
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

DISTRIBUTION DESIGN

IN

OBJECT ORIENTED DATABASES

A t hesis p resented in partia l fulfi lment of t he requi rements for the degree of

MAST ER O F I NFO RMATION S C IENCE

I N

I NFORMATION SYSTEMS

at Massey University, Palmerston North,

New Zeala nd

Hui Ma

2003

Abstract

The advanced development of object oriented database systems has attracted much research.

However, very few of them contribute to the distribution design of object oriented databases.

The main tasks of distribution design are fragmenting the database schema and allocating

the fragments to different sites of a network. The aim of fragmentation and allocation is to

improve the performance and increase the avai lability of a database system. Even though

much research has been done on distributed databases, the research a lmost always refers to

the relational data model (RDM). Very few efforts provide distribution design techniques

for distributed object oriented databases.

The aim of this work is to generalise distribution design techniques from relational databases

for object oriented databases. First, the characteristics of distributed databases in general

and the techniques used for fragmentation and allocation for the RDM are reviewed. Then ,

fragmentation operations for a rather generic object oriented data model (OODM) are de­

veloped. As with the RDM, these operations include horizontal and vertical fragmentation.

A third operation named splitting is also introduced for OODM. Finally, normal predicates

are introduced for OODM. A heuristic procedure for horizontal fragmenting of OODBs is

also presented. The adaption of horizontal fragmentation techniques for relational databases

to object oriented databases is t he main result of this work .

Acknowledgements

I would like to thank Professor Klaus-Dieter Schewe, my supervisor , for his patience, guid­

ance, suggestions and constant support during this research. I am also thankful to Markus

Kirchberg for his encouragement and guidance through the early stage of chaos and con­

fusion. A special thanks goes to Madre Chrystal for her kindly devoting valuable time to

proof read my draft.

The Massey Masterate Scholarship, which was awarded to me for the period February 2002 -

February 2003 for graduate studies, was crucial to t he successful completion of this project.

Finally, I am grateful to my husband and my parents for t heir patience and love. Without

them this work would never have come into existence (litera lly).

Hui Ma

March 31 , 2003

iii

Table of Contents

1 Introduction

1.1 What is a Distributed Database?

1.2 Why Distribution?

1.3 Distribution Design: Fragmentation and Allocation

1.4 Objective: Fragmentation in Object Oriented Databases

1.5 The Outline of the Thesis

2 Distributed Databases

2 .1 Characteristics . . .

2.1.l Data Independence .

2.1.2 Network Transparency (Distribution Transparency)

2.1.3 Replication Transparency ..

2.1.4 Fragmentation Transparency

2.2 Key Concepts

2.2.1 Heterogeneity

2.2.2 Autonomy ..

2.2.3 Distribution .

2.2.4 Classification of Distributed DBMS .

2.3 A Framework for Distributed Databases . .

2.3.l The Objective of the Design of Data Distribution .

2.3.2 The Reasons for Fragmentation .

2.3 .3 Alternative Design Strategies .

v

1

2

2

4

5

6

7

7

8

9

9

10

10

10

11

11

12

13

14

15

16

3 Distribution Design for Relational Databases

3.1

3.2

3.3

3.4

3.5

3.6

3.7

The Relational Data Model

Characteristics

Horizontal Fragmentation

Vertical Fragmentation .

Mixed Fragmentation

Allocation . .

Related Work

3.7.l Horizontal Fragmentation

3.7.2 Vertical Fragmentation.

4 Object Oriented Databases

4.1 Fundamentals of the OODM

4.1.1 Type Definitions

4.1.2 Class Definitions

4.1.3 Schema Definit ion

4.2 An Example of Object Oriented Database Schema

4.3 Queries

4.3.1 Path Expressions

4.3.2 Queries

5 Fragmentation Operations in Object Oriented Databases

5.1 Split Fragmentation ...

5.2 Horizontal Fragmentation

5.2.1 Horizontal Fragmentation on Class Level

5.2.2 Horizontal Fragmentation on Type Level.

5.3 Vertical Fragmentation for Object Oriented
Databases

5.3.1 Vertical Fragmentation on Class Level

5.3.2 Vertical Fragmentation on Type Level

5.4 Fragmentation Strategies

5.5 Related Work

vi

19

20

21

22

26

29

29

30

30

35

37

38

38

42

42

43

51

51

54

61

62

64

64

66

68

68

70

71

72

6 A M ethod for Horizontal Fragmentation in Object Oriented D at abases 75

6.1 Simple P redicates . 75

6.2 Normal Predicates 78

6.3 The Heuristic Fragmentat ion Process . 80

6.4 A Cost Model 82

6.4. l Query-Trees . 82

6.5

6.6

6.4.2 Calculation of Size for Classes .

6.4.3 Calculation of Size for Fragments or Intermediate Nodes .

6.4.4 Allocate Intermediate Nodes to Sites

6.4.5 Calculation of Query Costs

A Heuristic P rocedure for Horizontal Fragmentation

Summary

7 Conclusion and Possible Ex tens ion

7.1 Summary . .

7.2 Future Work

Bibliography

83

88

89

90

92

97

99

99

100

103

Chapter 1

Introduction

Relational database systems have been well accepted because they reflect the nature of

the structures of many organizations and enable the possibility of efficiently and effectively

sharing the data. As computer-based systems have penetrated all areas, there are increased

d emands for the non-conventional applications, such ru:; computer-aided design (CAD) , ge­

ographic information systems, image, and graphic database systems, etc. However, the

complex structure of the data in these applications cannot be adequately modelled by tra­

ditional relational databases. Consequently, object oriented databases are due to take the

place of relational ones and become more and more popular. At the same time network fa­

cilities enable the distribution of database systems. However, approaches have been limited

to t he relational data model which lead to the emergence of distributed relational database

management systems (DRDBMSs). But distributed object oriented database management

systems (DOODBMSs) are due as well.

It is desirable to design a distributed object oriented database in such a way that the system

can perform efficiently and effectively. The techniques of distribution design of relational

databases have been intensely studied from the 1980s. There is also substantial research

contributing to the study of the object oriented data model , but there is little research on

the distribution design of object oriented databases.

The aim of this thesis is to study the existing (mature) distribution design techniques for

relational databases and to adopt them into an object oriented approach. The following

sections of this chapter will first review the definit ion of a distributed database and then

study the reasons of the emergence of distributed database systems. Two main distribution

1

2

design techniques will also be briefly defined. After reviewing some research work that

has been done in DRDBMSs we will set up the objective of studying fragmentation in

DOODBMSs. Finally, the outline of this thesis will be presented.

1.1 What is a Distributed D atabase?

Ceri and Pelagatti [6] define a distributed database as a collection of data that logically

belongs to the same system but is spread over the sites of a computer network. Ozsu

and Valduriez [24] give a similar definition: a distributed database system is a collection of

multiple, logically interrelated databases distributed over a computer network. They explain

that the logically related files, which are individually stored at each site of a computer

network, are not enough to form a distributed database. There need to be a structure among

them. Ceri and Pelagatti [6] support this view and state that the data at different sites must

have propert ies that tie them together, and that access to the files should be via a common

interface. They explain that physical distribut ion means that data does not reside at the

same site in the same processor. Ozsu and Valduriez [24] point out that physical distribution

does not necessarily imply that the computer systems are geographically distributed. The

sites among the network could even have the same address. They could be in the same room,

but the communication between them is done over a network instead of shared memory,

and the communication network is the only shared resource.

1.2 Why Distribut ion?

Ceri and Pelagatti [6] and Ozsu and Valduriez [24] describe the motivation for the develop­

ment of distributed databases. Distributed database research is motivated by the reliability,

performance, and economic concerns of distributed databases in organizations. Reliability

refers to the ability to tolerant faults. Performance refers to the ability to reduce query

response time and increase throughput. Economic concerns relate to the reduction of data

communication and update synchronization costs.

• Organizational Reasons

3

In recent years, the demand for more information by industries, governments and aca­

demic institutes has led to databases that have exceeded the physical limitations of

centralized systems. The advances of telecommunication techniques make distributed

database systems more affordable and useful [14, l]. Ceri & Pelagatti [6] state that

distributed databases are motivated by organizational reasons: many organizations ,

especially global organizations are often decentralized. For such organizations, imple­

menting the information system in a decentralized way might be more suitable.

• Economic Reasons

Ceri & Pelagatti [6] state that economic reasons are another motivation for the devel­

opment of distributed databases. They argue that large, centralized computer centres

are becoming questionable with respect to economies of scale. Ozsu & Valduriez [24]

support this view and state that it normally costs much less to put together a sys­

tem of smaller computers with the equivalent power of a single big machine due to

the advance of minicomputers and microcomputers. The authors also state that the

communication cost can be reduced when distributed databases are implemented. If

databases are geographically dispersed and the application accessing them are at the

intersection of dispersed data, it will be much more economical to partition the re­

lations and the applications so that the data processing can be done locally at each

site.

• Reliability and Availability

Improved reliability and availability is one of the potential advantages of distributed

databases which the centralized databases lack [6, 24]. When replications of data have

been placed at different sites, the crash of one site or the failure of the communication

link would not necessarily make the data impossible to reach. When the system

crashes and the communication link fails, even though some of the data will not be

accessible, the distributed database system still provides limited services.

• Interoperability of Existing Databases

Ceri & Pelagatti [6] also mention that when there are several databases already ex­

isting in an organization and there is the necessity of executing global applications,

4

distributed databases are the natural solution. In this case, the distributed database

is designed bottom-up from existing local databases. These local databases may need

to be reconstructed to some degree, but it is much cheaper than building a new inte­

grated distributed database.

• Expandabili ty

Ozsu & Valduriez [24] and Ceri & Pelagatti [6] state that it is easier to accommodate

increasing database sizes in a distributed environment. If an organization grows by

adding new and relatively autonomous branches or warehouses, then the distributed

database approach supports the information needs of the new sites with the minimum

degree of impact on the existing system.

• Local Autonomy

Local autonomy is emphasized by Ceri & Pelagatti [6] as a major reason that many

business organizations consider a distributed information system. Since data is dis­

tributed, a group of users that commonly share such data can have this data placed at

the site they work. Thus, the local controls are allocated to local users to enable them

to take partial responsibility for information management in the distributed database .

1.3 Distribution Design: Fragmentation and Allocation

Distribut ion design is one of the major research problems whose solution will enhance

performance of the distributed databases. It involves data acquisition, fragmentation of

databases, allocation and replication of the fragments, and local optimization. Fragmenta­

tion and allocation are the most important elements of a distributed database design phase.

They play important roles in the development of a cost efficient system [24] .

Fragmentation is a design technique to divide a single database into two or more partitions

such that the combinat ion of the partitions yields the original database without any loss

or addit ion of information [25]. This reduces the amount of irrelevant data accessed by the

application, thus reducing the number of disk accesses. The result of the fragmentation

process is a set of fragments defined by a fragmentation schema. Fragmentation can be

either horizontal, vertical or mixed.

5

Horizontal fragmentation partitions a relation or a class into disjoint unions (fragments),

which will have exactly the same structure but different contents. Thus a horizontal frag­

ment of a relation or class contains a subset of the whole relation or class instance. Vertical

fragm entation results in attributes and methods being partitioned into different fragments

and therefore reduces irrelevant data accessed by applications [28].

Allocation is the process of assigning a node on the network to each fragment after the

database has been properly fragmented [24]. When data is allocated, it may either be

replicated or maintained as a single copy. The replication of fr agments will improve the

reliability and efficiency of read-only queries. The intention of allocation is to minimize the

data transfer cost and the number of messages needed to process a given set of applications,

so that the system functions effectively and efficiently [17, 33, 24]. For the sake of simpleness ,

we will not consider replication of fragments when we discuss fragmentation in this thesis.

1.4 Objective: Fragmentation in Object Oriented Databases

The techniques of fragment ing relational databases have been intensely studied since the

early 1980s. There are many different approaches to fragmentation and allocation for dis­

tribution design in relational databases. Navathe & Ra [22] develop a vertical partitioning

algorithm using a graphical technique. Navathe, Karlapalem & Ra [21] propose a mixed

fragmentation methodology for distributed database design. Tamhankar & Ram [33] pro­

pose an integrated methodology for fragmentation and allocation. Chu [8] designs two

methods for partitioning attribute which treat the transaction as the decision variable.

Even though much research has been dedicated to the issue of object-oriented databases,

little has been related to the distribution design of object oriented databases. The fragmen­

tation of object oriented databases is a complex and still open research problem because the

semantic model of the object oriented data model is much richer and more complicated than

that of the relational model. The object oriented data model allows not only record con­

structors to be used but also set and other bulk type constructors. These constructions may

even appear not only on the class level but also in nested structures [28]. The aim of this

thesis is to generate distribution design techniques from traditional RDM to the OODM.

6

This thesis will concentrate on fragmentation, especially on horizontal fragmentation for

OODM.

1.5 The Outline of the Thesis

The thesis will start with a brief review of the issues related to distribution design in

relational databases in Chapter 2. The general characteristics of distributed databases

will be reviewed. Some key concepts related to distributed databases and a framework for

distribution design will also be presented.

Chapter 3 covers characteristics of distribution design in relational databases. Fragmenta­

tion and allocation in RDM are studied in this chapter. Also, an overview of related works

is provided in this chapter.

In Chapter 4, the fundamentals of the object oriented data model will be discussed. At

the same time, an example of the object oriented database schema will be presented in this

chapter.

Chapter 5 will concentrate on some fragmentation techniques that can be used in the distri­

bution design of object oriented databases. Splitting, horizontal fragmentation and vertical

fragmentation will be presented and analyzed. Some design strategies will also be presented.

Finally, related works will be reviewed.

Chapter 6 will introduce normal predicates in the object oriented data model. Then some

heuristics of horizontal fragmentation in object oriented databases will be presented.

Finally, Chapter 7 contains the conclusion of this work. Future work is also listed in this

chapter.

Chapter 2

Distributed Databases

Distributed Database Management Systems (DDBMSs) are characterized by several levels

of transparencies that they can support. The classification of distributed databases is based

on autonomy and heterogeneity. Distribution design is performed under a framework that

sets the objective of the design. There are two approaches to the design of distribution. They

constitute different approaches to the design process. But both of them might be applied to

complement one another [24]. This chapter defines the fundamental concepts and sets the

framework for discussing distributed databases . We start by reviewing the characteristics of

a distributed database system. Then we will present a architectural model for distributed

DBMSs. Two alternative design strategies will also be discussed in this chapter.

2 .1 Characteristics

Some desirable functions that should be supported by a true distributed DBMS are proposed

by Ozsu & Valduriez [24] . Data independence is considered to be one of the main motivations

for introducing databases. In a distributed database, data independence has the same

importance as in traditional databases. However, a new aspect is added to the usual notion

of data independence, namely distribution transparency [6]. Atre & Advisor [3] explain that

data access should be transparent and synchronized to preserve database integrity. Ozsu &

Valduriez [24] define transparency as separation of the higher-level semantics of a system

from lower-level implementation issues. In other words, transparency means that when the

users are accessing the data, they do not need to know where the data is stored, in what

7

8

format it is stored, or how it is to be accessed [3].

In a distributed relational database environment, each relation can be partitioned into a set

of fragments on the basis of relevant informational content. The fragments of the relation are

stored at different sites. Furthermore, it might be preferable to duplicate some of this data at

other sites for performance and reliability reasons [24] . The result is a distributed database

which is fragmented and replicated. The database users would see a logically integrated,

single image database even though it may be physically distributed. The DDBMS should

enable users to access the distributed database as if it were a centralized one. The ideal

form with full transparency would imply that a query language interface to a distributed

DBMS is not different from a query interface to a centralized DBMS.

An ideal DBMS should provide a number of different types of transparencies. In the fol­

lowing sections the different levels of transparency will be reviewed.

2.1.1 Data Independence

Data independence is a fundamental form of transparency that centralized database systems

can provide. Data independence refers to the fact that the definition and maintenance of

data are independent from the applications and are controlled by a server of the DBMS [23].

In other words, data independence means that the actual organization of data is transparent

to the application programmer. Programs are written with a conceptual schema [6]. Ozsu

& Valduriez [24]propose two types of data independence:

• Logical data independence refers to the immunity of user applications to changes in

the logical structure of the database. For example, if a user application operates

on a subset of the attributes of a relation, it should not be affected later when new

attributes are added to the same relation.

• Physical data independence refers to hiding the details of the storage structure from

user applications. Programmers should not be concerned with the details of physical

data organization when they design a user application. And the user application

should not need to be modified when data organizational changes occur with respect

9

to what data type the data is assigned and what storage hierarchies t he data is

distributed across .

2.1.2 N etwork Transparency (Distribution Transparency)

Network transparency or distribution transparency means that programs can be written as

if the database were not distributed [6]. Ozsu & Valduriez [24] state that there should be no

difference between database applications that would run on a distributed database and those

that would ruu on a centralized one. They also state that the user should be protected from

operational details of the network and even the existence of the network. T hey separate

the distribution transparency into location t ransparency and naming t ransparency.

• Location t ransparency means that the command used to perform a task is independent

of both the location of the data and the system on which an operation is carried out.

• Naming transparency refers to the fact that a unique name is provided for each object

in the database. If there is no naming transparency, users arc required to embed the

location name (or an identifier) as part of the object name.

2.1.3 Replication Transparency

Ozsu & Valduriez [24] state t hat replication transparency is dealing with whether the users

should be aware of the existence of copies, or whether the system should handle the man­

agement of copies. In a DBMS with replication transparency, users should act as if there

is single copy of the data. They also emphasize t hat replication transparency refers only to

the existence of replicas not to the location.

Ceri & Pelagatti [6] explain that there are several reasons for considering data redundancy

as a desirable characteristic: first, the locality of applications can be increased if the data is

replicated at all sites where applications need it; and second, the availability of the system

can be increased because one site failure does not stop the execution of applications at other

sites if the data stored is replicated. The performance can be increased t hrough replication,

as the retrieval can execute on any copy of the data if t here is more than one copy of the

10

data. But on the other hand, replication causes problems in updating databases. Thus, if

the user application is not retrieval oriented but update oriented, it might not be a good

idea to have too many copies of the data. Whether or not to have copies and how many

copies to have is decided to a considerable degree by the nature of user applications [24].

2.1.4 Fragmentation Transparency

With fragmentation transparency, users are not aware of the data separation. Fragmenta­

tion transparency is implied if the database systems have the function of physical data inde­

pendence. Fragmentation is often used to improve performance, availability and reliability.

Fragmentation can also reduce the negative effects of replication because by partitioning

the data, only a subset of the relation, not the full relation, needs to be stored. Less space

is required and fewer data items need to be managed [24].

2. 2 Key Concepts

First, in this section, we will review and explain basic concepts that include heterogeneity,

autonomy, and distribution which are used in the classification of distributed database sys­

tems. Then, classification of distributed database systems: tight integration, multidatabase,

and semiautonomous database systems will be discussed explicitly.

2.2.1 Heterogeneity

Heterogeneity in DDBMSs can arise at different levels in the system, including hardware

at different sites, different operating systems, different network protocols, different local

DBMSs, and different models that local DBMSs are based on [4, 6, 24]. However, an

important distinction is at the level of local DBMSs and the model they are based on,

because differences at lower levels are managed by the communication software not by the

DBMS. Therefore, only the heterogeneity of DBMS, the model of DBMS and the semantics

of the data model need to be considered. Hence, the term "homogeneous DDBMS" refers

to a DDBMS with the same DBMS based on the same data model with the same semantics.

