Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Squeezing Atoms Using a Confinement Potential

A Thesis presented in fulfillment of the requirements for the degree of

Master of Science in Mathematical Physics

Massey University, Albany New Zealand

Julianne Neilson Coxe Supervisor: Peter Schwerdtfeger

2010

Abstract

Understanding the complexities of the interior of planets and stars requires the help of analyzing the effects of high pressures on certain elements believed to be found within. The Hartree-Fock method uses the Schrödinger equation, Kummer's differential equations and a confinement potential to simulate an atom being squeezed to high pressures. The Hartree-Fock method was used to calculate the total energies of atoms. After being compared to Gaussian03 and VASP, the results were deemed accurate. It was also observed that the pressure versus density data closely approximated those pairs found in outer space in the interiors of, for example, Jupiter.

Acknowledgments

To Massey University and Gaven Martin for allowing me the privilege of studying at this fine institution. * To Peter Schwerdtfeger for his vision, his help and his suggestion for me to complete a Masters degree. * To Christian Thierfelder for his patience, thorough explanations, encouragement and assistance. * To Detlev, Andreas and Matthias for their help, patience and stimulating lunch conversations. * To Elke for proofreading my thesis more than one time. * To Thomas Proffen and Tony Burrell without whom I would not be in New Zealand. * To my parents for their unending love and encouragement. * And to God for his wonderful love and mercy in giving me all of the courage, patience and perseverance I needed to complete this challenge.

Contents

1	Intr	oduction	1
2	The	eoretical Background	5
	2.1	The Schrödinger Equation	5
	2.2	Kummer's Differential Equation	8
	2.3	Multi-Configuration Hartree-Fock	11
	2.4	Analysis of Data	14
3	Cor	nputational Details	16
	3.1	MCHF95	16
	3.2	Gaussian	17
	3.3	VASP	18
4	Res	ults: Hydrogen, Helium and Neon	19
	4.1	Hydrogen	19
		4.1.1 Results and Discussion	19
	4.2	Helium	32
		4.2.1 Results and Discussion	32
	4.3	Neon	38
		4.3.1 Results and Discussion	38
5	Cor	clusion and Future Goals	45
A	App	pendix: Tables	47

List of Figures

1.0.1	Introduction:	SN 1987	Ά	•	•				•	•	•	•		•	•	•		•	1	
1.0.2	Introduction:	Jupiter			•					•		•				•	•		3	;

1.0.3	Introduction: Diamond Anvil Cell	4
2.2.1	Hydrogen orbitals	10
3.1.1	Confinement Potential	17
4.1.1	Hydrogen: Confinement Potential Energies as n varies	20
4.1.2	Hydrogen: Hard-Wall and Confinement Potential Energies	22
4.1.3	Hydrogen: Confinement Potential Energies as r_o varies (1)	22
4.1.4	Hydrogen: Radial Probability Density Functions	23
4.1.5	Hydrogen: Pressure v. Density	23
4.1.6	Hydrogen: Hard-Wall and Confinement Potential Pressure	25
4.1.7	Hydrogen: Confined by integration energies as r_o varies	25
4.1.8	Hydrogen: Logarithmic Comparison of Pressure and Volume $\ . \ . \ .$	26
4.1.9	Hydrogen: Solid Hydrogen Crystal Structures	28
4.1.10	Hydrogen: Solid and Gas Confinement	29
4.1.11	Hydrogen: Gaussian v. MCHF	30
4.1.12	Hydrogen: Gaussian v. MCHF	30
4.1.13	Hydrogen: Pressure v. Density Jupiter and Sun	31
4.2.1	Helium: Confinement Potential Energies as n varies	33
4.2.2	Helium: Confinement Potential Energies as r_o varies (1)	33
4.2.3	Helium: Radial Probability Density Functions	34
4.2.4	Helium: Confinement Potential Energies as r_o varies (2)	34
4.2.5	Helium: Pressure v. Volume	36
4.2.6	Helium: Pressure v. Density	36
4.2.7	Helium: Gaussian v. MCHF	37
4.2.8	Helium: Gaussian v. MCHF	37
4.3.1	Neon: Confinement Potential Energies as n varies	38
4.3.2	Neon: Confinement Potential Energies as r_o varies	39
4.3.3	Neon: 1s Radial Probability Density Functions	40
4.3.4	Neon: $2s$ Radial Probability Density Functions	41

4.3.5	Neon: $2p$ Radial Probability Density Functions	42
4.3.6	Neon: Pressure v. Density	42
4.3.7	Neon: Pressure v. Volume	43
4.3.8	Neon: Gaussian v. MCHF, as n changes	43
4.3.9	Neon: Gaussian v. MCHF, as r changes	44

List of Tables

1	Hydrogen: Energies when $r_o = 1$ Bohr	47
2	Hydrogen: Energies when $n = 30$	48
3	Hydrogen: Hard-Wall Energies when $n = \infty$.	49