system:.

Shaft rotation do  0.72°/step
Wheel radius R 39.79 mm
Vertical translation d  0.50 mm/step

Alr track “pivot length” [, 1.117m

shaft rotation per step and the wheel radius. These two parameters result in a
vertical translation of d == 0.50 mm per step. Any output sinewave is quantised
to this resolution. Thus a sinewave made up of N steps has amplitude A = N.d.
The distance from the air track pivot to the cable attachment point is [, and so
the maximum track slope is ¢y = N.d/l,. The amplitude of the sinusoidal force

(in Newtons) exerted on the glider is then given by

N.d
['=mg¢po = m..r,:—j—i (2.31)

1t

where m is the mass of the glider. In practice, the number of steps used never
exceeded 170 and was rarely less than 50. For clarity, the example depicted in
figure 2.17 is a 10-step sinewave.

The amplitude, in steps (/NV), and the period of the driving force are entered
by the user to PC1. Software then calculates a table of stepping times and coil
sequences based on the relevant sinewave. Upon running, the computer continu-
ously loops through the table. Buttons on the control box facilitate altering the

period ‘on the run’, a task achieved by scaling the table entries.

"Full details of the controlling software and hardware are to be found in Bingley et al. 7).
2The degree of distortion is considered in the next section.
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Figure 2.17: A 1 Hz ‘stepped’ sinewave, amplitude N = 10 steps, with its contin-
uous counterpart.

2.2.2 Harmonic content of the stepped sinewave

A natural consequence of using a stepping motor is that the output ‘sinewave’
will contain spurious harmonics. Provided they are small however, the impurities
should not have a detrimental effect on the experiment. The nature of a stepping
motor demands that the sinewave is quantised by regular displacement steps at
irregular points in time. The resulting Fourier spectrum is not obvious. By con-
trast, the perhaps more familiar case of regular time intervals (A7) and irregular
displacements produces, in the Fourier spectrum, a well defined peak at 1/AT Hz
and multiples thereof.

In order to determine the harmonic content then, we calculate the Fourier
series coethicients of the stepped sinewave, amplitude A4 = N.d where d is the
displacement stepsize and N is an integer.

We first define the square pulse wu,,(t) as

d when a, <t<zw/w-—ay
(1) == ’ / " (2.32)

0 otherwise
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where

(ty, = —1—5”1,’71”(—%—4 (2.33)
w

Thus the first half period of the stepped sinewave is given by

N

D(t) =Y wm(t) (2.34)

m=1

An odd periodic extension of h(t) with period 27/w then gives the entire stepped
sinewave. We now evaluate the Fourier series coefficients b,,,, for the odd periodic

extension of a single pulse wu,,(t):

2dw pr/w—am
bnm = — S?Il(llu)t)dt (235)

n am

() I even

—Mrmnwum n odd

Summing by,,, over m gives, by virtue of the linearity of the Fourier representation
and equation 2.34, the series coefficients, b,,, for the entire stepped sinewave:
Adl

by = — COSIEy, (2.37)

P
o

Using equations 2.37 and 2.33, the coefficient of each harmonic can be calculated.
(In particular, one may verify that b; = A in the limit d — 0). We may write the

entire series as
4d & N

= — Z > —(os (nwa, ) sin(nwt) (2.38)

nodd m=1 n
where y(t) is the vertical position of the end of the air track. The full expression

for the time dependent force on the glider is then

oo N

f(t) = mq— oy Lo (nway,)sin(nwt) (2.39)

Tl nodd m=1 n

Using equations 2.37 and 2.33, the Fourier series coefficients have been evaluated
for the ‘worst-case” amplitude of 50 steps (refer algorithm stepping, appendix B.2)

and their magnitudes, normalised to the fundamental are plotted in figure 2.18.
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Figure 2.18: Odd Fourier series coefficients, normalised to the fundamental, for
the ‘worst case’ stepped sinewave of amplitude N = 50 steps.

We note that the non-constant step rate produces non-zero harmonics from the
fundamental upwards®. The spectrum does exhibit some pattern, however, with
prominent peaks occurring at multiples of approximately 300, specifically, 307,
621, 935, 1243,.... This pattern is an artefact of the maximum step rate in each
cycle. Consider the sinewave, ¥y = N.dsinwt. The maximum slope is w/N.d and
therefore the maximum step rate is wN (Hz). As figure 2.17 suggests, this is a
reasonable approximation to the step rate throughout the ‘zero crossing’ regions
of the sinewave. We would then anticipate a prominence of peaks near n == 27 N
and multiples thereafter. For the particular case of N = 50, 27N a 314 which
is consistent with the pattern observed above, and not surprisingly, a slight over-
estimate.

We conclude that the amplitudes of higher harmonics, in the worst case, are
less than 0.2% of the fundamental. This is a factor of 10 less than the inherent
‘mechanical noise’ level in the system from vibrations of the table, discreteness of

the air jets, etc.

3¢f. the Fourier spectrum of FM modulated signals.
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An alternative method for driving the track is an analogue system with feed-
back. Because of the likelihood of small drift in such a system we decided in

favour of the stepping motor for which the stability is intrinsically excellent.

2.3 Ultrasound Detection System

The ultrasound detection system measures, at a predetermined sampling rate, the
distance between the tower and the button. Thisis achieved by the tower emitting
a pulse of infrared light which triggers the button to emit an ultrasonic pulse
(40kHz) in reply. The V-scope microprocessor measures the time delay between
the outgoing and incoming signals and, multiplying this value with the velocity
of sound in air, computes the tower-button distance. A temperature sensor in the
base of the tower provides the V-scope microprocessor with the current ambient
temperature. This information is used to allow for the air temperature variation
of the speed of sound.

Through techniques such as phase comparison the manufacturer claims an
accuracy of “a fraction of a millimetre”. Specifically, the tower-button distance
is measured and recorded to 0.1 mm. The system as we have employed it, does
not produce precision this good due to noise interference from the air track. It
would appear that the efflux from the track holes gives rise to sound waves with
frequencies in the vicinity of 40kHz, thereby interfering with the measurement
signals. Many steps were taken to minimise this effect including reducing the
air flow rate through the track, altering the ‘gain’ of the tower and positioning
cardboard ‘baffles’ so as to eliminate ‘line of sight’ between the tower and the
track. Averaging techniques were also employed on the position data, bringing
the noise level to within 5%. In spite of these measures, the accuracy could never
be recovered to ‘fractions of a millimetre’ and occasionally the interference would
produce ‘spikes’ in the position signal.

V-scope allows for two modes of operation. In its typical usage, PC2 acts as a
sort, of ‘position oscilloscope’, displaying in real time the glider position as relayed
to it from the V-scope microprocessor. The software provided by V-scope allows

control of various parameters such as the sample rate (10 ms, 20 ms etc.). This
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Figure 2.19: Data array for calculation of velocity.

software also differentiates the position-time data to produce plots of velocity and
acceleration, all of which can be exported to ASCII data files.

V-scope also provides a ‘direct communication protocol’ which allows user-
produced software to interact with the V-scope microprocessor, thus enabling
custom designed experiments. This facility is used to produce Poincaré plots.
Pre-existing, public domain RS-232 communications software was modified to
enable control of the V-scope microprocessor from PC2, using the command set
supplied with V-scope. Such commands include control of the communication
Baud rate (typically 9600), the time between samples (typically 30 ms) and the
start/stop signals. On receiving the command “@STARt;” from PC2, the V-
scope microprocessor starts measuring the tower-button distance and sending it
to PC2. The incoming ‘location data records’ (refer appendix A.1) consist of
10 bytes each, which include, among identification and checksum information,
four bytes describing the position, z, of the glider. Concatenating these four
bytes produces a number which is the tower-button distance in units of tenths of
millimetres. This incoming stream of position information is fed into a five element
array shown in figure 2.19. As each new position reading reaches PC2, the array
elements are moved one place to the right, successively through each element of
the array and then discarded. On each iteration, the velocity corresponding to the
position value held in element ‘three’ is calculated. Due to the presence of noise

and the exacerbating effect differentiation has on it, the formula used to calculate
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the velocity is a four-point differentiator and smoother (Williams [35]):

2 — Xiw) B i — T

- 2.40
100t ( )

UV =

where 0t is the time between samples.

In addition to the ‘Location Data Records’, the V-scope sends ‘Input Data
Records’ (see appendix A.1) which contain data fed in to the V-scope micro-
processor via its analogue and digital ports. The analogue port is connected to
the potentiometer and gives the track slope information. The V-scope performs
analogue to digital conversion of the voltage (range 0-5V) seen at this port and
transmits the value as one byte. A value of 128 corresponds to the track being
level.

Plotting each successive point (x;, v;) produces a phase plane curve in real time
but, by using the track slope value, these points can be sampled at a chosen phase
of the driving force thereby generating a Poincaré section. Sampling at the period
of the driving term, one obtains the Poincaré section Py = 3, (@ (t, — &), 2(t, —))
for ¢, = n27/w. In the particular case of the program poincare given in appendix
B.1, the analogue level is (arbitrarily) set to 192 (negative slope) and thereby

gives rise to the Poincaré section for & = 60°.



Chapter 3

Experimental Results

The apparatus described in chapter 2 was used to investigate the dynamics of
the twin-well Duffing oscillator in general and to measure the chaos boundary
in particular. The experiment was then extended (section 3.5) to include the

boundaries of stability for a double well orbit .

3.1 System Parameters

The position dependent restoring force, f(r), for the twin-well spring configuration
was measured i situ. A force was applied to the glider by tilting the air track to
a known slope. The new position at which the glider settles was measured with
V-scope. The force vs position data is shown in figure 3.20 along with the least
squares curve fit. Neglecting the small 7? and constant terms, the fit, to third
order is

flry = 2.54r - 15.66,° (3.41)

This establishes the parameters « and 3 of equation 1.6. To measure the damp-
ing coefficient, 7, the rods were uncoupled from the glider and linear springs were
attached to the glider, parallel to the track. The exponential decay of unforced
oscillations of the resulting SHO enabled measurement of the logarithmic decre-
ment and hence . The decay curve is shown in figure 3.21 together with the log
plot of successive peak heights (normalised to the first). The slope of the least

squares linear fit to the curve in figure 3.21(b) is ~0.129 which is equal to —~/2m.

o
[
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[Figure 3.20: Measured restoring force f(77) vs r with polynomial fit.
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[Figure 3.21: (a) Decay oscillation and (b) Log plot of the (normalised) amplitudes.
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The mass of the glider is 0.352 kg and hence v = 0.091. This technique does not
take into account the friction of the rod-glider or rod-spring pivot points which we
assume to be slight by comparison with the damping effect of the magnet (refer
section 2.1). The measured parameters are summarised in table 3.3 together with

their scaled! counterparts.

