
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

A Java Implementation of a Linda-like Tuplespace System

with Nested Transactions

A thesis presented in partial fulfilment of the

requirements for the degree of

Master of Science

in

Computer Science

at Massey University, Albany, New Zealand

Yinan Yao

2006

- I -

Abstract

The Tup/espace model is considered a powerful option for the design and

implementation of loosely coupled distributed systems. In this report, the features of

the Tuplespace model are examined as well as the issues involved in implementing

such a Tuplespace system based on Java. The system presented includes the

function of Transactions: a collection of operations that either all succeed or all fail.

The system also permits Nested Transactions: an extension of transactions. Nested

transactions have a multi-level grouping structure: each nested transaction consists of

zero or more operations and possibly some nested transactions. The key advantages

offered by nested transactions include that they enable the failure of an operation to

be isolated within a certain scope without necessarily aborting the entire transaction,

and they allow programmers to sub-divide a complex operation into a number of

smaller and simpler concurrent operations. The other features of nested transactions

are also examined in this report. Finally, the testing results indicate that it is possible

to build an efficient, scalable, and transaction secured distributed application that

relies on the Tuplespace model and the system developed for this research.

- II -

Acknowledgements

First, thanks to my research supervisor Heath James who has aided me greatly

throughout my 2 years of postgraduate study. I know I couldn't finish my thesis without

his excellent guidance and support. Thanks to many other lecturers in the Computer

Science department who taught me a lot in my first year study at Massey University.

Next, the research facilities provided by Massey University were great. I was given

24-hour access to the computer laboratory. The university library contains a large

number of useful materials. And also, I have to thank Massey University for the

Masterate Scholarship that was a great financial support.

Last, I have to thank my parents who have offered me constant support and

encouragement. Their support was always the key reason that kept me going.

- Ill -

Table of Contents

Abstract .. 11

Acknowledgements 111

Table of Contents ... IV

Table of Figures .. VII

Table of Code Samples ... IX

1. Introduction 1

1. 1 The Tuplespace Concept 2

1.2 Plan of the Report 3

2. An Overview of Tuplespace Architecture 5

2.1 Principles of Tuplespace Systems 5

2.2 Advantages of Tuplespaces Implemented in Java 6

2.3 Current Major Tuplespace Implementations 9

2.4 Uses of Tuplespace Architectures 10

3. Design of the Java Implemented Tuplespace System 13

3 .1 Overview of the Tuplespace Model 13

3.2 Connecting to a Tuple-space 14

3.3 Tuples and Templates 16

3.4 Storing Tuples in the Tuple-space 17

3 .5 Matching Tuples 19

3 .6 Partitioning the Tuple-space 21

3. 7 Retrieving Tuples from Tuple-spaces 22

3 .8 Retrieving Fields from Tuples 23

4. Tuplespace Distribution Pattern ... 24

4 .1 Message Passing Communications 24

4 .2 Communication Protocols 25

4 .3 Asynchronous Message Handling 27

4 .4 Synchronizing Operations 29

- IV -

4.5 Collaborating Servers 30

4.6 Design Patterns 31

4.7 Data Package Switching 33

5. Transactions 34

5.1 Transactions and ACID Properties 34

5.2 Distributed Transaction Model. 36

5.3 Remote Transaction Implementation 36

5.4 Transactional Operations 38

5.5 Transaction States 40

5.6 Completing a Transaction 41

6. Nested Transactions 45

6.1 What are Nested Transactions? 45

6.2 Some Terminology 47

6.3 Synchronizing Nested Transactions 48

6.4 Create Nested Transactions 51

6.5 Nested Transaction Operations 54

6.6 Completing a Nested Transaction 56

7. System Testing 62

7 .1 Ticket Reservation Application 62

7 .2 Nested Transaction Testing 67

7.3 Performance Testing 72

7.3.1 Write tuples 72

7.3.2 ReadfTake tuples 76

8. Further Research Areas 80

8.1 Client Access Authorization and Management.. 80

8.2 Dynamic Class Loading 80

8.3 Higher Efficiency and Reliability 82

8.4 Built-in SQL support 82

9 . Conclusions 84

References ... 85

-V-

Appendix A: CD - ROM ... 88

- VI -

Table of Figures

Figure1 - Tuple-space based process communication 2

Figure2 - Distributed nodes use spaces and simple operations to coordinate activities 3

Figure3 - Client's request handled by cooperating Tuple-spaces 16

Figure4 -A Tuple-space consists of multiple subspaces

Figures - Message passing between Tuplespace client and server

Figure6 - Message protocol for out () , rd () and tk () operations

Figure7 - Multiple requests handling scheme

Figures - Message protocol for result returned from Tuplespace server

Figure9 - Cooperating Tuplespace servers

Figure10 -A transaction nesting diagram

Figure11 - The internal structure of a typical transaction object

Figure12 - A transaction nesting diagram

Figure13 - A tree diagram for transaction nesting

Figure14 - Transaction nesting

Figure15 - Transaction nesting example

Figure16 - Lock moving among nested transactions

Figure17 - Relationship diagram of nested transactions

Figure18 - Process order of retrieval operations under nested transactions

Figure19 - Committing sequence of nested transactions

Figure20 - Lock passing during nested transaction committing

Figure21 - Demonstration of a basic ticket reservation process (1)

Figure22 - Demonstration of a basic ticket reservation process (2)

Figure23 - Status of the test Tuplespace system

Figure24 - Contents of the test tuples

Figure25 - Tuples used for testing

Figure26 - Performance Test for out () operations

Figure27 - Performance Test for out () operations under {sub)transactions

- VII -

21

25

26

28

28

30

32

42

47

47

47

48

50

52

55

57

58

63

65

68

68

73

73

74

Figure28 - Performance Test for out () operations under different space conditions 75

Figure29 - Performance Test for out () operations under different server conditions 75

Figure30 - Performance Test for rd () operations 76

Figure31 - Performance Test for rd () operations under transactions 77

Figure32 - Performance Test for rd () when retrieving from alternative servers 77

Figure33 - Performance Test for rd () under concurrent access s ituations 78

- VIII -

Table of Code Samples

Code Sample1 - Establish connection with Tuple-space 15

Code Sample2 - Creating tuples and templates 16

Code Sample3 - Define and write tuples to Tuple-space 18

Code Sample4 - Retrieving tuples from the space 22

Code Samples - Retrieving field value and type from a tuple 23

Code Sample6 - Create transaction object, and perform transactional operations 37

Code Sample7 - Transaction state constants defined in the system 40

Code Samples - Transaction completion syntax 41

Code Sample9 - Creating nested transactions 52

Code Sample10 - Committing/Aborting nested transactions 56

- IX-

1. Introduction

Distributed computing systems are being built and used more and more frequently in

today's computer software development industry because they offer a number of extra

advantages over traditional centralized programs for certain sets of complex problems,

including performance improvements, enhanced scalability, resource sharing, fault

tolerance, load balancing, and system design elegance. However, distributed

computation also requires a programming model that accommodates the particular

problems that occur.

The familiar programming models that are widely adopted by distributed computing as

described in [1] are:

• Remote Procedure Calls/ Remote Method Invocations/ Common Object Request

Broker Architecture (RPC/RMl[2]/CORBA[3])

• Messaging/Message Passing Interfaces (MOM/MPI)

• Interacting peers (P2P)

A fourth model could be called Tuplespace or shared objectspace, which wil l be

presented in this thesis.

The goal of this research is to design, build and test a shared objectspace system

named "Tuplespace" for dynamic communication, coordination, and data- and

object-sharing. This Tuplespace system is aimed to allow participants in a distributed

solution to easily exchange tasks, requests and information, and gives developers the

ability to create and store objects with persistence under single/multiple level

transaction controlled manner.

Because computer network hardware and underlying protocols (e.g. Sockets, URL,

TCP/IP, UDP, and Data packet switching, Network hardware) are already fairly well

- 1 -

understood, this thesis will not provide an examination of these issues. Rather, this

thesis will be concerned mainly with the software aspects of achieving a reliable and

transactionally secured Tuplespace system for computers that communicate via a

network.

1.1 The Tuplespace Concept

The concept of a Tuplespace was first introduced by David Gelernter at Yale

University in the mid-1980's[4]. Gelernter developed a coordination language for

concurrent programming named Linda which provides a communication mechanism

based on a logically shared memory space called tuple space. Figure1 shows the

Linda model that facilitates process communications through the exploitation of the

concept of a Tuple-space. By effectively combining a "persistent" data store with a

small set of operations (i .e. in (), out () , rd () , eval ()), Gelernter introduced the

concept of loosely coupled process communication that could be independent of both

space and time[5].

Process 1
Process 2

Process 3

Figure1 - Tuple-space based process communication

On a shared memory multi-processor system, the Tuple-space is actually shared .

However, on distributed memory systems (such as a network of workstations) the

Tuple-space is usually distributed among the processing nodes. This thesis will focus

on distributed memory systems as they are more commonly used in today's

distributed systems. As illustrated in Figure2, a Tuple-space is a particular "pool" of

objects where everyone can put and retrieve objects. Each Tuplespace takes care of

the details of data transfer, persistence, communication, synchronization, transaction

- 2 -

management, etc. For example, instead of focusing on the details and problems

associated with distributed computing data transfer between components A and B, a

programmer can simply have A place an object in a Tuple-space, and the

Tuple-space will take care of that object until B asks for it. The details of how to

achieve this will be discussed soon in this thesis. As today's Tuplespace models are

initialized and strongly influenced by Linda systems, the Tuplespace system

presented by this research is developed based on the concept of Linda systems and

is similar to Linda systems in that they store collections of information for future

computation, are driven by value-based lookup and include only a small set of easy to

use operations.

Figure 2 - Distributed nodes use spaces and simple operations to coordinate activities

1.2 Plan of the Report

Here is a brief review of the organization of the report. Chapter 2 presents an

overview of the Tuplespace model and its principles. This chapter discusses the

features and advantages of Tuplespace model over the other distributed computation

models. Chapter 2 also includes a brief introduction and comparison of the major

commercial Tuplespace products available in the market.

Chapter 3 provides a detailed technical exposition of how the proposed Tuplespace

system is structured and implemented. It introduces the methods provided by the

- 3 -

Tuplespace system to client-side programmers. Chapter 4 explores the underlying

components and protocols that form the Tuplespace system.

Chapter 5 discusses the idea of transactions in some detail, including the ACID

properties and algorithms used in this Tuplespace system for locking, state restoration,

transactional operation and commit/abort processes. Chapter 6 introduces the idea of

nested transactions and explores it in detail. Chapter 6 is somewhat parallel to

Chapter 5 in that it extends the locking, state restoration, and completion algorithms of

Chapter 5 to nested transactions.

Chapter 7 builds on the techniques of Chapter 3, Chapter 4, Chapter 5, and Chapter 6,

by developing some small programs to test the usability, functionality and the

performance of the proposed Tuplespace system.

Chapter 8 attempts to offer some suggestions for further research directions. Chapter

9 presents a summary with some conclusions.

-4-

2. An Overview of Tuplespace Architecture

This chapter presents some fundamental concepts upon which the Java-implemented

Tuplespace system is built in later chapters. It will describe the principles of

Tuplespace systems and introduce some unique advantages of a Java-implemented

Tuplespace system in comparison with the other distributed computing models. At the

end of this chapter, it will briefly introduce some major commercial Tuplespace

products available in the market.

2.1 Principles of Tuplespace Systems

As mentioned in Chapter1, a Tuple-space is a "pool" of objects where everyone can

put and retrieve objects. In this report, the term Tuple-space(with a hyphen in the

middle) refers to the actual pool that stores tuples, and the term Tuplespace Server

refers to the Tuplespace server-side program that accesses the Tuple-space and

provides services to the clients. As the name suggests, there is the notion of a Tuple,

which is a container object holding a combination of user data and fields. When data

objects are stored or retrieved, they are annotated with a series of fields and passed

between the Tuple-space and clients.

In order to retrieve data from the Tuple-space, the client presents to the Tuple-space

a template (also a tuple object) which becomes the parameter for a "matching"

process running on the Tuplespace server side. A tuple in the Tuple-space that

"matches" this template will be returned to the client.

The retrieval process can be a consuming process: when a matching tuple is found , it

may be removed from the Tuple-space. The retrieval process can also be a

non-consuming process when no matching tuples are found or matching tuples are

just copied to the client. The retrieval operation can be a blocking operation with or

without a client-specified timeout value (i.e. how long the clients is willing to wait for

- 5 -

response to be returned from the Tuplespace server) or non-blocking (returns

immediately no matter if a matching tuple is not found).

The properties of a Tuplespace system can be summarized as the following facts :

• shared A Tuple-space is a shared storage where everyone shares the same

information at the same time. Multiple Tuple-spaces can exist on the same

network. The Tuple-spaces residing on different processes/nodes can also

interact with each other to share information.

• persistent When an object is placed in the Tuple-space, it stays there until it is

explicitly removed or the Tuplespace server is shut down. The existence of the

data objects does not rely on the existence of the process that created it, in fact, a

tuple can exist independently of any clients[5].

• associative Clients don't need to know the name or the location of an object in a

Tuple-space in order to find it. Instead, clients create a template object which is

also a kind of tuple object and it is made up of values/properties (fields) they're

seeking, and clients receive objects that match the values/properties defined in

the template from the Tuple-space. This type of associative lookup gives the

programmer great flexibility and true "loose coupling" when programming

systems. Programmers can program without the need of knowing names or

locations of other components of their application.

2.2 Advantages of Tuplespaces Implemented in Java

As mentioned in Chapter 1, several solutions to the problems of distributed computing

have been proposed and implemented over the years: RPCs, MPI, PVM, CORBA,

RMI, etc. However, many problems and inefficiencies exist within these technologies.

For example, a general problem with RPG-type solutions is that client and server

programs must know a great deal about each other in order to work. In other words,

they are tightly coupled. If there is a change in a client, a relative change must be

made in the server. A great deal of coordination is required and any single change in

- 6 -

one program can require a number of rewrites in the same program and other

dependent programs.

In contrast, Java implemented Linda-like Tuplespaces are designed to provide a

simpler, more powerful and more elegant model for dynamic communication,

coordination, and data- and object-sharing [5], [6] , [7]. A number of extensions to the

original Linda concept have been proposed[8], [9], [1 O] , [11], [12], [13]. For example,

an Object Space[9], that contains objects and message and introduces object

orientation to Tuplespaces. In [9] , each object encapsulates a state in form of multiset

of tuples and methods in form of rewriting rules. [1 O] suggests the use of semantic

templates in XML format that match tuples structurally and gives the processes

connected to the XML Tuplespace the freedom to exchange and transfer any

information. This research focuses on implementing a Linda-like Tuplespace system

that is simple to use and contains single-level/multiple-level transactional controls.

The major advantages of a Java-based Tuplespace implementation are described as

below:

• Java-implemented Tuplespaces run in the Java Virtual Machine (JVM). Since

JVMs exist for most of today's platforms, this means that such system can be

used by all those platforms, too. The Java-implemented Tuplespace users don't

have to worry about cross-platform differences because the system exists in

networked JVMs.

• Java-implemented Tuplespace is simple to use. There are only a few additional

simple methods to learn. Users don't have to worry about multiple clients,

synchronization, data transfer, persistence, transactions, etc. , because those

details are handled by the Tuplespace service itself.

• Operations are transactionally secure. A well designed Tuplespace system needs

to allow a series of operations to be done under transactional controls to

guarantee that operations are atomic (that is, either all of the operations are

applied, or none of them is). Transactions are not only important to many

- 7 -

database and network applications, but also offer a method to handle partial

failure by making use of Nested Transactions.

• Java-implemented Tuplespace systems allow exchanging executable objects. As

data stored in the Tuple-space are Java objects, clients can easily read/take

objects from the Tuple-space, create a local copy, and access its publ ic fields,

invoke its methods.

