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Abstract 

The motivating question for the work described in this thesis was "How does the 
Adelie penguin cope with cold'?" It was reasoned that the time-scale of temperature 
changes in Antarctica precluded all but metabolic and physiological responses. To 
determine these, a system capable of measuring and recording these biological 
variables in the penguins natural environment, was designed. 

A device. based on the principles of near infrared spectroscopy, was developed that 
could measure the relative oxygen saturation of haemoglobin and the reduction state 
of cytochrome oxidase as well as heart rate and blood volume. The completed device 
was housed in a black, waterproof. plastic container. measuring 65mm x 92mm x 
15mm and weighing 132.7g. 

Co-ordination of measurements \Yas achieved with operating system-like control 
soihvare implemented in Motorola HC 11 assembly code. Synchronous detection was 
used for signal acquisition and a pulse algorithm, implemented in assembly code, 
allov,ed real time pulse measurement from the input signals. Programs were written 
in Matlab and to investigate the characteristics and limits of these techniques. 

Preliminary testing of the device on human subjects successfully showed changes in 
metabolic state as a result of physical activity. The results of field testing on Ade lie 
penguins ,vere unable to ansv,er the original question due to a number of physical 
factors. However, the success of human trials suggests that, modification and 
improvement, the device has potential as a valuable research instrument, applicable to 
a variety of other species. 
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Chapter 1 

Introduction 

1.1 The problem 

For the Adelie penguin (Pygoscelis adelie) of Antarctica there exists an intriguing 
biological paradox. As for any animal living in this environment, adaptation to cold 
and the regulation of body temperature is of primary importance. During breeding 
however, the Adelie penguins exhibit behaviour that seems to defy these thermal 
demands. For periods lasting as long as two weeks [ l] they remain on their nests 
vigilantly guarding their eggs. During this time they fast , exhibit minimal muscular 
act ivity and no behavioural activities such as huddling. Fasting results in a reduction 
of resting metabolic rate thereby conserving energy. Contrary to this, an adaptive 
response to cold is to increase metabolic rate, producing heat from food or body fat 
reserves. As the penguins are fasting, this increase in metabolic rate results in the 
depletion of the bird's insulating body fat layer, further increasing the need for heat 
generation. As thermogenesis does not occur significantly by other means there seem 
to be conf1icting metabolic demands and the question arises, 'How does the Adelie 
penguin cope in this environment?' 

1.2 Measurement 

An increase in metabolic rate implies an increase in the demand for oxygen . Processes 
that exhibit a response to changes in metabolic rate are the transport of oxygen via 
haemoglobin and the oxidation of substrates within cells by oxidative phosphorylation. 
Two proteins involved in these processes, haemoglobin (Hb) and cytochrome oxidase 
(COX), exhibit changes in their spectral characteristics depending on their 
oxygenation state . These spectra can be observed in viva using near-infrared (NIR) 
spectroscopy, a technique that has been employed successfully with the human foetus , 
neonate and adult [2]. 

Oxidised and reduced haemoglobin and cytochrome oxidase exist in equilibrium in 
blood and in the mitochondria of cells respectively (1. 1 and 1.2). The equilibrium 
concentrations for each of these give information about the supply and demand for 
oxygen at the beginning and end of the metabolic process. 

Hb+ 02 ~Hb02 

COX+ 02 ~ COX02 

(1. 1) 

( 1.2) 

Haemoglobin, oxygen and oxyhaemoglobin are transported throughout the body via 
blood vessels (figure l. 1). A concentration gradient between the blood and the cell 
causes oxygen to diffuse through the wall of the blood vessel into the cell. Higher 
concentrations of oxyhaemoglobin observed in the blood imply that the supply of 
oxygen is greater than the demand due to decreased respiration or reduced metabolic 



rate. If oxyhaemoglobin concentrations decrease, then oxygen consumption is greater 
than the demand as a result of increased respiration or higher metabolic rate. 

Oxygen is consumed within the cell during the last stage of oxidative phosphorylation. 
Within the cell , sugar is broken down into a smaller molecule called pyruvate that is 
oxidised within the mitochondria to produce the waste products; carbon dioxide and 
water. This final reaction is catalysed by cytochrome oxidase that exists in 
equilibrium with oxygen in the mitochondrial membrane. If high leve ls of oxidised 
cytochrome oxidase are observed, this indicates that the rate of sugar metabo lism is 
slow and, conversely, highly reduced cytochrome oxidase ind icates an increased 
metabolic rate. 

Blood 
Vessel 

Glucose 

Cell 

Glucose\ 

Pyruvate 

Mitochondrian 

Tricarboxylic 
Acid 
Cycle 

Enzymes of the electron 
transfer chain 

Figure I. l : The metabolism of sugar with the cell. Oxygen exists in equilibrium 
with two proteins, haemoglobin and cytochrome oxidase, in blood and in the 
mitochondria within cells respectively. The spectral characteristics of these two 
proteins depend on the relative concentrations of their oxidised and reduced forms. 
Changes in these spectra give information about the rate of oxygen metabolism. 

By developing a device capable of making oxygen saturation measurements along 
with pulse and temperature measurements a corre lation may be observed between the 
environmental temperature and biological responses of the penguin. Such a device 
must be portable, small and lightweight so as not to inhibit the normal activ ities of the 
bird or cause stress resulting in unrealistic data. NIR spectroscopy, a non-invas ive 
technique, is ideally su ited to this problem and the development of such an instrument 
would allow changes in the relative oxygen saturation to be observed with minimal 
impact on the penguin. 
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1.3 Background - The Adelle Environment 

Antarctica, and its surrounding oceans, form one of the most extreme, and yet 
habitable, environments on earth. All species that live and breed in this southern polar 
region face the same survival issue: the adaptation to cold and maintenance of body 
temperature. Each animal that lives in or visits this environment exhibits biological or 
behavioural adaptations that enable it to combat the extreme cold such as increased 
body fat, thicker skin/feather layers or group huddling behaviour. Adelie penguins 
spend eight months of the year living and foraging off the pack ice that forms where 
the polar ice cap meets the southern ocean. The birds move with the pack ice that 
advances and recedes seasonally, covering a distance of over 1300km [3]. Starting 
around mid October, the Adelie penguins make a trek, often travelling 80km or more 
inland, to their annual breeding sites located on the shores of the Antarctic mainland or 
on many of the Antarctic islands. Some nesting colonies can number in the tens of 
thousands and on Ross Island (figure 1.2), where there are six colonies [ 4], a major 
nesting site of approximately 60,000 Adelie penguins is located at Cape Bird (Barton, 
K. J., personal communication). 

Cape Royds 

Figure 1.2: Ross Island and breeding colonies of the Adelie penguin. The Adelie 
penguin rookeries are indicated in yellow. At Cape Bird an Adelie colony 
numbering approximately 60,000 forms every year from early November to mid 
January. 

3 



Upon arrival at the nesting site the males, who arrive earlier than the females, begin 
constructing nests. Open windswept mounds and ridges are the usual location for the 
nests as these snow-free areas are all that is available when the Adelies arrive in early 
spring. The Adelies collect stones ranging in size from 1cm to 5cm and place them 
around the edge of a depression in the ground forming a doughnut shaped wall on 
which the penguin sits (figure 1.3). 

Figure 1.3: An Adelie penguin upon its nest of pebbles. The nest consists of 
pebbles between !cm and 5cm in diameter arranged around a depression in the 
ground. Nests are constructed on snow-free mounds to avoid streams and puddles 
when surrounding snow and ice melts. Unfortunately these regions are also exposed 
to harsh weather conditions. 

This choice of nest location has both advantages and disadvantages. As spring turns to 
summer the surrounding snow and ice melts forming streams and puddles that these 
raised regions avoid. Unfortunately, these raised areas are also exposed to wind and 
during the early stages of brooding the Adelies have to contend with harsh spring 
weather conditions. In the early weeks of November the male Adelies may endure 
temperature fluctuations of approximately 20°C brought on by increased wind chill 
due to blowing snow. More surprisingly, on still days the Adelie is faced with a heat 
dissipation problem due to the zero humidity of Antarctic air. Under constant 
sunlight, local air temperatures can rise well above zero and on these 'hot' days 
nesting Adelies will lie with flippers and feet outstretched in an attempt to dissipate 
heat. For birds without eggs to protect, the overheating problem is solved by lying in 
or eating snow. 

The total incubation period for Adelie eggs is between 33 and 39 days and, in 88% of 
cases, the male incubates the eggs for the first 14 days. During this time he fasts (1]. 
Since there are few other options, thermo-regulation must occur on a systemic level 
through variation in heart rate, metabolic rate, respiratory rate and vasoconstriction. 
The goal of this thesis was to develop a system capable of measuring these responses 
and provide an insight into the homeostatic mechanisms of the Adelie penguin. 

4 



1.4 Technology 

The basic requirements of NIR spectroscopy are a monochromatic light source in the 
red and infrared region of the electromagnetic spectrum and a photo-detector sensitive 
enough to respond to the subtle changes in scattered light intensity. The options 
considered for light sources were either laser diodes or LEDs as other sources were 
impracticably large. An attractive aspect of using laser diodes includes increased 
incident illumination and temporal coherence. However, temperature instability, cost, 
power consumption and the lack of availability over a range of frequencies prohibited 
their use. Recent development in LED technology has seen a dramatic increase in the 
intensity and range of available frequencies. Combined with their cost, weight, power 
consumption and acceptable coherence (typical linewidth of 20nm), they were selected 
as the most suitable light sources for the device. 

The options available as detectors included photodiodes of varying areas and 
construction or a photo-multiplier. The later was eliminated for cost and size reasons 
and of the photodiodes, a large area (7 .5mm2

) silicon detector was selected as its cost, 
sensitive range and temperature stability made it favourable . Other possibilities were 
hybrid photo-detector/preamplifier devices, however their expense precluded their use. 

Basic improvement to a NIR spectroscopic system is achieved by either increasing the 
intensity of the incident light or increasing the effective sensitivity of the detector. 
The factors considered when designing the device also included cost, weight, size, 
temperature stability and power consumption. 

1.5 Measurement Principles 

1.5.1 NEAR INFRARED SPECTROSCOPY 

The biological and medical value of near infrared spectroscopy arises from the relative 
transparency of tissue to light in the red and near infrared regions of the 
electromagnetic spectrum and the presence of two natural chromophores that exhibit 
oxygenation dependent absorption at these wavelengths (figure 1 .4). These 
chromophores are haemoglobin, which is present in red blood cells and is therefore an 
indicator of blood oxygenation, and cytochrome oxidase, which is the terminal 
enzyme in the mitochondrial electron transfer chain and therefore an indicator of tissue 
oxygenation [5]. The goal of NIR spectroscopy is to obtain absolute quantitative 
absorption spectra through observed changes in detected scattered light. However, 
differences from subject to subject in physical attributes such as skin opacity, skin 
thickness, blood circulation and temperature preclude single wavelength 
measurements due to an inability to calibrate the system. Using double wavelength 
techniques similar to that used by Shiga [6] and Mendelson [7], qualitative oxygen 
saturation data are obtained through normalisation of the absorbance data. 

5 



~ 
ro u 
(/) 

Ol g 
C 
,Q 
a. 
0 
(/) 

.0 
ro 
(I) 

-~ 
ro 
ai 
a::: 

lsobestic 
Point 
805 

(I) 

ro u 
(/) 

Ol g 
C 
,Q 
0.. Reduced 
0 
(/) 

.0 
ro 
(I) 

£ 
ro 
ai 
a::: Oxidised 

400 500 00 700 8 0 900 1 OOO 900 
590 660 880 950 

Wavelength /nm 

(a) 
625 Wavelength /nm 

(b) 

Figure 1.4: (a) Absorption spectra of oxy- and deoxy- haemoglobin and (b) 
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In radiation transport, light is comprised of discrete photons that are either elastically 
scattered or totally absorbed according to the coefficients E (absorption coefficient) 
and cr (scattering coefficient) for constituents within the tissue [8]. The Beer-Lambert 
law ( 1.3) describes the total absorbance as the sum of the absorption coefficients 
multiplied by the concentration of each absorber [9]. The total absorbance is related to 
the detected light intensity by the logarithm of the incident and transmitted light ( 1.4) 

A= L:~:.."· [X,]L 

A= log 10 (!0 / 1) 

( 1.3) 

( 1.4) 

where I O and I are the intensity of the incident and transmitted light respectfully, 

c}· are the absorption coefficients (at wavelengths A ) for the various absorbers ( X ;) 

in the tissue, [ X;] are the concentration of the absorbers and L is the optical path 

length. The following result that relates blood oxygen saturation to the measured light 
intensity is calculated from absorbance data measured at the two wavelengths, 660nm 
and 880nm. At 660nm, reduced haemoglobin absorbs considerably more than 
oxyhaemoglobin and at 880nm the absorbance due to oxy- and deoxy- haemoglobin is 
comparable. The tissue oxygenation result is derived in the same manner using the 
same assumptions but shorter wavelengths of 605nm and 626nm. The general oxygen 
saturation derivation using double wavelength measurements is given in appendix A. l . 

At 660nm and 880nm it can be assumed that the contribution to the absorption by 
chromophores other than haemoglobin is small and, on the time scale of an 
observation, their contribution remains constant [ 6]. These terms along with optical 
loss and the sensitivity of the detector can be incorporated into an attenuation constant 
such that ( 1.3) may be rewritten as 

(1.5) 
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Equations ( 1.4) and ( 1.5) can be combined resulting in an equation that describes the 
observed intensity, I , as a function of the optical path length, the oxy- and deoxy­
haemoglobin absorption coefficients, and concentrations which vary m a 
complementary fashion. 

In ( 1.5) the absorbance, A, depends on the optical path length, which is unknown. 
Work using time-resolved or frequency-domain reflectance spectrometry has been 
carried out by a number of researchers (Wilson et al. [8], Liu et al. [ l OJ) to obtain 
absolute, quantitative absorption data. These techniques however, have large 
computational and hardware requirements that are unsuitable for this application. 

Given the relative transparency of tissue to red and near infrared light it can be 
assumed that the concentration of scatterers is much greater than the concentration of 
absorbers and that the degree of scattering varies insignificantly between 660nm and 
880nm. That is, 

(S >> A) and (S 66onrn ""'Sssonm) 

where S LO",, [X
1

] 

( 1.6) 

Under these conditions, the average optical path length for both wavelengths is 

approximately equal (i.e. (L 66011m}"" (L88011,,,)) and, by taking the ratio of absorbances, 

the optical path length tenn may be eliminated [8]. 

E/,~~ [Hb] + £:~1
~
02 [HbO:] 

/-fh[Hb]+ HW[Hb02] 
( 1.7) 

Using the complementary relationship between the oxy- and deoxy- haemoglobin 
concentration and recalling that the absorbance is proportional to the intensity signal, 
A= log(f 0/ I), an equation that describes the relationship between measured light 

intensity and oxygen saturation is found ( appendix 1 ). 

(£Hb -£Hbo,)log(io,66o/166o) +£Hbo, -£fib 
880 880 l (1 j f ) 660 660 

og o.sso / 880 

( 1.8) 

The reduction state of cytochrome oxidase and measured light intensity is calculated 
using the same analytical method, however in this case, the difference in absorption is 
observed for light of wavelength, 605nm (figure 1.4). 

From the absorbance relationship ( 1.5) an equation describing relative blood volume 
can also be derived by considering the absorbance at two different wavelengths 

A660 = cZt [Hb ]L + sZt0 ' [Hb02 ]L 
Asso oc £:St [Hb ]L + E~t0 ' [Hb02 ]L 

( 1.9) 

( 1.10) 
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Obtaining either ( 1.9) or ( l.l 0) in terms of [Hb] and [Hb02 ] then combining the 
results gives an equation re lating the total haemoglobin concentration to the 
absorbance ( 1. 11 ). Assuming that the total haemoglobin concentration in the blood 
remains approximately constant, the relationship between blood vo lume and measured 
light intensity is found by substituting the absorbance relationship, A oc log(/0 / !) , into 

( 1. 11 ). The general derivation of relative blood volume is given in appendix A.3. 

( 
A ( HbO, Hb ) A ( lfb HhO, )J 

[Hb ] oc _!_ 660 c'sso · - Esso + sso £ 660 - £660 · 
Iota/ [ Hb Hb01 Hb llhO: 

£ 660c'sso - c'sso£66o 
( 1.11) 

1.5.2 TRIPLE \VA VE LENGT H OXYGEN SATURATION MEASUREMENT 

[n general, the opacity of tissue reduces for light of increasing wavelength. Within an 
absorption band ( e.g. 590nm to 880nm for oxyhaemoglobin) the background 
absorbance can be estimated by interpolating between two wavelengths at which the 
absorbances of the oxidised and reduced stares are comparable (figure 1.5). 
Normalising the acquired absorbance with this predicted reference point reduces the 
error due to non-uniform base line drift and improves the validity of assumptions 
made for the constant attenuation assumed in equation ( 1.5) . 

......... 
(1) 

CU u 
(J) 

CJ) 
0 -C 
0 Hb02 

·.;:; 
a. ,._ 
0 . - Hb (J) 

.D 
ro 
(1) 

> A, A~ AJ _, 
ro 
(1) 

0:::: 

00 700 900 

805 
Wavelength /nm 

Figure 1.5: In te rpolating to find an estimate of th e background absor bance a t 

wavelength, Ai . Comparing the measured absorbance with the background 

es timate helps to remove the no n-uniform baseline drift present in double wavelength 
measurements. 

The equation describing oxygen saturation from triple wavelength measurements is 
given for the oxygenation state of haemoglobin using the wavelengths A,= 590nm, 

Ai= 660nm and ~ = 880nm. A similar result is obtained for cytochrome oxidase 

8 



using the wavelengths Ai= 590nm, Ai= 605nm and A,= 625nm. The general 

derivation of triple-wavelength oxygen saturation measurement is given in appendix 
A.2. 

Linearly interpolating between 590nm and 880nm gives an express ion for the 
background absorbance, A;60 , at 660nm, 

r1' = Asso - As90 + rl 
600 J\ 590 

880-590 
where J\=--- -=4.143 

660-590 

(1. 12) 

Defining, /J, as the ratio of the measured absorbance to the background absorbance 
and assuming again that the mean optical path lengths are approximately equal at all 
three wavelengths gives the following expression 

(1.13) 

As before, the complementary relationship between the oxy- and deoxy- haemoglobin 
concentration is used allowing equation (1.13) to be solved for the oxygen saturation 
giving, 

[Hb02 ] _ f](E;~~ + (J\- 1)£~~ )-Ac~~ 
[Hb ] - HbO, Hb /J ( I) Hb HbO, Hb HbO, 

/Ota/ i\ £660 . - £660 + J\ - C590 - C590 . + Cggo - Cggo . 
(1.14) 

To obtain the direct relationship between measured intensity and oxygen saturation, 
the absorbance relationship, A ex log(f 0/ !) , is substituted into /J 

/J= M 66o = J\log(Io_66o / f66o) 

Asso + A59o (J\ - 1) log(Io.sso / fs8o)+ log(ro,s90 / l 590XJ\- 1) 
(1. 15) 

In both the double and triple wavelength calculations, relative blood volume, blood 
oxygenation and tissue oxygenation are found to be functions of the intensity signal 
and absorption coefficients only. Using data acquired from the device and absorption 
information from the literature allowed the metabolic state of the subject to be 
described. 

1.5.3 NEAR JNFRARED SPECTROMETRY 

Near-infrared spectroscopic systems are usually arranged in one of two configurations, 
transmission mode or reflectance mode (figure l.6). Established clinical and research 
devices such as the Wood-Geraci ear-oximeter and the Hewlett-Packard eight­
wavelength oximeter are all transmission mode devices [ 11]. The use of reflectance 
mode spectrometry was introduced by Brinkman and Zijlystra in 1949 who showed 
that changes in oxyhaemoglobin saturation could be recorded non-invasively from an 
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optical sensor attached to the forehead [7]. Reflectance mode oximeters however, 
have not achieved widespread commercial use due to limited accuracy and difficulties 
in absolute calibration. For the intended application, absolute calibration of the device 
was not required, as the main objective was to demonstrate a correlation between 
environmental conditions and the relative changes in the metabolic response of the 
Adelie penguin. In this device limitations in accuracy were reduced by the greater 
intensity of modem LED technology and calculation techniques such as the triple 
wavelength measurement (section 1.5.2). 

Aside from the differences in construction and calibration, the physical basis for both 
transmission and reflectance mode spectroscopy is the same for measurements of 
completely diffuse light ( i.e. the photon distribution within the medium retains no 
information about initial direction). Photon diffusion analysis by Kumar and Schmitt 
[12] has shown that, with a source and detector spacing of greater than 2mm, a 
collimated incident light source is equivalent to a diffuse source located below the 
surface in an optically turbid medium such as tissue. Since the Beer-Lambert law 
describes a measured intensity in terms of the photon path length and the incident light 
source may be considered diffuse, the detected signal for both transmission and 
reflectance mode spectroscopy is equivalent. 

Tissue Tissue 

Sou;ce "n, D'itector , ~n~ 
(a) (b) 

Figure 1.6: The two main configurations for near infrared spectroscopic 
systems, (a) transmission mode and (b) reflectance mode. For distances greater 
than 2mm from the incident light source the scattered light may be considered a 
diffuse light source below the surface. As diffuse light is independent of direction 
both transmission and reflectance mode spectroscopy are equivalent. 

