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The two input Griffiths-Jim acoustic beamformer is analysed in the frequency domain using 
a Wiener type formulation. Unlike previous solutions the approach here is to look at the 
problem of non-minimum phase acoustic transfer functions which are encountered in many 
real filtering problems. The polynomial transfer function approach gives an elegant way of 
obtaining the frequency response of the beamformer and gives new insight to the problem 
in general. 

 
 
 
1 Introduction 
 
The problem of suppression of noise from speech has applications in such areas as speech recognition, 
tele-conferencing, hearing aids  and  hands-free telephony in automobiles. The basic idea of canceling 
noise from speech has been around for decades[1] and normally involves the use of at least two 
microphones. One microphone is placed near the noise source and the second microphone is placed such 
as to pick up the speech and the noise. An adaptive filter based on the least-mean-squares (LMS) method 
is then used to minimise the mean-squared-error and arrive at an adaptive tracking Wiener filter. It is well 
known however that in order for such a system to work effectively requires good coherence between the 
two microphones and this necessitates the microphones not being too far apart. Conversely if the 
microphones are too close together then the speech as well as the noise will be cancelled. Although there 
are certain applications in special environments which are suitable to such a solution it is generally 
accepted than modifications of this fundamental idea is necessary in many real environments.  
In fact many of the above real-world problems require the microphones  to be close together rather than 
far apart. Such a situation arises naturally in beamforming. There are many different types of 
beamformer, for example the delay and sum beamformer which steers the directivity towards a sound 
source[2]. The approach used here wishes to simplify the procedure as much as possible for future real-
time implementation and so two microphones are used as an adaptive  Griffiths-Jim beamformer [3] as 
shown in Figure 1 below. Such an approach (the generalized sidelobe canceller)  steers a null towards the 
source of the noise and has found applications in hearing aid and speech recognition research [4,5,6]. 
Referring to Figure 1,the two signals from the microphones are fed to the (simplified) beam-steerer which 
consists of two delays 1τ , 1τ  and two scaling factors 1a , 2a  which compensate for any path difference of 
the speech and make the speech appear as if it is directly in front of the two microphones. However, for 
the purposes of this analysis we consider the speech to be already in front of the two microphones so that 

1a = 2a =1 and 1τ = 2τ =1. Speaking directly in front of the microphones would be the case for a hearing 
aid where the wearer will turn and face the speaker. There are other possibilities, for example in distant 
talker speech recognition [7] where this will not be the case but for such problems it will be assumed that 
steering has already taken place and that the speech is again assumed to be directly in front of the 
microphones at least in a virtual sense. For such a problem the delays 1τ , 1τ   can no longer be taken  to 
be unity as they will compensate for a real acoustic delay known as the time-difference of arrival 
(TDOA). However, after the beamformer has compensated for the TDOA,  the net effect will be that the 
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speech will again be directly in front of the two microphones as the overall delay from the speech source 
will be the same in both the upper and lower arm of the beamformer. 
 

 
   Figure 1 Two microphone Griffiths-Jim beamformer 
 
In Figure 1 there is another delay τ  which is included to improve the performance of the beamformer. 
Its purpose becomes clearer later in this paper. The commonly used least-mean squared (LMS) algorithm 
[8] is used to minimize the mean-squared error using  a finite impulse response (FIR). The top path of the 
beamformer has a summation term which forms the primary input whilst the bottom path has a difference 
term which forms the reference input. No blocking matrix is required as the subtraction itself is enough to 
get rid of the speech so that noise alone is fed into the reference. However, in real problems where there 
may not be exact steering (that is the signal does not appear exactly in phase after steering ) then there 
may well be a small undesired signal component appearing in the reference. To avoid the LMS algorithm 
adapting during this time it is usual to include a voice activity detector (VAD) which only updates the 
LMS algorithm during periods of noise. Fortunately such a VAD has been reported in [9] and found to be 
robust in realistic environments. 
 
