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ABSTRACT

Although concern about the effects of movement of chemicals through soil has
brought about a need for greater understanding of solute transport, the question as

to where best to focus the research effort remains open.

Initially a philosophical framework was presented that described in a general sense
how research into solute transport has been conducted. Itwas argued that we must
combine modelling with experimentation for effective progress in understanding,
and that the efforts in field versus lab experimentation and process- versus non-
mechanistic modelling should be balanced. Currently there is a need for more field
experimentation, but the preferred direction of the modelling effort is less clear.
Both process-based and non-mechanistic models are considered in order to deduce

the effect of soil layering on solute transport.

Field experiments were carried out on a soil consisting of three layers of distinct
texture. This soil was instrumented with porous cup samplers at four depths at

twenty sites. There was also a 2 m? lysimeter within the plot.

In the first experiment irrigation was used to supplement rainfall in order to leach
a surface application of solid KCI through the soil. Porous cup samples of the soil
solution were collected on numerous occasions and soil cores less often. The
experiment of the following year was similar in design except that no irrigation was
used. Finally, in the third year, the lysimeter was instrumented with porous cup

samplers and the same experimental design repeated on a smaller scale.

A convection-dispersion (CDE) model was applied to the lysimeter data. This was
successful, provided that the surface soil and assumed Dirac delta solute input were
not included in the calibration. Layering within the profile appeared to have little
effect on solute transport. The transport porosity was revealed to be two-thirds of
the water-filled porosity, thus a substantial part of the water-filled porosity did not
transport solute. The CDE modelling of the field data was not particularly
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successful, probably due to the spatially variable nature of solute transport and

water application.

The Aggregated Mixing Zone (AMZ) model was also used. This model subdivided
the transport porosity into convective and dispersive components, and also allowed
for non-interacting flow paths. Although the AMZ model was conceptually
appealing, parameterisation of the model was found to lack discrimination. Little

further understanding of solute transport was gained from this model.

Textural differences in the soil seem to be overwhelmed by both small-scale
heterogeneity of water application and solute movement in the soil, especially near
to the surface. It was apparent that processes occurring in the surface soil require
much more attention than they have been afforded in the past.

Both process-based modelling and field experimentation will increase our
understanding of solute transport. It also seems that an increased effort in

improving measurement techniques will be advantageous.
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