11

2.2 .2 Autonomy

Autonomy is concerned with the distribution of control, not of data. It indicates the

degree to which individual DBMSs can operate independently [6 , 24]. Autonomy refers

to a function of a number of factors such as whether the component systems exchange

information, whether they can independently execute transactions and whether each site is

allowed to modify itself.

Requirements of an autonomous system have been specified in a variety of ways. Bell &

Crimson [4] specify the dimensions of autonomy as:

• Design autonomy: local sites are given the freedom to decide the information content

of the DB , to select the data model and to choose storage structures.

• Participation autonomy: local sites have the right to decide what data to contribute

and when, and the freedom to decide when to come and to go.

• Communication autonomy: local sites have the right to decide how and under what

terms to communicate with other sites in the network.

• Execution autonomy: local sites have the freedom to make decisions whether and how

to process local operations to store, retrieve and update local data.

2.2 .3 Distribution

In Ozsu & Valduriez [24] distribution refers to the physical distribution of data over multiple

sites. There are two alternative classes that DBMSs use to distribute data: client/server dis­

tribution and peer-to-peer distribution. Client/server distribution concentrates data man­

agement duties with servers, while clients focus on providing the application environment

that includes the user interface [3]. The client and servers share the communication re­

sponsibility. The sites on a network are distinguished as "clients" and "servers", and their

functionality is different [24]. In peer-to-peer systems, there is no distinction between client

machines and servers. Each machine has full DBMS functionality and machines can com­

municate with each other to execute queries and transactions. Peer-to-peer systems are also

called fully distributed systems [24] .

12

2.2.4 Classification of Distributed DBMS

Bell & Grimson [4] divide distributed database management systems into homogeneous

DDBMSs and heterogeneous DDBMSs. Homogeneous DDBMSs can be further divided

into classes depending on whether or not they are autonomous. Heterogeneous DDBMSs

can be further divided into classes based on wether they are integrated or not. The au­

thors also categorize systems according to the degree of heterogeneity, the method of data

distribution and the extent of local autonomy. Ozsu & Valduriez [24] and Ceri & Pela­

gatti [6] present a working classification of possible design alternatives along three similar

dimensions: autonomy, distribution, and heterogeneity. Ozsu & Valduriez [24] propose a

classification of the implementation alternatives of distributed database systems which is

based on autonomy and heterogeneity. This is illustrated in Figure 2.1. The different im­

plementation alternatives that cover the important aspects of these features of distributed

database design are reviewed below.