2 Optimal beamformer 
 
Mathematical preliminaries: 
If a  polynomial  defined as 1 1 2

0 1 2( ) ... n
nX z x x z x z x z− − − −= + + + +  of degree n has all its roots 

within the unit circle in the z plane, then it is termed minimum phase. No zeros are assumed to be on the 
unit circle. For simplicity 1( )X z−  is often written as X , omitting the complex argument 1z− . The 

conjugate polynomial * 2
0 1 2( ) ... n

nX z x x z x z x z= + + + +  is non-minumum phase having all of its 
roots outside the unit circle on the z plane. The reciprocal polynomial is defined as 

1 ( 1) ( 2) *
0 1 2( ) ... ( )n n n n

nX z x z x z x z x z X z− − − − − − −= + + + + =  which  has all its roots outside the unit 

circle provided 1( )X z−  is minimum phase. The zeros of X  are the zeros of X reflected in the unit 

circle. Similarly  * 1 1( ) ( )nX z z X z− −=  has all its roots within the unit circle. For polynomials which 

are non-minimum phase, we can factorise 1 1 1
1 2( ) ( ) ( )X z X z X z− − −=  where 1X  is minimum phase 

and 2X is non-minimum phase. 
Beamformer equations: 
For the purposes of the analysis all signals are assumed to be stationary but practically this will not be the 
case as the LMS algorithm will track any time-variation in the parameters. Consider a stationary  signal  

ks  and a noise source kη . Without loss of generality it can be assumed that the noise source is zero-

mean and white, with variance 2
ησ . The white noise source will be coloured by two finite-impulse 
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response (FIR) acoustic transfer functions 1
1( )H z−  and 1

2 ( )H z−  so that the received signals at the two 
microphones are 
   k k 1 km s H= + η        (1) 
 and   
   k k 2 kn s H= + η       (2) 

For a beamformer filter W , the error signal becomes 
  1 2 1 2[ 0.5( ) ] 0.5 ( )k k k ke z s H H W H Hη η−= + + − −    (3) 

where z− is an artificial delay introduced to provide causality for non-minimum phase acoustic transfer 
functions. The z-transform spectral density of the error becomes: 
       * 2 * * 2

1 2 1 2 1 2 1 20.25( )( ) 0.25 ( )( )ee ss H H H H W H H H H zη ησ σΦ = Φ + + + − − +  

 * * 2 * * 2
1 2 1 2 1 2 1 20.25 ( )( ) 0.25 ( )( )W H H H H z WW H H H Hη ησ σ−− + − + − −  (4) 

and it has been  assumed that the signal ks and noise kη are uncorrelated. 
Parseval’s formula gives the mean-square error for an ergodic system as 

   2 1

1

1[ ] ( )
2k ee

z

dzE e z
j zπ

−

=

= Φ∫      (5) 

from which the optimal filter W can be obtained by completing the squares[10]. This results in 
 2[ ]kE e =

* 2
1 2 1 2 1 2 1 2

1

1 1 {[ ( ) ( )][ ( ) ( )] }
2 4 ss

z

dzW H H z H H W H H z H H
j zησπ

− −

=

− − + − − + +Φ∫    (6)

  
The minimum phase beamformer transfer function then follows [4]  

   1 2

1 2

( )z H HW
H H

− +
=

−
      (7) 

Substituting (7) into (4) gives an error signal as noise-free  delayed speech 
    k ke s −=       (8) 
with minimum mean-squared error given by 

   2

1

1
2e ss

z

dz
j z

σ
π =

= Φ∫       (9) 

However, it is well established that the acoustic impulse response of real environments have non-
minimum phase terms [11,12]  and hence (7) could very well turn out to unstable. This is 
because 1 2H H−  may well have both zeros inside and outside of the unit circle. In [12] it has been 
shown that for small rooms, the impulse response is minimum phase only for reflection coefficients 
below about 0.37. However, the LMS algorithm will normally still converge provided the artificial delay 

is large enough but it will not converge to the above transfer function (7) (its power series FIR 
expanded form) but rather to the transfer function discussed in the next section. It can be seen that   
does not contribute anything to the performance of the beamformer for the minimum phase case other 
than introduce a time-delay. 
 
