Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

AIRWAY HYPERSENSITIVITY AND REMODELLING INDUCED BY REPEATED EXPOSURE TO *ASCARIS SUUM* ANTIGEN: AN OVINE MODEL OF HUMAN ASTHMA

A thesis presented in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN PHYSIOLOGY at Massey University

> H Nalaka Lamahewa 2001

This study is dedicated with love to my mother.

ABSTRACT

This study was an attempt to develop a model of asthma which shows all the structural changes of airways that occur in human disease by repeatedly exposing sheep to an aerosol of *Ascaris suum* antigen.

Twenty two sheep were tested for cutaneous reactivity to a commercial preparation of the antigen. For each of three experiments three sheep were selected, two skin reactive and one non-reactive. One week prior to the experiment a tracheostomy was performed according to the method described by Dueck et al., (1985). In each group, the respiratory response of the two reactive sheep to the Ascaris antigen was augmented using 2-3 fortnightly respiratory exposures to the antigen (82,000 protein nitrogen units /ml) for twenty minutes delivered via an endotracheal tube passed through the tracheostomy. One of the reactive sheep (experimental) was then further exposed to antigen for twenty minutes daily for two weeks. The other reactive sheep (sensitized control) and the non-reactive sheep (non-sensitized control) were exposed to the saline vehicle alone daily for two weeks. Airway resistance (Raw) and dynamic lung compliance (Cdyn) were measured before the antigen/saline exposures and at five minutes intervals during the exposure. On the last day the experiment was carried out under general anesthesia. In addition to respiratory measurements, cardiac output, pulmonary arterial pressure, pulmonary wedge pressure, systemic arterial pressure and central venous pressure were obtained to calculate cardiac power output. At the end of the last exposure sheep were killed, necropsied and samples of lung and airway fixed for morphological studies.

Sixty four percent of the sheep tested showed an immediate skin reaction to the antigen. The antigen exposure caused significant changes in respiratory parameters and increased the cardiac work load of the right side of the heart in the experimental sheep. Morphological studies revealed that antigen exposure caused an increase in number of eosinophils and goblet cells in the airways and an increase in the thickness of the 'pseudo-basement membrane' at some levels of the respiratory tract. Antigen exposure also caused an increase in the percentage smooth muscle area in the airway wall cross-sectional area in the membranous bronchioles.

Based on these observations it can be concluded that repeated daily exposure of sheep airway to *Ascaris suum* antigen can be used to reproduced morphological changes observed in human asthmatic airways.

ACKNOWLEDGEMNTS

I am thankful to my supervisors Dr R. J. Pack and Associate Professor M. R. Alley for their guidance and support during this study.

I wish to express my special thanks to Dr G. W. Reynolds for his surgical skills and advice given during the surgical preparation of animals.

My sincere thanks also goes to Associate professor M. J. Birtles for his expertise and assistance provided for morphological studies.

This study would not have been possible without the technical expertise of Mr. Brett Guthrie, Mr. John Pedley, Mr. Neil Ward, Mr. Guy Hessel, Mr. Barry Parlane, Mrs Pam Slack and Mrs Patricia Davey.

A very special thanks to my colleagues and friends Chandana Herath, Siva Kankanala, Mahinda Attapattu and David Simcock for their assistance in handling of animals.

I would also like to thank Mr. Duncan Hedderley for his assistance for statistical analysis of data.

Finally, I am grateful to my friends and family for their love and encouragement specially my wife Dilani.