Table 3.3: Experimental system parameters.

o 2.54 a 7.21
5 45.66 - -

¥ 0.091 ¢ 0.257
m 0.352 kg - 1.00

3.2 ‘Typical’ Behaviour

3.2.1 Unforced Oscillations

With the track level and stationary (I' = 0), the glider is released from a non-
equilibrium position and the resulting ‘relaxation’ oscillation is captured with V-
scope (figure 3.22(a)). The glider settles in either well - depending on the initial
conditions at release. Plotting the derivative of the position signal (velocity) versus
position gives the phase space diagram (figure 3.22(b)). We note that the ‘phase
space’ described in section 1.4 can adequately be described in the (z,1)-plane
since the system is undriven. Figure 3.22(b) confirms the phase plane behaviour,

particularly the action of the stable spiral, predicted in section 1.4.

3.2.2 Forced Oscillations

The apparatus permits observation of many of the solutions predicted numerically
(see Ueda [29], Ueda et al [30]). For forced oscillations (I' # 0), the phase space
is 3-B, but the z-coordinate, wt, increases linearly with time and for illustrative
purposes, can be omitted. We must bear in mind however, that trajectories in

the resulting phase plane may cross over each other at different times (or at least,

IRefer section 1.4.
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Figure 3.22: Relaxation oscillation (I' = 0) (a) z vs t (b) v vs .

different phases of the driving force). That is to say, the diagram is no longer a
true ‘state space’ for the system.

Figure 3.23 shows the single-well (SW) orbit z(¢) and phase space. We note
that in accordance with symmetry, if any particular SW orbit is stable, then it
may exist in either well - a choice determined by initial conditions. Generally
speaking, for our parameters, oscillatory behaviour in one well is dominated by
this orbit?.

We determine the frequency response of the SW orbit by keeping I" fixed and
varying w. The ‘amplitude’ of the oscillation is measured, first as w is slowly
increased from a low value and then for decreasing w. ‘Amplitude’ here means
half of the z-range of the oscillation. The results are shown in figure 3.24. The
hysteresis effect is evident and confirms that the SW response resembles that of
a ‘soft’ spring. The position of the resonance curve on the w axis agrees with the

theoretical \/(Qm/m. = 3.80 rad.s™".

The SW behaviour does not die away entirely on both sides of the ‘resonance
peak’. For low frequencies at least, a slightly different single well orbit becomes
stable and appears to undergo its own response - rising in ‘amplitude’ as w de-

creases, but eventually losing stability. Figure 3.25 is one such orbit.

20r a variation of it. See figure 3.25 for a low-frequency single-well oscillation.
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Figure 3.24: SW frequency response curve for I' = 0.06 N.
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Figure 3.25: SW orbit at low frequency I' = 0.143 N, w = 1.44 rad.s™' (a) x vs ¢
(b) v ws x.

For higher I' (I' > 0.09 N), the response of the SW orbit is similar to figure
3.24, but when the amplitude gets ‘large’, the glider ‘escapes’ from the well and the
resulting double-well motion typically appears chaotic. From the low frequency
side, as w increases, this escape occurs when the vertical ‘jump’ point is reached.
In making the sudden transition from low to high amplitude, the oscillation is no
longer contained in the well. From the high frequency side, as w decreases, the
amplitude increases and is observed to suffer a period-doubling bifurcation. Fig-
ure 3.26 shows this transition as w is decreased. Further decrease in w results in
double-well chaos. Figure 3.27 clearly shows the period-two oscillation and phase
space where we note that the ‘splitting’ is most pronounced on one side of the
orbit - that nearer the origin.

We can monitor the extent of the bifurcation by recording the two minimum
values as w decreases. Figure 3.28 shows the experimental results from decreasing
w and measuring these two points. The splitting increases until around w = 3.13
rad.s™! where the oscillation appeared to period double again, although this mode
did not remain ‘settled’ for long enough periods to be conclusive. All of the bifur-
cated orbits exhibited fluctuations. It is difficult to distinguish between further
bifurcation or some transient behaviour due to the adjustment of frequency or spu-

rious vibrations in the apparatus. Below w == 3.13 rad.s™! the oscillation simply
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Figure 3.26: Bifurcation of SW orbit occurs as w decreases; in this case a frequency
change of Aw = 0.06 rad.s™".
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Figure 3.28: Bifurcation diagram for I' = 0.093 N.

‘spills over’ into the other well and double-well chaos results. Finer observation
of a bifurcation sequence (predicted numerically in De Souza-Machado et al. [6]
and elsewhere) is beyond our present apparatus.

Figure 3.29 summarises the SW behaviour which leads to double-well chaos.
From low frequencies, chaos occurs at the jump point (a). From high frequencies,
a period doubling bifurcation (sequence) precedes chaos - point (b). This leaves a
‘band of chaos’ in the frequency sense, between the points (a) and (b). Figure 3.29
suggests that chaos will typically occur at frequencies less than wy. We conclude
that escape from a well leading to chaos is not purely an ‘amplitude effect’; that
is, in both cases the onset of chaos occurs at different amplitudes and via distinct
routes.

Figure 3.30 shows a typical time history of a chaotic oscillation and the cor-
responding phase plane trajectory. The phase plane appears to ‘fill up’ as time
passes. As described in section 2.3, a Poincaré section is obtained by sampling

such data at the frequency of the driving force. Figure 3.31 shows the result of
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Figure 3.29: Sketch of the SW response for [' large.

plotting only the points which coincide with a driving force phase angle of 120
degrees. Such a reduction of information reveals the chaotic strange attractor and
its underlying structure. Variation of the sampling phase through 360 degrees is
shown in figure 3.32. Each Poincaré section in figure 3.32 contains approximately
5000 points sampled (real time) from 4 hours of chaotic trajectory.

The preceding discussion has implied that escape from a well, achieved by
either increasing or decreasing w, results in double-well chaotic motion. This is
not always the case. Depending on initial conditions at escape (and I, w), a
double-well periodic orbit (see figure 3.33), hereafter abbreviated to ‘DW orbit’,
can also be observed. Furthermore, this orbit was found to co-exist with double-
well chaotic motion. This is possible, as the orbit and the strange attractor
occupy different regions of phase space. Initial conditions determine which motion
prevails. Thus, in suffering a perturbation, the system may make a transition from
one mode of oscillation to the other. This coexistence, predicted numerically
(Guckenheimer and Holmes [11]), is demonstrated in figure 3.34 where, with no
change in parameters, a chaotic oscillation is disturbed (by human intervention)
and ‘locks on’ to the stable DW orbit. The reverse effect is also possible. Once in

the DW orbit mode, the system does not necessarily revert back to the SW orbit
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Figure 3.32: Experimentally obtained Poincaré sections, /%, with the drive
angle given in degrees.
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Figure 3.35: DW orbit at low frequency: ' = 0.152 N, w = 1.51 rad.s™! (a) = vs
t (b) v vs z.

at the same frequency (I' constant) at which escape occurred. Thus, hysteresis
separates the two modes - similar to the ‘hard’ spring (figure 1.6). This highlights
an important qualitative characteristic of the twin well oscillator: The response
of local, SW orbits is similar to a ‘soft’ spring whereas the response of large DW
orbits is like that of a ‘hard’ spring.

The DW orbit loses stability as w is increased and reverts to the SW-orbit
(symmetry breaking) or chaos. Similar effects are observed by Olson and Olsson

[22] for the (o < 0, B> 0) case.
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3.3 Experimental Lyapunov Exponents

In the experimental context, observation of chaos (or periodicity) is largely a
visual process. An orbit is deemed ‘periodic’ simply hecause the z(t) vs t plot
appears to repeat; similarly, if the trajectory appears random (and gives rise to a
Poincaré section like those of figure 3.32) over long time periods, we assume chaos.
This does not hamper our detection of the onset of chaos, since this is marked
by ‘escape’ from a well, but it is less than rigorous. Indeed, Guckenheimer and
Holmes [11] cast doubt on the authenticity of the ‘strange attractor’ observed in
section 3.1, leaving open the possibility that it may be “an artefact of the noise
and is absent in the ideal deterministic system”. We cannot settle such a subtle
issue through experiment, but we can estimate the largest Lyapunov exponent
and through this, obtain strong justification for identifying chaotic behaviour.

The standard (Liapunov) definition of stability states that a solution, z(t), is
asymptotically stable if all other solutions within a neighbourhood tend to it as
time tends to infinity. A chaotic solution on the other hand, may be thought of as
a ‘completely unstable’ solution, that is, neighbouring solutions diverge with time
and, moreover, they do so exponentially. These exponential rates of separation
arc characterised by the Lyapunov exponents where a positive exponent indicates
chaos.

The properties of Lyapunov exponents, which characterise the orthogonal,
local flow rate of points in phase space, are well established ([36], [3], [9], [10]).
Wolf et al [36] define the ith one-dimensional Lyapunov exponent for a continuos
dynamical system in n-dimensional phase space as

. 1 V:ﬁ(f)
= —log. 3.42
Ai = lim ~ 092 10) (3.42)

where p;(t) is the length of an ellipsoidal principle axis, evolved from an infinites-
imal n-sphere of initial conditions. (refer figure 3.36). For the driven Duffing
system in particular, n = 3, giving rise to three Lyapunov exponents, A;, one of
which is 0 ([36], [11], [6]) as it corresponds to the variable 2 = wt, which increases

lincarly with time. It therefore makes no contribution to the rate of separation
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Figure 3.36: Evolution of trajectories from a small sphere of initial points.

between trajectories. The possibilities for the other two are (+, -) and ( -, -) cor-
responding to a strange attractor and a limit cycle respectively. Due to the fact
that, with the passage of time, all initial condition vectors tend to be pulled into
the direction of maximum growth rate, algorithms for the computation of the A;
typically involve repeated Gram-Schmidt renormalisation (GSR). (This involves
repeatedly establishing the direction of maximum growth rate and setting up
new initial condition vectors orthogonal to it.). This property of vector direction
changing means that the two exponents do not have a one-to-one correspondence
with the phase space variables.

The above process lends itself to a numerical analysis where any number of
trajectories neighbouring the reference trajectory (fiducial) can be generated. Ex-
perimentally, it is impractical to record hours of phase space trajectory (sampled
at 30 ms) with a view to monitoring the evolution of neighbouring initial condi-
tions. The closest we come to this, however, is the thousands of phase space points
which make up the Poincaré sections of figure 3.32. Furthermore, these points are
stored in chronological order in the data file and, as such, are discrete recordings
of the state of the system, separated in time by the period of the driving force.

