
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Design of Instrumentation for
Metabolic Monitoring of the

Adelie Penguin

thesis presented in partial fulfillment of
the requirements for the degree of

Master of Science
in Physics at

Massev Universitv , ,

by

Paul Stephen Ryland

December 2000

ii

Abstract

The motivating question for the work described in this thesis was "How does the
Adelie penguin cope with cold'?" It was reasoned that the time-scale of temperature
changes in Antarctica precluded all but metabolic and physiological responses. To
determine these, a system capable of measuring and recording these biological
variables in the penguins natural environment, was designed.

A device. based on the principles of near infrared spectroscopy, was developed that
could measure the relative oxygen saturation of haemoglobin and the reduction state
of cytochrome oxidase as well as heart rate and blood volume. The completed device
was housed in a black, waterproof. plastic container. measuring 65mm x 92mm x
15mm and weighing 132.7g.

Co-ordination of measurements \Yas achieved with operating system-like control
soihvare implemented in Motorola HC 11 assembly code. Synchronous detection was
used for signal acquisition and a pulse algorithm, implemented in assembly code,
allov,ed real time pulse measurement from the input signals. Programs were written
in Matlab and to investigate the characteristics and limits of these techniques.

Preliminary testing of the device on human subjects successfully showed changes in
metabolic state as a result of physical activity. The results of field testing on Ade lie
penguins ,vere unable to ansv,er the original question due to a number of physical
factors. However, the success of human trials suggests that, modification and
improvement, the device has potential as a valuable research instrument, applicable to
a variety of other species.

111

Acknowledgements

I would like to express my sincere gratitude to the following people whose
contribution and assistance were invaluable to me and to the completion of this thesis.
I have gained an enormous amount from their skills and expertise and know that the
knowledge and experience gained will continue to be valuable in the future. Particular
thanks go to my supervisor, Dr. Simon Brown, for his considerable contribution and
guidance throughout the many aspects of the project. In areas ranging from remedial
biology, lab work. field work, presentations, CV writing, grant applications and thesis
proofing, his enthusiasm for the project and encouragement have been exceptional. I
also wish to thank my co-supervisor, Associate Professor Robert O ' Driscoll for the
introduction to this project and whose extensive electronics expertise guided me in
solving some of my most taxing hardware and software problems.

I gratefull y thank the electronics guru, Robin Dykstra, for directing my circuit design
efforts. providing development equipment and manuals, component advise, his
stringent. NASA approved circuit-board-layout quality control and good friendship.
Thanks also to Peter Lewis who helped select and order numerous electronic
components, made an exceptional contribution during the time critical construction
phase allowing deadlines to be met and even provided reading material for the quiet
times in Antarctica. Also from the electronics workshop, I wish to thank Udo von
Mulert for allowing the extensive use of the workshop facilities after hours and on
weekends, and Keith Whitehead for his advise and ideas on numerous aspects of the
project.

For her help in Antarctica, expert penguin handling skills and easy going personality I
would like to thank Yvette Cottam. I also wish to express my gratitude to Antarctica

ew Zealand for their approval of the work in Antarctica with the Adelie penguin and
to Massey University for the opportunity to work on this project. I thank Massey
University for the approval of my Institute of Fundamental Sciences Graduate
Research Fund application amounting in $1731 towards purchase of equipment and
related expenses.

Particular thanks to John Pedley for his help with the use of the ECG to test the second
prototype and for the loan of the exer-cycle used to test the third prototype. I would
also like to recognize the many test subjects who exerted themselves in the name of
science, in particular, to Jane Shierlaw whose high quality data made it to print. I
would also like to thank Jane for her veterinary advice as well as thesis writing
comments and ideas. Finally, I would especially like to thank Mark Hunter for the
very many coffees, countless ridiculously late nights and for being someone available
to discuss the more subtle points of thesis writing (some of which were relevant).

Contents

Abstract
Acknowledgements
Contents

II

111

IV

Vil List of Figures

Chapter 1
1.1

Introduction
The Problem

1.2 Measurement
1.3 Background - The Adelie Environment
1.4 Technology
1.5 Measurement Principles

1.5.1 Near Infrared Spectroscopy
1.5.2 Triple Wavelength Oxygen Saturation Measurement
1.5.3 Near Infrared Spectrometry

1.6 Thesis Overview

1
1

...,

.)

5
5
5
8
9

10

Chapter 2 Instrumentation 12
2.1 Design Specifications 12
2 .2 Design Overview 13
2.3 Analogue Circuitry 15

2.3 .1 The Sensor Head 15
2.3.2 The Synchronous Detector 16
2.3.3 Synchronous Detection 17
2.3.4 The Analogue Stage 21

2.4 Digital Circuitry 22
2.4. 1 Sampling and Digi tisation 23
2.4.2 The Microcontroller 24

2.4.2. l Output Compare 24
2.4.2.2 Interrupts 25
2.4.2.3 Real Time Clock 25
2.4.2.4 Additional Features of the Microcontroller 25

2.4 .3 Memory 26
2.4.4 Communication 26
2.4 .5 Power Considerations 27

2.4.5. 1 Power Supply Sources 27
2.4.5 .2 Power Considerations on the Device 28
2.4.5.3 Power Saving 28

2.5 Construction 29

Chapter 3 Control Software and Algorithms
3 .1 The Logical Model of the Device

3.1 .1 Setting Write Through Mode and the Result
Memory Pointer

3.1.2 Setting the System Clock
3 .1.3 Communication Rate
3 .1.4 Help Command
3.1 .5 Debug Mode

31
32
34

34
34
34
34

IV

3.2 The Microcontroller Operating System
3.2.1 Control Modules

3 .2.1.1 Operating System
3 .2.1.2 System Initialisation
3.2.1.3 Command
3 .2.1.4 Interrupts
3.2.1.5 Sequence Execution

3.2.2 Hardware Modules
3 .2.2. l Serial Communication
3.2.2.2 Memory
3 .2.2.3 Real Time Clock
3.2.2.4 Sampling
3 .2.2.5 Utilities

3.2.3 Measurement Sequence Instructions
3.3 N1easurement Scripting Language
3.4 Pulse Rate Calculation Algorithm

3.4. l The Algorithm
3.4.2 Analysis of the Pulse Measurement Algorithm

36
36
36
36
36
38
38
39
39
39
40
41
41
43
45
48
49
51

Chapter 4 Prototyping and Application 57
4.1 Developmental Testing 57

4.1.1 Early Prototypes 57
4.1.2 Signal Verification using an Electrocardiogram 58

(ECG)
4.1.3 Software Development System
4.1.4 Blood Oxygen Saturation
4.1.5 Pulse Rate Measurement
4.1.6 The Stand-alone Prototype
4.1.7 Testing of the Final Device

4.2 Field Testing
4.2.1 Capture Technique and Attachment
4.2.2 Physical Results and Observations
4.2.3 Biological Responses

Chapter 5
5 .1
5.2

Appendix A
A.1

A.2

A.3

Conclusion
Evaluation
Future Development

Derivations
Oxygen Saturation Derived from Double Wavelength
Measurements
Oxygen Saturation Derived from Triple Wavelength
Measurements
Relative Blood Volume Derived from Double
Wavelength Measurements

59
60
61
62
62
67
68
69
70

74
74
76

77
77

79

80

V

vi

Appendix B MatLab Programs 82
B.1 Synchronous Detector Numerical Solution 82
B.2 Pulse Algorithm Simulation 83
B.3 Input-Signal Drift Limitations for the Pulse Algorithm 86
B.4 Period Measurement Limitation due to the Digital 89

Filter
B.5 Input-Signal Noise Limitations for the Pulse 89

Algorithm
B.6 Utility Routines 91

Appendix C Circuit Diagrams 96
C.l Overview 96
C.2 Sensor Head 97
C.3 Analogue Stage 98
C.4 Digital Stage 99
C.5 Memory 100
C.6 Power Supply 101
C.7 RS-232 Interface Unit 102

Appendix D Printed Circuit Board Layouts 103

Appendix E Assembly Code 106
1 Pengos.a CD

E.2 !nit.a CD
E.3 Equates.a CD
E.4 Global.a CD
E.5 Vectors.a CD
E.6 Commands.a CD
E.7 Exec.a CD
E.8 Pulse.a CD
E.9 LED.a CD

10 Temp.a CD
E.11 Delay.a CD
E.12 Loop.a CD
E.13 Intr.a CD
E.14 Sample.a CD
E.15 Mem.a CD
E.16 RTC.a CD
E.17 Serial.a CD

18 Utils.a CD
E.19 EEPROM.a CD

References 107

Figure
1.1

1.2

1.3

1.4

1.5

1.6

2 .1

2.2

? -, __ .)

2.4

2.5

2.6

2.7

2.8

2.9

2. 10

2. 11

2. 12

2.13

2. 14

2 .15

2. 16

2.17

2.18

List of Figures

Figure caption
The metabolism of sugar with the cell.

Ross Isl and and breeding colonies of the Ade lie penguin.

An Ade lie penguin upon its nest of pebbles .

Abso rption spectra of oxy- and deoxy- haemoglobin and oxidised
and reduced cytochrome oxidase.
Interpolating to find an estimate of the background absorbance at
wavelength, /42 .

The two main configurations for near infrared spectroscopic
systems, transmission mode and reflectance mode.

Ade lie penguin with a control unit and sensor head fitted.

vii

The connectivity and packaging of the sensor head and control unit.

The fi nal realisation of the device.

The sensor head layout.

The senso r head circuit.

A graphical representation of the implemented synchronous
detector.
Demodulation of an in-phase, input sine wave .

The Fourier components of the fu ll-wave rectified sine wave .

The phase se lectivity of the detector.

The freq uency and phase response of the synchronous detector.

The amplification and filtering stage of the device.

The digital circuit components.

Serial communication between digital devices using the Motorola
serial peripheral interface.
Block diagram of the 68HC11E9 microprocessor.

The power-supply schematic.

Connectivity of a computer, the serial interface unit and the device.

The functional regions of the PCB layout for the control unit.

Photographs of the completed device.

Page
2

'"' .)

4

6

8

10

13

14

14

15

16

17

18

19

19

21

22

22

23

25

27

28

29

30

3.1 System overview.

3 .2 The logical model of the device.

3 .3 Branch vector use in operating system debugging.

3.4 Hierarchical arrangement of modules within the microcontroller
operating system.

3.5 The algorithm used to make light scattering measurements.

3.6 A graphical representation of the pulse rate calculation process .

3. 7 The beginning of calculation of the maximum, minimum and
median values from the waveform stored in the median buffer.

3.8 Example waveforms that posed a problem to pulse algorithm
without the use of the upper and lower quartile in generating the
square wave.

3.9 Transition points used to obtain period estimates.

VIII

3.10 The boundaries for which each input signal ceases to cross the
calculated median value and therefore ceases to generate the square
wave.

3 .11

3.12

3.13

3.14

3. 15

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Transfer function of the digital low-pass filter used in the pulse
measurement algorithm.
The performance of the pulse measurement algorithm as the pulse
frequency increased beyond the corner frequency of the digital low­
pass filter
The limiting signal to noise ratio for a sinusoidal input signal.

The limiting signal to noise ratio for an asymmetric square wave
input signal of similar shape to acquired human data.
A pulse measurement example using real data collected during
testing on a human subject.

The second prototype.

The correlation between ECG data and the signal obtained from the
second prototype.
ECG absorbance signal comparison for a subject with increased
heart rate.
Blood oxygen saturation measurement for a subject undergoing
approximately two minutes of physical exertion on an exer-cycle.
Resting pulse signal.

Pulse signal after exercise.

Intensity data acquired from the device.

Relative blood-oxygen saturation.

Relative cytochrome oxidase saturation.

31

32

35

37

44

49

so

so

51

52

54

54

55

56

56

57

58

59

60

61

61

63

64

64

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

Relative blood volume.

A pulse waveform used to calculate pulse rate.

Pulse rate measurement.

Temperature measurement.

Attachment of the device using tape.

Data collected during two potentially stressful events for an Adelie
penguin.
Relative blood oxygen saturation calculated from the data in figure
4.15.
Relative oxygenation state of cytochrome oxidase calculated from
the data in figure 4.15.
Relative blood volume calculated from the data in figure 4.15.

Pulse rate data acquired during the two potentially stressful events
for an Adelie penguin.

5.1 An alternative layout for the sensor head that may give improved
signal strength.

A.2.1

D. I

D.2

D.3

The use of three wavelengths to remove non-uniform drift in
oxygen saturation measurements.

Printed circuit board layouts with component overlays.

Printed circuit board layouts.

Serial interface unit PCB layout.

ix

65

66

66

67

69

71

72

72

73

73

79

103

104

105

Chapter 1

Introduction

1.1 The problem

For the Adelie penguin (Pygoscelis adelie) of Antarctica there exists an intriguing
biological paradox. As for any animal living in this environment, adaptation to cold
and the regulation of body temperature is of primary importance. During breeding
however, the Adelie penguins exhibit behaviour that seems to defy these thermal
demands. For periods lasting as long as two weeks [l] they remain on their nests
vigilantly guarding their eggs. During this time they fast , exhibit minimal muscular
act ivity and no behavioural activities such as huddling. Fasting results in a reduction
of resting metabolic rate thereby conserving energy. Contrary to this, an adaptive
response to cold is to increase metabolic rate, producing heat from food or body fat
reserves. As the penguins are fasting, this increase in metabolic rate results in the
depletion of the bird's insulating body fat layer, further increasing the need for heat
generation. As thermogenesis does not occur significantly by other means there seem
to be conf1icting metabolic demands and the question arises, 'How does the Adelie
penguin cope in this environment?'

1.2 Measurement

An increase in metabolic rate implies an increase in the demand for oxygen . Processes
that exhibit a response to changes in metabolic rate are the transport of oxygen via
haemoglobin and the oxidation of substrates within cells by oxidative phosphorylation.
Two proteins involved in these processes, haemoglobin (Hb) and cytochrome oxidase
(COX), exhibit changes in their spectral characteristics depending on their
oxygenation state . These spectra can be observed in viva using near-infrared (NIR)
spectroscopy, a technique that has been employed successfully with the human foetus ,
neonate and adult [2].

Oxidised and reduced haemoglobin and cytochrome oxidase exist in equilibrium in
blood and in the mitochondria of cells respectively (1. 1 and 1.2). The equilibrium
concentrations for each of these give information about the supply and demand for
oxygen at the beginning and end of the metabolic process.

Hb+ 02 ~Hb02

COX+ 02 ~ COX02

(1. 1)

(1.2)

Haemoglobin, oxygen and oxyhaemoglobin are transported throughout the body via
blood vessels (figure l. 1). A concentration gradient between the blood and the cell
causes oxygen to diffuse through the wall of the blood vessel into the cell. Higher
concentrations of oxyhaemoglobin observed in the blood imply that the supply of
oxygen is greater than the demand due to decreased respiration or reduced metabolic

rate. If oxyhaemoglobin concentrations decrease, then oxygen consumption is greater
than the demand as a result of increased respiration or higher metabolic rate.

Oxygen is consumed within the cell during the last stage of oxidative phosphorylation.
Within the cell , sugar is broken down into a smaller molecule called pyruvate that is
oxidised within the mitochondria to produce the waste products; carbon dioxide and
water. This final reaction is catalysed by cytochrome oxidase that exists in
equilibrium with oxygen in the mitochondrial membrane. If high leve ls of oxidised
cytochrome oxidase are observed, this indicates that the rate of sugar metabo lism is
slow and, conversely, highly reduced cytochrome oxidase ind icates an increased
metabolic rate.

Blood
Vessel

Glucose

Cell

Glucose\

Pyruvate

Mitochondrian

Tricarboxylic
Acid
Cycle

Enzymes of the electron
transfer chain

Figure I. l : The metabolism of sugar with the cell. Oxygen exists in equilibrium
with two proteins, haemoglobin and cytochrome oxidase, in blood and in the
mitochondria within cells respectively. The spectral characteristics of these two
proteins depend on the relative concentrations of their oxidised and reduced forms.
Changes in these spectra give information about the rate of oxygen metabolism.

By developing a device capable of making oxygen saturation measurements along
with pulse and temperature measurements a corre lation may be observed between the
environmental temperature and biological responses of the penguin. Such a device
must be portable, small and lightweight so as not to inhibit the normal activ ities of the
bird or cause stress resulting in unrealistic data. NIR spectroscopy, a non-invas ive
technique, is ideally su ited to this problem and the development of such an instrument
would allow changes in the relative oxygen saturation to be observed with minimal
impact on the penguin.

2

1.3 Background - The Adelle Environment

Antarctica, and its surrounding oceans, form one of the most extreme, and yet
habitable, environments on earth. All species that live and breed in this southern polar
region face the same survival issue: the adaptation to cold and maintenance of body
temperature. Each animal that lives in or visits this environment exhibits biological or
behavioural adaptations that enable it to combat the extreme cold such as increased
body fat, thicker skin/feather layers or group huddling behaviour. Adelie penguins
spend eight months of the year living and foraging off the pack ice that forms where
the polar ice cap meets the southern ocean. The birds move with the pack ice that
advances and recedes seasonally, covering a distance of over 1300km [3]. Starting
around mid October, the Adelie penguins make a trek, often travelling 80km or more
inland, to their annual breeding sites located on the shores of the Antarctic mainland or
on many of the Antarctic islands. Some nesting colonies can number in the tens of
thousands and on Ross Island (figure 1.2), where there are six colonies [4], a major
nesting site of approximately 60,000 Adelie penguins is located at Cape Bird (Barton,
K. J., personal communication).

Cape Royds

Figure 1.2: Ross Island and breeding colonies of the Adelie penguin. The Adelie
penguin rookeries are indicated in yellow. At Cape Bird an Adelie colony
numbering approximately 60,000 forms every year from early November to mid
January.

3

Upon arrival at the nesting site the males, who arrive earlier than the females, begin
constructing nests. Open windswept mounds and ridges are the usual location for the
nests as these snow-free areas are all that is available when the Adelies arrive in early
spring. The Adelies collect stones ranging in size from 1cm to 5cm and place them
around the edge of a depression in the ground forming a doughnut shaped wall on
which the penguin sits (figure 1.3).

Figure 1.3: An Adelie penguin upon its nest of pebbles. The nest consists of
pebbles between !cm and 5cm in diameter arranged around a depression in the
ground. Nests are constructed on snow-free mounds to avoid streams and puddles
when surrounding snow and ice melts. Unfortunately these regions are also exposed
to harsh weather conditions.

This choice of nest location has both advantages and disadvantages. As spring turns to
summer the surrounding snow and ice melts forming streams and puddles that these
raised regions avoid. Unfortunately, these raised areas are also exposed to wind and
during the early stages of brooding the Adelies have to contend with harsh spring
weather conditions. In the early weeks of November the male Adelies may endure
temperature fluctuations of approximately 20°C brought on by increased wind chill
due to blowing snow. More surprisingly, on still days the Adelie is faced with a heat
dissipation problem due to the zero humidity of Antarctic air. Under constant
sunlight, local air temperatures can rise well above zero and on these 'hot' days
nesting Adelies will lie with flippers and feet outstretched in an attempt to dissipate
heat. For birds without eggs to protect, the overheating problem is solved by lying in
or eating snow.

The total incubation period for Adelie eggs is between 33 and 39 days and, in 88% of
cases, the male incubates the eggs for the first 14 days. During this time he fasts (1].
Since there are few other options, thermo-regulation must occur on a systemic level
through variation in heart rate, metabolic rate, respiratory rate and vasoconstriction.
The goal of this thesis was to develop a system capable of measuring these responses
and provide an insight into the homeostatic mechanisms of the Adelie penguin.

4

1.4 Technology

The basic requirements of NIR spectroscopy are a monochromatic light source in the
red and infrared region of the electromagnetic spectrum and a photo-detector sensitive
enough to respond to the subtle changes in scattered light intensity. The options
considered for light sources were either laser diodes or LEDs as other sources were
impracticably large. An attractive aspect of using laser diodes includes increased
incident illumination and temporal coherence. However, temperature instability, cost,
power consumption and the lack of availability over a range of frequencies prohibited
their use. Recent development in LED technology has seen a dramatic increase in the
intensity and range of available frequencies. Combined with their cost, weight, power
consumption and acceptable coherence (typical linewidth of 20nm), they were selected
as the most suitable light sources for the device.

The options available as detectors included photodiodes of varying areas and
construction or a photo-multiplier. The later was eliminated for cost and size reasons
and of the photodiodes, a large area (7 .5mm2

) silicon detector was selected as its cost,
sensitive range and temperature stability made it favourable . Other possibilities were
hybrid photo-detector/preamplifier devices, however their expense precluded their use.

Basic improvement to a NIR spectroscopic system is achieved by either increasing the
intensity of the incident light or increasing the effective sensitivity of the detector.
The factors considered when designing the device also included cost, weight, size,
temperature stability and power consumption.

1.5 Measurement Principles

1.5.1 NEAR INFRARED SPECTROSCOPY

The biological and medical value of near infrared spectroscopy arises from the relative
transparency of tissue to light in the red and near infrared regions of the
electromagnetic spectrum and the presence of two natural chromophores that exhibit
oxygenation dependent absorption at these wavelengths (figure 1 .4). These
chromophores are haemoglobin, which is present in red blood cells and is therefore an
indicator of blood oxygenation, and cytochrome oxidase, which is the terminal
enzyme in the mitochondrial electron transfer chain and therefore an indicator of tissue
oxygenation [5]. The goal of NIR spectroscopy is to obtain absolute quantitative
absorption spectra through observed changes in detected scattered light. However,
differences from subject to subject in physical attributes such as skin opacity, skin
thickness, blood circulation and temperature preclude single wavelength
measurements due to an inability to calibrate the system. Using double wavelength
techniques similar to that used by Shiga [6] and Mendelson [7], qualitative oxygen
saturation data are obtained through normalisation of the absorbance data.

5

~
ro u
(/)

Ol g
C
,Q
a.
0
(/)

.0
ro
(I)

-~
ro
ai
a:::

lsobestic
Point
805

(I)

ro u
(/)

Ol g
C
,Q
0.. Reduced
0
(/)

.0
ro
(I)

£
ro
ai
a::: Oxidised

400 500 00 700 8 0 900 1 OOO 900
590 660 880 950

Wavelength /nm

(a)
625 Wavelength /nm

(b)

Figure 1.4: (a) Absorption spectra of oxy- and deoxy- haemoglobin and (b)
oxidised and reduced cytochrome oxidase 181, 805nm is the isobestic wavelength
for oxy- and deoxy- haemoglobin, other specified wavelengths indicate the
frequencies of the available light sources (LEDs).

1000

In radiation transport, light is comprised of discrete photons that are either elastically
scattered or totally absorbed according to the coefficients E (absorption coefficient)
and cr (scattering coefficient) for constituents within the tissue [8]. The Beer-Lambert
law (1.3) describes the total absorbance as the sum of the absorption coefficients
multiplied by the concentration of each absorber [9]. The total absorbance is related to
the detected light intensity by the logarithm of the incident and transmitted light (1.4)

A= L:~:.."· [X,]L

A= log 10 (!0 / 1)

(1.3)

(1.4)

where I O and I are the intensity of the incident and transmitted light respectfully,

c}· are the absorption coefficients (at wavelengths A) for the various absorbers (X ;)

in the tissue, [X;] are the concentration of the absorbers and L is the optical path

length. The following result that relates blood oxygen saturation to the measured light
intensity is calculated from absorbance data measured at the two wavelengths, 660nm
and 880nm. At 660nm, reduced haemoglobin absorbs considerably more than
oxyhaemoglobin and at 880nm the absorbance due to oxy- and deoxy- haemoglobin is
comparable. The tissue oxygenation result is derived in the same manner using the
same assumptions but shorter wavelengths of 605nm and 626nm. The general oxygen
saturation derivation using double wavelength measurements is given in appendix A. l .

At 660nm and 880nm it can be assumed that the contribution to the absorption by
chromophores other than haemoglobin is small and, on the time scale of an
observation, their contribution remains constant [6]. These terms along with optical
loss and the sensitivity of the detector can be incorporated into an attenuation constant
such that (1.3) may be rewritten as

(1.5)

6

Equations (1.4) and (1.5) can be combined resulting in an equation that describes the
observed intensity, I , as a function of the optical path length, the oxy- and deoxy­
haemoglobin absorption coefficients, and concentrations which vary m a
complementary fashion.

In (1.5) the absorbance, A, depends on the optical path length, which is unknown.
Work using time-resolved or frequency-domain reflectance spectrometry has been
carried out by a number of researchers (Wilson et al. [8], Liu et al. [l OJ) to obtain
absolute, quantitative absorption data. These techniques however, have large
computational and hardware requirements that are unsuitable for this application.

