
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the pennission of the Author.

THE

USE OF

FRAMES

IN

KNOWLEDGE-BASED

SYSTEMS

A thesis

submitted in partial fulfilment

of the requirements for the Degree of

Master of Science in Computer Science

at Massey University by

WILLIAM JOHN TEAHAN

Massey University
1986

ii

ABSTRACT

The general aim of this study was to investigate the use of

frames as a means of representing knowledge in computer

knowledge-based systems. This thesis examines the application of

frames to two particular situations, the playing of an opening bid in

Bridge, and the recognition of birds from field observations. The

Frame Representation Language FRL was used in the implementation of

the two different systems.

Three aspects of frames are investigated the problems of

matching two different frames; the problems of structuring frame

systems for searching; and the problem of improving the interface

between the frame system and the user of the knowldege base. A

comparison is also made of frames with other methods of knowledge

representation such as production systems and semantic networks.

Finally, further areas of research into the use of frames are

suggested such as the extension of frame matching, research into the

aspects of knowledge representation and application of frames to

specific problems.

iii

ACKNOWLEDGEMENTS

Thanks to my supervisor Ray Kemp for providing help and suggestions

throughout the preparation of this thesis.

CONTENTS

1 Introduction

2 Matching Frames

3

2.1 Problems with Matching Frames

2.2 Use of $REQUIRE Facets in Generic Frames

2.3 Defining an Alternative Matching Scheme

2.4 Using $MATCH Facets to Specify the Matching Function

2.5 Improving the Matching Structure Using $IF-MATCHED
Demons

2.6 Using the MATCH Slot to Specify the Frame Match

Structuring Frames for Search

3.1

3.2

3.3

3.4

3.5

3.6

Different Frame Structures

Searching Strategies

Linear Structure

Set Structure

Hierarchical Structure

3.5.1 Search Tree

Network Structures

3.6.1 Slot Network

3.6.2 AKO Network

3.6.3 Further Network Structures

3.7 Analysis of the Different Frame Structures

4 Improving the User Interface

4.1 Problems with Interfacing Between the Frame System and

Page

1

6

6

11

13

15

19

21

24

24

25

27

29

34

37

41

42

47

56

56

60

the User 60

4.2 Improving the Presentation by Using $ENTER and $DISPLAY
Facets 61

4.3 Improving the User Search Interface 69

4.3.1 Specifying the Search Using the FENTER command 69

4.3.2 Using $IFJ1ATCHED Demons to Provide a Trace of
the Search 70

4.3.3 Using Interactive Matching Functions 70

4.4 Allowing the User to Modify the Knowledge Base 76

4.4.1 Addition of Frames to the Knowledge Base 76

4.4.2 Removal of Frames from the Knowledge Base 79

4.4.3 Alteration of a Frame in the Knowledge Base 80

4.4.4 The Effect of Modifying the Knowledge Base on the
Efficiency of the Search 82

4.5 Allowing the Expert to Create the Knowledge Base 83

4.5.1 Using Lists of Pre-defined Functions to Specify
the Procedural Information 84

4.5.2 Interrogating the User about the Procedural
Information 86

4.5.3 Problems with Allowing the Expert to Create the
Knowledge Base 86

5 Comparison of Knowledge Representation Methods 89

6

5.1 Features of Knowledge Representations 89

5.2 Methods of Representing Knowledge 91

5.2.1 Production Systems 92

5.2.2 Semantic Networks and Property Lists 97

5.2.3 Frames 100

Further Lines of Research 104

104

104

106

107

108

110

110

111

6.1 Extensions to Frame Matching

6.1.1 Approximate Frame Matches

6.1.2 Using Ideas to Match the Frames

6.1.3 Matching the AKO Slot

6.1.4 Dynamic Matching Schemes

6.1.5 Using Matching to Perform the Search

6.2 Research into Aspects of Knowledge Representation

6.3 Application of Frames to Specific Problems

7 Summary 113

Appendix A. FRL Commands A-1

Descriptions A-1

FDISPLAY A-5

FENTER A-6

FMATCH A-7

FSEARCH A-12

FSEARCH-AKO-NETWORK A-13

F'SEARCH-SET A-15

FSEARCH-SLOT-NETWORK A-16

F'SEARCH-TREE A-17

fVALUES A-18

Appendix B. Frame Definitions 8-1

B-1 Bridge System 8-1

B-1-1 Definition of HAND 8-1

B-1-2 Sample Attached Functions 8-2

B-1-3 Sample Linear Frames 8-6

B-1-4 Sample Set Frames 8-7

B-1-5 Sample Hierarchical Frames B-8

B-1-6 Sample Search Tree Frames B-10

B-1-7 Sample Slot Network frames 8-11

B-1-8 Sample AKO Network Frames B-12

B-2 Bird Recogniton System B-13

B-2-1 Definition of BIRD B-13

B-2-2 Sample Attached Functions B-16

B-2-3 Sample Linear Frames B-20

B-2-4 Sample Set frames B-22

B-2-5 Sample Search Tree Frames B-24

B-2-6 Sample AKO Network Frames B-26

Appendix C. Trace of Bridge System

C-1 Presentation to the User

C-2 Sample Bridge Hands

Appendix D. Trace of Bird Recognition System

D-1 Presentation of the Birds

D-2 Specific Search

D-3 General Query

Bibliography

C-1

C-1

C-3

D-1

D-1

D-6

D-19

1 INTRODUCTION.

An area of increasing importance in Artificial Intelligence in

recent years has been the problem of how to represent knowledge on the

computer. Some examples of methods that have been developed are

production systems and frames. This thesis investigates the features

of frames in particular and how they can be used to construct knowledge

bases which can be incorporated into expert systems.

Marvin Minsky, in "A Framework for Representing Knowledge", first

proposed the theory of frames in 1974. He defined a frame as being "a

data-structure for representing a stereotyped situation." Some

examples of such situations are entering a room, driving to work and

watching television. The frame representation language FRL was

developed in 1977 by Goldstein and Roberts to implement the theory of

frames. The language is mostly declarative in that it depends on data

structures as opposed to procedures for the definition of the frames.

Each frame consists of various types of information described by

slots. Each slot contains any number of facets which define how the

information in the slot is to be used. Each facet in turn consists of

values which contain the actual data or information that is being

represented. Attached to each data item may also be several comments.

Each comment consists of a label and a message.

Related frames are organised into frame systems. Each frame of

the system share the same slots so that the same functions can be

applied to all the frames in the system. The frame systems can also be

structured into information retrieval networks which provide

alternative frames to search when a frame fails to match a particular

2

situation. Diagram 1.1 illustrates the hierarchical structure of a

frame system.

frame system

~ r -----frame · frame frame

/I"' I"'- / l~
slot slot slot slot slot slot slot slot

I I~ I\ I /~
facet facet facet facet facet facet facet facet

I\ I\ \ I I\
value value value value value value value value

Diagram 1.1 Structure of a frame system.

Three basic instructions, FGET, FPUT and FREMOVE describe the main

operations for obtainin~4 inserting and removing information stored in

the frames. Four important features of frames are defaults, demons,

inheritance and requirements.

Each slot in a frame can have a value facet which describes the

data values associated with each slot. Alternatively, the slot can

have a default facet which is used when there is no value facet exists.

This allows for general assumptions about the information to be stored

in the frames which can then be displaced at a later date when more

specific data arrives that better fits the current situation.

Functions that are activated automatically when a specific

situation occurs are called demons. The demons are expressed as

functions att~~hed to various facets in each slot of a frame. Examples

of demons used in frames are if-added,if-removed and if-needed demons

which are activated whenever the information in the slot is added to,

removed or needed. These demons can activate further demons and hence

a simple change or reference to a frame can initiate a whole series of

3

actions that may affect other frames in the system.

Another powerful feature of frames is the ability to use

information from other frames through inheritance. Related frames in

the system can be linked through an AKO (A-KIND-OF) slot which indicate

that a particular frame has similar properties to the related frame.

This means that information can be 'inheritea' through the pathway and

does not need to be stored in the frame itself.

Values within a slot may be restricted by certain requirements

that describe the allowable values for the slot. Frames in an AKO

hierarchy can therefore be classified as being generic, where general

requirements are used to describe the frame, or individual, where more

specific values are used.

The particular implementation of FRL used throughout this thesis

was developed at MIT on the PRIME 750 computer and is incorporated into

the V-mode LISP language available on the computer.

Two particular applications of frames have been· investigated and

are referred to throughout this work. These are :

1. finding an opening bid in bridge;

2. recognition of birds from field observations.

The first application relates to the problem of finding an

appropriate opening bid in bridge such as 1 Spade or 2 Clubs given the

cards in the player's hand. The bidding system used in the

implementation is Acol. The second application involves the

4

recognition of birds from field observations of characteristics such as

habitat and appearance. The set of birds used for this application is

arbitrarily limited to the common town and pasture birds in New

Zealand. The names of the frame systems developed for these two

applications are, respectively, the Bridge System and the Bird

Recognition System. The choice of the two different applications are

sufficiently diverse to examine the versatility of frames when applied

to different kinds of information.

The work described in the following chapters falls into three main

areas of investigation :

1. matching two different frames;

2. structuring frame systems for search;

3. improving the interface between the knowledge base and the user.

The first area deals with the problem of comparing two separate

frames with different information to see if they match. The use of

requirements to express a generic frame against which an individual

frame is matched is described. An alternative matching scheme is also

proposed which uses matching functions attached to a generic frame to

define how the frame is to be matched. The need for matching demons

and a method to express how a frame is to be matched is also described.

The second area of research is the problem of structuring frame

systems for search to find the particular frame or frames that match a

given frame. This involves ordering the frame system in some manner or

linking the frames in the system by reference to other frames. Types

of structures investigated are : linear, set, hierarchical and network

5

structures.

The third area looks at how the frame systems can be organised so

that the interface with the user can be improved. For improving the

presentation of frames to the user, the use of attached functions to

display and enter values in a frame is proposed. Various methods of

improving the search of the knowledge base for the user are described,

such as using matching demons for tracing and interactive match

functions for querying the user. The problems associated with allowing

the user to create or modify the frame systems are also examined.

After the description of these three areas of research, a

comparison is made of frame-type structures with other systems of

knowledge representation such as decision-trees, production systems and

procedures. Following this is a description of improvements, current

developments and useful lines of investigation on frame systems in

general. Various further applications of the frame systems to other

areas of knowledge are also explored.

6

2 MATCHING FRAMES.

2.1 Problems with Matching Frames.

There are

separate frames

many

of

problems involved in trying to match two

information. Often it is necessary to match a

set of specific information against a set with a more generalised

framework. In bridge for example, the known information is the

cards in the hand and from this can be determined further facts such

as the division of the suits and the honour points. The player then

tries to match these cards against more generalised requirements,

such as a balanced hand distribution for no-trumps.

are:

Some problems that arise from matching two different frames

1. Only parts of each frame are relevant to the match. A

straight match between each slot in both frames is not possible

since the number of slots in each is seldom equal.

2. A matching of specific data against inore generalised data

is required. The data may have to be in a particular range or

be of a certain type for a match to occur.

3. Different matching functions between each slot of each

frame are necessary because of the different information being

matched.

7

4. In some cases, various logical combinations of the slots

for matching is needed using or and and conditions.

5. More complex matching between slots is also required. This

may involve using a functi~n to express the types of data that

are required.

For example, in playing bridge a player receives the set of

cards shown in Figure 2.1.1.

spades

hearts

diamonds

clubs

9 5 3 2

A Q 9

K J 7

K Q 6

Figure 2.1.1 An opening hand in bridge.

From this he can build up a frame of known facts such as those

shown below.

division of suits 4 spades, 3 hearts, 3 diamonds, 3 clubs

honour points 15

suit strength no biddable suits

quick tricks 3

playing tricks 2

balance well balanced

Figure 2.1.2 Analysis of bridge hand.

8

In searching for an opening bid, he has to match up the various

conditions that are required for each bid.

(which this hand fits), the conditions are

For a 'prepared' bid

(i) the distribution of the suits is 4-3-3-3

(ii) the longest suit is not biddable

(iii) the honour points are from 15 to 19.

The matching problems outlined above are demonstrated in this

example. Only certain slots are relevant to the match, in this

case, the division of the suits and the honour points. Also, the

honour points have to be within a certain range while the suit

distribution has to be of a certain type. More complicated

requirements are demonstrated by the need to define what is

'biddable' by a function. The FRL frame devised for the prepared

bid in the Bridge System is given in section 2.2.

Another example is the problem of bird recognition. Here, a

description of an unknown bird is built up from characteristics

observed in the field. A typical field description of a bird is

shown in Figure 2.1.3.

-medium-sized bird

-found in the Wairarapa, near a marsh in open farmland

-the bird is mainly bluish, and has a prominent crimson bill

-laboured take-off with dangling legs during flight

-food consists mainly of plants and insects

Figure 2.1.3 Field description of a Pukeko.

9

To find out which bird fits these field observations, the bird

watcher has to search through a list of known bird descriptions.

The description for a Pukeko is shown in Figure 2.1.4. Reference

[Marshall, Kinsky and Robertson, 1972].

This example also demonstrates the problems outlined above.

Only certain features of the bird are given in the field

description. Each feature of the bird is expressed by different

types of information. For example, the size of the bird may be

stated as being small, medium or large, or as the actual size in cm.

Features such as appearance and behaviour that are expressed by

English descriptions require more complicated matching functions.

The FRL frame devised for the Pukeko in the Bird Recognition System

is given in section 3.3.

Another problem with matching frames occurs when the result of

a match is indeterminate. In the Bridge System where the problem

was restricted to finding an opening bid, the problem of unknown

information does not arise. However, in the Bird Recognition

System, gaps may occur in the field decription of a bird, and it is

often necessary to match incomplete information.

There are various sources that might lead to an indeterminate

match :

1. Missing slots in either of the two frames being matched;

2. Incomplete description for a slot value;

3. Indeterminate result because of the matching function.

Field Characteristics:

-size 51 cm.

-bright blue and black.

-red bill, frontal shield and legs

-often flicks tail to show prominent white under tail coverts

-runs fast, is a reluctant flier, flying heavily with dangling
legs.

Distribution and Habitat:

-throughout New Zealand

-marshes, swamps, lagoons, lakes, riverbanks, with raupo and
scrub cover

-often seen in open near wetlands

-feeds on wide variety of plant matter, snails, insects,
sometimes eggs of other ground nesting birds

Figure 2.1.4 Known characteristics of a Pukeko.

10

In the Bird Recognition System, for example, many of the

features of the bird such as nest location and number of eggs found

in the nest may not have been included in the field observations.

Also, the descriptions of some of the features such as appearance

may also be incomplete with only a general description such as

"yellow bill, black body" being given. Therefore, it is necessary

when designing a matching scheme to take into account the effect of

unknowns.

11

2.2 Use of $REQUIRE facets in Generic Frames.

Since frame matching is an integral part of a frame system, it

is necessary to express the information relating to the matching

within the frame itself. It is also important to have a general

matching format that provides a straightforward and understandable

means of describing a wide range of information.

Within the FRL structure, one method of matching frames is to

use the $REQUIRE facet in a generic frame to express the conditions

for the matching of each slot. The values related to each slot

within the generic frame become expressed by functions or predicates

which are evaluated by the matching procedure and return true, false

or unknown depending on a successful match. The generic frame

matches with an individual frame if all the requirements within the

frame evaluate to true.

For the slot functions to be completely general and independent

of the frame being matched, the source of the information needs to

be specified within the matching conditions themselves. This is

done by using the global variables :FRAME, :SLOT and :VALUE which

contain the names of the frame and slot, and the slot values being

matched. These variables can either be passed directly as explicit

parameters, or be used implicitly within the functions themselves.

The FRL structure for a 'prepared' frame is shown in Figure

2.2.1.

(deframe prepared-frame
(ako

($value
(hand)))

(division-of-suits
($require

((and (null (biddable-suit))
(division (4 3 3 3))))))

(honour-points
($require

((points (from 15 19)))))

Figure 2.2.1 Frame definition for a prepared bid in bridge.

12

Each of the $REQUIRE facets in the frame shown are expressed by

functions with the data being passed directly as arguments. Each of

'biddable-suit', 'division' and 'points' are separate functions

which return true if the relevant information obtained from the

':FRAME' frame matches. The functions access the information being

matched implicitly by referencing the global variables :SLOT and

:VALUE.

The advantages of this matching system are many. By using

functions to express the matching conditions, the full expressive

power of Lisp can be employed. The problems outlined above in

Section 2.1 are all easily overcome, and it is also possible to have

understandable and readable slot values in the frames by the use of

suitable function names. The knowledge within the frames is

increased greatly since ideas may be considered as functions anyway.

One disadvantage of this system is the need to specify the

source of the information to be matched within the conditions

themselves through the use of global variables which produce less

readable expressions. Another problem is that the frames being

matched are not of the same structure, one frame being a generic

description and the other being more specific, when in fact it would

13

be easier to describe the two frames being matched using the same

format. Further, the matching functions and the data being matched

have to be specified together within the requirements, and therefore

are not independent of each other.

This method of matching was used to find the opening bid in the

Bridge System. However, for the Bird Recognition System, a

different method was devised for two main reasons

1. To separate the matching process from the data being matched;

2. To describe the frames being matched using the same format.

2.3 Defining an Alternative Matching Scheme.

An alternative matching scheme, similar to that

Rosenberg and Roberts [1979] is described below.

specifying the matching requirements in a generic

proposed

Instead

frame to

by

of

be

matched against an individual frame, the matching functions could be

defined separately in a generic frame common to both of the frames

being matched. That is, the two frames being matched are instances

of the same generic frame and are linked to it through the AKO slot.

The matching functions supplied in the generic frame would be

separate from the $REQUIRE facet which would be used to specify the

generic or global constraints for each slot, such as a list of valid

words or a range of values. These constraints could also be used to

provide help for a user in an interactive environment.

14

To perform the matching of the individual frames an FMATCH

command would be added to the FRL language and would require only

two parameters, the names of the frames to be matched. The primary

task of this command would be to match the slot values of each frame

by using matching functions that return true, false or unknown

depending on the match.

Only those slots that occur in both frames are included in the

match. This means that not all of the possible characteristics

listed in the generic frame need to be included in the individual

frames themselves. Hence, generalised frames with only one or two

slots can be matched against other generalised frames or against

more specific frames that include most of the characteristics.

The FMATCH of the two frames would return the following

possible results

true if at least one slot match returns true,
and none return false

false if any of the slot matches return false

unknown if all the slot matches return unknown.

(In FRL, the logic values 'false' and 'unknown' are equivalent to

the atoms NIL and ? respectively. The logic value 'true' is

equivalent to the atom Tor ans-expression which is not NIL or ?.)

The method of specifying the matching functions for each slot

in the generic frame is outlined below.

15

2.4 Using $MATCH Facets to Specify the Matching Function.

The matching functions for each slot in the generic frame could

be expressed by using a $MATCH facet that would specify the name of

the match function. The match function would require two arguments,

supplied by the FMATCH command during the matching process, and

would return true, false or unknown if the two arguments matched or

not. A major purpose of using the match functions would be to

define the type of information that is to be used by the various

individual frames that are linked to the generic frame. By

specifying when two values match, the match functions in effect

define the range and format of the information being matched, and

therefore define its meaning. The generic frame that defines the

matching functions for each bird in the Bird Recognition System is

shown in Figure 2.4.1.

Using this method means that the frames and the matching

functions can be defined naturally, with the information that is to

be matched being passed as arguments only. The matching functions

can also be defined independently of the data in the frames and

provide a means of defining the types of information that is

described by each slot. A sample bird described using this generic

frame is given in section 3.3.

By allowing LAMBDA definitions as an alternative description of

the function defined in the $MATCH facet, the flexibility of the

matching system can be improved even further. For example, an

alternative method of defining the 'size' slot in the generic bird

frame in Figure 2.4.1 is shown in Figure 2.4.2.

(deframe bird
(instance

)

)

(size

($value
("black swan")
("paradise duck")
("pukeko") •••

($match
(estimate)))

(appearance
($match

(appearance)))
(distribution

($match
(district)))

(habitat
($match

(same-nouns)))
(food

($match
(same-nouns)))

(flight
($match

(noun-description)))
(behaviour

($match
(noun-description)))

(breeding
($match

(season)))
(nest-material

($match
(same-nouns)))

(nest-location
($match

(location)))
(number-of-egg's

($match
(number)))

(egg-colour
($match

(noun-description)))

16

Fig. 2.4.1 Generic frame definition for the Bird Recognition System.

The two arguments des~ribed in the lambda definition correspond

to the two values being matched between the frames. The matching

function shown assumes a definite order in the information being

matched; that is, the first argument passed to it is either

'large', 'medium' or 'small' and the second argument is a number.

(size
($match

(lambda (guess size)
I* Returns T if the GUESS (large, medium or small)
/* corresponds to the actual size in cm.

(cond
((equal guess 'small)

(lessp size 26)
)
((equal guess 'medium)

(and (greaterp size 19) (lessp size 56))
)

(t (greaterp size 50))

17

Figure 2.4.2 Lambda definitions used to define the match functions.

The reason for this is that in the Bird Recognition System, the two

frames being matched are the general field descriptions of the bird

against the specific description of a bird and hence the matching

functions can be used to define the meaning of the first frame in

terms of the other. A more general match function could allow for

any ordering of the information and would in effect be defining the

meaning of the information specified by the slot in all the

individual frames described by the generic frame.

One problem with using this system is that the matching

function to be used is restricted to the one defined in the generic

frame. In some cases, it can be difficult to define a function that

can cater for all the different slot values since some values are

unique or it can be much easier matched by other functions. For

example, most birds have only one predominant size, but for the

pheasant, the male is considerably larger than the female. Another

example occurs in a bird's habitat, where for some birds it is

easier to describe the habitats that a bird does NOT live in than to

list all those that it does live in.

18

This problem can be overcome by adding an individual $MATCH

facet for those slots where the value requires a special match

function. The function defined in the generic frame can then be

regarded as the default function which is used when no $MATCH facet

occurs within the frame. Hence, the 'size' slot for a pheasant

could be defined as shown in Figure 2.4.3.

(size
($value

((male 80 female 60)))
($match

((lambda
(or

(guess sizes)
(estimate guess (get sizes 'male))
(estimate guess (get sizes 'female))))

Figure 2.4.3 Use of the $MATCH facet to define a special match
function for the two different sizes of a pheasant.

In the matching process, the size of the bird will then be

matched against the two possible sizes of the bird obtained from the

$VALUE facet.

Similarly, the 'habitat' slot for the harrier could be defined

as in Figure 2.4.4 below.

(habitat
($value

((forest alpine)))
($match

(different-nouns)

Figure 2.4.4 Use of the $MATCH facet to allow a simpler description
of the habitat of the harrier.

In this case, the matching function will match all those nouns which

are NOT contained in the $VALUE list, and means that the bird is

found in any habitat except in forest or alpine conditions.

More complicated frame matching schemes

implemented within this structure. Sub-frame

accomplished by specifying FMATCH as the matching

$MATCH facet with the names of the frames

arguments. Further, if the information in one

19

can easily be

matching can be

function in the

being passed as the

of the frames is

contained in a list whereas in the other frame it is contained

within a sub-frame, then the required matching function can be

defined using the list as the first argument and the name-of the

sub-frame as the second argument. For example, this occurs in the

bird recognition frames defined in Figure 2.4.1 where the bird

watcher's description of the bird's appearance needs to matched

against the precise description of the bird listed in a subframe.

Even more complicated matching of frames, where it is necessary to

match different combinations of the slots using or and and

conditions, can best be developed in a manner described in section

2.6.

2.5 Improving the Matching Structure using $IF-MATCHED demons.

An important feature of using $MATCH facets to specify the

matching function is that the design of the matching process may be

done indepenaently of how the information in the knowledge base is

structured. The problem of matching two separate frames of

information simply becomes one of building up a library of functions

that require only two parameters of information and perform the

matching of the various types of information that may occur. These

functions can easily be improved at any stage.

20

However, to achieve this goal, any desired effects of the match

(such as displaying a message in a trace of the match) has to be

separated from the matching process itself. This can be done by

using $IF-MATCHED demons which are activated whenever the slot

values are matched. An $IF-MATCHED facet would be added to the

relevant slots, and would specify the function to be used when that

particular slot is matched. The two slot values could be passed as

arguments directly to the function in a similar manner to the $MATCH

functions. The function could also access the information relevant

to the match by using global variables that are bound during the

matching process. The variables :FRAME1 and :FRAME2 could be set to

the names of the frames being matched, :SLOT to the name of the slot

and :MATCH to the result of the match. These variables could also

be used within a $MATCH function if information other than the slot

values were required in the match.

For example, in the Bird Recognition System, Figure 2.5.1 shows

how an $IF-MATCHED demon may be used to indicate to the user of the

system whether the distribution of the bird matches the description.

The above function is used to print a message whenever the

distribution slot of a bird is matched. The global variable :MATCH

is used to indicate the result of the match; :FRAME2 is the name of

the bird being matched against.

The usefulness of the $IF-MATCHED demons is not limited to

producing a trace of the matching process. A more complicated

matching scheme may involve updating an associative network by

adding a link to other frames, or adding or removing the information

gained from the match to a short term memory that controls the.

(defun show-district (district1 district2)
/* Prints a message if the DISTRIBUTION slot is matched.

(cond
((true : match)

(prin1 '"The 11)

(print-name :frame2)
(prin1 111 is usually found in 11)

(print-names district2)

21

(print 111 which matches with where the bird was found.")
)

((null : match)
(prin1 '"The bird cannot be the 11)

(print-name :frame2)
(prin1 111 which is usually found in 11)

(print-names district2)
(print ,11.11)

Figure 2.5.1 $IF-MATCHED demon for the distribution slot of a bird.

search. Another application could be to direct the search to

another part of the frame system if the search fails or succeeds.

Like the $IF-REMOVED, $IF-ADDED and $IF-NEEDED demons, the power of

the language is improved by attaching procedures to the data stored

in the frames.

2.6 Using the MATCH Slot to Specify the Frame Match.

A limitation of the matching scheme described above is that all

the slots in the frame must match before FMATCH is successful. In

most applications, this is sufficient because the nature of frames

is to specify a stereotyped situation using a list of slots that

describe that situation. However, in many cases a situation can be

described in different ways which are all equally valid if they

occur. For example, there are two situations for which a 2 clubs

bid is an appropriate opening bid - when the honour points of the

hand are above 22 or when the quick tricks are above 4. Within the

22

current frame format, it would not be possible to describe this

situation by a unique frame. Therefore, it is necessary to devise

some method of specifying alternatives in the match and also of

specifying how the information in the frame is to be matched.