Wolf et al. [30] proposes an estimation method for the largest exponent from
experimental data with such a ‘fixed evolution time’ as do Kantz [15], Abarbanel
et al. [1] and Briggs [5]. Any such algorithm must however, be sufficiently dis-
criminatory to cope, for example, with the outliers visible in the Poincaré section
of figure 3.31, that is, noise to the extent of ‘spikes’ in the data. The algorithm we

employ is most similar to [36]. To bring the rather general definition of equation
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3.42 into the particular case of the Duffing twin well, we proceed as in [15] and
define the largest Lyapunov exponent in terms of the phase space position X(t)

where X(¢) is the vector (z,v, 2) as described in section 1.4.

X () —
Amaz = tl’un lim lln <| ®) X((t)|> (3.43)

—00 €0 ¢ €

where |X(0) — X.(0)] = e. That is, it doesn’t matter what direction we choose
the initial separation vector to be in, as the dominating effect of the positive
exponent will always ensure ‘exp(Amqct)’ growth after sufficient time (t — o0).
This assumes that the local behaviour in phase space is purely ‘stretching’ (or
‘shrinking’) and that no ‘folding’ has occurred - an assumption which is justified
by choosing the initial points to be arbitrarily close, a condition secured by the
¢ — oo limit of equation 3.43. Experimentally, neither limit can be achieved due
to only a finite amount of data being available and the presence of noise.

Our Poincaré section data files have the form:
P,’.-',:{...X,‘_I,X,‘,XH_“...} (344)

We start with the first point in the file, X;, and scan through the rest for a
neighbouring point, within a certain distance € (in the Euclidean sense), but not
too close, as the percentage error in the separation of close points will be highest.
Possible candidates lie therefore, on an annulus about X defined by eg < d;; <€
where d;; = |X; — Xj|. Having found a suitable neighbouring point, the time-
evolved separation is found by using the points which lie immediately after X,
and X, specifically, dy ;41 = | Xy — X4 1|. The growth rate, A, between the initial

conditions X, X;, over the time 7 = 27 /w, is then given by

A= L Qe (3.45)
T f.{.|.‘,

A replacement separation vector is now sought by looking at points which lie
on the annulus about X5, but in a direction similar to the current separation vector

Xy — Xj41. Thus, two criteria must now be satisfied - proximity and direction.
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The process repeats until the end of the data file is reached with the average A
being taken as the estimate of the largest Lyapunov exponent. The directional
requirement ensures that the separation vector ‘tracks’ maximum growth. If a
suitable separation vector cannot be found then the pair (X;4;, X;41) are allowed
to evolve to their successive points where the new separation direction, but not
A, is calculated.

The program lyapunov (appendix B.5) implements this algorithm. We com-
pare the results of lyapunov and CDW in estimating the maximum Lyapunov
exponent, Az, by running lyapunov with Poincaré section data generated nu-
merically by CDW. The results are shown in table 3.4 together with the CDW

generated exponents using conventional GSR techniques.

Table 3.4: Comparison of algorithms to estimate Amaz- In each case, m = 1.

a ] v r W Amaz (CDW) Az (lyapunov)
1 ] 0.5 0.42 1 1.01 1.19
8 100 1 0.66 3 1.20 1.39
4 40 0.70 0.82 2.50 (.86 0.81
721 129.73 0.24 0.48 3.28 1.18 1.20

Here the exponents are stated in units of ‘bits/drive period’ - determined by
using logs to the base 2 and 7 = 1 in equation 3.45 above. Thus an exponent of
1 bits/drive period indicates that, on average, two points initially close together
will be at twice this separation after one drive period. Table 3.4 shows reasonable
agreement between the two methods and so we now run lyapunov using the ex-
perimental Poincaré section data from ¢ = 135° of figure 3.32, giving A\jper = 1.17
bits/drive period. Running CDW with the same parameter values (3, 84, 0.284,
0.183, 2.14) gives Ajpaz = 1.13 bits/drive period. We conclude, therefore, that the
algorithm lyapunowv provides satisfactory estimation of A, for the experimental
data where the use of conventional techniques are not possible.

Here lyapunov has been applied to the data retrospectively; however the pos-
sibility of a ‘hybrid’ between this algorithim and poincare providing ‘real time’
estimation of A, is feasible. Such an algorithm, however, would offer only slight
advantages as the statistical nature of exponent estimation typically requires the

passage of several thousand drive periods before the A, value stabilises.
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Figure 3.37: Boundary in the (w, I')-plane between chaotic and SW-orbit periodic
motion. Experimental data (connected dots); Numerical data (plain line).

3.4 SW orbit - Chaos Boundary

As hysteresis is not a characteristic of the SW orbit - chaos transition, we can fix
one of the parameters, in practice, I, and vary w. The boundary in the (w,T')-
plane, is defined by the points (a) and (b) in figure 3.29. Having chosen a driving
force amplitude, and, with the system in the SW orbit, the frequency is slowly
increased until escape occurs. A similar process is performed for w decreasing,
thereby measuring the two frequencies, w, and wy, of escape. Figure 3.37 is a plot
of these experimental points for various I' together with a numerically generated?
boundary for comparison. Parameter values in the region above the line give rise
to chaotic oscillations; those below, SW orbits. The system has a well defined
minimum [ below which no chaos is observed for any frequency (approximately
[ = 0.09 N.). This minimum occurs, as anticipated, at a frequency lower than the
small amplitude natural frequency of oscillation in either well (wy = 3.80 rad.s™
for our parameters). The ‘sides’ of the boundary appear almost linear. Least-

squares linear regression on each side gives slopes of —0.166 and 0.133 N.rad™!.s

3Points found numerically using CDW [26].
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for the experimental data and —0.174 and 0.143 N.rad~!.s for the numerical data.
While the level of agreement between the experimental and numerical data is
less than perfect, we can observe strong similarity in terms of general shape and
line slope. The experimental data deviates from the numerical by a frequency shift
of approximately 0.08 rad.s™!'. A smaller difference in I' terms of approximately
0.003 N is also evident. The latter difference could he accounted for by uncertainty
in the mass value. The value of n = 0.352 kg does not take into account the mass
of the connecting rods. While the rod mass was minimised, any eftect they do
have will be one of slightly increasing the effective mass of the glider. This slight
underestimate of m leads (refer equation 2.31) to an underestimate of I' (by no
more than 3%, however). The frequency shift is less easily understood, but is most
likely due to inaccuracies in the parameters o and 3. It is difficult to predict how
their variation would affect the boundary, but we can make an estimate based on
the dependence? of wy on a, specifically, wy = /2a/m. We take this as a measure
of the overall ‘position’ of the response curve. For the present parameters, we
obtain wy = 3.80 rad.s™!'. Shifting this to 3.88 rad.s~! gives rise to @ = 2.64.
Thus a 4% difference in a may cause the observed deviation. Other sources of
error include the possibility of the force function being better described by the
inclusion of fifth order or other such higher powers in the polynomial fit.
Similarity between the boundary line above and that of Moon [19] (refer figure
4.45) is slight indeed. Furthermore, fractal properties of the boundary, reported

in [19] are not seen here experimentally, or numerically.

3.5 DW orbit Behaviour

If T is large enough, the DW orbit may become stable, and, depending on w, may
coexist with both chaos and the SW orbit. Because there is a hysteresis effect
between the DW orbit and these modes, the description of parameter regions of

stability comprises two lines. One of these lines (upper) indicates forces above

4 An increase in m clearly has the effect of slightly decreasing wy also.
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Figure 3.38: Experimental boundaries in the (w, I')-plane for the stability of the
DW orbit (lower) and transition to the DW orbit from chaos (upper).

which, only the DW orbit is stable and corresponds to a chaos-to-DW orbit tran-
sition. The other indicates the lower limit of DW orbit stability. The area in
between is a coexistence region.

The experimental results are shown in figure 3.38. The data is obtained as in
section 3.4, by choosing a I value and varying w ‘on the run’. With the system
in the DW mode, w is increased until the mode loses stability - reverting to chaos
or the SW orbit. This defines the lower line in the (w,’)-plane. The upper line
is found by reducing w while the system is in the chaotic mode - at a particular
frequency chaos ceases and the DW orbit dominates. The data shown are accom-
panied by linear least squares fits.

Numerically obtained versions of these lines reveal a frequency shift similar to

that observed in section 3.4.
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Figure 3.39: Plot of all experimental bhoundaries in the (w, I')-plane.

3.6 Summary

All three experimentally obtained boundaries are shown in figure 3.39. Labels
indicate what motions are possible in each region. No suggestion is made that
these boundaries arc in fact, straight lines, yet they display sufficient linearity
over the parameter ranges of interest for us to depict them as such. We note that
the region which gives rise only to chaos is very small - approximately triangular
and barely 0.3 rad.s~! wide and 0.02 N high. Chaos more often, coexists with the
DW orbit at higher I'; where such phenomena as that depicted in figure 3.34 are
possible.

To illustrate the transitions between modes, we move along cach of the three
broken horizontal lines in figure 3.39 (as was done experimentally). Thus, starting
at A, consider w increased, taking the system through B and C to D. At A two
possibilities exist: an SW or a DW orbit. If originally in an SW orbit, on crossing
the boundary into B, the orbit can become chaotic or DW. If chaotic, it stays

chaotic going to C and crossing into D, it becomes SW again. But if it becomes
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DW at B, it will become chaotic in C and change to SW at D.

Moving in the reverse direction, the SW orbit at D becomes chaotic at C and
remains so, becoming SW or DW at A.

On the other hand if were DW at the outset, then at B it remains DW, going
chaotic at C and SW at D.

Moving to the second line, we consider an SW orbit at E. At F it is DW and
remains so moving to G. Reversing direction from G, the DW orbit will remain so
through F and E. But chaotic behaviour at G will hbecome DW at F and remain
in DW at E.

Finally consider the H-I-J line. Chaos at H becomes SW or DW at I and SW
at J. In the reverse direction, SW stays SW at I and becomes chaotic or DW at
H. On the other hand, a DW orbit at H stays DW at I and changes to SW going
to J.

Where two outcomes are possible, which is established depends on the state
of the system at the time of frequency change, that is, initial conditions. Thus
whenever ‘or’ has been used in the previous paragraphs, initial conditions deter-
mine the outcome. In general, the DW orbit is favoured at higher I' and the SW
at lower I

Hysteresis then, characterises transitions between SW and DW orbits and DW
and chaos, but not SW orbits and chaos. While we must regard the numerical
results as the definitive description, we conclude that the experimental results
achieve very good precision - if not accuracy - in reproducing the predicted be-
haviour of the oscillator.

