Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Characterization of ACC Oxidase

from the Leaves of

Malus domestica Borkh. (Apple)

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Plant Biochemistry and Molecular Biology

Institute of Molecular BioSciences Massey University, Palmerston North New Zealand

Jan E. Binnie

2007

ABSTRACT

The expression, accumulation and kinetic properties of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO), the enzyme which catalyses the final step in the ACC-dependent pathway of ethylene biosynthesis in plants, is examined.

The investigation is divided into three sections: (i) identification of two ACO genes in apple leaf tissue, designated *MD-ACO2* and *MD-ACO3*, (ii) kinetic analyses of each of the three isoforms of ACO in apple (MD-ACO1, MD-ACO2 and MD-ACO3) expressed in *E. coli*, and (iii) temporal and developmental expression *in vivo* of each of the ACO genes and accumulation of the corresponding gene products in leaf and fruit tissue.

The coding regions of putative ACO gene transcripts were generated from leaf tissue using RT-PCR. Sequence alignments and interrogation of the expressed sequence tags (ESTs) database indicated that the entire open reading frame (ORF) sequences were encoded by two distinct genes, and these are designated MD-ACO2 and MD-ACO3. A third ACO gene had been identified in apple by other research workers previously, and designated MD-ACO1. Differences are obvious in the number of base-pairs (bp) constituting the entire ORF of MD-ACO1 (942 bp), MD-ACO2 (990 bp) and MD-ACO3 (966 bp). MD-ACO1 and MD-ACO2 share a close nucleotide sequence identity of 93.9 % in the ORF but diverge in the 3' untranslated regions (3'-UTR) (69.5 %). In contrast, MD-ACO3 shares a lower sequence identity with both MD-ACO1 (78.5 %) and MD-ACO2 (77.8 %) in the ORF, and in the 3'-UTR (MD-ACO1, 68.4 %; MD-ACO2, 71 %). A comparison of the gene structures show that the endonuclease restriction sites are unique to each individual MD-ACO sequence. Genomic Southern analysis, using probes spanning the 3'-UTR and the 3'-end of the coding region confirmed that MD-ACO3 is encoded by a distinct gene. However, while the distinction between MD-ACO1 and MD-ACO2 is not as definitive, different gene expression patterns adds credence to their distinctiveness. Each of the three deduced amino acid sequences contain all of the residues hitherto reported to be necessary for maximal ACO activity.

Expression of *MD-ACO1*, *MD-ACO2* and *MD-ACO3* as fusion proteins in *E. coli* was induced using isopropyl-β-_D-thiogalactopyranoside (IPTG), the recombinant proteins purified by nickelnitrilotriacetic acid (NiNTA) affinity chromatography and the products had predicted masses determined from the nucleotide sequences, including the His-tag of 38.53 kDa (MD-ACO1), 40.39 kDa (MD-ACO2) and 39.3 kDa (MD-ACO3). Polyclonal antibodies were raised against the *MD-ACO3* fusion in rabbit for western blot analysis. Antibodies had been raised previously against recombinant MD-ACO1, and while it was considered likely the MD-ACO2 would be recognized by the MD-ACO1 antibodies, MD-ACO2 does not appear to be recognized *in vivo* by the antibody.

Analyses of the kinetic properties of the three apple ACOs was undertaken. Apparent Michaelis constants (K_m) of 89.39 μ M (MD-ACO1), 401.03 μ M (MD-ACO2) and 244.5 μ M (MD-ACO3) have been determined which suggests differences in the affinity of each enzyme for the substrate ACC. Maximum velocity (V_{max}) was determined for MD-ACO1 (15.15 nmol), MD-ACO2 (12.94 nmol) and MD-ACO3 (18.94 nmol). The catalytic constant (K_{cat}) was determined for MD-ACO1 (6.6 x 10⁻²), MD-ACO2 (3.44 x 10⁻²) and for MD-ACO3 (9.14 x 10⁻²), with K_{cat}/K_m (μ M s⁻¹) values of 7.38 x 10⁻⁴ μ M s⁻¹ (MD-ACO1), 0.86 x 10⁻⁴ M s⁻¹ (MD-ACO2) and 3.8 x 10⁻⁴ μ M s⁻¹ (MD-ACO3). The optimal pH for MD-ACO1 was 7.0 - 7.5, MD-ACO2 7.5 - 8.0 and MD-ACO3 7.0 - 8.0. All three isoforms exhibited absolute requirements for the co-substrate ascorbate *in vitro* with optimal activity at 30 mM. Similarly, ferrous iron (FeSO₄.7H₂0; of 15 – 25 μ M) and sodium bicarbonate (NaHCO₃; of 30 mM) were required for optimal activity, and were the same for all isoforms. No significant difference in thermostability was found in this study between the MD-ACO isoforms at the P = 0.05 level. However, the activities of the enzyme differed significantly between temperatures over time.