This information could be specified in a MATCH slot added to

the description of the frame. The $VALUE facet of this slot would

be used to describe the logical combinations of other frames that

must match before the current frame matches.

the

This could be done by

names of the other specifying.£!:., and and not conditions of

frames within the slot value. For example, the 2 clubs bid

situation described above could be defined as shown in Figure 2.6.1.

In the frame shown, the 2 Clubs frame will match if either of

the two frames 'high-points-hand' or 'high-tricks-hand' match. Note

that in this example there are no other identifying slots in the

frame which would also have to be matched if they were there. This

method of specifying the match is particularly useful in describing

conditions that should NOT occur if the frame is to match.

Consequently, certain frames can automatically exclude the matching

of other frames by using cross references to each other.

The first task of the FMATCH command must now be to check

whether the frame match conditions specified in the MATCH slot are

satisfied, and then to match the remaining slots in the frame if

they are. So that common frames are not repetitively matched when

the result is already known, a global list of results of the frame

matches, called :MATCH-RESULTS, needs to be kept. This list could

be a property list of frame names which contains a further list of

frame names and the results of the matches between the respective

(deframe 2-clubs-hand
(match

($value
((or high-points-hand high-tricks-hand))))

(bid
($if-needed

(1 (2 clubs))))

Figure 2.6.1 Definition of 2 Clubs hand using the MATCH slot.

23

frames. This list can be automatically updated the first time two

particular frames are matched and accessed whenever they are matched

at any subsequent time.

A major advantage of this system is that it is easier to define

frames in terms of other frames which are more generalised or occur

more regularly. Also, it is easier to describe complicated

situations by using cross references to other frames. A substantial

saving in the matching of the frames may also be possible because

the frames are in effect matched only once.

Once the frame has been matched, it is often necessary to

perform some task as a result of the match. This can be achieved by

attaching an $IF-MATCHED facet to the MATCH slot. For example, in

the 2 Clubs frame described above, the $IF-MATCHED facet could be

used to indicate the bid for the frame instead of using a separate

BID slot. Alternatively, the $IF-MATCHED facet could be used to

display a message which indicates the result of the match.

The LISP definition of the FMATCH command defining the frame

matching scheme described above is listed in Appendix A.

24

3 STRUCTURING FRAMES FOR SEARCH.

3.1 Different Frame Structures.

An important feature of any knowledge base is the ability to

locate relevant information quickly and efficiently. In a knowledge

base consisting of frames, the searching of individual frames that

match a certain criterion can be improved by using different

structuring techniques.

below.

Linear.

A summary of various structures is given

Each case or situation in a problem is represented by an

individual frame in the knowledge base. The frame contains the

features or slots that describe that situation. The linear

structuring involves each frame being tried separately for a

successful match.

Set.

The linear system can be improved by grouping common features

in general set frames. By describing those frames that match or do

not match each set frame, a smaller subset of the knowledge base can

be obtained to improve the search.

Hierarchical.

Another method is to structure the knowledge base as a

hierarchy or tree. Key features of each situation are placed at

higher levels of the tree and these are tested first in order to

25

narrow down the search.

Network.

The network structure consists of linking frames by using

references to other frames. In a search through the network, if a

fit fails then the current frame indicates which one to try next.

Alternatively, other frames in the network may have to be searched

before a frame can be matched.

Sample frames devised for each type of structure are listed in

Appendix B. A search trace for each structure devised for the Bird

Recognition System is also listed in Appendix D.

3.2 Searching Strategies.

The structure of the knowledge base determines t·he type of

searching strategy that is employed. Depending on the structure

used, the individual frames in the knowledge base would contain

further slots that indicate how to proceed with the search. These

are described in greater detail for each structure in the following

sections.

However, a further consideration independent of the various

frame structures is the problem of multiple frame matches where more

than one frame may be suitable for a given match. The method used

to distinguish between these multiple matches is an important

consideration in evaluating the efficiency of the frame structure.

26

A 'first fit' method involves searching through the frame

structure for the first successful match. Any further searching is

immediately stopped and the first frame is returned. The problem

with this method is that the frame returned may not be the best

possible match. The advantage is that further searching of the

knowledge base is not required. In some applications, any match may

be sufficient and hence the first fit strategy can be used.

However, it may be necessary to find all of the matches within

a knowledge base. This involves a further problem of choosing which

is the best frame amongst those that matched. In bridge bidding,

for example, there may be various alternative opening bids for a

hand that are feasible, but only one of these may be suitable. It

is possible to allow for a more precise description in the frame to

be matched so that the first fit method can be used, but this

involves a trade off between generality of information and searching

efficiency. Another possibility is to rank the alternatives, either

by assigning a ranking to each frame or by having the matching

process return information about how 'good' the match was (for

example, the number of slot matches that returned true).

The problems involved with these different strategies are

described in length along with the description of each frame

structure following. The problems associated with ranking frame

matches is also discussed as an area for further research in Chapter

6.

27

3.3 Linear Structure.

The linear system is the simplest of the searching strategies.

It involves describing each situation in the knowledge base by an

individual frame with each frame being tried in succession until one

matches. The order that each frame is matched is fixed. Diagram

3.3.1 below illustrates the structure of a linear frame system.

-11-Q
White-faced

Heron
Bittern Black Swan Rook

Diagram 3.3.1 Linear structure for the Bird Recognition System.

Each frame contains a list of slots that describe the situation

that the frame represents. A successful match occurs only if the

frame FMATCHes with the opposing frame.

An example of an individual frame using a linear structure in

the Bird Recognition System described in section 2.4 is shown in

Figure 3.3.1 below. Each slot in the frame shown describes a

different feature of the bird. No links to any other frames are

required. The AKO slot is used for inheriting

information related to the frame.

the generic

The search through the knowledge base can be achieved by

defining the order that the frames are matched in the generic frame.

In the Bird Recognition System, the linear ordering is described by

the list in the INSTANCE slot of the generic BIRD frame. Each frame

in this list is matched one after the other. If a first fit

(deframe "pukeko"
(ako

($value
("bird 11)))

(size
($value

(51)))
(appearance

($value
("pukeko appearance")))

(distribution
($value

(11 new zealand")))
(habitat

($value
(marsh) (lagoon) (lake) (river)))

(behaviour
($value

28

((walk (jaunty) run (fast) swim (comfortable)))))
(flight

(food

($value
((take-off (laboured) feet (dangling)

flight (strong)))))

($value
(plants) (snails) (insects) (eggs)))

(breeding
($value

((august to november))))
(11 nest material"

($value
(sticks) (rushes) (grass)))

("nest location"
($value

((in (vegetation marsh)))))
("number of eggs"

($value
((4 to 8))))

(11 egg colour"
($value

((mainly (red cream) spots (red brown)
blotches (purple)))))

Figure 3.3.1 Example of the frame description of a bird in the
linear system.

searching strategy is required, then the searching would stop when

the first frame in the list matches. Consequently, for a more

efficient search, the most likely frames should be placed at the

beginning of the list. Alternatively, it might be more appropriate

to rank the frames with the more important frames being at the

29

beginning of the list. This was done for the Bridge System so that

the more relevant bids such as 2 clubs and 2 no trumps would be

matched first. For a match all searching strategy, all the frames

described in the list are tested and the names of those that matched

are returned.

The advantages of this system are that the frame structure is

simple and easy to set up. Each frame describes an individual

situation with no relation to other frames. However, if there are

many frames in the knowledge base, or if there are many generalised

slot values within each frame that will match a large number of

other frames, then this system can be inefficient for searching

purposes. For a first fit strategy, the average number of tries is

1/(1+n) where n is the number of fits in the system and this may not

be noticeable if the number of frames in the system is small.

However, for a match all strategy the search requires that all the

frames are matched.

3.4 Set Structure.

The set frame structure uses the properties of sets such as

union and intersection to narrow down the search space required in

the linear system. By identifying key slots in the knowledge base,

sets of the most likely and unlikely frames may be constructed for

the search.

30

The information relating to these sets can be grouped in

general 'set' frames which are separate from the list of frames used

for the linear system.

slots :

1. INSTANCE slot.

These set frames contain three types of

Contains the set of frame names that positively match the

frame.

2. REJECT slot.

Contains the set of frame names that can definitely be

rejected from the search.

3. Identifying slots.

Describe the features of the frame.

For example, some set frames defined for the Bridge System are

shown in Figure 3.4.1. The frames shown describe those sets of

hands that have an average or low honour point count. Diagrams

3.4.1 and 3.4.2 illustrate the features of the set structure.

By matching each of the slots in the frames shown in Figure

3.4.1 a large number of frames can be automatically rejected from

the search. Set frames may also be rejected from the search by

including the names of other set frames in the REJECT slot.

The searching procedure requires that all the set frames are

matched with two global sets constructed that contain the set of

frames to search and the set of rejected frames. Only if a set

frame matches are the frames in the INSTANCE and REJECT slots added

to the respective global sets. After the last set frame has been

processed, the most likely frames can be returned by removing any of

(deframe average-points-hands
(instance

($value
(1-of-suit-frame)))

(reject
($value

(light-opening-frame) (two-no-trumps-frame)
(two-clubs-1-frame)))

(honour-points
($require

((points (from 12 19)))))
)

(deframe low-points-hands
(instance

($value
(light-opening-frame) (pre-emptive-frame)))

(reject
($value

(1-of-suit-frame) (4-4-frame) (4-4-4-1-frame)
(one-no-trumps-weak-frame) (prepared-frame)
(two-clubs-frame) (two-no-trumps-frame)
(strong-two-frame)))

(honour-points
($require

((points (below 12)))))

Figure 3.4.1. Two set frames used in the Bridge System.

31

the rejected frames from the set of frames to search. These frames

can then be searched on the same basis as the linear system.

For this system to be reliable, it is necessary that the final

set that is returned contains the names of all the frames in the

knowledge base that could possibly match. However, this does not

mean that all the frames that match a certain set frame need to be

placed in the INSTANCE slot. If this were so, then the

effectiveness of the system would be reduced since too many frames

would be added to the final set. For example, most bidding hands

match the 'average-points-hands' set frame above, but it is

necessary that only the 1 1-of-suit-frame' be included in the

INSTANCE slot because each of the possible bids are indicated by

other set frames.

AVERAGE POINTS

HIGH

POINTS

8
8

strong
two

2

stron
two

1

8

8

NOT LOW POINTS

8
equal
suits

NOT HIGH POINTS

@
LOW POINTS

NOT AVERAGE POINTS

Diagram 3.4.1 Venn diagram of part of the Bridge set system.

32

33

search sets reject sets

* unequal suits

* equal suits

* 6 4 points

low points~: pre-emptive

light opening

* of suit

points/* average 4 4

* 4 4 4 1 average points

* 1 no trump weak

* prepared

points~:
2 no trumps

2 clubs

high 2 clubs 2

~· strong two 1

strong two 2 *

Diagram 3.4.2 Alternative representation of Diagram 3.4.1.

One disadvantage of this system is that it can often be

difficult to recognize key slots in the knowledge base which can

produce the most efficient rejection of the search space. This

requires a careful balance between the time it takes to process all

the set frames in the system and the size of the set that is finally

returned. The extra overhead involved in matching the set frames

can mean that this system is inefficient if the number of slots in

the knowledge base is small and a first fit searching strategy is

required. However, this system can offer a big improvement in

search time if a match all strategy .is required because a large

34

number of frames have automatically been rejected from the search.

The advantages of the linear system also apply here since the set

system uses the same frame structure for specifying individual

frames.

3.5 Hierarchical Structure.

The hierarchical system involves setting up the knowledge base

as a tree structure with key slots being grouped at higher levels of

the tree. If these slots do not match at the higher level, then the

whole sub-tree may be rejected from the search.

A node in the hierarchical system has 3 features

1. A list of subframes using the INSTANCE slot. This list would

contain the names of the 2 sub-nodes if a binary tree structure

was required.

2. The name of the parent frame using the AKO slot. This means

that the knowledge at higher levels of the tree can be inherited

and need not be represented within the node itself.

3. The identifying characteristics of the frame such as honour

points and suit distribution in bridge.

An example of a sub-tree of the bridge tree system is given in

Figure 3.5.1 below. The frames shown represent the 1 4-4-suits'

sub-tree which has two sub-nodes, the '4-4-4-1-tree' and the

1 4-4-tree'. The overall structure of the bridge hierarchy is

illustrated in Diagram 3.5.1.

(deframe 4-4-suits-tree
(ako

($value
(equal-suits-tree)))

(instance

)

($value
(4-4-4-1-tree)
(4-4-tree)

(division-of-suits
($require

((biddible (suits (4 4))))))
(honour-points

($require
((points (above 12)))))

(deframe 4-4-4-1-tree
(ako

($value
(4-4-suits-tree)))

(division-of-suits
($require

((division (4 4 4 1)))))
(bid

($if-needed
(4-4-4-1-bid)))

(deframe 4-4-tree
(ako

($value
(4-4-suits-tree)))

(bid
($if-needed

(equal-suits-bid)))

Figure 3.5.1 A sub-tree in the bridge bidding tree.

35

The sub-tree shown describes all those hands which have at

least two four card suits. Knowledge at higher levels such as

'equal-suits' is assumed at lower levels of the tree through the AKO

link. Notice that the '4-4-tree' has no identifying characteristics

because of this.

36

opening tree
I

1 of suit ----- ~
equal suits unequal suits
~ ~ _,,,/' ~

4 4 suits other equal two suits one suit

I \ suit;:; ;· \ I ~ / _
4 4 4 1 4 4 equal long low points other 6 4 1 suit one long

suits equal suits two suits suit

Diagram 3.5.1 Hierachical structure for 1 of suit bids in the Bridge
System.

The searching through the tree is conducted on the same basis

as a binary tree search. If at any stage of the search a node does

not match, then the entire sub-tree may be rejected. The search

continues down the tree until a terminal node matches; for the

first fit strategy, the search immediately stops. If all the

matches in the tree are required, then the rest of the tree is

searched until all the nodes at any one level of the tree have been

either matched or rejected. If the tree is reasonably balanced,

then the search provides a very efficient search for both first fit

and match all stategies since large parts of the search can be

rejected at higher levels of the tree.

The major problem with this system is that the frame structure

can often be difficult to set up. To obtain a balanced tree, it is

necessary to organise the tree efficiently with the search being

split in half at each node. Alternatively, an unbalanced tree can

be constructed where the frequencies of the different properties are

taken into consideration, with the most frequent properties being

placed at higher levels of the tree. It may be possible to do this

automatically, as in the Bridge System, for example, where the

frequencies of each type of hand are already known.

37

It also can be difficult to structure the frames that make up a

tree because it requires common features to be placed at higher

levels of the tree. Often there is no connection between frames or

it may become necessary to match odd frames that fit a certain

requirement but are special cases at a lower level. This means that

more branches in the tree have to be created, with a greater number

of slots to be matched and consequent slower search time.

Another disadvantage is that the tree structure is not very

flexible. Any additions or alterations may be difficult to

implement within an existing tree and may require major changes or

lead to further inefficiences in the search.

3.5.1 Search Tree

To overcome thes~ difficulties, the hierarchical structure

can be used solely for describing the search through a frame

system with the actual description of each specific frame being

separate. This means that, like the set system, the description

of the search is independent of the individual frame

descriptions, and therefore may be developed separately. The

INSTANCE slot in the terminal nodes of the separate 'search tree'

now contains the names of the relevant individual frames.

Information about the individual frames may still be inherited

through the AKO slots in the search tree. For example, part of

the search tree designed for the Bird Recognition System is shown

in Figure 3.5.1.1 below. The structure of the Bird search tree

is also illustrated in Diagram 3.5.1.1.

(deframe "small white bird"
(ako

($value
("other small bird")))

(instance

)

($value
("red faced bird")
("not red faced bird")

)

(appearance
($value

((mainly (white) body (white) underparts (white)
upperparts (white)))))

(deframe "red faced bird"
(ako

)

($value
("small white bird")))

(instance

)

($value
("welcome swallow")
("goldfinch")

(appearance
($value

((face (red) throat (red)))))

Figure 3.5.1.1 Two frames in the bird search tree.

38

In the two frames shown, "small white bird11 and "red faced

bird" are both nodes in the search tree, whereas "welcome

swallow" and "goldfinch" are separate frames that describe

individual birds. Note that it is often necessary to include the

name of an individual frame in several terminal nodes of the

search tree if that frame satisfies more than one pathway of the

tree. This is to ensure that all the possible individual frames

are searched.

This search method allows for a greater flexibility in

designing the frame system since the search and the individual

frame descriptions may be designed separately. Also, the

habitat= not Sma II Land
near water Bird --------·

Other Small
Bird

39

appearance:
white on body

Small White
Bi rd

NOT Sma II White
·Bird ________ ,,....._

face /throat Red Faced
= red Bird

Welcome Swallow

Goldfinch

NOT Red, Faced
Bird

Sky·lark

Fern bi rd

Grey Warbler

Sang Thrush

Diagram 3.5.1.1 Structure for the Bird search tree.

40

efficiency of the search may be improved since fewer nodes of the

tree have to be defined. However, once the tree has been

searched, there is the further need to match the relevant

individual frames. To off-set this, the size of the search tree

can be designed to take into account the trade-off between having

a small search tree and having fewer individual frames to search.

A major limitation of the hierarchical approach (for both

structures outlined above) is the effect of unknowns on the

efficiency of the search. An ideal hierarchical structure will

partition the search into two or more equal and disjoint sets at

each level of the tree. Less than ideal situations include

lop-sided partitions and situations where a particular slot is

not present in some frames or the match function returns unknown.

There are two consequences of unknowns that affect the

efficiency of the search :

1. Terminal nodes of the tree for which the partition at a

certain level is unknown have to be included in all the

sub-levels of the tree.

2. If the matching of a frame returns unknown at a certain

level, then all the sub-levels of the tree have to be searched.

For a system such as the Bird Recognition System where much

of the information being matched is unknown, careful

consideration has to be taken in designing the descriptions at

each level of the tree. By using common features in the

descriptions such as appearance and size, the problems of

multiple occurrences and the need for extra search can be

lessened.

41

3.6 Network Structures.

A fourth method of structuring frames is to set up the

knowledge base as a network. Each frame is linked to other frames

by association paths with the information indicating which frame to

try next being stored within the frame itself. Hence the pathway

through the network a search takes is not fixed like the linear

system but is dependent on the data within the frame being matched.

And unlike the hierarchical system, the structure of the knowledge

base is not constrained within a fixed format, allowing new frames

to be added without any alteration to the existing structure.

There are various problems in designing network frame

structures. One problem is to decide where to start the search

since each node in the network is equivalent. Another problem is

ensuring that the search of the network is systematic so that all

the relevant nodes in the network are tried. A third problem is the

problem of cycling, where the search keeps following the same

pathways through the network. These problems are discussed below in

relation to the various network structures devised.

The advantages of the network system are its flexibility and

relative ease to set up. The network system can be expanded or

altered quickly simply by adding a new node in the network or by

changing an existing one. The system is also relatively

straightforward to set up since the description of each frame is

essentially independent. Another important feature is that the

associative links in a network seem to correspond to human thought

processes unlike other systems such as tree structures.

42

3.6.1 Slot network.

Since the only extra information needed to set up the

network is the pathway the search takes through it, the frames

can be set up in a similar fashion to the linear system. The

links to further frames in the network can then be added as a

list of names with the most likely frame being the first in the

list.

There are two different methods of associating this list

with the information contained in the frame. One method is to

add to each frame a further SEARCH slot that contains the list of

further frames to try. Therefore, the list is linked with the

frame overall, with the searching through the network being done

on a frame basis rather than at the slot level. However, this

means that the whole frame has to be matched and does not take

into account the information learnt from the slots which matched.

It also means that the search could be just as inefficient as the

linear system since the path in most cases would be fixed, except

for very large knowledge bases.

The second method is to associate the set of names with the

slots themselves. This can be done by having two facets for each

slot

1. $value the value of the slot

2. $search the set of frame names associated with the slot

which indicates the most likely frames to search if a match

of the slot value failed. The ordering of the set would

indicate the order in which each frame is tried.

43

The structuring of such a slot network is illustrated in

Diagram 3.6.1.1.

This system provides a method of allowing the search through

the network to be associated with what has been previously learnt

in the search. The ordering of the slots within the frame now

becomes important since second and successive slots can use the

information from the first slot being matched. By also

specifying only those frames which are closely associated with

the current frame in the $search set, the search can be guided

throughout the network so that similar groups of frames are

matched together.

Two examples of nodes in a bridge slot network are given in

Figure 3.6.1.1 below.

The slot values of the two frames described are the same as

used for the linear system. Associated with each slot, however,

is the set of nodes in the network that are linked to the current

frame. For example, the set of nodes linked to the

'honour-points' slot in the 'prepared-node' frame consists of two

nodes the 'one-no-trumps-weak-node' and the

'two-no-trumps-node'. This set would only be required in the

search if the first slot in the frame matched while the second

slot failed since the search is immediately directed to a new

node if any match fails. Hence, the nodes in the specified set

can use the information gained from the first match to direct the

search.

44

Opening
Node

Points>= 9

Division not 4333
I Prepared.I

or biddible

,i,
biddible

1 of suit 1 Not J tNT weak r--I I

Biddible, points< 12 or> 19

.

'"'
~

Light H2 NT I Opening

y 2 Clubs 2 I
T

Diagram 3.6.1.1 Structure for the Bridge slot network.

(deframe prepared-node
(division-of-suits

($require

)

((and (division (4 3 3 3))
(null (biddible-suit)))))

($search
(1-of-suit-node))

(honour-points
($require

((points (from 15 19))))
($search

(one-no-trumps-weak-node) (two-no-trumps-node))

(deframe 1-of-suit-node
(division-of-suits

($require
((biddible-suit)))

($search
(prepared-node) (one-no-trumps-weak-node)
(two-no-trumps-node))

(honour-points
($require

((points (from 12 19))))
($search

(two-no-trumps-node) (light-opening-node)
(two-clubs-2-node))

Figure 3.6.1.1 Sample nodes in the bridge bidding network.

45

Notice that the two frames described above are cross-linked

to each other forming a small loop in the network. The problem

of cycling can easily occur in this type of network and it is

necessary that some method is devised whereby the searching of

previously tried nodes is eliminated. The simplest method is for

the searching function to keep a set of names of those nodes that

have al~eady been tried so that if the first node in the $search

set has already been tried then the second and subsequent nodes

in the set will be searched. If all the nodes in the $search set

have been tried then the search of the current path fails.

46

To ensure that the search is systematic, then it must be

possible to reach every other node in the network from the

starting node. This is easy to implement in the system used here

by linking the starting nodes to other common nodes from where

most parts of the network may be reached.

A further problem of efficiency occurs in deciding where to

start the search to obtain the most efficient search through the

network, since the pathways from some nodes may be considerably

longer than others. However, the network can easily be

structured around a common central node which efficiently splits

the search by links to progressively less common nodes. The use

of the $search sets provides an efficient search anyway, since

the search is directed by what has been learnt in previous

frames. The starting node in the bridge network, shown below, is

used to reject a large percentage of the bids by noting that half

of the possible hands in bridge do not have an opening bid. The

set described in the $search set is also ordered with the most

common node given first, and contains all those nodes that cannot

be searched from any other node.

The overall searching strategy through the network is

recursive with the immediate decision about which path to take

being determined from the current slot being matched and its

corresponding $search set. If the current path being

investigated comes to a dead end, then various control mechanisms

can be employed such as depth first, breadth first or even 'best

first' for continuing the search through the network.

(deframe opening-node
(honour-points

($require
((points (below 9))))

($search
(1-of-suit-node) (equal-suits-node)
(strong-two-2-node) (strong-two-1-node)
(one-no-trumps-weak-node) (two-clubs-two-node)
(pre-emptive-node))

47

Figure 3.6.1.2 Starting node for the search through the bridge
network.

As the search is guided by the slots that match, a first fit

strategy can be very efficient. For the match all strategy, the

rejection of nodes from the search is carried out through the

slot values that match, since there is no need to follow any

$SEARCH links. Therefore, the effectiveness of the search is

determined by the slot values that match.

3.6.2 AKO network.

An alternative network structure is an AKO network. The

network consists of individual frames similar to the linear and

slot network structures that express an idea or pattern.

However, each frame does not have to be linked to the same

generic frame and may have different slot names depending on the

idea that the frame expresses. Generalised frames that describe

common features are included in the network, and this information

is inherited by other frames through the AKO slot. For a frame

to match, the whole frame including all of the frames listed in

the AKO slot have to match, and therefore the search through the

network is conducted through the AKO slots. Diagram 3.6.2.1

illustrates the structure of the AKO network.

BIRD

Large Birds

Medium-sized
Birds

Sma II 1;3irds

pukeko
Water Birds

ma Ila rd

pheasant

rook

Land Birds

blackbird

fantail

Diagram 3.6.2.1 Structure for the Bird AKO network.

48

49

The format of a frame in the AKO network requires 4 types of

slots:

1. AKO slot.

This contains the names of the frames that must match if the

matching of the current frame is to be successful. Information

about the frame is also inherited from the AKO frames.

2. INSTANCE slot.

This contains the names of all the frames that satisfy the

conditions described by the current frame. This slot also

provides a list of further frames to try when searching through

the network. The AKO and INSTANCE slots together provide forward

and reverse links through inheritance.

3. REJECT slot.

The REJECT slot contains the names of all the frames that

can be automatically rejected from the search if the current

frame matches. This provides for a similar format to the set

system meaning that the advantages of the set search may apply

and also that a set frame can easily be linked into an AKO

network.

4. Identifying slots.

These slots describe the features of the frame such as

habitat and appearance. For example, Figure 3.6.3.1 below shows

how the Spur Winged Plover is defined in the AKO network for the

Bird Recognition System.

(deframe "spur winged plover"
(ako

(size

($value
("medium sized bird")
(!'water bird")
("colourful billed bird")
("light feet bird")
("light undersides bird")
("slow flight bird")
("South Island bird")
("animal eating bird")
("few eggs bird")
("coloured eggs bird")
("bird")))

($value
(38)))

(appearance
($value

("spur winged plover appearance")))
(distribution

($value
("south island")))

(habitat
($value

(pasture) (crops) (marsh) (coast)))
(behaviour

($value
((walk (sedate) run (nimble)))))

(flight

(food

($value
((wings (white dark) take-off (slow) rump (white)

wingbeat (slow) tail (white black)))))

($value
(worms) (insects)))

(breeding
.($value

((july to december))))
("nest material"

($value
(hollow)))

("nest location"
($value

((in (ground hollow)))))
("number of eggs"

($value
((3 to 4))))

("egg colour"
($value

50

((mainly (muddy green) blotches (purple brown)))))

Figure 3.6.3.1 Frame definition for the Spur Winged Plover in the
AKO network.