1.6 Thesis Overview 

The work undertaken in this thesis involves the design and development of a NIR 
spectroscopic device. Using the principles and techniques described above, a system 
was developed that not only collected the necessary physiological data but also 
addressed some of the difficulties of working in Antarctica and with the Adelie 
penguin. In the instrumentation chapter that follows, the hardware is assembled along 
with justification for the components selected. A logical division between 
measurement and control exists that divides the hardware into analogue and digital 
stages respectively. The acquired signal is followed through the various analogue 
processes to the point of digitisation where focus is then moved to the control of the 
device by the digital components. 
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The third chapter examines the control of the device from a software perspective. It 
gives a description of the operating system and the interaction between measurement 
sequence files, the terminal emulation software and the embedded processor. The 
final section of this chapter describes the algorithm used to determine pulse rate from 
the fluctuating scattered light signal and gives analysis of the signal processing 
techniques used to overcome noise. 
Chapter four begins by describing the incremental development of the device and the 
results of the validation steps taken at each stage. Reasons for each new prototype and 
the increased functionality that each system allowed are described in the logical order 
in which they were developed and the conclusion to this section gives the test results 
of the final prototype version of the device. The second part of chapter four describes 
the results obtained during field-testing. Included are the physical aspects of the 
experiments, such as capture, attachment and behavioural response, through to the 
biological results obtained m response to stress and temperah1re changes; 
oxyhaemogJobin saturation, cytochrome oxidase saturation, blood volume and pulse 
rate. A discussion of the acquired data follows in the conclusion chapter that then lead 
to an evaluation of the device, its limitations and various suggested improvements. 
Long-term enhancements conclude chapter five with an outlook toward the potential 
fr1ture of the device in environments as equally diverse as that of the Ade lie penguin. 
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Chapter 2 

Instrumentation 
An optical device was designed and constructed to provide an insight into the 
metabolic responses of the Adelie penguin. This necessitated a compromise between 
the constraints arising from working with penguins and the requ irements of the 
hardware. 

2.1 Design Specifications 

The biological information to be measured included pulse rate, blood oxygenation, the 
reduction state of cytochrome oxidase and relative blood volume. As these variables 
are calculated from changes in the absorption of light at different wavelengths (section 
1.5.1) , a system to record this absorption data was needed. Experiments designed to 
measure these variables could last only a few hours with continuous sampling or for 
several days using less frequent sampling. The device had to be equipped with timing 
facilities and have the ability to store the acquired data for retrieval after the 
measurement period. 

As the device was to be fitted to an Adelie penguin , there were a number of physical 
restrictions that also had to be considered. The average weight of an adult Adelie 
penguin is approximately 3.5 - 4.5 kg [13] and the device had to weigh only 2 - 3% of 
this ( :S l 50g) to minimise restriction of the birds normal activities such as walking, 
jumping, stone collecting or egg incubating. For the same reasons , minimising the 
package dimensions and careful consideration of shape were necessary. Research into 
the swimming energetics of instrumented penguins shows an increased level of energy 
expenditure with even relatively small instruments attached (<2% of body cross­
sectional area) [14]. The added complexity of waterproofing and streamlining the 
device packaging was avoided by conducting experiments during the penguins 
breeding period, where they spend the majority of their time on land. On the 
occasions that the penguin intended to go to sea, the bird was recaptured and the 
device removed. Waterproofing of the device, however, was still necessary to prevent 
problems from melted snow or ice. 

Minimising awareness of the device, by either the individual bird or its neighbours, 
was important for reducing stress. Research into the most suitab le package co lour has 
shown that colours similar to that of the bird's plumage are interfered with 
significantly less than other colours [ 15] and so all exterior surfaces of the device were 
coloured black. 
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2.2 Design Overview 

Measurements were made from the ulnar artery and deep ulnar vein located at the 
proximal end of the penguin flipper's medial side [16]. Attaching a device with the 
necessary functionality outlined in the design specifications to this location was not 
possible so a sensor head and control unit arrangement was employed ( figure 2.1 ). 

Sensor head 
fitted under the ----­
flipper 

Interconnecting 
Cable 

Tape 

Figure 2.1: Adelie penguin with a control unit and sensor head fitted. The 
control unit, tape and interconnecting cable were coloured black to be less 
obvious to the penguins. 

A plastic case, measuring 65mm x 92mm x 25mm and sealed by a plug fitted with an 
0-ring, enclosed the control unit protecting it from water and interference by the 
penguin (figure 2.2). The sensor head was connected to the main unit by an 
interconnecting cable soldered to a row of header pins and mounted into the plug using 
epoxy glue. The connecting cable linked the control unit, located on the lower back of 
the penguin, to the sensor head that was taped to the underside of the penguin flipper. 

At the sensor head, LEDs of various wavelengths transmitted light into the tissue. 
Some of the scattered light was received by a photodiode (also mounted on the sensor 
head) that converted the light signal into an electrical signal. This was then amplified 
and filtered before being digitised by an analogue to digital converter and processed 
by a microcontroller in the control unit. Co-ordination of this process, measurement 
sequence interpretation, serial communication and power management were all done 
by the microcontroller. Finally, the acquired data were stored to static memory for 
later retrieval. 
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Microprocessor 

Analogue to 
Digital converter 

Figure 2.2: The connectivity and packaging of the sensor head and control unit. 

Information was transferred between the device and a computer via an RS-232 serial 
port. Using this communication, measurement instructions could be downloaded into 
the microcontroller's memory where they were interpreted and executed (section 
3.2.3). As measurement periods could last anywhere from a few hours to several days, 
two important features of the device were the timing and power management 
capabilities. A microcontroller feature was used in conjunction with a real time clock 
to allow the processor to switch in and out of its power saving state at particular times. 

The final realisation of the device is shown in figure 2.3. The total weight of the 
control unit and sensor head (including the case and interconnecting cable) was 132.7g 
and the control unit had a frontal cross sectional area of approximately 1600 mm2

• 

200 250 

Figure 2.3: The final realisation of the device. 
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2.3 Analogue Circuitry 

2.3.1 THE SENSOR HEAD 

Optical measurements were made by the sensor head located over the ulnar artery 
under the penguin flipper. The sensor head was 28mm in diameter and 12mm thick. 
It carried LEDs of six different wave lengths and a temperature sensor arranged 
equidistantly around a photodiode (figure 2.4). As suggested by Kumar and Schmitt 
[ 12] a source - detector spacing of 5mm was used. This spacing is suitable for 
shallow tissue absorption measurements and provides adequate signal intensity given 
the power limitations of the device. Also, the feasibility of this LED-photodiode 
arrangement was verified by preliminary experiments. In a similar device constructed 
by Shiga et al. [6] dual wavelength LEDs were mounted 30mm from the optical 
detector. Shiga states that thi s distance is su itable for making musc le tissue 
measurements but requires greater power to achieve measurable signal strength. 

Connec ting 
Cable rn 

\ 

Below 

Figure 2.4: The sensor head layout. The sensor head was 28 mm in diameter and 
12mm thick. The view labelled 'Above' is the side that contacted the penguin 
flipper. 

Selection of LEDs for the sensor head was based on the availabili ty of wave lengths as 
close as possible to the peak differences and isobestic points of the haemoglobin and 
cytochrome oxidase absorption spectra (figure 1 .4). The LEDs chosen had peak 
outputs centred at 950nm, 880nm, 660nm, 625nm, 605nm and 590nm of which the 
880nm, 660nm and 590nm were used for blood oxygenation experiments and the 
625nm, 605nm and 590nm were used for tissue oxygenation experiments. The 950nm 
LED was included as an extra wavelength for the blood oxygenation measurements 
since many similar systems use 660nm and 950nm for their double wavelength 
measurements [7]. 

Individual contro l of each LED by the microcontro ller was achieved using three data 
lines and an eight channel surface mount multiplexer. The major advantage of this 
was to reduce the number of connections between the sensor head and the contro l unit. 
Using a three-bit address the microcontroller is able to select each of the six LEDs . 
Each LED was modulated when in use (section 2.3.2) so to achieve this, one of the 
eight multiplexer channels was left unconnected and by switching between the 
required LED channel and the unconnected channel the LED was modulated. 
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Light, emitted from the LEDs and scattered by the tissue, was collected by a large area 
photodiodc. The BPW34 photodiode was chosen for its large radiant sensitive area 
(7.5mm') and high photosensitivity rn the visible and infrarcd regions. Exposure of 
the detected signals to interference was minimised bv mounting a current to voltaae 

'- ., ._, b 

converter with gain as close as possible to the photodiode. This converter also acted 
as a preamplificr and was constructed using an OP07, low offset voltage and low bias 
current, operational amplifier. The benefit of this amplifier was its low noise 
characteristics making it ideal as the preamplifier. 

An estimate of the local skin temperature was obtamed from a temperan1re sensor 
located on the sensor head. The sensor was directly calibrated and had a linear 
response to changes in temperature of I Orn V/K. The sensor head is summarised 111 

figure 2.5 and a complete circuit diagram is given in appendix C.2. 

,-: 1, 
Temperaturen_i ----------1 

Sensor 
LJ I 

c-------------~J -9 ! 

' u' 

590nm•; · 
\. 

605nm v"1 ~ I 
' I 

625nm •1• ·~ MUX ·--------~ (j) ! 
660n m v ,f----~---- __j c : 

\. ~-:------------- 18 !,; 

880nm v+1---1)>M-/-~ 1 -,, 
---iAMP 

LEDs 

: I 

~ 

,7: 

Figure 2.5: The semor head circuit. An t:ight-channd multiplexer was used to 
f('.dui..:c the number of connections between the LEDs on the sensor hezid and the 
s:untrol unit. A complete circuit di::rgram of the sensor head is given tn appendix C.2. 

2.3.2THESYNCHRO~OUSDETECTOR 

One of the most useful experimental techniques for increasmg the signal to noise ratio 
of a noisy signal is synchronous or phase-sensitive detection. The underlying 
principle of this technique is to sbili the frequency of the signal of interest (usually 
near de) into a ·quiet' band of frequencies. A high pass or band pass filter is then used 
to remove the noise components outside of this frequency range so that, after 
demodulation, the original signal 1s reconstructed without the original noise [17]. The 
explanation that follows describes the synchronous detector implemented for the 
device (figure 2.6) while a more general analysis of synchronous detection is given in 
section 2.3.3. 

Consider the signal resulting from the photodiode on the sensor head if it were under 
constant illumination. The major factors contributing to noise and interference in this 
signal would be changes in background light levels, thermal drift and electrical 
interference (e.g. the switching of the LED address lines). Separating this noise from 
the true signal resulting from changes in scattered light would be a near impossible 
task. 
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Suppose now that the light source is modulated by a reference square wave. The 
resulting current through the photodiode detector will now also contain a square wave 
in phase with the light source (reference point 1 in figure 2.6). The magnitude of this 
square wave is proportional to the scattered light signal only and is synchronous with 
the reference Since this ac signal is the only signal of interest the offset voltage 
(background de interference signal) can be simply removed using a coupling capacitor 
such that the wavcfom1 becomes centred about zero (reference point 2 in figure 2.6). 
This ac signal tends to be small ( of the order I O - I OOm \") so it is amplified before it 
1s passed through the phase sensitive detector which uses the modulation wave to 
toggle an electrical switch between the signal and its inverse. As the modulation wave 
and signal are in phase the effect of this switching is to full-wave rectify the signal 
(reference point 3 in figure 2 6) By passing this signal through a simple low pass 
filter a smooth de waveform proportional to the scattered light detected by the 
photodiode is obtained (reference point 4 in figure :.6) 

3ack:;rouncr 
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. ' 
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Figure 2.6: A graphical representation of the implemented synchronous 
detector. l) The raw volt:igc proportional to the current through the photodiode \Vith 
a background off\ct. 2) The rJ\V signal with thl'. background offstt removed. 3) Full 
w;ivc rcct1ficat1on of the rrmp!itlec! signal. -1-) • .i. \V3.veforrn directly proportional to 
the illumination of ihc pholudio<lc by tbc LED. 

2.3.3 SY'.\CHRO'.\OVS DETECTION 

---~-----~ 

The fundamentals of the synchronous detector can be seen by analysing the effect of 
the detector on an arbitrary sine wave. In thinking of the detector as a black box, the 
general noise signals that are present at the input consist of the supposition of 
numerous sine waves each of varying amplitude, frequency and phase. Examining the 
resulting output of the detector to these signals explains how an improved signal to 
noise is achieved. Consider first of all a sinusoidal input signal (2.1) that is in phase 

and has the same frequency as the switching frequency (J~ ~ w
0
/2ff) of the detector 

(figure 2. 7). 

(2.1) 
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The switching process of the detector has the effect of full wave rectifying (2.1) 
generating (2.2) as the result. 

Switch 
State 

Input 
Signal 

.. 
I 

t 
Rectified 

f 
01 

Frequency = ; = ::;-: 
.::. .. 

( i) 

(ii) 

Input 
Signal I

;\ .~ 

/ ·., / 

(iii) 
V ~ ~ow r-o 

,,,; w.) · ! Pass ! 

~--:--·1 \ F lter , 

~ Switch 
(iv) 

Figure 2.7: Demodulation of an in-phase, input sine wave. (i) The detector swikh 
state; (ii) an input sine \Vavc signal in pha::;c Jnd of the sc1me fn;quency as the S\Vitching 
of the dercetor; (iii) rhc ful!-\.va 1./C rcctificJ :,ine wetve: anJ (ii.-) the full-wa\.C dekctor 
and lo\\- pass filter. 

Decomposing (2.2) into a Fourier series of the fom1 (2.3) [18] gives (2.4) 

! ·)- a,, f,[ ·(" ,r ). · b · 1·, · J] J 11 - 7 , L... a,, cos _,rn.1 01 , ,, stn .-7m/0t 
,_ n=I 

') To/2 

a,,=~ )((t )cos(21[11j0t )dt, n = 0,1,2,. 
-,,).' -- ., 

) '1Jl-

b,, = ~ fJ(t)sin(21[11J;t)dt, n =1,2,3, ... , 
-T1 /2 

, 2V0 4V0 ( ) 4V0 ( ) 4V0 ( , V =-----cos 2cv t ---cos 4cv t ---cos 6cv t)- ... 
sm ff 3;r , O 15;r O 35;r O 

(2.2) 

(2.3) 

(2.3a) 

(2.3b) 

(2.4) 

If a low pass filter is designed with unity gain at de and a comer frequency much Jess 
thari 2cv0 (i.e., I/ RC << 2cv0 ) then only the de component of (2.4) will pass and the 

output of the filter (2V0 /tr) is proportional to the amplitude of the input signal only 

(figure 2.8). 
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Figure 2.8: The Fourier components of the full-wave rectified sine wave. A low· pass 
filter \vith unity Jc galn iind a corni.:r frequency much li.:ss than 2u-{) vviil pass only the Jc 
cumpunent of the \vaveform. 

Consider now a sinusoidal input signal of the same frequency as the switch frequency 
but out of phase by o (where -ff< 9 <ff). 

The de component of(2.5J at the output of the detector is now 

7 

( 7 -__ )) 

(2.6) 

using the same low pass filter (i.e .. with I/ RC << 2cu0 ) the output is proportional to 

the amplitude of the input signal and the cosine of the phase difference between the 
signal and the detector switch. Clearly. this de output is less than the output signal 
resulting from (2.4) that has r/J = 0 so this result implies that the detector is phase 

selective. 

I 

I 

" Detector OutpLl 

\\ Pha~ difference 

~ ~~::en inpul signal 
~etector switch 

Figure 2.9: The phase selectivity of the detector. The magnitude of the input sine 

wave de component varies as (2V
0
/;r)cos(rP) for a phase difference of r/J between 

the input sine wave and the detector switch. 
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Noise at the input of the detector consists of the supposition of sine waves of all 
frequencies. Therefore, the contribution to the detector output by frequencies other 
than the modulation frequency is of interest. Consider a sinusoidal input signal with an 
arbitrary frequency,/. 

CV= 2ef 
V = V cin(@). 1 7) 

" ,J J • (~.' 

Taking a converse approach to that previously, the Fourier decomposition of the 
detector switch signal (the modulation square wave) is first calculated 

S)\,,.1ch 5 . /( ) 4 1_
1 

. ( .. 
1 

sin(3a,u) . sin(Sli.,V) rgna J =-: sm CU,/,+ ~ ) ---r _ 
;T \ _J ) 

\ 

' .. ' 

' ) 
(2.8) 

Multiplying (2.8) by the arbitrary sine wave, (2.7), gives the Fourier components of 
the signal at the detector switch output. 

n-ccJ._)_5_ 

) v, [ . ) ( '] .::_:_ cos(ax - 11W/, - cos M + nru.,1) 
Jl!T 

(2.9) 

Equation 2.9 shows that the frequencies present after the detector switch are the sum 
and diftercncc of the switch frequency and the input sigml frequency and in the 
special case of OJ= cv,,, (2.9) simplifies to (2.4). 

If the low pass filter swge is constructed with a corner frequency, w,. ( = I/ RC) << w,,, 
then the only surviving frequency components after the low pass filter will be the 
difference tcnns. 

V' -
,in 

wilh 

2// . L -'' cos( ax - n W/ ), 
nlf 1:=i.3.5. 

(2.10) 

(2.1 1) 

The restriction of (2.11 ), that the difference frequency must be less than the low pass 

filter corner frequency, defines the bandwidth of the detector equal to 2w,.. Figure 

2. 10 shows a plot of the analytical solution (equation 2.9, appendix 8.1) and physical 
data collected for a detector using l kHz modulation and a low pass filter with a corner 
frequency at !Hz. Note that figure 2.10 is not a plot of the transfer function of the 
demodulator but a plot of the contribution that sinusoids of various frequencies make 
to the output. The figure shows that signals synchronous with the detector switch ( or 
signals modulated at the detector switch frequency) have the most significant 
contribution to the demodulated output. Unwanted signals, with frequencies very near 
the modulation frequency, are still significantly large at the detector output and appear 
as low frequency ripple on the true signal. For this reason the modulation frequency is 
selected in a 'quiet' frequency range so that the effect of these unwanted signals is 
minimised. 
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Figure 2.10: The frequency and phase response of the synchronous detector. 
These data were calculated for a synchronous detector using l kHz modulation ( 0,1 = 
]kHz) and a low pass filter with a comer frequency at !Hz. The bandwidth of the 
dominant peak is 2Hz equal to twice the low pass filter comer frequency. The peak 
at 3u:i0 is predicted in equation 2.11 when w = 3WQ and n 3. The C+-c- program 
written to generate the data for the synchronous detector is given in appendix B.1 

2.3.4 THE ANALOGUE STAGE 

On the device, the synchronous detector was implemented using a modulation 
frequency of-1 kHz and a low pass filter comer frequency of 3.4Hz. The demodulator 
was a DG419 analogue switch connected to a passive first order low pass filter. Since 
the function of the synchronous detector does not depend critically on the selectivity 
of the low pass filter a simple filter design was chosen to minimise weight and the 
circuit board area required. 

The remainder of the analogue circuitry (figure 2.11) is concerned with adjusting the 
signal levels so that they lie within the range of the analogue to digital converter (OV 
to 5V). The two input signals from the sensor head were converted into four outputs, 
signal-out, high-gain signal, pulse signal and the temperature signal. The first two of 
these were for LED measurements. The signal-out output was calibrated for the 
950nm, 880nm, 660nm and 625nm LEDs and the high-gain output was for the shorter 
wavelength LEDs (605nm and 590nm) from which the signal strengths were much 
weaker. The pulse signal output was designed to amplify the signal oscillations to 
improve the computation of the pulse period (section 3.4). Most of the de offset was 
removed by level shifting the signal to approximately 0.1 V and then amplifying by a 
factor of 19. This increased the ac component of the waveform while keeping the 
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signal within the digitisation range. Finally, the temperature signal output was 
designed to increase the sensitivity of the temperature sensor by subtracting a de offset 
and increasing the sensitivity from 1 Orn V/K to 40m V/K. This meant that the 
temperature sensor was no longer directly calibrated in Kelvin but temperature 
measurements became four times more sensitive. 

Temperature 
Signal In 

Photodiode' ac x11 
Signal In ""1Couplingr-· Amp ---

Level Shift! Temperature 
+ x4 ·- Signal Out 

,---------·- Signal Out 

Low Pass ' X11 ac Level shift . 
, Demodulator, Filter ·-· Amp ·-,-:coupling·· +x19 Amp·-Pulse Signal 

-' ·1 ________ .. __ X11 Amp ... High Gain Signal 

Modulation 
Signal~-.... _____ .. _____ _ 

Figure 2.11: The amplification and filtering stage of the device. This analogue 
section of the device converts signals from the sensor head into measurable signal 
outputs ready for digitisation. A complete circuit diagram is given in appendix C.3. 

2.4 Digital Circuitry 

The control unit's digital circuitry consisted of four functional blocks; the 
microcontroller, analogue to digital conve11er (ADC), real time clock (RTC) and serial 
EEPROM (figure 2.12). The latter three (slave devices) were connected to the 
microcontroller (master device) using the Motorola Serial Peripheral Interface (SPI) 
[ l 9] [20] which is a three-wire system for communication between digital devices. A 
complete circuit diagram for the digital circuitry is given in appendix C.4. 
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Figure 2.12: The digital circuit components. Each of the slave devices (RTC, 
ADC, memory) were connected to the microeontroller via the serial peripheral 
interface (indicated by Serial Comms). 
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For the microcontroller to send and receive data from any slave device it first had to 
deselect all other devices connected to the serial data lines to avoid data collision. 
Once a single slave device was selected, data were transmitted and received bit by bit, 
synchronised by the serial clock (figure 2.13). When 8 bits had been shifted, two 
complete bytes of data were been swapped between the master and slave device. In 
each case the received byte was transferred to a data buffer which was then internally 
accessible by each device. Using this form of communication the microcontroller was 
able tQ sample data using the ADC, at timed intervals controlled by the RTC, process 
the data and store the results into memory. 

