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Abstract 

This study focuses on model ling community productivity, species abundance and 

richness, and the impact of climate change and alternative phosphorous ferti l iser 

application strategies on pasture productivity by integration of decision tree and 

regression model ling approaches with a geographical information system (GIS) in  a 

naturalised hi ll-pasture ecosystem in the North Island, New Zealand, using data derived 

from research conducted on hi l l-pastures over the last several decades. 

The results indicated that the decision tree models had a high predictive capability 

and clearly revealed the relative importance of environmental and management factors 

in influencing community productivity, species abundance and richness. Spring rainfall 

was the most significant factor influencing annual pasture productivity in the North 

I sland, while hi l l  slope was the most s ignificant factor influencing spring and winter 

p asture productivity. Annual P fertiliser input and autumn rainfal l  were the most 

significant factors influencing summer and autumn p asture productivity, respectively. 

For species functional group abundance, soil Olsen P was the most significant factor 

influencing the relative abundance of low fertility tolerance grasses (LFTG) and moss, 

while soil bulk density, slope and annual P fertil iser input were the most s ignificant 

factors influencing the relative abundance of legume, high ferti l ity response grasses 

(HFRG) and flatweeds, respectively.  Legume abundance was the most significant factor 

influencing species richness in the hil l-pasture. Species richness increased with an 

increase in legume abundance and showed a tendency for a hump-shaped response. 

Grazing animal species also had a significant effect on species richness; pasture grazed 

by sheep had more species than pasture grazed by cattle. C limate change scenarios of 

temperature increases of I -2°C and rainfall changes of -20% to +20% would have a 

great impact (-46.2% to +5 1 .9%) on pasture production in the North I sland. Pasture in 

areas with relatively low rainfal l  had a higher response to increased P fertil iser input 

than pastures in areas with a relatively high rainfall .  

In conclusion, the integration of a GIS with decision tree and regression models  in 

this study provided an approach for effective predictive model l ing of community 

productivity, species abundance and richness in the h i ll-pasture. This modell ing 



approach can also be used  as a tool in  pasture management such as in assessing the 

impact of cl imate change and alternative ferti liser management on pasture production. 

Key words: cl imate change, community productivity, data mining, decision tree, 

functional group, hill-pasture, geographical information system, GIS-based modelling, 

multivariate analysis, pasture production, predictive model ling, regression, relative 

abundance, species richness. 
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Fig. 3 .  The decision tree model for relative abundance of high ferti lity response 

grasses (HFRG). Predicted relative abundance (in percentage) is in the 

unshadowed rectangles, splitting variables and spli t-points are In the 

shadowed rectangles. Prediction goes to the left-side branch if the 

splitting variable is less than the split-point, and goes to the right-side 

branch if the splitting variable is equal to, or more than, the spl it-point. 

See Table 2 for variable symbols and unit descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 36 
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Fig. 7. The decision tree model for relative abundance of moss. See the caption 
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Fig. 1 .  The decision tree model for species richness using the environmental, 

management and vegetation variables. Predicted species richness is in  

the unshadowed rectangles, splitting variables are in the shadowed 

rectangles. Prediction goes to the left-side branch if the spli tting variable 

i s  less than the split-point, and goes to the right-side branch if the 
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spl i tting variable is equal to, or more than, the split-point. See Table 1 

for variable and unit descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 59 

Fig. 2 .  The decision tree model for species richness using principal components 

as input variables. Princ 1 ,  Princ 4 and Princ 5 represent principal 

components 1 ,  4 and 5, respectively. The splitting points are values of 

principal components. Princ 1 was mainly composed of annual, spring 

and surnn1er temperature (all negative), and spring and summer rainfall . 

Princ 4 was mainly composed of total N (negative), slope and legume 
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decision tree interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 60 

Fig. 3 .  The decision tree models for species richness using total n itrogen (a), 

Olsen P (b), grazing animal species (c), legume abundance (d), 

aboveground biomass (e) and five-year cumulative P ferti liser input (t) 

as input variables, respectively .  See the caption of Figure 1 for the 

description of decision tree interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 6 1  
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Chapter 1: General introduction 

Hi l l-pastures in New Zealand are naturalized vegetation that originated from 

c learance of native podocarp rainforest, fern or scrub and the over-sowing with 

introduced pasture species by early European settlers (Hi lgendorf 1 936). There are 

about five mil l ion hectares of hi l l -pasture in New Zealand, which account for nearly one 

third of the total pasture area, mainly located in the North Island (White 1 990). 

Considerable research has been conducted on these hil l-pasture in the last few 

decades (e.g. Suckling 1 975 ;  Radcl iffe 1 982; Lambert et al. 1 996; Nicholas 1 999; 

Lopez 2000; Moir 2000;  Gil l ingham 200 1 ;  Blennerhassett 2002); most of it related to 

pasture productivity, species abundance and composition, and species richness. There is 

a large amount of data either in  the l i terature or kept by researchers in the form of raw 

or unpubl ished data. 

Though these data were analysed for the purposes they were collected, they stil l  

contain much more information than has been revealed due to the research objectives, or 

due to a meta-analysis not being appl ied to the dataset. Therefore, the whole dataset 

provides the potential to develop models that investigate how environmental factors, 

such as topography and c limate, and management factors, such as fertil izer appl ication 

strategies, influence pasture ecosystem processes over space and time. 

With the advances in data analysis technology, a new model ling approach - data 

mining, has become available and its effectiveness in querying and extracting useful 

information, patterns and trends, often previously unknown, from large quantities of 

existing data has been demonstrated (Thuraisingham 1 999). Decision tree (also called 

classification and regression tree) (Brei man et al. 1 984; Vayssieres et al. 2000) is one of 

these data mining methods and has been widely used in the social (Scheffer 2002) and 

medical sciences (Petitti 2000). It has also had increasing appl ications in environmental 

modell ing showing considerable accuracy and effectiveness in investigating interactions 

between model target (dependent) and input (independent) variables ( Iverson & Prasad 

1 998; Vayssieres et al. 2000; Scheffer 2002). 

Geographic information system (GIS) is an information technology with the 

capacity to store, analyze and display both spatial and spatial-related data (Parker 1 988).  

GIS has become an increasingly valuable tool in  the computer-based model l ing of 

environmental and ecological processes. The integration of GIS  with environmental and 
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ecological models  has been widely used to model species distribution a 

(Franklin 1 995;  Guisan & Zimmermann 2000), community productivities I 

1 997;  Li et at. 1 998), impacts of cl imatic changes on vegetations ( Ivers 

1 998; Tan & Shibasaki 2003) and watershed hydrology (Johnston 1 998; Wadsworth & 

Reweek 1 999), for example. This integration greatly enhances the spatially investigative 

and predictive capability of environmental and ecological models. 

Although a l arge number of studies have been conducted on hil l-pasture in the last 

several decades, most of them focused on a s ingle location and/or only lasted for a few 

years; there is a need to investigate h il l-pasture ecosystem processes by expl icit ly 

considering spatia l  and temporal heterogenei ty in environment and management. Hence 

the objectives of this study are to investigate and model community productivity, 

species abundance and species richness at a large spatial and temporal scale by 

applications of decision tree and other approaches with integration of GIS. Insights 

obtained from these models wil l  be helpful in enhancing the understanding of hi l l

pasture ecosystem processes at landscape or regional scale and in improving pasture 

management. 

The fol lowing studies were conducted to achieve these objectives: 

1 )  Modell ing the community productivity of hi l l-pasture in the North Island, New 

Zealand. 

2) GIS-based predictive modelling of community productivity In a hi l l-pasture 

ecosystem. 

3) Modell ing the impacts of climate changes and alternative phosphorus (P) 

fertiliser management on hi l l-pasture production in the North Island, New 

Zealand. 

4) Model l ing functional group abundance of plant species III a hi l l-pasture 

ecosystem. 

5)  Model l ing and investigating species richness patterns and underly ing factors in a 

h i ll-pasture ecosystem. 
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These studies are presented in Chapter 3 to 7 and are prepared in the style of a 

journal paper ready for publication. I n  Chapter 3 ,  a decision tree is developed to 

investigate and model pasture community productivity at a regional scale (the North 

I sland, New Zealand) and is compared with a regression model to assess its 

performance. In Chapter 4, a decision tree model is integrated with a GIS to spatially 

predict patterns of pasture community productivity in a hi ll-pasture. The uti l i ty of this 

spatial modell ing approach in pasture management i s  discussed. Chapter 5 assesses the 

potential impacts of climate changes and alternative P fertiliser management on pasture 

production for the whole North Island, New Zealand. In Chapter 6, decision tree models 

are developed to investigate and model functional group abundance of plant species in a 

hi l l-pasture and are integrated with a GIS  to generate predictions for functional group 

abundance over space. In Chapter 7 patterns and processes of species richness in a h i l l

pasture are investigated using decision tree and other approaches. 
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Chapter 2: Literature review 

2. 1 .  I ntroduction 

There has been increasing concern over the impacts of environmental changes and 

intensive land use on the ecosystem processes (Chap in I I I  et al. 2000; Tan & Shibasaki 

2003). In a pasture ecosystem, these impacts may result in a decrease in productivity and 

replacement of high feed quality species by poor species (Baars et al. 1 990; Langer 1 990; 

Campbell 1 996) . Modell ing pasture ecosystem processes is an efficient way to investigate 

the interrelationship between pasture and environmental and management factors, and to 

quantify the potential impacts which may result from environmental changes and intensive 

land use. Insights obtained from the model outputs could also provide impl ications for 

better management strategies for sustainable development. In this chapter 1 aim to review 

the research outcomes for hil l-pasture in New Zealand and the main aspects of theories, 

technologies and research in environmental and ecological modell ing. Specifically, this 

review covers the following: ( 1 )  hill-pasture in N ew Zealand, (2) plant ecology in relation 

to species diversity, distribution and abundance, (3) GlS and GlS-based environmental 

modell ing, and (4) data mining and decision tree. 

2.2. Hill-pasture in New Zealand 

2.2.1. Introduction 

Hill-pastures in New Zealand are natural ized vegetations that originated from the 

clearance of native podocarp rainforest, fern or scrub and the oversowing with introduced 

pasture species in hill-country by early European settlers (Hi lgendorf 1 936). There are 

about 5 mil l ion hectares of hi l l-pasture in New Zealand, which are nearly 1 13 of the total 

pasture and are mainly located in the North I sland. Hill-country fanning is a major 

enterprise and a key aspect of New Zealand economy, accounting for nearly one third of the 

total export earnings deri ved from agriculture (Trustrum et al. 1 983; White 1 990). 

Up unt i l  the 1 950's, hi l l  pastoral fam1ing was primarily concerned with maintaining the 

introduced pasture species such as browntop (Agrostis capillaris), chewings fescue 

(Festuca rubra), crested dogstail (Cynosurus cristatus) and white clover (Trifolium repens) 

at existing levels of ferti l ity, which were often low (White 1 990). There were very few 
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legumes in these pastures and improvement of soil ferti l ity through nitrogen fixation was 

minimal . Improvement of hill-pastures occurred with the advent of aerial top dressing in 

the 1 940's,  when superphosphate and l ime were commonly appl ied. The combination of 

superphosphate application and oversowing legume seed resulted in vastly improved 

pastures. The superphosphate fertil izer stimulated legume growth which, in turn, fixed 

atmospheric nitrogen and encouraged grass growth. This improvement of hil l-pastures 

meant a shift from low feed quality species l ike chewings fescue, browntop and danthonia, 

to more desirable species such as perennial ryegrass (Lolium perenne) (White 1 990; 

N icholas 1 999). 

Pastures on hill-country are diverse both regionally and on a single fann. This diversity 

is caused by climatic factors such as temperature and rainfall, edaphic factors such as soil 

moisture and soil fertil ity, and biotic factors such as grazing behaviour and pasture 

management (Suckl ing 1 975;  Lambert & Roberts 1 978, White et al. 2004). These factors 

are further modified by altitude, slope, aspect, and micro-topography within a hill farn1 

(Lambert et al. 1 986; White et .af. 2004) . Annual rainfall in hil l-pasture varies from 300 to 

over 2000 mm with most hil l-country in the 600- 1 500 mm range. Temperature also varies 

dramatical ly from the north to south; it varies not only with latitude and alti tude, but also 

with season and aspect (RadC\iffe & Lefever 1 98 1 ;  White 1 990). 

Topographic variation in slope and aspect in hill-country is  a characteristic of all hi l l

pasture and resulted in the existence of diverse habitats differing in climatic, edaphic, and 

biotic characteristics. In southern latitudes, hi llsides tending towards more northerly aspect 

receive greater net radiation, are wanner, and generally drier (RadC\iffe & Lefever 1 98 1 ) . 

Depending on season and aspect, land slope also modifies net radiation received and 

increasing slope usual ly reduces soil moisture status. By influencing animal grazing and 

excreta patterns, aspect also influences soil nutrient status. Within a hi llside, further 

variation in soil nutrient levels may occur because of differences in land slope and the 

associated development of stock tracks and camps that result from animal movement and 

resting habits. Accumulation of soil nutrients occurs on stock tracks and camps as a result 

of nutrient transfer patterns. The combined effects of these c limatic and soil differences 

result in contrasting pasture species composition and production patterns (Gil lingham 1 982; 
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Sheath & Boom 1 985b). In most parts of New Zealand hil l-pasture, a seasonal lack of water 

is a major factor l imiting pasture production, and is a primary cause of year-to-year 

variability in yield (Rickard et at. 1 985).  Although large areas of the North Island receive 

more than 1 000mm rainfall, late spring and summer usual l y  have less rainfall than autumn 

and winter, resulting in seasonal soil water deficits for plant growth. Also, factors such as 

shal low soils with low water-holding capacity, sloping soi l  with high run-off, and sunny 

faces with above-average solar radiation and evapotranspiration, can also result in water 

deficits (Kerr et at. 1 986; Barker & Dymock 1 993). Soil moisture levels are always higher 

on south-than north-facing slopes. On north-facing slopes soil moisture levels were always 

higher on easy than steep slopes, but on south-facing aspects the opposite was often the 

case (Gil l ingham et al. 1 998). 

2.2.2 Species composition and diversity in hill-pasture 

Species composition in hi l l-pastures is more diverse than lowland pastoral systems in 

New Zealand. Lambert et at. ( 1 986) identified approximately 20 species in a survey of a 

North I sland, New Zealand hill-pasture. Some species typical of these pastures were 

grasses such as ryegrass (Lolium perenne), brown top (Agrostis capillaris), sweet vernal 

(A nthoxanthum odoratum), crested dogstai l (Cynosurus cristatus), Yorkshire fog (Holcus 

lanatus), poa (Po a spp.), red fescue (Festuca rubra) , danthonia (Rytidosperma spp.), 

legumes such as white c lover (Trifolium repens), suckling clover ( Trifolium dubium), and 

lotus (Lotus pedunculatus) and other species such as flatweeds (e.g. Plantago lanceolata, 

Hypochaeris radicata and Leontodon taraxacoides), moss (Muscii spp.), Centella unijlora, 

and Nertera setulosa (Lambert et at. 1 986) (Table 1 ) . This diversity is brought about 

through both management of the pasture and the wide variety of environmental conditions 

present on most hill farms (N icholas 1 999). 

Based on their morphological traits, responses to ferti l i ty, and other features, species in 

hi l l-pasture are generally classified into several functional groups: low fertil ity tolerant 

grasses (LFTG), such as browntop, sweet vernal, crested dogstai l ,  danthonia, red fescue; 

high fertility responsive grasses (HFRG), such as ryegrass, Yorkshire fog, poa; legumes, 

such as white clover, suckling clover, and lotus; flatweeds, such as Plantago lanceolata, 
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Hypochaeris radicata and Leontodon taraxacoides; and moss (Lambert et af. 1 986; 

Nicholas 1 999) (Table 1 ) . 

Table 1 .  Plant species and fu nctional groups of at Ballantrae (after Lambert et al. ( 1986) 

and Nicholas et al. ( 1998» 

Functional group Species 

HFRG Lolium perenne, Holcus lanatus, Poa pratensis, Poa annua 
and Dactylis glomerata. 

LFTG Agrostis capillaris, A nthoxanthum odoratum, Cynosurus cristatus, 
Rytidosperma spp., Festuca rubra. 

Legume Trifolium repens, Trifolium dubium, Trifolium subterraneum and 
Lotus pedunculatus. 

Flatweeds Plantago lanceolata, Hypochaeris radicata, and Leontodon 
taraxacoides. 

�oss A1usci spp. 

Climate and soil fertility are the main detenninants of species composition in hill

pastures. These differ on a regional basis, and between hillsides and micro-sites because of 

variations in slope and aspect. As a result, diverse p lant communities are a common feature 

of these hill environments (Suckl ing 1 975). As soil fertil ity and moisture increase, pastures 

move from being predominantly low fertility tolerant grasses and/or annual legume towards 

associations dominated by ryegrass and white clover. Within a given climate and soil 

fertility status, species composition can be modified by different stock classes, stocking 

rates, and grazing managements (Levy 1 970; Clark et al. 1 984; Sheath & Boom 1 985b). 

The greatest effect of grazing on composition appears to be mediated by differences in the 

grazing behaviour of animals. Within sheep-dominated systems, increases in cattle and/or 

goats reduce some weed species, increase white clover content, and ultimately lead to rapid 

pasture improvement (Levy 1 970; Suckl ing 1 975;  Clark et af. 1 984; Sheath & Boom 

1 985b). Pasture grazed by goats develop a Yorkshire fog-white clover association with 

strong white clover growth on all slope classes, unl i ke sheep grazed pasture, which contains 

l ittle white clover and is dominated by perennial ryegrass and browntop (Clark et af. 1 984) . 
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Management factors that affect species composition include stock type, grazing regime, 

defoliation intensity, stock treading intensity, and pasture improvement techniques such as 

fertil ization and oversowing (Nicholas 1 999). Topography was found to have the greatest 

influence on pasture composition because of its influence on stock management, animal 

behaviour and nutrient transfer. For example, ryegrass is  dominant on camps and tracks, as 

are other high ferti l ity responsive grasses such as Yorkshire fog, poa and cocksfoot. Their 

content decreases with increasing slope. Browntop and other low fertil ity tolerant grasses 

such as sweet vernal, crested dogstail, chewings fescue, danthonia; legumes such as 

suckl ing clover and lotus pedunculatus; other species such as catsear (Hypochaeris 

radicata L.), hawkbit (Leontodon taraxacoides [Vi l l .]), plantain, moss and also dead 

material increase with increased slope in hil l-pastures (Lambert & Roberts 1 978; Sheath & 

Boom 1 985a; Lambert et al. 1 986; Liu 1 996). Composition differences caused by soil type 

were not great, except where they appeared to be related to soil moisture characteristics 

(Grant & Brock 1 974). Landscape patterns of vegetation diversity in pasture communities 

are determined by the local-scale processes, influenced by the avai labi l ity of nutrients 

(White 2004). 

2.2.3 Pasture p roductivity in hi l l-pasture 

Pasture growth can be considered to be determined by physiographic factors (climate, 

topography), soi l  factors (nutrient, moisture), and pasture factors (species, density). All may 

operate directly on pasture growth or indirectly through modifying the influence of one or 

more other factors (Ledgard et al. 1 982). I n  hill -pasture, climate factors l ike temperature 

and rainfall, soil fertility, especially P and N contents, topographic factors like slope and 

aspect, and species composition determine the quantity and quality of pasture production, 

and its seasonal distribution (Lambert et al. 1 983; Gil l ingham et al. 1 998; Moir et al. 2000). 

Pasture production in the North Island is usually in a range of 2000 - l 3000 kg/ha, 

depending on the cl imate, topography and pasture management (Zhang et al. 2004). 

Aspect can have a marked influence on pasture productivity. Pasture production was 

higher on the south aspect than the north aspect (Lambert 1 978), but some other work 

showed that the converse situation was true because of better winter production 

(Gil l ingham et al. 1 998). Usual ly on the North Island, shady (southerly) aspects have 
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higher productivity than sunny (northerly) aspects during periods of moisture stress, 

whereas sunny aspects produce more herbage at other times. In drier hil l-country, larger 

differences among aspects in summer might be expected, because of a longer period of 

moisture stress (Lambert et af. 1 983).  

Hi l l  slope, due to its important role in redistributing avai lable moisture, fertil ity and 

solar radiation, greatly influences hi l l -pasture productivity. It was revealed that hil l  slope 

was positive correlated with soil bulk density and negative correlated with soil Olsen P, soil 

total nitrogen and soil moisture (Lopez 2000; Lopez et af. 2003). A strong negative 

relationship between slope and annual production is usually observed in hil l-pasture 

(Gil l ingham & During 1 973;  Lambert & Roberts 1 978). 

A major factor causing variabil ity in pasture growth rate is the fertility of soi l .  On hil ls 

this effect is  further complicated by changes in  slope and aspect of the soil surface 

(Gil l ingham & During 1 973). I ncreased P content stimulates legume growth which in turn 

fixes atmospheric nitrogen, which encourages grass growth. Withholding P application 

could result in 29-35% less annual pasture production and 54-72% less legume production 

(Roach et al. 1 996). Soil phosphorus tends to have an interactive effect with soi l  moisture 

(rainfal l)  on pasture production, as rainfall i ncreases, the size of the pasture response to per 

unit of Olsen P (a measure of soil phosphorous content) also increases (Moir 2000). Pasture 

production also responds to N fertil izer, indicating that N is a strong limiting factor for hi l l

pasture productivity, despite the contribution of N from legumes fixation (Luscombe & 

Grant 1 98 1 ;  Gi l l ingham et af. 1 998; B lennerhassett 2002). 

2.3. Plant ecology in relation to species diversity, distribution and 

abundance 

2.3.1. Biodive rsity 

Biodiversity is the variety of life, and can be defined at three levels : genetic diversity, 

species diversity and landscape diversity (Huston 1 994). Among these three levels, species 

diversity is the most commonly used in ecological study, and can be measured by species 
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richness (species number), evenness (species relative abundance) and some diversity 

indices which combine richness and evenness (Purvis & Hector 2000). Humans are 

concerned about biodiversity because the world is losing species due to human induced 

environmental deterioration and habitat fragmentation. The impacts of losing and changing 

biodiversity in ecosystems are far-reaching on both ecosystem functioning and the services 

that humans derive from ecosystems (Chapin I I I  et al. 2000; Tilman 2000). 

2.3.2. Diversity and ecosystem function 

Ecosystem functioning refers to the biogeochemical activities of an ecosystem, or the 

flow of materials (nutrients, water, atmospheric gases) and processing of energy (Ehrl ich & 

Wilson 1 99 1 ) . The effect of biodiversity on ecosystem functioning, especially the diversity 

and community stability relationship, has long been a controversial topic in ecological 

study (Huston 1 994; McCann 2000; Naeem 2002a). Before 1 970, ecologists believed that a 

more diverse community enhanced ecosystem stabil ity. "Simple community were more 

easi ly upset than that of richer ones; that is, more subject to destructive oscil lation in 

populations, and more vulnerable to invasion" [Charles Elton in (Ti lman 1 996)] .  Since 

1 973, theoretical studies indicated that diversity tends to destabil ize community dynamics 

(May 1 973). Recent studies on biodiversity and ecosystem functioning (Hooper & Vitousek 

1 997; Lonnie 1 997; Loreau et al. 200 1 ;  Naeem 2002a) with evidences from the 

experiments manipulated to directly control biodiversity tended to agree that diversity 

within an ecosystem is, on average, correlated positively with community stability (Naeem 

& Li 1 997; McCann 2000; Ti lman 2000). These studies also show that biodiversity is  

positively related to plant community productivity, that is ,  greater biodiversity leads to 

greater productivity (Caldeira et al. 200 I ;  Loreau et al. 200 1 ;  Mouquet et al. 2002; Naeem 

2002b). 

Species d iversity has functional consequences because the number and kinds of species 

present detennine the traits of organisms that influence ecosystem process (Chapin I I I  et al. 

2000). Species traits may mediate energy and material fluxes directly or may alter abiotic 

conditions (for example, limiting resources, disturbance and climate) that regulate process 

rates (Huston 1 994; Schulze & Mooney 1 994). The components of species diversity that 

detennine this expression of traits include the number of species (species richness), their 
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relative abundance (species evenness), the particular species present (species composition), 

the interaction among species, and the temporal and spatial variation in these properties. In 

addition to its effects on current functioning of ecosystem, species diversity influences the 

resistance and resil ience of ecosystems to environmental changes (Huston 1 994; Schulze & 

Mooney 1 994; Chapin I I I  et af. 2000). On the other hand, though a large number of traits of 

plant species may be functional within a community, fewer traits are directly associated 

with species abundances over a larger landscape (Mabry et af. 2000). Limiting 

environmental factors (e.g., minimum temperature) may "filter" species by constraining 

their occurrence in a community to those species having evolved particular traits that allow 

them to overcome the constraints (Grime et af. 1 997). Diaz et al. ( 1 998) found a strong 

association between a regional climate gradient and measured plant traits which suggested 

the effect of environmental filtering. These filters can influence species composition and 

diversity at multiple and hierarchical scales of t ime and space along environmental 

gradients (Poff 1 997). 

Many hypotheses have been generated to explain the relationship between biodiversity 

and ecosystem functioning (Huston 1 994; Naeem 1 998 ;  McCann 2000; Tilman et al. 200 1 ) . 

The insurance hypothesis states that biodiversity provides an "insurance" or a buffer, 

against environmental fluctuations, such that it maintains the stability (resistance or 

resil ience) of the ecosystem. Therefore, i ncreasing diversity increases the odds that at least 

some species wi l l  respond differentially to variable conditions and disturbances, and greater 

diversity increases the chances that an ecosystem has functional redundancy containing 

species that are capable of functionally replacing important species (Naeem 1 998). The 

niche complementarity hypothesis says that productivity can be greater in a community 

with h igher diversity because of the inter-specific differences in resource requirements, and 

differences in spatial and temporal resource and habitat use, or from the positive interaction, 

that is, more efficient resource exploitation (Ti lman et af. 200 1 ) . 

Al l  species in a community are not equal . The loss or addition of species with certain 

functional traits may have a great impact, and others have l i ttle impact, on a particular 

ecosystem process, but different processes are l ikely to be affected by different  species. 
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Functional diversity has greater impact on ecosystem processes than speCIes diversity 

(Ti lman et al. 1 997). 

A functional group, which is  a common measure of functional diversity, is a set of 

species that have simi lar effects on a specific ecosystem-level biogeochemical process, 

such that substitution among species within a functional group has "minor" impacts on 

ecosystem processes. Membership in functional groups can vary depending on the 

biogeochemical process of interest (Hobbie et al. 1 994; Vitousek & Hooper 1 994), and they 

use the same resource in such a way that they could potentially compete very intensely 

with one another (Schulze & Mooney 1 994). 

The functional characteristics of the component species in any ecosystem are l ikely to 

be at least as important as the number of species for managing critical ecosystem processes 

and services (Hooper & Vitousek 1 997). Some species have such an important role in 

ecosystem processes that they are termed keystone species. Keystone species are those 

species whose activity and abundance determine the integrity of the community and its 

unaltered persistence through time, that is stabi l ity. Experimental removal of a keystone 

species should result in the loss of some species and replacement by others (Bond 1 994). 

Most ecosystems are non-additive function of the traits of two or more species, because 

interaction among species, rather than the presence or absence of species, detennines 

ecosystem characteristics. Species interaction, including mutualism, trophic interaction 

(predation, parasitism, and herbivory), and competition may affect an ecosystem directly by 

modifying pathways of energy and material flow, or indirectly by modifying the abundance 

or traits of species with strong ecosystem effects (de Ruiter et al. 1 995). The functional 

characteristics of the component species in any ecosystem are l ikely to be at least as 

important as the number of species for managing critical ecosystem processes and services 

(Hooper & Vitousek 1 997). 

Contrasting to biodiversity and ecosystem functioning theory, traditional community 

ecology considers species diversity as a dependent variable control led by abiotic 

environmental conditions and ecosystem-level constraints, and primarily focused on 

dominant species as biotic controllers of ecosystem functioning (Loreau et al. 200 1 ) . Since 
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most recent studies on biodiversity and ecosystem functioning are conducted by 

manipulating species diversity as a designed variable and making all other factors constant, 

they have been criticized, especially the positive biodiversity and productivity relationship, 

as an experimental artefact (Grime 2002). Beside, many studies in natural ecosystems also 

lack the evidence to support this relationship (Grime 2002). Whether the positive 

relationship between biodiversity and ecosystem functioning is an artefact of manipulated 

experiments or a discovered truth sti ll needs further investigation. 

2.3.3. Patterns of species diversity 

Species diversity is related to the spatial scale, that is, the area within which species 

diversity (e.g. richness) is measured. There is an increase in species diversity with increased 

sample area. The pattern of how diversity increases with increasing sample area is called 

species/area curve (Huston 1 994). Environmental heterogeneity is considered the main 

reason detennining this diversity/area relationship; increasing sample area includes 

additional habitat types with groups of different species (Judas 1 988 ;  Huston 1 994). To 

characterise diversity on different scale, Whittaker ( 1 972) proposed alpha (a), beta (�) and 

gamma ( v )  diversity. Alpha diversity is within-area diversity, measured as the number of 

species occurring within an area of a given size (Huston 1 994) . I t  is usually cal led local 

diversity. Beta diversity designates the degree of species change along a given habitat or 

physiographic gradient. Gamma diversity usual ly refers to overall diversity within a large 

region (Comell 1 985; Heywood 1 995). 

Species diversity i s  often related to the resource availabil ity In the environment. In 

environments with very low concentration of resources or nutrients, species richness is 

general ly low because only few species can survive. In such a resource-poor environment, 

an increased availability of l imiting resources will increase growth and survival of several 

species. Conversely, in an environment with high concentrations of resources, a further 

increase in the limiting resource results in a decreasing species richness ( Huston 1 979, 

1 994) . When nutrients or other resources that increase the productivity added to a system, 

diversity often decreased. The addition of fertil izer to herbaceous p lant communities often 

results in a sharp decrease in species diversity. High concentrations of resource have been 
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suggested to favour species that tend to outcompete others and dominate the ecosystem 

(Grime 1 973). 

Species richness is related to community productivity for a broad range of organisms 

found in different types of ecosystems. Often, biological species richness increases with 

increasing productivity until it reaches a plateau, beyond which further increases in 

productivity are associated with a decline in species richness, that is a hump-shaped pattern 

(Proulx & Mazumder 1 998). Diversity tends to decline in high productivity environments is  

considered due to competitive exclusion by favoured species that became dominant under 

the condition (Grime 1 973 ; Huston 1 994; Osem et al. 2002) .  

Species richness is often observed as a hump-shaped or unimodal response along 

natural gradients of increasing biomass or resources, but l inear (positive or negative) and 

non-significant responses are also commonly observed (Brown 1 973 ; Goldberg & Mil ler 

1 990; Gough et af. 1 994; Waide 1 999). The responses of species richness are scale

dependent (Gross et a1. 2000). Chase and Leibold (2002) found that at the local scale, 

species richness has a hump-shaped relationship with productivity, whi le at the regional 

scale it is a positive linear relationship. Species richness is also related to environmental 

heterogeneity (Huston 1 994; Bell et a1. 2 000; Lundholm & Larson 2003), with a negative 

or positive relationship being found when samples are within a homogenous habitat and a 

hump-shaped relationship being found when samples encompasses different habitat types 

(Guo & Berry 1 998). Oksanen ( 1 996) claims that the hump-shaped relationship between 

diversity and biomass is just an artefact due to the fixed small  plot size; as plants at h igh 

biomass are bigger, and therefore there are less species in a p lot. 

