Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Theoretical Investigation of Traffic Flow: Inhomogeneity Induced Emergence

A dissertation presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at Massey University, Auckland, New Zealand

Mingzhe Liu

2010

Certificate of Regulatory Compliance

This is to certify that the research carried out in the Doctoral Thesis entitled "*Theoretical Investigation of Traffic Flow: Inhomogeneity Induced Emergence*" in the Institute of Information and Mathematical Sciences at Massey University, New Zealand:

- 1. is the original work of the candidate, except as indicated by appropriate attribution in the text and in the acknowledgements;
- 2. that the text does not exceed 100,000 words;
- 3. all the ethical requirements applicable to this study have been complied with as required by Massey University.

Please insert Ethical Authorization code here: not applicable

Candidate: Mingzhe Liu	Supervisor: Prof. Ken Hawick
Signature:	Signature:
Date:	Date:

Candidate's Declaration

This is to certify that the research carried out for my Doctoral Thesis entitled "*Theoretical Investigation of Traffic Flow: Inhomogeneity Induced Emergence*" in the Institute of Information and Mathematical Sciences, Massey University, Albany, Auckland, New Zealand is my own work and that the thesis material has not been used in part or in whole for any other qualification.

Candidate: Mingzhe Liu

Signature:

Date:

Supervisor's Declaration

This is to certify that the research carried out for the Doctoral Thesis entitled "*Theoretical Investigation of Traffic Flow: Inhomogeneity Induced Emergence*" was done by Mingzhe Liu in the Institute of Information and Mathematical Sciences, Massey University, Albany, Auckland, New Zealand. The thesis material has not been used in part or in whole for any other qualification, and I confirm that the candidate has pursued the course of study in accordance with the requirements of the Massey University regulations.

Supervisor: Prof. Ken Hawick

Signature:

Date:

I dedicate this thesis and my love to my wife Ping Wen, my daughter Xiner Liu and my son Runxi Liu

Abstract

This research work is focused on understanding the effects of inhomogeneity on traffic flow by theoretical analysis and computer simulations. Traffic has been observed at almost all levels of natural and manmade systems (e.g., from microscopic protein motors to macroscopic objects like cars). For these various traffic, basic and emergent phenomena, modelling methods, theoretical analysis and physical meanings are normally concerned.

Inhomogeneity like bottlenecks may cause traffic congestions or motor protein crowding. The crowded protein motors may lead to some human diseases. The congested traffic patterns have not been understood well so far.

The modelling method in this research is based on totally asymmetric simple exclusion process (TASEP). The following TASEP models are developed: TASEP with single inhomogeneity, TASEP with zoned inhomogeneity, TASEP with junction, TASEP with site sharing and different boundary conditions. These models are motivated by vehicular traffic, pedestrian traffic, ant traffic, protein motor traffic and/or Internet traffic.

Theoretical solutions for the proposed models are obtained and verified by Monte Carlo simulations. These theoretical results can be used as a base for further developments. The emergent properties such as phase transitions, phase separations and spontaneous symmetry breaking are observed and discussed. This study has contributed to a deeper understanding of generic traffic dynamics, particularly, in the presence of inhomogeneity, and has important implications for explanation or guidance of future traffic studies.

Acknowledgements

I would like to take this opportunity to acknowledge those people who have guided and supported me to achieve this qualification.

First and foremost, I would like to thank my thesis supervisors Prof. Ken Hawick and Prof. Stephen Marsland for their strong support and guidance. They set a wonderful example of being an excellent scientist: curiosity, enthusiasm, honesty and hard working towards research! Their intellectual rigor and enthusiastic attitude kept my research on track and well focused. I also greatly appreciate their help when I was going through my personal difficulties.

Special thanks go to my co-supervisor Prof. Rui Jiang for having numerous fruitful discussions on this research work. Rui made a lot of suggestions for theoretical analysis and simulations. Rui has always been prepared to talk about any issues, even in times he was very busy.

I would also like to thank my previous supervisor, Dr. Ruili Wang, who has supervised my first two and half years of my PhD study. He led me to the topic of traffic modelling and simulations. I have learnt a great deal from him.

A special thank-you to Prof. Ray Kemp for always being supportive and patient.

I would further like to acknowledge many academic and supporting staff at Massey University for providing the comfortable and well-equipped environment in which to study, especially, Prof. Hans W. Guesgen, Prof. Martin Hazelton, Prof. Elizabeth Kemp and Dr. Patrick Rynhart.

I thank Prof. Paul Merrick, Dr. Ian Bond and Dr. Marcus Frean for accepting to serve on my thesis committee.

Contents

Chapter	1 Introduction 1
1.1	Research description 1
1.2	Research motivation
1.3	Main contributions
1.4	Thesis outline
Chapter	2 Review on TASEP Models 9
2.1	Totally asymmetric simple exclusion process (TASEP)
	2.1.1 Introduction
	2.1.2 Updating procedures 10
	2.1.3 Random update 12
	2.1.4 Parallel update 14
2.2	TASEP with different particle properties
	2.2.1 TASEP with large particles
	2.2.2 TASEP with long-range hopping 18
	2.2.3 TASEP with Langmuir kinetics
	2.2.4 TASEP with two-species particles
2.3	TASEP with different lattice structures25
	2.3.1 TASEP with multiple parallel channels
	2.3.2 TASEP with multiple-input multiple-output junctions 29
	2.3.3 TASEP with local inhomogeneity
2.4	Research methods
2.5	Summary
Chapter	3 Local Inhomogeneity in a Single-channel System 38
3.1	Introduction
3.2	Model description
3.3	Mean-field approach
3.4	Domain wall approach
3.5	Theoretical calculations and computer simulations
3.6	Summary and conclusions
Chapter	4 Zoned Inhomogeneity on Asymmetric Exclusion