• Traditional Linda systems have not used rich typing. Java-implemented

Tuplespace systems take strong typing mechanisms from the Java platform

type-safe environment. In the presented Tuplespace system, tuple types are of

specific different classes for the Java platform, and templates for one type would

never match another, even if the fields contained are identical.

• A Tuple-space can also be arbitrarily large, spanning multiple servers - this

means that if one Tuplespace server fails, the Tuplespace server can transfer the

entire space to another server and continue operation. And also, if there is no

matching tuple found in one Tuple-space, the client's request can be

transparently redirected to other Tuple-spaces. Thus, Tuplespace system can

overcome some of the latency and partial failure problems that face distributed

computing.

• Java-implemented Tuplespace systems can be used to balance work load among

client computers. For example, in the Master-Worker model [14), [15), the master

process generates tasks that need be processed and stores them as objects in

Tuple-space(s), the worker processes retrieve tasks from the spaces whenever

they have available resources and the results are written back to the space for

later computation.

• The Tuplespace functionality is very similar to a database, but it is not. Relational

databases understand the data they store and manipulate it directly via SQL

languages [16). There are no general queries in the presented Tuplespace

system, only "exact match" or "don't care" for a given field . In this Tuplespace

system, programmers have an option to design their own matching policy for

fields which would permit them a great deal of flexibility.

- 8 -

2.3 Current Major Tuplespace Implementations

As the Linda Tuplespace concept has been around for many years, there are a

number of commercial Tuplespace products available in today's market. Tuplespace

implementations in Java are mainly found in products like IBM's TSpaces, Sun's

JavaSpaces and GigaSpaces. All of these products are developed based on Linda

concept and written in Java and share a lot of similarities, but they each has unique

features and is also competitor of each other. The Tuplespace system developed in

this research has borrowed some ideas from these existing products, especially from

Sun's JavaSpaces, so it is worth presenting some discussions about these products.

IBM TSpaces

IBM has created a version of tuple-spaces, called TSpaces[17] . Like the other major

products, it is written in Java, and offers a small set of methods as well as an object

store. But TSpaces offers different capabilities: it has a built-in database with

transaction and indexing support as well as a simplified query language. The addition

of database services provided by TSpaces is a significant feature and advantage over

Sun's JavaSpaces. IBM describes TSpaces as "the common platform on which we

build links to all system and application services"[17]. The implementation of TSpaces

is simple. All that is required is that a single server process be running on the network.

Applications wishing to make use of the TSpaces service need only know the network

hostname of the computer running the server. TSpaces provides a large number of

operations over the basic Linda operations, such as delete , de l eteAll , multiWr ite ,

mu l ti Update.

Sun JavaSpaces

Sun JavaSpaces is both an application program interface and a distributed

programming model[16]. It allows a network of computers to co-operate and offer

space operations, distributed events, leases, and transactions. JavaSpaces is a

complex product and relies heavily on a number of other technologies from Sun.

-9-

JavaSpaces supports the basic Linda operations, including wri te , take , read,

not ifyAll. JavaSpaces forms part of the Sun Jini system, and so makes extensive

use of the other technologies of Jini. Network support is provided by the Java RMI

protocol. Furthermore, distribution of classes to clients is handled by the standard

Internet hypertext protocol (HTTP). This means that before a JavaSpaces application

can be started the following set of services must be running:

• a web (HTTP) server

• an RMI activation server (part of the standard RMI software bundled with Java)

• a Jini lookup service

• a Jini transaction manager

• a JavaSpaces server

Most of these services also require extensive work to set up, further adding to the

overall complexity of using JavaSpaces. Applications are also required to run a

security manager, whether security checking is required or not. This is actually a

major disadvantage of JavaSpaces mechanism as it is complex to set up.

GigaSpaces

GigaSpace is a relatively recent system developed as a commercial implementation

of the JavaSpaces specification [1 8]. As such it is compliant with the Sun

specifications, while adding a number of new features. These include operations on

multiple tuples, updating, deleting and counting tuples, etc.

2.4 Uses of Tuplespace Architectures

Comparing with all other currently fashionable approaches, Linda-like Tuplespace

model and implementation have been proved a simpler and more useful approach for

distributed computing in many situations. The distinct features and benefits of

Linda-like Tuplespace architecture result its use growing steadily[5] in both industry

- 10 -

and research fields. This section briefly introduces a few examples of how Tuplespace

concept could be used in solving real problems:

• Mojave[19] is a project that implements auto-configuring services using reactive

and mobile agents to dynamically deploy distributed services over a complex

network in an optimal manner. Mojave uses Tuplespace as the messaging and

mobility hub to enable changes in an application's coordination behaviour without

rewriting components. Mojave's use of Tuplespaces allows for more powerful

message routing than is possible with RMI, because Tuplespaces support

message buffering as well as database like matching, both of which are enablers

for smart routing[19].

• Digital Equipment Corp. plans to demonstrate a distributed parallel computing

application built with PAX-1 network development toolset. PAX-1, an

implementation facilitates parallel processing with Tuplespace and offers full

peer-to-peer distributed processing[20]. The DEC demonstration will show an

application that creates a 'network supercomputer' by combining the resources of

several workstations. Sandia National Laboratories also implemented a distributed

parallel processing system based on the Linda programming[21]. SNL's system

allows a single application program to utilize many machines on the network

simultaneously and achieved performances considerably faster than that of a

Cray-1s. Several collections of machines have been used including up to eleven

DEC VAXes, three Sun/3 workstations, and a PC.

• Semantic Web Spaces(22], a middleware platform for real world Semantic Web

application. By applying a Tuplespace-based approach to the concurrent

interaction of multiple clients with distributed knowledge repositories, a simple, yet

powerful coordination model in which parallel and distributed Semantic Web[23]

processes can be uncoupled in space and time can be obtained[22].

Since the concept and advantages of Java implemented Tuplespace systems are

relatively easy to understand, and there is only a small, easily mastered set of

methods, the Java implemented Tuplespace systems (i.e. JavaSpaces, TSpaces)

- 11 -

should definitely be considered as an option when developing distributed applications.

In the following chapters, the details of designing and implementing a Tuplespace

system in Java will be presented.

- 12 -

3. Design of the Java Implemented Tuplespace System

In this chapter, the design of the proposed Tuplespace system is explained. There are

three primary operations that clients can invoke. Each operation needs a tuple object

as a parameter, which is also named as template when it is used in retrieval operation.

This chapter describes how clients can connect to the Tuplespace server and the

essential components building up the Tuplespace system, including tuples, templates,

tuple matching principles and the details of the three primary operations, which are:

• out (ITuple tuple, TransactionManager . TransactionProxy trx) : Write the

given tuple into the Tuple-space.

• rd(ITuple template , TransactionManager.TransactionProxy trx, long

timeout) : Read a tuple from the Tuple-space that matches the given template.

• tk(ITuple template , TransactionManager . TransactionProxy trx, long

timeout) : Read a tuple from the Tuple-space that matches the given template, and

remove it from the space.

3.1 Overview of the Tuplespace Model

The distributed system running the proposed Tuplespace system consists of a

number of nodes (real/abstract computers) that communicate by sending messages

over a communication network. Some nodes act as clients and consist of a processor

and memory. Clients may leave (e.g. crash) and rejoin (e.g. recover) the system at

any time, and new clients may join the system over time. Some other nodes are

treated as servers and these nodes are supposed to be up all the time in order to

provide persistent services and tuple storages. Clients connect to the Tuplespace

servers, and write tuples to the Tuple-space held by the servers. And also, clients can

send template to the Tuplespace servers, and the servers look for matching tuples in

their Tuple-spaces and return results to the clients. Strictly speaking, this Tuplespace

system is a server-centric model in which most of the processing takes place in the

remote Tuplespace server (e.g. tuple matching, tuple storage). Providing that the

- 13 -

server-centric Tuplespace system is implemented in a fashion that correctly handles

synchronization issues, it can easily be shared among multiple clients. Each node in

the system is located by IP address, which means that any node in the system needs

to have an IP address. As long as the client node knows the IP address, the computer

name or the URL address of the server node which holds the Tuplespace service, the

client can connect to the server and start writing or retrieving tuples. Servers are also

able to communicate with each other to share information, i.e. tuples. The

communications between client/server and server/server are in duplex directions.

3.2 Connecting to a Tuple-space

To access the services provided by a Tuplespace server, the client first has to

establish a connection with the Tuplespace server. The client first needs to create an

object of tuplespace .TupleSpace, which is a proxy representing the Tuplespace

service on the client side. This proxy is not a full implementation of the Tuplespace

service. Instead, it links to the remote Tuplespace server that provides access to the

desired methods and Tuple-space via use of message passing and remote method

invocation. The client invokes the operation through the TupleSpace proxy object,

and the TupleSpace proxy object handles all the underlying data formatting and data

transferring between the client and the actual Tuplespace server and all of the

underlying processes are kept invisible to the client. From the client's point of view, he

is operating on the Tuple-space directly and locally. The TupleSpace constructor has

3 parameters: the conceptual name of the Tuplespace; the IP address, the computer

name or the URL address of the computer on which the target Tuple-space resides;

and the socket port on which the Tuplespace server is monitoring for clients' incoming

requests. As there may be a number of Tuplespace servers running at the same time,

the conceptual name of the Tuplespace server is used to distinguish the Tuplespace

server from each other in a more understandable manner. Although Tuple-spaces can

share data (tuple) with each other, the client's out (...) operation is only done to the

Tuple-space that the client connects to explicitly (also called the primary Tuplespace).

- 14 -

The interactions among the cooperating Tuplespace servers are absolutely

transparent to the client. As shown in Figure3, if Tuple-space "Auckland" doesn't have

the tuple that client A is looking for, then it will automatically send the template to

another Tuplespace server (i.e. alternative Tuplespace) to search for a matching tuple

while client A has no idea about which Tuple-space actually contains the returned

tuple. One client can connect to multiple Tuple-spaces at one time, but each

connection has to be set up explicitly. As shown in Figure3, client A connects to

Tuple-space "Auckland", and "Auckland" can interact with "New York", the tuples

written by client A are stored in Tuple-space "Auckland". Client A can also set up

another "direct" connection with "New York" and write tuples to "New York". The

sample code for establishing connections with Tuple-spaces is shown as below:

TupleSpace ts, t2t

InetAddress serverAddress = null;

InetAddress serverAddress2 null;

try {

serverAddress InetAddress.getByName("computerl");

serverAddress2 = InetAddress.getByName("computer2");

catch(UnknownHostException ex)

System.out.println(ex);

ts= new TupleSpace("Auckland" , serverAddress, 8880);

ts2 = new TupleSpace("NewYork" , serverAddress2, 8880);

Code Sample 1- Establish connection with Tuplespace Server

- 15 -

When there is no matching tuple in

"Auckland", the template is redirected

to "New York" by "Auckland"

@
tk~~

"
rd

I
---==-==--=-===---------~®

returned to client A from "Auckland"

Tuple-space

(New York)

A matching tuple is found in

"New York" and a copy of the

tuple is returned to "Auckland"

Figure3 - Client's request handled by cooperating Tuple-spaces

3.3 Tuples and Templates

Just connecting to the Tuplespace server is not enough for the client to access the

Tuplespace service. A tuple/template object (In JavaSpaces, tuple/template is of type

Entry in package net . j ini. core . entry[24]) and is essential for any one of the

three primary Tuplespace operations to work. Both tuple and template are

represented by objects of the class tuplespace . Tuple, which contains an ordered

set of objects (also called Fields). Any field object has to be of the class

tuplespace . Field or its subclasses and implements java . io . Serializable

interface. The code for creating and defining a tuple is demonstrated in Code

Sample2.

Tuple template= new Tuple();

template.add(new Field() .setValue(new String("Test")));

template.add(new Field().setValue(new Integer(lO)));

template.add(new Field() .setType(SomeClass.getClass());

CodeSample2 - Creating tuples and templates

A tuple object can have as many fields as necessary and the programmer can create

its own tuple type by inheriting from the tuplespace . Tuple class. The fields

- 16 -

contained in a tuple are used for associative matching (The matching principles used

in the proposed Tuplespace system will be discussed in detail in Section 3.5 Matching

Tuples) and can also be used to represent usable data. The tuple object can also

have other attributes rather than fields to carry useful data, as shown below.

class FlightTuple extends Tuple implements Serializable{

public String airline;

public String departPort;

public String destPort;

public Date departDate;

public Integer seatAvailable;

public Time departTime;

public Time landTime ;

...... }

Normally, one would do two things with tuples: Store them in Tuple-space and retrieve

value of the field or use them as template for associative matching.

Tuples are transmitted as raw bytes across the network using Java standard

serialization mechanism. Multiple copies of the same tuple can be written to the

Tuple-space. On the server side, the raw bytes are deserialized back to an identical

tuple object for storing or retrieval.

3.4 Storing Tuples in the Tuple-space

The tuple is stored into the specified Tuple-space through the out(...) operation. The

out (!Tuple tuple , TransactionManager . TransactionProxy trx) operation takes

two parameters: the tuple object to be written; a TransactionProxy object which

represents the transaction under which the out(...) operation is done. Details of

transactions will be discussed in Chapter 5.

The tuple passed to the out(...) is not affected or modified by the operation. Each

out (...) operation places a new tuple into the specified space under the specified

transaction, even if the same tuple object has been used in more than one out (...)

operation.

- 17 -

If out(...) returns without throwing an exception, that tuple is committed to the space,

possibly within a transaction (see Chapter 5 Transaction). If any exception is thrown,

the tuple was not written into the space. The code sample for writing tuples to a

Tuple-space is shown as below:

Tuple t1, t2;

tl = new Tuple();

tl.add(new Field() .setValue(new String("Test")));

tl.add(new Field() .setValue(new Integer(lO)));

t2 = new Tuple();

t2.add(new Field() .setValue(new String("Test2")));

t2.add(new Field() .setValue(new Integer(12)));

try {

ts.out(tl, null);

ts.out(t2, null);

}catch(TransactionException e)

System.out.println(e);

}catch (TupleSpaceException e)

System.out.println(e);}

Code Sample3 - Define and write tuples to Tuple-space

TransactionException will be thrown if exception happened due to any sort of

transaction errors, for example the transaction specified doesn't exist on the server or

it has already completed.

TupleSpaceException will be thrown for any exceptions except transaction related

exceptions, for examples, when a tuple can not be deserialized probably by the server,

a TupleSpaceException exception will be thrown.

The consequence of the out(...) operation is that the tuple is serialized into raw bytes

and packaged accordingly (i.e. controlled by certain protocols. The details of the

- 18 -

protocols are discussed in Chapter 4) and passed to the Tuplespace server over

TCP/IP connection. When the data package arrives at the server, the raw bytes are

then deserialized back to a tuple object along with some additional information and

stored into the space. This Tuplespace system is built based on the assumption that

the data packages arrive at the server accurately (The assumption will be further

explained in Chapter 4).

3.5 Matching Tuples

The most basic operation of a Tuplespace server is matching tuples. In order to match ,

the client first has to create a template which defines his matching request. Templates

are in the same form of Tuples used for retrieval purposes. During retrieval process, a

template is used for the selection of tuples that can be retrieved: all the tuples

"matching" the template are candidates for retrieval. Some of the fields in the template

can be "wildcards". Wildcards do not contain values or types, so they match any value

of any type. Tuples and templates are ordered sets of fields. The fields are objects of

type tuple . Field; each field object holds a value and the type of the value. The Nth

field of a template will only match the Nth field in the tuples. Templates will never

match a tuple with a different number of fields.

The matching process is typesafe in the sense that the matching checks both the type

and the value of the fields. Therefore, an Integer field and a Long field will never

match, regardless if they have the same number value. Unlike Sun's JavaSpaces, this

Tuplespace system implements strict type checking, which means that a superclass

object doesn't match its subclasses objects, i.e. a template with a Number field will not

match fields of type Long or Integer even they are subclasses of Number. And also, a

template of class Der i vedTuple will not match tuples of class Tuple even they have

the same fields. In Sun JavaSpaces, it allows matching of subtypes - a template

match can return a type that is a subtype of the template type.