Many studies have found that the highest levels of species diversity were maintained at 

some "intermediate" frequency or intensity of disturbance. At high rates of mortality 

(disturbance or predation), diversity was reduced because some species were unable to 

recover from mortality. At low rates of mortality, diversity was reduced by competi tive 

exclusion as dominant species eliminated poorer competitors. This phenomenon is 

described as intermediate disturbance hypothesis (Conel l  1 978), which is a non-equilibrium 

hypothesis to explain regional variation of species diversity and claims that if disturbance is 

frequent, only rapidly colonizing species have time to establish a community before 
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disturbance comes again. As the time between disturbance events increase, or disturbance 

become less severe, more species can migrate into a community, so the species diversity 

increases (Conell 1 978; Huston 1 979; Vujnovic et al. 2002).  

Herbivores are generally thought to enhance plant diversity by their direct consumption 

of competitively dominant plant species and indirect effects on plant competition 

(McNaughton 1 985;  Belsky 1 992) . However, other studies suggest that herbivores 

sometimes have a weak, or even negative, effect on plant diversity. Plant species richness 

decreases with high grazing in nutrient-poor ecosystems, while it increases with high 

grazing in nutrient-rich ecosystem (Proulx & Mazumder 1 998). Domesticated large grazers 

managed at low stocking rates on productive grassland increase plant diversity, but high 

stocking rates can decrease plant diversity. Insect herbivores often have weak or negative 

effects plant diversity (Hodgson & l l l ius 1 996). 

Herbivores can influence species richness at both local and regional scale. Local 

disturbance and selective grazing can enhance diversity at local scales, but strong selection 

for grazing-tolerant plant species within the species pool might reduce diversity at larger 

scale. The effect of herbivores on plant diversity also differs with the environment. Grazing 

mammals in more productive grassland increase plant diversity. Grazers in arid or very 

sal ine environments often do not change or can even decrease diversity (Oiff & Ritchie 

1 998). 

2.3.4. Species d istributio n  and abundance 

There has been an increasing interest in studies on species distribution and abundance in 

the last decade due to the concern over cl imatic change and the impact of human activities 

on species distribution and diversity (Prentice 1 992; Tappeiner et al. 1 998; Vujnovic et al. 

2002). Recent research has focused on the theories related to species niche, competitive 

exclusion, species response curves along environmental gradients, and vegetation 

succession to investigate species distribution and abundance in the face of environmental 

change and anthropogenic influence (Austin et al. 1 990;  Austin 2002; Guisan et al. 2002). 

Species distribution and abundance along environmental gradients in an ecosystem are 

detem1ined by species' intrinsic physiological characteristics, the interaction among species 
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themselves, and the abiotic environments through providing resources and imposing 

constraints on them (Guisan & Zimmermann 2000). Species response shape to resource 

gradients is described as species' niche, including fundamental niche and real ized niche 

(Franklin 1 995; Austin 2002). Hutchinson ( 1 957) defined the species' fundamental niche as 

the hypervolume defined by environmental dimensions within which that species can 

survive and reproduce. A species may be excluded from parts of its fundamental niche 

because of competition and other biotic interactions. The reduced hypervolume is then 

termed the realized niche (Austin et al. 1 990; Austin et al. 1 994). The fundamental niche is 

primari ly a function of physiological performance and ecosystem constraints. The realized 

niche additionally includes biotic interactions and competitive exclusion (Guisan & 

Zimmermann 2000). 

Ecological (or environmental) gradients can be classified into three categories, namely 

resource, direct, and indirect gradients. Resource gradients address matter and energy 

consumed by plants or animals (nutrients, water, light for plants, food, water for animals). 

Direct gradients are environmental parameters that have physiological importance, but are 

not consumed (i .e. temperature, pH). Indirect gradients are variables that have no direct 

physiological relevance for a species' perfonnance (slope, aspect, elevation, topographic 

position, habitat type, geology) .  Indirect variables usually replace a combination of 

different resources and direct gradients in a simple way (Franklin 1 995 ;  Guisan & 

Zimmennann 2000; Austin 2002). Environmental gradients may be either proximal or 

distal . Proximal and distal refer to the position of the predictor in the chain of processes that 

l ink the predictor to its impact on plant. The most proximal gradient wil l be the causal 

variable determining plant response. For example, avai lable soluble soil phosphate 

concentration at the root hair would be a more proximal resource gradient than total soil 

phosphorus. Indirect gradients are clearly distal variables (Austin 2002). 

Species response curve along the ecological gradient is generally assumed to be a 

Gaussian form, e.g. a unimodal, symmetric bel l -shaped curve (Gauch & Whittaker 1 972; 

Whittaker et al. 1 973; Gi l ler 1 984; Krebs 1 994). However, these assumptions are argued 

for lack of evidence. Studies have revealed that only some species may have a unimodal 

response curve, many species' responses to environmental variables is asymmetric, that is 
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skewed (Minchin 1 989; Austin 1 999). The expected shape of a species response wil l  vary 

with the nature of the gradient. Response to an indirect gradient could take any shape 

(Austin 2002). 

Spatial patterns of species abundance are produced by the relative difference of species 

in their abi l ity to compete or survive over a range of environmental conditions. Competition 

displaces species toward environmental conditions that they are able to tolerate, but which 

the species that outcompete them under optimal conditions cannot tolerate. The ecological 

optimum of a species along a resource gradient is general ly constrained on the high 

resource end primarily by competition, and on the low resource end primarily by 

physiological l imitation. Thus for many species, the ecological optimum is closer to their 

physiological l imit than to their physiological optimum ( Huston 1 994) . 

In a hierarchical scheme of environmental controls on the distribution of plant species, 

physiologically based climatic variables that are related to direct gradients control plant 

distributions at the largest spatial and temporal scale (Frankl in  1 995). Whereas 

topographical and edaphic factors determine the local and regional scale for the distribution 

of plant species (Tappeiner et af. 1 998; Gotteried et al. 1 999). 

Species coexist because of interspecific trade-offs ( 1 )  between their competitive 

abilities and their dispersal abil ities; (2) between their competitive abilities and their 

susceptibi l i ty to disease, herbivory or predation; (3) between their abi l ities to live off 

average conditions and their abi lities to exploit resource pulses; or (4) between their 

abil ities to compete for alternative resources in a heterogeneous landscape (Hastings 1 980; 

Tilman 1 982). Coexistence was found to rely on the fluctuation in population densities, 

while community level densities (the summation of the competing population density) 

varied very l ittle (Ti lman 1 982). I f  a habitat is spatially heterogeneous, that is, if different 

individual plants l iving in different portions of the habitat experience different resource 

supply ratios, then this heterogeneity could allow a large number of species to coexist 

(Tilman 1 994). 
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Competitive exclusion principle states that if two species are competing for exactly the 

same l imiting resources, they can not coexist, that is, one of them will be completely 

excluded by the other and will become local ly extinct (Hardin 1 960; Huston 1 994). 

Effort to explain the biodiversity in the context of competitive exclusion fal ls into two 

general classes. One is based on the idea that competitive exclusion does not happen 

instantaneously, and many factors can slow the approach to equil ibrium or alter the relative 

strength of competitive interaction. The other general explanation for higher diversity was 

the acknowledgement that the competitive exclusion did occur, but there was sufficient 

patchiness in the environment that a species that became extinct on one patch would 

survive on another patch, and thus allow the species diversity to be maintained at a large 

scale ( Huston 1 994). 

2.4. G I S  and G IS-based ecological and environmental modelling 

2.4. 1 .  GIS i n  ecological and environmental study 

The util ity of GIS in ecological or environmental studies is commonly in storing, 

managing, and integrating spatially referenced data relating to points (e.g. , individual trees), 

l ines (e.g., rivers, roads), and polygons (e.g., forest boundaries, habitat types, territorial 

ranges), conducting spatial queries (e.g., searching for areas in which a particular species or 

feature occurs), engaging in geographic analysis (e.g., statistical analysis of relationships 

between habitat and reproductive success), and displaying data in the form of high-quality 

maps (Scholten & de Lepper 1 99 1 ;  Dominy & Duncan 200 1 ) . 

Topography is an important driving variable in many ecological processes because of i ts 

influence on insolation, water flow, and organism movement. GIS provides a number of 

methods for analyzing topography. Digital elevation model (DEM), a raster data format, 

and triangulated irregular network (TIN), a vector data format, are widely used to represent 

altitude data in GIS.  Topographic analyses in GIS are very powerful functions in 

environmental and ecological studies. GIS can be used to directly derive map layers from 

DEM or TIN such as slope (the rate of change in elevation), aspect (the direction which a 

slope surface faces), inflection (the curvature of a surface in the direction of slope), surface 
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water flow and catchments. Also, by analyzing topographic functions in modifying other 

environmental features, G1S can also indirectly generate map layers of air temperature, soil 

moisture, solar radiation, and so on ( lverson et al. 1 997; 10hnston 1 998; Stocks & Wise 

2000). The abil ity to analyze digital topographic data has significantly advanced ecological 

and hydrological modelling (Guisan & Zimmermann 2000) . 

One of the powerful operations that can be performed by G1S is the vertical intersection, 

or map overlay, of spatially distributed data. Overlay operations can be perfom1ed for the 

purposes of merging separate spatial databases, (e.g. , hydrology layer with a soil layer), for 

analyzing spatial intersections between data layers, or for analyzing temporal changes. G I S  

can operate graphical overlay, which directly overlays two data layers; logical overlay, 

which employs Boolean operators to analyze the spatial coincidence of input data layers, 

and arithmetic overlay, which performs mathematical operations across multiple data layers 

(Iverson et at. 1 997;  10hnston 1 998; Stocks & Wise 2000). For example, Iverson ( 1 997) 

predicted forest composition and productivity of Ohio forest in U .S .A. by using an 

integrated moisture index which was produced by overlaying map layers of a slope-aspect 

shading index, cumulative flow of water downslope, curvature of the landscape, and water

holding capacity of the soi l .  

2.4.2. G I S  i n  ecological a n d  environmen tal model l ing 

Models provide ecologists with tools for extrapolating field measurements and 

integrating complex ecological information over space and time. GIS have become 

increasingly valuable tools in the computer-based model l ing of environmental processes. 

The current generation of environmental models requires large amounts of spatial data as 

input and produce predictions that can be displayed as a map. GIS are able to produce data 

required as input to models and excel at displaying spatial predictions. The integration of 

G1S with environmental models is emerging as a significant new area of GI S development 

and has been widely used in model l ing species distribution and abundance, community 

productivities, impacts of climatic changes on vegetations, watershed hydrology, and solar 

radiation (Frankl in 1 995 ; l verson et at. 1 997; 10hnston 1 998; Guisan & Zimmermann 2000; 

Stocks & Wise 2000). 
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GIS has p layed various roles in environmental model l ing. The commonly accepted roles 

for GlS  in environmental model l ing are as a pre- and post processor, preparing data files for 

input to the model, and displaying the model result as map form for prediction and queries. 

This procedure is usually carried out by coupling, i n  which separate environmental models 

are l inked with GlS packages (Stocks & Wise 2000). 

Statistical models are based on empirical observations and contain one or more random 

variables. When the empirical relationships needed for model development are not known, 

a GlS can be used to assemble spatial data on landscape properties, to derive new data that 

are syntheses of the originals, and statistical ly analyze those new data to determine the 

strength of interaction among them. The resulting empirical relationships can be used to 

predict gradients of habitats, net primary production, nutrients circles, and other ecosystem 

properties across the landscape. Most GIS programs have the function of statistical analysis, 

but for more advanced statistical modelling, GIS generated or derived input data are usually 

exported to professional statistical software, and trained models are imported to GIS for 

prediction or further query and analysis. Multivariate statistical techniques coupled with 

GIS analyses provide the means for quickly compi l ing data, synthesizing these data, and 

developing predictive models to relate ecological functions to quanti fiable landscape 

characteristic (Johnston 1 998). 

Simulation models of population, ecosystem, and landscape have been successful ly 

coupled with GlS, making model prediction more powerful in simulating ecosystem 

processes. This coupling is most successful with models that predict outcomes of processes 

such as succession, net primary production, and nutrient cycling, from parameters derived 

from maps or digital satell ite data. Simulation models of population, ecosystem and 

landscape can be incorporated with spatial elements to dupl icate ecological functions via 

coupled differential equations that describe key ecosystem and landscape processes. I n  

these simulation models, G IS  i s  used to derive input variables, spatially extrapolate results, 

and display results (Franklin 1 995 ;  10hnston 1 998). 

Expert systems are computer systems that advise on or help solve real-world problems 

that would normal ly require a human expert's interpretation. One of the very important and 

also very influential uses of GIS and GIS-based environmental modell ing is to l ink them 
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with an expert system. This l inkage has found wide appl ications in species conservation 

management, environmental management, and forest and pasture management (lohnston 

1 998). 

2.4.3. G I S-based p redictive modell ing of species d istribution and abu ndan ce 

GIS-based predictive model l ing of species distribution, a statistical modelling approach 

carried out in a GIS environment, focuses on the impact of environmental change and 

intensive land use on species diversity, distribution and abundance, community structure 

and production, and some other vegetation features in studies related to biogeography, 

conservation biology, climate change research, species management, ecosystem 

management and restoration, and agricultural and forestry management (Franklin 1 995 ;  

Zimmermann & Kienast 1 999; Guisan & Zimmermann 2000; Austin 2002) .  

GIS-based predictive modell ing of species distribution starts with the development of 

some type of model followed by the appl ication the model to a GIS system to produce the 

predictive map, a realization of the model .  Computerized predictive vegetation modell ing is 

made possible by the avai labi l ity of digital maps of topography and other environmental 

variables such as soils, geology and cl imate variables, and geographic infonnation system 

software for manipulating these data. Especially important to predictive modell ing of 

species distribution and abundance are interpolated cl imatic variables related to 

physiological tolerances, and topographic variables, derived from digital elevation grids, 

related to site energy and moisture balance (Franklin 1 995) .  

Commonly there are three steps in G IS-based predictive modelling of species 

distribution : 1 )  database development, 2) model calibration, and 3) model prediction or 

visual ization in GIS .  Database development and model visual ization usually involve GIS 

implementation, while model calibration is carried out in a statistic software package 

(lohnston 1 998;  Guisan & Zimmermann 2000; Hunsaker 200 I ;  Austin 2002). 

There are two types of data generated in database development: those of vegetation data, 

which may include species diversity, distribution, abundance, and biomass, and those of 

environmental data, which may include c l imate, topology, geology, and disturbance. Both 

of them can be from field sampling or derived from GIS database (such as topology data 
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from DEM), remote sensed data, and other sources. The vegetation data containing the 

model l ing target is the dependent variable, all other factors are the independent variable 

(indicator variable) in calibrating the statistical model l ing. 

The variety of statistical techniques used in predictive model ling is growing. Ordinary 

multiple regression and its generalized form (GLM) are very popular and are often used for 

modell ing species distributions. Other methods include multiple regression, neural 

networks, ordination, decision tree, Bayesian models, local ly weighted approaches (e.g. 

GAM), environmental envelopes or even combinations of these models (Guisan & 

Zimmermann 2000). Choosing a proper statistical technique depends on the data 

characteristics such as whether they are quantitative or qualitative, or  ordinal or continuous, 

and the possible species response curve along the environmental gradients (Austin 2002). 

Although G1S are widely used tools in all types of spatially explicit studies, most G1S 

software sti l l  lack impoltant statistical functions for predictive purposes. This is  a serious 

flaw because not all statistically derived models are easy to implement in a GIS 

environment. As a result, to import the model from a statistic package to a G1S  is usual ly a 

tedious and time-consuming procedure for some of the above mentioned statistic models, 

and this is also true for the export of G1S derived data to the statistical software. 

2.5. Data mining and decision tree 

2.5. 1 .  D ata m i n i ng 

Data mining is the process of posing various queries and extracting useful information, 

patterns, and trends often previously unknown from large quantities of data already present 

in databases. The goal s of data mining include detecting abnormal patterns and predicting 

the future based on past experiences and current trends (Thuraisingham 1 999). The 

development of data mining is a result of the natural evolution of information technology. 

A great effort in the information industry in recent years has been to deal with huge 

amounts of data and the imminent need for turning such data into useful information and 

knowledge (Han & Kamber 200 1 ) . 
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There are a series of steps in data mining: data col lection and database creation, data 

management (including data storage and retrieval, database transaction processing) and 

data analyses and understanding (Han & Kamber 200 1 ). 

2.5.2. Technologies used in data mining:  

Data mining integrates many technologies in data analysis. Some of them are newly 

developed approaches with the development of information technology, and some of them 

have existed for many decades (Thuraisingham 1 999; Dunham 2002). The most commonly 

used technologies are as fol lows (Han & Kamber 200 1 ) :  

• Artificial neural networks: Non-linear predictive models that learn through 

training and resemble biological neural networks in structure. 

• Decision trees: Tree-shaped structures that represent sets of decisions. These 

decisions generate rules for the classification of a dataset. Specific decision tree 

methods include Classification and Regression Trees (CART) and Chi Square 

Automatic Interaction Detection (CHAlD). 

• Genetic algorithms : Optimization techniques that use processes such as genetic 

combination, mutation, and natural selection in a design based on the concept of 

evolution. 

• Nearest neighbour method: A technique that classifies each record in a dataset 

based on a combination of the c lasses of the k record(s) most simi lar to it in a 

historical dataset. Sometimes cal led the k-nearest neighbour technique. 

• Rule induction : The extraction of useful if-then rules from data based on 

statistical significance. 

2.5.3. Decision tree 

A decision tree is one of the data mining methods and has been widely used in the social 

(Scheffer 2002) and medical sciences (Petitti 2000). It has also had increasing applications 

in environmental modell ing with considerable accuracy and ease of interpretation (Iverson 

& Prasad 1 998;  Vayssieres et al. 2000; Scheffer 2002; Yang et al. 2003). 
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(e.g. pasture production) 

output (Icaf) 

output (Icaf) 

EV output (Icaf) � output (Icaf) 

Fig 1. General structure of a decision tree. 

The decision tree approach was originally developed by Breiman et al. ( 1 984) and was 

named classification and regression tree (CART). It is a non-parametric model l ing 

approach, which recursively splits the multidimensional space defined by the independent 

variables into zones that are as homogenous as possible in term of the response of the 

dependant variable (Vayssieres et al. 2000). The result of the analysis is a binary hierarchy 

structure cal led a decision tree that contains the rules to predict the new cases (Breiman et 

al. 1 984; Dunham 2002) .  

The main procedure for developing a decision tree model i s  to split the data for target 

(dependant) variable based on it response to input (independent) variables. A decision tree 

model starts from the root node which is the dataset containing all observations of target 

variables (for example, pasture production) and appl ies a condition to split the data (Figure 

1 ). This condition is based on one of the input variables (for example, rainfall) and a split

point (say 800 mm). I f  the input variable in the condition is larger than or equal to the 
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threshold (2 800 mm), those observations in the target data corresponding to this are 

classified to node 1 ;  otherwise, the observations in the target data are classified to node 2 

« 800 mm). The same procedure recursively appl ies to each of node 1 and 2 and the 

fol lowing nodes until the further spl itting is stopped by stopping rules. The final nodes 

(outputs) are cal led leaves and are the fmal predictions, which are made by series 

combinations of input variables and the spl it-points. For example, suppose the model target 

is pasture production, conditions A, B and C are rainfal l ,  fertil iser and temperature, 

respectively and the split-points for these three conditions are 800 mm, 200 kg/ha and 8°C, 

respectively, when pasture has a rainfall less than 800 mm, a ferti liser input equal to or 

more than 200 kg/ha and a temperature equal to or more than 8°C, the predicted pasture 

production is the amount in node 6. 

There are different criteria used to split the data, depending on the nature of the target 

variable. For interval variables l ike pasture productivity, the split criterion is variance 

reduction, or F test (Breiman et at. 1 984; Femandez 2003) .  In the case of variance 

reduction, a complete search is applied to al l  the input variables and possible spl it-points to 

select one variable that ultimately explains the variance of the target variable by spl itting 

the dataset of the target variable into two sub-datasets. Then a same procedure is 

recursively applied to each of the sub-dataset unti l  the dataset cannot be further split based 

on defined rules. Suppose 0 is the dataset containing the target variable and is going to be 

spl it into two sub-datasets oL and DR. oEVD is the deviance of dataset 0 (squared error 

from the mean): 

DEVD = �)Yi - Ybar) ( 1 )  
obs; 

Where Yi is a observation and Y bar is the mean of the target variable D. The variance 

reduction by spl itting dataset 0 into oL and OR is expressed as fol lows: 

(2) 

Where oEVL and oEVR are the deviance of DL and DR, respectively. An input variable 

and a possible split-point that maximise ll, or minimise the sum of (DEVL + DEVR) is first 
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selected to split the data 0, and then a search is implemented for each sub-dataset DL and 

OR and the fol lowing sub-datasets recursively (Breiman et al. 1984) . 

In the case of an F test, an input variable and a possible spl it-point that gives the most 

significant p-value in the F test associated with variance reduction is selected. 

The stopping rules are carried out by setting the maximum tree levels and the minimum 

observations required for a split search. The maximum tree level defines the size of the tree 

and prevents the tree becoming too complex, while the minimum observations required for 

a split search, prevents a few special cases influencing the output of the tree. The 

significance level of F test assigned for variance reduction is another stopping rule in 

decision tree model development. 

Model assessment is an important part in decision tree development which enables a 

good model output and prevents overtraining, otherwise the model would only fit the data 

from which it was trained (Witten & Erank 2000). For models having an interval target (i .e .  

continuous variable), the measure of average squared error (ASE) is  commonly used 

(Fernandez 2003) .  ASE is simi lar to mean squared error (MSE) in a general l inear model 

and is an indicator of model goodness-of-fit; the smaller the ASE, the better the model fits. 

For the assessment of the decision tree, if there are val idation data available, it is assessed 

by the ASE of the validation data; otherwise, it is assessed by the ASE of the training data. 

The first option is better. When validation data are available, a "best" tree that has the 

smallest ASE from validation data is selected (Fernandez 2003). 

The decision tree has many advantages over other model approaches such as regression 

(Thuraisingham 1 999; Vayssieres et al. 2000). Namely: ( 1 )  I t  has no strict assumption for 

the distribution of the target variable ( dependent variable) about which regression assumes 

normal distribution. Also, there is no multicol l inearity problem when input variables 

(independent variables) are highly correlated, which is a l imitation of multiple regression. 

(2) Decision tree deals with non-linear models easily without any variable transformation. 

(3) Decision tree can indicate the relative importance of input variables with respect to their 

influences on the model target, and can indicate the interactions among input variables. (4) 

It can easi ly incorporate ordinal (such as those measured as low, medium and h igh), 
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nominal (such as those for soi l types) and interval (such as those for biomass) variables in 

the same model .  

Naturally, decision tree also has i ts  l imitations: it requires a relatively large amount of 

training data; it cannot express linear relationships in a simple and concise way like 

regression does; it cannot produce a continuous output due to its binary nature; and it has 

no unique solution, that is, there is no best solution ( Iverson & Prasad 1 998; Scheffer 2002). 

2.6. Conclusion 

Hi l l-pastures in New Zealand are naturalized vegetations originated from clearance of 

native podocarp rainforest, fern or scrub and oversowing with introduced pasture species in 

hi l l -country by early European settlers. In hi l l -pasture, species composition and abundance 

and pasture productivity are strongly influenced by climatic, topographical and soi l  factors, 

and the pasture management, such as grazing regimes and fertil izer application. 

In an ecosystem, species diversity, distribution and abundance are closely related to the 

abiotic environmental conditions (e.g. temperature, topography and avai lable resources), 

the frequency and intensity of disturbances (e.g. fire, grazing), and the biotic factors (e.g. 

species' physiological traits and the interaction among them). Species diversity plays a very 

important role in ecosystem functioning, especial ly in maintaining community stabil ity. 

GIS, as a powerful tool in dealing with spatial factors, has been introduced in ecological 

and environmental study and has shown a very promising application in model l ing species 

distribution and abundance. The appl ication of GIS in ecological and environmental 

model l ing greatly enhanced the capabil ity of obtaining input data for model analysis and 

presenting model outputs over space. 

Decision tree, as one of the data mining modell ing approaches, has been widely used in 

the social and medical sciences. It has also had increasing appl ications in environmental 

modell ing with considerable accuracy and ease of interpretation. An integration of decision 

tree with GIS seems to be a feasible combination in modelling and investigating ecosystem 

processes in pasture ecosystems. 
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C hapter 3 .  Modell ing the Pro d uctivity of Naturalised Hill-pastu re in 

the  North Is la n d, New Zealand:  a Decision Tree Approach 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  

As a new model l ing methodology, the decision tree has been widely used in the 

social  and medical sciences. I t  has also had increasin g  applications in environmental 

model l ing with considerable accuracy and ease of i nterpretation. However, to my 

best knowledge there has been no l iterature showing that it  has been used in  

model l ing community productivity of any vegetation types. In  this chapter, decision 

tree model s  were developed and were compared w i th regression models to  assess 

their performance in model l ing community productivity in the natural ised h i l l

pasture ecosystem in the North Is land, New Zealand . 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  

A paper derived from this chapter with a title "Modelling the productivity of naturalised pasture in 

the North island, New Zealan d: a decision tree approach " by B. Zhang, 1. Valentine & P.D. Kemp 

has been published in Ecological Modelling (in press, available on-line). 
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Abstract. Decision tree, one of the data mining  methods, has been wide ly used as a 

model l ing approach and has shown better predictive abi l ity than traditional approaches 

(e .g .  regression). However, very l ittle is known from the l i terature about how the 

decision tree performs in predicting pasture productivity. I n  this study, decision tree 

models were developed to investigate and predict the annual and seasonal productivity 

of natural ised hi l l-pasture in the North Is land, New Zealand, and were compared with 

regression models with respect to model fit, val idation and predictive accuracy. The 

results indicated that the decision tree model s  for annual and seasonal  pasture 

productivity a l l  had a smaller average squared error (ASE) and a higher percentage of 

adequately predicted cases than the corresponding regression models .  The decision tree 

model for annual pasture productivity had an A S E  which was only half of that of the 

regression model ,  and adequately predicted 90. 1 % of the cases in the model validation 

which was 1 0.8  percentage points higher than that of the regression model .  Furthermore, 

the decision tree models for annual and seasonal pasture productivity a lso c learly 

revealed the relative importance of environmental and management variables in  

influencing pasture productivity, and the interaction among these variables. Spring 

rainfal l  was the most significant factor influencing annual pasture productivity, whi le  

h i l l  s lope was the most significant factor influencing spring and winter pasture 

productivity, and annual P ferti l i ser input and autunm rainfa l l  were the most significant 

factors influencing summer and autunm pasture productivity, respectively. One 

l imitation of using the decision tree to predict pasture productivity was that it  did not 

generate a continuous prediction, and thus could not detect the influence of smal l  

changes in environmental and management variables on  pasture productivity . 

3 . 1 .  Introd uction 

Model ling pasture productivity has long been an interest of agronomists and plant 

ecologists, either for investigating ecosystem processes or predicting pasture yield for 

practical purposes (e.g. Dyne 1 970; Sel igman & Baker 1 993; Stuth et al. 1 993 ;  

Sorenson 1 998; Moir 2000). Traditionally, there are two main approaches to model l ing 

pasture productivity: using mechanistic models to reveal the causal factors determining 

pasture productivity (Gi lmanov et a/. 1 997; Riedo et a/. 1 998; Foy et al. 1 999; Moir et 

al. 2000), and using empirical models, usual ly  in one of the regression forms, to 

simulate pasture productivity and investigate the interrelationship between pasture and 

43 



Chapter 3: Modelling pasture productivity - a decision tree approach 

environmental factors (Lambert et at. 1 983 ;  Sala et at. 1 988;  Paruelo & Tomasel  1 997;  

Scott 2002).  Mechanistic models, because of their strong theoretical bases, tend to be 

more general and widely applicable than empirical models ( Rickert et at. 2000). 

Empirical models, on the other hand, have the advantage of high predictive accuracy 

over mechanistic models for the areas the models are developed, and can also provide 

i nsight into the ecosystem processes if the input variables are properly chosen and 

ecological ly  meaningful (Guisan & Zimmermann 2000; Rickert et at. 2000) . An 

empirical model ,  therefore, is  usual ly a b etter choice for a predictive purpose, such as  

assessing c l imatic impact and ferti l iser effect on pasture productivity ,  due to  its real ity 

and accuracy. 

With the development of computer technology, a new empirical mode l l ing method, 

data mining, has become popular due to i ts strong abi l ity to predict new cases based on 

previously known information ( Witten & Erank 2000; Dunham 2002). Data mining is a 

process of querying and extracting useful information, patterns, and trends often 

previously unknown from large quantities of existing data (Thuraisingham 1 999) .  

Decision tree i s  one of the data mining methods and has been widely used in  the social 

(Scheffer 2002) and medical sciences (Petitti 2000). It  has also had increasing 

appl ications in environmental model l ing with considerable accuracy and ease of 

interpretation ( Iverson & Prasad 1 998; Vayssieres et at. 2000; Scheffer 2002 ; Yang et at. 

2003) .  

Decision tree is  a non-parametric model l ing approach, which recursively spl its the 

multidimens ional space defined by the independent variables into zones that are as 

homogenous as possible in term of the response of the dependant variable (Vayssieres et 

at. 2000) . The result of the analysis is a b inary hierarchy structure cal led a decision tree 

with branches and leaves that contains the rules to predict the new cases (Breiman et at. 

1 984; Dunham 2002) . Decision tree has many advantages over other model approaches 

such as regression (Thuraisingham 1 999; Vayssieres et at. 2000).  Namely :  ( 1 )  It has no 

strict assumption for the distribution of the target variable (dependent variable) about 

which regression assumes normal distribution. Also, there is  no multico l l inearity 

problem when input variables (independent variables) are highly correlated, which is a 

l imitation o f  multiple regression . (2) Decision tree deals with non-l inear model s  easi ly 

without any variable transformation. (3)  Decision tree can indicate the relative 
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importance of input variables with respect to their influences on the model target, and 

can indicate the interactions among input variab les. (4) It can easily incorporate ordinal 

(such as those measured as low, medium and high), nominal (such as those for soi l 

types) and interval (such as those for biomass) variables in  the same model .  

Natura l ly, decision tree also has  its l imitations: it  requires a relatively large amount 

of training data; it cannot express l inear relationships in a simple and concise way l ike 

regression does; it cannot produce a continuous output due to its binary nature; and i t  

has no unique solution, that i s ,  there is no best solution ( lverson & Prasad 1 998; 

Scheffer 2002).  

Litt le information is avai lable from the l i terature on the performance of decision tree 

III predicting pasture productivity. In this study, we focused on the productivity 

(aboveground biomass) of natura l ised h i l l -pasture in New Zealand as the model ling 

target, and developed and assessed the decision tree model s  for annual and seasonal 

pasture productivity . The main a im of this study was to evaluate the perforn1ance of  

dec ision tree in predicting pasture productivity and investigating the interrelationship 

between pasture productivity and environmental and management factors in h i l l -pasture, 

New Zealand. A common method to assess a new model l ing approach is comparing it 

with a wel l-known one with respect to model fit and val idation (Rykiel lr 1 996; 

Mitchel l  1 997) .  As the most commonly used mode ll ing approach and the "cornerstone" 

of empirical models, the regression model provides an intuitive standard of model 

performance (Scheffer 2002). A comparison of decision tree model with a regression 

model wi l l  give a clear indication of how wel l  it performed. Thus, the second aim of 

this study was to compare and assess the decision tree with regression for modell ing 

pasture productivity in terms of model fit ,  validation and predictive accuracy. 

3.2.  M aterials and methods 

3 .2.1. Study area 

This study covers most of the h i l l-pasture in the North Island, New Zealand (Fig. 1 ) . 

H i l l -pastu re in  New Zealand are natural ized vegetation orig inated from clearance of  

native podocarp rainforest, fern or  scrub and over-sown with i ntroduced pasture species 

by early European settlers (Hi lgendorf 1 936) .  There are about five mi ll ion hectares of 
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hi l l-pasture in  New Zealand, which accounts for nearly one third of  the total pasture 

area i n  New Zealand, mainly located in the North I sland ( White 1 990).  