I Master device I 
, I 

I device select i 

Slave device I 
I 

I ~----------~ 

I r-~,
1 
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i b~~=r I ic---+-J --ll,b~a~=ri 

'I I.I i data in I I I I • 1 

1 

J1Jlf_-_----,c-lo-ck------J1Jlf 

Figure 2.13: Serial communication between digital devices using the '.Wotorola 
serial peripheral interface. 

2.4.1 SAMPLING AND DIGITISATION 

At the end of the analogue stage there were four outputs, each used depending on the 
measurement to be made (section 2.3.4; figure 2.11). These were connected to the 

of LTC 1594 analogue to digital converter [21], the features of which 
included 12-bit resolution, low supply current and automatic shutdown. A major 
consideration when selecting components for the device was power consumption 
(section 2.4.5.3). An attractive feature of this ADC is that it draws only 320µA during 
conversion and then drops automatically to approximately 1 between conversions. 
Therefore the ADC could remain constantly connected to the power supply and high­
resolution data could be sampled at any time without concern for power consumption. 

To collect a sample using the ADC, a byte (with the last 4 bits containing port number 
information) was sent while the chip-select pin was high (unselected). Before the next 
SPI clock cycle the ADC chip was selected (pin set low) and two consecutive bytes 
( 16 bits) were read by the microcontroller. The 12-bit sample value was retrieved by 
concatenating the two bytes and reading bits 2 through 13. The bits outside this range 
could be used for error detection. 

23 



2.4.2 THE MICROCONTROLLER 

The microcontroller used to control the device was the Motorola XC68HC7 l l E9Cf­
S2. This device was chosen because there was local knowledge and experience with 
the 68HC 11 and also because it was readilv available. A block diagram of the 

C ~ 

controller is given in figure 2.14 showing the functional blocks and input and output 
connections. Some of the features that prompted its use include: 

• 12k by1cs of erasable programmable read-only memory (EPROM) 
• S 12 byies of electrically erasable programmable read-only memory 

(EEPRO:VI) 

• 512 by1es of static RA.iv! 
• Serial peripheral interface (SP!) 
• Serial communication interface (SCI) 
• Eight channel 8-bit analogue to digital converter 
• 16 bit timer system with output compare timctions 
• Power saving mode via the STOP instruction 

In the final implementation of the device the control software ( chapter 3) was stored in 
the 12K by1cs of EPROM, the 512 b11cs of EEPROM were used to store measurement 
sequence information and the 512 b11es of RAM were used for system variables. 

2.4.2.1 Output-Compare 
The ·output-compare' functionality of the microcontroller was used to implement the 
modulation of the LEDs. Each output-compare had an associated register that was 
used to trigger an interrupt and optionally a pin on port A of the microcontroller. An 
output-compare was triggered when the value of the internal clock (represented by a 
16-bit free running counter) equalled the data held in one of the output-compare 
registers. 

LED modulation on the device was achieved using the first output-compare timction 
(OC l ). A special feature of OC l is the ability to control any of the pins of port A. 
During initialisation of the controller, OC I was configured to control pins 1 through 4. 
which were connected to the multiplexer on the sensor head (section 2.3.1) and to the 
demodulator of the synchronous detector (figure 2.11). LED modulation was initiated 
by setting the value of the OC 1 register to a time in the future. The state for port A 
was assigned into the OC 1 data register and the intemipt mask was removed. When 
the interrupt occurred, the contents of the OC 1 data register were mapped to the pins 
of port A and program execution entered the OC 1 interrupt routine. 

Within the interrupt routine, the value of half the modulation period was added to the 
OC 1 register so that the next interrupt would occur half a period later. The OC 1 data 
register was assigned a value of either zero or an LED address, depending on its 
previous state. 

Periodic sampling was achieved in a slightly different manner using output compare 5 
(OCS). In this case OC5 was not configured to control a pin of port A but only to 
generate an interrupt. A sample was acquired during the interrupt routine and the time 
period until the next sample was added to the OCS register. 
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Figure 2.14: Block diagram of the 68HC 11 E9 microcontroller. 

2.4.2.2 Interrupts 
Another feature of the microcontroller was the ability to assign the highest priority to a 
particular user intem1pt. The pulse measurement algorithm (section 3.4), used to 
calculate the period of a pulse wavefo1m, relied on the sampling frequency being 
known. This was ensured by assigning the highest priority to the sampl ing output 
compare intem1pt. Other interrupts used by the device were OC L (for LED 
modulation) and the external non-maskable interrupt XIRQ (for receiving status from 
the real time clock). 

2.4.2.3 Real Time Clock 
The Motorola MC68HC68T 1 real time clock (RTC) [22] was used for timing over 
long time periods, for power supply level sensing, and recovery from power saving 
mode (section 3.2.2.3). Periodic interrupts, alarm interrupts, and power sense 
interrupts generated by the RTC were communicated through the microcontroller's 
non-maskable interrupt pin. When one of these events occurred, the microcontro ller 
received an XIRQ interrupt. The interrupt service routine read a byte from the RTC 
containing status information that was saved in a system variable. It was then up to 
the operating system software to parse the status byte to determine the reason for the 
interrupt and to respond accordingly. 

2.4.2.4 Additional Features of the Microcontroller 
Five ports were available on the microcontroller (figure 2.14) each with a specific 
purpose. Port A was used in conjunction with the output compare function as 
described earlier in section 2.4.2.1. Port B was a general purpose output port used in 
this application to select between the various SPI devices (ADC and memory), to 
enable the analogue circuitry (section 2.4.5.2) and to shut down the system after 
detecting a failing power supply (section 2.4.5). Port C of the microcontroller is for 

25 



general purpose input and output but was not used in this application. The pins of port 
D were used for serial communication fo r both the SP1 and the SC[ (section 2.4.4). 
Through this port instructions were received from a computer, status was read from 
the real time clock and data were transferred between the ADC and memory. Finally, 
port E was the input to an 8 chatmel, 8-bit, on-chip analogue to digital converter. This 
ADC was fo und to have inadequate reso lution for this application and an external 12-
bit converter was used in it place. 

2.4.3 MEMORY 

The acquired data were stored in four banks of 32Kbyte EEPROM (AT25256 (23]) 
totalling 128Kbytes of avai lab le storage space. Each chip was connected to the SPI 
data lines and selected us ing port B of the microcontro ller. At one sample per second 
(each sample had 12 bits so two bytes were used to store each sample value) there was 
enough available storage for 17 hours of data collection. The rate of collection varied 
depending on the nature of the measurement sequence so by introducing a delay into 
the measurement sequence, extended collection periods were possible. 

Data were written to the memory chips using a 64-byte page write technique. Each 
memory chip had 64 bytes of RAM that could be mapped to any page boundary with in 
memory. This writing technique began by enabling the appropriate memory chip, 
sending a write enable command, deselecting the memory chip and then waiting until 
the chip entered the 'write enabled' state. Once in this state the memory chip was 
again enabled and a 16-bit address sent in the form of two bytes, most significant byte 
first. After this, the memory chip was ready co store consecutive bytes of data. When 
writing a data stream was completed or a page boundary was encountered the memory 
chip had to be deselected and then reselected in order ro continue writing data . The 
memory chips automatically returned to the write disabled state when deselected and a 
write cycle time of 5 to I Oms occurred before the next stream of data could be written. 
The sequence of sending a write enable command first, reduced the risk of accidental 
erasure of existing data in the event of a software error or microcontro ller malfunction. 
The memory chips were also designed to ·fail secure' so that if the power supply 
failed, data was not lost. 

The process of reading from memory was much simpler as data vulnerability was 
much less. The memory chip was selected and three consecutive bytes were sent, the 
read instruction followed by two address bytes (most significant byte first). Data were 
then continuously read (the paged implementation did not complicate the reading 
process) unti l the memory chip was dese lected. 1n the control software an interface to 
the four memory chips was created to hide the discrete nature of the memory and 
provide a contiguous memory model. The memory protection features, together with 
large capacity, small standby current (- 5µA) and surface mount package design made 
these memory chips ideal fo r this application. 

2.4.4 COMMUNICATION 

Transfer of instructions to the device and retrieval of data by a computer was achieved 
using the microcontroller's SCI. This feature of the microcontroller implements the 
RS-232 communication protocol using SV logic levels that were converted to the 
standard of 12V levels by a serial interface unit (section 2.4.5. 1, circuit diagram given 
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in appendix C. 7). A non-standard baud rate of 78 12 baud was used for nonnal 
communication between the microcontroller and the computer as this rate was one of 
the highest achievable fo r the microcontroller when using a 2MHz crystal (section 
2.4.5.3). In the special case of writing measurement sequence instructions to the 
microcontroller's internal EEPROM a communication rate of 300 baud was used to 
al low time fo r the longer wri te cycle of the EEPROM. 

Serial port communication software (TEmu) was written that could communicate at 
the non-standard rate of 78 12 baud as well as switch between the rates of 300 and 
7812 baud. This software was designed for sending commands and receiving data, 
rea l time viewing of data and debugging purposes (section 3.1 ). 

2.4.5 PO\VER CONSIDERATIONS 

The device was used in two states, the configuration state (power suppl ied externall y) 
and the measuring state (power suppl ied by on-board batteries). The power supply 
circuitry (figure 2.15) was designed to make a continuous transition from the external 
supply to the on-board supply as well as provide control over power supplied to 
regions of the device and feedback on the battery voltage status. These features were 
des igned to extend battery life by minimis ing power consumption and provide a clean 
shutdown of the system in the event of a failing power supply. 

2. 4. 5.1 Power supply sources 
Initially, while the device was connected to a computer for configuration, the serial 
interface un it supplied power (figure 2.16). A 12V lead-acid battery supplied both the 
serial circuitry and the device, thus making the whole system portable. Once 
configured, a jumper on the device was used to connect two 3.7V lithium thionyl 
chloride batteries that supplied power when the device was isolated from the serial 
interface unit and taken into the field. 

On-board supply 
(Two 3.7volt lithium - - - ----­

thionyl chloride 
batteries) 

..----------- Analogue enable 

Analogue circuitry 
power supply 

+5volts 

-5volts 

(closed when needed 
by the microcontroller) 

.,__ _______________ Voltage level sense 

External supply 
(regulated 8volts fr 
serial interface un 

om 
it) 

Digital enable 
(held closed by the 

external supply) 

' 

Digital circuitry 
power supply 

I r--I 
+5volts 

(used by RTC to detect 
failing power supply) 

Digital enable 
(held closed by the 

microcontroller) 

Figure 2.15: The power-supply schematic. Separating the power supplies into a 
digital and analogue supply had two main advantages: interference from switching 
digital components through the ground connection was minimised and the analogue 
region of the circuit could be shutdown as a means of conserving power. A complete 
circuit diagram of the power supply is given in appendix C.6. 
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2.4.5.2 Power considerations on the device 
Supply lines that provided power to the digital circuits were generally noisy due to the 
switching of digital logic levels. For this reason the power supply was separated into 
two branches immediately after the battery connection. One branch provided power to 
the digital components using a s ingle 5V regulator and the other provided 5V and - 5V 
using a CMOS voltage converter (ICL7660CBA) w ith two 5V regulators. An added 
advantage of thi s was that the analogue suppl y could be controll ed by the 
microcontroller allowing it to be shut down when the analogue c ircuitry was not 
required thereby reducing power consumption . This control switch is labe lled 
analogue enable in figure 2.15 and was connected to port B of the microcontrol ler. 

[ Computer ]~1-2v_ ....... Rs-~32 
Serial 

Interface 
Unit 

Backup Battery 

The Device 

Figure 2. I 6: Connectivity of a computer, the serial interface unit and the device. 
During configuration the device was supplied power by the serial interface unit and 
then by its on-board batteries during operation. 

2.4.5.3 Power saving 
As w ith any battery-operated system, a goal was to maximise the usefu l operating time 
through minimising the load on the batteries. The most signifi cant feature of the 
dev ice to help with this was the microcontro ll er's stop instruction wh ich, in co­
ordination with the real time clock, reduced the m icrocontroller 's load on the batteries 
to approx imately I OOµ A. When executed, the stop instruction caused all of the 
microcontroller's internal clocks and main oscillator to freeze placing the processor in 
a minimum-power standby mode, a state in which it stayed until a s ignal on the non­
maskab le interrupt pin was received. While in standby mode, all VO po1ts and internal 
registers retained their values and, as the microcontroller is a full y static device, after 
recovery from stop execution continued with the next CPU instruction. 

The other components that were continuously connected to the supply were the ADC 
that had an auto shutdown feature that reduced its load to approx imately l nA, the 
memory chips that drew 5µA each in standby mode and the real time clock that ran 
continuously drawing approximately 25µ A (all analogue circuitry was disconnected 
from the supply by the microcontroller's analogue enable pin). 

Another means of reducing power consumption was by selection of the 
microcontroller crystal frequency. During development a crysta l frequency of 8MHz 
was used but replaced in the final design by a 2MHz crystal thus reducing power 
consumption to a quarter of that used previously by the microcontroller. An effect of 
this frequency reduction was that the max imum sampling rate was reduced due to a 
limit imposed by the minimum number of CPU instructions that needed to be executed 
between sampling interrupts. 
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2.5 Construction 

In accordance with the design specifications, minimisation of the size and weight of 
the device was achieved using double-sided printed circuit boards (PCBs) and surface 
mount components. Important aspects of the layout for the main control unit and 
sensor head were separation of noisy digital tracks from analogue signal tracks, 
separate ground tracks for the analogue and digital components to further reduce 
electrical interference and minimising necessary PCB area. Figure 2.17 is a block 
diagram of the functional regions in the final layout (for complete PCB layouts see 
appendix D) and shown in figure 2.18 are photographs of the completed device. 

Current to 
Voltage 

( Common edge) 
(a) 

Microcontroller 

(b) 
(Common edge) 

Figure 2.17: The functional regions of the PCB layout for the control unit (a) 
from above and (b) from below. 
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Figure 2.18: Photographs of the completed device from (a) above and (b) below. 
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Chapter 3 

Control Software and Algorithms 
In order to control the microcontroller, assembly language software was written that 
provided a user interface and a script language interpreter, controlled lower level 
hardware and performed data processing. The assembly language used was the 
Motorola M68HC l l instruction set [ 19)[20]. 

The interactions between user files, software and hardware are shown in figure 3.1. 
Script fi les were processed by a conversion program turning them into valid assembly 
language that was then assembled and transferred to the device via the terminal 
emulator program. At the completion of a measurement sequence, data were retrieved 
from the device in hexadecimal format, and converted into a more usable format using 
another conversion program. 

The operating system source code was assembled and then loaded into the EPROM of 
the microcontro ller using the Motorola PCBug 11 software and a development 
programming board. After the microcontroller was programmed it was removed from 
the programming board and inserted into the device. 

Script 
File 

Terminal 

Script Language 
to Assembly 

Language Converter 
Operating 

System 
Code 

M68HC11 E9 
Assembler 

Motorola 
PCBug11 v3.42 

......,_~Chip Programming 
Software 

Emulator 1--------' 

Serial 
6:::====:::;::====~r----, Communication 

Hexadecimal to 
Result File Converte Results! 

Figure 3.1 : System overview. The dotted line indicates physical movement of the 
microcontroller between the programming board and the device. 
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3.1 The Logical Model of the Device 

The device had two regions of memory and a process that executed commands from 
one region (the measurement sequence memory) to generate results that were stored in 
the second memory region (the result memory). A list of measurements were created 
(using the scripting language described in section 3.3), compiled and loaded into the 
measurement sequence memory. Sequence execution was initiated using the run 
command and, at the completion of the measurement sequence, the device was reset 
and the acquired data downloaded from the result memory through the serial port. 

Computer 

The Device 

Result 
Memory 

128Kbytes 

Result 
Memory 
Pointer 

Person 

Write through 
mode 

f,lll._....,
11111 

Executing 
Program 

Measurement 
Sequence 
Memory 

Figure 3.2: The log ical model of the device. Arrow weighting indicates the relative 
amounts of data transfer. 

The logical model of the device showing the various elements with which the user 
interacts is given in figure 3.2. A serial port terminal emulation program (TEmu) was 
written specifically for communication with the device. It used a first in, first out 
cyclic buffer to send and receive data to and from the computer's serial port [24]. A 
window within the TEmu program displayed text sent from the device and was used to 
input commands. Initially, a help screen and command prompt sent by the device, was 
displayed in the TEmu communication window. Commands were then entered that 
performed the instructions given in table 3 . 1. 
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The commands issued to the device using TEmu were sent, via the serial port, to the 
microcontroller operating system. Typically, a measurement sequence was first 
uploaded to the device where it could be edited or displayed using the measurement 
sequence memory operations (table 3 .1 ). Device-dependent variables such as the 
system clock, result memory pointer and operating mode were configured and then 
execution of the measurement sequence was initiated. At this stage, TEmu was used 
to interpret and plot data sent back during real-time operation or once the 
measurement sequence had completed, TEmu was used to download the results and 
save them to file. 

Table 3.1: Operating system commands. The assembly code for each instruction is 
listed in the appendix indicated. 

Instruction Instructions Keystroke Source Code 
Class Reference 

Measurement Load a measurement sequence L E.6.3 
Sequence 
Memory Erase a measurement sequence E E.6.12 
Operations 

Output the contents of measurement sequence 0 E.6.4 
memory 
Modify single consecutive bytes of measurement M E.6.6 
sequence memory 

Fill measurement sequence memory with a specific F E.6.7 
value 
Run a measurement sequence G E.6.1 

Result Memory Output the contents of result memory D E.6.5 
Operations 

Fill result memory with a specific value E.6.8 

Set the result memory pointer p E.15.13 

System Clock Set the system clock s E.6.10 
Operations 

Display the current system time T E.6.9 

Serial Toggle communication baud rate between 7812 and B E.6.11 
Communication 300 

Data Collection Toggle write through mode w E.l 

Debugging Manually set the system status register (debug u E.6.14 
Operations mode) 

Run from EEPROM (debug mode) R E.6.2 

Help Display the help screen and system status H E.l 
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In addition to the simple use of the system described above, there were various 
functions that were required by the hardware or added flexibility to the device. These 
included functions to display data as it was collected, set and display the system clock, 
change the communication rate, display the help screen and provide debugging 
facilities. A complete source code listing of the operating system commands are given 
in appendix E.6 

3.1. 1 Setting write-through mode and the result memory pointer 
As well as storing data to memory, the device could display measurement results in 
real time. This was called write-through mode as data to be stored in result memory 
was also written to the serial port. Using TEmu, these data could be plotted to 
generate graphs for real-time use or to help with debugging. The displayed data were 
sti ll written into result memory so they could be downloaded at a later stage. Write­
through mode was set or cleared using the 'toggle write-through mode' command 
(appendix E.1) and its status was viewed using the help command. 

The result memory pointer allowed data to be written starting from any location in 
memory. For reasons described in section 3.2.2.2 the result memory pointer consisted 
of a segment value that ranged from l to 4 and an offset value ranging from 0000 to 
7FFF. The value of the pointer was assigned using the set command (appendix 
E.15.13) and displayed using the help command. 

3. I .2 Setting the system clock 
The system clock could be set by or displayed for the user. It was also called upon by 
the executing program to fac ilitate the timing of measurements , delay between 
measurements and power saving features (section 2.4.5). After the device had been 
reset, the system clock had to be initialised to the correct time (appendix E.6.10). 

3. I .3 Communication rate 
Normal communication between the device and the terminal emulator program was at 
7812 baud (section 2.4.4). However, as measurement sequences were loaded into the 
microcontroller's EEPROM, a slower rate of 300 baud was required to allow for the 
slower programming rate. The toggle baud rate command (appendix E.6.11) modified 
a specific register in the microcontroller to change the communication rate between 
7812 and 300-baud. 

3.1.4 Help Command 
The help command was used to display the current system status and to list the user 
commands. System status consisted of the value of the result memory pointer and the 
individual bits of the system status register (table 3.2). The help command displayed 
the status information, waited for a key to be pressed and then displayed the user 
commands as in the help screen displayed on start up. 

3.1.5 Debug mode 
During the development of the device, it was necessary to test and debug various 
functions of the operating system. These debugging facilities will be useful for further 
development of the device and so remain a part of the available commands. 
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Modification of a program in EPROM involved erasing the existing program through 
exposure to UV light (recommended exposure time of approximately 40 minutes 
(Dykstra, R., personal communication) and electronically reprogramming the EPROM 
using the programming board (figure 3.1). To avoid this procedure the 
microcontroller's EEPROM was utilised which could be erased and reprogrammed 
using the internal hardware of the microcontroller (reprogramming time of 
approximately 1 minute). The functions to be tested were loaded into the EEPROM 
and either executed directly using the run from EEPROM command (table 3.1) or 
referenced from within the main program via branch vectors. The use of branch 
vectors, which were also used in programming the interrupt routines, allowed the test 
routines to be modified without affecting the absolute addresses within the operating 
system code. Branch vector use (figure 3.3) involved a function call that caused the 
program counter to jump to a fixed address in the last bytes of EEPROM where there 
was a jump instruction that pointed to the start of the function body. This jump 
instruction was called the branch vector and the value to which it pointed could be 
changed without having to change the jump address in the main program. 

Table 3.2: The association of bits in the system status register. 

Bits Description 
0 

I 
2 

3 
4 

5 
6 
7 

The escape character has been entered by the user to abort 
the current command 

The current baud rate is 300 (set) or 7812 ( clear) 

Echo characters received through the serial port 

Not Used 

Write through mode on (set) or off ( clear) 

Not Used 

Line feed character sent with carriage return 

The crystal frequency used is 2MHz (set) or 8MHz (clear). 
For debugging using the Motorola programming board 
(8MHz). 