Given the relative transparency of tissue to red and near infrared light it can be
assumed that the concentration of scatterers is much greater than the concentration of
absorbers and that the degree of scattering varies insignificantly between 660nm and
880nm. That is,

(S >> A) and (S 66onrn ""'Sssonm)

where S LO",, [X
1

]

(1.6)

Under these conditions, the average optical path length for both wavelengths is

approximately equal (i.e. (L 66011m}"" (L88011,,,)) and, by taking the ratio of absorbances,

the optical path length tenn may be eliminated [8].

E/,~~ [Hb] + £:~1
~
02 [HbO:]

/-fh[Hb]+ HW[Hb02]
(1.7)

Using the complementary relationship between the oxy- and deoxy- haemoglobin
concentration and recalling that the absorbance is proportional to the intensity signal,
A= log(f 0/ I), an equation that describes the relationship between measured light

intensity and oxygen saturation is found (appendix 1).

(£Hb -£Hbo,)log(io,66o/166o) +£Hbo, -£fib
880 880 l (1 j f) 660 660

og o.sso / 880

(1.8)

The reduction state of cytochrome oxidase and measured light intensity is calculated
using the same analytical method, however in this case, the difference in absorption is
observed for light of wavelength, 605nm (figure 1.4).

From the absorbance relationship (1.5) an equation describing relative blood volume
can also be derived by considering the absorbance at two different wavelengths

A660 = cZt [Hb]L + sZt0 ' [Hb02]L
Asso oc £:St [Hb]L + E~t0 ' [Hb02]L

(1.9)

(1.10)

7

Obtaining either (1.9) or (l.l 0) in terms of [Hb] and [Hb02] then combining the
results gives an equation re lating the total haemoglobin concentration to the
absorbance (1. 11). Assuming that the total haemoglobin concentration in the blood
remains approximately constant, the relationship between blood vo lume and measured
light intensity is found by substituting the absorbance relationship, A oc log(/0 / !) , into

(1. 11). The general derivation of relative blood volume is given in appendix A.3.

(
A (HbO, Hb) A (lfb HhO,)J

[Hb] oc _!_ 660 c'sso · - Esso + sso £ 660 - £660 ·
Iota/ [Hb Hb01 Hb llhO:

£ 660c'sso - c'sso£66o
(1.11)

1.5.2 TRIPLE \VA VE LENGT H OXYGEN SATURATION MEASUREMENT

[n general, the opacity of tissue reduces for light of increasing wavelength. Within an
absorption band (e.g. 590nm to 880nm for oxyhaemoglobin) the background
absorbance can be estimated by interpolating between two wavelengths at which the
absorbances of the oxidised and reduced stares are comparable (figure 1.5).
Normalising the acquired absorbance with this predicted reference point reduces the
error due to non-uniform base line drift and improves the validity of assumptions
made for the constant attenuation assumed in equation (1.5) .

.........
(1)

CU u
(J)

CJ)
0 -C
0 Hb02

·.;:;
a. ,._
0 . - Hb (J)

.D
ro
(1)

> A, A~ AJ _,
ro
(1)

0::::

00 700 900

805
Wavelength /nm

Figure 1.5: In te rpolating to find an estimate of th e background absor bance a t

wavelength, Ai . Comparing the measured absorbance with the background

es timate helps to remove the no n-uniform baseline drift present in double wavelength
measurements.

The equation describing oxygen saturation from triple wavelength measurements is
given for the oxygenation state of haemoglobin using the wavelengths A,= 590nm,

Ai= 660nm and ~ = 880nm. A similar result is obtained for cytochrome oxidase

8

using the wavelengths Ai= 590nm, Ai= 605nm and A,= 625nm. The general

derivation of triple-wavelength oxygen saturation measurement is given in appendix
A.2.

Linearly interpolating between 590nm and 880nm gives an express ion for the
background absorbance, A;60 , at 660nm,

r1' = Asso - As90 + rl
600 J\ 590

880-590
where J\=--- -=4.143

660-590

(1. 12)

Defining, /J, as the ratio of the measured absorbance to the background absorbance
and assuming again that the mean optical path lengths are approximately equal at all
three wavelengths gives the following expression

(1.13)

As before, the complementary relationship between the oxy- and deoxy- haemoglobin
concentration is used allowing equation (1.13) to be solved for the oxygen saturation
giving,

[Hb02] _ f](E;~~ + (J\- 1)£~~)-Ac~~
[Hb] - HbO, Hb /J (I) Hb HbO, Hb HbO,

/Ota/ i\ £660 . - £660 + J\ - C590 - C590 . + Cggo - Cggo .
(1.14)

To obtain the direct relationship between measured intensity and oxygen saturation,
the absorbance relationship, A ex log(f 0/ !) , is substituted into /J

/J= M 66o = J\log(Io_66o / f66o)

Asso + A59o (J\ - 1) log(Io.sso / fs8o)+ log(ro,s90 / l 590XJ\- 1)
(1. 15)

In both the double and triple wavelength calculations, relative blood volume, blood
oxygenation and tissue oxygenation are found to be functions of the intensity signal
and absorption coefficients only. Using data acquired from the device and absorption
information from the literature allowed the metabolic state of the subject to be
described.

1.5.3 NEAR JNFRARED SPECTROMETRY

Near-infrared spectroscopic systems are usually arranged in one of two configurations,
transmission mode or reflectance mode (figure l.6). Established clinical and research
devices such as the Wood-Geraci ear-oximeter and the Hewlett-Packard eight­
wavelength oximeter are all transmission mode devices [11]. The use of reflectance
mode spectrometry was introduced by Brinkman and Zijlystra in 1949 who showed
that changes in oxyhaemoglobin saturation could be recorded non-invasively from an

9

I

I

I

I

I
I

I

optical sensor attached to the forehead [7]. Reflectance mode oximeters however,
have not achieved widespread commercial use due to limited accuracy and difficulties
in absolute calibration. For the intended application, absolute calibration of the device
was not required, as the main objective was to demonstrate a correlation between
environmental conditions and the relative changes in the metabolic response of the
Adelie penguin. In this device limitations in accuracy were reduced by the greater
intensity of modem LED technology and calculation techniques such as the triple
wavelength measurement (section 1.5.2).

Aside from the differences in construction and calibration, the physical basis for both
transmission and reflectance mode spectroscopy is the same for measurements of
completely diffuse light (i.e. the photon distribution within the medium retains no
information about initial direction). Photon diffusion analysis by Kumar and Schmitt
[12] has shown that, with a source and detector spacing of greater than 2mm, a
collimated incident light source is equivalent to a diffuse source located below the
surface in an optically turbid medium such as tissue. Since the Beer-Lambert law
describes a measured intensity in terms of the photon path length and the incident light
source may be considered diffuse, the detected signal for both transmission and
reflectance mode spectroscopy is equivalent.

Tissue Tissue

Sou;ce "n, D'itector , ~n~
(a) (b)

Figure 1.6: The two main configurations for near infrared spectroscopic
systems, (a) transmission mode and (b) reflectance mode. For distances greater
than 2mm from the incident light source the scattered light may be considered a
diffuse light source below the surface. As diffuse light is independent of direction
both transmission and reflectance mode spectroscopy are equivalent.

1.6 Thesis Overview

The work undertaken in this thesis involves the design and development of a NIR
spectroscopic device. Using the principles and techniques described above, a system
was developed that not only collected the necessary physiological data but also
addressed some of the difficulties of working in Antarctica and with the Adelie
penguin. In the instrumentation chapter that follows, the hardware is assembled along
with justification for the components selected. A logical division between
measurement and control exists that divides the hardware into analogue and digital
stages respectively. The acquired signal is followed through the various analogue
processes to the point of digitisation where focus is then moved to the control of the
device by the digital components.

10

The third chapter examines the control of the device from a software perspective. It
gives a description of the operating system and the interaction between measurement
sequence files, the terminal emulation software and the embedded processor. The
final section of this chapter describes the algorithm used to determine pulse rate from
the fluctuating scattered light signal and gives analysis of the signal processing
techniques used to overcome noise.
Chapter four begins by describing the incremental development of the device and the
results of the validation steps taken at each stage. Reasons for each new prototype and
the increased functionality that each system allowed are described in the logical order
in which they were developed and the conclusion to this section gives the test results
of the final prototype version of the device. The second part of chapter four describes
the results obtained during field-testing. Included are the physical aspects of the
experiments, such as capture, attachment and behavioural response, through to the
biological results obtained m response to stress and temperah1re changes;
oxyhaemogJobin saturation, cytochrome oxidase saturation, blood volume and pulse
rate. A discussion of the acquired data follows in the conclusion chapter that then lead
to an evaluation of the device, its limitations and various suggested improvements.
Long-term enhancements conclude chapter five with an outlook toward the potential
fr1ture of the device in environments as equally diverse as that of the Ade lie penguin.

I l

Chapter 2

Instrumentation
An optical device was designed and constructed to provide an insight into the
metabolic responses of the Adelie penguin. This necessitated a compromise between
the constraints arising from working with penguins and the requ irements of the
hardware.

2.1 Design Specifications

The biological information to be measured included pulse rate, blood oxygenation, the
reduction state of cytochrome oxidase and relative blood volume. As these variables
are calculated from changes in the absorption of light at different wavelengths (section
1.5.1) , a system to record this absorption data was needed. Experiments designed to
measure these variables could last only a few hours with continuous sampling or for
several days using less frequent sampling. The device had to be equipped with timing
facilities and have the ability to store the acquired data for retrieval after the
measurement period.

As the device was to be fitted to an Adelie penguin , there were a number of physical
restrictions that also had to be considered. The average weight of an adult Adelie
penguin is approximately 3.5 - 4.5 kg [13] and the device had to weigh only 2 - 3% of
this (:S l 50g) to minimise restriction of the birds normal activities such as walking,
jumping, stone collecting or egg incubating. For the same reasons , minimising the
package dimensions and careful consideration of shape were necessary. Research into
the swimming energetics of instrumented penguins shows an increased level of energy
expenditure with even relatively small instruments attached (<2% of body cross­
sectional area) [14]. The added complexity of waterproofing and streamlining the
device packaging was avoided by conducting experiments during the penguins
breeding period, where they spend the majority of their time on land. On the
occasions that the penguin intended to go to sea, the bird was recaptured and the
device removed. Waterproofing of the device, however, was still necessary to prevent
problems from melted snow or ice.

Minimising awareness of the device, by either the individual bird or its neighbours,
was important for reducing stress. Research into the most suitab le package co lour has
shown that colours similar to that of the bird's plumage are interfered with
significantly less than other colours [15] and so all exterior surfaces of the device were
coloured black.

12

2.2 Design Overview

Measurements were made from the ulnar artery and deep ulnar vein located at the
proximal end of the penguin flipper's medial side [16]. Attaching a device with the
necessary functionality outlined in the design specifications to this location was not
possible so a sensor head and control unit arrangement was employed (figure 2.1).

Sensor head
fitted under the ----­
flipper

Interconnecting
Cable

Tape

Figure 2.1: Adelie penguin with a control unit and sensor head fitted. The
control unit, tape and interconnecting cable were coloured black to be less
obvious to the penguins.

A plastic case, measuring 65mm x 92mm x 25mm and sealed by a plug fitted with an
0-ring, enclosed the control unit protecting it from water and interference by the
penguin (figure 2.2). The sensor head was connected to the main unit by an
interconnecting cable soldered to a row of header pins and mounted into the plug using
epoxy glue. The connecting cable linked the control unit, located on the lower back of
the penguin, to the sensor head that was taped to the underside of the penguin flipper.

At the sensor head, LEDs of various wavelengths transmitted light into the tissue.
Some of the scattered light was received by a photodiode (also mounted on the sensor
head) that converted the light signal into an electrical signal. This was then amplified
and filtered before being digitised by an analogue to digital converter and processed
by a microcontroller in the control unit. Co-ordination of this process, measurement
sequence interpretation, serial communication and power management were all done
by the microcontroller. Finally, the acquired data were stored to static memory for
later retrieval.

13

Microprocessor

Analogue to
Digital converter

Figure 2.2: The connectivity and packaging of the sensor head and control unit.

Information was transferred between the device and a computer via an RS-232 serial
port. Using this communication, measurement instructions could be downloaded into
the microcontroller's memory where they were interpreted and executed (section
3.2.3). As measurement periods could last anywhere from a few hours to several days,
two important features of the device were the timing and power management
capabilities. A microcontroller feature was used in conjunction with a real time clock
to allow the processor to switch in and out of its power saving state at particular times.

The final realisation of the device is shown in figure 2.3. The total weight of the
control unit and sensor head (including the case and interconnecting cable) was 132.7g
and the control unit had a frontal cross sectional area of approximately 1600 mm2

•

200 250

Figure 2.3: The final realisation of the device.

14

2.3 Analogue Circuitry

2.3.1 THE SENSOR HEAD

Optical measurements were made by the sensor head located over the ulnar artery
under the penguin flipper. The sensor head was 28mm in diameter and 12mm thick.
It carried LEDs of six different wave lengths and a temperature sensor arranged
equidistantly around a photodiode (figure 2.4). As suggested by Kumar and Schmitt
[12] a source - detector spacing of 5mm was used. This spacing is suitable for
shallow tissue absorption measurements and provides adequate signal intensity given
the power limitations of the device. Also, the feasibility of this LED-photodiode
arrangement was verified by preliminary experiments. In a similar device constructed
by Shiga et al. [6] dual wavelength LEDs were mounted 30mm from the optical
detector. Shiga states that thi s distance is su itable for making musc le tissue
measurements but requires greater power to achieve measurable signal strength.

Connec ting
Cable rn

\

Below

Figure 2.4: The sensor head layout. The sensor head was 28 mm in diameter and
12mm thick. The view labelled 'Above' is the side that contacted the penguin
flipper.

Selection of LEDs for the sensor head was based on the availabili ty of wave lengths as
close as possible to the peak differences and isobestic points of the haemoglobin and
cytochrome oxidase absorption spectra (figure 1 .4). The LEDs chosen had peak
outputs centred at 950nm, 880nm, 660nm, 625nm, 605nm and 590nm of which the
880nm, 660nm and 590nm were used for blood oxygenation experiments and the
625nm, 605nm and 590nm were used for tissue oxygenation experiments. The 950nm
LED was included as an extra wavelength for the blood oxygenation measurements
since many similar systems use 660nm and 950nm for their double wavelength
measurements [7].

Individual contro l of each LED by the microcontro ller was achieved using three data
lines and an eight channel surface mount multiplexer. The major advantage of this
was to reduce the number of connections between the sensor head and the contro l unit.
Using a three-bit address the microcontroller is able to select each of the six LEDs .
Each LED was modulated when in use (section 2.3.2) so to achieve this, one of the
eight multiplexer channels was left unconnected and by switching between the
required LED channel and the unconnected channel the LED was modulated.

15

Light, emitted from the LEDs and scattered by the tissue, was collected by a large area
photodiodc. The BPW34 photodiode was chosen for its large radiant sensitive area
(7.5mm') and high photosensitivity rn the visible and infrarcd regions. Exposure of
the detected signals to interference was minimised bv mounting a current to voltaae

'- ., ._, b

converter with gain as close as possible to the photodiode. This converter also acted
as a preamplificr and was constructed using an OP07, low offset voltage and low bias
current, operational amplifier. The benefit of this amplifier was its low noise
characteristics making it ideal as the preamplifier.

An estimate of the local skin temperature was obtamed from a temperan1re sensor
located on the sensor head. The sensor was directly calibrated and had a linear
response to changes in temperature of I Orn V/K. The sensor head is summarised 111

figure 2.5 and a complete circuit diagram is given in appendix C.2.

,-: 1,
Temperaturen_i ----------1

Sensor
LJ I

c-------------~J -9 !

' u'

590nm•; ·
\.

605nm v"1 ~ I
' I

625nm •1• ·~ MUX ·--------~ (j) !
660n m v ,f----~---- __j c :

\. ~-:------------- 18 !,;

880nm v+1---1)>M-/-~ 1 -,,
---iAMP

LEDs

: I

~

,7:

Figure 2.5: The semor head circuit. An t:ight-channd multiplexer was used to
f('.dui..:c the number of connections between the LEDs on the sensor hezid and the
s:untrol unit. A complete circuit di::rgram of the sensor head is given tn appendix C.2.

2.3.2THESYNCHRO~OUSDETECTOR

One of the most useful experimental techniques for increasmg the signal to noise ratio
of a noisy signal is synchronous or phase-sensitive detection. The underlying
principle of this technique is to sbili the frequency of the signal of interest (usually
near de) into a ·quiet' band of frequencies. A high pass or band pass filter is then used
to remove the noise components outside of this frequency range so that, after
demodulation, the original signal 1s reconstructed without the original noise [17]. The
explanation that follows describes the synchronous detector implemented for the
device (figure 2.6) while a more general analysis of synchronous detection is given in
section 2.3.3.

Consider the signal resulting from the photodiode on the sensor head if it were under
constant illumination. The major factors contributing to noise and interference in this
signal would be changes in background light levels, thermal drift and electrical
interference (e.g. the switching of the LED address lines). Separating this noise from
the true signal resulting from changes in scattered light would be a near impossible
task.

16

Suppose now that the light source is modulated by a reference square wave. The
resulting current through the photodiode detector will now also contain a square wave
in phase with the light source (reference point 1 in figure 2.6). The magnitude of this
square wave is proportional to the scattered light signal only and is synchronous with
the reference Since this ac signal is the only signal of interest the offset voltage
(background de interference signal) can be simply removed using a coupling capacitor
such that the wavcfom1 becomes centred about zero (reference point 2 in figure 2.6).
This ac signal tends to be small (of the order I O - I OOm \") so it is amplified before it
1s passed through the phase sensitive detector which uses the modulation wave to
toggle an electrical switch between the signal and its inverse. As the modulation wave
and signal are in phase the effect of this switching is to full-wave rectify the signal
(reference point 3 in figure 2 6) By passing this signal through a simple low pass
filter a smooth de waveform proportional to the scattered light detected by the
photodiode is obtained (reference point 4 in figure :.6)

3ack:;rouncr
:.gr~t _,

,_ED ,:11..,,r,rna'.,Jr; ,;.!".
. '
't,1CJ·j1~:a;1on

-:-r,e,rr,,Ji

dr1 '!

Photo::J1ode
'/oi'.age -- =wi ,~..... ,--.•

,.w,, ~ \-1.]--=~-: ·'-.,2_.'

; i ~

AC
Couo:1o

___ J

'"'Elec'.r:'.:al
wter'.erence

•I

,,l,l,"l"""'I,¥t,~i.'iN

·3 ----,,..,

Lo•:1 ::,ass
"'Liter

Figure 2.6: A graphical representation of the implemented synchronous
detector. l) The raw volt:igc proportional to the current through the photodiode \Vith
a background off\ct. 2) The rJ\V signal with thl'. background offstt removed. 3) Full
w;ivc rcct1ficat1on of the rrmp!itlec! signal. -1-) • .i. \V3.veforrn directly proportional to
the illumination of ihc pholudio<lc by tbc LED.

2.3.3 SY'.\CHRO'.\OVS DETECTION

---~-----~

The fundamentals of the synchronous detector can be seen by analysing the effect of
the detector on an arbitrary sine wave. In thinking of the detector as a black box, the
general noise signals that are present at the input consist of the supposition of
numerous sine waves each of varying amplitude, frequency and phase. Examining the
resulting output of the detector to these signals explains how an improved signal to
noise is achieved. Consider first of all a sinusoidal input signal (2.1) that is in phase

and has the same frequency as the switching frequency (J~ ~ w
0
/2ff) of the detector

(figure 2. 7).

(2.1)

I 7

The switching process of the detector has the effect of full wave rectifying (2.1)
generating (2.2) as the result.

Switch
State

Input
Signal

..
I

t
Rectified

f
01

Frequency = ; = ::;-:
.::. ..

(i)

(ii)

Input
Signal I

;\ .~

/ ·., /

(iii)
V ~ ~ow r-o

,,,; w.) · ! Pass !

~--:--·1 \ F lter ,

~ Switch
(iv)

Figure 2.7: Demodulation of an in-phase, input sine wave. (i) The detector swikh
state; (ii) an input sine \Vavc signal in pha::;c Jnd of the sc1me fn;quency as the S\Vitching
of the dercetor; (iii) rhc ful!-\.va 1./C rcctificJ :,ine wetve: anJ (ii.-) the full-wa\.C dekctor
and lo\\- pass filter.

Decomposing (2.2) into a Fourier series of the fom1 (2.3) [18] gives (2.4)

! ·)- a,, f,[·(" ,r). · b · 1·, · J] J 11 - 7 , L... a,, cos _,rn.1 01 , ,, stn .-7m/0t
,_ n=I

') To/2

a,,=~)((t)cos(21[11j0t)dt, n = 0,1,2,.
-,,).' -- .,

) '1Jl-

b,, = ~ fJ(t)sin(21[11J;t)dt, n =1,2,3, ... ,
-T1 /2

, 2V0 4V0 () 4V0 () 4V0 (, V =-----cos 2cv t ---cos 4cv t ---cos 6cv t)- ...
sm ff 3;r , O 15;r O 35;r O

(2.2)

(2.3)

(2.3a)

(2.3b)

(2.4)

If a low pass filter is designed with unity gain at de and a comer frequency much Jess
thari 2cv0 (i.e., I/ RC << 2cv0) then only the de component of (2.4) will pass and the

output of the filter (2V0 /tr) is proportional to the amplitude of the input signal only

(figure 2.8).

I 8

Fourier v;,
Components
of v,,n

()

Low pass filter
, . frequency response

4V

Jr::

20),

FreqL;enc;

3 5r:
6w,

Figure 2.8: The Fourier components of the full-wave rectified sine wave. A low· pass
filter \vith unity Jc galn iind a corni.:r frequency much li.:ss than 2u-{) vviil pass only the Jc
cumpunent of the \vaveform.

Consider now a sinusoidal input signal of the same frequency as the switch frequency
but out of phase by o (where -ff< 9 <ff).

The de component of(2.5J at the output of the detector is now

7

(7 -__))

(2.6)

using the same low pass filter (i.e .. with I/ RC << 2cu0) the output is proportional to

the amplitude of the input signal and the cosine of the phase difference between the
signal and the detector switch. Clearly. this de output is less than the output signal
resulting from (2.4) that has r/J = 0 so this result implies that the detector is phase

selective.

I

I

" Detector OutpLl

\\ Pha~ difference

~ ~~::en inpul signal
~etector switch

Figure 2.9: The phase selectivity of the detector. The magnitude of the input sine

wave de component varies as (2V
0
/;r)cos(rP) for a phase difference of r/J between

the input sine wave and the detector switch.

19

Noise at the input of the detector consists of the supposition of sine waves of all
frequencies. Therefore, the contribution to the detector output by frequencies other
than the modulation frequency is of interest. Consider a sinusoidal input signal with an
arbitrary frequency,/.

CV= 2ef
V = V cin(@). 1 7)

" ,J J • (~.'

Taking a converse approach to that previously, the Fourier decomposition of the
detector switch signal (the modulation square wave) is first calculated

S)\,,.1ch 5 . /() 4 1_
1

. (..
1

sin(3a,u) . sin(Sli.,V) rgna J =-: sm CU,/,+ ~) ---r _
;T \ _J)

\

' .. '

')
(2.8)

Multiplying (2.8) by the arbitrary sine wave, (2.7), gives the Fourier components of
the signal at the detector switch output.

n-ccJ._)_5_

) v, [.) ('] .::_:_ cos(ax - 11W/, - cos M + nru.,1)
Jl!T

(2.9)

Equation 2.9 shows that the frequencies present after the detector switch are the sum
and diftercncc of the switch frequency and the input sigml frequency and in the
special case of OJ= cv,,, (2.9) simplifies to (2.4).

If the low pass filter swge is constructed with a corner frequency, w,. (= I/ RC) << w,,,
then the only surviving frequency components after the low pass filter will be the
difference tcnns.

V' -
,in

wilh

2// . L -'' cos(ax - n W/),
nlf 1:=i.3.5.

(2.10)

(2.1 1)

The restriction of (2.11), that the difference frequency must be less than the low pass

filter corner frequency, defines the bandwidth of the detector equal to 2w,.. Figure

2. 10 shows a plot of the analytical solution (equation 2.9, appendix 8.1) and physical
data collected for a detector using l kHz modulation and a low pass filter with a corner
frequency at !Hz. Note that figure 2.10 is not a plot of the transfer function of the
demodulator but a plot of the contribution that sinusoids of various frequencies make
to the output. The figure shows that signals synchronous with the detector switch (or
signals modulated at the detector switch frequency) have the most significant
contribution to the demodulated output. Unwanted signals, with frequencies very near
the modulation frequency, are still significantly large at the detector output and appear
as low frequency ripple on the true signal. For this reason the modulation frequency is
selected in a 'quiet' frequency range so that the effect of these unwanted signals is
minimised.