Figure 3.40 is an enlarged section of figure 0.2 reproduced from Janicki and
Szempliniska-Stupnicka [14] in the area of parameter space which we cover exper-
imentally. Lines to compare (qualitatively) with the experimental data (figure
3.39) have been highlighted. [14] uses the parameter values @ = 8 = 0.5, 7y = 0.1
(m =1). The ‘3T and ‘5T’ subharmonics reported in [14] were not seen here

experimentally.
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Figure 3.40: Detail reproduced from figure 4, Janicki and Szempliniska-Stupnicka
[14).



Chapter 4

Modelling the Chaos Boundary

The aim is to develop a fully analytic model for the chaos boundary. Strictly
speaking, the main boundary of interest, the ‘V-shape’ of figure 3.39, is the bound-
ary for escape from one well as, (for certain parameter values) the system can pass
from the SW orbit to the DW orbit directly. More specifically then, we seek the
(w, F)-plane boundary of stability for the SW orbit, part of which is also the
boundary for chaos. Modelling single-well hehaviour is therefore essential in pre-
dicting the onset of chaos.

Duffing’s equation (4.46) has no general solution. The widely reported method
employed by Duffing (see Duffing [8], Stoker [28], Hayashi [12]) - a variation of
which is seen in section 1.4 - is iterative in nature and essentially requires ‘a’
to be small in order to secure convergence. Janicki and Szemplinska-Stupnicka
[14] employ a perturbation method, namely the KBM! technique, to obtain the
amplitudes of harmonic solutions. Such techniques typically involve transforming
the equation to a near linear form with nonlinear terms being scaled as y, a small
parameter. For our parameters however, the strength of the nonlinearity is such
that the nonlinear terms cannot be treated as perturbations to a linear equation.
Moreover, [14] models a different chaos boundary to the one we investigate (specif-
ically, referring to figure 0.2, the chaos boundary located near v = 1.8, F' = 0.35)

and makes use of numerical methods in the stability analysis of the solutions,

'Krylov-Bogoliubov-Mitropolsky perturbative method of solution as described in Nayfeh [21]
for example.

49
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which [14] reports, provides a “rough estimation of the line”.

Kapitaniak [16] uses the domains of existence of period doubling cascades as
bhoundaries for chaos, but, again, uses numerical procedures to solve the resulting
algebraic equations.

[n constructing a fully analytic model, we employ (section 4.1) a harmonic
balance method to obtain solutions to Duffing’s equation, but make use of pertur-
bative techniques in analysing their stability (section 4.3). In sections 4.2.1-4.2.2
we outline several analytic methods for predicting the boundary, in particular the

use of ‘threshold’ conditions for escape.

4.1 Modelling the Single Well orbit

We restate Duffing’s equation (1.18) in its scaled form (refer section 1.4).
&+ ci — ax(l — 2°) = Fcoswt (4.46)

where (from table 3.3) a = 7.21 and ¢ = 0.257.

That the SW orbit consists primarily of first and second harmonics can bhe
demonstrated in several ways. A Fourier representation?® (figure 4.41(h)) of the
z(t) time history of a numerically generated SW orbit justifies a two frequency
solution. The amplitude of higher harmonics (> 3) are less that 3% of the funda-

mental. The SW orbit is therefore assumed to be well described by the following:
z(t) = E 4+ Acos(wt) + Bsin(wt) + Ccos(2wt) + Dsin(2wt) (4.47)

In what follows we regard upper case symbols as variables whereas lower case
symbols, except. t, are parameters of the system.

The coefficients of the ‘2w’ frequency terms, while included in the solution,
arc considered small and therefore, in what follows, terms containing powers or

products of C" or D are neglected. We also note that the sine terms in equation

2Fourier coefficients evaluated using program FT - appendix B.3.
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Figure 4.41: (a) SW orbit for w = 2.78 rad.s™!, F = 1.57. and (b) Harmonic
components of z(t).

4.47 are necessary due to damping in the system. If ¢ = 0 these terms vanish and
the solution 4.47 is either completely in-phase with the Fcos(wt) drive term (A,
C > 0), or 7 radians out of phase (4, C < 0).

The harmonic balance technique proceeds by substituting into equation 4.46
the assumed solution (4.47), with unknown coefficients, and expanding. We note
that as x(#) comprises 5 terms, the cubic term in equation 1.18, on expansion,
generates 125 terms alone, making for 139 in all (see appendix C.1 for greater
detail). This number of terms is greatly reduced by neglecting harmonics of order
> 3 in addition to the approximations mentioned above.

By equating coefficients of each harmonic to zero, we obtain five equations:

. . S
E(E? +§-Z“ -1)+ IH.C(A" -B%) =0 (4.48)

o g ,
__1(_1”_22 + 3aE® — a — w?) 4+ 3aE(AC + BD) + cBw-F= 0 (4.49)
3 . , :
B(EH.Z' +3aE® — a — w?) + 3aE(AD — BC) — cAw = 0 (4.50)
. S ; ; 5 ;
(‘(.-)-U.Z‘2 +3aE? — a — 4w + g—rlE(rl“ —B*)+4+2wDc = 0 (4.51)

D(=aZ? + 3aF? — a — 4w?) + 3aEAB — 2wCc = 0 (4.52)

D | L2
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where (A% + B?) has been replaced by Z?%, Z therefore being the amplitude of
fundamental harmonic of the oscillation.
Of the two terms in equation 4.48, 3aC(A? — B?) is clearly much smaller

than the other and we neglect it, enabling solution for F, the ‘midpoint’ of the

[ 3
E=0,%/1- -2 (4.53)

For Z? = 0 equation 4.53 produces the three equilibria expected (0, £1). For

oscillation:

Z% # 0 we note that |E| decreases as Z? increases, approaching 0 as Z? ap-
proaches §
Neglecting the terms 2wDc and —2wC'c from equations 4.51 and 4.52 respec-
tively and eliminating all but Z from equations 4.49 - 4.53, we obtain:
15 9 a?Z%(1-327%)

Z*{ At + [2a —w? — —aZ? - =
{( ¢ 1" 2 (2a — 4w? — 3aZ?

)]}—F%ﬂl (4.54)

Equation 4.54 relates the amplitude of the fundamental, Z, to the parameters of
the system and is, therefore, a response curve. The character of the oscillation,
for small Z2, is identical to that of the SHO. Thus, equation 4.54 gives, for small
73

F

Ze= s (4.55)
\/(2& — w?)? + Aw?

where the ‘resonant’ frequency, w = @, implied by equation 4.55, is the same
as that obtained by local linearisation of the force function (equation 1.5) about
either of the nonzero equilibrium positions.

What then of larger oscillations? From the roots to equation 4.54, readily com-
puted using an interval bisection algorithm (refer appendix B.4), we obtain figure
4.42, a plot of Z vs w for different driver amplitudes F. The curves depicted in
figure 4.42 do not necessarily correspond to stable solutions; they merely indicate
the size of the fundamental if the solution takes the form of equation 4.47.

Consider for the moment the set of curves centred around wy = 3.80. As
expected, for small driver amplitudes, the response curve resembles that of the

driven SHO, but for larger F', the peak ‘tilts’ to the left - similar to the response
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Figure 4.42: Z vs w for a = 7.21, ¢ = 0.257, F = 0.2,0.39,1.2.

of a soft spring. Equation 4.54 shows that for small w, Z? tends towards 2/3,
irrespective of F'. The ‘spine’ on which these response curves are centred is there-
fore the first quadrant of the ellipse %Zz + iw'z = 1. This is made most evident
by plotting Z? vs w? with ¢ and F small (figure 4.43). Also seen in figure 4.42
are a set of curves near w = 2. Their position, at a discontinuity in the Z vs w
curve, corresponds to the denominator of the quotient term in the square brackets
of equation 4.54 being 0 for Z = 0; that is, for w = \/(% = 1.90. The solution
described by these curves, while not completely stable, is in fact the low-frequency
variation of the SW orbit (depicted in figure 3.25), an orbit which was observed
experimentally.

The quotient term in the square brackets of equation 4.54 is the result of
including the second harmonic component of the solution. If this is neglected

(C =D =0) as well as damping (¢ = 0), we obtain:

= 2
Z® {‘2& o) — 1430;22} ~F2=0 (4.56)

This result is equivalent to equation 1.30 from section 1.4, obtained by applying

Duffing’s method. Thus, to first order, the methods produce the same results. The
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Figure 4.43: Z? vs w? fora = 7.21, ¢ =0.02, F = 0.2.
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Figure 4.44: Comparison of response curves generated by Duffing’s method (equa-
tions 1.30, 4.56) (points) and Harmonic Balance (equation 4.54) (solid line) for
F=15a=721,¢c=0.
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two response curves are shown in figure 4.44 where there is strong agreement for
Z small. For larger Z there is a significant and, as we shall see, crucial, difference
between the two - in addition to the extra set of curves equation 4.54 generates
at low w.

[t is important to distinguish between the Harmonic balance technique used
here and ‘Duffing-style” iterative methods. Duffing nominates a first harmonic
solution and integrates the differential equation. The result determines not only
the amplitudes as a function of the parameters but also the form of the solution
(in the twin well case, generating a second harmonic as expected). The Harmonic
balance process, as we have employed it, requires the form of the solution to be
nominated at the outset, thereby possibly gaining a ‘head start’. Hayashi [12]

presents a more comprehensive comparison of these and related techniques.

4.2 Criteria for Escape and Chaos

[t is observed experimentally, that the onset of chaos, on the low frequency side,
occurs at the point of vertical tangency in the response function and, on the high
frequency side, when the SW orbit undergoes a bifurcation sequence® - facts also
recognised by [14]. On the high frequency side, the bifurcation sequence begins
when the SW orbit (as we have defined it) loses stability. On the low frequency
side the SW orbit doesn’t so much lose stability as cease to exist or, rather, at the
point of vertical tangency, the anticipated hysteretic ‘jump’ leads to an unstable
part of the response curve. Before attempting a stability analysis of the SW orbit

however, it is worth exploring other avenues of enquiry.

4.2.1 Threshold Criteria

Perhaps the most intuitive approach to predicting escape from a well is to estimate
the ‘energy of escape’ required to overcome the ‘barrier’ between the wells. Moon
(18] estimates this energy from the Hamiltonian (refer section 1.4), thereby ob-

taining a ‘critical amplitude’ (or velocity). An (w, F')-plane boundary can then be

3refer to figure 3.29, points ‘a’ and ‘b’ respectively.
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boundaries between periodic and chaotic vibrations.