Distributed Distributed
heterogeneous heterogeneous
DBMS federated DBMS

Distributed
heterogeneous
multidatabase

Heterogeneity •
• ~st.em . /

~~~~~~~~·~~-- ~~~~----1~ 

Distributed 
homogeneous 
DBMS 

~ 
' ' ' 

Distributed 
homogeneous 
federated DBMS 

Distributed 
homogeneous 
multi database 
system 

Autonomy 

Figure 2.1: DDBMS Implementation Alternatives [24] 

At one extreme, a tightly integrated (or truly distributed) database is a DDBMS with no 

local autonomy. In other words it has full global control. This kind of DDBMS has a global 

schema and all applications access the global database. The local DBMSs do not operate 

independently. 

In contrast , in a multidatabase there are only local database schema and no global schema. 



13 

Global applications must access each local database separately. The individual systems 

are stand-alone DBMSs, which know neither of the existence of other DBMSs nor how to 

communicate with them. Local autonomy guarantees that local users can access their own 

local DB independently of the existence of the multidatabase and its global users . 

Gligor & Popescu-Zeletin [15] list the requirements of multidatabase systems as follows: 

• The local operations of the individual DBMSs are not affected by their participation 

in the multidatabase system. 

• System consistency or operation should not be affected when a DBMS join or leave 

the multidatabase confederation. 

• The manner of query processing and optimization of individual DBMS should not be 

affected by the execution of global queries that access multiple databases. 

Semiautonomous (or federated) systems consist of a local database schema and a global 

schema. Local databases have their own schema and can operate independently, but they 

also have decided to participate in a federation to make their local data sharable. Each of 

these DBMSs determines what information it wants to share with other users. Applications 

may be executed locally and globally. They are not fully autonomous systems because the 

parts of their own databases that they share with other users should be able to be modified 

by other users in order to change information. 

In this thesis, the discussion of data fragmentation and allocation is limited to the dis­

tributed homogeneous DBMS, which provides an integrated view of the data to users even 

though the database is distributed. 

2.3 A Framework for Distributed Databases 

The objective of the design of distribution is discussed by Ceri & Pelagatti [6]. The design 

of a distributed database system involves making decisions on the architecture of DDBMS, 

on the process of design. Two major strategies for designing distributed databases that are 

identified by Ceri & Pelagatti [6] are: top-down approach and bottom-up approach. Ozsu 



14 

& Valduriez [24] develop a framework for the process of distribution design based on these 

approaches. The reasons and criteria for fragmentation and allocation will be discussed in 

this section. 

2.3.1 The Objective of the Design of Data Distribution 

There are several objectives that should be taken into account in the design of distribution 

[6]: 

• In a distributed database system one of the major costs is associated with communica­

tion. To minimize communication costs, one goal of DDBMSs is to achieve processing 

applications locally. The degree of local processing can be maximized by distributing 

data, therefore minimizing transaction costs. To achieve this goal, the data should 

be kept as close as possible to the applications which use them. The advantage of 

processing applications locally is not only the reduction of remote access costs, but 

also increased simplicity in controlling the execution of the application. 

• We can improve the availability and fault-tolerance of read-only applications by stor­

ing multiple copies of the same information at different sites. When one site of the 

database is down or the community link for that site is broken, the system can still 

execute the applications by accessing the other copies of the information. 

• Distributing workload over the sites is done in order to take advantage of the different 

powers of utilization of the computers at each site, and to maximize the degree of 

parallelism of execution of applications . But the trade-off between processing locally 

and distributing workloads should be considered in the design of data distribution. 

• Database distribution should reflect the cost and availability of storage at each site. 

Even though the storage cost is not relevant when compared with the cost of in­

put or output (I/O), central processing unit (CPU), and transmission costs of the 

applications, the limitation of available storage at each site should be considered. 



15 

2.3.2 The Reasons for Fragmentation 

To simplify the problem, we do not consider replication at the first step of distribution 

design. The purpose of fragmentation design is to determine non-overlapping fragments 

which could be the logical unit of allocation [6]. The individual tuple or attribute of a 

relation cannot be considered as the unit of allocation because the allocation problem would 

become unmanageable. The fragments are constituted by grouping tuples or attributes that 

have the same "properties" from the viewpoint of their application [6]. This is based on 

the idea that two elements in the same fragment that have the same "properties" will be 

accessed by the applications together. Therefore, the fragments obtained in this way are 

the appropriate units of allocation [6]. 

Ozsu & Valduriez [24] mention that with respect to fragmentation , the important issue is 

the appropriate unit of allocation. The authors explain that there are three reasons for 

fragment relations: 

• Applications are usually based on the views of subsets of relations. Thus the applica­

tions often access any subset of an entire relation locally. 

• If there is a relation on which many application views are defined at different sites , 

storing a given relation at one site will result in an unnecessarily high volume of 

remote data accesses. Storing a given relation at different sites will cause problems in 

executing updates and may not be desirable if storage is limited. 

• The decomposition of a relation into fragments permits many transactions to be exe­

cuted concurrently and results in the parallel execution of a single query by dividing 

it into a set of sub queries that operate on fragments. 

However, on the other hand , fragmentation may cause the following problems [24]: 

• The applications whose views are defined on more than one fragment may suffer per­

formance degradation when the relations are not partitioned into mutually exclusive 

fragments. 



16 

• When the attributes participating in a dependency of a relation are decomposed into 

different fragments and stored at different sites, the task of checking for dependencies 

would result in chasing after data in a number of sites. 

2.3.3 Alternative Design Strategies 

Ceri & Pelagatti [6] and Ozsu & Valduriez [24] propose two alternative approaches to the 

design of data distribution, top-down and bottom-up approaches. In the case of tightly 

integrated distributed databases, design proceeds top-down from requirements analysis and 

logical design of the global database to physical design of each local database. In the case 

of distributed multidatabase systems, the design process is bottom-up and involves the 

integration of existing databases [24]. But the authors also emphasis the fact that real 

applications are rarely simple enough to fit nicely in either of these approaches. The two 

approaches may need to be applied to complement each other. 

Top-down Approach 

As shown in Figure 2.2, in the top-down approach, the process starts with a requirements 

analysis that defines the environment of the system and elicits both the data and processing 

needs of all potential database users [35]. The requirements analysis also specifies where 

the final system is expected to stand with respect to the objectives of the DDBMS. The 

objective is defined with respect to performance, reliability and availability, economics , and 

expandability ( flcxi bili ty) . 

The requirements documents are the inputs to two parallel activities: view design and 

conceptual design. The outputs of view design are the interfaces for the user, and the 

outputs of conceptual design are entity types and relationship types which are used to 

construct an external schema. 

In a distributed relational database environment, the objective of distribution design is to 

design the local conceptual schemas (LCSs) by distributing the relations and subrelations 

(fragments). The fundamental issues in top-down design are fragmentation and allocation 

[24]. 



17 

The last step in the design process is the physical design, during which local concept ual 

schemas are mapped to the physical storage devices avai lable at the corresponding local 

sites . 

Co nceptual 
np~nn 

Requirements 
Anal is 

System Requirements 
(Objectives) 

User 
In ut 

\11 ew I nteqrati on 

Feedback Observation and 
~-------------< Monitorin 

\11ewDesign 

External 

Feedback 

Figure 2.2: Top-down Design Process [24] 

Bottom-up Design Process 

User 

Input 

Ceri & Pelagatti [6] and Ozsu & Valduriez [24] state that top-down design is suitable for the 

systems which are developed from scratch. But when the distributed database is developed 

as the aggregation of existing databases, it is not easy to follow the top-down approach. 

The bottom-up approach, which starts with individual local conceptual schemata, is more 

suitable for this environment [6, 24]. Ceri & Pelagatti [6] explain that the bottom-up 

approach is based on the integration of existing schemata into a single, global schema. 

Integration is the process of the merging of common data definitions and the resolution 

of conflicts among different representations that are given to the same data. The global 



18 

conceptual schema is the product of the process [24]. Ceri & Pelagatti [6] conclude that 

there are three requirements for bottom-up design: 

(1) the selection of a common database model for describing the global schema of the 

database, 

(2) the translation of each local schema into the common data model, and 

(3) the integration of the local schemata into a common global schema. The authors 

also state that these three requirements are particularly important in heterogeneous 

distributed systems. 



Chapter 3 

Distribution Design for Relational 
Databases 

There are many reasons to study distributed relational databases. Firstly, the mathematical 

foundation of the relational data model (RDM) makes the theory research problem easy to 

formulate. Secondly, there are a large number of relational systems on the market, and most 

distributed database systems are relational [23]. Current distributed database management 

systems (DBMSs) are mainly available for relational databases (RDBs) [33] . 

The distribution design of databases involves data acquisition, fragmentation of the database, 

allocation and replication of the partitions and local optimization [19]. In a distributed 

relational database environment, fragmentation is the design technique that divides a rela­

tion into a set of partitions such that the combination of the partitions yields the original 

database without any loss or addition of information [24, 25]. 

Fragmentation can be done in several ways: horizontal, vertical, and mixed (hybrid) . Hor­

izontal fragmentation splits a relation into a set of disjoint new relations with the same 

relation schema. Each of the new relations is obtained by applying a selection operation to 

the original relation [28] . Vertical fragmentation involves dividing the attributes of a rela­

tion into groups and then applying a projection operation to the original relation over each 

group. The original relation can be reconstructed by union or join operations, respectively, 

of the new relations resulting from horizontal or vertical fragmentation [28]. 

The following sections will first set the preliminaries of the discussion of distribution design 

of RDB. Then we will list the characteristics of the distribution design. Afterwards we will 

19 



20 

review each design technique mentioned above. 

3.1 The Relational Data Model 

The relational data model was first introduced by Codd [9] in 1970. Codd [10] emphasizes 

that the relational model has three power features. First, its data structures are simple. 

This feature allows a high degree of independence from the physical data representation. 

Second, the relational model provides a solid theoretical foundation for data consistency. 

The consistent states of a database can be uniformly defined and maintained through in­

tegrity rules. Thirdly, the relational model allows the set-oriented manipulat ion of relations. 

With this feature , powerful nonprocedural languages can be developed based either on set 

theory (relational algebra) or on logic (relational calculus). 

To define the relational data model, we suppose that a certain set V of possible domains D 

is given. For instance, D can be NAT, which is a set of natural numbers, ST RI NG, which 

is a set of character strings, and BOOL, that is a set of booleans, etc. Every attribute in a 

relation schema is assigned a domain D out of V. The following definition is given in [28]. 

Definition 3.1. Let V be a non empty set of domains. 

(i) A relation schema R consists of a finite set attr(R) of attributes and a domain assign-

ment dom: attr(R) -t V. 

(ii) A tuple over a relation schema R is a mapping t : attr(R) -t LJ with t(A) E dom(A) 
DE'D 

for all A E attr(R). 

(iii) A relation r over a relation schema R is a finite set of tuples over a relation schema 

R. 

(iv) A relational database schema is a finite, non-empty set S of relation schemata. 

( v) An instance I of a relational database schema S assigns to each R E S a relation 

I(R) over R. 



21 

Remark: 

(i) A relation schema R can be written in the form of R = {A1 : D1 , .. . , An : Dn} with 

attr(R) = {A1, ... ,An} and dom(Ai) = Di(i = 1, ... ,n) . 

(ii) We usually use the term 'database' instead of talking about instances. 

Each tuple in a relation is uniquely identified by its key which is the subset of the set of 

attributes attr(R) of a relation r. The key is minimal if and only if there is no subset of a 

relation that can be a key. In order to define the key, we need to define a operation named 

projection first. 

Definition 3.2. Let r be a relation over relation schema R, and X ~ R. For a tuple t Er, 

projection oft, denoted as t[X] is a mapping t' : X --t LJ dom(A) with t' E dom(A) such 
AEX 

that t' (A) = t(A) for each A EX. 

Then we can have the following definition: 

Definition 3.3. A key on a relation schema Risa subset I< ~ attr(R) restricting relations 

rover R to satisfy t1 = t2 for all tuples t1, t2 Er with t1[K] = t2[K]. 

A key K is called minimal if and only if no proper subset of I< is a key. 

A primary key is simply a distinguished minimal key 

3.2 Characteristics 

For a given relational database schema S = {R1, ... , Rk}, fragmentation applies to each of 

the relations ~ in the schema. To ensure the consistency of the database, the fragmentation 

operation should satisfy the following three characteristics [24]: 

(i) Completeness 

Informally, completeness refers to the fact that fragmentation does not lead to a loss 

of information. If a relation ~ is decomposed into fragments R}, .. . , Rfi, each data 

item that can be found in~ can also be found in one or more of R{ 



22 

(ii) Reconstruction 

Informally, reconstruction refers to the fact that it should be easy to reconstitute a 

non-fragmented relation back from its fragments. For a given relation Ri with frag­

mentation FR; = {R[, ... , Rfi}, it should be possible to define a relational operator 

that can reconstruct Ri with R{. 

• For horizontal fragments, reconstruction of a global relation Ri is performed 

by using the union operator in the horizontal fragmentation. Using relational 

algebra, 
k; 

Ri = LJ R{ 
j=l 

• For vertical fragments, reconstruction of the original global relation Ri is made 

by using the natural join operation: 

(iii) Disjointness 

Informally, disjointness refers to the fact that fragmentation should not lead to a 

replication of information. But if replication comes into play, this requirement has to 

be relaxed. If a relation Ri is horizontally decomposed into fragments R}, ... Rfi and 

the data item d'i is in R{, it does not appear in any other fragment Rf(k ¥- j). If a 

relation is vertically partitioned, disjointness is defined only on the non-primary key 

attributes of the relation. To simplify the problem, replication is not considered at 

the first stage of the design of distributed databases. 

3.3 Horizontal Fragmentation 

There are two forms of horizontal fragmentation: primary horizontal fragmentation and de­

rived horizontal fragmentation [6, 24]. Schewe [27] defines primary horizontal fragmentation 

as: 

Definition 3.4. Let S = R1, ... , Rn be a relational database schema, primary horizontal 



23 

fragmentation on relation schema R;, replaces R;, by a set { R}, ... , Rfi} of new relation 

schemata such that: 

(i) the attributes in each R{ are the same as in R;,. 

(ii) Each relation ri over R;, can be split into pairwise disjoint relations r}, ... , rfi over 

R} , ... , Rfi respectively such that ri = rf U · · · U rfi holds. 

By using relational algebra, the operation of horizontal fragmentation can be expressed as: 

with 'Pj as selection predicates defined on R;, that are derived from application information. 

Of course, the disjointness property implies that we must have 

'Pj I\ 'Pk {:::} J alse for all j i= k 

Similarly, the completeness property implies the requirement that 

c.p1 V · · · V 'Pki {:::} true 

We notice the above definition includes the criteria which are also known as the correctness 

rules of horizontal fragmentation in the above section: completeness, reconstruction, and 

disjointness. 

Example 3.1. Take relation schema LECTURER= {name, specialization, location} , a re­

lation r over LECTURER is 

name specialization location 

Chris Database Theory Palmy 

David System Analysis Wellington 

Peter End User Computing Palmy 

John Database Theory Auckland 

Barbara Multimedia Auckland 



24 

with a set of selection formulae: 

<p1 = location = 'Palmy' 

<p2 = location = 'Wellington' 

<p3 =location = 'Auckland' 

The above relation is partitioned into the following three relations: 

name specialization location 

Chris Database Theory Palmy 

Peter End User Computing Palmy 

name specialization location 

David System Analysis Wellington 

name specialization location 

John Database Theory Auckland D 

Barbara Multimedia Auckland 

Derived horizontal fragmentation is the partitioning of a relation that results from predicates 

being defined on another relation. For this operation, semi-joins: R1 ~ R2 = 7rR1 (R1 l><l R2) 

will be involved, we define derived horizontal fragmentation as below: 

Definition 3.5. Let S = R1 , ... , ~.Rx , ... , Rn be a relational database schema, De-

rived Horizontal fragmentation on relation schema ~ results that ~ be replaced by a set 

{Rt, ... , Rfi, R~;+l} of new relation schemata such that: 

(i) the attributes in each Rf are the same as in ~. 

(ii) each relation ri over ~ can be split into pairwise disjoint relations rt, . .. , rfi, rfi+1 

over R 1 Rki Rki+l respectively such that r· = r 1 U · · · U r~i U rki+l holds t, ... , t' t t t t t . 

Using relational algebra, the operation of derived horizontal fragmentation on relation ~ 

can be written as: 



with <{Jj be the predicate defined on relation Rx and 

ki 

R~;+l = ~ - LJ (~ t>< acpj( Rx)) 
j=l 

be a necessary 'remainder fragment'. 

25 

Example 3.2. Take relation schemata LECTURER = {name, specialization, location Code} 

and CAMPUS = {location Code, city}, a relation r over LECTURE and relation r' over CAM-

PUS are: 

name specialization location Co de 

Chris Database Theory 1 location Code city 

David System Analysis 3 1 Palmy 

Peter End User Computing 1 2 Auckland 

John Database Theory 2 3 Wellington 

Barbara Multimedia 2 

with a set of selection formulae <{Jj defined on relation CAMPUS, relation r over LECTURER 

can be fragmented as: 

R1 = LECTURER I>< O"cp 1=city = 'Palmy•(CAMPUS) 

R2 =LECTURER I>< O"cp2 =city = 'Wellington•(CAMPUS) 

R3 =LECTURER I>< O"cp3 =city = 'Auckland'(CAMPUS) 

Then relation r is partitioned into the following three relations: 

name specialization location Code 

Chris Database Theory 1 

Peter End User Computing 1 

name specialization location Code 

David System Analysis 2 



26 

name specialization location Code 

John Database Theory 3 

Barbara Multimedia 3 

Note that the remainder relation r4 is empty because all tuples of r can match a tuple in 

one of the fragment rj of relation r'. D 

3.4 Vertical Fragmentation 

Vertical fragmentation exploits relation schemata to be sets of attributes. Vertical fragments 

result from a projection operation to the original relation. The original relation can be 

reconstructed by the joining of the new relations . It can be defined as below: 

Definition 3.6. Let S = R1, . •. , Rn be a relational database schema with relation schemata 

. { 1 ki } ~ = {Ail, ... , Aini}. Vertical fragmentation replaces Hi by a set Ri , ... , Ri of new 

relation schemata such that: 

ki . 
(i) the attributes are distributed, i.e., I4, = U Rf, 

j = l 

(ii) each relation ri over I4, is split into relations r1, = rrR{(ri)(j = 1, ... ,ki) such that 

Ti = r} IXl · · · IXl rfi holds, 

(iii) in Relational Algebra, ~ = R} IXl · • · IXl R7', 

(iii ') in a special case, a distinguishing new attribute dif can be added to relation ~ as 

a minimal key, then after vertical fragmentation dif E R{ for all j E {1, .. . , ki}, and 

I4. = rrn;- {dif}(R} 1X1···1X1 R7i). 

Using Relational Algebra, vertical fragmentation could be written as R{ = 7rattr(R{)(~) for 

all j E { 1, .. . , ki} 

Not having the distinguished new attribute dif would require a lossless join-decomposition, 

which in turn would mean t hat a join-dependency must hold. However, a well designed 



27 

database schema would exclude such dependencies, except for the case, where R} n · · · n R7; 

contains a key. Thus, it is normally required that the primary key (i.e. a chosen minimal 

key) is part of all Ri . 

Example 3.3. Take relation schema LECTURER = {name, specialization, location, depart­

ment, IRD, salary}, a relation r over LECTURER is 

name specialization location department IRD salary 

Chris Database T heory Palmy Information Systems 234569 92000 

Richard Accounting history Wellington Accounting 235169 38000 

Peter End User Computing Palmy Information Systems 256487 64560 

Mary Careers Auckland Human Resources 156426 65900 

Barbara Multimedia Auckland Computer Science 352486 56000 

Relation r can be vertically fragmented in the following two ways: 

(i) F irst , alter the relation schema LECTURER to LECTURER' by attaching a distinguish­