- 19 -

The use of wildcards can be typesafe as well, i.e. it will match any value of a field with

a specified type. For example, a field defined as tuplel .add (new

Field() . set Type (Stri ng . class)) is a wildcard that match any fields with a

Str i ng type regardless of the actual content.

Consider the tuples and templates in the box below:

Tuple t l = new Tuple();

t l .add (new Field () . set Value (new String ("Te s t "))) ;

tl.add(new Field() . setValue(new I nteger (lO)));

tl. add (new Fi eld() . setValue (new SomeClass ("Some Clas s "))) ;

Tupl e t2 = new Tuple (};

t2 . add (new Fi e l d (} .setValue (new String("Test" })) ;

t2 . add(new Field() . setValue (new I nteger(12})} ;

t2.add(new Field() .setType(SomeCl ass . c l ass)) ;

Tuple template!= new Tupl e() ;

templatel.add(new Field().setValue(new String("Test" }} } ;

templatel. add(new Field() .setValue(new I nteger(lO))) ;

template!. add (new Field(). setValue (new SomeClass ("Some Class"))) ;

Tuple template2 = new Tupl e();

template2.add(new Fi eld() .setType(String.class));

template2 . add(new Field() .setType(Number.cl ass));

template2 . add (new Field() .setType(SomeClass .class));

Tuple t emplate3 = new Tuple ();

template3. add(new Field() .setType(String . c lass) };

template3.add(new Field() .se tType (Integer.class}};

t emplate3.add(nul l);

The different templates will match tuples in the following manner:

1. templ ate! matches tl , each field matches on type and value.

2. template2 matches no tuple, because the system performs strict type checking.

Although Number is super class of I ntege r class, they don't match in this system.

3. t e mplate3 matches t1 and t2 . Field 1 matches on type, field 2 matches on type,

and the last field is of value "null" so it is typeless and matches any field.

- 20 -

3.6 Partitioning the Tuple-space

For most of the applications that will use the Tuplespace service, there will be many

tuples to match and each Tuple-space may store a large amount of tuples. Even with

a simple and efficient algorithm of tuple matching, sequentially matching through all

tuples in the Tuple-space would be a huge waste of time and largely defeat the

purpose of distributing programming in the first place. Thus it is desirable to divide the

Tuple-space into partitions to minimize the number of tuples examined in any match.

As the present Tuplespace system implements strict type checking when matching

tuples , it is natural to divide the Tuple-space into partitions (subspaces) based on the

tuple types. The tuples of different types are stored in different "subspaces" as shown

in Figure4 . Therefore, the Tuplespace server will firstly match the type of the template

against the type of the subspaces, if there is no subspace of this template class, the

Tuplespace server can immediately decide that there is no matching tuple existing in

this Tuple-space without comparing against all the tuples . If the subspace for that

class exists in the space, then the server only needs to search inside that particular

subspace. When a tuple is written to the space, the Tuplespace server checks the

type of the tuple and adds it to the associated subspace. If the tuple is of a new type

which doesn't exist in the Tuple-space yet, and the Tuplespace server will create a

new subspace for the new type.

Tuple-space

~

Figure4 - A Tuple-space consists of multiple subspaces

Users can define any type of object as the value of a tuple field as long as it

implements Serializable and tuplespace. interfaces . I Field interfaces and

- 21 -

equals () method for matching algorithm. Thus, programmer has the flexibility to

customize the matching process by defining how he wants that field value to be

matched.

3.7 Retrieving Tuples from Tuple-spaces

When retrieving data from Tuple-space, the client presents a template to the

Tuplespace server and gets matching tuple as return. The rd(...) and tk (.. .)

operations take the same three parameters: A Tuple object as template; a

TransactionManager . Transacti onProxy object which represents the transaction

under which the rd(...) or tk (...) operation is done; a long value representing how

long the client is willing to be suspended and wait on response from the sever in

milliseconds. If the timeout value is TIMEOUT_ FOREVER, the client will be suspended

forever until a matching tuple is found. If the timeout value is TIMEOUT_No , the client

will get the result immediately no matter if a matching tuple is found. Any retrieval

operation can have only one matching tuple returned . If there are multiple tuples

matching the template in the Tuple-space, the first found matching tuples is selected

and returned to the client. The tk (...) operation is a consuming operation as it will

remove the matching tuple from the space if it is found. In contrast, the rd(...)

operation will only return a copy of the matching tuple when it is found.

Given the tuple instances shown in previous code samples, t1 and t2 have already

been stored in the Tuple-space. The following code demonstrates how to retrieve a

tuple that matches template! from the space:

try {

Tuple result= ts.rd(ternplatel, null, 5000);

Tuple result2 = ts.tk(ternplqtel, null, 5000);

Code Sample4 - Retrieving tuples from the space

- 22 -

result and resul t2 are exactly the same. Both of these two operations will wait for

5000 milliseconds if the tuple is not available immediately. However, after result2 is

returned, that tuple is removed permanently from the space.

3.8 Retrieving Fields from Tuples

A tuple returned from the Tuplespace server will normally be inspected for values and

types of its fields. The fields of a tuple can be extracted into variables of type

tuple space . Field, A tuple offers the method numberOfFields () which can be

combined with the method get (int i ndex} in order to iterate over all fields in the

tuple or to extract one particular field (fields are ordered). A Field object offers the

methods getValue () and get Type () which can be used for extracting field value and

type.

To extract the integer value from the second field in t1 (numbering starts at 0, so the

index addressing the second field is 1), the following piece of code will do:

Class type= ((Field)result . get(l)) .getType();

Integer value = (Integer) ((Field)result.get(l)) . getValue();

Code Samples - Retrieving field value and type from a tuple

The casting operator may cause a ClassCastException if the field is not of Integer

type.

These are the main methods provided by the Tuplespace system to the client

programmers. But with these simple methods, a great deal can be accomplished.

Web servers, interactive chat systems, compute servers and online auction systems

can all be created based on the Tuplespace system. Client/server tasks,

message-passing, and other traditional programming models can also be emulated by

the Tuplespace system.

- 23 -

4. Tuplespace Distribution Pattern

Considering the simple semantics for storing and retrieving tuples from a Tuplespace

server, a wide range of distributed computing techniques are possible: client-server,

unicasUmulticast messaging, remote method invocation, etc. The proposed

Tuplespace system uses a combination of client-server and message passing

techniques to achieve the desired distributed computing. This chapter will present the

details of the protocols deigned to form messages passed among the nodes in the

system.

4.1 Message Passing Communications

Before we start discussing the distributed system, it is necessary to define what we

meant by a message. Essentially, a message is a structured piece of information sent

from one agent to another over a communication channel. Some messages are

requests made to one agent by another (typically from clients to Tuplespace servers),

some messages deliver data (typically, clients write tuples to the server, or the server

returns tuples retrieved) , other messages deliver notification to another agent

(interaction among Tuplespace servers). In the proposed Tuplespace system, a

typical message consists of a message identifier and a set of message arguments.

The message identifier tells the receiver the purpose or type of the message. The

arguments of the message contain additional data that will be interpreted accordingly

based on the purpose of the message. They may contain the serialized form of a tuple

object of an operation (e.g ., the message "TP _ WRITE" means: deserialize the following

bytes as a tuple and store it to the associated subspace of the Tuple-space), or they

may contain information used to carry out a request (e.g., "TP_ABORT

127BB12Bll"means: Discard the locks held by transaction whose Id is 1278812811).

By interpreting the messages properly, methods in the remote servers are also

invoked to carry out the desired operations.

- 24 -

4.2 Communication Protocols

The messages passed in the proposed Tuplespace system are formatted by specially

designed protocols. The protocols are designed to achieve the following goals:

• The data contained in a message has to be sufficient and efficient. The size of the

message cannot be too big as the messages are sent across network, the

bandwidth issues need to be taken into account.

• The message has to be well-defined to trigger method calls on remote

Tuplespace servers to carry out desired operations.

As the research is focusing on Java implementation of a Tuplespace system, the

low-level network protocols, such as TCP/IP protocols, will not be discussed, and the

system works based on the assumption that the contents of the messages will be

transferred accurately.

As explained in the previous chapter, the client needs a proxy to link to and access

the services provided by the remote Tuplespace server, the process is shown in

Figures.

I Server I

.-------------------------~
i I Application I i

Tuple-space

: t
I

f
: 1.define 6. interpret returned 4. result of the 3. interpret the message,
I
I
I
I
I
I
I

templates message, pass tuple to operation invoke desired methods,

/tuples the application and access the space
I I
I

TupleSpace proxy
I
I
I

Tuplespace request processor(lnterface)
I

L 5. se;rialize the returned tuple, build the

message, send the message back to the client
' '--------------------------------

2. serialize the tuples, build the message, send the .__ ___ _
message to the target server, and wait on response

Figures - Message passing between Tuplespace client and server

- 25 -

As it's shown in Figure5, the Tuplespace system can be conceptually divided into a

number of tiers doing certain tasks. Therefore, as long as each tier follows certain

rules when it is interfacing the other tiers , any change made with in the tier will not

affect the others. And also, because the implementation detail of each tier is "isolated"

from the others, the application programmer can focus on the development of the

"real" application. The rules forming the communication between tiers are protocols.

An example of the protocol for the following three primary Tuplespace operations is

shown in Figure6:

out(ITuple tup le , TransactionProxy transaction)

rd(ITuple template , TransactionProxy transaction , long timeout)

tk(ITuple tempalte , TransactionProxy transaction , long timeout) .

1-----------------------------
: Message Type Identifier, this will :

,-------------------
:Transaction Id, 0 :

,- --------------- - ---- ---.
I

I I :Number of bytes for the :

: let the server know how to : indicates transaction :
I I :tuple/template, 0 indicates :

I I

: interpret the rest of the message_: :is null : I I

:the template is null _______ : 1 __________________ I

TUPLE_ REQUEST_BEGIN TP WRITE 127000100 5000 525 0101110101... ...

r----------------- ----------------- --------,
:operation Type Identifier: TP WRITE , TP READ, :
I - - I

:TP TAKE (one of these three value), this identifier :
I -

:will trigger the _right methods on the server _______ ,

,----------------- ,-----------------
:timeout value, ' :serialized bytes of :
I I I

:the value is O for 1 :the tuple/template : I -----------------1 I I

: write operation ____ :

Figure6 - Message protocol for out () , rd () and tk () operations

Message Type Identifiers are simple, unique tokens that differentiate one type of

message from another. They are just some simple byte values, where the agents on

either end use a look-up table of some sort (In this case, the constant values of the

Message Identifiers are defined in an interface named TupleSpaceConstants. cla ss)

to match the value with its meaning. Message arguments, on the other hand, are of

many types. The message protocols used for this system are designed by using some

basic data types, including integers, strings, short values, long values, and array of

bytes, for message arguments. These arguments can be read and written directly

using the DatainputStream and DataOutputStream classes with Java object

- 26 -

serialization support. After the messages are sent to the server, now it's the server's

job to interpret the message and behave accordingly. The message protocols used for

the other actions, such as transaction creation, transaction completion and server

cooperation, are of similar structure but with different arguments.

4.3 Asynchronous Message Handling

The Tuplespace system implements sever/client distribution computation model,

which means that a server may often face the situation that multiple requests from

different clients need to be handled simultaneously. The server is deigned to have

100 (This figure can be adjusted in the code) request-handling threads running in

parallel (see Figure?). On the server side, there is an interface program that is

listening to the communication port for incoming tasks. This interface program's job is

simple and has to be done efficiently; otherwise it is going to be a potential bottleneck

holding up the overall performance of the Tuplespace server. The interface program's

duty is designed to focus on adding any incoming request to a "Task Poll"; it doesn't

process the request itself at all. The request-handling threads that are running in

parallel are all monitoring the "Task Pool" for new tasks. As soon as a new task is

added to the pool, one of the idle threads will take that task out from the "Task Pool",

interpret its content, invoke proper application objects, process the requests, and

write response back to the client. The Tuplespace server uses Java's built-in

synchronization mechanism to handle the concurrent access to the same system

resource, so it is guaranteed that the same resource is accessed by one thread at the

time. For example, when thread A is trying to retrieve from subspace "Apple", all the

other threads that want to access subspace "Apple" have to wait until thread A

finishes and releases the subspace.

- 27 -

I I Server I I

,---
1

Client request

Client request

Client request

I

Q)
C.
C. : Task pool

request processing thread

request processing thread
~ :·:~-~~-~~~~~~--~:·:y take J
CD : : _ __________ J : /"I
~ : ,------------ : take .__ __________ __,

o _.~ : request2 V ~ i : :------------, : / take ..._ __________ ~
: I :/

request processing thread

i : : request3 : : request processing thread
~ . ·------------ .

"Cl
0
Q_

: ,----------- I :
: : requestN 1.-:--...:::--+1
• I • . , ____________ .

'-------------------------------------
As soon as a task is added to the Task Pool, one of the individual "request processing threads"

will remove that task from the Task Pool, handle the task, and write results back to the client. The

system is designed to have 100 running threads handling income requests simultaneously.

Figure? - Multiple requests handling scheme

An example of the protocol controlling the format of the result returned from the

Tuplespace server is shown as below:

For result of

out(ITuple tuple, TransactionProxy trx)

,----------------------------.
I TUPLE_REQUEST_SUCCES_s 1-l-----.,~:lndicating the tuple is :
. . . :successfully written to the space ,

I I

•------------------ - --------- I
For result of

rd(ITuple template, TransactionProxy transaction , long timeout)

tk(ITuple tempalte , TransactionProxy transaction , long timeout)

I I ,-- - I

:indicating the retrieval operation : :Number of bytes for the :
I I I I

:is successfully implemented on : :returned tuple, 0 indicates :
I I I I

:the server side ________________ : :the tuple is null ___________ :

,--- --------------
:serialized bytes of :
I I

:the tu le : ----- -----------·

TUPLE_REQUEST_SUCCESS 7898 0101110101

If the operation is not successfully finished on the server. the result is

,-----------------------------1 TUPLE_REQUEST_ERR~R I ERROR CODE ... 1----.. ~l~~;::~~~d~;;;;_;~~~~~:-~f ____ l
r- - - - - - --_+ ------------------,
:indicating an error has happened __ :

Figures - Message protocol for formatting result returned from Tuplespace server

- 28 -

When an exception happens in remote server, the client needs to be informed about

what kind of exception has happened. Ideally the exception happened in remote

server can be risen at the client side so that appropriate exception handling actions

can be called. Thus, when an exception happens at the server side, the server will

look up for an associate code representing the exception and send the code back to

the client within the response message. When the client receives the message

containing the error code, it will call a method to throw the associated exception.

Consequently, client's exception handing code is called to deal with the exception.

4.4 Synchronizing Operations

In a distributed environment, resources are frequently accessed by multiple

processes simultaneously, so concurrency control is an essential issue need to be

considered in distributed programming. The presented Tuplespace system has to take

the precaution to ensure that operations on the same subspace are "thread-safe".

That is, the system must ensure that one thread cannot modify the subspace while

another thread is writing to or retrieving from the subspace. For instance, the system

must ensure that tk (...) operation for one client is completed before the r d(...)

operation for another begins, otherwise the rd(...) operation may read a tuple which is

being removed or already removed. The system ensures thread-safety by enclosing

accesses on the subspace within Java's synchronized code segments [25], [26], [27]

as shown in the following chart:

synchronized (this) {

result• lookupAccessibleTuple(atemplate, false, operation);

while (result•• null) {

long deltaTime • targetTime - System.currentTimeMillis();

if (deltaTime <• 0) {

result• lookupAceessibleTuple(atemplate, false, operation);

break;

- 29 -

Java runtime ensures that only one thread can access the synchronized object at a

time. So when one thread enters the synchronized block, accesses to that object (In

our case, the object is the subspace) by other threads are blocked until the original

thread exits the synchronized block or releases the subspace explicitly.