( 
~ 
0 
0::: 
a.. 
UJ 

~ 
0 
0::: 
a.. 
UJ 
UJ 

Operating 
System 

funct1n call 

i 

Test Functio, 

Branch Vector ,. 

Figure 3.3: Branch vector use in operating system debugging. 
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3.2 The Microcontroller Operating System 

The main functions of the operating system were to allow communication between the 
device and a computer, to interpret and execute measurements found in the 
measurement sequence memory and to manage low level interaction with the 
hardware . There were four module classes (figure 3.4): control, measurement 
sequence instructions, system data and hardware. Of these, the highest level were the 
control modules that called upon the hardware modules to perform the functions of the 
operating system. The sequence execution module called upon the measurement 
instruction modules to execute each instruction as they were read from measurement 
sequence memory. 

3.2.1 CONTROL MODULES 

3.2.1 .1 Operating System 
This module linked the other components into a single program. It began by 
initialising and configuring the microcontroller mode, operating system variab les, 
system interrupts, serial communication and the system clock. It then entered a simple 
two-state loop in which commands were fetched and then executed. The commands, 
received from TEmu via the serial port, were interpreted within the main loop and then 
transferred to the appropriate function within the command module. Global data, 
interrupt vectors and variable definitions were linked into this module making them 
avai lable to the rest of the program. 

3.2.1.2 System Initialisation 
This module was the first to be run after a device reset. A register was set in the 
microcontroller defining the RAM and register memory regions within the address 
space. It then determined which features of the microcontroller were active, set the 
priority of interrupts and the phase and polarity of the clock used for communication 
between the other connected devices . After the microcontroller-dependent 
initialisation had finished, the operating system variables were set to their defaults. 

3.2.1.3 Command 
Contained in this module were the functions that performed the commands provided 
by the operating system module (table 3.1). When a command was received, the 
operating system module invoked one of the command module functions to perform 
the desired task and return control back to the operating system module. These 
command routines were constructed using the functions provided by the hardware 
modules (grey, round ended boxes in figure 3.4). 
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3.2.1.4 Interrupts 
The interrupt driven processes included the modulation of the LEDs, sampling and the 
interaction with the real time clock (section 2.4.2.3). The interrupt service routines 
associated with these three processes were located in this module. 

Steady modulation of a particular LED was achieved using the output compare 
function of the microcontroller (section 2.4.2.1) and a global variable containing the 
LED to be modulated. Within the service routine associated with the output compare 
function, the next interrupt was set to occur half the modulation period later and the 
state of LED was switched based on its current state. When the next output compare 
interrupt occurred, this process repeated and the LED was modulated at the 
modulation frequency. As this process occurred independently of the main program, 
control of an LED for the light scattering measurements was reduced to selecting a 
particular LED and activating the output compare interrupt. 

The sampling interrupt routine worked in a similar fashion but, rather than toggling an 
LED, a sample was acquired from analogue to digital converter. The sampled value 
was stored in a global variable along with the number of samples acquired (the sample 
count was incremented by one every time the sampling interrupt occurred). To the 
rest of the program these registers contained a sample value and a count variable that 
increased every time the sample value changed. A function that read these values 
could calculate the time elapsed between two measurements by knowing the sampling 
frequency and the number of samples acquired. 

The third interrupt routine services the non-maskable interrupt, which was connected 
to the interrupt line of the real time clock (section 2.4 .2.3, section 3.2.2.3). The main 
purpose of this interrupt was to awaken the microcontroller from power saving mode 
(section 2.4.5.3) at the completion of a delay period. When an interrupt from the real 
time clock was generated, an internal byte was set that held the status of the clock and 
the reason for the interrupt. The interrupt service routine read this byte and stored it in 
a global variable for the operating system to interpret if necessary. When the real time 
clock was used simply as an alarm the interrupt service routine was not called. 

3.2.1.5 Sequence Execution 
The sequence execution module was essentially a program that ran using the facilities 
provided by the operating system. When initiated with the run command, the 
sequence execution module read instructions located in the measurement sequence 
memory, interpreted any associated parameters and then called one of the 
measurement sequence instruction modules to perform the measurement. The 
program worked in a similar way to the main operating system loop except that its 
input commands came from the interpreted measurement instruction codes (table 3.6, 
section 3.3) retrieved from the measurement sequence memory. 
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3.2.2 HARDWARE MODULES 

3.2.2.1 Serial Communication 
This utility module provided the functionality (table 3.3) necessary for communication 
with TEmu utilising the microcontroller's on-chip, asynchronous serial 
communications interface (SCI). Included were functions to initialise the SCI (set the 
baud rate, number of data bits and necessary interrupts (section 2.4.4)), read and write 
in various formats ( character, byte, word, binary byte and a null terminated string), 
and timing dependent communication functions. 

Table 3.3: Functions provided for serial communication 

Function Description Appendix 
name reference 
Serialinit Initialisation of the serial port E.17.l 

Inbin Read a binary number E.17.4 

Inhex Read a hexadecimal number E. l 7.3 

lnword Read a double hexadecimal number E.17.2 

Inchar Read a character E.1 7.5 

Outword Write a double hexadecimal number E.17.6 

Outhex Write a hexadecimal number E.17.7 

Outbin Write a binary number E. 17.8 

Outstr Write a string E. 17.9 

Outchar Write a character E. 17. 10 

SClwaitw Wait for the transmit buffer to empty E.17 .11 

SCiwaitr Wait for the end ofa stream of input E. 17.12 

Return Write a carriage return E.17.13 

Space Write a white space E.17 .14 

3.2.2.2 Memory 
The routines of this module interacted with the 128 Kbytes of serial EEPROM. As 
described in section 2.4.3, the serial memory consisted of four separate memory chips. 
The purpose of the memory module was to make this appear as one contiguous 
memory block referenced by a segment and offset. The interface provided for 
memory access involved activating the memory at the location pointed to by the result 
memory pointer (Mem Won, MemRon), reading and writing using the memory access 
commands (SaveB, ReadB, SaveW or ReadW (table 3.4)) and then deactivating 
memory (Mem Woff, MemRoff). 
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The 64 byte paging technique used by the memory chips (section 2.4.3) was handled 
automatically by these save and read routines. For every byte read or written the result 
memory pointer was incremented by one and, as the end of a memory chip was 
reached, roll over to the next memory chip is handled automatically. 

Table 3.4: Functions provided for the use of the result memory. 

Function Description Appendix 
name reference 

MemWon Tum on memory ready for writing of data at the location E.15.1 
pointed to by the result memory pointer. 

SaveB Write a byte to serial memory E.15 .2 

SaveW Write a word to serial memory E. 15.3 

MemlncW Increment the result memory pointer allowing for switching E.15.5 
between memory chips 

MemWoff Tum off memory E.15.4 

MemRon Tum on memory ready for the reading of data at the location E.15 .6 
pointed to by the result memory pointer 

ReadB Read a byte from serial memory E.15 .7 

ReadW Read a word from serial memory E.15.8 

MemlncR Increment the result memory pointer allowing for switching E. 15.10 
between memory chips 

MemRoff Tum off memory E .15.9 

MemRdy Wait for the completion of a memory write E.15.11 

MemStatus Return the status register value of a memory chip E.15 .12 

GetMem Ask the user for a result memory pointer value E.15.13 

MemDisp Display the current result memory pointer in the format E.15 .14 
memory segment : memory offset 

3.2.2.3 Real Time Clock 
The real time clock is a serial peripheral device with registers that held the current 
time and the alarm time. The operating system functions used to initialise the clock to 
the correct time modified these registers (table 3 .1 ). The major use of the real time 
clock was for the delay instruction that used the alarm feature to switch the 
microcontroller out of power saving mode (section 2.4.5.3, section 3.2.1.4). The 
interrupt line of the real time clock was connected to the non-maskable interrupt line 
of the microcontroller and was triggered when an alarm occurred. To activate an 
alarm the appropriate registers were set to a future time and the alarm interrupt was 
unmasked. 

The real time clock could also generate periodic interrupts ranging from once a day to 
every 0.488ms. This feature was used in a different delay method in which the clock 
was set to interrupt every 0.977ms and the resulting interrupts counted until the 
desired delay had elapsed. The other functions within this module facilitated writing 
to or reading from the real time clock registers and activating or deactivating the alarm 
or periodic interrupt. 
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3.2.2.4 Sampling 
Interaction with the analogue to digital converter (ADC) and the process of acquiring a 
sample was simplified by the functions contained in this module. Similar to the 
interface provided for memory use, acquiring a sample involved activating the 
sampling process (Sampleon or ADCon), reading the sample value from the global 
variable (updated by the sampling output compare interrupt (section 3.2.1.4)) and then 
deactivating the sampling process (Sampleoff or ADCoff) (appendix E.14). As the 
ADC was an SPI device, it had to be deactivated before a write to memory was 
attempted (section 2.4). This introduced two scenarios for use of the ADC, one was 
the complete initialisation of the sampling process in which the sample count was 
reset, the analogue circuitry was enabled, serial clock phase was set, the ADC was 
activated and the sampling output compare interrupt was unmasked. The other was 
when the ADC had to be deselected in order to write to memory but the sample count 
value had to be retained and the analogue circuitry should remain enabled to avoid the 
start-up stabilisation time. The two pairs of functions designed for this, 
Sampleon/Sampleoff and ADCon/ ADCoff, were used for each case respective ly. A 
typical use involved calling Sampleon to begin a series of measurements. Acquired 
data were stored to the result memory during this period by deselected the ADC using 
ADCoff, writing the data to memory and reactivating the ADC using ADCon. At the 
end of the measurement period Sampleoff was called to disable the analogue power 
supply and shutdown the ADC. 

3.2.2.5 Utilities 
This module included routines that were not speci fie to any of the other module types 
(table 3.5). The first two of these, Anenable and Andisable, were used to control 
power supplied to the analogue circuitry. They were called by the sampling routines 
so that the analogue circuitry was only active while a sample was collected. The next 
group of routines, Addtime, Wordmul, Roldw and Cmptime were all functions called 
by the pulse-measuring module (section 3.4). They performed simple arithmetic 
operations on 16-bit (word) and 32-bit (double word) variables that were not included 
in the M68HC 11 instruction set. Since sampling was done using a 12-bit ADC 
(section 2.4.1), all processing of the acquired data used 16-bit operations. Addtime 
added a word value to the accumulative double word time variable. Wordmul 
multiplied two words together leaving a double word. Roldw rotated the bits of a 
double word left by a specified number and Cmptime compared a specified number of 
multiples of a word value against the accumulative time variable returning a greater 
than, less than or equal to condition. Cyclic buffers were used extensively by the 
pulse-measuring module and so the Cycinc routine was written that incremented a 
memory pointer and automatically reset it back to zero when the maximum size of the 
buffer was reached. 
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Jumpback was a debugging function designed to be used at the end of a series of test 
functions in the microcontroller EEPROM. It worked by pushing values onto the 
system stack and calling a 'return from interrupt' instruction which, in tum, pulled 
these values from the stack to resume program execution. The values were chosen so 
that program execution would start at the beginning and so the function acted like a 
software reset. 

The sleep function was called to switch the microcontroller into power saving mode 
(section 2.4.5.3) after all serial communication had finished. Once in the power 
saving state the microcontroller could only be reactivated by a non-maskable interrupt 
generated by the real time clock. This routine was called from the delay instruction 
(section 3.3) and was quite different from the other delay routines in this module. The 
first of these, Delay (appendix E.18.4), used the periodic interrupt of the real time 
clock to generate interrupts that were approximately one millisecond apart which it 
then counted until the desired delay period had passed. This function could pause for 
periods of lms to 64s . Bloop was a simple 'busy wait' routine used for relatively short 
pauses of 1 Oµs to l.8ms and the Waitkey routine waited for a character from the serial 
port. The last delay function in this module is the Dlyl O routine that was used to put a 
fixed period between successive writes to EEPROM. This function was called by the 
memory module ( appendix E. 15) when saving data to result memory and by the write 
routine (appendix E.18.15) when saving bytes to the measurement sequence memory. 

Function 
name 
Anenable 

Andisable 

Addtime 

Cmptime 

Wordmul 

Roldw 

Cycinc 

Jumpback 

Sleep 

Delay 

Bloop 

Waitkey 

DlyIO 
Write 

Qkgett 

Upcase 

Error 

Table 3.5: General utility functions. 

Description 

Enable the analogue circuitry 

Disable the analogue circuitry 

Add a time interval to the global variable time 

Compare multiples of a time interval with the global time variable 

Multiply two words together resulting in a double word 

Roll a double word left 

Increment a word pointer cyclically. 

Software reset 

Put the microcontroller in power saving mode 

Delay using the periodic real time clock interrupt 

Busy loop delay 

Wait for a character from the serial port 

Delay for I O milliseconds 

Write a byte to RAM or EEPROM 

Display current time without pausing for a key stroke 

Convert a character to upper case 

Display an error message 

Appendix 
reference 

E.18.1 

E. 18.1 

E.18.8 

E.18 .9 

E.18.11 

E.18 . 12 

E.18. 10 

E.18.2 

E.18.13 

E.18.4 

E.18.5 

E.18.17 

E.18.6 

E.18.15 

E.18.3 

E.18.16 

E.18 .18 
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The remaining functions of this module are Qkgett, Upcase and Error. Qkgett was 
called before entering a measurement sequence to display the time that the 
measurement sequence began. Usually, it acted to remind the user that the system 
clock had not been initialised. Upcase converted characters to upper case, and Error 
displayed a particular error message based on the error code it was passed. 

3.2.3 MEASUREMENT SEQUENCE INSTRUCTIONS 

The measurement instruction modules included pulse measurement, light scattering 
measurement, temperature measurement, delay, loop and timestamp. The first of 
these, pulse measurement, is described in greater detail in section 3.4. The next two , 
light scattering and temperature measurement, used similar algorithms which, for the 
light scattering case, is given in figure 3.5. The routine began by calling the Sampleon 
function (section 3.2.2.4) to activate the analogue circuitry and enable periodic 
sampling. It then immediately checked whether enough measurements had been made 
which allowed for the boundary case of zero measurements. For every measurement 
there was the option to average over a series of samples and once the average value 
had been found the result was saved to result memory. When enough measurements 
had been made the routine called the Sampleoff function that deactivated the analogue 
circuitry and deselected the ADC. The only difference between the light scattering 
measurement and the temperature measurement was that the temperature sensor was 
selected instead of the photodiode. 

The delay instruction was responsible for shutting down the microcontroller between 
measurements and minimising power consumption thereby extending the overall 
operating time of the device. The routine began by taking the desired delay, adding it 
to the current time and saving the result in the alarm registers of the real time clock. 
The alarm interrupt mask was then removed and the sleep function called, placing the 
microcontroller in power saving mode (section 2.4.5.3). When the real time clock 
reached the alarm time it generated an interrupt that reactivated the microcontroller 
ready for the next instruction. 

Loops came in two forms, infinite and finite. In measurement sequence memory these 
were stored as an instruction code, a branch offset and the number of loops remaining. 
If the value containing the number of remaining loops was zero it was interpreted as 
an infinite loop and the sequence counter was moved back by the amount stored in the 
branch offset. Otherwise, if the number of remaining loops was non zero the value 
was reduced by one and the sequence counter was again moved back by the branch 
offset. When there was only a single loop remaining the loop count was set to 
negative one (FFFF), if this value was encountered the loop was ignored and the 
sequence continued with the next instruction. Therefore the maximum number of 
finite loops was 65534 (FFFE). When the remaining loop count was changed its value 
was stored back into measurement sequence memory. Consequently, executing a 
sequence with finite loops more than once required the number of remaining loops to 
be modified each time either by editing the individual bytes (modify byte command; 
tab le 3. I) or through reloading the measurement sequence. 
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The time of each measurement occurrence could be calculated by summing the delays 
within a measurement sequence and then adding this to the starting time of the 
experiment. However, for long measurement sequences, this would become 
increasingly inaccurate. The timestamp function overcame this by obtaining the time 
from the real time clock and saving it in result memory. This function was frequently 
used as the first instruction of the measurement sequence loop so that the acquired data 
could be correlated with behavioural patterns or other observations. 

Light Scattering 
Measurement 

Select an LED 

Initialise Sampling 

y 

Stop sampling 

>--+i Get a sample and 
its sample number 

Measurement finished 

Output sample 
value through 
the serial port 

Turn off ADC 

Turn on Memory 

Save sample 
value to result 

memory 

Tum off Memory 

Turn on ADC 

Delay 

Add the sample 
to the averaging 

buffer 

Get another 
sample 

Add sample to the 
averaging buffer 

Find mean of the 
averaging buffer 

Figure 3.5: The algorithm used to make light scattering measurements. 
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3.3 Measurement Scripting Language 

Flexibility was built into the device using a scripting language (table 3.6). A text file 
containing the desired sequence of measurements was created, converted into 
assembly language, compiled and uploaded to the measurement sequence memory of 
the device. In memory, each instruction was stored as an instruction code (table 3.6) 
followed by a series of parameters. The sequence execution module (section 3.2.1.5) 
interpreted the instruction code and read the number of subsequent bytes required for 
that particular instruction. The module then set variables inside the operating system 
to the interpreted values and called the appropriate measurement instruction routine. 

Table 3.6: The measurement sequence script language instructions. Further 
detai ls for each instruction are given in table 3. 7 

Instruction type Instruction format Instruction code Size /bytes 

Measurement PULSE Mbuf Pbuf thres to 10 6 
instructions 
(write to result LED 1..6 hrn d avr 90 .. EO 6 

memory) 
TEMP hrn d avr 20 6 

TIME timemask 60 2 

Sequence instructions DELAY hours mins sees 30 4 

LOOP label [number] 40 5 

END 00 

Hardware MEM segment offset 50 4 
configuration 
instructions SAMFREQ frequency 70 ... 

.) 

LEDFREQ frequency 80 3 

PORT port-number FO 2 

Debugging instructions WAITKEY 01 

BREAK.ENABLE 02 

Compiler directive ORG address NIA NIA 

The script language instructions were divided into four distinct groups, measurement, 
sequence, hardware configuration and debugging instructions (table 3.6). The first of 
these groups, the measurement instructions, performed actual measurements, collected 
data and stored results into result memory. The format and number of data stored by 
these instructions depended on the parameters that succeed each instruction code 
(table 3.7). The sequence instructions related only to the script and affected the order 
or timing of the other instructions. Features of the device were selected using the 
hardware configuration instructions and the debugging instructions allowed step by 
step analysis of each script language instruction during development. The final script 
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instruction, ORG, was used to indicate the location of this script file in measurement 
sequence memory and allowed for the possibility of multiple script files to be loaded. 

The script language instructions allowed for a large variety of measurement sequences. 
Specialised measurements for real-time collection of pulse, temperature, blood or 
tissue oxygenation data could be created using the infinite loop instruction and 
reducing all delays to zero. General long-term experiments that measured these 
physiological variables over several days were possible by minimising power 
consumption using the delay feature. As an example, table 3.8 is a listing of a script 
file that was used during field testing of the device (section 4.2). The important 
aspects of this script begin with the ORG instruction that tells the compiler to load the 
script into measurement sequence memory at address B600 (hex). A series of 
hardware initialisation instructions were then executed before the sequence entered the 
start-up loop. This finite loop was used to indicate that the device was operating 
correctly after detachment from the computer by switching between two LEDs. At the 
completion of the start-up loop the device was put into power saving mode for twenty 
minutes to allow time for attachment of the device to a penguin. Once the delay 
period had ended the result memory pointer was reset to the first byte in memory and 
the main experiment loop began. Each cycle of the main loop placed a time stamp in 
memory followed by a pulse measurement, the six light scattering measurements and a 
temperature measurement. The port instruction was used to select different leve ls of 
amplification for the pulse measurement and the shorter wavelength LEDs (section 
2.3.4). 

Table 3.7: The script language instructions with an explanation of their 
parameters. 

PULSE Make a real time pulse measurement (section 3.4). 

Mbuf The median buffer size. This value controlled the length of the input 
waveform used to calculate the median. Range 1 .. 64 (hex) 

Pbuf The period averaging buffer size. This value controlled the confidence in 
the period estimate by changing the number of periods averaged. Larger 
values reduce the likelihood of obtaining a measurement. Range 1,2,4,8 

Thres The maximum allowable deviation between the average period and values in 
the period buffer. Range I .. FF (hex) 

to Time Out. The number of sample periods between the use of the median, 
upper and lower quartile in calculation of the square wave. Range 
l .. FFFF(hex) 

Example PULSE 64 05 OA 0300 

LED1..6 
TEMP 

hm 

Make a light scattering measurement 
Make a temperature measurement 

'How many' samples to take. This corresponded to the number of values 
stored in memory. Range 1 .. FFFF (hex) 

d Delay, in units of0.977 ms, between each sample. Range O .. FFFF (hex) 

avr Number of averages taken for each sample. Range O .. FF (hex) 

Example LED4 OF A5 I OOO I 0, TEMP 0800 00 I O 08 
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Table 3.7: Continued. 

TIME Put a time stamp in result memory 

Timemask A byte (hex) containing a mask indicating which time values to store The bit 
ordering was 0,0,yr,mm,dd,hr,min,sec 

Example TIME 07 

DELAY Put the microcontroller in power saving mode for a specified time. 

Hours Hours of power saving mode 

Minutes Minutes of power saving mode 

Seconds Seconds of power saving mode 

Example DELAY 12 34 56 

LOOP Repeat a section of the sequence an infinite or specified number of times 

label Branch location. Label had to occur before the loop command. 