In vivo expression of each of the ACO genes in leaf tissue determined using RT-PCR and cDNA Southern analysis reveal that both *MD-ACO2* and *MD-ACO3* are expressed in young leaf tissue and in mature leaf tissue. While *MD-ACO3* is expressed predominantly in young leaf tissue, *MD-ACO2* (in common with *MD-ACO1*) is expressed predominantly in mature fruit tissue. None of the *MD-ACOs* were observed to be senescence associated genes (SAG). MD-ACO3 protein accumulated predominantly in young leaf tissue and less intensely in both mature leaf tissue and young fruit tissue, while MD-ACO1 accumulated only in mature fruit tissue. For the developmental studies, samples were collected at approximately 11 am in this study. *MD-ACO2* and *MD-ACO3* were also expressed in leaf tissue collected over a 24 h period in the spring and also in the autumn. For both genes transcripts accumulated in the presence of fruit but tended to disappear in the absence of fruit.

These results show that *MD-ACO1*, *MD-ACO2* and *MD-ACO3* are differentially expressed, and that MD-ACO3 is encoded by a gene distinct from MD-ACO1 and MD-ACO2. MD-ACO1 and MD-ACO2 are either allelic forms of the same gene or closely clustered. Although there is some variation in kinetic properties which may reflect different physiological environments, they do not vary greatly.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Professor Michael T. McManus for guiding me through this work with enthusiasm, humour, encouragement and patience. Such an experienced and trusted advisor is a privilege to interact with; thank you for your time Michael, and consideration, I feel I cannot say enough.

I wish to acknowledge my three consecutive second supervisors at HortResearch, Dr Dennis Greer, Dr Dr Jens Wönsche and Dr Stuart Tustin. I am particularly grateful to Dennis Greer, now at the Charles Sturt University in Australia, for securing funding from HortResearch for an Enterprise Scholarship with the New Zealand Foundation for Research Science and Technology. To Jens Wönsche, now back in Germany, at Stuttgart University, thank you for your expertise and advice in the orchard at Crosses Road, Havelock North Research Centre, particularly for your assistance with the portable photosynthetic system. Thanks also to my final supervisor Stuart Tustin.

This is also a good opportunity to thank the great team at HortResearch in the Hawkes Bay, including Jens, Stuart, Dr Steven McArtney, and many others for answering the numerous questions I threw at them, Paul Brookfield for help with the GC, the orchard harvesting manager (Armann) for organizing the fruit to be picked when I wanted the trees to be stripped of fruit, to the security guards who held back the dogs as I collected samples in the middle of the night, and to the many others who I asked for assistance during my research. I would also like to thank HortResearch for providing the gala apple trees specifically for my use during this project. Dr Robert Simpson at HortResearch in Palmerston North for assistance with the EST database searches and Dr Andy Allen at HortResearch in Auckland for providing the virtual northern data.

I gratefully acknowledge the assistance of Michael's post-doc Richard Scott, research assistances Anya Lambert and Susanna Leung for assistance with the cloning, as well as technicians Cait Inglis (especially when shifting labs) and Lena Ling. Also the other members of Michael's crew who were in the lab when I arrived, Simone, Vikki, the mad Greg, Trish, Ning and Balance. To the masters students for their breath of fresh air, Fiona, tall Mathew and the taller Mathew. Elizabeth, I've really enjoyed your friendship and fun, as well as the discussions about our respective research. To the newer ones Marissa, Jolla, Ludivine and Aluh, I wish you all the best with your studies, and to Michael's new post-doc Sarah-Jane Dorling for being enthusiastic about everything.