ing new attribute 'dif' to LECTURER. Then, by using operation: 

R1 = 7r dif, specialization, location , department (LECTURER' ) 

R2 = 1rdif, name, IRD, salary(LECTURER') 

the above relation r is vertically partitioned into the following two relations: 

dif specialization location department 

1 Database Theory Palmy Information Systems 

2 Accounting history Wellington Accounting 

3 End User Computing Palmy Information Systems 

4 Careers Auckland Human Resources 

5 Multimedia Auckland Computer Science 



28 

dif name IRD salary 

1 Chris 234569 92000 

2 Richard 235169 38000 

3 Peter 256487 64560 

4 Mary 156426 65900 

5 Barbara 352486 56000 

(ii) Alternatively, let {name, department} be the primary key. Using operation: 

R1 = 1r name, department, specialization, location (LECTURER) 

R2 ='Tr name, department, IRD, salary(LECTURER) 

the above relation r is vertically part itioned into the following two relations: 

name department specialization location 

Chris Information Systems Database Theory Palmy 

Richard Accounting Accounting history Wellington 

Peter Information Systems End User Computing Palmy 

Mary Human Resources Careers Auckland 

Barbara Computer Science Multimedia Auckland 

name department IRD salary 

Chris Information Systems 234569 92000 

Richard Accounting 235169 38000 

Peter Information Systems 256487 64560 

Mary Human Resources 156426 65900 

Barbara Computer Science 352486 56000 

D 



29 

3.5 Mixed Fragmentation 

Database users usually access subsets of data which are vertical and horizontal fragments 

of global relations . Therefore, there is a need for mixed fragmentation, which applies a 

sequence of horizontal and vertical fragmentation on a relation. It can be achieved by 

successively performing horizontal and vertical fragmentation on a relation. The different 

sequencing of vertical and horizontal operations generates different fragmentation schema. 

Even though these operations can be recursively repeated, having more t han two levels of 

fragmentation is not of practical interest [6]. 

k Definition 3. 7. For a given relation ~ in the database schema S, mixed fragments Ri 

are built by successive steps of horizontal and vertical fragmentation on relation ~, such 

that the correct rules for both vertical and horizontal fragmentation can be met. Using 

relational algebra, it can be expressed by using alternatively sequences of projection and 

selection operations: 

allowing 'Pk = true and R{ = Ri captures all other possibilities for such sequences. 

3.6 Allocation 

Once a fragmentation schema has been decided upon, each fragment must be assigned to 

one or more nodes in the distributed database management system. The allocation problem 

involves finding the "optimal" distribution of the fragments to the sites. The discussion of 

allocation is to find an allocation model that minimizes the total costs of processing and 

storage while trying to meet certain t ime restrictions [24]. The definition of a cost minimized 

allocation is as below: 

Definition 3.8. For a given set of fragments {Fi , ... , Fn} with different sizes s1, .. . , Sn, 

if the network has nodes N1, ... , Nki fragment allocation is to assign a node Nj to each 

fragment Fi such that the summary of all the transaction and storage costs from all the 



30 

sites can be kept to a minimum, where the transaction and storage costs are calculated 

according to a predefined cost model. 

The focus of this thesis is on horizontal fragmentation of DOODBs. We will not go into 

detail on the discussion of vertical fragmentation and allocation of fragments. 

3. 7 Related Work 

A lot of research has contributed to fragmentation and allocation in the area of distributed 

relational databases. This section will present some approaches for horizontal and vertical 

fragmentation. 

3. 7.1 Horizontal Fragmentation 

For horizontal fragmentation, Ceri and Pelagatti [6] introduce two types of fragmentation: 

primary and derived. Derived fragmentation, which is performed to facilitate the join 

between fragments, is determined in terms of primary fragmentation. 

• Primary horizontal fragmentation of a relation can be defined by determining a set 

of disjoint and complete selection predicates. Ceri and Pelagatti propose a procedure 

which produces a set of disjoint and complete selection predicates. This procedure 

can be summarized as follows: 

(i) Derive a set of simple predicates P = {pi, ... ,Pn} from application information. 

Simple predicates take the form of: 

Ai= value 

where Ai is an attribute of the relation schema. The simple predicates Pi E P 

must satisfy two properties. They must be complete and minimal in order to 

guarantee that elements in the same fragments share the "same properties" in 

terms of allocation. The definition of complete and minimal can be found in [6]. 



31 

(ii) Construct a set of minterm predicates from P by applying arbitrary conjunctions 

of all predicates Pt, where Pt is either Pi E P or its negation. Some of these 

conjunctions may be unsatisfiable. A set I of implications among the Pt can be 

used to determine (and remove) these unsatisfiable minterms. 

The authors point out that it is not possible to analyse all the transactions that use 

the database. Only the most important and critical transactions should be taken into 

account. It is widely accepted that the "20/80" rule should be applied as a guideline 

to choose user applications to determine simple predicates. It means that only 20% 

of user queries should be taken into account, because they usually account for 80% of 

the data access . In particular , no update transactions will be considered. It is also 

suggested that fragments that have similar properties should not be distinguished. 

Otherwise the execution of the algorithms for a complete and minimal set of predicates 

will become very expensive. 

• Derived fragmentation in [6] is performed by applying semijoin operations. Member 

relations are partitioned according to the fragmentation of their owners. By using 

relational algebra, derived fragmentation is expressed as R~ = R2 t>< R{ with R2 indi­

cating the member relations, R1 indicating owner relations that have been fragmented 

into a set of disjoint fragments { Ri , ... , Rl} with 1 :S j :S i. 

Oszu and Valduriez [24] follow the lines of Ceri, Pelagatti and Navathe [6 , 20] and develop 

horizontal partitioning algorithms. Their fragmentation algorithm is based on the following 

necessary information requirements: 

(i) Database information. The database information concerns the global conceptual 

schema. From the global conceptual schema, we can know how the database relations 

are connected to one another, especially with joins. 

(ii) Application information. This includes the description of user queries and fre­

quencies with which user applications access and update data. The quantitative and 

qualitative information acquired from application information can be summarized in 

the following four categories: 



32 

• Simple predicates for relation R = {A1 : Di, ... , An : Dn} can be defined in 

the form of 

with A as an attribute defined over domain Di , () E { =, <, /:-, :S, >, ~} and 

Value E Di. A set of all simple predicates defined on relation R is denoted by 

Pr= {p1 ,p2, ··· ,Pm}· 

• Minterm predicates are the conjunctions of simple predicates and their nega­

tions. The set of minterm predicates Mi= {mil, mi2, ... , miz} over a set Pri of 

simple predicates is defined by: 

Mi = { mij lmij = f\ P7d 
P;kEPr; 

where P7k = Pik or P7k = 'Pik· Note that all simple predicates in Pri appear 

(positively or negatively) in each minterm predicate. 

• Minterm selectivity presented with sel(mi) is the number of tuples of the 

relation that would be accessed by a user query specified according to a given 

minterm predicate mi. 

• Access frequency with which users access data. For user application qi, it is 

denoted with acc(qi)· For a minterm predicate mi it is represented as acc(mi)· 

The input of the algorithm for horizontal fragmentation is a relation R and a set of simple 

predicates Pr. The output of the algorithm is a set of fragments { R1, ... , Rn} of R. The 

objective of the algorithm is that Pr should be complete and minimal, which is defined as 

follows: 

• Completeness of simple predicates 

A set of simple predicates Pr is said to be complete if and only if there is an equal 

probability of access by every application to two tuples belonging to the same minterm 

fragment that is defined according to Pr. 

For example, if we assume there is a relation PROJECT ={PNumber: NAT, PName: 

STRING, Budget: NAT, Campus: STRING, Description: STRING, Begin: DATE, 



33 

End: DATE} , there are two applications defined on it, and there are only three 

different locat ions for Project. 

Find the budget of projects at each location. (a) 

Find projects with budget less than $200000. (b) 

According to applicat ion (a) Pr={Campus= 'Wel', Campus='P N', Campus='Auk '} 

is 11ot complete with respect to application (b) because application (b) will access 

two tuples in a fragment defined by predicate Pr with different probability if the 

values of the budget of one object is more than or equal to $200000 and that of 

the other object is less than $200000. A complete set of simple predicates should 

be P r={Campus='Wcl ', Campus='PN', Campus='Auk', Budget<200000, Budget ~ 

200000 }. 

• Minimality of simple predicates 

If a predicate influences how fragmentation is performed (e.g. J be partitioned into Ji 

and Jj), there should be at least, one application that accesses Ji and fj differently. In 

other words, the simple predicate should be relevant in determining a fragmentation. 

If all the predicates of a set, Pr are relevant, then Pr is minimal. 

If Pi E 714 and fragment fi is determined by mi, 'Pi E mj and fragment J1 is deter­

mined by mj, then Pi is relevant iff 

ace( mi) # ace( mj) 
card(fi) card(Jj) 

Where acc(mi) and acc(mj) denote the access frequencies of minterm predicate mi 

and mj, card(fi) and card(fj) denote t he cardinalities of fragment fi and Jj. 

For instance, a set of simple predicates Pr = {Campus='Wel', Campus='PN', Cam­

pus='Auk', Budget< 200000, Budget ~ 200000} is minimal in addition to being 

complete. However , if there is another predicate Pj :=PName='BigNet' in Pr , then 

Pr ={Campus= 'Wel', Campus= 'PN', Campus= 'Auk', Budget<200000, Budget ~ 

200000, PName='BigNet '} is not minimal because there is no application that ac­

cesses fragment Ji (PName is 'BigNet ') and Jj (PName is not 'BigNet') differently. 



34 

Ozsu and Valduriez [24] first present an iterative algorithm named COM_MIN to generate 

a complete and minimal set of predicates Pr' from a given set of simple predicates Pr. The 

algorithm checks each predicate Pi in the given set of simple predicates Pr to see if it can 

be used to partition the relation R into at least two parts which are accessed differently by 

at least one application. If Pi satisfies the fundamental rule of completeness and minimality 

then it should be included in Pr'. If Pi is nonrelevant then it should be removed from Pr'. 

But this algorithm is not practical because checking Pi can not be defined with machine 

readable language. Moreover , it does not consider the fragment combination possibility 

that some of the minterm fragments might be allocated to the same site. 

A algorithm named PHORIZONTAL is introduced to describe primary horizontal fragmen­

tation. It uses the algorithm COM_MIN and a set of implications I as inputs to produce 

a set of satisfiable miniterm predicates M . If a mintcrm predicate mi is contradictory to a 

implication rule in I , then it is removed from M. Minterm fragments are defined according 

to the set of satisfiable minterm predicates M. But the set I of implications is hard to 

define. 

For the derived horizontal fragmentation , semijoin operations are involved. Member re­

lations are fragmented according to the fragments of its owner relation. Details of the 

definition of member and owner relations can be found in [24]. They emphasize that care 

should be taken with the relations that have more than one link to the owner relations. Two 

criteria are suggested [24] . First, choose the fragmentation with better join characteristics. 

Second, choose the fragmentation used in more applications. 

In fact, the algorithm is not very practical, as it will always result in a subset Pr' of P r, the 

set of minterm predicates M' determined by Pr' and the corresponding set of fragments. 

Simple predicates are omitted from Pr if they do not contribute to the fragmentation , 

i.e. they only violate the minimality principle. This emerges to considering just the simple 

predicates AiOVi in the most important queries and to take all satisfiable minterm predicates. 

This obviously leads to fragments that are accessed different ly by at least two queries. The 

algorithm further does not give executable rules for eliminating the unsatisfiable minterm 

predicates. 



35 

The major problem, however, is that the number of fragments resulting from the algorithm 

is exponential in the size of Pr. In practice, it would be important to reduce this number 

significantly, which would mean to re-combine some of the fragments. In fact, this implies 

giving up the completeness principle and replacing it by optimization criteria based on a 

cost model. 

Several other researchers have worked on fragmentation in the relational data model. Na­

vathe et al. [21] define a schema for simultaneously applying the horizontal and vertical 

fragmentation algorithms on a relation to produce a grid . They use a technique similar 

to the vertical fragmentation presented in [20, 22] to produce horizontal fragments. The 

fragmentation schema generated by the algorithm is independent of the sequencing of the 

horizontal or vertical fragment algorithms. Tamhankar and Ram [33] introduce an inte­

grated methodology for fragmentation and allocation. They make an attempt to combine 

fragmentation, allocation and replication into a single step of distribution design and apply 

the combination to a practical problem. 

3.7.2 Vertical Fragmentation 

Vertical fragmentation is more complicated than horizontal fragmentation because of the 

total number of alternatives. If there are n simple predicates that are used to define horizon­

tal fragmentation , there are at most 2n possible fragments that can be defined. But in the 

case of vertical fragmentation, if a relation has m nonprimary key attributes, the possible 

fragments are given by the Bell number which is approximately B ( m) ~ mm. From the 

value of the possible vertical fragmentation, we find out it is impossible to get the optimal 

solutions to the vertical partitioning problem. We can only expect to find out a heuristic 

solution. 

There are several algorithms of vertical fragmentation that have been proposed in the lit ­

erature. Hoffer and Severance [7] measure the affinity between pairs of attributes and try 

to cluster attributes according to their pairwise affinity by using the bond energy algo­

rithm(BEA). 

Navathe et al.[20] extend the BEA approach and proposed a two-phase approach for vertical 



36 

partitioning. In the first step, they used the given input parameters in the form of an 

attribute usage matrix(AUM) to construct the attribute affinity matrix (AAM) on which 

clustering is performed. In the second step, estimated cost factors , which reflect the physical 

environment of fragment storage, were considered to further refine the partitioning schema. 

Cornell and Yu [11] apply the work of Navathe et al.[20] to physical design of relational 

databases. This approach uses specific physical factors such as the number of attributes, 

their length and selectivity, and cardinality of the relation. 

Navathe and Ra [22] construct a graph-based algorithm to solve the vertical partitioning 

problem where the heuristics used include an intuitive objective function which is not ex­

plicitly quantified. 

With the aim to overcome the complexity of attribute based algorithms, P.-C. Chu [8] 

proposes a transaction-oriented approach to vertical partitioning, in which no Attribute 

Utility Matrix but transaction information is used as the decision variable. 

The algorithm presented in Ozsu and Valduriez [24] takes AAF as input. The Bond Energy 

algori thm is employed to evaluate the togetherness of a pair of attributes. Shift operation 

is used to process the attribute clustering. The binary partitioning algorithm should be 

applied recursively when there is a large set of attributes. 

Muthuraj et al [19] propose a formal approach to address the problem of an n-array vert ical 

partitioning problem and derive a partition evaluator function which describes the affinity 

value for clusters of different sizes. This function can either be used for fragmentation 

progress or applied to evaluate the fragmentation schemata that are created and therefore 

to test and evaluate the different algorithms available. They argue that an attribute usage 

matrix instead of an attribute affini ty matrix (AAM) should be used in the process of 

fragmentation because AAM can only measure the closeness of a pair of attributes at one 

time and cannot measure the closeness of the entire cluster which may consist of more than 

two attributes. 

Both horizontal and vertical fragmentation problems are complex. Studying only one of 

them will be a hard task. This thesis will only concentrate on horizontal fragmentat ion and 

will not handle vertical fragmentation in detail. 



Chapter 4 

Object Oriented Databases 

Object-oriented databases have brought about a fundamental change in the way a data and 

the procedures that operate on the data are viewed. Whilst general agreement on the broad 

features to be supported by an object oriented database system is slowly being reached, as 

yet there is still no firm agreement on a formal definition of an object-oriented database 

system [12, 30, 32]. Additionally, there is still much debate on which underlying object 

oriented data model is appropriate for database systems. 

However , it is widely accepted that objects are abstract ions of real world entities. Objects 

are regarded as the basic unit of persistent data [30], and the object oriented databases 

are composed of independent objects. A unique identifier should be assigned to an object 

because t he existence of an object should be independent of its value [2, 30, 18]. The using 

of immutable object identifiers enable sharing, mutabili ty of values and easily representation 

of cyclic structures. 

Our research will apply the object oriented data model (OODM) which is presented in 

[30 , 31]. This model applies an abstract object identifier to capture the fact that an object 

in the real world always has an unique identity. At the same time, an object in the real 

world can have different aspects and should not only be coupled with a unique type. In 

contrast, objects, as well as references to other objects, should be associated with more 

than one type that can change during the object's lifetime. The section below will present 

some fundamental concepts of the object oriented data model. It will also depict concepts 

by giving an object oriented database schema as well as an instance of the database. 

37 



38 

4.1 Fundamentals of the OODM 

This section will review the object model proposed in Schewe & Thalheim [30] . In this 

model each object o consists of a unique identifier id, a set of (type-, value-) pairs (7i, 

vi), a set of (reference-, object-) pairs (refi, 01) and a set of methods methk. Values and 

objects are different in that values can be identified by themselves while objects can only 

be identified by applying an external identification mechanism. Types are used to structure 

values while classes are the groups of objects that have the same structure which uniformly 

combines aspects of object values and references. Subtyping is used to relate values with 

different types [31]. In this thesis, in order to simplify the problem of distribution design, 

the behavior( method) part will be omitted completely. The object oriented data model that 

we adapt to this project is just a simplified version of the data model introduced in [30, 31]. 

4.1.1 Type Definitions 

The type system presented in [30, 31] consists of some basic types, type constructors and 

subtyping relation. 

Definition 4.1. (i) The base types are either BOOL, NAT, INT, FLOAT, STRING, ID, 

or .l, where ID is an abstract identifier type without any non-trivial supertype and 

.l is the trivial type that is a supertype for every type. 

(ii) Let Np and NF denote parameter-names and function-names. Let a i E NF and 

a,ai E Np(i = 1, ... ,n). A type constructor is either a record constructor (a1 : 

a1 , ... , an : an), a finite set constructor {a} , a list constructor [a], a bag constructor 

(a) or a union constructor (a1 : ai) U · · · U (an : an)· 

(iii) A type t is called proper iff the number of its parameters is 0. If there is no occurrence 

of ID in t , t is called a value type. If t' is a proper type occurring in a type t , then 

there exists a corresponding occurrence relation o: t x t'--+ BOOL. 

New types can be defined by nesting using predefined base types, such as BOOL, NAT, 

STRING, etc, and predefined constructors for records, finite sets, lists, unions, etc. So we 



39 

can first define some types in the example below. 

Example 4.1. First, we define PERSONNAME by using both a set constructor{-} and 

record constructor ( ·): 

Type PERSONNAME 

= (FName: STRING, 

LName: STRING, 

Title: {STRING}) 

End PERSONNAME 

Then we define PERSON based on type PERSONNAME. 

Type PERSON 

= (PersonID: NAT, 

Name: PERSONNAME, 

Address: STRING, 

DOB: DATE) 

End PERSON 

We can also define the following types which will be used when we define a university 

database schema in the next subsection. 

Type PROJECT 

= (PNumber: NAT, 

Pname: STRING, 

Begin: DATE, 

End: DATE, 

Description: STRING 



40 

Budget: STRING) 

End PROJECT 

Type COURSE 

= (CNumber: NAT, 

Cname: STRING) 

End COURSE 

Type DEPARTMENT 

= (Dname: STRING, 

{(TelNumber: NAT, 

Campus: STRING)}) 

End DEPARTMENT 

Type ROOM 

= (Building: STRING 

NO: NAT 

Campus: STRING) 

End ROOM 

Type SEMESTER 

= (Year: NAT, 

Season: NAT) 

End SEMESTER 

Subtypes are also introduced in [30]. They are used to relate values in different types. 

D 

Definition 4.2. Let a 1 , . . . , an be parameter-names. A subtype relation::; on types is given 

by the following rules: 



41 

(i) Every type t is its own subtype and a subtype of ..l. 

(ii) NAT:SINT:SFLOAT. 

(iii) ( ... , ai-l : O'.i-1, ai: ai, ai+l : ai+1, ... ) < ( ... , ai-l : a~_ 1 , ai+l : a~+l> .. . ) whenever 

aj:Saj. 

{ai} < {aj} 

(iv) [ai] < [aj] iff O'.i :S O'.j· 

(a) < (aj) 

(v) {a} :S (a) and [a] :S (a) . 

(vi) · · ·U(ai-1: O'.i-1)U(aH1: ai+1)U · · · :S · · ·U(ai-1: a~_ 1 )U(ai: a~)U(aH1: a~+ 1 )U .. . . 

whenever ai :S aj for all j = 1, .. . , n. 