4.5 Collaborating Servers

The Tuplespace servers are linked and cooperating, a client's retrieval request will

firstly be processed on the server that the client connects to explicitly(i.e. the primary

Tuplespace server).

Request a

list

containing

details of the

cooperating

servers

a
I

No matching tuple in

space "Auckland", server

"X" sends a list containing

details of all the linked

spaces on request

rd

no matching tuple

.,._ - - - - -matching tuple found · - - - - -

return the tuple found from space "Sydney" as

if it's found in space "Auckland"

TupleSpace ts ;

ts= new TupleSpace("Auckland" , serverAddress ,

8880);

try {

Tuple result= ts.rd(templatel, null, 5000);

catch (TransactionException e} { .. . }

catch (TupleSpaceException e} (_,)

Figure9 - Cooperating Tuplespace servers

For example, in Figure9, client A has a rd(templatel , null, 5000) operation on

- 30 -

Tuplespace "Auckland", so Tuplespace "Auckland" is the primary Tuplespace server

and it checks if a matching tuple can be found within its own space. If a matching tuple

is found, then a response will be sent back to the client and the request is fulfilled

successfully. If no matching tuple could be found from the primary Tuple-space, then

Tuplespace server "Auckland" will send a request to a special server which holds a list

of all the cooperating Tuplespace servers. When Tuplespace server "Auckland"

receives the list, it will then send templatel to the other Tuplespace servers (i.e.

alternative Tuplespace servers) in the list one by one until a matching tuple is found or

time runs out. As shown in Figure9, "Auckland" first sends the template to "New

York", "New York" responds with "No matching tuple found". After that, "Auckland"

sends the template to the second server in the list which is "Sydney", "Sydney"

responds with a matching tuple. Finally, "Auckland" returns to client A a matching

tuple found . The entire cooperation among the servers is invisible to the clients. The

advantage of having a server managing the list of the cooperating Tuplespace servers

is that it is easy and efficient to manage. As the list is maintained at a center location,

the system administer can easily add new cooperating servers to the system or delete

one from the system, or update its details. The distributed Tuple-spaces are shared ,

so the client is able to access the tuples in all the spaces. Plus, by having cooperating

servers, this can help with latency issues as client programmer can place tuple to the

server wh ich is physically closer to the cl ient computer or can provide faster

processing for complex tuples. The cooperating server design also helps with

improving the persistency and stability of the system. The contents of the

Tuple-spaces can be transferred and copied to the other servers, so if a Tuplespace is

shutdown for maintenance purpose or it crashes for no reason, its data can still be

available to the users.

4.6 Design Patterns

As it was briefly mentioned in Chapter 2, the "space" architecture is able to offer

simpler design, and more robust results that are easier to maintain and integrate

- 31 -

comparing to other models for developing distributed applications. This section is

going to present some details and samples about how applications can benefit from

using the "space" approach.

The master-worker pattern nicely exemplifies the use of the Tuplespace model in

developing a web application. Client requests are received by a web server, which

sends them asynchronously, as request objects, to the Tuple-space. The responsible

worker processes then react in parallel, processing the requests by retrieving the

request objects from the space and returning the results into the space as answer

objects. The web server, upon notification of answers, then serves them to the clients,

repackaging as required by the user interface, e.g. in HTML or XML format.

Master

• Creates tasks

• l oads into space

• Collects results

Tuple-space

pool of tasks

Worker 1

• Collects task

• Processes task

• Returns result into space

Worker 2

-------< • Collects task

• Processes task

• Returns result into space

Worker 3

• Collects task

• Processes task

• Returns result into space

Figure10 - Master-worker programming pattern

By using a space as communication medium and the decoupling of the interacting

processes, this implementation scales easily. In the event of a big increase in the

number of simultaneous requests, additional web server and worker machines (cheap

standard hardware) can simply be attached to the system as needed

- 32 -

4.7 Data Package Switching

The presented system is built based on the assumption that the content of each

message is accurately transferred between the nodes in the network. The system

uses TCP/I P as the underlying network protocol and requires that any pair of nodes

(server-server, client-server) wishing to interact is able to send messages to each

other in both directions. This system also assumes that the messages are of arbitrary

length. The system permits the underlying network protocol to split a message up into

smaller pieces for transmission, and to reassemble the message before presenting it

to the Tuplespace server. If necessary, explicit packetization could be added later on,

such as validating the checksum. A good message is one with a good checksum.

Messages with bad checksums are simply discarded or maybe re-sent, so bad

messages are eliminated. Packetization is omitted in the presented system to make

the algorithms simpler.

With the well-formed messages, application programmers can focus on the classes

making up the application around application issues, not issues related to the

communication scheme they happen to be using. Likewise, the communications

subsystem can be designed and updated independently, based on the

communication needs of the overall system.

- 33 -

5. Transactions

The proposed Tuplespace system includes a sub-package tuplespace .

server . tr a nsaction to provide basic atomic transactions that group multiple

operations into a single atomic operation. This chapter introduces what transaction is

and the ACID properties that are provided by transactions. How the Tuplespace

system achieves transaction management and how the transactional operations are

implemented are explained in this chapter as well.

5.1 Transactions and ACID Properties

Transactions are a fundamental tool for many kinds of computing[28]. A transaction

allows a set of operations to be grouped in such a way that they either all succeed or

all fail; the operations in the set appear from outside the transaction to occur

simultaneously.

Transactional behaviors are especially important in distributed computing systems

such as this Tuplespace system, where they provide a mean for enforcing consistency

over a set of operations that are performed on remote computers. For the operations

that are members of a transaction, one response to a remote failure is to abort the

whole transaction, thereby ensuring that no partial results can be written to the space.

The ACID properties [29] traditionally offered by database transactions are preserved

in transactions on the Tuplespace system. The ACID properties are:

• Atomicity: All the operations grouped under a transaction occur or none of them

do.

• Consistency: When a transaction completes, it must leave the system in a

consistent state. Consistency includes issues that only matter to humans. Such

as in an airline scheduling example, a Flight object that should always have a

Pilot object associated with it. The enforcement of consistency is outside of the

- 34 -

control of the transaction itself - a transaction is a mean to maintain consistency

but it doesn't guarantee consistency itself.

• Isolation: Ongoing transactions should not affect each other. The client in a

transaction should see only intermediate states resulting from the operations

within its own transaction, not the intermediate states of any other transactions.

For example, if a tuple is written inside a transaction, it is only visible to the

operations within the transaction. None of the operations from outside of the

transaction knows the existence of the tuple.

• Durability: The results of a transaction should be as persistent as the entity on

which the transaction commits. However, such guarantees are up to the

implementation of the entity, in this case, the lifetime of the Tuplespace service

determines the persistence of the transaction results.

Transactions implemented in this Tuplespace system differ from single-system (a

system that only runs within the scope of a single computer) transactions or

distributed transactions. The clearest difference with a single-system transaction is

that single-system transactions are maintained locally within one node. In the

proposed Tuplespace system, the transaction objects are actually remote objects that

reside on a remote Tuplespace server. The remote transaction model implemented in

this Tuplespace system is discussed in next section.

The remote transaction implementation is also different from the distributed

transaction model implemented in Sun's JavaSpaces[30], [31]. In the remote

transaction model, it appears to any client that all operations performed under a

transaction have occurred or none have, thereby achieving isolation. In other words,

no client will ever see only part of the changes made under a transaction. In a

distributed transaction model, a transaction can span multiple servers/processes, so it

is possible for a client whose transaction spans three Tuplespace servers to see the

committed state of the transaction in one server and the pre-committed state of the

same transaction in the other servers. In other words, one transaction may contain

- 35 -

different operations and each takes different amount of time to be committed on

different sever. Distributed transactions often implement two-phase locking (such as

Sun net . j ini . core . transaction} and transaction manager to coordinate the

participants of a transaction [32].

5.2 Distributed Transaction Model

As the two-phase commit protocol is widely adapted as the distributed transaction

model in distributed systems[16] , [29], this section is going to provide a brief overview

of this protocol. The two-phase commit protocol defines the communication patterns

that allow distributed objects to group a set of operations in such a way that they

appear to be a single operation. This protocol requires a kind of transaction manager

object that can enable all participants of a transaction to know whether they should

commit the operations or abort them. A participant can be any object that supports the

participant contract by implementing the appropriate interface. Under the two-phase

commit protocol , a transaction completes when any entity either commits or aborts the

transaction. Commit a transaction successfully means all operations performed under

that transaction are completed. Aborting a transaction means that any operations

performed under that transaction will appear never to have happened .

In Sun's JavaSpaces, the two-phase commit protocol requires each participant to vote

when committing a transaction, where a vote is either prepared (ready to commit) , not

changed (read-only), or aborted (the transaction should be aborted). If all participants

vote "prepared" or "not changed," the transaction manager will tell each "prepared"

participant to roll forward, thus committing the changes. Participants that voted "not

changed" need do nothing more. If the transaction is aborted, the participants have to

roll back any changes made under the transaction.

5.3 Remote Transaction Implementation

In this distributed Tuplespace system, clients' requests are all encoded into messages

- 36 -

and sent over a communication network to be implemented on a remote server, so are

the transactional operations. When the client wants to create a transaction, this

request is sent to the Tuplespace server. On the server side, the transaction manager

creates a Transaction object with a unique Id and an associated TransactionProxy

object, and the server returns the TransactionProxy object back to the client. Each

Tuplespace server has a transaction manager maintaining all the transactions running

on the server. The transaction proxy object is a "representative" of the actual

transaction object on the client side and it contains the same Id as the transaction

object it represents . Another key difference from distributed transaction model is that

though the transaction objects are associated between the server and the client, they

are not shared between processes. In other words, a process cannot join a

transaction which was created by another process.

After a client has a transaction object in hand, it can start transactional operations.

The code is shown in the following table:

//continuing from previous code

TransactionManager.TransactionProxy

try {

trx ts.createTransaction() ;

}catch (TransactionException

System.out.println(e);

!Tuple result= null;

try {

result= ts.rd(template, trx, 5000);

result= ts.tk(template, trx, 5000);

catch (TransactionException e) {

System.exit(O);

Code Sample6 - Create transaction object, and perform transactional operations

InvalidTransactionStateException will be thrown if the client wants to do an

operation when the transaction is not at the right state. For example, when the

- 37 -

transaction is in the middle of committing process or already committed, if the client

wants to do more operation under the transaction, this exception will be thrown.

InvalidTransactionStateException extends from TransactionException.

TransactionNotExistException will be thrown if the server-side transaction object

represented by the transaction proxy object no longer exists on the server.

TransactionNotExistException extends from TransactionException .

For any other exceptions related to transaction, TransactionException will be

thrown.

5.4 Transactional Operations

Single-level transactions affect operations in the following ways:

• out (...) : A tuple that is written is not visible outside its transaction until the

transaction successfully commits. If the tuple is taken within the transaction, the

tuple will never be visible outside the transaction and will not be added to the

space when the transaction commits. Tuples written inside a transaction that

aborts are discarded.

• rd(...): A read operation matches any tuple written under that transaction and in

the entire primary Tuple-space and in the alternative Tuple-spaces. rd(...)

operation within a transaction is designed to look for matching tuples written inside

the transaction first, then the primary Tuple-space, then the alternative spaces.

The reference to the matching tuple found by the provided transaction is added to

a list maintained within the provided transaction . By recording the references to

the locked tuples in a list, the transaction is able to quickly locate the tuples that

are locked by it and manage the locks. Such a tuple can be read by any other

transaction to which the tuple is visible, but cannot be taken by another

transaction. The matching tuple found . will be marked with a lock object of

tuplespace . TupleLock class. A lock object contains the locking transaction's Id

- 38 -

and the locking mode, in this case, the locking mode is set to "READ_MODE" as the

tuple is locked by a read operation of a transaction. When a tuple is locked by a

transaction under "READ_ MODE", the locked tuple can only be taken by the locking

transaction. If the matching tuple is found from an alternative server, the matching

tuple will be locked the same way as it is found in the primary server. A copy of the

matching tuple found from the alternative server will be returned to the initial

server (i.e. the primary server) and added to a special list kept inside the

transaction object in the initial server. The special list is maintained for two

purposes: it keeps record of the alternative Tuplespace servers that the

transaction has retrieved matching tuples from. When the transaction

commits/aborts , the primary Tuplespace server needs to notify every alternative

Tuplespace server recorded in this list to release the tuples locked by the

transaction; the list acts as a cache containing the tuples read from alternative

Tuplespace servers. For future rd(...) operations under the same transaction, the

Tuplespace server will search the cache for matching tuple before troubling the

alternative Tuplespace servers, so this eliminates the need to send message over

the network and ask each of the alternative servers to search again. If a

transaction commits/aborts, the read locks held by it wi ll be discarded and the

locked tuples are set back to its original states.

• tk (...) : A take operation matches like a read with the same template. When taken,

the reference to the tuple is added to the list record ing the tuples taken by the

provided transaction and the list is maintained within the transaction object. Such

a tuple can not be read or taken by any other transaction. The matching tuple is

locked by a TupleLo ck object which contains the locking transaction's Id and the

locking mode, in this case, the tuple is locked under 11TAKE_ MODE". If a matching

tuple is found already locked under "READ_ MODE" by the provided transaction, the

lock is updated to " TAKE_MODE". The reference to the tuple will be shifted from the

list recording read tuples to the list recording taken tuples. Tuples locked under

"TAKE_MODE" are not visible to any operations including the operations under the

same transaction as if they are already completely removed from the system. If

- 39-

the matching tuple is found from an alternative Tuple-space, the matching tuple

will be locked the same way as it is found in the primary server. A copy of the

matching tuple found from alternative server will be returned to the primary server

and added to its special list which is also used for rd(...). By locking the taken

tuple instead of removing it from the space, if the server crashes because of some

reasons, the taken tuples are still kept in the space (the "permanent" memory) and

server has the chance to recover them and roll back the operations. If the

transaction commits successfully, the tuples taken by the transaction from the

space are removed permanently. If the transaction aborts, the locks are discarded

as the tk (...) operations have never happened. If tuples written under a

transaction are taken, the tuples won't be written to the space.

5.5 Transaction States

Every transaction object is marked with a state value at any time. The state value

indicates the current status of the transaction and determines what operations can be

performed under it. TransactionConstants . class file defines state constants, see

Code Sample?.

package tuplespace.server.transaction;

pu~lic interface TransactionConstants

int ACTIVE= l;

int UPDATING= 2;

int COMMITTED= 3;

int ABORTED= 4;

int COMMITTING= 5;

int ABORTING= 6;

Code Sample7 - Transaction state constants defined in the system

When a transaction is created, its initial state is ACTIVE. ACTIVE is the only valid state

for the transaction manager to invoke the transaction object for any operation. For

example, when the transaction's state is COMMI TTED or ABORTED, this means that the

transaction is already completed and no more operation can be done under this

- 40 -

transaction . When the transaction's state is COMMITTING or ABORTING, this means that

the transaction is in the completion process, again, no more operation can be done

under this transaction.

5.6 Completing a Transaction

A transaction can be completed with code shown as below:

//complete a transaction

try {

ts.commitTransaction(trx);

ts.abortTransaction(trxl);

System.out.println(e);

catch(Transac tionCannotCommitException e)

System.out.print ln(e);

System.out.print l n (e);

)catch(TransactionEx ception

System.out.pr intln(e);

Code Samples - Transaction completion syntax

The commit Transaction () and abort Transaction () operations are both one

parameter methods, the only parameter needed is a TransactionProxy object which

represents the actual transaction object located on the remote Tuplespace server.

Both methods have to be called within a try clause since exceptions may happen.