20

o.-------r-----r---.------,----r-----,
Bandwidth at
-3db point = 2Hz --+-----1--

..0

~
,.._
0 u
(j)

Q)
0
(j)

£ -0

~
>
t5
(j)

ai
(j)

-10

-20

-30

-40

-50

-60

-70

>.
0
C
0

0.2 I ;;, 1------1----,+---i.----l
©
>
Si

~

-0.2

-0.4

-0.6

-rr~ -----0.8~0 ____ _,

Phase difference

,.__ Data acquired
• / by physical

measurement

-80 ~--~---~---~--~---~--~
500 1000 1500 2000 2500

Input Signal Frequency /Hz
(Amplitude= 1V)

3000 3500

Figure 2.10: The frequency and phase response of the synchronous detector.
These data were calculated for a synchronous detector using l kHz modulation (0,1 =
]kHz) and a low pass filter with a comer frequency at !Hz. The bandwidth of the
dominant peak is 2Hz equal to twice the low pass filter comer frequency. The peak
at 3u:i0 is predicted in equation 2.11 when w = 3WQ and n 3. The C+-c- program
written to generate the data for the synchronous detector is given in appendix B.1

2.3.4 THE ANALOGUE STAGE

On the device, the synchronous detector was implemented using a modulation
frequency of-1 kHz and a low pass filter comer frequency of 3.4Hz. The demodulator
was a DG419 analogue switch connected to a passive first order low pass filter. Since
the function of the synchronous detector does not depend critically on the selectivity
of the low pass filter a simple filter design was chosen to minimise weight and the
circuit board area required.

The remainder of the analogue circuitry (figure 2.11) is concerned with adjusting the
signal levels so that they lie within the range of the analogue to digital converter (OV
to 5V). The two input signals from the sensor head were converted into four outputs,
signal-out, high-gain signal, pulse signal and the temperature signal. The first two of
these were for LED measurements. The signal-out output was calibrated for the
950nm, 880nm, 660nm and 625nm LEDs and the high-gain output was for the shorter
wavelength LEDs (605nm and 590nm) from which the signal strengths were much
weaker. The pulse signal output was designed to amplify the signal oscillations to
improve the computation of the pulse period (section 3.4). Most of the de offset was
removed by level shifting the signal to approximately 0.1 V and then amplifying by a
factor of 19. This increased the ac component of the waveform while keeping the

21

signal within the digitisation range. Finally, the temperature signal output was
designed to increase the sensitivity of the temperature sensor by subtracting a de offset
and increasing the sensitivity from 1 Orn V/K to 40m V/K. This meant that the
temperature sensor was no longer directly calibrated in Kelvin but temperature
measurements became four times more sensitive.

Temperature
Signal In

Photodiode' ac x11
Signal In ""1Couplingr-· Amp ---

Level Shift! Temperature
+ x4 ·- Signal Out

,---------·- Signal Out

Low Pass ' X11 ac Level shift .
, Demodulator, Filter ·-· Amp ·-,-:coupling·· +x19 Amp·-Pulse Signal

-' ·1 ________ .. __ X11 Amp ... High Gain Signal

Modulation
Signal~-.... _____ .. _____ _

Figure 2.11: The amplification and filtering stage of the device. This analogue
section of the device converts signals from the sensor head into measurable signal
outputs ready for digitisation. A complete circuit diagram is given in appendix C.3.

2.4 Digital Circuitry

The control unit's digital circuitry consisted of four functional blocks; the
microcontroller, analogue to digital conve11er (ADC), real time clock (RTC) and serial
EEPROM (figure 2.12). The latter three (slave devices) were connected to the
microcontroller (master device) using the Motorola Serial Peripheral Interface (SPI)
[l 9] [20] which is a three-wire system for communication between digital devices. A
complete circuit diagram for the digital circuitry is given in appendix C.4.

Power
Sense

Real
Time

Clock

Modulation LED
Signal

,---------... 0,m .. ,c,c Pin

Motorola
MC68HC11E9
Microcontroller

Serial EEPROM

12-Bit
Analogue

to
Digital

I---:-:=-::----; Converter

-: -Channel 1

2

3

4

Enable

Figure 2.12: The digital circuit components. Each of the slave devices (RTC,
ADC, memory) were connected to the microeontroller via the serial peripheral
interface (indicated by Serial Comms).

22

For the microcontroller to send and receive data from any slave device it first had to
deselect all other devices connected to the serial data lines to avoid data collision.
Once a single slave device was selected, data were transmitted and received bit by bit,
synchronised by the serial clock (figure 2.13). When 8 bits had been shifted, two
complete bytes of data were been swapped between the master and slave device. In
each case the received byte was transferred to a data buffer which was then internally
accessible by each device. Using this form of communication the microcontroller was
able tQ sample data using the ADC, at timed intervals controlled by the RTC, process
the data and store the results into memory.

I Master device I
, I

I device select i

Slave device I
I

I ~----------~

I r-~,
1

_.____,. ; data out ,-t.,___,___,

i b~~=r I ic---+-J --ll,b~a~=ri

'I I.I i data in I I I I • 1

1

J1Jlf_-_----,c-lo-ck------J1Jlf

Figure 2.13: Serial communication between digital devices using the '.Wotorola
serial peripheral interface.

2.4.1 SAMPLING AND DIGITISATION

At the end of the analogue stage there were four outputs, each used depending on the
measurement to be made (section 2.3.4; figure 2.11). These were connected to the

of LTC 1594 analogue to digital converter [21], the features of which
included 12-bit resolution, low supply current and automatic shutdown. A major
consideration when selecting components for the device was power consumption
(section 2.4.5.3). An attractive feature of this ADC is that it draws only 320µA during
conversion and then drops automatically to approximately 1 between conversions.
Therefore the ADC could remain constantly connected to the power supply and high­
resolution data could be sampled at any time without concern for power consumption.

To collect a sample using the ADC, a byte (with the last 4 bits containing port number
information) was sent while the chip-select pin was high (unselected). Before the next
SPI clock cycle the ADC chip was selected (pin set low) and two consecutive bytes
(16 bits) were read by the microcontroller. The 12-bit sample value was retrieved by
concatenating the two bytes and reading bits 2 through 13. The bits outside this range
could be used for error detection.

23

2.4.2 THE MICROCONTROLLER

The microcontroller used to control the device was the Motorola XC68HC7 l l E9Cf­
S2. This device was chosen because there was local knowledge and experience with
the 68HC 11 and also because it was readilv available. A block diagram of the

C ~

controller is given in figure 2.14 showing the functional blocks and input and output
connections. Some of the features that prompted its use include:

• 12k by1cs of erasable programmable read-only memory (EPROM)
• S 12 byies of electrically erasable programmable read-only memory

(EEPRO:VI)

• 512 by1es of static RA.iv!
• Serial peripheral interface (SP!)
• Serial communication interface (SCI)
• Eight channel 8-bit analogue to digital converter
• 16 bit timer system with output compare timctions
• Power saving mode via the STOP instruction

In the final implementation of the device the control software (chapter 3) was stored in
the 12K by1cs of EPROM, the 512 b11cs of EEPROM were used to store measurement
sequence information and the 512 b11es of RAM were used for system variables.

2.4.2.1 Output-Compare
The ·output-compare' functionality of the microcontroller was used to implement the
modulation of the LEDs. Each output-compare had an associated register that was
used to trigger an interrupt and optionally a pin on port A of the microcontroller. An
output-compare was triggered when the value of the internal clock (represented by a
16-bit free running counter) equalled the data held in one of the output-compare
registers.

LED modulation on the device was achieved using the first output-compare timction
(OC l). A special feature of OC l is the ability to control any of the pins of port A.
During initialisation of the controller, OC I was configured to control pins 1 through 4.
which were connected to the multiplexer on the sensor head (section 2.3.1) and to the
demodulator of the synchronous detector (figure 2.11). LED modulation was initiated
by setting the value of the OC 1 register to a time in the future. The state for port A
was assigned into the OC 1 data register and the intemipt mask was removed. When
the interrupt occurred, the contents of the OC 1 data register were mapped to the pins
of port A and program execution entered the OC 1 interrupt routine.

Within the interrupt routine, the value of half the modulation period was added to the
OC 1 register so that the next interrupt would occur half a period later. The OC 1 data
register was assigned a value of either zero or an LED address, depending on its
previous state.

Periodic sampling was achieved in a slightly different manner using output compare 5
(OCS). In this case OC5 was not configured to control a pin of port A but only to
generate an interrupt. A sample was acquired during the interrupt routine and the time
period until the next sample was added to the OCS register.

24

MODA MOOB
(LIR) (V,...,)

a.
0

0 u
;;;
:5
E

<.>

~
~ Timer ~

System ..
"'
~

OC1

i --- ~

XTAL EXTAL E

,._ 0 co __ co
a. ll.

IRQXIRQ RESET
(Vpp)

Interrupt

Logic ROM 12K Bytes

CPU Core

I~

co
0::
I­C/)

EEPROM 512 Bytes

RAM 512 Bytes j
;:===::.::.-:.,-r----_S-:,.e_n_a_l_-_-,:-.::;"""Tc--' V

00

Senal
Peripheral
Interface

SPI

Commun1cat1on
Interface

SCI

I~~
ioo::< ;3 __ 8
O::i.... a.. Q.

,._ 0
w--w
ll. ll.

t;;C/)

Figure 2.14: Block diagram of the 68HC 11 E9 microcontroller.

2.4.2.2 Interrupts
Another feature of the microcontroller was the ability to assign the highest priority to a
particular user intem1pt. The pulse measurement algorithm (section 3.4), used to
calculate the period of a pulse wavefo1m, relied on the sampling frequency being
known. This was ensured by assigning the highest priority to the sampl ing output
compare intem1pt. Other interrupts used by the device were OC L (for LED
modulation) and the external non-maskable interrupt XIRQ (for receiving status from
the real time clock).

2.4.2.3 Real Time Clock
The Motorola MC68HC68T 1 real time clock (RTC) [22] was used for timing over
long time periods, for power supply level sensing, and recovery from power saving
mode (section 3.2.2.3). Periodic interrupts, alarm interrupts, and power sense
interrupts generated by the RTC were communicated through the microcontroller's
non-maskable interrupt pin. When one of these events occurred, the microcontro ller
received an XIRQ interrupt. The interrupt service routine read a byte from the RTC
containing status information that was saved in a system variable. It was then up to
the operating system software to parse the status byte to determine the reason for the
interrupt and to respond accordingly.

2.4.2.4 Additional Features of the Microcontroller
Five ports were available on the microcontroller (figure 2.14) each with a specific
purpose. Port A was used in conjunction with the output compare function as
described earlier in section 2.4.2.1. Port B was a general purpose output port used in
this application to select between the various SPI devices (ADC and memory), to
enable the analogue circuitry (section 2.4.5.2) and to shut down the system after
detecting a failing power supply (section 2.4.5). Port C of the microcontroller is for

25

general purpose input and output but was not used in this application. The pins of port
D were used for serial communication fo r both the SP1 and the SC[(section 2.4.4).
Through this port instructions were received from a computer, status was read from
the real time clock and data were transferred between the ADC and memory. Finally,
port E was the input to an 8 chatmel, 8-bit, on-chip analogue to digital converter. This
ADC was fo und to have inadequate reso lution for this application and an external 12-
bit converter was used in it place.

2.4.3 MEMORY

The acquired data were stored in four banks of 32Kbyte EEPROM (AT25256 (23])
totalling 128Kbytes of avai lab le storage space. Each chip was connected to the SPI
data lines and selected us ing port B of the microcontro ller. At one sample per second
(each sample had 12 bits so two bytes were used to store each sample value) there was
enough available storage for 17 hours of data collection. The rate of collection varied
depending on the nature of the measurement sequence so by introducing a delay into
the measurement sequence, extended collection periods were possible.

Data were written to the memory chips using a 64-byte page write technique. Each
memory chip had 64 bytes of RAM that could be mapped to any page boundary with in
memory. This writing technique began by enabling the appropriate memory chip,
sending a write enable command, deselecting the memory chip and then waiting until
the chip entered the 'write enabled' state. Once in this state the memory chip was
again enabled and a 16-bit address sent in the form of two bytes, most significant byte
first. After this, the memory chip was ready co store consecutive bytes of data. When
writing a data stream was completed or a page boundary was encountered the memory
chip had to be deselected and then reselected in order ro continue writing data . The
memory chips automatically returned to the write disabled state when deselected and a
write cycle time of 5 to I Oms occurred before the next stream of data could be written.
The sequence of sending a write enable command first, reduced the risk of accidental
erasure of existing data in the event of a software error or microcontro ller malfunction.
The memory chips were also designed to ·fail secure' so that if the power supply
failed, data was not lost.

The process of reading from memory was much simpler as data vulnerability was
much less. The memory chip was selected and three consecutive bytes were sent, the
read instruction followed by two address bytes (most significant byte first). Data were
then continuously read (the paged implementation did not complicate the reading
process) unti l the memory chip was dese lected. 1n the control software an interface to
the four memory chips was created to hide the discrete nature of the memory and
provide a contiguous memory model. The memory protection features, together with
large capacity, small standby current (- 5µA) and surface mount package design made
these memory chips ideal fo r this application.

2.4.4 COMMUNICATION

Transfer of instructions to the device and retrieval of data by a computer was achieved
using the microcontroller's SCI. This feature of the microcontroller implements the
RS-232 communication protocol using SV logic levels that were converted to the
standard of 12V levels by a serial interface unit (section 2.4.5. 1, circuit diagram given

26

in appendix C. 7). A non-standard baud rate of 78 12 baud was used for nonnal
communication between the microcontroller and the computer as this rate was one of
the highest achievable fo r the microcontroller when using a 2MHz crystal (section
2.4.5.3). In the special case of writing measurement sequence instructions to the
microcontroller's internal EEPROM a communication rate of 300 baud was used to
al low time fo r the longer wri te cycle of the EEPROM.

Serial port communication software (TEmu) was written that could communicate at
the non-standard rate of 78 12 baud as well as switch between the rates of 300 and
7812 baud. This software was designed for sending commands and receiving data,
rea l time viewing of data and debugging purposes (section 3.1).

2.4.5 PO\VER CONSIDERATIONS

The device was used in two states, the configuration state (power suppl ied externall y)
and the measuring state (power suppl ied by on-board batteries). The power supply
circuitry (figure 2.15) was designed to make a continuous transition from the external
supply to the on-board supply as well as provide control over power supplied to
regions of the device and feedback on the battery voltage status. These features were
des igned to extend battery life by minimis ing power consumption and provide a clean
shutdown of the system in the event of a failing power supply.

2. 4. 5.1 Power supply sources
Initially, while the device was connected to a computer for configuration, the serial
interface un it supplied power (figure 2.16). A 12V lead-acid battery supplied both the
serial circuitry and the device, thus making the whole system portable. Once
configured, a jumper on the device was used to connect two 3.7V lithium thionyl
chloride batteries that supplied power when the device was isolated from the serial
interface unit and taken into the field.

On-board supply
(Two 3.7volt lithium - - - ----­

thionyl chloride
batteries)

..----------- Analogue enable

Analogue circuitry
power supply

+5volts

-5volts

(closed when needed
by the microcontroller)

.,__ _______________ Voltage level sense

External supply
(regulated 8volts fr
serial interface un

om
it)

Digital enable
(held closed by the

external supply)

'

Digital circuitry
power supply

I r--I
+5volts

(used by RTC to detect
failing power supply)

Digital enable
(held closed by the

microcontroller)

Figure 2.15: The power-supply schematic. Separating the power supplies into a
digital and analogue supply had two main advantages: interference from switching
digital components through the ground connection was minimised and the analogue
region of the circuit could be shutdown as a means of conserving power. A complete
circuit diagram of the power supply is given in appendix C.6.

27

2.4.5.2 Power considerations on the device
Supply lines that provided power to the digital circuits were generally noisy due to the
switching of digital logic levels. For this reason the power supply was separated into
two branches immediately after the battery connection. One branch provided power to
the digital components using a s ingle 5V regulator and the other provided 5V and - 5V
using a CMOS voltage converter (ICL7660CBA) w ith two 5V regulators. An added
advantage of thi s was that the analogue suppl y could be controll ed by the
microcontroller allowing it to be shut down when the analogue c ircuitry was not
required thereby reducing power consumption . This control switch is labe lled
analogue enable in figure 2.15 and was connected to port B of the microcontrol ler.

[Computer]~1-2v_ Rs-~32
Serial

Interface
Unit

Backup Battery

The Device

Figure 2. I 6: Connectivity of a computer, the serial interface unit and the device.
During configuration the device was supplied power by the serial interface unit and
then by its on-board batteries during operation.

2.4.5.3 Power saving
As w ith any battery-operated system, a goal was to maximise the usefu l operating time
through minimising the load on the batteries. The most signifi cant feature of the
dev ice to help with this was the microcontro ll er's stop instruction wh ich, in co­
ordination with the real time clock, reduced the m icrocontroller 's load on the batteries
to approx imately I OOµ A. When executed, the stop instruction caused all of the
microcontroller's internal clocks and main oscillator to freeze placing the processor in
a minimum-power standby mode, a state in which it stayed until a s ignal on the non­
maskab le interrupt pin was received. While in standby mode, all VO po1ts and internal
registers retained their values and, as the microcontroller is a full y static device, after
recovery from stop execution continued with the next CPU instruction.

The other components that were continuously connected to the supply were the ADC
that had an auto shutdown feature that reduced its load to approx imately l nA, the
memory chips that drew 5µA each in standby mode and the real time clock that ran
continuously drawing approximately 25µ A (all analogue circuitry was disconnected
from the supply by the microcontroller's analogue enable pin).

Another means of reducing power consumption was by selection of the
microcontroller crystal frequency. During development a crysta l frequency of 8MHz
was used but replaced in the final design by a 2MHz crystal thus reducing power
consumption to a quarter of that used previously by the microcontroller. An effect of
this frequency reduction was that the max imum sampling rate was reduced due to a
limit imposed by the minimum number of CPU instructions that needed to be executed
between sampling interrupts.

28

2.5 Construction

In accordance with the design specifications, minimisation of the size and weight of
the device was achieved using double-sided printed circuit boards (PCBs) and surface
mount components. Important aspects of the layout for the main control unit and
sensor head were separation of noisy digital tracks from analogue signal tracks,
separate ground tracks for the analogue and digital components to further reduce
electrical interference and minimising necessary PCB area. Figure 2.17 is a block
diagram of the functional regions in the final layout (for complete PCB layouts see
appendix D) and shown in figure 2.18 are photographs of the completed device.

Current to
Voltage

(Common edge)
(a)

Microcontroller

(b)
(Common edge)

Figure 2.17: The functional regions of the PCB layout for the control unit (a)
from above and (b) from below.

29

lfTil1 lll I '"'i

,o 20 3o 40 50 50 70 s., , I 00

l~---
·:w " •·
: ;<l : ·'i , :'I -' ..

; I ·.,.,
- . _,,&i \. ~
t.;,. ' ~ . · .. ';.:.- -, .

(a)

I O 20 'J so llJ 80 90

(b)

Figure 2.18: Photographs of the completed device from (a) above and (b) below.

30

Chapter 3

Control Software and Algorithms
In order to control the microcontroller, assembly language software was written that
provided a user interface and a script language interpreter, controlled lower level
hardware and performed data processing. The assembly language used was the
Motorola M68HC l l instruction set [19)[20].

The interactions between user files, software and hardware are shown in figure 3.1.
Script fi les were processed by a conversion program turning them into valid assembly
language that was then assembled and transferred to the device via the terminal
emulator program. At the completion of a measurement sequence, data were retrieved
from the device in hexadecimal format, and converted into a more usable format using
another conversion program.

The operating system source code was assembled and then loaded into the EPROM of
the microcontro ller using the Motorola PCBug 11 software and a development
programming board. After the microcontroller was programmed it was removed from
the programming board and inserted into the device.

Script
File

Terminal

Script Language
to Assembly

Language Converter
Operating

System
Code

M68HC11 E9
Assembler

Motorola
PCBug11 v3.42

......,_~Chip Programming
Software

Emulator 1--------'

Serial
6:::====:::;::====~r----, Communication

Hexadecimal to
Result File Converte Results!

Figure 3.1 : System overview. The dotted line indicates physical movement of the
microcontroller between the programming board and the device.

31

3.1 The Logical Model of the Device

The device had two regions of memory and a process that executed commands from
one region (the measurement sequence memory) to generate results that were stored in
the second memory region (the result memory). A list of measurements were created
(using the scripting language described in section 3.3), compiled and loaded into the
measurement sequence memory. Sequence execution was initiated using the run
command and, at the completion of the measurement sequence, the device was reset
and the acquired data downloaded from the result memory through the serial port.

Computer

The Device

Result
Memory

128Kbytes

Result
Memory
Pointer

Person

Write through
mode

f,lll._....,
11111

Executing
Program

Measurement
Sequence
Memory

Figure 3.2: The log ical model of the device. Arrow weighting indicates the relative
amounts of data transfer.

The logical model of the device showing the various elements with which the user
interacts is given in figure 3.2. A serial port terminal emulation program (TEmu) was
written specifically for communication with the device. It used a first in, first out
cyclic buffer to send and receive data to and from the computer's serial port [24]. A
window within the TEmu program displayed text sent from the device and was used to
input commands. Initially, a help screen and command prompt sent by the device, was
displayed in the TEmu communication window. Commands were then entered that
performed the instructions given in table 3 . 1.

32

The commands issued to the device using TEmu were sent, via the serial port, to the
microcontroller operating system. Typically, a measurement sequence was first
uploaded to the device where it could be edited or displayed using the measurement
sequence memory operations (table 3 .1). Device-dependent variables such as the
system clock, result memory pointer and operating mode were configured and then
execution of the measurement sequence was initiated. At this stage, TEmu was used
to interpret and plot data sent back during real-time operation or once the
measurement sequence had completed, TEmu was used to download the results and
save them to file.

Table 3.1: Operating system commands. The assembly code for each instruction is
listed in the appendix indicated.

Instruction Instructions Keystroke Source Code
Class Reference

Measurement Load a measurement sequence L E.6.3
Sequence
Memory Erase a measurement sequence E E.6.12
Operations

Output the contents of measurement sequence 0 E.6.4
memory
Modify single consecutive bytes of measurement M E.6.6
sequence memory

Fill measurement sequence memory with a specific F E.6.7
value
Run a measurement sequence G E.6.1

Result Memory Output the contents of result memory D E.6.5
Operations

Fill result memory with a specific value E.6.8

Set the result memory pointer p E.15.13

System Clock Set the system clock s E.6.10
Operations

Display the current system time T E.6.9

Serial Toggle communication baud rate between 7812 and B E.6.11
Communication 300

Data Collection Toggle write through mode w E.l

Debugging Manually set the system status register (debug u E.6.14
Operations mode)

Run from EEPROM (debug mode) R E.6.2

Help Display the help screen and system status H E.l

33

In addition to the simple use of the system described above, there were various
functions that were required by the hardware or added flexibility to the device. These
included functions to display data as it was collected, set and display the system clock,
change the communication rate, display the help screen and provide debugging
facilities. A complete source code listing of the operating system commands are given
in appendix E.6

3.1. 1 Setting write-through mode and the result memory pointer
As well as storing data to memory, the device could display measurement results in
real time. This was called write-through mode as data to be stored in result memory
was also written to the serial port. Using TEmu, these data could be plotted to
generate graphs for real-time use or to help with debugging. The displayed data were
sti ll written into result memory so they could be downloaded at a later stage. Write­
through mode was set or cleared using the 'toggle write-through mode' command
(appendix E.1) and its status was viewed using the help command.

The result memory pointer allowed data to be written starting from any location in
memory. For reasons described in section 3.2.2.2 the result memory pointer consisted
of a segment value that ranged from l to 4 and an offset value ranging from 0000 to
7FFF. The value of the pointer was assigned using the set command (appendix
E.15.13) and displayed using the help command.

3. I .2 Setting the system clock
The system clock could be set by or displayed for the user. It was also called upon by
the executing program to fac ilitate the timing of measurements , delay between
measurements and power saving features (section 2.4.5). After the device had been
reset, the system clock had to be initialised to the correct time (appendix E.6.10).

3. I .3 Communication rate
Normal communication between the device and the terminal emulator program was at
7812 baud (section 2.4.4). However, as measurement sequences were loaded into the
microcontroller's EEPROM, a slower rate of 300 baud was required to allow for the
slower programming rate. The toggle baud rate command (appendix E.6.11) modified
a specific register in the microcontroller to change the communication rate between
7812 and 300-baud.