C l imate is  very diverse in the hi l l-pasture of the North Is land with mean annual 

rainfa l l  ranging from 800- 1 600 mm and mean annual dai ly temperature ranging from 9 -

1 5  QC (Tomlinson & Sansom 1 994). Al though large areas of hi l l-pasture receive more 

than 1 000 mm rainfall  per year, l ate spring and summer usual ly have less rainfal l  than 

autumn and winter. This results in a seasonal lack of water for most of the hi l l -pasture, 

which is a major factor l imiting pasture productivity, and is a primary cause of year-to

year variation of pasture production ( Rickard et al. 1 985;  Radcl iffe & BaITs 1 987;  

B arker & D ymock \ 993) .  

Fig. 1 .  The study area and the main sam pling locations 

Topographic features such as s lope, aspect, and alt i tude p lay an important rol e  in 

h i l l-pasture ecosystem processes (Radcl iffe 1 982).  In southern latitudes, the north 

aspect receives more net radiation, is warmer, and general ly drier than the south aspect. 

Depending on season and aspect, hi l l  slope also modifies solar radiation received 

( McAneney & Noble 1 975) ,  and, usual ly, increasing s lope reduces soi l moisture status 

( Radcl iffe & Lefever 1 98 1 ) . Aspect and s lope also influence soil nutrient status by 
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i nfluencing animal grazing and excreta patterns (Gi l l ingham 1 982; Sheath & Boom 

1 985) .  

Over-sowing legume species l ike white c lover (Trifolium repens) and lotus (Lotus 

pedunculatus), and top-dressing P fel1i l iser (mainly s ingle superphosphate, 

approximately 9% of P) have been the major management practices in h i l l-pasture. P 

ferti l izer stimulates legume growth which i n  turn fixes atmospheric ni trogen and 

encourages grass growth (White 1 990). P fert i lizer input and application history are the 

important indicators of soil fert i l i ty status in h i l l -pasture (McCall  & Thorrol i  1 99 1 ). 

3.2.2 .  Database setup 

D eveloping a decision tree requires a large amount of training data, and the decision 

tree works best i f  sufficient samples are avai lable (Clark & Pregibon 1 992; Iverson & 

Prasad 1 998) .  In  the last several decades, considerable research has been conducted on 

hi l l-pasture in  New Zealand (e.g. Suckling 1 975 ;  Radcl i ffe 1 982; Lambert et al. 1 996; 

Nicholas 1 999; Lopez 2000; Moir 2000; Gi l lingham 200 1 ;  B lennerhassett 2002); most 

of it related to pasture productivity. There is a l arge amount of data in the l i terature and 

kept by researchers in the form of raw or unpubl i shed data, which provides a valuable 

resource to develop the decision tree for h i l l-pasture productivity. In establ ishing the 

dataset, an effort was made to col lect as many c l imatic, environmental and management 

variables as possible, aiming to cover the most important factors influencing pasture 

productivity. Data for pasture productivity (annual and seasonal productivity), soi l  

property (bulk density, pH, Olsen-P), ferti l iser management (N, P ferti liser inputs) and 

topographic features (slope and aspect) were obtained from the l i terature and from 

researchers providing the raw or unpublished data. Most climatic data (rainfal l ,  

temperature and global solar radiation) were obtained from the National Institute of 

Water & Atmospheric Research (NIWA), New Zealand. Potential evapotranspiration 

(PET) was derived from temperature and solar radiation using Priestley & Taylor' s 

equation (Priestley & Taylor 1 972).  Since the rainfa l l  data was measured from the 

horizontal surface and the P fert i l iser was commonly aerial ly appl ied to h i ll-pasture 

with a uniform rate, the actual rainfal l  and P ferti l iser received were adj usted by the 

cosine of the s lope angle. Actual solar radiation on hi l ly  terrain is strongly influenced 

by topography (Antoni 1 998), so it was calculated from observed solar radiation at that 
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location by an empirical method developed for the North Is land, New Zealand 

(McAneney & Noble 1 975) .  

In New Zealand, pasture productivity is  commonly measured by cutting re-growth 

from a trimmed quadrat (usually 1 m2 in arca) with a cutting period of about one to two 

months depending on the growth rate of plants ( i .e .  trimming technique) (Lynch & 

Mountier 1 954). Productivity is usually measured for a period of one year, and seasonal 

productivity is calculated from cuttings covering the season with spring from September 

to November. 

This dataset covers most types of h i l l-pastures in the North Island (Fig. 1 ) . There 

were 37 variables, including 32 input variables ( independent variables) and five target 

variables (dependent variables), and 1 900 samples in this dataset (Table 1 ). 

3.2.3.  Models developmen t  

The decision tree models for annual and seasonal pasture productivity were analysed 

in SAS Enterprise Miner, Version 4. 1 (SAS Institute I nc. ,  1 999-200 1 ,  Cary, NC, USA). 

The regression models for annual and seasonal pasture productivity were analysed in 

SAS 8.2 ( SAS Institute Inc. ,  1 999-200 I ,  Cary, NC, U SA). Annual and seasonal pasture 

productivity data were square root transformed to reduce the heterogeneous variances in 

residual as all random errors have the same variance is a fundamental assumption 

underlying l inear regression (Sen & Srivastava 1 990). The transformed data were also 

used in the decision tree analyses to make the results comparable with those of the 

regression models, although it is not essential for the decision tree analysis to assume a 

normal distribution of the target variable (Vayssieres et af. 2000). Al l  the outputs of the 

decision tree models were back-transformed to make them practicable. In the 

development of the decision trees and regression models for annual and seasonal pasture 

productivity, the whole dataset was randomly partitioned into two parts: the training 

data (70% of the total) and the validation data (30% of the total) .  The decision trees and 

regression models were trained by the training data and validated by the validation data. 

3 .2 . 3 . 1 .  Decision tree 

The main procedure for developing a decision tree model is to split the data of target 

variable based on its response to input variables. In SAS Enterpriser Miner, there are 

different criteria used to split the data, depending on the nature of the target vari able. 
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For interval variables like pasture productivity, the split criterion is variance reduction, 

or F test. In the case of variance reduction, a complete search is applied to all the input 

variables and possible split-points to select one variable that ultimately explains the 

variance of the target variable by splitting the dataset of target variable into two sub

datasets. Then the same procedure is recursively applied to each of the sub-dataset until  

the dataset cannot be further split based on defined rules. Suppose D is the dataset 

containing the target variable and i s  going to be split into two sub-datasets DL and DR. 

DEV 0 is the deviance of dataset D (squared error from the mean) :  

DEVo = L (Yi - YbOl) ( 1 )  
obsi 

Where Y i  i s  an observation and Y bar is the mean of the target variable D. The variance 

reduction by spl itting dataset D into DL and DR is expressed as follows: 

(2) 

Where DEVL and DEVR are the deviance of DL and DR, respectively. An input 

variable and a possible spl it-point that maximise IJ., or minimise the sum of (DEVL + 

DEV R) is first selected to split the data D, and then the same search is implemented for 

each sub-dataset DL and DR and the following sub-datasets recursively (SAS Online 

Help: Getting Started with Enterpriser Miner Software). 

I n  the case of F test, an input variable and a possible split-point that gives the most 

significant p-value in F test associated with variance reduction is selected. 

We compared both criteria in developing the decision trees and chose vanance 

reduction as the split criterion since it gave very similar patterns of variance reduction 

between training data and val idation data in the model assessment (see later) . However, 

the decision tree outputs from using these two criteria were very simi lar. 

3 .2 . 3 .2 .  Regression 

Regression models were analysed using the same training data used in the decision 

tree analyses. Since there were too many factors significant in the regression analysis of 

annual pasture productivity, resulting in a serious multicol l inearity problem, a principal 

component analysis was applied to reduce the dimensions of the input variables. The 
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first nine principal components, which accounted for 89% of the total variance, were 

chosen as model inputs for the regression analysis. 

Table 1 .  Variables used in the decision tree and regression analyses 

Variable symbol Units Range Variable description 
input variable 

pH -log\
Q

[I-f] 4.7-5.9 soil pH 

BD W cm3 0.75- 1 .20 soil bulk density 
OlsenP IlWg 3.8- 1 60.0 soil Olsen P 
N fert kglha 0- 1 80 annual elemental N ferti l iser input per ha 
P fert kglha 0-76 annual elemental P fertiliser input per ha 
P fert 5 kglha 0-268 5 years cwnulative elemental P fertil iser input per ha 
P fert 1 0  kglha 0-429 10 years cwnulative elemental P ferti l iser input per ha 

temp3 QC 1 0. 1 - 1 5.4 annual mean daily temperature 

temp_sp QC 1 0.4- 1 4.4 spring mean daily temperature 

temp_su QC 1 4.8- 1 9.5 summer mean daily temperature 

temp_au QC 1 2. 1 - 1 6.2 autwnn mean daily temperature 

temp_wi QC 7.2- 1 1 .4 winter mean daily temperature 
ram3 mm 4 1 7- 1 727 annual rainfall 
ram_sp mm 7 1 -501  spring rainfall 
rain su mm 37-545 swnmer rainfall 
ram au mm 1 49-3 1 1  autwnn rainfall 
ram Wl mm 1 52-429 winter rainfall 
ram wann mm 1 1 7-850 swn of spring and swnmer rainfall  

solar3 MJ/m2 4. 1 7- 1 9.32 annual mean daily global solar radiation 
solar_sp MJ/m2 6.74-22. 1 8  spring mean daily global solar radiation 

solar su MJ/m2 9.36-24.3 1  swnmer mean daily global solar radiation 
solar au MJ/m2 1 . 1 6- 1 6.59 autwnn mean daily global solar radiation 
solar wi MJ/m2 0.55- 14.90 winter mean daily global solar radiation 

PET3 mm/m2/d 0.34-3. 1 9  annual mean daily evapotranspiration 

PET_sp mmlm2/d 0.82-3.99 spring mean daily evapotranspiration 

PET su mmlm2/d 1 .40-4.40 swnmer mean daily evapotranspiration 

PET au JTIlnlIn2/d -0.23-2.76 autwnn mean daily evapotranspiration 
PET wi mmlm2/d -0.40-2. 1 5  winter mean daily evapotranspiration 
aspect hill slope aspect. ego N NE S SW NW, etc. 

aspect_adj sunny (NW, N, NE, E), shady (SE, S, SW, W) 
slope degree 2-45 hill slope angle 
legwne-'p % 0-8 1 .2 The relative abundance of Jegwne in pasture 

target variable 
annual productivity kglha/y 793-25763 annual aboveground dry matter per ha 
spring productivity kglha/season 1 1 7- 1 1 275 spring aboveground dry matter per ha 
swnmer productivi� kglha/season 39-7699 swnmer aboveground dry matter per ha 
autwnn productivity kglha/season 1 1 6-4598 autwnn aboveground dry matter per ha 
winter productivity kglha/season 1 0-6739 winter aboveground dry matter per ha 
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Table 2 shows the eigenvectors (CORR) of the input variables for the first nine 

principal components. Values in bold font indicate the main input variables contributing 

to the principal components. The main variables contributing to the first principal 

component were solar radiation and PET. The main variables contributing to the second 

principal component were temperature and rainfall . The main variables contributing to 

the third principal component were P ferti l iser input and soil pH .  For the regression 

analyses of seasonal pasture productivity, we used the original variables as model inputs 

since the multicol linearity problem was manageable. A forward stepwise approach was 

used to select the variables with a significance level P<0.05 in analysing the regressions 

of annual and seasonal pasture productivity. As stepwise approach had l imitations in 

selecting significant variables (e.g. it can select variables that significant but 

meaningless for the studied system or it can eliminate a variable from model once a 

significant but meaningless variable is included), backward and forward approaches 

were also used to facilitate the variable selection. Residuals were checked for 

identifying outl iers and unexplained variance, and the condition index was checked for 

identifying coll inearity. Further improvements of model fit were then made accordingly. 

3.2.4. M odel assessment  and e m p i rical validation 

Model assessment is an important step in developing the decision tree, as i t  enables 

a good model output, and prevents overtraining, which otherwise would develop a 

model that only fits the data from which it was trained (Witten & Erank 2000). The SAS 

Enterpriser Miner has several options to assess the model having an interval target ( i .e .  

continuous variable) (Femandez 2003). The measure of average squared error (ASE) is 

a commonly used option. ASE is similar to mean squared error (MSE) in general l inear 

model and is an indicator of model goodness-of-fit; the smaller the ASE, the better the 

model fits. For the assessment of decision tree, if there are validation data avai lable, it is 

assessed by the ASE of the validation data; otherwise, it is assessed by the ASE of the 

training data. The first option is better (SAS Online Help:  Getting Started with 

Enterpriser Miner Software). When validation data are avai lable, a "best" tree that has 

the smallest ASE from validation data is selected. An example of model assessment 

using the ASE of the val idation data is i l lustrated in Fig. 2 for the decision tree model 

for annual pasture productivity. 

5 1  



Chapter 3: Modelling pasture productivity - a decision tree approach 

Table 2. E igenvectors (CORR) for the first nine principal components. Numbers in bold 

font indicate the main contributions of input variables to the p rincipal components. 

Variables Princ. 1 Princ.2 Princ.3 PrincA Princ.5 Princ.6 Princ.7 Princ.8 Princ.9 

pH 

BD 

N_fert 

OlsenP 

P fert 

P fert 1 0  

P fert 5 

temp_y 

temp_sp 

temp_su 

temp_au 

temp_wi 

0.021 0.046 

0.094 0.241 

0 .024 -0.009 

-0.006 0 . 1 1 7  

-0. 0 1 7 -0.2 1 7  

-0.030 -0. 1 1 6  

-0.039 -0. 1 27 

0.030 0.304 

0.025 0.293 

0.027 0.3 1 3  

0.005 0.278 

0.042 0.233 

0.370 

-0.071 

-0 . 050 

0 . 1 90 

0 . 1 1 0  

0.393 

0.353 

0.237 

0.2 1 9  

0.2 1 4  

0 . 1 76 

0.204 

t min w 0 .0 1 6  0.201 0.291 

rain3 0.044 -0.272 0. 1 97 

rain_sp 

rain su 

rain au 

rain wi 

rain warm 

0.027 

0 .031 

0 .021  

0.048 

0.036 

0.346 

0.320 

0.044 

0.335 

0.3 1 6  

0.346 

0.328 

0.051 

-0.290 0. 1 63 

-0 . 1 72 0 . 1 1 1  

-0. 1 93 0.2 1 3  

-0. 1 27 0.072 

-0.294 0. 1 73 

-0.020 0.000 

-0.066 -0 . 1 0 1 

-0. 1 74 0.099 

-0.007 0.007 

0.046 -0 .027 

0.003 0.0 1 8  

-0.022 -0 .068 

-0. 1 2 1  0. 1 43 

0.046 

0 . 1 0 1  

0 .049 

-0.053 

-0.207 

-0.303 

-0.357 

0.087 

0 . 1 32 

0.053 

-0.039 

0.221 

-0.240 

-0.054 

0 . 044 

- 0.207 

-0.096 

-0.231 

-0. 1 87 

0 . 1 51 

0 . 1 06 

0 .062 

0 . 1 22 

0 .246 

-0.047 -0 .073 

0.336 0 .050 

0 . 1 31  

0.361 

0.225 

0 .282 

0 .289 

-0.058 

-0.086 

-0.263 

-0.026 

0 .040 

-0.050 

-0.069 

-0.266 

-0.0 1 2  

0 .009 

-0.041 

0 . 1 38 

-0.004 

0 .034 

-0.093 

0.477 

0 . 1 20 

-0.244 

0 . 044 

-0.076 

0 . 507 

solar3 

solar_sp 

solar su 

solar au 

solar_wi 

PET3 

PET_sp 

PET su 

PET au 

PET wi 

0.334 0.007 0 .0 1 7  -0.028 0. 1 24 

0.3 1 8  0.052 -0.01 9 0.048 -0.229 

aspect_A 0.3 1 1  -0.028 0 .022 -0.029 0 . 040 

slope -0.021 0 . 1 35 -0. 1 23 0 .044 -0.098 

-0. 1 2 1  

0 . 2 1 8  

-0.482 

0. 1 20 

0.349 

0. 1 04 

0 . 1 1 2  

0.046 

-0.040 

-0. 1 1 6  

0 . 1 69 

0 . 1 90 

-0. 1 30 

0.246 

-0.1 1 5  

-0.425 

-0. 1 0 1  

0.083 

0. 1 09 

-0.034 

-0.008 

0.025 

-0. 1 24 

-0.028 

0.328 

0.298 

0.632 

-0.0 7 1  

0 .208 

0.055 

0 . 1 03 

-0.072 

0.040 

-0.070 

-0. 1 42 

0.052 

-0.255 

0 . 1 6 1  

-0.082 

0.564 

-0. 1 56 

0 .043 

0.084 

-0.075 

0. 1 69 

-0. 1 29 

-0. 1 46 

0 .076 

-0.353 0.232 -0.093 -0. 1 92 

0.075 0.0 1 4  -0.054 -0.050 

-0 .01 6 0. 1 08 

-0.046 0.021 

-0. 1 44 0.294 

0 .374 

-0.036 

0 .0 1 2  

-0.055 

-0.037 

0.068 

-0.036 

0 .0 1 7  

-0.062 

-0.062 

-0.362 

0.085 

0.035 

-0. 1 4 1  

0.059 

0.040 

0 . 0 1 4  

0.035 

-0. 1 38 

0.066 

-0. 1 54 

0.255 

-0.3 1 8  

0.093 

0.035 

0 .001  

-0.0 39 

0.052 

0.084 

-0.088 

-0.005 

-0.032 

0.04 1 

-0.229 

0.430 

0 . 1 50 

-0.372 

0.079 

0.01 4 

0.024 

0 . 1 00 

0.023 

-0.070 

0.008 

0.053 

0.078 

0 .079 0.035 0.074 0.0 1 4  

-0.027 0.0 1 9  -0.084 -0.065 

0 .0 1 2  0.078 -0.036 -0. 0 1 4  

0.380 0.577 0.247 -0. 0 1 4  

There are also some other ways to prevent over-training of a decision tree. One is to 

set the maximum tree levels, which defines the size of the tree and prevents the tree 

becoming too complex. Another one is to set the minimum observations required for a 
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split search, which prevents a few special cases influencing the output of the tree.  We 

set six as the maximum tree levels and 1 3  observations as the minimum observations 

required for a split search in developing the dec ision tree models for annual and 

seasonal pasture productivity. The recommendation on minimum observations was 

derived using the program by assessing the size of the whole dataset (Femandez 2003). 
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Number of leaves i n  the decision tree 

Fig. 2. Model assessment in developing the decision tree model for annual pasture 

productivity using average squared error (AS E) of the validation data. The vertical line 

indicates the smallest ASE from the validation data and the number of leaves selected for 

the final tree. 

After the decision trees and regressIon models were developed, an empirical 

validation was implemented for all the decision trees and the regression models using 

the validation data. This empirical validation graphs the deviations (the differences 

between the predictions and the observations) against observations of the validation data, 

and checks the percentage of adequately predicted cases out of the whole val idation data 

based on a given acceptable error (M itchell 1 997). This method is a more stringent 

model validation approach than methods using regression or correlation between model 

predictions and observations, which were critic ised as not appropriate by some 

modellers (Harrison 1 990; Mitchell 1 997). Considering the potential variance 

heterogeneity in pasture productivity resulting from different sampling times, locations 

and managements, and the sampling error in measuring pasture productivity, we chose 
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±20% of the observation as an acceptable error of prediction. The percentage of 

deviations within ±20% of observations is considered as a standard for model predictive 

accuracy (Mitchell  1 997). 

3.3 .  Results 

3.3. 1 .  Decision trees and regression models 

The decision tree models for annual, spring, summer, autumn and winter pasture 

productivity are given in Fig. 3 ,  Fig. 4, Fig. 5 ,  Fig. 6 and Fig. 7 .  

In each decision tree, the value in  the upper most rectangle i s  the average pasture 

productivity. The variable and the value in the rectangle below the upper most rectangle 

are the most significant variable selected to split the tree and the spl it-point (value of 

that variable at which the split is made). Prediction goes to left-side branch if pasture 

with the splitting variable is less than the spl it-point, and goes to right-side branch if 

pasture with the spl itting variable is equal to,  or more than, the spl it-point. Further 

prediction is made recursively based on the next significant variable in the same way for 

the first prediction, until the tree leaves, which are the final predictions in the decision 

tree, are reached. For example,  in the decision tree model for annual pasture 

productivity (Fig. 3), the average pasture productivity for the whole study area was 

7789 kg/ha, spring rainfall was the most s ign i ficant factor selected to spl it the tree with 

a split-point of 2 1 2  mm. Pastures with a spring rainfall less than 2 1 2  mm had a 

predicted average productivity of 3280 kg/ha, while pastures with a spring rainfall equal 

to, or more than, 2 1 2  mm had a predicted average productivity of 9579 kg/ha. Further 

prediction was made by next splitting factor (slope) and a spli t-point (22.5° for pastures 

with less than 2 1 2  mm spring rainfall) after the first prediction, and so on until it 

reached to the final prediction. The final prediction of pasture productivity was made by 

a series of constraints defined by the input variables and their spl i t-points. For example, 

if pastures with a spring rainfall less than 2 1 2  mm, a slope less than 22.5°, an annual 

temperature less than 1 3 .4 °C, a five-year cumulative P fertiliser input (elemental P) less 

than 4.4 kg/ha, and a soil bulk density less than 0.85 g/cm3, then the predicted average 

pasture producti vi ty was 20 1 0  kg/ha. 
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The relative importance of environmental and management variables on pasture 

productivity in the decision trees was ranked by the order they were selected in splitting 

the decision tree . The variable  first selected was more influential than those selected 

after it. Spring rainfall was the most significant variable selected to split the decision 

tree model for annual productivity, whereas annual N ferti l iser input and five-year 

accumulated P ferti liser input were the s ignificant manageable variables. Slope was the 

most significant variable selected to spl i t  the decision tree models for spring and winter 

pasture productivity, and annual P ferti l i ser input and autumn rainfal l  were the most 

significant variables selected to split the decision tree models for summer and autumn 

pasture productivity. 

The decision tree model for annual pasture productivity had 40 leaves with a 

predicted average pasture productivity ranging from 1 33 2  kg/ha to 1 5820 kg/ha (Fig. 3 ) .  

In  comparison, the decision tree models for spring, summer, autumn and winter pasture 

productivity had only 25, 26, 26, and 28 leaves, respectively. The predicted average 

annual,  spring, summer, autumn and winter pasture productivity were 7789, 3462, 279 1 ,  

1 469 and 1 250 kg/ha, respectively. Spring productivity accounted for about 40% of the 

total pasture productivity, while summer, autumn and winter productivity accounted for 

about 30%, 1 6% and 1 4% of the annual productivity, respectively. 

The regression model for annual pasture productivity is  displayed in Table 3. Detai l s  

of the regression models for seasonal pasture productivity are not shown here for 

simplicity. A summary of them is given in Table 4. I n  general, all five regression 

models  were very significant (P <0.00 1 ), and had relatively high adjusted R2 values. For 

annual pasture productivity, solar radiation, PET, P ferti l iser and rainfall showed a 

positive effect, while temperature showed a negative effect. Regression models for 

seasonal pasture productivity selected a simi lar set of variables as in the decision tree 

models for seasonal pasture productivity. Interaction terms and quadratic terms were not 

selected in regression models for seasonal productivity as including them in the model 

did not substantially increase the model fit, but would result in a serious 

multicol l inearity problem. However, as some factors such as P ferti l iser and Olsen were 

correlated and were chosen in a model (Table 4), there was sti l l  a multicoll inearity 

problem in each of the regression model for seasonal pasture productivity. I did not 

remove the entire correlated variable from the model because the existed 
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multicollinearity did not affect the estimation of target variable but the responses of 

some coefficients of input variables (Freund & Littell 1 99 1 ), and I intended to maximise 

the model fit for the purpose of comparing them with the decision tree models to assess 

the perfonnance of the decision tree models . .  

Table 3. Regression model for annual pasture productivity 

a. Model fit 

Mean of Response 91 .6 1 09 R-Square 0.6437 

Root MSE 1 4 .4 702 Adj R-Sq 0.6424 

b. Analysis of Variance 

Source DF Sum of Squares Mean Square 

Model 7 7 1 3933.9795 1 01 990 .5685 

Error 1 887 3951 1 1 .4314  209.3860 

C Total 1 894 1 1 09045 .41 1 0  

c. Para meter Estimates 

Variable DF Estimate Std E rror t Stat Pr >It l  

Intercept 9 1 .61 09 0.3324 275.60 < .0001 

PCR1 1 . 1 351 0 . 1 1 63 9.76 < .0001 

PCR2 -5.5353 0 . 1 237 -44 .74 < .0001 

PCR3 6.8950 0 . 1 976 34 .90 < .0001 

PCR6 -0 .5933 0.2570 -2 .31  0 .021 1 

PCR7 - 1 .57 1 9  0.2990 -5.26 < .0001 

PCR8 - 1 .81 78 0.3446 -5.27 < .0001 

PCR9 -2.0561 0.3507 -5.86 < .0001 

3 .3.2.  Model assessme n t  and e mpirical validation 

F Stat Pr > F 
487.09 < .000 1 

F Stat 

95.32 

2001 .44 

1 2 1 7 .73 

5.33 

27 .64 

27.82 

34 .36 

Pr > F 

<.0001 

<.0001 

<.0001 

0 .02 1 1 

<.0001 

<.0001 

< .0001 

A comparison of the ASE of the decis ion trees and the regression models for annual 

and seasonal pasture productivity is displayed in F ig. 8. The ASE of each decision tree 

was smal ler than that of the corresponding regression model ,  indicating the better model 

fit of decision tree than regression. The ASE of the decision tree model for annual 

pasture productivity was approximately half of that of the regression of annual pasture 

productivity. However, the difference between ASE of each decision tree model for 

seasonal pasture productivity and the corresponding regression model was smal l .  
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Table 4. Summary of the regression models for annual and seasonal pasture 

productivity. See Table 1 for variable symbols. 

Models Input variables F value 

Annual 

productivity 

Spring 

productivity 

Summer 

productivity 

Autumn 

productivity 

Winter 

productivity 

principal components 

BD, NJert, O l senP, P Jert, P Jert5 ,  

aspect, s lope, ram _ WI, solar _ wi,  

solar_sp 

487.09 

1 22 . 26 

pH, N_fert, P Jert, P Jert5, aspect, 1 06 . 62 

slope, rain_sp, temp_sp, solar_su, 

legumeJl 

BD, N_fert, PJert, aspect, slope, 1 3 0 .34 

rain_au, rain_su, temp_au, solar_au 

NJert, OlsenP, P Je11, P Jert5, 9 1 .24 

aspect, s lope, solar _ ua, ram _ WI, 

temp_wi 

Pr>F 

<0.000 1 0 . 642 

<0.000 1 0.656 

<0.000 1 0.664 

<0.000 1 0 .64 1 

<0.000 1 0.587 

Empirical validations of the decision tree and the regressIOn of annual pasture 

productivity indicated that the decision tree had 9 1  % adequately predicted cases based 

on the validation data, while the regression had 80% (Fig. 9). The deviations of the 

decision tree model for annual pasture productivity were within ±40, whi le those of the 

regression of annual pasture productivity were within ±50.The results of empirical 

validations of both decision trees and regressions of annual and seasonal pasture 

productivity were summarised in Fig. 1 0 . In general, the percentage of adequately 

predicted cases for each decis ion tree was higher than the corresponding regression 

model . 
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Fig. 3. The decision tree model for annual pasture productivity. Predicted productivities are in the un-shaded rectangles, splitting variables and split-points are in the 

shaded rectangles. Prediction goes to the left-side b ranch when the splitting variable is less than the split-point, and goes to the right-side branch when the splitting variable 

is equal to, or more than, the split-point (in the case of aspect, pasture with aspect set before the comma go to left b ranch, others go to right branch). See Table 1 for 

variable descriptions and units. 
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Fig. 4. The decision tree model for spring pasture productivity. See caption of Fig. 3 for the interpretation of decision tree. 

59  



Chapter 3: Modelling pasture productivity - a decision tree approach 

Fig. 5. The decision tree model for summer pasture productivity. See caption of Fig. 3 for the interpretation of decision tree. 
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1 489 
PJert 

Fig. 6. The decision tree model for autumn pasture productivity. See caption of Fig. 3 for the interpretation of decision tree. 
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Fig. 7. The decision tree model for winter pasture productivity. See caption of Fig. 3 for the interpretation of decision tree. 
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Fig. 8.  Comparison of average square error (ASE) between the d ecision trees and the 

regression models for annual and seasonal pasture productivity 

3.4. D iscussion 

3 .4. 1 .  Perfo rm ance of model 

Both the decision trees and regression models were satisfactory in predicting annual 

and seasonal pasture productivity, but the decision trees performed better with respect to 

model fit and predictive accuracy. 

The regression models generally met the basic assumptions of regression analysis, 

and were all highly significant (P <0.00 1 )  (Table 4) and expl ained a relatively high 

percentage of the variance of model targets considering the large sampling area, and the 

heterogeneity of the environment and management over the area .  They also adequately 

predicted a considerable proportion of cases in the model empirical validation (Fig. 1 0) .  

Compared to the regression models, the decision trees all had a smaller ASE (Fig .  8)  

and a higher percentage of adequately predicted cases (Fig. 1 0) than the corresponding 

regression models. For example, the ASE of the decision tree model for annual pasture 

productivity was only about half of that of the regression model for annual pasture 

productivity and had 90. 1 % adequately predicted cases, whic h  was 1 0.8  percentage 

points higher than that of the regression model. This smaller ASE and higher percentage 

of adequately predicted cases for the decision trees indicated that they had better 

performance than the regression models in predicting h i l l-pasture productivity. 
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Simi larly, an application of decision tree in predicting plant specIes distribution 

(Vayssieres et al. 2000) showed that the decision tree performed significantly better 

than a polynomial logistic regression model for four of the six cases considered, and as 

well as in the two remaining cases. Applications of the decision tree in classifying 

remote sensed vegetation data (Yang et al. 2003) and in predicting tree species 

abundance (Iverson & Prasad 1 998) also indicated that the decision tree had very good 

performance as a modell ing approach. 
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Fig. 9. Empirical validation of the decision tree (A) and the regression model (B) for 

annual pasture productivity. Deviation is the difference between predicted and observed 

pasture productivity. The two spreading lines show the ±20% of the observations, and 

91 % of predictions in the decision tree and 80. 1  % of predictions in the regression are 

within  the ±20% of the observations of the validation data. Both observation and 

deviation are transformed data for pasture p roductivity. 
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However, the performance of the decision tree models for seasonal pasture 

productivity was not as good as that of the decision tree model for annual pasture 

productivity. This may be firstly because the decision tree model performs better for a 

complicated situation with more s ignificant input variables such as this for the annual 

productivity. Secondly, the qual i ty of seasonal pasture productivity data was not as 

good as annual pasture productivity data. Most of the seasonal pasture productivity was 

calculated from the pasture cuttings covering a season (Lambert et at .  1 996), which may 

al locate the production that occurred in one season to another season, and introduce 

errors into the seasonal pasture productivity data. For example, a cutting covering a 

period from early August to late September would be  evenly al located to winter and 

spring in calculating the seasonal pasture productivi ty, but spring will usually have 

more production than winter since it is warmer. Also, carryover effects from season to 

season (e.g. due to drought) are l ikely to be more influential compared to carryover 

effects from year to year. This suggests the qual ity of a decision tree wil l  ultimately 

depend on the quality of the training data. 