Before we start discussing about the details of the completion process, let's have a

look at the internal structure of a typical transaction object as shown in Figure11:

- 41 -

transaction l

State: ACTIVE

Id: 12700001

r------------------------------,
: Holds the references to the tuples :

Read List
I

, read under the transaction ________ ,
r------------------------------1

Take List
: Holds the references to the tuples :

1----~ I

:_ taken under the transaction __ _____ :

•1 Special List · 1-l --____.f C~-n-t~i~; th; t~~l~~-;;;d/t~k;~ ----
: from alternative Tuplespace

Tuple Pool

I

: servers under the transaction, and
I

: the alternative server information
'-----------------------------­r------------------------------1
: Contains the tuples written within :

I-----< I

: the transaction I
I

I I ~------------------------------'
Figure11 - The internal structure of a typical transaction object

If the transaction is asked to be committed, the following steps need to be performed:

1. Check the state of the transaction. If the state is UPDATING , then wait until the

update process is completed. If the state is COMMITTING , or COMMITTED, or

ABORTING , or ABORTED , this means that the transaction is already completed or

under the completion process, so no more operation can be performed and an

exception will be thrown .

2. When the transaction state is ACTIVE , the commit operation will lock the

transaction by marking its state COMMITTING, so no further operations can be

added to the transaction.

3. Go through the list recording the references to the tuples read from the primary

Tuple-space under the transaction, release the locks so they are set back to

normal status and can be taken by other operations. Clear this list.

4. Go through the list recording the references to the tuples taken from primary

Tuple-space under the transaction; permanently remove the tuples from the

space. Clear the list.

5. Go through the list containing the tuples read or taken from alternative spaces

under the transaction, send a notification message to each of the alternative

spaces that contain the read/taken tuple to inform them to release the read locks

- 42 -

and permanently remove the tuples taken by the transaction from their spaces.

Clear the list.

6. Go through the list containing the tuples written under the transaction; write each

tuple to the local space. Clear the list.

7. Set the transaction state to COMMITTED.

Note: the commit process is done in a durable fashion. When the transaction manager

is going through the steps to commit the transaction, any change it makes to the

space is recorded in a durable container. Therefore, if an exception happens at a

certain point during the committing process, the transaction manager can rollback all

the changes that have been made till that point. If any exception happens, the abort

method will be called.

If the transaction is asked to be aborted , the following steps are performed:

1. Check the state of the transaction. If the state is UPDATING, then wait until the

update process is completed. If the state is COMMITTING, or COMMITTED, or

ABORTING, or ABORTED, this means that the transaction is already completed or

under the completion process, so no more completion operation can be performed

under the transaction and an exception will be thrown.

2. When the transaction state is ACTIVE, the abort operation will lock the transaction

by marking its state ABORTING, so no further operation can be added to the

transaction.

3. Go through the list containing the references to the tuples read from the primary

Tuple-space under the transaction; discard the locks so that they are set back to

normal status as if the operations under the transaction have never happened.

Clear this list.

4. Go through the list containing the references to the tuples taken from the primary

Tuple-space under the transaction; discard the "TAKE_MODE" locks held by the

transaction so the locked tuples are set back to their normal status as if the

operations under the transaction have never happened. Clear the list.

- 43 -

5. Go through the list containing the tuples read or taken from alternative spaces

under the transaction; send a message to each of the alternative spaces that

contain the read/taken tuples to notify them to discard the "READ_ MODE" and

"TAKE_ MODE" locks held by the transaction on those alternative servers. Clear the

list.

6. Clear the pool containing the tuples written under the transaction.

7. Set the transaction state to ABORTTED.

Note: the abort process is also done in a durable fashion. When the transaction

manager is going through the steps to abort the transaction, any operations aborted

are recorded in a durable container. Therefore, if an exception happens at a certain

point during the aborting process, the transaction manager can try to abort the rest of

the provided transaction starting from the failure point.

Durability is a commitment, but it is not a guarantee. It is impossible to guarantee that

any given piece of stable storage can never be lost; one can only achieve decreasing

probabilities of loss. Data that is written to a disk may be considered durable, but it is

less durable than data saved to two or more separate, redundant storages. When

referring to "permanent storage" in this system, it means the actual space containing

the tuples, and the space lifetime is determined by the Tuplespace service. When a

Tuplespace service is shut down, anything in the space will be lost unless the content

of the space is copied to somewhere else beforehand.

Transaction support is very useful when building applications with high reliability and

consistency requirements, however, just one level transaction may not be efficient at

some situation. Next chapter will be discussing about Nested Transactions which offer

a number of extra features than single-level transactions.

- 44 -

6. Nested Transactions

In the previous chapter, the notion of transaction was presented along with the

techniques that have been used to achieve ACID properties in the proposed

Tuplespace system. This chapter extends the single-level transaction idea by

introducing Nested Transactions (also referred to as subtransactions). The purpose of

this chapter is to present the details of how Nested Transactions are implemented in

the system. Firstly, we will start with explaining what nested transactions are.

6.1 What are Nested Transactions?

Transactions are very useful and help solve many problems in both centralized and

distributed computing situations. However, there are several situations that could be

better solved by adding Nested Transactions.

A nested transaction is a new transaction that begins from within the scope of another

transaction[28]. Nested transactions are an extension of transactions. The difference

between transactions and nested transactions is that nested transactions have a

more complicated internal structure. A transaction is just a group of operations that

are performed as a unit. Nested transactions have a hierarchical grouping structure:

each nested transaction consists of zero or more operations and possibly some

nested transactions.

Nested transactions offer several extra features, including:

• Nested transactions allow programmers to sub-divide a complex operation into a

number of smaller and simpler operations.

• Nested transactions enable errors to be isolated within a certain scope.

• Nested transactions can operate concurrently.

Nested transaction model enables composition of multiple transactions into a single

new transaction and concurrency control is provided within the transaction. In addition

-45 -

to solving problems of concurrent access within transactions, nested transactions can

provide a method for maintaining better robustness of the system by limiting the

effects of a failure to a small part of a transaction[28]. For example, suppose we wish

to perform a transaction, consisting of a number of nested transactions each doing

something different. As the number of nested transactions increases, the probability of

failure increases, such that the top-level transaction's probability of success goes

closer and closer to zero. However, if we treat each nested transaction as a

full-fledged transaction within the scope of its containing transaction, then failure of

one of the nested transactions needs not affect the results of any others. If the client

requires that all nested transactions perform the requested operation, then a failed

nested transaction can be retried until it succeeds. The advantage is that only the

failed nested transactions need to be redone. Thus each nested transaction (at any

nesting level) acts like a firewall , protecting its internal operations against the affects

from outside influences. Also, the failures inside each nested transaction are shielded

within a certain scope and won't affect the outside world .

When a nested transaction completes successfully, it will be said to have committed,

even though it is not a top-level transaction. Certainly, this kind of commitment is

relative: any updates become permanent only if all the nested transactions containing

the committed nested transaction also commit, and the enclosing top-level nested

transaction completes successfully. Thus, top-level transactions are special: they are

the only irrevocable transactions in nested transaction hierarchy. Abort operation on

one nested transaction doesn't force any of the containing nested transactions must

abort as well. Aborting is always irrevocable, that is, an aborted transaction's

operations must be rolled back. The details of the relationship of committing and

aborting of nested transactions to committing and aborting of their containing

transactions, including the manipulation of locks and tuple state restoration, form the

main content of this chapter.

- 46 -

6.2 Some Terminology

Before proceeding to the details of the implementation of nested transactions, it is

useful to introduce some terminology.

X

Figure12-A transaction nesting diagram

Figure12 illustrates three transactions, x , y and z . The contours indicate that x has

greater scope than y, that is, that y is a nested transaction of x . Likewise z is a nested

transaction of y . The contours emphasize the concept that each nested transaction is

a miniature universe of full functions. Contours will never intersect, because a nested

transaction's effects and lifetime are always strictly bounded by its containing

transactions(if any). The multi-level transaction relationship can also be described

with tree diagram as shown in Figure13.

X

I
y

I
z

Figure13 -A tree diagram for transaction nesting

If x had two subtransactions, either of the diagrams in Figure14 would describe the

situation:

X

I\
X

y z

Tree Diagram Nesting Diagram

Figure14 - Transaction nesting

- 47 -

Since transaction relationships follow trees, this thesis will use tree terminology for

familial relationships, to express transaction relations. Thus, transactions having

subtransactions could be called parent transaction, and their subtransactions are their

child transactions.

6.3 Synchronizing Nested Transactions

We will first introduce the locking principles used in the design, and make the

extension to the nested transactional operations later.

In single-level transaction as discussed in the last chapter, if a tuple is locked by a

transaction, then the locking transaction has exclusive access to the locked tuple until

the transaction commits or aborts, and no other transaction can lock the tuple object

for that period of time. However, additional mechanism and rules are needed to

handle such case in nested transactions. Here is an example. Suppose there are

some transactions related as in Figure15:

Tuple-space

X l'QZQ I
' rd rd

Figure15 - Transaction nesting example

Further suppose that y and z are processed serially and both try to read the same

tuple object. (There is no conflict because these two transactions' lifetimes do not

overlap.)

A first observation is that when y commits, the read lock on the tuple cannot be

- 48 -

released entirely. The reason is that x can still abort, undoing y's operation. In order to

insure consistency, the locking mechanism must make sure that transactions outside

of x cannot take over the control on the tuple until x commits. The solution is to "pass"

the lock from y to x when y commits , thus nothing outside of x can lock the tuple

object. At this point, the situation may get complicated if z wants to acquire the lock,

as it's said that x is currently holding the lock that inherited from y.

In nested transaction, the same type of lock is used as for single-level transactions. In

the presented system, a tuple could be locked by a nested transaction under either

11
READ_MODE

11 or 11
TAKE_MODE

11
• If a lock is set on a tuple, it means that there is a

transaction "holding" the lock and the lock "holding" transaction has exclusive control

of the tuple. By saying "holding" the lock, it actually means that the lock is marked with

the transaction's Id . There can be at most one holder of a lock at a time. When a

nested transaction commits, its direct parent transaction will retain all locks held by

the committing child (by updating the lock Ids to the direct parent transaction's Id).

When locks move from a committed child to the parent, it indicates that the parent has

inherited the locks. In actual implementation, when a child transaction commits , all the

locks with the child transaction's Id will be updated to its direct parent transaction's Id,

and the references to the locked tuples stored in the child transaction's lists will be

transferred to the direct parent transaction's lists as if the direct parent transaction is

holding the locks now. Figure16 shows the sequence of situation as y, then z and

lastly x run and commit; the relationship of three transactions were shown in

Figure15.

1. Transaction x is created and running.

2. Transaction x creates a child

transaction y.

- 49-

3. Transaction y reads a tuple from the

space, locks it and holds the lock.

4. Transaction y commits, so transaction x

holds the lock.

5. Transaction x creates another inferior

transaction z.

X

X

X

6. Transaction z reads the same tuple which x

is currently locked by x. Now, z holds the

lock. This is permitted because z is the

inferior of the only holder of the lock, x .

7. Transaction z commits, the lock is

inherited again by x.
X l.______e____,lock

Figure16 - Lock moving among nested transactions

This little example demonstrates what to do if a child transaction commits. In the

meantime, if another operation outside x wants to read the tuple which has been

locked, that transaction can get a copy of the tuple , but the lock is still held by x or its

child transactions. This also means that no any other operation outside x can remove

the locked tuple during this period. When the nested transaction aborts on purpose,

all the locks held by it will be released because no any effect on permanent storage is

meant to happen. If the nested transaction aborts due to exceptions happened,

because this Tuplespace system omits special handling of nested transaction

exceptions, locks will also be released as normal aborts.

Here are the locking rules used for nested transactions in the system:

• A nested transaction can hold a lock of "READ_ MODE" on a tuple if no other

transaction holds the lock in "READ_MODE" or "TAKE_MODE", or the current holder of

- 50 -

"READ _MODE" lock on the tuple is a superior of the requesting nested transaction.

• A nested transaction may hold a lock in "TAKE_ MODE" on a tuple object if no other

transaction holds the lock in "TAKE_ MODE" , and no any other transaction except

one of its parent transactions is holding the lock in "READ_ MODE".

• When a nested transaction aborts, all its locks (of all modes) are discarded.

• When a nested transaction commits, all its locks (of all modes) are passed to its

direct parent transaction (if there is any). This means the parent transaction holds

each of the locks (in the same mode as the child transaction held).

When a nested transaction holds a "TAKE_ MODE" lock on a tuple, it prevents any other

transaction (including its child transactions) from accessing the locked tuple , and

holding a "READ_ MODE" lock prevents the tuple from being taken by any transactions

except the lock holding transaction itself or its child transactions. Inheritance of

"TAKE_ MODE" locks when a nested transaction commits has two effects: it permits the

child transactions within the parent's scope to see any changes, and have the chance

to abort the changes; and it prevents transactions outside the scope from either

reading or taking the tuple. Inheritance of "READ_ MODE" locks when a transaction

commits prevents removal by operations outside the parent transaction's scope. This

insures that the parent transaction is always presented with tuples at consistent

status.

The above rules assume that a transaction doesn't commit until all its child

transactions were terminated (so that it retains any necessary locks). In other words,

the lifetime of a nested transaction is always contained in its parent transaction's

lifetime.

6.4 Create Nested Transactions

The following code demonstrates how to create multi-level nested transactions.

- 51 -

TransactionManager.NestableTransictionProxy

trx = null,

trxChild = null,

trxChild2 = null,

trxSuperChild = null;

trx ts.createNestableTransaction(null);

trxChild = ts.createNestableTransaction(trx);

trxChild2 = ts.createNestableTransaction(trx);

trxSuperChild = ts.createNestableTransaction(trxChild);

}catch (TransactionException e) {

System.out.println(e); }

Code Sample9 - Creating nested transactions

From the client's point of view, any transactions contained inside a nested transaction

hierarchy needs to be of type NestableTransaction and created by using

createNestableTransaction(TransactionManager.NestableTransactionProxy

parentTrx) , including top-level transactions. As shown in Code Sample9, transaction

trx is a top-level transaction, and all the other transactions are its children and the

parent transaction's proxy object has to be passed in as a parameter to define the

relationship. The relationships among these transactions are illustrated in Figure17 .

trx trx

I\
trxChild trxChild2

trxChild trxChild2

trxSuperChild

D

trxSuperChild

Tree Diagram Nesting Diagram

Figure17 - Relationship diagram of nested transactions

Like single-level transactions described in the previous chapter, client is working with

a NestableTransactionProxy object which is transparently interacting with the

actual NestableTransaction object on the server.

- 52 -

Like single-level transactions, nested transactions have the following properties:

• A transaction is serializable with respect to its siblings (nested transactions at the

same level and contained by the same parent transaction). Accesses to shared

resources by sibling transactions have to obey the synchronization rules.

• A nested transaction is a unit of recovery by itself. A nested transaction can be

committed/aborted independently of its siblings.

• A nested transaction is a unit of atomicity by itself. Either all or none of the effects

of a nested transaction's operations can take place.

In addition, they have the following features which make them different from

single-level transactions:

• Nested transactions can have parents and children. A nested transaction's

operations are not considered to conflict with its parent transactions'. Thus, it can

take over a tuple which has been locked by its parent under "READ_MODE".

• When a child transaction aborts, it does not automatically abort the parent

transaction. The parent transaction is free to perform other operations.

• When a child transaction commits , it releases the locks held by it to its direct

parent transaction and makes its actions be part of the action set of its direct

parent transaction. Thus, when the direct parent commits , it commits not only the

operations it performed directly but also those performed by its child transactions.

• A parent transaction's operations are considered to conflict with its child

transactions'. Thus, it cannot take over a tuple if a child transaction's lock

prohibits this. For example, if a tuple is locked by a child transaction under

"READ_ MODE", the parent transaction can only read it without taking over the

control of the lock.

• A child nested transaction is not a unit of consistency or durability since it does

not on its own leave the Tuplespace in a consistent state. The commit result of a

child transaction is relatively persistent, because it depends on the top-level

transaction to commit successfully.

- 53 -

If one of a nested transaction's ancestors aborts, it doesn't matter whether the

transaction aborts or commits; even if the transaction commits, its effects will be

undone by the abortion of its ancestor. Thus, the durability property of the traditional

ACID properties needs to be modified for a nested transaction situation: the effects of

a committed top-level transaction and those of its committed descendents are not

undone by a failure[28].The presented system requires that all of a transaction's

children must be resolved before the transaction can attempt to commit. A nested

transaction may abort at any time, and all of its child transactions' actions will be

aborted as well.