Number (Optional) Specified the number of times a loop was repeated. If omitted 
the loop was assumed to be infinite. Range O .. FFFF (hex) 

Example LOOP Start 0025 

MEM Move the result memory pointer 

Segment The memory bank to write to. Range O 1 .. 04 

Offset The offset into the memory bank. Range 0000 .. 7FFF (hex) 

Example MEM 01 0000 

SAMFREQ Set the sampling frequency 

freq The sampling frequency. Range 1 .. 1 OOHz 

Example SAMFREQ 100 

LEDFREQ Set the LED modulation frequency 

freq The modulation frequency. Range l .. 950Hz 

Example LEDFREQ 950 

PORT Select the sampling port (section 2.3.4) 

Portnum The port number. Range O 1..04. 01 = Direct, 02 = Level shifted and 
amplified, 03 = 10 times amplification, 04 = temperature sensor 

Example PORT 02 

W AITKEY Halt sequence execution until a key is pressed 

BREAK- Allow serial communication to interrupt a running sequence 
ENABLE 
ORG The location of a measurement sequence in memory. 

Address First address location. Range B600 .. B7FF (hex) 

Example ORG B600 

END End of the measurement sequence 
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Table 3.8: As an example, the script file used for field testing of the device 

ORG 

LEDFREQ 
SAMFREQ 
MEMORY 

STARTUP 

MAIN 

LED3 
LED6 
DELAY 
LOOP 
DELAY 
MEMORY 

TIME 
PORT 
PULSE 

PORT 
LEDi 
LED2 
LED3 
LED4 
PORT 
LEDS 
LED6 
TEMPERATURE 
LOOP 

B600 

950 
100 
01 0000 

0001000010 
0001000010 
00 00 01 
STARTUP 0025 
00 20 00 
01 0000 

07 
02 
64 04 10 0400 

01 

0008 0000 10 
0008 0000 10 
0008 0000 10 
0008 0000 10 
03 
0008 0000 10 
0008 0000 10 
0008 0000 10 
MAIN 

Set the program origin in measurement sequenc, 
memory 
Set the LED modulation frequency to 950Hz 
Set the sampling frequency to 1 OOHz 
Set the result memory pointer to the start o 
memory 

Flash LED3 and LED6 37 (25 hex) 
Times to signal that the device 
Is functioning properly 

Wait 20 mins before starting main loop 
Set the result memory pointer back to start 

Put a timestamp (hr:min:sec) into result memor) 
Select port two for a pulse measurement 
Make a pulse measurement 
Median buffer length = 100 
Period buffer length = 4 
Error threshold= 16 
Number of samples between using the median, 
upper or lower quartile = 1024 
Select port one for regular LED measurements 
8 measurements using the first LED 
8 measurements using the second LED 
8 measurements using the third LED 
8 measurements using the fourth LED 
Select port three for higher signal gain 
8 measurements using the fifth LED 
8 measurements using the sixth LED 
8 temperature measurements 
Continue the main loop ad infinitum 

3.4 Pulse Rate Calculation Algorithm 

To measure a pulse rate the device was configured to drive one LED and observe the 
resulting waveform. If a pulse signal was observed the waveform was periodic and an 
algorithm was needed to estimate the period. The simplest approach to the problem 
would be to store the entire waveform in memory, plot it at a later time and measure 
the period by hand. The memory limitations of the device precluded this approach and 
so a routine was required that could calculate the periodicity of the input signal and 
store only the result in memory. The algorithm implemented looked at the input signal 
in real time and used a level crossing technique to determine the period. 
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3.4.1 THE ALGORITHM 

A diagram summarising the steps of the algorithm is given in figure 3.6. Initially, all 
variab les and buffers were set to zero and the main loop began by reading and entering 
data into the median buffer. Data were added cyclically to this buffer so that a history 
of the waveform as long as the length of the buffer was maintained. At the same time, 
the number of samples taken so far (the sample-count value) was recorded for use later 
in the algorithm to determine the time e lapsed during a complete period. A rough 
measure of the algorithms running time was maintained by summing the differences 
between these sample-count values. The median buffer was then scanned to calculate 
the maximum, minimum, median, upper quartile and lower quartile. The length of the 
buffer had to be greater than a single period of the waveform so that the true minimum 
and maximum were calculated (figure 3.7). 

Input waveform 

Median Buffer 

Square wave averaging buffer 

P1 

Period averaging buffer 

Pl P2 P3 . 

Maximum allowable 
variation in period 

buffer 

Calculate Max, Min 
Median, Upper quartile, 

Lower quartile 

Square wave generated 
by comparing data 

with the median value 

Used for digital low 
pass filtering of the 
square wave buffer 

Period estimates obtained 
by measuring the transitions 

from high to not high and 
low to not low 

Period + maximum 
deviation 

Period value with 
---- an approximate 

estimate of error 

Figure 3.6: A graphical representation of the pulse rate calculation process. 
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Median buffer 
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Figure 3.7: The beginning of calculation of the maximum, minimum and median 
values from the waveform stored in the median buffer. The median value was 
calculated from the maximum and minimum values, for clarity, the upper and lower 
quartiles are left out of this diagram. Markers show the points where data crosses the 
median line. 

Having determined these values, the next point in the square-wave averaging buffer 
was a one if the current datum was greater than the median or zero if it was less. The 
algorithm, at this stage, was sensitive to waveforms that crossed the median more 
frequently than the true period (figure 3.8), a problem which was combated by 
comparing the datum with the upper or lower quartile. 

Max 

Med · ······· Med 

Min 

(a) (b) 

Figure 3.8: Example waveforms that posed a problem to pulse algorithm 
without the use of the upper and lower quartile in generating the square wave. 
Waveform (a) was observed when the sensor-head was attached too tightly and is 
suspected as the result of a combination of a pressure signal (upward spike) and a 
change in oxygen saturation (downward spike). During the development of the pulse 
algorithm and the device a triangular waveform was observed and waveform (b) is a 
noisy example. Waveform (c) is a noisy example of a typical waveform observed 
during testing of the device on humans. 
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The square-wave averaging buffer can be thought of as a digital low-pass filter used to 
generate the points of the smoothed square wave (figure 3.9). The algorithm searches 
for transitions in the waveform that occurred when neighbouring points of the 
smoothed square wave went from low to not low or high to not high indicating that the 
input waveform had crossed the median value. The levels for not low and not high 
were set at 10% and 90% of full scale (6554 and 58981 of65535) (figure 3.9). 

,I 

Figure 3.9: Transition points used to obtain period estimates. 

Period information was obtained from the transition points by recording the number of 
samples that occurred between each similar transition. This number was entered into 
the period buffer that was then scanned to find an average value and the maximum 
deviation from the average. If the maximum deviation was below a predetermined 
threshold then the number of samples between similar transitions was accepted as a 
valid period estimate. The most accurate period (i.e. the one with the smallest 
deviation from the mean) was found over the course of the pulse measurement. After 
a fixed number of repetitions, the input data were compared with the upper quartile 
and then with the lower quartile during the square wave generating phase in an attempt 
to improve the pulse rate estimate. Once the main loop had completed, the values 
saved were the number of samples that had occurred during one period of the input 
waveform and the number of samples by which this value may deviate. Since the 
sampling frequency was known, the period estimate could be converted into a true 
period (i.e. in units of time instead of sample multiples) by multiplying the number of 
samples by the sample period. 

3.4.2 ANALYSIS OF THE PULSE MEASUREMENT ALGORITHM 

The pulse measurement algorithm was recreated and tested using Matlab to determine 
the limits within which a pulse measurement could be made. The three aspects 
investigated where the effect of drift in the input signal, the characteristics of the filter 
used to generate the smoothed square wave and the algorithms limiting susceptibility 
to noise. 

As indicated in figure 3.7, the algorithm was dependent on the size of the median 
buffer. When the buffer was too small incorrect values for the signal maximum and 
minimum were obtained and small deviations in the input signal resulted in erroneous 
level changes in the square wave buffer. Conversely, if the median buffer was too 
long the input signal could drift away from the calculated median such that the signal 
no longer crossed the median value and no level changes were recorded in the square 
wave buffer. These two extremes imply that there was an ideal median buffer length 
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for which the effects of signal drift and level changes due to noise were minimised. 
This was investigated by using the level crossing technique described in the algorithm 
to generate a square wave from a simple sine wave with linear drift. Equation (3 .1) 
describes the input signal used where A is the signal amplitude, B is the drift gradient. 

Input Signal(x) = Asin(x)+ Bx (3.1) 

The effective length of the median buffer in relation to the input signal is a 
combination of the frequency with which the input signal is sampled and the absolute 
number of samples stored. A more logical description of the median buffer length is 
the fraction of one period stored. If, for example, the median buffer holds one 
complete period of the input signal then its effective length is the same if both the 
sample frequency and number of samples stored are doubled. 

For input signals with various amplitudes, a graph of the limiting drift gradient is 
given in figure 3.10. This graph represents the boundaries at which the input signal 
ceases to cross the calculated median value and therefore ceases to generate the square 
wave. The greatest impunity to drift and erroneous level crossings is achieved using a 
median buffer that contains between 1 and 1. 7 input signal periods. The Matlab 
program written to find these limits is given appendix B.3. 
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Figure 3.10: The boundaries for which each input signal ceases to cross the 
calculated median value and therefore ceases to generate the square wave. As 
the median buffer length decreases below I the susceptibility to noise when 
generating the square wave increases. Independence of drift as well as noise 
rejection is best achieved using a median buffer length of I to 1. 7 input signal 
periods. 
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Another major component of the pulse algorithm was the digital low-pass filter used to 
generate the smoothed square wave (figure 3.6). The frequency characteristics of the 
digital filter place a limit on the maximum measurable period so to determine the filter 
response, discrete signal analysis was used [25]. 

Equation (3 .2) is a function that describes the output of the digital filter (a finite 
impulse response filter) where y(n) represents the points of the smoothed square 

wave, 
1 y(n) = -[x(n)+ x(n-1)+ x(n- 2)+ ... + x(n-7)] 
8 

The steady-state transfer function corresponding to (3.2) is 

H(e jwT ) = 1 + e- jwT + e -2jwT + ... + e-7jwT 

8 

(3 .2) 

(3 .3) 

where _!_ is the sampling frequency. Equation (3.3) is a finite geometric series that 
T 

can be written as 

After some manipulation, equation (3.4) becomes 

( 
·wr ) (e 4jwT - e -4 jwT) -7jwT 

H e1 = ( i . i . J e 2 
- JWT --JtvT 

8 e 2 - e 2 

This result may then be expressed as amplitude (3.6) and phase (3 .7) functions 

A(w) = sin(4(1JT) 

8sin( w;) 
/J(w)= -7(1)T 

2 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

The frequency response of the digital filter is given in figure 3.11 for a sampling 
frequency of 100 Hz, the same sampling frequency used in the example script file 
given in table 3.8 
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Figure 3.11: Transfer function of the digital low-pass filter used in the pulse 
measurement algorithm. 

One of the effects of the digital filter was to place a limit on the maximum pulse 
frequency that the algorithm could measure. Figure 3. 12 shows how the algorithm 
begins to fail as the pulse frequency increased beyond the corner frequency of the 
digital fi lter. The corner frequency at 5.6Hz corresponds to a pulse rate of 336 beats 
per minute , a normal human pulse rate lies in the range of 50 to 180 beats per minute 
which corresponds to a frequency range of 0.83 to 3 Hz. Clearly, attenuating signals 
above the corner frequency does not influence the measurement of realistic human 
pulse rates. It was expected that the maximum pulse rate of the Ade lie penguin is also 
less than this corner frequency. 
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Figure 3.12: The performance of the pulse measurement algorithm as the pulse 
frequency increased beyond the corner frequency of the digital low-pass filter 
(based on the Matlab simulation given in appendix B.4). 
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Another important measure of the pulse algorithm was its performance with input 
signals of varying levels of signal to noise. This was investigated using sine and 
asymmetric square waves with added computer generated white noise as test signals. 
The asymmetric square wave approximates real signals observed during tests on 
human subjects. Figures 3.13 and 3.14 show the limiting signal to noise ratio at which 
the algorithm was unable to measure a pulse for the sinusoidal and square waveforms 
respectively. The chosen waveforms had a true period of 0.7s, similar to an average 
human pulse rate. The Matlab programs used for this simulation are given in appendix 
B.5. 

For the sinusoidal test signal (figure 3.13) the limiting signal to noise ratio was 
approximately 2 and in the asymmetric square wave case (figure 3.14), approximately 
2.8. In general, the input waveform should have a signal to noise ratio of greater than 
3 in order to expect a meaningful result from the algorithm. 

Finally, an example of the pulse algorithm applied to real data is given in figure 3 .15. 
The input signal was collected during testing of a prototype version of the device and 
is typical of real signals encountered by the pulse algorithm. In this case the subject 
was recovering from physical exertion and had a heart rate of approximately l 02 beats 
per minute. 
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Figure 3.13: The limiting signal to noise ratio for a sinusoidal input signal. Grey 
regions represent error in the measured period. It can be seen from this plot that a 
signal to noise ratio of greater than 2 is required in order to expect accurate period 
measurements. 
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Chapter 4 

Prototyping and Application 

4.1 Developmental Testing 

The device was developed in stages. Four prototype versions were built starting with 
a very basic emitter and detector system. Each prototype allowed specific aspects of 
the design to be tested. The final device incorporated the results obtained from the 
prototypes and was field-tested in Antarctica. 

4.1.1 EARLY PROTOTYPES 

The earliest prototype consisted of a 660nm LED, photodiode detector and amplifier 
connected to an oscilloscope. The source and detector were arranged in transmission 
mode and the signal was obtained through a human finger. The primary use of this 
system was to confirm that a signal, related to a pulse, could be obtained using an LED 
light source. Results from this prototype indicated that the detected signal strength 
was of the order of millivolts and noise susceptibility was strongly affected by changes 
in background light, skin pigmentation, electrical noise and skin temperature. 
Increased signal strength was achieved using a large area photodiode and two LEDs 
but noise susceptibility and a need for further improvement in signal strength led to the 
use of synchronous detection. 
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Figure 4.1 : The second prototype. With this system, sufficient signal strength was obtained using a 
single LED light source and the synchronous detection technique. This prototype was also the first to 
use reflectance mode detection. 

The second prototype (figure 4.1) used reflectance mode detection and consisted of 
two pairs of 660nm and 950nm LEDs arranged about the photodiode. The LEDs were 
modulated at 5kHz by a driver circuit constructed from a 555 timer and a J-K flip-flop. 
The resulting optical signal was coupled to a demodulator circuit consisting of an 
analogue switch (controlled by the clock output of the 555 timer), a low-pass filter and 
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a second amplifier. Again, the demodulated signal was displayed usmg an 
osci lloscope. The signal to noise ratio for the optical signal was improved 
significantly using synchronous detection which allowed the signal to be amplified to 
an acceptable level for digitisation and acquisition. Also, the second prototype 
indicated that sufficient signal strength could be obtained from a single LED. 
Therefore only single light sources were used for each wavelength in the subsequent 
prototypes. 

4.1.2 SIGNAL VERIFICATION USING AN ELECTROCARDIOGRAM (ECG) 

To confirm the biological value of the observed signals it was necessary to 
demonstrate a correlation between signals from the prototype and a recognised 
medical instrument. Data were collected simultaneously from both an ECG 
(electrodes attached to the right arm, chest and left leg) and the prototype device 
(optical signals obtained from the index finger or thumb) . The QRS complex in the 
ECG waveform, corresponding to depolarisation of the ventricles and hence blood 
flow into the aorta [26], coincides with the rapid drop in the absorbance signal due to 
an increase in oxygenated blood at the finger (point (i) in figure 4.2). The time 
difference between these two events, of approximately 0.2s, was due to the time 
required for the wave of blood to reach the finger. 
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Figure 4.2: The correlation between ECG data and the signal obtained from the 
second prototype. Measurements were taken simultaneously from the arm, chest 
and leg for the ECG and from the index finger or thumb for the second prototype. 
The QRS complex is related to blood flow and is correlated with the fall in the 
absorbance signal at point (i) (Delayed by approximately 0.2s). 
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A second example of the ECG and second prototype comparison (figure 4.3) 
illustrates the signal obtained for a subject with an increased heart rate (-93 bpm). 
More significant differences between figures 4.2 and 4.3 are the increased amplitude 
of the optical signal in figure 4.3 and the change of the waveform shape. Greater 
signal amplitude is likely to be the result of increased blood volume and the rise in 
absorbance (after point (i), figure 4.3) is consistent with an increased rate of oxygen 
consumption within the blood as a result of exercise. 
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Figure 4.3: ECG absorbance signal comparison for a subject with increased 
heart rate. Important differences from figure 4.2 in this signal are increased signal 
amplitude as a likely result of greater blood volume and the rapid rise in absorbance 
after point (i) indicating an increased rate of oxygen consumption. 

4.1.3 SOFTWARE DEVELOPMENT SYSTEM 

ECG 

With the signal level established the focus of development moved to the control 
aspects of the device. The third prototype system was constructed on printed circuit 
board and designed to attach to the Motorola 68HC 11 development board. This 
prototype had a sensor head similar to that of the final design and the LED modulation 
circuit was driven by interrupts from the microprocessor. The major advancement of 
this prototype, however, was signal acquisition using the on-chip, 8-bit, analogue to 
digital converter. This allowed testing of various software components including data 
sampling, signal analysis (in the case of pulse measurements) and communication 
between the prototype and a computer. By relaying acquired data to the computer, 
basic blood oxygenation and pulse measurement experiments were run that imitated 
the experiments to be run by the final device. One result gained from these 
experiments was the inadequacy of the 8-bit analogue to digital converter and the need 
for higher resolution sampling. As shown in figures 4.4, 4.5 and 4.6, the acquired data 
are severely resolution limited which prompted the use of the 12-bit analogue to 
digital converter in the final device. 
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4.1.4 BLOOD OXYGEN SATURATION 

By configuring the third prototype to continuously sample and relay the acquired data 
through the serial port, the terminal software (TEmu) could then perform the blood 
oxygenation calculations (equation 1.8) and graph the results. The sensor head was 
fitted to the wrist of the subject who, after a minute of signal stabilisation time, 
commenced physical activity by cycling an exer-cycle. After approximately two 
minutes the subject finished the exercise and waited for a resting breathing rate to 
return (figure 4.4). These events are reflected by changes in the oxyhaemoglobin 
concentration. 

The cellular demand for oxygen varies in proportion to the level of physical activity. 
This is indicated by the fall in oxyhaemoglobin concentration when exercise begins, 
(start of physical exercise, figure 4.4). This trend approaches the steady state 
condition where the cellular demand for oxygen is balanced with the oxygen delivery 
by haemoglobin. Physical activity ceased after approximately two minutes and hence 
the cellular oxygen demand decreases . This corresponds to the rapid increase in the 
oxyhaemoglobin concentration, ( end of physical exercise, figure 4.4 ). After another 
period of approximately a minute the subject 's heart rate and breathing rate return to 
normal and the saturation curve stabilises. 
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Figure 4.4: Blood oxygen saturation measurement for a subject undergoing 
approximately two minutes of physical exertion on an exer-cycle. As physical 
activity proceeds, the demand for oxygen increases and hence the blood oxygen 
saturation decreases. At the end of the exercise period the elevated breathing rate 
and reduced cellular demand for oxygen cause the blood oxygenation of the subject 
to rapidly increase corresponding in the rise at - l 90s. After 60s of rest the blood 
oxygenation levels stabilise. These blood oxygen data were calculated using the 
double wavelength equation, ( 1.8). 
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4.1.5 PULSE RA TE MEASUREMENT 

The pulse measurement algorithm was first designed and simulated using Matlab and 
the signals acquired from the ECG experiments. The major limitations taken into 
account when developing the algorithm for the microprocessor were integer 
computation and limited algorithm complexity due to speed and space restrictions. 
The algorithm was based on a digital filtering and level crossing technique that was 
sufficiently robust to accommodate input signals with noise. The algorithm was then 
implemented in the TEmu program and used with real time data from the third 
prototype to perform preliminary pulse rate measurements. Further refinements and 
optimisations were made based on these preliminary pulse measurements (such as 
level crossings based on the upper and lower quartile (section 3.4)), before the 
algorithm was implemented in assembly language for the final device . 
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Figure 4.5: Resting pulse signal. A result obtained from the pulse measurement 
algorithm implemented within the TEmu software that gave a heart rate of 77 (±2) 
bpm for this signal. 
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4.1.6 THE ST AND-ALONE PROTOTYPE 

With many of the control and hardware modules individually tested (section 3 .2. 1) a 
system was needed to amalgamate the various software components and allow final 
software development for the memory chips and 12-bit analogue to digital converter. 
This prototype was intended to be as close to the final device as possible therefore 
design aspects such as minimising physical size, connectivity between the device and 
a computer, and package construction were incorporated. The device was built using 
double-sided printed circuit board and the same electronic components that would be 
used in the final design. Since power to the device was provided by a battery supply, 
the power management circuitry was also developed. 

Significant development of the control software took place with this prototype as it 
was the first system to have enough programmable memory space to include the entire 
operating system. Using the branch vector technique (section 3.1.5), the memory and 
sampling modules were developed and software bugs that were not apparent during 
module testing were found and resolved. Once development was complete, six final 
version devices were built based on this prototype. 