Process	3
4.1	Introduction
4.2	Case V
	4.2.1 Model description
	4.2.2 Theoretical analysis
	4.2.3 Results and discussion
4.3	Case W
4.4	Summary and conclusions
Chapte	r 5 Asymmetric Exclusion Process with Junction
5.1	Introduction
5.2	<i>m</i> -input 1-output junction
	5.2.1 Model and mean-field analysis
	5.2.2 Domain wall theory
	5.2.3 Monte Carlo simulations and discussion
5.3	<i>m</i> -input <i>n</i> -output junction
	5.3.1 Model and theoretical analysis
	5.3.2 Results and discussion
5.4	Summary and conclusions
Chapte	r 6 Two-species TASEP with Site Sharing in a
Single-o	channel System
6.1	Introduction
6.2	Model formation and theoretical analysis
6.3	Results and discussion
6.4	Summary and conclusions
Chapte	r 7 Spontaneous Symmetry Breaking in Asymmetric
Exclusi	on Process with Site Sharing
7.1	Introduction
7.2	Model description
7.3	Monte Carlo simulations and discussion
7.4	Summary and conclusions
Chapte	r 8 Conclusions and Outlook
8.1	Research summary
	8.1.1 Local inhomogeneity in a single-channel system
	8.1.2 TASEP with <i>m</i> -input <i>n</i> -output junction
	8.1.3 TASEP with site sharing and relaxed boundaries
	8.1.4 TASEP with site sharing and constrained boundaries
8.2	Future Work
Bibliog	raphy
Append	lix Publications

List of Figures

Figure 2.1	Illustration of TASEP in open boundary conditions	11
Figure 2.2	Phase diagrams of TASEP in open boundaries	14
Figure 2.3	Illustration of possible TASEP extensions	16
Figure 2.4	Sketch of the Bridge model	22
Figure 2.5	Sketch of two-channel TASEP with narrow entrances \ldots	24
Figure 2.6	Sketch of a four-channel model with narrow entrances \ldots	24
Figure 2.7	General two-channel TASEP models	25
Figure 2.8	Flow chart of Monte Carlo simulations	37
Figure 3.1	Illustration of TASEP with a local inhomogeneity	40
Figure 3.2	Phase diagrams of TASEP with a local inhomogeneity \ldots	44
Figure 3.3	Schematic diagram of the domain wall dynamics	46
Figure 3.4	Density profiles from theoretical analysis and MCS $\ldots \ldots \ldots$	50
Figure 3.5	Density profiles with different p	51
Figure 3.6	Dependence of current on entrance rate α	52
Figure 3.7	Density profiles near the phase boundaries	53
Figure 4.1	Illustration of TASEP with a zoned inhomogeneity	58
Figure 4.2	Diagrams of possible stationary-state phases	62
Figure 4.3	Currents with different hopping probability p	64
Figure 4.4	Density profiles from simulations with different p	66
Figure 4.5	Phase diagram in case W with p	68
Figure 4.6	Currents with fixed p	69
Figure 4.7	Density profiles with different p	70

Figure 5.1	Schematic diagram of TASEP with a MISO junction \dots	75
Figure 5.2	Phase boundaries and phase diagram of the model	81
Figure 5.3	Density profiles from theoretical calculations and MCS $\ \ldots$	94
Figure 5.4	Density profiles from DW theory and MCS	95
Figure 5.5	Density profiles vs different m	96
Figure 5.6	Density profiles in random and parallel updates	97
Figure 5.7	TASEP with <i>m</i> -input <i>n</i> -output junction	98
Figure 5.8	Illustration of entering and exiting in two subsystems	98
Figure 5.9	Phase boundaries and phase diagram vs different λ	99
Figure 5.10	Density profiles vs different λ	100
Figure 5.11	Density profiles from DW theory and MCS	101
Figure 5.12	Currents from theoretical calculations and MCS	101
Figure 6.1	Illustration of the TASEP with site sharing	105
Figure 6.2	Four possible states on each site	105
Figure 6.3	Phase diagram of the model	112
Figure 6.4	Stationary currents vs sharing probability	113
Figure 6.5	Density profiles in the LD, HD and MC phases	114
Figure 6.6	Four possible states vs sharing probability	116
Figure 6.7	Currents in our model and the Bridge model	117
Figure 7.1	Illustration of the model	121
Figure 7.2	Symmetry breaking in the phase diagram	122
Figure 7.3	Histograms of densities in all phases	124
Figure 7.4	Flipping processes in the asymmetric phases	125
Figure 7.5	Finite-size effects with different system length	125
Figure 7.6	Stationary current with different β	126
Figure 7.7	Currents obtained from our model and the Bridge model .	127

List of Tables

Table 2.1	Stationary properties of TASEP in random update	13
Table 2.2	Stationary properties of TASEP in parallel update	15
Table 2.3	Stationary properties of TASEP with large particles	18
Table 2.4	Stationary properties of TASEP with inhomogeneity	32
Table 3.1	Comparisons of TASEP with local inhomogeneity	46
Table 4.1	Details of Figure 4.5	69
Table 5.1	Possible phases and corresponding conditions	89