6.5 Nested Transaction Operations

Nested transactions affect operations in the following ways:

• out(...) : A tuple that is written is not visible outside its transaction unti l the

transaction successfully commits. If the tuple is taken within the transaction, the

tuple will never be visible outside the transaction and will not be added to its

parent transaction(if there is any) or the space when the transaction commits.

Tuples written under a nested transaction that commits are added to the

Tuple-space if the committing transaction is a top-level transaction; otherwise the

tuples are written to its direct parent transaction. Tuples written under a nested

transaction that aborts are discarded.

• rd(...) : A read may match any tuples written under that nested transaction, any of

its parent transactions, the primary Tuple-space and the alternative Tuple-spaces.

The Tuplespace server is designed to match tuples written inside the transaction

first, then its parent transactions(if any), then the primary Tuple-space, and finally

the alternative Tuple-spaces. The searching order is shown in the following

diagram.

- 54 -

Tuple-space

z
y +

Figure18 - Process order of retrieval operations under nested transactions

When read, the found tuple is locked with a "READ_MODE" lock and the reference to

it is added to the list recording the tuples read by the provided nested transaction.

Note that a nested transaction contains the same set of lists as single-level

transactions described in the previous chapter. Such a tuple may be read in any

other transactions to which the tuple is visible, but cannot be taken in another

transaction except itself or its child transactions. When a child transaction wants to

access (i .e. read or take the tuple) a tuple locked under "READ_MODE", the lock will

be "passed" {the transaction Id contained by the lock's Id property will be changed

from the parent transaction's Id to the child transaction's Id} from the parent to the

child transaction and the reference to the locked tuple will be shifted from the list

recording the read tuples in the parent transaction to the child transaction's

associate list. If the matching tuple is found from an alternative space, it will be

recorded in the special list in the same way as for single-level transactions(See

Chapter 5).

• tk (...) : A take matches like a read operation with the same template. When taken,

the reference to the matching tuple is added to the list recording tuples taken by

the provided nested transaction. Such a tuple can not be read or taken by any

other transaction (including its own operations or its child transactions'). When a

matching tuple is found, the tuple will be locked the same way as by a single-level

transaction. Tuples locked under "TAKE_ MODE" are not visible to any operations

- 55 -

including operations of its own or its children's. If the matching tuple found is

already locked under "READ_ MODE", then the transaction needs to check the

current holder of the read lock. If the lock is held by one of its parent transactions,

then the provided transaction can acquire the lock and change the lock's mode to

"TAKE_MODE", remove the reference to the tuple from the list maintained by the

parent transaction and add the reference to the associated list inside the current

transaction. The special list is also used in nested transactions to keep record of

the matching tuples found from alternative spaces in the same way as single-level

transactions.

Nested transaction uses the same constants for its state values as single-level

transactions (See Section 5.4 for details).

6.6 Completing a Nested Transaction

A nested transaction can be completed with the code shown as below:

try {

ts.commitTransaction(trx) ;

ts.abortTransaction(trxl);

}catch(TransactionNotExistException e) {

System.out.println(e);

}catch(TransactionCannotCommitException e)

System.out.println(e);

}catch(TransactionCannotAbortException e) {

System.out.println(e);

}catch(TransactionException e) {

System.out.println(e);}

Code Sample10 - Committing/Aborting nested transactions

The commitTransaction () and abortTransaction () operations are both one

parameter methods, the only parameter needed is the NestableTransact i onPr oxy

object. Both methods have to be called within a try clause since exceptions may

happen.

- 56 -

If a nested transaction is asked to be committed, the following steps are performed :

1. Check the state of the nested transaction . If the state of the transaction is

UPDATING , then wait until the update process is completed. If the state is

COMMITTING, or COMMITTED, or ABORTING, or ABORTED, this means that the nested

transaction is already completed or under the completion process, so no more

completion operation can be performed and an InvalidTransactionState

exception will be thrown.

2. When the transaction's state is ACTIVE , the commit operation will lock the

transaction by setting its state as COMMITTING , so no any new operation can be

added under the transaction. If the transaction has any child transactions, the

commit method for the child transactions are also called. Likewise, the commit

methods for any grand child transactions are also called until the lowest level ch ild

transaction is reached and committed. If any of the child transactions has already

committed or aborted , then that transaction will be skipped as its actions have

already been resolved . An example of the committing sequence of a nested

transaction hierarchy is shown in Figure19.

X

I- 1

:Transaction T1 has committed : ,
I I 1

'. ~~~l~c~t~-~~ ~ _P!:~i~~~ _o_P_e~~~~~:,... __._1 --------,
I

Y1 Y2

21

I
I

I
I
I
I

r - .L--
T1 I :

~ - - - _1

Z2

EgJ

The order of the commit

operations involved when

committing X:

(1) Y1

(2) 21

(3) W1

(4) 22

(5) Y2

(6) X

Figure19 - Committing sequence of nested transactions

3. For each nested child transaction, go through the list containing the references to

the tuples read from its parent transactions (if there are any) and the primary

Tuple-space under the transaction, transfer the references to the relevant list in

the direct parent transaction (if there is any), update the lock on each of the

- 57 -

recorded tuples so that the tuples are now locked by the direct parent transaction.

If the committing transaction is a top-level transaction, then release the

"READ_ MODE" locks held by the transaction on the tuples, so these locked tuples

are now free to be locked by other transactions. Clear this list.

4. For each nested child transaction, go through the list containing the references to

the tuples taken from the parent transactions(if there are any) and the primary

Tuple-space under the transaction. If the committing transaction has parent

transaction(s), transfer the recorded references to the relevant list in the direct

parent transaction, update the locks on each of the tuples so that the tuples are

now locked by the direct parent transaction(as shown in Figure20). If the

committing transaction is a top-level transaction, then permanently remove its

"TAKE_MODE" locked tuples, so these take operations committed by the top-level

transaction are irrevocable. Clear this list.

1. Transaction Y takes a tuple from the

Tuple-space, now the tuple is locked by Y and

Y's Takelist contains a reference pointing to

the locked tuple.

2. Transaction Y commits, now the tuple is

locked by transaction x and the reference

to the locked tuple is held by x .

3. Transaction x commits, now the tuple is

permanently removed from the space.

X

X

Locked by Y

Tuple-space

y

Tuple-space

Figure20 - Lock passing during nested transaction committing

- 58 -

5. Go through the special list containing the tuples taken or read from alternative

Tuple-spaces under the transaction. If the nested transaction has a parent

transaction, then send a message to each of the alternative spaces that contain

the taken or read tuples. The message will notify the alternative spaces to reset

the "TAKE MODE" and "READ MODE" locks that are marked with the current - -

transaction's Id to its parent transaction's Id . And also, the message will call a

method to transfer the references to these tuples to the special list maintained in

the direct parent transaction. If the nested transaction has no parent transaction

(i.e. this is a top-level transaction), then the primary Tuplespace server will send a

message to each of the alternative spaces that contain the taken or read tuple to

notify them to permanently remove the tuples that are "TAKE_ MODE" locked by the

current transaction and release the "READ MODE" lock. Clear the list.

6. For each nested transaction, go through the pool containing the tuples written

under the transaction. If the nested transaction has parent transaction(s), then

transfer each tuple in the pool to its direct parent transaction . If the nested

transaction is a top-level transaction, then write each tuple to the primary

Tuple-space and these tuples become available to any other operations. The

tuples that are written to parent transaction or the space have no lock on them as

the transactions locked them previously are all committed. Clear the list.

7. Set the transaction state to COMMITTED.

Note: the commit process is done in a durable fashion. When the transaction manager

is going through the steps to commit the transaction, any changes it makes to the

outside of its boundary (i.e. parent transactions and spaces) are recorded in a durable

container. Therefore, if an exception happens at a certain point during the committing

process, the transaction manager can rollback all the changes that have been made

till that point. If any exception happens, the abort method is called.

If a nested transaction is asked to abort, the following steps need to be performed:

- 59 -

1. Check the state of the nested transaction. If the state of the transaction is

UPDATING , then wait until the update process is completed. If the state is

COMMITTING, or COMMITTED, or ABORTING , or ABORTED, this means that the nested

transaction is already completed or under the completion process, so no more

completion operation can be performed and an InvalidTransactionState

exception will be thrown .

2. When the nested transaction's state is ACTIVE , the abort operation will lock the

transaction by setting its state as ABORTING, so no any new operation can be

added to the transaction. If the transaction has any child transactions, the abort

method for the child transactions are also called. Likewise, the abort methods for

any grand child transactions are also called until the lowest level child transaction

is reached and aborted. If any of the child transactions has already committed or

aborted, then that transaction will be skipped as its actions have already been

aborted or committed to its direct parent transaction which is going to be aborted .

3. For each of the nested child transactions, go through its list recording the tuples

read from its parent transactions and the primary Tuple-space under the

transaction ; discard any "READ _MODE " locks held by the transaction . Thus, any

tuple read by the aborted transaction is set back to normal status as if the read

operation has never happened. Clear this list.

4. For each of the nested child transactions, go through its list recording the tuples

taken from its parent transactions and the primary Tuple-space under the

transaction; discard any "TAKE_ MODE" locks held by the transaction. Thus, any

tuple "taken" by the aborted transaction is set back to normal status as if the take

operation has never happened. Clear this list.

5. Go through the special list containing the tuples taken or read from alternative

spaces under the transaction; send a message to notify each of the alternative

spaces to discard the "TAKE_ MODE" and "READ_ MODE" locks set by the aborting

transaction. Clear the list.

6. Clear the list containing the tuples written inside the transaction.

7. Set the transaction state to ABORTTED.

- 60 -

Note: the abort process is also done in a durable fashion. When the transaction

manager is going through the steps to abort the transaction, any operations aborted

are recorded in a durable container. Therefore, if an exception happens at a certain

point during the aborting process, the transaction manager can try to abort the

transaction again and carry on from that failure point.

As it's descried in this chapter, nested transactions involve much more work than

single-level transactions. However, nested transactions do offer a number of

advantages over single-level transactions:

• Nested transactions permit simple and safe composition of transactions that may

execute concurrently. So nested transactions enhance system design and

modularity.

• Nested transactions' object locking mechanism can help solve the concurrency

problems between operations within transactions in a distributed system

environment.

• Nested transactions can help protect parts of a transaction from failure in other

parts, because the success or failure of each nested transaction is independent of

the success of its siblings. Depending on the application's consistency

requirements , a parent transaction can require retrying a failed child transaction,

or try to achieve the same result in another way, or just simply ignore the failure.

The failure isolation feature of nested transactions suggests that most remote

actions should be considered to be performed under nested transactions.

- 61 -

7. System Testing

This chapter is aimed to test various features and functionalities of the Tuplespace

system that have been presented in the previous chapters. This chapter also includes

a number of testing results representing the performance of some functions provided

by the system under various circumstances. The tests are performed by developing

some small programs based on the present Tuplespace system. The Tuplespace

system is also tested on different platforms, e.g. UNIX, MS Windows XP.

7.1 Ticket Reservation Application

This Ticket Reservation Application is developed to test the three primary Tuplespace

operations (i.e. out(...), rd(...) and tk (...)), single-level transaction controls and

Tuplespace server cooperation. As the purpose of this application is just to test the

functionalities of the proposed Tuplespace system, it is a simple application without

complicated functions. This application is designed for travel agencies to make air

flight ticket reservations. The ticket information is stored as tuples in different servers

that are placed at different locations. Through this application, the agent can access

the flight ticket information on any of these servers and make reservation for clients .

The following screenshots demonstrate the process of a basic ticket reservation

scenario:

- 62 -

~;p;~,-..i;;r.•: •- ,;,,1-. ~- ~izr~~~""F;''1T,~:'t»..1 r It twr.~.-,,M.,. ~"!-'~tC"'..;,,..-...... , 1 ...

- Airline Ticket Reservation System ~ ~ ~

- Ip

-Flghl Dellllls
l111r11na:

lDepamn Port:

DellllralooPort:

,T,-llon content

tl9lp
Flglll DIiaiia . ..,.

Ai'1ina: i[Naw-Zoalaiid,\lrflne-- - , -

;Depart..-e Port: !Auckland

Deollnalloo Port: lSyd~ev _
Depart1We D 11111 (DDIIIII/YYYY) : I
C]Blc;=·'"s __ earc=-=h=,,.,;r,J:,1 ;...=;=Cl=.e.:.ar==·='F'-·1 • .:===n.-="ri'i"""""'"'i-.i'..--=,c-,
r Seach Reauls -

r' ~ Flight Code I Departure .J Arrtval Port
New Zeata. NZ909 Auckland Syd,,...c.n~e-y ~=~=~-~=-=·===~.
New Zeata. NZB55 Auckland - Sydney

!==~=~== ~~~=~~~=--==~~~~~~~,1 1
~;;:,.:=;:;;.:;;: ... ;;a;_;;;:;.::===========:;.c-.;;==,;;;;:::;;.,~-
TransactkJn content ~--·-,.. - - ... ---

~ Flight C~de ·1 Departure ... r Arrtva l Port l~D~•P~•~rtu~r~eCC<C===,====-
New Zeala .. NZ809 Auckland Sydney 21/612006

SEARCH co_urLEJ ED

tl9lp
F-lghl Delalla

Alrlnc

Depamn Port:

Dellllrmloo Port:

cancel the transaction 1.

New Zaaland Alrlne

Sydney

[Doporture ... Dtporture ... tall Avllll ..
23/6/2006 06:30:00 11

- 63 -

Step (1): Suppose the client wants to

reserve a ticket for a New Zealand

Airline flight from Auckland to

Sydney on 21/06/2006. If the user

leaves the "Departure Date" field

blank, then the system will return any

flight meeting the search criteria. The

search result is shown in the table

Step (2): The user selects the flight

meets the client's request, then click

on the "Add selected flight to the

transaction" button to add the flight to

the transaction whose contents are

shown in the bottom table.

Step (3): If the client wants to carry

on another flight on 23/06/2006 from

Sydney to Shanghai, the agent then

search again, and the new result is

shown in the table in the middle of

the window.

!:!tip FI-D­-~Pllt:

00-aPllt: Shangh~

00ponn o• (DD,...l't'IYY) : 2l/06/2001

l b :J §*:::: '.

AelOll-tlflldtoa.­

-·-· , Airtlnt ,I FllghlCodo j Dtp&l\n Pod! Ar!MIPort !o.0""'1 Dlll[Depwrt llrne]"so1111w1111011
New Zealand NZ809 Autldand Sydney 21 '612006 15
New Z11land NZ81 1 Sydney Shanghai 23161200& oe JO 00 1 I

IEMCN COWLETEI

D1-Pllt:

Dt.anollaPllt: Jsoanghal

Do-D .. (DDIIIM/'t'IYY) : l2l/06/2006 ~--=-~~ ... ---=-~
8-.hfloa,h

Alt1lno j FliglltCodl ! D1p1,...Podj /,/MI PM [DtplllJrtDllo:Dopffllro Time,81!!!_ Uabl!(
New Ztaland NZ811 Sydney Shanghai 231611006 06 JO 00 11

Add •acted ftWlt to thl n ... aan

TrlnllltllH cmuN

.!,1111nt J_ F1¢1Cod1 I D101111.n Pod! - Pod fDopffllrl ~ Dopffllro Tlmljs,111 __ ,
NewZealand NZ809 Auctdend Sydney 211612006 U
Nsw ZH land NZ811 Sydney Shanghai 23151200& 06 30 00 10

co-••-• jl ~ ... 11111•-•

!:!tip - r--~-.--_ __ .;..;.. ___ =..._-,_,
~Pllt: ;.Syd;,,,."l'I.;.... ___ ,.;;;; _______ ,.]

a...... l'wt. Shanghai

oo...,..o•CDDMMl'IYYY): ,_2ll0_ &12_o_oe ___________ ,.
1

- aw

--
- 64 -

Step (4): Click on the "Add selected

flight to the transaction" button again

to add the new flight to the

transaction whose updated contents

are shown in the bottom table.