3.1.4 Help Command
The help command was used to display the current system status and to list the user
commands. System status consisted of the value of the result memory pointer and the
individual bits of the system status register (table 3.2). The help command displayed
the status information, waited for a key to be pressed and then displayed the user
commands as in the help screen displayed on start up.

3.1.5 Debug mode
During the development of the device, it was necessary to test and debug various
functions of the operating system. These debugging facilities will be useful for further
development of the device and so remain a part of the available commands.

34

Modification of a program in EPROM involved erasing the existing program through
exposure to UV light (recommended exposure time of approximately 40 minutes
(Dykstra, R., personal communication) and electronically reprogramming the EPROM
using the programming board (figure 3.1). To avoid this procedure the
microcontroller's EEPROM was utilised which could be erased and reprogrammed
using the internal hardware of the microcontroller (reprogramming time of
approximately 1 minute). The functions to be tested were loaded into the EEPROM
and either executed directly using the run from EEPROM command (table 3.1) or
referenced from within the main program via branch vectors. The use of branch
vectors, which were also used in programming the interrupt routines, allowed the test
routines to be modified without affecting the absolute addresses within the operating
system code. Branch vector use (figure 3.3) involved a function call that caused the
program counter to jump to a fixed address in the last bytes of EEPROM where there
was a jump instruction that pointed to the start of the function body. This jump
instruction was called the branch vector and the value to which it pointed could be
changed without having to change the jump address in the main program.

Table 3.2: The association of bits in the system status register.

Bits Description
0

I
2

3
4

5
6
7

The escape character has been entered by the user to abort
the current command

The current baud rate is 300 (set) or 7812 (clear)

Echo characters received through the serial port

Not Used

Write through mode on (set) or off (clear)

Not Used

Line feed character sent with carriage return

The crystal frequency used is 2MHz (set) or 8MHz (clear).
For debugging using the Motorola programming board
(8MHz).

(
~
0
0:::
a..
UJ

~
0
0:::
a..
UJ
UJ

Operating
System

funct1n call

i

Test Functio,

Branch Vector ,.

Figure 3.3: Branch vector use in operating system debugging.

35

3.2 The Microcontroller Operating System

The main functions of the operating system were to allow communication between the
device and a computer, to interpret and execute measurements found in the
measurement sequence memory and to manage low level interaction with the
hardware . There were four module classes (figure 3.4): control, measurement
sequence instructions, system data and hardware. Of these, the highest level were the
control modules that called upon the hardware modules to perform the functions of the
operating system. The sequence execution module called upon the measurement
instruction modules to execute each instruction as they were read from measurement
sequence memory.

3.2.1 CONTROL MODULES

3.2.1 .1 Operating System
This module linked the other components into a single program. It began by
initialising and configuring the microcontroller mode, operating system variab les,
system interrupts, serial communication and the system clock. It then entered a simple
two-state loop in which commands were fetched and then executed. The commands,
received from TEmu via the serial port, were interpreted within the main loop and then
transferred to the appropriate function within the command module. Global data,
interrupt vectors and variable definitions were linked into this module making them
avai lable to the rest of the program.

3.2.1.2 System Initialisation
This module was the first to be run after a device reset. A register was set in the
microcontroller defining the RAM and register memory regions within the address
space. It then determined which features of the microcontroller were active, set the
priority of interrupts and the phase and polarity of the clock used for communication
between the other connected devices . After the microcontroller-dependent
initialisation had finished, the operating system variables were set to their defaults.

3.2.1.3 Command
Contained in this module were the functions that performed the commands provided
by the operating system module (table 3.1). When a command was received, the
operating system module invoked one of the command module functions to perform
the desired task and return control back to the operating system module. These
command routines were constructed using the functions provided by the hardware
modules (grey, round ended boxes in figure 3.4).

36

w
-.J

• System
Initialisation

I

Interrupts

I

Serial
Communication

I

Operating I ~stem

t

I Commands I

I

I

(Variable) (Global Data) definitions (Interrupt
Vectors

.. ~equence
Execution

I
I

Pulse
Measurement

t -. I
I I

Temperature I I Light scattering
Measurement T Measurement

Delay Loop and

Instruction Time stamp
Instruction

Sampling

Figure 3.4: Hierarchical arrangement of modules within the microcontroller
operating system. Generally, the height of each module in this structure diagram
indicates the level of abstraction from the device hardware. The arrows indicate the
modules called upon by the higher level modules.

Key

D
C)

D
0

Control modules

System data

Measurement
sequence instructions

Hardware modules

3.2.1.4 Interrupts
The interrupt driven processes included the modulation of the LEDs, sampling and the
interaction with the real time clock (section 2.4.2.3). The interrupt service routines
associated with these three processes were located in this module.

Steady modulation of a particular LED was achieved using the output compare
function of the microcontroller (section 2.4.2.1) and a global variable containing the
LED to be modulated. Within the service routine associated with the output compare
function, the next interrupt was set to occur half the modulation period later and the
state of LED was switched based on its current state. When the next output compare
interrupt occurred, this process repeated and the LED was modulated at the
modulation frequency. As this process occurred independently of the main program,
control of an LED for the light scattering measurements was reduced to selecting a
particular LED and activating the output compare interrupt.

The sampling interrupt routine worked in a similar fashion but, rather than toggling an
LED, a sample was acquired from analogue to digital converter. The sampled value
was stored in a global variable along with the number of samples acquired (the sample
count was incremented by one every time the sampling interrupt occurred). To the
rest of the program these registers contained a sample value and a count variable that
increased every time the sample value changed. A function that read these values
could calculate the time elapsed between two measurements by knowing the sampling
frequency and the number of samples acquired.

The third interrupt routine services the non-maskable interrupt, which was connected
to the interrupt line of the real time clock (section 2.4 .2.3, section 3.2.2.3). The main
purpose of this interrupt was to awaken the microcontroller from power saving mode
(section 2.4.5.3) at the completion of a delay period. When an interrupt from the real
time clock was generated, an internal byte was set that held the status of the clock and
the reason for the interrupt. The interrupt service routine read this byte and stored it in
a global variable for the operating system to interpret if necessary. When the real time
clock was used simply as an alarm the interrupt service routine was not called.

3.2.1.5 Sequence Execution
The sequence execution module was essentially a program that ran using the facilities
provided by the operating system. When initiated with the run command, the
sequence execution module read instructions located in the measurement sequence
memory, interpreted any associated parameters and then called one of the
measurement sequence instruction modules to perform the measurement. The
program worked in a similar way to the main operating system loop except that its
input commands came from the interpreted measurement instruction codes (table 3.6,
section 3.3) retrieved from the measurement sequence memory.

38

3.2.2 HARDWARE MODULES

3.2.2.1 Serial Communication
This utility module provided the functionality (table 3.3) necessary for communication
with TEmu utilising the microcontroller's on-chip, asynchronous serial
communications interface (SCI). Included were functions to initialise the SCI (set the
baud rate, number of data bits and necessary interrupts (section 2.4.4)), read and write
in various formats (character, byte, word, binary byte and a null terminated string),
and timing dependent communication functions.

Table 3.3: Functions provided for serial communication

Function Description Appendix
name reference
Serialinit Initialisation of the serial port E.17.l

Inbin Read a binary number E.17.4

Inhex Read a hexadecimal number E. l 7.3

lnword Read a double hexadecimal number E.17.2

Inchar Read a character E.1 7.5

Outword Write a double hexadecimal number E.17.6

Outhex Write a hexadecimal number E.17.7

Outbin Write a binary number E. 17.8

Outstr Write a string E. 17.9

Outchar Write a character E. 17. 10

SClwaitw Wait for the transmit buffer to empty E.17 .11

SCiwaitr Wait for the end ofa stream of input E. 17.12

Return Write a carriage return E.17.13

Space Write a white space E.17 .14

3.2.2.2 Memory
The routines of this module interacted with the 128 Kbytes of serial EEPROM. As
described in section 2.4.3, the serial memory consisted of four separate memory chips.
The purpose of the memory module was to make this appear as one contiguous
memory block referenced by a segment and offset. The interface provided for
memory access involved activating the memory at the location pointed to by the result
memory pointer (Mem Won, MemRon), reading and writing using the memory access
commands (SaveB, ReadB, SaveW or ReadW (table 3.4)) and then deactivating
memory (Mem Woff, MemRoff).

39

The 64 byte paging technique used by the memory chips (section 2.4.3) was handled
automatically by these save and read routines. For every byte read or written the result
memory pointer was incremented by one and, as the end of a memory chip was
reached, roll over to the next memory chip is handled automatically.

Table 3.4: Functions provided for the use of the result memory.

Function Description Appendix
name reference

MemWon Tum on memory ready for writing of data at the location E.15.1
pointed to by the result memory pointer.

SaveB Write a byte to serial memory E.15 .2

SaveW Write a word to serial memory E. 15.3

MemlncW Increment the result memory pointer allowing for switching E.15.5
between memory chips

MemWoff Tum off memory E.15.4

MemRon Tum on memory ready for the reading of data at the location E.15 .6
pointed to by the result memory pointer

ReadB Read a byte from serial memory E.15 .7

ReadW Read a word from serial memory E.15.8

MemlncR Increment the result memory pointer allowing for switching E. 15.10
between memory chips

MemRoff Tum off memory E .15.9

MemRdy Wait for the completion of a memory write E.15.11

MemStatus Return the status register value of a memory chip E.15 .12

GetMem Ask the user for a result memory pointer value E.15.13

MemDisp Display the current result memory pointer in the format E.15 .14
memory segment : memory offset

3.2.2.3 Real Time Clock
The real time clock is a serial peripheral device with registers that held the current
time and the alarm time. The operating system functions used to initialise the clock to
the correct time modified these registers (table 3 .1). The major use of the real time
clock was for the delay instruction that used the alarm feature to switch the
microcontroller out of power saving mode (section 2.4.5.3, section 3.2.1.4). The
interrupt line of the real time clock was connected to the non-maskable interrupt line
of the microcontroller and was triggered when an alarm occurred. To activate an
alarm the appropriate registers were set to a future time and the alarm interrupt was
unmasked.

The real time clock could also generate periodic interrupts ranging from once a day to
every 0.488ms. This feature was used in a different delay method in which the clock
was set to interrupt every 0.977ms and the resulting interrupts counted until the
desired delay had elapsed. The other functions within this module facilitated writing
to or reading from the real time clock registers and activating or deactivating the alarm
or periodic interrupt.

40

3.2.2.4 Sampling
Interaction with the analogue to digital converter (ADC) and the process of acquiring a
sample was simplified by the functions contained in this module. Similar to the
interface provided for memory use, acquiring a sample involved activating the
sampling process (Sampleon or ADCon), reading the sample value from the global
variable (updated by the sampling output compare interrupt (section 3.2.1.4)) and then
deactivating the sampling process (Sampleoff or ADCoff) (appendix E.14). As the
ADC was an SPI device, it had to be deactivated before a write to memory was
attempted (section 2.4). This introduced two scenarios for use of the ADC, one was
the complete initialisation of the sampling process in which the sample count was
reset, the analogue circuitry was enabled, serial clock phase was set, the ADC was
activated and the sampling output compare interrupt was unmasked. The other was
when the ADC had to be deselected in order to write to memory but the sample count
value had to be retained and the analogue circuitry should remain enabled to avoid the
start-up stabilisation time. The two pairs of functions designed for this,
Sampleon/Sampleoff and ADCon/ ADCoff, were used for each case respective ly. A
typical use involved calling Sampleon to begin a series of measurements. Acquired
data were stored to the result memory during this period by deselected the ADC using
ADCoff, writing the data to memory and reactivating the ADC using ADCon. At the
end of the measurement period Sampleoff was called to disable the analogue power
supply and shutdown the ADC.

3.2.2.5 Utilities
This module included routines that were not speci fie to any of the other module types
(table 3.5). The first two of these, Anenable and Andisable, were used to control
power supplied to the analogue circuitry. They were called by the sampling routines
so that the analogue circuitry was only active while a sample was collected. The next
group of routines, Addtime, Wordmul, Roldw and Cmptime were all functions called
by the pulse-measuring module (section 3.4). They performed simple arithmetic
operations on 16-bit (word) and 32-bit (double word) variables that were not included
in the M68HC 11 instruction set. Since sampling was done using a 12-bit ADC
(section 2.4.1), all processing of the acquired data used 16-bit operations. Addtime
added a word value to the accumulative double word time variable. Wordmul
multiplied two words together leaving a double word. Roldw rotated the bits of a
double word left by a specified number and Cmptime compared a specified number of
multiples of a word value against the accumulative time variable returning a greater
than, less than or equal to condition. Cyclic buffers were used extensively by the
pulse-measuring module and so the Cycinc routine was written that incremented a
memory pointer and automatically reset it back to zero when the maximum size of the
buffer was reached.

41

Jumpback was a debugging function designed to be used at the end of a series of test
functions in the microcontroller EEPROM. It worked by pushing values onto the
system stack and calling a 'return from interrupt' instruction which, in tum, pulled
these values from the stack to resume program execution. The values were chosen so
that program execution would start at the beginning and so the function acted like a
software reset.

The sleep function was called to switch the microcontroller into power saving mode
(section 2.4.5.3) after all serial communication had finished. Once in the power
saving state the microcontroller could only be reactivated by a non-maskable interrupt
generated by the real time clock. This routine was called from the delay instruction
(section 3.3) and was quite different from the other delay routines in this module. The
first of these, Delay (appendix E.18.4), used the periodic interrupt of the real time
clock to generate interrupts that were approximately one millisecond apart which it
then counted until the desired delay period had passed. This function could pause for
periods of lms to 64s . Bloop was a simple 'busy wait' routine used for relatively short
pauses of 1 Oµs to l.8ms and the Waitkey routine waited for a character from the serial
port. The last delay function in this module is the Dlyl O routine that was used to put a
fixed period between successive writes to EEPROM. This function was called by the
memory module (appendix E. 15) when saving data to result memory and by the write
routine (appendix E.18.15) when saving bytes to the measurement sequence memory.

Function
name
Anenable

Andisable

Addtime

Cmptime

Wordmul

Roldw

Cycinc

Jumpback

Sleep

Delay

Bloop

Waitkey

DlyIO
Write

Qkgett

Upcase

Error

Table 3.5: General utility functions.

Description

Enable the analogue circuitry

Disable the analogue circuitry

Add a time interval to the global variable time

Compare multiples of a time interval with the global time variable

Multiply two words together resulting in a double word

Roll a double word left

Increment a word pointer cyclically.

Software reset

Put the microcontroller in power saving mode

Delay using the periodic real time clock interrupt

Busy loop delay

Wait for a character from the serial port

Delay for I O milliseconds

Write a byte to RAM or EEPROM

Display current time without pausing for a key stroke

Convert a character to upper case

Display an error message

Appendix
reference

E.18.1

E. 18.1

E.18.8

E.18 .9

E.18.11

E.18 . 12

E.18. 10

E.18.2

E.18.13

E.18.4

E.18.5

E.18.17

E.18.6

E.18.15

E.18.3

E.18.16

E.18 .18

4?

The remaining functions of this module are Qkgett, Upcase and Error. Qkgett was
called before entering a measurement sequence to display the time that the
measurement sequence began. Usually, it acted to remind the user that the system
clock had not been initialised. Upcase converted characters to upper case, and Error
displayed a particular error message based on the error code it was passed.

3.2.3 MEASUREMENT SEQUENCE INSTRUCTIONS

The measurement instruction modules included pulse measurement, light scattering
measurement, temperature measurement, delay, loop and timestamp. The first of
these, pulse measurement, is described in greater detail in section 3.4. The next two ,
light scattering and temperature measurement, used similar algorithms which, for the
light scattering case, is given in figure 3.5. The routine began by calling the Sampleon
function (section 3.2.2.4) to activate the analogue circuitry and enable periodic
sampling. It then immediately checked whether enough measurements had been made
which allowed for the boundary case of zero measurements. For every measurement
there was the option to average over a series of samples and once the average value
had been found the result was saved to result memory. When enough measurements
had been made the routine called the Sampleoff function that deactivated the analogue
circuitry and deselected the ADC. The only difference between the light scattering
measurement and the temperature measurement was that the temperature sensor was
selected instead of the photodiode.

The delay instruction was responsible for shutting down the microcontroller between
measurements and minimising power consumption thereby extending the overall
operating time of the device. The routine began by taking the desired delay, adding it
to the current time and saving the result in the alarm registers of the real time clock.
The alarm interrupt mask was then removed and the sleep function called, placing the
microcontroller in power saving mode (section 2.4.5.3). When the real time clock
reached the alarm time it generated an interrupt that reactivated the microcontroller
ready for the next instruction.

Loops came in two forms, infinite and finite. In measurement sequence memory these
were stored as an instruction code, a branch offset and the number of loops remaining.
If the value containing the number of remaining loops was zero it was interpreted as
an infinite loop and the sequence counter was moved back by the amount stored in the
branch offset. Otherwise, if the number of remaining loops was non zero the value
was reduced by one and the sequence counter was again moved back by the branch
offset. When there was only a single loop remaining the loop count was set to
negative one (FFFF), if this value was encountered the loop was ignored and the
sequence continued with the next instruction. Therefore the maximum number of
finite loops was 65534 (FFFE). When the remaining loop count was changed its value
was stored back into measurement sequence memory. Consequently, executing a
sequence with finite loops more than once required the number of remaining loops to
be modified each time either by editing the individual bytes (modify byte command;
tab le 3. I) or through reloading the measurement sequence.

43

The time of each measurement occurrence could be calculated by summing the delays
within a measurement sequence and then adding this to the starting time of the
experiment. However, for long measurement sequences, this would become
increasingly inaccurate. The timestamp function overcame this by obtaining the time
from the real time clock and saving it in result memory. This function was frequently
used as the first instruction of the measurement sequence loop so that the acquired data
could be correlated with behavioural patterns or other observations.

Light Scattering
Measurement

Select an LED

Initialise Sampling

y

Stop sampling

>--+i Get a sample and
its sample number

Measurement finished

Output sample
value through
the serial port

Turn off ADC

Turn on Memory

Save sample
value to result

memory

Tum off Memory

Turn on ADC

Delay

Add the sample
to the averaging

buffer

Get another
sample

Add sample to the
averaging buffer

Find mean of the
averaging buffer

Figure 3.5: The algorithm used to make light scattering measurements.

44

3.3 Measurement Scripting Language

Flexibility was built into the device using a scripting language (table 3.6). A text file
containing the desired sequence of measurements was created, converted into
assembly language, compiled and uploaded to the measurement sequence memory of
the device. In memory, each instruction was stored as an instruction code (table 3.6)
followed by a series of parameters. The sequence execution module (section 3.2.1.5)
interpreted the instruction code and read the number of subsequent bytes required for
that particular instruction. The module then set variables inside the operating system
to the interpreted values and called the appropriate measurement instruction routine.

Table 3.6: The measurement sequence script language instructions. Further
detai ls for each instruction are given in table 3. 7

Instruction type Instruction format Instruction code Size /bytes

Measurement PULSE Mbuf Pbuf thres to 10 6
instructions
(write to result LED 1..6 hrn d avr 90 .. EO 6

memory)
TEMP hrn d avr 20 6

TIME timemask 60 2

Sequence instructions DELAY hours mins sees 30 4

LOOP label [number] 40 5

END 00

Hardware MEM segment offset 50 4
configuration
instructions SAMFREQ frequency 70 ...

.)

LEDFREQ frequency 80 3

PORT port-number FO 2

Debugging instructions WAITKEY 01

BREAK.ENABLE 02

Compiler directive ORG address NIA NIA

The script language instructions were divided into four distinct groups, measurement,
sequence, hardware configuration and debugging instructions (table 3.6). The first of
these groups, the measurement instructions, performed actual measurements, collected
data and stored results into result memory. The format and number of data stored by
these instructions depended on the parameters that succeed each instruction code
(table 3.7). The sequence instructions related only to the script and affected the order
or timing of the other instructions. Features of the device were selected using the
hardware configuration instructions and the debugging instructions allowed step by
step analysis of each script language instruction during development. The final script

45

instruction, ORG, was used to indicate the location of this script file in measurement
sequence memory and allowed for the possibility of multiple script files to be loaded.

The script language instructions allowed for a large variety of measurement sequences.
Specialised measurements for real-time collection of pulse, temperature, blood or
tissue oxygenation data could be created using the infinite loop instruction and
reducing all delays to zero. General long-term experiments that measured these
physiological variables over several days were possible by minimising power
consumption using the delay feature. As an example, table 3.8 is a listing of a script
file that was used during field testing of the device (section 4.2). The important
aspects of this script begin with the ORG instruction that tells the compiler to load the
script into measurement sequence memory at address B600 (hex). A series of
hardware initialisation instructions were then executed before the sequence entered the
start-up loop. This finite loop was used to indicate that the device was operating
correctly after detachment from the computer by switching between two LEDs. At the
completion of the start-up loop the device was put into power saving mode for twenty
minutes to allow time for attachment of the device to a penguin. Once the delay
period had ended the result memory pointer was reset to the first byte in memory and
the main experiment loop began. Each cycle of the main loop placed a time stamp in
memory followed by a pulse measurement, the six light scattering measurements and a
temperature measurement. The port instruction was used to select different leve ls of
amplification for the pulse measurement and the shorter wavelength LEDs (section
2.3.4).

Table 3.7: The script language instructions with an explanation of their
parameters.

PULSE Make a real time pulse measurement (section 3.4).

Mbuf The median buffer size. This value controlled the length of the input
waveform used to calculate the median. Range 1 .. 64 (hex)

Pbuf The period averaging buffer size. This value controlled the confidence in
the period estimate by changing the number of periods averaged. Larger
values reduce the likelihood of obtaining a measurement. Range 1,2,4,8

Thres The maximum allowable deviation between the average period and values in
the period buffer. Range I .. FF (hex)

to Time Out. The number of sample periods between the use of the median,
upper and lower quartile in calculation of the square wave. Range
l .. FFFF(hex)

Example PULSE 64 05 OA 0300

LED1..6
TEMP

hm

Make a light scattering measurement
Make a temperature measurement

'How many' samples to take. This corresponded to the number of values
stored in memory. Range 1 .. FFFF (hex)

d Delay, in units of0.977 ms, between each sample. Range O .. FFFF (hex)

avr Number of averages taken for each sample. Range O .. FF (hex)

Example LED4 OF A5 I OOO I 0, TEMP 0800 00 I O 08

46

Table 3.7: Continued.

TIME Put a time stamp in result memory

Timemask A byte (hex) containing a mask indicating which time values to store The bit
ordering was 0,0,yr,mm,dd,hr,min,sec

Example TIME 07

DELAY Put the microcontroller in power saving mode for a specified time.

Hours Hours of power saving mode

Minutes Minutes of power saving mode

Seconds Seconds of power saving mode

Example DELAY 12 34 56

LOOP Repeat a section of the sequence an infinite or specified number of times

label Branch location. Label had to occur before the loop command.

Number (Optional) Specified the number of times a loop was repeated. If omitted
the loop was assumed to be infinite. Range O .. FFFF (hex)

Example LOOP Start 0025

MEM Move the result memory pointer

Segment The memory bank to write to. Range O 1 .. 04

Offset The offset into the memory bank. Range 0000 .. 7FFF (hex)

Example MEM 01 0000

SAMFREQ Set the sampling frequency

freq The sampling frequency. Range 1 .. 1 OOHz

Example SAMFREQ 100

LEDFREQ Set the LED modulation frequency

freq The modulation frequency. Range l .. 950Hz

Example LEDFREQ 950

PORT Select the sampling port (section 2.3.4)

Portnum The port number. Range O 1..04. 01 = Direct, 02 = Level shifted and
amplified, 03 = 10 times amplification, 04 = temperature sensor

Example PORT 02

W AITKEY Halt sequence execution until a key is pressed

BREAK- Allow serial communication to interrupt a running sequence
ENABLE
ORG The location of a measurement sequence in memory.