My appreciation also goes to many members of the Institute of Molecular Biosciences; in the Allan Wilson Centre, Trish McLenachen for her help with the bioinformatics, Associate Professor Peter Lockhart, Dr Lesley Collins and Richard Carter for assistance with the construction of the phylogenetic tree, Lorraine Berry for sequencing, and many others; Gill Norris's lab, particularly the legendary Trevor Loo; to the IMBS post-docs generally for their suggestions and encouragement, and importantly to the technical support particularly Chris Burrows and Carol Flyger, and also Paul Hocquard; and to the many others who for one reason or another have been asked for assistance, thank you all. Also thanks to the Institute of Fundamental Science people, particularly Peter Lewis and the workshop guys.

I would like to thank the New Zealand Foundation for Research, Science and Technology (FRST) together with the Horticulture and Food Research Institute of New Zealand Ltd (HortResearch) for a Bright Future Enterprise Scholarship.

I am also grateful to the New Zealand Society of Biochemistry and Molecular Biology, the New Zealand Society of Plant Physiologists (now Biologists) and the Institute of Molecular Biosciences for providing generous travel assistance grants for me to attend conferences including the 7th International Symposium on the Plant Hormone Ethylene, in Pisa, Italy.

My final and very special thanks must go to my partner John for the support and encouragement he has given me throughout the project, and for making life fun despite the PhD.

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	vi
LIST OF FIGURES	xii
LIST OF TABLES	XV
LIST OF ABBREVIATIONS	xvii
ABBREVIATIONS FOR AMINO ACIDS	xxi

Chapt	ter One: INTRODUCTION1
1.1	ETHYLENE IN PLANT DEVELOPMENT1
1.2	ETHYLENE PERCEPTION AND SIGNAL TRANSDUCTION
1.2.1	Ethylene Perception2
1.2.2	Ethylene Signal Transduction4
1.3	ETHYLENE BIOSYNTHESIS IN HIGHER PLANTS
1.3.1	SAM Synthetase
1.3.2	ACC Synthase (ACS)10
1.3.3	Conjugation of ACC14
1.4	ACC OXIDASE (ACO)15
1.4.1	The Ethylene-Forming Enzyme (EFE)15
1.4.2	Catalytic Mechanism of ACC Oxidase17
1.4.3	ACC Oxidase Gene Expression in Higher Plants22
1.5	CIRCADIAN REGULATON AND BIOLOGICAL CLOCKS26
1.6	MALUS DOMESTICA L. BORKH. (APPLE)
1.6.1	ACC Oxidase in Malus domestica
1.6.1.1	Expression of ACC Oxidase in Apple
1.6.1.2	Purification, Characterization and Kinetic Properties of ACC Oxidase
	in apple
1.6.1.3	Requirement of Apple ACC Oxidase for Co-substrate and Co-factors
1.6.1.4	Localization of ACC Oxidase in Apple
1.6.1.5	The Focus of Apple Studies
1.7	OBJECTIVE AND AIMS OF THE THESIS

Chapt	ter Two: MATERIALS AND METHODS	40
2.1	PLANT MATERIAL	40
2.1.1	Harvesting of Plant Material	40
2.1.2	Chlorophyll Quantification	43
2.1.2.1	Statistical Analysis	43
2.1.3	Leaf Carbon Assimilation Measurements	44
2.1.4	Protein Extraction from Apple Tissue	44
2.2	MOLECULAR METHODS	44
2.2.1	Growth and Storage of E. coli	44
2.2.1.1	Luria-Bertani (LB) Media and LB Ampicillin ¹⁰⁰ Plates	44
2.2.1.2	Preparation of Competent Cells	45
2.2.2	Isolation of Ribonucleic Acid (RNA)	46
2.2.2.1	Extraction of Total RNA	46
2.2.2.2	Quantification of RNA in Solution	49
2.2.3	Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)	49
2.2.3.1	Generation of cDNA using Reverse Transcriptase	50
2.2.3.2	Amplification of cDNA by Polymerase Chain Reaction	50
2.2.3.3	Primers Used for In-Frame Cloning	54
2.2.3.4	Relative Quantitative RT-PCR using Quantum RNA [™] 18S Internal	
	Standards	57
2.2.4	Cloning of PCR Products into Plasmid Vectors	58
2.2.4.1	Ethanol Precipitation of DNA or RNA	58
2.2.4.2	Quantification of DNA	59
2.2.4.3	Agarose Gel Electrophoresis of DNA	59
2.2.4.4	DNA Recovery from Agarose Gels	60
2.2.4.5	DNA Ligation	61
2.2.4.6	Transformation of E. coli using the Heat Shock Method	63
2.2.5	Characterizaton and Sequencing of Cloned DNA in E. coli	64
2.2.5.1	Isolation of Plasmids from E. coli by the Alkaline Lysis Method	64
2.2.5.2	Plasmid Isolation from E. coli by the Rapid Boiling Method	65
2.2.5.3	Digestion of DNA with Endonuclease Restriction Enzymes	65
2.2.5.4	Purification of Plasmid DNA for Sequencing	66
2.2.5.5	Purification of PCR Products	67