4.1.7 TESTING OF THE FINAL DEVICE 

Blood oxygenation, tissue oxygenation and pulse-rate measurements were made using 
one of the six devices. A measurement sequence program that made a pulse 
measurement, six light scattering measurements using each LED and a temperature 
measurement repeatedly without delay was uploaded to the device. After the 
measurement sequence had begun and the sensor head was attached to the thumb with 
tape, approximately 5 to 10 minutes were spent resting before physical activity started. 
Increased heart rate and oxygen consumption were achieved by running up and down 
stairs for approximately 2 minutes, during which, breathing rate was controlled as 
much as poss ible. Initially, breathing rate was suppressed so that oxygen demand 
would outweigh the supply resulting in decreased tissue and blood oxygenation. 
When breathing rate suppression became too difficult, a normal breathing rate was 
used until the end of the exercise period. During the recovery period, an increased 
breathing rate was maintained so that oxygen supply to the tissue was now greater than 
the demand, resulting in a rise of the oxygen concentrations. Figures 4. 7 to 4.10 show 
the results collected during one of these tests. 

The raw data collected by each of the six LEDs are shown in figure 4.7. While each 
wavelength exhibits the same basic trends, there were noticeable differences between 
each signal during the exercise period. The relative changes in detected intensity for 
the 880nm and 950nm signals were greater than the change in the 660nm signal and 
similarly for the 605nm signal that varied more than the 625nm and 590nm signals. 
These relative differences were expected as the result of the changing oxygen demands 
during exercise that give rise to the changes in blood oxygenation and tissue 
oxygenation. 
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Figure 4.7: Intensity data acquired from the device. These raw signals show the 
relative signal strengths for each LED. While the same general trends are apparent in 
each signal, physical activity resulted in noticeable differences between each 
wavelength. 

The change in relative blood oxygen saturation, as calculated using the double and 
triple wave length equations (1.8 and 1.14), is shown in figure 4.8. The wave lengths 
used were 880nm and 660nm for the double wavelength calculation and 880nm, 
660nm and 625nm for the triple wavelength calculation. In each case there was a clear 
decline in haemoglobin oxygenation as a result of physical exercise that returned to 
normal once the exercise had finished. Although the change in blood oxygen 
saturation is more pronounced in the double wavelength measurement the signal also 
suffers significant baseline drift that is not present in the triple wavelength 
measurement. 

The affect of physical exercise on the reduction state of cytochrome oxidase was 
considerably less than its affect on blood oxygenation due to the greater opacity of 
tissue at the shorter wavelengths (590nm to 625nm). Consequently the signal had a 
lower signal to noise ratio and the oxygenation changes were less obvious (figure 4.9) . 
For the double wavelength calculation the wavelengths, 605nm and 625nm, were used 
and a reduction in the oxygenation signal can be seen during the exercise period 
although the correlation is not strong. For the triple wavelength measurement, the 
additional wavelength, 590nm, was used. As the magnitude of the changes in blood­
oxygenation were reduced in the triple wavelength measurement it is likely that 
changes in tissue oxygenation, calculated using the triple wavelength equation, were 
overwhelmed by noise. In both signals, however, the upward trend after the exercise 
period may be due to the increased supply of oxygen and reduced demand during the 
resting period. 
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Figure 4.8: Relative blood-oxygen saturation. Physical activity resulted in a clear 
decline in haemoglobin oxygenation that increased again once activity had fini shed. 
Noticeable differences between the calculation techniques are that the double 
wavelength measurement appeared to drift while the base line for the triple 
wavelength measurement was approximately constant. The difference in 
haemoglobin oxygenation, however, was more pronounced in the double wavelength 
measurement. 
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Figure 4.9: Relative cytochrome oxidase oxygenation. These data were calculated 
using wavelengths for which tissue opacity was greater and consequently the signal 
to noise ratio was lower. A downward trend in the double wavelength measurement 
is visible during the physical activity period but not obvious in the triple wavelength 
measurement for which the effects of noise appear to overwhelm the signal. After 
the exercise period, the upward trend could be due to the increased supply of oxygen 
and reduced demand by the cells. 

64 



The relative change in blood volume as a result of physical exercise is shown in figure 
4.10. The body's reaction to physical activity is to increase the supply of oxygen to 
the muscles. Increased blood flow is another means of achieving this so a rise in 
blood volume during the exercise period was an expected result. Even though there 
was obvious baseline drift in the signal, a marked increase in blood volume occurred 
while exercising that subsided to the normal level approximately 5 to 7 minutes after 
the activity finished. 
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Figure 4 .10: Relative blood volume. Apart from the drift in the signal, the blood 
volume clearly increased during the physical activity period and slowly returned to 
normal once the activity had finished. 

Pulse rate data from this experiment was inadequate due to noise introduced by 
movement of the sensor head during the exercise. In other experiments, where this 
movement was reduced (muscle tension exercises), more consistent pulse rate data 
were obtained (figures 4.11 and 4.12). 

From the waveforms used to calculate the pulse rate (example given in figure 4.11), 
variations are clearly visible at points (i) and (ii). These variations are possibly due to 
a reflected pulse that occurs as a result of the elasticity of blood vessels (point (ii), 
figure 4.11) [Machon, R., Veterinary science lecturer, personal communication]. The 
higher sampling resolution of the final device also shows a third reflected pulse at 
point (iv). 

Data obtained during a muscle tension exercise are given in figure 4.12. Initially the 
pulse rate increased rapidly to approximately 110 beats per minute. Once the exercise 
had finished, a normal pulse rate returned within about three minutes. As a 
consequence of sensor head movement, larger error estimates and fewer points were 
recorded during the exercise period. 
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Figure 4.11: A pulse waveform used to calculate pulse rate. The points of this 
waveform are received in real time by the pulse algorithm that attempts to find the 
signal periodicity. Points (ii) and (iv) indicate fluctuations in the waveform that may 
be due to second and third reflections of the initial pulse arising from the elasticity of 
the blood vessels. 
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Figure 4.12: Pulse rate measurement. From signals similar to that of figure 4.11, 
pulse rate information was calculated. In this experiment, the pulse rate rapidly 
increased as a result of physical activity and then gradually returned to normal once 
the activity had finished. Movement of the sensor head during a pulse rate 
calculation can disturb the pulse waveform and prevent the pulse algorithm from 
finding a result, hence the scarcity of points during the exercise period. The error 
bars in this graph indicated the pulse rate error estimates (section 3.4). 
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Finally, the response of the temperature sensor was investigated by the application of a 
heat source to the sensor head resulting in the temperature curve given in figure 4.13 . 
The initial rise in temperature within the first minute is most likely related to the 
heating effect of current flowing through the device. When placed in contact with the 
heat source the time constant for the device was 18.6s. Once the heat source was 
removed, approximately 15 - 20 minutes were needed for the sensor to return to 18° 
by dissipating its heat into the surrounding air. Temperature measurements made 
during exercise experiments or on nesting Adelie penguins were made on a larger time 
scale than 18.6s so the time constant was presumed acceptable. 
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Figure 4.13: Temperature measurement. Measurements were made over larger 
time scales than the 18.6s time constant and therefore should not significantly affect 
the temperature measurements. Other important considerations indicated by this 
graph were the need for good thermal contact and the stabilisation time needed to 
avoid the internal heating effects of the device. 

4.2 Field Testing 

Field testing, on the Adelie penguins in Antarctica, began on the 22nd of November, 
1999 using six of the final version devices. The initial intention was to use all six 
devices to perform the same experiment on six birds simultaneously so that typical 
biological responses could be compared with the· behavioural activities observed. This 
soon proved to be impractical however, due to the difficulties in tracking the 
instrumented birds as they moved within the large colonies. Once an instrumented 
bird was out of sight, the black coloured packaging of the device made it exceptionally 
difficult to relocate. Therefore, a single device was attached to a penguin and constant 
observation of its activities were maintained from a distance using binoculars. After a 
data collection period of 1 to 5 hours the bird was recaptured and the device retrieved. 
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Due to the nature of this experimental technique, conclusions drawn from these 
experiments suffer the limitation of a small sample size. However, consistency 
between behavioural activity and biological responses would indicate that meaningful 
data were obtained from the device and that prediction of the penguins biological 
mechanisms in response to cold and stress could be made. 

Aside from the biological data to be acquired by the device, physical data such as 
we ight, flipper and beak dimensions were also measured. These morphometric 
parameters were used with a discriminant function ( 4.1) to determine the sex of each 
bird [27]. In some cases, however, the sex of the bird was apparent due to 
observations of its behaviour ( e.g. mating). The gender information was obtained in 
case differences were observed in the biological responses of male and female 
penguins. 

D = 0.582BL + l . l l 8Bo + 0.2 l 9Fw ( 4.1) 

where BL = bill length, Bo = bill depth, Fw = flipper width and D = the discriminant 
value that was compared to the mean discriminant score of 55.39. This technique is 
claimed to predict the gender of Adelie penguins correctly in 89% of cases. However, 
a lower accuracy than this was expected due to interpretation of the measurement 
technique and location of the colony. 

4.2.1 CAPTURE TECHNIQUE AND ATTACHMENT 

As non-invasive measurement by the device was an important consideration, so too 
was the entire measurement process. Care was taken to minimise stress on the birds 
during capture, attachment and removal of the device and all manipulations of the 
penguins were approved by the Massey University Animal Eth ics Committee. 

Capture of a penguin involved quietly moving toward the bird with a wide area, 
shallow net held horizontally and low to the ground. When within approximately 2m 
to 3m the net was used to capture the bird and then both net and penguin were carried 
away from any nearby birds. Once removed from the net the penguin 's hind legs were 
held in the handler's right hand, while the bird's head was tucked under the handler's 
left arm so that the penguin's eyes were covered. The penguin was held in this 
position, facing downward, so that the device could be attached to the bird's lower 
back and once in this position, the penguin became noticeably calmer. 

The attachment technique used was similar to that described by Wilson et al. [28] 
whereby 'Tesa' tape was used to attach packages of varying weight to African and 
Adelie penguin. Tesa tape was described as a cloth backed tape that is light, strong, 
inexpensive, waterproof, non-restrictive and simple to apply. Unfortunately, this 
German tape was unavailable so a tape with the same specifications as Tesa 4651 was 
selected. The ' Scotch' brand tape chosen was a strong, light, cloth backed tape that, 
most importantly, was available in black (section 2.1). 

Attachment of the device was achieved in three steps (figure 4.14). To begin with, a 
patch of feathers on the lower back of the bird was raised and a strip of tape, 
approximately 20cm x 4cm and adhesive side facing outward, was placed under these 
feathers . The device was then located over the centre of the tape and the left and right 
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edges of the tape were wrapped around the device. Finally, the ulnar artery under the 
penguin flipper was located by touch and the sensor head detector was centred over 
the artery. A smaller piece of tape, approximately 10cm x 1.5cm, was used to fix the 
sensor head in this position. If necessary, another small piece of tape was used to fix 
any excess interconnecting cable to the back of the penguin. A small fold was placed 
on the outermost flap of each piece of tape so that removal of the device was easier 
and faster. 

(a) (b) (c) 

Figure 4.14: Attachment of the device using tape. (a) A patch of feathers were 
lifted from the bird's back and tape was applied to the underside, adhesive side 
facing outward. (b) The device was centred over the patch of feathers and held in 
place by the tape. ( c) The sensor head was located over the ulnar artery under the 
flipper and also held in place with tape. 

4.2.2 PHYSICAL RESULTS AND OBSERVATIONS 

Apart from the biological data obtained, important physical observations were also 
made. Most importantly, the instrumented penguins indicated no obvious signs of 
stress as a result of wearing the device. Usual behaviour such as displaying, eating 
snow and stone collecting all continued without impediment and in one particular 
case, a female penguin was seen to mate while fitted with the device. 

Observation of the penguin after release from both attachment and removal of the 
device showed only short-term unsettled behaviour. Within 5 to 10 minutes the 
activities of the equipped or recently released birds were indistinguishable from those 
of other birds. 

Incidents that occurred in two experiments confirmed the importance of the colour of 
the device and the forgiving nature of the attachment technique. In the first instance 
the black paint on the interconnecting cable had been partially removed by tape and 
regions of the grey cable were visible. The penguin, fitted with this device, pecked 
and tugged at the cable whereas, in previous experiments, the cable was untouched. 
This experiment was ended early to avoid damage to the device and unnecessary 
discomfort for the penguin. In a second experiment, the penguin displayed discomfort 
that was due, perhaps, to the weight of the device being loaded unevenly on the group 
of feathers. This resulted in the bird actually removing the device before it could be 
recaptured indicating that, if necessary, the penguin was able to free itself from the 
device. 
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4.2.3 BIOLOGICAL RESPONSES 

The majority of experiments performed were designed to capture physiological data as 
the penguins experienced changes in environmental temperature. This goal was 
extended to include the biological responses to stress as no significant temperature 
changes occurred during the experimentation period (the still air temperature range 
was approximately-7°C to 5°C). 

Initial experiments indicated that the light scattering signal strength was much weaker 
for penguins than it had been in human tests. This was expected due to the feathers, 
thicker skin and thicker subcutaneous fat layer that penguins have. To compensate, 
the gain of the amplifier after the synchronous detector was increased but in general, 
the data collected suffered greater noise than that experienced during developmental 
testing. A major factor contributing to noise was movement of the sensor head against 
the flipper. Placement of the sensor head was also important and in cases where the 
sensor head shifted or was placed incorrectly, useful data were not obtained. Other 
factors that contributed to poor data were the security with which the sensor head was 
attached to the flipper and temperature. On the coldest days, the data showed little 
sign of change resulting from behavioura l activities, which could be due to 
vasoconstriction whereby blood flow to the flipper was restricted but further 
experiments are required confirm this. 

An example of data co llected from the device is given in figure 4.15 showing two 
events that caused observable unsettled behaviour by the penguin. At 122 minutes the 
penguin was approached causing the bird to stop preening and to become agitated by 
our proximity. For approximately five minutes an effort was made to have the 
penguin constantly aware of our presence but not to cause the bird to run. Signs of 
stress in Adelie penguins are a 'glaring' look, where the whites of the eyes are visib le, 
and a rolling head movement. This behaviour was displayed throughout the five 
minute period. At approximately 177 minutes a helicopter flew over the colony and 
signs of stress were displayed by many of the penguins. 

Figure 4.15 shows the measured intensities for each wavelength over the period of the 
two stressfu l events. Signal level changes occurred at the two events but were related 
only in part to the induced stress. Movements of the bird caused the sensor head to 
move that resulted in intensity level changes in the data. Figures 4. 16, 4.17 and 4.18 
are the blood oxygenation, cytochrome oxidase saturation and blood volume data 
calculated from this data set respectively. 

These figures and figure 4.19 contain a signal labelled "Behavioural activity" that was 
obtained by estimation of the penguins observed energy expenditure. Values were 
assigned to the bird 's various behaviours such that high-energy activities corresponded 
to high signal level. Typical values were 1 for standing, 0.8 for lying down, 1.2 for 
stone collecting and 1.5 for Skua threat. A moving average of these data was taken to 
give the behavioural activity signals shown. 
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Figure 4.15: Data collected during two potentially stressful events for an Adelie 
penguin. At 122 minutes the penguin was approached causing the bird to display the 
typical signs of stress. This was maintained for approximately 5 minutes. Peaks in 
the data at this time may be related to these stressful events but may also be the result 
of sensor head movement. 

The double wavelength measurement in figure 4.16 shows decreased blood 
oxygenation at 122 minutes that coincides with the first stressful event. A lower blood 
oxygenation implies that the demand for oxygen had increased while the supply had 
not, that is, increased metabolic rate was a response to stress. At 122 minutes a small 
change in the triple wavelength measurement was also seen, however after 
approximately 13 5 minutes the signal became erratic due, most likely, to movement of 
the sensor head. 

Changes in the cytochrome oxidase signals for both the double and triple wavelength 
measurements (figure 4.17) did not show responses obviously related to the two 
stressful events. After the suspected sensor head movement at 135 minutes, both 
signals became approximately constant. Given the sensitivity of the cytochrome 
oxidase measurements made during developmental testing, it is most likely that 
fluctuations in these signals were due to movement of the sensor head. 

The blood volume data (figure 4.18) show a clear drop in blood volume during the 
first stressful event that returns to the original level approximately 5 minutes later. 
The location of the sensor head meant that the blood flowing in to and out of the 
flipper was measured. As a decrease in blood volume was measured, this response 
indicates that stress caused less blood to flow to the extremities. 
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Figure 4.16: Relative blood oxygen saturation calculated from the data in figure 
4.15. At 122 minutes, the decline in the double wavelength measurement and the 
subtle drop in the triple wavelength measurement imply a rise in metabolic rate not 
matched by an increase in oxygen supply as a result of stress. A shift of the sensor 
head is the probable reason for the erratic activity of the triple wavelength 
measurement after approximately l 35 minutes. The data labelled ' behavioural 
activity' are an estimate of the energy expenditure during the various activities of the 
penguin made by observation. 
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Figure 4.17: Relative oxygenation state of cytochrome oxidase calculated from 
the data in figure 4.15. While there is agreement between the double and triple 
wavelength measurements there is no obvious change as a result of stress. Given the 
sensitivity of the cytochrome oxidase measurements made during developmental 
testing these results at approximately 122 minutes are most likely due to movement 
of the sensor head. 
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Figure 4.18: Relative blood volume calculated from the data in figure 4.15. The 
fall in blood volume at 122 minutes implies that the penguin' s response to stress was 
reduced blood flow to the extremities that returned to normal approximately 5 minutes 
later. 

Sensor head movement and noise made measurement of the pulse rate nearly 
impossible. All of the pulse data acquired had large errors and did not display obvious 
trends corresponding to the changes in behaviour. An experiment to collect only the 
pulse waveform by running one LED continually was made and the results indicated 
that, for the majority of the experiment, the periodicity of the waveform was hidden in 
noise. In attempts to improve the pulse data, the LED wavelengths 880, 660 and 625 
were tried but none performed noticeably better. Figure 4.19 is the pulse rate data 
collected during the same stress experiment as above. 
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Figure 4.19: Pulse rate data acquired during the two potentially stressful events 
for an Adelie penguin. A rise in the average pulse rate occurs at approximately 122 
minutes but is unlikely to have been caused by the first stressful event. 
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Chapter 5 

Conclusion 
Developing an instrument of biological and medical potential, and to demonstrate that 
potential by gaining physiological results obtained in an experimentally unique 
manner: through non-invasive measurements made on the Adelie penguin in its natural 
habitat, were the objectives of this thesis. Achieving this goal drew on a broad range 
of disciplines from biology, software engineering, signal processing and circuit design 
through to Antarctic field training. As a result, a system was developed with the 
abi lity to measure haemoglobin oxygenation, the reduction state of cytochrome 
oxidase, blood volume and pulse rate. The device had the control mechanisms 
necessary for a varying range of experiments and met the weight and size limitations 
necessary for working with the Adelie penguin. 

The original question of how an Adelie penguin copes with the fluctuating Antarctic 
weather conditions was extended to ask, "what are the metabolic responses related to 
stress". Weather conditions that remained mild during the experimentation period and 
physical factors such as movement of the sensor head and weak signal strength 
prevented conclusive answers to these questions. However, signs of metabolic 
changes were present in the data a llowing tentative predictions of the metabolic state 
to be made. An observed response to stress was the reduction in haemoglobin 
oxygenation implying an increased metabolic rate and a decrease in blood vo lume 
suggesting reduced blood flow to the flipper. Other observations included declining 
blood oxygenation as the bird recovered from capture and low, constant signal levels 
on cold days possibly due to vasoconstriction. 

Although no statements could be made about the metabolic responses of the Adelie 
penguin the success of the device during developmental testing confirmed its potential. 
Under controlled testing conditions, the device was able to display changes in heart 
rate, blood oxygenation and blood volume as a result of physical activity and features 
of the pulse waveform may even have application in indicating heart conditions. Since 
obtaining metabolic data was possible with this first version of the device it is very 
likely that with modification and improvement, reliable data could be collected in the 
field. 

5.1 Evaluation 

As with any prototype system, experimentation usually reveals a number of potential 
improvements and modifications that could be made to improve the system's 
performance. In this case, a major limitation of the device was the crystal frequency. 
As a way of reducing power consumption and therefore extending the operating time 
of the device, a 2MHz crystal was used which meant that clock cycles within the 
Motorola chip occurred every 2µs. Modulating the LEDs at !kHz required an 
interrupt generated every 500µs or, equivalently, every 250 clock cycles. The 
interrupt service routine used approximately 100 clock cycles to switch the state of the 
LEDs. Therefore, execution of the main program took place in the remaining 150 

74 



clock cycles. This meant that 40% of the available processing time was required for 
LED modulation. With hindsight, this problem could have been significantly reduced 
by selecting a lower modulation frequency. With more clock cycles available to the 
main program and sampling interrupt, greater time resolution could have been 
achieved over the measurement interval. Reducing the clock frequency did conserve 
power, however, fieldwork showed that long term measurements were impractical and 
hence power consumption, in practice, was not a limiting factor. 

The most obvious limiting factor for signal acquisition is the efficiency of the sensor 
head and substantial improvement would come, most simply, from improvements 
made to this part of the device. Mendelson [7] suggests a number of techniques to 
improve the signal to noise ratio of acquired signals. These include, increasing the 
photodiode/LED separation and LED current, heating the local skin temperature to 
between 34°C and 45 °C, and using an inverse sensor head design whereby several 
photodiodes surround the LED sources thus increasing the active area of the detector. 

Of the techniques suggested by Mendelson, increasing the LED current and inverting 
the arrangement of the source and detector are probably the most suitable. At further 
cost to the operating time of the device, increasing the LED current would strengthen 
the acquired signal. However, the main benefit of increasing the LED current is 
obtained when the source/detector spacing is also increased and since the sensor head 
size is limited by the size of the penguin flipper, only minor signal improvement 
would be achieved in this way. Local heating of the skin to between 34°C and 45°C by 
the device is not a viable option. Even moderate heating would dramatically reduce 
the operating time of the device and would almost certainly increase the penguin's 
awareness of the device resulting in unrealistic stress data. 