Address First address location. Range B600 .. B7FF (hex)

Example ORG B600

END End of the measurement sequence

47

Table 3.8: As an example, the script file used for field testing of the device

ORG

LEDFREQ
SAMFREQ
MEMORY

STARTUP

MAIN

LED3
LED6
DELAY
LOOP
DELAY
MEMORY

TIME
PORT
PULSE

PORT
LEDi
LED2
LED3
LED4
PORT
LEDS
LED6
TEMPERATURE
LOOP

B600

950
100
01 0000

0001000010
0001000010
00 00 01
STARTUP 0025
00 20 00
01 0000

07
02
64 04 10 0400

01

0008 0000 10
0008 0000 10
0008 0000 10
0008 0000 10
03
0008 0000 10
0008 0000 10
0008 0000 10
MAIN

Set the program origin in measurement sequenc,
memory
Set the LED modulation frequency to 950Hz
Set the sampling frequency to 1 OOHz
Set the result memory pointer to the start o
memory

Flash LED3 and LED6 37 (25 hex)
Times to signal that the device
Is functioning properly

Wait 20 mins before starting main loop
Set the result memory pointer back to start

Put a timestamp (hr:min:sec) into result memor)
Select port two for a pulse measurement
Make a pulse measurement
Median buffer length = 100
Period buffer length = 4
Error threshold= 16
Number of samples between using the median,
upper or lower quartile = 1024
Select port one for regular LED measurements
8 measurements using the first LED
8 measurements using the second LED
8 measurements using the third LED
8 measurements using the fourth LED
Select port three for higher signal gain
8 measurements using the fifth LED
8 measurements using the sixth LED
8 temperature measurements
Continue the main loop ad infinitum

3.4 Pulse Rate Calculation Algorithm

To measure a pulse rate the device was configured to drive one LED and observe the
resulting waveform. If a pulse signal was observed the waveform was periodic and an
algorithm was needed to estimate the period. The simplest approach to the problem
would be to store the entire waveform in memory, plot it at a later time and measure
the period by hand. The memory limitations of the device precluded this approach and
so a routine was required that could calculate the periodicity of the input signal and
store only the result in memory. The algorithm implemented looked at the input signal
in real time and used a level crossing technique to determine the period.

48

3.4.1 THE ALGORITHM

A diagram summarising the steps of the algorithm is given in figure 3.6. Initially, all
variab les and buffers were set to zero and the main loop began by reading and entering
data into the median buffer. Data were added cyclically to this buffer so that a history
of the waveform as long as the length of the buffer was maintained. At the same time,
the number of samples taken so far (the sample-count value) was recorded for use later
in the algorithm to determine the time e lapsed during a complete period. A rough
measure of the algorithms running time was maintained by summing the differences
between these sample-count values. The median buffer was then scanned to calculate
the maximum, minimum, median, upper quartile and lower quartile. The length of the
buffer had to be greater than a single period of the waveform so that the true minimum
and maximum were calculated (figure 3.7).

Input waveform

Median Buffer

Square wave averaging buffer

P1

Period averaging buffer

Pl P2 P3 .

Maximum allowable
variation in period

buffer

Calculate Max, Min
Median, Upper quartile,

Lower quartile

Square wave generated
by comparing data

with the median value

Used for digital low
pass filtering of the
square wave buffer

Period estimates obtained
by measuring the transitions

from high to not high and
low to not low

Period + maximum
deviation

Period value with
---- an approximate

estimate of error

Figure 3.6: A graphical representation of the pulse rate calculation process.

49

········ Median

"-------\1_ __ Minimum
Median buffer

I I I I I I I I I I 1 1

Figure 3.7: The beginning of calculation of the maximum, minimum and median
values from the waveform stored in the median buffer. The median value was
calculated from the maximum and minimum values, for clarity, the upper and lower
quartiles are left out of this diagram. Markers show the points where data crosses the
median line.

Having determined these values, the next point in the square-wave averaging buffer
was a one if the current datum was greater than the median or zero if it was less. The
algorithm, at this stage, was sensitive to waveforms that crossed the median more
frequently than the true period (figure 3.8), a problem which was combated by
comparing the datum with the upper or lower quartile.

Max

Med · ······· Med

Min

(a) (b)

Figure 3.8: Example waveforms that posed a problem to pulse algorithm
without the use of the upper and lower quartile in generating the square wave.
Waveform (a) was observed when the sensor-head was attached too tightly and is
suspected as the result of a combination of a pressure signal (upward spike) and a
change in oxygen saturation (downward spike). During the development of the pulse
algorithm and the device a triangular waveform was observed and waveform (b) is a
noisy example. Waveform (c) is a noisy example of a typical waveform observed
during testing of the device on humans.

50

The square-wave averaging buffer can be thought of as a digital low-pass filter used to
generate the points of the smoothed square wave (figure 3.9). The algorithm searches
for transitions in the waveform that occurred when neighbouring points of the
smoothed square wave went from low to not low or high to not high indicating that the
input waveform had crossed the median value. The levels for not low and not high
were set at 10% and 90% of full scale (6554 and 58981 of65535) (figure 3.9).

,I

Figure 3.9: Transition points used to obtain period estimates.

Period information was obtained from the transition points by recording the number of
samples that occurred between each similar transition. This number was entered into
the period buffer that was then scanned to find an average value and the maximum
deviation from the average. If the maximum deviation was below a predetermined
threshold then the number of samples between similar transitions was accepted as a
valid period estimate. The most accurate period (i.e. the one with the smallest
deviation from the mean) was found over the course of the pulse measurement. After
a fixed number of repetitions, the input data were compared with the upper quartile
and then with the lower quartile during the square wave generating phase in an attempt
to improve the pulse rate estimate. Once the main loop had completed, the values
saved were the number of samples that had occurred during one period of the input
waveform and the number of samples by which this value may deviate. Since the
sampling frequency was known, the period estimate could be converted into a true
period (i.e. in units of time instead of sample multiples) by multiplying the number of
samples by the sample period.

3.4.2 ANALYSIS OF THE PULSE MEASUREMENT ALGORITHM

The pulse measurement algorithm was recreated and tested using Matlab to determine
the limits within which a pulse measurement could be made. The three aspects
investigated where the effect of drift in the input signal, the characteristics of the filter
used to generate the smoothed square wave and the algorithms limiting susceptibility
to noise.

As indicated in figure 3.7, the algorithm was dependent on the size of the median
buffer. When the buffer was too small incorrect values for the signal maximum and
minimum were obtained and small deviations in the input signal resulted in erroneous
level changes in the square wave buffer. Conversely, if the median buffer was too
long the input signal could drift away from the calculated median such that the signal
no longer crossed the median value and no level changes were recorded in the square
wave buffer. These two extremes imply that there was an ideal median buffer length

51

for which the effects of signal drift and level changes due to noise were minimised.
This was investigated by using the level crossing technique described in the algorithm
to generate a square wave from a simple sine wave with linear drift. Equation (3 .1)
describes the input signal used where A is the signal amplitude, B is the drift gradient.

Input Signal(x) = Asin(x)+ Bx (3.1)

The effective length of the median buffer in relation to the input signal is a
combination of the frequency with which the input signal is sampled and the absolute
number of samples stored. A more logical description of the median buffer length is
the fraction of one period stored. If, for example, the median buffer holds one
complete period of the input signal then its effective length is the same if both the
sample frequency and number of samples stored are doubled.

For input signals with various amplitudes, a graph of the limiting drift gradient is
given in figure 3.10. This graph represents the boundaries at which the input signal
ceases to cross the calculated median value and therefore ceases to generate the square
wave. The greatest impunity to drift and erroneous level crossings is achieved using a
median buffer that contains between 1 and 1. 7 input signal periods. The Matlab
program written to find these limits is given appendix B.3.

Optimal median
Signal ampl itude buffer length

25--"'"--~---1-----------------~
6 10

3.6
Pulse measurement
not possible

H. h . 20 19 noise

(i.e. Square wave not
generated)

susceptibilty

-ai 15
"C 2.2 CIJ
L..

(9

.i=
·;::: 10
0

1.3

5 0.8

0.5
0.3
8·i
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Median Buffer Length /number of input signal periods

Figure 3.10: The boundaries for which each input signal ceases to cross the
calculated median value and therefore ceases to generate the square wave. As
the median buffer length decreases below I the susceptibility to noise when
generating the square wave increases. Independence of drift as well as noise
rejection is best achieved using a median buffer length of I to 1. 7 input signal
periods.

52

Another major component of the pulse algorithm was the digital low-pass filter used to
generate the smoothed square wave (figure 3.6). The frequency characteristics of the
digital filter place a limit on the maximum measurable period so to determine the filter
response, discrete signal analysis was used [25].

Equation (3 .2) is a function that describes the output of the digital filter (a finite
impulse response filter) where y(n) represents the points of the smoothed square

wave,
1 y(n) = -[x(n)+ x(n-1)+ x(n- 2)+ ... + x(n-7)]
8

The steady-state transfer function corresponding to (3.2) is

H(e jwT) = 1 + e- jwT + e -2jwT + ... + e-7jwT

8

(3 .2)

(3 .3)

where _!_ is the sampling frequency. Equation (3.3) is a finite geometric series that
T

can be written as

After some manipulation, equation (3.4) becomes

(
·wr) (e 4jwT - e -4 jwT) -7jwT

H e1 = (i . i . J e 2
- JWT --JtvT

8 e 2 - e 2

This result may then be expressed as amplitude (3.6) and phase (3 .7) functions

A(w) = sin(4(1JT)

8sin(w;)
/J(w)= -7(1)T

2

(3.4)

(3.5)

(3.6)

(3.7)

The frequency response of the digital filter is given in figure 3.11 for a sampling
frequency of 100 Hz, the same sampling frequency used in the example script file
given in table 3.8

53

0

-2
-3db

-4

.0 -6
~
C

-8 .Q
ro
:;J -10 C

2
~ -12

-14

-16

-18

-20
1 2 3 4 5 6 10 15 20 30

5.57Hz
Frequency /Hz

50

Figure 3.11: Transfer function of the digital low-pass filter used in the pulse
measurement algorithm.

One of the effects of the digital filter was to place a limit on the maximum pulse
frequency that the algorithm could measure. Figure 3. 12 shows how the algorithm
begins to fail as the pulse frequency increased beyond the corner frequency of the
digital fi lter. The corner frequency at 5.6Hz corresponds to a pulse rate of 336 beats
per minute , a normal human pulse rate lies in the range of 50 to 180 beats per minute
which corresponds to a frequency range of 0.83 to 3 Hz. Clearly, attenuating signals
above the corner frequency does not influence the measurement of realistic human
pulse rates. It was expected that the maximum pulse rate of the Ade lie penguin is also
less than this corner frequency.

10,----,---,,-----,.---,-- -,---.----r---r--.,....---,

9
N

! 8
ij'
~ 7
:;J
r::r
~ 6
u.

~ 5
3
Cl.
u 4
Q)

:i
~ 3
Q)

~ 2

Corner Frequency
of the Digital Filter

oo~__..____,,--~ _ _.__--=--+~--,1,--......__..,__,
2 3 4 5 5.576 7 8 9 10

True Pulse Frequency /Hz

Figure 3.12: The performance of the pulse measurement algorithm as the pulse
frequency increased beyond the corner frequency of the digital low-pass filter
(based on the Matlab simulation given in appendix B.4).

54

Another important measure of the pulse algorithm was its performance with input
signals of varying levels of signal to noise. This was investigated using sine and
asymmetric square waves with added computer generated white noise as test signals.
The asymmetric square wave approximates real signals observed during tests on
human subjects. Figures 3.13 and 3.14 show the limiting signal to noise ratio at which
the algorithm was unable to measure a pulse for the sinusoidal and square waveforms
respectively. The chosen waveforms had a true period of 0.7s, similar to an average
human pulse rate. The Matlab programs used for this simulation are given in appendix
B.5.

For the sinusoidal test signal (figure 3.13) the limiting signal to noise ratio was
approximately 2 and in the asymmetric square wave case (figure 3.14), approximately
2.8. In general, the input waveform should have a signal to noise ratio of greater than
3 in order to expect a meaningful result from the algorithm.

Finally, an example of the pulse algorithm applied to real data is given in figure 3 .15.
The input signal was collected during testing of a prototype version of the device and
is typical of real signals encountered by the pulse algorithm. In this case the subject
was recovering from physical exertion and had a heart rate of approximately l 02 beats
per minute.

"'°
€ noo
~
iii,.,.
C
O>

i:n 2000

Signal to ,gso

noiseratJO
lnf. ,<JOO,~~~~~-~~--

, 1S 2 2S l H , 4.5

Time /s

0.7

06

,::, 0.5

~ '8
"' ·c 0.4
"'Cl>
Cl> a.
~

0.3

02

0.1

,,.,,~, ---=-,,~,---:,.,-, ---c-, --=--=-,,------c, - ,.,-, -

Time /s

:::z

1.6 10

Signal to noise ratio

Signal

Stgnat to
oose ralJo
23

Figure 3.13: The limiting signal to noise ratio for a sinusoidal input signal. Grey
regions represent error in the measured period. It can be seen from this plot that a
signal to noise ratio of greater than 2 is required in order to expect accurate period
measurements.

55

,,.,,~----------~

-e 2100

-!!!
rii ...,
C
Cl

en zooo

"" Slgnal to
noise raoo
lnf ,.,.,

Meehan Buffer
width

Time Is

1.5

'C
~ 'C
:, 0
II)-~

o, w 0.5
QJ(l.
::;

0

-0.5

~ ' ~ v\ ~

..

Med<an
£ 21~
-!!!
- 2100

"' C
.2> 20!W)
Cl)

""'°
....
....

'

lfl r~

2.8

Signal to
notse rallO

_ __.,~~-~~-~~__, 3.13

" 25) 3.5

Time Is

10
Signal to noise rabo

Figure 3.14: The limiting signal to noise ratio for an asymmetric square wave
input signal of similar shape to acquired human data. In this case a signal to
noise ratio of at least 2.8 was required for accurate period measurement. In the
general case a signal to noise ratio of at least 3 - 4 should be used.

Q)
>
~

ro
C:
C)

"iii
..ci ...
<(

Median buffer
size

2150 Period = 0.59 ± 0.02 s

2100

2050

2000

1950

1900

1850

1800~ _ _.._ __ ..__ _ _.._ __ ..__ _ _.._ __ ..._ _ __._ __ ..__ _ __.__.
1 2 3 4 5

Time /s

6 7 8 9 10

Median

Input signal

Figure 3.15: A pulse measurement example using real data coUected during
testing on a human subject.

56

Chapter 4

Prototyping and Application

4.1 Developmental Testing

The device was developed in stages. Four prototype versions were built starting with
a very basic emitter and detector system. Each prototype allowed specific aspects of
the design to be tested. The final device incorporated the results obtained from the
prototypes and was field-tested in Antarctica.

4.1.1 EARLY PROTOTYPES

The earliest prototype consisted of a 660nm LED, photodiode detector and amplifier
connected to an oscilloscope. The source and detector were arranged in transmission
mode and the signal was obtained through a human finger. The primary use of this
system was to confirm that a signal, related to a pulse, could be obtained using an LED
light source. Results from this prototype indicated that the detected signal strength
was of the order of millivolts and noise susceptibility was strongly affected by changes
in background light, skin pigmentation, electrical noise and skin temperature.
Increased signal strength was achieved using a large area photodiode and two LEDs
but noise susceptibility and a need for further improvement in signal strength led to the
use of synchronous detection.

LED - Driver

Power

Analqgue
Switch

'-
.9
ro
:i
"8
E

Low Pass ~
Filter

Signal

Oscillosco e

B

Figure 4.1 : The second prototype. With this system, sufficient signal strength was obtained using a
single LED light source and the synchronous detection technique. This prototype was also the first to
use reflectance mode detection.

The second prototype (figure 4.1) used reflectance mode detection and consisted of
two pairs of 660nm and 950nm LEDs arranged about the photodiode. The LEDs were
modulated at 5kHz by a driver circuit constructed from a 555 timer and a J-K flip-flop.
The resulting optical signal was coupled to a demodulator circuit consisting of an
analogue switch (controlled by the clock output of the 555 timer), a low-pass filter and

57

a second amplifier. Again, the demodulated signal was displayed usmg an
osci lloscope. The signal to noise ratio for the optical signal was improved
significantly using synchronous detection which allowed the signal to be amplified to
an acceptable level for digitisation and acquisition. Also, the second prototype
indicated that sufficient signal strength could be obtained from a single LED.
Therefore only single light sources were used for each wavelength in the subsequent
prototypes.

4.1.2 SIGNAL VERIFICATION USING AN ELECTROCARDIOGRAM (ECG)

To confirm the biological value of the observed signals it was necessary to
demonstrate a correlation between signals from the prototype and a recognised
medical instrument. Data were collected simultaneously from both an ECG
(electrodes attached to the right arm, chest and left leg) and the prototype device
(optical signals obtained from the index finger or thumb) . The QRS complex in the
ECG waveform, corresponding to depolarisation of the ventricles and hence blood
flow into the aorta [26], coincides with the rapid drop in the absorbance signal due to
an increase in oxygenated blood at the finger (point (i) in figure 4.2). The time
difference between these two events, of approximately 0.2s, was due to the time
required for the wave of blood to reach the finger.

Q)

CU
(.)
(/)
,_
CU
Q)
C

:.:::::i

1.--------------------c---,-----,
delay

ECG

0'---'-----'-----L--_..,__ __ _., ___ _,__ __ ___.____.
4 4.5 5 5.5 6 6.5 7

Time /sec

Figure 4.2: The correlation between ECG data and the signal obtained from the
second prototype. Measurements were taken simultaneously from the arm, chest
and leg for the ECG and from the index finger or thumb for the second prototype.
The QRS complex is related to blood flow and is correlated with the fall in the
absorbance signal at point (i) (Delayed by approximately 0.2s).

58

A second example of the ECG and second prototype comparison (figure 4.3)
illustrates the signal obtained for a subject with an increased heart rate (-93 bpm).
More significant differences between figures 4.2 and 4.3 are the increased amplitude
of the optical signal in figure 4.3 and the change of the waveform shape. Greater
signal amplitude is likely to be the result of increased blood volume and the rise in
absorbance (after point (i), figure 4.3) is consistent with an increased rate of oxygen
consumption within the blood as a result of exercise.

Q)

CU
<.)
Cl)

L..

CU
Q)
C

:.:J

2.-------------------------

0'----'-------'-----'----_....---~---~ - ~
2 2.5 3 3.5

Time /sec

4 4.5

Figure 4.3: ECG absorbance signal comparison for a subject with increased
heart rate. Important differences from figure 4.2 in this signal are increased signal
amplitude as a likely result of greater blood volume and the rapid rise in absorbance
after point (i) indicating an increased rate of oxygen consumption.

4.1.3 SOFTWARE DEVELOPMENT SYSTEM

ECG

With the signal level established the focus of development moved to the control
aspects of the device. The third prototype system was constructed on printed circuit
board and designed to attach to the Motorola 68HC 11 development board. This
prototype had a sensor head similar to that of the final design and the LED modulation
circuit was driven by interrupts from the microprocessor. The major advancement of
this prototype, however, was signal acquisition using the on-chip, 8-bit, analogue to
digital converter. This allowed testing of various software components including data
sampling, signal analysis (in the case of pulse measurements) and communication
between the prototype and a computer. By relaying acquired data to the computer,
basic blood oxygenation and pulse measurement experiments were run that imitated
the experiments to be run by the final device. One result gained from these
experiments was the inadequacy of the 8-bit analogue to digital converter and the need
for higher resolution sampling. As shown in figures 4.4, 4.5 and 4.6, the acquired data
are severely resolution limited which prompted the use of the 12-bit analogue to
digital converter in the final device.

,o

4.1.4 BLOOD OXYGEN SATURATION

By configuring the third prototype to continuously sample and relay the acquired data
through the serial port, the terminal software (TEmu) could then perform the blood
oxygenation calculations (equation 1.8) and graph the results. The sensor head was
fitted to the wrist of the subject who, after a minute of signal stabilisation time,
commenced physical activity by cycling an exer-cycle. After approximately two
minutes the subject finished the exercise and waited for a resting breathing rate to
return (figure 4.4). These events are reflected by changes in the oxyhaemoglobin
concentration.

The cellular demand for oxygen varies in proportion to the level of physical activity.
This is indicated by the fall in oxyhaemoglobin concentration when exercise begins,
(start of physical exercise, figure 4.4). This trend approaches the steady state
condition where the cellular demand for oxygen is balanced with the oxygen delivery
by haemoglobin. Physical activity ceased after approximately two minutes and hence
the cellular oxygen demand decreases . This corresponds to the rapid increase in the
oxyhaemoglobin concentration, (end of physical exercise, figure 4.4). After another
period of approximately a minute the subject 's heart rate and breathing rate return to
normal and the saturation curve stabilises.

0.8

0.75

. £

~~
~~Niu

ff)

fi5 0.7
c

Start of physical t
exercise

End of physical
exercise ro

§, 0.65
u5

50 100 150 200

Time /s

880nm

660nm

250 300 350

Figure 4.4: Blood oxygen saturation measurement for a subject undergoing
approximately two minutes of physical exertion on an exer-cycle. As physical
activity proceeds, the demand for oxygen increases and hence the blood oxygen
saturation decreases. At the end of the exercise period the elevated breathing rate
and reduced cellular demand for oxygen cause the blood oxygenation of the subject
to rapidly increase corresponding in the rise at - l 90s. After 60s of rest the blood
oxygenation levels stabilise. These blood oxygen data were calculated using the
double wavelength equation, (1.8).

oxy
t

t.Hb • deoxy

60 .

4.1.5 PULSE RA TE MEASUREMENT

The pulse measurement algorithm was first designed and simulated using Matlab and
the signals acquired from the ECG experiments. The major limitations taken into
account when developing the algorithm for the microprocessor were integer
computation and limited algorithm complexity due to speed and space restrictions.
The algorithm was based on a digital filtering and level crossing technique that was
sufficiently robust to accommodate input signals with noise. The algorithm was then
implemented in the TEmu program and used with real time data from the third
prototype to perform preliminary pulse rate measurements. Further refinements and
optimisations were made based on these preliminary pulse measurements (such as
level crossings based on the upper and lower quartile (section 3.4)), before the
algorithm was implemented in assembly language for the final device .

0.95

~
0.9

·;;;
C

0.85 Q)

c
ro 0.8 C
Ol

u5
Q) 0.75
.~
ro
w 0.7
0:::

0.65

0.60 0.5 1.5 2 2.5 3 3.5 4 4.5

Time /s

Figure 4.5: Resting pulse signal. A result obtained from the pulse measurement
algorithm implemented within the TEmu software that gave a heart rate of 77 (±2)
bpm for this signal.

0.95

~ 0.9
·;;;
C

~ 0.85

ro
§i 0.8
u5
-~ 0.75
ro
w o::: 0.7

0.65

0.5 1.5 2.5

nme /s

3 3.5 4 4.5

Figure 4.6: Pulse signal after exercise. In this example the subject 's heart rate was
increased by physical exercise and measured by the algorithm to be 170 (±5) bpm.

5

5

61

4.1.6 THE ST AND-ALONE PROTOTYPE

With many of the control and hardware modules individually tested (section 3 .2. 1) a
system was needed to amalgamate the various software components and allow final
software development for the memory chips and 12-bit analogue to digital converter.
This prototype was intended to be as close to the final device as possible therefore
design aspects such as minimising physical size, connectivity between the device and
a computer, and package construction were incorporated. The device was built using
double-sided printed circuit board and the same electronic components that would be
used in the final design. Since power to the device was provided by a battery supply,
the power management circuitry was also developed.

Significant development of the control software took place with this prototype as it
was the first system to have enough programmable memory space to include the entire
operating system. Using the branch vector technique (section 3.1.5), the memory and
sampling modules were developed and software bugs that were not apparent during
module testing were found and resolved. Once development was complete, six final
version devices were built based on this prototype.

4.1.7 TESTING OF THE FINAL DEVICE

Blood oxygenation, tissue oxygenation and pulse-rate measurements were made using
one of the six devices. A measurement sequence program that made a pulse
measurement, six light scattering measurements using each LED and a temperature
measurement repeatedly without delay was uploaded to the device. After the
measurement sequence had begun and the sensor head was attached to the thumb with
tape, approximately 5 to 10 minutes were spent resting before physical activity started.
Increased heart rate and oxygen consumption were achieved by running up and down
stairs for approximately 2 minutes, during which, breathing rate was controlled as
much as poss ible. Initially, breathing rate was suppressed so that oxygen demand
would outweigh the supply resulting in decreased tissue and blood oxygenation.
When breathing rate suppression became too difficult, a normal breathing rate was
used until the end of the exercise period. During the recovery period, an increased
breathing rate was maintained so that oxygen supply to the tissue was now greater than
the demand, resulting in a rise of the oxygen concentrations. Figures 4. 7 to 4.10 show
the results collected during one of these tests.

The raw data collected by each of the six LEDs are shown in figure 4.7. While each
wavelength exhibits the same basic trends, there were noticeable differences between
each signal during the exercise period. The relative changes in detected intensity for
the 880nm and 950nm signals were greater than the change in the 660nm signal and
similarly for the 605nm signal that varied more than the 625nm and 590nm signals.
These relative differences were expected as the result of the changing oxygen demands
during exercise that give rise to the changes in blood oxygenation and tissue
oxygenation.