Example 4.2. We can define STUDENT and LECTURER as subtypes of PERSON de­

fined in the above example. 

Type STUDENT 

= (PersonID: NAT, 

StudentID: NAT) 

End STUDENT 

Type LECTURER 

= (PersonID: NAT, 

Name: PERSONNAME, 

Specialization: STRING) 

End LECTURER D 



42 

4.1.2 Class Definitions 

In the OODM presented in [30], classes are used to structure objects having the same 

structure and behavior, while types are used to structure values. Each object in a class 

has an identifier, a collection of values, references to other objects and methods. Identifiers 

can be represented by using the unique identifier type ID. An object, which has multiple 

aspects, can simultaneously belong to different classes. This property guarantees that each 

object of the abstract object model can be captured by the collection of possible classes. 

A class structure allows us to uniformly combine aspects of object values and references. 

Relationships between classes are represented by references and referential constraints on 

the object identifiers involved [30]. Because we are not looking at the dynamics, the model 

we apply in this thesis will not consider methods. 

Definition 4.3. (i) Lett be a value type with parameters a 1 , ... , an such that ID does 

not occur in t. If the parameters are replaced by pairs ri : Ci with pairwise differ­

ent reference names ri and class names Ci, then the resulting expression is called a 

structure expression. 

(ii) A class consists of a class name C, a structure expression expc, a set of class names 

D1, ... , Dm (called superclasses). The proper type derived from expc by replacing 

each reference ri : Ci with the type ID is called representation type Tc of the class C. 

4.1.3 Schema Definition 

The database schema is designed by a finite collection of type and class definitions [30]. Let 

us first review the definition of schema and the way to make it closed. Then we will look 

at an instance of a schema and some integrity constraints. 

Definition 4.4. A schema S is a finite set of classes that is closed in that all names 

appearing in a structure expression or as superclass must be names of classes defined in the 

schema. 



43 

Definition 4.5. An instance db of a structure schema S assigns to each class C E S a 

finite set db( C) of values of type (id : ID, value : Tc) such that the following conditions are 

satisfied: 

uniqueness of identifiers: For every class C we have 

Vid :: ID.Vv,w :: Tc.(id,v) E db(C) /\ (id,w) E db(C)::::} v = w. 

inclusion integrity: For a subclass C of C' we have 

Vid :: ID. id E dom(db(C))::::} id E dom(db(C')). 

Moreover, if Tc is subtype of Tb with subtype function f : Tc___, Tb, then we have 

Vid :: ID.Vv :: Tc .(id ,v) E db(C)::::} (id,f(v)) E db(C') 

referential integrity: For each reference from C to C' with corresponding occurrence 

relation Or we have 

Vid, id':: ID.Vv :: Tc .( id, v) E db(C) /\ or(v, id')::::} id' E dom(db(C')) 

where dom(db(C)) ={id: : I Div:: Tc.(id,v) E db(C)}. 

4.2 An Example of Object Oriented Database Schema 

In this section, we show an example of a database schema and its instance, the contents of 

the database at a given time point. Example 4.3 shows an object oriented database schema 

transformed from a Higher Order Entity Relationship Schema in [34]. Figure 4.1 is the 

Higher Order Entity Relationship Model (HERM) diagram of the schema. 

We use the types defined in Example 4.1 to build the structural part S of the OODM 

schema. Therefore the structure of a class can be based on a type definition defined above 

or on a nameless type definition. It may also involve an IsA relation to model objects in 

more than one class. We use o to indicate concatenation for record types. 



44 

ID 

FNamc LNamc 

Building No Rcqnircct Require• 

~ 

Bq;in ~ Dcscripcion 

End ~c.,.p.li 
Number PName 

Figure 4.1: HERM Diagram of University Database Schema [34] 



Example 4.3. We design a structural schema as below: 

Schema University 

Class PERSONC 

Structure PERSON 

End PERSONC 

Class SEMESTERC 

Structure SEMESTER 

End SEMESTERC 

Class RooMC 

Structure ROOM 

End RooMC 

Class DEPARTMENTC 

Structure DEPARTMENT 

End DEPARTMENTC 

Class COURSEC 

Struct ure CO URSE o 

(Requires: { r: CouRSEC}) 

End CouRSEC 

Class LECTURERC 

IsA PERSONC 

Structure LECTURER o 

(Department : D EPARTMENTC, 

Campus: STRING) 

End L ECTURERC 

Class P ROJECTC 

Structure PROJECT o 

(Primary Investigator : { P ERSONC U LECTURERC } ) 

45 



46 

End PROJECTC 

Class PAPERC 

Structure (Course: COURSEC , 

Semester: SEMESTERC, 

Campus: STRING, 

Lecturer: LECTURERC, 

{( Day: DATE, 

Hour: NAT, 

Room: RooMC)}) 

End PAPERC 

Class STUDENTC 

IsA PERSONC 

Structure STUDENT o 

(Supervisor: LECTURERC, 

Major: D EPARTMENTC, 

Minor: D EPARTMENTC, 

Enroll: {(PAPERC, 

Grade: STRING)}) 

End STUDENTC D 

After we define the structure of the schema, we are going to describe the instances of the 

above schema. The instance of a database schema is t he content of the database at a given 

time point. We need a type ID of object identifiers to uniquely and efficiently identify the 

objects and to model objects in different classes and references to other objects. We use db 

as a name of the instance of the database schema. 



47 

Example 4 .4 . An instance of the above university database schema is presented as follow­

ing: 

db(P ERSONC) = 

{(i101 , (PersonID : 1001 , (FName: John,LName: Dever,{Professor ,Dr} ), 

Address : 28 Victoria Av, DoB:16/ Jan/ 1953)) , 

(i102, (PersonID: 1002, (FName: Allan, LName: Barry, Ti t le: {Senior Lecturer , Dr} ), 

Address: 66 Albert St, DoB:23/ Feb/ 1958)), 

( i103, (PersonID : 2010, (FN ame: Shirley, Churchill , T it le: {Lecturer} ), 

Address: 531 Tramine Av. , DoB:lO/ Oct/1960)), 

(i104 , (PersonID : 3203 , (FName: Jerry, LName:Hubbard ,Title: {HoD, P rofessor, Dr} ), 

Address : 32 Ada St , DoB:02/ May/ 1945)), 

(i105, (PersonID : 2618, (FName: LName: James, LName: Hooks,Tit le: {Lecturer} ) , 

Address :l16 College St, DoB:28/ Jun/ 1960)), 

(i105, (PersonID : 4322, (FName: LName: Jill , Heslop, Tit le: { } ), 

Address: 22 Fegerson St, DoB:ll / Jul / 1985)), 

(i107 , (PersonID : 4198, (FName: LName: Frances,LName: Caban,Title: { } ), 

Address: 78 Cuba St,DoB:30/ Nov/ 1983)) , 

(i10s, (PersonID : 4077, (FName: LName: Lindsay,LName:Hamilton ,Title: { } ), 

Address: 29 Church St, DoB:06/ Dec/1982)), 

(i1og, (PersonID : 4198, (FName: LName: Jeff, LName: Perera,Title: { } ), 

Address: 99 Broadway Av, DoB:18/ Aug/1980)) , 

(i11o, (PersonID : 2396, (FName: Lindsay, LName: Kirton, Title: { } ), 

Address:195 King St, DoB:03/Sept/1975))} 



48 

db(SEMESTERC) = 

{(i201, (Year: 2000,Season: 01)), 

(i202, (Year: 2000, Season: 02)), 

(i203, (Year: 2001 , Season: 01)), 

(i204, (Year: 2001, Season: 02)), 

(i205, (Year: 2002, Season: 01)), 

( i2o6, (Year : 2002, Season : 02)), 

(i207, (Year: 2003, Season: 01))} 

db(RooMC) = 

{(i301 , (Building: SSLB, NO: 2, Campus: PN)), 

(i302, (Building: SST, NO: 1, Campus: WN)), 

(i303, (Building: Marsdon, NO : 1, Campus: PN)), 

(i304, (Building: AH, NO : 2, Campus: ALB)), 

(i305, (Building: BSC, NO: 203, Campus: ALB))} 

db(DEPARTMENTC) = 

{(i401, (Dname: Information Systems, {(TelNumber: 063566199, Campus:PN) , 

(TelNumber : 045763112, Campus:WN)} )), 

(i402 , (Dname: Accounting, {(TelNumber: 063563188, Campus:PN), 

(TelNumber: 098132699, Campus:ALB)})), 

(i403, (Dname: Marketing, {(TelNumber: 063564132, Campus:PN), 

(TelNumber: 045663188, Campus:WN)} ))} 

db( COURSEC) = 

{(i501, (CNumber: 110.001, CName:Accounting Principle, Requires: { } )), 

(i502 , (CNumber: 110.105, Taxation, Requires: { i501} )), 



(i503, (CNumber : 156.100, Principle of Marketing, Requires: {} )) , 

(i504, (CNumber: 157.221 , Information Systems Analysis, Requires: {i503 })) , 

(i505, (CNumber: 157.331 , Database Concepts, Requires: {i504 } ))} 

db(LECTU RERC ) = 

{ ( i1o1, (PersonID : 1001 , (FN ame: John, LN ame:Dever , Title: {Professor , Dr} ), 

Specialization: Commercial Law, Department:ii402, Campus:ALB)), 

(i102, (PersonID : 1002, (FName: Allan , LName:Barry, Ti t le: {Senior Lecturer, Dr} ), 

Specialization: Pricing, Department :ii403 , Campus:PN)), 

(i103, (PersonID : 2010, (FName: Shirley, LName:Churchill , Ti t le: {Lecturer} ), 

Specializat ion: Databases, Department:ii40l , Campus: WN)), 

49 

(i104, (PersonID : 1002, (FName: Jerry, LName:Hubbard , Title: {HoD Professor , Dr} ) , 

Specialization: Distributed Systems, Department :ii40l , Campus:P N)), 

(i105 , (PersonID : 1002, (FName: J ames , LName:Hooks, Tit le: {Lecturer} ), 

Specialization: Culture and Accounting, Department:ii402, Campus:WN)) } 

db(PROJECTC ) = 

{(i101 , (PNumber: pOOOl , PName: DIMO, Begin: Jun 2000, 

End: Dec 2002 , Descript ion: Mult ilevel transaction ... , 

Budget : 100000,Primarylnvestigator: {i103, i104} )), 

(i102, (PNumber: p0201 ,PName: Consumer Behavior , Begin: J an 2002, 

End: Dec 2002, Description: The patterns of ... , 

Budget: 3000,Primarylnvestigator : { i102})), 

(i703, (PNumber: p0301 ,PName: Small Business Accounting, Begin: Feb 2003 , 

End: Dec 2003, Description: Small businesses are ... , 

Budget: 5000,Primarylnvestigator : { iio1 , i uo}))} 



50 

db(PAPERC) = 

{(is01, (Course:: iso1, Semester:i201, Campus:ALB, Lecturer:i101, 

{(Day:Mon, Hour: lOam, Room:i304), 

(Day:Thur, Hour: 2pm, Room:i304)} )), 

(iso2, (Course: : iso3, Semester:i202, Campus:ALB, Lecturer:i102, 

{(Day:Wed, Hour: 9am, Room:i305), 

(Day:Fri, Hour: lpm, Room:i305)} )), 

(iso3, (Course: : iso2, Semester:i203, Campus:WN, Lecturer:i105, 

{(Day:Tues, Hour: lpm, Room:i302), 

(Day:Thur, Hour: 3pm, Room:i302)} )), 

(iso4, (Course: : iso4, Semester:i204, Campus:WN, Lecturer:i103, 

{(Day: Mon, Hour: 9am, Room:i302), 

(Day:Wed, Hour: lpm, Room:i302)}))} 

(isos, (Course: : iso4, Semester:i205, Campus:PN, Lecturer:i104, 

{(Day:Mon, Hour: 11am, Room:i301), 

(Day:Wed, Hour: 2pm, Room:i301)} )), 

(iso6 , (Course: : isos, Semester:i205, Campus:PN, Lecturer:i104, 

{(Day:Mon, Hour: llam, Room:i301), 

(Day:Wed, Hour: 2pm, Room:i303)} )), 

(is07, (Course: : isos, Semester:i207, Campus:PN, Lecturer:i104, 

{(Day:Tues, Hour: lOam, Room:i301), 

(Day:Thur, Hour: 3pm, Room:i303)} ))} 

db(STUDENTC) = 

{(i105, (PersonID:4322,StudentID: 99368,Supervisor: iio1, 

Major: i402, Minor: i4o3, {(Paper : iso1, Grade: A+), 



(Paper: iso2, Grade: B+)})) , 

(i101, (PersonID:4198, StudentID: 00695, Supervisor: i105, 

Major: i402, Minor: i1101, {(Paper : iso3 , Grade: B) , 

(Paper: iso4 , Grade: A)})) , 

(i1os, (PersonlD:4077, StudentlD: 01396, Supervisor: i105, 

Major: i401, Minor: NUL,{(Paper :isos, Grade: A-), 

(Paper: iso1, Grade:A)})) 

(i109, (PersonlD:4198, StudentlD: 02396, Supervisor: i105, 

fviajor: i401, lVIinor: NU L , {(Paper : isos, Grade: B+), 

(Paper: iso1, Grade: NU L)}) )} 

4.3 Queries 

51 

D 

For object oriented databases we must define some bas ic query algebra that can be used 

to define queries on database. To define such a query algebra we have to refer to elements 

of classes and their components. For this I will define path expressions. The discussion in 

the following subsection will cover the situations of path expressions defined on elements of 

base types, record types, set types, union types and references. 

4.3.1 Path Expressions 

In the relational data model, only the record type constructor is used and each attribute is 

defined on a base type. In the case of the object oriented data model, the whole underlying 

type system includes not only record type constructors but also some other bulk type 

constructors. A type system can be expressed as [28, p. 9]: 



52 

In fact, there could be further type constructors, e.g. for lists and multisets, but I will 

concentrate on this simplified type system here. Details of the above type system have been 

provided in Section 4.1. In object oriented databases, for a given class C with structure 

expression expc and representation type Tc, a database instance of a class C satisfies 

db(C) ~ {(i,v) Ii E dom(ID ),v E dom(Tc)} 

The complete definition of a database (or instance of a database schema) was given in 

Definition 4.5. We define the path expressions as below. 

D efinition 4 .6. Let C be a class with structure expression expc and representation type 

Tc . Path expressions for class C (or expc) may have the following formats: 

(i) ident of type ID, 

(ii) value of type Tc, 

(iii) if expc uses a record type, i.e. expc = (a1 : exp1 , . . . , an : expn) , then we get path 

expressions: 

• value.°'i of type n which is a representative type for expi and 1 ::::; i ::::; n, 

• value!ai of type To if ai is a reference to class D, i.e. ai : expi = ai : D , 

• value.ai.pathi where pathi is a path expression for expi, 

• value!ai.pathi where ai is a reference to class D , i.e. ai : expi = ai : D and pathi 

is a path expression for exp D. 

(iv) if expc use a union type, i.e. expc = (a1 : exp1) U · · · U (an: expn), then we get path 

expression: 

• value.ai of type n which is the representation type for expi, 

• value.ai.pathi where pathi is a path expression for eXPi· 

( v) if ex pc uses a set type, i.e. expc = {exp} , then we obtain path expression: 



53 

• value of type Tc= {exp}, 

• value.path where path is a path expression corresponding to exp. 

(vi) if expc uses only a reference , i.e. expc = r : D, then we obtain path expression: 

value!r.path where path is path expression for the class D. 

Remark: If r : D appears in expc, i. e. expc = ... , ai : r : D , ... , we get Ti = ID . Thus 

path expressions are: 

• value!ai.r of type Tv, 

• If TD has structure expression expD, eg. expD = (ail : expi1, ... , ain : eXPin)· Then 

this situation is treated as if r : Dis replaced by expv. Therefore the structure expres­

sion of class C can be represented with expc = ... , ai : expv, .... The representat ion 

type of class C is Tc = ... ai : TD .... Then we get path expression 

value!ai 

to refer to the value of type Tv, i.e. if expv = (ai 1 : expi 1 , ••• , ain : expin), We can 

use 

to refer to the value of the component in expD and handle it as if there were no 

references. 

If path is a path expression, we use Tpath to denote the representation type of the structure 

expression that is identified by the path. 

Example 4.5. We choose class LECTURERC from university database schema. Class 

LECTURERC IsA PERSONC Struct (PersonID: NAT, Name: (FName: STRING,LName: ....__...., '-v-' 
path 1 path2 

STRING, Title: {STRING}) , Specialization: STRING, Department: DEPARTMENTC, 
'-v-' "--v-"' 
path3 

Campus: STRING) 
path5 

There are some path expressions defined on class LECTURERC as following: 



54 

(i) ident 

(ii) value 

(iii) path1 =value.Name 

path2 = value.Name.FName 

path3 =value.Title 

path4 = value.Specialization 

(iv) path5 = value!Department 

path~ = value!Department.Name 

path5 refers to the identifier of the department being referenced and path~ refers to 

the name of the referenced department. 

D 

4.3.2 Queries 

From application information we can get a set of queries accessing databases. For the 

relational model, we can use relational algebra to model queries and to optimize queries. 

We must provide a model for querying object oriented databases. Basically, an algebra 

in the general mathematical sense is given by a set A and a set of operations op on A 

[29]. In the object oriented model, each query results in a set of pairs (id, v), where id is 

an identifier and v is a value of some proper type. The value v may contain identifiers, 

which must appear in the database, to which the query is applied. More generally, it would 

also be possible that the identifiers appear in the query result , but much more complicated 

queries are not handled here. We refer to such a set of pairs as a "class instance". A query 

Q on S consists of a structure expression expQ called answer schema (with all references 

pointing to classes in S) and an algebra expression q, i.e. a query Q is defined in the form 

Q = (expQ, q). Every operator in the query algebra accepts (one or two) class instances as 

arguments and returns another class instance as a result [25]. 



55 

We start by saying that every class name CE S can be considered as a query q = C. The 

answer schema is expc itself and database instance db is mapped via query q to db(Q) , 

which is a new class instance db(Q) extending db over Stoa new database, which contains 

a set of new objects with new identifiers created for each of them. Also, pairs (v : T) with 

value v of type T is considered as a query. 

Definition 4.7. Let S be a database schema, db be a database instance over S , id(db) be 

the set of all identifiers appearing in db , db( Q) be the resulting class instance of evaluating 

query algebra Q = (expQ, q). There are two basic query algebra operations: 

(i) q = C with C is a class name appeared in S with a query expressed as Q = (expc, q), 

result ing in db(Q) = { (idw,v) J idw :: ID ,idw ~ id(db).3id :: ID .(id,v) E db(C)}. 

(ii ) q = (v : T) with a type T and a value v of type T and Q = (T,q), resulting in 

db(Q) = {(idw, v) J idw :: ID f\ idw ~ id(db)} . 

Example 4.6. the university database instance db in Example 4.4 contains an instance 

db(RooMC) of class RooMC : 

db(RooMC) = { ( i 301 , (Building : SSLB, NO : 2, Campus : PN)), 

(i302, (Building: SST, NO: 1, Campus: WN)), 

(i303, (Building: Marsdon, NO: 1, Campus: PN)), 

(i304, (Building: AH, NO : 2, Campus: ALB)) , 

(i305, (Building: BSC, NO : 203 , Campus: ALB))} 

A query operation q =ROOMC for a query Q1 (eXPRooMC, RooMC) with a resulting 



56 

instance of Q as 

db( Qi) = {(i1001 , (Building: SSLB, NO: 2, Campus: PN)), 

(i1002, (Building: SST, NO: 1, Campus: WN)), 

(i1003, (Building: Marsdon, NO: 1, Campus: PN)), 

(i1004, (Building: AH, NO : 2, Campus: ALB)), 

(i1005, (Building: BSC, NO : 203, Campus: ALB))} 

Note the result of the query on db(C) is a new class that contains a set of objects with new 

identifiers which have not appeared in the database. But the values for all the attributes 

are the same. 

Another query Q2 =((Building: STRING, NO : NAT, Campus: STRING),(Building: SSLB, 

NO : 2, Campus: PN)) results: 

db(Q2) = {(igsoo1, (Building: SSLB, NO: 2, Campus: PN))} D 

We can define a selection operation with a query algebra q. To do this we need to use 

path expressions path for class C to define selection formulae. Path expressions have been 

defined in the previous subsection. 

Definition 4.8. Let C be a class, path be path expressions on class C, take either 

• two path expression path1, path2 of C of some type, 

• or a path expression path on class C and a value v of the type of path. 

Selection formulae c.p can be defined in either of the following forms: 

• c.p = path1 = path2, 

• or c.p =path = v. 



57 

Definition 4.9. (selection) 

Let S be a database schema, db be a database instance over S , id(db) be the set of all 

identifiers appearing in db. Take any query Q = (expQ, q) and a selection formula c.p for 

expQ we get: 

• a query algebra q' = O"cp(Q) for selection operation, 

• a query Q' = (expQ, q') with expQ' = expQ, 

• evaluating Q' on db results in a database instance: 

db(Q') = {(idw,v ) I idw :: ID /\ idw rt id(db).3id :: ID.(id ,v) E db(Q) /\ c.p(v) =true } 

Example 4. 7. There is a database instance db over the university database schema. With 

a query algebra q = PERSONC we have a query Q = (expPERsoNC , q) , then db is extended 

by adding a db( Q) within which all the objects' identifiers have not occurred before. 

Then we have a selection formula: c.p = value.Name.FName = 'John' . Using query operation 

O"cp(Q) we get a result as 

db(Q') = {(i95101 , (PersonID: 1001 , (FName: John ,LName: Dever ,{Professor,Dr} ), 

Address: 28 Victoria Av, DoB:16/ Jan/ 1953))} D 

Definition 4.10. (renaming operation) 

Let Q = (expQ, q) be a query, attr(Q) denote all the attribute names appearing in expQ 

with ai E attr(Q). A rename operation renames some of the attributes of a class. We have 

following expressions: 

• query algebra q' = Pai>--+bi, ... ,an>--+bn(Q), 

• new query Q' = (expQ, q'), 

• Evaluating query Q' on db we get: 

db(Q') = {(idw, v) I idw :: ID /\ idw rt id(db) .3id :: ID.( id, v) E db(Q)} 



58 

with bi as a new name for attribute ai· 

In order to define generalized projection, we need to use the definition of super type that is 

introduced in [26]. We use the form Te2 ::; Te1 to express that Te1 is a super type of type 

Te2 • This expression indicates a mapping: 

We can get the following definition for generalized projection. 

Definition 4.11. (generalized projection) 

Let Q = (expQ, q) be a query, expQ' be a new structure expression which is a super structure 

expression of expQ, i.e. TQ ::; TQ' for the representation types. A generalized projection is 

a mapping: 

results in a new query: Q' = (eXPQ', 1fQ1(Q)), 

with db(Q') = { (idw, v') I idw :: ID /\ idw rt id(db).3id :: I D.(id, v) E db(Q).v' = 7fg ( v)} . 

Definition 4.12. (join) 

Let Q1 = ( expQ 1 , q1), Q2 = ( expQ2 , q2) be two queries, exp be a common super structure 

expression with eXPQ; ::; exp (i = 1, 2) , then there exists: 

• a new structure for join operation exp1 f><lexp exp2, 

• and a new instance 

db( Q1 f><lexp Q2) = { ( idw, V) I idw :: ID/\ idw rt id(db ).3id :: ID.( id1, vi) E db( Qi). 

( id2, v2) E db( Q2).7r~~( vi) = 7r~~( v2) /\ 7rg~1><JQ2 ( v) = vi /\ 

7rg~rxiQ2 
( v) = v2} 

Definition 4.13. (set operations) 

Let Qi = (expQ, qi) , Q2 = (expQ, q2) be two given queries. 



• union operation on sets is expressed with structure expression: 

with a new query Qi U Q2 = (expQ, qi U q2 )· Evaluating q we get 

db(Qi UQ2) = {(idw ,v) I idw :: ID l\idw f/.id(db).3id:: ID. (idi,v) E db(Qi) 

V (id2,v) E db(Q2)} 

• intersection of two sets is expressed with structure expression: 

with a new query Qin Q2 = (expQ, qi n q2)· Evaluating q we get 

db( Qin Q2) = { (idw, v) I idw :: ID /\ idw ¢ id(db) .~id :: I D.(idi, v) E db( Qi ) 

A (i d2 ,v) E db(Q2)} 

• difference operation on sets is expressed with structure expression: 

with a new query Qi U Q2 = (expQ, qi - q2) · Evaluating q we get 

db( Qi - Q2) = {(idw, v) I idw :: ID /\ idw ¢ id(db). ~id :: I D. (idi, v) E db( Qi ) 

I\ (idi,v) ¢ db(Q2)} 

59 

With all the definitions discussed above we can define queries that access databases. In 

particular, we can define simple predicates for horizontal fragmentation in object oriented 

databases. 



Chapter 5 

Fragmentation Operations in 
Object Oriented Databases 

Distribution design involves making decisions on the fragmentation and placement of data 

across the sites of a computer network. The design process has two phases: fragmentation 

and allocation. Fragmentation of object oriented database systems is a complex problem 

because: 

• it involves set-valued and reference attributes, 

• inheritance (IsA) relationships are employed, 

• complex data types should be considered. 

In the object oriented environment, fragmenting a class may use three techniques: horizontal 

and vertical fragmentation as well as splitt ing techniques. It is also possible to combine all 