Compared to other pasture and productivity models, the decision tree model for 

pasture productivity has several significant characteristics. Paruelo and Tomasel ( 1 997) 

used another data mining approach - artificial neural network (ANN) to predict pasture 

ecosystem attributes and compared their performances with regression models. They 

also found that ANN had better predictive abi l i ty than regression model .  However, 

unlike the decision tree model, the output of ANN is very difficult to interpret (Scheffer 

2002). As an empirical-oriented modell ing approach, the decision tree models can only 

be used in the same or similar areas as their abi lity to extrapolate beyond the special 

scope is very l imited. On the other hand, mechanistic pasture simulation modcls such as 

PaSim (Riedoa et af. 2002), SPUR (Foy et af. 1 999), HP-model (Riedo et al. 1 998) and 

CENTURY (Gilmanov et at .  1 997) are more general and widely appl icable because of 

their strong abi l ity in expl icitly reveal ing the mechanisms of the systems they represent 

(Rickert et a t .  2000), but these mechanistic simulat ion models generally have a poor 

performance with respect to their predictive abi l i ty (Guisan and Zimmermann 2000). 
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Fig. 1 0. Percentage of adequately predicted cases of the decision trees and the 

regression models for annual and seasonal pasture productivity in the model empirical 

validation. 

3 .4.2.  I nsights fro m  the decision trees 

3 .4 .2 . 1 .  General pattern 

Besides having a better model fit and higher predictive accuracy than the regression 

models, the hierarchical structure of the decision trees also clearly revealed the relative 

importance of input variables in influencing pasture productivity. For example the 

decision tree model for annual pasture productivity showed that available spring rainfall 

was the most significant factor influencing hill-pasture productivity (Fig. 3) .  Hi l l  slope 

was the second most significant variable influencing pasture productivity for pastures 

with both high and low spring rainfall .  Annual mean daily temperature, N and P 

ferti l iser inputs and soi l ferti l i ty status (Olsen-P) were the significant variables 

influencing pasture productivity under the specific climatic and topographic conditions. 

This hierarchical structure of the decision tree also revealed different response 

patterns of pasture productivity to the interaction of the environmental and management 

variables. For example, in the decision tree model for annual pasture productivity, when 

pastures received less than 2 1 2  mm rainfall in spring, those with a hi l l  slope equal to, or 

more than, 22.5° responded to the management variable N ferti liser, but those with a hi l l  

s lope less than 22.5° responded to annual daily mean temperature. 
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3 .4.2.2.  Effects of environmental and management variables 

3. 4. 2. 2. 1 .  Climate 

The available rainfall  in spnng was indicated as the most significant factor 

influencing pasture productivity in hi l l-pasture (Fig. 3). Pastures with equal to, or more 

than, 2 1 2  mm rainfall in spring had an average annual productivity which was 6300 

kglha higher than pastures with less than 2 1 2  mm rainfal l  in  spring. Though rainfall has 

been generally recognised as the key fac tor influencing the hil l-pasture production 

(Lambert et at. 1 983; Rickard et at. 1 985 ;  White 1 990), the important role of spring 

rainfall  as the determinant of annual pasture productivity was not previously fully 

recognised. This may be because most research was conducted locally and the variation 

in climate at a local-scale was usually not very significant, and thus fai led to detect the 

response of pasture growth to spring rainfal l .  In hi l l-pasture, autumn and winter usual ly 

have enough rainfall and summer is usually dry due to unreliable rainfal l and high 

evapotranspiration (Woodward et at. 200 1 ). The available spring rainfal l ,  therefore, 

becomes a key factor influencing pasture productivity with about 40% of pasture 

production occurring in spring. This is partial ly in agreement with the result obtained by 

Radicliffe and Baars ( 1 987) as they revealed that spring and summer rainfall accounted 

for 60% of the variation in annual pasture production, but they did not analyse the effect 

of spring rainfal l  alone. 

Heavy rainfa l l  in winter can also reduce winter pasture productivity. For example, 

pastures received equal to, or more than, 4 1 0  mm rainfall in  winter produced less 

productivity than those with less than 4 1 0  mm rainfall (Fig. 7), this may be because of 

the constraint of temperature and (or) solar radiation on pasture growth resulted from 

heavy rainfal l .  

High temperature Increases evapotranspiration and reduces the available soi l  

moisture (Bircham & Gill ingham 1 986). In  the decision tree model for annual pasture 

productivity, when pastures received less than 2 1 2  mm rainfal l  in spring, those with an 

annual mean daily temperature less than 1 3 .4 °c had an annual productivity of 503 1 

kg/ha, which produced about 1 400 kg/ha more than pastures with an annual mean dai ly 

temperature more than 1 3 .4 QC. 
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3 .4. 2.2. 2. Fertiliser and soilfertility 

It was indicated from the decision tree model for annual pasture productivity (Fig. 3) 

that pasture responded to N fertiliser  better when on a high slope. Pastures with high 

slope generally have less legume than pastures with low slope (Ledgard et al . 1 987) and 

N content in soil is inversely related to slope due to the nutrient transfer (Gil l ingham 

and During 1 973, Ledgard et al .  1 982).  These factors result in N deficiency in soils with 

high slope, and may be the reasons why pastures with high slope respond to N ferti liser 

better. This better response to N fert i l iser on pastures with high slope was also reported 

by Gil l ingham et al . ( 1 998). 

P ferti l iser appl ication is one of the most important managements in improving 

pasture productivity in hill -pasture. It was indicated from the decision tree model for 

summer pasture productivity that annual P ferti l iser input had marked effect on summer 

pasture productivity ( Fig. 5) .  Pastures received equal to, or more than, l OA kg/ha 

annual P ferti l iser increased summer pasture productivity by 1 400 kg/ha comparing with 

those received less than l OA kg/ha. Five-year cumulative P ferti l iser input was the most 

significant factor influencing pasture productivity for both high and low slope when 

spring rainfall was equal to, or more than, 2 1 2  mm in the decision tree model for annual 

pasture productivity (Fig.3), indicating a strong interaction between P fertil iser input 

and available soi l moisture. 

The effect of OIsen-P on pasture productivity was greatly influenced by the 

available soil moisture. Pastures with more than 3 . 8  )lg/cm3 and less than 1 6 . 3  )lg/cm3 

Olsen-P in the soil had an average annual productivity of 1 264 1 kg/ha when they 

received more than 2 1 2  mm rainfall in spring, but only had an average annual 

productivity of 5 1 35 kg/ha when pastures with a similar Olsen-P condition but received 

less than 2 1 2  mm rainfall in spring (Fig. 3) .  This interaction between moisture and 

Olsen-P on pasture productivity was reported by Moir et al. (2000) and may be one 

reason why previous research (Sinclair et at. 1 997) failed to establish a rel iable l ink 

between pasture productivity and soi l  Olsen-P content. 

3 .4. 2. 2.3. Topography 

Hil l  slope, due to i ts important role in redistributing available moisture, ferti lity and 

solar radiation, greatly influences hi l l-pasture productivity (Gill ingham & During 1 973; 

Lambert & Roberts 1 978). The impact of hil l  slope on pasture productivity is well 
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recognised (Lambert et at. 1 983 ;  White 1 990; Gillingham et al. 1 998). In the decision 

tree models for annual and seasonal pasture productivity, the influence of slope on 

pasture productivity was fully expressed. Hil l  aspect, unlike hi l l  slope, mainly 

influenced seasonal pasture productivity in some extent. Generally, shady aspects have 

higher productivity than sunny aspects during periods of soil moisture stress, whereas 

sunny aspects produce more production at other times (Lambert et at. 1 983) .  

3 .4. 2. 2. 4. Legume 

Legumes fix atmospheric nitrogen and encourage grass growth. The relative 

abundance of legume in hi l l-pasture is usually an indicator of pasture management 

status (Edmeades et at. 1 990) .  High percentage of legume had a marked effect on 

annual pasture productivity, especially for pastures with less rainfall (Fig. 3). But it was 

indicated in the decision tree model for spring pasture productivity (Fig. 4) that in 

spring, high percentage of legume had a negative effect on pasture productivity for 

pastures with a low slope. For example, when slope was less than 1 3 .5°, pastures with 

equal to, or more than, 6. 1 % legume had a spring productivity of 5427 kg/ha, while 

pastures with less than 6. 1 % legume had a spring productivity of 6357 kg/ha. Another 

example was that pastures with equal to, or more than, 1 1 . 1  % legume had a spring 

productivity of 4667 kg/ha, while pastures with less than 1 1 . 1  % legume had a spring 

productivity of 5 83 1 kg/ha. This may be because legumes especially white clover grow 

slower during spring than during summer-autumn period ( Ledgard et al. 1 987). 

3 .4. 2.2 .5. Bulk density and pH 

Soil bulk density was revealed having a negative correlation with soi l  fertil ity and a 

positive correlation with slope in hill-pasture (Lopez 2000). It was indicated from the 

decision trees that, in general ,  pastures with higher bulk density had less productivity 

than pastures with lower bulk density when other factors were same. However, pasture 

with higher bulk density may have higher productivity ( Fig. 3) for pastures with low 

spring rainfall and low slope, indicating that the relationship between soil bulk density 

and pasture productivity was complex. For soil pH, the general pattern was that pastures 

with h igher soil pH had higher productivity than pastures with lower soil pH. The 

responses of pasture productivity on soil bulk density and pH were in agreement with 

those of the previous research (Lambert et al. 1 996). 
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3 .4 .2 .3 .  Limitations of decision tree 

Due to the binary nature of the decision tree, the responses of pasture productivity to 

the environmental and management variables are not continuous. This make the 

decision tree not being able to reflect the influence of small changes of input variables 

on the model target, especia l ly when the input variable  has a relatively large range. For 

example, in the decision tree model for annual pasture productivity (Fig. 3) ,  when 

spring rainfa l l  is equal to, or more than, 2 1 2  mm and slope is less than 1 6°, pasture 

productivity was predi cted by five-year cumulative P fert i l iser input with a spl i t-point of 

1 44.7 kg/ha. This makes predictions either less or more than the split-point covering a 

l arge range of P ferti l iser input, and could result in a large variance in the predicted 

pasture productivity. Some statistic programs have the option to split the tree into more 

than two groups, whic h  might be useful for better prediction, but wi l l  create a tree that 

is too complex to deal with in practice. 

The qual i ty of a decision tree depends on the quali ty of the training data. If the 

training data l ack the representation of some information, a decision tree would l ack the 

response to that information ( Iverson & Prasad 1 998 ;  Vayssieres et at. 2000). Since the 

seasonal pasture productivity was not from designed measurement, the decision tree 

models for seasonal pasture productivity did not perform as wel l  as the decision tree 

model for annual pasture productivity. More seasonal pasture productivity data from 

designed measurements need to be gathered to improve the performance of the decision 

tree models for seasonal pasture productivity. 

3.5,  Conclusion 

Decision tree, as a model l ing approach, had better performance in predicting hi l l 

pasture productivity than the regression model with respect to model fit and predictive 

accuracy. The decision trees c learly revealed the rel ative importance of environmental 

and management variab les in influencing pasture productivity, and the interaction 

among these variables . Spring rainfa l l  was indicated as the most significant factor 

influencing annual pasture productivity, while h i l l  s lope was the most significant factor 

influencing spring and winter pasture productivity, and annual P fert i l iser input and 

autumn rainfa l l  were the most significant factors influencing summer and autumn 

pasture productivity. One l imitation of using decision tree to predict pasture 
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productivity was that it did not generate a continuous prediction, and thus could not 

detect the influence of a small change in environmental and management variables on 

pasture productivity. 
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Chapter 4. Predictive Modelling of Hill-pasture Productivity: 

Integration of a Decision Tree and a Geographic Information System 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
• : The dec ision tree models were shown to perform better than the regression models in • 

• • 
... ... 

: the prediction of annual and seasonal pasture productivity in the previous chapter. In : 
• • • : this chapter decision tree models were integrated with a geographic informat ion • 

... . 
... . 

: system CO l S) to develop a predictive modell ing approach on hi l l-pasture productivity, : 
... 
: with capabilit ies of incorporating spat ial factors such 
III 
• 
: presenting model output over space for areas of interest. 

... 
• as s lope and aspect and • 
• • 
• 
... 
... ... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  � 

A paper derived from this chapter with a title "Predictive modelling of hill-pasture productivity: 

integration of a decision tree and a geographic information system " by B. Zhang, L Valentine, P. D. 

Kemp & G. Lambert has been published in Agricllltural Systems (in press, available on-line). 
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Abstract. One challenge in predictive modelling of productivity for pastures varying in  

topography, soils or management is to  achieve the predict ion over space with acceptable 

accuracy. As a new model l ing approach, the decision tree has been shown to have high 

predictive accuracy; while geographic informat ion systems (GISs), w ith their strong 

abi l ity  to deal with spatial factors, have been widely used in environmental modelling. 

I ntegration of a decision tree approach with a GIS offers a potential so lut ion in meetirig 

this chal lenge. I n  this study, decision tree models were developed for annual and 

seasonal pasture productivity using environmental and management variables and the 

outputs of these decision trees were integrated with a GIS to get predictions of pasture 

productivity in a hill-pasture grazing system. Results showed that the decision t ree 

model for annual pasture productivity was verified in three of four test farmlets. The 

decision tree models also revealed the relative importance of environmental  and 

management variables and their interact ion in influenc ing pasture productivity. H i l l  

slope, soil O lsen P and annual P fertiliser input were the most significant variables 

influencing annual pasture productivity, while hill s lope, annual P fertil iser input, 

autumn rainfal l  and soil O lsen P were the most significant variables influencing spring, 

summer, autumn and winter pasture productivity, respectively. The successful 

integration of  the decision tree model with a GIS in this  study provided a p latform to 

predict pasture productivity for pastures with heterogeneous environmental variables 

and management features, and to present model predict ions over space for further 

applicat ion and investigation. This model l ing approach can be used as, or incorporated 

in, decision support syste ms to improve pasture management, and to invest igate the 

interrelationship between pasture productivity and environmental and management 

variables. 

4.1 .  Introduction 

Modell ing pasture productivity has long been an interest of p lant ecologists and 

agronomists e ither for investigating ecosystem processes or estimating productivity as a 

substitute for observation (Dyne 1 970; Seligman & Baker 1 993; Stuth et al. 1 993 ; 

Sorenson 1 998; Moir et al. 2000). Predict ive model ling of pasture productivity using 

environmental and management variables has both practical and ecological appl ications 

(Rickert et al. 2000). For example, it can be used or associated with decision support 

systems to improve pasture management (Stuth et al. 1 993), and can also be applied to 
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investigate t he interrelationship between pasture productivity and environmental and 

management variables in a pasture ecosystem (Parton et al. 1 993). 

One chal lenge of predict ive modelling of pasture productiv ity for pastures with 

variable management, edaphic or topographic features is to achieve the prediction over 

space with acceptable accuracy. It requires a model incorporating spatial factors and a 

way to present the prediction over space (Li et al. 1 998; Wadsworth & Reweek 1 999). 

This is especially the case for predict ive modelling of hill-pasture productivity due to 

the heterogeneity of topographic and micro-topographic features, e .g. as influenced by 

e levation, slope and aspect. These topographic features have a marked effect on pasture 

productivity through influences on avai lable soil moisture and nutrients, so lar radiation, 

temperature and animal behaviour, which in turn affect pasture productivity 

(Gill ingham et al. 1 998 ;  Lopez 2000; B lennerhassett 2002). 

Geograph ic information systems (GIS) have been widely u sed in environmental 

modell ing (e.g. 10hnston 1 990; Antoni  1 998;  Wadsworth & Reweek 1 999; Dominy & 

Duncan 200 1 ), and have been increasingly used in predictive modell ing of vegetation 

propert ies such as species distribution and abundance (e.g. Frankl in 1 995 ;  I verson et al. 

1 997; 10hnston 1 998; Guisan & Zimmermann 2000; Stocks & Wise 2000) and 

community  productivity (e.g. I verson et al. 1 997; L i  et al. 1 998; Tan & Shibasaki 2003), 

showing its strong ability in analysing spat ial factors, and faci l it at ing predict ion over 

space. L inking a mode l  with high p redictive ability with a GIS p rovides the ability to 

predict productivity for pastures with heterogeneous distribut ion of environmental and 

management factors. 

The commonest way of using G I S  in environmental modell ing is to prepare input 

data and then visualize the model predict ion (Johnston 1 998;  Stocks & Wise 2000). GIS 

can also be used to develop models using i ts  internal analys is functions such as map 

a lgebra, but this is usually restricted to some cartographic model l ing, since most GISs 

have only l imited ability to analyse statistical models. More complex models are usually 

developed in professional statistics software using input data generated or derived from 

GIS, and the model output is then imported back into a GIS to get the predict ion (Stocks 

& Wise 2000). The power ofGIS becomes apparent when it is coupled with models that 

predict outcomes of ecosystem processes such as succession, net primary production, 

and nutrient cycling with parameters derived from GIS (Johnston 1 998). 
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For a predictive model to be coupled with a GIS, two aspects in particular need to be 

considered: one is its predictive accuracy; the other is the ease with which the model 

can be imported into the GIS.  There are different approaches that have been used in 

predict ing pasture productivity:  model-based approaches e.g. e mp irical models (Sala et 

al. 1 988) and mechanistic models (Moir et al. 2000), and data mining approaches e .g. 

artificial neural networks (Franklin 1 995 ;  Johnston 1 998). The data mining approach 

performs better than the model-based approach with respect to predictive accuracy 

(Witten & Erank 2000; Dunham 2002 ; Scheffer 2002), and thus is a more appropriate 

method for predict ive purposes. Among the data mining approaches, the decision tree 

approach has been widely used in the social (Scheffer 2002) and medical sciences 

(Pet itti 2000), and also has shown an increasing applicat ion in environmental model l ing 

where it has considerable accuracy and the ability to reveal the relat ive importance of 

environmental factors. The output of a decision tree is also very easy to import into a 

GIS (Iverson & Prasad 1 998; Vayssieres et al. 2000; Scheffer 2002 ; Yang et al. 2003). 

The decision tree approach is a non-parametric machine- learning modelling method, 

which recursively splits the mult idimensional space defmed by independent variables 

into zones that are as homogenous as possible in term of the response of the dependent 

variable (Vayssieres et al. 2000). The result of the analysis is a b inary hierarchy 

structure called a decision tree with branches and leaves that contain the rules to predict 

the new cases (Breiman et al. 1 984; Dunham 2002). B esides its h igh predictive 

accuracy, there are several other advantages that a decision  tree has over the model

based approach. The decision tree has no strict assumptions regarding the d istribution of 

the target (dependent) variable (Bre iman et at. 1 984) and it can easily incorporate 

nominal, ordinal and interval variables in the same model (Thuraisingham 1 999;  

Vayssieres et at. 2000) . 

However, there appear to have been no published studies that use a decision tree to 

predict pasture productivity despite the approach's wide app l icat ion elsewhere. In this 

study, decision tree models for annual and seasonal pasture productivity (aboveground 

biomass) were developed for hill-pasture in the North I sland, New Zealand, and 

predict ions were realised and verified in a GIS .  This study a imed at developing a GIS

based predictive modelling approach to simulate hill-pasture productivity, and to assess 

it performance with respect to model predictive accuracy and the ability  to reveal the 
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key factors influencing pasture productivity. The success of this G I S-based predict ive 

modell ing approach could fmd applicat ions in invest igating ecosystem processes and 

improving pasture management. 

4.2. Methods 

4.2. 1 .  Study a rea 

This study was carried out on the AgResearch Ballantrae Research Station at latitude 

S400 1 8', longitude E 1 7SoS0 '  in the North Is land of New Zealand (Fig. 1 )  with average 

annual rainfall 1 270 mm and average annual daily temperature 1 2 .3  QC. Alt itude ranges 

from 1 25 to 3 S0m a.s.L. 

The hill country in Bal lantrae is dissected and very heterogeneous with complex 

combinations of slope and aspect even within a small area (Lambert & Roberts 1 978). 

This heterogeneity increases the diversity of micro-climate, soil characteristics, spec ies 

composit ion and the behaviour of grazing animals, and further increases the complexity 

of pasture productivity patterns (Lopez 2000). In  southern latitudes, north aspects 

receive more net radiat ion, and are warmer and generally drier than south aspects. 

Avai lable soil moisture generally d im inishes with increasing slope (Radcliffe & Lefe ver 

1 98 1 ). By influencing animal grazing and excretal return patterns, aspect and slope a lso 

influence soil nutrient status (Gill ingham 1 982; Sheath & Boom 1 985) .The pasture at 

Ballantrae is mainly dominated by browntop (Agrostis capil/aris) and ryegrass (Lolium 

perenne), and white clover (Trifolium repens) is the main pasture legume species 

(N icho las 1 999). 

Data for developing the decision tree models were sampled within the whole area of  

the Station. The GIS-based model pred iction and verification were carried out i n  a 

pasture which was within the Stat ion and was about 90 ha in area (Fig. 1 ). Within th is 

pasture there were four small farmlets (small farm fenced for the same management) 

with different fert iliser appl ication treatments since the early 1 970s: two of them had 

approximately 1 20kg and 360kg annual P fertil iser (Single SuperPhosphate, 

approximately 9% of P) input per year s ince 1 974 (hereafter referred as LL and HH), 

another two farmlets also had approximately 1 20kg and 360 kg P fert iliser per year 

from 1 974 to 1 982, but had none since (hereafter referred as LN and HN). The farmlets 

80 



Chapler4: Modelling pasture productivity - decision tree with G/S 

LL, LN, HN, and HH had 8,  1 0, 8 and 1 0  paddocks respect ively. Each paddock was 

approximately e ight ha in area. A detailed description of these four farmlets and the ir 

management history can be found in Lambert et al. (2000). 

North Island 

New Zealand 

Ballantrae 

DEM of the pasture and 
farmlets used m G I S  

predictions. 
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1 83  
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222 

216 

250 

264 

278 

2S2 

306 

321 

335 

349 

383 

Fig. 1 .  Study area, d igital elevation model (DEM) and the farmlets' used in va l idat ing the 

G IS prediction. 

4.2.2. M odel development 

4.2.2. 1 .  Dataset generat ion 

Data for pasture product ivity (annual and seasonal ), soil properties (bulk dens ity, pH, 

Olsen-P), fert i l iser management (N, P fert il iser inputs) and topographic features (slope 

and aspect) were from a long-term experiment (see Lambert et al. 1 986), unpubl ished 

Ph.D. theses and other experiments conducted at Ballantrae during 1 972- 1 998.  Most 

cl imat ic data (rainfall,  temperature and global solar radiat ion) were obtained from the 

National I nstitute of Water & Atmospheric Research (NIWA), New Zealand. Potential 

evapotranspiration ( PET) was derived from temperature and solar radiat ion using 

Priestiey & T aylor's equation ( Priestley & Taylor 1 972). S ince the rainfall data was 

measured from the horizontal surface and the P fertil iser was commonly aerial l y  appl ied 
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to hil l-pasture with a uniform rate, the actual rainfall and P fertiliser received were 

adjusted by the cosine of the slope angle. Actual so lar radiat ion on hil ly terrain is 

strongly influenced by topography (Anton i  1 998), so it was calculated from observed 

solar radiat ion at that location by an empirical method developed for the North Is land, 

New Zealand (McAneney & Noble 1 975). Therefore, the variation in rainfall and so lar 

radiation for a sample site included year-to-year variation and the adjustments based on 

topographic features (slope and aspect). 

There were 30 variables, including 2 5  input variables (independent variables) and 

five target (dependent) variables, and 1 1 00 samples in the dataset (Table 1 ). These 

samples were collected using a strat ified random method within the study area by a 1 m2 

quadrat. The c limate data and P ferti l izer data were calculated instead of observed for 

each sample. 

4 .2 .2 .2 .  Decision tree development and assessment 

The decision tree models for annual, spring, summer, autumn and winter pasture 

productivity were analysed in SAS Enterprise Miner, Version 4 . 1 (SAS Institute I nc . ,  

1 999-200 1 ,  Cary, Ne, USA). The main procedure for developing a dec is ion tree model 

is to split the data of target variable based on it response to input variables. There are 

different criteria used to split the data, depending on the nature of the target variable. 

For interval variables (i.e. continuous variables) like pasture productivity, the spl it is 

based on variance reduction or F tests. I compared bot h  criteria and chose variance 

reduction as the split criterion. However, the decision tree outputs from using these t wo 

criteria were very similar. 

Model assessment is an important step in developing the decision tree, as it enables 

a good model output, and prevents overtraining which otherwise would develop a model 

that only fits the data from which it is tra ined (Witten & Erank 2000). SAS Enterpriser 

Miner has several options to assess models having interval targets. The measure of 

average squared error CASE) is  commonly used. ASE is  s imilar to mean squared error 

(MSE) in general l inear models so the smaller the ASE the better the model fit to the 

data. I f  t here are validation data available, it is assessed by the ASE of  val idation data; 

otherwise the ASE of the training data is used. In the development of the decision trees 

here, the whole dataset was randomly part itioned into two parts: training data (70% of 

the total) and val idation data (30% of the total). The decision trees were derived using 
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the training data and fit was assessed using the validation data; and the "best" tree 

which had the smallest ASE from val idation data was selected. 

Table 1. Variables used in the decision tree and G IS analyses 

Model role Variable symbol Units Variable descrietion 
input pH -log \0 [H+] soil pH 

BD 3 g/cm soil bulk density 
OlsenP flg/g soil Olsen P 
N fert kg/ha/y annual elemental N fertiliser input 
p fert kg/ha/y annual elemental P fertiliser input 
P fertS kg/ha S-year elementnal accumulative P fertiliser input 
P fert l O  kg/ha l O-year elemental accumulative P fertiliser input 
temp3 QC annual mean daily temperature 
temp_sp QC spring mean daily temperature 
temp_su QC summer mean daily temperature 
temp_au QC autumn mean daily temperature 
temp_wi QC winter mean daily temperature 
ram3 mm annual rainfall 
rain_sp mm spring rainfall 
rain su mm summer rainfall 
ram au mm autumn rainfall 
ram Wl mm winter rainfall 
rain warnl mm sum of spring and summer rainfall 
solar3 MJ/m 2 annual mean daily global solar radiation 
solar_sp MJ/m 2 spring mean daily global solar radiation 
solar su MJ/m2 summer mean daily global solar radiation 
solar au MJ/m2 autumn mean daily global solar radiation 
solar wi MJ/m2 winter mean daily global solar radiation 
aspect hill slope aspect. ego N NE S SW NW, etc. 
slope degree hill slope angle 

target armual productivity kg/ha/y annual abovegrOlmd dry matter per hectare 
spring productivity kg/ha/season spring abovegrOlmd dry matter per hectare 
summer productivity kglha/season summer aboveground dry matter per hectare 
autumn productivity kglha/season autunm aboveground dry matter per hectare 
winter productivity kglha/season winter aboveground dry matter per hectare 

I set six as the maximum tree levels, and 1 1  as the min imum observations required 

for a split search. The recommendation on minimum observations was derived using the 

program by assessing the size of the whole dataset (SAS Online Help: Getting Started 

w ith Enterpriser Miner Software). 
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4.2.3. GIS-based prediction and model validation 

The outputs of the dec ision tree models for annual and seasonal pasture productivity 

were imported into a GIS to derive "predictions" of annual and seasonal productivity for 

the pasture described previously. A 5 x 5 m reso lution digital e levation model (DEM) of 

this pasture was interpolated from a XYZ coordinates fi le produced by New Zealand 

Aerial Mapping Ltd. A map layer of the four farmlets was created from the DEM based 

on an existing fence map. All the GIS map layers of input variables were then generated. 

Map layers of rainfall and P fertil iser input were adjusted by a cosine of  the slope angle, 

and layers of solar radiat ion were adjusted by slope and aspect with methods previously 

mentioned. All  the map layers had the same resolution (5 x 5 m). 

I n  1 994, the annual and seasonal pasture productivity was measured on these four 

farmlets with a "trim technique" involving harvesting pasture regrowth from trimmed 

p lots ( 1  m2) protected from sheep grazing (Lambert et al. 1 996). For each of spring, 

summer, autumn and winter productivity, and also for annual totals, 24, 30, 24 and 30 

observations were obtained for LL,  LN, HN and llli, respectively. These observations 

were taken from systematically designed p lots which included major aspect and slope 

categories within a farmlet. This data was independent from the data used to develop the 

decis ion tree models. 

G IS-based predictions were made based on the c limatic and management variables 

ill 1 994. The observed productivity was used to verify the predictions. Spatial 

predict ions for annual and seasonal pasture productivity were implemented by coupl in g  

the outputs o f  the decision trees with GIS using a map overlay function. The prediction 

outputs were the GIS map layers o f  annual , spring, summer, autumJl and winter pasture 

productivity. Fig. 2 shows the procedures for generating the model predict ions. 

The average annual and seasonal productivity estimates for the four farmlets were 

then extracted from the map layers of predicted productivity by calculat ing the average 

productivity of al l  the p ixels (5 mx 5 m) within each farmlet (there are 2737, 3689, 2366 

and 2 769 p ixels for the farmlets LL, LN, HN and llli, respectively). The predicted 

productivity was then compared with the observed productivity for an empirical 

val idation of the model (Mitchel l  1 997). The 95% confidence interval of the observed 

productivity mean was set as an acceptable error of the prediction. S ince the map layers 

of predicted productivity covered an area which was larger than the four farmlets, only 

84 



Chapter4: Modelling pasture productivity - decision tree with GIS 

the area within the four farmlets was used to val idate the predictions. This model 

validation method is acceptable for its purpose. However, a better method is to validate 

individual prediction in a p ixel (contrast to using the average w ithin a farmlet) by 

comparing it with observation at the corresponding s ite, but this would require a large 

number of measurements .  

The GIS analyses were implemented m Idrisi 3 . 2  (Clark Labs, Clark University, 

Worcester, MA, USA). 

Fence map 

GIS environment i····················································· .......................................................................................... ; 
Map layers of input variable 

r-------------------------------------: l 
: : : 
! SI ! 1 : ope : ; 
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Statistic environment r···· ........ ·· .. ······· .... ·· .......... ·· .... .......... · .. ··· .. ·! 

Decision trees 

Decision tree for 
annual roductivit 

Decision tree for 
summer roductivit 
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Fig. 2. Diagram of the procedures for generating the model predictions in G IS. The 

rectangles in the GIS environment area represent the G I S  map layers. The arrows 

indicate the orders and the resources in generating predictions on pasture productivity. 

Names of input variables and their description are in Table 1 .  
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4.3. Results 

4.3. 1 .  Decision trees 

Decision tree model for annual, sprmg, summer, autumn and winter pasture 

productivity are d isplayed in F ig.  3, F ig. 4, Fig. 5 ,  Fig. 6 and Fig. 7. Each decision tree 

is a hierarchical structure that contains rules of prediction. Pasture productivity was first 

spl it into two branches by a variable which best explained the variance. This splitting 

continued for each of the branches with the same method, and so on unt i l  no further 

splitting could be made. Prediction was made using a series of constraints defmed by 

the input variables and their spl it-points. For example, in the model for annual pasture 

productivity (Fig. 3), when pasture with a slope equal to, or more than 22°, and a five

year cumulative P fertil iser (elemental P) input equal to, or more than 1 0 1 . 8  kg and a 

warm season rainfall equal to, or more than 540 mm, the predicted annual pasture 

productivity was 1 0347 kg/ha. 

The hierarchical structures of the decision trees can also indicate the relative 

importance of environmental and management variables in influencing productivity and 

the interaction among these input variables. The variable first selected in splitting the 

tree is more influential than those selected after it. In the decision tree model for annua l 

pasture productivity slope was the first variable selected to split the tree, and was the 

most important factor influencing annual pasture productivity. Olsen P (for slopes less 

than 22°) and five-year cumulat ive P fertil iser input (for s lopes equal to or more than 

22°) were the second most important factors (Fig. 3) .  The most important variables 

influencing spring pasture productivity were a lso slope, Olsen P and five-year 

cumulative P fert il iser input (the same as the annual pasture productivity) (Fig. 4). For 

summer pasture productivity, annual P fertiliser input, summer rainfall (for low annual 

P fertil iser input) and slope (for h igh annual P fertil iser input) were the most important 

variables (Fig. 5) .  Autumn rainfal l, ten-year cumulative P fert iliser input (for low 

autumn rainfall) and five-year cumulative P fert iliser input (for high autumn rainfal l) 

were the most important variables influencing autumn pasture productivity (Fig. 6). 