62

en -C
::,

..c
ro

3000

2500 .
Physical Physical
Activity Activity
Started Finished

:; 2000.
880nm

950nm
660nm
625nm

en
C
Q) -C

ro
C

.Q>
(f)

"D
Q)

t5
Q) -Q)

0

1500

1000

500

0
0 5 10 11.2 13.315

Time I minutes

20

605nm

590nm

25

Figure 4.7: Intensity data acquired from the device. These raw signals show the
relative signal strengths for each LED. While the same general trends are apparent in
each signal, physical activity resulted in noticeable differences between each
wavelength.

The change in relative blood oxygen saturation, as calculated using the double and
triple wave length equations (1.8 and 1.14), is shown in figure 4.8. The wave lengths
used were 880nm and 660nm for the double wavelength calculation and 880nm,
660nm and 625nm for the triple wavelength calculation. In each case there was a clear
decline in haemoglobin oxygenation as a result of physical exercise that returned to
normal once the exercise had finished. Although the change in blood oxygen
saturation is more pronounced in the double wavelength measurement the signal also
suffers significant baseline drift that is not present in the triple wavelength
measurement.

The affect of physical exercise on the reduction state of cytochrome oxidase was
considerably less than its affect on blood oxygenation due to the greater opacity of
tissue at the shorter wavelengths (590nm to 625nm). Consequently the signal had a
lower signal to noise ratio and the oxygenation changes were less obvious (figure 4.9) .
For the double wavelength calculation the wavelengths, 605nm and 625nm, were used
and a reduction in the oxygenation signal can be seen during the exercise period
although the correlation is not strong. For the triple wavelength measurement, the
additional wavelength, 590nm, was used. As the magnitude of the changes in blood­
oxygenation were reduced in the triple wavelength measurement it is likely that
changes in tissue oxygenation, calculated using the triple wavelength equation, were
overwhelmed by noise. In both signals, however, the upward trend after the exercise
period may be due to the increased supply of oxygen and reduced demand during the
resting period.

63

C
0

:..::;
ro
C
Cl)
Ol
>,
X
0
C
:0
0
Ol
0
E
Cl)
ro
I
Cl) ..
>
~
Cl)

0:::

5 10

Physical
Activity
Started

..

Physical
Activity
Finished

11.2 13.3
15

Time /minutes

Double Wavelength
Measurement

Triple Wavelength
Measurement

20

Figure 4.8: Relative blood-oxygen saturation. Physical activity resulted in a clear
decline in haemoglobin oxygenation that increased again once activity had fini shed.
Noticeable differences between the calculation techniques are that the double
wavelength measurement appeared to drift while the base line for the triple
wavelength measurement was approximately constant. The difference in
haemoglobin oxygenation, however, was more pronounced in the double wavelength
measurement.

Physical Physical
Activity Activity
Started Finished .. .

C ..
0

ro . Double Wavelength
C . . Measurement
Q) .·
0)
>,
X
0
Q)
::,
en -en .. .
F
Q) .. >
~

.
Triple Wavelengt

Q) Measurement 0:::

5 10 11 .2 13.3 15 20

Time /minutes

Figure 4.9: Relative cytochrome oxidase oxygenation. These data were calculated
using wavelengths for which tissue opacity was greater and consequently the signal
to noise ratio was lower. A downward trend in the double wavelength measurement
is visible during the physical activity period but not obvious in the triple wavelength
measurement for which the effects of noise appear to overwhelm the signal. After
the exercise period, the upward trend could be due to the increased supply of oxygen
and reduced demand by the cells.

64

The relative change in blood volume as a result of physical exercise is shown in figure
4.10. The body's reaction to physical activity is to increase the supply of oxygen to
the muscles. Increased blood flow is another means of achieving this so a rise in
blood volume during the exercise period was an expected result. Even though there
was obvious baseline drift in the signal, a marked increase in blood volume occurred
while exercising that subsided to the normal level approximately 5 to 7 minutes after
the activity finished.

a.>
E
:::::,

0
>
"O
0
0
co
a.>
>
CU
a.>
0::

5

....

Physical
Activity
Started

..

10 11 .2

Physical
Activity
Finished

13.3
Time /minutes

15 20

Figure 4 .10: Relative blood volume. Apart from the drift in the signal, the blood
volume clearly increased during the physical activity period and slowly returned to
normal once the activity had finished.

Pulse rate data from this experiment was inadequate due to noise introduced by
movement of the sensor head during the exercise. In other experiments, where this
movement was reduced (muscle tension exercises), more consistent pulse rate data
were obtained (figures 4.11 and 4.12).

From the waveforms used to calculate the pulse rate (example given in figure 4.11),
variations are clearly visible at points (i) and (ii). These variations are possibly due to
a reflected pulse that occurs as a result of the elasticity of blood vessels (point (ii),
figure 4.11) [Machon, R., Veterinary science lecturer, personal communication]. The
higher sampling resolution of the final device also shows a third reflected pulse at
point (iv).

Data obtained during a muscle tension exercise are given in figure 4.12. Initially the
pulse rate increased rapidly to approximately 110 beats per minute. Once the exercise
had finished, a normal pulse rate returned within about three minutes. As a
consequence of sensor head movement, larger error estimates and fewer points were
recorded during the exercise period.

65

2400

(/)
2200

:=:
C
:::, (i) (ii) (iii) (iv)

.a 2000
....
co --2::- 1800

·u5
C

2 1600 C

"O
<l)

t5 1400
<l)

a5
0

1200

1000
0 1 2 3 4 5

Time /s

Figure 4.11: A pulse waveform used to calculate pulse rate. The points of this
waveform are received in real time by the pulse algorithm that attempts to find the
signal periodicity. Points (ii) and (iv) indicate fluctuations in the waveform that may
be due to second and third reflections of the initial pulse arising from the elasticity of
the blood vessels.

120

2 110
:::,
C

.E 100
<l)
0..
(/) 90
co
<l)
.a

80 --<l)

ro
0::: 70
<l)
(/)

:::, 60 0..

50

40
0

Physical
Activity
Started

5 6.2

Physical
Activity
Finished

7.9

Time /minutes

10 15

Figure 4.12: Pulse rate measurement. From signals similar to that of figure 4.11,
pulse rate information was calculated. In this experiment, the pulse rate rapidly
increased as a result of physical activity and then gradually returned to normal once
the activity had finished. Movement of the sensor head during a pulse rate
calculation can disturb the pulse waveform and prevent the pulse algorithm from
finding a result, hence the scarcity of points during the exercise period. The error
bars in this graph indicated the pulse rate error estimates (section 3.4).

66

Finally, the response of the temperature sensor was investigated by the application of a
heat source to the sensor head resulting in the temperature curve given in figure 4.13 .
The initial rise in temperature within the first minute is most likely related to the
heating effect of current flowing through the device. When placed in contact with the
heat source the time constant for the device was 18.6s. Once the heat source was
removed, approximately 15 - 20 minutes were needed for the sensor to return to 18°
by dissipating its heat into the surrounding air. Temperature measurements made
during exercise experiments or on nesting Adelie penguins were made on a larger time
scale than 18.6s so the time constant was presumed acceptable.

35r----,------r----,-----,-------.-----,----,

30

u
0

Time constant
18.6s

- 26. 6,--+-----+--t­
Q) ,._
2 25
CU ,._
Q)
Q.

E
~

In contact with
heat source

Heat source
removed

Dissipating heat
to surrounding air

15'-------'-------'-----'----.,____...__._ ___ __,_ _ ____,
0 1 2 3 4 5 6

Time I minutes

Figure 4.13: Temperature measurement. Measurements were made over larger
time scales than the 18.6s time constant and therefore should not significantly affect
the temperature measurements. Other important considerations indicated by this
graph were the need for good thermal contact and the stabilisation time needed to
avoid the internal heating effects of the device.

4.2 Field Testing

Field testing, on the Adelie penguins in Antarctica, began on the 22nd of November,
1999 using six of the final version devices. The initial intention was to use all six
devices to perform the same experiment on six birds simultaneously so that typical
biological responses could be compared with the· behavioural activities observed. This
soon proved to be impractical however, due to the difficulties in tracking the
instrumented birds as they moved within the large colonies. Once an instrumented
bird was out of sight, the black coloured packaging of the device made it exceptionally
difficult to relocate. Therefore, a single device was attached to a penguin and constant
observation of its activities were maintained from a distance using binoculars. After a
data collection period of 1 to 5 hours the bird was recaptured and the device retrieved.

67

Due to the nature of this experimental technique, conclusions drawn from these
experiments suffer the limitation of a small sample size. However, consistency
between behavioural activity and biological responses would indicate that meaningful
data were obtained from the device and that prediction of the penguins biological
mechanisms in response to cold and stress could be made.

Aside from the biological data to be acquired by the device, physical data such as
we ight, flipper and beak dimensions were also measured. These morphometric
parameters were used with a discriminant function (4.1) to determine the sex of each
bird [27]. In some cases, however, the sex of the bird was apparent due to
observations of its behaviour (e.g. mating). The gender information was obtained in
case differences were observed in the biological responses of male and female
penguins.

D = 0.582BL + l . l l 8Bo + 0.2 l 9Fw (4.1)

where BL = bill length, Bo = bill depth, Fw = flipper width and D = the discriminant
value that was compared to the mean discriminant score of 55.39. This technique is
claimed to predict the gender of Adelie penguins correctly in 89% of cases. However,
a lower accuracy than this was expected due to interpretation of the measurement
technique and location of the colony.

4.2.1 CAPTURE TECHNIQUE AND ATTACHMENT

As non-invasive measurement by the device was an important consideration, so too
was the entire measurement process. Care was taken to minimise stress on the birds
during capture, attachment and removal of the device and all manipulations of the
penguins were approved by the Massey University Animal Eth ics Committee.

Capture of a penguin involved quietly moving toward the bird with a wide area,
shallow net held horizontally and low to the ground. When within approximately 2m
to 3m the net was used to capture the bird and then both net and penguin were carried
away from any nearby birds. Once removed from the net the penguin 's hind legs were
held in the handler's right hand, while the bird's head was tucked under the handler's
left arm so that the penguin's eyes were covered. The penguin was held in this
position, facing downward, so that the device could be attached to the bird's lower
back and once in this position, the penguin became noticeably calmer.

The attachment technique used was similar to that described by Wilson et al. [28]
whereby 'Tesa' tape was used to attach packages of varying weight to African and
Adelie penguin. Tesa tape was described as a cloth backed tape that is light, strong,
inexpensive, waterproof, non-restrictive and simple to apply. Unfortunately, this
German tape was unavailable so a tape with the same specifications as Tesa 4651 was
selected. The ' Scotch' brand tape chosen was a strong, light, cloth backed tape that,
most importantly, was available in black (section 2.1).

Attachment of the device was achieved in three steps (figure 4.14). To begin with, a
patch of feathers on the lower back of the bird was raised and a strip of tape,
approximately 20cm x 4cm and adhesive side facing outward, was placed under these
feathers . The device was then located over the centre of the tape and the left and right

68

edges of the tape were wrapped around the device. Finally, the ulnar artery under the
penguin flipper was located by touch and the sensor head detector was centred over
the artery. A smaller piece of tape, approximately 10cm x 1.5cm, was used to fix the
sensor head in this position. If necessary, another small piece of tape was used to fix
any excess interconnecting cable to the back of the penguin. A small fold was placed
on the outermost flap of each piece of tape so that removal of the device was easier
and faster.

(a) (b) (c)

Figure 4.14: Attachment of the device using tape. (a) A patch of feathers were
lifted from the bird's back and tape was applied to the underside, adhesive side
facing outward. (b) The device was centred over the patch of feathers and held in
place by the tape. (c) The sensor head was located over the ulnar artery under the
flipper and also held in place with tape.

4.2.2 PHYSICAL RESULTS AND OBSERVATIONS

Apart from the biological data obtained, important physical observations were also
made. Most importantly, the instrumented penguins indicated no obvious signs of
stress as a result of wearing the device. Usual behaviour such as displaying, eating
snow and stone collecting all continued without impediment and in one particular
case, a female penguin was seen to mate while fitted with the device.

Observation of the penguin after release from both attachment and removal of the
device showed only short-term unsettled behaviour. Within 5 to 10 minutes the
activities of the equipped or recently released birds were indistinguishable from those
of other birds.

Incidents that occurred in two experiments confirmed the importance of the colour of
the device and the forgiving nature of the attachment technique. In the first instance
the black paint on the interconnecting cable had been partially removed by tape and
regions of the grey cable were visible. The penguin, fitted with this device, pecked
and tugged at the cable whereas, in previous experiments, the cable was untouched.
This experiment was ended early to avoid damage to the device and unnecessary
discomfort for the penguin. In a second experiment, the penguin displayed discomfort
that was due, perhaps, to the weight of the device being loaded unevenly on the group
of feathers. This resulted in the bird actually removing the device before it could be
recaptured indicating that, if necessary, the penguin was able to free itself from the
device.

69

4.2.3 BIOLOGICAL RESPONSES

The majority of experiments performed were designed to capture physiological data as
the penguins experienced changes in environmental temperature. This goal was
extended to include the biological responses to stress as no significant temperature
changes occurred during the experimentation period (the still air temperature range
was approximately-7°C to 5°C).

Initial experiments indicated that the light scattering signal strength was much weaker
for penguins than it had been in human tests. This was expected due to the feathers,
thicker skin and thicker subcutaneous fat layer that penguins have. To compensate,
the gain of the amplifier after the synchronous detector was increased but in general,
the data collected suffered greater noise than that experienced during developmental
testing. A major factor contributing to noise was movement of the sensor head against
the flipper. Placement of the sensor head was also important and in cases where the
sensor head shifted or was placed incorrectly, useful data were not obtained. Other
factors that contributed to poor data were the security with which the sensor head was
attached to the flipper and temperature. On the coldest days, the data showed little
sign of change resulting from behavioura l activities, which could be due to
vasoconstriction whereby blood flow to the flipper was restricted but further
experiments are required confirm this.

An example of data co llected from the device is given in figure 4.15 showing two
events that caused observable unsettled behaviour by the penguin. At 122 minutes the
penguin was approached causing the bird to stop preening and to become agitated by
our proximity. For approximately five minutes an effort was made to have the
penguin constantly aware of our presence but not to cause the bird to run. Signs of
stress in Adelie penguins are a 'glaring' look, where the whites of the eyes are visib le,
and a rolling head movement. This behaviour was displayed throughout the five
minute period. At approximately 177 minutes a helicopter flew over the colony and
signs of stress were displayed by many of the penguins.

Figure 4.15 shows the measured intensities for each wavelength over the period of the
two stressfu l events. Signal level changes occurred at the two events but were related
only in part to the induced stress. Movements of the bird caused the sensor head to
move that resulted in intensity level changes in the data. Figures 4. 16, 4.17 and 4.18
are the blood oxygenation, cytochrome oxidase saturation and blood volume data
calculated from this data set respectively.

These figures and figure 4.19 contain a signal labelled "Behavioural activity" that was
obtained by estimation of the penguins observed energy expenditure. Values were
assigned to the bird 's various behaviours such that high-energy activities corresponded
to high signal level. Typical values were 1 for standing, 0.8 for lying down, 1.2 for
stone collecting and 1.5 for Skua threat. A moving average of these data was taken to
give the behavioural activity signals shown.

70

(J)
·c
:::,

.0 ,_
ctl --c
(J)

C
<1.)
C

2000

1800

1600 •

1400

1200

1000

800

600

400

200

Approached
penguin

Helicopter
flew overhead

. .

950nm

880nm

~-..;;:-;;;.;;;...., _____ ..:...j. _ __..,.......,_..~ 660nm

~-~------_.....,. ___,~ 625nm

;..-........ ..._ _______ -i-____.,...605nm

0 '--'---,b.J.~~..s....~--------~ --...... s90nm 100 120 140 160 180 200
Time / minutes

Figure 4.15: Data collected during two potentially stressful events for an Adelie
penguin. At 122 minutes the penguin was approached causing the bird to display the
typical signs of stress. This was maintained for approximately 5 minutes. Peaks in
the data at this time may be related to these stressful events but may also be the result
of sensor head movement.

The double wavelength measurement in figure 4.16 shows decreased blood
oxygenation at 122 minutes that coincides with the first stressful event. A lower blood
oxygenation implies that the demand for oxygen had increased while the supply had
not, that is, increased metabolic rate was a response to stress. At 122 minutes a small
change in the triple wavelength measurement was also seen, however after
approximately 13 5 minutes the signal became erratic due, most likely, to movement of
the sensor head.

Changes in the cytochrome oxidase signals for both the double and triple wavelength
measurements (figure 4.17) did not show responses obviously related to the two
stressful events. After the suspected sensor head movement at 135 minutes, both
signals became approximately constant. Given the sensitivity of the cytochrome
oxidase measurements made during developmental testing, it is most likely that
fluctuations in these signals were due to movement of the sensor head.

The blood volume data (figure 4.18) show a clear drop in blood volume during the
first stressful event that returns to the original level approximately 5 minutes later.
The location of the sensor head meant that the blood flowing in to and out of the
flipper was measured. As a decrease in blood volume was measured, this response
indicates that stress caused less blood to flow to the extremities.

71

~
C:
::::,

..ci 2
<1l

C:
0

~ 1.5
(I)
0)
>,
X
0
C: 1
:0
0
Ol
0
E
(I)
<1l

I
(I)

.:::
ro
ai 0
0::

Approached
Penguin

Behavioural
activity

Triple
Wavelength

Double
Wavelength

100 110 120 130 140 150 160 170 180 190 200

Time I minutes

Figure 4.16: Relative blood oxygen saturation calculated from the data in figure
4.15. At 122 minutes, the decline in the double wavelength measurement and the
subtle drop in the triple wavelength measurement imply a rise in metabolic rate not
matched by an increase in oxygen supply as a result of stress. A shift of the sensor
head is the probable reason for the erratic activity of the triple wavelength
measurement after approximately l 35 minutes. The data labelled ' behavioural
activity' are an estimate of the energy expenditure during the various activities of the
penguin made by observation.

2

(I)
(J) (J)

ro .~
-0 C: ·x ::::i 1.5
O · .c
(I)

E~ e c:
..c. 0
u:z
0 <1l
- C: >, (I)
() 0)

Q) >,

~ (j 0.5
<1l
ai
0::

0

.~.

100 110 12

-

Helicopter
flew overhead

Behavioural
activity

Triple
Wavelength

~---------~-----,,I.Double
Wavelength

130 140 150 160 170 180 190 200

Time I minutes

Figure 4.17: Relative oxygenation state of cytochrome oxidase calculated from
the data in figure 4.15. While there is agreement between the double and triple
wavelength measurements there is no obvious change as a result of stress. Given the
sensitivity of the cytochrome oxidase measurements made during developmental
testing these results at approximately 122 minutes are most likely due to movement
of the sensor head.

72

-~ 2
C:
:,

-e
~ 1.5
<I>
E
:,
0
> 1
"O
0
0
iii
<I>
-~ 0.5
ro
ai
0::

0

100 110 12 130 140 150 160 110 ' 1ao 1so 200

Time I minutes

Figure 4.18: Relative blood volume calculated from the data in figure 4.15. The
fall in blood volume at 122 minutes implies that the penguin' s response to stress was
reduced blood flow to the extremities that returned to normal approximately 5 minutes
later.

Sensor head movement and noise made measurement of the pulse rate nearly
impossible. All of the pulse data acquired had large errors and did not display obvious
trends corresponding to the changes in behaviour. An experiment to collect only the
pulse waveform by running one LED continually was made and the results indicated
that, for the majority of the experiment, the periodicity of the waveform was hidden in
noise. In attempts to improve the pulse data, the LED wavelengths 880, 660 and 625
were tried but none performed noticeably better. Figure 4.19 is the pulse rate data
collected during the same stress experiment as above.

350,------...---------- ---,------,

300
E i------
a.
~ 250
Q)

ro
O'.: 200
Q)

~
::,

a.. 150
"O
Q) ...
::,
~ 100
Q)

~
50

Approached
Penguin

f'

Helicopter
flew overhead

Behavioural
Activity

0 ,.._ ___ __._+-___ _._ ____ ..__ ___,,. ____ _,

200 100 120 140 160 180
Time I minutes

Figure 4.19: Pulse rate data acquired during the two potentially stressful events
for an Adelie penguin. A rise in the average pulse rate occurs at approximately 122
minutes but is unlikely to have been caused by the first stressful event.

73

Chapter 5

Conclusion
Developing an instrument of biological and medical potential, and to demonstrate that
potential by gaining physiological results obtained in an experimentally unique
manner: through non-invasive measurements made on the Adelie penguin in its natural
habitat, were the objectives of this thesis. Achieving this goal drew on a broad range
of disciplines from biology, software engineering, signal processing and circuit design
through to Antarctic field training. As a result, a system was developed with the
abi lity to measure haemoglobin oxygenation, the reduction state of cytochrome
oxidase, blood volume and pulse rate. The device had the control mechanisms
necessary for a varying range of experiments and met the weight and size limitations
necessary for working with the Adelie penguin.

The original question of how an Adelie penguin copes with the fluctuating Antarctic
weather conditions was extended to ask, "what are the metabolic responses related to
stress". Weather conditions that remained mild during the experimentation period and
physical factors such as movement of the sensor head and weak signal strength
prevented conclusive answers to these questions. However, signs of metabolic
changes were present in the data a llowing tentative predictions of the metabolic state
to be made. An observed response to stress was the reduction in haemoglobin
oxygenation implying an increased metabolic rate and a decrease in blood vo lume
suggesting reduced blood flow to the flipper. Other observations included declining
blood oxygenation as the bird recovered from capture and low, constant signal levels
on cold days possibly due to vasoconstriction.

Although no statements could be made about the metabolic responses of the Adelie
penguin the success of the device during developmental testing confirmed its potential.
Under controlled testing conditions, the device was able to display changes in heart
rate, blood oxygenation and blood volume as a result of physical activity and features
of the pulse waveform may even have application in indicating heart conditions. Since
obtaining metabolic data was possible with this first version of the device it is very
likely that with modification and improvement, reliable data could be collected in the
field.

5.1 Evaluation

As with any prototype system, experimentation usually reveals a number of potential
improvements and modifications that could be made to improve the system's
performance. In this case, a major limitation of the device was the crystal frequency.
As a way of reducing power consumption and therefore extending the operating time
of the device, a 2MHz crystal was used which meant that clock cycles within the
Motorola chip occurred every 2µs. Modulating the LEDs at !kHz required an
interrupt generated every 500µs or, equivalently, every 250 clock cycles. The
interrupt service routine used approximately 100 clock cycles to switch the state of the
LEDs. Therefore, execution of the main program took place in the remaining 150

74

clock cycles. This meant that 40% of the available processing time was required for
LED modulation. With hindsight, this problem could have been significantly reduced
by selecting a lower modulation frequency. With more clock cycles available to the
main program and sampling interrupt, greater time resolution could have been
achieved over the measurement interval. Reducing the clock frequency did conserve
power, however, fieldwork showed that long term measurements were impractical and
hence power consumption, in practice, was not a limiting factor.

The most obvious limiting factor for signal acquisition is the efficiency of the sensor
head and substantial improvement would come, most simply, from improvements
made to this part of the device. Mendelson [7] suggests a number of techniques to
improve the signal to noise ratio of acquired signals. These include, increasing the
photodiode/LED separation and LED current, heating the local skin temperature to
between 34°C and 45 °C, and using an inverse sensor head design whereby several
photodiodes surround the LED sources thus increasing the active area of the detector.

Of the techniques suggested by Mendelson, increasing the LED current and inverting
the arrangement of the source and detector are probably the most suitable. At further
cost to the operating time of the device, increasing the LED current would strengthen
the acquired signal. However, the main benefit of increasing the LED current is
obtained when the source/detector spacing is also increased and since the sensor head
size is limited by the size of the penguin flipper, only minor signal improvement
would be achieved in this way. Local heating of the skin to between 34°C and 45°C by
the device is not a viable option. Even moderate heating would dramatically reduce
the operating time of the device and would almost certainly increase the penguin's
awareness of the device resulting in unrealistic stress data.

Significant improvement might be achieved by inverting the arrangement of the source
and detectors on the sensor head. Since light diffuses radially from the source,
surrounding the LEDs with photodiode detectors will collect more of the incident light
(figure 5 .1) and therefore increase the signal strength.

Connecting
Cable

Temperature
Sensor

Figure 5.1: An alternative layout for the sensor head that may give improved
signal strength. Advantages of this design are that the effective active area of the
detector is increased and, since light propagates radially outward from the source,
collection of the source light is more efficient.