these techniques to perform mixed (hybrid) fragmentation of a class. 

Horizontal fragm entation exploits databases to be defined by sets. It partitions a class into 

a set of new classes (fragments), which will have exactly the same structure but different 

contents. Thus, a horizontal fragment of a class contains a subset of the whole class instance. 

On the other hand, vertical fragmentation exploits the tuple type constructor. Vertical 

fragmentation results in fragments with different new structures. There may be more general 

approaches to vertical fragmentation. There are some interesting problems to be solved 

when generalizing vertical fragmentation from the RDM to the OODM. 

61 



62 

The third operation that is available in the object oriented database environment is splitting 

[28]. The splitting operation will split classes and introduce new references. The results 

of the splitting operation is to replace a class with two new ones without changing the 

information. 

In the sections below, the above three techniques will be reviewed and defined. Some 

examples will be given to explain each of them. 

5.1 Split Fragmentation 

Split fragmentation is first introduced in [31] as a database design primitive. This operation 

results in one class being replaced with two classes, one referencing the other. 

Definition 5.1. For a given class C E S with structure expression expc, if a structure 

expression exp occurs within the structure expc, then split fragmentation results in a new 

class C' to be added to the schema S such that: 

(i) expc' = exp. 

(ii) exp in expc to be replaced by a new reference r' : C'. 

Example 5.1. In the university schema S, there is a class: 

Class PAPERC Structure (Course: COURSEC,Semester: SEMESTERC, Campus: STRING, 

Lecturer: LECTURERC , {(Day: DATE, Hour: NAT,Room: RooMC )} ) 

From the above schema we note that class PAPERC contains the structure expression 'Cam­

pus: STRING'. That means exp = STRING occurs within the structure eXPPAPER· By 

adding a new class SITEC in the schema S with expsITE = STRING, the structure expres­

sion exp= STRING can be replaced by SITEC. 

Therefore schema S should be redefined as following: Class PAPERC Structure (Course: 

COURSEC,Semester: SEMESTERC, Campus: SITEC, Lecturer: LECTURERC, {(Day: DATE, 

Hour: NAT,Room: RooMC )} ) 



63 

Class SITEC Struct STRING. 

Accordingly, the database instances of class PAPERC presented in example 4.4 will be 

changed to: 

db(PA PERC) = 

{ ( i1so1, ( Coursc:iso1, Semester :i201, Campus:ig03 , Lecture r:i101, 

{(Day:Mon, Hour: lOam, Room:i304), (Day:Thur, Hour: 2pm,Room:i304 )})), 

(i1so2, (Course: : iso3, Scmcstcr:i202, Campus: igo3, Lecturer:i102, 

{(Day:Wed, Hour: 9am, Room:i305), (Day:Fri, Hour: l pm,Room:i305)})), 

(i1so3, (Course: : iso2, Semester:i203, Campus:i902, Lccturcr: i10s, 

{(Day:Tues, Hour: lpm, Room:i302 ), (Day:Thur, Hour: 3pm,Room:·i302)} )), 

(i1so4, (Course: : i5o4, Semester: i204, Campus:i902, Lecturcr:i103, 

{(Day:Mon, Hour: 9am, Room:i302),(Day:Wcd, Hour:lpm,Room :i302)})) } 

('i1so5, (Course:: i5o4, Semester:i205, Campus :igo1, Lecturer:i104, 

{(Day:Mon , Hour: llam, Room:i301), (Day:Wcd, Hour: 2pm,Room:i301) })), 

(i1so6, (Course:: i5o5, Semester:i205, Campus:igo1, Lecturer: i104, 

{(Day:Mon, Hour: llam, Room:i301), (Day:Wed, Hour: 2pm,Room:i303)})), 

(i1s01 , (Course: : isos, Semester: i201, Campus:ioo1, Lecturer:i 104, 

{(Day:Tues, Hour:l0am,Room:i301 ), (Day:Thur, Hour: 3pm,Room:i303)} ))} 

db(S rTE) = 

{ ( igo1, PN), ( igo2, WN) , ( igo3, ALB)} 

0 



64 

5. 2 Horizontal Fragmentation 

5.2.1 Horizontal Fragmentation on Class Level 

Schewe [28] makes a first effort to generate horizontal fragmentation techniques based on 

the object oriented database model introduced in [30] . 

Definition 5.2. Let C be some classes, 'Pi be a Boolean valued function, db(C) be an 

instance of class C. Horizontal fragmentation of class C replaces C by new classes C1 , ... , Cn 

such that: 

(i) expc; = expc 

(ii) each instance db(C) of class C can be split into pairwise disjoint database instances 

db(C1), ... , db(Cn) over {C1, .. . , Cn} such that: 

n 

db( C) = LJ db( Ci) with disjoint sets db( Ci) 
i = l 

(iii) if there is a class D referencing C, i.e. r : C occurs in expv, the references have to be 

replaced as well, i.e. r : C be replaced by (a1 : r1 : C1), . .. , (an : rn : Cn) with new 

pairwise distinct reference names r1, .. . , rn 

By using the algebra introduced in section 4.3, the horizontal fragmentation on class level 

can be expressed as: 

db(Ci) = a'P,(db(C)), 1 s; is; n, (5.1) 

where 'Pi is the selection formula used to obtain fragment Ci . In Chapter 6, we will dis­

cuss 'normal predicates' for horizontal fragmentation. These will generalize the mintcrm 

predicates used for the relational data model as discussed in Chapter 3. 

Example 5.2. Again we take the university schema and horizontal fragment class LEC­

TURERC by using 

'P1 =Campus= 'PN' c.p1 =Campus= 'WN' c.p1 =Campus= 'ALB' 



65 

Then class LECTURERC will be partitioned into three new classes with the following struc­

tures: 

Class LECTURERC1 IsA PERSONC Structure (PersonID: NAT, Name: PERSONNAME, 

Specialization: STRING, Department: DEPARTMENTC, Campus: STRING) 

Class LECTURERC2 IsA PERSONC Structure (PersonID: NAT, Name: PERSONNAME, 

Specialization: STRING, Department: DEPARTMENTC, Campus: STRING) 

Class LECTURERC3 IsA PERSONC Structure (PersonID: NAT, Name: PERSONNAME, 

Specialization: STRING, Department: DEPARTMENTC, Campus: STRING) 

Class PAPERC Structure (Lecturer: (h1 :LECTURERC1 U h2:LECTURERC2 U h3:LECTURERC3), 

Semester: SEMESTERC, Campus: STRING, Course: CouRsEC, {(Room: RooMC , 

Hour: NAT, Day: DATE)}) 

The database instances of class PAPERC and class LECTURERC from example 4.4 are then 

fragmented into: 

db(LECTURERC1) = 

(i2102, (PersonID:l002, (FName: Allan ,LName:Barry, Title: {Senior Lecturer , Dr}) , 

Specialization: Pricing,Department:ii403, Campus:PN)) , 

( i2104, (PersonID:1002, (FName: Jerry,LName:Hubbard, Title: {HoD Professor, Dr}) , 

Specialization: Distributed Systems,Department:ii40l, Campus:PN)) , 

( i21os, (PersonID: 1002, (FN ame: J ames,LN ame:Hooks, Title: {Lecturer}), 

Specialization: Culture and Accounting, Department:ii402, Campus:PN))} 

db(LECTURERC2) = 

(i2103, (PersonID:2010, (FName: Shirley,LName:Churchill, Title: {Lecturer}), 

Specialization: Databases,Department:ii40l, Campus:WN)) 

db(LECTURERC3) = 

{(i2101, (PersonID:lOOl, (FName: John, LName:Dever, Title: {Professor, Dr}) , 



66 

Specialization: Commercial Law,Department:ii402, Campus:ALB)) 

db(P APERC) = 

{(isoi(Course:i5oi, Semester:i20i, Campus:ALB, Lecturer: h3 : i101, 

{(Day: Mon, Hour: lOam, Room:i304), (Day:Thur, Hour: 2pm,Room:i304)})), 

(iso2(Course:: i5o3, Semester:i202 , Campus: ALB , Lecturer: hi: i102, 

{(Day:Wed, Hour: 9am, Room:i305), (Day:Fri, Hour: lpm,Room:i305)})), 

(iso3(Course:: i502, Semester:i203 , Campus:WN, Lecturer: hi : iio5, 

{(Day:Tues, Hour: lpm, Room:i302), (Day:Thur, Hour: 3pm,Room:i302)})), 

(iso4(Course:: i5o4, Semester:i204, Campus:WN, Lecturer: h2 : i103, 

{(Day:Mon, Hour: 9am, Room:i302), (Day:Wed, Hour:lpm,Room:i302)})) 

(iso5(Course: : i5o4, Semester:i205, Campus:PN, Lecturer: hi : i104, 

{(Day:Mon, Hour: 11am, Room:i301) , (Day:Wed, Hour: 2pm,Room:i301 )})) , 

(iso5(Course: : i5o5, Semester:i205 , Campus:PN, Lecturer: hi : i104, 

{(Day:Mon, Hour: 11am, Room:i3oi) , (Day:Wed, Hour: 2pm,Room:i303)})) , 

(iso1(Course: : i5o5, Semester:i207, Campus:PN, Lecturer: hi : i104, 

{ (Day:Tues, Hour: 10am,Room:i3oi), (Day:Thur, Hour: 3pm,Room:i303)}))} 

5.2.2 Horizontal Fragmentation on Type Level 

D 

Because the chosen underlying type system allows arbitrary nesting of type constructors, 

the set type constructor may appear within a structure expression, say expc. 

Definition 5.3. For a given class C with structure expression expc, if a structure expression 

{exp} appears in expc, horizontal fragmentation on type level can be performed with the 

following steps: 



67 

(i) apply the splitting operation which results in exp in Tc being changed tor' : C' with 

new reference namer' and new class name C' and Tei = exp. 

(ii) apply horizontal fragmentation to C' by using selection operation: 

n 

db(C') = LJ CTcp;(db(C')) with disjoint sets CTcp;(db(C' )) 
i=l 

This should lead to n new classes C1, ... , Cn all with Tei = exp. Since in this case 

there is exactly one reference to C' we would replace {exp } in Tc by { ( £ 1 : r1 : 

Ci) U ... U (£n : rn : Cn)} or equivalently by (£1 : {r1 : Ci} , ... , t'n : {r11 : C11 } ) . 

(iii ) undo t he splitting, which has the same effect as if {exp} in Tc would just have been 

replaced by (£1 : {exp} , ... ,t'n: {exp}). 

Example 5.3. In the university database schema there is a Class COURSEC with structure: 

Class COURSEC 

Structure CO URSE o 

(Requires: { r: COURSEC}) 

End COURSEC 

There is a structure expression {r: CouRSEC} that occurs in expcouRSE· We replace {r 

: COURSEC} with C' together with new reference namer' , and Tei = r: COURSEC. Then 

we horizontally fragment COURSEC which results inn new classes C1, ... , Cn with Tc; = r: 

CoURSEC. {r: COURSEC} will be replaced by (£1 : {r1 : Ci} , ... , t'n : {rn : Cn} ). Finally, 

we undo splitting. {r: CoURSEC} will be replaced by (£1 : {r : CoURSEC} , ... , t'n : {r : 

COURSEC}. The result should be: 

Class COURSEC 

Structure COURSEo 

(Requires: (£1: {r: COURSEC})U, ... , U(t'n: {r: COURSEC})) 

End COURSEC D 



68 

It is noticed that fragmentation on type level does not create new classes. Thus, it is more a 

restructuring than a fragmentation operation. However, type level horizontal fragmentation 

may enable a subsequent vertical fragmentation. 

5.3 Vertical Fragmentation for Object Oriented 

Databases 

5.3.1 Vertical Fragmentation on Class Level 

Let us first review the properties of value-identifiability for a class offered in [28]. 

Definition 5.4. Value-identifiability for a class C means that for each database db and 

each ( i, v) E db( C) there are must be a query that would result in v and nothing else. 

Weak value-identifiability would allow to reach (i, v) by following a sequence of references 

and subclass links starting from a value-identiable class. 

Schewe [28] makes some generalization from the relational datamodel to the OODM. The 

definition of vertical fragmentation on the class level can be summarized with the following 

definition. 

Definition 5.5. Let C be some class in a database schema S. Assume that the outermost 

constructor in the structure expression expc was the record type constructor, say expc = 

(a1 : exp1, ... ,an : expn)· db(C) indicates a instance of class C. Vertical fragmentation on 

class C replaces C by a set of new classes C1, ... , Ck with expci = ( ai : expi1 , ••• , ah; : expinJ 

such that: 

(i) the attributes will be distributed 

k 

{a1, ... ,an}= LJ {ai, ... ,a~J 
i=l 



69 

(ii) db( C) will be split into database instances db( Ci) such that 

where by using the algebra defined in section 4.3 db(Ci) = 7rX;(db(C)) with Xi = 

{ ai, ... , a~J, t1 , .. .,k = (axj : txi , ... , axi : txi ) with (axj, ... , ax! ) = (X1 U ... UXi-1)nXi 
' ' ' 

and tx is the representation type for the structure expression expx. 

(iii) if there are references to the class C, i.e. r : C in some expD, r : C in each expD will 

be replaced by a new structure expression with an outermost record constructor and 

(iv) to preserve value-identifiability, there must be at least one of the new classes Ci, 

which is value-identifiable, the others can be just weakly value-identifiable as the new 

classes will use all the same object identifiers, i.e. ( i, v1) E db( C1), ... , ( i, vk) E db( Ck). 

Then, r : C can be simply replaced by r : Ci where Ci must be a value-identifiable 

superclass for all the other new classes. According to the definition above, the other 

classes would be weakly value-identifiable. 

Example 5.4. We apply this technique to class COURSEC 111 the university database 

schema. 

Class COURSEC Structure COURSE o (Requires: {r: COURSEC}) 

Will be replaced by: 

Class CouRsEC Structure COURSE 

Class COURSE_PREREQUISC lsA COURSEC Structure (Requires: {r: COURSEC}) 

The database instance will be accordingly vertically fragmented into the following two 



70 

fragments: 

db(COURSEC) ={(i3501(CNumber: 110.001,CName:Accounting Principle)) 

(i3502(CNumber: 110.105, CName:Taxation)), 

(i3503(CNumber: 156.100, CName:Principle of Marketing)), 

(i3504(CNumber: 157.221, CName:Information Systems Analysis)), 

(i3505(CNumber: 157.331, CName:Database Concepts))} 

db(COURSE_PREREQUISC) ={(i3501Requires: { } ), 

( i3502 , Requires: { i3501}), 

(i3503 , Requires: { } ), 

( i3504, Requires: { i3503 } ) , 

( i3505, Requires: { i3504 } ) } 

D 

Note that the assumption that expc involves the record constructor as outermost type 

constructor is a restriction that may not be needed in general. However, without this 

assumption reconstruction may become very difficult. Therefore, I need not investigate this 

possibility of being more general here. 

5.3.2 Vertical Fragmentation on Type Level 

Vertical fragmentation can also be performed on type level if a tuple constructor occurs 

inside the nested structure of a class. The original database could be reconstructible by 

using a generalized join operation [26]. 

Definition 5.6. For a given class C with structure expression expc, if a tuple type con­

structor (a 1 : exp1, ... , an : expn) is used inside expc, vertical fragmentation on type level is 

performed with the following steps [28]: 



71 

(i) introduce a new class C' with expc' = (a1 : exp1, ... ,an : expn), 

(ii) replace (a 1 : exp1, .. ., an : expn) in expc by a new reference r' : C', 

(iii) vertically fragment the new class C' into C1 , .. ., Ck and replace r' : C' in expc by a 

new structure expression (b1 : ri : C1, .. ., bk : rk : Ck), 

(iv) undo the splitting, i.e. replace (a1 : exp1 , .. ., an: expn) by the new structure expression 

( b1 : exp~, .. ., bk : expU, where exp~ is the structure expression of Ci that has the form 

( a
1
.; : exp

1
-i , .. ., a

1
·; : exp

1
·; ) . 

1 1 m.i mi 

Same as horizontal fragmentation on type level, vertical fragmentation on type level is also 

merely restructuring in preparation for subsequent fragmentation steps. Therefore, it is not 

necessary to further discuss fragmentation on type level here. 

5.4 Fragmentation Strategies 

The fragmentation of object oriented databases can contain the following rules: 

(i) perform splitting first as the result can be used to allow subsequent horizontal and 

vertical fragmentation of classes; 

(ii) then apply horizontal and vertical fragmentation operation on classes; 

(iii) adapt other classes which reference the classes that have been fragmented; 

Though I do not discuss methods, a fourth step would be to adapt the methods and queries 

that access the database. 

We should adapt the correctness rules of fragmentation in distributed relational databases 

to our object oriented environment to check whether the techniques proposed are correct. 

They are: 

(i) Completeness requires that no information is lost. 



72 

(ii) Disjointness requires that no information will be duplicated. 

(iii) Reconstruction requires that there is a unique way to reconstruct a non-fragmented 

database from its fragments. 

The input to the design process is a global conceptual schema and access pattern information 

while the output of the process is a set of local conceptual schema [24]. By analyzing 

potential user requirements for both process and data, the input information can then be 

acquired. 

5.5 Related Work 

Some fragmentation techniques for distributed object oriented database systems have been 

found in the literature. For horizontal fragmentation, Ezeife and Barker [13] review a 

taxonomy of fragmentation problems in a distributed object base. They contribute a set of 

algorithms for horizontally fragmenting the four realizable class models on the taxonomy. 

These four class models include: simple attributes and simple methods, simple attributes 

and complex methods, complex attributes and simple methods, and complex attributes and 

complex methods. After some assumptions and definitions have been made, algorithms are 

presented. For the first model, a class is fragmented by applying an algorithm that has four 

steps. First they define the link graph of classes. Their second and third steps define the 

primary and derived horizontal fragmentation. Finally, the primary and derived fragments 

are combined according to two affinity rules. 

Bellatreche, Kamalakar and Simonet [5] propose two horizontal fragmentation algorithms: 

the primary algorithm and the derived algorithm. For primary fragmentation, they study 

the role of queries and constructed a predicate affinity matrix with which frequencies of the 

queries was taken into account . The algorithm in Navathe & Karlapalem [21] is applied to 

form the predicate clusters in which the predicates have high affinity to one another. The 

set of predicates is optimized by using predicate implication. If there are predicates defined 

on some attributes or methods on which there are no predicates in a subset then it will be 

included in that subset to further modify the subset of predicates. Fragmentation will be 



73 

defined on each of the final modified predicate subsets. At last, a fragment will be defined 

by the negation of the disjunction of all predicates previously defined. A derived algorithm 

is defined with component predicates defined on a path. The advantage of this approach is 

that query frequencies have been considered when partitioning class and therefore decrease 

the number of fragments. But it creates overlap fragments that need an extra procedure to 

make them disjoint. 



Chapter 6 

A Method for Horizontal 
Fragmentation in Object Oriented 
Databases 

The design of distributed object oriented databases (DOODBs) in principle follows the 

same procedure as for distribution design of relational databases . I will concentrate only 

on horizontal fragmentation here. According to this procedure reviewed in Section 3.6.1, 

the first step is to extract simple predicates from application information. The second step 

is the construction of minterm predicates and primary horizontal fragments according to 

the minterm predicates. The sections below will first define the format of simple predicates 

for object oriented databases. Then normal predicates will be introduced, which generalize 

the minterm predicates we used for the relational data model (RDM ). Finally a general 

fragmentation process based on a cost model will be briefly defined. 

6.1 Simple P redicates 

Recall from Section 3.6.l that the first step in the design of fragmentation is acquiring 

application information to determine a set of simple predicates. The simple predicates for 

relational data model take the form: 

with() E {=,f:.,<,:::;,>,2'.:} and Ai is a attribute of a relation schema R = {A1 , ... ,An} 

and vi E dom(Ai)· T his format of simple predicates can only be used for the special case 

75 



76 

when a class is defined only on a record type constructor and each attribute is defined only 

on a base type. For the object oriented data model simple predicates may be defined on 

identifiers as well as on values. According to Schewe & Thalheim [30] values can be grouped 

into types. The type system is a collection of types and can be defined by base types and 

constructors. The expression of simple predicates on values should be extended to suit 

various type constructors. 

Simple predicates in the object oriented data model (OODM) can take a similar format to 

that in the RDM except that values can be complex, and the comparison operator e can be 

used to compare sets. To define simple predicates we need also the path expressions which 

have been defined in Section 4.3.l. 

Definition 6.1. Let C be a class. Simple predicates for class C have the form: 

withe E { = , f-, C, ~' =:> , 2, ct,</:., "j>, fJ_, 3, 75, E , ~}and pathk is a path expression for class C 

and vi is a value of the type of the path, i.e. Vi : Tpathk. 

The type of value Vi varies according to the type of path. Below are some situations that 

we might deal with: 

(i) For a given class with structure expression expc ={exp}, a simple predicate has the 

form 

value e v with v: Tc , BE { =, f-, C, ~' =>, 2, ct,</:.,"/> , fJ_} 

or 

value B' v' where v' : Tc' with expc' = exp and B' E {3, 75} 

(ii) If r' : D appears in expc, i.e. expc = .. . , ai : r : D , ... , where D has structure ex-

pression expD, eg. expD = (ail : expi1, ... , ain: expin), then the structure expression 

of class C can be represented with expc = . .. , ai : expD, ... . The representation type 

of class C is Tc = ... ai : TD .... Then a simple predicate is in the form of 

path e Vi where Vi : TD and e E { = , i-, <, :S , >, ~} 



77 

(iii) If the representative type Tpath of a path with expression exppath is a base type bi, we 

could use simple predicates path e Vi and Vi E dom(bi)· 

(iv) For a given class C with structure expression expc = (a1 : exp1, ... , an : expn), the 

representative type is Tc= (a1 : T1, ... , an : Tn)· This case is analogue to a relational 

schema with a set of attributes {ai, ... ,an}· 

( v) If in the class structure expression expc there is only a record type constructor without 

references involved and nesting is not deeper than 2, then simple predicates in the 

above definition can be simplified as: 

where Vij E dom(bij), BE { =, -::j., <, ::::_;, >, 2'.}. 

Example 6.1. Choose class LECTURERC from the university database schema. Class 

LECTURERC IsA PERSONC Struct (PersonID: NAT, Name: (FName: STRING,LName: 
'-.,,--' '-v-" 

'P l 'P2 

STRING, Title: {STRING}), Specialization: STRING, Department: DEPARTMENTC, 
'-...-' '-...,-' ~ 

'P3 

Campus: STRING) 

In example 4.5, we defined some path expressions on class LECTURERC. Using these path 

expressions some simple predicates on class LECTURERC can be defined as following : 

(i) cp = ident = i101 

(ii) cp' =value= (PersonID : 1001, (FName: John, LName:Dever, Title: {Professor, Dr}) 

Specialization: Pricing, Department: i 4o3 , Campus: PN) 

(iii) <p1 =value.Name = (FName: John, LName: Dever, Title: {Professor, Dr}) 

<p2 = value.Name.FName = 'John' 

cp3 =value.Title~ {Professor, Dr} 

cp4 = value.Specialization = 'Pricing' 

(iv) cp5 = value!Department = i4o3 

cp~ = value!Department.Name = 'Marketing' 



78 

D 

Example 6.2. Choose class SEMESTERC from the university database schema where struc­

ture expression of SEMESTERC is expc = {(Year: NAT, Season: NAT)}, there are some 

exp 

simple predicates defined on it: 

value = {(Year : 2000, Season : 02) , (Year : 2000, Season : 12) , (Year : 2002, Season : 1)} 

or 

value<:;;; {(Year : 2000, Season: 12),(Year : 2000, Season : 12)} 

or 

value 3 (Year : 2000, Season : 12) 

or 

value 71 (Year : 2000, Season : 12) 

6.2 Normal Predicates 

The minterm predicate used in [24] is a conjunction that is in the form of 

M = Pi /\ .. · /\ P~ 

D 