51

The frames listed in the AKO slot of the frame shown

describe the kind of general features that the bird has. Each of

these general features are defined by different frames of the

network, and each may have further AKO, INSTANCE and REJECT slots

that are used when searching the network.

The search of the network starts at a point in the network

determined by its goal. The starting node is also a node in the

network, since every node is included in the network structure,

and would itself be a part of a more general search.

For example, if the Bird Recognition System was part of a

larger network of animals, then the goal "Which bird?" would

suggest searching the BIRD node which would then give the general

requirements of what a bird was like. This frame would then

suggest further frames to try for a more specific match. Since

the Bird Recognition System is not part of a larger network, the

identifying characteristics such as "has wings" and "lays eggs"

need not be included in the BIRD node.

The search through the network requires that two list of

frames be kept:

1. search-list - the list of nodes in the network suggested

by the INSTANCE slot that have yet to be rejected from

the search;

52

2. reject-list - the list of nodes in the network that have

been rejected from the search either by the REJECT slot

or a match returning false.

Nodes can be added and deleted from each list depending on

the information found in the search. Alternatively, if the

information in the REJECT slots can be assumed to be correct,

then once a node is added to the reject list it can stay rejected

therefore preventing any cycling that may occur.

The search algorithm consists of first setting the search

list to a list of frames in the INSTANCE slot of the starting

node, and then trying to match the first and successive frames in

the list. There are three requirements for a frame to match :

1. The frame has not been rejected from the search.

2. All the AKO frames match.

3. The identifying slots of the frame match.

Since all the AKO frames must match before the current frame

matches, the searching of the network is conducted primarily

through the AKO slots. The search is also quickly narrowed down

to a specific area by following the AKO slots. For a first fit

search strategy, the search is complete when any of the frames in

the INSTANCE slot of the starting node has been matched

successfully. To find all the fits in the network, the search is

completed when the search list is empty. The problem of

systematic search can therefore be eliminated by ensuring that

all the possible frames that may match are included in the

INSTANCE slot of the starting node.

53

The REJECT slot provides the basic mechanism for rejection

of most of the nodes in the search. Therefore, addition of

general nodes at any point in the network facilitates a quicker

search because of the rejection of the nodes. This means that

general frames that describe certain features or groups of the

network, such as a land bird or an omnivorous bird in the Bird

Recognition System, may be included in the network to improve the

search.

There are two different methods of searching the network.

The first method described above is to match the current node and

then add the nodes indicated by the INSTANCE slot to the global

search list. The second method involves searching the nodes

described by the INSTANCE slot immediately once the current node

has been matched. However, this second method means that the

search through the network is conducted in a haphazard manner

with the search changing direction whenever a new node is

matched. The algorithm for the first method for searching the

network was implemented in the Bird Recognition System and is

listed in the appendices.

There are two ways of improving a search through an AKO

network. The first method involves ordering the frames listed in

the AKO slot so that the most distinct or likely AKO frames are

tried first when matching a particular frame. This is similar to

human thought processes where the most distinct or interesting

information is brought to mind first. The ordering of the AKO

slot was done for the Bird Recognition System to ensure that the

most distinct features such as size and appearance would be

matched first. The second method involves ordering the frames

54

listed in the INSTANCE slot to ensure· that the nodes with the

most distinctive AKO information are tried first.

An advantage of using the AKO network structure is that,

unlike the set system, obscure information (such as birds that

are only found in the North or South Island) are only required

when a particular frame needs to be matched. This means that for

a very large knowledge base, the search efficiency may be

improved by not having to process unnecessary frames. Another

advantage of this type of frame structure is that the frame

system is easy to set up with each frame being separate and

distinct. This means that the frame structure is more flexible,

making it easier to modify an existing system or design a new

one.

One problem with searching through the AKO network is that

the search is controlled only by frames that match and does not

gain any information when a match fails. For example, when a

general frame in the bird network such as a "medium sized bird"

fails to match then further frames such as the "small sized bird"

should be indicated by the frame. A SEARCH slot similar to the

REJECT slot could be added to the frame structure which would

contain the name of the frames that should be searched if the

current frame does not match. However, although this feature

provides an interesting area for future research, it was not

implemented in the AKO network devised for the Bird Recognition

System for three reasons. Firstly, the system being implemented

was not very large, meaning that its effect would be difficult to

ascertain and subsequent matches would turn up the respective

nodes anyway. Secondly, the SEARCH slot would be less

55

straightforward to implement. And thirdly, the search would not

be conducted through the inheritance links but instead through

the SEARCH links (whose effect could be analysed later).

Another problem is that within the existing structure of

FRL, there is no way of expressing a frame that has alternative

AKO frames. This leads to problems when groups of frames in the

network overlap. For example, in the bird AKO network, many

birds are both plant and animal eating birds; similarly, many

birds are medium to small in size, or are both land and water

birds. If all of these features of a bird are included in the

AKO slot, then the bird will fail to match a field description

which includes only one of the features. Therefore, to overcome

this problem, none of the alternative AKO frames can be placed in

the AKO slot. This consequently leads to a reduction in the

search efficiency and also to problems in trying to design or

create the frame. However, additional frames, such as the

"omnivorous bird" and "land and water bird" may be added to the

network which match only those frames for which an overlap

occurs. Alternatively, a method could be devised for defining

the different logical combinations of frames in the AKO slot, and

this is discussed in section 6.1 as an area for further research.

56

3.6.3 Further Network Structures

Further network structures can be designed by combining

features of the other types of structures. For example, if the

number of frames in the knowledge base is large, then the frames

can be grouped into a network of separate frame systems with a

linear search being used to search the individual frame systems.

Alternatively, a set search can be used to determine which part

of the network to search first, and then if the search fails

further sets can be used to determine which parts of the network

to try next. Since the basic structure of a network is to link

relevant nodes together, then the various structures described

above can also be combined together by linking the separate frame

systems into a larger information retrieval network.

3.7 Analysis of the Different Frame Structures.

The above frame structures were implemented for the Bridge

System. All the frame structures except for the hierarchical

structure and slot network were also implemented for the Bird

Recognition System. The hierarchical structure was not implemented

for this system because of the difficulty of categorising the

features of the bird into various separate sub-trees due to the

large number of slots used in each bird frame and also due to the

problems of unknowns. These problems were able to be overcome to

some extent by using a search tree structure. The slot network was

not implemented for the Bird Recognition System because the large

number of slots in each individual frame would mean that a large

number of links would be required, and this would take some time

57

unless done automatically.

The mean number of frame and slot matches for the search of the

various structures using both a first fit and match all search

strategy for the two systems are shown in Figures 3.7.1 and 3.7.2

below. An important point to note when analysing these statistics

is that the number of individual frames used in both the systems is

not large. Only 15 different types of hands are required for the

Bridge System and the Bird Recognition System has a database of 45

birds. Also, the number of examples tried from which the means were

obtained for both systems was not large (about 50), with the actual

selection of the hands and bird descriptions used in the examples

being random. Consequently, the results obtained provide only a

rough guide to the effectiveness of each type of search and a larger

number of frames and examples would be required for a more careful

analysis.

Another important point is the problem of deciding which

statistics to use to compare the searches of the different frame

structures. Two statistics, the number of slots matched, and the

number· of frames matched, were obtained for the various structures.

As the number of slot matches indicates the number of matching

functions that were evaluated, then this statistic is perhaps more

relevant for comparing the different structures. A comparison

between the two statistics shows that on average less than 1.5 slots

are matched per frame. (For the Bridge hierar~hy, this figure is

less than one because of the extra frames required to define the

tree structure). Other statistics, such as comparing the processing

time, or the time spent accessing the information in the frames as

opposed to matching it, were not taken because of the size of the

systems and the difficulty in obtaining the relevant information.

LINEAR SET HIERARCHY SEARCH SLOT AKO
TREE NETWORK NETWORK

FIRST FIT STRATEGY

SLOTS MATCHED

FRAMES MATCHED

MATCH ALL STRATEGY

SLOTS MATCHED

FRAMES MATCHED

12.4

8.5

22.1

15.0

11. 6 6.4

10. 1 1.0

13.1 14.5

11. 0 19.0

8.0 6.4 8.7

7.6 3.9 6.0

14.2 16.2 16.8

11. 4 11 • 5 12.7

Figure 3.7.1 Mean search statistics for the different Bridge
structures.

FIRST FIT STRATEGY

SLOTS MATCHED

FRAMES MATCHED

MATCH ALL STRATEGY

SLOTS MATCHED

FRAMES MATCHED

LINEAR

53.0

31.4

78.4

45.0

SET

36.1

34.3

45.2

37.0

SEARCH AKO
TREE NETWORK

18.5 22.7

14.7 18.4

27.0 48.2

25.9 34.3

Figure 3.7.2 Mean search statistics for the different Bird
structures.

58

The following summary of the effectiveness of each structure is

made from the statistics shown :

1. The linear structure is the most inefficient structure.

2. The set structure is inefficient for a first fit strategy, but

efficient for a match all strategy.

3. The hierarchical structure provides the most efficient search

along with the slot network for a first fit strategy for the

Bridge System. However, it is less efficient for a match all

strategy.

4. The search tree structure is efficient for

strategies.

both

59

search

5. The slot network structure is efficient for a first fit strategy

but is less effective for a match all strateg.y.

6. The ako network structure is efficient, but less effective than

the search tree structure.

4 IMPROVING THE USER INTERFACE.

4.1 Problems with Interfacing Between the Frame System and

the User.

60

A major problem with any knowledge base is to provide an

adequate interface between the information stored in the knowledge

base and the user. The users of the knowledge base may require

different formats for the information depending on the various

purposes for which the information is intended. They may also

require different operations such as searching and updating to be

performed on the data as well. Therefore, a presentable and easy

to work with interface has to be provided for all the various types

of users that are likely to use the system.

The types of users of a knowledge base may be categ9rised into

three main groups

1. the programmer;

2. the expert;

3. the primary user.

The programmer wishes to use the knowledge base at the lowest

level where the information is stored in the programming language

format. The operations that are required are those that are

associated with the maintenance and update of the database, and are

provided by the programming language.

61

The expert needs to be able to create and modify the

information in the knowledge base in the form that he is familiar

with, whether it be scientific data, mathematical formulae, or

English descriptions. In many cases, he is unfamiliar with how the

information may be stored on the computer and therefore it is

desirable that the expert works independently of the programmer.

The primary user wishes to refer to the expert knowledge

stored in the knowledge base without having to understand the

complex reasoning or research that has produced it (unless this is

the purpose of the knowledge base). Often the user wishes only to

enter some data and obtain a result.

Each of these three types of users has to be adequately

provided for in a user interface system. Using the existing

facilities available in the FRL language, only the programmer is

supported to any great extent. Following are some of the methods

developed to improve the interface to the expert and primary user.

4.2 Improving the ~resentation by Using $ENTER and $DISPLAY

Facets.

Presenting the information in the format the user requires is

an important feature in the design of a knowledge base. Often the

presentation is designed in an ad-hoc manner when a more structured

approach can simplify the problem to a large extent.

The problem in presentation occurs because the internal

programming representation of the data differs from the format that

the expert or primary user wishes to have. For example, the user

may wish the data to be presented in a table display or as

62

understandable English. If the user is required to enter any data,

the problem of translating the data to the internal format also

arises.

In a frame system, the format required may be different for

each individual slot since each slot can describe different types

of information. This means that for each slot the data has to be

translated both from and to the internal data format. This can

easily be accomplished by using $ENTER and $DISPLAY facets for each

slot to describe how the data is to be entered and displayed to the

user.

The $ENTER and $DISPLAY facets have a similar operation to the

$MATCH faqet. That is, they may be defined in a generic frame

which is linked to the frame being presented through the AKO slot.

Any individual frame may also have its own particular facets which

overide any that were inherited from the generic frame. This

provides a convenient method of presenting special or peculiar

information to the user.

The use of these presentation functions would be provided by

FENTER and FDISPLAY commands added to the FRL language. Each

command would require only the name of the frame to be presented,

similar to the FPRINT command. The FENTER command would FADD the

values entered by the user into the relevant slots of the frame and

hence may initiate IF-ADDED demons. The FDISPLAY command would

access the information in each slot through the FNEED command and

also may initiate IF-NEEDED demons. This provides a convenient

method of maintaining security if there is any sensitive data in

the knowledge base as the IF-NEEDED demons can check whether the

63

user is allowed to display the data. Definitions of the FENTER and

FDISPLAY commands in LISP are given in the Appendix A.

An example of an $ENTER function used in the Bird Recognition

System is shown below

(defun ask-size()
/* Reads in the size of a bird. (large medium small)

)

(prog (size)
loop

)

(prin1 '"estimate of bird's size")
(print '"(large, medium or small) :")
(prin1 '"(example : small= sparrow, ")
(print '"medium= magpie, large= mallard duck)")
(setq size (lower (read atom)))
(cond

((member size '(large medium small()))
(return size)

)

((member size '(h help))
(help 'size)
(go loop)

)

(t (prin1 '"invalid size - ")

)

(print '"must be large, medium or small")
(go loop)

Figure 4.2.1 Example of function definition for the $ENTER facet
for the SIZE slot of a bird.

The above function reads in the the size of the bird as

estimated by the user. The only requirement of the function is to

read and return the slot value in the relevant format. Interactive

messages and references to helpful information (such as an

explanation of the what needs to be entered or a list of words that

are allowed to be used) are included in the function and help to

guide the user. Checking of the data can also be accomplished here

to ensure that the information is correct before it is entered into

the knowledge base. Note that no arguments need to be passed to

64

the function. If no function is defined in the $ENTER facet, then

the default LISP function READ is assumed by the FENTER command.

An example of an interactive session designed for the Bird

Recognition System that uses the $ENTER functions is shown below.

Enter a name for the bird : BIRD1

Enter estimate of bird's size (large, medium or small)
LARGE

Enter a description of the bird's appearance:
MAINLY WHITE, RED BILL

Enter the words that best describe the bird's distribution
HELP

The distribution feature indicates where the bird is usually
found in New Zealand. Only the main districts of New Zealand are
used such as Hawkes Bay and Mid Canterbury.

The list of valid New Zealand districts are

New Zealand North Island South Island
Auckland North Auckland South Auckland
Coromandel Hauraki Gulf Bay of Islands
Waikato Rotorua Bay of Plenty
Horowhenua Manawatu Taranaki
Wanganui Hawkes Bay Poverty Bay
Volcanic Plateau King Country Wairarapa
Wellington Marlborough Marlborough Sounds
Nelson Kaikoura West Coast
Canterbury Mid Canterbury South Canterbury
Otago North Otago South Otago
Southland Fiordland

Enter the words that best describe the bird's distribution
MANAWATU, WAIRARAPA

Enter the words that best describe the bird's habitat :
HELP
The habitat feature describes the habitats where the bird is
likely to be found. Common habitats are : open, alpine, coast,
gardens, habitation, forest.

The following are valid words
alpine clearings cliffs coast
crops drains forest gardens
habitation hedges hill-country lagoon
lake marsh open orchards
pasture plantations pond river
roadside scrub

Enter the words that best describe the bird's habitat

MARSH LAKE

Enter a description of the bird's behaviour:

Enter a description of the bird's flight:

Enter the words that best describe the bird's food
PLANTS INSECTS

Was there a nest found? YES

Enter the words that best describe the bird's nest material
STICKS

Enter the location of the bird's nest
ON GROUND, NEAR WATER

month in which nest was found
JAN

How many eggs were found? 7

Enter a description of the colo~r of the egg:
MAINLY CREAM, RED SPOTS

65

Figure 4.2.2 Interactive session for entering a bird produced by
the FENTER command.

More complicated interactive sessions with the user may also

be designed by passing global information between the functions to

indicate which of the succeeding questions are relevant. For

example, in the session shown above, if the user reply to the

question "Was there a nest found?" is NO, then the succeeding

questions about the nest location and nest material are skipped by

the use of a global flag.

In some applications, the user is not required to enter data

for each slot. In the Bridge System, for example, the only

information entered by the user is the cards in his hand from which

the relevant data for each slot is obtained. However, the $ENTER

facets can still be used as a means of obtaining this information

since the operation required is still translation into the internal

data format.

66

An example of a $DISPLAY function is shown Figure 4.2.3 below.

This function converts the breeding season passed to it in the

internal LISP format into a form presentable to the user. Notice

that special cases (such as a breeding season that continues

throughout the year) can be checked for and a suitable display

devised. The $DISPLAY function only requires one argument which is

then set to the value of the slot to be displayed by the FDISPLAY

command. If no function is found, then the default LISP function

PRINT is used.

The display produced for the Starling in the Bird Recognition

System is shown in Figure 4.2.4.

A major advantage of using the $ENTER and $DISPLAY facets is

that the definition of the functions is independent of how the

information in the knowledge base is accessed and stored. The

problem simply becomes one of translating the information into a

form relevant to the user and each function can be treated

separately. Therefore, the design of the presentation can be

easily structured with more elaborate functions provided as the

need arises.

The use of the presentation functions in the generic bird

frame of the Bird Recognition System is listed in the Appendix B.

The frame demonstrates the usefulness of such functions in

designing a knowledge base. A common function required of the Bird

Recognition System is to enter and display a list of words that are

associated with a particular feature. This is done in the frame

listed by using the functions ASK-WORDS and PRINT-WORDS for each of

67

(defun print-season (months)
/* Writes out the MONTHS in the breeding season.
/* Eg. (january to march) is converted to "January to March".

(prog ()
(setq months (capital months))
(cond

)

((atom months)
(prin1 months)

)

((equal (car months) (caddr months))
(prin1 (car months))

)

((equal months '(January to December))
(prin1 '"All year")

)
(t (map car cdr prin1 months))

Figure 4.2.3 Example of function definition for the $DISPLAY facet
in the BREEDING slot of a bird.

the relevant slots. Another common function required is to enter a

description of certain features of the bird. The problem of

recognizing and interpreting an English description is complex and

part of the problem of understanding natural language. However,

various methods such as using a dictionary of relevant synonyms or

restricting the vocabulary to dissimilar words is sufficient for

the purpose required here. By having the ability to define

separate functions for presentation, problems such as recognizing

descriptions can be treated separately and improved at any stage.

Starling
size

21
appearance

overall
mainly black green purple glossy, short tail,
black body, short pointed wings, pointed bill

winter plumage
mainly black spotted streaked buff, black body,
black pointed bill

male breeding plumage
mainly black purple green glossy, black body,
yellow bill

female breeding plumage
mainly black buff, black body, yellow bill

immature
mainly dull brown buff, black body, white throat,
dark bill

distribution
New Zealand

habitat
not forest

food
worms, insects, fruit

breeding
September to January

nest material
straw, grass

nest location
in hollow building tree cliff bank

number of eggs
4 to 6

egg colour
mainly plain pale blue glossy

68

Figure 4.2.4 Display produced for the Starling using the FDISPLAY
command.

69

4.3 Improving the User Search Interface.

An important operation of a knowledge base required by the

user is that of searching for the relevant information stored.

This involves finding the list of frames in the frame system that

match certain conditions.

4.3.1 Specifying the search using the FENTER command

The use of the FENTER command provides an easy means of

allowing the user to enter the types of information that he

wishes to search for. In the Bird Recognition System, the user

wishes to find the list of birds that match various field

observations which are entered through the $ENTER functions.

However, by allowing the user to skip any of the features that

are to be entered, any range or combination of information can

also be specified. This means that a more elaborate query

system can easily be developed where the user can select

different subsets of the information stored in the knowledge

base. For example, the user may wish to find all the birds that

are small and have black bodies rather than trying to search for

a bird that matches a more precise set of field observations.

In this case, the user would enter the information about the

size and appearance of the bird, and would skip any remaining

questions. Hence, the use of the FENTER command provides a

straightforward means for the user to specify the search.

70

4.3.2 Using $IF-MATCHED demons to provide a trace of the search

The user-search interface can also be improved by providing

a trace of the search if the user requires. This can be

accomplished by using $IF-MATCHED demons that are activated

whenever certain slots are matched. These demons can display

the result of the match and indicate (with reasons) which of the

other frames in the frame system are likely or unlikely to be

matched. An example of the use of this technique is shown in

Figure 2.5.1. The traces produced for the Bird Recognition

System are also shown in the Appendix D.

4.3.3 Using interactive matching functions

A further method of improving the user-search interface is

to allow the user to guide the search. Whenever the search

becomes doubtful, or the matching process uncertain, the user

can be queried about certain aspects of the information

required. This can be achieved by making the $MATCH functions

interactive so that the functions themselves ask the user the

relevant questions if the information provided is incomplete.

The information obtained from the answers can be added to the

frame of information provided by the user and can also determine

if the match is successful or not.

For example, in a set structured system designed for the

Bird Recognition problem, the matching of the sets could be

performed by interrogating the user. The frame definition for

an omnivorous bird could be as shown in Figure 4.3.3.1.

(deframe "omnivorous bird"
(ako

($value
(bird)))

(food
($value

(("Is the bird omnivorous?")))
($match

((ask-question))))
(reject

($value
(("new zealand dabchick" "white faced heron"

"bittern" •••))))

71

Figure 4.3.3.1 Using an interactive matching function to match
an omnivorous bird.

The actual content of the question asked may be constructed

in a number of ways using the slot value and the match function.

For example, in the frame defined above for the omnivorous bird,

the question was passed directly to the match function

ASK-QUESTION. Alternatively, the question could be constructed

by the match function from the slot values passed to it.

An alternative method of defining the omnivorous bird is to

use a non-interactive match function which checks that the food

eaten indicated whether the bird was both plant eating and

animal eating. However, because the description provided by the

user may be incomplete or the matching process uncertain, it is

much easier and more accurate to interrogate the user.

One problem with this technique is how to organise the

format of the questions asked. Due to the nature of the match

functions used, it is easiest to ask questions which expect one

of three replies : YES, NO or DON'T KNOW (expressed by skipping

the question). These answers are equivalent to the values TRUE,

72

FALSE and UNKNOWN respectively which are returned by the

matching functions.

This method of improving the user search interface is

particularly useful for a system which uses a search tree. By

asking questions throughout the search tree, the search has a

similar format to a decision tree, with the questions becoming

more specific at lower levels of the tree. For example, by

adapting the bird search tree to use interactive matching

functions, the output shown in Figure 4.3.3.2 could be produced.

Is the bird a small sized bird? NO

Is the bird a large sized bird? YES

Is the habitat of the bird located near water or marsh? YES

Are the underparts or upperparts of the bird blackish? YES

Is the bill white or red? YES

A list of possible birds that could match are
White Faced Heron
Canada Goose
Mallard
Mute swan

Figure 4.3.3.2 Using an interactive search tree to find a bird.

A whole series of interactive matching functions could be

used so that the user could guide the search of the knowledge

base. However, there are various problems associated with this

method. One problem is that if too many questions are asked,

then the usefulness of the system will decrease. Another is

that some method is required of remembering questions already

answered so that the same question is not re-asked. This

involves updating the frame of infomation supplied by the user

from the ENTER functions using the information gained from the

73

answers during the matching process. A YES reply means that the

information can be directly added to the slot value in the

frame, but NO and DON'T KNOW replies must also be stored in the

frame and are important for subsequent matches.

Another problem with using interactive matching functions

is that the sequence of questions asked must be easy to follow

for the user. For example, an alternative matching scheme for

the Bird Recognition System was devised so that the user was

interrogated about the appearance of the bird during the search

by using the appearances of the birds stored in the knowledge

base. A sample trace of the search for a white backed magpie is

shown in Figure 4.3.3.3 below.

A medium-sized bird matches the size of the Banded Rail
which is 30 cm.
Is the upperparts olive brown black white spotted? NO
The bird does not look like the Banded Rail.
The bird is not a Banded Rail.

A medium-sized bird matches the size of the Song Thrush
which is 23 cm.
Is the underparts pale grey brown white? NO
The bird does not look like the Song Thrush.
The bird is not a Song Thrush.

A medium-sized bird matches the size of the Starling
which is 21 cm.
Is the tail short? NO
Is the bird mainly blackish speckled buff? NO
Is the body black purple green glossy? NO
Is the throat white?
The bird does not have the overall appearance of the Starling
nor does it look like the winter plumage, female breeding
plumage, immature or male breeding plumage Starling.
The bird is not a Starling.

A medium-sized bird matches the size of the Black Backed Magpie
which is 40 cm.
Is the bird mainly black white? YES
Is the back black? NO
Is the hindneck white?
Is the hindneck mottled grey?
Is the underparts mottled grey? NO
The bird does not have the overall appearance of the Black

74

Backed Magpie nor does it look like the male, immature or female
Black Backed Magpie.
The bird is not a Black Backed Magpie.

A medium-sized bird matches the size of the White Backed Magpie
which is 42 cm.
Is the back white? YES

The bird looks like the male White Backed Magpie.

Is the back grey? NO

The bird does not look like the immature or female White Backed
Magpie.

The male White Backed Magpie matches the description.

A medium-sized bird matches the size of the Rook which is 41 cm.
Is the bird mainly bluish purplish? NO
The bird does not look like the Rook.
The bird is not a Rook.

The list of birds that match the description are
male White Backed Magpie

Figure 4.3.3.3 Trace of search for a white backed magpie using
interactive matching functions.

The problems described above in implementing an interactive

search are demonstrated here. The large number of questions

needed to be answered detract from the usefulness of the system.

Also, it is very easy for the user to produce unsatisfactory

results if he does not wish to enter sensible replies. For

example, by answering YES to all the questions then all the

frames in the system will match. Another problem is that a

complicated system of adding the information obtained from the

answers has to be devised that prevents the questions being

re-asked and also produces a satisfactory match for subsequent

frames.

75

However, the main problem in using a technique such as this

is that it is difficult to design the system so that the

questions asked are relevant and easy to follow by the user.

This is demonstrated in the trace above by the questions

becoming too specific for some birds (such as the Starling) that

eventually do not match. Also, some of the later questions

(such as "Is the bird mainly purplish bluish?" when the

question "Is the bird mainly black white?" has already been

asked) seem unnecessary to the user even though it is possible,

using a rudimentary matching scheme, that some birds might have

both features. It is also more difficult to maintain relevance

to the user for frame structures such as the set structure and

the network structure.