2.2.5.6	Preparation for Automated Sequencing of DNA	68
2.2.6	DNA Sequencing Analysis	69
2.2.6.1	Sequence Alignment	69
2.2.6.2	Sequence Phylogeny	69
2.2.7	Southern Analysis	70
2.2.7.1	Isolation of Genomic DNA	70
2.2.7.2	Digestion of Genomic DNA	71
2.2.7.3	Southern Blotting of Genomic DNA	72
2.2.7.4	Southern Blotting of cDNA Fragments	73
2.2.7.5	Labelling DNA for Southern Analysis with $[\alpha^{-32}P]$ -dATP	74
2.2.7.6	Hybridisation and Washing of DNA Blots	74
2.2.7.7	Stripping Southern Blots	75
2.3	EXPRESSION, PURIFICATION, ANALYSIS OF ENZYME	
	ACTIVITY AND PROTEIN ACCUMULATION	75
2.3.1	Preliminary Induction of Recombinant Proteins	76
2.3.2	Large Scale Induction of Recombinant Proteins	76
2.3.3	Isolation of Glutathione-S-Transferase (GST) Fusion Proteins	77
2.3.4	Purification of His-Tagged Proteins by Metal Chelate Affinity	
2.3.4	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography	79
2.3.4 2.3.4.1	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin	
2.3.4 2.3.4.1 2.3.4.2	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein	79 79
2.3.4 2.3.4.1 2.3.4.2	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein Using Tobacco Etch Virus (TEV) Protease	
2.3.4 2.3.4.1 2.3.4.2 2.3.4.3	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein Using Tobacco Etch Virus (TEV) Protease Acetone Precipitation of Recombinant Proteins	79 79 80 81
 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.5 	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein Using Tobacco Etch Virus (TEV) Protease Acetone Precipitation of Recombinant Proteins Sephadex G-25 Gel Filtration Chromatography	
 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.5 2.3.6 	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein Using Tobacco Etch Virus (TEV) Protease Acetone Precipitation of Recombinant Proteins Sephadex G-25 Gel Filtration Chromatography Fast Protein Liquid Chromatography (FPLC)	
 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.5 2.3.6 2.3.6.1 	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein Using Tobacco Etch Virus (TEV) Protease Acetone Precipitation of Recombinant Proteins Sephadex G-25 Gel Filtration Chromatography Fast Protein Liquid Chromatography (FPLC) Anion Exchange Chromatography	
 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.5 2.3.6 2.3.6.1 2.3.6.2 	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein Using Tobacco Etch Virus (TEV) Protease Acetone Precipitation of Recombinant Proteins Sephadex G-25 Gel Filtration Chromatography Fast Protein Liquid Chromatography (FPLC) Anion Exchange Chromatography Column Cleaning	
 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.5 2.3.6 2.3.6.1 2.3.6.2 2.3.7 	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein Using Tobacco Etch Virus (TEV) Protease Acetone Precipitation of Recombinant Proteins Sephadex G-25 Gel Filtration Chromatography Fast Protein Liquid Chromatography (FPLC) Anion Exchange Chromatography Column Cleaning. The Bradford Protein Assay	
 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.5 2.3.6 2.3.6.1 2.3.6.2 2.3.7 2.3.8 	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein Using Tobacco Etch Virus (TEV) Protease Acetone Precipitation of Recombinant Proteins Sephadex G-25 Gel Filtration Chromatography Fast Protein Liquid Chromatography (FPLC) Anion Exchange Chromatography Column Cleaning. The Bradford Protein Assay	
 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.5 2.3.6 2.3.6.1 2.3.6.2 2.3.7 2.3.8 2.3.8.1 	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein Using Tobacco Etch Virus (TEV) Protease Acetone Precipitation of Recombinant Proteins Sephadex G-25 Gel Filtration Chromatography Fast Protein Liquid Chromatography (FPLC) Anion Exchange Chromatography Column Cleaning. The Bradford Protein Assay Determination of pH Optimum	
 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.5 2.3.6 2.3.6.1 2.3.6.2 2.3.7 2.3.8 2.3.8.1 2.3.8.2 	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein Using Tobacco Etch Virus (TEV) Protease Acetone Precipitation of Recombinant Proteins Sephadex G-25 Gel Filtration Chromatography Fast Protein Liquid Chromatography (FPLC) Anion Exchange Chromatography Column Cleaning. The Bradford Protein Assay ACC Oxidase Assay. Determination of pH Optimum Optimal Requirements for Co-Substrate and Co-Factors.	
 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.5 2.3.6 2.3.6.1 2.3.6.2 2.3.7 2.3.8 2.3.8.1 2.3.8.2 2.3.8.3 	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein Using Tobacco Etch Virus (TEV) Protease. Acetone Precipitation of Recombinant Proteins Sephadex G-25 Gel Filtration Chromatography Fast Protein Liquid Chromatography (FPLC) Anion Exchange Chromatography Column Cleaning. The Bradford Protein Assay ACC Oxidase Assay. Determination of PH Optimum Optimal Requirements for Co-Substrate and Co-Factors. Determination of K _m , V _{max} and K _{cat}	
 2.3.4 2.3.4.1 2.3.4.2 2.3.4.3 2.3.5 2.3.6 2.3.6.1 2.3.6.2 2.3.7 2.3.8 2.3.8.1 2.3.8.2 2.3.8.3 2.3.8.4 	Purification of His-Tagged Proteins by Metal Chelate Affinity Chromatography Cleaning of Nickel Nitrilotriacetic Acid (Ni-NTA) Resin Cleavage of the Histidine Tag (His-Tag) from the Fusion Protein Using Tobacco Etch Virus (TEV) Protease Acetone Precipitation of Recombinant Proteins Sephadex G-25 Gel Filtration Chromatography Fast Protein Liquid Chromatography (FPLC) Anion Exchange Chromatography Column Cleaning. The Bradford Protein Assay Determination of pH Optimum Optimal Requirements for Co-Substrate and Co-Factors. Determination of Thermal Stability	

