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Abstract

This study focuses on modelling community productivity, species abundance and
richness, and the impact of climate change and alternative phosphorous fertiliser
application strategies on pasture productivity by integration of decision tree and
regression modelling approaches with a geographical information system (GIS) in a
naturalised hill-pasture ecosystem in the North [sland, New Zealand, using data derived

from research conducted on hill-pastures over the last several decades.

The results indicated that the decision tree models had a high predictive capability
and clearly revealed the relative importance of environmental and management factors
in influencing community productivity, species abundance and richness. Spring rainfall
was the most significant factor influencing annual pasture productivity in the North
Island, while hill slope was the most significant factor influencing spring and winter
pasture productivity. Annual P fertiliser input and autumn rainfall were the most
significant factors influencing summer and autumn pasture productivity, respectively.
For species functional group abundance, soil Olsen P was the most significant factor
influencing the relative abundance of low fertility tolerance grasses (LFTG) and moss,
while soil bulk density, slope and annual P fertiliser input were the most significant
factors influencing the relative abundance of legume, high fertility response grasses
(HFRG) and flatweeds, respectively. Legume abundance was the most significant factor
influencing species richness in the hill-pasture. Species richness increased with an
increase in legume abundance and showed a tendency for a hump-shaped response.
Grazing animal species also had a significant effect on species richness; pasture grazed
by sheep had more species than pasture grazed by cattle. Climate change scenarios of
temperature increases of 1-2 °C and rainfall changes of -20% to +20% would have a
great impact (-46.2% to +51.9%) on pasture production in the North Island. Pasture in
areas with relatively low rainfall had a higher response to increased P fertiliser input

than pastures in areas with a relatively high rainfall.

In conclusion, the integration of a GIS with decision tree and regression models in
this study provided an approach for effective predictive modelling of community

productivity, species abundance and richness in the hill-pasture. This modelling



approach can also be used as a tool in pasture management such as in assessing the

impact of climate change and alternative fertiliser management on pasture production.

Key words: climate change, community productivity, data mining, decision tree,
functional group, hill-pasture, geographical information system, GIS-based modelling,
multivariate analysis, pasture production, predictive modelling, regression, relative

abundance, species richness.
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Chapterl: General introduction

Hill-pastures in New Zealand are naturalized vegetation that originated from
clearance of native podocarp rainforest, fern or scrub and the over-sowing with
introduced pasture species by early European settlers (Hilgendorf 1936). There are
about five million hectares of hill-pasture in New Zealand, which account for nearly one

third of the total pasture area, mainly located in the North Island (White 1990).

Considerable research has been conducted on these hill-pasture in the last few
decades (e.g. Suckling 1975; Radcliffe 1982; Lambert et al. 1996; Nicholas 1999;
Lopez 2000; Moir 2000; Gillingham 2001; Blennerhassett 2002); most of it related to
pasture productivity, species abundance and composition, and species richness. There is
a large amount of data either in the literature or kept by researchers in the form of raw

or unpublished data.

Though these data were analysed for the purposes they were collected, they still
contain much more information than has been revealed due to the research objectives, or
due to a meta-analysis not being applied to the dataset. Therefore, the whole dataset
provides the potential to develop models that investigate how environmental factors,
such as topography and climate, and management factors, such as fertilizer application

strategies, influence pasture ecosystem processes over space and time.

With the advances in data analysis technology, a new modelling approach - data
mining, has become available and its effectiveness in querying and extracting useful
information, patterns and trends, often previously unknown, from large quantities of
existing data has been demonstrated (Thuraisingham 1999). Decision tree (also called
classification and regression tree) (Breiman ef al. 1984; Vayssieres ef al. 2000) is one of
these data mining methods and has been widely used in the social (Scheffer 2002) and
medical sciences (Petitti 2000). It has also had increasing applications in environmental
modelling showing considerable accuracy and effectiveness in investigating interactions
between model target (dependent) and input (independent) variables (Iverson & Prasad

1998; Vayssieres et al. 2000; Scheffer 2002).

Geographic information system (GIS) is an information technology with the
capacity to store, analyze and display both spatial and spatial-related data (Parker 1988).
GIS has become an increasingly valuable tool in the computer-based modelling of

environmental and ecological processes. The integration of GIS with environmental and
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ecological models has been widely used to model species distribution a
(Franklin 1995; Guisan & Zimmermann 2000), community productivities |
1997; Li et al. 1998), impacts of climatic changes on vegetations (Ivers
1998; Tan & Shibasaki 2003) and watershed hydrology (Johnston 1998; Wadsworth &
Reweek 1999), for example. This integration greatly enhances the spatially investigative

and predictive capability of environmental and ecological models.

Although a large number of studies have been conducted on hill-pasture in the last
several decades, most of them focused on a single location and/or only lasted for a few
years; there is a need to investigate hill-pasture ecosystem processes by explicitly
considering spatial and temporal heterogeneity in environment and management. Hence
the objectives of this study are to investigate and model community productivity,
species abundance and species richness at a large spatial and temporal scale by
applications of decision tree and other approaches with integration of GIS. Insights
obtained from these models will be helpful in enhancing the understanding of hill-
pasture ecosystem processes at landscape or regional scale and in improving pasture

management.
The following studies were conducted to achieve these objectives:

1) Modelling the community productivity of hill-pasture in the North Island, New
Zealand.

2) GlIS-based predictive modelling of community productivity in a hill-pasture

ecosystem.

3) Modelling the impacts of climate changes and alternative phosphorus (P)
fertiliser management on hill-pasture production in the North Island, New

Zealand.

4) Modelling functional group abundance of plant species in a hill-pasture

ecosystem.

5) Modelling and investigating species richness patterns and underlying factors in a

hill-pasture ecosystem.
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These studies are presented in Chapter 3 to 7 and are prepared in the style of a
journal paper ready for publication. In Chapter 3, a decision tree is developed to
investigate and model pasture community productivity at a regional scale (the North
Island, New Zealand) and is compared with a regression model to assess its
performance. In Chapter 4, a decision tree model is integrated with a GIS to spatially
predict patterns of pasture community productivity in a hill-pasture. The utility of this
spatial modelling approach in pasture management is discussed. Chapter 5 assesses the
potential impacts of climate changes and alternative P fertiliser management on pasture
production for the whole North Island, New Zealand. In Chapter 6, decision tree models
are developed to investigate and model functional group abundance of plant species in a
hill-pasture and are integrated with a GIS to generate predictions for functional group
abundance over space. In Chapter 7 patterns and processes of species richness in a hill-

pasture are investigated using decision tree and other approaches.
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2.1. Introduction

There has been increasing concern over the impacts of environmental changes and
intensive land use on the ecosystem processes (Chapin 11l et al. 2000; Tan & Shibasaki
2003). In a pasture ecosystem, these impacts may result in a decrease in productivity and
replacement of high feed quality species by poor species (Baars et al. 1990; Langer 1990;
Campbell 1996). Modelling pasture ecosystem processes is an efficient way to investigate
the interrelationship between pasture and environmental and management factors, and to
quantify the potential impacts which may result from environmental changes and intensive
land use. Insights obtained from the model outputs could also provide implications for
better management strategies for sustainable development. In this chapter | aim to review
the research outcomes for hill-pasture in New Zealand and the main aspects of theories,
technologies and research in environmental and ecological modelling. Specifically, this
review covers the following: (1) hill-pasture in New Zealand, (2) plant ecology in relation
to species diversity, distribution and abundance, (3) GIS and GIS-based environmental

modelling, and (4) data mining and decision tree.

2.2. Hill-pasture in New Zealand

2.2.1. Introduction

Hill-pastures in New Zealand are naturalized vegetations that originated from the
clearance of native podocarp rainforest, fern or scrub and the oversowing with introduced
pasture species in hill-country by early European settlers (Hilgendorf 1936). There are
about 5 million hectares of hill-pasture in New Zealand, which are nearly 1/3 of the total
pasture and are mainly located in the North Island. Hill-country farming is a major
enterprise and a key aspect of New Zealand economy, accounting for nearly one third of the

total export earnings derived from agriculture (Trustrum et al. 1983; White 1990).

Up until the 1950°s, hill pastoral farming was primarily concerned with maintaining the
introduced pasture species such as browntop (Agrostis capillaris), chewings fescue
(Festuca rubra), crested dogstail (Cynosurus cristatus) and white clover (Trifolium repens)

at existing levels of fertility, which were often low (White 1990). There were very few



Chapter 2: Literature review

legumes in these pastures and improvement of soil fertility through nitrogen fixation was
minimal. Improvement of hill-pastures occurred with the advent of aerial top dressing in
the 1940’s, when superphosphate and lime were commonly applied. The combination of
superphosphate application and oversowing legume seed resulted in vastly improved
pastures. The superphosphate fertilizer stimulated legume growth which, in turn, fixed
atmospheric nitrogen and encouraged grass growth. This improvement of hill-pastures
meant a shift from low feed quality species like chewings fescue, browntop and danthonia,
to more desirable species such as perennial ryegrass (Lolium perenne) (White 1990;

Nicholas 1999).

Pastures on hill-country are diverse both regionally and on a single farm. This diversity
is caused by climatic factors such as temperature and rainfall, edaphic factors such as soil
moisture and soil fertility, and biotic factors such as grazing behaviour and pasture
management (Suckling 1975; Lambert & Roberts 1978, White er al. 2004). These factors
are further modified by altitude, slope, aspect, and micro-topography within a hill farm
(Lambert er al.1986; White et .al. 2004). Annual rainfall in hill-pasture varies from 300 to
over 2000 mm with most hill-country in the 600-1500 mm range. Temperature also varies
dramatically from the north to south; it varies not only with latitude and altitude, but also

with season and aspect (Radcliffe & Lefever 1981; White 1990).

Topographic variation in slope and aspect in hill-country is a characteristic of all hill-
pasture and resulted in the existence of diverse habitats differing in climatic, edaphic, and
biotic characteristics. In southern latitudes, hillsides tending towards more northerly aspect
receive greater net radiation, are warmer, and generally drier (Radcliffe & Lefever 1981).
Depending on season and aspect, land slope also modifies net radiation received and
increasing slope usually reduces soil moisture status. By influencing animal grazing and
excreta patterns, aspect also influences soil nutrient status. Within a hillside, further
variation in soil nutrient levels may occur because of differences in land slope and the
associated development of stock tracks and camps that result from animal movement and
resting habits. Accumulation of soil nutrients occurs on stock tracks and camps as a result
of nutrient transfer patterns. The combined effects of these climatic and soil differences

result in contrasting pasture species composition and production patterns (Gillingham 1982;
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Sheath & Boom 1985b). In most parts of New Zealand hill-pasture, a seasonal lack of water
is a major factor limiting pasture production, and is a primary cause of year-to-year
variability in yield (Rickard et al. 1985). Although large areas of the North Island receive
more than 1000mm rainfall, late spring and summer usually have less rainfall than autumn
and winter, resulting in seasonal soil water deficits for plant growth. Also, factors such as
shallow soils with low water-holding capacity, sloping soil with high run-off, and sunny
faces with above-average solar radiation and evapotranspiration, can also result in water
deficits (Kerr ef al. 1986; Barker & Dymock 1993). Soil moisture levels are always higher
on south-than north-facing slopes. On north-facing slopes soil moisture levels were always
higher on easy than steep slopes, but on south-facing aspects the opposite was often the

case (Gillingham et al. 1998).

2.2.2 Species composition and diversity in hill-pasture

Species composition in hill-pastures is more diverse than lowland pastoral systems in
New Zealand. Lambert et al. (1986) identified approximately 20 species in a survey of a
North Island, New Zealand hill-pasture. Some species typical of these pastures were
grasses such as ryegrass (Lolium perenne), browntop (Agrostis capillaris), sweet vernal
(Anthoxanthum odoratum), crested dogstail (Cynosurus cristatus), Yorkshire fog (Holcus
lanatus), poa (Poa spp.), red fescue (Festuca rubra), danthonia (Rytidosperma spp.),
legumes such as white clover (Trifolium repens), suckling clover (Trifolium dubium), and
lotus (Lotus pedunculatus) and other species such as flatweeds (e.g. Plantago lanceolata,
Hypochaeris radicata and Leontodon taraxacoides), moss (Muscii spp.), Centella uniflora,
and Nertera setulosa (Lambert et al. 1986) (Table 1). This diversity is brought about
through both management of the pasture and the wide variety of environmental conditions

present on most hill farms (Nicholas 1999).

Based on their morphological traits, responses to fertility, and other features, species in
hill-pasture are generally classified into several functional groups: low fertility tolerant
grasses (LFTG), such as browntop, sweet vernal, crested dogstail, danthonia, red fescue;
high fertility responsive grasses (HFRG), such as ryegrass, Yorkshire fog, poa; legumes,

such as white clover, suckling clover, and lotus; flatweeds, such as Plantago lanceolata,

10
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Hypochaeris radicata and Leontodon taraxacoides; and moss (Lambert et al. 1986;

Nicholas 1999) (Table 1).

Table 1. Plant species and functional groups of at Ballantrae (after Lambert er al. (1986)
and Nicholas et al. (1998))

Functional group Species

HFRG Lolium perenne, Holcus lanatus, Poa pratensis, Poa annua
and Dactylis glomerata.

LFTG Agrostis capillaris, Anthoxanthum odoratum, Cynosurus cristatus,
Rytidosperma spp., Festuca rubra.

Legume Trifolium repens, Trifolium dubium, Trifolium subterraneum and
Lotus pedunculatus.

Flatweeds Plantago lanceolata, Hypochaeris radicata, and Leontodon
taraxacoides.

Moss Musci spp.

Climate and soil fertility are the main determinants of species composition in hill-
pastures. These differ on a regional basis, and between hillsides and micro-sites because of
variations in slope and aspect. As a result, diverse plant communities are a common feature
of these hill environments (Suckling 1975). As soil fertility and moisture increase, pastures
move from being predominantly low fertility tolerant grasses and/or annual legume towards
associations dominated by ryegrass and white clover. Within a given climate and soil
fertility status, species composition can be modified by different stock classes, stocking
rates, and grazing managements (Levy 1970; Clark et al. 1984; Sheath & Boom 1985b).
The greatest effect of grazing on composition appears to be mediated by differences in the
grazing behaviour of animals. Within sheep-dominated systems, increases in cattle and/or
goats reduce some weed species, increase white clover content, and ultimately lead to rapid
pasture improvement (Levy 1970; Suckling 1975; Clark et al. 1984; Sheath & Boom
1985b). Pasture grazed by goats develop a Yorkshire fog-white clover association with
strong white clover growth on all slope classes, unlike sheep grazed pasture, which contains

little white clover and is dominated by perennial ryegrass and browntop (Clark et al. 1984).
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Management factors that affect species composition include stock type, grazing regime,
defoliation intensity, stock treading intensity, and pasture improvement techniques such as
fertilization and oversowing (Nicholas 1999). Topography was found to have the greatest
influence on pasture composition because of its influence on stock management, animal
behaviour and nutrient transfer. For example, ryegrass is dominant on camps and tracks, as
are other high fertility responsive grasses such as Yorkshire fog, poa and cocksfoot. Their
content decreases with increasing slope. Browntop and other low fertility tolerant grasses
such as sweet vernal, crested dogstail, chewings fescue, danthonia; legumes such as
suckling clover and lotus pedunculatus; other species such as catsear (Hypochaeris
radicata L.), hawkbit (Leontodon taraxacoides [Vill.]), plantain, moss and also dead
material increase with increased slope in hill-pastures (Lambert & Roberts 1978; Sheath &
Boom 1985a; Lambert er al. 1986; Liu 1996). Composition differences caused by soil type
were not great, except where they appeared to be related to soil moisture characteristics
(Grant & Brock 1974). Landscape patterns of vegetation diversity in pasture communities
are determined by the local-scale processes, influenced by the availability of nutrients
(White 2004).

2.2.3 Pasture productivity in hill-pasture

Pasture growth can be considered to be determined by physiographic factors (climate,
topography), soil factors (nutrient, moisture), and pasture factors (species, density). All may
operate directly on pasture growth or indirectly through modifying the influence of one or
more other factors (Ledgard er al. 1982). In hill-pasture, climate factors like temperature
and rainfall, soil fertility, especially P and N contents, topographic factors like slope and
aspect, and species composition determine the quantity and quality of pasture production,
and its seasonal distribution (Lambert et al. 1983; Gillingham et al. 1998; Moir et al. 2000).
Pasture production in the North Island is usually in a range of 2000 — 13000 kg/ha,
depending on the climate, topography and pasture management (Zhang et al. 2004).

Aspect can have a marked influence on pasture productivity. Pasture production was
higher on the south aspect than the north aspect (Lambert 1978), but some other work
showed that the converse situation was true because of better winter production

(Gillingham er al. 1998). Usually on the North Island, shady (southerly) aspects have
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higher productivity than sunny (northerly) aspects during periods of moisture stress,
whereas sunny aspects produce more herbage at other times. In drier hill-country, larger
differences among aspects in summer might be expected, because of a longer period of

moisture stress (Lambert et al. 1983).

Hill slope, due to its important role in redistributing available moisture, fertility and
solar radiation, greatly influences hill-pasture productivity. It was revealed that hill slope
was positive correlated with soil bulk density and negative correlated with soil Olsen P, soil
total nitrogen and soil moisture (Lopez 2000; Lopez et al. 2003). A strong negative
relationship between slope and annual production is usually observed in hill-pasture

(Gillingham & During 1973; Lambert & Roberts 1978).

A major factor causing variability in pasture growth rate is the fertility of soil. On hills
this effect is further complicated by changes in slope and aspect of the soil surface
(Gillingham & During 1973). Increased P content stimulates legume growth which in turn
fixes atmospheric nitrogen, which encourages grass growth. Withholding P application
could result in 29-35% less annual pasture production and 54-72% less legume production
(Roach et al. 1996). Soil phosphorus tends to have an interactive effect with soil moisture
(rainfall) on pasture production, as rainfall increases, the size of the pasture response to per
unit of Olsen P (a measure of soil phosphorous content) also increases (Moir 2000). Pasture
production also responds to N fertilizer, indicating that N is a strong limiting factor for hill-
pasture productivity, despite the contribution of N from legumes fixation (Luscombe &

Grant 1981; Gillingham et al. 1998; Blennerhassett 2002).

2.3. Plant ecology in relation to species diversity, distribution and

abundance

2.3.1. Biodiversity

Biodiversity is the variety of life, and can be defined at three levels: genetic diversity,
species diversity and landscape diversity (Huston 1994). Among these three levels, species

diversity is the most commonly used in ecological study, and can be measured by species

13



Chapter 2: Literature review

richness (species number), evenness (species relative abundance) and some diversity
indices which combine richness and evenness (Purvis & Hector 2000). Humans are
concerned about biodiversity because the world is losing species due to human induced
environmental deterioration and habitat fragmentation. The impacts of losing and changing
biodiversity in ecosystems are far-reaching on both ecosystem functioning and the services

that humans derive from ecosystems (Chapin Il et al. 2000; Tilman 2000).

2.3.2. Diversity and ecosystem function

Ecosystem functioning refers to the biogeochemical activities of an ecosystem, or the
flow of materials (nutrients, water, atmospheric gases) and processing of energy (Ehrlich &
Wilson 1991). The effect of biodiversity on ecosystem functioning, especially the diversity
and community stability relationship, has long been a controversial topic in ecological
study (Huston 1994; McCann 2000; Naeem 2002a). Before 1970, ecologists believed that a
more diverse community enhanced ecosystem stability. “Simple community were more
easily upset than that of richer ones; that is, more subject to destructive oscillation in
populations, and more vulnerable to invasion” [Charles Elton in (Tilman 1996)]. Since
1973, theoretical studies indicated that diversity tends to destabilize community dynamics
(May 1973). Recent studies on biodiversity and ecosystem functioning (Hooper & Vitousek
1997; Lonnie 1997; Loreau er al. 2001; Naeem 2002a) with evidences from the
experiments manipulated to directly control biodiversity tended to agree that diversity
within an ecosystem is, on average, correlated positively with community stability (Naeem
& Li 1997; McCann 2000; Tilman 2000). These studies also show that biodiversity is
positively related to plant community productivity, that is, greater biodiversity leads to
greater productivity (Caldeira et al. 2001; Loreau ef al. 2001; Mouquet et al. 2002; Naeem
2002b).

Species diversity has functional consequences because the number and kinds of species
present determine the traits of organisms that influence ecosystem process (Chapin Il et al.
2000). Species traits may mediate energy and material fluxes directly or may alter abiotic
conditions (for example, limiting resources, disturbance and climate) that regulate process
rates (Huston 1994; Schulze & Mooney 1994). The components of species diversity that

determine this expression of traits include the number of species (species richness), their
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relative abundance (species evenness), the particular species present (species composition),
the interaction among species, and the temporal and spatial variation in these properties. In
addition to its effects on current functioning of ecosystem, species diversity influences the
resistance and resilience of ecosystems to environmental changes (Huston 1994; Schulze &
Mooney 1994; Chapin 11 et al. 2000). On the other hand, though a large number of traits of
plant species may be functional within a community, fewer traits are directly associated
with species abundances over a larger landscape (Mabry et al. 2000). Limiting
environmental factors (e.g., minimum temperature) may “filter” species by constraining
their occurrence in a community to those species having evolved particular traits that allow
them to overcome the constraints (Grime et al. 1997). Diaz et al. (1998) found a strong
association between a regional climate gradient and measured plant traits which suggested
the effect of environmental filtering. These filters can influence species composition and

diversity at multiple and hierarchical scales of time and space along environmental

gradients (Poff 1997).

Many hypotheses have been generated to explain the relationship between biodiversity
and ecosystem functioning (Huston 1994; Naeem 1998; McCann 2000; Tilman ef a/. 2001).
The insurance hypothesis states that biodiversity provides an “insurance” or a buffer,
against environmental fluctuations, such that it maintains the stability (resistance or
resilience) of the ecosystem. Therefore, increasing diversity increases the odds that at least
some species will respond differentially to variable conditions and disturbances, and greater
diversity increases the chances that an ecosystem has functional redundancy containing
species that are capable of functionally replacing important species (Naeem 1998). The
niche complementarity hypothesis says that productivity can be greater in a community
with higher diversity because of the inter-specific differences in resource requirements, and
differences in spatial and temporal resource and habitat use, or from the positive interaction,

that is, more efficient resource exploitation (Tilman ez al. 2001).

All species in a community are not equal. The loss or addition of species with certain
functional traits may have a great impact, and others have little impact, on a particular

ecosystem process, but different processes are likely to be affected by different species.
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Functional diversity has greater impact on ecosystem processes than species diversity

(Tilman et al. 1997).

A functional group, which is a common measure of functional diversity, is a set of
species that have similar effects on a specific ecosystem-level biogeochemical process,
such that substitution among species within a functional group has “minor” impacts on
ecosystem processes. Membership in functional groups can vary depending on the
biogeochemical process of interest (Hobbie et al. 1994; Vitousek & Hooper 1994), and they
use the same resource in such a way that they could potentially compete very intensely

with one another (Schulze & Mooney 1994).

The functional characteristics of the component species in any ecosystem are likely to
be at least as important as the number of species for managing critical ecosystem processes
and services (Hooper & Vitousek 1997). Some species have such an important role in
ecosystem processes that they are termed keystone species. Keystone species are those
species whose activity and abundance determine the integrity of the community and its
unaltered persistence through time, that is stability. Experimental removal of a keystone

species should result in the loss of some species and replacement by others (Bond 1994).

Most ecosystems are non-additive function of the traits of two or more species, because
interaction among species, rather than the presence or absence of species, determines
ecosystem characteristics. Species interaction, including mutualism, trophic interaction
(predation, parasitism, and herbivory), and competition may affect an ecosystem directly by
modifying pathways of energy and material flow, or indirectly by modifying the abundance
or traits of species with strong ecosystem effects (de Ruiter et al. 1995). The functional
characteristics of the component species in any ecosystem are likely to be at least as
important as the number of species for managing critical ecosystem processes and services
(Hooper & Vitousek 1997).

Contrasting to biodiversity and ecosystem functioning theory, traditional community
ecology considers species diversity as a dependent variable controlled by abiotic
environmental conditions and ecosystem-level constraints, and primarily focused on

dominant species as biotic controllers of ecosystem functioning (Loreau ef al. 2001). Since
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most recent studies on biodiversity and ecosystem functioning are conducted by
manipulating species diversity as a designed variable and making all other factors constant,
they have been criticized, especially the positive biodiversity and productivity relationship,
as an experimental artefact (Grime 2002). Beside, many studies in natural ecosystems also
lack the evidence to support this relationship (Grime 2002). Whether the positive
relationship between biodiversity and ecosystem functioning is an artefact of manipulated

experiments or a discovered truth still needs further investigation.

2.3.3. Patterns of species diversity

Species diversity is related to the spatial scale, that is, the area within which species
diversity (e.g. richness) is measured. There is an increase in species diversity with increased
sample area. The pattern of how diversity increases with increasing sample area is called
species/area curve (Huston 1994). Environmental heterogeneity is considered the main
reason determining this diversity/area relationship; increasing sample area includes
additional habitat types with groups of different species (Judas 1988; Huston 1994). To
characterise diversity on different scale, Whittaker (1972) proposed alpha (a), beta (B) and
gamma (V) diversity. Alpha diversity is within-area diversity, measured as the number of
species occurring within an area of a given size (Huston 1994). It is usually called local
diversity. Beta diversity designates the degree of species change along a given habitat or
physiographic gradient. Gamma diversity usually refers to overall diversity within a large
region (Cornell 1985; Heywood 1995).

Species diversity is often related to the resource availability in the environment. In
environments with very low concentration of resources or nutrients, species richness is
generally low because only few species can survive. In such a resource-poor environment,
an increased availability of limiting resources will increase growth and survival of several
species. Conversely, in an environment with high concentrations of resources, a further
increase in the limiting resource results in a decreasing species richness (Huston 1979,
1994). When nutrients or other resources that increase the productivity added to a system,
diversity often decreased. The addition of fertilizer to herbaceous plant communities often

results in a sharp decrease in species diversity. High concentrations of resource have been
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suggested to favour species that tend to outcompete others and dominate the ecosystem

(Grime 1973).

Species richness is related to community productivity for a broad range of organisms
found in different types of ecosystems. Often, biological species richness increases with
increasing productivity until it reaches a plateau, beyond which further increases in
productivity are associated with a decline in species richness, that is a hump-shaped pattern
(Proulx & Mazumder 1998). Diversity tends to decline in high productivity environments is
considered due to competitive exclusion by favoured species that became dominant under

the condition (Grime 1973; Huston 1994; Osem et al. 2002).

Species richness is often observed as a hump-shaped or unimodal response along
natural gradients of increasing biomass or resources, but linear (positive or negative) and
non-significant responses are also commonly observed (Brown 1973; Goldberg & Miller
1990; Gough et al. 1994, Waide 1999). The responses of species richness are scale-
dependent (Gross et al. 2000). Chase and Leibold (2002) found that at the local scale,
species richness has a hump-shaped relationship with productivity, while at the regional
scale it is a positive linear relationship. Species richness is also related to environmental
heterogeneity (Huston 1994; Bell et al. 2000; Lundholm & Larson 2003), with a negative
or positive relationship being found when samples are within a homogenous habitat and a
hump-shaped relationship being found when samples encompasses different habitat types
(Guo & Berry 1998). Oksanen (1996) claims that the hump-shaped relationship between
diversity and biomass is just an artefact due to the fixed small plot size; as plants at high

biomass are bigger, and therefore there are less species in a plot.

Many studies have found that the highest levels of species diversity were maintained at
some “intermediate’’ frequency or intensity of disturbance. At high rates of mortality
(disturbance or predation), diversity was reduced because some species were unable to
recover from mortality. At low rates of mortality, diversity was reduced by competitive
exclusion as dominant species eliminated poorer competitors. This phenomenon is
described as intermediate disturbance hypothesis (Conell 1978), which is a non-equilibrium

hypothesis to explain regional variation of species diversity and claims that if disturbance is

frequent, only rapidly colonizing species have time to establish a community before
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disturbance comes again. As the time between disturbance events increase, or disturbance
become less severe, more species can migrate into a community, so the species diversity

increases (Conell 1978; Huston 1979; Vujnovic et al. 2002).

Herbivores are generally thought to enhance plant diversity by their direct consumption
of competitively dominant plant species and indirect effects on plant competition
(McNaughton 1985; Belsky 1992). However, other studies suggest that herbivores
sometimes have a weak, or even negative, effect on plant diversity. Plant species richness
decreases with high grazing in nutrient-poor ecosystems, while it increases with high
grazing in nutrient-rich ecosystem (Proulx & Mazumder 1998). Domesticated large grazers
managed at low stocking rates on productive grassland increase plant diversity, but high
stocking rates can decrease plant diversity. Insect herbivores often have weak or negative

effects plant diversity (Hodgson & Illius 1996).

Herbivores can influence species richness at both local and regional scale. Local
disturbance and selective grazing can enhance diversity at local scales, but strong selection
for grazing-tolerant plant species within the species pool might reduce diversity at larger
scale. The effect of herbivores on plant diversity also differs with the environment. Grazing
mammals in more productive grassland increase plant diversity. Grazers in arid or very
saline environments often do not change or can even decrease diversity (Oiff & Ritchie
1998).

2.3.4. Species distribution and abundance

There has been an increasing interest in studies on species distribution and abundance in
the last decade due to the concern over climatic change and the impact of human activities
on species distribution and diversity (Prentice 1992; Tappeiner et al. 1998; Vujnovic et al.
2002). Recent research has focused on the theories related to species niche, competitive
exclusion, species response curves along environmental gradients, and vegetation
succession to investigate species distribution and abundance in the face of environmental

change and anthropogenic influence (Austin et al. 1990; Austin 2002; Guisan et al. 2002).