Significant improvement might be achieved by inverting the arrangement of the source 
and detectors on the sensor head. Since light diffuses radially from the source, 
surrounding the LEDs with photodiode detectors will collect more of the incident light 
( figure 5 .1) and therefore increase the signal strength. 

Connecting 
Cable 

Temperature 
Sensor 

Figure 5.1: An alternative layout for the sensor head that may give improved 
signal strength. Advantages of this design are that the effective active area of the 
detector is increased and, since light propagates radially outward from the source, 
collection of the source light is more efficient. 
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From a software usab ility perspective, the interaction between conversion programs, 
terminal software and the displaying of results is complicated. Script files must be 
converted by two separate programs and then uploaded to the device using TEmu. 
When results are available, another program is used to convert the hexadecimal output 
into a format that may be interpreted by Microsoft Excel. Integration of these 
software components into one package that allowed the operator to create and upload 
script files then download and view the results would substantially improve usability 
of the system. 

5.2 Future Development 

Aside from these suggested enhancements the basic success of the device indicates the 
value of further development of this system. The first step toward future study of the 
Adelie penguin is to broaden the scope of possible experimentation. Currently 
package design, attachment technique and waterproofing limit experiments to short 
term investigations made on nesting penguins. Improvement in these areas cou ld 
allow investigation into the metabolic response of penguins during the transition 
between land and sea, could determine the effects of moulting on the penguin 's 
metabolism and show the metabolic trends over the fasting period. Each of these 
situations require a system capable of long term study so a review of power 
management along with the physical aspects of the device is necessary. 

An enhancement with obvious potential is to incorporate telemetry into the operation 
of the device. Real time communication would allow detailed metabolic data to be 
transmitted during periods of unique behaviour and operating time could be extended 
by incorporating standby mode functiona lity into the communication. 

The greatest potential of this system is that the non-invasive monitoring of metabolic 
activity can be extended to many other species, including humans. Interesting and 
useful biological information could be obtained in scenarios as variant as training 
athletes, race horses or predatory animals. While experiments of this nature are 
somewhat distant, the resu lts of this work demonstrate the value of portable NIR 
spectroscopic devices beyond the medical profession and that continued research into 
such systems is both valuable and worthwhi le. 
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Appendix A - Derivations 

A.1 Oxygen saturation derived from double 
wavelength measurements 

The Beer-Lambert law is the linear relationship between absorbance and the 
concentration of an absorbing species [9] 

A= I,c:f· [X,. ]L (Al.I) 

where A is the measured absorbance, c::, are the wavelength dependent absorption 

coefficients for the absorbers X ,. , [ X,] are the concentrations of the absorbers and L 
is the optical path length. The measured light scattering signal, R , is defined as, 

(Al.2) 

where I and I O are the measured and incident light intensities respectively. The 

relationship between R and A is 

A= - logR = -log(i/ 10 ) = log(f 0/ I) (A l.3) 

For a particular chromophore, X, two wavelengths are selected; one for wh ich the 
absorption due to oxidised and reduced forms of the chromophore are different and the 
other where they are approximately equal. If the contribution to the absorbance at 
these wavelengths by other absorbers is approximately constant then the Beer-Lambert 
law at these wavelengths is, 

A,i oc (c:f [X]+c:f0 [XO])L (A 1.4) 

For a medium that is semi-transparent in an optical range (e.g. red to near infrared), 
the concentration of scatterers is much greater than the concentration of absorbers. 
These media have the property that the mean optical path length is approximately 
constant for wavelengths within this range. Therefore, the optical path length term 
may be eliminated by taking the ratio of absorbances [8], 

AA, ci [x ]+ct [xo] 
AA-z = c:~[x]+c~0 [xo] 

(Al.5) 
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In a closed system, the total concentration [X
10101

] is equal to the sum of [X] and 

[XO]. This allows (A 1.5) to be rewritten as 

A,., c{ ([X
1010

, ]-[XO])+ £{0 [XO] 
A,½ = £ ~ ([X1010 , ]- [XO])+ £ ~

0 [XO] 

A,., _ [Xrora, )£,1~ + [XO ](£{0 
- £{ ) 

A-½ - [X
1010

, )£~ + [XO](c~0 
- £~) 

[xo] _ A,,,£~ - A-½ £{ 
[Xroral ] - A,½ (£{0 - £{)-A,., (£~0 - £~) 

[xo] _ (A,., / A,½ )c~ -£: 
[xtotal ] - (A ,., I A,½ x£~ -£~

0 )+ k{0 - < ) 

(Al.6) 

Using equations (Al.3) and (Al.4), the relationship between measured intensity the 
oxygen saturation is found, 

(Al.7) 
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A.2 Oxygen saturation derived from triple 
wavelength measurements 

The purpose of calculating oxygen saturation using three wavelengths is to remove 
base line drift. An estimate of b_ackground absorbance is found by linearly 
interpolating between the absorbances at two other wavelengths ( A, and A,, figure 

A2.1 ). Each wavelength is selected such that the absorbances due to the oxidised and 
reduced forms of the chromophore are approximately equal. By interpolating between 

A, and A, a background absorbance, A; is found that is compared with the measured 

absorbance, A2 . The interpo lation estimates the drift occurring at Ai and by 

comparing A2 to A; the drift is removed. 
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Figure A2.1: T he use of three wavelengths to remove baseline drift in oxygen 

saturatio n measurements. By interpolating between A, and A, a background 

absorbance, A; is found for comparison with A2 . 

The value A; at Ai is given by 

A• - A3 -A1 A h 
2 - --=----'- + 1 w ere 

A 

By analogy with equation (Al .5), /J is defined as 

/3= A:= M 2 

A2 A3 + A1 ( A - 1) 

_ A(t:~[x]+t:~0 [xo]) 
- (t:~[x ]+ t:~0 [xo])+ (t:~[x ]+ t:~0 [xo]XA- 1) 

(A2. l) 

(A2.2) 
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Again, fo r a closed system, the total concentration [X10101 ] is equal to the sum of [X ] 
and [XO], therefore (A2.2) may be rewritten as 

/3 = A(c~ ([X10101 ]-[XO])+ c{0 [xo]) 
(c~ ([x/Otal ]- [XO])+ £~

0 [XO ])+ (c~ ([xtotal ]- [xo])+ £~
0 [xo]XA-1) 

(A2.3) 

The direct relationship between measured intensity and oxygen saturation is found by 
substituting /3 into (A2.3). Using equations (Al.3), (A l.4) and (A2.2), /3 is 

(A2.4) 

A.3 - Relative blood volume derived from double 
wavelength measurements 

A relationship describing relative blood vo lume is derived from the absorbance 
equation (A l.4) by considering the absorbance at two different wavelengths 

A-<i = (c~[x]+c:,O[xo])L 
A,i

2 
= (c~ [x ]+ c~0 [xo])L 

(A3 . l) 

(A3.2) 

By rearranging (A3. l) and substituting into (A3.2) two equations describing [X] and 

[XO] in terms of the absorbance are found. Rearranging (A3.l) gives 
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Substituting into (A3.2) gives 

(A3.3) 

(A3.4) 

Once again, since the total concentration [X,
0101

] is equal to the sum of [X] and [XO), 
combining (A3 .3) and (A3.4) gives the blood volume relations hip, (A3 .5). 

(A3.5) 
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Appendix B - Simulation Programs 

B.1 - Synchronous detector numerical solution 

For the synchronous detector frequency response given in figure 2.10, a modulation 
frequency of 1 kHz and a low-pass fi lter comer frequency of 1 Hz was used. Over a 
frequency range from 500Hz to 4k.Hz, 3500 points were calculated. At each 
frequency, a complete period of the detector output signal (10000 point resolution) 
including the effect of the low-pass fi lter was evaluated to n=5 l iterations of equation 
2.9. 

#include <iostream> 
#include <iomanip> 
#include <fstream> 
#include <cmath> 

using namespace std; 

// Globals 
double canst PI= 3.1415926535897932; 
int canst 
int canst 
double 
double 
double 
double 
double 
double 
int 

frequency_ buffer_ size 
detector_ output_ buffer _size 
dc_input_ voltage 
modulation_ frequency 
start_ frequency 

= 3500; II 3500 point resolution for final data 
= I 0000; II I 0000 point resolution for each detector output 
= 1.0; II V 
= I 000.0; II Hz 
= 500.0; II Hz 

finish _frequency = 4000.0; II Hz 
= 1.0; II Hz lpf _comer_ frequency 

frequency_ stepsize 
fourier_iterations 

= (finish_frequency - start_frequency) / frequency_buffer_size; 
= 51; 

II Globals calculated from the globals above 
double canst TwoPI 
double modulation_freq 
double modulation_period 
double start_ freq 
double finish_freq 
double lpf_comer_ freq 

II Allocate space for the frequency data 

=2*Pl; 
= TwoPl*modulation_frequency; 
= I / modulation_ frequency; 
= TwoPl*start_frequency; 
= TwoPl*finish_frequency; 
= TwoPl*lpf_comer_frequency; 

double output(frequency _ buffer _size )(2); 
daub le detector_ output[ detector_ output_ buffer_ size J; 

II Function Protorypes 
double LowPassFilter( double Yin, double frequency ); 
void DetectorSignalOut( double frequency ); 
double nns( double* buffer, int const buffer_length ); 

int main(void) 
{ 

// The output file containing data 
ofstream outfile("SyncDetData.txt"); 

// Initialise the buffers to zero 
memset( output, 0, sizeof(output) ); 
memset( detector_output, 0, sizeof(detector_output) ); 

II Main calculation loop 
unsigned int index; 
double frequency= start_frequency; 

II radls 
II seconds 
II rad/s 
II rad/s 
// rad/s 

for( index= O; index< frequency_buffer_size; ++-index, frequency +- frequency_stepsize) 
{ 

output[index][O) = frequency; 
DetectorSignalOut( frequency ); 
output[index][I) = nns( detector_output, detector_output_buffer_size ); 

outfile << fixed << setprecision(7) << output[index][O) << "\t" « output[index][ I] << endl; 
cout « fixed « setprecision(7) << output[index](O] << ''\t" << output(index](I] << endl; 
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return O; 

void DetectorSignalOut( double frequency ) 
{ 

double w = TwoPl*frequency; 

// Calculate the time required for a complete period of the product of 
// 'frequency' and the modulation frequency. If 'frequency' is really 
// close to the modulation frequency assume they are the same 
double finish_ time = modulation __period ; 
double beat_freq = abs(modulation_freq - w); 
if( beat_freq > I ) 

finish_time = TwoPI / beat_freq; 

double time_step = finish_time / detector_output_buffer_s ize; 

// Calculate the output from the detector 
int n, index; 
double output, upper_ freq, lower_ freq, upper_component, lower_component; 
double time= O; 
for( index= O; index < detector_output_buffer_size; ++index, time+= time_step) 
{ 

output= O; 
for( n = I; n <= fourier _ iterations; n += 2 ) 
{ 

lower_freq = ( w - n•modulation_freq) / TwoPI; 
upper_freq = ( w + n•modulation_freq) / TwoPl; 
lower_ component= LowPassFilter( (2 • dc_input_ voltage) / (n • PI), lower_freq ); 
upper_component = LowPassFilter( (2 • dc_input_ voltage) / (n • PI), upper_freq ); 
output+= (lower_component - upper_component) ; 

detector_output[index] = output; 

11••••• 
// Finds Yout if Yin is passed to a simple low pass filter 
// with the comer frequency spec ified 
double LowPassFilter( double Yin, double frequency) 
{ 

double w = TwoPl*frequency; // Omega fo r the frequency of interest 
return Yin / sqrt( 1 + (w / lpf_comer_freq) • (w / lpf_comer_freq) ); 

11••••• 
// Finds the rms value of a signal within a buffer 
double rms( double• buffer, int const buffer_length) 
{ 

double sum_ of_ squares = O; 
for( int i = O; i < buffer_length; ++i) 

sum_of_squares += (buffer[i] • buffer[i]); 
return sqrt( sum_of_squares I buffer_length ); 

B.2 - Pulse algorithm simulation 

The pulse algorithm, written in assembly code, was recreated and simulated using 
Matlab where it was then used to investigate noise and drift limitations. 

function [pulse,error] = Pulse(GPMedBufsize, GPPBufsize, GPThres, GPTO); 
% 
% Simulates the pulse rate measurement algorithm and returns the period 
% and error estimate of a signal stored in a text file. 
% The file format is {time, signal, pure signal, noise signal) 
% {time, signal, pure signal, noise signal) 
% {time, signal, pure signal, noise signal) 
% 
% 
% 
% 
% 

Syntax: 
[pulse 

Parameters: 
medbuf 
Pbuf 

error] = 

size of 
size of 

Pulse(medbuf,Pbuf,thres,TO) 

the median buffer to use 
the period buffer to use 
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% 
% 
% 
% 
% 

thres 
TO 

limiting error threshold 
timeout period before changing from median to upper 
quartile to lower quartile . 

Example: 
[Pulse,Error) = pulse(l00,4,10,400); 

% Initialise variables 
data=load ( 'C: \ masters \ sig.txt' ); 
datsize=length (data ) ; 
Tempw= O; 
Time=O; 
GPTAmp=O ; 
GPAmp=O; 
GPQuart= O; 
GPToggle=O ; 
GPTime=O; 
GPSWAvr= O; 
GPSWOld= O; 
GPSWBot= O; 
GPSWTop= O; 
GPPAv r=O ; 
GPErr= O; 
GPMedBuf=zero s ( l,GPMedBufsize ) ; 
GPMedBufptr=l ; 
GPSWBufsize=B ; 
GPSWBuf=zeros (l,GPSWBufsize ); 
GPSWBufptr=l ; 
GPPBuf=zero s ( l , GPPBufsize ) ; 
GPPBufptr=l ; 
GPPeriod=O; 
GPError=lOO OO; 

% File containing the waveform 
% Wav eform buffer length 
% Variables defined in pulse assembly code 

% Initialise intermediate graph buffers 
Med=zeros (2, datsize ); 
Tog=zeros (2 , datsize ) ; 
SW =zero s (2 , datsize ) ; 
P=zeros (2, datsize ) ; 
E=zeros (2 , datsize ); 

%Find the period 
f o r i=l:datsize %Main pulse measurement l oop 

%Get a new Sample 
Tempw = GPTime; 
GPData=data (i,2 ); 
GPTime=data (i,l); 
Time= Time+ (GPTime-Tempw ) ; 

%Add data to the Median buffer 
GPMedBuf (GPMedBufptr ) =GPData ; 
GPMedBufptr=GPMedBufptr+l ; 
if (GPMedBufptr== (GPMedBufsize+l )) 

GPMedBufptr=l; 
end 

%Find the median, max and min using the correct quartile 
GPMax=max(GPMedBuf); 
GPMin=min(GPMedBuf) ; 
GPTAmp=GPMax-GPMin; 

%Decide which quartile to use 
switch GPQuart 
case 0 , %Median 

GPMed (GPMax+GPMin)/2; 
case 1, %Upper 

GPMed (GPMax+GPMin)/2 + (GPMax-GPMin)/4; 
%Lower case 2, 

GPMed (GPMax+GPMin)/2 - (GPMax-GPMin)/4 ; 
end 

Med(l,i)=Time; 
Med(2,i)=GPMed; 

t Collect data for intermediate graphs 

\Set the toggle value 
if ((GPToggle==O) & (GPData > GPMed)) 

GPToggle=65535; 
elseif ((GPToggle==65535) & (GPData < GPMed)) 
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GPToggle=O; 
end 

%Generate the square wave using GPToggle 
GPSWBuf (GPSWBufptr ) =GPToggle; 
GPSWBufptr=GPSWBufptr+l; 
if (GPSWBufptr== (GPSWBufsize+l ) ) 

GPSWBufptr=l; 
end 

Tog (l,i ) =Time; % Collect data for intermediate graphs 
Tog (2,i ) =GPToggle; 

%Apply smoothing to square wave to find SW averaged value 
GPSWOld=GPSWAvr; 
GPSWAvr=O; 
for j=l:GPSWBufsi z e 

GPSWAvr GPSWAvr + GPSWBuf ( j )/8; 
end 

SW (l, i) =Time; 
SW (2,i ) =GPSWAvr; 

% Collect data for intermediate graphs 

%Look for potential periods and sto re them in Pbuf 
if (( GPSWOld < O. l ) &(GPSWAvr > 0 .1 )) 

GPPBuf (GPPBufptr ) = (GPTime-GPSWBot ) ; 
GPPBufptr=GPPBufptr+l; 
if (GPPBufptr== (GPPBufsize+l) ) 

GPPBufptr=l; 
end 
GPSWBot = GPTime; 

end 
if (( GPSWOld > 0 . 9 ) &(GPSWAvr < 0.9 )) 

GPPBuf (GPPBufptr ) = (GPTi me-GPSWTop ) ; 
GPPBufptr=GPPBufptr+l ; 
if (GPPBufptr== (GPPBufsize+l )) 

GPPBufptr=l; 
end 
GPSWTop = GPTime; 

end 

%Check for constistant periods 
Buf=zeros (1 , 10 ) ; 
f o r (k=l :GPPBufsize ) 

Buf (k ) =GPPBuf (k ); 
end 
outbuf=S; 
inbuf=l; 
bufsize=GPPBufsize ; 
while (bufsize-=l ) 

k=O;j=O; 
while(k<bufsize ) 

tempw = Buf (inbuf+k )/2; 
k=k+l; 

%create a pseudo memory buffer 

%co py the period buffer to psuedo mem 

%pseudo temp buffer address 

tempw = tempw + Buf(inbuf+k) / 2; 
k=k+l; 
Buf(outbuf+j)=tempw; 
j =j +l; 

end 
bufsize=bufsize/2; 
inbuf=outbuf; 

end 
GPPAvr=Buf(outbuf); 

P(l,i)=Time; % Collect data for intermediate graphs 
P(2,i)=GPPAvr; 

GPMax max(GPPBuf); 
GPMin min(GPPBuf); 
GPErr (GPMax-GPMin)/2; 

E(l,i)=Time; \ Collect data for intermediate graphs 
E(2,i)=GPErr; 

if (GPErr < GPThres) 

\find the most accurate period 
if (GPErr < GPError) 

GPPeriod = GPPAvr ; 
GPError = GPErr; 
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end 

end 

\Change between median, upper and lower quartile 
GPQuart = fix{Time/GPTO); 

end 

if{GPQuart == 3) 
i=datsize ; 

end 

pulse= GPPeriod; 
error= GPError; 

\ Return the period in the time units passed 
\ in with data 

\ Display signal to noise ratio for this waveform 
'k noiseRMS = rms {data{:, 4)) 
% SignalRMS= rms {data { : , 3) ) 
\ S_N=SignalRMS/noiseRMS 
\ 
% Determine graph ranges 
\ xmin=min(data(: ,1)); 
\ xmax=max (data ( : ,l)); 
\ ymax=max(data{:,2)); 
\ ymin=min {data {: , 2)); 
\ stepsize={xmax-xmin) / datsize; 

\ Plot the input waveform with a line indicating the relative 
\ median buffer length 
\ figure(l); 
\ plot {data {:, 1) ,data { :, 2 ), 'k') ;hold on; 
% axis( (xmin,xmax,1900,2250]); 
\ plot (Med (1, : ) , Med ( 2 , : ) , 'r') ; 
% line ( [xmin xmin+stepsize*GPMedBufsize], (2225 2225] ); 
\ hold off 
% zoom on; 
% 
\ Plot the square wave, smoothed square wave, period and error 
% estimates 
% figure {2); 
\ plot(Tog{l,:),Tog(2,:)/20000,'g');hold on; 
% plot(SW(l, : ) ,SW {2, :)/20000, 'b' ) ; 
\ plot { P { 1, : ) , P { 2, : ) , 'r • ) ; 
% plot(E{l,:),E{2,:),'k'); 
% axis( (xmin,xmax,0,20]); 
% hold off; 
% zoom on; 

B.3 - Input-signal drift limitations for the pulse 
algorithm 

Input signal drift places a limit on the maximum length of the median buffer. If the 
input signal drifts above or below the median value then level crossings no longer 
occur and the period of the waveform can not be found. For this reason it is useful to 
know the ideal median buffer length that will accommodate the maximum amount of 
drift while still maintaining acceptable immunity to noise. 