where each Pi is either Pi or 'Pi, {p1, ... ,pn} <:;;; {Ai()vi I Ai E attr(R),() E {= , # ,<,:S 

, >, 2:} and Aevi is a simple predicate defined on attribute Ai. Note this definition does 

not comprise all possible selection formulae. For these we have to request that <p is a 

disjunction (possibly infinite) of terms (A1 = v1 /\···/\Am = vm) with R = {A1, ... , Am} 

and Vi E dom(Ai)· The obvious generalization for the OODMSs is to choose a set of simple 

predicates for a class C instead of {p1 , . .. , Pn}. Minterm predicates are only meaningful if 

they are satisfiable . Therefore, we introduce a new term of normal predicates on a class 

C as satisfiable minterm predicates. In this section we will define normal predicates for 

the object oriented data model (OODM) by adapting minterm predicates in the relational 

model. 



79 

Definition 6.2. Let <I> = { <p1, ... , <f?m} denote a set of simple predicates on a class C. A 

set of normal predicates N = {N1 , ... , Nn} on class C is the set of all satisfiable predicates 

of the form: 

where rp; is either <f?i or -.<fi· 

Same as for the RDM the normal predicates do not exhaust all possible selection formulae 

on a class C. However , as the OODM allows cyclic references to be used on a schema, 

there are infinitely many such selection formulae. Even more, there are path expressions 

of arbitrary length, so we have no chance to capture the complete variety of selection. On 

the other hand, we want to define only finitely many fragments. So we do not lose much 

by restricting ourself to normal predicates. 

Example 6.3. If there is a class CAMPUSSITEC with expression expc= STRING. A normal 

predicate can be defined as: 

N =value= 'ALB' /\ -.value = 'WN' 
"-..-' 

'Pl 'P2 

D 

Example 6.4. There is a class CARC with expression expc =(Brand: STRING, Age : 

NAT) . A normal predicate which is a conjunction of simple predicates is defined as : 

N = value.Brand = 'Ford ' /\value.Age :S: 9 /\value.Age > 6 

where rp1 = value.Brand = 'Ford', <p2 = value .Age :S: 9 and rp3 = value.Age > 6 are simple 

predicates for ai derived from expression expi. D 

Example 6.5. Choose the schema of class PERSONC from our university schema, expc= 

(PersonID: NAT, Name:(FName: STRING, LName: STRING, Title: {STRING}) , Ad­

dress: STRING, DOB: DATE) 

A normal predicate on eXPTitle = STRING is defined as: 

N =value.Name.Title~ {Professor, Dr} /\ value.Name.Title f:. 0 

'Pl <p2 



80 

D 

Example 6.6. Choose the following schema from our university schema: 

class LECTURERC structure (PersonID: NAT, Name:(FName: STRING, LName: STRING, 

Titles: {STRING}), Specilization: STRING, Department: DEPARTMENTC, Campus: STRING) 

Replace DEPARTMENTC with eXPDEPARTMENTC = (Dname : STRING, Site : {(Campus : 

STRING, Dnumber: NAT)}, we get the following structure expression: 

class LECTURERC structure (PersonID: NAT, Name:(FName: STRING, LName: STRING, 

Titles: {STRING}), Specilization: STRING, Department: (Dname: STRING, Site: {(Campus: 

STRING, Dnumber: NAT)}), Campus: STRING) 

A normal predicate is defined as: 

N = value!Department.Dname = 'IS ' /\value.Campus = 'PN' 

D 

6.3 The Heuristic Fragmentation Process 

The process of horizontal fragmentation for a class C in general includes the following steps: 

(i) Determine a set of simple predicates <I> for C from queries that are most important 

and executed most frequently. 

(ii) Partition class C into fragments according to the set of normal predicates N that are 

determined by the set <I> of simple predicates. The fragments obtained in this way 

will be disjoint and the original database can be reconstructed. 

(iii) Merge fragments again by using union, if the merging reduces the costs. 

(iv) In general, for each possible fragmentation that is defined by the union of these base 

fragments, there is a cost. We should choose the fragmentation with minimal costs. 

However, choosing a cost minimal fragmentation is a very complex optimization prob­

lem, which we cannot solve in general. In fact, we would have to consider all partitions 

of N for this , which is intractable. Therefore, we will explore a heuristic solution. 



81 

There are many factors that affect distribution design. Distribution design decisions are 

influenced by the logical organisation of the database, the location of the application re­

quests, the access characteristics of the applications to the database, and the properties 

of the computer systems at each site. Information requirements for distribution design 

can be summarized in four categories [24]: database information, application information, 

communication network information and computer system information. 

Database information such as global conceptual schema is needed at this stage. The size 

of each class instance can then be calculated. From the database schema, we can also know 

the relationship between classes, i.e. which class use other classes as references. 

Application information, which is the description of user queries, updates and data access 

frequencies, is also needed at this stage. From application information, both quantitative 

and qualitative information that is needed in horizontal fragmentation can be acquired. 

The fundamental qualitative information is: 

• the simple predicates used in user queries [24]. According to the widely accepted 

"80/20 rule" [24, 6], in most practical situations, only the most active 203 user queries 

should be analysed because they usually account for 803 of the total data accesses. 

• normal predicates can then be constructed with the set of simple predicates defined 

on classes. The formats of normal predicates have been defined in the above section. 

Quantitative information about user applications, in the case of OODM includes: 

• normal selectivity, which is the number of objects of a class that will be selected 

by a user query according to a given normal predicate. 

• access frequency , which is the frequency with which user applications access data. 

Communication network information, gives the communication cost factor. It also 

includes the information about the channel capacities, distances between sites and protocol 

overhead which is taken into consideration in some elaborate network models. 

Computer system information is about the properties of the computer systems at each 

site. For each computer site, its storage and processing capacity should be known. 



82 

6.4 A Cost Model 

Whether a design of horizontal fragmentation will improve the system performance depends 

on whether the total execution query cost will be decreased significantly. Therefore, a cost 

model is needed to evaluate a fragmentation schema. To calculate query costs we need a 

query tree. We also need some formal formulae to calculate the sizes of classes, fragments, 

and intermediate nodes of a query tree. 

6.4.1 Query-Trees 

Suppose we are given a query in query algebra. While query optimization is beyond the 

scope of this thesis, we may assume the query is optimized. In order to calculate query 

costs, we adapt query trees from [28]. A query tree is just a graph representation of a query. 

The leaves of a query tree will be elementary queries such as classes C or fragments k All 

other nodes are operators of query algebra: CTcp, nx, PJ , [X], U, n, or - introduced in Section 

4.3.2 . The query tree is formed inductively (inside-out) from Q as follows: 

• If Q is elementary, then the tree consists of just one root, which is Q. 

• For Q = op( Q') with op standing for a selection, projection or renaming take the 

whole tree for Q' plus a new root op having the root of the Q'-tree as its successor. 

• For Q = Qi opQ2 with op standing for a join, a union or a difference take the trees 

for Qi and Q2 plus a new root op having the roots of the Qi-tree and the Q2-tree as 

successors. 

• If the fragmentation of class C leads to 

n 

db(C) = LJ db( Ci) with disjoint sets db( Ci)= CTcpi(db(C)) , 1:::; i:::; n, 
i=i 

then replace C in each query Q by Ci U .. . Cn 

If the fragmentation of class C leads to 



83 

where db(Ci) = 1fX;(db(C)) with Xi= {ai, .. .,a~J, t1 , ... ,k = (ax,
1
·: tx;, .. . ,ax; : tx; ) 

1 I; l; 

with (ax;, ... , ax; ) = (X1 U ... U Xi-1) n Xi and tx is the representation type for the 
1 I; 

structure expression expx . Then replace class C by 

Example 6. 7. Suppose class LECTURERC has been horizontally fragmented into t hree 

classes as we did in Example 5.2 . Then we get db(LECTURERC) = db(LECTURERC1) U 

db(LECTURERC2) Udb(LECTURERC3) . If we want know the students that have a lecturer in 

the Department of Information Systems as a supervisor, then we have the following query: 

7rStudentID, LName, FName(CJvalue.Department='IS'(LECTURERC) CXl STUDENTC)) 

The corresponding query is shown in Figure 6.1 

1iStudentID, LName, FName 

I 
(',x,.1 

/ ~ 
STUDENTC a va/1Je.Department.='IS ' 

/ 
u~ 

/ LECTURERC3 u . 
/~ 

LECTURERC1 

Figure 6.1 : Example of a Query Tree 

6.4.2 Calculation of Size for Classes 

The calculation of the size of classes is more complicated in the 00 model than the calcu­

lation of size for relations in the relational model. In the relational model, we use only the 

record type constructor. Then the size of a relation can be calculated based on t he size of a 

tuple. In the object oriented model, however, there are other type constructors including set 

and maybe some other bulk type constructors. Therefore, at least the size calculation for 



84 

classes should be discussed in different type constructors. The size calculation for classes on 

record type constructors will be treated as a special case in the object oriented environment. 

The paragraph below will extend the theory in Schewe [28] and discuss the calculation of 

class size in the object oriented database environment. 

(i) Base Types 

Let us first consider the simplest situation: a class C with a representation type 

Tc = b, with b indicating a base type. 

Assumptions: 

• Let n denote the number of objects in a class instance db(C) over Tc. 

• Let lv denote the average space (in bits) for a value of type b. 

• Let lid denote the size of an identifier, i.e. a value of type ID. 

Then the average size of db( C) is 

Note that this basic case already includes references, which lead to the type b =ID. 

Thus l~ = lid· 

(ii) Record Type Constructor 

Now let C be a class defined by a record type constructor, i.e. we have Tc = (a1 : 

T1 , ... , an : Tn)· The calculation of the size of a class is very similar to that in the 

relational model. 

Assumptions: 

• Let n denote the number of objects in a class instance db(C) over Tc. 

• lo= lid and lid denote the size of an identifier, i.e. a value of type ID. 

• Let lj denote the average space (in bits) for attribute aj of a class C. 

The average size of db( C) over expc is: 

k 

sc = n. Llj 
j=O 



85 

(iii) Set Constructor 

If there is a class C with a structure expression Tc = {exp}, the calculation of the 

size of each class instance is different from the above. 

Assumptions: 

• Let n denote the number of objects in a class instance db(C) over Tc. 

• Let lid denote the size of an identifier, i.e. a value of type ID. 

• Let m denote the number of values of an object o in a class instance db( C) over 

Tc. 

• Let lv denote the average space (in bits) for a value over exp of an object o in a 

class instance. 

The average size of a object o over Tc is 

and the average size of class over Tc is 

sc = n ·(lid+ m · lv) 

Example 6.8. We calculate the size of db(LECTURERC) over the university database 

schema. The structure expression of class LECTURERC is class LECTURERC structure 

(PersonID: NAT, Name:(FName: STRING, LName: STRING, Titles: {STRING}), Spe­

cilization: STRING, Department: DEPARTMENTC, Campus: STRING). 

We assume: 

(i) the average number n of objects in a class instance db(DEPARTMENTC) is 200, 

(ii) the largest number for id in the instance of the database is 100000, then lo = lid = 17 

bits. 

We first determine the average space (in bits) lj for attribute aj of a class LECTURERC: 



86 

• domain of PersonID is NAT(4), the biggest number is 9999, hence we get lPersonID = 

13bits, 

• calculate the size of Name: 

- domain of FName is STRING(20), mean length is estimated 12, hence lFName = 

12. 8 = 96, 

- domain of LName is STRING(20), mean length is 12, then kName = 12 · 8 = 96, 

- size of Titles is the size of a set of values, assume the average number of titles 

of a person is 2, domain of Title is STRING(l5) with average length as 10, 

lTitle = 2 · 10 · 8 = 160, 

Then the size of Name is lName = 96 + 96 + 160 = 352, 

• domain of Specialization is STRING(40) with average size 20 , then lspecialization 

20. 8 = 160, 

• value of Department is an id of a department, hence lid= 17, 

• domain of Campus is STRING(20) and the mean length is 10, hence lcampus = 10 ·8 = 

80. 

The average size of a object in db(LECTURERC) over eXPLecturerC is: 

k 

lLECTURER = 2:= lj = 17 + 13 + 352 + 160 + 17 + 80 = 639 
j=O 

Therefore, the average size of an instance of class LECTURERC over eXPLecturerC is: 

k 

SLECTURERC = n · 2:= lj = 200 · 639 = 127800 
j=O 

D 

The cost model is still not realistic. Even if we accept the inaccuracy resulting from using 

only mean values, it is hardly the case that a complex value will be stored as a simple unit, 



87 

especially if sets are involved. It is more likely that data structures known from the network 

data model will be used for this. 

If Tc involves a set type constructor, i.e. Tc= (a1 : T1, ... , ai : {Ti} , ... , an : Tn), we would 

store values of type Ti separately as a linked list and just include a pointer to the first 

element of this list as well as a pointer back from the last element of the list . . See Figure 

6.5 for an illustration. 

Tc= (0.1: Ti,···:n.i: {Ti}:·· . , an: T~.) 

t'1m 

Figure 6.2: Data Structure of Type Tc 

This means that instead of lv we have to consider lid + lv assuming the lid is the size of a 

pointer. Then the whole set value needs the space 

where m is again the average number of elements in the set. Note that the size of a set is 

m · lv + (m + 1) ·lid· It means that we need (m + 1) ·lid more space to store the values of a 

set if we treat it as being stored in a linked list with a pointer to an object o of a class C 

where m is the number of objects in the set. 

Example 6.9. Making the same assumptions, we recalculate the size of db(LECTURERC) 

in the above example by considering values of Titles stored as a linked list with a pointer 

in a value of type TLEcTuRERC . Hence, the size of Titles is: 

l~itles = lid+m· (lid+lv) = 17+2(17+80) = 211 

The size of an object in db(LECTURERC) is: 

l~ECTURER = lLECTURER + (m + 1) ·lid= 639 + (2 + 1)' 17 = 690 



88 

Therefore, the size of instance db(LECTURERC) of class LECTURERC is: 

SLECTURERC = n . llECTURER = 200 · 690 = 138000 

D 

6.4.3 Calculation of Size for Fragments or Intermediate Nodes 

Once a class has been horizontally fragmented, each fragment contains a subset of the 

objects of the original class. The size of a horizontal fragment can be calculated according 

to the selectivity of the selection operation that is used to obtain the fragment. 

If there is a set of selection formulae { <p1, ... , cpr} defined on class C, and 100 · Pi is the 
r 

average percentage of objects in db(C) satisfying 'Pi(i = 1, ... , r) with l: Pi = 1, then the 
i=l 

average size of horizontal fragments over db( Ci)= acp;(db(C))(i = 1, ... , r) is: 

Pi · sc 

The calculation of sc is discussed in the previous subsection. 

Example 6.10. Continuing example 6.9, if there is a set of selection formulae { cp1 , cp1 , <p3 } 

defined on class LECTURERC: 

<p1 = value!Department.Name = 'Marketing' 

<p2 = value!Department.Name = ' Information Systems' 

<p3 = value!Department.Name = 'Accounting' 

Assume there are only three department names in the database , p1 = 0.3 , p2 = 0.4 and 
3 

p3 = 0.3, and L Pi = 1. 
i=l 

The average sizes of horizontal fragments from db(LECTU RERCi) = O"cp;(db(LECTURERC)) 

arc: 

SL ECTURERC1 =Pl . SLECTURERC = 0.3. 138000 = 41400 

SLECTURERC2 = P2 . SL ECTURERC = 0.4 · 138000 = 55200 



89 

SLECTURERC3 = p3 ' SLECTURERC = 0.3 ' 138000 = 41400 

D 

For a query tree we need to calculate the size of intermediate nodes besides leaves. In a 

query tree, intermediate nodes are some operations defined on fragments or classes. We use 

s to denote the size of the successor of an operation. We adapt the calculation formulae 

from Schewe [28] to the object oriented databases to get the following formulae: 

• The size of a projection node 1rexp is (1 - ci) · s ·~~where l1(l 0 ) is the average size of an 

object over exp( expc). s is the size assigned to the successor and Ci is the probability 

that two classes coincide on exp. 

S1 S2 
• For a join node the assigned size is - · p · - (l1 + l2 - l), where Si are the sizes of 

l1 l2 
the successors, li are the corresponding object sizes, l is the size of a tuple over the 

common attributes and p is the matching probability. 

• For a union node the size is s1 + s2 - p · s1 with the probability p for an object of C1 

to coincide with an object of C2. 

• For a difference node the assigned size is s1 · (1 - p) with the probability p for an 

object of C1 to coincide with an object of C2. 

• For a renaming node the assigned size is exactly the size s assigned to the successor. 

6.4.4 Allocate Intermediate Nodes to Sites 

Fragmentation of a class C results in a set of fragments {f 1, ... , f n} of average sizes 

s1, ... , Sn. The network has nodes N1, ... , Nk. The allocation problem is to allocate each 

fragment Ji to one of the sites Nj. Therefore, allocation assignment >. for a query tree 

assigns a node Nj(l :S j :S k) to each node in the query tree. Fragment allocation is a 

mapping: 

>.: {1, .. .,n}---t {l, .. .,k} 

Each leaf fragment Ji is assigned the node to which the fragment is allocated. The root Q 

of the tree is assigned the node at which the query is issued. 



90 

Example 6.11. Continue Example 6.7 by allocating one of the sites to each of the fragments 

as well as to other leaves and the root. Suppose the network has 3 nodes and the query is 

executed at site 1, then the root of the tree is assigned site 1. Figure 6.3 gives a example 

of a query tree with locations. 

1 7rStudentID, LName, FName 

I 
[X] 

/ 1 ~l 
STUDENT<..: 

1 
CTvalue.Department='IS ' 

I / 
u~ 

1 / LECTURERC3 

/u~ 3 

LECTURERC1 
1 

LECTURERC2 
2 

Figure 6.3: Query Tree with Locations 

D 

Site allocation should be done after we calculate the sizes of all leaves, intermediate nodes 

and the root of a query tree. If a node E has successor nodes that are evaluated at site N1 

and N2, respectively, then E should be assigned to either site N1 or N 2, preferably the site 

where the least data must be transferred. It is impossible to allocate other sites besides the 

site of its successors. 

6.4.5 Calculation of Query Costs 

After a class has been fragmented, the fragments of the class will be allocated to a location. 

Ideally, we should choose a site that is closest to the site that issues the bulk load of queries 

which access the fragment. However, this may not lead to the optimum query processing 

time. 

Once we know the size of horizontal fragments by applying the formulae described in the 



91 

previous section, we can calculate the query costs for any allocation. Again, minimizing the 

total query cost is computationally intractable, so we have to look for a heuristic solution. 

The cost calculation formula proposed in [26] can be easily adopted to the object oriented 

case. For each class Ci, there is a set of queries Qm = {Q1, ... , Qm} accessing it. Under a 

certain location assignment>., for a given query Qj, query costs are composed of two parts: 

storage costs and transportation costs. The formula below shows the components of the 

query costs: 

The storage costs of a query Qj depend on the size of t he involved classes or fragments, 

and on the assigned locations which decide the storage cost factors. It can be expressed by 

the following formula: 

stor;,(Qj) = L s(h) · d>.(h) 

h 

where h ranges over the locations (sites) of the distributed database system, s(h) are the 

sizes of involved classes or the fragments of some classes and d>.(h) indicates the storage cost 

factors. 

The transportation costs of query Qj depend on the sizes of the involved classes or fragments 

of classes and on the assigned locations which decide the transport cost factor between every 

pair of sites. It can be expressed by the following formula: 

trans;,(Qj) = L C>.(h)>.(h') · s(h) 
h 

where C>.(h)>.(h') are the transportation cost factors. 

For each query Qj we get a value for its frequency freqj. The total costs of all the queries in 

Qm are the sum of the costs of each query multiplied by its frequency. It can be expressed 

by the following formula: 

m 

cost;,m(total) = L cost;,m(Qj) · Jreqj 
j=l 



92 

6.5 A Heuristic Procedure for Horizontal Fragmentation 

Fragmentation and allocation are considered as two isolated problems in [24]. After frag­

mentation, the fragments are allocated to reside at one node in a distributed management 

system (not considering replication at this stage in this t hesis). The design of fragmentation 

schemata on relations in [24] did not use a cost model. But we argue that the values of t he 

costs of queries after fragmentation will affect the decision on whether we need to perform 

fragmentation or not. A cost model should be used to evaluate different fragment solut ions. 

Let us look at the following example to see whether fragmentation of a class and allocating 

result fragments to different sites will achieve better performance. 

Example 6.12. Consider a class being fragmented into two fragments Ji, f2, and two 

queries Q1, Q2 executing at two different sites N1, N2 to access these two fragments remotely. 

The frequencies of Q1 and Q2 are freq1 and freq2, respectively. This design is shown in 

Figure 6.4. 

Site N 2 

trans,\1 ( Q2) --------

Figure 6.4: Allocation of Fragments to Two Sites 

If the sizes of Ji and fz are s1 and s2, respectively, ignoring storing costs for all the fragments, 

we have total query costs of: 

with c12 and c21 as transportation cost factors. Generally, c12 should be equal to c 21 . 



93 

If query Qi is executed more frequently, say freq1 > freq2 , we do not fragment the class 

and put the whole class at site Ni, the site that Q1 is executed. This design is shown in 

Figure 6.5. 

Site N 1 Site Ni 

Figure 6.5: Allocation of Class to One Site 

The total query costs for the second design are: 

Comparing costs cost>..1 and cost>..2 we get cost>..1 > cost>..2 • 0 

It can be concluded that fragmentation of classes does not always minimize the query cost. It 

is an NP-hard problem to find the optimized fragmentation solut ion by computing total costs 

for all possible fragmentation schema [24]. In this section we propose a heuristic approach 

for identifying a reasonable degree of fragmentation that leads to relatively minimal total 

query costs. 

For a given database schema S = { C1 , ... , Ci, .. . Cn}, there is a set of queries qm = 

