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Abstract 

Epichloë festucae is an agronomically important seed-transmitted endophytic fungus 

that grows symbiotically within the intercellular spaces of temperate grass species. This 

fungus has previously been shown to undergo hyphal intercalary growth during host 

leaf colonization, a highly unusual mechanism of division and extension in non-apical 

compartments in vegetative hyphae, as an adaptation to colonise rapidly elongating host 

cells in the developing leaf. However the exact mechanism that triggers intercalary 

growth was not known. In this study I aimed to test the hypothesis that intercalary 

growth is stimulated by mechanical stretch imposed by attachment of hyphae to 

elongating host cells, and that this stress is sensed by mechano-sensors located on 

hyphal membranes.      

To test this hypothesis a novel technique was designed and optimised to stretch fungal 

hyphae under in vitro conditions. Investigation of un-stretched hyphae showed that de 

novo compartmentalization occurs in sub-apical compartments of E. festucae hyphae 

according to a compartment length-dependent hierarchy. Subjecting these sub-apical 

compartments to mechanical stretching showed that hyphal compartment lengths can be 

increased while maintaining viability, provided that the stretch is within tolerable limits. 

It further showed that the stretched compartments undergo de novo 

compartmentalization (nuclear division and septation) similar to un-stretched hyphae 

but at a significantly higher rate, fulfilling the basic requirements for intercalary growth.  

E. festucae WscA and MidA, which are orthologues of a yeast cell wall stress and a 

stretch-activated calcium channel protein respectively, were functionally characterized 

in order to test the possible involvement of these mechano-sensors in intercalary 
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growth. Their roles in general hyphal apical growth, cell wall construction and integrity 

maintenance during growth in culture were confirmed. The limited ability of ΔmidA 

mutants to colonise developing leaves indicated a possible role in intercalary growth, 

while ΔwscA mutants showed wild-type levels of host colonization. In future, the 

ΔmidA and ΔwscA mutants will be subjected to mechanical stretch in vitro to further 

understand their roles in mechano-sensing and intercalary growth.  

Given the possible involvement of the stretch-activated calcium channel MidA in 

intercalary growth, a successful technique was developed to study calcium signalling 

and distribution in E. festucae using the genetically-encoded calcium sensor GCaMP5. 

Investigations revealed the presence of MidA-driven Ca2+ pulses confined to the hyphal 

tips with unique signatures of temporal and spatial dynamics generated by influx of 

Ca2+. The presence of active sub-apical Ca2+ uptake systems were confirmed, 

manifested as occasional Ca2+ pulses in sub-apical compartments that seemed to 

increase in frequency with mechanical perturbation, indicating a potential crucial role in 

mechanical stress-driven intercalary growth.    

In conclusion a prospective model for intercalary growth in the leaf expansion zone is 

proposed. Mechanical stretching of hyphae results in increased compartment lengths, 

accompanied by compartmentalization in sub-apical compartments that allows hyphae 

to extend along their length. Membrane distortion due to stretching activates MidA, 

triggering a calcium signalling cascade to stimulate cell wall synthesis and other cellular 

processes.   
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