2.3.9.1	Measurement of Ethylene using Gas Chromatography	87
2.3.9.2	2 Measurement of Ethylene Production in Plant Tissues	87
2.3.9.3	Ethylene Calculations	87
2.3.10	Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis	
	(SDS-PAGE)	88
2.3.10.	.1 Preparing and Running Linear (12%) SDS-PAGE	88
2.3.10.	.2 Preparing and Running Gradient (10 % to 20 %) SDS-PAGE	90
2.3.10.	.3 Coomassie Brilliant Blue (CBB) Staining	90
2.3.11	Western Analysis	91
2.3.11.	.1 Production of Primary Polyclonal Antibodies	91
2.3.11.	.2 Electrophoretical Transfer of Proteins from Gel to PVDF Membrane	91
2.3.11.	.3 Immunodetection of Proteins on PVDF Membrane	93
2.3.11.	.4 Amino Acid Sequencing of N-Terminal Peptide Sequences	94
Chap	ter Three: RESULTS	95
3.1	ACC OXIDASE GENES IN MALUS DOMESTICA BORKH. (APPLE)	95
3.1.1	Molecular Cloning of Protein-Coding Regions of ACC Oxidase	
	Genes in Malus domestica (cultivar: Gala)	95
3.1.2	Confirmation of Putative ACC Oxidase cDNAs	97
3.1.3	Expressed Sequence Tag (EST) Searches at HortResearch	104
3.1.4	Summary of Gene Nomenclature	107
3.1.5	Genomic Structure of the Malus domestica ACC Oxidase Genes	108
3.1.6	Sequence Analysis of ACC Oxidase from Malus domestica	111
3.1.6.1	Nucleotide Sequence Identities Amongst the ORF of MD-ACO1,	
	MD-ACO2 and MD-ACO3	111
3.1.6.2	2 NCBI Nucleotide Database BLAST Analysis of the Entire ORF	
	for Each of the ACC Oxidase Sequences	111
3.1.6.3	Analysis of the Deduced Translational Sequences of Each of the	
	ACC Oxidase Proteins	115
3.1.7	Confirmation by Southern Analysis that MD-ACO3 is Encoded by a	
	Gene Distinct from MD-ACO1 and MD-ACO2	117
3.1.8	Evidence that Three Members of the MD-ACO Multi-gene Family	
	are Differentially Expressed In Vivo	122