Non-minimum phase solution: 
For the general non-minimum phase beamformer problem it is necessary to further refine the definitions 
of  the acoustic transfer functions. Suppose 1H  and 2H are defined in terms of two further FIR transfer 
functions with pure delays 
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    1
1

dH Lz−=       (10) 

    2
2

dH Mz−=       (11) 

where d2>d1. Then 1 ( 2 1)
1 2 [ ]d d dH H z L Mz− − −+ = +  and 1 ( 2 1)

1 2 [ ]d d dH H z L Mz− − −− = −  
The delay  d2-d1 is the TDOA. In fact d2-d1 may well be the first of many TDOA’s due to reverberations 
in a real environment. However, it can be seen that a delay 1dz−  is now common to both the upper and 
lower arms of the beamformer  and via (3)  and the error spectrum (4), can be ignored in the proceeding 
analyses. Define the polynomials 
    ( 2 1)

1 2 [ ]d dC C C L Mz− −= = +     (12) 

where 1C  has all its roots inside the unit circle and 2C  has all its roots outside the unit circle. Similarly 
define 
    ( 2 1)

1 2 [ ]d dB B B L Mz− −= = −     (13) 

where 1B  has all its roots inside the unit circle and 2B  has all its roots outside the unit circle. 
Now (6) can be written as 

 2 * 2
1 2 1 2 1 2 1 2

1

1 1[ ] { [ ][ ] }
2 4k ss

z

dzE e WB B z C C WB B z C C
j zησπ

− −

=

= − − +Φ∫  (14) 

The above includes terms in *
2 2B B . Writing *

2 2
nB z B−=  and *

2 2
nB z B=  then 

    * *
2 2 2 2B B B B=       (15) 

Assuming 2B is non-minimum phase, then the reciprocal polynomial 2B will be minimum phase. 

Similarly *
2B  will be minimum phase whilst *

2B  will be non-minimum phase. A similar method is used in 
control theory [13 ] and in deconvolution filters[14 ].  
The mean-squared error (14) will now be written in an equivalent form by using (15) thus 

 
* *

2 * 22 2
1 2 1 2 1 2 1 2* *

2 21

1 1[ ] { [ ][ ] }
2 4k ss

z

B B dzE e WB B z C C WB B z C C
j B B zησπ

− −

=

= − − +Φ∫  (16) 

from which the optimal Wiener beamformer becomes (Appendix 1) 

   
*
2

1 2 *
2 1 2

1{ }BW z C C
B B B

−
+=      (17) 

where the brackets {.}+  denotes the inclusion of causal terms in negative powers of z  (including 0z  
terms ). 
 
Polynomial form: 
The polynomial solution is covered in some detail in Appendix 2. It is shown that the optimal stable 
beamformer is given by 

    1 2

1 2

C C D FW
B B

+
=      (18) 

where the reciprocal polynomial *D z D−=  

  * 1 2
0 1 2 ...D z D d z d z d z d− − − + − += = + + + +    (19) 

and *D  is the expansion to  terms of the power series 

   
*

22
0 1 2*

2

...B d d z d z
B

= + + +      (20) 
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The polynomial F of degree r is found by the convolution (A17) making use of  the polynomial *E  
defined by (A14) and (A13). 
For a non-minimum phase polynomial 2B  of degree nb2 the expansion (20) is easily found by a simple 
recursion. For example if 
   1 2 2

2 0 1 2 2... nb
nbB z z zα α α α− − −= + + + +    (21) 

then 0
0

2nb

d α
α

=   

   

2 1

2
0

2

( )
nb

i nb i j j
j

i
nb

d
d

α α

α

−

− +
=

−
=

∑
  1, 2... 2i nb=    (22) 

and 

   
2 1

2
02

1 nb

i j i j nb
jnb

d dα
α

−

+ −
=

= − ∑ for 2i nb>     (23) 

The enhanced speech signal is given by the error (3) which becomes 
  1( ) 1

1 2 1 20.5 0.5d d
k k k ke z s z C C z WB Bη η− +− −= + −    (24) 

and using (18) 

  1( ) 1 2
1 2 1 2

2

0.5 0.5 [ ]d d
k k k k

Be z s z C C z C C D F
B

η η− +− −= + − +   (25) 

For the minimum phase case we have 2 1B = , D z−= and * *0, 0E F G= = = and the error 
degenerates to that of (8). 
 