Species distribution and abundance along environmental gradients in an ecosystem are

determined by species’ intrinsic physiological characteristics, the interaction among species
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themselves, and the abiotic environments through providing resources and imposing
constraints on them (Guisan & Zimmermann 2000). Species response shape to resource
gradients is described as species’ niche, including fundamental niche and realized niche
(Franklin 1995; Austin 2002). Hutchinson (1957) defined the species’ fundamental niche as
the hypervolume defined by environmental dimensions within which that species can
survive and reproduce. A species may be excluded from parts of its fundamental niche
because of competition and other biotic interactions. The reduced hypervolume is then
termed the realized niche (Austin ef al. 1990; Austin et al. 1994). The fundamental niche is
primarily a function of physiological performance and ecosystem constraints. The realized
niche additionally includes biotic interactions and competitive exclusion (Guisan &

Zimmermann 2000).

Ecological (or environmental) gradients can be classified into three categories, namely
resource, direct, and indirect gradients. Resource gradients address matter and energy
consumed by plants or animals (nutrients, water, light for plants, food, water for animals).
Direct gradients are environmental parameters that have physiological importance, but are
not consumed (i.e. temperature, pH). Indirect gradients are variables that have no direct
physiological relevance for a species' performance (slope, aspect, elevation, topographic
position, habitat type, geology). Indirect variables usually replace a combination of
different resources and direct gradients in a simple way (Franklin 1995; Guisan &
Zimmermann 2000; Austin 2002). Environmental gradients may be either proximal or
distal. Proximal and distal refer to the position of the predictor in the chain of processes that
link the predictor to its impact on plant. The most proximal gradient will be the causal
variable determining plant response. For example, available soluble soil phosphate
concentration at the root hair would be a more proximal resource gradient than total soil

phosphorus. Indirect gradients are clearly distal variables (Austin 2002).

Species response curve along the ecological gradient is generally assumed to be a
Gaussian form, e.g. a unimodal, symmetric bell-shaped curve (Gauch & Whittaker 1972;
Whittaker er al. 1973; Giller 1984; Krebs 1994). However, these assumptions are argued
for lack of evidence. Studies have revealed that only some species may have a unimodal

response curve, many species’ responses to environmental variables is asymmetric, that is
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skewed (Minchin 1989; Austin 1999). The expected shape of a species response will vary

with the nature of the gradient. Response to an indirect gradient could take any shape

(Austin 2002).

Spatial patterns of species abundance are produced by the relative difference of species
in their ability to compete or survive over a range of environmental conditions. Competition
displaces species toward environmental conditions that they are able to tolerate, but which
the species that outcompete them under optimal conditions cannot tolerate. The ecological
optimum of a species along a resource gradient is generally constrained on the high
resource end primarily by competition, and on the low resource end primarily by
physiological limitation. Thus for many species, the ecological optimum is closer to their

physiological limit than to their physiological optimum (Huston 1994).

In a hierarchical scheme of environmental controls on the distribution of plant species,
physiologically based climatic variables that are related to direct gradients control plant
distributions at the largest spatial and temporal scale (Franklin 1995). Whereas
topographical and edaphic factors determine the local and regional scale for the distribution

of plant species (Tappeiner et al. 1998; Gotteried et al. 1999).

Species coexist because of interspecific trade-offs (1) between their competitive
abilities and their dispersal abilities; (2) between their competitive abilities and their
susceptibility to disease, herbivory or predation; (3) between their abilities to live off
average conditions and their abilities to exploit resource pulses; or (4) between their
abilities to compete for alternative resources in a heterogeneous landscape (Hastings 1980;
Tilman 1982). Coexistence was found to rely on the fluctuation in population densities,
while community level densities (the summation of the competing population density)
varied very little (Tilman 1982). If a habitat is spatially heterogeneous, that is, if different
individual plants living in different portions of the habitat experience different resource

supply ratios, then this heterogeneity could allow a large number of species to coexist
(Tilman 1994).
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Competitive exclusion principle states that if two species are competing for exactly the
same limiting resources, they can not coexist, that is, one of them will be completely

excluded by the other and will become locally extinct (Hardin 1960; Huston 1994).

Effort to explain the biodiversity in the context of competitive exclusion falls into two
general classes. One is based on the idea that competitive exclusion does not happen
instantaneously, and many factors can slow the approach to equilibrium or alter the relative
strength of competitive interaction. The other general explanation for higher diversity was
the acknowledgement that the competitive exclusion did occur, but there was sufficient
patchiness in the environment that a species that became extinct on one patch would
survive on another patch, and thus allow the species diversity to be maintained at a large

scale (Huston 1994).

2.4. GIS and GIS-based ecological and environmental modelling

2.4.1. GIS in ecological and environmental study

The utility of GIS in ecological or environmental studies is commonly in storing,
managing, and integrating spatially referenced data relating to points (e.g., individual trees),
lines (e.g., rivers, roads), and polygons (e.g., forest boundaries, habitat types, territorial
ranges), conducting spatial queries (e.g., searching for areas in which a particular species or
feature occurs), engaging in geographic analysis (e.g., statistical analysis of relationships
between habitat and reproductive success), and displaying data in the form of high-quality

maps (Scholten & de Lepper 1991; Dominy & Duncan 2001).

Topography is an important driving variable in many ecological processes because of its
influence on insolation, water flow, and organism movement. GIS provides a number of
methods for analyzing topography. Digital elevation model (DEM), a raster data format,
and triangulated irregular network (TIN), a vector data format, are widely used to represent
altitude data in GIS. Topographic analyses in GIS are very powerful functions in
environmental and ecological studies. GIS can be used to directly derive map layers from
DEM or TIN such as slope (the rate of change in elevation), aspect (the direction which a

slope surface faces), inflection (the curvature of a surface in the direction of slope), surface
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water flow and catchments. Also, by analyzing topographic functions in modifying other
environmental features, GIS can also indirectly generate map layers of air temperature, soil
moisture, solar radiation, and so on (lverson et al. 1997; Johnston 1998; Stocks & Wise
2000). The ability to analyze digital topographic data has significantly advanced ecological
and hydrological modelling (Guisan & Zimmermann 2000).

One of the powerful operations that can be performed by GIS is the vertical intersection,
or map overlay, of spatially distributed data. Overlay operations can be performed for the
purposes of merging separate spatial databases, (e.g., hydrology layer with a soil layer), for
analyzing spatial intersections between data layers, or for analyzing temporal changes. GIS
can operate graphical overlay, which directly overlays two data layers; logical overlay,
which employs Boolean operators to analyze the spatial coincidence of input data layers,
and arithmetic overlay, which performs mathematical operations across multiple data layers
(Iverson et al. 1997; Johnston 1998; Stocks & Wise 2000). For example, Iverson (1997)
predicted forest composition and productivity of Ohio forest in U.S.A. by using an
integrated moisture index which was produced by overlaying map layers of a slope-aspect
shading index, cumulative flow of water downslope, curvature of the landscape, and water-

holding capacity of the soil.

2.4.2. GISin ecological and environmental modelling

Models provide ecologists with tools for extrapolating field measurements and
integrating complex ecological information over space and time. GIS have become
increasingly valuable tools in the computer-based modelling of environmental processes.
The current generation of environmental models requires large amounts of spatial data as
input and produce predictions that can be displayed as a map. GIS are able to produce data
required as input to models and excel at displaying spatial predictions. The integration of
GIS with environmental models is emerging as a significant new area of GIS development
and has been widely used in modelling species distribution and abundance, community
productivities, impacts of climatic changes on vegetations, watershed hydrology, and solar
radiation (Franklin 1995; lverson et al. 1997; Johnston 1998; Guisan & Zimmermann 2000;
Stocks & Wise 2000).
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GIS has played various roles in environmental modelling. The commonly accepted roles
for GIS in environmental modelling are as a pre- and post processor, preparing data files for
input to the model, and displaying the model result as map form for prediction and queries.
This procedure is usually carried out by coupling, in which separate environmental models

are linked with GIS packages (Stocks & Wise 2000).

Statistical models are based on empirical observations and contain one or more random
variables. When the empirical relationships needed for model development are not known,
a GIS can be used to assemble spatial data on landscape properties, to derive new data that
are syntheses of the originals, and statistically analyze those new data to determine the
strength of interaction among them. The resulting empirical relationships can be used to
predict gradients of habitats, net primary production, nutrients circles, and other ecosystem
properties across the landscape. Most GIS programs have the function of statistical analysis,
but for more advanced statistical modelling, GIS generated or derived input data are usually
exported to professional statistical software, and trained models are imported to GIS for
prediction or further query and analysis. Multivariate statistical techniques coupled with
GIS analyses provide the means for quickly compiling data, synthesizing these data, and
developing predictive models to relate ecological functions to quantifiable landscape

characteristic (Johnston 1998).

Simulation models of population, ecosystem, and landscape have been successfully
coupled with GIS, making model prediction more powerful in simulating ecosystem
processes. This coupling is most successful with models that predict outcomes of processes
such as succession, net primary production, and nutrient cycling, from parameters derived
from maps or digital satellite data. Simulation models of population, ecosystem and
landscape can be incorporated with spatial elements to duplicate ecological functions via
coupled differential equations that describe key ecosystem and landscape processes. In
these simulation models, GIS is used to derive input variables, spatially extrapolate results,

and display results (Franklin 1995; Johnston 1998).

Expert systems are computer systems that advise on or help solve real-world problems
that would normally require a human expert’s interpretation. One of the very important and

also very influential uses of GIS and GIS-based environmental modelling is to link them
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with an expert system. This linkage has found wide applications in species conservation
management, environmental management, and forest and pasture management (Johnston

1998).

2.4.3. GIS-based predictive modelling of species distribution and abundance

GIS-based predictive modelling of species distribution, a statistical modelling approach
carried out in a GIS environment, focuses on the impact of environmental change and
intensive land use on species diversity, distribution and abundance, community structure
and production, and some other vegetation features in studies related to biogeography,
conservation biology, climate change research, species management, ecosystem
management and restoration, and agricultural and forestry management (Franklin 1995;

Zimmermann & Kienast 1999; Guisan & Zimmermann 2000; Austin 2002).

GIS-based predictive modelling of species distribution starts with the development of
some type of model followed by the application the model to a GIS system to produce the
predictive map, a realization of the model. Computerized predictive vegetation modelling is
made possible by the availability of digital maps of topography and other environmental
variables such as soils, geology and climate variables, and geographic information system
software for manipulating these data. Especially important to predictive modelling of
species distribution and abundance are interpolated climatic variables related to
physiological tolerances, and topographic variables, derived from digital elevation grids,

related to site energy and moisture balance (Franklin 1995).

Commonly there are three steps in GIS-based predictive modelling of species
distribution: 1) database development, 2) model calibration, and 3) model prediction or
visualization in GIS. Database development and model visualization usually involve GIS
implementation, while model calibration is carried out in a statistic software package

(Johnston 1998; Guisan & Zimmermann 2000; Hunsaker 2001; Austin 2002).

There are two types of data generated in database development: those of vegetation data,
which may include species diversity, distribution, abundance, and biomass, and those of
environmental data, which may include climate, topology, geology, and disturbance. Both

of them can be from field sampling or derived from GIS database (such as topology data
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from DEM), remote sensed data, and other sources. The vegetation data containing the
modelling target is the dependent variable, all other factors are the independent variable

(indicator variable) in calibrating the statistical modelling.

The variety of statistical techniques used in predictive modelling is growing. Ordinary
multiple regression and its generalized form (GLM) are very popular and are often used for
modelling species distributions. Other methods include multiple regression, neural
networks, ordination, decision tree, Bayesian models, locally weighted approaches (e.g.
GAM), environmental envelopes or even combinations of these models (Guisan &
Zimmermann 2000). Choosing a proper statistical technique depends on the data
characteristics such as whether they are quantitative or qualitative, or ordinal or continuous,

and the possible species response curve along the environmental gradients (Austin 2002).

Although GIS are widely used tools in all types of spatially explicit studies, most GIS
software still lack important statistical functions for predictive purposes. This is a serious
flaw because not all statistically derived models are easy to implement in a GIS
environment. As a result, to import the model from a statistic package to a GIS is usually a
tedious and time-consuming procedure for some of the above mentioned statistic models,

and this is also true for the export of GIS derived data to the statistical software.

2.5. Data mining and deccision tree

2.5.1. Data mining

Data mining is the process of posing various queries and extracting useful information,
patterns, and trends often previously unknown from large quantities of data already present
in databases. The goals of data mining include detecting abnormal patterns and predicting
the future based on past experiences and current trends (Thuraisingham 1999). The
development of data mining is a result of the natural evolution of information technology.
A great effort in the information industry in recent years has been to deal with huge
amounts of data and the imminent need for turning such data into useful information and

knowledge (Han & Kamber 2001).
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There are a series of steps in data mining: data collection and database creation, data
management (including data storage and retrieval, database transaction processing) and

data analyses and understanding (Han & Kamber 2001).

2.5.2. Technologies used in data mining:

Data mining integrates many technologies in data analysis. Some of them are newly
developed approaches with the development of information technology, and some of them
have existed for many decades (Thuraisingham 1999; Dunham 2002). The most commonly

used technologies are as follows (Han & Kamber 2001):

e Artificial neural networks: Non-linear predictive models that learn through

training and resemble biological neural networks in structure.

e Decision trees: Tree-shaped structures that represent sets of decisions. These
decisions generate rules for the classification of a dataset. Specific decision tree
methods include Classification and Regression Trees (CART) and Chi Square
Automatic Interaction Detection (CHAID).

e Genetic algorithms: Optimization techniques that use processes such as genetic
combination, mutation, and natural selection in a design based on the concept of

evolution.

e Nearest neighbour method: A technique that classifies each record in a dataset
based on a combination of the classes of the k record(s) most similar to it in a

historical dataset. Sometimes called the k-nearest neighbour technique.

e Rule induction: The extraction of useful if-then rules from data based on

statistical significance.

2.5.3. Decision tree

A decision tree is one of the data mining methods and has been widely used in the social
(Schefter 2002) and medical sciences (Petitti 2000). It has also had increasing applications
in environmental modelling with considerable accuracy and ease of interpretation (Iverson

& Prasad 1998; Vayssieres ef al. 2000; Scheffer 2002; Yang er al. 2003).
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Fig 1. General structure of a decision tree.

The decision tree approach was originally developed by Breiman er al. (1984) and was
named classification and regression tree (CART). It is a non-parametric modelling
approach, which recursively splits the multidimensional space defined by the independent
variables into zones that are as homogenous as possible in term of the response of the
dependant variable (Vayssieres et al. 2000). The result of the analysis is a binary hierarchy
structure called a decision tree that contains the rules to predict the new cases (Breiman et

al. 1984; Dunham 2002).

The main procedure for developing a decision tree model is to split the data for target
(dependant) variable based on it response to input (independent) variables. A decision tree
model starts from the root node which is the dataset containing all observations of target
variables (for example, pasture production) and applies a condition to split the data (Figure
1). This condition is based on one of the input variables (for example, rainfall) and a split-

point (say 800 mm). If the input variable in the condition is larger than or equal to the
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threshold (= 800 mm), those observations in the target data corresponding to this are
classified to node 1; otherwise, the observations in the target data are classified to node 2
(<800 mm). The same procedure recursively applies to each of node | and 2 and the
following nodes until the further splitting is stopped by stopping rules. The final nodes
(outputs) are called leaves and are the final predictions, which are made by series
combinations of input variables and the split-points. For example, suppose the model target
is pasture production, conditions A, B and C are rainfall, fertiliser and temperature,
respectively and the split-points for these three conditions are 800 mm, 200 kg/ha and 8°C,
respectively, when pasture has a rainfall less than 800 mm, a fertiliser input equal to or
more than 200 kg/ha and a temperature equal to or more than 8°C, the predicted pasture

production is the amount in node 6.

There are different criteria used to split the data, depending on the nature of the target
variable. For interval variables like pasture productivity, the split criterion is variancc
reduction, or F test (Breiman et al. 1984; Fernandez 2003). In the case of variance
reduction, a complete search is applied to all the input variables and possible split-points to
select one variable that ultimately explains the variance of the target variable by splitting
the dataset of the target variable into two sub-datasets. Then a same procedure is
recursively applied to each of the sub-dataset until the dataset cannot be further split based
on defined rules. Suppose D is the dataset containing the target variable and is going to be
split into two sub-datasets D; and Dr. DEVyp is the deviance of dataset D (squared error

from the mean):

DEVo =" (Yi~Yya) (1)

obsi

Where Yi is a observation and Yy, is the mean of the target variable D. The variance

reduction by splitting dataset D into D, and Dg is expressed as follows:
A = DEVyp — (DEV, + DEVR) )

Where DEV| and DEVy are the deviance of Dy and Dg, respectively. An input variable

and a possible split-point that maximise A, or minimise the sum of (DEV| + DEVy) is first
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selected to split the data D, and then a search is implemented for each sub-dataset D, and

Dr and the following sub-datasets recursively (Breiman ef al. 1984).

In the case of an F test, an input variable and a possible split-point that gives the most

significant p-value in the F test associated with variance reduction is selected.

The stopping rules are carried out by setting the maximum tree levels and the minimum
observations required for a split search. The maximum tree level defines the size of the tree
and prevents the tree becoming too complex, while the minimum observations required for
a split search, prevents a few special cases influencing the output of the tree. The
significance level of F test assigned for variance reduction is another stopping rule in

decision tree model development.

Model assessment is an important part in decision tree development which enables a
good model output and prevents overtraining, otherwise the model would only fit the data
from which it was trained (Witten & Erank 2000). For models having an interval target (i.e.
continuous variable), the measure of average squared error (ASE) is commonly used
(Fernandez 2003). ASE is similar to mean squared error (MSE) in a general linear model
and is an indicator of model goodness-of-fit; the smaller the ASE, the better the model fits.
For the assessment of the decision tree, if there are validation data available, it is assessed
by the ASE of the validation data; otherwise, it is assessed by the ASE of the training data.
The first option is better. When validation data are available, a “best” tree that has the

smallest ASE from validation data is selected (Fernandez 2003).

The decision tree has many advantages over other model approaches such as regression
(Thuraisingham 1999; Vayssieres et al. 2000). Namely: (1) It has no strict assumption for
the distribution of the target variable (dependent variable) about which regression assumes
normal distribution. Also, there is no multicollinearity problem when input variables
(independent variables) are highly correlated, which is a limitation of multiple regression.
(2) Decision tree deals with non-linear models easily without any variable transformation.
(3) Decision tree can indicate the relative importance of input variables with respect to their
influences on the model target, and can indicate the interactions among input variables. (4)

It can easily incorporate ordinal (such as those measured as low, medium and high),
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nominal (such as those for soil types) and interval (such as those for biomass) variables in

the same model.

Naturally, decision tree also has its limitations: it requires a relatively large amount of
training data; it cannot express linear relationships in a simple and concise way like
regression does; it cannot produce a continuous output due to its binary nature; and it has

no unique solution, that is, there is no best solution (Iverson & Prasad 1998; Scheffer 2002).

2.6. Conclusion

Hill-pastures in New Zealand are naturalized vegetations originated from clearance of
native podocarp rainforest, fern or scrub and oversowing with introduced pasture species in
hill-country by early European settlers. In hill-pasture, species composition and abundance
and pasture productivity are strongly influenced by climatic, topographical and soil factors,

and the pasture management, such as grazing regimes and fertilizer application.

In an ecosystem, species diversity, distribution and abundance are closely related to the
abiotic environmental conditions (e.g. temperature, topography and available resources),
the frequency and intensity of disturbances (e.g. fire, grazing), and the biotic factors (e.g.
species’ physiological traits and the interaction among them). Species diversity plays a very

important role in ecosystem functioning, especially in maintaining community stability.

GIS, as a powerful tool in dealing with spatial factors, has been introduced in ecological
and environmental study and has shown a very promising application in modelling species
distribution and abundance. The application of GIS in ecological and environmental
modelling greatly enhanced the capability of obtaining input data for model analysis and

presenting model outputs over space.

Decision tree, as one of the data mining modelling approaches, has been widely used in
the social and medical sciences. It has also had increasing applications in environmental
modelling with considerable accuracy and ease of interpretation. An integration of decision
tree with GIS seems to be a feasible combination in modelling and investigating ecosystem

processes in pasture ecosystems.
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Chapter 3. Modelling the Productivity of Naturalised Hill-pasture in

the North Island, New Zealand: a Decision Tree Approach

As a new modelling methodology, the decision tree has been widely used in the
social and medical sciences. It has also had increasing applications in environmental
modelling with considerable accuracy and ease of interpretation. However, to my
best knowledge there has been no literature showing that it has been used in
modelling community productivity of any vegetation types. In this chapter, decision
tree models were developed and were compared with regression models to assess
their performance in modelling community productivity in the naturalised hill-

pasture ecosystem in the North Island, New Zealand.

A paper derived from this chapter with a title “Modelling the productivity of naturalised pasture in
the North Island, New Zealand.: a decision tree approach” by B. Zhang, I. Valentine & P.D. Kemp
has been published in Ecological Modelling (in press, available on-line).
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Abstract. Decision tree, one of the data mining methods, has been widely used as a
modelling approach and has shown better predictive ability than traditional approaches
(e.g. regression). However, very little is known from the literature about how the
decision tree performs in predicting pasture productivity. In this study, decision tree
models were developed to investigate and predict the annual and seasonal productivity
of naturalised hill-pasture in the North Island, New Zealand, and were compared with
regression models with respect to model fit, validation and predictive accuracy. The
results indicated that the decision tree models for annual and seasonal pasture
productivity all had a smaller average squared error (ASE) and a higher percentage of
adequately predicted cases than the corresponding regression models. The decision tree
model for annual pasture productivity had an ASE which was only half of that of the
regression model, and adequately predicted 90.1% of the cases in the model validation
which was 10.8 percentage points higher than that of the regression model. Furthermore,
the decision tree models for annual and seasonal pasture productivity also clearly
revealed the relative importance of environmental and management variables in
influencing pasture productivity, and the interaction among these variables. Spring
rainfall was the most significant factor influencing annual pasture productivity, while
hill slope was the most significant factor influencing spring and winter pasture
productivity, and annual P fertiliser input and autumn rainfall were the most significant
factors influencing summer and autumn pasture productivity, respectively. One
limitation of using the decision tree to predict pasture productivity was that it did not
generate a continuous prediction, and thus could not detect the influence of small

changes in environmental and management variables on pasture productivity.

3.1. Introduction

Modelling pasture productivity has long been an interest of agronomists and plant
ecologists, either for investigating ecosystem processes or predicting pasture yield for
practical purposes (e.g. Dyne 1970; Seligman & Baker 1993; Stuth er al. 1993;
Sorenson 1998; Moir 2000). Traditionally, there are two main approaches to modelling
pasture productivity: using mechanistic models to reveal the causal factors determining
pasture productivity (Gilmanov et al. 1997; Riedo et al. 1998; Foy et al. 1999; Moir et
al. 2000), and using empirical models, usually in one of the regression forms, to

simulate pasture productivity and investigate the interrelationship between pasture and
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environmental factors (Lambert et al. 1983; Sala et al. 1988; Paruelo & Tomasel 1997,
Scott 2002). Mechanistic models, because of their strong theoretical bases, tend to be
more general and widely applicable than empirical models (Rickert et al. 2000).
Empirical models, on the other hand, have the advantage of high predictive accuracy
over mechanistic models for the areas the models are developed, and can also provide
insight into the ecosystem processes if the input variables are properly chosen and
ecologically meaningful (Guisan & Zimmermann 2000; Rickert et al. 2000). An
empirical model, therefore, i1s usually a better choice for a predictive purpose, such as
assessing climatic impact and fertiliser effect on pasture productivity, due to its reality

and accuracy.

With the development of computer technology, a new empirical modelling method,
data mining, has become popular due to its strong ability to predict new cases based on
previously known information (Witten & Erank 2000; Dunham 2002). Data mining is a
process of querying and extracting useful information, patterns, and trends often
previously unknown from large quantities of existing data (Thuraisingham 1999).
Decision tree is one of the data mining methods and has been widely used in the social
(Scheffer 2002) and medical sciences (Petitti 2000). It has also had increasing
applications in environmental modelling with considerable accuracy and ease of
interpretation (Iverson & Prasad 1998; Vayssieres et al. 2000; Scheffer 2002; Yanget al.
2003).

Decision tree 1s a non-parametric modelling approach, which recursively splits the
multidimensional space defined by the independent variables into zones that are as
homogenous as possible in term of the response of the dependant variable (Vayssieres et
al. 2000). The result of the analysis is a binary hierarchy structure called a decision tree
with branches and leaves that contains the rules to predict the new cases (Breiman et al.
1984; Dunham 2002). Decision tree has many advantages over other model approaches
such as regression (Thuraisingham 1999; Vayssieres et al. 2000). Namely: (1) It has no
strict assumption for the distribution of the target variable (dependent variable) about
which regression assumes normal distribution. Also, there is no multicollinearity
problem when input variables (independent variables) are highly correlated, which is a
limitation of multiple regression. (2) Decision tree deals with non-linear models easily

without any variable transformation. (3) Decision tree can indicate the relative
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importance of input variables with respect to their influences on the model target, and
can indicate the interactions among input variables. (4) It can easily incorporate ordinal
(such as those measured as low, medium and high), nominal (such as those for soil

types) and interval (such as those for biomass) variables in the same model.

Naturally, decision tree also has its limitations: it requires a relatively large amount
of training data; it cannot express linear relationships in a simple and concise way like
regression does; it cannot produce a continuous output due to its binary nature; and it
has no unique solution, that is, there is no best solution (Iverson & Prasad 1998;

Scheffer 2002).

Little information is available from the literature on the performance of decision tree
in predicting pasture productivity. In this study, we focused on the productivity
(aboveground biomass) of naturalised hill-pasture in New Zealand as the modelling
target, and developed and assessed the decision tree models for annual and seasonal
pasture productivity. The main aim of this study was to evaluate the performance of
decision tree in predicting pasture productivity and investigating the interrelationship
between pasture productivity and environmental and management factors in hill-pasture,
New Zealand. A common method to assess a new modelling approach is comparing it
with a well-known one with respect to model fit and validation (Rykiel Jr 1996;
Mitchell 1997). As the most commonly used modelling approach and the “cornerstone”
of empirical models, the regression model provides an intuitive standard of model
performance (Scheffer 2002). A comparison of decision tree model with a regression
model will give a clear indication of how well it performed. Thus, the second aim of
this study was to compare and assess the decision tree with regression for modelling

pasture productivity in terms of model fit, validation and predictive accuracy.

3.2. Materials and methods

3.2.1. Study area

This study covers most of the hill-pasture in the North Island, New Zealand (Fig. 1).
Hill-pasture in New Zealand are naturalized vegetation originated from clearance of
native podocarp rainforest, fern or scrub and over-sown with introduced pasture species

by early European settlers (Hilgendorf 1936). There are about five million hectares of
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hill-pasture in New Zealand, which accounts for nearly one third of the total pasture

area in New Zealand, mainly located in the North I[sland (White 1990).

Climate is very diverse in the hill-pasture of the North Island with mean annual
rainfall ranging from 800-1600 mm and mean annual daily temperature ranging from 9 -
15 °C (Tomlinson & Sansom 1994). Although large areas of hill-pasture receive more
than 1000 mm rainfall per year, late spring and summer usually have less rainfall than
autumn and winter. This results in a seasonal lack of water for most of the hill-pasture,
which is a major factor limiting pasture productivity, and is a primary cause of year-to-
year variation of pasture production (Rickard er al. 1985; Radcliffe & Barrs 1987;
Barker & Dymock 1993).

Fig. 1. The study area and the main sampling locations

Topographic features such as slope, aspect, and altitude play an important role in
hill-pasture ecosystem processes (Radcliffe 1982). In southern latitudes, the north
aspect receives more net radiation, is warmer, and generally drier than the south aspect.
Depending on season and aspect, hill slope also modifies solar radiation received
(McAneney & Noble 1975), and, usually, increasing slope reduces soil moisture status

(Radcliffe & Lefever 1981). Aspect and slope also influence soil nutrient status by
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influencing animal grazing and excreta patterns (Gillingham 1982; Sheath & Boom

1985).

Over-sowing legume species like white clover (Trifolium repens) and lotus (Lotus
pedunculatus), and top-dressing P fertiliser (mainly single superphosphate,
approximately 9% of P) have been the major management practices in hill-pasture. P
fertilizer stimulates legume growth which in turn fixes atmospheric nitrogen and
encourages grass growth (White 1990). P fertilizer input and application history are the

important indicators of soil fertility status in hill-pasture (McCall & Thorroli 1991).

3.2.2. Database setup

Developing a decision tree requires a large amount of training data, and the decision
tree works best if sufficient samples are available (Clark & Pregibon 1992; Iverson &
Prasad 1998). In the last several decades, considerable research has been conducted on
hill-pasture in New Zealand (e.g. Suckling 1975; Radcliffe 1982; Lambert et al. 1996;
Nicholas 1999; Lopez 2000; Moir 2000; Gillingham 2001; Blennerhassett 2002); most
of it related to pasture productivity. There is a large amount of data in the literature and
kept by researchers in the form of raw or unpublished data, which provides a valuable
resource to develop the decision tree for hill-pasture productivity. In establishing the
dataset, an effort was made to collect as many climatic, environmental and management
variables as possible, aiming to cover the most important factors influencing pasture
productivity. Data for pasture productivity (annual and seasonal productivity), soil
property (bulk density, pH, Olsen-P), fertiliser management (N, P fertiliser inputs) and
topographic features (slope and aspect) were obtained from the literature and from
researchers providing the raw or unpublished data. Most climatic data (rainfall,
temperature and global solar radiation) were obtained from the National Institute of
Water & Atmospheric Research (NIWA), New Zealand. Potential evapotranspiration
(PET) was derived from temperature and solar radiation using Priestley & Taylor’s
equation (Priestley & Taylor 1972). Since the rainfall data was measured from the
horizontal surface and the P fertiliser was commonly aerially applied to hill-pasture
with a uniform rate, the actual rainfall and P fertiliser received were adjusted by the
cosine of the slope angle. Actual solar radiation on hilly terrain is strongly influenced

by topography (Antoni 1998), so it was calculated from observed solar radiation at that
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location by an empirical method developed for the North Island, New Zealand

(McAneney & Noble 1975).

