Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

AN EVALUATION OF

FUNGAL BIOASSAY PROCEDURES FOR

ASSESSMENT OF SOIL PHOSPHATE STATUS.

Thesis

presented at Massey University College of Manawatu in part fulfilment of the requirements for the Degree of Master of Agricultural Science,

by

N. M. D. Mantjika

- 1963 -

TABLE OF CONTENTS.

Page

I	INTRODUCTION	נ
II	REVIEW OF LITERATURE	3
	DETERMINATION OF AVAILABLE SOIL PHOSPHATE BY A. NIGER	3
	1. The Aspergillus culture	3
	cedure	17
	method	22
	OTHER FUNGUS SPECIES USED FOR SOIL PHOSPHORUS DEFERMINATION	25
III	MATERIALS.,	27
IA	METHODS 1. Soil sampling and preparation of samples 2. Microbiological Assays 3. Pot experiment 4. Chemical Analyses for Soil Phosphate	30 30 35 48
Ψ	RESULTS 1. Microbiological Assays 2. Pot experiment 3. Chemical Analyses of Soil Phosphate 4. Relationships and comparisons between methods	53 53 66 87 91
VI	DISCUSSION OF RESULTS 1. Fungal bioassay 2. Pot experiment 3. Chemical analyses of soil phosphate	102 102 104 106
VII	GENERAL DISCUSSION	108
	SUMMARY	111
	REFERENCES	
	ACKNOWLEDGEMENTS	
	APPENDICES	

TABLE		PAGI
1.	Description of Soils	28
2.	pH and Water Holding Capacities of soils	38
3.	Weights of soils and diluents per pot	39
4.	Amount of water retained by undiluted soils in each pot.,	40
5.	Grouping of soils according to water holding capacity (W.H.C.) of the diluted soils	44
6.	Mycelial dry weights of <u>A. niger</u> with soil as the sourge of phosphate	56
7.	Mycelial dry weights of <u>P. lilliacum</u> with soil as the source of phosphate	58
8.	Mycelial dry weights of <u>C. geniculata</u> with soil as the source of phosphate	60
9.	Mycelial dry weight of <u>Fusarium</u> sp. with soil as the source of phosphate	62
10.	Ranking of soils by the different fungi according to the phosphate status of the soils	64
11.	The amounts of "available" soil phosphate as estimated by A. niger, P. lilliacum, and C. geniculata	65
12.	Dry weights of Millet top growth	67
13.	Dry weights of Millet root	70
14.	Dry weights of Millet total yields	72
15.	Ranking of soils by Millet top, root and total yields according to the phosphate status of the soils	75
16.	Dry weights of Turnip total yields	76
17.	Ranking of soils by Turnip total yields according to the phosphate status of the soils	79
18.	Dry weights of Lucerne top growth	80
19.	Dry weights of Lucerne root	82
20.	Dry weights of Lucerne total yields	84

E

LIST OF TABLES. (Continued)

TABLE		PAG
21*	Ranking of soils by Lucerne top, root, and total yields according to the phosphate status of the soils	86
22.	Forms of soil phosphate and ranking of soils	88
23.	Combinations of forms of soil phosphate and ranking of soils	89
24,	Truog values of available Phosphate and ranking of soils	90
25.	Ordinary Correlation Coefficients between plant yields and other methods employed for determination of soil phosphate status	92
26.	Rank Correlation Coefficients (Spearman's) for plant yields against other methods employed for assessing "available" soil phosphate	93
27.	Overall total and average "ordinary" correlation coefficients for plant yield method against fungal assays and chemical extraction methods	94

Ε

LIST OF PLATES AND FIGURES.

PLATE		PAGE
I	Mechanical Shredder and hand sieve for soil preparation	30a
II	Part of the lab. and some of the equipment used	30a
III	The glasshouse	35a
TV	Type of metal pot used and the seedlings after thinning	35a
V	The seedlings before being thinned out	4la
VI	Placement of pots and installation of tensiometer	4la
VII	Installation of tensiometers among mature turnip plants	44a
. VIII	Growth differences for <u>A. niger</u> for a range of phosphate concentrations	• 54
IX	Lucerne, turnip and millet plants at 3 weeks after germination	, 96
X	Turnip, lucerne and millet plants at 6 weeks after germination grown on Soils 1 and 16	. 96
XI	Turnip, lucerne, and millet plants at 6 weeks after germination grown on Soils 19 and 20	97
XII	Millet plants at $6\frac{1}{2}$ weeks after germination grown on Soils with different phosphate levels	. 97
XIII	Turnip plants at 7 weeks after germination grown on soils with different phosphate levels	, 98
XIV	Lucerne plants at 6 ¹ weeks after germination grown on soils with different Phosphate levels	. 98
XV	Millet plants at harvest time	• 99
XVI	Turnip plants at harvest time,	• 99
IIVX	Development of turnip "root" grown on Soils 13 and 16	. 100
XVIII	Lucerne plants at harvest time	, 100
XIX	Ramification of root in a variety of potted soils	. 101
XX	Brass boxes used in the determination of water holding capacity of soils	

LIST OF PLATES AND FIGURES. (Continued)

.

FIGURE		
1.	Maximum and Minimum Daily Temperatures	45/46
2.	Growth curve for <u>A. niger</u>	54/55
3.	Growth curve for P. lilliacum	54/55
4 .	Growth curve for <u>C. geniculata</u>	54/55

I. INTRODUCTION.

- 1 -

Microbiological assays, especially with <u>A. niger</u>, have been used rather widely to assess phosphate status of soils. The merits as well as shortcomings of these procedures have been discussed in the literature by various investigators. The speed, cheapness, and simplicity with which microbiological assays may be carried out have been used as arguments in favour of their use. It was this type of argument, considered in relation to the fact that good correlations have been reported by a number of workers between results obtained by <u>A. niger</u> and by field tests, which suggested to the writer that microbiological assay might have special merit in those developing countries where a rapid assessment of soil potential is required in the interests of food production but where limited finance is available for full-scale soil investigations.

The work reported here was undertaken to investigate further the value of the <u>A. niger</u> procedure as a means of evaluating soil phosphate status and to examine the possibility that other fungi including some not previously employed for this purpose might be even more suitable.

The present investigation was confined to a range of New Zealand soils. As field response data were not available for these soils a pot experiment incorporating a number of crops was conducted to provide plant growth data with which the results of microbiological assay could be correlated. Chemical testing of soils has found much wider application than microbiological assay and there is a possibility that such methods might provide superior evaluation of soil phosphate status, which could outweigh the advantages of cheapness and simplicity claimed for the biological techniques. As an extension of the present study it was therefore considered worthwhile to determine whether Truog's procedure (1930) for determining available soil phosphate (the method employed by the New Zealand Department of Agriculture) possessed any marked advantage over the biological assays. It was further considered of interest to determine whether any one form of soil phosphate or combinations of forms determined by selective extracting agents would show better correlation with plant growth than shown by biological assay.