Step (5): When the transaction

contains all the flights the client

requires. then the user clicks on the

"Commit the transaction" button. As

we can see. the "Seats Available"

numbers shown in the "Transaction

content" table are reduced by one.

Step (6): If the agent searches for the

New Zealand Airline flight from

Sydney to Shanghai again, he will

find out that the Seats Available

number is one less than before now.

Figure21 - Demonstration of a basic ticket reservation process (1)

In Figure21, the out (...), rd (...) , tk (...) and tuple fields retrieval operations were

tested to retrieve desired flight information from the space(s) and write updated tuples

back to the space(s). When the user presses on the "Commit the Transaction" button,

the single-level transaction management functions are invoked, and the effect of the

transaction become permanent in the space(s).

In the following scenario, the cooperation among the Tuplespace servers and some

more issues about transactions are tested.

Search Res, l s .,...._ - - - - - ---- · - ,- __,._.,.. - - -_ - o4r-

Airline f Flight Code Departure P.'. Alrival Port !Departure D .. jDepartu;e n..jseats Avalia }
New Zeala ... NZ809 uckland !Sydney 21/6/2006 12

8-.:hRea,b · -- - ... · - ·
Alrtlna Flight Code Departure P.. Arrival Port Departure D .. Departure TI. . Seats mlla .. ·

New Zeala... NZ809 ckland Sydney 2116/2006 12

Add UIICtadfll!lflllollle lla-lloo

- 65 -

Step (1): Suppose the client wants

to reserve a ticket for a New

Zealand Airline flight from Auckland

to Sydney on 21/06/2006. The

search result is shown in the table.

Step (2): Click on the "Add selected

flight to the transaction" button to

add the flight to the transaction

whose content is shown in the

bottom table.

,A.._a:

De-Port

Delllnallan Port

Departure Port
Sydney_

Add Nlocled fllglll to the tn,-llon

Alrtine Flight Code
New Zealand . NZ809 'Auckl and
Qantas ·ousT,- ·Sydney"

Sydney / I/SJ2006_
W~u"noton _._.2518/2006 j i:1 o:oo

_,

~ Alrlfnl! Tickct Reservation System .;;-- •• .. ~- -• "-·" A ""- • • .1. ~.. ,:,., .. ' •• ~ ~ js,

J:!elp
Fight DIiaiio

Alrlno:

De-Port:

D••naUon Pert

'Deport'" DIie (OD/1111/YYYY) :

I Bear<h ·,,,...-'-'-'-'-'Cl--------
SeerchRe111l1·- - , - ,_

Alrllna r fllght Code I Oepart~re p~ ArMI Port
Qanlas 0~811_ _ Syoney __ ~~lt1n2,_ton

Transaction conaq:,.
Airline (Flight Code j Departure Port] Arrival Port

NewZealand NZ809 Auckland ~Syd-,.,-.,-~•=s=~~-- --~-,.,----.,
Qantas 0U811 'Sytlney ·wellington

Conwnl the transaction H Canul the tranwtion

100~·· COMl'LE_! E_D

!:!OIP
Flgllll DIiaiio ,._

- 66 -

Step (3): Add another flight of

QANTAS Airline to the transaction.

Actually, the flight information of

QANTAS Airline is retrieved from

another Tuplespace server. As it is

shown, the QANTAS flight has only

1 seat left.

Step (4): When the user has got all

the flights he needs as shown in

Step(3), he clicks on the "Commit

the Transaction" button to commit

the transaction . And the contents in

the transaction table are updated.

Now there are 11 seats left in the

New Zealand Airline flight and no

seat left in the QANTAS Airline

flight.

Step (5): If the user click on the

"Commit the transaction" button

again to make the same reservation

one more time, the system will

abort the transaction as there is no

seat left in the QANTAS flight.

Thus, if a change has been made to

the New Zealand Airline flight, the

change has to be cancelled as the

reservation can not be made

successfully as a whole transaction.

Flghlllllallo~ .

Alltno:

DopomnPort

D1~nallon Part

Doparturo D• (DD/1111/YYYY) ;

!"I 2 '

ND llilnsactlanl

·• . .
Acid Alocled fllglll lo tho lro-Uon

W «L ix 4i I

Step (6): If the user checks the

information of the New Zealand

Airline flight again, he will see that

the number of seats available is 11

not 10 which means that the

second reservation made in Step(5)

didn't happen.

Figure22 - Demonstration of a basic ticket reservation process (2)

Transaction abortion is tested in the second demonstration. Though the tuples

representing flight information are from different spaces, the cooperation between

Tuplespace servers is invisible to the client.

7.2 Nested Transaction Testing

In this section, programs to test various features of Nested Transactions are

discussed. At the beginning of this test program, it is going to set up a nested

transaction hierarchy and output some tuples to the Tuplespace and each of the

nested transactions. Now, the status of the Tuplespace is shown as Figure23 and

fields of each tuple are shown in Figure24.

- 67 -

Tuple-space1

0 0
r-------------------------,
I I
I I
I I ·-----------

structure

trxChild2

0

trxSuperSuperChild trxSuperSuperChild2

0 0

try {

ts .out(tO, null);

ts.out(t1 , null);

ts.out(t2, trx);

ts.out(t3 , trxChild);

ts.out(t4 , trxChild2);

ts.out(t5, trxSuperChild);

ts.out(t6, trxSuperSuperChild);

ts.out(!?, trxSuperSuperChild2);

catch (TupleSpaceException e) {

System.out.println(e); }

catch (TransactionException e) {

System.out.println(e); }

Figure23 - Status of the test Tuplespace system

to t1

Field Type Value Field Type Value

0 java.lang.String "Non" 0 java.lang.String "Non2"

1 java.lang.lnteger 0 1 java .lang.lnteger 0

t2 t3

Field Type Value Field Type Value

0 java.lang.String "Trx" 0 java.lang.String "Child"

1 java.lang.lnteger 1 1 java.lang.lnteger 2

t4 t5
Field Type Value Field Type Value

0 java.lang.String "Child2" 0 java .lang.String ·superChild"

1 java.lang.lnteger 2 1 java. lang. Integer 3

- 68 -

t6 t7

Field Type Value Field Type Value

0 java.lang.String "Super Super Child" 0 java .lang.String "Super Super Child2"

1 java .lang.lnteger 4 1 java .lang. Integer 4

t8

Field Type Value

0 java .lang.String "Remote"

1 java .lang. Integer 5

Figure24 - Contents of the test tuples

After the Tuplespace is set up, now the test program will execute the following

operations one by one.

//operation #1

result= ts.rd(t3, trx~uperSuperChild, 4000);

/ /operation-' #2
"'

result2 = ts. rd(t4, trxSuper'su'perChild, 4000);

//operation #3

ts.commitTransaction(trxChild2);

result3 = ts.rd(t4, trxSuperSuperChild, 4000);

//operation #4

result4 = ts.tk(t3, trxSuperChild,

//operation #5

ts.abortTransaction(trxSuperSuperChild);

result5 = ts.tk(t3, trxSuperChild, 4000);

/ /operation f6

result6 • ts.rd(t3, trxSuperSuperChild2, 4000);

//operation i7

result? • ts.rd(t8, trxSuperSuperChild2, 4000);

- 69 -

/ /operation UO

resultlO - ts.rd(t9, trxSuperChild, 10000);

//operation ill

ts.commitTransaction(trxChild);

resultll - ts.rd(ts; null, 4000);

/ /operation i12

ts.commitTransaction(trx);

resultl2 - ts.rd(t4, null, 2000);

//operation il3

resultl3 = ts.rd(t3, null, 2000);

The result of the above operations is shown and explained in the following table:

Result Comment

1 <Child , 2> trxSuperSuperChild 's great grand parent transaction trxChild has

the matching tuple and therefore it is returned.

2 null No matching tuple found . As trxChild2 is not a parent transaction of

trxSuperSuperChild , the tuple stored inside trxChild2 is not visible

to trxSuperSuperChild.

3 <Child , 2> When trxChild2 commits , its tuple is written to its direct parent

transaction which is trx in this case. As trx is a parent transaction of

trxSuperSuperChild, trxSuperSuperChild this time is able to find a

matching tuple in trx .

4 null trxSuperChild failed to take the tuple currently stored in its direct

parent transaction trxChild, because t3 has already been

" READ MODE
n locked by trxSuperChild's child transaction

trxSuperSuperChild at operation #1 and the child transaction's lock

always wins.

5 <Child , 2> When trxSuperSuperChild is aborted, all the locks held by it are

discarded. Thus, trxSuperChild is now able to take the tuple from

trxChild.

- 70 -

6 null As t3 has already been taken by trxSupe r Ch i ld in last operation, t3

is not available to any transactions including the child transactions.

This operation also shows that t rxSuperS upe r Child2 is working

separately from trxSuperS uperChild . In other words, the abortion of

t r sSuperSuperChild doesn't affect the lifetime of

t r xSuperSuperChild2 .

7 <Remote , 5> trxSuperSuperChild2 reads the tuple from Tuple-space2.

8 null t r xSuperChild cannot take the tuple from Tuple-space2 as the tuple

is ready "READ_LOCK" by its child transaction trxSuperSuperChild2 in

last operation.

9 <Remote , 5> As trxSuperSuperChild2 aborts, all the locks (including the locks in

Tuple-space2) held by it are discarded. Thus, trxSuperChild is now

able to take the tuple from Tuple-space2.

10 <New, 5> trxSuperChild is trying to read a tuple which is currently not available

in neither of the Tuple-spaces. It is defined in the method that the

operation is going to wait for 10 seconds for the matching tuple to turn

up. In the meantime, we start another client program which writes a

matching tuple to Tuple-space1 . The result shows that the read

operation is able to detect and read the newly inserted tuple while it is

waiting .

11 null The operation demonstrates that the tuples written within a nested

transaction is not available until the top-level transaction commits

successfully.

12 <Child2 , 2> As the top-level transaction trx commits successfully, all of the tuples

written within its scope are visible to the outside world.

13 null As t3 has already been taken by operation #5 within the transaction , it

does not get written to the space.

(Note: If a matching tuple is returned, its content will be shown, otherwise null is shown)

In this test program, various features of nested transactions are tested, such as

concurrency control, lock management, state restoration, alternative Tuple-space

access, timeout waiting, and synchronization control. This simple program also

demonstrates that nested transaction can offer a number of extra features over

single-level transactions.

Another two programs are presented to test the reliability of nested transactions under

extreme conditions.

- 71 -

Test1:

Start 10 threads simultaneously, each thread writes 10,000 tuples to the same

Tuple-space. The tuple to be written is of a complicated structure, which consists of 1 0

String type fields, 10 SuperDate(inherited from j ava . util. Date) type fields and an

Integer type field . In the meantime, start another 10 threads to retrieve tuples from

the Tuple-space and each retrieval thread takes 10,000 tuples from the Tuple-space

under different levels of nested transactions. When these 20 threads finish, there are

no more tuples left in the space. This test proves that the presented Tuplespace

system is able to maintain the ACID properties of nested transactions under

concurrent situations with big volumes of input and output.

Test2:

Write 100,000 tuples to a Tuple-space under different nested transactions of a nested

transactional hierarchy. After the 100,000 tuples are stored in the space , read and

take the 100,000 tuples from the Tuple-space under different nested transactions.

This test proves that nested transactions are able to maintain ACID properties and

locking rules under the boundary conditions.

7.3 Performance Testing

We have implemented a number of performance tests under different circumstances

in a networked environment. The results of the tests show that the performance of the

system could be affected by various factors, such as the size and complexity of the

tuple, workload of the Tuplespace server and network latency. The performance tests

in this section were performed on the Helix Computer at Albany Campus, Massey

University.

7.3.1 Write tuples

In order to test how the performance of the out(...) operation is affected by the size

and complexity of the tuple, each of the tuples in the following table was written to a

- 72 -

Tuplespace, and the result of the performance is shown in Figure26. As we can see

from the following table, tupleSimple is a very basic and simple tuple; tupleLong

has the same structure as tupleSimple but one of its fields is bigger; tupleComplex

has similar content size as tupleSimple but it has more fields.

Tuple Fields

tupleSimple Type: java.lang.String Value: "abcdefghijklmnopqrstuvwxyz"

Type: java.lang.lnteger Value: 7777

tuplelong Type: java.lang.String Value : "abcdefghijklmnopqrstuvwxyz" +

"abcdefghijklmnopqrstuvwxyz" +

"abcdefghijklmnopqrstuvwxyz" +

"abcdefghijklmnopqrstuvwxyz" +

"abcdefghijklmnopqrstuvwxyz" +

"abcdefghijklmnopqrstuvwxyz" +

...

"abcdefghijklmnopqrstuvwxyz" (20 times)

Type: java.lang.lnteger Value: 7777

tupleComplex Type: java.lang .String Value: "a"

Type: java.lang.String Value: "b"

Type: java.lang.String Value: "c"

Type: java.lang.String Value: "d"

..
Type: java.lang.String Value: z

Type: java.lang.lnteger Value : 7777

Figure25 - Tuples used for testing

Performance Test for out () Operation
52.14 52.327

49
D tupleSimple

• tuplelong

44 tupleComplex

C

~ 39
"' f-
(/)

-g 34
0
u
Q)

~ 29
0

cu E 24 -
::,
z

19

14

9
1000 2000 3000 4000 5000

Number of Tuples Writen

Figure26 - Performance Test for out () operations

- 73 -

Figure26 shows that the approximate performance of the out(...) operation is

predictable as it is related to the complexity and structure of the tuple to be written.

However, it is difficult to calculate the exact performance of this operation because the

performance is also affected by the state of the server.

In order to compare the performance of the out(...) operations with/without

transactional controls, the following test writes tupleSimple under three conditions:

without any transaction , under a single level transaction and under a nested

transaction. The result is shown in Figure27. The test result shows that the out (...)

operations take longer to finish when it is done under transactional controls . The

performance difference between single-level and multiple-level transactions is not

stable because that this result is affected by the workload on the server when it's

implementing the operation.

Performance Test for out() Operation Under Transaction

54 D Without Transaction

• Under Single Level Transaction
49 D Under Nested Transaction 1------------"_..:..;---=----.-

C
Q)
~

~ 39
V)

"O
C
O 34 I----~-----,---'----'----------.......
u
Q)
(/)

0 29 ~-----'----------
c
::J
0

E 24 1-------"-----
~

14 ··1--------

1000 2000 3000

Number of Tuples Writen

4000 5000

Figure27 - Performance Test for out () operations under (sub)transactions

Figure 28 shows the performance difference of the out(...) operations between writing

to an empty Tuple-space and to a filled Tuple-space. For this test, the tupleSimple

- 74 -

object was written 1000 times to the Tuple-space when it was containing different

quantity of tuples.

9

8
C
Q)

~ 7
f-

~ 6
C
0

~ 5
Cl)

0 4
c
::::,

~ 3
<(

2

0

out () Performance Test Under Different Space Condition

0 10000 20000 30000 40000
Number of Tuples Contained by the Space

Figure28 - Performance Test for out () operations under different space conditions

The following test shows the performance difference of the out(...) operations when

the Tuplespace server is serving different quantity of concurrent accesses . For this

test, the tupleSimple object was written 1000 times to the space when the

Tuplespace server was serving 0, 25, 50, 75, and 100 clients .

out() Operation Performance Test Under Different Server Condition

80 -,---------,-------,---------------,
C

70 Q)
.><:
ro
f- 60
V)

-0 50 C
0
(.)

40 Q)
Cl) - 30 0
L.
Q)

20 .c
E
::::, 10 z

0
0 25 50 75 100

Nurrber of Concurrent Accesses

Figure29 - Performance Test for out () operations under different server conditions

The result of this test shows that the performance of the Tuplespace server is greatly

affected when the server is serving multiple clients simultaneously. Moreover, when

- 75 -

the server is dealing with multiple clients, its exact performance is quite unpredictable.