Figure 4.45: Figure 3. reproduced from Moon [19]. Experimental data is accom-
panied by a curve given by equation 4.58.

obtained by substitution of this amplitude into a suitable SW orbit response func-
tion. Moon derives, via a perturbation method, the following response equation

(using our symbols):
Z’!{[Qauwz—SaZz] +czwz} —-F2=0 (4.57)

(Moon uses @ = 1/2). The same expression can be obtained by neglecting the
(uotient term in equation 4.54 and approximating %aZ'z with 3aZ2. The velocity
of escape for the Hamiltonian, undriven case, y/a/2, is then equated with wZ.
Recognising that escape occurs, in general, before this velocity is reached, Moon
inserts an ‘adjustable parameter’, o, to enable experimental data to be fitted,

giving the following boundary equation

1/2
G

F:z ¢ c2w2+[2a—w2—~
wV 2

3a262]?
2w?

Moon’s [19] experimental results are reproduced in figure 4.45 along with equation
4.58 fitted to the data.

There would seem to be little advantage in deriving such an equation if one
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Figure 4.46: Theoretical escape boundary (solid line) derived from the response
equation 4.54 with a ‘critical amplitude’ together with the numerically obtained
boundary (points).

must then resort to using a ‘fit factor’. One can, for example, achieve good fits to
the chaos boundaries with straight lines - as was done in section 3.4. Continuing
with the ‘critical amplitude’ theme, however, we may deduce that escape would
occur approximately when E2 = Z2 that is, when the distance from the origin
to the center of the oscillation is equal to the amplitude (of the fundamental).
Substituting this condition in to equation 4.53 and solving, we obtain an ‘escape
amplitude’ of Z = j:\/g ~ +0.63. Substituting this value into the response
equation (4.54) yields the curve shown in figure 4.46. Here we note a qualitative
similarity in shape to the numerically obtained boundary but a distinct offset.

[t is conceivable, given the definition of the low frequency side (point of vertical
tangency in the response curve), that the estimate for this boundary could come
from the response function alone. Regarding w as dependent on Z, the point we
seek is given by :f—; = 0. Implicit differentiation of equation 4.54 leading to solution
for this point is not straight forward, and unlikely to be successful, although a

simpler expression for the response (such as equation 1.30) will allow solution.
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Figure 4.47: Simplified response curve (points) obtained from equation 4.60 to-
gether with the original response curve from equation 4.54 (solid line).

We therefore attempt to factorise equation 4.54, to produce a simpler expression
for Z. The number of terms involved makes the process prohibitive and so we
set ¢ = 0 (system undamped) at the outset, enabling square roots to be taken
throughout equation 4.54. Multiplying throughout then by (2a — 4w? — 3aZ?)?
however, and expanding, produces a polynomial of fifth order in Z with no obvious

factors:

184 Z° + (-18a® + 18aw?®) Z° +3FaZ? + (4a® + 4w* — 10aw?) Z

+(-2a+4w?)F =0 (4.59)

By trial and error it is found that the above factorises approximately to the
following

23e¢Z? —a+2wt) (3aZ°-2aZ+ZWwP+F)=0 (4.60)

which, on expansion reproduces equation 4.59 except for the 3 F a Z? term which
hecomes 6 F a Z2?. This approximation has the effect of reducing the ‘extra’ set
of curves at low w to their spine i.e. the ellipse described by the first factor

of equation 4.60. The rest of the response is therefore described by the second
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Figure 4.48: ‘Low frequency’ boundary from equation 4.61 (solid line) with the
numerical boundary (points) for comparison.

factor, which is plotted in figure 4.47. After implicit differentiation and solution

thee

for ¥

= (), we obtain the ‘low frequency’ boundary equation:

= (—~2—(2(1 — u,-"z)"%’('“} (4.61)
9va

A plot of this boundary appears in figure 4.48 and shows a slight shift from the
numerical points. This shift appears to be a consequence of the approximations
made in obtaining the simplified response equation (4.47) as, in figure 4.47, a sim-
ilar difference, (Aw), exists between the vertical tangency points. Nevertheless,
equation 4.61 is a reasonable ‘first approximation’ to the low frequency side of the
boundary.

Encouraged by the relative success of the low frequency boundary analysis,
one would hope that the high frequency side would also emerge from the analy-
sis, however, the response equation gives no similar clues to predicting the high
frequency side and, as well, we conclude that ‘threshold’ criteria are generally

unsuccessful in reproducing the entire chaos boundary.
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Figure 4.49: Holmes-Melnikov criterion for chaos (solid line) together with the
numerical data.

4.2.2 Holmes-Melnikov Criterion

Guckenheimer and Holmes [11] present necessary conditions for a chaotic strange
attractor in the Duffing twin-well system, based on a Melnikov homoclinic func-
tion, where the driven, damped system is regarded as a perturbation to the Hamil-
tonian, undriven system. In particular, conditions for homoclinic orbits to occur,
are established from the ‘level curves’ of the undriven Hamiltonian system (refer
to figure 1.9 of section 1.4) corresponding to H = 0 (refer equation 1.19). Without

reproducing the theory, we state the result using our symbols

2¢
F, = (\/a(os/z (4.62)

:)\/"

where homoclinic motions may occur for £ > F,.. Equation 4.62 is then regarded
as a lower bound for chaos. Figure 4.49 depicts this curve with our parameter
values, and the numerical data for comparison. The similarity is remote but, as

a necessary condition for chaos, the Holmes-Melnikov function does not disegree
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with the numerical data.

4.3 Stability analysis of the SW orbit

The somewhat ad hoc methods of the previous sections enjoy mixed success in
reproducing the chaos boundary, yet in theory, the answer is straightforward: We
have a solution, z = x(t), for the SW orbit which neighbours, in parameter space,
the chaos region. Determining the regions of stability for the SW orbit solution
will therefore determine the boundary with chaos. Here we mean stability in
the Liapunov sense, that is, small perturbations to a solution die out with time
(asymptotic orbital stability). If the perturbation grows with time, the SW orbit
is unstable. If it neither grows nor decays then the SW orbit is orbitally stable
but ‘on the edge of stability’, parameter-wise. It is this last situation which will
indicate the boundary sought.

We perturb the solution and examine the equation which governs the pertur-
bation. We do not necessarily require the full solution for the perturbation, but
rather conditions establishing its growth or decay.

Let dy = do(t) be a small perturbation to the SW solution z = x(t) from

equation 4.47. Substituting X (¢) = z(¢) + dp(t) in equation 1.18 gives:
P+ 60+ (@ + 0g) + a(x + 8o)[(x + 60)* — 1] = Feeswt. (4.63)

Recognising that @ = x(¢) is a solution, expanding, neglecting d, terms of order

> 2 and scaling, we obtain :

e N /2
5+ ad(30% — -‘;— —1)=0 (4.64)
da
where (1) = exp(—5§t)do(t).
As z(t) is periodic (period 27 /w), equation 4.64 has periodic coefficients and is
a form of Hill’s equation (Whittaker and Watson [34]). Floquet’s theorem® implies

that solutions may be expressed as 6(t) = p(t)exp(r;t), where p(t) is a periodic

irefer to a text on differential equations and stability theory of which Sanchez [27] is an
example
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function with period 27/w. Equation 4.64 is second-order and so there exist two
linearly independent solutions of this form. Thus, the boundary we seek occurs
when at least one of the r; exceed ¢/2. One could, conceivably, find the boundary
by numerically integrating equation 4.64 and looking for solutions with exp(5t)
growth, but there is probably no advantage in this over numerical integration of
Duffing’s equation itself.

The stability of solutions to Duffing’s equation is often expressed in the form
of equation 4.64 (see Stoker [28' for example). Our expression for x(t) (equation
4.47) however, contains essentially three terms - a constant and two harmonics.
Upon squaring we generate a constant plus four harmonics. In order to proceed,
we must limit this number of terms without such an approximation being to the
detriment of the overall analysis. This point is crucial. Although inclusion of
the second harmonic in the SW orbit solution was vital to the harmonic balance
procedure of section 4.1, we now neglect it and approximate the SV solution by

the constant term and the fundamental:
z(t) = E + Zcos(wt + @) (4.65)

which, after expressing F in terms of Z (equation 4.53) and substituting in equa-
tion 4.64, gives
0+ J(wt)s = (4.66)

where J(wt) = a (2 -32%+6 (\/ﬁl - %Zz) Zcoswt + %Zz(:()b'wa). The t in equa-
tion 4.64 term being small, is omitted as is the phase of x(t) since this omission
will simply ‘shift’ the phase of the solution. We note that while we have omit-
ted the second harmonic from the solution z(t), squaring produces another. If
this new 2w frequency term is omitted from .J(wt) then equation 4.66 becomes
Mathieu’s equation:

6+ (g + peoswt)d =0 (4.67)
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where ¢ = a(2 - 3Z?%) and p = Ga( 1~ 5‘/2) Z. Stability diagrams based on
Mathieu’s equation are common® but (as we shall see) our analysis will not tol-
erate such a degree of approximation. We must retain this second harmonic
component of J(wt) and the perturbation is governed by the more general form
of Hill's equation that results.

In the context of Mechanics, equations such as 4.66 and 4.67 represent ‘para-
metrically excited’ systems. That is, they may be regarded as being driven by
(sinusoidal) fluctuation of one of the parameters. We could, for example, regard
equation 4.67 as governing the displacement, d, of a mass hanging on a spring,
whose stiffness constant, k varies as k = ¢ + pcoswt. Pippard [24] tackles such
problems as sinusoidal variation of the plate separation of a capacitor in a resonant
LCR circuit and a simple pendulum which is driven by sinusoidal variation of its
length. The former case is governed by Mathieu’s equation and the latter, while
being slightly more complex, is solved in [24] via Floquet’s theorem and suitable
approximations.

Retention of the second harmonic leaves us with a slightly more complex sit-
uation. Whittaker and Watson [34] deal with the more general form of equation
4.66, cited in [34] as arising from an ‘astronomical’ problem of Hill’s, where J(wt)
is an infinite (convergent) series. Our problem is similar in spirit and we adopt

the notation therein (replacing [34]’s ~ with wt/2). We express J(wt) as

o
J(wt) =60 +2 Y b,cosnwt (4.68)

where #, =6, 0., =0 for n 2 0 and

3

Z(LZZ (4.69)

0o = 2aE%, 0, =3aZF, 0,=

We express the solution (via Floquet’s theorem) of equation 4.66 as

o0
J = (,.ft;n.-!.,."ﬁ z !i)”(:m}u.f. (470)

nN——08

®see Stoker [28] or Hagedorn [23] for example, or for comprehensive plots of the unstable
regions of Mathieu’s equation, Abramowitz and Stegun [2].