Therefore, when trying to improve the user search interface

by using interactive match functions, care has to be taken in

designing the format of the interaction. For a straightforward

and easy to follow system, emphasis should be placed on having

an automatic matching process with only the more difficult

matches queried.

76

4.4 Allowing the User to Modify the Knowledge Base.

An important goal of any user interface system is to make the

user unaware of how the knowledge base is structured. For the

problems of search and presentation where the user needs only to

obtain the information already stored then this goal can easily be

achieved by the methods outlined above. However, it is more

difficult to achieve this goal for the expert user if he is also

allowed to modify the knowledge base.

Modifications of the knowledge base involves three aspects

1. Adding a frame to the frame system.

2. Removing a frame from the frame system.

3. Altering information in a frame.

4.4.1 Addition of frames to the knowledge base.

Additions of frames specified by the expert to the

knowledge base may be accomplished by using the FENTER command

to build up the new frame. The format of the information in the

frame can be in the form that the user is familiar with by using

different $ENTER functions to perform the translation of the

data into the internal data format. The $ENTER functions can

also ensure the integrity of the knowledge base by checking that

the information being added is correct.

77

However, there are further problems· associated with adding

frames into the different types of frame systems. These are

discussed below for the different structures.

1. Linear Structure.

As each frame in a linear structured frame system is

separate, with no links to any other frames, the addition of any

further frames to the frame system is easily accomplished by

adding the name of the new frame to the list of all the frames

in the system.

2. Set Structure.

The addition of a frame to a set structured frame system

requires that the name of the frame is added to the relevant

INSTANCE and REJECT sets. This may be accomplished in two ways:

1. Use the match functions to automatically decide whether a

frame belongs to a set by matching the new frame against all

the set frames and then adding the frame name to the

relevant sets depending on the match.

2. Interrogate the user about whether the frame belongs to a

particular set or not by using interactive match functions.

It is also possible to allow the expert to add set frames

to the frame system using the methods described above. In this

case, the user would add a general frame description of a bird,

and the INSTANCE and REJECT slots would be automatically created

78

by matching the new frame against all the other frames in the

system.

3. Hierarchical Structure.

New frames can be added to a frame hierarchy by using the

frames in the tree to interrogate the user about the position

the new frame should be placed in. If the hierarchical

structure is used solely for defining a search tree, the new

frame can simply be added as a separate frame and the search

tree can remain unchanged except for updating the terminal nodes

in the tree that match with the new frame.

4. Network Structures.

There are various problems associated with adding a new

frame to the different network structures. For the slot-network

structure, where each slot in a frame has a list of alternative

frames to try, the new frame can be added into the network by

adding links from common nodes to the new frame thus ensuring

that the node is reached in the search. However, the problem of

relevance in the link (where the information obtained in the

slots already matched is used to specify a more relevant set of

alternative nodes to try) means that the addition of nodes in a

slot-network structure would affect the efficiency and the

usefulness of the search.

79

The problem of adding a frame to an ako-network is much

more easily overcome. This is because each frame is separate

except for the values in the AKO slot. The AKO slot of the new

frame can be automatically created by finding out which frames

in the network match with the new frame. Any REJECT slots would

also have to be updated during this process. However, a check

needs to made to ensure that any AKO information is eliminated

where there are overlapping groups (such as small and medium

birds in the Bird Recognition System) as described above.

4.4.2 Removal of frames from the knowledge base.

The removal of frames from the knowledge base can be

accomplished by using $IF-REMOVED demons to specify the removal

operations for each slot of a frame. Each function can also

ensure the integrity of the knowledge base by checking that the

operation is allowable.

There are no major problems associated with the removal of

frames from the linear and set frame structures. This is

because each frame can be removed simply by removing any

reference to the frame from the frame system. However, the

efficiency of the search for the set system may be affected if

arbritrary removal of set frames is allowed.

Removal of frames from a hierarchical structure is very

difficult as information relating to lower levels of the tree

may be contained in the node being removed. This can be

overcome by using a static search tree where only the references

80

to the separate frames are altered when a frame is removed. A

similar problem of removal from a hierarchy exists for the AKO

network if arbitrary removal of the general AKO frames is

allowed. However, like the search tree, removal of specific

frames is possible.

The main problem with removing frames from a slot network

is to ensure that every other frame in the network can still be

reached from the starting node after the removal. For example,

if a node can only be reached from another node by searching

through a third node, then removing the third node from the

network would also remove the link between the other two nodes.

Therefore, the relevant pathways have to be maintained to ensure

a systematic search for the slot network.

4.4.3 Alteration of a frame in the knowledge base.

The following method can be used to allow an expert to

change an existing frame in the knowledge base . .
1 • Use FDISPLAY to display the frame.

2. Ask which slots are to changed.

3. Use $ENTER functions to enter the new information into the

relevant slots.

A more elaborate frame alteration mechanism could provide

editing facilities for the frame displayed but could still use

the $ENTER functions by using a global flag to inhibit any

interactive messages.

81

The problems associated with the effect of the alteration

of the different frame structures are outlined below.

1. Linear Structure.

There is no effect of altering a frame on the linear

structure as each frame definition is independent and the name

of the frame remains the same.

2. Set Structure.

Once a frame has been altered, its membership in the

INSTANCE and REJECT sets of a set structured system is affected.

This means that to maintain the integrity of the knowledge base,

first the old frame has to be removed from the knowledge base,

and then the new frame added as described above. Therefore, the

problems associated with the addition of a new frame into the

set structure also apply to the alteration of an existing frame.

3. Hierarchical Structure.

The alteration of a frame in a hierarchical frame structure

would be difficult unless a separate search tree structure is

employed where the information in the tree is static except for

the terminal nodes that specify which frames to match. The

terminal nodes can be updated by removing any references to the

old frame, and then the new frame can be matched against the

search tree to find which terminal nodes should contain the name

of the new frame.

82

4. Network Structures.

For the slot-network structure, the alteration of the slot

value affects the search through the network. Therefore, it is

difficult to allow any alteration of frames in a slot-network

structure and still maintain the relevancy and correctness of

the search.

However, for the ako-network, the frame structure may be

maintained by matching the altered frame against the other

frames in the network to find which frames should be included in

AKO slot of the altered frame,. The AKO, INSTANCE and REJECT

slots in the rest of the network would also have to be updated.

4.4.4 The effect of modifying the knowledge base on the

efficiency of the search

Allowing the user to modify the knowledge base presents

further problems in maintaining the efficiency of the search in

the various frame structures. For the linear structure, a large

number of additions of frames to the frame

dramatically reduce the efficiency of the search.

system will

For the set structure, the effectiveness of the search is

dependent on the frames added or modified by the user since

these operations affect the membership of the sets. If there

are a large number of additions to the knowledge base then these

need to be categorised by further general set frames added by

the user if the search is to be efficient.

83

In the hierarchical system, modification of the knowledge

base is only feasible if the search tree remains fixed. This

means that the efficiency of the search will decrease with each

new frame added.

For the slot network structure where modification of the

frames affects the search pathways, the decreasing relevance of

the search will consequently affect the search efficiency. For

the ako-network, the problem of maintaining the efficiency of

the search is the same as for the set structure; that is, the

efficiency of the search is directly dependent on the

information added or changed by the user.

4.5 Allowing the Expert to Create the Knowledge Base.

Allowing the expert to create the knowledge base is a far more

difficult problem than modification of an existing knowledge base.

The aim is to allow an expert who is completely unfamiliar with the

computer (such as a bridge player) to be able to create and use his

own knowledge base.

The main difficulty in achieving this aim is the problem of

expressing procedural or functional information to the expert. The

knowledge in a frame system consists of two aspects - the data

structures, and the attached procedures. The problem of allowing

the user to create the data structures is straightforward and

involves entering the data the expert supplies into a frame type

format using the methods described above. The problem of how to

specify the· attached procedures which are used in matching,

84

searching and presenting the frames is much more difficult as the

final information must be expressed in the programming language.

Two methods for specifying the procedural information are

proposed below.

4.5.1 Using lists of pre-defined functions to specify the

procedural information.

One solution is to use a list or library of functions that

have been pre-defined by the programmer. There would be

separate libraries for the different operations required such as

searching and presentation. For example, some useful matching

functions that could be pre-defined are NUMBER, which matches

number ranges such as ABOVE 5 and 1 TO 10, and NOUN-DESCRIPTION

which matches an English description consisting of adjectives

and nouns. The expert could then specify the functions he

requires in a similar manner to that shown in Figure 4.5.1.1.

The system could also allow the user to partially define

his own match functions. For example, a user could define a

function called HABITATS which matches the list of words

specified by the user that are valid habitats. Alternatively,

the pre-defined match function provided could be an elaborate

one which uses a large dictionary to match words of similar

meaning.

For the definition of the presentation functions, the enter

and display functions could be assumed by default to be those

indicated by the match function, for example, READ-NUMBER and

PRINT-NOUN-DESCRIPTION. A facility for using a library of

What is the name of the system? BIRD RECOGNITION SYSTEM

What type of information do you wish to describe? BIRD

What features do you wish to describe the BIRD with?
SIZE, APPEARANCE, HABITAT, FOOD, DISTRIBUTION

85

Define
of the
NUMBER
NOUNS
DATE

the type of information each feature
following alternatives :

describes using any

size? NUMBER

RANGE NAME
NOUN-DESCRIPTION DISTRICT
MONTH

appearance? NOUN-DESCRIPTION
habitat? NOUNS
food? NOUNS
distribution? DISTRICT

WORDS
ADDRESS

Figure 4.5.1.1 Using pre-defined functions to allow a user to
define a bird.

pre-defined presentation functions could be used as well. A

library of edit functions such as CAPITALISE and JUSTIFY could

also be supplied for allowing the user to design his own

display. For the enter functions for which elaborate

interactive sequences are required, the expert could be

interrogated about the text of the questions to be asked and

about the help information to be provided. Otherwise, the

format of the text and help information can both be assumed by

default from the name of the feature and the help available on

the match function.

86

4.5.2 Interrogating the user about the procedural information

A further method of specifying the procedural information

is to use an interactive approach where the user is interrogated

about the procedural information required and the functions are

then designed by the computer. For example, a function can be

designed by the programmer for the Bridge System which allows

the expert to design his own scoring system. Figure 4.5.2.1

shows a trace of how the Acol scoring system for honour points

could be defined by the user.

More elaborate interrogation systems can be designed by the

programmer where the expert can define his own variables and

also define how the various features of each frame are produced

from these variables by using a specific language format. The

two methods of using libraries of pre-defined funcions and an

interactive approach may also be combined together to provide

for the expert a wide range of methods of specifying how the

information in the frame system is to be presented and matched •
.

Once this has been done, the expert can add individual frames to

the frame system by using the enter functions already defined.

4.5.3 Problems with allowing the expert to create the knowledge

base.

There are various problems associated with using the

techniques described above to allow the expert to create his own

knowledge base. One problem is that various structuring methods

which might produce an efficient search (such as the

hierarchical structure and the slot network structure) cannot be

implemented because the information in the knowledge base needs

Enter the name of the feature : HONOUR POINTS

Which suits do you wish to count points for?
HEARTS, SPADES, DIAMONDS, CLUBS

87

Which card(s) do you wish to allocate points for if found in any
of these suits?

which card(s) ? ACE
how many points ? 4
which card(s) ? KING
how many points ? 3
which card(s) ? QUEEN
how many points ? 2
which card(s) ? JACK
how many points ? 1
which card(s) ? TEN
how many points ? 0.5
which card(s) ?

Do you wish to add any more points for the length of each
suit? YES

length (eg. 3, above 4, below 5, 3 to 6) ABOVE 5
how many points . 2 .
length (eg. 3, above 4, below 5, 3 to 6) 5
how many points . 1 .
iength (eg. 3, above 4, below 5, 3 to 6)

Figure 4.5.2.1 Allowing the expert to define his own
scheme in a Bridge System.

scoring

to be pre-defined for these methods. The only structures that

can be used are the linear, set and ako-network structures and

even here the efficiency of the search depends on what or how

many frames the expert decides to put in the system. Also, the

search method provided by the programmer has to be a general

search rather than one that is specifically designed for the

purpose.

Another problem is that it is difficult to cater for all

possible occurrences that may arise in the creation of a

knowledge base. For example, the problem of special cases of

information which require separate match functions (such as for

different habitats of a bird) means that a method has to be

88

devised to allow the user to specify any· special match function.

Also, some types of functions are not suited to being defined by

the user, an example being $IF-MATCHED functions which are used

for tracing the search, and for providing an interactive

matching scheme. Some

scientific knowledge bases

general functions for.

systems such as geographical and

may also be difficult to design

To get around specific problems, a facility could be

provided for the programmer to define functions that are

specially designed for certain users. However, rather than

designing a general knowledge base format which can be used for

any purpose, it is much easier to

specifically for a purpose such

design a knowledge base

as playing Bridge and then

allowing the expert to modify the existing frame system for a

particular application.

89

5 COMPARISON OF KNOWLEDGE REPRESENTATION METHODS.

5.1 Features of Knowledge Representations.

Various aspects that determine the effectiveness of a

particular method of representing knowledge are described below.

Modularity.

Davis and King [1977] define modularity of a program as "the

degree of separation of its functional units into isolatable

pieces". The separation of the formulation of the knowledge for a

particular representation into distinct functional units or modules

which may be modified individually without problems of interaction

allows for a quicker and more structured approach to the design and

use of knowledge bases.

Expressibility.

The expressive power of a knowledge representation is

determined by the ease with which different types of information and

their relationships may be formulated within it. Other

considerations, such as how 'natural' the information can be

expressed, and the problems involved in describing how information

is to be matched are also determined to some extent by the

expressive power of the representation.

90

Retrievability.

The ease with which a wide range of information may be

retrieved determines the usefulness of a particular method of

representing knowledge.

information are the

Important aspects related to retrieval

efficiency of the search, the range

of

of

information that can be obtained using general as well as specific

queries, and the method of search such as forward or backward

reasoning.

Modifiability.

Being able to easily modify existing information is an

important aspect in the design of a knowledge base. Operations such

as alteration, addition, deletion and replacement should all be

possible without a major redesign of the system being required.

Consistency.

Maintaining the consistency of the information stored is

another important consideration in the design of a knowledge base.

Initially, the knowledge base has to be thoroughly tested to ensure

that the information stored is relevant and consistent. The

consistency of the information has to be subsequently maintained

when the knowledge base is used or altered. The ease with which

this is possible is an important criterion for

particular method of knowledge representation.

Transparency.

selecting a

The transparency of the information being represented is the

ease with which its meaning may be understood by the designer and/or

user of the information. A particular method of representing

knowledge may provide a powerful means of formulating various

91

relations and facets, but if the representation is difficult to

understand or difficult to use, then the expressive power of the

system is wasted.

Adaptability.

The range of problems to which a particular method of knowledge

representation may be applied to is a further means of comparing the

effectiveness of the different methods. The relative ease to which

various applications may be formulated by a representation also

determines its effectiveness.

5.2 Methods of Representing Knowledge.

Various methods of knowledge representation on the computer

such as production systems, frames and semantic networks have been

researched extensively over the last decade. A comparison of the

effectiveness of each of these different forms of knowledge

representation is made below. The features described above such as

modularity and transparency are considered for each representation.

92

5.2.1 Production Systems.

Productions Systems were first proposed by Post [Post,

1943]. They are made up of a list of 'if-then' rules which

describe a set of conditions and a set of actions which occur if

those conditions are met. Davis and King [1977] defined a 'pure'

production system "as consisting of three basic components : a

set of rules, a data base, and an interpreter for the rules." A

simple production system might then consist of a data base of

ideas such as "has wings" and "flies"; a set of if-then rules

which contain an ordered pair of ideas; and an interpreter whose

function it is to search the rules to find those whose ideas in

the 'if' part of the rule are satisfied by the database, and then

to replace these with the set of ideas listed in the 'then' part

of the rule. Figure 5.2.1.1 illustrates part of a simple animal

recognition production system.

Production systems have been researched extensively over the

last decade. They have been

applications including medical

applied to a wide

consulting [MYCIN :

range of

Shortliffe,

1976; Davis, Buchanan, and Shortliffe, 1977], human learning

[Hedrick, 1976; Vere, 1977] and draw poker [Waterman, 1970]. As

well as demonstrating an ability to represent many different

types of knowledge, production systems have also proved useful in

building interactive expert systems where knowledge has been

previously acquired from human experts and an explanation of any

reasoning is provided for human users to follow. Examples of

such expert systems are MYCIN, DENDRAL [Feigenbaum et al., 1971]

and PROSPECTOR [Duda et al., 1978].

93

The major advantage of using production systems to represent

knowledge is its modularity. As each production rule is an

independent part of the knowledge base, it is easy to add, modify

or remove information from the system. Another important feature

of production systems is that they seem to provide a natural

means of expressing knowledge in a manner similar to that used by

human experts.

Barr and Feigenbaum [1981] outline two important

disadvantages to production systems inefficiency and opacity.

The advantages of having a modular and uniform representation is

offset by the inefficiency of program execution as the state of

the system is re-evaluated after a rule has been parsed.

Further, the flow of control is not readily transparent to the

designer, with algorithmic knowledge being difficult to

incorporate into the rules.

Another limitation to production systems is that certain

types of knowledge are not suited to being represented by it.

Davis and King [1977] propose three areas where production

systems are inappropriate : in domains where there is a concise

unified theory (for example, mathematics); domains with "complex

collections of multiple, parallel processes"; and domains where

control flow and knowledge are combined together in the system.

In comparing the effectiveness of using production systems

as a means of representing knowledge as opposed to using frames,

the general features of each representation such as modularity

and transparency may be considered. This is described below in

section 5.2.3. However, another effective means of comparing the

94

IF "has feathers" THEN "is bird"

IF "flies", "lays eggs" THEN "is bird"

IF "is bird","does not fly","has long neck","is black and white"
THEN "is ostrich"

IF "is bird", "does not fly", "swims", "is black and white"
THEN "is penguin"

IF "is bird", "flies well"
THEN "is albatross"

Figure 5.2.1.1 Part of an Animal Production System.

two different methods of representation is to apply them to the

same problem. For example, a frame system could be developed for

a problem for which a production system has been applied to.

Alternatively, a production system could be designed to play

Bridge or recognize birds, the two areas to which frames have

been applied in this thesis. By developing these similar

systems, knowledge can be gained about the problems of

representing certain types of information for each of the

particular representations. The effectiveness of each system can

also be readily determined.

Part of a production system for recognizing animals is

listed in Figure 5.2.1.1. As a very simple production system, it

is a good example to use for developing a similar frame system

for comparing the two different methods of representation. A

sample frame system that describes the same information is shown

in Figure 5.2.1.2.

Certain limitations of using frames compared to using

production systems are illustrated in this example. For example,

first order logic such as the bird "flies" and "swims" can be

easily incorporated into production systems. Modifiers can also

(deframe "bird1"
(appearance

($value
((has feathers))))

(deframe "bird2"
(behaviour

($value
((lays eggs) (flies))))

(deframe "bird"
(match

($value
((or "bird1" "bird2"))))

(deframe "ostrich"
(ako

($value
(bird)))

(appearance
($value

((long neck) (black and white))))
(behaviour

($value
((does not fly))))

(deframe "penguin"
(ako

($value
(bird)))

(appearance
($value

((black and white))))
(behaviour

($value
((does not fly) (swims))))

(deframe "albatross"
(ako

($value
(bird)))

(behaviour
($value

((flies well))))

Figure 5.2.1.2 FRL definition of the animal system.

95

be added such as the bird "flies well" or "does not fly", and the

bird has a "long" neck. For frames, this is more difficult

because the information has to be represented as an attribute and

96

its value. It is not satisfactory to place the idea that the

bird "flies" under the slot for behaviour which is only a very

general classification. Ideas such as "flies" as well as "flies

well" need to be expressed in a uniform manner.

Another problem with frames is the difficulty in expressing

alternative conditions. For example, in the animal system above,

a bird can be described by "has feathers" or by "lays eggs" and

"flies". The frame solution devised in Figure 5.2.1.2 where two

separate bird frames are defined ("Bird1" and "Bird2") seems

cumbersome. Again the

alternative combinations

problem

of slots,

of

and

describing

also the

different

problem of

describing alternative AKO paths limits the expressive power of

the system.

As a second means of comparing production systems and

frames, a production system could be developed along the same

lines as the Bird Recognition System, thus bringing to light any

further limitations of the two approaches. For example, a list

of production rules could be defined to describe the features of

a bird such as the Pukeko (shown in Figure 3.3.1). However,

problems are encountered almost immediately. The large number of

slots or features of a bird that need to be described mean that a

very long-winded production rule is required. To use production

rules to their best effect, the information should be split up

into smaller sub-rules, and a complex system gradually built up

from them. The information described in the slots such as

breeding season and number of eggs which express information in

various ranges, and also food and habitat, which use lists of

words, makes it difficult to express the information into smaller

97

sub-categories, or to group the information into a smaller list

of slots. The advantage of frame systems is that a whole series

of features can be itemized and grouped together for a particular

object or idea.

5.2.2 Semantic Networks and Property Lists.

Semantic Networks were first developed in 1968 [Quillan,

1968]. They consist of a network of nodes connected together by

labelled arcs. The node from which an arc originates may be

considered as being the object, with the arc being an attribute

and the destination node being the value associated with it.

Figure 5.2.2.1 gives an example of a small semantic network.

A semantic network is usually represented on the computer

using property lists. A property list consists of a list of

properties or attributes and their values. For example, a

property list describing the appearance of a pukeko is shown in

Figure 5.2.2.2. Semantic networks can be represented using such

property lists by associating with each node in the network a

property list containing the arcs as the properties and the

destination nodes as the values.

Frames also are represented on the computer using property

lists. Each slot in a frame is equivalent to a property in a

property list. The value associated with each slot is another

property list of facets and their values. Therefore, semantic

networks and frames may be considered as being similar methods of

bird

is-a

I win s · ted
L. __ ;...;e;....,_s _ __, wader 1-....;.;....;..;.;.:,e,.;;.. _ _., po m long-

is-a
....-----1-----, bill

spur-winged plover --~yellow bony spur feature
on. wing crown is-a

black 1--...----~ colour
is-a

Diagram 5.2.2.1 A Semantic Network.

representing knowledge. In fact, semantic networks may

considered as being a subset of the frame method

98

be

of

representation where the slot values are used to represent the

arcs and nodes linked to a particular node in the network.

Aspects of semantic networks such as inheritance through the IS-A

arc are provided in FRL through the AKO and INSTANCE slots.

Frames also provide more comprehensive features such as

procedural attachment and defaults which are not available in

semantic networks (but could be included).

99

(mainly (bright blue black)
bill (large red)
shield (red)
coverts (white)
thighs (black)
abdomen (black)
flanks (purple blue)
breast (purple blue)
body (blue black)
neck (purple blue)
throat (purple blue)
head (black)
upperparts (black green glossy)
feet (pale orange red)
rump (white)

Figure 5.2.2.2 Property list describing the Pukeko's appearance.

The term semantic network or semantic net has been used

widely in AI research to describe a wide range of different

systems. Often, the only similarites between some so-called

semantic networks is the graphical representation of nodes and

arcs used to describe them. Some forms of semantic networks try

to represent aspects of predicate calculus through the use of

quantifiers [Schubert,1975] and the use of 'partitioned' semantic

networks [Hendrix, 1976] where groups of nodes of arcs are

grouped together into a common unit. Other semantic networks,

such as a 'procedural' semantic network [Levesque and

Mylopoulous, 1979] which use classes, meta-classes and procedural

information to represent the semantic information, have

similarities more in common with frame-like representations.

As a means of expressing a simple relationship, semantic

networks provide an easy to understand visual aid. However, as

the complexity of the system increases, the usefulness of the

graphical representation diminishes and it becomes increasingly

100

difficult to understand. The natural advantages of predicate

calculus and frames is lost in the complexity of the graphical

representation.

5.2.3 Frames.

The use of frames as a method of representing knowledge is

described above in the previous chapters. Frames, as a form of

knowledge representation, offer a wide variety of features with

which to express knowledge. Features such as procedural

attachments, inheritance and defaults, which are not readily

available in production systems and semantic networks, offer a

comprehensive range of tools for the knowledge expert to work

with. In addition, frames provide a useful means of grouping

together in a single place all the relevant information about a

certain object or idea.

In comparing frames with production systems and semantic

networks, I have described above aspects of representations such

as modularity and transparency that determine the effectiveness

of each method. I will now consider these aspects with frames in

mind, as well as comparing them with the properties of production

rules in particular.

Frames by their nature provide a modular environment, as all

pieces of information related to a certain situation may be

grouped together in a single place. Frame hierarchies also

provide a means of progressively describing situations in a more

101

specific manner, with related ideas expressed through

inheritance. In production systems, the system often becomes

fragmented because the detailed information is described

separately in individual rules. For example, if a production

rule system of the Bridge System were designed, the information

related to each hand would have to be built up from a large set

of smaller underlying rules, and therefore the information would

become spread throughout the system rather than grouped in one

place.

Another advantage of frame systems over production systems

is that they provide a means of separating control information

from the data. In production systems, the action is imbedded in

the rules. The design of the information being represented has

to involve formulating at the same time what actions are to be

taken if that information is to be matched. In frames, the

design of the control structure can be done independently of the

knowledge within the frames themselves. As well, the design of

frame systems can be further modularized by using techniques such

as matching functions and search trees described in Chapters 2

and 3 to separate out the problems of matching and searching.

The expressive power of frame systems is provided by the

rich variety of features available. The matching facilities as

described in Chapter 2 provide a comprehensive means of

expressing when two situations are similar. Procedural

attachment enables the full expressive power of the underlying

language such as LISP to be easily incorporated into it. Frames

also provide a means of building systems with different

structures, such as a hierarchy or a network, so that the system

102

can be tailored to suit the type of information being described,

whereas production systems are limited to a single format.

In-built functions such as FGET, FINHERIT and FNEED provide

the basic method of retrieving information from a frame system.

In addition, by the use of the FENTER command and different

search techniques described in Chapter 4, a simple but powerful

query system can easily be designed. In comparison, production

systems also provide a powerful means of retrieving information,

allowing both forward and backward reasoning, and also being

useful for reproducing the actions of human experts in arriving

at certain conclusions, for example in the medical consulting

system MYCIN, where assumptions made and reasons for any

conclusions can be listed.