In New Zealand, pasture productivity is commonly measured by cutting re-growth
from a trimmed quadrat (usually 1 m? in arca) with a cutting period of about one to two
months depending on the growth rate of plants (i.e. trimming technique) (Lynch &
Mountier 1954). Productivity is usually measured for a period of one year, and seasonal
productivity is calculated from cuttings covering the season with spring from September

to November.

This dataset covers most types of hill-pastures in the North Island (Fig. 1). There
were 37 variables, including 32 input variables (independent variables) and five target

variables (dependent variables), and 1900 samples in this dataset (Table 1).

3.2.3. Models development

The decision tree models for annual and seasonal pasture productivity were analysed
in SAS Enterprise Miner, Version 4.1 (SAS Institute Inc., 1999-2001, Cary, NC, USA).
The regression models for annual and seasonal pasture productivity were analysed in
SAS 8.2 (SAS Institute Inc., 1999-2001, Cary, NC, USA). Annual and seasonal pasture
productivity data were square root transformed to reduce the heterogeneous variances in
residual as all random errors have the same variance is a fundamental assumption
underlying linear regression (Sen & Srivastava 1990). The transformed data were also
used in the decision tree analyses to make the results comparable with those of the
regression models, although it is not essential for the decision tree analysis to assume a
normal distribution of the target variable (Vayssieres et al. 2000). All the outputs of the
decision tree models were back-transformed to make them practicable. In the
development of the decision trees and regression models for annual and seasonal pasture
productivity, the whole dataset was randomly partitioned into two parts: the training
data (70% of the total) and the validation data (30% of the total). The decision trees and

regression models were trained by the training data and validated by the validation data.

3.2.3.1. Decision tree
The main procedure for developing a decision tree model is to split the data of target
variable based on its response to input variables. In SAS Enterpriser Miner, there are

different criteria used to split the data, depending on the nature of the target variable.
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For interval variables like pasture productivity, the split criterion is variance reduction,
or F test. In the case of variance reduction, a complete search is applied to all the input
variables and possible split-points to select one variable that ultimately explains the
variance of the target variable by splitting the dataset of target variable into two sub-
datasets. Then the same procedure is recursively applied to each of the sub-dataset until
the dataset cannot be further split based on defined rules. Suppose D is the dataset
containing the target variable and is going to be split into two sub-datasets D, and Dg.

DEVp is the deviance of dataset D (squared error from the mean):

DEVo =" (Yi = Yoa) (1)
obsi
Where Y1 is an observation and Yya is the mean of the target variable D. The variance

reduction by splitting dataset D into Di and Dg is expressed as follows:
A = DEVp— (DEV. + DEVR) (2)

Where DEV, and DEVy are the deviance of Di and Dg, respectively. An input
variable and a possible split-point that maximise A, or minimise the sum of (DEV, +
DEVg) is first selected to split the data D, and then the same search is implemented for
each sub-dataset D and Dr and the following sub-datasets recursively (SAS Online

Help: Getting Started with Enterpriser Miner Software).

In the case of F test, an input variable and a possible split-point that gives the most

significant p-value in F test associated with variance reduction is selected.

We compared both criteria in developing the decision trees and chose variance
reduction as the split criterion since it gave very similar patterns of variance reduction
between training data and validation data in the model assessment (see later). However,

the decision tree outputs from using these two criteria were very similar.

3.2.3.2. Regression

Regression models were analysed using the same training data used in the decision
tree analyses. Since there were too many factors significant in the regression analysis of
annual pasture productivity, resulting in a serious multicollinearity problem, a principal

component analysis was applicd to reduce the dimensions of the input variables. The
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first nine principal components, which accounted for 89% of the total variance, were

chosen as model inputs for the regression analysis.

Table 1. Variables used in the decision tree and regression analyses

Variable symbol Units Range Variable description
input variable
pH Jog[Hl  4.7-5.9 soil pH
BD g/ em’ 0.75-120  soil bulk density
OlsenP ng/g 3.8-160.0  soil Olsen P
N fert kg/ha 0-180 annual elemental N fertiliser input per ha
P fert kg/ha 0-76 annual elemental P fertiliser input per ha
P fert 5 kg/ha 0-268 5 years cumulative elemental P fertiliser input per ha
P fert 10 kg/ha 0-429 10 years cumulative clemental P fertiliser input per ha
temp y e 10.1-154  annual mean daily temperature
temp_sp ' 10.4-144  spring mean daily temperature
temp_su G 14.8-19.5  summer mean daily temperature
temp_au ‘€ 12.1-16.2  autumn mean daily temperature
temp wi °’C 7.2-114 winter mean daily temperature
rain_y mm 417-1727  annual rainfall
rain_sp mm 71-501 spring rainfall
rain su mm 37-545 summer rainfall
rain au mm 149-311 autumn rainfall
rain wi mm 152429 winter rainfall
rain_warm mm 117-850 sum of spring and summer rainfall
solar_y MJ/m® 4.17-19.32  annual mean daily global solar radiation
solar_sp MJ/m’ 6.74-22.18  spring mean daily global solar radiation
solar_su MJ/m’ 9.36-24.31  summer mean daily global solar radiation
solar au MJ/m® 1.16-16.59  autumn mean daily global solar radiation
solar wi MJ/m’ 0.55-1490  winter mean daily global solar radiation
PET y mnvm’/d 0.34-3.19  annual mean daily evapotranspiration
PET sp mm/m’/d 0.82-3.99  spring mean daily evapotranspiration
PET su mm/m*/d 1.40-440  summer mean daily evapotranspiration
PET au mmvm®/d -0.23-2.76  autumn mean daily cvapotranspiration
PET wi mm/m’/d -0.40-2.15  winter mean daily evapotranspiration
aspect hill slope aspect. eg. N NE S SW NW, etc.
aspect_adj sunny (NW, N, NE, E), shady (SE, S, SW, W)
slope degree 2-45 hill slope angle
legume p % 0-81.2 The relative abundance of legume in pasture
target variable
annual productivity kg/ha/y 793-25763  annual aboveground dry matter per ha

spring productivity kg/ha/season 117-11275  spring aboveground dry matter per ha
summer productivity kg/ha/season  39-7699 summer aboveground dry matter per ha
autumn productivity kg/ha/season  116-4598  autumnaboveground dry matter per ha
winter productivity kg/ha/season 10-6739 winter aboveground dry matter per ha
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Table 2 shows the eigenvectors (CORR) of the input variables for the first nine
principal components. Values in bold font indicate the main input variables contributing
to the principal components. The main variables contributing to the first principal
component were solar radiation and PET. The main variables contributing to the second
principal component were temperature and rainfall. The main variables contributing to
the third principal component were P fertiliser input and soil pH. For the regression
analyses of seasonal pasture productivity, we used the original variables as model inputs
since the multicollinearity problem was manageable. A forward stepwise approach was
used to select the variables with a significance level P<0.05 in analysing the regressions
of annual and seasonal pasture productivity. As stepwise approach had limitations in
selecting significant variables (e.g. it can select variables that significant but
meaningless for the studied system or it can eliminate a variable from model once a
significant but meaningless variable is included), backward and forward approaches
were also used to facilitate the variable selection. Residuals were checked for
identifying outliers and unexplained variance, and the condition index was checked for

identifying collinearity. Further improvements of model fit were then made accordingly.

3.2.4. Model assessment and empirical validation

Model assessment is an important step in developing the decision tree, as it enables
a good model output, and prevents overtraining, which otherwise would develop a
model that only fits the data from which it was trained (Witten & Erank 2000). The SAS
Enterpriser Miner has several options to assess the model having an interval target (i.e.
continuous variable) (Fernandez 2003). The measure of average squared error (ASE) is
a commonly used option. ASE is similar to mean squared error (MSE) in general linear
model and is an indicator of model goodness-of-fit; the smaller the ASE, the better the
model fits. For the assessment of decision tree, if there are validation data available, it is
assessed by the ASE of the validation data; otherwise, it is assessed by the ASE of the
training data. The first option is better (SAS Online Help: Getting Started with
Enterpriser Miner Software). When validation data are available, a “best” tree that has
the smallest ASE from validation data is selected. An example of model assessment
using the ASE of the validation data is illustrated in Fig. 2 for the decision tree model

for annual pasture productivity.
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Table 2. Eigenvectors (CORR) for the first nine principal components. Numbers in bold

font indicate the main contributions of input variables to the principal components.

Variables  Princ.1 Princ.2 Princ.3  Princ.4 Princ5 Princ.6 Princ.7 Princ.8 Princ.9
pH 0.021 0.046 0.370 0.046  -0.240 -0.121  -0.130 0.328 -0.255
BD 0.094 0241 -0.071 0.101 -0.054 0.218  0.246  0.298 0.161
N_fert 0.024 -0009 -0.050 0.049 0.044 -0.482 -0115 0.632 -0.082
OlsenP -0.006 0.117 0.190 -0.053 -0.207 0.120 -0.425 -0.071 0.564
P_fert -0.017 -0.217 0.110 -0.207 -0.096 0.349 -0.101 0.208 -0.156
P_fert 10 -0.030 -0.116 0.393 -0.303 -0.231 0.104 0.083 0.055 0.043
P fet 5 -0.039 -0.127 0.353 -0.357 -0.187 0112 0109 0.103 0.084
temp_y 0.030 0.304 0.237 0.087 0.151 0.046 -0.034 -0.072 -0.075
temp_sp  0.025 0.293 0.219 0.132 0.106 -0.040 -0.008 0.040 0.169
temp_su  0.027 0.313 0.214 0.053 0.062 -0.116 0.025 -0.070 -0.129
temp_ au 0005 0.278 0.176 -0.039 0.122 0.169 -0.124 -0.142 -0.146
temp_wi 0.042 0233 0.204 0221  0.246 0.190 -0.028 0.052 0.076
t min_w 0.016 0.201  0.291 -0.047 -0.073 -0.353 0.232  -0.093 -0.192
rain_y 0.044 -0.272 0.197 0336 0.050 0.075 0.014 -0.054 -0.050
rain_sp 0.027 -0.290 0.163 0.131  -0.012 -0.016 0.108 -0.154  -0.229
rain_su 0.031 -0.172 0.1M11 0.361  0.009 -0.046  0.021 0.255 0.430
rain_au 0.021  -0.193 0.213 0.225 -0.041 -0.144 0294  -0.318 0.150
rain_wi 0.048 -0.127 0.072 0.282 0.138 0.374  -0.362 0.093 -0.372
rain_warm 0.036 -0.294 0.173 0.289  -0.004 -0.036 0.085 0.035 0.079
solar_y 0.346 -0.020 0.000 -0.058 0.034 0.012 0.035 0.001 0.014
solar_sp 0.320 -0.066 -0.101 -0.086 -0.093 -0.055 -0.141  -0.039 0.024
solar_su 0.044 -0.174 0.099 -0.263 0.477 -0.037 0.059 0.052 0.100
solar_au 0.335 -0.007 0.007 -0.026 0.120 0.068 0.040 0.084 0.023
solar_wi 0.316 0.046 -0.027 0.040 -0.244 -0.036 0.014  -0.088 -0.070
PET_y 0.346 0.003 0.018 -0.050 0.044 0.017 0.035 -0.005 0.008
PET_sp 0.328 -0.022 -0.068 -0.069 -0.076 -0.062 -0.138 -0.032 0.053
PET_su 0.051 -0.121 0.143 -0.266  0.507 -0.062 0.066  0.041 0.078
PET_au 0.334 0.007 0.017 -0.028 0.124 0.079 0.035 0.074 0.014
PET_wi 0.318 0.052 -0.019 0.048 -0.229 -0.027 0.019  -0.084 -0.065
aspect A 0.311 -0.028 0.022 -0.029 0.040 0.012 0.078 -0.036 -0.014
slope -0.021 0.135 -0.123 0.044 -0.098 0.380 0.577  0.247 -0.014

There are also some other ways to prevent over-training of a decision tree. One is to
set the maximum tree levels, which defines the size of the tree and prevents the tree

becoming too complex. Another one is to set the minimum observations required for a
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split search, which prevents a few special cases influencing the output of the tree. We
set six as the maximum tree levels and 13 observations as the minimum observations
required for a split search in developing the decision tree models for annual and
seasonal pasture productivity. The recommendation on minimum observations was

derived using the program by assessing the size of the whole dataset (Fernandez 2003).

700 -

—— Training data

- —s— Validation data
w 400

200
100

------

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Number of leaves in the decision tree

Fig. 2. Model assessment in developing the decision tree model for annual pasture
productivity using average squared error (ASE) of the validation data. The vertical line
indicates the smallest ASE from the validation data and the number of leaves selected for

the final tree.

After the decision trees and regression models were developed, an empirical
validation was implemented for all the decision trees and the regression models using
the validation data. This empirical validation graphs the deviations (the differences
between the predictions and the observations) against observations of the validation data,
and checks the percentage of adequately predicted cases out of the whole validation data
based on a given acceptable error (Mitchell 1997). This method is a more stringent
model validation approach than methods using regression or correlation between model
predictions and observations, which were criticised as not appropriate by some
modellers (Harrison 1990; Mitchell 1997). Considering the potential variance
heterogeneity in pasture productivity resulting from different sampling times, locations

and managements, and the sampling error in measuring pasture productivity, we chose
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+20% of the observation as an acceptable error of prediction. The percentage of
deviations within £20% of observations is considered as a standard for model predictive

accuracy (Mitchell 1997).

3.3. Results

3.3.1. Decision trees and regression models

The decision tree models for annual, spring, summer, autumn and winter pasture

productivity are given in Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7.

In each decision tree, the value in the upper most rectangle is the average pasture
productivity. The variable and the value in the rectangle below the upper most rectangle
are the most significant variable selected to split the tree and the split-point (value of
that variable at which the split is made). Prediction goes to left-side branch if pasture
with the splitting variable is less than the split-point, and goes to right-side branch if
pasture with the splitting variable is equal to, or more than, the split-point. Further
prediction is made recursively based on the next significant variable in the same way for
the first prediction, until the tree leaves, which are the final predictions in the decision
tree, are reached. For example, in the decision tree model for annual pasture
productivity (Fig. 3), the average pasture productivity for the whole study area was
7789 kg/ha, spring rainfall was the most significant factor selected to split the tree with
a split-point of 212 mm. Pastures with a spring rainfall less than 212 mm had a
predicted average productivity of 3280 kg/ha, while pastures with a spring rainfall equal
to, or more than, 212 mm had a predicted average productivity of 9579 kg/ha. Further
prediction was made by next splitting factor (slope) and a split-point (22.5° for pastures
with less than 212 mm spring rainfall) after the first prediction, and so on until it
reached to the final prediction. The final prediction of pasture productivity was made by
a series of constraints defined by the input variables and their split-points. For example,
if pastures with a spring rainfall less than 212 mm, a slope less than 22.5°, an annual
temperature less than 13.4 °C, a five-year cumulative P fertiliser input (elemental P) less
than 4.4 kg/ha, and a soil bulk density less than 0.85 g/cmz, then the predicted average
pasture productivity was 2010 kg/ha.
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The relative importance of environmental and management variables on pasture
productivity in the decision trees was ranked by the order they were selected in splitting
the decision tree. The variable first selected was more influential than those selected
after it. Spring rainfall was the most significant variable selected to split the decision
tree model for annual productivity, whereas annual N fertiliser input and five-year
accumulated P fertiliser input were the significant manageable variables. Slope was the
most significant variable selected to split the decision tree models for spring and winter
pasture productivity, and annual P fertiliser input and autumn rainfall were the most
significant variables selected to split the decision tree models for summer and autumn

pasture productivity.

The decision tree model for annual pasture productivity had 40 leaves with a
predicted average pasture productivity ranging from 1332 kg/ha to 15820 kg/ha (Fig. 3).
In comparison, the decision tree models for spring, summer, autumn and winter pasture
productivity had only 25, 26, 26, and 28 leaves, respectively. The predicted average
annual, spring, summer, autumn and winter pasture productivity were 7789, 3462, 2791,
1469 and 1250 kg/ha, respectively. Spring productivity accounted for about 40% of the
total pasture productivity, while summer, autumn and winter productivity accounted for

about 30%, 16% and 14% of the annual productivity, respectively.

The regression model for annual pasture productivity is displayed in Table 3. Details
of the regression models for seasonal pasture productivity are not shown here for
simplicity. A summary of them is given in Table 4. In general, all five regression
models were very significant (P <0.001), and had relatively high adjusted R* values. For
annual pasture productivity, solar radiation, PET, P fertiliser and rainfall showed a
positive effect, while temperature showed a negative effect. Regression models for
seasonal pasture productivity selected a similar set of variables as in the decision tree
models for seasonal pasture productivity. Interaction terms and quadratic terms were not
selected in regression models for seasonal productivity as including them in the model
did not substantially increase the model fit, but would result in a serious
multicollinearity problem. However, as some factors such as P fertiliser and Olsen were
correlated and were chosen in a model (Table 4), there was still a multicollinearity
problem in each of the regression model for seasonal pasture productivity. I did not

remove the entire correlated wvariable from the model because the existed

55



Chapter 3: Modelling pasture productivity — a decision tree approach

multicollinearity did not affect the estimation of target variable but the responses of
some coefficients of input variables (Freund & Littell 1991), and [ intended to maximise
the model fit for the purpose of comparing them with the decision tree models to assess

the performance of the decision tree models..

Table 3. Regression model for annual pasture productivity

a. Model fit
Mean of Response  91.6109 R-Square 0.6437
Root MSE 14.4702 Adj R-Sq 0.6424

b. Analysis of Variance

Source DF Sum of Squares Mean Square F Stat Pr>F
Model 7 713933.9795 101990.5685  487.09 <.0001
Error 1887 395111.4314 209.3860

C Total 1894  1109045.4110

c. Parameter Estimates
Variable DF Estimate Std Error tStat Pr>|t| F Stat Pr>F
1 916109 0.3324 275.60 <.0001 :

1 1.1351  0.1163 9.76 <.0001 95.32 <.0001
PCR2 1 -55353 0.1237 -4474 <.0001 200144 <.0001
PCR3 1 6.8950 0.1976 3490 <.0001 1217.73 <.0001
PCR6 1 -0.5933 0.2570 -2.31  0.0211 5.33 0.0211

1

1

1

Intercept
PCR1

PCR7 -1.5719  0.2990 -5.26 <.0001 27.64 <.0001
PCR8 -1.8178  0.3446 -527 <0001 27.82 <.0001
PCR9 -2.0561  0.3507 -5.86 <.0001 34.36 <.0001

3.3.2. Model assessment and empirical validation

A comparison of the ASE of the decision trees and the regression models for annual
and seasonal pasture productivity is displayed in Fig. 8. The ASE of each decision tree
was smaller than that of the corresponding regression model, indicating the bettecr model
fit of decision tree than regression. The ASE of the decision tree model for annual
pasture productivity was approximately half of that of the regression of annual pasture
productivity. However, the difference between ASE of each decision tree model for

seasonal pasture productivity and the corresponding regression model was small.
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Table 4. Summary of the regression models for annual and seasonal pasture

productivity. See Table 1 for variable symbols.

Models Input variables F value Pr>F Adj R’
Annual principal components 487.09 <0.0001  0.642
productivity
Spring BD, N_fert, OlsenP, P_fert, P_fert5, 122.26 <0.0001 0.656
productivity aspect, slope, rain_wi, solar wi,

solar_sp
Summer pH, N_fert, P_fert, P_fertS, aspect, 106.62 <0.0001 0.664
productivity slope, rain_sp, temp_sp, solar_su,

legume_p
Autumn BD, N_fert, P_fert, aspect, slope, 130.34 <0.0001 0.641
productivity rain_au, rain_su, temp_au, solar_au
Winter N _fert, OlsenP, P_fert, P_fert5, 91.24 <0.0001  0.587

productivity

aspect, slope, solar_ua, rain_wi,

temp_wi

Empirical validations of the decision tree and the regression of annual pasture

productivity indicated that the decision tree had 91% adequately predicted cases based

on the validation data, while the regression had 80% (Fig. 9). The deviations of the

decision tree model for annual pasture productivity were within £40, while those of the

regression of annual pasture productivity were within £50.The results of empirical

validations of both decision trees and regressions of annual and seasonal pasture

productivity were summarised in Fig. 10. In general, the percentage of adequately

predicted cases for each decision tree was higher than the corresponding regression

model.
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Fig. 3. The decision tree model for annual pasture productivity. Predicted productivities are in the un-shaded rectangles, splitting variables and split-points are in the
shaded rectangles. Prediction goes to the left-side branch when the splitting variable is less than the split-point, and goes to the right-side branch when the splitting variable

is equal to, or more than, the split-point (in the case of aspect, pasture with aspect set before the comma go to left branch, others go to right branch). See Table 1 for

variable descriptions and units.
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Fig. 4. The decision tree model for spring pasture productivity. See caption of Fig. 3 for the interpretation of decision tree.
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Fig. S. The decision tree model for summer pasture productivity. See caption of Fig. 3 for the interpretation of decision tree.
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Fig. 6. The decision tree model for autumn pasture productivity. See caption of Fig. 3 for the interpretation of decision tree.
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Fig. 7. The decision tree model for winter pasture productivity. See caption of Fig. 3 for the interpretation of decision tree.
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Fig. 8. Comparison of average square error (ASE) between the decision trees and the

regression models for annual and seasonal pasture productivity

3.4. Discussion

3.4.1. Performance of model

Both the decision trees and regression models were satisfactory in predicting annual
and seasonal pasture productivity, but the decision trees performed better with respect to

model fit and predictive accuracy.

The regression models generally met the basic assumptions of regression analysis,
and were all highly significant (P <0.001) (Table 4) and explained a relatively high
percentage of the variance of model targets considering the large sampling area, and the
heterogeneity of the environment and management over the area. They also adequately
predicted a considerable proportion of cases in the model empirical validation (Fig. 10).
Compared to the regression models, the decision trees all had a smaller ASE (Fig. 8)
and a higher percentage of adequately predicted cases (Fig. 10) than the corresponding
regression models. For example, the ASE of the decision tree model for annual pasture
productivity was only about half of that of the regression model for annual pasture
productivity and had 90.1% adequately predicted cases, which was 10.8 percentage
points higher than that of the regression model. This smaller ASE and higher percentage
of adequately predicted cases for the decision trees indicated that they had better

performance than the regression models in predicting hill-pasture productivity.
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Similarly, an application of decision tree in predicting plant species distribution
(Vayssieres et al. 2000) showed that the decision tree performed significantly better
than a polynomial logistic regression model for four of the six cases considered, and as
well as in the two remaining cases. Applications of the decision tree in classifying
remote sensed vegetation data (Yang et al. 2003) and in predicting tree species
abundance (Iverson & Prasad 1998) also indicated that the decision tree had very good

performance as a modelling approach.

Deviation

0 20 40 60 80 100 120 140 160

Observations (transformed)

Fig. 9. Empirical validation of the decision tree (A) and the regression model (B) for
annual pasture productivity. Deviation is the difference between predicted and observed
pasture productivity. The two spreading lines show the £20% of the observations, and
91% of predictions in the decision tree and 80.1% of predictions in the regression are
within the £20% of the observations of the validation data. Both observation and

deviation are transformed data for pasture productivity.
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However, the performance of the decision tree models for seasonal pasture
productivity was not as good as that of the decision tree model for annual pasture
productivity. This may be firstly because the decision tree model performs better for a
complicated situation with more significant input variables such as this for the annual
productivity. Secondly, the quality of seasonal pasture productivity data was not as
good as annual pasture productivity data. Most of the seasonal pasture productivity was
calculated from the pasture cuttings covering a season (Lambert et al. 1996), which may
allocate the production that occurred in one season to another season, and introduce
errors into the seasonal pasture productivity data. For example, a cutting covering a
period from early August to late September would be evenly allocated to winter and
spring in calculating the seasonal pasture productivity, but spring will usually have
more production than winter since it is warmer. Also, carryover effects from season to
season (e.g. due to drought) are likely to be more influential compared to carryover
effects from year to year. This suggests the quality of a decision tree will ultimately

depend on the quality of the training data.

Compared to other pasture and productivity models, the decision tree model for
pasture productivity has several significant characteristics. Paruelo and Tomasel (1997)
used another data mining approach — artificial neural network (ANN) to predict pasture
ecosystem attributes and compared their performances with regression models. They
also found that ANN had better predictive ability than regression model. However,
unlike the decision tree model, the output of ANN is very difficult to interpret (Scheffer
2002). As an empirical-oriented modelling approach, the decision tree models can only
be used in the same or similar areas as their ability to extrapolate beyond the special
scope is very limited. On the other hand, mechanistic pasture simulation modcls such as
PaSim (Riedoa et al. 2002), SPUR (Foy et al. 1999), HP-model (Riedo et al. 1998) and
CENTURY (Gilmanov et al. 1997) are more general and widely applicable because of
their strong ability in explicitly revealing the mechanisms of the systems they represent
(Rickert et al. 2000), but these mechanistic simulation models generally have a poor

performance with respect to their predictive ability (Guisan and Zimmermann 2000).
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Fig. 10. Percentage of adequately predicted cases of the decision trees and the
regression models for annual and seasonal pasture productivity in the model empirical

validation.

3.4.2. Insights from the decision trees

3.4.2.1. General pattern

Besides having a better model fit and higher predictive accuracy than the regression
models, the hierarchical structure of the decision trees also clearly revealed the relative
importance of input variables in influencing pasture productivity. For example the
decision tree model for annual pasture productivity showed that available spring rainfall
was the most significant factor influencing hill-pasture productivity (Fig. 3). Hill slope
was the second most significant variable influencing pasture productivity for pastures
with both high and low spring rainfall. Annual mean daily temperature, N and P
fertiliser inputs and soil fertility status (Olsen-P) were the significant variables

influencing pasture productivity under the specific climatic and topographic conditions.

This hierarchical structure of the decision tree also revealed different response
patterns of pasture productivity to the interaction of the environmental and management
variables. For example, in the decision tree model for annual pasture productivity, when
pastures received less than 212 mm rainfall in spring, those with a hill slope equal to, or
more than, 22.5° responded to the management variable N fertiliser, but those with a hill

slope less than 22.5° responded to annual daily mean temperature.
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3.4.2.2. Effects of environmental and management variables
3.4.2.2.1. Climate

The available rainfall in spring was indicated as the most significant factor
influencing pasture productivity in hill-pasture (Fig. 3). Pastures with equal to, or more
than, 212 mm rainfall in spring had an average annual productivity which was 6300
kg/ha higher than pastures with less than 212 mm rainfall in spring. Though rainfall has
been generally recognised as the key factor influencing the hill-pasture production
(Lambert er al. 1983; Rickard ef al. 1985; White 1990), the important role of spring
rainfall as the determinant of annual pasture productivity was not previously fully
recognised. This may be because most research was conducted locally and the variation
in climate at a local-scale was usually not very significant, and thus failed to detect the
response of pasture growth to spring rainfall. In hill-pasture, autumn and winter usually
have enough rainfall and summer is usually dry due to unreliable rainfall and high
evapotranspiration (Woodward et al. 2001). The available spring rainfall, therefore,
becomes a key factor influencing pasture productivity with about 40% of pasture
production occurring in spring. This is partially in agreement with the result obtained by
Radicliffe and Baars (1987) as they revealed that spring and summer rainfall accounted
for 60% of the variation in annual pasture production, but they did not analyse the effect

of spring rainfall alone.

Heavy rainfall in winter can also reduce winter pasture productivity. For example,
pastures received equal to, or more than, 410 mm rainfall in winter produced less
productivity than those with less than 410 mm rainfall (Fig. 7), this may be because of
the constraint of temperature and (or) solar radiation on pasture growth resulted from

heavy rainfall.

High temperature increases evapotranspiration and reduces the available soil
moisture (Bircham & Gillingham 1986). In the decision tree model for annual pasture
productivity, when pastures received less than 212 mm rainfall in spring, those with an
annual mean daily temperature less than 13.4 °C had an annual productivity of 5031
kg/ha, which produced about 1400 kg/ha more than pastures with an annual mean daily

temperature more than 13.4 °C.
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3.4.2.2.2. Fertiliser and soil fertility

It was indicated from the decision tree model for annual pasture productivity (Fig. 3)
that pasture responded to N fertiliser better when on a high slope. Pastures with high
slope generally have less legume than pastures with low slope (Ledgard et al. 1987) and
N content in soil is inversely related to slope due to the nutrient transfer (Gillingham
and During 1973, Ledgard et al. 1982). These factors result in N deficiency in soils with
high slope, and may be the reasons why pastures with high slope respond to N fertiliser
better. This better response to N fertiliser on pastures with high slope was also reported

by Gillingham et al. (1998).

P fertiliser application is one of the most important managements in improving
pasture productivity in hill-pasture. It was indicated from the decision tree model for
summer pasture productivity that annual P fertiliser input had marked effect on summer
pasture productivity (Fig. 5). Pastures received equal to, or more than, 10.4 kg/ha
annual P fertiliser increased summer pasture productivity by 1400 kg/ha comparing with
those received less than 10.4 kg/ha. Five-year cumulative P fertiliser input was the most
significant factor influencing pasture productivity for both high and low slope when
spring rainfall was equal to, or more than, 212 mm in the decision tree model for annual
pasture productivity (Fig.3), indicating a strong interaction between P fertiliser input

and available soil moisture.