3.2	EXPRESSION AND CHARACTERIZATION OF MD-ACO1,
	MD-ACO2 AND MD-ACO3 AS RECOMBINANT PROTEINS130
3.2.1	Protein Expression of MD-ACO1, MD-ACO2 and MD-ACO3130
3.2.1.1	Expression of Recombinant Protein in E. coli
3.2.1.2	Purification of His-Tagged Fusion Proteins133
3.2.2	Characterization of Polyclonal Antibodies Raised Against
	MD-ACO Fusion Proteins
3.2.2.1	Protein Accumulation of MD-ACO1/MD-ACO2 and MD-ACO3 in
	Apple Tissue
3.2.2.2	Protein Analysis: Removal of the His-Tag143
3.2.3	Kinetic Properties of MD-ACO1, MD-ACO2 and MD-ACO3146
3.2.3.1	Optimal Substrate and Co-factor Requirements for MD-ACO Activity146
3.2.3.2	The Michaelis-Constant (K_m) and Maximum Velocity (V_{max}) of the
	MD-ACO Isoforms for ACC148
3.2.3.3	Assessment of some Kinetic Parameters using the Same ACC Oxidase
	Isoform Generated in Two Different Expression Vector Systems152
3.2.3.3	Thermostability of MD-ACO1, MD-ACO2 and MD-ACO3154
3.3	ACC OXIDASE GENE EXPRESSION IN THE BOURSE SHOOT
	LEAVES OF APPLE
3.3.1	Physiological Measurements, MD-ACO Protein Accumulation
	and Gene Expression During Leaf Development
3.3.1.1	Change in Chlorophyll Concentration157
3.3.1.2	Photosynthesis Measurements
3.3.1.3	Protein Accumulation and Gene Expression163
3.3.2	ACC Oxidase Gene Expresson and Protein Accumulation
	in the Leaves of Apple Over a 24 h Period170
Chap	ter Four: DISCUSSION 176
4.1	OVERVIEW176
4.2	ACC OXIDASE GENES IN MALUS DOMESTICA176
4.2.1	Evidence of a Multi-Gene Family in Apple by Genomic Southern
	Analysis

4.2.2	Gene Structure of <i>MD-ACO1</i> , <i>MD-ACO2</i> and <i>MD-ACO3</i> ;		
	Comparison of Exons and Introns178		
4.2.3	Translated Products of MD-ACO Genes180		
4.2.4	Confirmation of MD-ACO Differential Gene Expression In Vivo181		
4.3	EXPRESSION AND CHARACTERIZATION OF MD-ACO1,		
	MD-ACO2 AND MD-ACO3 AS RECOMBINANT PROTEINS187		
4.3.1	Kinetic Properties of the MD-ACO Isoforms187		
4.3.2	Thermostability of MD-ACO1, MD-ACO2 and MD-ACO3195		
4.3.3	Physiological Significance of the Kinetic Properties of MD-ACOs197		
4.3.4	Some Possible Limitations of Expressing MD-ACOs in E. coli		
4.4	ACC OXIDASE ACCUMULATION AND GENE EXPRESSION		
	IN THE BOURSE SHOOT LEAVES OF MALUS DOMESTICA202		
4.4.1	MD-ACO Accumulation and Gene Expression During Leaf		
	Development		
4.4.2	MD-ACO Accumulation and Gene Expression in Leaves Over a 24 h		
	Period		
4.5	Summary		
4.6	Future Directions211		
APPE	NDIX 1A		
APPE	NDIX IB		
RIRI			