Production systems provide a much easier means than frames

of modifying the knowledge system. This is because the rules are

independent of each other with very little interaction between

them, and a rule can be deleted or added easily. However, the

effect of the addition or d~letion on the system as a whole may

be more difficult to assess. The interrelations in frames are

imbedded within the frames themselves, with the different frame

structures providing various problems when the frame system has

to be modified. However, by separating out the design of the

search, and by following the techniques described in section 4.4,

these problems to some extent can be overcome.

103

Although a production system provides a uniform

representation, there is the problem of maintaining consistency

or of ensuring that there are no contradictions in the knowledge

system. This is because each production rule is defined

separately, and individual rules that may contradict already

existing rules can be easily added to the system. In frames, it

is easier to maintain consistency as all the information related

to a certain object is gathered in a single place. However,

other aspects such as maintaining references or links in the

different frame structures means that there are different degrees

of difficulty in maintaining consistency in a frame knowledge

base.

The expression of knowledge in frames provides a format

which is easy to design and also easy to understand. Production

rules also provide a natural means of describing information,

although for a complex system, the flow of control may be less

transparent to the designer of the system.

Many languages such as FRL, KRL [Bobrow and Winograd, 1979]

and KL-ONE [Brachman and Schmolze, 1985] have been devised to

implement frames and these languages have been used to apply

frame systems to a wide range of problems. Davis and King [1977]

state the domains to which production systems are limited. Like

production systems, frames would also be inappropiate for

expressing mathematical theory, or for representing dependent

subprocesses. However, procedural attachment allows control flew

to be merged into each frame therefore providing a wider range of

domains for which frames may be applied to.

104

6 FURTHER LINES OF RESEARCH.

The following areas provide useful lines of research for the use

of frames:

1. Extensions to frame matching.

2. Research into aspects of representing knowledge.

3. Further application of frames to specific problems.

6.1 Extensions to Frame Matching.

The following possible extensions to the matching process for

frames are proposed below:

1. Allow for approximate matches.

2. Extend matching to include AKO information.

3. Use ideas to match the frames and guide the search.

4. Implement a dynamic matching scheme.

6.1.1 Approximate frame matches.

A useful extension to frame matching is to allow for

approximate or fuzzy matches to occur where not all of the slots

in the frame match. For example, all the information in the

frames may match except for one slot. In the Bird Recognition

System, this may occur because the user may supply information

about a feature of a bird which is incorrect.

105

There are various problems associated with incorporating an

approximate matching scheme into a frame system. One problem is

how to describe the result of the match, since the logic values

true and false indicate only two possible results whereas an

approximate result may occur anywhere between these extremes.

Another problem is that the matching process is less efficient as

further search is required to find all the frames that may

approximately match in a frame system.

Three methods of implementing approximate frame matching are

proposed below:

1. The match functions could be used to return a range of values

such as true and false (if definitely true and false) and

'maybe', or a value (from 0 to 1, say) that indicates

approximately how much weight can be placed on the result. For

example, if a particular feature is very distinctive, then a

higher weight may be returned by the matching function. For the

whole frame to match, then at least one matching function has to

return true or an average value has to maintained (of greater

than 0.5 say). Alternatively, the FMATCH function could return a

value which indicates how 'good' the match was from the values

returned by the individual slot matches. During a search of the

frame system, this value could then be used to rank the

alternatives, with the most likely frame being the one that is

considered first.

106

2. Instead of immediately returning false if one slot does not

match, the match could continue until one or more further slots

fail to match. The actual number of false slot matches allowed

could be specified by a parameter or by a global flag.

3. The matching of the frames could be performed normally,

except for storing the name of the relevant slot for those frames

that fail to match. If the search of the frame system yields no

results, then a further search of the system could be conducted

starting from the slot that failed for each frame.

6.1.2 Using ideas to match the frames.

Any situation that may be described by a frame may be

thought of as having two types of features general and

specific. The general features or ideas about a real situation

are usually the first features that are brought to mind. This

feature of human problem solving can be added to the frame

matching scheme by attaching 'ideas' to each frame in the frame

system. These ideas can simply take the form of a list of names

to convey the general concepts being described. For example, in

the Bird Recognition System, a list of ideas about the bird can

be built up from the description such as the bird is "small

sized", is "dark billed" and is a "land bird". The list of ideas

can be created automatically when each frame is defined, and can

be used whenever the frame is subsequently matched. If the list

of ideas in the two frames being matched do not intersect, then a

more specific match need not be undertaken.

107

The matching process can be improved even further by using

two lists, a positive and negative idea list, attached to each

frame. The negative list would contain the list of ideas that do

NOT match, and would also be constructed automatically when a

frame is defined. A frame matches if the positive idea lists

intersect and the positive and negative lists do not. For

example, if a bird is definitely a small sized bird, then the

ideas "medium sized" and "large sized" could be placed in the

negative list. Hence, a large

subsequently fail to match the bird.

number of frames would

A further advantage of this

technique is that in most cases a linear frame structure would be

sufficient for search purposes, as most of the irrelevant frames

in the frame system would be quickly rejected.

6.1.3 Matching the AKO slot.

Another possible improvement to the matching process is to

include the AKO slot in the information that is being matched,

similar to the AKO network search. The description of the AKO

slot itself could also be improved by allowing logical conditions

using AND, OR and NOT to be expressed. This would allow for

cases such as the Starling in the Bird Recognition System which

is either a medium or small sized bird.

The matching of the AKO slot and the frame itself would be

conducted in a similar manner to the network search. However,

there would be no need for separate MATCH and REJECT slots

because the AKO slot could be used to express the same

information. By also allowing the values of the AKO slot to be

108

evaluated, then a whole range of AKO values may be more easily

expressed by using a list or function name.

The consequences of allowing the AKO slot to be expressed by

logical relations is that the slot values throughout the rest of

the frame also have to be expressed by logical relations. For

example, if a Starling is defined as being either a medium or

small bird, then the value of the SIZE slot would by default be

either small or medium. Problems such as expressing the habitats

of birds such as the Harrier (which is not alpine) would also be

much easier solved by allowing values in the frames to be

expressed by logical conditions. However, as the basis of FRL is

to express a facet by a list of values instead of a single set of

logical conditions, then the whole format of the language would

need to be altered. Further research is required as to whether

the alternative frame format is worthwhile or not.

6.1.4 Dynamic matching schemes.

Another area of research into the problem of matching

frames, is the usefulness of providing a dynamic as opposed to a

static matching process. The matching schemes previously

described are primarily static in that the same information is

being matched throughout the search of the frame system. In a

dynamic matching process, information that is relevant to the

match would be initially gained from the frame description being

matched and would be subsequently updated as the search

continued.

109

Some possibilities for dynamic frame matching are proposed

below:

1. Information in the frames being matched can be added to or

updated depending on what was f~und in the search.

2. Key features or ideas could be immediately 'hashed' to the

relevant frames.

3. Various levels of categorisation of the frames into ideas

could be conducted with the ideas being analysed becoming more

specific during the search. For example, for the Bird

Recognition System, the bird observations could be initially

categorised into more distinctive ideas in relation to size and

appearance. Ideas about less obvious features such as nest

location and the colour of the egg can be included as the need

arises.

4. More elaborate matching schemes can be designed using

$IF-MATCHED functions to perform the automatic updating of ideas

and information in the frames.

110

6.1.5 Using matching to perform the search.

The above extensions to frame matching pose a further

question Is an elaborate matching scheme better than using

elaborate structuring techniques? This question is a variation

on the procedural versus declarative knowledge debate - is it

better to have a relatively simple structure with a sophisticated

search algorithm or vice versa? By providing a matching scheme

such as using ideas to guide the search, then the need to

organise special structures for the search is eliminated. More

importantly, the design of the search is separated from the

design of the frames. The implementation of the above extensions

to the matching of the frames will provide a useful means for

comparing the two different techniques.

6.2 Research into Aspects of Knowledge Representation.

Another feature related to the bird and bridge systems is that

they each provided different problems in applying the frames. For

example, the problem of unknown information is a major problem in

the Bird System. The need to specify multiple conditions of slot

values occurs only in the Bridge System. Therefore, other forms of

knowledge may provide further problems of a different nature. The

following questions are raised :

1. Are certain types of information imcompatible with the frame

format?

2. Which forms of information are most suited to it?

3. Which forms of information are most suited to other methods of

knowledge representation?

111

4. Can other representations be incorporated into the frame format,

or can frames be used to improve other systems? For example,

CENTAUR [Aikens, 1983] demonstrates how frames and production

rules may be combined together to exploit the best features of

both forms of knowledge representation.

6.3 Application of Frames to Specific Problems.

Other specific applications, outlined below, provide further

lines of research into the use of frames :

1. Implementation of improved user interfaces such as allowing a

bridge expert to design a frame system.

2. Application of frames to other problems in Bridge. Some of the

problems are:

a) Implementing future bidding, such as rebids and responses to

earlier bids.

b) Distinguishing between multiple bids, where one bid is

feasible, but another is better. For example, 1 Heart or 2

Hearts.

c) Quantifying the hand, where a frame is built up of another

person's hand from the information available, such as

previous bids and the cards played.

d) Playing the hand.

112

3. Implementation of software tools and expert systems that use

frames.

4. Feasibility of constructing a database that uses the frame

approach for retrieval and update as opposed to the network and

relational database type systems.

113

7 SUMMARY.

This thesis has investigated the use of frames to represent

knowledge on the computer. Two particular applications of frames, the

first to the problem of finding an appropriate opening bid in bridge,

and the second to the problem of recognising birds from field

observations, were implemented in FRL, a frame representation language,

to analyse important features of frames and to find out ways in which

they can be improved.

The problems of matching similar pieces of information were

discussed in Chapter 1. The existing matching scheme which matches a

specific frame against a more generalised frame that contains various

requirements for each slot, was used to implement the bridge system.

The major limitation of this approach is that the matching process is

merged in with the data being matched. To overcome this problem, an

alternative matching scheme was proposed which involves the use of

matching functions and if-matched demons to separate out the design of

the matching process.

In Chapter 3, several frame structures were proposed to allow for

different types of search. Four different structures, linear, set,

hierarchical and network were analysed and the relative merits of each

discussed. The different structures demonstrated the versatility of

frames in expressing information in different ways, and offer a wide

range from which to choose the best suited method of representation for

a particular application. It was also shown how the different

structures can be organised so that the design of the search may be

separated out from the information contained in the frames,

114

The problem of interfacing between the frame system and the user

was investigated in Chapter 4. It was shown that the existing

interface was inadaquate for all types of user except for the

programmer. The use of display and enter functions, and interactive

matching functions, were proposed for improving the presentation to the

users, and for providing a simple query and retrieval system. Aspects

of allowing a user to create or modify a frame system were

investigated, with the conclusion being that it is easier to design a

frame system tailored to a specific purpose for the expert to modify,

rather than design a general purpose frame system.

A comparison of frames with production systems and semantic

networks was given in Chapter 5. It was stated that frame systems are

a more general method of representing knowldege than semantic networks,

which does not have extra features such as defaults and procedural

attachments. The major advantage of production systems are their

modularity, with the information being expressed by the same format,

and also being easy to modify. The maJor advantage of frame systems

are their ability to separate the control structure from the

information being represented, and also that they enable info~mation

about a certain object to be grouped in a single place. It was also

suggested that the range of problems to which frame systems may be

applied is larger than for production systems because of the ability to

attach control information to the frames.

Further areas of research are proposed in Chapter 6. These

involve the extension of frame matching, and the application of frames

to further problems such as playing bridge and building expert systems.

In particular, a different method of search is proposed, whereby

instead of searching a knowledge base for a match, information known

115

may be categorized into certain ideas from which further ideas or

frames in the knowledge base are suggested.

A -

APPENDIX A. FRL Commands.

Listed below is a summary of the additional FRL commands described

in this thesis. The LISP definitions of each command is shown

following the summary. For the standard FRL commands, refer to the FRL

Manual.

FDISPLAY <frame>.

Displays the values of FRAME.

FDISPLAY-SLOT <frame> <slot>.

Displays the values of the SLOT using the attached display

function. If no function is found, the function PRINT is used.

FENTER <frame> <generic-frame>.

Creates the frame FRAME and enters the values into the new frame

using the enter functions defined in the GENERIC-FRAME.

FENTER-SLOT <frame> <slot>.

Enters the SLOT value using the attached enter function. If no

function is found, the function READ is used. The local variable

:ENTER-VALUES indicates whether a list of values or a single value

is to be entered into the SLOT.

FMATCH <frame1> <frame2>.

Matches the frame FRAME1 against the frame FRAME2. Returns T if

the two frames match, NIL if they do not match and? if the result

of the match is unknown. FMATCH-PUT is used to store the result of

A - 2

the match. The local variables :FMATCH. and :MATCH contain the

results of the frame match and the slot match respectively. The

variables :FRAME1, :FRAME2, :SLOT, :VALUES1 and :VALUES2 are bound

to the frame and slot values during the matching process.

FMATCHED <frame1> <frame>.

Returns T if FRAME1 has already been matched against FRAME2.

FMATCHES <frame>.

Returns the names of the frames that have been matched against

FRAME.

FMATCH-CLEAR <frame>.

Clears out the current match results of FRAME.

FMATCH-GET <frame1> <frame2>.

Gets the result of the match between FRAME1 and FRAME2. If the two

frames have not already been matched, then NIL is also returned.

FMATCH-PUT <frame1> <frame2> <result>.

Stores the result of the match between FRAME1 and FRAME2 in the

global list :MATCH-RESULTS.

FMATCH-SLOT <frame1> <frame2> <slot>.

Evaluates the match function attached to SLOT between FRAME1 and

FRAME2. If an $IF-MATCHED function exists, then this is also

evaluated.

A - 3

FMATCH-SLOTS <frame1> <frame2>.

Matches the slots between FRAME1 and FRAME2. The following values

are returned :

t if at least one slot match returns true, and none return false

f if any of the slot matches return false

? if all the slot matches return unknown.

FSEARCH <frame> <frame-list>.

Searches through the frames in FRAME-LIST and returns the names of

the frames that match with FRAME. The global variable :MODE

indicates whether the search stops at the first match or continues

throughout the frame system.

FSEARCH-AKO-NETWORK <frame> <generic-frame>.

Searches the AKO network defined by GENERIC-FRAME and returns the

names of the frames that match with FRAME. Uses the global

variable :MODE as defined for FSEARCH.

FSEARCH-SET <frame> <frame-list>.

Returns the names of further frames to search after matching FRAME

with the set frames specified by the FRAME-LIST. Uses the global

variable :MODE as defined for FSEARCH.

FSEARCH-SLOT-NETWORK <frame> <node>.

Searches the slot network with starting node NODE and returns the

names of the nodes in the network that match with FRAME. Uses the

global variable :MODE as defined for FSEARCH.

A - 4

FSEARCH-TREE <frame> <tree>.

Returns the names of the terminal nodes of TREE that match with

FRAME. Uses the global variable :MODE as defined for FSEARCH.

FVALUES <frame> <slot> <facet>.

Appends and returns the list of values for the FACET of the SLOT of

FRAME.

FDISPLAY

(defun fdisplay (frame)
/* Prints the $VALUE slots of FRAME.

(prog ()

)
)

(print (capital frame))
(map car cdr

)

(lambda (slot)

)

(spaces 5)
(print slot)
(fdisplay-slot frame slot)

(ldifference (fslots frame)
'(ako instance match reject search)

)

(return frame)

(defun fdisplay-slot (frame slot)

A -

/* Displays the SLOT $VALUE using the display function in the $DISPLAY
/* facet of the slot. If no function exists, it uses the default
/* function(s) described through the AKO slot.
/* If one does not exist here, then PRINT is used.

)

(prog (function value)

)

(setq value (fvalues frame slot '$value))
(setq function (fget frame slot '$display))
(cond

((null (atom function))
(return ((caar function) value))

)
(t (return (print value)))

5

FENTER A -

(defun fenter (frame ako-frame)
/* Reads in the $VALUEs as indicated by the AKO-FRAME into FRAME.

)

(prog (value :enter-values frame-name)
(setq frame-name (fcreate frame))

)

(fput frame-name 'ako '$value ako-frame)
(map car cdr

)

(lambda (slot)

)

(setq value (fenter-slot frame-name slot))
(cond

)

((member value '(q quit Q QUIT))
(return frame-name)

)

(ldifference (fslots ako-frame)
'(ako instance match search reject)

)

(return frame-name)

(defun fenter-slot (frame slot)
/* Reads in the SLOT $VALUE using the enter function in the $ENTER
/* facet of the slot. If no function exists, it uses the default
/* function(s) described through the AKO slot.
/* If one does not exist here, then READ is used.
/* The local flag :ENTER-VALUES indicates whether the result returned
/* by the enter function to be put into the frame is a list of values
/* (if T) or a single value (if NIL).

)

(prog (function value :enter-values)

)

(setq function (fget frame slot '$enter))
(cond

)

((null (atom function))

)

(setq value ((caar function)))
(cond

)

((null value))
((member value '(q quit Q QUIT)))
(:enter-values

)

(map car cdr
(lambda (val)

(fput frame slot '$value val)
)
value

(t (fput frame slot '$value value))

(return value)

(setq value (read))
(cond

((null value))
((member value '(q quit Q QUIT)))
(t (fput frame slot '$value value))

)
(return value)

6

FMATCH

(defun fmatch (:frame1 :frame2)
/* Matches the two frames :FRAME1 and :FRAME2.
/* The function first matches the MATCH slot of :FRAME2.
/* If this matches, then the function tries to match the slots
/* in each frame.
/* At the end of the match, the $IF-MATCHED facet is evaluated
/* if it exists.

(prog (:fmatch fmatch-function)
/* Match the two frames :
(setq :fmatch (fmatch1 :frame1 :frame2))
/* Evaluate any $IF-MATCHED functions :

A -

(setq fmatch-function (fget :frame2 'match '$if-matched))
(cond

(fmatch-function
((caar fmatch-function) :frame1 :frama2)

)
)
(return :fmatch)

)
)

(defun fmatch1 (frame1 frame2)
/* Performs the matching of the frames without evaluating the
/* $IF-MATCHED functions.

(prog (result flag ako1 ako2)
(setq flag?)
(setq ako1 (fheritage frame1 'ako '$value))
(setq ako2 (fheritage frame2 'ako '$value))
(cond

((or (equal frame1 frame2)
(intersection (list (list frame2)) ako1)
(intersection (list (list frame1)) ako2))

7

/* Return T if one is the generic frame of the other
(return t)

)

)
((null (intersection

)

(union ako1 (list (list frame1)))
(union ako2 (list (list frame2)))))
/* Return NIL if the heritages do not overlap
(return nil)

((fmatched frame1 frame2)
(return (fmatch-get frame1 frame2))

)

/* Evaluate the MATCH slot.
(setq result (fmatch-match-slot frame1 frame2))
(cond

)

((null result)

)

(fmatch-put frame1 frame2 nil)
(return nil)

(t (setq flag result))

/* Match the slots in each frame.
(setq result (fmatch-slots frame1 frame2))
(cond

((unknown result)
(setq result flag)

FMATCH

)

)
)
(fmatch-put frame1 frame2 result)
(return result)

(defun fmatch-slots (frame1 frame2)
/* Matches the slots in FRAME1 against those in FRAME2.
/* Returns T if at least one slot match returns "true"
/* (non NIL or non?), and none return NIL.
/* Returns NIL if any of the slots return NIL.
/*Returns? if all the slot matches return?.

(prog (slots1 slots2 result flag)
(setq slots1

(ldifference

A -

(fslots frame1) '(match reject search ako instance)

)
)

)
(setq slots2

(ldifference

)
(cond

)

(fslots frame2) '(match reject search ako instance)
)

((null (intersection slots1 slots2))
(return?)

)

(map car cdr

)
(cond

)

(lambda (:slot :values1 :values2)

)

(setq :values1 (fvalues frame1 :slot '$value))
(setq :values2 (fvalues frame2 :slot '$value))
(cond

)

((or (null :values1) (null :values2)))
(t

)

(setq result

)
(cond

)

(fmatch-slot frame1 frame2 :slot)

((null result)
(return nil)

)
((unknown result))
(t (setq flag t))

slots2

(flag (return t))
(t (return ?))

8

FMATCH A -

(defun fmatch-slot (frame1 frame2 slot)
/* Matches the SLOT in FRAME1 against the SLOT in FRAME2.
/* If a $IF-MATCHED function exists, then this is also evaluated.

)

(prog (:match)

)

(setq :match (fmatch-eval frame1 frame2 slot '$match))
(fmatch-eval frame1 frame2 slot '$if-matched)
(return :match)

(defun fmatch-eval (frame1 frame2 slot facet)
/* Evaluates the FACET function in FRAME2 using the values from
/* both of the frame's SLOTs as arguments.

)

(prog (function default argument1 argument2)
(setq function (fget frame2 slot facet))
(cond

)

)

((null function)
(return nil)

)
(t (setq function (caar function)))

(setq argument1 (fvalues frame1 slot '$value))
(setq argument2 (fvalues frame2 slot '$value))
(cond

((atom function)
(eval (list function 'argument1 'argument2))

)
(t (function argument1 argument2))

)

(defun fmatch-match-slot (frame1 frame2)
/* Evaluates the MATCH slot of the frame FRAME2 against FRAME1.

(prog (match-list)

)
)

(cond
((member 'match (fslots frame2))

(setq match-list (fget frame2 'match '$value))

)
(cond

(match-list
(fmatch-match-list frame1 frame2 (caar match-list))

)
(t ?)

)

(defun fmatch-match-list (frame1 frame2 match-list)
/* Matches the MATCH-LIST containing the logical combinations
/* (OR's, AND's and NOT's) of the frames in the MATCH slot.

(prog (condition frames result flag)
(setq condition (car match-list))
(setq frames (cdr match-list))
(map car cdr

9

FMATCH

(lambda (frame)
(cond

((null (atom frame))
(setq result

A - 10

(fmatch-match-list frame1 frame2 frame)

)

)
(cond

)
(cond

)
)
frames

)
)
(t (setq result (fmatch frame1 frame)))

((equal result t)
(setq flag t)

)

((equal condition 'not)
(cond

)
)

((unknown result)
(return?)

)
(t (return (null result)))

((and (equal condition 'or) result)
(return t)

)
((and (equal condition 'and) (null result))

(return nil)
)

(cond
(flag
(t

(return t))
(return ?))

)
)

)

/* Extra definitions to support FMATCH:
(setq ? '?)
/*? is the atom equivalent to the logic value UNKNOWN.

(setq :match-results nil)
/* :MATCH-RESULTS is the global list of results of each frame match.

(defun true (s)
/* Returns T if the s-expression Sis non-NIL and not UNKNOWN.

(null (members '(()-?)))
)

(defun unknown (s)
/* Returns T if the s-expression Sis equal to?.)

(equals?)
)

FMATCH

(defun fmatched (frame1 frame2)
/* Returns T if FRAME1 has already been matched against FRAME2.

(member frame2 (get :match-results frame1))
)

(defun fmatch-get (frame1 frame2)

A -

/* Gets the result of the frame match between FRAME1 and FRAME2.
/* If the two frames have not already been matched, then
/* NIL is returned.

(get (get :match-results frame1) frame2)
)

(defun fmatch-put (frame1 frame2 result)
/* Puts the result of the match between FRAME1 and FRAME2 in the
/* global list :MATCH-RESULTS.

(cond
((null :match-results)

11

(setq :match-results (list frame1 (list frame2 result)))
)
((null (get :match-results frame1))

(put :match-results frame1 (list frame2 result))
)
(t (put (get :match-results frame1) frame2 result))

)
)

(defun fmatch-clear (frame)
/* Clears out the current match results of FRAME.

(setq :match-results
(reverse

(ldifference
:match-results
(list frame (get :match-results frame))

)

)
)

(defun fmatches (frame)
/* Returns the names of the frames that have been
/* matched against FRAME.

(map car cddr (lambda (x) x) (get :match-results frame))
)

FSEARCH

(defun fsearch (frame frame-list)
/* Matches the FRAME against all the frames in FRAME-LIST.
/* Returns the name(s) of the matching frames.

A -

/* :MODE indicates whether to return ALL matches or the FIRST match.
(prog (frames)

(map car cdr
(lambda (frame1)

(cond
((fmatch frame frame1)

(cond

)

((equal :mode 'first)
(return (list frame1))

12

(setq frames (union frames (list frame1)))

)
)

)

)
)
frame-list

(return frames)

)

FSEARCH-AKO-NETWORK A -

(defun fsearch-ako-network (frame generic-frame)
/* Matches the FRAME in the against the AKO network specified by the
/* GENERIC-FRAME.
/* Returns the list of nodes in the network that match FRAME if
/* :MODE= ALL, or the first match if :MODE= FIRST.

(prog (search-list reject-list frames nodes node result)
/* REJECT-LIST is the list of nodes that have been rejected through
/* the REJECT slot.

13

/* SEARCH-LIST is the set of nodes that are suggested by the matching
/* of the current NODE (through the INSTANCE slot).
/* FRAMES is the list of matching frames.

(fmatch-clear frame)
(fmatch-put frame generic-frame t)
(setq nodes (fvalues generic-frame 'instance '$value))
(cond

((null nodes) (return nil))
((atom nodes) (setq nodes (list nodes)))

)
(setq search-list nodes)
loop
(setq node (car search-list))
(setq result (fmatch-node frame node))
(cond

)

((true result)
(cond

)

)

((equal :mode 'first)
(return (list node))

(setq frames (union frames (list node)))
(setq reject-list

(union reject-list (fvalues node 'reject))
)

/* Update the SEARCH-LIST from the INSTANCE and REJECT slots.
(setq search-list (reverse

)
)

))
(cond

)

(ldifference

)

(union search-list (fvalues node 'instance '$value))
(union reject-list (fmatches frame))

((null search-list))
(t (go loop))

(return frames)

(defun fmatch-node (frame node)
/* Returns T if the AKO nodes for NODE all match, and the FRAME matches
/* with NODE.

(prog (result)
(cond

((fmatched frame node)
(return (fmatch-get frame node))

)
)

FSEARCH-AKO-NETWORK A -

)
)

(setq result (fmatch1-node frame node))
(fmatch-put frame node result)
(return result)

(defun fmatch1-node (frame node)
/* Same as FMATCH-NODE except that :MATCH-RESULTS are not updated.