The effect of Olsen-P on pasture productivity was greatly influenced by the
available soil moisture. Pastures with more than 3.8 pg/cm’ and less than 16.3 pg/cm’
Olsen-P in the soil had an average annual productivity of 12641 kg/ha when they
received more than 212 mm rainfall in spring, but only had an average annual
productivity of 5135 kg/ha when pastures with a similar Olsen-P condition but received
less than 212 mm rainfall in spring (Fig. 3). This interaction between moisture and
Olsen-P on pasture productivity was reported by Moir et al. (2000) and may be one
reason why previous research (Sinclair et al. 1997) failed to establish a reliable link

between pasture productivity and soil Olsen-P content.

3.4.2.2.3. Topography
Hill slope, due to its important role in redistributing available moisture, fertility and
solar radiation, greatly influences hill-pasture productivity (Gillingham & During 1973;

Lambert & Roberts 1978). The impact of hill slope on pasture productivity is well
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recognised (Lambert et al. 1983; White 1990; Gillingham et al. 1998). In the decision
tree models for annual and seasonal pasture productivity, the influence of slope on
pasture productivity was fully expressed. Hill aspect, unlike hill slope, mainly
influenced seasonal pasture productivity in some extent. Generally, shady aspects have
higher productivity than sunny aspects during periods of soil moisture stress, whereas

sunny aspects produce more production at other times (Lambert et al. 1983).

3.4.2.2.4. Legume

Legumes fix atmospheric nitrogen and encourage grass growth. The relative
abundance of legume in hill-pasture i1s usually an indicator of pasture management
status (Edmeades et al. 1990). High percentage of legume had a marked effect on
annual pasture productivity, especially for pastures with less rainfall (Fig. 3). But it was
indicated in the decision tree model for spring pasture productivity (Fig. 4) that in
spring, high percentage of legume had a negative effect on pasture productivity for
pastures with a low slope. For example, when slope was less than 13.5°, pastures with
equal to, or more than, 6.1% legume had a spring productivity of 5427 kg/ha, while
pastures with less than 6.1% legume had a spring productivity of 6357 kg/ha. Another
example was that pastures with equal to, or more than, 11.1% legume had a spring
productivity of 4667 kg/ha, while pastures with less than 11.1% legume had a spring
productivity of 5831 kg/ha. This may be because legumes especially white clover grow

slower during spring than during summer-autumn period (Ledgard et al. 1987).

3.4.2.2.5. Bulk density and pH

Soil bulk density was revealed having a negative correlation with soil fertility and a
positive correlation with slope in hill-pasture (Lopez 2000). It was indicated from the
decision trees that, in general, pastures with higher bulk density had less productivity
than pastures with lower bulk density when other factors were same. However, pasture
with higher bulk density may have higher productivity (Fig. 3) for pastures with low
spring rainfall and low slope, indicating that the relationship between soil bulk density
and pasture productivity was complex. For soil pH, the general pattern was that pastures
with higher soil pH had higher productivity than pastures with lower soil pH. The
responses of pasture productivity on soil bulk density and pH were in agreement with

those of the previous research (Lambert et al. 1996).
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3.4.2.3. Limitations of decision tree

Due to the binary nature of the decision tree, the responses of pasture productivity to
the environmental and management variables are not continuous. This make the
decision tree not being able to reflect the influence of small changes of input variables
on the model target, especially when the input variable has a relatively large range. For
example, in the decision tree model for annual pasture productivity (Fig. 3), when
spring rainfall is equal to, or more than, 212 mm and slope is less than 16° pasture
productivity was predicted by five-year cumulative P fertiliser input with a split-point of
144.7 kg/ha. This makes predictions either less or more than the split-point covering a
large range of P fertiliser input, and could result in a large variance in the predicted
pasture productivity. Some statistic programs have the option to split the tree into more
than two groups, which might be useful for better prediction, but will create a tree that

1s too complex to deal with in practice.

The quality of a decision tree depends on the quality of the training data. If the
training data lack the representation of some information, a decision tree would lack the
response to that information (Iverson & Prasad 1998; Vayssieres et al. 2000). Since the
seasonal pasture productivity was not from designed measurement, the decision tree
models for scasonal pasture productivity did not perform as well as the decision tree
model for annual pasture productivity. More seasonal pasture productivity data from
designed measurements need to be gathered to improve the performance of the decision

tree models for seasonal pasture productivity.

3.5. Conclusion

Decision tree, as a modelling approach, had better performance in predicting hill-
pasture productivity than the regression model with respect to model fit and predictive
accuracy. The decision trees clearly revealed the relative importance of environmental
and management variables in influencing pasture productivity, and the interaction
among these variables. Spring rainfall was indicated as the most significant factor
influencing annual pasture productivity, while hill slope was the most significant factor
influencing spring and winter pasture productivity, and annual P fertiliser input and
autumn rainfall were the most significant factors influencing summer and autumn

pasture productivity. One limitation of using decision tree to predict pasture
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productivity was that it did not generate a continuous prediction, and thus could not
detect the influence of a small change in environmental and management variables on

pasture productivity.
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Chapter 4. Predictive Modelling of Hill-pasture Productivity:

Integration of a Decision Tree and a Geographic Information System

E The decision tree models were shown to perform better than the regression models in
the prediction of annual and seasonal pasture productivity in the previous chapter. In
this chapter decision tree models were integrated with a geographic information
system (GIS) to develop a predictive modelling approach on hill-pasture productivity,
with capabilities of incorporating spatial factors such as slope and aspect and

presenting model output over space for areas of interest.

-
5““...‘..‘...‘..‘....

A paper derived from this chapter with a title “Predictive modelling of hill-pasture productivity:
integration of a decision tree and a geographic information system” by B. Zhang, I Valentine, P.D.

Kemp & G. Lambert has been published in Agricultural Systems (in press, available on-line).
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Abstract. One challenge in predictive modelling of productivity for pastures varying in
topography, soils or management is to achieve the prediction over space with acceptable
accuracy. As a new modelling approach, the decision tree has been shown to have high
predictive accuracy; while geographic information systems (GISs), with their strong
ability to deal with spatial factors, have been widely used in environmental modelling.
Integration of a decision tree approach with a GIS offers a potential solution in meeting
this challenge. In this study, decision tree models were developed for annual and
seasonal pasture productivity using environmental and management variables and the
outputs of these decision trees were integrated with a GIS to get predictions of pasture
productivity in a hill-pasture grazing system. Results showed that the decision tree
model for annual pasture productivity was verified in three of four test farmlets. The
decision tree models also revealed the relative importance of environmental and
management variables and their interaction in influencing pasture productivity. Hill
slope, soil Olsen P and annual P fertiliser input were the most significant variables
influencing annual pasture productivity, while hill slope, annual P fertiliser input,
autumn rainfall and soil Olsen P were the most significant variables influencing spring,
summer, autumn and winter pasture productivity, respectively. The successful
integration of the decision tree model with a GIS in this study provided a platform to
predict pasture productivity for pastures with heterogeneous environmental variables
and management features, and to present model predictions over space for further
application and investigation. This modelling approach can be used as, or incorporated
in, decision support systems to improve pasture management, and to investigate the
interrelationship between pasture productivity and environmental and management

variables.

4.1. Introduction

Modelling pasture productivity has long been an interest of plant ecologists and
agronomists either for investigating ecosystem processes or estimating productivity as a
substitute for observation (Dyne 1970; Seligman & Baker 1993; Stuth et al. 1993;
Sorenson 1998; Moir et al. 2000). Predictive modelling of pasture productivity using
environmental and management variables has both practical and ecological applications
(Rickert et al. 2000). For example, it can be used or associated with decision support

systems to improve pasture management (Stuth e al. 1993), and can also be applied to
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investigate the interrelationship between pasture productivity and environmental and

management variables in a pasture ecosystem (Parton et al. 1993).

One challenge of predictive modelling of pasture productivity for pastures with
variable management, edaphic or topographic features is to achieve the prediction over
space with acceptable accuracy. It requires a model incorporating spatial factors and a
way to present the prediction over space (Li ef al. 1998; Wadsworth & Reweek 1999).
This is especially the case for predictive modelling of hill-pasture productivity due to
the heterogeneity of topographic and micro-topographic features, e.g. as influenced by
elevation, slope and aspect. These topographic features have a marked effect on pasture
productivity through influences on available soil moisture and nutrients, solar radiation,
temperature and animal behaviour, which in turn affect pasture productivity

(Gillingham et al. 1998; Lopez 2000; Blennerhassett 2002).

Geographic information systems (GIS) have been widely used in environmental
modelling (e.g. Johnston 1990; Antoni 1998; Wadsworth & Reweek 1999; Dominy &
Duncan 2001), and have been increasingly used in predictive modelling of vegetation
properties such as species distribution and abundance (e.g. Franklin 1995; Iverson et al.
1997; Johnston 1998; Guisan & Zimmermann 2000; Stocks & Wise 2000) and
community productivity (e.g. [verson ef al. 1997; Liet al. 1998; Tan & Shibasaki 2003),
showing its strong ability in analysing spatial factors, and facilitating prediction over
space. Linking a model with high predictive ability with a GIS provides the ability to
predict productivity for pastures with heterogeneous distribution of environmental and

management factors.

The commonest way of using GIS in environmental modelling is to prepare input
data and then visualize the model prediction (Johnston 1998; Stocks & Wise 2000). GIS
can also be used to develop models using its internal analysis functions such as map
algebra, but this is usually restricted to some cartographic modelling, since most GISs
have only limited ability to analyse statistical models. More complex models are usually
developed in professional statistics software using input data generated or derived from
GIS, and the model output is then imported back into a GIS to get the prediction (Stocks
& Wise 2000). The power of GIS becomes apparent when it is coupled with models that
predict outcomes of ecosystem processes such as succession, net primary production,

and nutrient cycling with parameters derived from GIS (Johnston 1998).

78



Chapter4: Modelling pasture productivity — decision tree with GIS

For a predictive model to be coupled with a GIS, two aspects in particular need to be
considered: one is its predictive accuracy; the other is the ease with which the model
can be imported into the GIS. There are different approaches that have been used in
predicting pasture productivity: model-based approaches e.g. empirical models (Sala e¢
al. 1988) and mechanistic models (Moir et al. 2000), and data mining approaches e.g.
artificial neural networks (Franklin 1995; Johnston 1998). The data mining approach
performs better than the model-based approach with respect to predictive accuracy
(Witten & Erank 2000; Dunham 2002; Scheffer 2002), and thus is a more appropriate
method for predictive purposes. Among the data mining approaches, the decision tree
approach has been widely used in the social (Scheffer 2002) and medical sciences
(Petitti 2000), and also has shown an increasing application in environmental modelling
where it has considerable accuracy and the ability to reveal the relative importance of
environmental factors. The output of a decision tree is also very easy to import into a

GIS (Iverson & Prasad 1998; Vayssieres et al. 2000; Scheffer 2002; Yang ef a/. 2003).

The decision tree approach is a non-parametric machine-learning modelling method,
which recursively splits the multidimensional space defined by independent variables
into zones that are as homogenous as possible in term of the response of the dependent
variable (Vayssieres et al. 2000). The result of the analysis i1s a binary hierarchy
structure called a decision tree with branches and leaves that contain the rules to predict
the new cases (Breiman ef al. 1984; Dunham 2002). Besides its high predictive
accuracy, there are several other advantages that a decision tree has over the model-
based approach. The decision tree has no strict assumptions regarding the distribution of
the target (dependent) variable (Breiman et al/. 1984) and it can easily incorporate
nominal, ordinal and interval variables in the same model (Thuraisingham 1999;

Vayssieres et al. 2000).

However, there appear to have been no published studies that use a decision tree to
predict pasture productivity despite the approach’s wide application elsewhere. In this
study, decision tree models for annual and seasonal pasture productivity (aboveground
biomass) were developed for hill-pasture in the North Island, New Zealand, and
predictions were realised and verified in a GIS. This study aimed at developing a GIS-
based predictive modelling approach to simulate hill-pasture productivity, and to assess

it performance with respect to model predictive accuracy and the ability to reveal the

79



Chapter4: Modelling pasture productivity — decision tree with GIS

key factors influencing pasture productivity. The success of this GIS-based predictive
modelling approach could find applications in investigating ecosystem processes and

improving pasture management.

4.2. Methods

4.2.1. Study area

This study was carried out on the AgResearch Ballantrae Research Station at latitude
S40°18’, longitude E175°50" in the North Island of New Zealand (Fig. 1) with average
annual rainfall 1270 mm and average annual daily temperature 12.3 °C. Altitude ranges

from 125 to 350m a.s.l..

The hill country in Ballantrae is dissected and very heterogeneous with complex
combinations of slope and aspect even within a small area (Lambert & Roberts 1978).
This heterogeneity increases the diversity of micro-climate, soil characteristics, species
composition and the behaviour of grazing animals, and further increases the complexity
of pasture productivity patterns (Lopez 2000). In southern latitudes, north aspects
receive more net radiation, and are warmer and generally drier than south aspects.
Available soil moisture generally diminishes with increasing slope (Radcliffe & Lefever
1981). By influencing animal grazing and excretal return patterns, aspect and slope also
influence soil nutrient status (Gillingham 1982; Sheath & Boom 1985).The pasture at
Ballantrae is mainly dominated by browntop (Agrostis capillaris) and ryegrass (Lolium

perenne), and white clover (Trifolium repens) is the main pasture legume species

(Nicholas 1999).

Data for developing the decision tree models were sampled within the whole area of
the Station. The GIS-based model prediction and verification were carried out in a
pasture which was within the Station and was about 90 ha in area (Fig. 1). Within this
pasture there were four small farmlets (small farm fenced for the same management)
with different fertiliser application treatments since the early 1970s: two of them had
approximately 120kg and 360kg annual P fertiliser (Single SuperPhosphate,
approximately 9% of P) input per year since 1974 (hereafter referred as LL and HH),
another two farmlets also had approximately 120kg and 360 kg P fertiliser per year
from 1974 to 1982, but had none since (hereafter referred as LN and HN). The farmlets
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LL, LN, HN, and HH had 8, 10, 8 and 10 paddocks respectively. Each paddock was
approximately eight ha in area. A detailed description of these four farmlets and their

management history can be found in Lambert et al. (2000).

North Island

New Zealand

BERUERIPEH

DEM of the pasture and
farmlets  used in  GIS
Ballantrae predictions.

Fig. 1. Study area, digital elevation model (DEM) and the farmlets’ used in validating the
GIS prediction.

4.2.2. Model development

4.2.2.1. Dataset generation

Data for pasture productivity (annual and seasonal), soil properties (bulk density, pH,
Olsen-P), fertiliser management (N, P fertiliser inputs) and topographic features (slope
and aspect) were from a long-term experiment (see Lambert et al. 1986), unpublished
Ph.D. theses and other experiments conducted at Ballantrae during 1972-1998. Most
climatic data (rainfall, temperature and global solar radiation) were obtained from the
National [nstitute of Water & Atmospheric Research (NIWA), New Zealand. Potential
evapotranspiration (PET) was derived from temperature and solar radiation using
Priestley & Taylor’s equation (Priestley & Taylor 1972). Since the rainfall data was

measured from the horizontal surface and the P fertiliser was commonly aerially applied

81



Chapterd4: Modelling pasture productivity — decision tree with GIS

to hill-pasture with a uniform rate, the actual rainfall and P fertiliser received were
adjusted by the cosine of the slope angle. Actual solar radiation on hilly terrain is
strongly influenced by topography (Antoni 1998), so it was calculated from observed
solar radiation at that location by an empirical method developed for the North Island,
New Zealand (McAneney & Noble 1975). Therefore, the variation in rainfall and solar
radiation for a sample site included year-to-year variation and the adjustments based on

topographic features (slope and aspect).

There were 30 variables, including 25 input variables (independent variables) and
five target (dependent) variables, and 1100 samples in the dataset (Table 1). These
samples were collected using a stratified random method within the study area by a 1 m?
quadrat. The climate data and P fertilizer data were calculated instead of observed for

each sample.

4.2.2.2. Decision tree development and assessment

The decision tree models for annual, spring, summer, autumn and winter pasture
productivity were analysed in SAS Enterprise Miner, Version 4.1 (SAS Institute Inc.,
1999-2001, Cary, NC, USA). The main procedure for developing a decision tree model
is to split the data of target variable based on it response to input variables. There are
different criteria used to split the data, depending on the nature of the target variable.
For interval variables (i.e. continuous variables) like pasture productivity, the split is
based on variance reduction or F tests. | compared both criteria and chose variance
reduction as the split criterion. However, the decision tree outputs from using these two

criteria were very similar.

Model assessment is an important step in developing the decision tree, as it enables
a good model output, and prevents overtraining which otherwise would develop a model
that only fits the data from which it is trained (Witten & Erank 2000). SAS Enterpriser
Miner has several options to assess models having interval targets. The measure of
average squared error (ASE) is commonly used. ASE is similar to mean squared error
(MSE) in general linear models so the smaller the ASE the better the model fit to the
data. If there are validation data available, it is assessed by the ASE of validation data;
otherwise the ASE of the training data is used. In the development of the decision trees
here, the whole dataset was randomly partitioned into two parts: training data (70% of

the total) and validation data (30% of the total). The decision trees were derived using

82



Chapterd: Modelling pasture productivity — decision tree with GIS

the training data and fit was assessed using the validation data; and the “best” tree

which had the smallest ASE from validation data was selected.

Table 1. Variables used in the decision tree and GIS analyses

Model role Variable symbol Units Variable description

input pH -logo[H'] soil pH
BD glem’ soil bulk density
OlsenP ug/g soil Olsen P
N_fert kg/ha’y annual elemental N fertiliser input
P fert kg/haly annual elemental P fertiliser input
P fertS kg/ha S-year elementnal accumulative P fertiliser input
P fert10 kg/ha 10-year elemental accumulative P fertiliser input
temp_y °C annual mean daily temperature
temp_sp °C spring mean daily temperature
temp_su °C summer mean daily temperature
temp_au °C autumn mean daily temperature
temp_wi °C winter mean daily temperature
rain_y mm annual rainfall
rain_sp mm spring rainfall
rain_su mm summer rainfall
rain_au mim autumn rainfall
rain_wi mm winter rainfall
rain_wamm mm sum of spring and summer rainfall
solar y MJ/m’ annual mean daily global solar radiation
solar_sp MJ/m’ spring mean daily global solar radiation
solar su MJ/m’ summer mean daily global solar radiation
solar au MJ/m’ autumn mean daily global solar radiation
solar_wi MJ/m’ winter mean daily global solar radiation
aspect hill slope aspect. eg. N NE S SWNW, etc.
slope degree hill slope angle

target annual productivity kg/haiy annual aboveground dry matter per heciare
spring productivity kg/ha/season  spring aboveground dry matter per hectare
summer productivity  kg/ha/season  summer aboveground dry matter per hectare
autumn productivity ~ kg/ha/season  autumnaboveground dry matter per hectare
winter productivity kg/ha/season  winter aboveground dry matter per hectare

[ set six as the maximum tree levels, and 11 as the minimum observations required

for a split search. The recommendation on minimum observations was derived using the

program by assessing the size of the whole dataset (SAS Online Help: Getting Started

with Enterpriser Miner Software).
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4.2.3. GIS-based prediction and model validation

The outputs of the decision tree models for annual and seasonal pasture productivity
were imported into a GIS to derive “predictions” of annual and seasonal productivity for
the pasture described previously. A 5 x 5 mresolution digital elevation model (DEM) of
this pasture was interpolated from a XYZ coordinates file produced by New Zealand
Aerial Mapping Ltd. A map layer of the four farmlets was created from the DEM based
on an existing fence map. All the GIS map layers of input variables were then generated.
Map layers of rainfall and P fertiliser input were adjusted by a cosine of the slope angle,
and layers of solar radiation were adjusted by slope and aspect with methods previously

mentioned. All the map layers had the same resolution (5 X 5 m).

In 1994, the annual and seasonal pasture productivity was measured on these four
farmlets with a “trim technique” involving harvesting pasture regrowth from trimmed
plots (I m®) protected from sheep grazing (Lambert et al. 1996). For each of spring,
summer, autumn and winter productivity, and also for annual totals, 24, 30, 24 and 30
observations were obtained for LL, LN, HN and HH, respectively. These observations
were taken from systematically designed plots which included major aspect and slope
categories within a farmlet. This data was independent from the data used to develop the

decision tree models.

GIS-based predictions were made based on the climatic and management variables
in 1994. The observed productivity was used to verify the predictions. Spatial
predictions for annual and seasonal pasture productivity were implemented by coupling
the outputs of the decision trees with GIS using a map overlay function. The prediction
outputs were the GIS map layers of annual. spring, summer, autumn and winter pasture

productivity. Fig. 2 shows the procedures for generating the model predictions.

The average annual and seasonal productivity estimates for the four farmlets were
then extracted from the map layers of predicted productivity by calculating the average
productivity of all the pixels (5 mx5 m) within each farmlet (there are 2737, 3689, 2366
and 2769 pixels for the farmlets LL, LN, HN and HH, respectively). The predicted
productivity was then compared with the observed productivity for an empirical
validation of the model (Mitchell 1997). The 95% confidence interval of the observed
productivity mean was set as an acceptable error of the prediction. Since the map layers

of predicted productivity covered an area which was larger than the four farmlets, only
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the area within the four farmlets was used to validate the predictions. This model
validation method is acceptable for its purpose. However, a better method is to validate
individual prediction in a pixel (contrast to using the average within a farmlet) by
comparing it with observation at the corresponding site, but this would require a large

number of measurements.

The GIS analyses were implemented in Idrisi 3.2 (Clark Labs, Clark University,
Worcester, MA, USA).

GIS environment Statistic environment
Map layers of input variable
Decision trees
4 Slope
DEM <. Decision tree for
i Aspect annual productivity
P Rainfall Decision tree for
v spring productivity |
Study area » | Temperature
A Decision tree for
\‘ summer productivity
Fence map PET
) . Decision tree for
Climate data Bulk dc"ﬂt}’ autumn productivity
:::rlg a:riem pH Decision tree for
. s 3 .V winter productivity
Farmlets — | Olsen P
N [P fertilizer
input
\ N fertilizer
input
L. 1
Map overlay )%
A v v v v
Predicted Predicted Predicted Predicted Predicted
annual productivity spring productivity summer productivity autumn productivity winter productivity

Fig. 2. Diagram of the procedures for generating the model predictions in GIS. The
rectangles in the GIS environment area represent the GIS map layers. The arrows
indicate the orders and the resources in generating predictions on pasture productivity.

Names of input variables and their description are in Table 1.
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4.3. Results

4.3.1. Decision trees

Decision tree model for annual, spring, summer, autumn and winter pasture
productivity are displayed in Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7. Each decision tree
is a hierarchical structure that conta ns rules of prediction. Pasture productivity was first
split into two branches by a variable which best explained the variance. This splitting
continued for each of the branches with the same method, and so on until no further
splitting could be made. Prediction was made using a series of constraints defined by
the input variables and their split-points. For example, in the model for annual pasture
productivity (Fig. 3), when pasture with a slope equal to, or more than 22°, and a five-
year cumulative P fertiliser (elemental P) input equal to, or more than 101.8 kg and a
warm season rainfall equal to, or more than 540 mm, the predicted annual pasture

productivity was 10347 kg/ha.

The hierarchical structures of the decision trees can also indicate the relative
importance of environmental and management variables in influencing productivity and
the interaction among these input variables. The variable first selected in splitting the
tree is more influential than those selected after it. In the decision tree model for annual
pasture productivity slope was the first variable selected to split the tree, and was the
most important factor influencing annual pasture productivity. Olsen P (for slopes less
than 22°) and five-year cumulative P fertiliser input (for slopes equal to or more than
22°) were the second most important factors (Fig. 3). The most important variables
influencing spring pasture productivity were also slope, Olsen P and five-year
cumulative P fertiliser nput (the same as the annual pasture productivity) (Fig. 4). For
summer pasture productivity, annual P fertiliser input, summer rainfall (for low annual
P fertiliser input) and slope (for high annual P fertiliser input) were the most important
variables (Fig. 5). Autumn rainfall, ten-year cumulative P fertiliser input (for low
autumn rainfall) and five-year cumulative P fertiliser nput (for high autumn rainfall)
were the most important variables influencing autumn pasture productivity (Fig. 6).
Olsen P, five-year cumulative P fertiliser input (for low Olsen P) and winter solar
radiation (for high Olsen P) were the most important variables influencing winter

pasture productivity (Fig. 7).
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9599
slope
11232 6616
Olsen? P fens
1131
8867 13048 5803 8672
P_fert P_ferts P fert P
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5555 9453 11768 14553 3632 6293 8101 [ 10347 |
rain_wi solar_an slope slope Rain_su OlsenP
; 15 5 27 134
5097 [ 9004 ] | 8240 10017 12382 9730 15754 12883 | [ 4466 | | 3349 | [ ssso | | 7530 | [ 7 9145
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119 55 1.4 eg 14.0
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Fig. 3. The decision tree model for annual pasture productivity. Predicted productivity are in the un-shaded rectangles, splitting variables and split-points are in the

shaded rectangles. Prediction goes to the left-side branch when the splitting variable less is than the split-point, and goes to the right-side branch when the splitting

variable is equal to, or more than, the split-point (in the case of aspect, pasture with aspect set before the comma go to left branch, others go to right branch). See Table

1 for variable symbols and unit descriptions.

87



R T, IVEURREENENIS Ot © T Ui Ve RELIOIUTE T L Vel AU

3683

4365
S;:n?

2459

613

3465 5058 2056 2986
P fert P fen P fents Fain_wi
2304 3669 | | 4651 | [ 5137 | [ 679 | 2149 | [ 3203 | 2698
ers = £
[ 1sos | [ 2650 | [ 3070 [ 3051 | 1838 | [ 2968 | [ 2479 | | 3205 |
P_fert
1690 | | 2146 |
2009 1531

Fig. 4. The decision tree model for spring pasture productivity. See caption of Fig. 3 for the interpretation of decision tree.
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Fig. 5. The decision tree model for summer pasture productivity. See caption of Fig. 3 for the interpretation of decision tree.
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Fig. 6. The decision tree model for autumn pasture productivity. See caption of Fig. 3 for the interpretation of decision tree.
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Fig. 7. The decision tree model for winter pasture productivity. See caption of Fig. 3 for the interpretation of decision tree.
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)

Fig. 8. Map layers of the predicted annual (A),
spring (B), summer (C), autumn (D) and winter
(E) pasture productivity (kg/ha). Note the

different scales for productivity in the map keys.
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The interactions of environmental and management variables on pasture productivity
can be easily found in the decision trees. For example, there was a interaction between
fertility and moisture in the decision tree model for annual pasture productivity (Fig. 3):
when pasture received a five-year cumulative P fertiliser input equal to, or more than
101.8 kg, pasture with a warm season rainfall equal to, or more than 540 mm had a
mean annual productivity of 10347 kg/ha, while that with a warm season rainfall less

than 540 mm only had a mean annual productivity of 8101 kg/ha.

4.3.2. GIS-based prediction and model validation

GIS-based predictions for annual and seasonal pasture productivity are shown in Fig.
8. The predicted average annual and seasonal pasture productivity of the four farmlets
LL, LN, HN and HH were graphed against the observed average annual and seasonal
productivity in Fig. 9. The predicted average annual and seasonal pasture productivity
of the four farmlets LL, LN, HN and HH were derived from 2737, 3689, 2366 and 2769

pixels, respectively.

The prediction for average annual pasture productivity was validated in the farmlets
LL, LN and HH. Though the prediction in the farmlet HN was not verified, the
difference between the prediction and observation was still within 25% of the
observation mean. The predictions for spring and autumn pasture productivity were
verified in LL. No prediction for summer productivity was verified among the four

farmlets. The prediction for winter productivity was verified in LL and HH.

4.4. Discussion

The results show that the decision tree model for annual pasture productivity
performed very well with three farmlets being validated. The difference between
prediction and observation for another farmlet was still within 25% of the observation
mean (Fig. 9). This indicates that the decision tree is a reliable and accurate approach
for predicting annual hill-pasture productivity. An application of the decision tree in
predicting plant species distribution (Vayssieres et al. 2000) showed that the decision
tree performed significantly better than a polynomial logistic regression model for four
of the six cases considered, and as well as in the two remaining cases. Applications of

the decision tree in classifying remote sensed vegetation data (Yang et al. 2003) and in
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predicting tree species abundance (Iverson and Prasad 1998) also indicated that the

decision tree had very good performance as a modelling approach.
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Fig. 9. Comparison of the predicted and the observed annual (A), spring (B), summer
{C), autumn (D) and winter (E) pasture productivity of the farmlets LL, LN, HN and

HH. Bars indicate the 95% confidence interval of the observed productivity means.

However, the empirical validations of the decision tree models for seasonal pasture
productivity were not as good as that for annual pasture productivity. This may be
because the quality of seasonal pasture productivity data used in developing the
decision tree models for seasonal pasture productivity were not as good as annual
pasture productivity data, as they were calculated from the pasture cuttings covering a
season (Lambert ef al. 1996) instead of measuring from a designed experiment, which

may allocate the production that occurred in one season to another season, and introduce
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errors into the seasonal pasture productivity data. Also, carryover effects from season
to season (e.g. due to drought) are likely to be more influential compared to carryover
effects from year to year. This suggests the quality of a decision tree will ultimately
depend on the quality of the training data. Further improvement in the predictive
accuracy of the decision tree models for seasonal pasture productivity can be made by
gathering more seasonal pasture productivity data in trials designed specifically for the

purpose.

Hill slope, due to its important role in influencing available moisture, fertility and
solar radiation, greatly influences hill-pasture productivity. The impact of hill slope on
pasture productivity is well recognised (White 1990; Gillingham et al. 1998), and was
fully indicated in the decision tree models for annual and seasonal pasture productivity.
To realise its effect over space GIS, therefore, became an essential part in this modelling
process. The successful integration of decision tree with GIS provided a platform to
predict pasture productivity for pastures with heterogeneous topographic and
management features, and to present model prediction over space for further application

and investigation.