75

From a software usab ility perspective, the interaction between conversion programs,
terminal software and the displaying of results is complicated. Script files must be
converted by two separate programs and then uploaded to the device using TEmu.
When results are available, another program is used to convert the hexadecimal output
into a format that may be interpreted by Microsoft Excel. Integration of these
software components into one package that allowed the operator to create and upload
script files then download and view the results would substantially improve usability
of the system.

5.2 Future Development

Aside from these suggested enhancements the basic success of the device indicates the
value of further development of this system. The first step toward future study of the
Adelie penguin is to broaden the scope of possible experimentation. Currently
package design, attachment technique and waterproofing limit experiments to short
term investigations made on nesting penguins. Improvement in these areas cou ld
allow investigation into the metabolic response of penguins during the transition
between land and sea, could determine the effects of moulting on the penguin 's
metabolism and show the metabolic trends over the fasting period. Each of these
situations require a system capable of long term study so a review of power
management along with the physical aspects of the device is necessary.

An enhancement with obvious potential is to incorporate telemetry into the operation
of the device. Real time communication would allow detailed metabolic data to be
transmitted during periods of unique behaviour and operating time could be extended
by incorporating standby mode functiona lity into the communication.

The greatest potential of this system is that the non-invasive monitoring of metabolic
activity can be extended to many other species, including humans. Interesting and
useful biological information could be obtained in scenarios as variant as training
athletes, race horses or predatory animals. While experiments of this nature are
somewhat distant, the resu lts of this work demonstrate the value of portable NIR
spectroscopic devices beyond the medical profession and that continued research into
such systems is both valuable and worthwhi le.

76

Appendix A - Derivations

A.1 Oxygen saturation derived from double
wavelength measurements

The Beer-Lambert law is the linear relationship between absorbance and the
concentration of an absorbing species [9]

A= I,c:f· [X,.]L (Al.I)

where A is the measured absorbance, c::, are the wavelength dependent absorption

coefficients for the absorbers X ,. , [X,] are the concentrations of the absorbers and L
is the optical path length. The measured light scattering signal, R , is defined as,

(Al.2)

where I and I O are the measured and incident light intensities respectively. The

relationship between R and A is

A= - logR = -log(i/ 10) = log(f 0/ I) (A l.3)

For a particular chromophore, X, two wavelengths are selected; one for wh ich the
absorption due to oxidised and reduced forms of the chromophore are different and the
other where they are approximately equal. If the contribution to the absorbance at
these wavelengths by other absorbers is approximately constant then the Beer-Lambert
law at these wavelengths is,

A,i oc (c:f [X]+c:f0 [XO])L (A 1.4)

For a medium that is semi-transparent in an optical range (e.g. red to near infrared),
the concentration of scatterers is much greater than the concentration of absorbers.
These media have the property that the mean optical path length is approximately
constant for wavelengths within this range. Therefore, the optical path length term
may be eliminated by taking the ratio of absorbances [8],

AA, ci [x]+ct [xo]
AA-z = c:~[x]+c~0 [xo]

(Al.5)

77

In a closed system, the total concentration [X
10101

] is equal to the sum of [X] and

[XO]. This allows (A 1.5) to be rewritten as

A,., c{ ([X
1010

,]-[XO])+ £{0 [XO]
A,½ = £ ~ ([X1010 ,]- [XO])+ £ ~

0 [XO]

A,., _ [Xrora,)£,1~ + [XO](£{0
- £{)

A-½ - [X
1010

,)£~ + [XO](c~0
- £~)

[xo] _ A,,,£~ - A-½ £{
[Xroral] - A,½ (£{0 - £{)-A,., (£~0 - £~)

[xo] _ (A,., / A,½)c~ -£:
[xtotal] - (A ,., I A,½ x£~ -£~

0)+ k{0 - <)

(Al.6)

Using equations (Al.3) and (Al.4), the relationship between measured intensity the
oxygen saturation is found,

(Al.7)

78

A.2 Oxygen saturation derived from triple
wavelength measurements

The purpose of calculating oxygen saturation using three wavelengths is to remove
base line drift. An estimate of b_ackground absorbance is found by linearly
interpolating between the absorbances at two other wavelengths (A, and A,, figure

A2.1). Each wavelength is selected such that the absorbances due to the oxidised and
reduced forms of the chromophore are approximately equal. By interpolating between

A, and A, a background absorbance, A; is found that is compared with the measured

absorbance, A2 . The interpo lation estimates the drift occurring at Ai and by

comparing A2 to A; the drift is removed.

C
0
·-g_
,._
0
(/)

.D
ro
Q)
> ·.;::;
ro A1

Q)
a::

'½
Wavelength

Figure A2.1: T he use of three wavelengths to remove baseline drift in oxygen

saturatio n measurements. By interpolating between A, and A, a background

absorbance, A; is found for comparison with A2 .

The value A; at Ai is given by

A• - A3 -A1 A h
2 - --=----'- + 1 w ere

A

By analogy with equation (Al .5), /J is defined as

/3= A:= M 2

A2 A3 + A1 (A - 1)

_ A(t:~[x]+t:~0 [xo])
- (t:~[x]+ t:~0 [xo])+ (t:~[x]+ t:~0 [xo]XA- 1)

(A2. l)

(A2.2)

79

Again, fo r a closed system, the total concentration [X10101] is equal to the sum of [X]
and [XO], therefore (A2.2) may be rewritten as

/3 = A(c~ ([X10101]-[XO])+ c{0 [xo])
(c~ ([x/Otal]- [XO])+ £~

0 [XO])+ (c~ ([xtotal]- [xo])+ £~
0 [xo]XA-1)

(A2.3)

The direct relationship between measured intensity and oxygen saturation is found by
substituting /3 into (A2.3). Using equations (Al.3), (A l.4) and (A2.2), /3 is

(A2.4)

A.3 - Relative blood volume derived from double
wavelength measurements

A relationship describing relative blood vo lume is derived from the absorbance
equation (A l.4) by considering the absorbance at two different wavelengths

A-<i = (c~[x]+c:,O[xo])L
A,i

2
= (c~ [x]+ c~0 [xo])L

(A3 . l)

(A3.2)

By rearranging (A3. l) and substituting into (A3.2) two equations describing [X] and

[XO] in terms of the absorbance are found. Rearranging (A3.l) gives

80

Substituting into (A3.2) gives

(A3.3)

(A3.4)

Once again, since the total concentration [X,
0101

] is equal to the sum of [X] and [XO),
combining (A3 .3) and (A3.4) gives the blood volume relations hip, (A3 .5).

(A3.5)

81

Appendix B - Simulation Programs

B.1 - Synchronous detector numerical solution

For the synchronous detector frequency response given in figure 2.10, a modulation
frequency of 1 kHz and a low-pass fi lter comer frequency of 1 Hz was used. Over a
frequency range from 500Hz to 4k.Hz, 3500 points were calculated. At each
frequency, a complete period of the detector output signal (10000 point resolution)
including the effect of the low-pass fi lter was evaluated to n=5 l iterations of equation
2.9.

#include <iostream>
#include <iomanip>
#include <fstream>
#include <cmath>

using namespace std;

// Globals
double canst PI= 3.1415926535897932;
int canst
int canst
double
double
double
double
double
double
int

frequency_ buffer_ size
detector_ output_ buffer _size
dc_input_ voltage
modulation_ frequency
start_ frequency

= 3500; II 3500 point resolution for final data
= I 0000; II I 0000 point resolution for each detector output
= 1.0; II V
= I 000.0; II Hz
= 500.0; II Hz

finish _frequency = 4000.0; II Hz
= 1.0; II Hz lpf _comer_ frequency

frequency_ stepsize
fourier_iterations

= (finish_frequency - start_frequency) / frequency_buffer_size;
= 51;

II Globals calculated from the globals above
double canst TwoPI
double modulation_freq
double modulation_period
double start_ freq
double finish_freq
double lpf_comer_ freq

II Allocate space for the frequency data

=2*Pl;
= TwoPl*modulation_frequency;
= I / modulation_ frequency;
= TwoPl*start_frequency;
= TwoPl*finish_frequency;
= TwoPl*lpf_comer_frequency;

double output(frequency _ buffer _size)(2);
daub le detector_ output[detector_ output_ buffer_ size J;

II Function Protorypes
double LowPassFilter(double Yin, double frequency);
void DetectorSignalOut(double frequency);
double nns(double* buffer, int const buffer_length);

int main(void)
{

// The output file containing data
ofstream outfile("SyncDetData.txt");

// Initialise the buffers to zero
memset(output, 0, sizeof(output));
memset(detector_output, 0, sizeof(detector_output));

II Main calculation loop
unsigned int index;
double frequency= start_frequency;

II radls
II seconds
II rad/s
II rad/s
// rad/s

for(index= O; index< frequency_buffer_size; ++-index, frequency +- frequency_stepsize)
{

output[index][O) = frequency;
DetectorSignalOut(frequency);
output[index][I) = nns(detector_output, detector_output_buffer_size);

outfile << fixed << setprecision(7) << output[index][O) << "\t" « output[index][I] << endl;
cout « fixed « setprecision(7) << output[index](O] << ''\t" << output(index](I] << endl;

82

return O;

void DetectorSignalOut(double frequency)
{

double w = TwoPl*frequency;

// Calculate the time required for a complete period of the product of
// 'frequency' and the modulation frequency. If 'frequency' is really
// close to the modulation frequency assume they are the same
double finish_ time = modulation __period ;
double beat_freq = abs(modulation_freq - w);
if(beat_freq > I)

finish_time = TwoPI / beat_freq;

double time_step = finish_time / detector_output_buffer_s ize;

// Calculate the output from the detector
int n, index;
double output, upper_ freq, lower_ freq, upper_component, lower_component;
double time= O;
for(index= O; index < detector_output_buffer_size; ++index, time+= time_step)
{

output= O;
for(n = I; n <= fourier _ iterations; n += 2)
{

lower_freq = (w - n•modulation_freq) / TwoPI;
upper_freq = (w + n•modulation_freq) / TwoPl;
lower_ component= LowPassFilter((2 • dc_input_ voltage) / (n • PI), lower_freq);
upper_component = LowPassFilter((2 • dc_input_ voltage) / (n • PI), upper_freq);
output+= (lower_component - upper_component) ;

detector_output[index] = output;

11•••••
// Finds Yout if Yin is passed to a simple low pass filter
// with the comer frequency spec ified
double LowPassFilter(double Yin, double frequency)
{

double w = TwoPl*frequency; // Omega fo r the frequency of interest
return Yin / sqrt(1 + (w / lpf_comer_freq) • (w / lpf_comer_freq));

11•••••
// Finds the rms value of a signal within a buffer
double rms(double• buffer, int const buffer_length)
{

double sum_ of_ squares = O;
for(int i = O; i < buffer_length; ++i)

sum_of_squares += (buffer[i] • buffer[i]);
return sqrt(sum_of_squares I buffer_length);

B.2 - Pulse algorithm simulation

The pulse algorithm, written in assembly code, was recreated and simulated using
Matlab where it was then used to investigate noise and drift limitations.

function [pulse,error] = Pulse(GPMedBufsize, GPPBufsize, GPThres, GPTO);
%
% Simulates the pulse rate measurement algorithm and returns the period
% and error estimate of a signal stored in a text file.
% The file format is {time, signal, pure signal, noise signal)
% {time, signal, pure signal, noise signal)
% {time, signal, pure signal, noise signal)
%
%
%
%
%

Syntax:
[pulse

Parameters:
medbuf
Pbuf

error] =

size of
size of

Pulse(medbuf,Pbuf,thres,TO)

the median buffer to use
the period buffer to use

83

%
%
%
%
%

thres
TO

limiting error threshold
timeout period before changing from median to upper
quartile to lower quartile .

Example:
[Pulse,Error) = pulse(l00,4,10,400);

% Initialise variables
data=load ('C: \ masters \ sig.txt');
datsize=length (data) ;
Tempw= O;
Time=O;
GPTAmp=O ;
GPAmp=O;
GPQuart= O;
GPToggle=O ;
GPTime=O;
GPSWAvr= O;
GPSWOld= O;
GPSWBot= O;
GPSWTop= O;
GPPAv r=O ;
GPErr= O;
GPMedBuf=zero s (l,GPMedBufsize) ;
GPMedBufptr=l ;
GPSWBufsize=B ;
GPSWBuf=zeros (l,GPSWBufsize);
GPSWBufptr=l ;
GPPBuf=zero s (l , GPPBufsize) ;
GPPBufptr=l ;
GPPeriod=O;
GPError=lOO OO;

% File containing the waveform
% Wav eform buffer length
% Variables defined in pulse assembly code

% Initialise intermediate graph buffers
Med=zeros (2, datsize);
Tog=zeros (2 , datsize) ;
SW =zero s (2 , datsize) ;
P=zeros (2, datsize) ;
E=zeros (2 , datsize);

%Find the period
f o r i=l:datsize %Main pulse measurement l oop

%Get a new Sample
Tempw = GPTime;
GPData=data (i,2);
GPTime=data (i,l);
Time= Time+ (GPTime-Tempw) ;

%Add data to the Median buffer
GPMedBuf (GPMedBufptr) =GPData ;
GPMedBufptr=GPMedBufptr+l ;
if (GPMedBufptr== (GPMedBufsize+l))

GPMedBufptr=l;
end

%Find the median, max and min using the correct quartile
GPMax=max(GPMedBuf);
GPMin=min(GPMedBuf) ;
GPTAmp=GPMax-GPMin;

%Decide which quartile to use
switch GPQuart
case 0 , %Median

GPMed (GPMax+GPMin)/2;
case 1, %Upper

GPMed (GPMax+GPMin)/2 + (GPMax-GPMin)/4;
%Lower case 2,

GPMed (GPMax+GPMin)/2 - (GPMax-GPMin)/4 ;
end

Med(l,i)=Time;
Med(2,i)=GPMed;

t Collect data for intermediate graphs

\Set the toggle value
if ((GPToggle==O) & (GPData > GPMed))

GPToggle=65535;
elseif ((GPToggle==65535) & (GPData < GPMed))

84

GPToggle=O;
end

%Generate the square wave using GPToggle
GPSWBuf (GPSWBufptr) =GPToggle;
GPSWBufptr=GPSWBufptr+l;
if (GPSWBufptr== (GPSWBufsize+l))

GPSWBufptr=l;
end

Tog (l,i) =Time; % Collect data for intermediate graphs
Tog (2,i) =GPToggle;

%Apply smoothing to square wave to find SW averaged value
GPSWOld=GPSWAvr;
GPSWAvr=O;
for j=l:GPSWBufsi z e

GPSWAvr GPSWAvr + GPSWBuf (j)/8;
end

SW (l, i) =Time;
SW (2,i) =GPSWAvr;

% Collect data for intermediate graphs

%Look for potential periods and sto re them in Pbuf
if ((GPSWOld < O. l) &(GPSWAvr > 0 .1))

GPPBuf (GPPBufptr) = (GPTime-GPSWBot) ;
GPPBufptr=GPPBufptr+l;
if (GPPBufptr== (GPPBufsize+l))

GPPBufptr=l;
end
GPSWBot = GPTime;

end
if ((GPSWOld > 0 . 9) &(GPSWAvr < 0.9))

GPPBuf (GPPBufptr) = (GPTi me-GPSWTop) ;
GPPBufptr=GPPBufptr+l ;
if (GPPBufptr== (GPPBufsize+l))

GPPBufptr=l;
end
GPSWTop = GPTime;

end

%Check for constistant periods
Buf=zeros (1 , 10) ;
f o r (k=l :GPPBufsize)

Buf (k) =GPPBuf (k);
end
outbuf=S;
inbuf=l;
bufsize=GPPBufsize ;
while (bufsize-=l)

k=O;j=O;
while(k<bufsize)

tempw = Buf (inbuf+k)/2;
k=k+l;

%create a pseudo memory buffer

%co py the period buffer to psuedo mem

%pseudo temp buffer address

tempw = tempw + Buf(inbuf+k) / 2;
k=k+l;
Buf(outbuf+j)=tempw;
j =j +l;

end
bufsize=bufsize/2;
inbuf=outbuf;

end
GPPAvr=Buf(outbuf);

P(l,i)=Time; % Collect data for intermediate graphs
P(2,i)=GPPAvr;

GPMax max(GPPBuf);
GPMin min(GPPBuf);
GPErr (GPMax-GPMin)/2;

E(l,i)=Time; \ Collect data for intermediate graphs
E(2,i)=GPErr;

if (GPErr < GPThres)

\find the most accurate period
if (GPErr < GPError)

GPPeriod = GPPAvr ;
GPError = GPErr;

85

end

end

\Change between median, upper and lower quartile
GPQuart = fix{Time/GPTO);

end

if{GPQuart == 3)
i=datsize ;

end

pulse= GPPeriod;
error= GPError;

\ Return the period in the time units passed
\ in with data

\ Display signal to noise ratio for this waveform
'k noiseRMS = rms {data{:, 4))
% SignalRMS= rms {data { : , 3))
\ S_N=SignalRMS/noiseRMS
\
% Determine graph ranges
\ xmin=min(data(: ,1));
\ xmax=max (data (: ,l));
\ ymax=max(data{:,2));
\ ymin=min {data {: , 2));
\ stepsize={xmax-xmin) / datsize;

\ Plot the input waveform with a line indicating the relative
\ median buffer length
\ figure(l);
\ plot {data {:, 1) ,data { :, 2), 'k') ;hold on;
% axis((xmin,xmax,1900,2250]);
\ plot (Med (1, :) , Med (2 , :) , 'r') ;
% line ([xmin xmin+stepsize*GPMedBufsize], (2225 2225]);
\ hold off
% zoom on;
%
\ Plot the square wave, smoothed square wave, period and error
% estimates
% figure {2);
\ plot(Tog{l,:),Tog(2,:)/20000,'g');hold on;
% plot(SW(l, :) ,SW {2, :)/20000, 'b') ;
\ plot { P { 1, :) , P { 2, :) , 'r •) ;
% plot(E{l,:),E{2,:),'k');
% axis((xmin,xmax,0,20]);
% hold off;
% zoom on;

B.3 - Input-signal drift limitations for the pulse
algorithm

Input signal drift places a limit on the maximum length of the median buffer. If the
input signal drifts above or below the median value then level crossings no longer
occur and the period of the waveform can not be found. For this reason it is useful to
know the ideal median buffer length that will accommodate the maximum amount of
drift while still maintaining acceptable immunity to noise.

Computation time: 3 hours 2 1 minutes on a P233MHz computer.

function drift_ test ();

' %

' %

Investigates the effects of drift in the input signal
Results displayed using Drift_test_ Showdata

% Initialise input signal
Period• l ;
Driftoffset = O;
WaveBufferSize = 1000;

86

Xmin O·
Xmax 10;

%Save results to a text file
outf=fopen ('c: \ masters \ Drift . txt', ' w') ;
for (Amp= logspace(-1,1,10))

Amp
% Investigate a range of drifts from Oto 25
for (Driftslope 0:0.1:25)

Driftslope
possible= l·
makewaves (Amp, Period , 0 , Driftslope , Driftoffset, 0 , 0, WaveBufferSize, Xmin,

Xmax) ;
wave= load ('C: \ masters \ sig.txt ') ; % File containing the waveform

% Calculate actual size of the median buffer and create it
Median_Buffer_Size = 0.1; % Number of periods contained in the period

buffer
GPMedBufsize = ceil (Median_Buffer Size* WaveBufferSize * Period /(Xmax-Xmin)) ;
GPMedBuf = zeros (GPMedBufsize,l);

% Search for the length of median buffer that makes period
% measurement impo ssible
while (possible & (Median_Buffer_Size <= 5))

possible= PulsePossible (wave, WaveBufferSize , Xmax , Xmin , GPMedBuf ,
GPMedBufsize) ;

if (possible)
Median_Buffer_Size = Median Buffer Size+ 0.1 ;
GPMedBufsize = ceil (Median_Buffer Size* WaveBufferSize * Period /(Xmax­

Xmin)) ;

end
end

end

GPMedBuf = zero s (GPMedBu fsize , l) ;
end

% if we find the maximum length of the median buffer then record it
if (-possible)

fprintf (outf , •%f %f %f \ n' , Amp , Median_Buffer_Size , Driftslope) ;
if (Median_Buffer_Size == 0 .1) % if failed for the first one then

break; % all slopes greater than this will fail
end % as well, might as well quit now

end

fclose (outf);

function possible PulsePossible (wave, WaveBufferSize , Xmax , Xmin, GPMedBuf,
GPMedBufsize);
%
% Use code from pulse.m to simulate the level crossing section of the
% pulse algorithm
% Local function for drift test
%

% Number of consecutive crosses of the median
% Once greater than Number_of_crosses_needed assume period
% able to be calculated
crosses= O;
Number_of crosses_needed 6;

GPMedBufptr = l;
GPQuart = O;
GPToggle = O;
Med = O;
for i=l:WaveBufferSize% Main pulse measurement loop

%Get a new Sample
GPData = wave(i,2);

%Add data to the Median buffer
GPMedBuf(GPMedBufptr) = GPData;
GPMedBufptr = GPMedBufptr + l;
if(GPMedBufptr == (GPMedBufsize+l)

GPMedBufptr=l;
end

%Find the median, max and min using the correct quartile

87

GPMax=max(GPMedBuf);
GPMin=min(GPMedBuf);

%Decide which quartile to use
switch GPQuart
case o,

GPMed
case 1,

GPMed
case 2,

GPMed

%Median
(GPMax+GPMin)/2;
%Upper

(GPMax+GPMin)/2 + (GPMax-GPMin)/4;
\Lower

(GPMax+GPMin)/2 - (GPMax-GPMin)/ 4;
end

Med (i, 1)
Med (i ,2)

i• (Xmax-Xmin)/WaveBufferSize;
GPMed; % Collect data for intermediate graphs

end

%Set the toggle value
if ((GPToggle==O) & (GPData > GPMed))

GPToggle:65535;
crosses= crosses+ l;
if(crosses> Number_of_crosses_needed

break;
end

elseif ((GPToggle==65535) & (GPData < GPMed))
GPToggle=O;

end

crosses= crosses+ l;
if (crosses> Number_of_crosses_needed

break;
end

%Change between median, upper and lower quartile - try all three
if(GPQuart -= floor (3 • i/WaveBufferSize))

GPQuart floor(3*i/WaveBufferSize);
crosses= O;

end

if(crosses> Number_of_crosses_needed
possible= l;
\display('Pulse possible');
\plot (Med(:, l) ,Med(: ,2));

e lse
possible= O;

end

%display('Pulse not possible');
%plot (Med (: , l) , Med (: , 2)) ;

function Drift_ test_ Showdata ();

% Display the results of the Drift test for the pulse rate algorithm
%

% Load and initialise the data buffers
data=load('C:\masters\Drift ampO l 10.txt');
amp= data(:,l); - -

\Chop up data into separate buffers and displa y results;
figure(!);
cl f ;hold on;zoom on;
Amp = amp (l) ;
len = length(amp)
f or(i = l:len)

med = O;
drift= O;
j = l ;
while ((i <= len) & (amp (i) == Amp))

med(j) = data(i,2);
drift(j) = data (i ,3);
i i + l ;
j = j + l ;

end
if(i <= len)

Amp = amp (i);
end
plot (med, drift, 'k');

end

88

B.4 - Period measurement limitation due to the digital
filter
function Compare_test ();
\
\ Performs a comparison between the ideal pulse and the pulse
\ measured by the simulated pulse algorithm for various input
% signal frequencies
\ Results displayed using Compare_test_Showdata
%

\ Initialise output buffers
bsize 100; % Range of frequencies to try
truepulses zeros(bsize,l); \ Buffer containing the ideal pulse values
measpulses zeros (bsize, 1) ; % Buffer containing the measured pulse values
errors zeros (bsize,l); \ Buffer
values
freq 1. % Initial

% Create sine waves and measure their periods
for (i=l:bsize)

Makewaves(lOO,l/freq,0,0,0,0,2048,500,1,5);

containing

pulse rate

[measpulses(i),errors(i)] pulse (l00,4,10,400);
truepulses(i) = 1 / freq;

the

freq freq + O . 1 \ Show where we' re up to
end

\ Save the data for plotting
outf=fopen ('c: \masters\ per.txt', 'w');
f o r (i=l : bsize)

errors

fprintf (outf , 'H H %f\n', truepulses (i), measpulses (i), errors (i));
end
fclose(outf);

function Compare_ t est_Showdata ();
\
%
\
%

Display the comparison between ideal and measured pulse
rate results for the pulse algorithm

% Load and
data
truepulses
measpulses
errors

initia lise the data buffers
l o ad ('C : \ masters \ per . txt');
data (:, 1);
data(:,2);
data (:, 3);

% Turn periods into frequencies
figure(2);
for (i=l:100) \ 100 is the buffer size in Compare_test

truefreq(i)= l / truepulses(i);
measfreq(i) =l / measpulses(i) ;

end

\ Display the results
plot(truefreq,measfreq, 'k');
axis([O 10 o 10]);
line ([5 .566 5.566] , [O 5.566));

in the measured

B.5 - Input-signal noise limitations for the pulse
algorithm

Noise susceptability is another important limitation of the algorithm. Quantifing the
required level of signal to noise in the input signal describes when meaningful results
can be expected from the algorithm. By measuring the period of sine and square
waves with increasing levels of white noise, estimates of the required signal to noise
ratio where obtained.