CHAPTER 4. MODELLING THE CHAOS BOUNDARY 64

where ;1 may be complex. Substituting the expressions for J(wt) and § in equation

4.66 gives

T . e _1 EE _ 5 .
Z (}"- + 2”__E-)zbn(?(;:..f_-:-.:ae]\.,-ﬁ + — ( Z l[)]”(’mwi) ( bn{,_(xH—n.w,ut) =) (1?1]
w o

Tl = 2 =G 2 e

Expanding and equating coefficients of €™** to zero, we obtain the following system
b) .

of equations

s
(4 2n0)%0, + D by =0 (n=-2,-1,0,1,2) (4.72)

m=-—0Q

where the #,, have been adjusted to absorb the -% coefficient:

12 . 3 ;
SWZE, Oy = ju;a..Z‘a (4.73)

W w

8 .
o = SaE? O =

We denote the determinant solution implied by the above (4.72) set of linear

equations as A(p) = 0, where A(p) is given by

(i jo + 4)2 — 6, 6, 8, —0, —0,
=0 (104 2)% ~ 8 —t, —b, —03
—b, -6, 2 pu? — 0, -6, —0
—0; —0, —0 (2~ 2)% -~ b —0,
—bs —t3 —b; —0, (i —4)% = 6

(4.74)
Possible phase differences between 6 and J(wt) are handled by allowing the b, to
be complex, in which case phase terms of the form e will cancel throughout
equation 4.71.

Careful consideration must now be given to choice of j¢ and hence the form
of the perturbation. Let us write yz as ¢ = ¢ + gi. The (exponential) growth
or decay of 9 is governed by positive or negative values of € respectively. Thus
the boundary between asymptotic orbital stability and instability occurs when
¢ = 0. In order to determine o, let us consider for the moment, the high frequency
side of the boundary where the SW orbit undergoes a period-doubling bifurcation

sequence prior to chaos, as seen experimentally in figures 3.26, 3.27 and 3.28.
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Technically, the SW orbit has lost stability at the moment the first bifurcation
occurs. Clearly then, the extra harmonics needed in the Fourier expansion of the
SW orbit are those of the form cosiwt, cos3wt. .., that is, cosZwt where n is odd:
In other words, when ¢ = %!, and hence © = +<. More simply, a period doubling
cannot be described by equation 4.70 unless ¢ = £1 and € = 0 at the bifurcation
point (a similar choice of 4 is made by Pippard [24] to describe oscillations of the
pendulum which have twice the period of the excitation).

The condition for the high frequency side (at least) of the boundary is then

described by

A(i) =0 (4.75)

where the (4x4)% determinant corresponding to y1 = i is

9-0, —6, 6, 0
8 1-06, -8 -0
Ali) = 1 ‘ : ’ (4.76)
—()2 —()1 1— ()(] —()1
0 —6, -8 9-—0

The course of action now is to solve A(i) = 0 for Z?, given the expressions for
#,,. This would establish Z? as a function of w which upon substitution in equation
4.54 will give rise to a relationship between F' and w which is the boundary that we
seek. A difficulty arises in determining how large a matrix one requires (to retain
accuracy) while still enabling solution. That is, how many harmonics of J(wt) are
required. A first approximation (with #;, = 0, equation 4.66 becomes equivalent

to Mathieu’s equation) gives rise to the central 2x2 matrix, with A(7) = 0 giving’

(1 =8 ~07°=0 (4.77)

Substituting in the expressions for 6, and ¢, (from 4.69), we obtain the approx-

2
5

imate® result Z? ~ 2 which is the same result obtained in section 4.2.1 via the

bas, for =4, the determinant 4.74 becomes asymmetric, we omit the fifth row and column.

cf. Hayashi’s [12] condition #y == n* + 6, for the boundary lines of the nth unstable region,
assuming #,, are small.

8for a > 1
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‘escape condition” £ = Z. More harmonics must be included and so we try the
4x4 determinant 4.76. The full expansion for which is given in appendix C.2 and

factorises to:

(012 =90, — 9= 20,6, + 02 + 6,8, + 100, — 87)x

(07 +90, -9+ 20,0, +0,°— 8,8, + 106, — fo?) =0 (4.78)

The terms obtained by substituting in (each factor) of equation 4.78 the expres-
sions for the 6, (equation 4.73), include those of order Z, Z? EZ? and Z* -
. o . o s ) . . . 2
preventing a convenient factorisation (and hence solution for Z*).
Progress can be made however, by representing ¢ differently. With g = ¢ the

expression for 6 can be rearranged to the following:
o |
§= 3 b (4.79)
F el o

where b, = 0 for n even. This is equivalent to the previous description with g = 0

and new 6, given by

32 48 12 .
Oy = -Sal* O =—aZE. 0,= Eaﬁ (4.80)
The corresponding (5x5) determinant is
16—6, -6 —0, 0 0
-0, 40y -0, -0, 0
A(U) = —0, —0, —fy -0, ~0 (4.81)
0 -0, =0, 4—0, -0,
0 0 -0, —06, 16 -0,

Upon expansion (refer appendix C.2) this determinant factorises to the following

(=160, + 0s0, — GL 42000 — 042+ 0,5)(20,° + 26,20, — 80,° — 0,0y

S GO0, — 8 +208)° — 610y -~ 40,62 — 320" +30,6,°) =0 (4.82)
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0.5¢

Figure 4.50: Boundary lines generated using the stability condition equation 4.84
with the response equation generated via Duffing’s method (equation 1.30) to-
gether with numerically obtained points for the same parameters.

Substituting in the expressions for the 6, (4.80) in the second factor, we see that
the only terms which won’t give rise to products containing E? are 6,* and 86,
which, for the sake of factorisation, we neglect?. Making these substitutions and

multiplying throughout by w®, we obtain
256 2 (177 a¢* 21 -~ 30062 Z7 + 96 aw® Z2 4+ 320% — 2 aw® + 2wt =0 (4.83)

The second factor of equation 4.83, being a quadratic in Z?2, gives rise to the

following expression

zZ* (50a — 16w? + V801 a2 — 540 a w? + 150w?) (4.84)

- 159a

The above is a stability condition, which, upon substitution in a response equation
will give rise to the chaos boundary. In order to emphasise the importance of

an accurate response equation, we first substitute equation 4.84 in the response

9this is justified by the fact that 6, is smaller than g, ;.
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10

Figure 4.51: Boundary lines generated by equation 4.85 for the system parameters
together with the numerical points; F',: heavy line, F_: light line.

equation generated via Duffing’s method (refer equation 1.30). Eliminating Z*
thereby establishes F' as a function of w and gives rise to the lines shown in
figure 4.50. The distinct difference between the boundary lines and the numerical
points seen in figure 4.50 is remedied by uSing the harmonic balance derived
response equation (equation 4.54). Eliminating Z? between equations 4.84 and
4.54 establishes the boundary lines of stability for the SW orbit, that is, F' =
Fi(w) where the +/— denote high and low frequency sides respectively. The full,
closed expression for Fi(w) is ungainly and so we define the boundary lines by

the following

| 3 15 9 a2z(1-32%) 7
Folw) = |72 (200 w? = —az2 — 2 T2 ) 4.85
H) \ {{ { e 2 (20 — 4w — 3aZ2) (4.85)

where

. 1 . . ;
7 = Toa (50a — 16 w? + V804 ¢ — 540 aw? + 150 w) (4.86)
JJ0

Figure 4.51 shows the boundary lines generated by equation 4.85 for the system
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Figure 4.52: Detail of the plot of the analytic boundaries (solid lines) from equa-
tion 4.85 for the system parameter values (table 3.3) together with the numerical
points in the chaos region.

parameters of table 3.3. While the lines show much character over a broad range
of w and I, they are reasonably linear near the chaos region. An enlarged scale in
figure 4.52 shows strong agreement between equation 4.85 with the numerically
obtained points.

What is perhaps surprising about the above results is that the preceding anal-
ysis was expected to yield an expression for the high frequency boundary alone as
the choice of jt = 7 is specific to the period doubling bifurcation. It would appear
then, that the low frequency boundary, being very much a consequence of the
nature of the response curve, is largely insensitive to the form of the perturbation
and, conveniently, is modelled by the same analysis.

Strictly speaking, the high frequency boundary, given by F(w), is the bound-
ary for the onset of the bifurcation sequence rather than chaos or escape, but,
as the experimental and numerical results reveal, the bifurcation sequence is nar-
row enough in w terms for us to regard F, (w) as a strong indicator of the chaos

boundary. The validity of this assumption is borne out in figure 4.52.
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Conclusion

Performing experiments in nonlinear dynamics (or physics in general) provides one
with an ‘acid test’ for any analysis be it by computer simulation and/or theoretical
modelling. Moreover, an experiment forces one to use realistic parameters in such
analyses, removing the temptation to use approximations that would simplify the
theory but lack significance or to just wander off into distant and unattainable
regions of parameter space.

The resolution limitations of a real experiment are also exposed, a situation
clearly shown in the bifurcation sequence which, though predicted numerically, is
not observed past the second bifurcation with the present apparatus.

In short, the experiment imposes a sober resolve both on the data and on the
analysis. The experimental data then make the theory more relevant and, given
an analytical - rather than a numerical - approach, the whole is intellectually
satisfying. (Note that the numerical solution (e.g. RIK4) is not necessarily the
ultimate ‘fall-back’ position for determining the actual behaviour of a dynamical
system; the delicate matter of the ‘stability of the integration algorithm’ and the
possible spurious behaviour so generated casts a shadow over all such calculations.
This matter is generally ignored in the hope that it is not happening.)

The essence of this thesis is contained in figure 3.39, reproduced again below.
The experimental boundary lines in parameter space were determined correspond-

ing to the various patterns of oscillatory behaviour. Stability analysis then enabled
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Figure 5.53: Plot of all experimental boundaries in the (w, I')-plane. Reproduced
from figure 3.39, section 3.6.

two of the boundary lines to be well reproduced analytically. Software here de-
veloped enabled Poincaré sections to be measured and displayed in real time and,
using only this data, a reliable estimation of the maximum Lyapunov exponent,
was made.

Given the relative success of the apparatus in reproducing the dynamics of
the twin-well oscillator, we conclude that it is a substantial improvement on the
‘magneto-elastic’ systems of [19] or [4]. The improvement clearly stems from the
fact that the force function is, in the present case, mathematically simple and
minimal, a property which enables the parameter space boundaries to be analyt-
ically determined. This being the case, the character of the twin well system is
the more clearly revealed.