A DEM is usually the most important element in a GIS-based modelling process.
The quality (resolution and accuracy) of a DEM can greatly influence the model
prediction as many environmental factors are derived from it (Iverson et al. 1997,
Wadsworth & Reweek 1999; Stocks & Wise 2000). A high resolution DEM was used in
this study to generate slope and aspect, and the adjustments in rainfall, P fertiliser input
and solar radiation were then made based on them. This enabled the model predictions
to reflect the small changes of topographic features that influence pasture productivity

in hill-pasture with heterogeneous micro-topography.

The advantage of this modelling approach is that it can be used as, or incorporated in,
a decision support system to improve pasture management. For example, it can be
applied to predict pasture productivity for an area of interest or to assess the effect of
alternative fertiliser application strategies on pasture productivity. It also can be used to
investigate relationships between pasture productivity and environmental factors. For
example, to assess the seasonal climate variability such as warm spring or drought

summer on subsequent pasture productivity.
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One limitation of this modelling approach is that some soil properties such as soil
Olsen P, pH and bulk density were used as input variables to simulate pasture
productivity. These soil features may increase the predictive ability of the models, but in
practice, they are usually very hard to obtain on a large scale. To develop a decision tree
that only incorporates climatic, topographic and management variables would be a
practical choice, though this may reduce the predictive ability of the model to some

degree.

4.5. Conclusion

The predictive modelling approach described here incorporated two elements:
decision tree and GIS. The decision tree approach was found to perform well in
predicting annual pasture productivity. It had good predictive accuracy and revealed the
relative importance of environmental and management variables and their interaction in
influencing hill-pasture productivity in the studied area. Using GIS in this predictive
modelling approach facilitated the derivation of topographical variables and visualised
model outputs for interpretation and analysis. This GIS-based predictive modelling
approach can be used to investigate the interrelationship between pasture productivity

and environmental factors and to improve pasture management.
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Chapter 5. Modelling the Impact of Climate Changes and Alternative
Phosphorus Fertiliser Management on Pasture Production in the

North Island, New Zealand

Studies in previous chapters indicated that the decision tree model for pasture
productivity performed better than the regression model in terms of predictive ability.
However, one disadvantage of the decision tree model is that it is not able to reflect
the influence of small changes in input variables on the model target. In this study a
polynomial regression model was developed and was integrated with a geographical
information system (GIS) to evaluate the impacts of climate change and alternative
phosphorus (P) fertiliser management on pasture production. Insights obtained from
the previous decision tree models provided useful help in developing this regression

model.

A paper derived from this chapter with a title “Modelling the impact of climate changes on pasture
production in the North Island, New Zealand” by B. Zhang, I. Valentine & P.D. Kemp has been

submitted to Climatic Change for publication.
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Abstract. To assess the potential impact of climate changes on pasture production in
the North Island, New Zealand, eight climate scenarios of increased temperature and
increased (or decreased) rainfall were investigated by integrating a polynomial
regression model with a geographic information system (GIS). The impact of alternative
phosphorus fertiliser application on pasture production was also investigated. The
results indicated that the climate change scenarios assuming an increase in temperature
by 1-2 oC and a rainfall change by -20% to +20% would have a very significant impact
on pasture production with a predicted pasture production variation from -46.2% to
+51.9% compared with the normal climate from 1961-1990. However, the variation was
in a range between -20.4% to +9.6% when averaged over the climate zones. Increased
temperature would generally have a positive effect on pasture production in the South
and Southeast of the North Island, and increased rainfall would have a positive effect in
the Central, South and Southeast of the North Island and a negative effect in the north of
the North Island. The interaction of decreased rainfall and increased temperature would
have a negative impact for the whole North Island except some central areas with high
rainfall. The result also indicated that pasture with low rainfall had a higher response to
increased P fertiliser input than pastures with high rainfall, which likely resulted from
the high runoff and associated P loss in the high rainfall area. Relevant management
practices for coping with potential climate change and improved strategies for fertiliser
use were discussed. One limitation of this study was that the effect of elevated CO;

concentration on pasture production was not assessed.

5.1. Introduction

Climate is a key driver of pasture ecosystem processes and fundamentally controls
the amount of biomass available and its distribution among seasons (Sala et al. 1988;
Barrett et al. 2002; Bai et al. 2004). In New Zealand, rainfall is the most important
climate factor constraining pasture growth (Chapter 3) with spring and summer rainfall
explaining about 60% of variation in pasture production (Radcliffe & Barrs 1987).
Temperature is also a key factor influencing pasture growth especially during winter

and early spring (Baars & Waller 1979; White 1990).

The world is getting warmer and global temperatures today are about 0.6 °C higher

than they were in the early 1900s due to the greenhouse gases emissions (Ministry for
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the Environment 2001). This warming, from 1941, has resulted in more days with
greater than 30 °C and fewer days with less than 0 °C per year in New Zealand
(Plummer et al. 1999). Climate models have predicted that global average temperatures
in 2100 will be between 1.0 to 5.4 °C higher than those in 1900 depending on the
scenarios assumed (e.g. Kattenberg et al. 1996; [PCC 2000; Houghton et al. 2001), and
global average precipitation will increase by 1 to 9% by 2100 and more intensive
precipitation events are likely over many areas (Houghton et al. 2001). New Zealand is
likely to warm by about two-thirds of the global mean temperature change, and is
expected to increase faster in the North Island than in the South I[sland, with rainfall
likely to increase in the west of the country and decrease in the east (Ministry for the
Environment 2001). Temperature is expected to increase in the range 0.6 to 2.8 °C and
the changes in rainfall are expected in the range of -20% to +30% (Ministry for the

Environment 2001).

This climate change and variability has a pronounced impact on ecosystems
(McCarthy et al. 2001), and may result in changes in vegetation structure and
composition as well as productivity (Armstrong 1996; Riedo et al. 1997; lverson &
Prasad 1998; Joos et al. 2001). As a highly climate-driven industry, pastoral agriculture
1s especially vulnerable to this climate change and variability (Thomley & Cannell 1997,

Kenny et al. 2000; Halloy & Mark 2003).

Few studies that have modelled the impacts of climate changes on pasture
production in New Zealand. These models have, on average, predicted an increase in
pasture production. For example, Baars et al. (1990) predicted that annual yield will be
unchanged in thc Cast Coast of the North Island and will increase by 8% in Waikato,
and 20% in the South Island. For lowland pastures, the climate changes may increase
annual pasture production per hectare by 10% to 30% (Martin et al. 1991). Similarly,
Campbell (1996) estimated an average increase in pasture production of 10% to 15% by
2050-2100, but the effect may be negative in some regions and higher than this in some
others. Although the projected climate change may generally have a positive effect on
pasture production, it may also bring great uncertainties such as those that result from

drought and heavy rainfall.

The magnitude of changes in temperature and rainfall likely as the result of climate

change and variability are uncertain (Allen et al. 2001). Previous studies of climate
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change impact on pastures in New Zealand (Baars & Waller 1979; Martin et al. 1991;
Campbell 1996) assumed only one or two climate change scenarios, and model
predictions were for point locations. This is a limitation in assessing the climate change
impacts over space for an area of interest under alternative climate change scenarios.
With advances in the use of geographic information systems (GISs), a GIS-based model
can simultaneously assess multiple scenarios for large areas over space. In this study, I
developed a polynomial regression model and linked this model with a GIS to predict
and assess the impacts of climate changes on pasture production in the North Island
under multiple climate change scenarios. This assessment focused on the impact of
changes 1 temperature and rainfall. The effect of increased carbon dioxide concentration
was not evaluated. The model was developed from data collected mainly from hill-

pasture, but it has been applied across all pastoral land in the North Island.

The productivity of New Zealand’s pastures relies heavily on the regular input of
phosphorus (P) through phosphate-based fertilisers. The amount of P fertiliser input is
strongly influenced by the economic benefit obtained by farmers and Government
policies (Gillingham et a/. 1990). Scenarios were designed and modelled to evaluate the

effect of different P fertiliser regimes on pasture production.

5.2. Methods

5.2.1. Study area

This study covered the pasture in the North Island of New Zealand, which accounts
for approximatcly 70% of total land. Forest and other land covers account for the
remaining area (Hunter & Blaschke 1986) (Fig. 1). Climate is very diverse in the North
Island with mean annual rainfall ranging from about 800 to 1600 mm and mean annual
daily temperature ranging from about 9 to 15 °C (Tomlinson & Sansom 1994). Based on
the temperature and rainfall normal (long-term average) data for 1961 to 1990, I
classified the North Island into five climate zones using the GIS climate surfaces
interpolated from these temperature and rainfall normal data. They are high rainfall and
medium temperature zone (HR-MT), high rainfall and high temperature zone (HR-HT),
medium rainfall and high temperature zone (MR-HT), medium rainfall and medium
temperature zone (MR-MT), low rainfall and medium temperature zone (MR-HT)

(Table 1). Fig. 1 outlines the regions for these climate zones.
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Fig 1. Study area, land cover and climate zone. See table 1 for the climate zone explanations.

5.2.2. Dataset

In last few decades, considerable research has been conducted on pasture in the
North Island, New Zealand; most of it related to pasture production (Lambert et al.
1983 Gillingham er al. 1998; Dodd & Ledgard 1999; Moir et al. 2000). There is a large
amount of data in the literature and kept by researchers in the form of raw or
unpublished data. These data provide a very useful resource to develop models for

assessing influence of climate factors on pasture production.

[ focused on annual and seasonal rainfall, annual and seasonal daily mean
temperature, annual P fertiliser (superphosphate) input and application history, nitrogen
(N) fertiliser (urea) inputs, hill slope and soil Olsen P as key input (independent)
variables in model analysis. These variables were identified in a previous decision tree
model (Chapter 3) as the most significant factors influencing pasture production in the
North Island. Data for annual pasture production (aboveground dry matter), fertiliser

input, hill slope and soil Olsen P were from the literature and collected raw/unpublished
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data. Climate data were from the National Institute of Water & Atmospheric Research
(NIWA). Since the rainfall data were measured from the horizontal surface and the P
fertiliser was commonly aerially applied to hill-pasture with a uniform rate, the actual
rainfall and P fertiliser received were adjusted by the cosine of the slope angle. Most
pasture production data were measured by cutting re-growth from a trimmed quadrat
(mainly 1 m2) with a cutting period of about one to two months depending on the
growth rate of plants (Lambert et al. 1983). There were about 1900 samples in this
dataset and those were from Whatawhata, Ballantrae, Te Kuiti, Riverside, Summerlee,
Waipawa, Mauriceville, Mikimiki, Gladstone and Whareama. Most of these samples

were from hill-pasture.

Table 1. Climate zones in the North Island based on normal climate data from 1961-

1990

Climate zone  Rainfall Rainfall Temperature Temperature
mean (mm) range (mm)  mean (°C) range (°C)
HR-MT 1709 1400-5899 11.8 8.5-13.0
HR-HT 1703 1400-2891 14.1 13.0-15.6
MR-HT 1278 1100-1399 14.4 13.0-15.8
MR-MT 1228 859-1399 11.7 8.8-13.0
LR-MT 981 725-1099 12.6 11.0-15.6

5.2.3. DEM and GIS surfaces

A 100 m resolution DEM of the North Island was obtained from the Precision
Agricultural Centre, Massey University. GIS map layers of annual and seasonal daily
mean temperature, annual and seasonal rainfall were interpolated from the NIWA
temperature and rainfall normal data during 1961-1990 with a 100 m resolution. This
interpolation generated surfaces of annual and seasonal temperatures rainfalls for the
North Island from point data with a distance-weighted procedure. There were 364 points
(locations) of rainfall and 101 points of temperature used in interpolating the rainfall
and temperature surface, respectively. Hill slope and fertiliser input surfaces were also
generated from this DEM. All the GIS analyses were conducted in Idrisi 3.2 (Clark
Labs 1997).
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5.2.4. Model development and assessment

A polynomial regression model was developed in SAS 8.1 and SAS Enterprise
Miner, Version 4.1 (SAS Institute 1999).

Annual pasture production data was square root transformed to reduce the
heterogeneous variances as all random errors having the same variance is a fundamental
assumption underlying linear regression (Sen & Srivastava 1990). Climate variable
(annual and seasonal rainfall and daily mean temperature), N fertiliser input and soil
Olsen P were standardised to a range of 0-1 by scaling all the data with the largest
observation in the dataset (Johnson & Wichern 1992). The variable of P fertiliser input
was a combination of both annual P fertiliser input and P fertiliser application history as
the previous decision tree model (Chapter 3) indicated that five-year cumulative P
fertiliser input was a very significant variable in influencing pasture production. It was

calculated as follows:
P fertiliser input = 0.5 X inputapual + 0.5 X Inputhistory (D

Where inputana is the annual P fertiliser input, inputpisiory 1 the average annual P
fertiliser input in the previous five years before the sampling year. The P fertiliser input
was also standardised by the method used for N fertiliser input and soil Olsen P. Hill
slope was standardised by a cosine transformation to a scale of 0-1. This standardisation

made the modelling process easy to conduct, especially in GIS analysis.

As pasture production showed a curvilinear response to temperature and rainfall in a
primary analysis and this was also revealed in the decision tree model (Chapter 3),
quadratic (squared) terms of temperature and rainfall were included in the model
analyses. An interaction term between rainfall and P fertiliser input was also included in

the model analyses along with other variables.

A forward stepwise approach was used to select the variables with a significance
level of P <0.05 in model analyses. To overcome the limitation of the stepwise approach,
backward and forward approaches were also used to facilitate the variable selection
(Sen & Srivastava 1990). Residuals were checked to identify outliers, and the condition
index was checked to identify multicollinearity. Further improvements of model fit

were then made accordingly.
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Table 2: Scenarios of climate changes and P fertilizer input.

Scenario Scenario description

Normal using normal temperature and rainfall data (1960-1991) and a universal
100 P fertiliser (superphosphate) input, no N fertiliser input

R +10%~T +1°C rainfall increased by 10% and temperature increased by 1 °C from the
normal scenario

R-10%~T +1°C rainfall decreased by 10% and temperature increased by 1 °C from the
normal scenario

R +10%~T +2 °C rainfall increased by 10% and temperature increased by 2 °C from the
normal scenario

R -10%~T +2°C rainfall decreased by 10% and temperature increased by 2 °C from the
normal scenario

R +20%~T +1 °C rainfall increased by 20% and temperature increased by 1 °C from the
normal scenario

R -20%~T +1°C rainfall decreased by 20% and temperature increased by 1 °C from the
normal scenario

R +20%~T +2°C rainfall increased by 20% and temperature increased by 2 °C from the
normal scenario

R -20%~T +2°C rainfall decreased by 20% and temperature increased by 2 °C from the
normal scenario

150 kg/ha P P fertiliser increased by 50 kg/ha from the normal scenario

200 kg/ha P P fertiliser increased by 100 kg/ha from the normal scenario

A model assessment was implemented in the model analyses. The whole dataset was
first randomly partitioned into two parts: the training data (70% of the total) and the
validation data (30% of the total). The regression model was analysed using the training
data and model was assessed by the validation data. This assessment compared the
average squared error (ASE) of the potential sub models and the corresponding ASE of
each sub model in the validation data. ASE is similar to mean squared error (MSE) and
is an indicator of model goodness-of-fit; the smaller the ASE, the better the model fits.
A “best” model that had the smallest ASE from validation data was selected (Fernandez

2003).

5.2.5. Climate change scenarios and GIS-based model prediction

With regard to the estimation of the changes in temperature (0.6 to 2.8 °C ) and
rainfall (-20% to +30% ) by Ministry for the Environment (2001), I used eight scenarios
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of climate change which assumed an annual daily mean temperature increase by 1 to 2
°C and an annual total rainfall change by -20% to +20%. A normal scenario, which
represented the average temperature and rainfall data for the period of 1961-1990, was
used as a check for these scenarios. This normal scenario assumed a universal 100 kg P
fertiliser input and no N fertiliser input. Two scenarios of P fertiliser input (150 kg/ha

and 200 kg/ha) were also used. Details of these scenarios are in Table 2.

GIS interface

Regression modcel: Y=ao + aixi+ axxot " +ax;it g

IS map layers
of climate change '

Map overlay

Climate change

scenarios data o

Tempcraturce

and rainfall —r» Interpolation
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Fig. 2. The procedure for generating GIS-based predictions for pasture production under
different climate scenarios. The rectangles represent data files and results, the ellipses

represent the GIS functions and the parallelograms represent the GIS map layers.

Map layers of climate variables (temperature and rainfall) under different scenarios
were first prepared based on the normal annual and seasonal mean daily temperature
and rainfall map layers generated previously and were standardised by using the method
previously described. Map layers of P fertiliser input under the two fertiliser input

scenarios were also prepared and standardised. The GIS-based predictions for pasture
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production under different scenarios were then implemented in GIS using the Image
Calculator by linking the developed regression model (Stocks & Wise 2000). The
predicted pasture production was then back transformed for easy interpretation. Pasture
productions in the different climate zones were extracted from the predicted GIS map
layers of pasture production and were presented separately. Fig. 2 shows the main
procedure for generating GIS-based prediction for pasture production under different

climate and P fertiliser input scenarios.

5.3. Results

5.3.1. The regression model

Table 3 shows theresults of the regression model for annual pasture production. The
model was very significant (F =349.72, P <0.001) and explained 67.8% variance in
annual pasture production. The significant input variables selected in the model
included hill slope, P fertiliser input, annual daily mean temperature, annual and spring
total rainfall, the quadratic terms of annual daily mean temperature and annual total
rainfall and an interaction term between annual total rainfall and P fertiliser input (Table
3c). Soil Olsen P was significant in model analyses; however, because it was closely
correlated with P fertiliser input and resulted in a high multicollinearity problem, it was
not selected in the model as P fertiliser input and application history were indicated as
more significant variables than Olsen P (Chapter 3). This was also good from a practical
point of view as Olsen P is difficult to measure over a large scale. As this dataset only
contained very limited samples of applying N fertiliser, the N fertiliser input was not

significant in model analysis.

The effect of P fertiliser input on pasture production was positive, while the effects
of temperature and rainfall were positive when they were low and were negative when
they were high. The interaction between P fertiliser input and annual total rainfall was

negative.

5.3.2. GIS-based model prediction

GIS-based prediction for annual pasture production under the normal scenario is
shown in Fig. 3. Table 4 shows the predicted pasture productions (mean = standard

deviation) for the five climate zones under the normal scenario, the climate change
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scenarios and the two P fertiliser input scenarios, which were extracted from GIS map
layers of predicted pasture production (map not shown). Fig. 4 shows the changes of
predicted pasture production (mean + standard deviation, kg/ha) between the climate
change scenarios and the normal scenarios, and between the two P fertilizer input
scenarios and the normal scenario for the whole study area. Table 5 displays the
differences in pasture production in amount (mean + standard deviation kg/ha) and in
percentage (%) between the climate change scenarios and the normal scenarios, and
between the two P fertilizer input scenarios and the normal scenario for the whole study

area and the five climatic zones, which were extracted from Fig. 4.

Under the current climate situation (the normal scenario), the climate zone of HR-
HT had the highest predicted average pasture production (12800 kg/ha); while LR-MT
had the lowest (7600 kg/ha). The HR-HT was about 70% higher than the LR-MT.

For the eight climate change scenarios, scenario R +20%~T +2 °C had the highest
predicted average pasture production (11320 kg/ha) for the whole study area, which was
9.6% higher than the normal scenario; scenario R -20%~T +2 °C had the lowest
predicted average production (8220 kg/ha), which was 20.4% lower than normal
scenario. For the two P fertilizer input scenarios, the 150 kg/ha P scenario was 3.6%
higher and the 200 kg/ha P scenario was 7.2% higher than the normal scenario for the

whole study area, respectively.

The predicted average pasture productions for the climate zone HR-MT all increased
by 6.7% to 20.5% under the eight climate change scenarios compared with the normal
scenario. Opposite to the climate zone HR-MT, the predicted average pasture
productions in the climate zone HR-HT decreased by 30.1% to 7.7% under the eight
climate change scenarios. The predicted average pasture production in the climate zone
MR-HT decreased for all other climate scenarios by -46.2% to -2.3% except under the
scenarios of R +20%~T +1 °C, which increased by 2.4%. For the climate zone MR-MT,
the predicted average pasture production increased by 2.2% to 43.6% for all other
climate scenarios except under the scenario R -20%~T +1 °C, which decreased by 6.2%.
The predicted average pasture production for the climate zone LR-MT increased under
the scenario R +10%~T +1 °C (25.4%), R +10%~T +2°C (22.4%), R +20%~T +1 °C
(38.0%) and R +20%~T +2 °C (34.8%), and decreased under all other scenarios by -

111



Chapter 5: Modelling the impact of climate change on pasture production

22.0% to -3.8%. That is the average pasture production increased under all the increased

rainfall scenarios and decreased in all the decreased rainfall scenarios.

For the two P fertilizer input scenarios, an increased average pasture production was
predicted for all the five climate zones compared with the normal scenario which
assumed a 100 kg/ha P fertilizer input. For 150 kg/ha scenario, the highest increase was
in the climate zone LR-MT (6.7%) and the lowest was in the climate zone HR-HT
(2.1%). For 200 kg/ha scenario, the climate zone LR-MT also had the highest increase
(13.6%) and the climate zone HR-HT had the lowest increase (4.2%).

Table 3: Summary of the regression model for pasture production. The variable symbols
are: Cos(slope) (cosine slope), P_fert (P fertilizer input, kg/ha), Temp_y (annual daily
mean temperature, °C), Rain_sp (spring total rainfall, mm), Rain_y (annual total rainfall,

mm).

a. Analysis of Variance

Source DF SumofSquares Mean Square  F Stat Pr>F
Model 8 539956 67494.0 349.72 <.0001
Error 1319 254562 193.0

C Total 1327 794517

b. Model fit
R-square 0.6796 Adjusted R-square 0.6777

c. Parameter Estimates

Variable DF Estimate Std Error t Stat Pr >|t|
Intercept 1 -712.5 88.47 -8.05 <.0001
Cos(slope) 1 150.3 8.04 18.70 <.0001
P_Fert 1 55.9 7.94 7.04 <.0001
Temp_y 1 1216.3 214.80 5.66 <.0001
Rain_sp 1 41.5 4.92 8.44 <.0001
Rain_y 1 229.8 2454 9.37 <.0001
Rain_y*P_fert 1 -45.7 11.70 -3.91 <.0001
Square (temp_y) 1 -671.1 127.20 -5.28 <.0001
Square (rain_y) 1 -123.6 19.80 -6.24 <.0001
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Fig. 3. Predicted pasture production (kg/ha) under normal scenario for the North

Island. The white areas on the map are forest.

For scenarios that assumed 1 °C increase in temperature a change in pasture
production of -29.8% to 41.2% was predicted when rainfall change was from -20% to
+20%; while for scenarios that assumed 2 °C increase in temperature a change in
pasture production of -46.2% to +51.9% was predicted when rainfall change was from -

20% to +20% compared with the current climate situation (the normal scenario).

For scenarios that assumed 1°C temperature increase, the highest decrease in pasture
production was found in the climate zone MR-HT under scenario R -20%-~T +1 °C and
the highest increase was found in the climate zone MR-MT under scenario R +20%-~T
+1 °C. For scenarios that assumed 2 °C temperature increase, the highest decrease in
pasture production was also found in the climate zone MR-HT under scenario R -
20%~T +2 °C and the highest increase was also found in the climate zone MR-MT

under scenario R +20%-~T +2 °C.
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Table 4: Predicted pasture production (mean * standard deviation) (kg/ha) for the whole study area and the five climatic zones under

different scenarios. See Table 1 for the climate zones and Table 2 for scenarios.

Scenarios All area HR-MT HR-HT MR-HT MR-MT LR-MT

normal 10328 £ 2782 10330+ 2736 12807+ 1010 11523 + 941 8144 + 3048 7601 = 1069
R +10%~T +1°C 11169+ 2190 12007+ 2867 11826+ 1811 11252+ 1334 10861 = 2600 9532+ 901
R -10%-~T +1°C 9934+ 2366 11802+ 1931 11640+ 1426 9360+ 1288 8894 + 2496 7316+ 818
R +10%-~T +2 °C 10433+ 2413 12612+ 2583 9864+ 2150 9016+ 1802 11697 = 1856 9302+ 1206
R -10%-~T +2 °C 9239+ 2497 12448 = 1517 9693+ 1899 7326+ 1667 9637+ 1882 7117+ 1090
R +20%~T +1 °C 11323+ 2292 11480+ 3308 11214+ 2339 11803 = 1327 11502+ 2546 10489 907
R -20%-~T +1°C 8879 £ 2460 11024+ 1711 10825+ 1570 8093 + 1219 7639 + 2335 6113+ 744
R +20%-~T +2 °C 10587 £ 2552 12048 + 3127 9312+ 2498 9511+ 1832 12369+ 1741 10247+ 1227
R -20%~ T +2°C 8223+ 2567 11662 £ 1420 8949+ 1952 6205+ 1548 8321 = 1787 5931 + 993
150 kg/ha P 10697 + 2772 10573+ 2814 13074+ 1049 11977 = 932 8544 + 3103 8111+ 1088
200 kg/ha P 11073 £ 2766 10820+ 2898 13345+ 1100 12440+ 923 8953 = 3155 8637+ 1107
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Table 5: Changes in pasture production (mean * standard deviation, kg/ha) in amount (mean + standard deviation kg/ha) and in percentage (%)

between the climate change scenarios and the normal scenarios and between the two P fertilizer input scenarios and the normal scenario for the

whole study area and the five climatic zones. See Table 1 for the climate zones and Table 2 for scenarios.

Scenarios All area HR-MT HR-HT MR-HT MR-MT LR-MT
Kg/a % Kg/ha % Kg/ha % Kg/ha % Kg/ha % Kg/ha %
R +10%~T +1 °C 841+ 1714 8.1 1677 = 1111 16.2 981+ 1134 -7.7 -271 £ 815 =23 2717+ 630 334 1931+ 738 254
R-10%~T +1°C -394+ 1589 -38 1472 £ 1233 143  -1167+ 1003 -9.1 -2162+ 709 -18.8 749+ 750 9.2 -285+ 745  -3.8
R +10%~T +2°C 105+ 3134 1.0 2282 + 1817 22.1 -2943 + 1550 -23.0 -2507+ 1394 -21.8 3552+ 1641 43.6 1701 + 1489 224
R -10%~T +2 °C -1089 + 2965 -10.5 2118 + 2088 20.5 -3114 + 1500 -24.3 -4197 x 1224 -36.4 1493 + 1656 18.3 -484 + 1408 -6.4
R +20%~T +1°C 995 + 2264 9.6 1150+ 1768 11.1 -1593 + 1776 -12.4 280+ 884 2.4 3358+ 657 41.2 2888 + 729  38.0
R -20%~T +1°C -1449 + 1843 -14.0 694+ 1953 6.7 -1982 + 1389 -15.5 -3430x 652 -29.8 -505+ 878 -6.2 -1488 + 747 -19.6
R +20%~T +2°C 259 + 3496 2.5 1717+ 2277 16.6 -3495+ 1945 -27.3 -2012+ 1467 -17.5 4225+ 1697 51.9 2646 £ 1513 34.8
R -20%~T +2 °C -2105 £ 3047 -20.4 1332+ 2700 12.9 -3858 £ 1711 -30.1 -5318+ 1116 -46.2 177+ 1709 2.2 -1670 + 1352 -22.0
150 kg/ha P 369+ 161 3.6 243+ 164 2.4 267+ 160 2.) 455+ 83 39 399+ 99 4.9 510+ 82 6.7
200 kg/ha P 745 + 291 7.2 490+ 285 4.7 538+ 266 4.2 918+ 112 8.0 808 + 157 99 1036 = 104 13.6
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(a). R +10%~T +1 °C . (b). R -10%~T +1 °C

Fig. 4. Changes in pasture production (mean + standard deviation, kg/ha) under the climate
change scenarios (difference between the climate change and the normal scenario) (a-h) and
P fertiliser input scenarios (difference between the P fertiliser input scenarios and the
normal scenario) (i-j), for the North Island. The white areas on the map are forest. Note the

different scales in the map key.

Fig. 4 continued on next page
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Fig. 4 continued

(e). R +20%~T +1 °C

fertiliser

(g). R+20%~T +2 °C

(i). 150 kg/ha P

(). R -20%~T +1 °C

(h). R -20%~T +2 °C

(). 200 kg/ha P
fertiliser
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Scenarios assuming a 10% decrease in rainfall predicted a change of pasture
production by -24.3% to +20.5%. Scenarios that assumed a 10% increase in rainfall
predicted a change in pasture production by -23.0% to +43.6%. Scenarios that assumed
a 20% decrease in rainfall predicted a change in pasture production by -46.2% to
+12.9%. Scenarios that assumed a 20% increase in rainfall predicted a change in pasture

production by -27.3% to +51.9%.

5.4. Discussion

The model predicted a wide range (-46.2% to +51.9%) of pasture production change
for the eight climate change scenarios compared with the normal climate from 1961-
1990 in the different climate zones (Table 5). This variation in pasture production
indicated that the potential impacts of climate change on pasture in the North Island
would be very significant. These pasture production changes were in a range of -20.4%
to +9.6% under the eight climate scenarios when averaged over all the climate zones,
which was in general agreement with the findings by Baars e¢ al. (1990), Martin ez al.
(1991) and Campbell (1996). Their predictions were usually in the range of +8% to
+30% and a negative effect was also predicted in some regions. However, my model
predicted a decrease in pasture production under the four scenarios with decreased
rainfall for the whole North Island when averaged over all the climate zones, showing
that the interaction of decreased rainfall and increased temperature will have significant

negative effect on pasture production.