)

(prog (result ako-function akos)
/* Match the AKO frames :

)

(setq akos (fvalues node 'ako '$value))
(cond

((null akos))
((atom akos) (setq akos (list akos)))

)_
(map car cdr

)

(lambda (ako-frame)
(cond

)
akos

)

((member ako-frame reject-list)
(return nil)

)

(setq result (fmatch-node frame ako-frame))
(cond

)

((null result)
(return nil)

)
((and (true result) (equal :mode 'first)

(member ako-frame nodes))
(return result)

)

(setq ako-function (fget node 'ako '$if-matched))
(cond

(ako-function
((caar ako-function) frame node)

)
)
(return (fmatch frame node))

14

FSEARCH-SET A -

(defun fsearch-set (frame frames)
/* Returns the set of node-names specified by the INSTANCE slot sets
/* and the REJECT slot sets in those FRAMES that match with FRAME.

(prog (matching-nodes rejected-nodes)
(fmatch-clear frame)
(map car cdr

(lambda (frame1 search-list reject-list)
/* check to see if the slot value matched and add the
/* node lists if it does

(cond

)
)

)

)
)
frames

(return

((member frame1 rejected-nodes))
((true (fmatch frame frame1))

(cond

)

((member 'instance (fslots frame1))
(setq search-list (fvalues

frame1 'instance '$value)
)

)

(setq reject-list
(fvalues frame1 'reject '$value)

)
(setq matching-nodes

(union matching-nodes search-list)
)
(setq rejected-nodes

(union rejected-nodes reject-list)
)

(ldifference matching-nodes rejected-nodes)
) .

1 5

FSEARCH-SLOT-NETWORK A - 1 6

(defun fsearch-slot-network (frame node)
/* Matches the FRAME against the slot network at NODE.
/* If the match fails, then it successively tries to match
/* the other nodes in the network.
/* :MODE indicates whether to return ALL matches or the FIRST match.

(prog (result-list search-list result match-result flag)

)
)

(setq flag ?)
(cond

)

((fmatched frame node)
(return nil)

(map car cdr

)

(lambda (slot)

)

(setq match-result (fmatch-slot frame node slot))
(cond

((true match-result)
(setq flag t)

)
((unknown match-result))
(t

)
)

/* search the nodes described in the $SEARCH
/* facet if the slot does not match
(fmatch-put frame node nil)
(setq search-list (fget node slot '$search))
(map caar cdr

)

(lambda (node)
(setq result

)

(fsearch-slot-network frame node)
)
(cond

)

((and result (equal :mode 'first))
(return result)

)
(result

(setq result-list

)
)

(union result result-list)

search-list

(cond

)

((equal :mode 'first)
(return nil)

)
(t (return result-list))

(reverse (fslots node))

(fmatch-put frame node flag)
(return (list node))

FSEARCH-TREE A - 17

(defun fsearch-tree (frame tree)
/* Returns the names of the terminal nodes of TREE (nodes that have no
/* instantiation) that match with the FRAME;
/* Returns NIL if there is no match.

)

(fmatch-clear frame)
(fsearch1-tree frame tree)

(defun fsearch1-tree (frame tree)
(prog (frames sub-nodes result)

)

/* find the list of sub-nodes belonging to this tree
(cond

)
(cond

)

((member 'instance (fslots tree))
(setq sub-nodes

(fget tree 'instance '$value)

)
(t (setq sub-nodes nil))

((fmatched frame tree)
(setq result (fmatch-get frame tree))

)
(t (setq result (fmatch frame tree)))

/* If there aren't any identifying slots in the node,
/* or the match is non NIL,
/* then the sub-nodes have to be searched.
(cond

)
(cond

((and (ldifference (fslots tree)
'(reject ako instance search))

(null result))
(return nil)

)

((null sub-nodes)

)
(t

)

(return (list tree))

(map caar cdr
(lambda (node)

)

(setq result (fsearch1-tree frame node))
. (cond

)
)
sub-nodes

((and result (equal :mode 'first))
(return result)

)
(t (setq frames

(union frames result))

(return frames)

FVALUES A -

(defun fvalues (frame slot facet)
/* Returns the value·s of the FACET of the SLOT of FRAME appended
/* together in a list if there are more than one value;
/* otherwise returns the value by itself.

)

(prog (values)

)

(setq values (fget frame slot facet))
(cond

)

((equal (length values) 1)
(caar values)

)
(values

(map caar cdr (lambda (x) x) values)
)

18

B -

APPENDIX B. Frame Definitions.

Selected frame definitions for each different frame system are

listed below for both the Bridge System and the Bird Recognition

System. Sample attached functions are also listed.

B-1 Bridge System.

B-1-1 Definition of HAND.

(deframe hand

)

(cards
($enter

(enter-hand))
($display

(display-cards)))
("honour points"

($enter
(find-honour-points))

($display
(display-honour)))

("division of suits"
($enter

(find-suit-division))
($display

(display-division)))
("suit strength"

($enter
(find-suit-strength))

($display
(display-strength)))

("playing tricks"
($enter

(find-playing-tricks))
($display

(display-value)))
("quick tricks"

($enter
(find-quick-tricks))

($display
(display-value)))

(balance
($enter

(find-balance))
($display

(display-value)))

B-1-2 Sample Attached Functions.

REQUIRE functions :

(defun equal-suits ()

B - 2

/* Returns T if the two longest
(prog (hand-divisions)

(setq hand-divisions
(caar

suits in HAND are of equal length.

)
(fget :frame '"division of suits" '$value)

)
(cond

((equal
(caar hand-divisions)
(car (cadr hand-divisions))

))
)

)
)

(ndefun points number
/* Returns T if the honour points in the HAND matches the NUMBER.

(match-number (car number)
(caaar

(fget :frame "'honour points" '$value)
)

)
)

(ndefun division divisions
/* Returns T if DIVISIONS matches against the division of suits
/* in HAND.

)

(setq divisions (car divisions))
(prog (hand-divisions)

)

(setq hand-divisions
(caar

(fget :frame '"division of suits" '$value)
)

)
(map car cdr

)

(lambda (number)
(cond

)
)

((match-number number (caar hand-divisions))
(setq hand-divisions (cdr hand-divisions))

)
(t

)
(return nil)

divisions

(return t)

Enter functions :

(defun enter-hand ()
/* Returns the global list CARDS entered by the user.

(prog (spades hearts clubs diamonds count)
loop
(setq spades (list 'spades))
(setq hearts (list 'hearts))
(setq diamonds (list 'diamonds))
(setq clubs (list 'clubs))
(enter-suit spades)
(enter-suit hearts)
(enter-suit diamonds)
(enter-suit clubs)
(setq cards

(list spades hearts diamonds clubs)
)
(setq count 0)
(map car cdr

B - 3

(lambda (suit) (setq count (plus count (length suit))))
cards

)
)

)
(cond

)

((equal count 17))
(t (prin1 (minus count 4))

)

(prin 1 '" cards were entered - please re-enter ")
(print '"the hand.")
(go loop)

(return cards)

(defun find-balance ()
/* Returns WELL BALANCED, BALANCED or UNBALANCED depending on the
/* CARDS.

)

(prog (count)

)

(setq count 0)
(map car cdr

(lambda (suit size)
(setq size (length suit))
(cond

)

)
)
cards

(cond
((equal
((lessp
(t

)

((lessp size 3)
(return 'unbalanced)

)
((equal size 3)

(setq count (plus count 1))
)

count 0) (return '"well balanced"))
count 2) (return 'balanced))

(return 'unbalanced))

Display functions :

(defun display-strength (bids)
/* Prints out the strength of the bids.

(prog (rebid bid flag)
(spaces 10)
(setq rebid (cdar bids))
(setq bid (cdadr bids))
(cond

)
(cond

((null rebid))
(t

)

(setq flag t)
(print-words rebid)
(prin1 'rebiddible)

((null bid)
(cond

((null flag)

B - 4

(prin1 '"No rebiddible or biddible suits")

)
)

)

)
(t

)

)
)

(cond
(flag (prin1 '"; "))

)
(print-words bid)
(prin1 'biddible)

(print nullchar)

(defun display-division (suits)
/* Prints out the division of the SUITS.

(prog (flag)

)
)

(spaces 10)
(map car cdr

)

(lambda (suit)

)
suits

(cond

)

(flag (prin 1 "' , "))
(t (setq flag t))

(prin1 (car suit))
(spaces 1)
(prin 1 (cadr suit))

(print nullchar)

Bid functions :

(defun long-suit-bid (bid)
/* Returns a BID of the longest suit in HAND.

(list bid
(cadar

(caar

B - 5

(fget :frame '"division of suits" '$value)
)

)
)

)

(defun two-long-suits-bid()
/* Returns a bid of 1 of: longer suit first unless hand is weak and
/* shorter adjacent suit ranks higher in HAND.

)

(prog (long-suit short-suit divisions)
(setq divisions

(caar
(fget :frame "'division of suits" '$value)

)
)
(setq long-suit (cadar divisions))
(setq short-suit (car (cdadr divisions)))
(cond

)

((and (weak :frame)

)

)
(t

(adjacent (list long-suit short-suit))
(greaterp short-suit long-suit)

(return (list

(return (list

short-suit))

long-suit)))

(defun prepared-opening-bid ()
/* Returns 1 clubs or 1 diamonds as a prepared opening bid for HAND.

(cond

)

((greaterp

)

)
(t

(cadr

)
1

(assoc 'clubs
(cdaar (fget :frame '"honour points" '$value))

)

'(1 clubs)

'(1 diamonds))

B-1-3 Sample Linear Frames.

(deframe opening-frame
(instance

)
)

($value

)

(two-no-trumps-frame)
(two-clubs-1-frame)
(two-clubs-2-frame)
(strong-two-1-frame)
(strong-two-2-frame)
(equal-suits-frame)
(4-4-4-1-frame)
(4-4-frame)
(6-4-frame)
(unequal-suits-frame)
(1-of-suit-frame)
(one-no-trumps-weak-frame)
(prepared-frame)
(light-opening-frame)
(pre-emptive-frame)

(deframe unequal-suits-frame
("division of suits"

($require

)

((and (null (equal-suits))
(division ((above 4) (above 3)))))))

("honour points"

(bid

($require
((points (above 8)))))

($if-needed
(two-long-suits-bid)))

(deframe two-no-trumps-frame
("honour points"

($require

)

((no-trumps (from 20 22.5)))))
(balance

(bid

($require
((balanced-hand))))

($if-needed
('(2 no-trumps))))

B - 6

B-1-4 Sample Set Frames.

(deframe opening-set
(instance

)
)

($value
(high-points-set)
(average-points-set)
(low-points-set)
(equal-suits-set)
(two-long-suits-set)
(one-long-suit-set)
(no-trumps-set)
(balanced-set)

(deframe high-points-set
("honour points"

($require
((or (points (above 19))

(q-tricks (above 4))))))
(instance

($value

(reject

(two-no-trumps-frame) (two-clubs-1-frame)
(strong-two-2-frame) (two-clubs-2-frame)))

($value

B - 7

(prepared-frame) (unequal-suits-frame) (6-4-frame)
(1-of-suit-frame) (one-no-trumps-weak-frame)
(4-4-frame) (4-4-4-1-frame) (equal-suits-frame)
(pre-emptive-frame)))

)
)

(deframe two-long-suits-set
("division of suits"

($require
-((division ((above 4) (above 3))))))

)

(instance
($value

(reject

(unequal-suits-frame) (strong-two-2-frame)
(strong-two-1-frame) (6-4-frame)))

($value

)

(4-4-frame) (4-4-4-1-frame) (prepared-frame)
(two-no-trumps-frame) (1-of-suit-frame)
(one-no-trumps-weak-frame) (pre-emptive-frame)))

B-1-5 Sample Hierarchical Frames.

/* level 1 */
(deframe opening-tree

)

(instance
($value

(1-of-suit-tree)
(other-bid-tree)

)
)

/* level 2 */
(deframe 1-of-suit-tree

(ako

)

($value
(opening-bid-tree)))

(instance

)

($value
(equal-suits-tree)
(unequal-suits-tree)

)

("honour points"
($require

((points (from 8 19)))))
("division of suits"

($require
((or (division ((above 4)))

(biddible-suit)
))))

/* level 3 */
(deframe equal-suits-tree

(ako

)

($value
(1-of-suit-tree)))

(instance

)

($value

)

(4-4-suits-tree)
(other-equal-suits-tree)

("division of suits"
($require

((equal-suits))))

/* level 4 */
(deframe other-equal-suits-tree

(ako
($value

(equal-suits-tree)))
(instance

($value

)

(equal-long-suits-tree)
(low-points-equal-suits-tree)

B - 8

)
)

/* level 5 */
(deframe equal-long-suits-tree

(ako

)

($value
(other-equal-suits-tree)))

("division of suits"

(bid

($require
((division ((above 4))))))

($if-needed
(equal-suits-bid)))

B - 9

B-1-6 Sample Search Tree Frames.

(deframe opening-hands

)

(instance
($value

)
)

(no-bid-hand)
(strong-hands)
(no-trumps-hands)
(one-hands)

(deframe no-bid-hand
("honour points"

($require
((points (below 9)))))

(bid
($if-needed

('())))
)

(deframe strong-hands
(instance

)

)

($value

)

(two-clubs-hand)
(two-no-trumps-frame)
(strong-hand)

(points
($require

((or (points (above 17))
(p-tricks (above 7))
(q-tricks (above 4))

))))

(deframe two-clubs-hand
(points

(bid

)

($require
((or (points (above 22))

(q-tricks (above 4))))))

($if-needed
('(2 clubs))))

B - 10

B-1~7 Sample Slot Network Frames.

(deframe opening-node
("honour points"

($require

)

)

((points (below 9))))
($search

(1-of-suit-node) (equal-suits-node)
(strong-two-2-node) (strong-two-1-node)
(one-no-trumps-weak-node) (two-clubs-2-node)
(pre-emptive-node))

("playing tricks"
($require

(bid

((p-tricks (below 8))))
($search

(strong-two-1-node)))

($if-needed
('())))

(deframe 1-of-suit-node

)

("suit strength"

)

($require
((biddible-suit)))

($search
(prepared-node) (one-no-trumps-weak-node)
(two-no-trumps-node))

("honour points"
($require

)
(bid

((points (from 12 19))))
($search

(two-no-trumps-node) (light-opening-node)
(two-clubs-2-node))

($if-needed
(light-opening-bid)))

B - 11

B - 12

B-1-8 Sample AKO Network Frames.

(deframe opening node
(instance -

)

($value

)

(no bid node) (strong two 2 node)
(two no-trumps node) Tequal-suits node)
(unequal suits-node) (two clubs 1-node)
(two clubs 2 node) (strong two Tnode) (4 4 4 1 node)
(4 4-suits-node) (6 4 node) (1-of suit node) - -
(one-no trumps weak-node) (prepared node)
(light_opening node) (pre_emptive_node)

(deframe strong_node
(ako

)

)

($value
(opening_node)

)

(reject

)

($value

)

(light opening node) (1 of suit node) (4 4 suits node)
(4 4 4-1 node)-(equal suits node) (unequal-suits-node)
(6-4-node) (one no trumps weak node) (prepared node)
(pre emptive_node)-(no_bid_node) (4_4_node) -

(points
($require

((or (points (above 17))
(p-tricks (above 7))
(q-tricks (above 4))))))

(deframe strong two 2 node
(ako

)

)

($value

)

(strong node)
(long suit node)
(opening_node)

("honour points"
($require

((points (above 17)))))
("division of suits"

(bid

($require
((division ((above 4))))))

($if-needed
((long-suit-bid 2))))

B-2 Bird Recognition System.

B-2-1 Definition of BIRD.

(deframe bird
(ako

($if-matched
(display-akos)))

(instance
($value

("new zealand dabchick") ("white faced heron")
("bittern") ("black swan") ("mute swan")

B - 13

("canada goose") ("paradise duck") ("mallard")
("grey duck") ("new zealand scaup") ("grey teal")
("new zealand shoveler") ("harrier")

)
)

("californian quail") ("brown quail") ("pheasant")
("banded rail") ("pukeko") ("australian coot")
("spur winged plover") ("rock pigeon") ("little owl")
("kingfisher") ("skylark") ("new zealand pipit")
("welcome swallow") ("hedge sparrow") ("fernbird")
("grey warbler") ("fantail") ("song thrush")
("blackbird") ("silvereye") ("yellowhammer")
("cirl bunting") ("chaffinch") ("greenfinch")
("goldfinch") ("redpoll") ("house sparrow")
("starling") ("indian myna") ("black backed magpie")
("white backed magpie") ("rook")

(match

(size

($if-matched
(display-birds)))

($match
(estimate))

($if-matched
(show-estimate))

($enter
(ask-size))

($display
(print-list)))

(appearance
($match

(appearance))
($if-matched

(show-appearance))
($enter

(ask-noun-description))
($display

(print-appearance)))
(distribution

($match
(district))

($if-matched
(show-district))

($enter
(ask-set))

($display
(print-names)))

(habitat

($match
(same-nouns))

($if-matched
(show-habitat))

($enter
(ask-set))

($display
(print-habitat)))

(behaviour
($match

(noun-description))
($if-matched

(show-behaviour))
($enter

(ask-noun-description))
($display

(print-noun-description)))
(flight

(food

($match
(noun-description))

($if-matched
(show-flight))

($enter
(ask-noun-description))

($display
(print-noun-description)))

($match
(same-nouns))

($if-matched
(show-food))

($enter
(ask-set))

($display
(print-words)))

("nest material"
($match

(same-nouns))
($if-matched

(show-nest))
($enter

(ask-material))
($display

(print-words)))
("nest location"

($match
(location))

($if-matched
(show-location))

($enter
(ask-location))

($display
(print-phrase-description)))

(breeding
($match

(season))
($if-matched

(show-season))
($enter

, ,
B - 14

)

(ask-season))
($display

(print-season)))
("number of eggs"

($match
(number))

($if-matched
(show-number))

($enter
(ask-eggs))

($display
(print-eggs)))

("egg colour"
($match

(noun-description))
($if-matched

(show-colour))
($enter

(ask-colour))
($display

(print-noun-description)))

B - 15

B-2-2 Sample Attached Functions.

Match functions :

(defun number (number range)
/* Returns T if NUMBER falls in the RANGE.

(cond

)
)

((atom range)
(equal number range)

)
((lessp (length range) 3)

(cond

)
)

((equal (car range) 'above)
(greaterp number (cadr range))

)
((equal (car range) 'below)

(lessp number (cadr range))
)
(t (equal number (car range)))

((and (greaterp number (minus (car range) 1))
(lessp number (plus (caddr range) 1)))

)

(defun same-nouns (noun1 noun2)
/* Returns non NIL if the nouns NOUN1 intersect with
/* the nouns NOUN2.

(cond
((atom noun1) (setq noun1 (list noun1)))

)
(cond

((atom noun2) (setq noun2 (list noun2)))
)
(intersection noun1 noun2)

)

B - 16 ·

IF-MATCHED functions :

(defun show-number (number range)
/* Prints out a message if the NUMBER of eggs is matched
/* against RANGE.

(prog (which)
(cond

((true :match)
(prin1 '"The ")
(print-name :frame2)
(prin 1 ' " usually has ")
(print-eggs range)

B - 17

(prin 1 '" eggs in its nest which matches with the ")
(prin1 number)

)
)

)

(print '" eggs that were found.")
)
((null :match)

(cond

)

)
(cond

)

((atom range) (setq range (list range)))

((lessp number (car range))
(setq which 'few)

)
(t (setq which 'many))

(prin 1 ' "There are too ")
(prin1 which)
(prin 1 '" eggs in the nest for the bird to be the ")
(print-name :frame2)
(print '.)

(defun show-district (district1 district2)
/* Prints a message if DISTRICT is matched.

(prog ()

)
)

(cond

)

((true :match)

)

(prin 1 '"The ")
(print-name :frame2)
(prin 1 ' " is usually found in ")
(print-names district2)
(print '" which matches with where the bird was found.")

((null :match)
(prin1 '"The bird cannot be the ")
(print-name :frame2)
(prin 1 '" which is usually found in ")
(print-names district2)
(print '.)

B - 18

Enter functions :

(defun ask-set ()
/* Asks and returns the WORDS that best describes the feature.

)

(prog (words choices slot-help)

)

(setq choices (caar (fget 'bird-words slot '$value)))
loop
(prin1 '"Enter the words that best describe the ")
(prin 1 '"bird's ")
(prin 1 slot)
(print '" :")
(cond

)
(cond

)

((equal slot 'distribution)
(setq words (read-names))

)
(t (setq words (read-list)))

((member words '(q quit))
(return 'quit)

)
((equal words 'help)

(cond

)

)

((equal slot '"nest material")
(feature 'material)

)
(t (feature slot))

(cond

)

((equal slot 'distribution))
(t

)

(print '"The following are valid words ")
(display-set choices)

(go loop)

((ldifference words choices)
(prin1 clear-screen)

)

(prin1 '"The following are invalid words : ")
(print-list (ldifference words choices))
(print '" - please reenter or ask for help.")
(print nullchar)
(go loop)

(setq words (intersection words choices))
(setq :enter-values t) /* Enter more than one value
(return words)

Display functions :

(defun print-names (words)
/* Prints out the list of WORDS.

(prog (flag)

)
)

(setq flag nil)
(cond

)

((atom words)
(print-name words)
(print nullchar)
(return)

)

(map car cdr
(lambda (word)

(cond
(flag
(t

)

(prin 1 ' 11
,

11
))

(setq flag t))

(print-name word)
)
words

)
(print nullchar)

(defun print-eggs (eggs)
/* Prints out the number of EGGS.

(cond

)
)

((atom eggs)

)

(prin1 eggs)
(print nullchar)

((lessp (length eggs) 3)
(prin1 (car eggs))
(print nullchar)

)
((equal (car eggs) (caddr eggs))

(prin1 (car eggs))
(print nullchar)

)
(t (print-list eggs))

B - 19

B-2-3 Sample Linear Frames.

(deframe "mallard"
(ako

)

($value
("bird")))

(size
($value

(58)))
(appearance

($value
("mallard appearance")))

(distribution
($value

("new zealand")))
(habitat

($value
(river) (lake) (pond) (marsh) (lagoon)))

(flight
($value

((flight (fast wheeling) take-off (sudden)
sides (pale) tail (pale)))))

(food
($value

(plants) (insects)))
(breeding

($value
((august to september))))

("nest material"
($value

(grass) (vegetation) (down)))
("nest location"

($value
((near (water) in (vegetation)))))

("number of eggs"
($value

((5 to 20))))
("egg colour"

($value
((mainly (cream light)))))

B - 20

(deframe "mallard appearance"
("male breeding plumage"

($value

B - 21

((head (green) breast (purple brown) rump (black)
bill (olive yellow green) body (grey brown)
feet (orange) underparts (grey)))))

)

("male eclipse plumage"
($value

((mainly (brown) body (brown) feet (orange)
bill (olive green) rump (brown black)
crown (dark brown) upperparts (grey)
speculum (shining blue white)))))

("female and immature"
($value

((mainly (brown) body (mottled brown)
feet (orange) bill (brown orange)
speculum (shining blue white)))))

B - 22

B-2-4 Sample Set Frames.

(deframe "bird sets"
(instance

)
)

($value

)

("small sized bird") ("medium sized bird")
("large sized bird")
("colourful bird")
("colourful billed bird") ("dark billed bird")
("dark feet bird") ("light feet bird")
("dark undersides bird") ("light undersides bird")
("North Island bird") ("South Island bird")
("water bird") (~land bird") ("land and water bird")
("animal eating bird") ("plant eating bird")
("omnivorous bird")
("slow flight bird") ("swift flight bird")
("grassy nest bird") ("branchy nest bird")
("tree nest bird") ("water nest bird")
("February to July breeding bird")
("many eggs bird") ("few eggs bird")
("coloured eggs bird") ("creamy eggs bird")

(deframe "large sized bird"
(ako

)

($value
(bird)))

(instance

(size

($value
("white faced heron") ("bittern") ("black swan")
("mute swan") ("canada goose") ("paradise duck")
("mallard") ("grey duck") ("harrier") ("pheasant")
("pukeko") ("australian coot")))

($value
(large))

($match
(equal))

($if-matched
(show-set)))

(reject
($value

("new zeaiand dabchick") ("new zealand scaup")
("grey teal") ("new zealand shoveler")
("californian quail") ("brown quail")
("banded rail") ("spur winged plover")
("rock pigeon") ("little owl") ("kingfisher")
("skylark") ("new zealand pipit")
("welcome swallow") ("hedge sparrow")
("fernbird") ("grey warbler")
("fantail") ("song thrush") ("blackbird")
("silvereye") ("yellowhammer")
("cirl bunting") ("chaffinch") ("greenfinch")
("goldfinch") ("redpoll") ("house sparrow")
("starling") ("indian myna") ("black backed magpie")
("white backed magpie") ("rook")))

(deframe "slow flight bird"
(ako

)

($value
(bird)))

(flight
($value

((flight (slow laboured))))
($if-matched

(show-set)))
(reject

($value
("swift flight bird")
("canada goose") ("grey teal")
("new zealand shoveler")
("mallard") ("pukeko") ("skylark")
("welcome swallow") ("rook")))

B - 23

B-2-5 Sample Search Tree Frames.

/* level
(deframe "bird tree"

(ako
($value

(bird)))
(instance

($value

)
(size

)

("small bird")
("big bird")

($match
(equal))

($if-matched
((lambda (x y)))))

/* Do nothing if the slot is matched.
(appearance

)

($match
(any-noun))

($if-matched
((lambda (x y)))))

(habitat
($if-matched

((lambda (x y)))))
(match

($if-matched
(display-birds)))

/* level 2
(deframe "small bird"

(ako

)

($value
("bird tree")))

(instance
($value

)
)
(size

("small land bird")
("other small bird")

($value
(small)))

/* level 3
(deframe "other small bird"

(ako
($value

("small bird")))
(instance

($value

)

("small white bird")
("not small white bird")

B - 24

/* level 4
(deframe "small white bird"

(ako
($value

("other small bird")))
(instance

($value

)
)

("red faced bird")
("not red faced bird")

(appearance
($value

B - 25

((mainly (white) body (white) underparts (white)
upperparts (white)))))

)

(deframe "not small white bird"
(ako

)

($value
("other small bird")))

(instance

)

($value
("brown quail")
("fantail")
("blackbird")
("starling")

(match
($value

((not "small white bird"))))

,•

B-2-6 Samule AKO Network Frames.