Moreover, the apparatus is flexible in its application since any smoothly vary-
ing driving force can be programmed and applied to the oscillating mass through
the stepping motor system. Therefore, if the potential function can be config-
ured on the track with the appropriate springs, barriers, etc., the system can

be experimentally examined. In these respects the apparatus is an improvement
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over the two previous twin-well systems. Also, the V-scope detection system and
the software here developed allows rapid implementation of such custom designed
experiments with storage and retrieval of the results. A Poincaré section for ex-
ample, could be performed for any oscillation configured on the air track.

The theoretical component of this investigation has been an exercise in making
feasible approximations. It is fair to say that the analysis has been ‘near Hamil-
tonian’, that is, damping has always been considered as slight, as is observed
experimentally. The quality of the approximations would likely be degraded un-
der conditions of higher damping, where, it has been mooted (Moon [18]), the
accuracy of the Holmes-Melnikov criterion for chaos improves.

Notwithstanding the above, the analytic result for the chaos boundary de-
veloped here shows splendid agreement both with experiment and the numerical
results. The importance of such a fully analytic solution should not be under-
stated. If criteria for chaos, as Kapitaniak [16] suggests, are to be used to predict
areas of parameter space where “strange phenomena” may take place, then not
having to rely on numerical methods results in a vast saving of time.

In summary then, the theory developed here accurately models the chaos
boundary in the Duffing twin-well oscillator. Harmonic balance techniques are
used to accurately model the single well response. The stability of these solutions
are established via perturbation techniques, Hill’s equation and Floquet’s theo-
rem. The solution thus obtained gives rise to a closed expression for /' in terms
of w.

In any investigation the process of answering questions poses more. Thus the
boundary for double well orbit stability and the boundary for the chaos-DW or-
bit transition (refer figure 5.53) have eluded analysis. Of these, analysis of the
former is probably the most likely to yield a result, which in theory might be
accomplished by a stability analysis of the DW orbit. Like the SW orbit analysis,
this would involve modelling the response curve - which may be difficult as the
oscillations are large and harmonics above the fundamental are likely to be much
more significant. This consideration alone would have implications for the rest of

the analysis.
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The chaos-DW orbit transition poses an even greater challenge as this bound-
ary is not defined by the loss of stability of any given periodic mode, but rather
of chaos itself. Does this mean a stability analysis for chaos? Perhaps the way
forward is to think of the chaotic regions of parameter space as those where pos-
itive Lyapunov exponents are possible. This definition is not without difficulty
since it would require establishing analytic expressions for the Lyapunov expo-
nents as functions of the parameters. Given the inherent statistical nature of the
exponents, this task appears formidable, possibly intractable. Nevertheless, the

boundaries exist and are well defined.
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Pascal Code

B.1 Poincaré plot algorithm

program poincare;
{ For direct communication between Vscope and the PC

uses
Crt, comms, Graph;

var
grdriver, grmode, i, x, a, b, d, n: integer;
origin: longint;
f, g, h: text;
k, v, p, samp, total, t, ov, inf, ka: real;
s, letter: string;
c: char;
started: boolean;
dataid, recordno, length, hix, lox, button, checksum: byte;
bininf, bininfl, bininf2, bininf3, aninf, status: byte;
y: array[1..5] of real;

label
1;

procedure waitdata;
begin
while (BytesInBuffer = 0) do

]

end;

procedure drawaxes;

-~

ot
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begin
setcolor(10);
a := round(getmaxX / 2);
b := round(getmaxY / 2);
d := 9;
Rectangle(0, 0, getmaxX, GetmaxY - d);
line(a, 1, a, 20);
line(a, getmaxY - d - 1, a, getmaxy - 20 - d);
line(1, b -~ round(d / 2), 20, b -~ round(d / 2));
line(getmaxX - 1, b - round(d/2),getmaxX-20,b-round(d/2));
line(a, b -~ 20 - round(d / 2), a, b + 20 - round(d / 2)7;
line(a - 20, b - round(d / 2), a + 20, b - round(d / 2));
Setcolor(15);
SetTextStyle(2, HorizDir, 4);

]

RESET(g) ;
readln(g, letter);
OutText (letter);
end;

procedure readdata;
var
rec: byte;
begin
repeat
waitdata;
dataid := ReadByteFromBuffer;
until (dataid = ord(’D’)};

waitdata;

rec := ReadByteFromBuffer;
waitdata;

length := ReadByteFromBuffer;
waitdata;

hix := ReadByteFromBuffer;
waltdata;

lox := ReadByteFromBuffer;
waitdata;

button := ReadByteFromBuffer;
wailtdata;

checksum := ReadByteFromBuffer;
waitdata;

dataid := ReadByteFromBuffer;
waitdata;

status := ReadByteFromBuffer;
waitdata;

bininfl := ReadByteFromBuffer;
waitdata;

bininf2 := ReadByteFromBuffer;
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waitdata;

bininf3 := ReadByteFromBuffer;

wailtdata;
aninf := ReadByteFromBuffer;
X := hix;

x := ( x shl 8 ) or lox;
recordno := recordno + 1;
end;

procedure Setorigin;
begin

write(’Place Glider at Reference Frame
writeln(’and press SPACE else RET’);

¢ := readkey;
writeln;
origin := 10057;{DEFAULT}
if ¢ =’ ’ then
begin
Sendstring(’START’) ;
repeat
readdata;
n :=n+1;
total := total + x;
until n 100;

origin := round(total / 100);

Sendstring (’PAUSe’);
end;
end;

begin
inf := 0;
ka := 0;
t := 0;
n := 0;
total := O;
samp := 0.03;
recordno := 0;
i := 0;
setserialport;
enableport;
clearbuffer;

assign(f, ’commands.txt’);
reset(f);

while not eof(f) do
begin

origin’);

7
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readln(f, s);
Sendstring(s);
delay (500) ;
while (BytesInBuffer <> 0) do
write(chr(ReadByteFromBuffer));
end;

Sendstring (’VSOU=A") ;
assign(g, ’details.txt’);
rewrite(g);

assign(h, ’5th.txt’);
rewrite(h);

SetOrigin;

writeln(’Hit anything to start reading’);
¢ := readkey;

grdriver := Detect;

grmode := 2;

InitGraph(grdriver, grmode, ’C:\BP\BGI’);
ClearViewPort;

drawaxes;

Sendstring(’START’);

while not keypressed do

begin
readdata;
t =t + samp,
{code to process x}
1 :=1;
repeat
1 :=1+ 1;

y[i] := y[i - 1];
until 1 = 5;
Nosound;
if length = 3 then
begin
y[1] := (origin - x) / 10000;
v = (2 % (y[6] - y[1]) + y[4] - y[2]) / (10 * SAMP);
{ if (((v = ov) < 0.1) and ({v - ov) > -0.1)) then}
if aninf >= 192 then
begin
inf := 0;
if ka <> inf then
begin
putpixel(round(a*(1.7*x(y[3]1)+1)),round({b*(5*v+1))-d/2),15);
write(h, y[3] : 3 : 4, chr(9));
write(h, -v : 3 : 4, chr(9));

78



APPENDIX B. PASCAL CODE

writeln(h, t : 5 : 4, chr(9));
sound (1000) ;
end;
end;
if aninf < 133 then
inf := 1;
ka := inf;
end;
end;

¢ := readkey;
Sendstring (’STOP’);
drawaxes;

repeat
delay (200);
until keypressed;

c := readkey;
disableport;
end.

B.2 Stepped sinewave Fourier analysis

program stepping;

var
k, m: integer;

A, x, s, sum: real;

f. text;

const

d = 1; {step size}

N = 50; {amplitude in steps}

pi = 3.14159;

terms = 5001; {no. of terms in series expansion}

begin
rewrite(f, ’130796.out’);
A :=d * N;
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for m := 1 to N do

begin

x := (m - 0.5) / N;
s := cos(k * arctan(x / sqrt(l - x * x)));
sum := sum + S;

end;

sum := sum * 4 * d / (k * pi);
writeln(f, k, chr(9), sum : 2 : 5);
until k = terms;
close(f);
end.

B.3 Fourier Representation Algorithm

program FT;

const

n = 10;

npts = 600;
hnpts = 300;
pi = 3.14159;

var

T, dt, cso, sso, csl, ssl, cs2, ss2, amp, phase, tot: real;
foo, fol, fo2, Ao: real;

1, m: integer;

input, output: text;

x: array[O..npts, 1..2] of real;

y: array[O..npts, 1..2] of real;

A: array[(l..n, 1..2] of real;

function sgn (u: real): integer;
begin
1f u < 0.0 then
sgn := -1
else
sgn := 1,
end;

begin
{Program to accept data file of npts points sampled from a periodic signal}

{dt apart, period T. One cycle only.}

showtext;
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reset (input, ’15398.TXT’);
tot := 0;
for i := 0 to npts do {read in the input file to array x}
begin
read (input, x[(i, 1]);
{writeln(x[i, 1] : 2 : 3);}
readln(input, x[(i, 2]);
end;
writeln;
rewrite(output, NewFileName(’’)};

dt := x[2, 1] - x[1, 1];
T := x[npts, 1] - x[0, 1];

writeln;
form := 1 to n do
begin
for i := 0 to npts do
begin
yli, 1]
yli, 2]
end;

2
2

*

x[i, 2] * sin(m * 2 * pi * x[i, 1] / T);
x[i, 2] * cos(m * 2 *» pi * x[1, 1] / T);

1}

*

ssl := 0;
csl := 0;
ss2 := 0
cs2 := 0;
sso := y[0, 1] + y[npts, 1];
cso := y[0, 2] y [npts, 2];

3

+

for 1 := 1 to hnpts do
begin
ssl = y[2 x 1 -1, 1] + ssi;
csl :=y[2 x 1 -1, 2] + csl;
end;
for i := 2 to hnpts do
begin
ss2 = y[2 *x i - 2, 1] + s82;
cs2 := y[2 * 1 -2, 2] + cs2;
end;
Alm, 1] := (sso + 4 * ssl + 2 % ss2) *dt / (3 *x T);
Alm, 2] := (cso + 4 * csl + 2 % ¢cs2) *xdt / (3 *x T);

amp := sqrt(Alm, 1] * Alm, 1] + A[m, 2] * A[m, 2]);



APPENDIX B. PASCAL CODE

tot := tot + amp * amp;
phase := arctan(A[m, 2] / Alm, 1]);

write(m, ’ )5
if sgn(A[m, 2]) > O then
write(’ ’);

write(A[m, 2] : 2 : 5, )5

if sgn(A[m, 1]) > O then
write(’ ’);

write(A[m, 1]

V)
o
o
=

o
N
o
N

if sgn(Alm, 1])
write(’ ’);

sgn(Alm, 2]) then

writeln(A[m, 1] / Alm, 2] : 2 : 5);

writeln(output, m, chr(9), Afm, 2] : 2 : 5, chr(9), Alm, 1]
end;

{constant term:}

fol := 0;
fo2 := 0;
foo := x[1, 2] + x[2 * hnpts, 2];
for 1 := 1 to hnpts do
begin
fol := x[2 x 1 - 1, 2] + fol;
end;
for 1 := 2 to hnpts do
begin
fo2 := x[2 *1 - 2, 2] + fo2;
end;
writeln;
Ao := (foo + 4 x fol + 2 x f02) *xdt / (3 x T);
writeln(’ >, Ao 2 ¢ 6);
writeln;
writeln(output);

writeln(output, Ao : 2 : 5);
close(input);

: 5);



APPENDIX B. PASCAL CODE 83

close(output);
writeln;

end.