3 Illustrative example 
 
This simple example will illustrate the power of the method in showing the frequency response of the 
optimal beamformer. Suppose 1

1 2 1.5 4.1C C C z−= = −  which is non-minimum phase with 1 1B =  and 
1

2 0.5 3.9B z−= +  (also non-minimum phase) which makes both the upper and lower arms (primary 

and reference inputs) of the beamformer non-minimum phase.  Take the delay to be initially 2. 
Form the reciprocal polynomial 1

2 0.5 3.9B z−= +  and hence *
2 3.9 0.5B z= + . Now form the 

polynomial expansion 

    
*
2
*
2

0.5 3.9
3.9 0.5

B zz z
B z

− −+
=

+
 

  2 3 4 2(0.1282 0.9835 0.12609 0.016166 0.0020726 ...)z z z z z−= + − + +  
Which results in the two polynomials 
   * 1 20.12609 0.9835 0.1282D z D z z− − −= = − + +  
and 
   * 20.016166 0.0020726 ...E z z= + +  ( 0 0e =  ) 

The coefficients of the polynomial 1 2 r
0 1 2 rF f f z f z ... f z− − −= + + + +  are found from 

    
ne

k i k i
i 0

f e c , k 0,1,2,..r+
=

= =∑  

The above convolution was truncated to 10ne = terms giving for r=0 (since the other higher order terms 
are negligible) F 0.06628 ...= − +  
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Hence the transfer function of the optimal beamformer is 

   1 2

1 2

C C D FW
B B

+
=  

  
1 2 3

1

0.25543 1.99235 3.84 0.52564
3.9 0.5

z z z
z

− − −

−

− + − −
=

+
 

The LMS algorithm will converge to the FIR equivalent of the above, which is by long division  
  1 20.065487 0.51922 1.0564 ...W z z− −≈ − + − +  
This was confirmed by LMS  simulation.  
To further illustrate the mechanism by which the beamformer operates, consider the frequency response 
of the primary path 1 2C C z−  shown in Figure 2.  

 
Figure 2. Frequency response of upper arm of beamformer 1 2C C z−  

The phase is shown ‘unwrapped’ and normalized frequency is taken from dc to half sampling (3.14 
radians). 
For the error to be as close to zero as possible, the lower arm of the beamformer must match the 
frequency response in both amplitude and phase. The frequency response of the filter on its own is shown 
in Figure 3. 

 
   Figure 3. Frequency response of filter W   
 
The filter convolved with the polynomial B (that is the lower arm)  is shown in Figure 3. 

 
   Figure 4. Frequency response of convolution  1 2 *B B W   
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which can be seen to closely match the upper arm of the beamformer (Figure 2). In fact the error between 
the two graphs is shown in Figure 5.
 

 
Figure 5. Frequency response of error. 

 
The amplitude error is down -30dB whilst the phase error is less than 0.6 degrees. Finally, the effect of 
increasing the added delay  from 2 to 4 is seen in Figure 6. 
 

 
Figure 6. Frequency response of error for 4= . 

 
The effect of doubling the delay is to reduce the phase error to less than 0.05 degrees and the magnitude 
of the error reduces by 35dB to -65dB. 
 
4 Conclusions 
 
The Griffiths-Jim two-input beamformer has been analysed in the frequency domain using a Wiener 
polynomial based formulation. The particular problem of non-minimum phase acoustic impulse responses 
has been investigated. The LMS algorithm gives a converged solution which is identical to these results 
and the frequency-domain characteristics help to aid the understanding of the subject. In future it will be 
possible to apply the same theory to the multivariable case and with modifications the H∞  beamformer 
problem. 
 
 
 
Appendix 1 
 
Non-minimum phase beamformer 
This appendix will derive the beamformer given in (17) using the method of ‘completing the square’ [10 ] 
Starting from (16) 

* *
2 * 22 2

1 2 1 2 1 2 1 2* *
2 21

1 1[ ] { [ ][ ] }
2 4k ss

z

B B dzE e WB B z C C WB B z C C
j B B zησπ

− −

=

= − − +Φ∫   (A1) 

write this in the form 
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  2 * 2

1

1 1[ ] { [ ][ ] }
2 4k ss

z

dzE e A A A A
j zησπ

+ − + −

=

= + + +Φ∫    (A2) 

where  
*
2

1 2 1 2 *
2

{ }BA WB B z C C
B

+ −
+= −  will be in the form 1 2 3

0 1 2 3 ...v v z v z v z− − −+ + + +   (A3) 

and 
*
2

1 2 *
2

{ }BA z C C
B

− −
−= −  will be in the form 2 3

1 2 3 ...u z u z u z+ + +     (A4) 