(deframe "mallard"
(aka

)

($value
("large sized bird")
("water bird")
("colourful billed bird")
("light feet bird")
("omnivorous bird")
("swift flight bird")
("grassy nest bird")
("water nest bird")
("creamy eggs bird")
("bird")

)
)
(size

($value
(58)))

(appearance
($value

("mallard appearance")))
(distribution

($value
("new zealand")))

(habitat
($value

(river) (lake) (pond) (marsh) (lagoon)))
(flight

($value
((flight (fast wheeling) take-off (sudden)

sides (pale) tail (pale)))))
(food

($value
(plants) (insects)))

(breeding
($value

((august to september))))
("nest material"

($value
(grass) (vegetation) (down)))

("nest location"
($value

((near (water) in (vegetation)))))
(II b f II num er o eggs

($value
((5 to 20))))

("egg colour"
($value

((mainly (cream light)))))

B - 26

APPENDIX C. Trace of Bridge System.

C-1 Presentation to the user.

Internal representation

(hand1
(ako

($value
(hand)))

(cards
($value

C -

(((spades AK J 10 9 8) (hearts A Q J 10) (diamonds 3 2)
(clubs A))))))

(honour-points
($value

(((19 (no-trumps 2.0000000000000E+01) (spades 8)
(hearts 7) (diamonds 0) (clubs 4))))))

(division-of-suits
($value

(((6 spades) (4 hearts) (2 diamonds) (1 clubs))))))
(suit-strength

($value
(((rebiddible spades) (biddible hearts))))))

(playing-tricks
($value

(8)))
(quick-tricks

($value
(4)))

(balance
($value

(unbalanced)))
)

Displaying a bridge hand

Hand1
balance

unbalanced
quick tricks

4
playing tricks

8
suit strength

spades is rebiddible; hearts is biddible
division of suits

6 spades, 4 hearts, 2 diamonds, 1 clubs
honour points

19, (20 for no trumps)
spades= 8, hearts= 7, diamonds= 0, clubs= 4

cards

C - 2

spades AK J 10 9 8, hearts A Q J 10, diamonds 3 2, clubs A

Entering a bridge hand

enter spades : a kj 10 j 9 8
Invalid card or multiple cards entered.
Please re-enter the cards in the suit.
enter spades : a k j 10 9 8
enter hearts : q j a 10
enter diamonds : 2 3
enter clubs : a

C-2 Sample Bridge Hands.

Hand1

1.

2.

3.

4.

5.

6.

balance
unbalanced

quick tricks
4

playing tricks
8

suit strength
spades is rebiddible; clubs is biddible

division of suits
6 spades, 4 clubs, 3 hearts, 0 diamonds

honour points
20, (20 for no trumps)
spades= 10, hearts= 5, diamonds= O, clubs= 5

cards
spades AK Q J 9 8, hearts K Q 9, clubs K Q 9 8

Linear Search :

1 of suit frame
unequal suits frame
6 4 frame
strong two 2 frame
strong two 1 frame

Set Search

strong two 1 frame
strong two 2 frame

Hierarchical Search

strong two 2 tree
strong two 1 tree

Search Tree Search

strong hand

Slot Network Search

6 4 node
strong two 2 node
strong two node

AKO Network Search

6 4 node
strong two 1 node
strong two 2 node

1 spades
1 spades
1 spades
2 spades
2 spades

2 spades
2 spades

2 spades
2 spades

2 spades

1 spades
2 spades
2 spades

1 spades
2 spades
2 spades

C - 3

Hand2
balance

balanced
quick tricks

2
playing tricks

2
suit strength

spades and diamonds are biddible
division of suits

4 spades, 4 diamonds, 3 hearts, 2 clubs
honour points

14, (14 for no trumps)
spades= 8, hearts= 2, diamonds= 4, clubs= 0

cards

C - 4

spades AK J 9, hearts Q 9 8, diamonds K J 9 2, clubs 6 5

1. Linear Search

one no trumps weak frame
1 of suit frame
4 4 frame

2. Set Search

1 of suit frame
4 4 frame
one no trumps weak frame

3. Hierarchical Search :

1 no trumps weak tree
low points equal suits tree
4 4 tree

4- Search Tree Search

1 of suit frame
4 4 hand
one no trumps weak frame

5. Slot Network Search :

4 4 node
1 of suit node
one no trumps weak node

6. AKO Network Search

one no trumps weak node
of suit node

4 4 suits node

1 no trumps
1 spades
1 spades

spades
spades
no trumps

no trumps
spades
spades

spades
spades
no trumps

spades
spades
no trumps

no trumps
spades
spades

C - 5

Hand3

1.

2.

3.

4.

5.

6.

balance
balanced

quick tricks
2

playing tricks
2

suit strength
spades is biddible

division of suits
4 spades, 4 hearts, 3 diamonds, 2 clubs

honour points
10, (10.5 for no trumps)
spades= 5, hearts= O, diamonds= 5, clubs= 0

cards
spades A J 10 9, hearts 7 6 5 4, diamonds K Q 8, clubs 3 2

Linear Search

No bids

Set Search

No bids

Hierarchical Search

No bids

Search Tree Search

No bids

Slot Network Search

No bids

AKO Network Search

No bids

Hand4
balance

unbalanced
quick tricks

2
playing tricks

10
suit strength

hearts and diamonds are rebiddible
division of suits

7 hearts, 6 diamonds, 0 clubs, 0 spades
honour points

12, (12 for no trumps)
spades= O, hearts= 3, diamonds= 9, clubs= 0

cards
hearts Q J 9 8 7 5 3, diamonds AK Q 9 8 2

1. Linear Search

1 of suit frame
unequal suits frame
strong two 1 frame

2. Set Search

3.

4.

5.

6.

strong two frame

Hierarchical Search

strong two 1 tree
1 suit tree
other two suits tree

Search Tree Search

1 of suit frame
unequal suits hand
strong hand

Slot Network Search

unequal suits node
1 of suit node
strong two 1 node

AKO Network Search

1 of suit node
strong two 1 node
unequal suits node

1 hearts
1 hearts
2 hearts

2 hearts

2 hearts
1 hearts
1 hearts

1 hearts
1 hearts
2 hearts

1 hearts
1 hearts
2 hearts

1 hearts
2 hearts
1 hearts

C - 6

APPENDIX D. Trace of Bird Recognition System.

D-1 Presentation of the birds

Internal frame representation

(deframe "paradise duck"
(ako

)
(size

($value

)

("large sized bird")
("land and water bird")
("dark billed bird")
("dark feet bird")
("dark undersides bird")
("omnivorous bird")
("grassy nest bird")
("creamy eggs bird")
("bird")

($value
(63)))

(appearance
($value

("paradise duck appearance")))
(distribution

($value
("new zealand")))

(habitat
($value

D -

(hill-country) (river) (lake) (pond) (open) (pasture)))
(behaviour

($value
((run (fast strong)))))

(flight
($value

((wings (white) coverts (white)))))
(food

($value
(grass) (plants) (insects)))

(breeding
($value

((august to january))))
("nest material"

($value
(grass) (down)))

("nest location"
($value

((on (ground)))))
("number of eggs"

($value
((5 to 11))))

("egg colour"
($value

((mainly (cream)))))

Displaying a bird description

Paradise Duck
size

63
appearance

male and immature
mainly black, shining black head, white coverts,
red brown abdomen, black bill, dark black long
feet, short stout neck, green speculum

female
mainly bright brown chestnut, white head, dark
back, green speculum, white coverts, brown
underparts, black bill, dark black long feet,
short stout neck

distribution
New Zealand

habitat
hill-country, river, lake, pond, open, pasture

behaviour
fast strong run

flight
white wings, white coverts

food
grass, plants, insects

breeding
August to January

nest material
grass, down

nest location
on ground

number of eggs
5 to 11

egg colour
mainly cream

D - 2

Entering a bird description

Enter a name for the bird : BLACK AND WHITE BIRD

Enter estimate of bird's size (large, medium or small)
MEDIUM

Enter a description of the bird's appearance:
MAINLY BLACK AND WHITE
Invalid adjective entered - please reenter.
If you are not sure, then enter 'help'.

Enter a description of the bird's appearance:
HELP

D - 3

The appearance feature of a bird uses an english description to
describe the appearance of the bird. The description takes the
form of a list of phrases consisting of a noun modified by one or
more adjectives. Some examples of acceptable phrases are: wide
wings, colourful body, large eyes. The overall appearance of the
bird can also be described by using the adverb "mainly" such as :
mainly blue black brown, mainly dark.

There may be more than one type of appearance for a bird
stored in the database (for example a male pheasant looks
completely different from a female pheasant). When the bird is
displayed, the different appearances are shown indented under the
name of the type of bird.

The list of words allowed in the description are . .
nouns :
abdomen back bill body
breast cheeks chest chin
claw coverts crest crown
eyes face feet flanks
forehead head mantle mainly
nape neck plumage rump
scapulars shield sides speculum
tail thighs throat underparts
underwing upperparts wings
adjectives
apple barred black blue
bright brown buff chalky
chestnut clear colourful cream
curving dark dour downy
dull fanned forked freckled
glossy green grey intensive
large light long mottled
muddy off olive orange
pale pink plain plump
pointed pure purple red
rounded scaled sharp shining
short small spotted silver
stout streaked thick turquoise
untidy white wide yellow

Enter a description of the bird's appearance:
MAINLY BLACK WHITE, GREY BACK

Enter the words that best describe the bird's distribution

D - 4

KAIKOURA

Enter the words that best describe the bird's habitat :
H
The habitat feature describes the habitats
likely to be found. Common habitats are :
gardens, habitation, forest.

where the bird is
open, alpine, coast,

The following are valid words
alpine clearings cliffs coast
crops drains forest gardens
habitation hedges hill-country lagoon
lake marsh open orchards
pasture plantations pond river
roadside scrub

Enter the words that best describe the bird's habitat
OPEN

Enter a description of the bird's behaviour:
H
The behaviour• of the bird describes the most noticeable
idiosyncrasies of the bird in the field. Some examples are :
cheerful attitude,fast swimmer, nodding head and frequent dives.

The list of words allowed in the description
nouns :
attitude dives head
run swim tail
wings
adjectives
bobbing cheerful comfortable
drooping fast flicking
freezing frowning high
nimble scavenging secretive
skulking slow staring

Enter a description of the bird's behaviour:
NIMBLE WALK

Enter a description of the bird's flight:
SWIFT FLIGHT
Invalid adjective entered - please reenter.
If you are not sure, then enter 'help'.

Enter a description of the bird's flight:
H

are

rump
walk

crouched
frequent
jaunty
sedate
strong

The flight feature is used to describe the predominant features
of a bird's flight. Often a bird looks different from the air,
and the appearance from the ground can also be entered here such
as : black rump, white coverts, short wings. Other features
such as the flight and take-off can also be described.

The list of words allowed in the description are :
nouns :
coverts feathers feet flight
neck rump sides tail
take-off wingbeat wings
adjectives

black dangling dark drqoping
fast gliding high impulsive
laboured large low outstretched
pale retracted short slow
small soaring strong sudden
wheeling whirring white

Enter a description of the bird's flight:
FAST FLIGHT

Enter the words that best describe the bird's food
INSECTS WORMS

Was there a nest found? NO

Display produced from the above description

Black And White Bird
food

insects, worms
flight

fast flight
behaviour

nimble walk
habitat

open
distribution

Kaikoura
appearance

mainly white black, grey back
size

medium

D - 5

D-2 Specific Search

Entering the bird

Enter a name for the bird : DUCK
Enter estimate of bird's size (large, medium or small)
LARGE

Enter a description of the bird's appearance:
MAINLY BROWN BLACK WHITE, WHITE HEAD, DARK FEET

Enter the words that best describe the bird's distribution
CANTERBURY

Enter the words that best describe the bird's habitat
HILL-COUNTRY, POND
Enter a descriµtion of the bird's behaviour:

Enter a description of the bird's flight:
WHITE WINGS

Enter the words that best describe the bird's food
GRASS INSECTS

Was there a nest found? YES
Enter the words that best describe the bird's nest material
GRASS DOWN

Enter the location of the bird's nest
ON GROUND
month in which nest was found

How many eggs were found? 11
Enter a description of the colour of the eggs:
MAINLY CREAM

Displaying the bird

Duck
egg colour

mainly cream
number of eggs

11
nest location

on ground
nest material

down, grass
food

grass, insects
flight

white wings
habitat

hill-country, pond
distribution

Canterbury
appearance

mainly white black brown, white head, dark feet
size

large

D - 6

Linear Search

Each frame in the INSTANCE slot of the BIRD frame are matched
one after the other •••

The New Zealand Dabchick is too small.
The bird is not a New Zealand Dabchick.

A large-sized bird matches the size of the White Faced Heron
which is 66 cm.
The bird does not look like the White Faced Heron.
The bird is not a White Faced Heron.

A large-sized bird matches the size of the Bittern which is 71
cm.
The bird does not look like the Bittern.
The bird is not a Bittern.

A large-sized bird matches the size of the Black Swan which is
100 cm.
The bird looks like the adult Black Swan.

D - 7

The Black Swan is usually found in New Zealand which matches with
where the bird was found.
The bird's habitat was described as hill-country, pond so the
bird cannot be the Black Swan because its habitat is coast, lake.
The bird is not a Black Swan.

A large-sized bird matches the size of the Mute Swan which is 150
cm.
The bird looks like the adult Mute Swan.
The bird looks like the immature Mute Swan.
The Mute Swan is usually found in Canterbury, Hawkes Bay which
matches with where the bird was found.
The bird's habitat was described as hill-country, pond which
matches with where the Mute Swan is usually found which is lake,
pond.
The bird's food was described as grass, insects so the bird
cannot be the Mute Swan because it eats plants.
The bird is not a Mute Swan.

A large-sized bird matches the size of the Canada Goose which is
100 cm.
The bird does not look like the immature or adult Canada Goose.
The bird is not a Canada Goose.

A large-sized bird matches the size of the Paradise Duck which is
63 cm.
The bird looks like the female Paradise Duck.
The Paradise Duck is usually found in New Zealand which matches
with where the bird was found.
The bird's habitat was described as hill-country, pond which
matches with where the Paradise Duck is usually found which is
hill-country, river, lake, pond, open, pasture.
The description of the bird's flight was white wings which
matches the flight description of the Paradise Duck which is
white wings, white coverts.
The bird's food was described as grass, insects which matches

D - 8

with what the Paradise Duck eats which is grass, plants, insects.
The bird's nest material was described as grass, down which
matches with what the Paradise Duck uses to build its nest which
is grass, down.
The description of the location of the nest was on ground which
matches with the nest location of the Paradise Duck which is on
ground.
The Paradise Duck usually has 5 to 11 eggs in its nest which
matches with the 11 eggs that were found.
The colour of the eggs that were found was mainly cream which
matches the colour of the eggs of the Paradise Duck which is
mainly cream.

The female Paradise Duck matches the description.

A large-sized bird matches the size of the Mallard which is 58
cm.
The bird does not look like the male eclipse plumage, female and
immature or male breeding plumage Mallard.
The bird is not a Mallard.

A large-sized bird matches the size of the Grey Duck which is 55
cm.
The bird does not look like the Grey Duck.
The bird is not a Grey Duck.

The New Zealand Scaup is too small.
The bird is not a New Zealand Scaup.

The Grey Teal is too small.
The bird is not a Grey Teal.

The New Zealand Shoveler is too small.
The bird is not a New Zealand Shoveler.

A large-sized bird matches the size of the Harrier which is 60
cm.
The bird looks like the old males Harrier.
The Harrier is usually found in New Zealand which matches with
where the bird was found.
The bird's habitat was described as hill-country, pond which
matches with where the Harrier is usually found which is not
forest, alpine.
The bird's food was described as grass, insects which matches
with what the Harrier eats which is mammals, mice, rabbits,
rodents, insects, lizards, carrion.
The bird's nest material was described as grass, down which
matches with what the Harrier uses to builu its nest which is
tussock, sticks, grass, rushes.
There are too many eggs in the nest for the bird to be the
Harrier.
The bird is not a Harrier.

The Californian Quail is too small.
The bird is not a Californian Quail.

The Brown Quail is too small.
The bird is not a Brown Quail.

D - 9

A large-sized bird matches the size of the Pheasant which is male
80 cm. and female 60 cm.
The bird looks like the female Pheasant.
The bird cannot be the Pheasant which is usually found in North
Island.
The bird is not a Pheasant.

The Banded Rail is too small.
The bird is not a Banded Rail.

A large-sized bird matches the size of the Pukeko which is 51 cm.
The bird does not look like the Pukeko.
The bird is not a Pukeko.

A large-sized bird matches the size of the Australian Coot which
is 101 cm.
The bird does not look like the immature or adult Australian
Coot.
The bird is not an Australian Coot.

The Spur Winged Plover is too small.
The bird is not a Spur Winged Plover.

The Rock Pigeon is too small.
The bird is not a Rock Pigeon.

The Little Owl is too small.
The bird is not a Little Owl.

The Kingfisher is too small.
The bird is not a Kingfisher.

The Skylark is too small.
The bird is not a Skylark.

The New Zealand Pipit is too small.
The bird is not a New Zealand Pipit.

The Welcome Swallow is too small.
The bird is not a Welcome Swallow.

Similar output is displayed for the remaining medium and small sized
birds which fail to match •••

The bird(s) that match are
female Paradise Duck

D - 10

Set Search:

The set frames such as "medium sized bird" and "large sized bird" are
matched first in the search. Only the set frames that match display a
message •••

The bird is a large sized bird.
The bird cannot be any of these birds which are not large sized
birds:
Rook
Indian Myna
Redpoll
Chaffinch
Silvereye
Fantail
Hedge Sparrow
Skylark
Rock Pigeon
Brown Quail
Grey Teal

White Backed Magpie
Starling
Goldfinch
Cirl Bunting
Blackbird
Grey Warbler
Welcome Swallow
Kingfisher
Spur Winged Plover
Californian Quail
New Zealand Scaup

The bird is a South Island bird.

Black Backed Magpie
House Sparrow
Greenfinch
Yellowhammer
Song Thrush
Fernbird
New Zealand Pipit
Little Owl
Banded Rail
New Zealand Shoveler
New Zealand Dabchick

The bird cannot be any of these birds which are not South Island
birds:
Indian Myna Pheasant Brown Quail
New Zealand Dabchick

The bird is a water bird.
The bird cannot be any of these birds which are not water birds:
Rook Indian Myna
Red poll Greenfinch
Cirl Bunting Yellowhammer
Fantail Hedge Sparrow
Little Owl Pheasant

The bird is a land and water bird.

House Sparrow
Chaffinch
Silvereye
New Zealand Pipit
Californian Quail

The bird cannot be any of these birds which are not land and
water birds:
Rook
Redpoll
Cirl Bunting
Fantail
Little Owl
Pukeko
Californian Quail
New Zealand Scaup
Mute Swan
New Zealand Dabchick

Indian Myna
Greenfinch
Yellowhammer
Hedge Sparrow
Spur Winged Plover
Banded P.ail
New Zealand Shoveler
Grey Duck
Black Swan

The bird is an animal eating bird.

House Sparrow
Chaffinch
Silvereye
New Zealand Pipit
Australian Coot
Pheasant
Grey Teal
Mallard
Bittern

The bird cannot be any of these birds which are not animal eating
birds:
Rock Pigeon
Canada Goose

Brown Quail
Black Swan

Californian Quail

D - 11

The bird is a plant eating bird.
The bird cannot be any of these birds which are not plant eating
birds:
Fantail
Welcome Swallow
Little Owl
Bittern

Grey Warbler
New Zealand Pipit
Spur Winged Plover
White Faced Heron

The bird is an omnivorous bird.

Fernbird
Kingfisher
Harrier
New Zealand Dabchick

The bird cannot be any of these birds which are not omnivorous
birds:
White Backed Magpie Black Backed Magpie Grey Warbler
Fernbird Welcome Swallow New Zealand Pipit
Kingfisher Little Owl Rock Pigeon
Spur Winged Plover Brown Quail Californian Quail
Harrier Canada Goose Mute Swan
Black Swan Bittern White Faced Heron
New Zealand Dabchick

The bird is a grassy nest bird.
The bird cannot be any of these birds which are not grassy nest
birds:
Greenfinch
Little Owl
White Faced Heron

Fantail
Rock Pigeon

The bird is a many eggs bird.

Kingfisher
Spur Winged Plover

The bird cannot be any of these birds which are not many eggs
birds:
Rook
Indian Myna
Yellowhammer
Song Thrush
Fernbird
New Zealand Pipit
Rock Pigeon
White Faced Heron

White Backed Magpie
Redpoll
Silvereye
Fantail
Hedge Sparrow
Kingfisher
Spur Winged Plover
New Zealand Dabchick

The bird is a creamy eggs bird.

Black Backed Magpie
Cirl Bunting
Blackbird
Grey Warbler
Welcome Swallow
Little Owl
Harrier

The bird cannot be any of these birds which are not creamy eggs
birds:
Rook White Backed Magpie Black Backed Magpie
Indian Myna Starling Chaffinch
Cirl Bunting Silvereye Blackbird
Song Thrush Hedge Sparrow Spur Winged Plover
Banded Rail Pheasant White Faced Heron

The bird is a dark feet bird.
The bird cannot be any of these birds which are not dark feet
birds:
Indian Myna
Pukeko
Mallard

Rock Pigeon
Harrier
Bittern

Spur Winged Plover
New Zealand Shoveler
White Faced Heron

The search now tries to match all the possible bird frames that were

D - 12

returned by the set search. In this example, only the Paradise Duck
was returned.

A large-sized bird matches the size of the Paradise Duck which is
63 cm.
The bird looks like the female Paradise Duck.
The Paradise Duck is usually found in New Zealand which matches
with where the bird was found.
The bird's habitat was -described as hill-country, pond which
matches with where the Paradise Duck is usually found which is
hill-country, river, lake, pond, open, pasture.
The description of the bird's flight was white wings which
matches the flight description of the Paradise Duck which is
white wings, white coverts.
The bird's food was described as grass, insects which matches
with what the Paradise Duck eats which is grass, plants, insects.
The bird's nest material was described as grass, down which
matches with what the Paradise Duck uses to build its nest which
is grass, down.
The description of the location of the nest was on ground which
matches with the nest location of the Paradise Duck which is on
ground.
The Paradise Duck usually has 5 to 11 eggs in its nest which
matches with the 11 eggs that were found.
The colour of the eggs that were found was mainly cream which
matches the colour of the eggs of the Paradise Duck which is
mainly cream.

The female Paradise Duck matches the description.

The bird(s) that match are
female Paradise Duck

Search Tree Search

The first terminal node of the search tree that matches is the
"large coloured bill bird" frame which indicates three birds to
try, the Australian Coot, the Pukeko and the Black Swan •••

D - 13

A large-sized bird matches the size of the Australian Coot which
is 101 cm.
The bird does not look like the immature or adult Australian
Coot.
The bird is not an Australian Coot.

A large-sized bird matches the size of the Pukeko which is 51 cm.
The bird does not look like the Pukeko.
The bird is not a Pukeko.

A large-sized bird matches the size of the Black Swan which is
100 cm.
The bird looks like the adult Black Swan.
The Black Swan is usually found in New Zealand which matches with
where the bird was found.
The bird's habitat was described as hill-country, pond so the
bird cannot be the Black Swan because its habitat is coast, lake.
The bird is not a Black Swan.

As the colour of the bill in the description being matched is
unknown, the alternative "not large coloured bill bird" frame
is also searched, and the Harrier, Grey Duck, Paradise Duck and
Bittern are consequently searched •••

A large-sized bird matches the size of the Harrier which is 60
cm.
The bird looks like the old males Harrier.
The Harrier is usually found in New Zealand which matches with
where the bird was found.
The bird's habitat was described as hill-country, pond which
matches with where the Harrier is usually found which is not
forest, alpine.
The bird's food was described as grass, insects which matches
with what the Harrier eats which is mammals, mice, rabbits,
rodents, insects, lizards, carrion.
The bird's nest material was described as grass, down which
matches with what the Harrier uses to build its nest which is
tussock, sticks, grass, rushes.
There are too many eggs in the nest for the bird to be the
Harrier. ·
The bird is not a Harrier.

A large-sized bird matches the size of the Grey Duck·which is 55
cm.
The bird does not look like the Grey Duck.
The bird is not a Grey Duck.

D - 14

A large-sized bird matches the size of the Paradise Duck which is
63 cm.
The bird looks like the female Paradise Duck.
The Paradise Duck is usually found in New Zealand which matches
with where the bird was found.
The bird's habitat was described as hill-country, pond which
matches with where the Paradise Duck is usually found which is
hill-country, river, lake, pond, open, pasture.
The description of the bird's flight was white wings which
matches the flight description of the Paradise Duck which is
white wings, white coverts.
The bird's food was described as grass, insects which matches
with what the Paradise Duck eats which is grass, plants, insects.
The bird's nest material was described as grass, down which
matches with what the Paradise Duck uses to build its nest which
is grass, down.
The description of the location of the nest was on ground which
matches with the nest location of the Paradise Duck which is on
ground.
The Paradise Duck usually has 5 to 11 eggs in its nest which
matches with the 11 eggs that were found.
The colour of the eggs that were found was mainly cream which
matches the colour of the eggs of the Paradise Duck which is
mainly cream.

The female Paradise Duck matches the description.

A large-sized bird matches the size of the Bittern which is 71
cm.
The bird does not look like the Bittern.
The bird is not a Bittern.

The New Zealand Dabchick, Banded Rail and Spur Winged Plover
are indicated by the "water black white bird" frame •••

The New Zealand Dabchick is too small.
The bird is not a New Zealand

The Banded Rail is too small,
The bird is not a Banded Rail.

The Spur Winged Plover is too
The bird is not a Spur Winged

The bird(s) that match are
female Paradise Duck

Dabchick.

small.
Plover.

D - 15

Network Search :

The search tries to match the AKO slots of the first frame in the
INSTANCE slot of the BIRD frame. As the New Zealand Dabchick is an
AKO "medium sized bird", it fails to match. The White Faced Heron
is tried next •••

The bird is a large sized bird.
The bird cannot be any of these birds which are not large sized
birds:
Rook
Indian Myna
Redpoll
Chaffinch
Silvereye
Fantail
Hedge Sparrow
Skylark
Rock Pigeon
Brown Quail
Grey Teal

White Backed Magpie
Starling
Goldfinch
Cirl Bunting
Blackbird
Grey Warbler
Welcome Swallow
Kingfisher
Spur Winged Plover
Californian Quail
New Zealand Scaup

The bird is a water bird.