B.4 Interval Bisection algorithm

program util;

const

c = 0.2573;

a=7.21;

b = 129.73;

pi = 3.14159;

zo = 0.13;

winc = 0.025; {0.025}
finc = 0.1; {0.01}
var

z, T, Tdash, w, f, zold, marker, znew, zinc: real;
n, j: integer;

roots: array[l..8] of real;

input, output: text;

function sgn (u: real): boolean;

begin
if u < 0.0 then
sgn := false
else
sgn := true;
end;

function res (x: real): real;

var
ws, zs, brb, brc: real;

begin

ZS 1= X ¥ X;

WS = W X W,

brb := 14.42 - ws - 21.63 * zs;

brc := (-233.92845 % zs +350.892675%zs*zs)/(14.42~4%ws~21.63%zs) ;
res := x * sqrt(0.06620329 * ws + (brb + brc) * (brb + brc)) - f;

end;
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begin

showtext;

zinc := 0.0001; {0.0001}
rewrite(output, ’test.txt’);
f :=0.1 - finc;

repeat
f :=f + finc;
w := 0;
writeln(f : 2 : 3);
repeat
z = 0.001;
if w > 0.8 then
zinc := 0.01;
W := W + winc;
repeat
if sgn(res(z)) <> sgn(res(z + zinc)) then
begin
n := 0;
marker := z;
zold := z + zinc;
znew := z + zinc / 2;
repeat
n :=n+1;
if sgn(res(znew)) <> sgn(res(z)) then
begin
zold := znew;
znew := (z + znew) / 2
end
else
begin
z := zold;
zold := znew;
znew := (z + zold) / 2;
end;

until (sqrt((z - znew) * (z - znew)) < 0.0000001) or (n>1000);
writeln(output, w : 2 : 3, chr(9), z : 2 :

{writeln((z - znew) : 2 : 8,
end;
Z := z + zinc;
until z > 0.88;
until w > 8;
until £ > (2);
close(output) ;
end.

>, n);}

5, chr(9), f

84
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B.5 Lyapunov Exponents

program lyapunov;

var
i, k, z, marker: integer;
xp: array[1..3000, 1..2] of real;
d, dn, 1, value, dir, direction, prox: real;
total, old, ang: real;

f, g: text;
const
max = 0.05;
min = 0.01;
w = 3;
pi = 3.14159;
begin
ang := b;
assign(f, ’530699.asc’);
reset (f);
marker := 3;
old := 4,
dir := 1.4;
for i := 1 to 3000 do
begin

read(f, xpli, 11);
readln(f, xpli, 2]);
end;

writeln(’Finished read’);
i:=1,;
total := 0;
k = 0;
z = 0;
repeat
1 :=1+1;
zZ = 1;
repeat
z =z + 1;
dn:=sqrt(sqr(xp[i,1]~xplz,1])+sqr(xpl[i,2]-xpl[z,2])3;
direction := pi / 2;
if (xp[i, 1] - xplz, 1]) <> 0 then
begin
direction:=arctan((xp[i,2]-xp(z,2])/(xpli,1]~-xpl[z,11)};
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end;
prox := sqrt(sqr(direction - dir)j;
until (((dn<=max)and(dn>= min)}and(prox<ang))or(z>(2900)};

if (z < (2900)) then

begin

d:=sqrt(sqr(xpli+l,1]-xp[z+1,1])+sqr (xpli+1,2]-xplz+1,2])};
1 := 1n(d / dn) / 1n(2);

if 1 > 250 then

begin

total := total + 1;

k :=k +1;

writeln(total / k : 2 : 3, ° ’ o dir 2 @ 3);
ang := 0.1;

end;

dir := pi / 2;

if (xpli + 1, 1] - xplz + 1, 1]) < O then
dir:=arctan((xp[i+1,2])-xp[z+1,2])/(xp[i+1,1]-xplz+1,1])};
marker := z + 1;

end;

if (z > (2900)} then
begin
z := marker + 1;
dir := pi / 2;
if (xpli + 1, 1] - xp[z, 1]) <> 0 then
dir:=arctan((xp[i+1,2)-xp[z,2])/ (xp[i+1,1]-xplz,1]1)};
marker := z;
writeln(’* >, dir 2 @ 3);
end;

until 1 > 2900;
close(f);
end.
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Derivations for chapter 4.

C.1 Derivation of response function by Harmonic

Balance

We start with the two frequency solution (equation 4.47):

z(t) = E + Acos(wt) + Bsin(wt) + Ceos(2wt) + Dsin(2wt) (C.87)

differentiating and substituting in equation 1.18 we obtain:

—Acos(wt)w? - Bsin(wt)w® —4Ccos(2wt)w? — 4 Dsin(2wt) w?
+ ¢ (~Asin(wt)w+ Beos(wt)w —2Csin(2wt)w+ 2 Dcos(2wt) w) +
a((E+ Acos(wt) + Bsin(wt) + Ccos(2wt) + Dsin(2wt))* — E

~ Acos(wt) — Bsin(wt) — Ccos(2wt) —~ Dsin(2wt)) = fcos(wt) (C.88)

expanding the above gives:

3 . 3 . 3 . 3 . . 3 .
—=B*Ca+-B*Ea+ = Ba. “C’Fa+-CaA’+Fa+=EaqA*
1 a—i-QB n+2Bn4D+2CEa+4Ca4+ (1+2 a

: ‘ 3 . 3 ‘ ‘ 3 .
+§E0,DZ —E(Z-i-(ZBS(I,‘FaBCZ(Z—?)BCE(Z-f—:;BEz(Z-{‘ ZB(I,AZ
3. s - . 3
+ TZB(I..D‘“ +3FaAD—w'B-wAec-- Ba)sin(wt) + (Z B?aA

3 . A 3 A A
+3BEaD+§Cza.4+SCEa,A+3E2aA+ilaAng‘(z,ADz—sz

87
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3 . 3 3 .
+wB(:—aA)cos(wt)+(—ZB2(1,A+5BC(LD~«3BE(LD4-ZCZ(1,A
1 . 3 A 3 .
+3CE(1,A+Z(I,A‘;wZ(LADZ)C()S(SUH‘,)+(;)—B2(1,D+3BE(1,A
3 . . 3 .
+ZCZ(LD+3E2(LD+§(LAZD+g(LDS—411)2D“2?UCC—(1D)
: 3 0 3 o 3 3 2 3 2, 3 2
sm(?'u)t)+(5B C(L—;B E(1,+21-C' a+3CE (1,+3C'(1,A +ZC(1,D

3 . .
+-EaAd* 4w C+2weD — Ca)cos(2wt)

[N}
W

. 1 .
+(>C*aD — 18 D*)sin(6wt)

3 3 . 3 A
+ (—;BC’(I,D+ ZC‘Z(I,A — 1(1,.4 D?*) cos(5wt)

e~

1 . 3 .
+ (zl- Ca— ZC(I, D*)cos(6wt)
3, 3 3, 1,
+(«—ZB“G,D+§BC(J,A+3CE(1,D+E(1,A D)5111(411)t)+(_ZB a
3 . . 5 3
—ZBCZ(I+3BCE(1,+-?IB(1,AZ+?IB(J,D2+5C(1,AD+3E(1,AD)
sin(3wt)
3 . 3 3 3 5 3 A
+(->B*Ca—-=BaAD+ -C?’Ea+=-CaA?’—- =EaD?*)cos(4dwt)
4 2 2 4 2
3

+ (1 BC?%a— ?IB(I, D?* + %C‘a AD)sin(5wt) = fcos(wt) (C.89)

we now discard harmonics higher than 2w and products #9(C?) or greater, and

equate the remaining harmonic coefficients (and the constant terms) to zero:

1 . A A
§E(L(QE2+3‘42+3B2~2)::0

3 . A 4 3 :
;1-‘4'3(1,+(3E2(1—(1,—UJ2+3EC(1,+ZIBZ(I,)A+3DEB(1,—HUB(:-f = ()
ZB'g(I,+(—3EC(z+-?1-442(1,+3E2(1,—11)2—~(I,)B+3DEA(1,—Aw(::()

. , 3 . ,
(3E2(1,+—Aza+§B2(1,~—4w2«a)D—i—BEABa,—QwC(::()

[SCRGVE SR L)

4 3 . . 3 4 3 .
AZ(L+—5B2(L—411)2~(1,)C+aEAZ(I,-—SEB‘Z(L+2D'U)(::0
(C.90)

(3E%a+

The above set of five equations (C.90) become equivalent to equations 4.48 to 4.52

respectively, if we replace (4% + B?) by Z2.
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C.2 The determinants of section 4.3

Expanding the determinant A(i) (equation 4.76), we obtain

NG = 81 — 1867 + 200,70y — 1800y + 380,07 — 360, 00% + 11807
— 996, —3600%0,% - 20,20,% — 20,2 0,> + 0, +40,0,0,° + 0,* + 6,

~ 200y’ (C.91)

Expanding the determinant A(0) (equation 4.81), we obtain

3

A(D) = =3280, 4 25600, + 100y = 56 6,°60,7 + 320" +320," — 1120,°6,°
— 8007 05% + 200 65%0,% « 36,0, — 20,0, £ 16,0 0,2+ 30,26,% — 6y
— GO0C 0,07 - 2007 + 10,0, +8960,0,° — 20480,° + 5410,° 0

— 5120, — T80, 6,° — 1096 8y + 144 6, 0, 6,° (C.92)
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