The climate change report of Ministry for the Environment (2001) estimated that the
climate change in rainfall was likely to result in an increase in the West of the New
Zealand and a decrease in the East. Under such a climate change situation, the four
scenarios that assumed increased rainfall would be the case for the West and the four
scenarios that assumed decreased rainfall would be the case for the East of the North
Island. Corresponding to these climate situations, pasture production in most of the
South-west would, on average, increase by +11.1% to +51.9%, in most of the North and
North-west would, on average, decrease by -2.3% to -27.3% and in most of the South-
east would, on average, decrease by -3.8% to -22.0%. This indicates that decreased
rainfall and increased temperature would have negative effect for areas having low

rainfall (e.g. LR-MT) and areas having high temperature (e.g. HR-HT, MR-HT),
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respectively, with moisture stress being the major limitation on pasture growth.
Currently most pastures in New Zealand are ryegrass and white clover dominated and
both of them are not drought-tolerant. Developing and wide use of drought-tolerant
species in areas where climate changes are likely to have negative impact (e.g. North
and South-east of the North [sland) would be a good management practice in the face of

climate change.

Results from the model predictions for the P fertiliser input scenarios indicated that
the effect of increasing P fertiliser input from 100 kg/ha (normal scenario) to 200 kg/ha
would increase pasture production by 4.2% to 13.6%, depending on the climate zone. [t
was also indicated that pasture in areas with relatively low rainfall had a higher response
to increased P fertiliser input than pastures in areas with a relatively high rainfall. An
interaction of soil Olsen P and rainfall on pasture production was recognised and the
effect of Olsen P on pasture production was positively influenced by available soil
moisture (Chapter 3 and Moir et al. 2000). The reason why the interaction between
increased P fertiliser input and rainfall was negative was not clear. A possible reason is
that the high rainfall area may have higher soil P content than low rainfall area, and thus
response to P fertiliser was less effective than for the low rainfall area. However, by
checking the dataset, soil Olsen P was found lower in high rainfall areas than low
rainfall areas, showing that this may not be the reason for the low response of P
fertiliser to pasture production in high rainfall areas. A possible explanation is that
runoff resulting from rainfall caused the associated P fertiliser loss. As P fertiliser was
mainly aerially applied and most fertiliser may have remained on the surface of pastures,
the proportion of P fertiliser loss by runoff may be positively related to the rainfall, and
thus, the area with high rainfall may have low efficiency in utilising P fertiliser.
Lambert et al. (1985) also found that proportion of total P in dissolved inorganic form
in runoff tended to be higher for catchments applying more P fertiliser than those
applying less P fertiliser. This negative interaction between rainfall and P fertiliser input
on pasture production implies that increased rainfall that resulted from climate change

may reduce the P fertiliser utilisation efficiency in hill-pasture.

The regression model developed in this study had a very good model fit considering
that the training data were from different locations and times. This was partially because

the most significant input variables and the interactions among these variables in
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explaining variance in pasture production were revealed from the previously developed
decision tree model (Chapter 3). These variables were also recognised as the key drivers
in influencing pasture production in some other studies (e.g. Radcliffe 1982; Lambert et
al. 1983; Gillingham et al. 1998; Moir et al. 2000). It was indicated by this model that
apart from P fertiliser input and hill slope, all other independent variables were
temperature, rainfall, and the interaction between rainfall and P fertiliser. The
importance of climate and the impact of climate changes on pasture production were

well supported by the model.

Naturally, this model also has some limitations. Firstly, it did not assess the effect of
the elevated CO; concentration on pasture production (Riedo et al. 1997), no effect of
extreme climatic events such as drought or heavy rainfall, which may result from
climate change were assessed (Salinger er al. 2000). Secondly, the data used in
developing the regression model were mainly from hill-pasture, and therefore, model
predictions for lowland pasture may not be as good as for hill-pasture, as lowland
pasture was assumed to be the low slope (< 15°) area in hill-pasture. However, as a
scenario analysis, the objective of this study was not to accurately predict pasture
production under climate changes, but rathcr, to asscss the possible impacts of climate
change scenarios on pasture production and management practices which may need to

be considered under such an impact.

In summary, the model predictions for climate change scenarios suggested that the
potential climate changes would have significant impact on pasture production in the
North Island, New Zealand. Increased temperature would generally have a positive
effect on pasture production in the South and South-east of the North Island, and
increased rainfall would have a positive effect in the Central, South and South-east of
the North Island and a negative effect in the North of the North Island. The decreased
rainfall would only have a positive effect in some central areas with high rainfall. The
interaction of increased temperature and decreased rainfall would, on average, have a
negative impact on pasture production for the whole North Island. Management
strategies such as developing and use drought tolerant species, need to be considered to
cope with the potential drought resulted from reduced rainfall or increased temperature
for areas such as North and East coast of the North Island. The model prediction also

indicated that pasture in areas with relatively low rainfall had a higher response to
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increased P fertiliser input than pastures in areas with a relatively high rainfall, probably
due to the high runoff and associated P loss in high rainfall area. This suggests that use
N fertiliser in areas with high rainfall would be a better choice with respect to both

economic benefit and environmental health.
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Chapter 6. A Decision Tree Approach to Modelling Functional Group

Abundance of Plant Species in a Pasture Ecosystem

Species abundance has been considered to have several distributions and it is not
appropriate to use least square (LS) regression. Generalised linear model (GLM) has
been successfully used to model species abundance using the measure of discrete
cover, but it is not suitable when abundance is an interval variable such as measured
by biomass. Decision tree has no strict requirement for variable distribution and can
easily incorporate ordinal, nominal and interval variables in a model. It is, therefore,
an appropriate approach for modelling species abundance with productivity or
biomass as the measure. In this chapter, a combination of decision tree and GIS were
used to predict relative abundance of functional groups of plant species in a hill-

pasture ecosystem.

A paper derived from this chapter with a title 4 decision tree approach modelling functional group
abundance in a pasture ecosystem” by B. Zhang, 1. Valentine & P.D. Kemp has been published in

Agriculture, Ecosystem and Environment (in press, available on-line).
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Abstract. Due to concerns over the impact of intensive land-use and climate change on
species diversity, there have been increasing interests in the prediction of the
distribution (presence/absence) and abundance of plant species. However, few models
focus on species abundance, measured as productivity or biomass, which would
contribute to ecological studies and environment management. Decision tree, one of the
data mining approaches, was used to model the relative abundance of five functional
groups of plant species, namely high fertility response grasses (HFRG), low fertility
tolerance grasses (LFTG), legume, moss and flatweeds in a New Zealand hill-pasture
ecosystem using aboveground biomass. The model outputs were integrated with a
geographic information system (GIS) to map and validate the predictions on a pasture.
The decision tree models clearly revealed the interactions between the functional groups
and environmental and management factors, and also indicated the relative importance
of these factors in influencing the functional group abundance. Soil Olsen P was the
most significant factor influencing the abundance of LFTG and moss, while soil bulk
density, slope and annual P fertiliser input were the most significant factors influencing
the abundance of legume, HFRG and flatweeds, respectively. Generally, topographic
feature (slope) and soil fertility (Olsen P) were the two key factors underlying the
patterns of abundance for these five functional groups. The decision tree models also
performed well with respect to the predictive accuracy. For the five functional groups
studied, there was an overall predictive accuracy of 75%. Modelling functional group
abundance simplified the investigation of the complex interrelationship between species
and environment in a pasture ecosystem. The integration of the decision tree with GIS
in this study provides a platform to investigate community structure and functional
composition for a pasture over space, and thus can be applied as a tool in pasture
management. For example, predicting and mapping the HFRG abundance in a pasture
could guide more specific phosphorus fertiliser application by outlining the areas that

have less HFRG composition.

6.1. Introduction

There have been increased applications of the predictive modelling of species
distribution and abundance in plant ecology and vegetation science due to concern over

the impact of intensive land-use and climate change on species distribution and
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diversity, and the related issues in species conservation and environment management
(e.g. Palmer & Van Stden 1992; Tappeiner et al. 1998; Wadsworth & Reweek 1999;
Zimmermann & Kienast 1999; Stocks & Wise 2000; Rouget ef al. 2001; Guisan et al.
2002). Current practices mainly focus on establishing the correlation between plant
species and environment by detecting the important variables underlying, or explaining
this relationship and quantifying species’ realised niche in a multiple space defined by
these variables, and, usually, presenting predicted species distribution (presence/absence)
over an area of interest in a GIS (Franklin 1995; Guisan & Zimmermann 2000; Austin
2002). The success of this modelling approach to species distribution is that it is

founded on species niche theory and gradient analysis (Austin 2002).

One limitation of most of the above models is that they can predict the presence or
absence of a species, but not the abundance of the species in the community. Yet, the
importance of measuring species abundance in investigating species diversity, species
community structure and ecosystem processes has been well recognised (May 1975;
Hahel 1990; Camargo 1995; Tilman 1996; Welson et al. 1996). Presence or absence of
a species 1s predicted in these models either because it is adequate for the modelling
purpose, or, more possibly, because it is difficult to obtain the species abundance data
used to develop the models. There are models that predict species abundance using
discrete cover (e.g. Gottfried et al. 1998; Guisan & Harrell 2000), but cover is often
estimated visually in these studies, usually using an interval scale, such as the Braun-
Blanquet approach (Braun-Blanquet 1964). In grassland, or pasture ecosystems, discrete
cover as a measure of species abundance is usually not adequate in investigating the
community structure as species that have the same abundance (discrete cover) may have
very different productivity or biomass (Chiarucci ef al. 1999). Previous research has
indicated that productivity, or biomass, is the most appropriate measure of species
abundance, especially in a pasture or grassland ecosystem (Whittaker 1965; Welson et

al. 1996; Guo & Rundel 1997; Chiarucci ef al. 1999).

The modelling of species distribution and abundance has exploited many approaches,
including multiple regression (Fels 1994), generalized linear model (GLM) (Austin ef al.
1994; Lehmann et al. 2003), artificial neural networks (ANN) (Fitzgerald & Lees 1992;
Gullison & Bourque 2001), decision trees (Iverson & Prasad 1998; Vayssieres et al.
2000), canonical correspondence analysis (CCA) (Ohmann & Spiess 1998; Guisan et al.
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1999), and generalized additive model (GAM) (Brown 1994; Lehmann 1998). Species
abundance has been considered to have several distributions, including Poisson
distribution, negative binomial distribution, canonical log-normal distribution, broken-
stick distribution and ordinal distribution (see Guisan & Zimmermann 2000). It is,
therefore, not appropriate to directly use least square (LS) regression to model species
abundance due to the violation of its normal distribution assumption. Though variable
transformation can be applied to cope with this problem, it only alleviates the problem
to some degree (Freund & Littell 1991). Similarly, CCA also assumes normal
distribution though it has been argued that CCA works well when the assumption is not
held (ter Braak 1985). GLM has been successfully used to model species abundance
using the measure of discrete cover (Guisan & Harrell 2000), but it is not suitable when
abundance is an interval variable such as measured by biomass. A model which is free
of variable distribution assumptions and has no limitation of variable types would be an

appropriate one in modelling species abundance.

Decision tree, one of the data mining approaches, has been used to model species
distribution and abundance in several studies and was indicated to have a very high
predictive ability, and performed better than GLM (Iverson & Prasad 1998; Vayssieres
et al. 2000; Rouget et al. 2001). It has no strict requirement for variable distribution,
and can easily incorporate ordinal, nominal and interval variables in a model (Breiman
et al. 1984; Iverson & Prasad 1998; Vayssieres et al. 2000; Witten & Erank 2000).
These advantages enable decision tree to be an appropriate approach in modelling

species abundance with productivity or biomass as the measure.

A functional group is defined as a set of species that have similar effects on a
specific ecosystem-level biogeochemical process (Vitousek & Hooper 1994). It is
commonly used as a vegetation unit in ecological studies for investigating ecosystem
processes and simplifying the complex interaction between vegetation and the
environment (Korner 1994). The functional group is also an appropriate vegetation unit
in assessing pasture management practices (Nicholas et al. 1998; Boer & Stafford Smith

2003).

In this study, I develop decision tree models for the relative abundance of functional
groups of plant species using the measure of aboveground biomass in a hill-pasture in

New Zealand, and present model predictions in a GIS for model validation and further
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investigation and application. The objectives of this study were: 1) to develop decision
tree models for relative abundance of the functional groups; 2) to assess the
performance of decision trees in modelling functional group abundance; and 3) to
investigate the interrelationship between functional group abundance and environmental
and pasture management variables, identifying the key variables driving or explaining

these relationships and the implications for pasture management.

6.2. Methods

6.2.1. Study area

This study was carried out on the AgResearch Ballantrae Research Station at latitude
S40°18’, longitude E175°50" in the North Island of New Zealand (Fig. 1) with average
annual rainfall 1270 mm and average annual daily temperature 12.3 °C. Altitude ranges
from 125 to 350 m a.s.l. The hill country in Ballantrae is dissected and very
heterogeneous with complex combinations of slope and aspect even within a small area
(Lambert & Roberts 1978). This heterogeneity increases the diversity of micro-climate,
soil characteristics, species composition and the behaviour of grazing animals (Lopez
2000). The pasture on Ballantrae is dominated by browntop (Agrostis capillaris) when
soil fertility is low (or co-dominated by browntop and moss (Musci spp.) when soil
fertility is low and hill slope is high) and co-dominated by ryegrass (Lolium perenne),

browntop and white clover (Trifolium repens) when soil fertility is high (Nicholas 1999).

The GIS-based model prediction and verification were carried out for a pasture,
which was within the Station and was about 90 ha in area (Fig. 1). Within this pasture
there were four small farmlets with different fertiliser application treatments since the
early 1970s: two of them had approximately 120kg and 360kg annual P fertiliser
(SuperPhosphate — approximately 9% P content) input per year since 1974 (hereafter
referred as LL and HH), and the other two farmlets also had approximately 120kg and
360 kg P fertiliser per year from 1974 to 1982, but had none since (hereafter referred as
LN and HN). The farmlets LL, LN, HN, and HH had 8, 10, 8 and 10 paddocks
respectively. Each paddock was approximately 8 ha in area. A detailed description of

these four farmlets and their management history can be found in Lambert ez a/ (2000).
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North Island

New Zealand

BERNENIPBURY

DEM of the pasture and
farmlets used in  GIS
Ballantrae predictions.

Fig. 1. Study area, digital elevation model (DEM) and the farmlets’ used in validating the
GIS prediction.

6.2.2. Model development

6.2.2.1. Dataset

Species data are from a long-term experiment (see Lambert et al. 1986), unpublished
Ph.D theses (Nicholas 1999; Lopez 2000) and some other experiments conducted at
Ballantrae during 1972-1998 within the whole area of the Station. A total of 1742
samples were collected using a stratified random method within the study area using 0.5
m? quadrats. Samples were collected during late spring to early summer (October to
early December), which included aboveground biomass of different functional groups
and soil features (see below). Aboveground biomass was measured by a “trim
technique” involving harvesting pasture regrowth from trimmed areas protected from
sheep grazing (Lambert et al. 1996) with a regrowth period from 30-50 days. Relative
abundance of a functional group was calculated as the percentage of its aboveground

biomass out of the total aboveground biomass in a sample.
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Table 1. Input variables used in the decision tree and the GIS analyses

Variable symbol  Unit Variable description

pH -logio[H'] soil pH

BD glem’ soil bulk density

OlsenP ug/g soil Olsen P

N _fert kg/haly annual elemental N fertiliser input

P fert kg/haly annual elemental P fertiliser input

P_fertS kg/ha S-years cumulative elemental P fertiliser input
P fertl0 kg/ha 10-years cumulative elemental P fertiliser input
temp_y °c annual mean daily temperature

temp_sp ’C spring mean daily temperature

temp_su °’C summer mean daily temperature

temp_wi °c winter mean daily temperature

rain_y mm annual rainfall

rain_sp mm spring rainfall

rain_su mm summer rainfall

rain_wi mm winter rainfall

rain_warm mm sum of spring and summer rainfall

solar y MJ/m’/d  annual mean daily global solar radiation
solar_sp MJ/m’/d  spring mean daily global solar radiation
solar_su MJ/m*/d  summer mean daily global solar radiation
solar_wi MJ/m*/d  winter mean daily global solar radiation
aspect hill slope aspect. e.g. N NE S SW NW, etc.
slope degree hill slope angle

G_animal S, C, grazing animal species: sheep (s), cattle(c).

Environmental data, including topographic variables (aspect, slope), edaphic
variables (soil bulk density, pH, Olsen-P) and pasture management variables (N, P
fertiliser application and grazing animal species) were measured or observed from the
experiments from which the species abundance was measured. Climatic variables,
including rainfall, temperature and global solar radiation, obtained from the National

Institute of Water & Atmospheric Research (NIWA), New Zealand, were measured at a
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meteorology station located in the study area. There were a total of 23 climatic,

topographic and management variables in the dataset (Table 1).

Since the rainfall data was measured from the horizontal surface and the P fertiliser
was commonly aerially applied to hill-pasture with a uniform rate, the actual rainfall
and P fertiliser received were adjusted by the cosine of the slope angle. Actual solar
radiation on hilly terrain is strongly influenced by topography (Antoni 1998), so it was
calculated from observed solar radiation at that location by an empirical method

developed for the North Island, New Zealand (McAneney & Noble 1975).

Table 2. Functional groups of at Ballantrae [after Lambert er al. (1986) and Nicholas
(1999))

Functional group Species

HFRG Lolium perenne, Holcus lanatus, Poa pratensis, Poa annua
and Dactylis glomerata.

LFTG Agrostis capillaris, Anthoxanthum odoratum, Cynosurus cristatus,
Rytidosperma spp., Festuca rubra.

Legume Trifolium repens, Trifolium dubium, Trifolium subterraneum and
Lotus pedunculatus.

Flatweeds Plantago lanceolata, Hypochaeris radicata, and Leontodon
taraxacoides.

Moss Musci spp.

There were about twenty species existing in the naturalized hill pastures. I classified
these species into functional groups primarily based on the commonly defined
functional categories (grass, legume, forb), and further classified each of the grass and
forb categories into two functional groups considered nutrient response and plant
growth form, respectively, by synthesizing previous work (Lambert es al. 1983;
Nicholas 1999). These five functional groups are: high fertility response grasses
(HFRGQG), low fertility tolerance grasses (LFTG), legume, moss, and flatweeds. Table 2

lists these functional groups and the species allocated to them.

6.2.2.2. Decision tree development and assessment

[ developed the decision tree models for the relative abundance of the five functional

groups in SAS Enterprise Miner, Version 4.1 (SAS Institute Inc., 1999-2001, Cary, NC,
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USA). The main procedure for developing a decision tree model is to split the data of
target variable based on its response to input variables. There are different criteria used
to split the data, depending on the nature of the target variable. For interval variables (i.e.
continuous variables) like species abundance, the split criterion is variance reduction or
F test. [ compared both criteria in developing the decision tree models for relative
abundance of the functional groups and chose F test as the split criterion since this was
statistically more reliable. A significance level of P<0.05 was selected for the F test in

developing these decision trees.

Also, there is an interactive training procedure to develop a decision tree by
arbitrarily forcing a variable into the decision tree if the variable meets the splitting
criterion. | used this interactive training method to investigate the influence of specific

variables on the functional groups.

Model assessment is an important step in developing the decision tree, as it enables
a good model output, and prevents overtraining, which otherwise would develop a
model that only fits the data from which it was trained (Witten & Erank 2000). The SAS
Enterpriser Miner has several options to assess the model having an interval target. The
measure of average squared error (ASE) is commonly used. ASE is similar to mean
squared error (MSE) in a general linear model and is an indicator of model goodness-of-
fit; the smaller the ASE, the better the model fits. In the development of the decision
tree models, the whole dataset was randomly partitioned into two parts: training data
(70% of the total) and validation data (30% of the total). The decision trees were
derived using the training data and fit was assessed using the validation data; and the
“best” tree which had the smallest ASE from validation data was selected. | set six as
the maximum tree levels, and 11 as the minimum observations required for a split
search. The recommendation on minimum observations was derived using the program
by assessing the size of the whole dataset (Fernandez 2003), in developing the decision

tree models for species relative abundance of the functional groups.

6.2.2.3. GIS-based prediction and model validation

The outputs of the decision tree models for relative abundance of the functional
groups were imported into a GIS to derive the “predictions” of relative abundance of

HFRG, LFTG, legume, moss and flatweeds for the pasture described previously.

133



Chapter 6: Modelling functional group abundance of plant species

GIS environment Statistic environment
Map layers of input variable Decision trees
B 4 Slope Decision trec of
< HFRG abundance
DEM
— | Aspect
- Dccision tree of
/v Rainfall LFTG abundance
A A
Study area P | Temperature
Dccision trce  off
lcpume abundance
Fence map ——P \‘ PET
Climate data Bulk density Dccision trec of
/ {moss abundance |
Field and I pH
managemen .
ata il Dccision tree of
¢ | OlsenP flatweed
A [P fertilizer
input
\ N fertilizer
input

Map overlay

Predicted map layers of relative
bundance of functional groups
=1

Fig. 2. Diagram of the procedures for generating the model predictions in GIS. The
rectangles in the GIS environment area represent the GIS map layers. The arrows indicate
the orders and the resources in developing the predictions of relative abundance of the

functional groups in GIS. Names of input variables and their description are in Table 1.

A 5 x 5 m resolution digital elevation model (DEM) of this pasture was interpolated
from a XYZ coordinate file produced by New Zealand Aerial Mapping Ltd. A map
layer of the four farmlets was created based on an existing fence map. All the GIS map
layers of input variables were then generated. Map layers of rainfall and P fertiliser
input were adjusted by a cosine of the slope angle, and layers of solar radiation were
adjusted by slope and aspect with methods previously mentioned. All the map layers

had the same 5 x 5 m resolution.

In late spring 1993, the relative abundance of the functional groups was measured

using aboveground biomass by cutting re-growth from a trimmed quadrat (0.5 m?)
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(Lambert et al. 1996). Three replicate quadrats, representing different combinations of
slope and aspect in each paddock within each farmlet, were used. So there were a total
of 24, 30, 24 and 30 observations in LL, LN, HN and HH, respectively. The GIS-based
predictions were made based on the climatic and management variables in these four
farmlets in 1993. The measured relative abundance was used to validate the model
predictions. These data were independent from the data used in developing the decision

tree models.

Spatial predictions for the relative abundance of the functional groups were
implemented by coupling the outputs of the decision trees with GIS using a map overlay
function. The prediction outputs were the map layers of relative abundance of HFRG,
LFTG, legume, moss and flatweeds. Fig. 2 shows the procedures for generating these

model predictions in GIS.

The average relative abundance of the functional groups in the four farmlets was
then extracted by calculating the average of all the pixels (5%5m) within each farmlet.
The predicted average abundance was compared with the observed average relative
abundance for an empirical validation of the model (Mitchell 1997). The 95%
confidence interval of the observed relative abundance mean was set as an acceptable
error for the prediction. Because the map layers of predicted relative abundance covered
an area which is larger than the four farmlets, only the area within the four farmlets was
used to validate the predictions. As the observed relative abundance summed moss and
flatweeds together, the sum of the predicted relative abundance of these two functional
groups was used to validate their prediction. All the GIS analyses in this study were

conducted in Idrisi 3.2 (Clark Labs, Clark University, Worcester, MA, USA).

6.3. Results

6.3.1. Decision trees

Figs 3, 4, 5, 6 & 7 display the decision tree models for relative abundance of

functional groups HFRG, LFTG, flatweeds, legume and moss, respectively.
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Fig. 3. The decision tree model for relative abundance of high fertility response grasses

(HFRG). Predicted relative abundance (in percentage) is in the un-shaded rectangles,
while splitting variables and split-points are in the shaded rectangles. Prediction goes to
the left-side branch if the splitting variable is less than the split-point, and goes to the
right-side branch if the splitting variable is equal to, or more than, the split-point. See

Table 1 for variable symbols and unit descriptions.

Each decision tree is a hierarchical structure that contains rules of prediction.
Relative abundance of a functional group was first split into two branches by a variable
which best explained the variance. This splitting continued for each of the branches with
the same method, and so on until no further splitting could be made. Prediction was
made by a series of constraints defined by the input variables and their split-points. For
example, in the decision tree model for relative abundance of HFRG (Fig. 3), when
pasture had a slope less than 10.5°, and an Olsen P equal to, or more than 10.1 pg/g and
a mean spring temperature equal to, or more than 11.9 °C, the predicted relative

abundance was 70.3%.

Slope, Olsen P, five-year cumulative P fertiliser input, spring and winter
temperatures, and spring solar radiation were the significant variables influencing
HFRG abundance. The lowest abundance of HFRG (2.8%) was found in pasture with
high slope (> 10.5%), high spring mean daily solar radiation (> 18.3 MJ/m*/d) and low
five-year cumulative P fertiliser input (< 54.5 kg/ha), while the highest abundance
(70.3%) was found in pasture with low slope (< 10.5%, high Olsen P (> 10.1 ng/g) and
high spring temperature (> 11.9 °c ) (Fig.3).

136



Chapter 6: Modelling functional group abundance of plant species

Fig. 4. The decision tree model for relative abundance of low fertility tolerance grasses

(LFTG). See the caption of Fig. 3 for the description of decision tree interpretation.

The significant variables influencing LFTG were similar to those influencing HFRG.
The lowest abundance (13.2%) was found in pasture with high Olsen P (> 10.3 pg/g),
low slope (< 16.5°%) and high winter temperature (> 8.4 °C), while the highest abundance
of LFTG (67.5%) was found in pasture with low Olsen P (< 10.3 pg/g), high slope (=
19.5% and low five-year cumulative P fertiliser input (< 60.5 kg/ha) (Fig. 4).

The flatweeds abundance range was from 0.7 to 9.8% with the highest abundance
found in pasture with low annual P fertiliser input (< 9.7 kg/ha), sheep grazing and high
winter rainfall (> 261 mm) (Fig. 5).

Soil bulk density, spring and winter mean daily solar radiation, slope, winter rainfall
and five-year cumulative P fertiliser input were the significant variables influencing
legume abundance. The highest legume abundance (30.5%) was found in pasture with
high soil bulk density (> 0.98 g/cm’), low spring mean daily solar radiation (< 19.5
MJ/m*/d), medium five-year cumulative P fertiliser input (> 81.8 kg/ha but < 1083
kg/ha), while the lowest legume abundance (2.5%) was found in pasture with low soil
bulk density (< 0.98 g/cm3), high winter mean daily solar radiation (> 10.5 MJ/m?/d)
and high slope (> 31.5°) (Fig. 6).
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Fig. 5. The decision tree model for relative abundance of flatweeds. See the caption of Fig.

3 for the description of decision tree interpretation.

The lowest abundance of moss (2.3%) was found in pasture with high Olsen P (>9.0
ng/g) and low slope (< 28.5%, while the highest abundance (48.9%) was found in
pasture with low Olsen P (< 8.0 pg/g), high winter mean daily solar radiation (=1 0.9
MJ/m%d) and sheep grazing (Fig.7).

The relative importance of environmental and management variables in influencing
the functional group abundance in a decision tree was indicated by the order they were
selected in splitting the tree. The variable selected first was more influential than those
selected after it. For LFTG and moss, Olsen P was the most significant variable
influencing their relative abundance. Slope, soil bulk density and annual P fertiliser
input were the most significant variables influencing HFRG, legume and flatweeds

relative abundance.

In general, slope and Olsen P were the two key factors underlying the patterns of
abundance for these five functional groups. Climatic factors, pH and grazing animal
species also played important, but secondary roles in influencing their abundance. A
summary of average responses of the five functional groups to Olsen P and slope is
presented in Fig. 8, which was obtained by an interactive training of the decision tree
when specifying Olsen P or slope as the splitting variable. An Olsen P of 10pg/g or a
slope about 11° was found to be the critical point for LFTG and HFRG to change their
dominance in pasture. LFTG and HFRG also showed a significant change in relative

abundance at a slope of approximately 22°.
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Fig. 6. The decision tree model for relative abundance of legume. See the caption of Fig. 3

for the description of decision tree interpretation.

6.3.2. GIS-based prediction and model validation

GIS-based predictions for relative abundance of HFRG, LFTG, legume, moss and
flatweeds are shown in Fig. 9. The extracted average relative abundance of HFRG,
LFTG, legume, moss and flatweeds in the four farmlets LL, LN, HN and HH were
graphed against the observed average relative abundance of them in Fig. 10. The
predictions for legume were in agreement with (i.e. prediction was within the 95%
confidence interval of the observed relative abundance mean) the observations in all the
four farmlets, while the predictions for HFRG and LFTG were in agreement with the
observations in three of the four farmlets, and the predictions for moss and flatweeds
were in agreement with the observations in two of the four farmlets. The overall
predictive accuracy for the five functional groups in the four farmlets was 75% (12 of

the 16 farmlets).

6.4. Discussion

The decision tree models performed very well as a predictive modelling approach in
this study. The overall predictive accuracy of 75% is high considering the strict criterion

used in the model validation (95% confidence interval of the observation mean as the
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accepted error). An application of the decision tree in predicting species distribution
(Vayssieres et al. 2000) showed that the decision tree performed significantly better
than a polynomial logistic regression model for four of the six cases considered, and as
well as the regression model in the two remaining cases. Applications of the decision
tree in classifying remote sensed vegetation data (Yang et a/. 2003) and in predicting
tree species abundance (Iverson & Prasad 1998) also found that the decision tree had

very high predictive ability.

303 8.9
105 o
236 : [ 1as |
G animal S _anting OlsenP

LSS

Fig. 7. The decision tree model for relative abundance of moss. See the caption of Fig. 3 for

the description of decision tree interpretation.