7.3.2 Read/Take tuples

In this section, the performance tests are implemented on the rd (...) operations only

because the performance of t k (...) operations are almost identical as the rd (...)

operations.

A program was developed to read each of the tuples in Figure25 as template from a

Tuple-space to test the performance of the rd (...) operations. Figure30 shows the

performance result when reading a matching tuple 1000 times from the Tuple-space.

Although the performance of the rd (.. .) operation cannot be predicated exactly(the

result also depends on the state of the server) , this test proves that the performance

of rd (...) operation is related to the structure and complexity of the tuple to be read.

rd () Performance Test for Different Tuples
192 1--,---'--~'---,_ ______________ -,----"------'-'-l

D tupleSimple
182
172

• tuplelong

162 1-t=-=-~:..::...::...:..:.:!::..:.=:J-----=-=--==-=-c::--~~':--:-'~'-:----:~- --'-"°""-+---"------j
152 f----,....,-----,-;------,-,:----;-;:--::-:::::,-:::---;:,-::-;-:--:;-----;;--:;--::-;,-;-- -,

ai 142
.:.:.
~ 132
~ 122
§ 112 u
Jl 102
0 92
c

82 :;:,
0
E 72 <(

62
52
42
32
22
12

1000 2000 3000 4000
Target Tuple's Index Position In the Space

Figure30 - Performance Test for rd () operations

5000

In order to compare the performance of the rd(...) operations with/without

transactional controls, the following test reads tupleSimple under three conditions:

without any transaction, under a single-level transaction and under a nested

- 76 -

transaction. The result is shown in Figure 31.

rd() Performance Test Under Transactio

34

32

ai 28
""' (Q

t;;; 26
-0
C

8 24
Q)

Cl)

a Without Transaction

D Under Transaction

D Under Nested Transaction

o 22 1------------
c
5 20 i----------,'A'Vrr--

~

14

12
1000 2000 3000 4000

Target Tuple Index Position In the Space

5000

Figure31 - Performance Test for rd () operations under transactions

The following chart demonstrates the performance difference of the rd(...) operations

between retrieving tuple from the primary Tuple-space and from an alternative

Tuple-space. For this test, the program tried to read a tuple which is not available in

the primary Tuple-space, so the primary Tuple-space redirects the request to another

Tuple-space (an alternative Tuple-space) for further search. The result (Figure32)

clearly shows that the performance is greatly affected by the network latency.

rd() Performance Test For Retrieving From Alternative Server

500 -------..,.---------.----.--------,

450 C Read From Primary Server

• Read From Alternative Server

400 1-----------------
c:

~3501--------------------
~
~300-t--------,-_;.---,.---"'----!

@250 -1----,----._.--,..,_.;.;-,-----,.'~
(/)

~ 200 +----------
Jl
§ 150 --------z

50 ~---....... -.n-"ff'lr-"

o.l--.'"1L.--•
1000 Number of Tuples Read 2000

Figure32 - Performance Test for rd () when retrieving from alternative servers

- 77 -

The following test shows the performance difference of the rd(...) operation when the

server is serving different number of concurrent accesses.

rd() Performance Test Under Different Concurrent Access

67
CtupleSimple

62

57
C:
Q) 52 .,<

~

"' ., 47
C:

8
Q) 42
en
0 37
c
:, 32 0
E
<{ 27

22

17

12
0 25 50 75 100

Number of Concurrent Accesses the Server is Dealing with

Figure33 - Performance Test for rd () under concurrent access situations

The tests implemented in this section demonstrate that the performance of the

Tuplespace system is affected by the size and complexity of the tuples to be wrote or

retrieved. However, the performance difference between implementing the operations

with/without transactional controls is not significant. When the Tuplespace server is

dealing with different number of concurrent accesses, the performance is greatly

affected and unpredictable , because the Tuplespace server will randomly pick up

tasks from a task pool and process them. Any request from clients will be placed in a

task pool first. The Tuplespace server is designed to have 100 threads running

concurrently to take tasks from the task pool, complete the task and then take another

task from the task pool. Therefore, there is no precise indication about the

performance under a concurrent situation as we don't know the position of the task in

the pool and when it will be taken for process. Another point needs to be noticed from

the tests is that the network latency can dramatically affect the performance of the

system. When the client's request is redirected to alternative Tuplespace servers, i.e.

the request is send to another computer over a network, the performance difference

between different types of tuples is totally overwhelmed by the network latency.

- 78 -

In this chapter, we've shown tests incorporating both single-level and nested

transactions into applications so that they can operate in a safe and correct manner in

the presence of partial failure. We've also shown tests demonstrating the uses of each

operation provided by the system and how to make use of multiple spaces in order to

make the application become more truly scalable. Based on these tests, we can see

that the Tuplespace model and this Tuplespace system could be a powerful option for

building robust and scalable distributed applications.

- 79 -

8. Further Research Areas

There are number of interesting areas for further research. This chapter discusses

some of such topics in turn.

8.1 Client Access Authorization and Management

In the current design of the system, as long as clients know how to connect to the

Tuplespace server and comply with the communication protocols, they can write

tuples into the Tuple-space and retrieve tuples out from the Tuple-space(s), and each

client has equivalent access right. In other words, a client can potentially access all

the tuples stored in the space(s), including the tuples containing sensitive data. It

would be useful if the server could firstly validate the clients that access its

Tuple-space, and control their access levels. By having access control, the tuples

containing sensitive data, such as password, bank account information or personal

information, can be stored securely in the space and are only accessible to those

authorized clients. And also, access control ensures that the resources of the

Tuplespace server are only allocated to authorized users.

8.2 Dynamic Class Loading

This Tuplespace system is designed and built based on the assumption that the client

"understands" the tuple returned from the Tuplespace server including all the fields

contained in the tuple. Likewise, the Tuplespace server is also assumed to be able to

"fully understand" each tuple and template it receives from the clients. By

"understand", we mean that each end of the system has already got the same version

of the . class files to interpret (deserialize) the tuple objects and field objects.

However, in a fully distributed system, the assumption cannot always be true. For

example, client A writes tuplel containing a field of type orange to a Tuple-space,

client B wants to read a tuple which contains a field of type orange , so tuplel is

returned to client B. However, client B is holding an old version of Orange . class ,

- 80-

which means that client B cannot interpret tuplel accurately. To solve this problem,

the Tuplespace system has to have support for dynamic class loading to ensure that

each node of the system has the proper . class files to interpret the objects.

Java platform has the capability to dynamically download Java software from any URL

to a JVM running in a separate process, usually on a different physical system. For

example, a JVM running from within a web browser can download the bytecodes for

subclasses of j a va . applet . Applet and any other classes needed by that applet.

The system on which the browser is running has likely never run this applet before,

nor installed it on its disk. Once all the necessary classes have been downloaded from

the server, the browser can start the execution of the applet program using the local

resources of the system on which the client browser is running. Moreover, Java RMI

takes advantage of this capability to download and execute classes and on systems

where those classes have never been installed on disk. Therefore, this capability of

Java platform can be investigated in further research to achieve dynamic class

loading in the system.

Here are some suggestions about the techniques that might be involved when

building dynamic class loading supports for the system in further research. One is the

use of ClassLoader in the Java programming language. ClassLoader allows Java

program to load classes from known location(s). Usually, a class loader is used in

conjunction with an HTTP server that is serving up compiled classes for the Java

platform. A second technique is the use of Java codeba se. Java codebase can be

defined as a source, or a place, from which to load classes into a JVM. codebase is

similar as CLASSPATH of a system and give directions to a Java application to find

desired (potentially remote) classes. The third technique that could be used is Java

MarshalledObject. A MarshalledObject contains a byte stream with the

serialized representation of an object given to its constructor. The classes needed for

the serialized object are annotated with a codebase URL from where the class can be

loaded (if available).

- 81 -

8.3 Higher Efficiency and Reliability

There are many possibilities to enhance the performance and reliability of the

Tuplespace system. The following list shows some points that can be investigated for

efficiency and reliability improvements:

• Buffer output and input when generating and receiving messages

• Design a protocol to efficiently packetize messages and re-assemble them,

including low level buffering and flow control, sequence numbering,

acknowledgment and retransmission scheme.

• More efficient organization and format of the various lists that transaction

requires .

• Develop lease control of transactions. Thus, the lifetime of transactions can be

controlled by transaction manager, and no transaction can occupy server

resources forever.

• Build a replication scheme on top of the Tuplespace system to provide multiple

copy Tuple-spaces while simultaneously addressing concurrency and reliability

problems.

• Develop a more efficient matching algorithm. For example, in [8], a system

named RDBSpace was developed which utilizes a relational database back-end

for the storage of tuples. The current implementation of RDBSpace uses the MM

mySQL JDBC driver and the mySQL relational database management system.

8.4 Built-in SQL support

A 3-Tier model is frequently used in today's e-commerce and enterprise solutions,

where normally the first tier is the user interface, the second is the business logic, and

the third is the database. Since Tuplespace systems provide high scalability,

concurrency, and ease of dynamic networking through loose coupling, Tuplespace

systems can actually make an efficient middle tier. These can easily expand to accept

new connections and shrink as disconnections occur, without affecting the whole

enterprise system. However, one drawback is that Tuplespace systems are not

- 82 -

database-centric. Most of the second tier programs focus on generating and

executing SQL database queries, but this Tuplespace system's APls are built with no

SQL compatibility. For programmers who are already familiar with database

interactions, Tuplespace APls may appear irrelevant. A further research topic could

be to investigate the database issues, possibly incorporating some database

operations or SQL support into the Tuplespace API.

As the main idea of the research is to investigate the idea behind the Tuplespace

model for distributed computing, the Tuplespace system developed for the research is

far away from being a mature system. While there is still much work needed to be

done to make the system fully distributed and reliable, the presented prototype did

provide a test-bed for the in-depth investigation of transactions in such systems.

- 83 -

9. Conclusions

The proposed Tuplespace system is aimed to provide a framework with transactional

controls for building distributed programs which can be implemented without

specialized hardware or platform restrictions. With Java's platform independence,

message passing, associate searching, remote method invocation, and Tuple-space

partitioning, we can build a flexible, scalable, sharable, and reliable object storage

system. Transactions have been shown to be a useful tool for adding reliability to

distributed systems. When the transactional controls are provided, it is much easier to

build applications on top of this Tuplespace system because the reliability and

concurrency issues are already taken care of. Nested transactions provide a

potentially useful extension over single-level transactions by offering a number of

extra features. In conclusion, the Tuplespace architecture is powerful with a small set

of easy-to-master methods. Comparing to other models for developing distributed

applications, it offers simpler design, more robust, expandable and highly scalable

results .

- 84 -

References

[1] Jim Farley. Java Distributed Computing. O'Reilly Media, Inc, 1995.

[2] Elliotte Rusty Harold. Java Network Programming, Third Edition. O'Reilly Media, Inc,

2005.

[3] Prashant Sridharia. advanced JAVA networking. Prentice-Hall, Inc, 1997.

[4] David Gelernter. Generative communication in Linda. ACM Trans. Programming

Languages and Systems, January 1985.

[5] Nicholas Carriere, David Gelernter. LINDA IN CONTEXT. Volume 32, Number4,

Communications of the ACM April, 1989.

[6] Bill Venners. Sway with JavaSpaces: A Conversation with Ken Arnold. September 30,

2002. http://www.artima.com/intv/sway.html

[7) Philip Bishop, Nigel Warren. Observing JavaSpace-Based Systems. October 7, 2002.

http://www.artima.com/jini/ jiniology/obspaceA.html

[8) Geoffrey C. Arnold, Gregory M. Kapfhammer, and Robert Roos. Implementation and

Analysis of a JavaSpace Supported by a Relational Database. P950 - 955 ISBN:

1-892512-88-2, CSREA Press, 2002.

[9) Castellani , S, Ciancarini, P. and Rossi, D .. The ShaPE of ShaDE: a Coordination System.

Technical Report UBLCS, Department of Computer Science, University of Bologna, Italy,

1995.

[10) Martin Gaedke, Klaus Turowski. Web-Based Federation of Business Application Systems

for Ecommerce Applications. In: S. Conrad; W. Hasselbring; G. Saake (Ed.}: 2rid Intl.

Workshop on Engineering Federated Information Systems (EFIS99), Germany, 1999.

[11] Umesh Bellur, Siddharth Bondre. xSpace - A Tuple Space for XML & its application in

Orchestration of Web services. P766 - 772 ISBN: 1-59593-108-2, ACM Press, New York,

NY, USA, 2006.

[12) Andrea Omicini. On the semantics of tuple-based coordination models. P175- 182 ISBN:

1-58113-086-4, ACM Press, New York, NY, USA, 1999.

[13] Robert Jellinghaus. Eiffel Linda: An Object-Oriented Linda Dialect. P70 - 84 ISSN:

0362-1340, ACM Press, New York, NY, USA, 1990.

- 85 -

[14) Eric Freeman and Susanne Hupfer. Make room for JavaSpaces, Part I - Part VI.

http://www.artima.com/jini/ jiniology/js1 .html

[15) Bernhard Angerer. Space-Based Programming, 19 March, 2003.

http://www.onjava.com/pub/a/onjava/2003/03/19/java spaces.html

[16] JavaSpaces™ Service Specification, Version 2.2. Sun Microsystems, Inc.

[17) IBM. The TSpaces vision. URL:

http://www.almaden.ibm.com/cs/TSpaces/htmlNision.html

[18] GigaSpaces Technologies Ltd. Gigaspaces. URL: http://www.gigaspaces.com/index.htm.

[19) Venu Vasudevan, Sean Landis. Malleable Services. Vol.11 , No.4, International Journal of

Software Engineering and Knowledge Engineering, 2001.

[20) Melinda-Carol Ballou. DEC to display parallel processing application running on network

supercomputer at OECworld. Vol. 7, No. 26, Digital Review, July 9, 1990.

[21] Robert A. Whiteside, Jerrold S. Leichter. Using Linda for supercomputing on a local area

network. P192-199 ISBN: 0-8186-0882-X, IEEE Computer Society Press, Los Alamitos ,

CA, USA, 1998.

[22] Robert Tolksdorf, Elena Paslaru Bontas, Lyndon J. B. Nixon. A coordination model for the

Semantic Web. P419 - 423 ISBN: 1-59593-108-2, ACM Press, New York, NY, USA,

2006.

[23) Semantic Web. W3C Technology and Society domain, http://www.w3.org/2001 /sw/.

[24) Jini™ Entry Specification, version 1.0. Sun Microsystems, Inc.

[25] Cay S. Horstmann, Gary Cornell. Core JAVA 2, Volume II - Advanced Features, Seventh

Edition. Sun Microsystems, Inc, 2005.

[26] Chandrasekhar Boyapati, Robert Lee, Martin Rinard. Safe Concurrent Programming in

Java. MIT Laboratory for Computer Science, 200 Technology Square, Cambridge MA,

2000.

[27] Ivor Horton. Beginning Java1
,,, 2 SOK 1.4 Edition. Wiley Publishing, Inc, 2003.

[28] Rachid Guerraoui. Nested Transactions: Reviewing the Coherence Contract.

INFORMATION SCIENCES 84, 161-172, Elsevier Science Inc, 1995

- 86 -

[29] Jean Bacon. Concurrent Systems Operating Systems, Database and Distributed Systems:

An integrated Approach, Second Edition. Addison Wesley Longman Ltd, 1998.

[30] Java Transaction AP/ (JTA), Version 1.0.1. Sun Microsystems Inc, 1999.

[31] Brian Goetz. Understanding JTS An introduction to transactions.

http ://www-128. i bm .com/developerworks/java/I ibra ry/j- jtp0305. html

[32] Jini™ Transaction Specification, Version 2.0. Sun Microsystems, Inc.

- 87 -

Appendix A: CD - ROM

The enclosed CD-ROM contains the code of the presented system.

- 88-