O lsen P,  five-year cumulative P fert i l iser input (for low Olsen P) and winter solar 

radiation (for high Olsen P) were the most important variables influencing winter 

pasture productivity (Fig. 7). 
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Fig. 3. The decision tree model for ann ual pasture productivity. Predicted productivity are in the un-shaded rec ta ngles, splitting variables and split-points are in the 

shaded rectangles. Prediction goes to the left-side branch when the splitting variable less is than the split-point, and goes to the right-side branch when the splitting 

variable is equal to, or more than, the split-point (in the case of as pect, pasture with aspect set before the co m ma go to left branch, others go to right branch). See Table 

1 for variable symbols and unit descriptions. 
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I 465 1 Lii.iiu I 

Fig. 4. The decision tree model for spring pasture productivity. See caption of Fig. 3 for the interpretation of decision tree. 
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Fig. 5. The decision tree model for sum mer pasture productivity. See caption of Fig. 3 for the interpretation of decision tree. 
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Fig. 6. The decision tree model for a utumn pasture productivity. See caption of Fig. 3 for the interpretation of decision tree. 
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63 1 

Fig. 7. The decision tree model for winter pasture productivity. See caption of Fig. 3 for the interpretation of decision tree. 
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The interactions of  environmental and management variables on pasture productivity 

can be eas i ly found in the dec ision trees. For example, there was a interact ion between 

ferti l ity and moisture in the decision  tree model for annual pasture productivity (Fig. 3) :  

when pasture received a five-year cumulative P fertiliser input equal to, or more than 

1 0 1 . 8 kg, pasture with a warm season rainfall equal to, or more than 540 mm had a 

mean annual productivity of 1 0347 kg/ha, while that with a warm season rainfal l  less 

than 540 mm only had a mean annual productivity of 8 1  0 1 kg/ha. 

4.3.2. G IS-based prediction and model validation 

GIS-based predict ions for annual and seasonal pasture productivity are shown in F ig. 

8 .  The predicted average annual and seasonal pasture productivity of the four farmlets 

LL, LN, HN and llli were graphed against the observed average annual and seasona l 

productivity in F ig. 9. The predicted average annual and seasonal pasture productivity 

of the four farmlets LL, LN, HN and HR were derived from 2737 ,  3689, 2366 and 2769 

pixels, respectively. 

The prediction for average annual pasture productivity was validated in the farmlets 

LL, LN and HR.  Though the prediction in the farmlet RN was not verified, the 

difference between the prediction and observation was st i l l  within 25% of the 

observation mean. The predictions for spring and autumn pasture productivity were 

verified in LL. No prediction for summer productivity was verified among the four 

farmlets. The prediction for winter productivity was verified in LL and HR.  

4.4. Discussion 

The results show that the decis ion  tree model for annual pasture productivity 

performed very well with three farmlets being validated. The difference between 

predict ion and observation for another farmlet was st ill within 25% of the observation 

mean (Fig. 9). This indicates that the decision tree is a reliable and accurate approach 

for predicting annual h i l l-pasture productivity. An appl ication of the dec ision tree in 

predicting p lant species distribution (Vayssieres et a1. 2000) showed that the dec ision 

tree performed s ignificantly better than a polynomial logistic regression model for four 

of the six cases considered, and as well as in the two remain ing cases. Applications of 

the decis ion  tree in classifying remote sensed vegetation data (Yang et a1. 2003) and in 
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predicting tree species abundance (Iverson and Prasad 1 998) also indicated that the 

decision  tree had very good performance as a model ling approach. 
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Fig. 9. Comparison of the predicted and the observed annual (A), spring (B), summer 

(C), autumn (D) and winter (E) pasture productivity of the farmlets LL, LN, H N  and 

HH. Bars indicate the 95% confidence interval of the observed productivity means. 

However, the empirical val idat ions of the decision tree models for seasonal pasture 

productivity were not as good as that for annual pasture productivity. This may be 

because the qual ity of seasonal pasture productivity data used in developing the 

decis ion  tree models for seasonal pasture productivity were not as good as annua l  

pasture productivity data, as  they were calculated from the pasture cuttings covering a 

season (Lambert et al. 1 996) instead of measuring from a designed experiment, which 

may a llocate the production that occurred in one season to another season, and introduce 
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errors into the seasonal pasture productivity data. A lso, carryover effects from season 

to season (e.g. due to drought) are likely to be more influent ial compared to carryover 

effects from year to year. This suggests the qual ity of a decision tree will u ltimately 

depend on the qua l ity of  the training data. Further improvement in the p redict ive 

accuracy of the decision tree models  for seasonal pasture productivity can be made by 

gathering more seasonal pasture productivity data in trials designed specifical ly for the 

purpose. 

H i l l  s lope, due to its important role in influencing available moisture, fert i lity and 

solar radiation, greatly influences h i l l-pasture productivity. The impact of hi l l  s lope on 

pasture productivity is well recognised (White 1 990; Gil l ingham et al. 1 998), and was 

fully indicated in the decision tree models for annual and seasonal pasture productivity. 

To realise its effect over space GIS, therefore, became an essential part in this modelling 

process. The successful integration of decision tree with GIS provided a p latform to 

predict pasture productivity for pastures with heterogeneous topographic and 

management features, and to present model prediction over space for further appl ication 

and investigation. 

A DEM is usually the most important element in a GIS-based model l ing process. 

The qual ity  (reso lution and accuracy) of a DEM can greatly influence the model 

prediction as many environmental factors are derived from it (Iverson et al. 1 997;  

Wadsworth & Reweek 1 999;  Stocks & Wise 2000). A h igh resolution DEM was used in  

this study to generate slope and aspect, and the adjustments in rainfa ll ,  P fert iliser input 

and solar radiation were then made based on them. Th is enabled the model predict ions 

to reflect the smal l  changes of topographic features that influence pasture productivity 

in hi l l-pasture with heterogeneous micro-topography. 

The advantage of this model l ing approach is that it can be used as, or incorporated in, 

a decision support system to improve pasture management. For example, it can be 

applied to predict pasture productivity for an area of interest or to assess the effect of 

a lternative fert i l iser application strategies on pasture productivity. It also can be used to 

investigate relationships between pasture productivity and environmental factors. For 

example, to assess the seasonal c limate variabi l ity such as warm spring or drought 

summer on subsequent pasture productivity. 
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One limitation of this modell ing approach is that some soil properties such as so il 

O lsen P,  pH and bulk density were used as input variables to s imulate pasture 

productivity. These so il features may increase the predictive ability of the models, but in 

practice, they are usually very hard to obtain on a large scale. To develop a decision tree 

that only incorporates c limatic, topograph ic and management variables would be a 

practical choice, though this may reduce the predict ive ability of the model to some 

degree. 

4.5. Conclusion 

The predictive modelling approach described here incorporated two elements: 

decision tree and GIS. The decision tree approach was found to perform well in 

predicting annual pasture productivity. It had good predictive accuracy and revealed the 

relat ive importance of environmental and management variables and their interaction in 

influencing hil l-pasture productivity in the studied area. Using GIS in th is predictive 

modell ing approach fac i l itated the derivation of topograph ical variables and visualised 

model outputs for interpretation and analys is. This GIS-based predictive modelling 

approach can be used to investigate the interrelationship between pasture productivity 

and environmental factors and to improve pasture management. 
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Chapter 5. Modelling the I mpact of Climate C h anges and Alternative 

Phosphorus Fertiliser Management on Pasture Production in the 

North Island, New Zealand 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . .  � 
Studies in previous chapters indicated that the decision tree model for pasture 

productivity performed better than the regression model in terms of predictive abi lity. 

However, one disadvantage of the decision tree model is that it is not able to reflect 

the influence of small changes in input variables on the model target. In this study a 

polynomial regression model was developed and was integrated with a geographical 

information system (GlS) to evaluate the impacts of cl imate change and alternative 

phosphorus ( P) fertiliser management on pasture production. lnsights obtained from 

the previous decision tree models provided useful help in  developing this regression 

• model .  
• • • •• • •• • • • • • • • • • • •• • ••• • • •• • •• • • ••• • • • ••••• • •• • • • • ••• • • • • • • • • • • • ••• • • • • 

A paper derived from this chapter with a title "Modelling the impact of climate changes on pasture 

production in the North Island, New Zealand" by B. Zhang, 1. Valentine & P.D. Kemp has been 

submitted to Climatic Change for publication. 
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Abstract. To assess the potential impact of climate changes on pasture production in 

the North I sland, New Zealand, eight c limate scenarios of increased temperature and 

increased (or decreased) rainfall were investigated by integrating a polynomial 

regression model with a geographic information system (GIS). The impact of alternative 

phosphorus ferti l iser application on pasture production was a lso investigated. The 

results indicated that the cl imate change scenarios assuming an i ncrease in temperature 

by 1 -2 oC and a rainfall change by -20% to +20% would have a very significant impact 

on pasture production with a predicted pasture production variation from -46.2% to 

+5 1 .9% compared with the normal c limate from 1 96 1 - 1 990. However, the variation was 

in a range between -20.4% to +9.6% when averaged over the climate zones. Increased 

temperature would generally have a positive effect on pasture production in the South 

and Southeast of the North I sland, and increased rainfall would have a positive effect in 

the Central ,  South and Southeast of the North Island and a negative effect in the north of 

the North I sland. The interaction of decreased rainfall and increased temperature would 

have a negative impact for the whole North I sland except some central areas with high 

rainfall. The result also indicated that pasture with low rainfall had a higher response to 

increased P ferti l iser input than pastures with high rainfall, which l ikely resulted from 

the high runoff and associated P loss in the high rainfall area. Relevant management 

practices for coping with potential cl imate change and improved strategies for ferti liser 

use were discussed. One limitation of this study was that the effect of elevated C02 

concentration on pasture production was not assessed. 

5. 1 .  I ntroduction 

Climate is a key driver of pasture ecosystem processes and fundamentally controls 

the amount of biomass available and i ts distribution among seasons (Sala et af. 1 988;  

Barrett et al. 2002; Bai et al. 2004). In  New Zealand, rainfall is the most important 

cl imate factor constraining pasture growth (Chapter 3) with spring and summer rainfall 

explaining about 60% of variation in pasture production (Radcl iffe & BaITS 1 987). 

Temperature is also a key factor influencing pasture growth especially during winter 

and early spring (Baars & Waller 1 979; White 1 990). 

The world is getting warmer and global temperatures today are about 0.6 QC higher 

than they were in the early 1 900s due to the greenhouse gases emissions (Ministry for 
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the Environment 200 1 ) .  This warmmg, from 1 94 1 ,  has resulted in more days with 

greater than 30 QC and fewer days with less than 0 QC per year in New Zealand 

(Plummer et al. 1 999). Climate models have predicted that global average temperatures 

in 2 1 00 wi l l  be between 1 .0 to 5 .4  QC higher than those in 1 900 depending on the 

scenarios assumed (e.g. Kattenberg et al. 1 996; I PCC 2000; Houghton et al. 200 1 ), and 

global average precipitation will increase by 1 to 9% by 2 1 00 and more intensive 

precipitation events are likely over many areas (Houghton et at. 200 1 ) . New Zealand is 

l ikely to warm by about two-thirds of the global mean temperature change, and is 

expected to increase faster in the North Island than in the South Is land, with rainfall 

l ikely to increase in the west of the country and decrease in the east (Ministry for the 

Environment 200 1 ). Temperature is expected to increase in the range 0 .6  to 2.8 QC and 

the changes in rainfall are expected in the range of -20% to +30% (Ministry for the 

Environment 200 1 ) . 

This climate change and variabil ity has a pronounced impact on ecosystems 

(McCarthy et at. 200 1 ), and may result in changes in vegetation structure and 

composition as well as productivity (Armstrong 1 996; Riedo et al. 1 997 ;  Iverson & 

Prasad 1 998;  Joos et at. 200 1 ) . As a highly climate-driven industry, pastoral agriculture 

is especially vulnerable to this cl imate change and variability (Thornley & Cannell 1 997;  

Kenny et al. 2000; Hal loy & Mark 2003) .  

Few studies that have modelled the impacts of  climate changes on pasture 

production in New Zealand. These models have, on average, predicted an increase in 

pasture production. For example, Baars et al. ( 1 990) predicted that annual yield will be 

unchanged in the East Coast of the North Island and will increase by 8% in Waikato, 

and 20% in the South Island. For lowland pastures, the climate changes may increase 

annual pasture production per hectare by 1 0% to 3 0% (Martin et al. 1 99 1 ) . Similarly, 

Campbell ( 1 996) estimated an average increase in pasture production of 1 0% to 1 5% by 

2050-2 1 00,  but the effect may be negative in some regions and higher than this in some 

others. Although the projected climate change may generally have a positive effect on 

pasture production, it may also bring great uncertainties such as those that result from 

drought and heavy rainfall .  

The magnitude of changes in temperature and rainfall likely as the result of climate 

change and variabi l ity are uncertain (Allen et al. 200 1 ) . Previous studies of climate 
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change impact on pastures in New Zealand (Baars & Wailer 1 979; Martin et af. 1 99 1 ;  

Campbell 1 996) assumed only one or two climate change scenarios, and model 

predictions were for point locations. This is a limitation in assessing the climate change 

impacts over space for an area of interest under alternative climate change scenarios. 

With advances in the use of geographic information systems (GISs), a G IS-based model 

can simultaneously assess multiple scenarios for large areas over space. In this study, I 

developed a polynomial regression model and linked this model with a GIS  to predict 

and assess the impacts of climate changes on pasture production in the North Island 

under multiple climate change scenarios. This assessment focused on the impact of 

changes i temperature and rainfall . The effect of increased carbon dioxide concentration 

was not evaluated. The model was developed from data collected mainly from hill

pasture, but it has been applied across all pastoral land in the North Island. 

The productivity of New Zealand' s  pastures rel ies heavily on the regular input of 

phosphorus (P) through phosphate-based ferti l isers. The amount of P ferti l iser input is 

strongly influenced by the economic benefit obtained by farmers and Government 

policies (Gil l ingham et al. 1 990) . Scenarios were designed and model led to evaluate the 

effect of different P fertil i ser regimes on pasture production. 

5.2. Methods 

5.2. 1 .  Study area 

This study covered the pasture in the North Island of New Zealand, which accounts 

for approximately 70% of total land. Forest and other  land covers account for the 

remaining area (Hunter & Blaschke 1 986) (Fig. 1 ). Climate is very diverse in the North 

I sland with mean annual rainfall ranging from about 800 to 1 600 mm and mean annual 

daily temperature ranging from about 9 to 1 5  QC (Tomlinson & Sansom 1 994). Based on 

the temperature and rainfall normal (Iong-ternl average) data for 1 96 1  to 1 990, I 

classified the North Is land into five climate zones using the GIS climate surfaces 

interpolated from these temperature and rainfall normal data. They are high rainfall and 

medium temperature zone (HR-MT), high rainfall and high temperature zone (HR- HT), 

medium rainfall and high temperature zone (MR-HT), medium rainfall and medium 

temperature zone (MR-MT), low rainfall and medium temperature zone (MR-HT) 

(Table 1 ) .  F ig. 1 outlines the regions for these climate zones. 
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Fig 1 .  Study area, land cover and climate zone. See table 1 for the climate zone explanations. 

5.2.2. Dataset 

In last few decades, considerable research has been conducted on pasture in the 

North I sland, New Zealand; most of it related to pasture production (Lambert et al. 

1 983 ; Gil l ingham et at. 1 998; Dodd & Ledgard 1 999;  Moir et at. 2000). There i s  a large 

amount of data in the l iterature and kept by re searchers in the form of raw or 

unpubl ished data. These data provide a very useful resource to develop models for 

assessing influence of climate factors on pasture production. 

I focused on annual and seasonal rainfall, annual and seasonal daily mean 

temperature, annual P fertil iser (superphosphate) input and application history, nitrogen 

(N) ferti l iser (urea) inputs, hil l  slope and soil Olsen P as key input (independent) 

variables in model analysis. These variables were identified in a previous decision tree 

model (Chapter 3 )  as the most significant factors influencing pasture production in the 

North Is land. Data for annual pasture production (aboveground dry matter), ferti l iser 

input, hil l  slope and soil Olsen P were from the l iterature and collected raw/unpubl ished 
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data. Climate data were from the National Institute of Water & Atmospheric Research 

(NIW A). Since the rainfall data were measured from the horizontal surface and the P 

ferti l iser was commonly aerially appl ied to hill-pasture with a uniform rate, the actual 

rainfall and P ferti liser received were adj usted by the cosine of the slope angle. Most 

pasture production data were measured by cutting re-growth from a trimmed quadrat 

(mainly 1 m2) with a cutting period of about one to two months depending on the 

growth rate of plants (Lambert et al. 1 983) .  There were about 1 900 samples in this 

dataset and those were from Whatawhata, Ballantrae, Te Kuiti, Riverside, Summerlee, 

Waipawa, Mauriceville, Mikimiki , Gladstone and Whareama. Most of these samples 

were from hil l-pasture. 

Table 1 .  Climate zones in the North Island based on normal climate data from 1 96 1 -
1 990 

Climate zone Rainfall Rainfall Temperature Temperature 
mean {mm} range {mm} mean CC} range CC} 

HR-MT 1 709 1400-5899 1 1 . 8  8 .5- 1 3 .0 

HR-HT 1 703 1 400-289 1 14. 1 1 3 .0- 1 5 .6 

M R-HT 1 278 1 1 00- 1 399 14.4 1 3 .0- 1 5 . 8  

M R-MT 1 228 859- 1 399 1 1 . 7  8 .8- 1 3 .0 

LR-MT 98 1  725- 1 099 1 2 .6  1 1 .0- 1 5 .6 

5.2.3. D E M  and GlS surfaces 

A 1 00 m resolution DEM of the North Island was obtained from the Precision 

Agricultural Centre, Massey University. G I S  map layers of annual and seasonal daily 

mean temperature, annual and seasonal rainfall were interpolated from the NIW A 

temperature and rainfall normal data during 1 96 1 - 1 990 with a 1 00 m resolution. This 

interpolation generated surfaces of annual and seasonal temperatures rainfal ls for the 

North Island from point data with a distance-weighted procedure. There were 364 points 

( locations) of rainfall and 1 0 1  points of temperature used in interpolating the rainfall 

and temperature surface, respectively. Hill slope and ferti liser input surfaces were also 

generated from this DEM. All the GIS  analyses were conducted in I drisi 3 . 2  (Clark 

Labs 1 997). 
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5.2.4. Model development and assessment 

A polynomial regression model was developed In SAS 8 . 1 and SAS Enterprise 

Miner, Version 4. 1 (SAS Institute 1 999). 

Annual pasture production data was square root transformed to reduce the 

heterogeneous variances as all random errors having the same variance is a fundamental 

assumption underlying linear regression (Sen & Srivastava 1 990). C limate variable 

(annual and seasonal rainfall and dai ly mean temperature) ,  N ferti l iser input and soi l  

Olsen P were standardised t o  a range of 0- 1 by scaling all the data with the largest 

observation in the dataset (Johnson & Wichern 1 992). The variable of P fertiliser input 

was a combination of both annual P fertiliser input and P fertil iser application history as 

the previous decision tree model (Chapter 3) indicated that five-year cumulative P 

ferti liser input was a very significant variable in influencing pasture production. I t  was 

calculated as fol lows: 

P ferti l iser input = 0.5  x inputannua\ + 0 .5 x inputhistory ( 1 ) 

Where inputannua\ is the annual P fertiliser input, inputhistory is the average annual P 

fertil iser input in  the previous five years before the sampling year. The P fertiliser input 

was also standardised by the method used for N fertiliser input and soil Olsen P. Hi l l  

s lope was standardised by a cosine transformation to a scale of 0- 1 .  This standardisation 

made the model ling process easy to conduct, especially in GIS analysis. 

As pasture production showed a curvil inear response to temperature and rainfall in  a 

p rimary analysis and this was also revealed in  the decision tree model (Chapter 3) ,  

quadratic (squared) terms of temperature and rainfall were included in  the model 

analyses. An interaction term between rainfall and P fertil iser input was also included in  

the model analyses along with other variables. 

A forward stepwise approach was used to select the variables with a significance 

level of P <0.05 in model analyses. To overcome the l imitation of the stepwise approach, 

b ackward and forward approaches were also used to faci l i tate the variable selection 

( Sen & Srivastava 1 990). Resi duals were checked to identify outliers, and the condition 

i ndex was checked to identify multicollinearity. Further improvements of model fit 

were then made accordingly. 
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Table 2 :  Scenarios of climate changes and P fertilizer input. 

Scenario 

Norma l  

R + 1 0%-T +1  QC 

R - 1 0%-T + 1  QC 

R + 1 0%-T +2 QC 

R - 1 0%-T +2 QC 

R +20%-T +1 QC 

R -20%-T + 1  QC 

R +20%-T +2 QC 

R -20%-T +2 QC 

1 50 kg/ha P 

200 kg/ha P 

Scenario description 

using normal temperature and rainfall data ( 1 960-1 991 ) and a u niversal 

1 00 P fertiliser (su perphosphate) input, no N fertiliser input 

rainfall increased by 1 0% and temperature increased by 1 QC from the 

normal scenario 

rainfall decreased by 1 0% and temperature increased by 1 QC from the 

normal scenario 

rainfall i ncreased by 1 0% and temperature increased by 2 QC from the 

normal scenario 

rainfall decreased by 1 0% and temperature i ncreased by 2 QC from the 

normal scenario 

rainfal l  increased by 20% and temperature increased by 1 QC from the 

normal scenario 

rainfall decreased by 20% and temperature increased by 1 QC from the 

normal scenario 

rainfall i ncreased by 20% and temperature increased by 2 QC from the 

normal scenario 

rainfall decreased by 20% and temperature increased by 2 QC from the 

normal scenario 

P fertil iser increased by 50 kg/ha from the normal scenario 

P fertil iser increased by 1 00 kg/ha from the normal scenario 

A model assessment was implemented in the model analyses. The whole dataset was 

first randomly partitioned into two parts : the training data ( 70% of the total) and the 

validation data (30% of the total). The regression model was analysed using the training 

data and model was assessed by the validation data. This assessment compared the 

average squared error (ASE) of the potential sub models and the corresponding ASE of 

each sub model in  the validation data. ASE is similar to mean squared error ( MSE) and 

is  an i ndicator of model goodness-of-fit; the smal ler the ASE, the better the model fits. 

A "best" model that had the smallest ASE from validation data was selected (Femandez 

2003). 

5.2.5. Climate change scenarios and GIS-based model prediction 

With regard to the estimation of the changes in temperature (0.6 to 2 . 8  QC ) and 

rainfal l  (-20% to +30% ) by Ministry for the Environment (200 1 ), I used eight scenarios 
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of climate change which assumed an annual daily mean temperature increase by 1 to 2 

°C and an annual total rainfall change by -20% to +20%. A normal scenario, which 

represented the average temperature and rainfall data for the period of 1 96 1 - 1 990, was 

used as a check for these scenarios. This normal scenario assumed a universal 1 00 kg P 

fertil iser input and no N fertiliser input. Two scenarios of P fertil iser input ( 1 50 kg/ha 

and 200 kg/ha) were also used. Details of these scenarios are in Table 2 .  

G IS  interface 
Regression model: Y =  <1( ,  + a , x , +  a,x2+ + a,x, + E 

\ .--------4------., 

Temperature 

and rainfall 

normal data 

Fig. 2. The procedure for generating GIS-based predictions for pasture p roduction under 

different climate scenarios. The rectangles represent data files and results, the ellipses 

represent the GIS fun ctions and the paraJlelograms represent the GIS map l ayers. 

Map layers of climate variables (temperature and rainfall) under different scenarios 

were first prepared based on the normal annual and seasonal mean dai ly temperature 

and rainfall map layers generated previously and were standardised by using the method 

previously described. Map layers of P fert il iser input under the two fertil iser input 

scenarios were also prepared and standardised. The GIS-based predictions for pasture 
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production under different scenarios were then implemented in  GIS using the Image 

Calculator by l inking the developed regression model (Stocks & Wise 2000) . The 

p redicted pasture production was then back transformed for easy interpretation. P asture 

productions in the different c limate zones were extracted from the predicted G IS  map 

l ayers of pasture production and were presented separately. Fig. 2 shows the main 

procedure for generating G IS-based prediction for pasture production under different 

c limate and P fertiliser input scenarios. 

5.3. Res ults 

5.3. 1 .  The regression model 

Table 3 shows the results of the regression model for annual pasture production. The 

model was very significant (F =349.72 ,  P <0.00 1 )  and explained 67.8% variance in 

annual pasture production. The significant input variables selected in the model 

included hi l l  s lope, P ferti liser input, annual daily mean temperature, annual and spring 

total rainfall ,  the quadratic terms of annual daily mean temperature and annual total 

rainfall and an interaction term between annual total rainfall and P fertiliser input (Table 

3c) .  Soil Olsen P was significant in model analyses; however, because it was closely 

correlated with P fertil iser input and resulted in a high multicollinearity problem, it was 

not selected in the model as P fertil iser input and application history were indicated as 

more significant variables than Olsen P (Chapter 3) .  This was also good from a practical 

point of view as Olsen P is difficult to measure over a large scale .  As this dataset only 

contained very l imited samples of applying N ferti l iser, the N fertiliser input was not 

significant in model analysis. 

The effect of P fertil iser input on pasture production was positive, while the effects 

of temperature and rainfall were positive when they were low and were negative when 

they were high. The interaction between P fertiliser input and annual total rainfall was 

negative. 

5.3.2. GIS-based model prediction 

GIS-based prediction for annual pasture production under the normal scenario is 

shown in Fig. 3 .  Table 4 shows the predicted pasture productions (mean ± standard 

deviation) for the five climate zones under the normal scenario, the cl imate change 
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scenarios and the two P ferti l iser input scenarios, which were extracted from G IS map 

layers of predicted pasture production (map not shown) . F ig .  4 shows the changes of 

predicted pasture production (mean ± standard deviation, kg/ha) between the climate 

change scenarios and the normal scenarios, and between the two P fertil izer input 

scenarios and the normal scenario for the whole s tudy area. Table 5 displays the 

differences in pasture production in amount (mean ± standard deviation kg/ha) and in 

percentage (%) between the climate change scenarios and the normal scenarios, and 

between the two P fertil izer input scenarios and the normal scenario for the whole study 

area and the five climatic zones, which were extracted from Fig. 4 .  

Under the current climate situation (the normal scenario), the c limate zone of H R

H T  had the highest predicted average pasture production ( 1 2800 kg/ha); while LR-MT 

had the lowest (7600 kg/ha) . The H R-HT was about 70% higher than the LR-MT. 

F or the eight climate change scenarios, scenario R +20%-T +2 QC had the h ighest 

predicted average pasture production ( 1 1 320 kg/ha) for the whole study area, which was 

9 .6% higher than the normal scenario; scenario R -20%-T +2 QC had the lowest 

predicted average production (8220 kg/ha), which was 20.4% lower than normal 

scenario .  For the two P ferti lizer input scenarios, the 1 50 kg/ha P scenario was 3 .6% 

higher and the 200 kg/ha P scenario was 7 .2% higher than the normal scenario for the 

whole study area, respectively. 

The predicted average pasture productions for the climate zone H R  -MT all increased 

by 6 . 7% to 20.5% under the eight cl imate change scenarios compared with the normal 

scenario. Opposite to the climate zone H R-MT, the predi cted average pasture 

productions in the climate zone HR-HT decreased by 30. 1 % to 7 . 7% under the eight 

climate change scenarios. The predicted average pasture production in the climate zone 

MR-HT decreased for all other climate scenarios by -46.2% to -2 .3% except under the 

scenarios of R +20%�T + 1  QC, which i ncreased by 2 .4%. For the climate zone M R-MT, 

the predicted average pasture production increased by 2.2% to 43 .6% for all other 

climate scenarios except under the scenario R -20%-T + 1 QC, which decreased by 6.2%. 

The predicted average pasture production for the climate zone L R-MT increased under 

the scenario R + 1 0%-T + 1  QC (25 .4%), R + 10%-T +2QC (22.4%), R +20%-T + 1  QC 

(38 .0%) and R +20%-T +2 QC (34 .8%), and decreased under al l  other scenarios by -
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22.0% to -3 .8%. That is the average pasture production increased under all the increased 

rainfall scenarios and decreased in al l  the decreased rainfall scenarios. 

For the two P ferti lizer input scenarios, an increased average p asture production was 

predicted for all the five climate zones compared with the nonnal scenario which 

assumed a 1 00 kg/ha P fertilizer input. For t 50 kg/ha scenario, the highest i ncrease was 

in the climate zone LR-MT (6.7%) and the lowest was in  the climate zone HR-HT 

(2. t %). For 200 kg/ha scenario, the c limate zone L R-MT also had the highest increase 

( 1 3 . 6%) and the climate zone HR-HT had the lowest increase (4.2%). 

Table 3: Summary of the regression model for pasture production.  The variable symbols 

are: Cos(slope) (cosine slope), P _fert (P fertilizer input, kg/ha), TempJ (annual daily 

mean temperature, 0c), Rain_sp (spring total rainfall, mm), RainJ (annual total rainfall, 

m m). 

a. Analysis of Variance 
Source OF Sum of  Squares Mean Square 

Model B 539956 

Error 1 3 1 9  254562 

C Total 1 327 79451 7  

b. Model fit 
0 .6796 

c. Parameter Estimates 
Variable 
I ntercept 

Cos(slope) 

P_Fert 

Temp_y 

Rain_sp 

Rain_y 

Rain_y*P _fert 

Square (temp_y) 

OF 

1 

1 

1 

Square (rain_y) 1 

67494. 0  

1 93 .0  

Adjusted R-square 

Estimate Std Error 

-7 1 2 .5  88.47 

1 50 .3  8 .04 

55.9 7.94 

1 21 6 .3 2 14 .BO 

4 1 .5 4.92 

229.8 24.54 

-45 .7  1 1 .70 

-67 1 . 1  1 27.20 

- 1 23.6 1 9. 80 

F Stat 

349.72 

t Stat 

-B.05 

1 B .70 

7 .04 

5 .66 

8.44 

9 .37 

-3.9 1  

-5.28 

-6 .24 

Pr > F 

<.0001 

0 .6777 

Pr >Itl 

<.0001 

<.0001 

< .000 1 

< .0001 

<.0001 

< .0001 

< .0001 

< .0001 

< .0001 
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Fig. 3. Predicted pasture p rod uction (kg/ha) under normal scena rio for the North 

Island. The white a reas on the map are forest. 

For scenarIOS that assumed 1 QC increase in temperature a change in pasture 

production of -29 .8% to 4 1 .2% was predicted when rainfall change was from -20% to 

+ 20%; while for scenarios that assumed 2 QC increase in temperature a change in 

pasture production of -46.2% to +5 1 .9% was predicted when rainfal l change was from -

20% to +20% compared with the current cl imate situation (the normal scenario). 

F or scenarios that assumed 1 QC temperature increase, the highest decrease in pasture 

production was found in the cl imate zone M R-HT under scenario R -20%-T + 1 QC and 

the h ighest increase was found in the climate zone MR-MT under scenario R +20%-T 

+ 1 QC. For scenarios that assumed 2 QC temperature increase, the highest decrease in 

pasture production was also found in the climate zone MR-HT under scenario R -

20%-T +2 QC and the highest increase was also found in the climate zone MR-MT 

under scenario R +20%-T +2 QC. 
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Table 4: Predicted pasture production (mean ± standard deviation) (kg/ha) for the whole study area and the five climatic zones under 

different scenarios. See Table 1 for the climate zones and Table 2 for scenarios. 