The hierarchical structure of the decision trees clearly revealed the relative
importance of environmental and management variables in influencing relative
abundance of the functional groups. Topographic feature (slope) and soil fertility (Olsen
P) were indicated as the most important factors driving the abundance of HFRG (Fig. 3),
LFTG (Fig. 4) and moss (Fig. 7). With the increased soil Olsen P or decreased slope,
pasture becomes more HFRG dominant; while with the decreased soil Olsen P or
increased slope, pasture becomes more LFTG and moss dominant (Fig. 8). This general
pattern of species dominance was consistent with those reported by Lambert ez al.(1986)
and Nicholas er al. (1998). Since soil Olsen P is positively influenced by P fertiliser
input in pasture (Gillingham et al. 1998; Lambert er al. 2000), the amount of fertiliser
input, therefore, 1s one of the key factors influencing the relative abundance of most
functional groups in this study area. The effect of slope on species abundance may be
from several influences: it may influence species abundance by redistributing and
modifying the soil temperature, solar radiation received (McAneney & Noble 1975),
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and available soil moisture and fertility (Lopez 2000). However, as indicated by Lopez
et al. (2000), hill slope was correlated with many factors such as soil total nitrogen, soil
Olsen P, and soil water holding capacity in the hill-pasture. The responses of functional
groups of plant species to hill slope, as well as to other environment and management

factors are complex..
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Fig. 8. The responses of functional groups HFRG, LFTG, legume, moss and flatweeds to
Olsen P and slope gradients.

Soil bulk density was indicated as the most significant variable influencing legume
abundance (Fig. 6); they were positively correlated with a threshold of 0.89 g/cm3.
Lopez (2000) revealed that soil bulk density was positive correlated with hill slope and
negative correlated with soil Olsen P, soil total nitrogen and soil moisture. However, the
influence of soil bulk density on relative abundance of legume has not been previously
reported and the interpretation is not clear. This result has an implication that the
practice of applying P fertiliser in hill-pasture to encourage legume growth can be

compromised in certain localities by the low bulk density in a pasture.

141



Chapter 6: Modelling functional group abundance of plant species

flatweed

Fig. 9. Map layers of predicted relative abundance (%) for high fertility response grasses
(HFRG), low fertility tolerance grasses (LFTG), legume, moss and flatweeds. Note the

different scales on map legends.
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Grazing animal species influence species abundance by changing the competition
pattern in a pasture community through their selective defoliation (McNaughton 1985).
HFRG, LFTG and legume showed no significant response to different grazing animal
species. However, compared to sheep grazing, cattle grazing significantly reduced the
relative abundance of flatweeds (Fig. 5) and moss (Fig 7), indicating that cattle grazing

may be a method for weed control in pasture.
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Fig. 10. The predictedD and the observed [l relative abundance of the functional groups
in the farmlets LL, LN, HN and HH. Bars indicate the 95% confidence interval of the

observed relative abundance means. Note the different scale on the y-axis for LFTG.

It was indicated from Fig. 9 that legume abundance in the predicted pasture had less
variation than other functional groups. This may reflect the facts that the variation of
soil bulk density, spring and winter solar radiation within the pasture was small, which

were the most important factors explaining legume abundance.

One characteristic of the decision tree i1s that 1t assesses a threshold of an
environmental variable that below or above which a species can be found (Moore et al.

1991), or the relative abundance of a species or functional group has a significant
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change. For example, when soil Olsen P was less than 10.0 ng/g, the average relative
abundance of LFTG was 58.4% (Fig. 8), and when it was equal to, or more than 10.8
11g/g, the average relative abundance of LFTG was 39.6%. This pattern suggests that the
10.8 pg/g of soil Olsen P i1s a threshold at which the competition between LFTG and
HFRG comes to an “equilibrium”: below this point pasture is dominated by LFTG,
while above this point, pasture becomes more HFRG dominant. However, the decision
tree models for the abundance of functional groups cannot indicate the species response
curve along an environmental gradient due to the “stair-step” response (Fig. 8).
Response curves are important in testing an ecological hypothesis (Guisan &

Zimmermann 2000; Vayssieres et al. 2000).

Modelling abundance of functional groups instead of abundance of individual
species in this study simplified the investigation on the complex interrelationship
between species and environment. The integration of modelling functional abundance
and GIS can be used as an important tool in precision agriculture (Gillingham 2001).
For example, hill-pasture management in New Zealand usually aims at increasing
pasture production by applying P fertiliser. This modelling approach provides a
platform to map HFRG abundance in a pasture over space, and thus could guide P
fertiliser application to the areas that have more HFRG composition for better economic

retum.

One limitation of this modelling approach was that no interaction between species or
species functional groups was incorporated in the model. This is because I intended to
develop a predictive modelling approach only using easily obtained environmental and
management variables to predict the functional group abundance for practical purposes.
Inclusion of the interaction would make the prediction hard to implement. Besides, the
interaction between species or functional group can be partially reflected in the model
by environmental and management variables to some extent. For example, the
competition between HFRG and LFTG can be reflected by Olsen P content: when Olsen
P is low, the competition between them is relatively weak since LFTG is in dominance
in a community; when Oslen P is high, the competition between them is strong since the

community is co-dominated by both of them (Lambert et a/. 1983; Lambert et al. 1 986).

In summary, the decision tree was indicated as an appropriate modelling approach in

predicting relative abundance for functional groups of plant species in the hill-pasture
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ecosystem. It had a high predictive accuracy and revealed the relative importance of
environmental and management factors in influencing functional group abundance. By
integrating with a GIS, the decision tree models can be used as decision support tools in
pasture management such as in facilitating P fertiliser application for pastures with low
HFRG composition by outlining the composition of HFRG over space. It was indicated
from the decision tree models that the most important factors influencing the relative
abundance of functional groups HFRG, LFTG, legume, flatweeds and moss were hill
slope, soil Olsen P, soil bulk density, annual P fertiliser input and soil Olsen P,
respectively. Generally, slope and soil Olsen P were the two key factors underlying the

patterns of abundance for these five functional groups.
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Chapter 7. Modelling and Investigating Species Richness Patterns and

Underlying Factors in a Pasture Ecosystem

A combination of decision tree, regression and correlation analyses was used in this
chapter to detect the patterns of species richness, and the possible driver underlying

the patterns in a hill-pasture ecosystem.

A paper derived from this chapter with a title “Modelling species richness patterns in a naturalised
pasture ecosystem” by B. Zhang, I. Valentine & P.D. Kemp has been submitted to Journal of Applied
Ecology for publication.
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Abstract. Species richness patterns and underlying factors have long been an interest of
ecological studies. The mechanisms that regulate species richness in an ecosystem are
not yet settled. Decision tree model and other analyses were applied to investigate
factors that influenced species richness and responses of species richness to these
factors in a naturalised pasture ecosystem. The results indicated that legume abundance
played the most important role in influencing species richness. Species richness
increased with the increase of legume abundance and showed a tendency of hump-
shaped response. The effect of legume abundance on species richness was probably a
result of species complementarity resulting from nitrogen fixation of legume species.
Grazing animal species also had significant influence on species richness. Pasture
grazed by sheep had more species than pasture grazed by cattle probably because sheep
grazed lower and more selectively than cattle, and reduced the height of the
competitively dominant species, thereby allowing more species to co-exist. The effects
of aboveground biomass, soil fertility, climate and pasture management on species

richness were also investigated.

7.1. Introduction

Species richness patterns and underlying factors have long been an interest in
ecological studies (Grime 1973; Abrams 1995; Zobel 1997; Waide et al. 1999; Chase &
Leibold 2002). Species richness is often observed as a hump-shaped or unimodal
response along natural gradients of increasing biomass or resources (Grime 1973;
Hastings 1980; Tilman 1996), while linear (positive or negative) and non-significant
responses are also commonly observed (Brown 1973; Goldberg & Miller 1990; Gough
etal. 1994; Waide et al. 1999).

Explanation of the hump-shaped relationship between species richness and resources
(or biomass) tends to focus on species interaction, especially competition as the driving
factor (Grime 1973; Rajaniemi 2002). When a community is in a low resource
environment (indicated by low biomass), species richness is generally low because it is
assumed that only few species can survive. With the increased availability of resources,
species richness increases as the environment can support more species. A high resource

environment (high biomass) favours species that outcompete other species, and
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eliminate less competitive species from the community (Grime 1973; Rosenzweig 1992;

Huston & DeAngelis 1994).

There are also other explanations of the hump-shaped relationship between species
richness and resources (or biomass). Species pool models (Zobel 1997; Grace 2001)
suggest that the decrease in diversity of the environment with high availability of
resources, or biomass, may not be a consequence of the increased competition, but
rather of the decreased size of the species pool that may be able to survive in the

enriched environment.

The responses of species richness are scale-dependent (Gross et al. 2000). Chase and
Leibold (2002) found that at the local scale, species richness has a hump-shaped
relationship with productivity, while at the regional scale it is a positive linear
relationship. Species richness is also related to environmental heterogeneity (e.g. those
resulted from micro-topography, soil fertility and climatic variables) (Huston 1994; Bell
et al. 2000; Lundholm & Larson 2003), with a negative or positive relationship being
found when samples are within a homogenous habitat and a hump-shaped relationship
being found when samples encompasses different habitat types (Guo & Berry 1998).
Oksanen (1996) claims that the hump-shaped relationship between diversity and
biomass is just an artefact due to the fixed small plot size; as plants at high biomass are

bigger, and therefore there are less species in a plot.

There are many other factors also playing a role in regulating species richness.
Environmental factors, such as rainfall, pH and salinity can strongly influence species
richness (Garcia et al. 1993; Gunnarsson et al. 2000; Knapp et al. 2002). Their
influence may work indirectly by influencing biomass or resource availability, or

directly when they do not affect biomass (Maranon & Garcia 1997).

Grazing has a marked influence on species richness (Belsky 1992; Oiff & Ritchie
1998). Grazing animals are generally thought to enhance species richness by their direct
consumption of competitively dominant species and indirect effects on plant
competition (McNaughton 1985; Belsky 1992). However, some studies suggest that the
effect of grazing animal depends on the environmental conditions; species richness
decreases with heavy grazing in nutrient-poor ecosystems, while it increases with heavy

grazing in nutrient-rich ecosystems (Proulx & Mazumder 1998).
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Ecosystems are complex. Factors that influence biomass and resource availability
may influence species richness. On the other hand, factors that influence species
richness may also influence biomass. To investigate the key factors influencing species
richness in an ecosystem and the underlying mechanisms, a simultaneous assessment of
these factors is required. In the study reported here, I used decision tree, a data mining
approach (Thuraisingham 1999) and other analyses, to investigate the patterns of
species richness and the underlying factors in a naturalised pasture ecosystem in the
North Island, New Zealand. Decision tree has been widely used in many scientific areas
as a modelling approach and has shown a strong ability in detecting the relative
importance of input (independent) variables and their interactions on model target
(dependent variable) (Iverson & Prasad 1998; Vayssieres et al. 2000; Yang et al. 2003).
Topographic features, soil properties, climatic factors, pasture management factors and
relative abundance of dominant plant species and functional groups were included as
input variables in this analysis. My aims were to investigate the important factors that
influence species richness and its response patterns to these factors, and to explore the

mechanisms regulating these response patterns.

7.2. Methods

7.2.1. Study area

This study was on a pasture at Ballantrae, a hill-pasture research station of
AgResearch, New Zealand, which is located at latitude S40°18’, longitude E175°50" in
the North Island with an average annual rainfall 1270 mm and an average annual daily
temperature 12.3 °C. Altitude ranges from 125 to 350 m a.s.l.. The pasture was about
200 ha in area with ten farmlets differing in phosphorus fertiliser input and grazing
animal species (cattle, sheep) since 1970s. Topographic features at Ballantrae are
dissected and very heterogeneous (Lambert & Roberts 1978). The pasture was
dominated by browntop (Agrostis capillaris) and ryegrass (Lolium perenne), while
white clover (Trifolium repens) was the main legume species in the pasture (Nicholas

1999). Appendix 1. provides a list of the species in this study area.
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7.2.2. Model development

7.2.2.1. Dataset

Data were from a long-term experiment (see Lambert ef a/. 1986), unpublished Ph.D.
theses and some other experiments conducted at Ballantrae over the period of 1972-
1998. Samples were collected during late spring to early summer (October to early
December) using a 0.5 m” quadrat with a stratified random sampling method. There are
700 samples in this dataset Aboveground biomass was measured by a “trim technique”
involving harvesting pasture regrowth from trimmed areas protected from sheep grazing
(Lambert et al. 1996) with a regrowth period from 30-50 days. Biomass was sorted by
species, and was standardised for per quadrat per 30 days. Species richness was the
species number within a quadrat. Relative abundance of dominant species and
functional groups were calculated as the percentage of their biomass out of the total
biomass within a quadrat. These species included ryegrass, browntop and white clover.
Functional groups of plant species included high fertility response grasses (HFRG), low

fertility tolerance grasses (LFTG), legume, moss, and flatweeds.

Environmental data, including topographic features (aspect, slope) and solil
properties (bulk density, pH, soil Olsen P, soil total N), and pasture management
(phosphorus (P) and nitrogen (N) fertiliser input and grazing animal species (cattle or
sheep)) were measured or recoded from the experiments from which the species
richness and aboveground biomass were measured. Climatic variables, including
rainfall, temperature and global solar radiation, were obtained from the National

Institute of Water & Atmospheric Research (NIWA), New Zealand.

All the environmental, pasture management and vegetation variables involved in this

study are listed in Table 1.

7.2.2.2. Correlation analysis

Pearson correlations between species richness and all environmental, management
and vegetation variables were analysed in SAS 8.2 (SAS Institute Inc., 1999-2001, Cary,
NC, USA). Partial correlation between species richness and each variable that had a
significant (P <0.05) correlation with species richness were also analysed, using each of
the soil Olsen P, aboveground biomass, legume abundance, total N, slope or a

combination of some of them as partial variables. This partial correlation analysis
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intended to detect whether a variable had an independent correlation with species
richness when taking away the effect resulting from correlation of this variable with

others.

Table 1. Environmental, pasture management and vegetation variables used in model analyses

Variable symbol Unit Variable description

pH -logio[H']  soil pH

BD g/em’ soil bulk density

total N % total nitrogen in soil

OlsenP ng/g soil Olsen P

N _fert kg/haly Annual elemental N fertiliser input

P_fert kg/haly annual elemental P fertiliser input

P_fert5 kg/ha S-years cumulative elemental P fertiliser input

P fertlO kg/ha 10-years cumulative elemental P fertiliser input

temp_y °c annual mean daily temperature

temp_sp °c spring mean daily temperature

temp_su c summer mean daily temperature

temp_wi Ko winter mean daily temperature

rain_y mm annual rainfall

rain_sp mm spring rainfall

rain_su mm summer rainfall

rain_wi mm winter rainfall

rain_warm mm sum of spring and summer rainfall

solar_y MJ/m%/d annual mean daily global solar radiation

solar_sp MJ/m*/d spring mean daily global solar radiation

solar_su MJ/m’/d summer mean daily global solar radiation

solar_wi MJ/m*/d winter mean daily global solar radiation

aspect hill slope aspect. e.g. N NE S SW NW, etc.

slope degree hill slope angle

animal s, C grazing animal species. ‘s’ sheep, “c” cattle

biomass g aboveground biomass/0.5m?%30 growing days

abundance % relative abundance of dominant species and
functional groups

species richness species number in a quadrat (/0.5m?)

7.2.2.3. Decision tree development and assessment.

I first developed a decision tree model for species richness using all available
environmental, vegetation and management variables as input variables to detect the

most important variables and their relative importance in influencing species richness.
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As some of the environmental, management and vegetation variables are highly
correlated, I conducted a principal component analysis for environmental and
management variables, and legume species abundances which were detected having
significant correlation with species richness, to reduce the directions of these variables
and then used the first ten components which explained about 90% of total variance of
the variables to develop a principal components based decision tree model for species
richness. This model aimed to detect the effect of group variables on species richness.

Table 2 shows the eigenvectors of the first ten principal components.

Table 2. Eigenvectors (Corr) for the first ten principal components. Numbers in bold

font indicate the main contributions of the variables to the principal components.

Variable PCRI1 PCR2 PCR3 PCR4 PCRS PCR6 PCR7 PCRS PCR9 PCR10
pH 0.3898 -0.0152  0.4433 -0.2372 0.4268 0.2688 0.0319 -0.0197 0.1111 -0.0353
BD -0.2574 -0.3939  -0.0811 0.4199 0.2471 0.3715 -0.0078 0.3931 0.1667 0.2576
totalN 0.3065 0.3074 0.3183 -0.6191 -0.0771 -0.311 -0.0474  0.0646 0.0858 0.0913
OlsenP 0.3342 0.026 0.452 -0.3973 0.2617 0.0523 -0.0593 0.142 0.2007 0.2092
P_fert 0.2339 -0.1783  0.4505 -0.0991 0.6258 0.3587 0.0228 -0.1644 -0.1204 -0.1322
P_fert|0 0.142 -0.6324  0.7004 -0.1145 0.1229 0.05 -0.0178  -0.0977 -0.046 -0.075
P_fertS 0.142 -0.6324  0.7004 -0.1145 0.1229 0.05 -0.0178 -0.0977 -0.046 -0.075
temp_y -0.8506  0.2217 0.0418 -0.3864 0.2168 0.0605 0.035 0.0332 -0.0365 -0.0178
temp_sp -0.6087  0.4271 -0.0766 -0.336l1 0.3629 0.2539 0.0408 -0.0516 -0.0718 -0.0823
temp_su -0.8889  0.1618 0.0014 -0.3447 0.107 -0.0907 0.0315 0.122 0.0051 0.0543
temp_wi 0.6731 -0.4697  0.2%61 0.2388 -0.2006 0.0218 -0.042 -0.1489 -0.0161 -0.076
rain_y 0.5086 0.7176 -0.3712 -0.0679  0.226 0.1052 0.0286 -0.0204 -0.0179 -0.0025
rain_sp 0.8996 0.2116 0.1924 -0.1818 -0.0975 -0.1619 -0.0063 -0.0858 -0.0073 -0.019
rain_su 0.8001 0.4109 -0.3338 0.2025 0.0894 0.1127 0.0011 -0.0457 0.003 -0.004

rain_wi 0.3144 0.7406 -0.3636 -0.1043 0.3391 0.2478 0.0355 -0.0696 -0.0509 -0.0546
rain_ warm  0.8776 0.3872 -0.2221 0.1182 0.0479 0.0504 -0.0007 -0.0589 0.0006 -0.0081
solar_y -0.1833 0.5821 0.6245 0.4172 -0.1811 0.0867 0.0201 0.0278 -0.0143 0.0202
solar_sp -0.0088 0.6495 0.6385 0.3432 -0.1495 0.1032 0.0303 -0.0117 -0.0309 -0.0092
solar_su -0.5668 0.4736 0.4717 -0.3903 -0.0304 -0.1706 0.059 0.0688 -0.0197 0.0249

solar_wi -0.1972 0.5497 0.594 0.4795 -0.1687  0.1264 0.0118 0.0212 -0.0149  0.0176
aspect_A -0.1561 0.4723 0.5292 0.4596 -0.2256 0.1116 0.0715 0.0553 0.0094 0.0027
slepe -0.4177 -0.3457  -0.3706 0.6068 0.0796 0.345 -0.0162 -0.0029 -0.0059 -0.0336
Yield 0.5338 -0.0207  0.1325 0.0893 0.0512 0.1063 -0.062 0.3796 0.2341 0.2987
Trp 0.2554 0.0042 0.0652 0.314 0.5025 -0.5144 -0.0538  0.1697 -0.2345 024

Tpr 0.0811 0.008 0.0667 0.3503 0.2573 -0.2812 0.1299 0.4491 -0.0416  -0.6326
Tdu -0.4895 0.0891 0.0383 0.398 0.1834 -0.0694 -0.2383  -0.4308 -0.0736 0.1817
Tsu -0.2359 0.2133 -0.0156  0.0763 0.0998 -0.0997 -0.6078 -0.0939 0.6074 -0.2662
Lotus -0.115 -0.072 -0.0295 0.207 0.1546 -0.2028 0.716 -0.2715 0.529 0.031

Legume -0.1658 0.0704 0.075 0.5921 0.5569 -0.5095 -0.0776  -0.1201 -0.0312  0.1079
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In order to assess variables which had an independent significant effect on species
richness (the variables which had a significant (P <0.05) correlation with species
richness both in correlation and partial correlation analyses), or were considered as the
important factors (biomass and P fertiliser), | developed decision tree models for species
richness only using each of these variables as the input variable to investigate the

responses of species richness to these variables.

Decision tree models were developed in SAS Enterprise Miner, Version 4.1 (SAS
Institute Inc., 1999-2001, Cary, NC, USA). The main procedure for developing a
decision tree model is to split the data of target variable based on its response to input
variables. There are different criteria used to split the data, depending on the nature of
the target variable. For interval variables (i.e. continuous variable) like species richness,
the split criterion is variance reduction or F test. In the case of variance reduction, a
complete search is applied to all the input variables and the possible split-points to
select one variable that gives a maximum amount of variance reduction for the target
data by splitting the data into two groups (that is to select a variable that ultimately
explains the variance of the target variable), and the same search is applied to each of
the sub-groups and so on recursively. For the criterion of F test, a variable which gives
the most significant P value in the F test is selected instead of giving the maximum
amount of variance reduction in the case of variance reduction (SAS Online Help:
Getting Started with Enterpriser Miner Software). [ chose F test as the split criterion
since this criterion was statistically more reliable. A significant level of P <0.05 was

selected for F test in developing these decision trees.

Model assessment is an important step in developing the decision tree, as it enables
a good model output, and prevents overtraining, which otherwise would develop a
model that only fits the data from which it was trained (Witten & Erank 2000). SAS
Enterpriser Miner has several options to assess the model having an interval target. The
measure of average squared error (ASE) is commonly used. ASE is similar to mean
squared error (MSE) in a general linear model and is an indicator of model goodness-of-
fit; the smaller the ASE, the better the model fits. In developing the decision trees, the
whole dataset was randomly partitioned into two: the training data (70% of the total)

and the validation data (30% of the total). The decision trees were trained by the
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training data and assessed by the validation data; a “best” tree with the smallest ASE

from the validation data was selected.

[ set six as the maximum tree levels and 11 observations as the minimum
observations required for a split search. The recommendation on minimum observations

was derived using the program by assessing the size of the whole dataset (Fernandez

2003).

7.3. Results

7.3.1. Correlation

Table 3 shows Pearson correlation coefficients and P values between species
richness and the variables which had a significant (P <0.05) correlation with species
richness, and partial correlation coefficients and P values between species richness and
these variables when each of soil Olsen P, aboveground biomass, slope or a

combination of them were used as partial variables.

Table 3. Pearson correlation coefficients and significance among input variables that
had a significant (P <0.05) correlation with species richness, and the partial correlation
coefficient and significance between these variables and species richness when each of
the soil Olsen P, aboveground biomass, legume abundance, total N or a combination of

them were used as partial variables. See Table 1 for variable descriptions.

Correlation

biomass OlsenP slope legume P fert5 P fert pH rain_sp solar sp total N

species richness g y152 02718 0.1980  0.2833 <0.1560  -00775  -0.1513  -0.1677  -0.0986 02283
0.0026 <0001 <0001 <000/ <000 00435 <0000 <000/  0.010 <.0001

Partial correlation

biomass OlsenP slope legume P fert5 P _fert pH rain_sp solar sp total N

species richness g se9 202539 00723 02446  -00597  -00162 -0.0122 -0.0510  -0.0671 -0.1572
0.1392 <0.0001 00599 <0001 0.1202 06745  0.7532  0.847  0.0810 <0.0001

pari tial variable Olsen P biomass  Olsen P Olsen P OlsenP  OlsenP  Olsen P biomass  biomass biomass
biomass  biomass

slope
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Aboveground biomass, soil Olsen P, soil total N, slope, legume abundance, soil pH,
five-year cumulative P fertiliser input and spring rainfall had a very significant (P <0.01)
correlation with species richness, while annual P fertiliser input and spring daily mean
solar radiation had a significant (P <0.05) correlation with species richness. However,
only soil Olsen P, soil total N and legume abundance had a significant (P <0.05) partial
correlation with species richness. For aboveground biomass, slope, five-year cumulative
P fertiliser input, annual P fertiliser input, pH, spring rainfall and spring solar radiation,
their correlation with species richness were not significant when taking off the effects of

partial variables.

129
legume

<13.4 >=134

2.1
biomass _animal
<1854 >=185.4 S|cC
124 100 14.2 122
Olsenl: 7 animal ~OlsenP.

<62 | >=6.2 <10.4 >=10.4

a0 | 2o [ na [ [L87 (133 | [Los |

Fig. 1. The decision tree model for species richness using the environmental,
management and vegetation variables. Predicted species richness is in the un-shaded
rectangles, splitting variables are in the shaded rectangles. Prediction goes to the left-
side branch if the splitting variable is less than the split-point, and goes to the right-
side branch if the splitting variable is equal to, or more than, the split-point. See Table

1 for variable and unit descriptions.

7.3.2. Decision trees

Fig. 1 displays the decision tree model for species richness using all available
environmental, management and vegetation variables. The variables that were selected
in the decision tree were significant (P <0.05, F test) in explaining the variance in
species richness, and the variable first selected was more influential on species richness
than the variables selected after it. Relative abundance of legume species was the most
significant variable in explaining the variance in species richness, while aboveground
biomass, grazing animal species and soil Olsen P were also significant in explaining the

variance in species richness. Legume abundance showed a positive effect on species
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richness, while aboveground biomass and soil Olsen P showed a negative relationship

with species richness. Sheep grazed pasture had more species than cattle grazed pasture.

<-0.38 [ >=-0.38 <0.99 >=0.99
12.8 10.4 13.1 14.5

Fig. 2. The decision tree model for species richness using principal components as
input variables. Princ 1, Princ 4 and Princ S represent principal components 1, 4 and
5, respectively. The splitting points are values of principal components. Princ 1 was
mainly composed of annual, spring and summer temperature (all negative), and
spring and summer rainfall. Princ 4 was mainly composed of total N (negative), slope
and legume abundance. Princ S was mainly composed of annual P fertiliser input and
legume abundance. See the caption of Fig. 1 for the description of decision tree

interpretation.

A decision tree made prediction on the model target by using a series of constraints
defined by the input variables and their split-points. For example, when pasture with a
legume relative abundance less than 13.4%, and an aboveground biomass less than
185.4 g/0.5m” and a soil Olsen P less than 6.2 ug/g, the predicted average species
richness was 14.0 (Fig. 1). A decision tree also shows the responses of model target to
the input variables. For example, when legume abundance was equal to, or more than,
13.8%, species richness responded to the grazing animal species, when legume
abundance was less than 13.8%, species richness responded to aboveground biomass.
These different responses of species richness to input variables could indicate the

interaction among the input variables.

Fig. 2 shows the decision tree model for species richness using the principal
components as the input variables. For the first ten principal components, only the first,
fourth and fifth principal components were selected by decision tree as the significant
(P <0.05) variable in explaining the variance in species richness. The first principal
component was mainly composed of annual, spring and summer temperature (all

negative), and spring and summer rainfall. The fourth principal component was mainly
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composed of total N (negative), slope and legume abundance. The fifth principal
component was mainly composed of annual P fertiliser input and legume abundance. It
was indicated from this decision tree that soil fertility and legume abundance were the
main factors influencing species richness, while climatic factors, mainly temperature
and rainfall also played a role in influencing species richness with higher temperature

increasing while higher rainfall decreasing species richness.

(a) 12.9 (b) 12,9

<0.46 >=0.46 <10.7 >=10.7

134 11.9 13.5 11.8
?total_N OlsenP

<0.34 >=(.34 <18.3 >=18.3

14.1 13.1 ! 11.9 l l 9.4 l

129
(C) animal (d) }iglzlm9e
S C <134 | >=134
13.3 11.6 12.1 13.8
12.9 12.9
(e) Fiormass (f) P fertS
<183 >=183 <97.5 >=97.5
13.2 11.6 133 L2

PfertS

<146.3 >=146.3

12.2 I 10.6 I

Fig. 3. The decision tree models for species richness using total nitrogen (a), Olsen P

(b), grazing animal species (c), legume abundance (d), aboveground biomass (e) and
five-year cumulative P fertiliser input (f) as input variables, respectively. See the

caption of Fig. 1 for the description of decision tree interpretation.

Fig. 3 shows the decision tree models for species richness only using each of the soil
total N, soil Olsen P, grazing animal species, legume abundance, aboveground biomass
and five-year cumulative P fertiliser input as input variable. The decision trees show
species richness had a negative response to soil total N, while the responses of species

richness to the other four variables were in agreement with those indicated in Fig. 2.
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Fig. 4. Responses of species richness to soil total N, soil Olsen P, aboveground biomass,

legume abundance, and principal components 1, 4, and 5.
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The responses of species richness to soil Olsen P, total N, aboveground biomass,
legume abundance and principal components 1, 4 and S are plotted in Fig. 4. Regression
models best fit each of the responses are also indicated. For legume abundance, a
curvilinear model fitted better on the response than a linear model, for all other factors,

the best fit was a linear model.

7.4. Discussion

Legume abundance was indicated by the decision tree model (Fig. 1) as the most
important variable in explaining the variance in species richness. The correlation
analysis (Table 3) also showed that correlation coefficient between legume abundance
and species richness was the highest among the variables that had a significant
correlation with species richness. The reasons why legume played an important role in
explaining the variance in species richness may be because it had a significant
correlation with factors that could influence species richness, such as biomass, soil
fertility (N and P), fertiliser input and slope, or may be because legume species had an
independent influence on species richness. Increased legume abundance may increase
aboveground biomass and N content in soil; also increased annual P fertiliser input can
stimulate legume growth (Chapter 8 and Lambert e al. 1986), but this would lead to
decreased species richness as both aboveground biomass, soil N content and annual P
fertiliser input had negative correlation with species richness (Table 3). Legume
abundance had a positive correlation with slope (Chapter 8 and Lambert ef al. 1986) and
slope had a positive correlation with species richness. This may partially explain why
increased legume abundance resulted in increased species richness, but as indicated in
Table 3, when including slope aboveground biomass and soil Olsen P as partial
variables, the correlation coefficient between legume abundance and species richness
only slightly decreased from 0.2833 to 0.2446, and the partial correlation was still very
significant (P <0.0001). This suggests that legume abundance may have an independent
influence on species richness. However, it is hard to draw a conclusion that legume was
a driver of species richness as the result was not from a designed experiment in which
legume abundance was a treatment. It was not clear how legume exerted influence on
species richness. One possibility is that increased legume abundance may increase the

degree of species complementarity and thus resulting in the coexistence of more species
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in a community as legume species can fix atmosphere N, by symbiotic fixation, and do
not compete with other species for nitrogen (Spehn et al. 2002; van Ruijven & Berendse

2003).