{Qi, ... , Qj, ... , Qm} t hat access the database most frequently or that are used by the 

most cri tical transactions. 

The heuristic procedure of horizontal fragmentation should include the following steps: 

1. Identify the set of most frequent queries and rewrite these queries in the form of the 

algorithm introduced in Section 4.3. 



94 

2. Identify the sites at which the queries will be issued. Treat queries that are started 

at several sites as (several) different queries. Estimate for each query the frequency 

of its execution. 

3. Sort queries by their frequencies. This provides a list of queries Qm = [Q1 , . .. , Qj, ... , Qm] 

with the corresponding list of values of frequencies p m = [f req1, . .. , f reqm] for Qm 

where we always get freqik-1 ;::: freqik · 

4. Determine optimized query trees for all of the queries. Extract simple predicates from 

these t rees. 

5. Construct a usage matrix based on the simple predicates obtained in the previous 

steps. We get a set ~ of simple predicates cp. 

Qi . .. Qm 

C1 'PU ... . . . 

C2 'P21 . . . ... 
. . . . . . . . . . .. 
Cn 'Pnl . .. 'Pnm 

6. From the matrix obtained in the previous step we can get a list ~~ of sorted simple 

predicates ~~ = [1Pi1, ... 'Pib] where we always get freqi-1 ;::: freqi . The number of 

simple predicates is b. We get a list X = [O , 1, .. . , xi, . .. , x2, .. . , b] of indices for the 

simple predicates. 

7. Perform the following steps iteratively to find a reasonable number of simple predicates 

for horizontal fragmentation and fragment the given class Ci. 

Choose four numbers a, b, xi, x2 from X with a < x i < x2 < b, including initially the 

two bounds, i.e. start with 0, x i , x2, b with 0 < x 1 < x2 < b. For each number x E 

{a , b, xi, x2} we calculate the corresponding query costs by the following procedures: 

(I) Choose first x simple predicates in the list ~~, i.e. 1>f = { 'Pii, . .. 'Pix } and build 

the corresponding set of normal predicates Nx. 

(II) Fragment the class Ci according to the set Nx of normal predicates obtained in 

the previous step. Let the fragments be Ff , ... , F;. 



95 

(III) Calculate the frequencies f re% of access to the fragments Fk from site j, and use 

this to determine fragment allocation to sites. Put the fragments to the nodes 

that access them most frequently. 

(IV) Calculate the total query costs costx using the cost model introduced in Section 

6.4.5. 

We get four values for the query costs costa, costx 1 , costx2 , costb. Let min( costa, costx 1 , 

costx2 , costb) denote the minimal value among the four values. Comparing these query 

costs we might have the following four situations: 

• If min( costa, costx 1 , costx2 , costb) = costa then set b = x1 and choose two new 

values for x 1, x2 satisfying a < x1 < x2 < b. If we can find two such numbers 

then continue the procedure. 

then 

I I I I 
a :c1 X2 l> 

/Discard 

~ 
b 

If we can only obtain one number x from the list X, calculate the query cost for 

it. If costx < costa, then x should be the number of simple predicates that we 

should use to fragment the class Ci· Thus, let y := x . 

If costx > costa or there is no number left between the new a and b, then a is 

the number of simple predicates that we will use for fragmentation. Thus, let 

y :=a. 

• If min( costa, costx1 , costx2 , costb) = costx1 , then set b = x2 and choose a new 

number between a and b so that we get new numbers for x1, x2. Continue with 

the procedure. 

If we cannot find a new number between new a and b, then x1 is the number of 

simple predicates that we should choose for fragmentation. Thus y := x1 . 



96 

if min(costu, costx1 , costx2 , costb) = costx 1 

/ Discard 
~~+--~~___. .... I 
0. Xl X2 b 

then 

a X'.l b 

• If min( costa, costxu costx2 , costb) = costx2 , then set a = x1 . Choose a new 

number between a and b so that we get new values for x1, x2 and continue the 

procedure with the new a< x1 < x2 < b. If we do not find such a new number, 

x2 will be the number of simple predicates that we need for fragmenting the class 

Ci, i.e. take y := x2. 

• If min( costa, costx1 , costx2 , costb) = costb, then set a = x2 and find two new 

numbers between a and b satisfying the condition a < x1 < x2 < b. If we can 

find such numbers, then we continue the iteration with the new values. 

If there is only one number x left between a and b, we calculate the corresponding 

query cost and compare it with costb · The number that leads to the minimal cost 

will be the number of simple predicates that we need for horizontal fragmentation, 

i.e. for costx < costb we choose y := x, otherwise y := b. 

If there is no number between a and b left in X, then b is the number of simple 

predicates needed for fragmenting Ci· Thus, y := b. 

The result is the set <t>¥ = { 'Pil, .. . 'Piy} of simple predicates. Take the corresponding 

set NY of normal predicates for fragmenting Ci. 

Note that a, b, x1, x2 are updated in each loop. Searching requires only one or two 

new points in each loop. Query costs have to be calculated only for these new points. 

The procedure stops when the remaining interval (a, b) contains only one number or 

is empty. 

The above procedure is a heuristic one based on the assumption that a reasonable fragmen­

tation schema can be obtained by looking at most frequently used simple predicates. The 



97 

approach presented above can rapidly search for a reasonable number of simple predicates 

and results in presumably low total query costs. 

6.6 Summary 

In this chapter horizontal fragmentation for object oriented databases has been discussed in 

more detail. Definitions for simple predicates and normal predicates have been outlined. A 

heuristic horizontal fragmentation procedure has been proposed based on a cost model. The 

horizontal fragmentation approach presented in this chapter is superior to that presented 

in Ozsu & Valduriez [24] and the one by Ezeife & Barker [13]. Characteristics and potential 

benefits of the approach presented in the chapter, and differences to other approaches in 

the literature can be summarized as follows: 

Firstly, the approach can deal with both simple and complex attributes using the same 

procedure. In [13], simple and complex attributes are treated with different algorithms. 

Simple attributes refer to the attributes of primitive attribute types only, i.e. those that do 

not contain other classes as part of them. Complex attributes have the domain of attribute 

as another class [13]. In our approach, attributes are defined using the underlying object 

oriented type system. Attributes defined on the abstract identifier type ID are treated as 

being defined on one of the base types. Our approach is more universal than others in terms 

of dealing with attributes of different types, and is more easily put into practical use. 

Secondly, the expression of simple predicates is extended such that simple predicates can be 

defined on identifiers as well as on values. The expression of simple predicates on values is 

also extended to suit various type constructors in the underlying type system of the object 

oriented model. In Ezeife & Barker [13], the definition of simple predicates is adopted from 

[24] without any adaption. However, the format of simple predicates in [24] cannot deal 

with the situation that a simple predicate is defined on a complex type constructor, i.e. a 

finite set type constructor. In the approach presented, the format of simple predicates is 

extended in a way that simple predicates can be defined not only on record type constructors 

or base type constructors but also on finite set type constructors. Note that the domain of 

the values for the comparison operator() has been extended to include some set comparing 



98 

operations. Path expressions have been introduced to refer to any elements of a class. 

Thirdly, instead of using minterm predicates as found in [24] and [13], we introduced nor­

mal predicates on classes as the satisfiable minterm predicates. Horizontal fragmentation 

operations based on a set of normal predicates could therefore be guaranteed to satisfy the 

characteristics of fragmentation discussed in Section 3.2. The approach did not rely on 

dependencies between simple queries as in [24] , because these can hardly be determined. 

It is very hard to use these dependencies to determine the satisfiability of a conjunction of 

simple predicates, or to simplify them if they are satisfiable. 

Fourthly, the approach applies a cost model for horizontal fragmentation design. In [24] , hor­

izontal fragmentation is performed without evaluating the overall system performance. We 

argue that the larger degree of fragmentation does not necessary lead to the better system 

overall performance. There exists a cut off point for the degree of horizontal fragmentation 

that the system has the best performance. However it is computationally intractable to 

find the optimized fragmentation solution by comparing total costs for all possible frag­

mentation schemata [24]. The heuristic procedure proposed in this chapter is based on a 

cost model with which the system performance can be evaluated once a database is being 

fragmented. One of the characteristics of this procedure is that it can rapidly achieve a 

horizontal fragmentation schema that is designed to result in low total query cost, or, in 

other words, the system's overall performance being improved. 

Our approach is based on a rather sophisticated data model and the assumption that 

a reasonable fragmentation schema can be obtained by looking at most frequently used 

simple predicates. This is the first attempt to investigate horizontal fragmentation for 

object oriented databases in detail. The obtained horizontal fragmentation procedure can 

be used to assist designers for the distribution design for object oriented databases. 



Chapter 7 

Conclusion and Possible Extension 

7.1 Summary 

Fragmentation is one of the distribution design techniques t hat must be used to set up 

distributed database systems. A lot of research has been done on fragmentation techniques 

for distributed databases. However, most of it refers to the relational data model and very 

few researchers refer to the object oriented data model (OODM). Fragmentation of object 

oriented databases (OODBs) is much more complex t han fragmentation in the relational 

data model due to the fact that the semantic model of object oriented databases is much 

richer than that of relational databases . This thesis studies the critical adaptation and 

generalisation of existing fragmentation techniques for relational databases for OODBs. 

The major focus of the thesis is on the horizontal fragmentation of classes in OODBs. For 

this I first reviewed important basic concepts and characteristics of distributed databases. 

I further reviewed an OODM and introduced path expressions and queries for it. Based 

on existing horizontal fragmentation techniques for relational databases, I introduced nor­

mal predicates for the object oriented model, which are satisfiable conjunctions of simple 

predicates. The normal predicates are used for the horizontal fragmentation of OODB 

schemata. 

The degree of horizontal fragmentation was shown to affect the performance of distributed 

database systems. A high degree of horizontal fragmentation does not always lead to perfor­

mance improvements of distributed database systems. Previous horizontal fragmentation 

99 



100 

approaches did not deal in any depth with evaluating the results of horizontal fragmentation 

with respect to anticipated performance improvement. This thesis argues that a cost model 

is required for making decisions on the degree of fragmentation. Based on the assumption 

that a reasonable fragmentation schema can be obtained by looking at most frequently used 

simple predicates, a heuristic procedure for horizontal fragmentation of OODBs is proposed. 

This heuristic approach is based on a query cost model. While, a global cost optimism can 

not be guaranteed. An important characteristic of the approach presented is that it can 

rapidly search for a reasonable number of simple predicates which results in presumably 

low total query costs. 

7.2 Future Work 

The complexity of the overall research problem addressed in this thesis resulted in a number 

of assumptions and constraints. Based on the work and results presented, extensive more 

research can and needs to be undertaken to make the whole database design theory for 

object oriented databases solid and complete. Research results obtained in this project can 

be improved and extended in various ways including: 

• Practical evaluation of the proposed procedure 

It is essential to verify the claims that the proposed procedure for horizontal fragmen­

tation reduces total query costs. Therefore, we need to implement this procedure, run 

a number of experiments and evaluate their results. Based on this practical evaluation, 

· optimization or refinement of the procedure can be proposed. 

• Extending the underlying type system 

The object oriented data model applied in this thesis is a simplified data model of 

that introduced in [31]. The object oriented data model introduced in [31] is based 

on a type system that includes list and bag type constructors. With the list and bag 

type constructors, the object oriented data model can deal with more complex data 

types. Inclusion of these two type constructors will make the proposed fragmentation 

operations more universal. 



101 

• Object methods 

For the sake of simplicity we did not take into account methods when we discussed 

fragmentation of classes. As mentioned in Chapter 4, a class has a set of methods. 

It is more general to discuss fragmentation for object oriented databases by taking 

into account methods. Horizontal fragmentation of a class results in a set of new 

classes such that each of the new classes has the same structure as its original class. 

Therefore all methods defined for the original class should also be defined for each of 

the new classes. Attention need to be paid to the situation that a class has methods 

that access other classes. 

• Transportation cost factors 

In our cost model, transportation cost factors are identified as statistical numbers 

which are used to measure communication costs between each pair of nodes on the 

network. In a real-life situation, these cost factors might change over time. Thus, 

additional analysis is needed to determine current values of all related transportation 

cost factors. 

• Vertical and splitting fragmentation 

In this project, we generalize three fragmentation operations for object oriented 

databases: horizontal , splitting and vertical fragmentation. While the first , hori­

zontal fragmentation, has been investigated in detail, the work needs to be extended 

regarding vertical and splitting fragmentation. For vertical fragmentation , bond en­

ergy algorithm (BEA) is used in relational databases to cluster attributes according 

their pairwise affinity [16]. While we aim to carry forward those results, it is most 

likely that this extension will be done to a simplified OODM first, with further exten­

sion added later. 

• Allocation and replication of objects 

So far, we neglected replication of objects. However, replication is an important 

technique to improve the reliability and availability of a distributed database system. 

Therefore the query cost model should be adjusted to reflect this fact. It is noted that 

the data transmission overhead for update and that for retrieval requests are different. 



102 

In an update query, it is necessary to inform all nodes that replicas exist, while in a 

retrieval query, only one node that holds one of the copies should be informed [24]. 

Further , the data should be locked while it is accessed by a update query, while the 

data accessed by a retrieval query does not need to be locked. Allocation of fragments 

involves an allocation model that attempts to minimize the total cost of processing 

and storage while trying to meet certain response time restriction [24]. It is announced 

that the allocation problem is an NP-complete problem. The generic allocation model 

[24], which is used for the relational model, is too complex to be developed. Therefore, 

for the object oriented model heuristic methods that yields suboptimal solutions will 

be sought. 

• Building prototypes for further research results 

It is expected that an experimental evaluation should be applied when further research 

results have been obtained. 



Bibliography 

[1 J P. M. G. Apers, Data allocation in distributed database systems, ACM Trans. Database 

Syst. 13 (1988), 263- 304. 

[2] M. Atkinson, F. Bancilhon, D. Dewitt, K. Dittrich, D. Maier , and S. Zdonik, The object­

oriented databas e system manifesto, Proc. First International Conference on Deductive 

and Object Oriented Database (Kyoto, Japan) (S. Nishio W. Kim, J.-M. Nicolas, ed.), 

December 1989, pp. 40-57. 

[3] S. Atre and S. Advisor , Distributed databas es, cooperative processing 8 networking., 

McGraw-Hill , 1992. 

[4] D. Bell and J. Grimson, Distributed databas e system, Addison-Wesley, 1994. 

[5] L. Bellatreche, K. Karlapalem, and A. Simonet, Horizontal class partitioning in object­

oriented databas es, Database and Expert Systems Applications , 1997, pp. 58-67. 

[6] S. Ceri and G. Pelagatti, Distributed databases principles and system, McGraw-Hill, 

New York, 1984. 

[7] S. Chakravarthy, J. Muthuraj , R. Varadarajan, and S. Navathe, An objective func­

tion for vertically partitioning relations in distributed databases and its analysis, Tech. 

Report UF-CIS-TR-92-045, University of Florida, Gainesville, FL, 1992. 

[8] P.-C. Chu, A transaction-oriented approach to attribute partitioning, Information Sys­

tems 17 (1992), no. 4, 329- 342. 

[9] E . F. Codd, A relational model for large shared data banks, Commun. ACM 13 (1970), 

no. 6, 377- 387. 

103 



104 

[10] , Relational databas es: A practical foundation for productivity, Commun. ACM 

25 (1982), no. 2, 109- 117. 

[11] D. W . Cornell and P. S. Yu, A vertical partitioning algorithm for relational databases , 

Proceedings of the Third International Conference on Data Engineering, February 3-5, 

1987, Los Angeles, California, USA, IEEE Computer Society, 1987, pp. 30-35. 

[12] H. Darwen and C. J. Date, The third manifesto, ACM SIGMOD Record 24 (1995), 

no. 1, 39-49. 

[13] C. I. Ezeife and K. Barker , A comprehensive approach to horizontal class fragmentation 

in a distributed object based system, Tech. report , Advanced Database Systems Lab­

oratory, Department of Computer Science, University of Manitoba, Canada, October 

1994. 

[14] B. Gavish and H. Pirkul, Computer and database location in distributed computer sys­

tems, IEEE Transactions on Computers C-35 (1986), no. 7, 583- 590. 

[15] V. Gligor and R. Popescu-Zeletin, Transaction management in distributed heteroge­

neous database management system, Journal of Information Systems 11 (1986), no. 4, 

287-297. 

[16] J. A. Hoffer and D. G. Severance, The use of cluster analysis in physical database 

design, Proc. First International Conference on Very Large Data Bases (Framingham, 

MA), Septemper 1975. 

[17] K. Karlapalem and S. B. Navathe, Materialization of redesigned distributed relational 

databases, Master's thesis, Hong Kong University of Science and Technology, Hong 

Kong , 1994. 

[18] G. McFarland, A. Rudmik, and D. Lange, Object-oriented databas e management sys­

tems revisited, Tech. Report SP0700-98-4000, The Data & Center for Software, Indi­

alantic, 1999. 

[19] J. Muthuraj, A formal approach to the vertical partitioning problem in distributed 

database design, Master's thesis, The University of Florida, Florida, USA, 1992. 



105 

[20] S. B. Navathe, S. Ceri, G. Wiederhold, and J. Dour, Vertical partitioning algorithms 

for database design, ACM TODS 9 (1984), no. 4, 680- 710. 

[21] S. B. Navathe, K. Karlapalem, and N. Ra, A mixed fragm entation methodology for 

initial distributed database design, Tech. Report TR 90-17, CIS Dept , Univ. of Florida, 

Gainesville, FL, 1990. 

[22] S. B. Navathe and M. Ra, Vertical partitioning for database design: A graphical algo­

rithm, ACM SIGMOD 14 (1989), no. 4, 440- 450. 

[23] M. T. Ozsu and P. Valduriez , Distributed database systems: Wh ere are we now?, IEEE 

Computer 24 (1991), no. 8, 68- 78. 

[24] , Principles of distributed database systems, Alan Apt, New Jersey, 1999. 

[25] R. Ramakrishnan and J. Gehrke, Database management systems, McGra- Hill , Boston, 

1998. 

[26] K.-D. Schewe, On the unification of query algebras and their extension to rational tree 

structures, Proc. Australasian Database Conference ( J . Roddick M. Orlowska, ed .), 

2001. 

[27] , Database concepts, Lecture Manuscrip, Massey University, Department of In-

formation Systems, P almerston North, New Zealand , 2002. 

[28] , Fragmentation of object oriented and semi-structured data, Hele-MaiHaav, 

Proc. Baltic Conference on Databases and Information Systems, Kluwer Academic 

Publishers , 2002, pp. 1- 14. 

[29] K.-D. Schewe, B. Sridharan , M. Chrystal!, S. Link, and H. Ma, Database concepts, 

Extramural Study and Administration Guide. Dept. of Information Systems, Massey 

University, Palmerston North, New Zealand, 2002. 

[30] K.-D. Schewe and B. Thalheim, Fundamental concepts of object oriented databases, 

Acta Cybernetica 11 (1993), no. 4, 49-84. 

[31] , Principles of object oriented database design, Information Modelling and 

Knowledge Bases (T. Kitahashi A. Markus H. Jaakkola, H. Kangassalo, ed .) , V. IOS 

Press, 1994, pp. 227- 242. 



106 

[32] M. Stonebraker, L.A. Rowe, B. Lindsay, J . Gray, M. Carey, M. Brodie, and P.Bernstein, 

Third-generation database system manifesto, ACM SIGMOD Record (1990) . 

[33] A. M. Tamhankar and S. Ram, Database fragmentation and allocation: An integrated 

methodology and case study, IEEE t ransactions on systems management 28 (1998), 

no. 3, 194- 207. 

[34] B. T halheim, Entity-relationship modeling, Springer-Verlag, 2000. 

[35] S. B. Yao, S. B. Navathe, and J-L. Weldon, An integrated approach to database de­

sign, Data Base Design Techniques I: Requirement and Logical Structures (New York), 

Springer-Verlag, 1982, Lecture Notes in Computer Science 132, pp. 1- 30. 


	20001
	20003
	20005
	20007
	20008
	20009
	20011
	20012
	20013
	20014
	20015
	20016
	20017
	20018
	20019
	20020
	20021
	20022
	20023
	20024
	20025
	20026
	20027
	20028
	20029
	20030
	20031
	20032
	20033
	20034
	20035
	20036
	20037
	20038
	20039
	20040
	20041
	20042
	20043
	20044
	20045
	20046
	20047
	20048
	20049
	20050
	20051
	20052
	20053
	20054
	20055
	20056
	20057
	20058
	20059
	20060
	20061
	20062
	20063
	20064
	20065
	20066
	20067
	20068
	20069
	20071
	20072
	20073
	20074
	20075
	20076
	20077
	20078
	20079
	20080
	20081
	20082
	20083
	20085
	20086
	20087
	20088
	20089
	20090
	20091
	20092
	20093
	20094
	20095
	20096
	20097
	20098
	20099
	20100
	20101
	20102
	20103
	20104
	20105
	20106
	20107
	20108
	20109
	20110
	20111
	20112
	20113
	20114
	20115
	20116