Scenarios All  area HR-MT HR-HT M R-HT M R-MT LR-MT 

normal 1 0328 ± 2 782 1 0330 ± 2 736 1 2807 ± 1 0 1 0  1 l 523 ± 94 1 8 1 44 ± 3 048 7601 ± 1 069 
R + 1 0%-T + 1  DC 1 1 1 69 ± 2 1 90 1 2007 ± 2867 1 1 826 ± 1 8 1 1 1 1 252 ± 1 334 1 086 1 ± 2600 9532 ± 90 1 
R -1 0%-T + 1  DC 9934 ± 2366 1 1 802 ± 1 93 1 1 1 640 ± 1 426 9360 ± 1 288 8894 ± 2496 73 1 6  ± 8 1 8  
R + 1 0%-T +2 DC 1 0433 ± 24 1 3  1 26 1 2  ± 2583 9864 ± 2 1 50 90 1 6  ± 1 802 1 1 697 ± 1 856 9302 ± 1 206 
R - 1 0%-T +2 DC 9239 ± 2497 1 2448 ± 1 5 1 7  9693 ± 1 899 7326 ± 1 667 9637 ± 1 882 7 1 1 7 ± 1 090 
R +20%-T +1 DC 1 1 323 ± 2292 1 1 480 ± 3308 1 1 2 1 4 ±  2339 1 1 803 ± 1 32 7  1 1 502 ± 2546 1 0489 ± 907 
R -20%-T + 1  DC 8879 ± 2460 1 1 024 ± 1 7 1 1 1 0825 ± 1 570 8093 ± 1 2 1 9  7639 ± 2335 6 1 1 3 ± 744 
R +20%-T +2 DC 1 0587 ± 2552 1 2048 ± 3 1 27 93 1 2  ± 2498 95 1 1  ± 1 832 1 2369 ± 1 74 1  1 0247 ± 1 227 
R -20%- T +2 DC 8223 ± 2567 1 1 662 ± 1 420 8949 ± 1 952 6205 ± 1 548 832 1 ± 1 787 5 93 1 ± 993 
1 50 kg/ha P 1 0697 ± 2772 1 0573 ± 28 1 4  1 3074 ± 1 049 1 1 977 ± 932 8544 ± 3 1 03 8 1 1 1  ± 1 088 
200 kg/ha P 1 1 073 ± 2766 1 0820 ± 2898 1 3345 ± 1 1 00 1 2440 ± 923 8953 ± 3 1 55 8637 ± 1 1 07 
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Table 5: Changes in  pasture production (mean ± standard deviation, kg/ha) in amount (mean ± standard deviation kg/ha) and in percentage (%) 

between the climate change scenarios and the normal scenarios and between the two P fertilizer input scenarios and the normal scenario for the 

whole study area and the five climatic zones. See Table 1 for the climate zones and Table 2 for scenarios. 

Scenarios All area HR-MT HR-HT MR-HT M R-MT LR-MT 

Kglha % Kg/ha % Kg/ha % Kg/ha % Kglha % Kg/ha % 

R + 1 0%-T + 1  DC 84 1 ± 1 7 1 4 8 . 1 1 677 ± 1 1 1 1  1 6.2  -98 1  ± 1 1 34 -7.7 -27 1 ± 8 1 5 -2.3 27 1 7  ± 630 33.4 1 93 1  ± 738 25.4 

R -1 0%-T +1  QC -394 ± 1 5 89 -3.8 1 472 ± 1 23 3  1 4.3 - 1 1 6 7 ± 1 003 -9. 1 -2 1 62 ± 709 - 1 8 .8 749 ± 750 9.2 -285 ± 745 -3.8 

R + 1 0%-T +2 QC 1 05 ± 3 1 34 1 .0 2282 ± 1 8 1 7  22 . 1 -2943 ± 1 5 50 -23.0 -2507 ± 1 394 -2 1 . 8 3 5 52 ± 1 64 1  43.6 1 70 1  ± 1 489 22.4 

R -1 0%-T +2 °c - 1 089 ± 2965 - 1 0.5 2 1 1 8 ± 2088 20.5 -3 1 1 4 ± 1 500 -24.3  -4 1 97 ± 1 224 -36.4 1 493 ± 1 656 1 8.3  -484 ± 1 408 -6.4 

R +20%-T +1  QC 995 ± 2 2 64 9.6 1 1 50 ± 1 768 1 l . l  - 1 593 ± 1 776 - 1 2.4 2 80 ± 884 2.4 3358 ± 657 4 1 .2 2888 ± 729 38.0 

R -20%-T +1 QC - 1 449 ± 1 843 - 1 4.0 694 ± 1 953 6.7 - 1 982 ± 1 389 - 1 5 .5  -3430 ± 652 -29. 8  -505 ± 878 -6.2 - 1 48 8  ± 747 - 1 9 . 6  

R +20%-T +2 QC 259 ± 3496 2 . 5  1 7 1 7 ± 2277 1 6.6 -3495 ± 1 945 -27.3 -20 1 2  ± 1 467 - 1 7 .5  4225 ± 1 697 5 1 .9 2646 ± 1 5 1 3  34. 8 

R -20%-T +2 QC -2 1 05 ± 3047 -20.4 1 33 2  ± 2 700 1 2.9 -3858 ± 1 7 1 1 -30. 1 -53 1 8 ± 1 1 1 6 -46.2 1 77 ± 1 709 2.2 - 1 670 ± 1 352 -22 .0  
1 50 kg/ha P 369 ± 1 6 1  3 .6 243 ± 1 64 2 .4  267 ± 1 60 2 . 1  455 ± 83 3 .9 399 ± 99 4.9 5 1 0 ± 82 6.7 

200 kg/ha P 745 ± 29 1 7 .2  490 ± 2 85 4.7 538 ± 266 4.2 9 1 8  ± 1 1 2 8.0 808 ± 1 57 9.9 1 036 ± 1 04 1 3 . 6  
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(a). R + l O%-T +1 QC (b). R - IO%-T +l  QC 

(c). R + l O%-T +2 QC (d). R - l O%-T +2 QC 

Fig. 4. Changes in pasture production (mean ± standard deviation, kg/ha) under the climate 

change scenarios (difference between the climate change and the normal scenario) (a-h) and 

P fertiliser input scenarios (difference between the P fertiliser input scenarios a nd the 

normal scena rio) (i-D, for the North Island. The white a reas on the map a re forest. Note the 

d ifferent s cales in the map key. 

Fig. 4 continued on next page 
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Fig. 4 continued 

(e). R +20%-T + 1  QC 

(g). R +20%-T +2 QC 

( i ). 1 50 kglha P 
fertiliser 

(t). R -20%-T + 1  QC 

(h). R -20%-T +2 QC 

( j  ). 200 kglha P 
fertiliser 

== 
""""".00 
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Scenarios assummg a 1 0% decrease in  rainfall predicted a change of pasture 

production by -24.3% to +20.5%. Scenarios that assumed a 1 0% increase in rainfall 

predicted a change in  pasture production by -23 .0% to +43 .6%. Scenarios that assumed 

a 20% decrease in rainfall predicted a change in pasture production by -46.2% to 

+ 1 2 .9%. Scenarios that assumed a 20% increase in rainfall predicted a change in pasture 

production by -27 .3% to +5 1 .9%. 

5.4. D iscussion 

The model predicted a wide range (-46.2% to  +5 1 .9%) of  pasture production change 

for the eight c limate change scenarios compared with the nonnal climate from 1 96 1 -

1 990 in the different climate zones (Table 5).  This variation in pasture production 

indicated that the potential impacts of cl imate change on pasture in the North Island 

would be very significant. These pasture production changes were in a range of -20.4% 

to +9.6% under the eight cl imate scenarios when averaged over all the climate zones, 

which was in general agreement with the findings by B aars et a1. ( 1 990), Martin et al. 

( 1 99 1 ) and Campbell ( 1 996). Their predictions were usually in the range of +8% to 

+ 3 0% and a negative effect was also predicted in some regions. However, my model 

predicted a decrease in pasture production under the four scenarios with decreased 

rainfall for the whole North Island when averaged over all the climate zones, showing 

that the interaction of decreased rainfall and increased temperature will have significant 

negative effect on pasture production. 

The climate change report of Ministry for the Environment (200 1 )  estimated that the 

c l imate change in rainfal l  was l ikely to result in an i ncrease in the West of the New 

Zealand and a decrease in the East. U nder such a c l imate change situation, the four 

scenarios that assumed increased rainfal l  would be the case for the West and the four 

scenarios that assumed decreased rainfal l  would be the case for the East of the North 

Island. Corresponding to these climate situations, pasture production in most of the 

South-west would, on average, increase by + 1 1 . 1  % to +5 1 .9%, in most of the North and 

North-west would, on average, decrease by -2.3% to -27.3% and in most of the South

east would, on average, decrease by -3 .8% to -22.0%. This indicates that decreased 

rainfall and increased temperature would have negative effect for areas having low 

rainfall (e.g. LR-MT) and areas having high temperature (e.g. HR-HT, MR-HT), 
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respectively, with moisture stress being the major limitation on pasture growth. 

Currently most pastures in New Zealand are ryegrass and white c lover dominated and 

both of them are not drought-tolerant. Developing and wide use of drought-tolerant 

species in areas where cl imate changes are l ikely to have negative impact (e.g. North 

and South-east of the North Island) would be a good management practice in the face of 

c limate change. 

Results from the model predictions for the P ferti l iser input scenarios indicated that 

the effect of increasing P ferti l iser i nput from WO kg/ha (normal scenario) to 200 kg/ha 

would increase pasture production by 4.2% to 1 3 .6%, depending on the climate zone. I t  

was also indicated that pasture in  areas with relatively low rainfall had a higher response 

to increased P ferti liser input than pastures in areas with a relatively high rainfall .  An 

interaction of soil Olsen P and rainfall on pasture production was recognised and the 

effect of Olsen P on pasture production was positively influenced by avai lable soil 

moisture (Chapter 3 and Moir et a1. 2000) . The reason why the interaction between 

increased P fertil iser input and rainfall was negative was not clear. A possible reason is  

that the high rainfall area may have h igher so i l  P content than low rainfall area, and thus 

response to P fertil iser was less effective than for the low rainfall area. However, by 

checking the dataset, soil Olsen P was found lower in high rainfall areas than low 

rainfall areas, showing that this may not be the reason for the low response of P 

ferti liser to pasture production in high rainfall areas. A possible explanation is that 

runoff resulting from rainfall caused the associated P ferti liser loss. As P ferti liser was 

mainly aerially applied and most ferti liser may have remained on the surface of pastures, 

the proportion of P fertil iser loss by runoff may be positively related to the rainfall, and 

thus, the area with high rainfall may have low efficiency in uti lising P fertiliser. 

Lambert et al. ( 1 985) also found that proportion of total P in d issolved inorganic form 

i n  runoff tended to be higher for catchments applying more P ferti liser than those 

applying less P fertil iser. This negative interaction between rainfall and P ferti liser input 

on pasture production implies that increased rainfall that resulted from climate change 

may reduce the P ferti liser utilisation efficiency i n  hi ll-pasture. 

The regression model developed in this study had a very good model fit considering 

that the training data were from different locations and times. This was partially because 

the most significant input variables and the interactions among these variables i n  
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explaining variance in pasture production were revealed from the previousl y  developed 

decision tree model  (Chapter 3). These variables were also recognised as the key drivers 

in influencing pasture production in some other studies (e.g. Radcliffe 1 982; Lambert et 

al. 1 98 3 ;  Gil lingham et al. 1 99 8 ;  Moir et at. 2000). It  was i ndicated by this model that 

apart from P fertil iser input and hi l l  s lope, all other independent variables were 

temperature, rainfal l ,  and the interaction between rainfal l  and P ferti l iser. The 

i mportance of c l i mate and the impact of c l imate changes on pasture production were 

wel l  supported by the model .  

Naturally, this model also has some l imitations. Firstly, i t  did not assess the effect of 

the elevated CO2 concentration on pasture production (Riedo et at. 1 997),  no effect of 

extreme climatic  events such as drought or heavy rainfal l ,  which may result from 

cl imate change were assessed (Salinger et at. 2000). Secondly, the data used in 

developing the regression model were main ly from hi l l -pasture, and therefore, model 

predictions for lowland pasture may not be as good as for hi l l-pasture, as lowland 

pasture was assumed to be the low slope « 1 5°) area in hil l -pasture. However, as a 

scenario analysis, the obj ective of this study was not to accurately predict pasture 

production under c l imate changes, but rather, to assess the possible impacts of c limate 

change scenarios on pasture production and management practices which may need to 

be considered under such an i mpact. 

In summary, the model predictions for cl imate change scenarios suggested that the 

potential cl imate changes would have significant impact on pasture production in the 

North Island, New Zealand. Increased temperature would generally have a positive 

effect on pasture production in the South and South-east of the North Is land, and 

increased rainfa l l  would have a positive e ffect in the Central, South and South-east of 

the North Is land and a negative effect in the North of the North I sland. The decreased 

rainfall  woul d  only have a positive effect in some central areas with high rainfal l .  The 

interaction of i ncreased temperature and decreased rainfall  would, on average, have a 

negative impact on pasture production for the whole North Island. Management 

strategies such as developing and use drought tolerant species, need to be considered to 

cope with the potential drought resulted from reduced rainfall or increased temperature 

for areas such as North and East coast of the North Is land. The model prediction also 

indicated that pasture in areas with relatively low rainfall had a higher response to 
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i ncreased P ferti liser input than pastures in  areas with a relatively high rainfall, probably 

due to the high runoff and associated P loss in high rainfall area. Thi s  suggests that use 

N fertil iser in areas with high rainfall would be a better choice with respect to both 

economic benefi t  and environmental health. 
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C h apter 6. A Decision Tree Approac h  to Modellin g  Functional Group 

Abundance of Plant Species in a Pasture Ecosystem 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  

Species abundance has been considered to have several distributions and i t  is not 

appropriate to use least square (LS) regression. Generalised linear model (GLM) has 

been successfully used to model species abundance using the measure of discrete 

cover, but it is not suitable when abundance is an interval variable such as measured 

by biomass. Decision tree has no strict requirement for variable distribution and can 

easily incorporate ordinal, nominal and interval variables in a model. It is, therefore, 

an appropriate approach for modelling species abundance with productivity or 

b iomass as the measure. In this chapter, a combination of decision tree and GIS were 

used to predict relative abundance of functional groups of p lant species in  a hill

pasture ecosystem. 
� . • . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A paper derived from this chapter with a title "A decision tree approach modelling functional group 

abundance in a pasture ecosystem " by B. Zhang, I. Valentine & P.D. Kemp has been published in 

Agriculture, Ecosystem and Environment (in press, available on-line).  
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Abstract. Due to concerns over the impact of intensive land-use and climate change on  

species diversity, there have been increasing interests i n  the prediction of  the 

distribution (presence/absence) and abundance of plant species. However, few models  

focus on species abundance, measured as  productivity or biomass, which would 

contribute to ecological studies and environment management. Decision tree, one of the 

data mining approaches, was used to model the relative abundance of five functional 

groups of plant species, namely high fertility response grasses ( HFRG), low fertil ity 

tolerance grasses (LFTG), legume, moss and flatweeds in a N ew Zealand hi l l-pasture 

ecosystem using aboveground biomass. The model outputs were integrated with a 

geographic information system (GIS) to map and validate the predictions o n  a pasture. 

The decision tree models clearly revealed the interactions between the functional groups 

and environmental and management factors, and also indicated the relative importance 

of these factors in influencing the functional group abundance. Soil Olsen P was the 

most significant factor influencing the abundance of LFTG and moss, while soil bulk 

density, s lope and annual P ferti l iser input were the most significant factors influencing 

the abundance of legume, HFRG and flatweeds, respectively. Generally, topographic 

feature (slope) and soil fertility (Olsen P) were the two key factors underlying the 

patterns of abundance for these five functional groups. The decision tree models also 

performed well with respect to the predictive accuracy. For the five functional groups 

s tudied, there was an overall predictive accuracy of 75%. Modelling functional group 

abundance simplified the investigation of the complex interrelationship between species 

and environment in a pasture ecosystem. The integration of the decision tree with GIS 

in this study provides a platforn1 to investigate community structure and functional 

composition for a pasture over space, and thus can be applied as a tool in pasture 

management. For example, predicting and mapping the H FRG abundance in a pasture 

could guide more specific phosphorus fertil i ser application  by outlining the areas that 

have less HFRG composition. 

6 . 1 .  I ntroduction 

There have been increased appl ications of the predictive modelling of species 

distribution and abundance in plant ecology and vegetation science due to concern over 

the impact of intensive land-use and c limate change on species distribution and 
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diversity, and the related issues in species conservation and environment management 

(e.g. Palmer & Van Stden 1 992; Tappeiner et al. 1 998; Wadsworth & Reweek 1 999; 

Zimmermann & Kienast 1 999; Stocks & Wise 2000; Rouget et at. 200 1 ;  Guisan et al. 

2002). Current practices mainly focus on estab lishing the correlation between plant 

species and environment by detecting the important variables underlying, or explaining 

this relationship and quantifying species' realised niche in a multiple space defined by 

these variables, and, usually, presenting predicted species distribution (presence/absence) 

over an area of interest in a GIS (Franklin 1 995;  Guisan & Zimmermann 2000; Austin 

2002). The success of this modelling approach to species distribution is that it is 

founded on species niche theory and gradient analysis (Austin 2002). 

One limitation of most of the above models is that they can predict the presence or 

absence of a species, but not the abundance of the species in the community. Yet, the 

importance of measuring species abundance in investigating species diversity, species 

community structure and ecosystem processes has been well recognised (May 1 975 ;  

Hahel 1 990; Camargo 1 995 ;  Tilman 1 996; Welson e t  al. 1 996). Presence o r  absence of 

a species is predicted in these models either because it is adequate for the model ling 

purpose, or, more possibly, because it is difficult to obtain the species abundance data 

used to develop the models. There are models that predict species abundance using 

discrete cover (e.g. Gottfried et at. 1 998 ;  Guisan & Harrell 2000), but cover is often 

estimated visually in these studies, usually using an interval scale, such as the Braun

B lanquet approach (Braun-Blanquet 1 964). In grassland, or pasture ecosystems, discrete 

cover as a measure of species abundance is usually not adequate in investigating the 

community structure as species that have the same abundance (discrete cover) may have 

very different productivity or biomass (Chiarucci et at. 1 999). Previous research has 

indicated that productivity, or biomass, is the most appropriate measure of species 

abundance, especially in  a pasture or grassland ecosystem (Whittaker 1 965 ; Welson et 

al. 1 996; Guo & Rundel 1 997; Chiarucci et at. 1 999). 

The modelling of species distribution and abundance has exploited many approaches, 

including mUltiple regression (Fels 1 994), generalized linear model (GLM) (Austin et al. 

1 994; Lehmann et al. 2003), artificial neural networks (ANN) (Fitzgerald & Lees 1 992; 

Gul lison & B ourque 200 1 ), decision trees (lverson & Prasad 1 998;  Vayssieres et al. 

2000), canonical correspondence analysis (CCA) (Ohmann & Spiess 1 998; Guisan et al. 
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1 999), and generalized additive model (GAM) (Brown 1 994; Lehmann 1 998) .  Species 

abundance has been considered to have several distributions, including Poisson 

distribution, negative binomial distribution, canonical log-normal distribution, broken

stick distribution and ordinal distribution (see Guisan & Zimmermann 2000). It is, 

therefore, not appropriate to directly use least square (LS) regression to model species 

abundance due to the violation of its normal distribution assumption. Though variable 

transformation can be appl ied to cope with this problem, it only al leviates the problem 

to some degree (Freund & Littel l  1 99 1 ) . Similarly, CCA also assumes normal 

distribution though it has been argued that CCA works well when the assumption is not 

held (ter Braak 1 985). GLM has been successfully used to model species abundance 

using the measure of discrete cover (Guisan & Harrel I  2000), but it is not suitable when 

abundance is an interval variable such as measured by biomass. A model which is free 

of variable distribution assumptions and has no limitation of variable types would be an 

appropriate one in modelling species abundance. 

Decision tree, one of the data mining approaches, has been used to model species 

distribution and abundance in several studies and was indicated to have a very high 

predictive ability, and performed better than GLM (Iverson & Prasad 1 998;  Vayssieres 

et al. 2000; Rouget et al. 200 1 ). It has no strict requirement for variable distribution, 

and can easily incorporate ordinal, nominal and interval variables in a model (Breiman 

et at. 1 984; Iverson & Prasad 1 998 ;  Vayssieres et al. 2000; W itten & Erank 2000). 

These advantages enable decision tree to be an appropriate approach in modelling 

species abundance with productivity or biomass as the measure. 

A functional group is defined as a set of species that have similar effects on a 

specific ecosystem-level biogeochemical process (Vitousek & Hooper 1 994). I t  is 

commonly used as a vegetation unit in ecological studies for investigating ecosystem 

processes and simplifying the complex interaction between vegetation and the 

environment (Komer 1 994). The functional group is also an appropriate vegetation unit 

in assessing pasture management practices (Nicholas et al. 1 998 ;  Boer & Stafford Smith 

2003). 

I n  this study, I develop decision tree models for the relative abundance of functional 

groups of plant species using the measure of aboveground biomass in a hi l l-pasture in 

New Zealand, and present model predictions in a GIS for model validation and further 
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investigation and application. The objectives of this study were: 1 )  to develop decision 

tree models for relative abundance of the functional groups; 2) to assess the 

performance of decision trees in model ling functional group abundance;  and 3) to 

investigate the interrelationship between functional group abundance and environmental 

and pasture management variables, identifying the key variables driving or explaining 

these rel ationships and the implications for pasture management. 

6.2. Methods 

6.2 . 1 .  Study area 

This study was carried out on the AgResearch Ballantrae Research Station at latitude 

S400 1 8 ', longitude E 1 7SoS0' in the North Island of New Zealand (Fig. 1 )  with average 

annual rainfall 1 270 mm and average annual daily  temperature 12 . 3  QC. Altitude ranges 

from 1 25 to 350 m a.s . l .  The hi l l  country in Ballantrae is dissected and very 

heterogeneous with complex combinations of slope and aspect even within a smal l  area 

(Lambert & Roberts 1 978). This heterogeneity increases the diversity of micro-climate, 

soil characteristics, species composition and the behaviour of grazing animals (Lopez 

2000). The pasture on Ballantrae is dominated by browntop (Agrostis capillaris) when 

soil ferti l ity is low (or co-dominated by browntop and moss (Musci spp.) when soil 

ferti lity is low and hil l  slope is high) and co-dominated by ryegrass (Lolium perenne), 

browntop and white clover (Trifolium repens) when soil fertility is high (Nicholas 1 999). 

The GIS-based model prediction and verification were carried out for a pasture, 

which was within the Station and was about 90 ha in area (Fig. 1 ) . Within this pasture 

there were four small farmlets with different ferti liser appl ication treatments since the 

early 1 970s: two of them had approximately 1 20kg and 360kg annual P fertil iser 

(SuperPhosphate - approximately 9% P content) input per year since 1 974 (hereafter 

referred as LL and HH),  and the other two farmlets also had approximately 1 20kg and 

3 60 kg P ferti l iser per year from 1 974 to 1 982, but had none since (hereafter referred as 

LN and H N) .  The farmlets LL, LN, HN, and H H  had 8, 1 0, 8 and 10 paddocks 

respectively. Each paddock was approximately 8 ha in area. A detailed description of  

these four farmlets and their management history can be  found in  Lambert et al (2000) . 
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North Island 

New Zealand 

Bal lantrae 

DEM of the pasture and 
farmlets used in GIS 
predict ions. 

Fig. 1 .  Study a rea, digital elevation model (DE M) and the fa rmlets' used in validating the 

G IS prediction. 

6.2.2. M odel d evelopment 

6 .2 .2 . 1 .  Dataset 

Species data are from a long-tenn experiment (see Lambert et al . 1 986), unpubl ished 

Ph.D theses (Nicholas 1 999;  Lopez 2000) and some other experiments conducted at 

Bal lantrae during 1 972- 1 998  within the whole area of  the Station. A total of 1 742 

samples were collected using a stratified random method within the study area using 0.5 

m2 quadrats. Samples were collected during late spring to early summer (October to 

early December), which included aboveground biomass of different functional groups 

and soil features (see below). Aboveground biomass was measured by a "tr im 

technique" involving harvesting pasture re growth from trimmed areas protected from 

sheep grazing (Lambert et al. 1 996) with a regrowth period from 30-50 days. Relative 

abundance of a functional group was calculated as the percentage of its aboveground 

b iomass out of the total aboveground biomass in a sample. 
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Table 1 .  I nput variables u sed in  the decision tree and the GIS analyses 

Variable symbol Unit Variable description 

pH -IOglO[H+] soil p H  

BD g/cm3 soil bulk density 

OlsenP Ilg/g soil Olsen P 

N fert kg/ha/y annual elemental N ferti liser input 

P fert kg/ha/y annual elemental P fertiliser input 

P fert5 kg/ha 5-years cumulative e lemental P fertiliser input 

P fert l O  kg/ha l O-years cumulative elemental P fertiliser input 

temp_y °c annual mean daily temperature 

temp_sp °c spring mean daily temperature 

temp_su °c summer mean daily temperature 

temp_wi °c winter mean dai ly temperature 

ram_y mm annual rainfall 

ram_sp mm spring rainfall 

ram su mm summer rainfall 

ram Wl mm winter rainfall 

ram warm mm sum of spring and summer rainfall  

solar_y MJ/m2/d annual mean daily global solar radiation 

solar_sp MJ/m2/d spring mean daily global solar radiation 

solar su MJ/m2/d summer mean daily  global solar radiation 

solar wi  MJ/m2/d winter mean daily global solar radiation 

aspect hil l  slope aspect. e .g .  N NE S S W  NW, etc. 

slope degree hil l  slope angle 

G animal s ,  c, grazing animal species: sheep (s) , cattle(c). 

Environmental data, including topographic variables (aspect, slope), edaphic 

variables (soil bulk density, pH,  Olsen-P) and pasture management variables (N, P 

fertiliser application and grazing animal species) were measured or observed from the 

experiments from which the species abundance was measured .  Climatic variables, 

including rainfall, temperature and global solar radiation, obtained from the National 

I nstitute of Water & Atmospheric Research (NIWA), New Zealand, were measured at a 
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meteorology station located in  the study area. There were a total of 23 c limatic, 

topographic and management variables in the dataset (Table 1 ) .  

Since the rainfal l  data was measured from the horizontal surface and the P ferti liser 

was commonly aerially applied to hi ll-pasture with a uniform rate, the actual rainfall 

and P fertiliser received were adjusted by the cosine of the slope angle. Actual solar 

radiation on hil ly terrain is strongly influenced by topography (Antoni 1 998), so it was 

calculated from observed solar radiation at that location by an empirical method 

developed for the North Island, New Zealand (McAneney & Noble 1 975).  

Table 2. Functional groups of at Ballantrae [after Lambert e t  al. ( 1986) and Nicholas 

( 1999») 

Functional group Species 

H FRG Lolium perenne, Holcus lanatus, Poa pratensis, Poa annua 
and Dactylis glomerata. 

LFTG Agrostis capillaris, Anthoxanthum odoratum, Cynosurus cristatus, 
Rytidosperma spp. ,  Festuca rubra. 

Legume Trifolium repens, Trifolium dubium, Trifolium subterraneum and 
Lotus pedunculatus. 

Flatweeds Plantago lanceo/ata, Hypochaeris radicata, and Leontodon 
taraxacoides. 

�oss Afusci spp. 

There were about twenty species existing in the natural ized hi l l  pastures. I c lassified 

these species into functional groups primarily based on the commonly defined 

functional categories (grass, legume, forb) , and further classified each of the grass and 

forb categories into two functional groups considered nutrient response and plant 

growth form, respectively, by synthesizing previous work (Lambert et at. 1 983 ;  

Nicholas 1 999). These five functional groups are: h igh ferti lity response grasses 

(HFRG), low ferti lity tolerance grasses (LFTG), legume, moss, and flatweeds. Table 2 

l ists these functional groups and the species allocated to them. 

6 .2 .2 .2 .  Decision tree development and assessment 

I developed the decision tree models for the relative abundance of the five functional 

groups in SAS Enterprise Miner, Version 4. 1 (SAS Institute Inc., 1 999-200 1 ,  Cary, NC, 

1 32 



Chapter 6: Modelling fimctional group abundance of plant species 

USA). The main procedure for developing a decision tree model is to split the data of 

target variable based on i ts response to input variables. There are different criteria used 

to split the data, depending on the nature of the target variable. For interval variables (i .e .  

continuous variables) like species abundance, the split criterion is variance reduction or 

F test. I compared both criteria in developing the decision tree models for relative 

abundance of the functional groups and chose F test as the split criterion since this was 

statistical ly more reliable. A significance level of P<0.05 was selected for the F test in 

developing these decision trees. 

Also, there is an interactive training procedure to develop a decision tree by 

arbitrari ly forcing a variable into the decision tree if the variable meets the spl itting 

criterion. I used this interactive training method to investigate the influence of specific 

variables on the functional groups. 

Model assessment is an important step in developing the decision tree, as it enables 

a good model output, and prevents overtraining, which otherwise would develop a 

model that only fits the data from which it was trained (Witten & Erank 2000). The SAS 

Enterpriser Miner has several options to assess the model having an interval target. The 

measure of average squared error (ASE) is commonly used. ASE is simi lar to mean 

squared error (MSE) in a general linear model and is an indicator of model goodness-of

fit; the smaller the ASE, the better the model fits. In the development of the decision 

tree models, the whole dataset was randomly partitioned into two parts: training data 

(70% of the total) and val idation data (30% of the total) . The decision trees were 

derived using the training data and fit was assessed using the validation data; and the 

"best" tree which had the smallest ASE from val idation data was selected. I set six as 

the maximum tree levels, and 1 1  as the minimum observations required for a split 

search. The recommendation on minimum observations was derived using the program 

by assessing the size of the whole dataset (Femandez 2003), in devel oping the decision 

tree models for species relative abundance of the functional groups. 

6 .2 .2 .3 .  GIS-based prediction and model val idation 

The outputs of the decision tree models for relative abundance of the functional 

groups were imported into a GIS to derive the "predictions" of relative abundance of 

H FRG, LFTG, legume, moss and flatweeds for the pasture described previously. 
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Fig. 2. Diagram of the procedures for generating the model predictions in G I S. The 

rectangles in the GIS environment area represent the G I S  map layers. The arrows indicate 

the orders and the resources in developing the predictions of relative abundance of the 

functional groups in G IS. Names of input variables and their description are in Table 1 .  

A 5 x 5 m resolution digital elevation model (OEM) o f  this pasture was interpolated 

from a XYZ coordinate fi le produced by New Zealand Aerial Mapping Ltd. A map 

layer of the four farmlets was created based on an existing fence map. All the GIS map 

layers of input variables were then generated. Map layers of rainfall and P fertiliser 

input were adjusted by a cosine of the slope angle, and layers of solar radiation were 

adjusted by slope and aspect with methods previously mentioned. All the map layers 

had the same 5 x 5 m resolution. 

In late spring 1 993 ,  the relative abundance of the functional groups was measured 

using aboveground biomass by cutting re-growth from a trimmed quadrat (0 .5 m2) 

1 34 



Chapter 6: Modellingfimctional group abundance ofplant species 

(Lambert et al. 1 996). Three replicate quadrats, representing different combinations of 

slope and aspect in  each paddock within each farmlet, were used. So there were a total 

of 24, 30, 24 and 30 observations in LL, LN, HN and HH, respectively. The GIS-based 

predictions were made based on the c limatic and management variables in these four 

farmlets in  1 993 . The measured relative abundance was used to validate the model 

predictions. These data were independent from the data used in developing the decision 

tree models .  

Spatial predictions for the relative abundance of the functional groups were 

implemented by coupling the outputs of the decision trees with GIS using a map overlay 

function. The prediction outputs were the map layers of relative abundance of HFRG, 

LFTG, l egume, moss and flatweeds. Fig. 2 shows the procedures for generating these 

model predictions in GIS. 