Sheep grazed pasture had more species than cattle grazed pasture (Fig. 1 and Fig.
4c), suggesting that the grazing animal species also had a significant effect on species
richness. Herbivores are generally thought to enhance plant diversity by their direct
consumption of competitively dominant plant species and indirect effects on plant
competition in a nutrient-rich ecosystem (McNaughton 1985; Proulx & Mazumder
1998). Sheep tend to graze lower and more selectively than cattle (Clark et al. 1984;
Nicol et al. 1993; Betteridge et al. 1994). This sheep grazing behaviour, comparing to
cattle grazing, may reduce the height of dominant species and, therefore, decrease the
competition among species, and allow more species to co-exist in a community.
Another reason that sheep grazed pasture had more species than cattle grazed pasture

may be because cattle treading can seriously damage sone pasture species in wet winters

(Pande 2002).

Climatic factors such as temperature, solar radiation and rainfall also showed
significant correlation with species richness (Fig. 2), but their influence on species
richness mainly worked indirectly by influencing aboveground biomass as when
aboveground biomass was included as a partial variable, the partial correlation between
species richness and temperature, and between species richness and solar radiation were

not significant (Table 3).

Aboveground biomass had a negative effect on species richness (Fig. 1), but as
indicated in Table 3, the correlation between biomass and species richness was not
significant when soil Olsen P was included as a partial variable. On the other hand, the
correlation between soil Olsen P and species richness was significant when biomass was
included as a partial variable. This suggests that the effect of biomass on species
richness may be a hidden effect of soil nutrient. This is also in agreement with the result
in the decision tree model using principal components (Fig. 3) that soil fertility and

legume abundance were the main factors influencing species richness.

Species have different response rates to resources; some always respond better than

others (Tilman 1982; Valverde et al. 1997; Hubbard et al. 1999; Nicholas 1999). When
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resources are high, thosc species which have the better response (i.e. faster growth) may
dominate the community and exclude the less responsive species, but when resources
are low, all species may have a similar growth rate and thus all of them can co-exist in a
community. Pasture with a high aboveground biomass had low species richness in this
grazing ecosystem not because at high biomass the dominant species competed with
others by shading or other effects (Rajaniemi 2002), but rather because regular grazing
reduced biomass and height of the dominant species, and species which have better
response to high resources dominated the community and excluded the less responsive

species.

As a hump-shaped response is commonly observed and can be very well explained
by competitive exclusion theory (Grime 1973), all other responses are usually analysed
for reasons why they are not hump-shaped responses (Gough er al. 1994; Grace 1999).
The hump-shaped response is usually observed in an environmental gradient that
extends from extremely “poor” to extremely “rich” within a local area (Guo & Berry
1998), and a restricted gradient may, therefore, give positive, negative and non-
significant responses depending on the ranges of environmental gradient sampled
(Gough et al. 1994; Guo & Berry 1998). The observed negative response of species
richness to aboveground biomass soil Olsen P and total N may be due to the samples

only covering a “narrow” gradient.

Though legume abundance had a positive correlation with species richness as
indicated in decision tree models and correlation analyses, I found a curvilinear model
fit the response better than a linear model (Fig. 4). This indicated that species richness is
more like a hump-shaped response to legume abundance; when legume abundance
increased to a threshold, further increase would lead to the strong competition of legume

species with other species and would result in reduced species richness.

However, the results also indicated that the influences of each of the legume
abundance, grazing animal species, soil fertility and other factors on the species richness
were weak, though very significantly, suggesting that no one factor was the main
element controlling species richness. It was the cumulative effects of many significant

factors underlying the patterns of species richness in this pasture ecosystem.
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My results did not support the results found by Chase & Leibold (2002) that species
richness is a hump-shaped response at the local-scale. Also species richness and
composition recorded in this pasture exhibited little change from the 1970s to 1990s
(Nicholas 1999; Lopez 2000). That is, the available species capable of growing under
this environmental condition were the same during the studied periods, suggesting that

species pool may not be a factor regulating species richness pattern.

It is a controversial topic that whether higher diversity is beneficial for an ecosystem
(Loreau 2001; Pifisterer & Schmid 2002). From an agricultural point of view, a
community which has a small number of productive species is desirable, as more
species means more unproductive and/or weed species, which would require more effort
in management (McNaughton 1994). However, from an ecological point of view, higher
diversity is considered desirable as ecosystem functioning such as stability is, in general,
positively correlated to species diversity (Huston 1994; Tilman & Downing 1994).
Generally for hill-pasture ecosystems in New Zealand, it is probably better to only have
several highly productive species such as perennial ryegrass (Lolium perenne) and
whiter clover (Trifolium repens), but a few studies (e.g. Daly ef al. 1996) indicated that
pastures with multi-species had better performance than ryegrass-white clover pastures,
in dry areas as ryegrass and white clover are not very drought-tolerant (Campbell 1996).
Therefore, a desirable species pattern in hill-pasture could be having less but mainly
high productive species at local scale (e.g. paddock scale) to maintain high production
and having higher species richness at a larger scale (e.g. catchment scale) to maintain

community stability (Tilman & Downing 1994; Nicholas ez al. 1998).

In summary, legume abundance, grazing animal species and soil fertility are the
most significant variables explaining the variation in species richness in this naturalised
pasture ecosystem. Species richness had a positive response to legume abundance, and a
negative response to soil fertility and aboveground biomass. Sheep grazed pasture had
more species than cattle grazed pasture. Climatic factors, by influencing biomass, also
influenced species richness in some degree. The influence of legume abundance on
species richness may be a result of niche complementarity as legume species can fix
atmosphere N, and do not compete with other species for nitrogen. Pasture grazed by

sheep had more species than pasture grazed by cattle may be because sheep grazing
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reduced more height of the dominant species due to their more selectively grazing

behaviour and allow more species grow together.
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8.1. Introduction

In the studies reported in the previous chapters, community productivity, species
functional group abundance and species richness in hill-pasture in the North Island,
New Zealand, were investigated by using decision tree, regression and other modelling
approaches with integration of a geographic information system (GIS) in most of the

cases.

Three main aspects appeared to be very significant. The first is the methodological
aspect of applying a decision tree approach in modelling pasture productivity, species
abundance and species richness. To the best of my knowledge, this is the first time a
decision tree was used to model community productivity in vegetation science. The
second aspect is the advantages of using GIS to derive spatial and non-spatial variables
as model input and to present model predictions spatially. The third aspect is the insight
obtained from these models and their implications in ecological study and pasture
management. In this chapter, I will discuss the above three aspects and synthesise the

general conclusions obtained from the previous chapters.

8.2. The decision tree approach

The responses of pasture productivity to environmental and management factors are
usually non-linear and the distribution of productivity data is often not normal (Moir et
al. 2000; Rickert et al. 2000). Productivity data collected from different times and
places also contains high heterogeneity (i.e. highly variable). Also, some of the
environmental factors that influence productivity are nominal variables, for example,
aspect and soil type. It is, therefore, difficult to use regression models to predict pasture
productivity due to the assumptions underlying regression models and their limited
ability to incorporate nominal variables (Sen & Srivastava 1990). A decision tree, on the
other hand, is a suitable method to deal with these kinds of data: it has no strict
requirement on the response and distribution of the target variables, and it is easy to

incorporate nominal, categorical and interval variables in a model (Vayssieres et al.

2000).

However, because of the discontinuous nature in generating predictions in the

decision tree approach, it is mainly used for modelling categorical or ordinal variables

173



Chapter 8: General discussion and conclusions

(Breiman et al. 1984; Scheffer 2002) and seems not an intuitive choice in modelling
pasture productivity. There will be a trade-off between generating continuous prediction
and being able to analyse the pasture productivity data that cannot be adequately

analysed using regression models.

The applications of the decision tree method in Chapter 3 and Chapter 4 indicated
that the sacrifice of not generating continuous predictions did not significantly influence
the model output. In fact, the decision tree models had very good performance and had
better predictive ability than the regression models. For example, the decision tree
model for annual pasture productivity adequately predicted 90.1% of the cases in the
model validation which was 10.8 percentage points higher than that of the regression
model. The decision tree models also clearly indicated the relative importance of input

variables on model target and the interaction among them.

Species abundance has been considered to have several distributions, including
Poisson distribution, negative binomial distribution, canonical log-normal distribution,
broken-stick distribution and ordinal distribution (see Guisan & Zimmermann 2000). It
is, therefore, not appropriate to use least square regression to model species abundance
due to the violation of its normal distribution assumption. The applications of the
decision tree provided an alternative approach to model species abundance. The results
indicated that decision tree was an appropriate method in this case with respect to
predictive accuracy and investigating the interrelationship between target variables and
input variables. For example, the decision tree model for the five functional groups had
an overall predictive accuracy of 75% and indicated the most significant variables

which influenced the abundance of the five functional groups.

The decision tree is also a good approach in facilitating the development of a
regression model. By using variables revealed as the most significant variables in
influencing pasture productivity and the interaction among these variables in the
decision tree models in Chapter 3 and 4, the polynomial regression model developed for
assessing climate change and alternative phosphorus fertiliser application strategies
(Chapter 5) demonstrated a better goodness-of-fit than the regression model developed

in Chapter 3 using principal component analysis.
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There are several disadvantages of using the decision tree to model community
productivity, species abundance and species richness. Firstly, it is not as concise as a
regression model in expressing the relationship between model target and input
variables. A regression model shows whether an input variable is positively or
negatively influencing model target and in what scale by using a mathematic equation.
A decision tree model only shows an average response of model target to input
variables. Secondly, a decision tree cannot generate a continuous prediction, and thus
could not detect the influence of small changes in environmental and management

variables on model targets.

8.3. Advantages of applying geographic information system (GIS)

Integration of GIS with environmental and ecological models has greatly enhanced
the investigative and predictive capability of environmental and ecological models
(Iverson et al. 1997, Johnston 1998; Li et al. 1998; Wadsworth & Reweek 1999). Here
GIS has been linked with the decision tree models in modelling pasture productivity
(Chapter 4) and the functional group abundance of plant species (Chapter 6), and has
been linked with a regression model in assessing the impact of climate change and
alternative phosphorous fertiliser application strategies on pasture production (Chapter
S). The power of using GIS in these modelling processes was demonstrated in deriving
input variables for model analyses and generating model predictions over space for the
area of interest. As for deriving input variables, GIS not only can be used to generate
spatial features such as slope and aspect from a digital elevation model (DEM), but it
can also be used to interpolate point data into surface over large areas. For example, in
Chapter 5, the climate surfaces for rainfalls and temperatures were developed by
interpolating point observations into a continuous surface for the whole North Island for

model predictions in the scenario analyses.

The combination of GIS with the decision tree and regression models in previous
chapters provided a platform to generate model predictions for specific farm or pasture
of interest. Information obtained from analysing these predictions can be used to
facilitate pasture management. For example, in Chapter 6 the predicted abundance of
HFRG species was displayed in a GIS map and areas with less HFRG composition can

be outlined for applying phosphorus fertiliser for encouraging their growth. The
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decision tree models for annual and seasonal pasture productivity developed in Chapter
3 are currently being used by another research project] to assess the response of hill-

pasture to P fertiliser for better economic return as a practice of precision agriculture.

Using GIS is especially important in modelling pastures with heterogonous topology
and management such as those in hill-country. However there are also limitations of
using GIS in these modelling processes, which may include the lack of a high-resolution
digital elevation model (DEM) and the requirement for computer hardware and software.
However, these limitations will gradually disappear with the development of

technologies in computer science and GIS.

8.4. Model insights and implications in ecological study and pasture

management

8.4.1. Pasture productivity

The available spring rainfall was indicated as the most significant factor influencing
annual productivity in hill-pasture of the North Island, while hill slope was the second
most significant variable influencing pasture productivity for pastures with both high
and low spring rainfall. N and P fertiliser inputs, soil Olsen-P and annual mean daily
temperature were the significant variables influencing pasture productivity after spring
rainfall and slope (Chapter 3). This suggests that pasture production in hill country was
firstly regulated by unmanageable climatic and topographic variables and then was

influenced by manageable variables such as P and N fertiliser application.

Rainfall has been generally recognised as the key factor influencing the hill-pasture
production (Lambert et al. 1983; White 1990; Bai et al. 2004). Radicliffe & Baars (1987)
revealed that spring and summer rainfall accounted for 60% of the variation in annual
pasture production. However, the important role of spring rainfall as the determinant of
annual pasture production was not fully recognised before. The significant influence of
spring rainfall on pasture productivity was because about 40% of the annual

productivity was produced in spring (Chapter 3).

! Variable Rate Application Technology in the New Zealand Aerial Topdressing Industry.
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Both the annual P fertiliser input and five-year cumulative input were significant in
influencing pasture productivity. However, five-year cumulative P fertiliser input had a
more important effect on pasture productivity than current annual P fertiliser input,
indicating that P fertiliser application history made a significant contribution toward soil
P fertility. However, current annual P fertiliser input showed a marked effect in

increasing summer pasture productivity.

8.4.2. Impact of climate change and alternative P fertiliser application strategies on

pasture production

As indicated in Chapter 3 and 4 and by others (Riedo et al. 1997; Bai et al. 2004),
climate is a key driver of pasture production and the projected climate changes for New
Zealand will undoubtedly have a significant impact on pasture production (Ministry for
the Environment 2001). In this study, the climate change scenarios assumed an increase
in temperature by 1-2 °C and a change of rainfall from -20% to +20% relative to climate
normal data from 1960-1990 have predicted a wide range (-46.2% to +51.9%) of
pasture production change in hill-pasture in the North Island (chapter 5). These climate
scenarios, when averaged over the climate zones, predicted a range of -20.4% to +9.6%
production change, which was generally in agreement with the predictions in some
previous studies (e.g. Baars ez a/. 1990; Martin et al. 1991; Campbell et al. 1996). It
needs to be emphasised that under the scenarios of decreased rainfall and increased
temperature, there would be a decrease in pasture production on average for the whole
North Island, showing that the interaction of decreased rainfall and increased
temperature will impose a negative effect on pasture production. Developing and wide
use of drought-tolerant species in areas where climate changes are likely to have
negative impact (e.g. North and South-east of the North Island) would be a good

management practice in the face of climate change

Pasture in areas with relatively low rainfall had a higher response to increased P
fertiliser input than pastures in areas with a relatively high rainfall. This negative
interaction between rainfall and P fertiliser input on pasture production has two
implications: firstly increased rainfall that resulted from climate change may reduce the
P fertiliser utilisation efficiency in hill-pasture, and secondly, using N fertiliser instead

of P fertiliser, may be a better choice with respect to reducing non-point source P
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pollution in surface water, and increasing economic return from fertiliser application in

areas with high rainfall, as recommended by Lambert & Clark (1985).

8.4.3. Functional group abundance

Hill-pasture management aims to increase the composition of high fertility response
grasses (HFRG) and legumes and to reduce low fertility tolerant grasses (LFTG) and
moss by applying phosphorus fertiliser and introducing legume species. Chapter 6
indicates that slope and soil Olsen P were the most significant factors driving the
abundance of HFRG, LFTG and moss in hill-pasture. With increased soil fertility or
decreased slope, pasture becomes more HFRG dominant; while with the decreased soil
fertility or increased slope, pasture becomes more LFTG and moss dominant. Since soil
Olsen P is positively influenced by P fertiliser input in hill-pasture (Gillingham A.G.,
Gray M.H. & Smith D.R.1998; Lambert et al. 2000), the amount of fertiliser input,
therefore, is one of the key factors influencing the relative abundance of functional

group HFRG, LFTG, flatweeds and moss in hill-pasture.

Soil bulk density was indicated as the most significant variable influencing legume
abundance; legume abundance was positively correlated with soil bulk density with a
threshold of 0.89 g/cm’. The influence of soil bulk density on relative abundance of
legume has not been previously reported and the interpretation is not clear. This result
has an implication that the practice of applying P fertiliser in hill-pasture to encourage
legume growth can be compromised in certain localities by the low bulk density in a

pasture.

The species of grazing animal influence pasture species abundance by changing the
competition pattern in a pasture community through their selective defoliation
(McNaughton 1985). HFRG, LFTG and legume showed no significant response to
different grazing animal species. However, compared to sheep grazing, cattle grazing

significantly reduced the relative abundance of flatweeds and moss.

8.4.4. Species richness

Species richness has long been an interest of ecological studies (Grime 1973;
Abrams 1995; Waide et al. 1999; Chase & Leibold 2002). Species richness is indicated
to be closely related to community stability and/or productivity (Tilman et al. 2001;

Mouquet er al. 2002; Naeem 2002). These studies mainly focused on resource
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availability and species interaction, mainly competition, as the forces driving species
richness (Grime 1977; Waide et al. 1999; Mouquet et al. 2002). In Chapter 7, legume
abundance was indicated as the most important variable in explaining the variation in
species richness in hill-pastures. The mechanism may be because increased legume
abundance increases the degree of species complementarity and thus resulted in the
coexistence of more species in a community as legume species can fix atmospheric N,
by symbiotic fixation, and do not compete with other species for nitrogen (Spehn et al.
2002; van Ruijven & Berendse 2003). The result in this case indicated that species
complementarity, as well as competition, may also play a role in regulating species

richness.

Sheep grazed pasture had more species than cattle grazed pasture, suggesting that
the grazing animal species also had a significant effect on species richness. Herbivores
are generally thought to enhance plant diversity by their direct consumption of
competitively dominant plant species and indirect effects on plant competition in a
nutrient-rich ecosystem (McNaughton 1985; Proulx & Mazumder 1998). Sheep tend to
graze lower and be more selective than cattle (Clark et al. 1984; Nicol et al. 1993;
Betteridge et al. 1994). This sheep grazing behaviour, compared to cattle grazing, may
reduce the height of dominant species and, therefore, decrease the competition among

species, and allow more species to co-exist in a community.

8.5. Conclusions

1) The decision tree is an appropriate modelling method in predicting pasture
community productivity, species functional group abundance and species
richness in the hill-pasture ecosystems. It had very high predictive accuracy
and clearly indicated the relative importance of input variables on model
targets. It can also be used to facilitate regression analysis in selecting the
input variables. The limitation of using the decision tree to predict pasture
productivity and species abundance and richness was that it did not generate
a continuous output, and thus could not detect the influence of small changes

in environmental and management variables on model targets.

2) Geographic information system (GIS), with its strong ability in analysing

spatial and spatial related variables, provided a powerful tool in modelling
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3)

4)

5)

6)

and investigating pasture productivity and species abundance for pastures
with heterogeneous topographic, edaphic, or management features. It helped
to derive input data such as topology and climate variables and to achieve
the prediction for further analyses. Integration of a GIS and statistical
models provided a platform to investigate community structure and
functional composition for a pasture over space, and thus can be applied as a

tool in pasture management.

Spring rainfall was the most significant factor influencing annual pasture
productivity, while hill slope was the most significant factor influencing
spring and winter pasture productivity. Annual P fertiliser input and autumn
rainfall were the most significant factors influencing summer and autumn

pasture productivity, respectively.

Climate change scenarios of increased temperature by 1-2 °C and rainfall
change by -20% to +20% would have a great impact on pasture production
in North Island. From these climate scenarios a wide range (-46.2% -
+51.9%) of pasture production variation was predicted compared with the
current climate situation. Increased temperature would generally have a
positive effect in the south and southeast part of the North Island. Increased
rainfall would have a positive effect on pasture production in the central,
south and southeast parts of the North Island, but a negative effect in the
north part of the North Island. The decreased rainfall would only have a

positive effect in some central areas with high rainfall.

Pasture in areas with relatively low rainfall had a higher response to
increased P fertiliser input than pastures in areas with a relatively high

rainfall.

Soil Olsen P was the most significant factor influencing the relative
abundance of low fertility tolerance grasses (LFTG) and moss, while soil
bulk density, slope and annual P fertiliser input were the most significant
factors influencing the relative abundance of legume, high fertility response
grasses (HFRG) and flatweeds, respectively in hill-pasture. Generally, slope
and soil Olsen P were the two key factors underlying the patterns of

abundance for these five functional groups.
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7) Legume abundance was the most significant factor explaining the variation
in species richness in hill-pasture. Species richness increased with the
increase of legume abundance and showed a tendency of a hump-shaped
response. The effect of legume abundance on species richness was possibly a
result of species complementarity resulting from nitrogen fixation of legume
species. Grazing animal species also have a significant effect on species
richness; pasture grazed by sheep had more species than pasture grazed by

cattle.

8.6. References

Abrams P.A. (1995) Monotonic or unimodal diversity-productivity gradients: what does
competition theory predict? Ecology, 76,2019-2027

Baars J.A., Radcliffe J.E. & Rollo M.D. (1990) Climatic change effects on seasonal
patterns of pasture production in New Zealand. Proceedings of the New Zealand
Grassland Association, 51, 43-46

Bai Y.F., Han X.G.,, Wu J.G., Chen Z.Z. & Li L.H. (2004) Ecosystem stability and
compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184

Betteridge K., Fletcher R.H., Liu Y., Costall D.A. & Devantier B.P. (1994) Rate of
removal of grass from mixed pastures by cattle, sheep and goat grazing.
Proceedings of the New Zealand Grassland Association, 56, 61-65

Breiman L., Friedman J.H., Olshen R.A. & Stone J.C. (1984) Classification and
regression trees. The Wadsworth statistics/probability series. Chapman & Hall.
Inc. New York, NY.

Campbell B.D., McKeon G.M., Gifford R.M., Clark H., Stafford Smith M.S., Newton
P.C.D. & Lutze J.L. (1996) Impacts of atmospheric composition and climate
change on temperate and tropical pastoral agriculture. In: Bouma, W. J,
Pearman, G. [., and Manning, M. R. (eds.), Greenhouse: Coping with Climate
Change. CSIRO Publishing, Collingwood, Victoria, Australia, pp. 171-189.

Chase J.M. & Leibold M.A. (2002) Spatial scale dictates the productivity-biodiversity
relationship. Nature, 416, 427-430

181



Chapter 8: General discussion and conclusions

Clark D.A., Rolston M.P., Lambert M.G. & Budding P.J. (1984) Pasture composition
under mixed sheep and goats grazing on hill country. Proceedings of the New
Zealand Grassland Association, 45, 160-167

Gillingham A.G., Gray M.H. & Smith D.R. (1998) Pasture responses to phosphorus and
nitrogen fertilizers on dry hill country. Proceedings of the New Zealand
Grassland Association, 60, 135-140

Grime J.P. (1973) Competitive exclusion in herbaceous vegetation. Nature, 242, 344-
347

Grime J.P. (1977) Evidence for the existence of three primary strategies in plants and its
relevance to ecological and evolutionary theory. The American Naturalist, Vol
111, 1169-1194

Guisan A. & Zimmermann N.E. (2000) Predictive habitat distribution models in
ecology. Ecological Modelling, 135, 147-186

lverson L.R., Martin E.D., Scott C.T. & Prasad A. (1997) A GIS-derived integrated
moisture index to predict forest composition and productivity of Ohio (U.S.A.).
Landscape Ecology, 12, 331-348

Johnston C. (1998) Geographic information system in ecology. Oxford, Malden, MA:
Blackwell Science

Lambert M.G. & Clark D.A. (1985) Increasing productivity of hill country with
nitrogen. Proceedings 20th Technical Conference of New Zealand Fertiliser
Manufacturers' Research Association, 1, 274-283

Lambert M.G., Clark D.A., Grant D.A., Costall D.A. & Fletcher R.H. (1983) Influence
of fertilizer and grazing management on North Island moist hill country 1.
Herbage accumulation. New Zealand Journal of Agricultural Research, 26, 95-
108

Lambert M.G., Clark D.A., Mackay A.D. & Costall D.A. (2000) Effects of fertiliser
application on nutrient status and organic matter content of hill soils. New
Zealand Journal of Agricultural Research, 43, 127-138

Li J., Liang T. & Chen Q. (1998) Estimating grassland yields using remote sensing and
GIS technologies in China. New Zealand Journal of Agricultural Research, 41,
31-38

Martin R.J., Korte C.J., McCall D.G., Baird D.B., Newton P.C.D. & Barlow N.D. (1991)

Impact of potential change in climate and atmospheric concentration of carbon

182



Chapter 8: General discussion and conclusions

dioxide on pasture and animal production in New Zealand. Proceedings of the
New Zealand Society of Animal Production, 51, 25-33

McNaughton S.J. (1985) Ecology of grazing ecosystem: the Serengeti. Ecological
Monograph, 53, 291-320

Moir J.L., Scotter D.R. & Hedley M.J. (2000) A climate-driven, fertility dependent,
pasture production model. New Zealand Journal of Agricultural Research, 43,
491-511

Mougquet N., Moore J.L. & Loreau M. (2002) Plant species richness and community
productivity: why the mechanism that promotes coexistence matters. Ecology
Letters, S, 56-64

Naeem S. (2002) Ecosystem consequences of biodiversity loss: the evolution of a
paradigm. Ecology, 83, 1537-1552

Nicol AM,, Russel AJ.F. & Wright [.A. (1993) Integrated grazing of goats with sheep
or cattle on continuously grazed pasture. Proceedings of the XVII International
Grassland Congress, 1320-1322

Proulx M. & Mazumder A. (1998) Reversal of grazing impact on plant species richness
in nutrient-poor vs. nutrient-rich ecosystem. Ecology, 79, 2581-2592

Rickert K.G., Stuth JW. & McKeon G.M. (2000) Modeling pasture and animal
production. In: Mannetje, L. and Jones, R.M.(Eds.), Field and laboratory
methods for grassland and animal production research, CAB Publishing,
Wallingford, UK: 2000, 29-66

Riedo M., Gyalistras D., Grub A., Rosset M. & Fuhrer J. (1997) Modelling grassland
responses to climate change and elevated CO;. Acta Oecologica, 18, 305-311

Scheffer J. (2002) Data mining in the survey setting: Why do children go off the rails?
Research Letters in the Information and Mathematical Sciences, 3, 161-189

Sen A.K. & Srivastava M. (1990) Regression analysis: theory, methods and
applications. New York: Springer-Verlag

Spehn E.M., Scherer-Lorenzen M., Schmid B., Hector A., Caldeira M.C.,
Dimitrakopoulos P.G., Finn J.A., Jumpponen A., O'Donnovan G., Pereira J.S.,
Schulze E.-D., Troumbis A.Y. & Komer C. (2002) The role of legumes as a
component of biodiversity in a cross-European study of grassland biomass
nitrogen. Oikos, 98, 205-218

Tilman D., Reich P.B., Knops J., Wedin D., Mielke T. & lehman C. (2001) Diversity

and productivity in a long-term grassland experiment. Science, 294, 843-845

183



Chapter 8: General discussion and conclusions

van Ruijven J. & Berendse F. (2003) Positive effects of plant species diversity on
productivity in the absence of legumes. Ecology Letters, 6, 170-175

Vayssieres M.P., Plant R.E. & Allen-diaz B.H. (2000) Classification trees: An
alternative non-parametric approach for predicting species distribution. Journal
of Vegetation Science, 11, 679-694

Wadsworth R. & Treweek J. (1999) GIS for ecology. an introduction. Harlow: Addison
Wesley Longman

Waide R.B., Willig M.R,, Steiner C.F., Mittelbach G., Gough L., Dodson S.I., Juday
G.P. & Parmenter R. (1999) The relationship between productivity and species
richness. Annual Review of Ecology and Systematics, 30, 257-300

White J.G.H. (1990) Hill and high country pasture. In: R.H.M. Langer (Ed.), Pastures:
Their Ecology and Management, Oxford University Press, Auckland, N.Z. 1990,
299-336

184



Appendix I: List of species

Appendix 1. List of species in the hill-pasture studied in Chapter 7
[after Lambert et al. (1986) and Nicholas et al. (1998)]

Functional group Species

High fertility Dactylis glomerata, Holcus lanatus, Lolium perenne, Poa annua
EeHS[E E[g’)e Erasses  pnd Poa pratensis.

Low fertility Agrostis capillaris, Anthoxanthum odoratum, Cynosurus cristatus,
tolerance grasses Festuca rubra, Rytidosperma spp..

(LFTG)

Legume Lotus pedunculatus, Trifolium repens, Trifolium dubium and

Trifolium subterraneum.

Flatweeds Hypochaeris radicata, Leontodon taraxacoides and Plantago
lanceolata.

Moss Musci spp.

Other species Achillea millefolium, Bellis perennis, Carex spp., Centella uniflora,

Cirsium arvense, Crepis capillaris, Cymbalaria uralis, Luzula
spp., Galium arvense, Gnaphalium spp., Hydrocotyle sp., Linum
bienne, Montia verna, Nertera setulosa, Polycarpon tetraphyllum,
Rumex acetosella, Sagina procumbens, Silene gallica, Stellaria
media, Taraxacum officinale and Veronica persica.

Lambert M.G., Clark D.A., Grant D.A. & Costall D.A. (1986) Influcncc of fertilizer and grazing management on North Island moist
hill country 2. Pasturc botanical composition. New Zealand Journal of Agricultural Research, 29, 1-10
Nicholas P.K. (1999) Environmental and management factors as determinants of pasture diversity and production of North I[sland,

New Zealand hill pasture systems. Ph.D. thesis, Masscy University, Palmerston North, New Zcaland
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