 
Clearly *A A+ −  and *A A− +  will have no terms in 0z and by Cauchys residue theorem their integral must 
be zero leaving 

  2 * * 2

1

1 1[ ] [ ]
2 4k ss

z

dzE e A A A A
j zησπ

+ + − −

=

= + +Φ∫    (A5) 

Since only A+  includes the causal beamformer filter W then (A5) must be minimized  when 0A+ =  
giving 

   
*
2

1 2 1 2 *
2

{ }BA WB B z C C
B

+ −
+= − =0    (A6) 

or      

   
*
2

1 2 *
2 1 2

1{ }BW z C C
B B B

−
+=      (A7) 

with the minimal mean-squared error being  

   2 * 2

1

1 1 [ ]
2 4e ss

z

dzA A
j zησ σ

π
− −

=

= +Φ∫     (A8) 

 
 
 
 
Appendix 2 
 
Polynomial simplification: 
Appendix 1 gives the Wiener solution to the optimal non-minimum phase beamformer problem. This 
appendix simplifies the computation of the transfer function solution (A7). 

Consider the term within the {.} brackets in (A7). Taking 
*
2
*
2

B
B

 alone, this can be expanded as a 

convergent power series in positive powers of z. 

   
*

22
0 1 2*

2

...B d d z d z
B

= + + +      (A9) 

When combined with the pure delay z− this can be written as 

 
*

1 2 22
0 1 2 1 1*

2

... ...B z d z d z d z d d z d z
B

− − − + − +
+ += + + + + + + +   (A10) 

    *D E= +       (A11) 
where 
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  * 1 2

0 1 2 ...D z D d z d z d z d− − − + − += = + + + +   (A12) 
 
and  is *E an infinite series 
   * 2

1 1 ...E d z d z+ += + +     (A13) 
re-indexing we can write (A13) as 
  * 2

0 1 2 ...E e e z e z= + + +      (A14) 

where 0 0,e =  , 1, 2...i ie d i+= =  
Using  (A11) in (A7) results in 

  
*

*2
1 2 1 2 1 2*

2

{ } { }Bz C C C C D E C C
B

−
+ += +     (A15) 

The term *
1 2{ }E C C +  has an infinite series *E which is an uncausal sequence and a finite polynomial 

1 2
1 2 0 1 2 ... nc

ncC C C c c z c z c z− − −= = + + + +  which is causal (though possibly still with some non-
minimum phase zeros). Hence we have the Laurent series 

   * k
1 2 k

k
E C C f z

∞
−

=−∞

= ∑      (A16) 

Which can be truncated to some suitable length r  thus, 

   
r

* k
1 2 k

k r
E C C f z−

=−

= ∑      (A17) 

where the coefficients kf may be found for positive values of k as [15] 

   
ne

k i k i
i 0

f e c , k 0,1,2,..r+
=

= =∑    (A18) 

and for negative values  

   
ne

k k j j
j 0

f e c , k 1, 2,.. r− +
=

= = − − −∑    (A19) 

(A18) and (A19) have been convolved with an upper limit ne nc>> which is the truncated limit of the 
polynomial *E . 
Giving two polynomials.  
   * *

1 2E C C F G= +      (A20) 
A causal polynomial F 
   1 2 r

0 1 2 rF f f z f z ... f z− − −= + + + +    (A21) 

and an uncausal polynomial *G  
   * 2 r

1 2 rG g z g z ... g z= + + +     (A22) 

where i ig f , i 1, 2...−= =  
The polynomial form for the optimal beamformer then follows from (A7) 
 

    1 2

1 2

C C D FW
B B

+
=     (A23) 

The minimum mean squared error is found from (A8) 
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   2 * 2

1

1 1 [ ]
2 4e ss

z

dzGG
j zησ σ

π =

= +Φ∫    (A24) 

Indicating an increase in mean-squared error over the minimum phase case (9).  
Sub-optimal beamformer: 
An approximate sub-optimal filter can be found by assuming that the higher order terms in the power 

series expansion 
*
2
*
2

B
B

will be negligible making the coefficients of *E negligible and hence via (A20) 

both F and *E can be neglected. This will only be the case if the delay is chosen to be large enough 
resulting in a sub-optimal filter 'W where 

    ' 1 2

1 2

C C DW
B B

≈       (A25) 
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