89

f uncti on SN_ test_sine ();
\-
\­
\­
\-

Determine the limiting signal to noise ratio for the
pulse measurement algorithm using sine wave input signals
Results displayed using SN_test_Showdata

\ Initialise
num 80;
SN zeros (num, l);
pulses zeros (num, l) ;
errors zeros (num, l);

10;

\ Number of steps to take
\ Signal to noise ratio (x axis)
% Measured pulse rates
\ Errors in the measured pulse rates
% Step size

\ Calculate the period of sine waves with increasing noise
for (i=l:num)

SN (i) = Makewaves(l00,0.7,0,0,0,j,2048,1000,1,5);
[pulses(i) ,errors (i)J pulse (l00 ,4, 10, 400);
j = j + 5 \ Display where we're up to

end

\ save the data for displaying later
outf=fopen('c:\masters\SN.txt', 'w');
for(i=l:num)

fprintf (outf, 'H H \f\n', SN(i) , pulses (i), errors (i));
end
fclose(outf);

function SN_Tes t_Sqr ();
\
\ Determine the limiting signal to noise ratio for the
\ pulse measurement algorithm using square wave input signals
% Results displayed using SN_ test_Showdata

\ Initialise
num 80;
SN
pulses
errors
j

zeros (num, l);
zeros (num, l) ;
zeros (num, l) ;
10;

\- Number of steps to take
\ Signal to noise ratio (x axis)
\- Measured pulse rates
\- Errors in the measured pulse rates
\- Step size

\Calculate the period of square waves with increasing noise
for (i=l: num)

end

SN(i) = Makesqrwaves (l 00,0.7,0 . 85,0,0,0,j,2048,500,1,5);
[pulses(i) ,errors(i)]=pulse(l00,4,10,400);
j = j + 5 \Display where we're up to

\-Save the data for displaying later
outf=fopen('c:\masters\SNsqr.txt', ' w');
for (i=l: num)

fprintf (outf, '\-f \-f \f\n',SN(i),pulses (i),errors (i));
end
fclose(outf);

f u ncti o n SN_ te s t _ Showdata();
\
\
\
\

Display the measured periods for input signals
with increasing signal to n oise ratios

\- Flag to decide whether to include error ranges in the plot
plot errors= l;

\ Load data and initial i se b uffers
dat a=loa d(' C:\masters\SNb.txt');
SN=data (:, 1) ;
pulses=data(:,2);
err ors=data(:,3);

\ Create the graph
if(p l ot_error s == O

plot(SN,pu lses);
else

\Create an x axis vector that goes from min to max and back to min

90

X=[SN
flip(SN)];

%Create a y axis vector with+ and - the error values
a=pulses+errors ;
b=pulses-errors;
Y=[a

flip (b) J ;
% Fill the error region
fill (X,Y, 'g') ; hold on;
% Plot the pulse values
semilogx(SN,pulses, 'k.-') ;hold off ;

end
zoom on;

B.6 - Utility routines
These routines were used in a number of the simulations to perform functions that are
not part of the inbuilt Matlab function set.

function rms = rms (vec);
%
% Retu rn the root mean square o f a vector
% Syntax:
% [rms_value] = rms (vecto r)
% Parameters:
% vector= a column vector containing the input signal
% Example:
% rms (sin (0:2*pi / 1000: 2*pi)
rms sqrt (mean (vec . *vec));

function noise= whitenoise (length) ;
%
% White noise generat or. Creates a rando m buffer in the frequenc y
% domain and uses an inverse Fourier Transform t o c onvert it into
% the time d omain . Therms v alue of the random buffe r is 1
% Syntax:
% noise= whiteno ise (length);
% Parameters :
% length= the length o f the whitenoise buffer wanted
% Ex ample :
% noise= whitenoise (bufsize)
%
freqvec rand (length*2 , 1);
temp abs (ifft (freqvec)) ;
noise zero s (length , 1) ;
f o r (i 2:length+l)

noise (i-1) = temp (i);
end
mx = rms (noise);
noise= noise / mx;

function vec2 = flip (vec) ;
%
%
%

Returns a vector with the element order reversed
Syntax:

% upsidedown flip(rightwayup)
% Parameters :
% rightwayup the vector to be reordered
% Example:
% upsidedown flip(rightwayup}
len=length(vec);
vec2=zeros(len,l};
for(i=l:len}

vec2((len+l}-i}=vec(i};
end

function data_out = movingavr(data_in,order};
%
% Returns a buffer containing the centred moving average
% of an input buffer. 'NaN' values are left out of the
% averaging but if the number of sequential 'NaN's is
% greater than the moving average buffer width an error is
% generated. The first and last data points are used to fill

91

the moving average buffer at the boundary conditions
Syntax:

data_out = movingavr(data_in,order)
Parameters:

data_in the data buffer (1 -D vector) to be averaged
order the width of the moving average buffer.

Order should be a positive, non zero number
greater than the number of sequential ' NaN's
Order may be an even number, in which case the
moving average buffer is rounded up to the nearest
odd number and the first and last values in the

% buffer give half co ntributions
Example:

smoothed= movingavr(lumpy, 1 0);

%Initialise variables and buffers
isodd = O;
window_half size= ceil (order/2);
window_size = 2 + ceil((order+l) / 2)-1;
if(window_size ==order)

isodd = l;
end
window = zeros(windo w_size ,l);
len = length (data_in);
inbuf = [data_in(l) *o nes (window_half_size,l)

data in];

% Initialise the window
for(i = l:window_size)

window(i) = inbuf (i+isodd);
end

% Do the centered moving average
inbufptr = window_size + isodd + 1;

% half the window size
% Round up to nearest odd number

% Cyclic buffer
% Length of the data_in buffer
% Extend data in to avoid boundary
% conditions

window_ptr = window_size; % Averaging Window cyclic pointer
for (i = l:len)

data out(i) = winavr(window,window size,window_ptr,isodd,order);
window_ptr = cyclicinc(window_ptr,;indow_size);
window (window_ptr) = inbuf (inbufptr);
if(inbufptr < len+windo w_half_size)

end

inbufptr = inbufptr + 1;
end

function avrge = winavr (window , window_size, pointer, isodd, order);
%
% Local functio n of movingavr.m
%
avrge = O;
div = order;
if(isodd 1) % then take a normal average skipping 'NaN's

for (i = l:window_size)
if(isnan(window(i)))

div = div-1 ;

end

else
avrge = avrge + window (i);

end

if (div == 0)
error('Window size too small or too many NaNs in a row');

end
avrge = avrge / div;

else
value

ptr = pointer;
if(isnan(window(ptr))

div = div-1;
else

avrge = window(ptr)/2;
end
ptr = cyclicinc(ptr, window size);
for(i = l :window_size-2)-

if(isnan(window(ptr)))
div = div-1;

% the pointer value and one behind the pointer

% only contribute half

%last point only contributes half

92

else
avrge = avrge + window(ptr);

end
ptr = cyclicinc(ptr,window_size);

end
if(isnan (window (ptr))

div = div-1;
else

avrge = avrge + window(ptr)/2;
end

if (div == 0)

\first point only contributes half

error('Window size too small or too many NaNs in a row');
end
avrge = avrge / div;

end

function newptr = cyclicinc (oldptr,top);

\ Local function of movingavr.m
\
newptr = oldptr+l;
if(newptr > top)

newptr = l;
end

function SN
offset,

Makewaves (amp, period, phase, driftslope, driftoffset, noiseamplitude,

bufsize, xmin, xmax)
\
\ Returns a sine wave with noise and drift saved in a
\ text file in the format
\ (time, signal, pure signal, noise signal)
\ (time, signal, pure signal, noise signal)
\ (time, signal, pure signal, noise signal)
\ Also returns the signal to noise ratio for the wave just created
\ Syntax:

S_N = Makewaves (amp, period, phase,
driftslope, driftoffset

Parameters:
amp
period
phase
driftslope
driftoffset
noiseamp
offset
bufsize
xmin
xmax

Example:

noiseamp, offset, bufsize, xmin, xmax)

wave amplitude
wave period
initial phase (O -> 2*pi)
gradient of drift
y intercept of drift
amplitude of superimposed noise
center offset of the wave
length of the buffer containing the waveform
initial x value for generating the wave
final x value for generating the wave

SN= Makewaves (lOO, 0.7, O, 0, 1 , 0, 1 , 2048, 1000, 1, 5);

\ Initialise variables and buffers
stepsize
sig
noise
sigwn

\Generate Signal
step= xmin;
for i=l:bufsize

(xmax-xmin)/bufsize;
zeros (l,bufsize);
whitenoise(bufsize) * noiseamplitude - noiseamplitude/2;
zeros(l,bufsize);

noise(i)= noise(i) + driftslope*step + driftoffset;
if (period -= 0)

end

sig(i)=amp*sin(2*pi*step/period +phase);
else

sig(i)=amp;
end
sigwn(i)=sig(i)+noise(i)+offset;
signal(i,l) = step;
signal(i,2) = sigwn(i);
step= step+ stepsize;

\Calculate the signal to noise ratio

93

srms=rms(sig);
nrms=rms(noise);
if (nrms-=0)

SN srms / nrms;
else

SN inf;
end

% Display the signal created
plot (signal (:,l) ,signal (: , 2)) ;zoom on ;

%Save the waveform in a text file
outf=fopen(' c: \ masters \ sig.txt' , 'w');
step= xmin;
for (i=l :bufsize)

end

fprintf (outf, '%5.4f %f %f H \ n ' ,s t ep,sigwn (i) , sig (i) ,noise (i)) ;
step= step+ stepsize;

fclose (outf) ;

function S_N = MakeSqrwaves (amp , period , Tl , phase, driftslope , driftoffset ,
no iseampli tude ,

offset , bufsize, xmin , x max)
%
%
%

Returns a asymmetric wave with noise and drift sav ed in a
text file in the format

%
%
%

(time , signal , pure signal , noise signal)
(time , signal , pure signal, noise signal)
(time, signal , pure signal, noise signal)

%
%
...

Als o returns the signal t o no ise ratio f o r the wav e just created
Syntax:

SN= MakeSqrwaves (amp , period , Tl , phase ,
driftslope , driftoffset ,

%
%
%

noiseamplitude , o ffset , bufsize, xmin, x max)
Para meters :

amp
perio d

wav e amplitude
wav e period %

%
%

Tl
phase
driftslope
driftoffset
noiseamp
o ffset
bufsize
xmin

fra c tio n of period where signal is high
initial phase (0 - > 2*pi)

%
%
%
%

gradient o f drift
y interc ept o f drift
amplitude of super i mposed noise
center o ffset o f the wa v e

%
%
%
%
%
%

xmax
Example:

length o f the buffer containing the wav efo rm
initial x value f o r generating the wave
final x value for generating the wave

% Initialise
sig
noise
sigwn

SN= Makesqrwaves (lOO , 0 . 7, 0 . 85, 0, 0 , l, 0 , 1, 2048 ,

variables and buffers
zeros(bufsize,l) ;
whitenoise(bufsize)*noiseamplitude-noiseamplitude/ 2;
zeros(bufsize,l);
(xmax-xmin)/bufsize ;
(xmax-xmin)/period;
floor(bufsize / numofperiods);
floor(stepsperperiod * Tl);
stepsperperiod - stepsperTl;

500 , 1 , 5) ;

stepsize
numofperiods
stepsperperiod
stepsperTl
stepsperT2
cycle [amp*ones(l,stepsperTl) zeros(l,stepsperT2)]; %one period

% The waveform has a phase shift roll the copy of one period
% round to the correct phase
if(phase -= 0)

end

j=floor(stepsperperiod*(phase/(2*pi)));
for(i=l:stepsperperiod)

inphasecycle(i)=cycle(j);
j =j +1;
if(j==stepsperperiod) j=l; end

end
cycle=inphasecycle;

%Generate Signal
j=l;
step= xmin;

94

for i=l:bufsize

end

noise(i)=noise(i) + driftslope*step + driftoffset;
sig(i)=cycle(j);
sigwn(i)=sig(i)+noise(i)+offset;
j=j+l;
if (j==stepsperperiod) j=l; end
signal (i,l) step;
signal (i, 2) sigwn (i);
step= step+ stepsize;

% Calculate the signal to noise ratio
srms=rms(sig) ;
nrms=rms(noise);
if (nrms-=0)

S_N srms / nrms;
else

S_N inf;
end

% Display the signal created
plot (signal (:,l l , signal (:,2)) ;zoom on;

% Save the waveform to a text file
outf=fopen ('C: \ masters \ sig.txt', 'w');
step= xmin;
for (i=l:bufsize)

end

fprintf (outf,'\5.4f H H H \ n',step,sigwn (i),sig(i),noise (i)) ;
step= step+ stepsize;

fclose (outf) ;

95

Appendix C - Circuit Diagrams

All circuit diagrams and PCB layouts were created using the EDA/Client 98 software
package produced by Protel International Pty Ltd.

C.1 Overview

"O
Ctl
Q)

..c
0
(/)

C
Q)

Cl)

~
(.)
(1J

a..
C
::J
0)
C
Q)
a..

!
j

~

~ii
"• u• u

I
!1
!1!
of

ii

' ~1

;:
"''

.,._N
Hi
]3;3;

;~ OOO
!:j!:j!:j

Iii

11111 .,._N
H2
!3;~
88S

{~~~
t';;;;,;

t-a.inviin

~>S8@S
t ":'...1 ...J-l...1

II Ii II

I
:O-N

~EH
";-.'t,1::,"t,
MVl,.,,VI

~OOO
0 w:.iw
:j...J..J...J

C ..
t -ll

5 ~ .,~
I Ill

111 II 1111
;~ > X •

i .:s~
-ll ·o
!

I
l
I

.s
§ • ~ •'-'

o< <

l -;;~o
~~: ~
'g]1f;

iir~
fff~
I Ii I I

0 - N"'I

HH
C..,l,;(J(,J

:s:s:s:s
<<<<

E:
H

1- o<

Ill

I II I! (/) l ii E i ; e g " .:!
E

.,

! :
~ 1 0 "- <

() 1i
>

I

96

'-0
-.l

+sv >--l+sv

I -5V >-1-5V

LED Select I) I

LED Select

LED Select 0

Photodiode Signal

tfilll[l r
1..2.'.!- '" A2

L_QJH.luF -sv.--i

+SV ~ O. l uF

Temp sensor

"' ~ IC3
$

LM335Z

OUT

C)
z
CJ

i
"'

-t

"'"' 590nm

+5V

+5V

+SV

+S V

+SV

+SV

+5:V

6

-SV

(j
N

cri
t'D
::s
r,,
0
""I

::r
t'D
i:.:i
Q.

C.3 Analogue Stage

~ -< ~ " ::: -
" 0 Q

>

0

;;

• ~ (C ~ - ?.
66

-Ti- > ~

I ~

a rr;;
~

~
0
;;

'o

I ~
~

~

0 ;:

.
;

!!

•

:

98

1.0
1.0

0. luF r Cl7

R29 20M

""" X2

CJO _t:;681:Jt-.-LC29

IOpFi i lOpF

IC6
MC68HC68TI

ClkOu

SC~
MOS I 5

MISO 6

SS - '

V.iµg

c2:,k. __kl R

IOu~ luF \!,/4:

R2
!47k

Vdiu

d!.c31 ...Lrn
T IOuFT O. lu

6 '6, 7 LL.jv«r

l+
~if C HO

CHI
LTl594CS
ICl5 CH2

10 Dout CH3

~ADC Chan~

~
~
~ ----===f-------=====~1~4 D;n

~=====~2._, 12 CLK

AOC [N~
MUXOUT~

' '

1• so
1_ s 1

~-------.1•- scK

Memory
11\l'TllOf)'.SCh

f-:1t======+=======~~~~~--,:r9
qnAoc a l-r--s!,----------1--- ---~ Analo uc Enabl LSMUX ~ COM

'qlig Yili•

4 ~ "T" D3
plk(... 4148

.i~bg_:-!'Jt~_=_=_~_=_:_:_:_:_:_:_:..,,~t----1tt1+----::1 C6

i OluF

c2~D~21 Hi ~ 3pF

EEI;:~I ~ 11
Mcm Sclca O•-i,i--------- ----~-

(j
:i...
t:,

l7Q
~
rJ1
~

l7Q
I'll

.....
0
0

Y..lli.& ---------------SCK WPr---!Vdig

Hold

Vee cs~ h X25128S

ftufl i C5 0 luF

SCK WP ' VJig

llold so 2

Vee cs I
MemSelccl I

X25 12 8S

D SCK WP ~ Vdig Vdi•
7 llo1d so
8 Vee B 1cm clecl

Xl5128S

, • ~ SC K

----~--<Tiow

L---~--<Vcc cs
X25 128S

Vdig

Mcm Selec1

(j
Ul
~
('!)

3
0
~

'-<

0

8AV7'0LTI

(ill] 'I •1 I , Supply I
- Daul

-8A1TERY
Li_

JUMrER
2

Jrl]
-Ea,112
,&.BATTERY

8AV70LTI

~Vsupply

!
20

lk

D2A8AV70LTI
1

8AV70LTI

21
lk

.,.
m

R27

"""

R26
m

Tl
UCilSIIC

R2S
2L2

TI
BCIS41tC

C19
10Yt

ICL7660~cPA
ICll

BST == vo1.1111-~------~

osc
.-------'--ICAP•

CAP·

Vd1.1

-----r--------------~======f==::t1~1ot-t=o~LL I r- GND~

R!!
100.

C l6 J'M
LP?91HIMS·S 0

Ji~~

M C7IIL0SACD (i
K'I!_ __ t.J.Y

°' ~ 0
,C10 ~ I IM ~

""I
(J)

= "Cl
"Cl

K'l< « LM79l05ACM .sv

~ '
Cll

r

0
N

+12

Go~ 390

~ LED

DJ

R4
!OR . IWau

--e,
,&BATIERY

DI

Power Sw

§2
C6 0 l 02luF

+5V _J_

1
__

1
_"?"-__ J._J

R2
RES?

'R)
!RES2

,C8 l 022uf

~

I =rt:~

7 Jluf

C5

!Ouf'

·p !.

,&

RI

RES2

•

LI
'lo LED
'lo

'if'IOut·

~ OTI)TXD

(j
:...i
~
C'1

I
N w
N -= -(I) .,
~ n
(I)

c::
2. -

Appendix D - Printed Circuit Board Layouts

All circuit diagrams and PCB layouts were created using the EDA/Client 98 software
package produced by Protel International Pty Ltd.

(a) (b)

(c) (d)

Figure D.l: Printed circuit board layouts with component overlays. (a) The
sensor head from above, (b) the sensor head from below, (c) the control unit from
above and (d) the control unit from below.

103

(a) (b)

(c) (d)

Figure D.2: Printed circuit board layouts. (a) The sensor head from above, (b) the
sensor head from below, (c) the control unit from above and (d) the control unit from
below.

104

Su..,p·,

Figure D.3: Serial interface unit PCB layout.

105

Appendix E - Assembly Source Code

The assembly source code files for the device software can be found on the
accompanying CD. They are located in the directory labelled 'Appendix E -
Assembly Code'. The files have been formatted for ease of reading and are saved as
Microsoft Word 97 documents and as Adobe Acrobat documents.

106

References
[l] Ainley, D.G. , LeResche, R.E. , & Sladen, W.J.L., (1983). Breeding Biology of the

Adelie Penguin, University of California Press, Berkeley.

[2] Quaresima, V., deBlasi, R. A., & Ferrari, M., (1995). Customised optrode holder
for clinical near-infra-red spectroscopy measurements, Medical & Biological
Engineering & Computing, 33, 627 - 628.

[3] May, J. , (1988). The Greenpeace book of Antarctica, Macdonald Publishers (NZ)
Ltd, Auckland, New Zealand.

[4] United States Geological Survey, (1995). Atlas of Antarctic Research, United
States Antarctic Research Centre, http://usarc.usgs.gov/antarctic_atlas/start.html,
(June 2000).

[5] Cope, M., & Delpy, D. T., (1988). System for long-term measurement of cerebral
blood and tissue oxygenation on newborn infants by near infrared
transillumination, Medical & Biological Engineering & Computing, 26, 289 -

294.

[6] Shiga, T., Tanabe, K., Nakase, Y., Shida, T., & Chance, B., (1995). Development
of a portable tissue oximeter using near infrared spectroscopy, A1edical &
Biological Engineering & Computing, 33, 622 - 626.

[7] Mendelson, Y., & Ochs, B. D ., (1988). Noninvasive pulse oximetry utilizing skin
reflectance photoplethysmography, IEEE Transactions on Biomedical
Engineering, 35, 798 - 805.

[8] Wilson, B. C., Sevick, E. M., Patterson, M. S., & Chance, B. , (1992). Time­
dependent optical spectroscopy and imaging for biomedical applications,
Proceedings of the IEEE, 80, 918 - 930.

[9] Wilson, K., & Walker J. , (2000). Principles and Techniques of Practical
Biochemistry, Fifth edition, Cambridge University Press, United Kingdom.

[lO]Liu H. , Miwa M., Beauvoit B., Wang N. G., & Chance B., (1993).
Characterization of absorption and scattering properties of small-volume
biological samples using time-resolved spectroscopy, Analytical Biochemistry,
213, 378 - 385.

[11] Geddes, L. A ., (1997). Heritage of the tissue-bed oximeter, IEEE Engineering in
Medicine and Biology, 16, 87 - 91.

[12] Kumar, G., & Schmitt, M., (1997). Optimal probe geometry for near-infrared
spectroscopy of biological tissue, Applied Optics, 36, 2286 - 2293.

[13]Williams, T. D., (1995). The Penguins, Oxford University Press, New York,
USA.

107

[14]Culik, B. & Wilson, R . P., (1991). Swimming energetics and performance of
instrumented Adelie penguins (Pygoscelis adeliae), Journal of Experimental
Biology, 158, 355 - 368.

[15) Wilson, R. P., Spa irani, H.J., Coria, N. R., Culik, B. M. , & Adelung, D ., (1990).
Packages for attachment to seabirds: what color do Adelie penguins dislike least?
Journal of Wildlife Management, 54, 447 - 451.

[16) Louw, G J., (1992). Functional anatomy of the penguin flipper, Journal of the
South African Veterinary Association, 63, 133 - 120.

[17) Simpson, R. E., (1987). Introductory Electronics for Scientists and Engineers.
Second edition, Allyn and Bacon Inc. Newton, Massachusetts, USA.

[l8]Brigham, E. 0., (1988). The Fast Fourier Transform and its Applications,
Prentice Hall, Englewood Cliffs, New Jersey 07632, USA.

[19) Motoro la, (1989). M68HCI 1 Reference Manual, Prentice Hall, Englewood Cliffs,
New Jersey 07632, USA.

[20) Motorola, (1988). M68HC 11 E9 Advanced Information. HCMOS Single-Chip
Microprocessor, Prentice Hall, Englewood C liffs, New Jersey 07632, USA.

[21] Linear Technology Corporation, (1996). LTCl 594 4-Channel, 3 V Micropower
Sampling 12-Bit Serial 110 AID Converter, LT/GP 0596 SK, USA.

[22) Motoro la, (I 996). Real-Time Clock plus RAM with Serial Interface,
MC68HC68T LID, Rev. 2.

[23) Atmel Corporation, (1998). AT25256 SPI Serial EEPROMs, Rev. 0872E-08/98.

[24) Peacock, C., (L 995). Beyond Logic, http://www.beyondlogic.org/, (Aug 1999).

[25)Stanley, W. D., Dougherty, G. R., & Dougherty, R., (1984). Digital Signal
Processing, Second edition, Prentice Hall, Englewood Cliffs, New Jersey 07632,
USA.

[26) Schott, A., & Snell, E. H., (1963). Cardiographic Technique, Second edition,
Whitefriars Press Ltd. , London.

[27]Kerry, K._ R., Agnew, D. J., Clarke, J. R., & Else, G. D., (1992). Use of
morphometric parameters for the determination of sex of Adelie penguins,
Wildlife Research, 19,657 - 664.

[28]Wilson, R. P. , Wilson, M.-P. T. J. , (1989). Tape: A package-attachment
technique for penguins, Wildlife Society Bulletin, 17, 77 - 79.

108

I

I
I
I

I
I

I