Computation time: 3 hours 2 1 minutes on a P233MHz computer. 

function drift_ test (); 

' % 

' % 

Investigates the effects of drift in the input signal 
Results displayed using Drift_test_ Showdata 

% Initialise input signal 
Period• l ; 
Driftoffset = O; 
WaveBufferSize = 1000; 
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Xmin O· 
Xmax 10; 

%Save results to a text file 
outf=fopen ( 'c: \ masters \ Drift . txt', ' w' ) ; 
for ( Amp= logspace(-1,1,10 ) ) 

Amp 
% Investigate a range of drifts from Oto 25 
for ( Driftslope 0:0.1:25 ) 

Driftslope 
possible= l· 
makewaves ( Amp, Period , 0 , Driftslope , Driftoffset, 0 , 0, WaveBufferSize, Xmin, 

Xmax ) ; 
wave= load ( 'C: \ masters \ sig.txt ') ; % File containing the waveform 

% Calculate actual size of the median buffer and create it 
Median_Buffer_Size = 0.1; % Number of periods contained in the period 

buffer 
GPMedBufsize = ceil (Median_Buffer Size* WaveBufferSize * Period /( Xmax-Xmin )) ; 
GPMedBuf = zeros (GPMedBufsize,l ); 

% Search for the length of median buffer that makes period 
% measurement impo ssible 
while ( possible & (Median_Buffer_Size <= 5 )) 

possible= PulsePossible (wave, WaveBufferSize , Xmax , Xmin , GPMedBuf , 
GPMedBufsize) ; 

if ( possible ) 
Median_Buffer_Size = Median Buffer Size+ 0.1 ; 
GPMedBufsize = ceil (Median_Buffer Size* WaveBufferSize * Period /( Xmax­

Xmin) ) ; 

end 
end 

end 

GPMedBuf = zero s (GPMedBu fsize , l ) ; 
end 

% if we find the maximum length of the median buffer then record it 
if ( -possible ) 

fprintf (outf , •%f %f %f \ n' , Amp , Median_Buffer_Size , Driftslope ) ; 
if ( Median_Buffer_Size == 0 .1 ) % if failed for the first one then 

break; % all slopes greater than this will fail 
end % as well, might as well quit now 

end 

fclose (outf ); 

function possible PulsePossible (wave, WaveBufferSize , Xmax , Xmin, GPMedBuf, 
GPMedBufsize); 
% 
% Use code from pulse.m to simulate the level crossing section of the 
% pulse algorithm 
% Local function for drift test 
% 

% Number of consecutive crosses of the median 
% Once greater than Number_of_crosses_needed assume period 
% able to be calculated 
crosses= O; 
Number_of crosses_needed 6; 

GPMedBufptr = l; 
GPQuart = O; 
GPToggle = O; 
Med = O; 
for i=l:WaveBufferSize% Main pulse measurement loop 

%Get a new Sample 
GPData = wave(i,2); 

%Add data to the Median buffer 
GPMedBuf(GPMedBufptr) = GPData; 
GPMedBufptr = GPMedBufptr + l; 
if( GPMedBufptr == (GPMedBufsize+l) 

GPMedBufptr=l; 
end 

%Find the median, max and min using the correct quartile 
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GPMax=max(GPMedBuf); 
GPMin=min(GPMedBuf); 

%Decide which quartile to use 
switch GPQuart 
case o, 

GPMed 
case 1, 

GPMed 
case 2, 

GPMed 

%Median 
(GPMax+GPMin)/2; 
%Upper 

(GPMax+GPMin )/2 + (GPMax-GPMin)/4; 
\Lower 

(GPMax+GPMin )/2 - (GPMax-GPMin)/ 4; 
end 

Med (i, 1 ) 
Med (i ,2) 

i• (Xmax-Xmin )/WaveBufferSize; 
GPMed; % Collect data for intermediate graphs 

end 

%Set the toggle value 
if ((GPToggle==O ) & (GPData > GPMed)) 

GPToggle:65535; 
crosses= crosses+ l; 
if( crosses> Number_of_crosses_needed 

break; 
end 

elseif ((GPToggle==65535 ) & (GPData < GPMed)) 
GPToggle=O; 

end 

crosses= crosses+ l; 
if ( crosses> Number_of_crosses_needed 

break; 
end 

%Change between median, upper and lower quartile - try all three 
if( GPQuart -= floor (3 • i/WaveBufferSize) ) 

GPQuart floor(3*i/WaveBufferSize); 
crosses= O; 

end 

if( crosses> Number_of_crosses_needed 
possible= l; 
\display('Pulse possible'); 
\plot (Med(:, l ) ,Med(: ,2)); 

e lse 
possible= O; 

end 

%display('Pulse not possible'); 
%plot ( Med ( : , l) , Med ( : , 2) ) ; 

function Drift_ test_ Showdata (); 

% Display the results of the Drift test for the pulse rate algorithm 
% 

% Load and initialise the data buffers 
data=load('C:\masters\Drift ampO l 10.txt'); 
amp= data(:,l); - -

\Chop up data into separate buffers and displa y results; 
figure(!); 
cl f ;hold on;zoom on; 
Amp = amp ( l) ; 
len = length(amp) 
f or( i = l:len) 

med = O; 
drift= O; 
j = l ; 
while ( (i <= len) & (amp (i) == Amp)) 

med(j) = data(i,2); 
drift(j) = data (i ,3); 
i i + l ; 
j = j + l ; 

end 
if( i <= len ) 

Amp = amp (i); 
end 
plot ( med, drift, 'k'); 

end 
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B.4 - Period measurement limitation due to the digital 
filter 
function Compare_test (); 
\ 
\ Performs a comparison between the ideal pulse and the pulse 
\ measured by the simulated pulse algorithm for various input 
% signal frequencies 
\ Results displayed using Compare_test_Showdata 
% 

\ Initialise output buffers 
bsize 100; % Range of frequencies to try 
truepulses zeros(bsize,l ); \ Buffer containing the ideal pulse values 
measpulses zeros (bsize, 1 ) ; % Buffer containing the measured pulse values 
errors zeros (bsize,l ); \ Buffer 
values 
freq 1. % Initial 

% Create sine waves and measure their periods 
for (i=l:bsize ) 

Makewaves(lOO,l/freq,0,0,0,0,2048,500,1,5); 

containing 

pulse rate 

[measpulses(i),errors(i)] pulse ( l00,4,10,400 ); 
truepulses(i) = 1 / freq; 

the 

freq freq + O . 1 \ Show where we' re up to 
end 

\ Save the data for plotting 
outf=fopen ( 'c: \masters\ per.txt', 'w'); 
f o r (i=l : bsize) 

errors 

fprintf (outf , 'H H %f\n', truepulses ( i ), measpulses ( i ), errors (i )); 
end 
fclose(outf); 

function Compare_ t est_Showdata (); 
\ 
% 
\ 
% 

Display the comparison between ideal and measured pulse 
rate results for the pulse algorithm 

% Load and 
data 
truepulses 
measpulses 
errors 

initia lise the data buffers 
l o ad ('C : \ masters \ per . txt' ); 
data (:, 1); 
data(:,2 ); 
data (:, 3 ); 

% Turn periods into frequencies 
figure(2); 
for (i=l:100) \ 100 is the buffer size in Compare_test 

truefreq(i)= l / truepulses(i ); 
measfreq(i ) =l / measpulses(i ) ; 

end 

\ Display the results 
plot(truefreq,measfreq, 'k'); 
axis([O 10 o 10]); 
line ([5 .566 5.566 ] , [O 5.566)); 

in the measured 

B.5 - Input-signal noise limitations for the pulse 
algorithm 

Noise susceptability is another important limitation of the algorithm. Quantifing the 
required level of signal to noise in the input signal describes when meaningful results 
can be expected from the algorithm. By measuring the period of sine and square 
waves with increasing levels of white noise, estimates of the required signal to noise 
ratio where obtained. 
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f uncti on SN_ test_sine (); 
\-
\­
\­
\-

Determine the limiting signal to noise ratio for the 
pulse measurement algorithm using sine wave input signals 
Results displayed using SN_test_Showdata 

\ Initialise 
num 80; 
SN zeros (num, l); 
pulses zeros (num, l ) ; 
errors zeros (num, l); 

10; 

\ Number of steps to take 
\ Signal to noise ratio (x axis ) 
% Measured pulse rates 
\ Errors in the measured pulse rates 
% Step size 

\ Calculate the period of sine waves with increasing noise 
for (i=l:num) 

SN ( i ) = Makewaves(l00,0.7,0,0,0,j,2048,1000,1,5); 
[pulses(i) ,errors (i )J pulse ( l00 ,4, 10, 400 ); 
j = j + 5 \ Display where we're up to 

end 

\ save the data for displaying later 
outf=fopen('c:\masters\SN.txt', 'w'); 
for(i=l:num) 

fprintf (outf, 'H H \f\n', SN(i) , pulses (i), errors (i)); 
end 
fclose(outf); 

function SN_Tes t_Sqr (); 
\ 
\ Determine the limiting signal to noise ratio for the 
\ pulse measurement algorithm using square wave input signals 
% Results displayed using SN_ test_Showdata 

\ Initialise 
num 80; 
SN 
pulses 
errors 
j 

zeros (num, l); 
zeros (num, l) ; 
zeros (num, l) ; 
10; 

\- Number of steps to take 
\ Signal to noise ratio (x axis ) 
\- Measured pulse rates 
\- Errors in the measured pulse rates 
\- Step size 

\Calculate the period of square waves with increasing noise 
for ( i=l: num) 

end 

SN(i) = Makesqrwaves ( l 00,0.7,0 . 85,0,0,0,j,2048,500,1,5); 
[pulses(i) ,errors(i)]=pulse(l00,4,10,400); 
j = j + 5 \Display where we're up to 

\-Save the data for displaying later 
outf=fopen('c:\masters\SNsqr.txt', ' w' ); 
for ( i=l: num) 

fprintf (outf, '\-f \-f \f\n',SN(i),pulses ( i),errors (i )); 
end 
fclose(outf); 

f u ncti o n SN_ te s t _ Showdata(); 
\ 
\ 
\ 
\ 

Display the measured periods for input signals 
with increasing signal to n oise ratios 

\- Flag to decide whether to include error ranges in the plot 
plot errors= l; 

\ Load data and initial i se b uffers 
dat a=loa d( ' C:\masters\SNb.txt'); 
SN=data (:, 1 ) ; 
pulses=data(:,2); 
err ors=data(:,3); 

\ Create the graph 
if( p l ot_error s == O 

plot(SN,pu lses); 
else 

\Create an x axis vector that goes from min to max and back to min 
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X=[SN 
flip(SN)]; 

%Create a y axis vector with+ and - the error values 
a=pulses+errors ; 
b=pulses-errors; 
Y=[a 

flip (b) J ; 
% Fill the error region 
fill (X,Y, 'g' ) ; hold on; 
% Plot the pulse values 
semilogx(SN,pulses, 'k.-' ) ;hold off ; 

end 
zoom on; 

B.6 - Utility routines 
These routines were used in a number of the simulations to perform functions that are 
not part of the inbuilt Matlab function set. 

function rms = rms (vec ); 
% 
% Retu rn the root mean square o f a vector 
% Syntax: 
% [rms_value] = rms (vecto r ) 
% Parameters: 
% vector= a column vector containing the input signal 
% Example: 
% rms ( sin (0:2*pi / 1000: 2*pi ) 
rms sqrt (mean (vec . *vec )); 

function noise= whitenoise (length ) ; 
% 
% White noise generat or. Creates a rando m buffer in the frequenc y 
% domain and uses an inverse Fourier Transform t o c onvert it into 
% the time d omain . Therms v alue of the random buffe r is 1 
% Syntax: 
% noise= whiteno ise ( length ); 
% Parameters : 
% length= the length o f the whitenoise buffer wanted 
% Ex ample : 
% noise= whitenoise (bufsize ) 
% 
freqvec rand ( length*2 , 1 ); 
temp abs ( ifft (freqvec ) ) ; 
noise zero s ( length , 1 ) ; 
f o r ( i 2:length+l ) 

noise (i-1) = temp (i ); 
end 
mx = rms (noise); 
noise= noise / mx; 

function vec2 = flip (vec ) ; 
% 
% 
% 

Returns a vector with the element order reversed 
Syntax: 

% upsidedown flip(rightwayup) 
% Parameters : 
% rightwayup the vector to be reordered 
% Example: 
% upsidedown flip(rightwayup} 
len=length(vec); 
vec2=zeros(len,l}; 
for(i=l:len} 

vec2((len+l}-i}=vec(i}; 
end 

function data_out = movingavr(data_in,order}; 
% 
% Returns a buffer containing the centred moving average 
% of an input buffer. 'NaN' values are left out of the 
% averaging but if the number of sequential 'NaN's is 
% greater than the moving average buffer width an error is 
% generated. The first and last data points are used to fill 
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the moving average buffer at the boundary conditions 
Syntax: 

data_out = movingavr(data_in,order) 
Parameters: 

data_in the data buffer (1 -D vector) to be averaged 
order the width of the moving average buffer. 

Order should be a positive, non zero number 
greater than the number of sequential ' NaN's 
Order may be an even number, in which case the 
moving average buffer is rounded up to the nearest 
odd number and the first and last values in the 

% buffer give half co ntributions 
Example: 

smoothed= movingavr( lumpy, 1 0 ); 

%Initialise variables and buffers 
isodd = O; 
window_half size= ceil ( order/2); 
window_size = 2 + ceil( (order+l) / 2 )-1; 
if( window_size ==order ) 

isodd = l; 
end 
window = zeros( windo w_size ,l); 
len = length ( data_in ); 
inbuf = [data_in(l) *o nes (window_half_size,l) 

data in]; 

% Initialise the window 
for( i = l:window_size ) 

window(i ) = inbuf ( i+isodd); 
end 

% Do the centered moving average 
inbufptr = window_size + isodd + 1; 

% half the window size 
% Round up to nearest odd number 

% Cyclic buffer 
% Length of the data_in buffer 
% Extend data in to avoid boundary 
% conditions 

window_ptr = window_size; % Averaging Window cyclic pointer 
for ( i = l:len ) 

data out(i) = winavr(window,window size,window_ptr,isodd,order); 
window_ptr = cyclicinc(window_ptr,;indow_size); 
window (window_ptr) = inbuf ( inbufptr ); 
if( inbufptr < len+windo w_half_size) 

end 

inbufptr = inbufptr + 1; 
end 

function avrge = winavr (window , window_size, pointer, isodd, order); 
% 
% Local functio n of movingavr.m 
% 
avrge = O; 
div = order; 
if( isodd 1 ) % then take a normal average skipping 'NaN's 

for ( i = l:window_size ) 
if( isnan(window(i) ) ) 

div = div-1 ; 

end 

else 
avrge = avrge + window (i); 

end 

if ( div == 0 ) 
error( 'Window size too small or too many NaNs in a row'); 

end 
avrge = avrge / div; 

else 
value 

ptr = pointer; 
if( isnan(window(ptr)) 

div = div-1; 
else 

avrge = window(ptr)/2; 
end 
ptr = cyclicinc(ptr, window size); 
for( i = l :window_size-2 )-

if( isnan(window(ptr)) ) 
div = div-1; 

% the pointer value and one behind the pointer 

% only contribute half 

%last point only contributes half 
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else 
avrge = avrge + window(ptr); 

end 
ptr = cyclicinc(ptr,window_size); 

end 
if( isnan (window (ptr)) 

div = div-1; 
else 

avrge = avrge + window(ptr)/2; 
end 

if ( div == 0 ) 

\first point only contributes half 

error('Window size too small or too many NaNs in a row' ); 
end 
avrge = avrge / div; 

end 

function newptr = cyclicinc (oldptr,top); 

\ Local function of movingavr.m 
\ 
newptr = oldptr+l; 
if( newptr > top ) 

newptr = l; 
end 

function SN 
offset, 

Makewaves ( amp, period, phase, driftslope, driftoffset, noiseamplitude, 

bufsize, xmin, xmax) 
\ 
\ Returns a sine wave with noise and drift saved in a 
\ text file in the format 
\ (time, signal, pure signal, noise signal) 
\ (time, signal, pure signal, noise signal) 
\ (time, signal, pure signal, noise signal) 
\ Also returns the signal to noise ratio for the wave just created 
\ Syntax: 

S_N = Makewaves ( amp, period, phase, 
driftslope, driftoffset 

Parameters: 
amp 
period 
phase 
driftslope 
driftoffset 
noiseamp 
offset 
bufsize 
xmin 
xmax 

Example: 

noiseamp, offset, bufsize, xmin, xmax) 

wave amplitude 
wave period 
initial phase (O -> 2*pi) 
gradient of drift 
y intercept of drift 
amplitude of superimposed noise 
center offset of the wave 
length of the buffer containing the waveform 
initial x value for generating the wave 
final x value for generating the wave 

SN= Makewaves (lOO, 0.7, O, 0, 1 , 0, 1 , 2048, 1000, 1, 5); 

\ Initialise variables and buffers 
stepsize 
sig 
noise 
sigwn 

\Generate Signal 
step= xmin; 
for i=l:bufsize 

(xmax-xmin)/bufsize; 
zeros (l,bufsize); 
whitenoise(bufsize) * noiseamplitude - noiseamplitude/2; 
zeros(l,bufsize); 

noise(i)= noise(i) + driftslope*step + driftoffset; 
if (period -= 0) 

end 

sig(i)=amp*sin(2*pi*step/period +phase); 
else 

sig(i)=amp; 
end 
sigwn(i)=sig(i)+noise(i)+offset; 
signal(i,l) = step; 
signal(i,2) = sigwn(i); 
step= step+ stepsize; 

\Calculate the signal to noise ratio 
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srms=rms(sig); 
nrms=rms(noise); 
if (nrms-=0) 

SN srms / nrms; 
else 

SN inf; 
end 

% Display the signal created 
plot (signal ( :,l ) ,signal ( : , 2 ) ) ;zoom on ; 

%Save the waveform in a text file 
outf=fopen( ' c: \ masters \ sig.txt' , 'w'); 
step= xmin; 
for (i=l :bufsize ) 

end 

fprintf (outf, '%5.4f %f %f H \ n ' ,s t ep,sigwn (i ) , sig (i ) ,noise (i )) ; 
step= step+ stepsize; 

fclose (outf ) ; 

function S_N = MakeSqrwaves ( amp , period , Tl , phase, driftslope , driftoffset , 
no iseampli tude , 

offset , bufsize, xmin , x max ) 
% 
% 
% 

Returns a asymmetric wave with noise and drift sav ed in a 
text file in the format 

% 
% 
% 

( time , signal , pure signal , noise signal ) 
( time , signal , pure signal, noise signal ) 
(time, signal , pure signal, noise signal ) 

% 
% 
... 

Als o returns the signal t o no ise ratio f o r the wav e just created 
Syntax: 

SN= MakeSqrwaves ( amp , period , Tl , phase , 
driftslope , driftoffset , 

% 
% 
% 

noiseamplitude , o ffset , bufsize, xmin, x max ) 
Para meters : 

amp 
perio d 

wav e amplitude 
wav e period % 

% 
% 

Tl 
phase 
driftslope 
driftoffset 
noiseamp 
o ffset 
bufsize 
xmin 

fra c tio n of period where signal is high 
initial phase (0 - > 2*pi ) 

% 
% 
% 
% 

gradient o f drift 
y interc ept o f drift 
amplitude of super i mposed noise 
center o ffset o f the wa v e 

% 
% 
% 
% 
% 
% 

xmax 
Example: 

length o f the buffer containing the wav efo rm 
initial x value f o r generating the wave 
final x value for generating the wave 

% Initialise 
sig 
noise 
sigwn 

SN= Makesqrwaves ( lOO , 0 . 7, 0 . 85, 0, 0 , l, 0 , 1, 2048 , 

variables and buffers 
zeros(bufsize,l ) ; 
whitenoise(bufsize)*noiseamplitude-noiseamplitude/ 2; 
zeros(bufsize,l); 
(xmax-xmin)/bufsize ; 
(xmax-xmin)/period; 
floor(bufsize / numofperiods); 
floor(stepsperperiod * Tl); 
stepsperperiod - stepsperTl; 

500 , 1 , 5 ) ; 

stepsize 
numofperiods 
stepsperperiod 
stepsperTl 
stepsperT2 
cycle [amp*ones(l,stepsperTl) zeros(l,stepsperT2)]; %one period 

% The waveform has a phase shift roll the copy of one period 
% round to the correct phase 
if(phase -= 0) 

end 

j=floor(stepsperperiod*(phase/(2*pi))); 
for(i=l:stepsperperiod) 

inphasecycle(i)=cycle(j); 
j =j +1; 
if(j==stepsperperiod) j=l; end 

end 
cycle=inphasecycle; 

%Generate Signal 
j=l; 
step= xmin; 
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for i=l:bufsize 

end 

noise(i)=noise(i) + driftslope*step + driftoffset; 
sig(i)=cycle(j); 
sigwn(i)=sig(i)+noise(i)+offset; 
j=j+l; 
if (j==stepsperperiod) j=l; end 
signal (i,l) step; 
signal (i, 2) sigwn (i); 
step= step+ stepsize; 

% Calculate the signal to noise ratio 
srms=rms(sig) ; 
nrms=rms(noise); 
if (nrms-=0) 

S_N srms / nrms; 
else 

S_N inf; 
end 

% Display the signal created 
plot (signal ( :,l l , signal ( :,2 )) ;zoom on; 

% Save the waveform to a text file 
outf=fopen ( 'C: \ masters \ sig.txt', 'w'); 
step= xmin; 
for ( i=l:bufsize ) 

end 

fprintf (outf,'\5.4f H H H \ n',step,sigwn (i),sig(i),noise ( i )) ; 
step= step+ stepsize; 

fclose (outf ) ; 
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Appendix C - Circuit Diagrams 

All circuit diagrams and PCB layouts were created using the EDA/Client 98 software 
package produced by Protel International Pty Ltd. 
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C.3 Analogue Stage 
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Appendix D - Printed Circuit Board Layouts 

All circuit diagrams and PCB layouts were created using the EDA/Client 98 software 
package produced by Protel International Pty Ltd. 

(a) (b) 

(c) (d) 

Figure D.l: Printed circuit board layouts with component overlays. (a) The 
sensor head from above, (b) the sensor head from below, (c) the control unit from 
above and (d) the control unit from below. 
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(a) (b) 

(c) (d) 

Figure D.2: Printed circuit board layouts. (a) The sensor head from above, (b) the 
sensor head from below, (c) the control unit from above and (d) the control unit from 
below. 
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Su..,p·, 

Figure D.3: Serial interface unit PCB layout. 
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Appendix E - Assembly Source Code 

The assembly source code files for the device software can be found on the 
accompanying CD. They are located in the directory labelled 'Appendix E -
Assembly Code'. The files have been formatted for ease of reading and are saved as 
Microsoft Word 97 documents and as Adobe Acrobat documents. 
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