The average relative abundance of the functional groups in the four farmlets was 

then extracted by calculating the average of all the pixels (S x Sm) within each farmlet. 

The predicted average abundance was compared with the observed average relative 

abundance for an empirical validation of the model (Mitchell 1 997) .  The 95% 

confidence interval of the observed relative abundance mean was set as  an acceptable 

error for the prediction. Because the map layers of predicted relative abundance covered 

an area which is larger than the four farmlets, only the area within the four farmlets was 

used to validate the predictions. As the observed relative abundance summed moss and 

flatweeds together, the sum of the predicted relative abundance of these two functional 

groups was used to validate their prediction. All the GIS analyses in this study were 

conducted in Idrisi 3 .2  (Clark Labs, Clark University, Worcester, MA, USA) .  

6.3. Results 

6.3 . 1 .  Decision trees 

Figs 3, 4, 5 ,  6 & 7 display the decision tree models for relative abundance of 

functional groups HFRG, LFTG, flatweeds, legume and moss, respectively. 
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Fig. 3. The decision tree model for relative abundance of h igh fertility response grasses 

(HFRG). Predicted relative abun dance (in percentage) is in the un-shaded rectangles, 

whi le splitting variables and split-points are in the shaded rectangles. Prediction goes to 

the left-side branch if the splitting variable is less than the split-point, and goes to the 

right-side branch if the splitting variable is  equal to, or more than, the split-point. See 

Table 1 for variable symbols and unit descriptions. 

Each decision tree is a h ierarchical structure that contains rules of prediction. 

Relative abundance of a functional group was first split into two branches by a variabl e  

which best explained the variance. This spli tting continued for each of  the branches with 

the same method, and so on until no further splitting could be made. Prediction was 

made by a series of constraints defined by the input variables and their spli t-points. For 

example, in the decision tree model for relative abundance of HFRG (Fig. 3), when 

pasture had a slope less than 1 0 .5°, and an Olsen P equal to, or more than 1 0 . 1  )lg/g and 

a mean spring temperature equal to, or more than 1 1 . 9  °C, the predicted relative 

abundance was 70.3%. 

Slope, Olsen P, five-year cumulative P ferti l iser input, spring and winter 

temperatures, and spring solar radiation were the s ignificant variables influencing 

HFRG abundance. The lowest abundance of HFRG (2 . 8%) was found in pasture with 

h igh slope (2: 1 0. 5°), high spring mean daily solar radiation (2: 1 8 .3 MJ/m
2
/d) and l ow 

five-year cumulative P ferti l iser input « 54.5 kg/ha), while the highest abundance 

(70.3%) was found in pasture with low s lope « 1 0.5°), high Olsen P (2: 1 0 . 1  )lg/g) and 

h igh spring temperature (2: 1 1 .9 °c ) (Fig.3) .  
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F ig. 4. The decision tree model for relative abundance of low fertility tolerance grasses 

(LFTG). See the caption of Fig. 3 for the description of decision tree interpretation. 

The significant variables influencing LFTG were similar to those influencing HFRG. 

The lowest abundance ( 1 3 .2%) was found in pasture with high Olsen P (2: 1 0 .3 �g/g), 

low slope « 1 6.5°) and h igh winter temperature (2: 8 .4  °C), while the highest abundance 

of LFTG (67 .5%) was found in pasture with low Olsen P « 1 0 .3 )lg/g), high slope (2: 

19 . 5°) and low five-year cumulative P fertiliser input « 60.5 kg/ha) (Fig. 4). 

The flatweeds abundance range was from 0.7 to 9 .8% with the highest abundance 

found in pasture with low annual P fertiliser input « 9 .7  kg/ha), sheep grazing and high 

winter rainfall (2: 261 mm) (Fig. 5) .  

Soi l  bulk density, spring and winter mean daily solar radiation, slope, winter rainfal l  

and five-year cumulative P fertiliser input were the significant variables influencing 

legume abundance. The highest legume abundance (30.5%) was found in pasture with 

high soil bulk density (2: 0.98 g/cm3) ,  low spring mean daily solar radiation « 1 9. 5  

MJ/m2/d), medium five-year cumulative P fertiliser input (> 8 1 . 8 kg/ha but :S 1 083 

kg/ha), while the lowest legume abundance (2.5%) was found in  pasture with low soil 

bulk density « 0.98 g/cm\ high winter mean dai ly  solar radiation (2: 1 0. 5  MJ/m2/d) 

and high slope (2: 3 1 .5 °) (Fig. 6). 
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Fig. 5. The decision tree model for relative abundance of flatweeds. See the caption of F ig. 

3 for the description of decision tree interpretation .  

The lowest abundance of moss (2.3%) was found in pasture with high Olsen P (2: 9.0 

!lg/g) and low slope « 28 .5°), while the highest abundance (48.9%) was found in  

pasture with low Olsen P « 8 .0 !lg/g), high winter mean dai ly solar radiation (2: 1 0.9 

Mllm2/d) and sheep grazing (Fig.7). 

The relative importance of environmental and management variables in i nfluencing 

the functional group abundance in a decision tree was indicated by the order they were 

selected in spli tting the tree. The variable selected first was more influential than those 

selected after it. For LFTG and moss, Olsen P was the most significant variable 

influencing their relative abundance. Slope, soil bulk densi ty and annual P fertiliser 

input were the most significant variables influencing HFRG, legume and flatweeds 

relative abundance. 

In  general, s lope and Olsen P were the two key factors underlying the patterns of 

abundance for these five functional groups. Climatic factors, pH and grazing animal 

species also played important, but secondary roles in influencing their abundance. A 

summary of average responses of the five functional groups to Olsen P and slope i s  

presented in Fig. 8, which was obtained by an interactive training of  the decision tree 

when specifying Olsen P or slope as the splitting variable. An Olsen P of 1 0Ilg/g or a 

slope about 1 1 0 was found to be the critical point for L FTG and HFRG to change their 

dominance in pasture. LFTG and HFRG also showed a significant change in relative 

abundance at a s lope of approximately 22°. 
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Fig. 6. The decision tree model for relative abundance of legume. See the c aption of Fig. 3 
for the description of decision tree interpretation. 

6.3.2. GIS-based p rediction and model validation 

GIS-based predictions for relative abundance of HFRG, LFTG, legume, moss and 

flatweeds are shown in Fig. 9. The extracted average relative abundance of HFRG, 

LFTG, legume, moss and flatweeds in the four farmlets LL, LN, HN and HH were 

graphed against the observed average relative abundance of them in Fig. 1 0 . The 

predictions for legume were in agreement with (i .e. prediction was within the 95% 

confidence interval of the observed relative abundance mean) the observations in a l l  the 

four farmlets, while the predictions for HFRG and LFTG were in agreement with the 

observations in three of the four farmlets, and the predictions for moss and flatweeds 

were in agreement with the observations in two of the four farmlets. The overall 

predictive accuracy for the five functional groups in the four farmlets was 75% ( 1 2  of 

the 1 6  farmlets). 

6.4. D iscussion 

The decision tree models performed very well as a predictive modelling approach in 

this study. The overall predictive accuracy of 75% is high considering the strict criterion 

used in the model validation (95% confidence interval of the observation mean as the 
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accepted error) . An application of the decision tree in predicting species distribution 

(Vayssieres et al. 2000) showed that the decision tree performed significantly better 

than a polynomial logistic regression model for four of the six cases considered, and as 

well as the regression model in the two remaining cases. Applications of the decision 

tree in classify ing remote sensed vegetation data (Yang et al. 2003) and in predicting 

tree species abundance (1 verson & Prasad 1 998) also found that the decision tree had 

very high predictive ability. 

Fig. 7. The decision tree model for relative abundance of moss. See the caption of Fig. 3 for 

the description of decision tree interpretation. 

The hierarchical structure of the decision trees clearly revealed the relative 

importance of environmental and management variables in influencing relative 

abundance of the functional groups. Topographic feature (slope) and soil ferti l i ty (Olsen 

P) were indicated as the most important factors driving the abundance of HFRG (Fig. 3), 

LFTG (Fig. 4) and moss (Fig. 7) .  With the increased soil Olsen P or decreased slope, 

pasture becomes more HFRG dominant; while with the decreased soil Olsen P or 

increased slope, pasture becomes more LFTG and moss dominant (Fig. 8). This general 

pattern of species dominance was consistent with those reported by Lambert et al. ( 1 986) 

and Nicholas et al. ( 1 998). Since soil Olsen P is positively influenced by P fertiliser 

input in pasture (Gillingham et al. 1 998;  Lambert et al. 2000), the amount of ferti l iser 

input, therefore, is one of the key factors influencing the relative abundance of most 

functional groups in this study area. The effect of s lope on species abundance may be 

from several influences:  it may influence species  abundance by redistributing and 

modifying the soil temperature, solar radiation received (McAneney & Noble 1 975), 
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and available soil moisture and ferti l i ty (Lopez 2000). However, as indicated by Lopez 

et al. (2000), hill slope was correlated with many factors such as soil total nitrogen, soil 

Olsen P, and soil water holding capaci ty in the hil l-pasture. The responses of functional 

groups of plant species to hill slope, as well as to other environment and management 

factors are complex . .  
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Fig. 8. The responses of functional  groups HFRG, LFTG, legu me, moss and flatweeds to 

Olsen P and slope gradients. 

Soi l bulk density was indicated as the most significant variable influencing legume 

abundance (Fig. 6); they were positively correlated with a threshold of 0 . 89 g/cm3 . 

Lopez (2000) revealed that soil bulk density was positive correlated with hil l  slope and 

negative correlated with soil Olsen P, soil total nitrogen and soi l moisture. However, the 

influence of soil bulk density on relative abundance of legume has not been previously 

reported and the interpretation is not clear. This result has an implication that the 

practice of applying P fertiliser in hill-pasture to encourage legume growth can be 

compromised in certain localities by the low bulk density in a pasture. 
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Grazing animal species influence species abundance by changing the competition 

pattern in a pasture community through their selective defoliation (McNaughton 1 985) .  

HFRG, LFTG and legume showed no significant response to different grazing ani mal 

species. However, compared to sheep grazing, cattle grazing significantly reduced the 

relative abundance of flatweeds (Fig. 5)  and moss (Fig 7), indicating that cattle grazing 

may be a method for weed control in pasture. 
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Fig. 1 0. The predicted 0 and the observed . relative abundance of the functional groups 

in the farmlets LL, LN, HN and HH. Bars indicate the 95% confidence interval of the 

observed relative abundance means. Note the different scale on the y-axis for LFTG. 

It was indicated from Fig. 9 that legume abundance in the predicted pasture had less 

variation than other functional groups. This may reflect the facts that the variation of 

soil bulk density, spring and winter solar radiation within the pasture was small, which 

were the most important factors explaining legume abundance. 

One characteristic of the decision tree is that it assesses a threshold of an 

environmental variable that below or above which a species can be found (Moore et al. 

1 99 1 ), or the relative abundance of a species or functional group has a significant 
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change. For example, when soil Olsen P was l ess than 1 0.0  Ilg/g, the average relative 

abundance of LFTG was 5 8 .4% (Fig. 8) ,  and when it was equal to, or more than 1 0. 8  

/lg/g, the average relative abundance o f  LFTG was 39.6%. This pattern suggests that the 

1 0 .8 /lg/g of soil O lsen P is a threshold at which the competition between LFTG and 

HFRG comes to an "equilibrium": below this point pasture is  dominated by LFTG, 

while above this point, pasture becomes more HFRG dominant. However, the decision 

tree models for the abundance of functional groups cannot indicate the species  response 

curve along an environmental gradient due to the "stair-step" response (Fig. 8) .  

Response curves are important in testing an ecological hypothesis (Guisan & 

Zimmermann 2000; Vayssieres et al. 2000) . 

Modelling abundance of functional groups instead of abundance of individual 

species in this study simplified the investigation on the complex interrelationship 

between species and environment. The integration of modelling functional abundance 

and GIS can be used as an important tool in precision agriculture (Gillingham 200 1 ). 

For example, hill -pasture management in New Zealand usually aims at increasing 

pasture production by applying P fertiliser. This modelling approach provides a 

p latform to map HFRG abundance in a pasture over space, and thus could guide P 

fertiliser application to the areas that have more HFRG composition for better economic 

return. 

One limitation of this modelling approach was that no interaction between species or 

species functional groups was incorporated in the model . This is because I intended to 

develop a predictive modelling approach only using easily obtained environmental and 

management variables to predict the functional group abundance for practical purposes. 

Inclusion of the interaction would make the prediction hard to implement. Besides, the 

interaction between species or functional group can be partially reflected in the model 

by environmental and management variables to some extent. For example, the 

competition between HFRG and LFTG can be reflected by Olsen P content: when Olsen 

P is low, the competition between them is relatively weak since LFTG is in dominance 

in a community; when Oslen P is high, the competition between them is strong since the 

community is  co-dominated by both of them (Lambert et al. 1 983;  Lambert et al. 1 986). 

In summary, the decision tree was indicated as an appropriate modelling approach in 

predicting relative abundance for functional groups of plant species in the hill-pasture 
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ecosystem. It had a high predictive accuracy and revealed the relative importance of 

environmental and management factors in influencing functional group abundance. By 

integrating with a GIS, the decision tree models can be used as decision support tools in  

pasture management such as in faci litating P fertil iser app lication for pastures with low 

HFRG composition by outlining the composition of HFRG over space. It was indicated 

from the decision tree models that the most important factors influencing the relative 

abundance of functional groups HFRG, LFTG, legume, flatweeds and moss were hi l l  

slope, soil Olsen P, soil bulk density, annual P fertiliser input and soil Olsen P,  

respectively. Generally, slope and soi l  Olsen P were the two key factors underlying the 

patterns of abundance for these five functional groups. 
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C h apter 7. Modelling and Investigating Species Richness P atterns and 

Underlyin g  Factors i n  a Pasture Ecosystem 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  

A combination of decision tree, regression and correlation analyses was used in this 

chapter to detect the patterns of species richness, and the possible driver underlying 

the patterns in a hill-pasture ecosystem . 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  

A paper derived from this chapter with a title "Modelling species richness patterns in a naturalised 

pasture ecosystem " by B. Zhang, 1. Valentine & P.D. Kemp has been submitted to Journal of Applied 

Ecology for publication. 
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Abstract. Species richness patterns and underlying factors have long been an interest of 

ecological studies. The mechanisms that regulate species richness in an ecosystem are 

not yet settled. Decision tree model and other analyses were appl ied to investigate 

factors that influenced species richness and responses of species richness to these 

factors in a naturalised pasture ecosystem. The results indicated that legume abundance 

played the most important role in i nfluencing species richness .  Species richness 

i ncreased with the increase of legume abundance and showed a tendency of hump

shaped response. The effect of legume abundance on species richness was probably a 

result of species complementarity resulting from nitrogen fixation of legume species. 

Grazing animal species also had significant influence on species richness. Pasture 

grazed by sheep had more species than pasture grazed by cattle probably because sheep 

grazed lower and more selectively than cattle, and reduced the height of the 

competitively dominant species, thereby allowing more species to co-exist. The effects 

of aboveground biomass, soil fertility, c limate and pasture management on species 

richness were also investigated. 

7 . 1 .  Introdu ction 

Species richness patterns and underlying factors have long been an interest in 

ecological studies (Grime 1 973 ;  Abrams 1 995;  Zobel 1 997; Waide et al. 1 999; Chase & 

Leibold 2002). Species richness is often observed as a hump-shaped or unimodal 

response along natural gradients of increasing biomass or resources (Grime 1 973 ;  

Hastings 1 980;  Tilman 1 996), while l inear (positive or  negative) and non-significant 

responses are also commonly observed (Brown 1 97 3 ;  Goldberg & Miller 1 990; Gough 

et al. 1 994; Waide et al. 1 999) . 

Explanation of the hump-shaped relationship between species r ichness and resources 

(or biomass) tends to focus on species interaction, especially competition as the driving 

factor (Grime 1 973 ; Rajaniemi 2002). When a community is in a low resource 

environment ( indicated by low biomass), species richness is generally low because it is 

assumed that only few species can survive. With the increased availabil ity of resources, 

species richness increases as the environment can support more species. A high resource 

environment (high b iomass) favours species that outcompete other species, and 
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eliminate less competitive species from the community (Grime 1 973; Rosenzweig 1 992; 

Huston & DeAngelis 1 994). 

There are also other explanations of the hump-shaped relationship between species 

richness and resources (or biomass). Species pool models (Zobel 1 997; Grace 200 1 )  

suggest that the decrease in diversity of the environment with high availability of 

resources, or biomass, may not be a consequence of the increased competition, but 

rather of the decreased size of the species pool that may be able to survive in the 

enriched environment. 

The responses of species richness are scale-dependent (Gross et al. 2000). Chase and 

Leibold (2002) found that at the local scale, species richness has a hump-shaped 

relationship with productivity, while at the regional scale it is a positive linear 

relationship. Species richness is also related to environmental heterogeneity (e.g. those 

resulted from micro-topography, soil fertility and climatic variables) (Huston 1 994; Bell 

et al. 2000; Lundholm & Larson 2003), with a negative or positive relationship being 

found when samples are within a homogenous habitat and a hump-shaped relationship 

being found when samples encompasses different habitat types (Guo & Berry 1 998).  

Oksanen ( 1 996) claims that the hump-shaped relationship between diversity and 

biomass is just an artefact due to the fixed small  plot size; as p lants at high biomass are 

bigger, and therefore there are less species in a plot. 

There are many other factors also playing a role in regulating species richness. 

Environmental factors, such as rainfall, pH and salinity can strongly influence species 

richness (Garcia et al. 1 993 ; Gunnarsson et al. 2000; Knapp et al. 2 002). Their 

influence may work indirectly by influencing biomass or resource availabi lity, or 

directly when they do not affect biomass (Maranon & Garcia 1 997). 

Grazing has a marked influence on species richness (Belsky 1 992; Oiff & Ritchie 

1 998) .  Grazing animals are generally thought to enhance species richness by their direct 

consumption of competitively dominant species and indirect effects on plant 

competition (McNaughton 1 985;  Belsky 1 992).  However, some studies suggest that the 

effect of grazing animal depends on the environmental conditions; species richness 

decreases with heavy grazing in nutrient-poor ecosystems, while it increases with heavy 

grazing in nutrient-rich ecosystems (Proulx & Mazumder 1 998) .  
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Ecosystems are complex. Factors that influence biomass and resource availabi l i ty 

may influence species richness. On the other hand, factors that influence species 

richness may also influence biomass. To investigate the key factors influencing species 

richness in an ecosystem and the underlying mechanisms, a simultaneous assessment of 

these factors is  required. In the s tudy reported here, I used decision tree, a data mining 

approach (Thuraisingham 1 999) and other analyses, to investigate the patterns of 

species richness and the underlying factors in  a naturalised pasture ecosystem in the 

North I sland, New Zealand. Decision tree has been widely used in many scientific areas 

as a modelling approach and has shown a strong ability in detecting the relative 

i mportance of input (independent) variables and their interactions on model target 

(dependent variable) (Iverson & Prasad 1 998;  Vayssieres et al. 2000; Yang et al. 2003). 

Topographic features, soil properties, climatic fac tors, pasture management factors and 

relative abundance of dominant plant species and functional groups were included as 

input variables in this analysis. My aims were to investigate the important factors that 

influence species richness and its response patterns to these factors, and to explore the 

mechanisms regulating these response patterns. 

7.2. Methods 

7.2.1 .  Study area 

This study was on a pasture at Ballantrae, a hi l l-pasture research station of 

AgResearch, New Zealand, which is located at latitude S40° 1 8 ', longitude E 1 75°50'  in 

the North I sland with an average annual rainfall 1 270 mm and an average annual daily 

temperature 1 2 .3 DC. Altitude ranges from 1 25 to 350 m a.s. l . .  The pasture was about 

2 00 ha in area with ten farmlets differing in phosphorus ferti liser input and grazing 

animal species (cattle, sheep) since 1 970s. Topographic features at Ballantrae are 

dissected and very heterogeneous (Lambert & Roberts 1 978). The pasture was 

dominated by brown top (Agrostis capiIJaris) and ryegrass (Lolium perenne), while 

white clover (Trifolium repens) was the main legume species in  the pasture (Nicholas 

1 999). Appendix 1 .  provides a list of the species in this study area. 
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7.2.2.  Model development 

7 .2 .2 . 1 .  Dataset 

Data were from a long-term experiment (see Lambert et at. 1 986), unpublished Ph.D. 

theses and some other experiments conducted at B allantrae over the period of 1 972-

1 998 .  Samples were collected during late spring to early summer (October to early 

December) using a 0.5 m2 quadrat with a stratified random sampl ing method. There are 

700 samples in this dataset Aboveground biomass was measured by a "trim technique" 

involving harvesting pasture re growth from trimmed areas protected from sheep grazing 

(Lambert et al. 1 996) with a re growth period from 30-50 days. B iomass was sorted by 

species, and was standardised for per quadrat per 30 days. Species richness was the 

species number within a quadrat. Relative abundance of dominant speci es and 

functional groups were calculated as the percentage of their biomass out of the total 

biomass within a quadrat. These species included ryegrass, browntop and white clover. 

Functional groups of plant species included high ferti lity response grasses (HFRG), low 

fertil ity tolerance grasses (LFTG), legume, moss, and flatweeds. 

Environmental data, including topographic features (aspect, slope) and soil 

properties (bulk density, pH,  soil Olsen P,  soil total N), and pasture management 

(phosphorus (P) and nitrogen (N) ferti liser input and grazing animal species (cattle or 

sheep» were measured or recoded from the experiments from which the species 

richness and aboveground biomass were measured. Climatic variables, including 

rainfall, temperature and global solar radiation, were obtained from the National 

Insti tute of Water & Atmospheric Research (NIWA), New Zealand. 

Al l  the environmental, pasture management and vegetation variables involved in this 

study are listed in Table 1 .  

7 .2 .2 .2 .  Correlation analysis 

Pearson correlations between species richness and all environmental, management 

and vegetation variables were analysed in SAS 8 .2  (SAS Institute Inc. ,  1 999-200 1 ,  Cary, 

NC, USA). Partial correlation between species richness and each variable that had a 

significant (P <0.05)  correlation with species richness were also analysed, using each of 

the soil Olsen P, aboveground biomass, legume abundance, total N,  slope or a 

combination of some of them as partial variables. This partial correlation analysis 
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i ntended to detect whether a variable had an independent correlation with speCIes 

richness when taking away the effect resulting from correlation of this variable with 

others. 

Table 1 .  Environmental, pasture management and vegetation variables used in  model a nalyses 

Variable symbol Unit Variable description 

pH -log! O[H+] soil p H  

BD g/cm3 soil bulk density 
total N % total nitrogen in soil 
OlsenP Ilg/g soil Olsen P 
N fert kg/ha/y Annual elemental N fertiliser input 
P fert kg/ha/y annual elemental P fertiliser input 
P fert5 kg/ha 5-years cumulative elemental P fertiliser input 
P fert l O  kg/ha l O-years cumulative elemental P ferti liser input 
tempy °c annual mean daily temperature 

temp_sp °c spring mean daily temperature 

temp_su °c summer mean daily temperature 

temp_wi DC winter mean daily temperature 

ram_y mm annual rainfall 
ram_sp mm spring rainfall 
ram su mm summer rainfall 
ram WI mm winter rainfall 
ram warm mm sum of spring and summer rainfall 
solary MJ/m2/d annual mean daily global solar radiation 

solar_sp MJ/m2/d spring mean daily global solar radiation 

solar su MJ/m2/d summer mean daily global solar radiation 

solar wi MJ/m2/d winter mean daily global solar radiation 

aspect hill s lope aspect. e .g .  N NE S SW N W, etc . 

s lope degree hill s lope angle 
animal s, c grazing animal species. "s" sheep, "c" cattle 
biomass g aboveground biomass/O.5m2130 growing days 
abundance % relative abundance of dominant species and 

functional groups 
species richness species number in a quadrat (lO .5m2) 

7 .2 .2 .3 .  Decision tree development and assessment. 

I first developed a decision tree model for species richness usmg all available 

environmental, vegetation and management variables as input variables to detect the 

most important variables and their relative importance in influencing species richness .  
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As some of the environmental, management and vegetation variables are highly 

correlated, I conducted a principal component analysis for environmental and 

management variables, and legume species abundances which were detected having 

significant correlation with species richness, to reduce the directions of these variables 

and then used the first ten components which explained about 90% of total variance of 

the variables to develop a principal components based decision tree model for species 

richness. This model aimed to detect the effect of group variables on species richness. 

Table 2 shows the eigenvectors of the first ten principal components. 

Table 2. Eigenvectors (Corr) for the first ten principal components. N umbers in bold 

font  i ndicate the main contributions of the variables to the principal components. 

Variable PCR I  PCR2 PCR3 PCR4 PCR5 PCR6 PCR7 PCR8 PCR9 PC R I O  

p H  0.3898 -0.0 1 52 0.4433 -0.2372 0.4268 0.2688 0.03 1 9  -0.0 1 97 0. 1 1 1 1  -0.0353 

BD -0.2574 -0.3939 -0.08 1 1  0.4 1 9 9  0.247 1 0.37 1 5  -0.0078 0.393 1 0. 1 667 0.2576 

lolalN 0.3065 0.3074 0 .3 1 83 -0.6191  -0.077 \ -0.3 \ I -0.0474 0.0646 0.0858 0.09 1 3  

OlsenP 0.3342 0.026 0.452 -0.3973 0.2 6 1 7  0.0523 -0.0593 O. I 42 0.2007 0.2092 

P fert 0.2339 -0. 1 783 0.4505 -0.099 1 0.6258 0.3587 0.0228 -0. 1 644 -0. 1 204 -0. 1 322 

P fert l O  0. 1 42 -0.6324 0.7004 -0. 1 1 45 0. 1 229 0.05 -0.0 1 78 -0.0977 -0.046 -0.075 

P Jert5 O. I 42 -0.6324 0.7004 -0. I 1 45 O.  I 229 0.05 -0.0 1 78 -0.0977 -0.046 -0.075 

temp _y -0.8506 0.22 I 7 0.04 I 8 -0.3864 0.2 I 6 8  0.0605 0.035 0.0332 -0.0365 -0.0 I 78 

temp _sp -0.6087 0.427 1 -0.0766 -0.3 3 6 1  0.3629 0.2539 0.0408 -0.05 I 6 -0.07 1 8  -0.0823 

temp_su -0.8889 0. 1 6 1 8  0.00 1 4  -0.3447 0. 1 07 -0.0907 0.03 1 5  0. 1 22 0.005 1 0.0543 

temp _ wi 0.673 1 -0.4697 0.296 1 0.2388 -0.2006 0.02 1 8  -0.042 -0. 1 489 -0.0 1 6 1  -0.076 

rain_y 0.5086 0.7176 -0.37 1 2  -0.0679 0.226 0 . 1 052 0.0286 -0.0204 -0.0 1 79 -0.0025 

rain _sp 0.8996 0.2 1 1 6 O. \ 924 -0. 1 8 1 8  -0.0975 -0. 1 6 1 9  -0.0063 -0.0858 -0.0073 -0.0 1 9  

rain su 0.8001 0.4 1 09 -0.3338 0.2025 0.0894 0 . 1 1 27 0.00 1 1 -0.0457 0.003 -0.004 

rain wi 0.3 1 44 0.7406 -0.3636 -0. 1 043 0.339 1 0.2478 0.0355 -0.0696 -0.0509 -0.0546 

ram warm 0.8776 0.3872 -0.222 1 0 . 1 1 82 0.0479 0.0504 -0.0007 -0.0589 0.0006 -0.008 1 

solar _y -0. 1 833 0.582 1 0.6245 0.4 1 72 -0. 1 8 1 1 0.0867 0.020 I 0.0278 -0.0 1 43 0.0202 

solar _sp -0.0088 0.6495 0.6385 0.3432 -0. 1 495 0. 1 032 0.0303 -0.0 1 1 7  -0.0309 -0 0092 

solar su -0.5668 0.4736 0.47 1 7  -0.3903 -0.0304 -0. 1 706 0.059 0.0688 -0.0 1 97 0.0249 

solar wi -0. 1 972 0.5497 0.594 0.4795 -0. 1 68 7  0. 1 264 0.0 1 1 8  0.02 1 2  -0.0 1 49 0.0 1 76 

aspect_ A -0. 1 56 1  0.4723 0.5292 0.4596 -0.2256 0. 1 1 1 6 0.07 \ 5 0.0553 0.0094 0.0027 

slope -0.4 1 77 -0.3457 -0.3 706 0.6068 0.0796 0.345 -0.0 1 62 -0.0029 -0.0059 -0.0336 

Yield 0.5338 -0.0207 0. 1 325 0.0893 0.05 1 2  0. 1 063 -0.062 0.3796 0.2341 0.2987 

Trp 0.2554 0.0042 0.0652 0.3 1 4  0.5025 -0.5144 -0.0538 0 . 1 697 -0.2345 0.24 

Tpr 0.08 1 1 0.008 0.0667 0.3503 0.2573 -0.28 1 2  0 . 1 299 0.4491 -0.04 1 6  -0.6326 
Tdu -0.4895 0.089 1 0.0383 0.398 0. 1 834 -0.0694 -0.2383 -0.4308 -0.0736 0. 1 8 1 7  

Tsu -0.2359 0.2 1 33 -0.0 1 56 0.0763 0.0998 -0.0997 -0.6078 -0.0939 0.6074 -0.2662 

Lotus -0. 1 1 5 -0.072 -0.0295 0.207 0. 1 546 -0.2028 0.716  -0.27 1 5  0.529 0.03 1 

Legume -0. 1 65 8  0.0704 0.075 0.592\ 0.5569 -0.5095 -0.0776 -0. 1 20 I -0.03 1 2  0. 1 079 
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In order to assess variables which had an independent significant effect on species 

richness (the variables which had a significant (P <0.05) correlation with species 

richness both in correlation and partial correlation analyses), or were considered as the 

important factors (biomass and P fertil iser), I developed decision tree models for species 

richness only using each of these variables as the input variable to investigate the 

responses of species richness to these variables. 

Decision tree models were developed in SAS Enterprise Miner, Version 4. 1 (SAS 

Institute Inc . ,  1 999-200 1 ,  Cary, NC, USA). The main procedure for developing a 

decision tree model is to split the data of target variable based on its response to input 

variables. There are different criteria used to split the data, depending on the nature of 

the target variable. For interval variables (i .e .  continuous variable) like species richness, 

the split criterion is variance reduction or F test. In the case of variance reduction, a 

complete search is applied to all the input variables and the possible split-points to 

select one variable that gives a maximum amount of variance reduction for the target 

data by splitting the data into two groups (that is to select a variable that ultimately 

explains the variance of the target variable), and the same search is applied to each of 

the sub-groups and so on recursively. For the criterion of F test, a variable which gives 

the most significant P value in the F test is selected instead of giving the maximum 

amount of variance reduction in the case of variance reduction (SAS Online Help: 

Getting Started with Enterpriser Miner Software). I chose F test as the split criterion 

since this criterion was statisticall y  more reliable. A significant level of P <0.05 was 

selected for F test in developing these decision trees. 

Model assessment is an important step in  developing the decision tree, as i t  enables 

a good model output, and prevents overtraining, which otherwise would develop a 

model that only fits the data from which it was trained (Witten & Erank 2000). SAS 

Enterpriser Miner has several options to assess the model having an interval target. The 

measure of average squared error (ASE) is commonly used. ASE is similar to mean 

squared error (MSE) in a general l inear model and is an indicator of model goodness-of

fit; the smaller the ASE, the better the model fits. In developing the decision trees, the 

whole dataset was randomly partitioned into two: the training data (70% of the total) 

and the validation data (30% of the total). The decision trees were trained by the 
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training data and assessed by the validation data; a "best" tree with the smallest ASE 

from the validation data was selected. 

r set SIX as the maXImum tree levels and 1 1  observations as the mIn Imum 

observations required for a split search. The recommendation on minimum observations 

was derived using the program by assessing the size of the whole dataset (Femandez 

2003).  