TABLE OF CONTENTS

ABSTRACT i	ii			
ACKNOWLEDGEMNTS	iv			
TABBLE OF CONTENTS	v			
LIST OF FIGURES vii				
LIST OF ABBREVIATIONS	ĸ			
CHAPTER 1 INTRODUCTION	1			
CHAPTER 2 PATHOLOGY OF HUMAN ASTHMA	4			
2.1 Introduction	4			
2.2 Gross pathological changes	4			
2.3 Changes in airways	5			
2.4 Conclusion	9			
CHAPTER 3 ANIMAL MODELS OF ASTHMA	11			
3.1 Introduction	11			
3.2 The common animal models of asthma	13			
3.2.1 Guinea pigs	13			
3.2.2 Dogs	15			
3.2.3 Monkeys	16			
3.2.4 Horses	17			
3.3 The ovine model of asthma	17			
3.3.1 The allergic sheep	18			
3.3.2 Acute airway response	19			
3.3.3 Late airway response	22			
3.3.4 Chronic airway response	23			
3.3.5 Non-specific airway response	24			
3.3.6 Effects of pharmacological agents on allergic sheep	25			
3.4 Conclusion	26			

CHAPTER 4 AIRWAY HYPERESPONSIVENESS AND		
MORPHOLOGICAL CHANGES INDUCED BY REPEATED		
EXPOSURE OF SHEEP TO ASCARIS SUUM ANTIGEN	28	
4.1 Introduction	28	
4.2 Materials and Methods	30	
4.3 Data analysis	43	
4.4 Results	. 43	
4.4.1 Skin test	43	
4.4.2 Changes in respiratory parameters	43	
4.4.3 Changes in Cardiac power output	47	
4.4.4 Post-mortem findings	48	
4.4.5 Morphometric studies	49	
4.5 Discussion	55	
CHAPTER 5 CONCLUSIONS		
BIBLIOGRAPHY		

LIST OF FIGURES

Fig. 1.1	International trends in asthma mortality 1	
Fig. 4.1	Arrangement of apparatus used for antigen exposure	
Fig. 4.2	Diagram of ovine lower respiratory tract illustrating	
	tissue-sampling sites 40	
Fig. 4.3	Drawing of an airway illustrating the measurement that	
	were made	
Fig. 4.4	Changes in airway resistance during two-week antigen/ PBS	
	exposure	
Fig. 4.5	Changes in airway resistance at the end of the exposure	
	period	
Fig. 4.6	Changes in lung compliance during two week antigen/ PBS	
	exposure	
Fig. 4.7	Changes in lung compliance at the end of the exposure period 47	
Fig. 4.8	Changes in cardiac power output at the end of exposure period 48	
Fig. 4.9	Comparison of respiratory epithelial thickness of sensitised control,	
	non-senstitised control and experimental sheep	
Fig. 4.10	O Comparison of 'pseudo basement membrane' thickness of the	
	respiratory mucosa of sensitised control, non-senstitised control and	
	experimental sheep	
Fig. 4.1	Comparison of eosinophil count in various levels of the respiratory	
	tract of sensitised control, non-sensitised control and experimental	
	sheep	
Fig. 4.12 Comparison of goblet cell count in various levels of the respiratory		
	tract of sensitised control, non-sensitised control and	
	experimental sheep	

Fig. 4.13 Photomicrographs of tracheal mucosa showing goblet cells	53
Fig. 4.14 Comparison of smooth muscle percentage in the airway cross-sectional	
area at various levels of the respiratory tract of sensitised control,	
non-sensitised control and experimental sheep	;4

LIST OF ABBREVIATIONS

Ae	external area
Ai	internal area
Asm	airway smooth muscle
ASM%	percentage smooth muscle in airway wall cross-sectional area
Aw	airway wall
BAL	broncho-alveolar lavage
Cdyn	dynamic lung compliance
СО	cardiac ouput
CVP	central venous pressure
F	respiratory flow
NAHR	non-specific airway hyperresponsiveness
LT	leukotrienes
PAF	platelet activating factor
Pap	pulmonary arterial pressure
PBS	phophate buffered saline
PBM	pseudo basement membrane
Pe	external perimetre
Pi	internal perimetre
P _{IO}	intra oesophageal pressure
Pwp	pulmonary wedge pressure
Raw	airway resistance
SABP	systemic arterial blood pressure
VT	tidal volume