Black Backed Magpie
House Sparrow
Greenfinch
Yellowhammer
Song Thrush
Fernbird
New Zealand Pipit
Little Owl
Banded Rail
New Zealand Shoveler
New Zealand Dabchick

The bird cannot be any of these birds which are not water birds:
Rook Indian Myna House Sparrow
Red poll Greenfinch Chaffinch
Cirl Bunting Yellowhammer Silvereye
Fantail Hedge Sparrow New Zealand Pipit
Little Owl Pheasant Californian Quail

The bird· is an animal eating bird.
The bird cannot be any of these birds which are not animal eating
birds:
Rock Pigeon
Canada Goose

Brown Quail
Black Swan

Californian Quail

The White Faced Heron is not a "branchy nest bird" and so the
Bittern is tried next ••• ·

The bird could be a Bittern because it is a :
water bird, large sized bird, and animal eating bi=d·
A large-sized bird matches the size of the Bittern which is 71
cm.
The bird does not look like the Bittern.
The bird is not a Bittern.

The bird is a plant eating bird.
The bird cannot be any of these birds which are not plant eating
birds:
Fantail
Welcome Swallow
Little Owl

Grey Warbler
New Zealand Pipit
Spur Winged Plover

Fernbird
Kingfisher
Harrier

Bittern White Faced Heron New Zealand Dabchick

The Bittern fails to match, so the Black Swan is tried next •••

The bird is a grassy nest bird.
The bird cannot be any of these birds which are not grassy nest
birds:
Greenfinch
Little Owl
White Faced Heron

Fantail
Rock Pigeon

Kingfisher
Spur Winged Plover

The bird could be a Black Swan because it is a:

D - 16

plant eating bird, water bird, large sized bird, and grassy nest
bird.
A large-sized bird matches the size of the Black Swan which is
100 cm.
The bird looks like the adult Black Swan.
The Black Swan is usually found in New Zealand which matches with
where the bird was found.
The bird's habitat was described as hill-country, pond so the
bird cannot be the Black Swan because its habitat is coast, lake.
The bird is not a Black Swan.

Similary, the Mute Swan, the Canada Goose and the Paradise Duck are
tried •••

The bird could be a Mute Swan because it is a:
plant eating bird, water bird, large sized bird, and grassy nest
bird.
A large-sized bird matches the size of the Mute Swan which is 150
cm.
The bird looks like the adult Mute Swan.
The bird looks like the immature Mute Swan.
The Mute Swan is usually found in Canterbury, Hawkes Bay which
matches with where the bird was found.
The bird's habitat was described as hill-country, pond which
matches with where the Mute Swan is usually found which is lake,
pond.
The bird's food was described as grass, insects so the bird
cannot be the Mute Swan because it eats plants.
The bird is not a Mute Swan.

The bird is a land and water bird.
The bird cannot be any of these birds which are not land and
water birds:
Rook
Redpoll
Cirl Bunting
Fantail
Little Owl

Indian Myna
Greenfinch
Yellowhammer
Hedge Sparrow
Spur Winged Plover

House Sparrow
Chaffinch
Silvereye
New Zealand Pipit
Australian Coot

D - 17

Pukeko Banded Rail Pheasant
Californian Quail New Zealand Shoveler Grey Teal
New Zealand Scaup Grey Duck Mallard
Mute Swan Black Swan Bittern
New Zealand Dabchick

The bird is a South Island bird.
The bird cannot be any of these birds which are not South Island
birds:
Indian Myna Pheasant Brown Quail
New Zealand Dabchick

The bird is a creamy eggs bird.
The bird cannot be any of these birds which are not creamy eggs
birds:
Rook White Backed Magpie Black Backed Magpie
Indian Myna Starling Chaffinch
Cirl Bunting Silvereye Blackbird
Song Thrush Hedge Sparrow Spur Winged Plover
Banded Rail Pheasant White Faced Heron

The bird could be a Canada Goose because it is a :
grassy nest bird, plant eating bird, South Island bird, land and
water bird, large sized bird, and creamy eggs bird.
A large-sized bird matches the size of the Canada Goose which is
100 cm.
The bird does not look like the immature or adult Canada Goose.
The bird is not a Canada Goose.

The bird is a dark feet bird.
The bird cannot be any of these birds which are not dark feet
birds:
Indian Myna
Pukeko
Mallard

Rock Pigeon
Harrier
Bittern

The bird is an omnivorous bird.

Spur Winged Plover
New Zealand Shoveler
White Faced Heron

The bird cannot be any of these birds which are not omnivorous
birds:
White Backed Magpie Black Backed Magpie Grey Warbler
Fernbird Welcome Swallow New Zealand Pipit
Kingfisher Little Owl Rock Pigeon
Spur Winged Plover Brown Quail Californian Quail
Harrier Canada Goose Mute Swan
Black Swan Bittern White Faced Heron
New Zealand Dabchick

The bird could be a Paradise Duck because it is a :
grassy nest bird, omnivorous bird, dark feet bird, land and water
bird, large sized bird, and creamy eggs bird.
A large-sized bird matches the size of the Paradise Duck which is
63 cm.
The bird looks li~e the female Paradise Duck.
The Paradise Duck is usually found in New Zealand which matches
with where the bird was found.

The bird's habitat was described as hill-country, pond which
matches with where the Paradise Duck is usually found which is
hill-country, river, lake, pond, open, pasture.
The description of the bird's flight was white wings which
matches the flight description of the Paradise Duck which is
white wings, white coverts.

D - 18

The bird's food was described as grass, insects which matches
with what the Paradise Duck eats which is grass, plants, insects.
The bird's nest material was described as grass, down which
matches with what the Paradise Duck uses to build its nest which
is grass, down.
The description of the location of the nest was on ground which
matches with the nest location of the Paradise Duck which is on
ground.
The Paradise Duck usually has 5 to 11 eggs in its nest which
matches with the 11 eggs that were found.
The colour of the eggs that were found was mainly cream which
matches the colour of the eggs of the Paradise Duck which is
mainly cream.

The female Paradise Duck matches the description.

As most of the birds have now been rejected or have invalid AKO
slots, only the Australian Coot, Kingfisher and the Starling
require further searching •••

The bird could be a Australian Coot because it is a :
dark feet bird, water bird, large sized bird, and omnivorous
bird.
A large-sized bird matches the size of the Australian Coot which
is 101 cm.
The bird does not look like the immature or adult Australian
Coot.
The bird is not an Australian Coot.

The bird could be a Kingfisher because it is a :
animal eating bird, dark feet bird, land and water bird, and
creamy eggs bird.
The Kingfisher is too small,
The bird is not a Kingfisher.

The bird could be a Starling because it is a :
omnivorous bird, land and water bird, and grassy nest bird.
The Starling is too small,
The bird is not a Starling.

The bird(s) that match are
female Paradise Duck

D-3 General Query

Entering the bird

Enter a name for the bird : HELP
Any name may be used for the bird's description

Enter a name for the bird : LARGE BLACK BIRD

Enter estimate of bird's size (large, medium or small)
LARGE

Enter a description of the bird's appearance:
MAINLY BLACK, BLACK BODY

Enter the words that best describe the bird's distribution
QUIT

Displaying the Bird

Large Black Bird
appearance

mainly black, black body
size

large

D - 19

Linear Search :

The New Zealand Dabchick is too small.
The bird is not a New Zealand Dabchick.

A large-sized bird matches the size of the White Faced Heron
which is 66 cm.
The bird does not look like the White Faced Heron.
The bird is not a White Faced Heron.

A large-sized bird matches the size of the Bittern which is 71
cm.
The bird does not look like the Bittern.
The bird is not a Bittern.

A large-sized bird matches the size of the Black Swan which is
100 cm.
The bird looks like the adult Black Swan.

The adult Black Swan matches the description.

D - 20

A large-sized bird matches the size of the Mute Swan which is 150
cm.
The bird does not look like the immature or adult Mute Swan.
The bird is not a Mute Swan.

A large-sized bird matches the size of the Canada Goose which is
100 cm.
The bird does not look like the immature or adult Canada Goose.
The bird is not a Canada Goose.

A large-sized bird matches the size of the Paradise Duck which is
63 cm.
The bird looks like the male and immature Paradise Duck.

The male and immature Paradise Duck matches the description.

A large-sized bird matches the size of the Mallard which is 58
cm.
The bird does not look like the male eclipse plumage, female and
immature or male breeding plumage Mallard.
The bird is not a Mallard.

A large-sized bird matches the size of the Grey Duck which is 55
cm.
The bird does not look like the Grey Duck.
The bird is not a Grey Duck.

The New Zealand Scaup is too small.
The bird is not a New Zealand Scaup.

The Grey Teal is too small.
The bird is not a Grey Teal.

The New Zealand Shoveler is too small.
The bird is not a New Zealand Shoveler.

A large-sized bird matches the size of the Harrier which is 60
cm.

The bird does not look like the immature, old males or adult
Harrier.
The bird is not a Harrier.

The Californian Quail is too small.
The bird is not a Californian Quail.

The Brown Quail is too small.
The bird is not a Brown Quail.

D - 21

A large-sized bird matches the size of the Pheasant which is male
80 cm. and female 60 cm.
The bird does not look like the female or male Pheasant.
The bird is not a Pheasant.

The Banded Rail is too small.
The bird is not a Banded Rail.

A large-sized bird matches the size of the Pukeko which is 51 cm.
The bird has the overall appearance of the Pukeko.

The overall appearance of the Pukeko matches the description.

A large-sized bird matches the size of the Australian Coot which
is 101 cm.
The bird looks like the adult Australian Coot.
The bird looks like the immature Australian Coot.

The immature and adult Australian Coot

The Spur Winged Plover is too
The bird is not a Spur Winged

The Rock Pigeon is too small.
The bird is not a Rock Pigeon.

The Little Owl is too small.
The bird is not a Little Owl.

The Kingfisher is too small.
The bird is not a Kingfisher.

small.
Plover.

matches the description.

Similar output is displayed for the remaining medium and small
sized birds which fail to match •••

The bird(s) that match are
adult Black Swan
male and immature Paradise Duck
overall Pukeko appearance
immature Australian Coot
adult Australian Coot

D - 22

Set Search:

Only one set frame, "large sized bird" matches the general query •••

is a large sized bird. The bird
The bird
birds:

cannot be any of these birds which are not large sized

Rook
Indian Myna
Redpoll
Chaffinch
Silvereye
Fantail
Hedge Sparrow
Skylark
Rock Pigeon
Brown Quail
Grey Teal

White Backed
Starling
Goldfinch
Cirl Bunting
Blackbird

Magpie

Grey Warbler
Welcome Swallow
Kingfisher
Spur Winged
Californian
New Zealand

Plover
Quail
Scaup

Black Backed Magpie
House Sparrow
Greenfinch
Yellowhammer
Song Thrush
Fernbird
New Zealand Pipit
Little Owl
Banded Rail
New Zealand Shoveler
New Zealand Dabchick

All the large sized birds are returned by the set search and are
subsequently searched •••

A large-sized bird matches the size of the White Faced Heron
which is 66 cm.
The bird does not look like the White Faced Heron.
The bird is not a White Faced Heron.

A large-sized bird matches the size of the Bittern which is 71
cm.
The bird does not look like the Bittern.
The bird is not a Bittern.

A large-sized bird matches the size of the Black Swan which is
100 cm.
The bird looks like the adult Black Swan.

The adult Black Swan matches the description.

A large-sized bird matches the size of the Mute Swan which is 150
cm.
The bird does not look like the immature or adult Mute Swan.
The bird is not a Mute Swan.

A large-sized bird matches the size of the Canada Goose which is
100 cm.
The bird does not look like the immature or adult Canada Goose.
The bird is not a Canada Goose.

A large-sized bird matches the size of the Paradise Duck which is
63 cm.
The bird looks like the male and immature Paradise Duck.

The male and immature Paradise Duck matches the description.

A large-sized bird matches the size of the Mallard which is 58
cm.

D - 23

The bird does not look like the male eclipse plumage, female and
immature or male breeding plumage Mallard.
The bird is not a Mallard.

A large-sized bird matches the size of the Grey Duck which is 55
cm.
The bird does not look like the Grey Duck.
The bird is not a Grey Duck.

A large-sized bird matches the size of the Harrier which is 60
cm.
The bird does not look like the immature, old males or adult
Harrier.
The bird is not a Harrier.

A large-sized bird matches the size of the Pheasant which is male
80 cm. and female 60 cm.
The bird does not look like the female or male Pheasant.
The bird is not a Pheasant.

A large-sized bird matches the size of the Pukeko which is 51 cm.
The bird has the overall appearance of the Pukeko.

The overall appearance of the Pukeko matches the description.

A large-sized bird matches the size of the Australian Coot which
is 101 cm.
The bird looks like the adult Australian Coot.
The bird looks like the immature Australian Coot.

The immature and adult Austr~lian Coot matches the description.

The bird(s) that match are
adult Black Swan
male and immature Paradise Duck
overall Pukeko appearance
immature Australian Coot
adult Australian Coot

Search Tree Search :

The "large coloured bill bird" frame indicates the Australian
Coot, the Pukeko and the Black Swan •••

D - 24

A large-sized bird matches the size of the Australian Coot which
is 101 cm.
The bird looks like the adult Australian Coot.
The bird looks like the immature Australian Coot.

The immature and adult Australian Coot matches the description.

A large-sized bird matches the size of the Pukeko which is 51 cm.
The bird has the overall appearance of the Pukeko.

The overall app~arance of the Pukeko matches the description.

A large-sized bird matches the size of the Black Swan which is
100 cm.
The bird looks like the adult Black Swan,

The adult Black Swan matches the description.

The "not large coloured bill bird" frame is also searched as the
colour of the bill is unknown, and therefore the Harrier, Grey Duck,
Paradise Duck and Bittern are subsequently searched •••

A large-sized bird matches the size of the Harrier which is 60
cm.
The bird does not look like the immature, old males or adult
Harrier.
The bird is not a Harrier.

A large-sized bird matches the size of the Grey Duck which is 55
cm.
The bird does not look like the Grey Duck.
The bird is not a Grey Duck.

A large-sized bird matches the size of the Paradise Duck which is
63 cm.
The bird looks like the male and immature Paradise Duck.

The male and immature Paradise Duck matches the description.

A large-sized bird matches the size of the Bittern which is 71
cm.
The bird does not look like the Bittern.
The bird is not a Bittern.

The "coloured bill big black bird" indicates the Pukeko,
Blackbird, Indian Myna and the Starling •••

The Blackbird is too small.
The bir.d is not a Blackbird.

The Indian Myna is too small.
The bird is not an Indian Myna.

The Starling is too small.
The bird is not a Starling.

The "not coloured bill big black bird" is also searched as
the colour of the bill is unknown, and therefore the Rook
and the New Zealand Scaup are subsequently searched •••

The Rook is too small.
The bird is not a Rook.

The New Zealand Scaup is too small.
The bird is not a New Zealand Scaup.

The bird(s) that match are
immature Australian Coot
adult Australian Coot
overall Pukeko appearance
adult Black Swan
male and immature Paradise Duck

D - 25

Network Search :

The White Faced Heron is the first "large sized bird" to be
tried •••

The bird is a large sized bird.
The bird cannot be any of these birds which are not large sized
birds:
Rook
Indian Myna
Redpoll
Chaffinch
Silvereye
Fantail
Hedge Sparrow
Skylark
Rock Pigeon
Brown Quail
Grey Teal

White Backed Magpie
Starling
Goldfinch
Cirl Bunting
Blackbird
Grey Warbler
Welcome Swallow
Kingfisher
Spur Winged Plover
Californian Quail
New Zealand Scaup

Black Backed Magpie
House Sparrow
Greenfinch
Yellowhammer
Song Thrush
Fernbird
New Zealand Pipit
Little Owl
Banded Rail
New Zealand Shoveler
New Zealand Dabchick

The bird could be a White Faced Heron because it is a :
large sized bird.
A large-sized bird matches the size of the White Faced Heron
which is 66 cm.
The bird does not look like the White Faced Heron.
The bird is not a White Faced Heron.

All the birds that are possibly large sized birds are now
searched •••

The bird could be a Bittern because it is a :
large sized bird.
A large-sized bird matches the size of the Bittern which is 71
cm.
The bird does not look like the Bittern.
The bird is not a Bittern.

The bird could be a Black Swan because it is a :
large sized bird.
A large-sized bird matches the size of the Black Swan which is
100 cm.
The bird looks like the adult Black Swan.

The adult Black Swan matches the description.

The bird could be a Mute Swan because it is a :
large sized bird,

D - 26

A large-sized bird matches the size of the Mute Swan which is 150
cm.

The bird does not look like the immature or adult Mute Swan.
The bird is not a Mute Swan.

The bird could be a Canada Goose because it is a :
large sized bird.

D - 27

A large-sized bird matches the size of the Canada Goose which is
100 cm.
The bird does not look like the immature or adult Canada Goose,
The bird is not a Canada Goose.

The bird could be a Paradise Duck because it is a :
large sized bird.
A large-sized bird matches the size of the Paradise Duck which is
63 cm.
The bird looks like the male and immature Paradise Duck.

The male and immature Paradise Duck matches the description.

The bird could be a Mallard because it is a:
large sized bird.
A large-sized bird matches the size of the Mallard which is 58
cm.
The bird does not look like the male eclipse plumage, female and
immature or male breeding plumage Mallard.
The bird is not a Mallard.

The bird could be a Grey Duck because it is a :
large sized bird.
A large-sized bird matches the size of the Grey Duck which is 55
cm.
The bird does not look like the Grey Duck,
The bird is not a Grey Duck,

The bird could be a Harrier because it is a :
large sized bird.
A large-sized bird matches the size of the Harrier which is 60
cm.
The bird does not look like the immature, old males or'adult
Harrier,
The bird is not a Harrier.

The bird could be a Californian Quail,
The Californian Quail is too small.
The bird is not a Californian Quail.

The bird could be a Pheasant because it is a :
large sized bird.
A large-sized bird matches the size of the Pheasant which is male
80 cm. and female 60 cm.
The bird does not look like the female or male Pheasant.
The bird is not a Pheasant.

D - 28

The bird could be a Pukeko.
A large-sized bird matches the size of the Pukeko which is 51 cm.
The bird has the overall appearance of the Pukeko.

The overall appearance of the Pukeko matches the description.

The bird could be a Australian Coot because it is a :
large sized bird.
A large-sized bird matches the size of the Australian Coot which
is 101 cm.
The bird looks like the adult Australian Coot.
The bird looks like the immature Australian Coot.

The immature and adult Australian Coot matches the description.

Birds such as the Little Owl, Kingfisher, Song Thrush, Blackbird
Starling and Indian Myna, which are medium or large sized
birds, also have to be searched •••

The bird could be a Little Owl.
The Little Owl is too small.
The bird is not a Little Owl.

The bird could be a Kingfisher.
The Kingfisher is too small.
The bird is not a Kingfisher.

The bird could be a Song Thrush.
The Song Thrush is too small.
The bird is not a Song Thrush.

The bird could be a Blackbird.
The Blackbird is too small.
The bird is not a Blackbird.

The bird could be a Starling.
The Starling is too small.
The bird is not a Starling.

The bird could be a Indian Myna.
The Indian Myna is too small.
The bird is not an Indian Myna.

The bird(s) that match are
adult Black Swan
male and immature Paradise Duck
overall Pukeko appearance

immature Australian Coot
adult Australian Coot

D - 29

BIBLIOCiRAPHY

AIKENS, J.S. 1979. Prototypes and Production Rules : An Approach to

Knowledge Representation for Hypothesis Formation. IJCAI 6, pp.

1-3.

AIKENS, J.S. 1983. Prototypical Knowledge for Expert Systems.

Artificial Intelligence 20, pp. 163-210.

BARR, A. and FEIGENBAUM, E.A. 1981. The Handbook of Artificial

Intelligence. Volume 1. William Kaufman, Inc., California.

BOBROW, D.G. and COLLINS, A. (Eds.). 1975. Representation and

Understanding

New York.

Studies in Cognitive Science. Academic Press,

BOBROW, D.G. and WINOGRAD, T. 1977. Experience with KRL-0, One

Cycle of a Knowledge Representation Language.

213-222.

IJCAI 5, pp.

BOBROW, D.G. and WINOGRAD, T. 1977. An Overview of KRL, a Knowledge

Representation Language. Cognitive Science 1, pp. 3-46.

BOBROW, D.G., KAPLAN, R.M., KAY, M., NORMAN, D.A., THOMPSON, H. and

WINOGRAD, T. 1977. GUS, A Frame-driven Dialog System.

Artificial Intelligence 8, pp. 155-173.

BRACHMAN, R.J. and SCMOLZE, J.C. 1985. The Overview of the KL-ONE

Knowledge Representation System.

pp. 171-216.

Cognitive Science 9, No. 2,

COHEN, B. and BARROW, R. 1968. Basic Acal. Allen and Unwin, London.

DAVIS, R. and KING, J. 1977. An Overview of Production Systems.

Machine Intelligence 8, pp. 300-332.

DAVIS, R., BUCHANAN, B,G., SHORTLIFFE, E.H. 1975. Production Rules

as a representation for a Knowledge-based Consultation Program.

Artificial Intelligence 8, pp. 15-45.

DUDA, R.O., HART, P.E., NILSSON, N.J., and SUTHERLAND, G.L. 1978.

Semantic Network Representations in Rule-based Inference Systems.

In Waterman, D.A., and Hayes-Roth,

Pattern-directed

Press, New York.

Inference Systems, pp.

F. (Eds.).

203-221.

1978,

Academic

FALLA, R.A., SIBSON, R.B. and TURBOTT, E.G. 1978. The New Guide to

the Birds of New Zealand. Collins, Auckland.

FEIGENBAUM, E.A., et al. 1971. On Generality and Problem Solving - A

Case Study Involving the DENDRAL program. Machine Intelligence

6, pp. 165-190.

FINDLER, N.V. (Ed.). 1979. Associative Networks, Representation and

Use of Knowledge by Computers. Academic Press, New York.

FIKES, R. and KEHLER, T. 1985. The Role of Frame-based

Representation in Reasoning. Communications of the ACM, Volume

28, pp. 905-920.

GEORGEFF, M.P. 1979. A Framework for Control in Production Systems.

IJCAI 6, pp.328-334.

HAYES, P.J. 1977. On Semantic Nets, Frames, and Associations. IJCAI

5, pp. 99-107.

HAYES-ROTH, F. 1985. Rule-based Systems. Communications of the ACM,

Volume 28, pp. 921-932.

HEDRICK, C. 1976. Learning Production Systems from Examples.

Artificial Intelligence 7, pp. 21-49.

HENDRIX, G.G. 1976. Expanding the Utility of Semantic Networks

Through Partitioning. Artificial Intelligence 7, pp. 21-49.

LEHNERT, W. and WILKS, Y. 1979. A Critical Perspective on KRL.

Cognitive Science 3, pp. 1-28.

LEVESQUE, H. and MYLOPOULOS, J. 1979. A Procedural Semantics for

Semantic Networks. In Findler, N.V. (Ed.), Associative

Networks, pp. 93-120. Academic Press, New York.

MARSHALL, KINSKY, and ROBERTSON, 1972. Common Birds in New Zealand -

Town, Pasture and Freshwater Birds. Mobil New Zealand Nature

Series. A.H. and A.W. Reed LTD, Wellington.

MINSKY, M. (Ed.). 1968. Semantic Information Processing. MIT Press,

Cambridge, Mass.

MINSKY, M. 1975.

Winston, P.H.

A Framework

(Ed.), The

for Representing Knowledge. In

Psychology of Computer Vision, pp.

211-277. McGraw-Hill, New York.

POST E. 1943. Formal Reductions of ~he Combinatorial Problem.

American Journal of Mathematics 65, pp. 197-268.

QUILLAN, M.R. 1968. Semantic Memory. In Minsky, M. (Ed.), Semantic

Information Processing. pp.

Mass.

227-270. MIT Press, Cambridge,

QUINLAN, J.R. 1979. A Knowledge-based System for Locating Missing

High Cards in Bridge. IJCAI 6, pp. 705-707.

RAPHAEL, B. 1968. SIR A Computer Program for Semantic Information

Retrieval. In Minsky, M. (Ed.), Semantic Information

Processing. pp. 33-145. MIT Press, Cambridge, ~ass.

ROBERTS, R.B .. and GOLDSTEIN, I.P. 1977. The FRL Primer.

408, MIT.

ROBERTS, R.B. and GOLDSTEIN, I.P. 1977. The FRL Manual.

409, MIT.

Al Memo

Al Memo

ROSENBERG, S. and ROBERTS, 8. 1979. Co-reference in a Frame

Database. IJCAI 6, pp. 729-734.

RYCHENER, M.D. 1976. Production Systems as a Programming Language

for Artificial Intelligence Applications. Computer Science

Department, Carnegie-Mellon University.

RYCHENER, M.D. 1979. A Semantic Network of Production Rules in a

System for Describing Computer Structures. IJCAI 6, pp.

738-743.

SCHANK, R., and ABELSON, R. 1977. An Inquiry into Human Knowledge

Structures. Lawrence Erlbaum Associates, Hillsdale, New Jersey.

SCHUBERT, L.K. 1975. Extending the Expressive Power of Semantic

Networks. IJCAI 4, pp. 158-164.

SHORTLIFFE, E.H. 1976. Computer-based Medical Consultations

MiCIN. North-Holland, New York.

STANIER, A.M. 1975. BRIBIP

pp. 374-378.

A Bridge Bidding Program. IJCAI 4,

STEFIK, M. 1979. An Examination of a Frame-structured Representation

System. IJCAI 6, pp. 845-852.

VAN MELLE, W. 1979. A Domain-independent Production-rule System for

Consultation Programs. IJCAI 6, pp. 923-925.

VERE, S.A. 1977. Relational Production Systems. Artificial

Intelligence 8, pp. 47-68.

WATERMAN, A. 1976.

296-303.

WATERMAN, D.A. 1970.

Adaptive Production Systems.

Generalization Learning

IJCAI 3, pp.

Techniques for

Automating the Learning of Heuristics. Artificial Intelligence

J, pp. 121-170.

WATERMAN, D.A., and HAYES-ROTH, F. (Eds.). 1978. Pattern-directed

Inference Systems. Academic Press, New York.

WINOGRAD, T. 1975. Frame Representations and the

Declarative/Procedural Controversy. In Bobrow, D.G. and

Collins, A. (Eds.), Representation and Understanding Studies

in Cognitive Science, pp. 185-210. Academic Press, New York.

WINSTON, P.H. 1977. Artificial Intelligence. Addison-Wesley.

Reading, Mass.

WINSTON, P.H. and HORN, B.K.P. 1984. Lisp. Addison-Wesley.

Reading, Mass.