7.3. Results 

7.3. 1 .  Correlation 

Table 3 shows Pearson correlation coefficients and P values between specIes 

richness and the variables which had a significant (P <0.05) correlation with species 

richness, and partial correlation coefficients and P values between species richness and 

these variables when each of soil Olsen P, aboveground biomass, slope or a 

combination of them were used as partial variables. 

Table 3. Pearson correlation coefficients and significance among input variables that 

h ad a significant  (P <0.05) correlation with species richness, and the partial correlation 

coefficient and significance between these variables and species richness when each of 

the soil Olsen P, aboveground biomass, legume abundance, total N or a combination of 

them were used as partial variables. See Table 1 for variable descriptions. 

Correlation 
biomass OlsenP slope legume P fertS P fert pH rain _sp solar _sp total N 

species richness -0. 1 \ 52 -0.27 1 8  0. 1980 0.2833 -0. 1 560 -0.0775 -0. 1 5 1 3  -0. 1 677 -0.0986 -0.2283 

0.0026 <.0001 <.0001 < .0001 < (1001 0.0435 <. 0001 <. 0001 0.0101 <.0001 

Partial correlation 
biomass OlsenP slope legume P fertS P fer! pH rain _sp solar _sp total N 

species richness -0.0569 -0.2539 0.0723 0.2446 -0.0597 -0.0 1 62 -0. 0 1 22 -0.05 1 0  -0.067 1 -0. 1 572 

a.I392 <0.0001 0.0599 <0.0001 0. 1202 0.6 745 0. 7532 0.1847 0.0810 <0.0001 

partial variable Olsen P biomass Olsen P Oben P Olsen P Olsen P Olsen P biomass biomass biomass 
biomass biomass 

slope 
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Aboveground biomass, soil Olsen P ,  soil total N,  s lope, legume abundance, soil pH, 

five-year cumulative P ferti liser input and spring rainfall had a very significant (P <0.0 I )  

correlation with species richness, while annual P ferti liser input and spring daily mean 

solar radiation had a significant (P <0.05) correlation with species richness. However, 

only soil Olsen P, soil total N and legume abundance had a significant (P <0.05) p artial 

correlation with species richness. For above ground biomass, slope, five-year cumulative 

P ferti liser input, annual P fertil iser input, pH, spring rainfall and spring solar radiation, 

their correlation with species richness were not significant when taking off the effects of 

partial variables. 

Fig. 1 .  The decision tree model for species richness using the environmental, 

management and vegetation variables. Predicted species richness is in the un-shaded 

rectangles, splitting variables are in the shaded rectangles. Prediction goes to the left

side branch if the splitting  variable is less than the split-point, and goes to the right

side branch if the splitting variable is equal to, or more than, the split-point. See Table 

1 for variable and unit descriptions. 

7.3.2. Decision trees 

Fig. 1 displays the decision tree model for speCIes richness usmg all avai lable 

environmental, management and vegetation variables . The variables that were selected 

in  the decision tree were significant (P <0.05, F test) in  explaining the variance  in 

species richness, and the variable first selected was more influential on species richness 

than the variables selected after it. Relative abundance of legume species was the most 

significant variable in explaining the variance in species richness, while aboveground 

biomass, grazing animal species and soil Olsen P were also significant in explaining the 

variance in species richness. Legume abundance showed a positive effect on species 
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richness, while aboveground biomass and soil Olsen P showed a negative relationship 

with species richness. Sheep grazed pasture had more species than cattle grazed pasture. 

Fig. 2. The decision tree model for species richness using principal components as 

input variables. P rinc 1 ,  Prine 4 and Prine 5 represent principal components 1, 4 and 

5, respectively. The splitting points are values of principal components. Princ 1 was 

mainly composed of annual, spring and summer temperature (all negative), and 

spring and summer rainfall. Princ 4 was mainly composed of total N (negative), slope 

and legume abundance. Prine 5 was mainly composed of annual P fertiliser input and 

legume abundance. See the caption of Fig. 1 for the description of decision tree 

interpretation. 

A decision tree made prediction on the model target by using a series of constraints 

defined by the input variables and their split-points. For example, when pasture with a 

legume relative abundance less than 1 3 .4%, and an aboveground biomass less than 

1 85 .4 g/0.5m2 and a soil Olsen P less than 6 .2 ).lg/g, the predicted average species 

richness was 1 4.0 (Fig. 1 ). A decision tree also shows the responses of model target to 

the input variables. For example, when legume abundance was equal to, or more than, 

1 3 .8%, species richness responded to the grazing animal species, when legume 

abundance was less than 1 3 .8%, species richness responded to aboveground biomass. 

These different responses of species richness to input variables could indicate the 

interaction among the input variables. 

Fig. 2 shows the decision tree model for speCIes richness usmg the principal 

components as the input variables. For the first ten principal components, only the first, 

fourth and fifth principal components were selected by decision tree as the significant 

(P <0.05) variable in explaining the variance in species richness. The first principal 

component was mainly composed of annual, spring and summer temperature (all 

negative), and spring and summer rainfall .  The fourth principal component was mainly 
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composed of total N (negative), slope and legume abundance. The fi fth principal 

component was mainly composed of annual P ferti liser input and legume abundance. I t  

was indicated from this decision tree that soil ferti l ity and legume abundance were the 

main factors i nfluencing species richness, while c limatic factors, mainly temperature 

and rainfal l  also p layed a role  in influencing species richness with higher temperature 

increasing while higher rainfall decreasing species richness .  

(c) (d) 

(e) 

Fig. 3. The decision tree models for species richness using total nitrogen (a), Olsen P 

(b), grazing animal species (c), legume abundance (d), aboveground biomass (e) and 

five-year cumulative P fertiliser input (f) as input variables, respectively. See the 

caption of Fig. 1 for the description of decision tree interpretation. 

Fig. 3 shows the decision tree models for species richness only using each of the soi l 

total N,  soil Olsen P, grazing animal species, legume abundance, aboveground biomass 

and five-year cumulative P fertiliser input as input variable. The decision trees show 

species richness had a negative response to soil total N, while the responses of species 

richness to the other four variables were in agreement with those indicated in F ig. 2. 
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The responses of species richness to soil Olsen P, total N ,  aboveground biomass, 

l egume abundance and principal components 1 ,  4 and 5 are plotted in Fig. 4. Regression 

models best fi t each of the responses are also indicated. F or legume abundance, a 

curvilinear model fitted better on the response than a linear model, for all other factors, 

the best fit was a linear model. 

7.4. Discussion 

Legume abundance was indicated by the decision tree model (Fig. 1 )  as the most 

important variable in explaining the variance in species richness. The correlation 

analysis (Table 3) also showed that correlation coefficient between legume abundance 

and species richness was the highest among the variables that had a significant 

correlation with species richness. The reasons why legume played an important role in 

explaining the variance in species richness may be because it had a significant 

correlation with factors that could influence species richness, such as biomass, soil 

ferti lity (N and P), fertiliser input and slope, or may be because legume species had an 

independent influence on species richness. Increased legume abundance may increase 

aboveground biomass and N content in soil; also increased annual P fertiliser input can 

stimulate legume growth (Chapter 8 and Lambert et al. 1 9 86), but this would lead to 

decreased species richness as both aboveground biomass, soil N content and annual P 

ferti liser input had negative correlation with species richness (Table 3 ) .  Legume 

abundance had a positive correlation with slope (Chapter 8 and Lambert et al. 1 986) and 

slope had a positive correlation with species richness. This may partially explain why 

increased legume abundance resulted in increased species richness, but as indicated in 

Table 3, when including slope aboveground biomass and soil Olsen P as partial 

variables, the correlation coefficient between legume abundance and species richness 

only slightly decreased from 0.2833 to 0.2446, and the partial correlation was sti ll very 

significant (P <0.000 I ). This suggests that legume abundance may have an independent 

influence on species richness. However, it is hard to draw a conclusion that l egume was 

a driver of species richness as the result was not from a designed experiment in which 

legume abundance was a treatment. I t  was not clear how legume exerted influence on 

species richness. One possibility is that increased legume abundance may increase the 

degree of species complementarity and thus resulting in the coexistence of more species 
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in a community as legume species can fix atmosphere N2 by symbiotic fi xation, and do 

not compete with other species for nitrogen (Spehn et al. 2002; van Ruijven & Berendse 

2003). 

Sheep grazed pasture had more species than cattle grazed pasture ( Fig. 1 and Fig. 

4c), suggesting that the grazing animal species also had a significant effect on species 

richness. Herbivores are generally thought to enhance p lant diversity by their direct 

consumption of competitively dominant plant species and indirect e ffects on plant 

competition in a nutrient-rich ecosystem (McNaughton 1 985 ;  Proulx & Mazumder 

1 998). Sheep tend to graze lower and more selectively than cattle (Clark et al. 1 984; 

N icol et al. 1 993 ;  Betteridge et af. 1 994) . This sheep grazing behaviour, comparing to 

cattle grazing, may reduce the height of dominant species and, therefore, decrease the 

competition among species, and al low more species to co-exist in a community. 

Another reason that sheep grazed pasture had more species than cattle grazed pasture 

may be because cattle treading can seriously damage sone pasture specie s  in wet winters 

(Pande 2002) .  

C limatic factors such a s  temperature, solar radiation and rainfal l  also showed 

significant correlation with species richness (Fig. 2), but their influence on species 

richness mainly worked indirectly by influencing aboveground biomass as when 

aboveground biomass was included as a partial variable, the partial correlation between 

species richness and temperature, and between species richness and solar radiation were 

not significant (Table 3). 

Aboveground biomass had a negative effect on species richness (Fig. 1 ), but as 

indicated in Table 3,  the correlation between biomass and species richness was not 

significant when soil Olsen P was included as a partial variable. On the other hand, the 

correlation between soil Olsen P and species richness was significant when biomass was 

included as a partial variable. This suggests that the effect of biomass on species 

richness may be a hidden effect of soil nutrient. This is also in agreement with the result 

in  the decision tree model using principal components (F ig. 3) that soil  ferti lity and 

legume abundance were the main factors influencing species richness. 

Species have different response rates to resources; some always respond better than 

others (Tilman 1 982; Valverde et af. 1 997;  H ubbard et al. 1 999; Nicholas 1 999). When 

1 64 



Chapter 7: Modelling species richness 

resources are high, those species which have the better response ( i .e .  faster growth) may 

dominate the community and exclude the less responsive species, but when resources 

are low, all species may have a simi lar growth rate and thus all of them can co-exist in a 

community. Pasture with a high aboveground biomass had low species richness in this 

grazing ecosystem not because at h igh biomass the dominant species competed with 

others by shading or other effects (Rajaniemi 2002), but rather because regular grazing 

reduced biomass and height of the dominant species, and species which have better 

response to high resources dominated the community and excluded the less responsive 

species. 

As a hump-shaped response is commonly observed and can be very well explained 

by competitive exclusion theory (Grime 1 973) ,  all other responses are usually analysed 

for reasons why they are not hump-shaped responses (Gough et al. 1 994; Grace 1 999). 

The hump-shaped response is usual ly observed in an environmental gradient that 

extends from extremely "poor" to extremely "rich" within a local area (Guo & Berry 

1 998), and a restricted gradient may, therefore, give positive, negative and non

significant responses depending on the ranges of environmental gradient sampled 

(Gough et al. 1 994; Guo & Berry 1 998).  The observed negative response of species 

richness to aboveground biomass soil Olsen P and total N may be due to the samples 

only covering a "narrow" gradient. 

Though legume abundance had a positive correlation with specIes richness as 

indicated in decision tree models and correlation analyses, I found a curvil inear model 

fit the response better than a l inear model (Fig. 4). This indicated that species richness is 

more like a hump-shaped response to legume abundance; when legume abundance 

i ncreased to a threshold, further increase would lead to the strong competition of legume 

species with other species and would result in reduced species richness. 

H owever, the results also indicated that the influences of each of the legume 

abundance, grazing animal species, soil fertil i ty and other factors on the species richness 

were weak, though very significantly, suggesting that no one factor was the main 

element controlling species richness. It was the cumulative effects of many significant 

factors underlying the patterns of species richness in this pasture ecosystem. 
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My results did not support the results found by Chase & Leibold (2002) that species 

richness is a hump-shaped response at the local-scale . Also species richness and 

composition recorded in this  pasture exhibited little change from the 1 970s to 1 990s 

(Nicholas 1 999;  Lopez 2000). That is, the available species capable of growing under 

this environmental condition were the same during the studied periods, suggesting that 

species pool may not be a factor regulating species richness pattern. 

It is a controversial topic that whether higher diversity is beneficial for an ecosystem 

(Loreau 200 1 ;  Pifisterer & Schmid 2002). From an agricultural point of view, a 

community which has a small number of  productive species is desirable, as more 

species means more unproductive and/or weed species, which would require more effort 

in management (McNaughton 1 994). H owever, from an ecological point of view, higher 

diversity is considered desirable as ecosystem functioning such as stability is, in general ,  

positively correlated to species diversity ( Huston 1 994; Tilman & Downing 1 994). 

Generally for hill-pasture ecosystems in New Zealand, it i s  probably better to only have 

several highly productive species such as perennial ryegrass (Lolium perenne) and 

whiter c lover ( Trifolium repens), but a few studies (e.g. Daly et al. 1 996) indicated that 

p astures with multi-species had better performance than ryegrass-white clover pastures, 

in  dry areas as ryegrass and white c lover are not very drought-tolerant (Campbell ( 996). 

Therefore, a desirable species pattern in hill-pasture could be having less but mainly 

high productive species at local scale (e.g. paddock scale) to maintain high production 

and having higher species richness at a larger scale (e.g. catchment scale) to maintain 

community stability (Tilman & Downing 1 994; Nicholas et al. 1 998). 

In  summary, legume abundance, grazing animal species and soil fertility are the 

most significant variables explaining the variation in species richness in this naturalised 

pasture ecosystem. Species richness had a positive response to legume abundance, and a 

negative response to soil fertility and above ground biomass.  Sheep grazed pasture had 

more species than cattle grazed pasture . Climatic factors, by influencing biomass, a lso 

influenced species richness in some degree. The influence of legume abundance on 

species richness may be a result of niche complementarity as  legume species can fix 

atmosphere N2 and do not compete with other species for nitrogen. Pasture grazed by 

sheep had more species than pasture grazed by cattle may be because sheep grazing 
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reduced more height of the dominant species due to their more selectively grazing 

behaviour and allow more species grow together. 
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8.1.  I ntroduction 

In the studies reported in the previous chapters, community productivity, species 

functional group abundance and species richness in hill-pasture in the North Island, 

New Zealand, were investigated by using decision tree, regression and other modelling 

approaches with integration of a geographic information system (GIS) in most of the 

c ases. 

Three main aspects appeared to be very significant. The first is the methodological 

aspect of applying a dec ision tree approach in modelling pasture productivity, species 

abundance and species richness. To the best of my knowledge, this  i s  the first time a 

decision tree was used to model community productivity in vegetation science. The 

second aspect is the advantages of using GIS to derive spatial and non-spatial variables 

as model i nput and to present model predictions spatially. The third aspect is the insight 

obtained from these models and their implications in ecological study and pasture 

management. In this chapter, I will discuss the above three aspects and synthesise the 

general conclus ions obtained from the previous chapters. 

8.2. The decision tree approach 

The responses of pasture productivity to environmental and management factors are 

usually non-linear and the distribution of productivity data i s  often not normal (Moir et 

al. 2000; Rickert et al. 2000). Productivity data collected from different times and 

places also contains high heterogeneity ( i .e .  highly variable). Also, some of the 

environmental factors that influence productivity are nominal variables, for example, 

aspect and soil type. It is, therefore, difficult to use regression models to predict pasture 

productivity due to the assumptions underlying regression models and their limited 

ability to incorporate nominal variables (Sen & Srivastava 1 990). A decision tree, on the 

other hand, is a suitable method to deal with these kinds of data: it has no strict 

requirement on the response and distribution of the target variables, and it is easy to 

incorporate nominal, categorical  and interval variables in  a model (Vayssieres et al. 

2000). 

However, because of the discontinuous nature in  generating predictions in the 

decis ion tree approach, it is mai nly used for modelling categorical or ordinal variables 
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( Breiman et at. 1 984; Scheffer 2002) and seems not an intuitive choice in modelling 

p asture productivity. There will be a trade-off between generating continuous prediction 

and being able to analyse the pasture productivity data that cannot be adequately 

analysed using regression models. 

The applications of the decision tree method in C hapter 3 and Chapter 4 indicated 

that the sacrifice of not generating continuous predictions did not significantly influence 

the model output. In  fact, the decision tree models had very good performance and had 

better predictive ability than the regression models .  For example, the decision tree 

model for annual pasture productivity adequately predicted 90. 1 % of the cases in the 

model validation which was 1 0.8  percentage points h igher than that of the regression 

model. The dec ision tree models also c learly indicated the relative importance of input 

variables on model target and the interaction among them. 

Species abundance has been considered to have several distributions, including 

Poisson distribution, negative b inomial distribution, canonical log-normal distribution, 

broken-stick distribution and ordinal distribution (see Guisan & Zimmermann 2000) . It 

i s, therefore, not appropriate to use least square regression to model species abundance 

due to the violation of its normal distribution assumption. The applications of the 

decision tree provided an alternative approach to model species abundance. The results 

indicated that decision tree was an appropriate method in this case with respect to 

predictive accuracy and investigating the interrelationship between target variables and 

i nput variables. For example, the decision tree model for the five functional groups had 

an overall predictive accuracy of 75% and indicated the most s ignificant variables 

which influenced the abundance of the five functional groups. 

The decision tree is also a good approach in  facilitating the development of a 

regression model. By using variables revealed as the most significant variables in 

influencing pasture productivity and the interaction among these variables in the 

decision tree models in Chapter 3 and 4, the polynomial regression model developed for 

assessing climate change and alternative phosphorus fertiliser application strategies 

(Chapter 5 )  demonstrated a better goodness-of-fit than the regression model developed 

in Chapter 3 using principal component analysis. 
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There are several disadvantages of using the decision tree to model community 

productivity, species abundance and species richness. F irstly, it is not as concise as a 

regression model in expressing the relationship between model target and input 

variables. A regression model shows whether an input variable is  positively or 

negatively influencing model target and in what scale by using a mathematic equation. 

A decision tree model only shows an average response of model target to input 

variables. Secondly, a decision tree cannot generate a continuous prediction, and thus 

could not detect the influence of small changes in environmental and management 

variables on model targets. 

8.3. Advantages of applyin g  geographic i nformati o n  system (GIS) 

I ntegration of GIS with environmental and ecological models has greatly enhanced 

the investigative and predictive capability of environmental and ecological models 

( Iverson et al. 1 997;  10hnston 1 998; Li  et al. 1 998;  Wadsworth & Reweek 1 999). Here 

GIS  has been l inked with the decision tree models in model ling pasture productivity 

(Chapter 4) and the functional group abundance of p lant species (Chapter 6), and has 

been linked with a regression model in assessing the impact of climate change and 

alternative phosphorous fertiliser appl ication strategies on pasture production (Chapter 

5) .  The power of using GIS in these modelling processes was demonstrated in deriving 

input variables for model analyses and generating model predictions over space for the 

area of interest. As for deriving input variables, GIS not only can be used to generate 

spatial features such as s lope and aspect from a digital elevation model (OEM), but i t  

can also be used to interpolate point data into surface over large areas. For example, in  

Chapter 5 ,  the climate surfaces for rainfalls and temperatures were developed by 

interpolating point observations into a continuous surface for the whole North Island for 

model predictions in the scenario analyses. 

The combination of GIS with the decision tree and regression models in previous 

chapters provided a p latform to generate model predictions for specific farm or pasture 

of interest. Information obtained from analysing these predictions can be used to 

facilitate pasture management. For example, in Chapter 6 the predicted abundance of 

HFRG species was displayed in a GIS map and areas with less HFRG composition can 

be  outlined for applying phosphorus fertiliser for encouraging their growth. The 
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decision tree models for annual and seasonal pasture productivity developed in Chapter 

3 are currently being used by another research proj ect! to assess the response of h i ll

pasture to P fertil iser for better economic return as a practice of precision agriculture. 

Using GIS is especially important in modelling pastures with heterogonous topology 

and management such as those in hill-country. However there are also l imitations of 

using GIS in these modelling processes, which may include the lack of a h igh-resolution 

digital elevation model (DEM) and the requirement for computer hardware and software. 

However, these limitations will gradually disappear with the development of 

technologies i n  computer science and GIS.  

8.4. Model insights and implications in ecological  study and p asture 

m a n agement 

8.4. 1 .  Pasture p roductivity 

The available spring rainfall was indicated as the most significant fac tor influencing 

annual productivity in hi ll-pasture of the N orth Island, while hill slope was the second 

most significant  variable influencing pasture productivity for pastures with both high 

and low spring rainfall. N and P ferti liser inputs, soil Olsen-P and annual mean dail y  

temperature were the significant variables i nfluencing pasture productivity after spring 

rainfall and slope (Chapter 3) .  This suggests that pasture production in hi l l  country was 

fi rstly regulated by unmanageable climatic and topographic variables and then was 

influenced by manageable variables such as P and N fert i li ser application. 

Rainfall has been generally recognised as the key factor influencing the h il l-pasture 

production (Lambert et al. 1 983 ;  White 1 990;  Bai et al. 2004) . Radicliffe & Baars ( 1 987) 

revealed that spring and summer rainfall accounted for 60% of the variation in  annual 

p asture production. However, the important role of spring rainfall as the determinant of 

annual pasture production was not fully recognised before. The significant influence of 

spring rainfall on pasture productivity was because about 40% of the annual 

productivity was produced in spring (Chapter 3) .  

I Variable Rate Application Technology i n  the New Zealand Aerial Topdressing Industry. 
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Both the annual P fertil iser input and five-year cumulative i nput were significant in  

i nfluencing pasture productivity. However, five-year cumulative P fertiliser input had a 

more important effect on pasture productivity than current annual P fertiliser input, 

indicating that P fertil i ser appl ication history made a significant contribution toward soil 

P ferti lity. However, current annual P fertil iser input showed a marked effect in 

i ncreas ing summer pasture productivity .  

8.4.2. I mpact of climate change and alternative P fertiliser application strategies on 

p asture production 

As indicated in Chapter 3 and 4 and by others (Riedo et aJ. 1 997;  Bai et al. 2004), 

cl imate is a key driver of pasture production and the projected climate changes for New 

Zealand will undoubtedly have a significant impact on pasture production (Ministry for 

the Environment 200 1 ) . In  this study, the climate change scenarios assumed an increase 

in temperature by 1 -2 QC and a change of rainfall from -20% to +20% relative to c limate 

normal data from 1 960- 1 990 have predicted a wide range (-46.2% to +5 1 .9%) of 

pasture production change in hill-pasture in  the North Island (chapter 5).  These climate 

scenarios, when averaged over the cl imate zones, predicted a range of -20.4% to +9.6% 

production change, which was generally i n  agreement with the predictions i n  some 

previous studies (e.g. Baars et aJ. 1 990;  M artin et at. 1 99 1 ;  Campbell et al. 1 996). I t  

needs to  be emphasised that under the scenarios of decreased rainfall and increased 

temperature, there would be a decrease in pasture production on average for the whole 

North I sland, showing that the interaction of decreased rainfall and increased 

temperature will impose a negative effect on pasture production. Developing and wide 

use of drought-tolerant species in areas where c limate changes are likely to have 

negative impact (e.g. North and South-east of the North I sland) would be a good 

management practice in the face of c limate change 

Pasture in areas with relatively low rainfall had a higher response to increased P 

ferti liser input than pastures in  areas with a relatively high rainfall. This negative 

interaction between rainfall and P ferti liser input on pasture production has two 

implications: firstly increased rainfall that resulted from climate change may reduce the 

P fertiliser util isation efficiency in  hill-pasture, and secondly, using N fertiliser instead 

of P ferti liser, may be a better choice with respect to reducing non-point source P 
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pollution in surface water, and increasing economic return from fertiliser application i n  

areas with high rainfall, as recommended by Lambert & Clark ( 1 985) .  

8.4.3. Functional group abu ndance 

Hil l-pasture management aims to increase the composi tion of high fertility response 

grasses (HFRG) and legumes and to reduce low fertil ity tolerant grasses (LFTG) and 

moss by applying phosphorus ferti l iser and introducing legume species. Chapter 6 

indicates that slope and soi l Olsen P were the most significant factors driving the 

abundance of HFRG, LFTG and moss in hi l l-pasture. With increased soil fertility or 

decreased slope, pasture becomes more HFRG dominant; while with the decreased soil 

fertil ity or increased slope, pasture becomes more LFTG and moss dominant. Since soil 

O lsen P is positively influenced by P fertiliser input in h i ll-pasture (Gil lingham A.G.,  

Gray M.H. & Smith D .R. 1 998 ;  Lambert et al. 2000), the amount of ferti l iser input, 

therefore, is one of the key factors influencing the relative abundance of functional 

group HFRG, LFTG, flatweeds and moss in hill-pasture. 

Soil  bulk density was indicated as the most significant variable influencing legume 

abundance; legume abundance was positively correlated with soil bulk density with a 

threshold of 0 .89 g/cm3. The influence of soil bulk density on relative abundance of 

legume has not been previously reported and the interpretation is not clear. This result 

has an implication that the practice of applying P fertiliser in hill-pasture to encourage 

legume growth can be compromised in certain localities by the low bulk density in  a 

pasture. 

The species of grazing animal influence pasture species abundance by changing the 

competition pattern in a pasture community through their selective defoliation 

(McNaughton 1 985) .  HFRG, LFTG and legume showed no significant response to 

different grazing animal species. However, compared to sheep grazing, cattle grazing 

significantly reduced the relative abundance of flatweeds and moss. 

8.4.4. Species richness 

Species richness has long been an interest of ecological studies (Grime 1 973 ; 

Abrams 1 995 ;  Waide et at. 1 999; Chase & Leibold 2002) . Species richness is indicated 

to be closely related to community stabi lity and/or productivity (Tilman et al. 200 1 ;  

Mouquet et al. 2002; Naeem 2002). These studies mainly focused on resource 
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availability and species interaction, mainly competition, as the forces driving species 

richness (Grime 1 9 77; Waide et at. 1 999; Mouquet et al. 2002). In  Chapter 7, legume 

abundance was indicated as the most important variable in explaining the variation in  

species richness in  hill-pastures. The mechanism may be  because increased legume 

abundance increases the degree of species complementarity and thus resulted in the 

coexistence of more species in a community as legume species can fix atmospheric N2 

by symbiotic fi xation, and do not compete with other species for nitrogen (Spehn et al. 

2002; van Ruijven & Berendse 2003) .  The result i n  this case indicated that species 

complementarity, as well as competition, may also play a role in regulating species 

richness. 

Sheep grazed pasture had more species than cattle grazed pasture, suggesting that 

the grazing animal species also had a significant effect on species richness . Herbivores 

are generally thought to enhance plant diversity by their direct consumption of 

competitively dominant plant species and indirect effects on plant competition i n  a 

nutrient-rich ecosystem (McNaughton 1 985; Proulx & Mazumder 1 998). Sheep tend to 

graze lower and be more selective than cattle (Clark et at. 1 984; Nicol et a/. 1 993 ;  

Betteridge et  al. 1 994) . This sheep grazing behaviour, compared to  cattle grazing, may 

reduce the height of dominant species and, therefore, decrease the competition among 

species, and allow more species to co-exist in a community. 

8.5. Conclusions 

1 )  The decision tree is an appropriate modelling method in predicting pasture 

community productivity, species functional group abundance and species 

richness in the hill-pasture ecosystems. It had very high predictive accuracy 

and clearly indicated the relative importance of input variables on model 

targets. It c an also be used to faci litate regression analysis in selecting the 

input variables. The limitation of using the decision tree to predict pasture 

productivity and species abundance and richness was that it did not generate 

a continuous output, and thus could not detect the influence of small changes 

in environmental and management variables on model targets. 

2) Geographic information system (GIS), with its strong ability in analysing 

spatial and spatial related variables, provided a powerful tool in modelling 
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and investigating pasture productivity and species abundance for pastures 

with heterogeneous topographic, edaphic, or management features. It helped 

to derive input data such as topology and climate variables and to achieve 

the prediction for further analyses. Integration of a GIS and statistical 

models provided a platform to investigate community structure and 

functional composition for a pasture over space, and thus can be applied as a 

tool i n  pasture management. 

3) Spring rainfall was the most significant factor influencing annual pasture 

productivity, while hil l  slope was the most significant factor influencing 

spring and winter pasture productivity. Annual P fertiliser input and autumn 

rainfal l  were the most significant factors influencing summer and autumn 

pasture productivity, respectively. 

4) C limate change scenarios of increased temperature by 1 -2 DC and rainfall 

change by -20% to +20% would h ave a great impact on pasture production 

in North I sland. From these climate scenarios a wide range (-46.2% -

+5 1 .9%) of pasture production variation was predicted compared with the 

current climate situation. Increased temperature would generally  have a 

positive effect in the south and southeast part of the North Is land. I ncreased 

rainfall would have a positive effect on pasture production in the central, 

south and southeast parts of the North I sland, but a negative effect in the 

north part of the North I s land. The decreased rainfall would only have a 

positive effect in  some central areas with high rainfall .  

5) Pasture in areas with relatively low rainfall had a higher response to 

increased P fertiliser input than pastures i n  areas with a rel atively high 

rainfall .  

6) Soil O lsen P was the most significant factor influencing the relative 

abundance of low fertil ity tolerance grasses (LFTG) and moss, while soil 

bulk density, s lope and annual P fertil iser input were the most  s igni ficant 

factors influencing the relative abundance of legume, high fertility response 

grasses ( HFRG) and flatweeds, respectively in h i l l-pasture. Generally, slope 

and soi l  Olsen P were the two key factors underlying the patterns of 

abundance for these five functional groups. 
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7) Legume abundance was the most significant factor explaining the variation 

in species richness in hi l l-pasture. Species richness increased with the 

increase of l egume abundance and showed a tendency of a hump-shaped 

response. The effect of legume abundance on species richness was possib ly a 

resul t  of species complementarity resulting from nitrogen fixation of legume 

species. Grazing animal species also have a s ignificant effect on species 

richness; pasture grazed by sheep had more species than pasture grazed by 

cattle. 
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Appendix J.' List of species 

Appendix 1 .  List of species in the hil l-pastu re studied in C hapter 7 

[afte r  Lambert et al .  ( 1 986) and Nicholas et al .  (1 998) ]  

Functional group 

High ferti lity 
response grasses 
(HFRG) 

Low ferti lity 
tolerance grasses 
(LFTG) 

Legume 

Flatweeds 

Moss 

Other species 

Species 

Dactylis glomerata, Holcus lanatus, Lolium perenne, Poa annua 

and Poa pratensis. 

Agrostis capillaris, A nthoxanthum odoratum, Cynosurus cristatus, 
Festuca rubra, Rytidosperma spp . . 

Lotus pedunculatus, Trifolium repens, Trifolium dubium and 
Trifolium subterraneum. 

Hypochaeris radicata, Leontodon taraxacoides and Plantago 
lanceolata. 

Musci spp. 

Achillea millefolium, Bellis perennis, Carex spp. , Centefla uniflora, 
Cirsium arvense, Crepis capillaris, Cymbalaria uralis, Luzula 
spp. , Galium arvense, Gnaphalium spp., Hydrocotyle sp. ,  Linum 
bienne, Montia verna, Nertera setulosa, Polycarpon tetraphyllum, 
Rumex acetosella, Sag in a procumbens, Silene gallica, Steflaria 
media, Taraxacum ofJicinale and Veronica persica. 
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