xi

LIST OF FIGURES

Figure 1.1	Ethylene biosyntheis and the Yang (Methionine) Cycle7
Figure 1.2	The stoichiometry of the reaction catalyzed by ACC oxidase17
Figure 2.1	The bourse shoot leaves of Apple42
Figure 2.1	Sequence of the primers used in RT-PCR to amplify putative ACC oxidase sequences
Figure 2.3	The map and schematic diagram of the pGEX-GP-3 Vector and the vector multiple cloning site
Figure 2.4	The map and schematic diagram of the pProEX-1 Vector and the vector multiple cloning site
Figure 2.5	pGEM [®] -T Easy Vector circle map and sequence reference points62
Figure 2.6	Sequence of the promoter and multiple cloning site of the pGEM [®] -T Easy Vector63
Figure 2.7	Arrangement of the apparatus used to transfer DNA samples to Hybond [™] -N ⁺ Membranes73
Figure 2.8	Western blotting apparatus: assembly of the electrophoretic transfer of proteins from an acrylamide gel to PVDF membrane
Figure 2.9	BioRad semi-dry trans-blot cell92
Figure 3.1	PCR amplification of a putative ACC oxidase cDNA using RT-generated cDNA templates from total RNA isolated from newly initiated green leaves, mature green leaves and senescing leaves96
Figure 3.2	Cloning of putative cDNAs encoding ACC oxidase in newly initiated green leaves, mature green leaves and senescing leaves of <i>Malus domestica</i> generated using RT-PCR
Figure 3.3	Comparison between the translated sequences of the partial cDNAs JEB: α and JEB: β with corresponding ACC oxidase sequences as indicated
Figure 3.4	Comparison of the deduced amino acid sequences of JEB:α (<i>MD-ACO2</i>) with Genbank accession number AF015787 and EST 120223 and EST 153710
Figure 3.5	Comparisons of the deduced amino acid sequences of JEB:β (<i>MD-ACO3</i>) with EST 179706 and EST 192136108
Figure 3.6	Gene structure of <i>MD-ACO1</i> and <i>MD-ACO2</i> with a putative structure determined for <i>MD-ACO3</i>
Figure 3.7	Comparison of the deduced amino acid sequences of the open reading frames of MD-ACO1, MD-ACO2 and MD-ACO3116

Figure 3.8	Phylogenetic analysis of the three ACC oxidase amino acid sequences from <i>Malus domestica</i> with other ACC oxidase genes in the Genbank database
Figure 3.9	Specificity of <i>MD-ACO1</i> , <i>MD-ACO2</i> and <i>MD-ACO3</i> as probes in blotting analysis
Figure 3.10	Southern analysis of Malus domestica genomic DNA121
Figure 3.11	Virtual northern
Figure 3.12	Evidence that <i>MD-ACO1</i> , <i>MD-ACO2</i> and <i>MD-ACO3</i> are expressed differentially <i>in vivo</i>
Figure 3.13	The position of the forward intron spanning primers of <i>MD-ACO1</i> , <i>MD-ACO2</i> and <i>MD-ACO3</i> , the forward position of the probe primers, and the reverse 3'-UTR primers used for both fragments and probes
Figure 3.14	Relative quantitative RT-PCR analysis of <i>MD-ACO1</i> , <i>MD-ACO2</i> and <i>MD-ACO3</i> expression <i>in vivo</i>
Figure 3.15	Confirmation that <i>MD-ACO1</i> , <i>MD-ACO2</i> and <i>MD-ACO3</i> are differentially expressed <i>in vivo</i> using cDNA Southern analysis
Figure 3.16	MD-ACO1, (putative) MD-ACO2 and (putative) MD-ACO3 expressed in <i>E. coli</i> (strain BL-21) using the pGEX expression vector
Figure 3.17	Specific activities of recombinant MD-ACO1, MD-ACO2 and MD-ACO3 expressed in the pGEX Vector
Figure 3.18	Comparison of the molecular mass of recombinant MD-ACO3 expressed using the pGEX Vector with MD-ACO3 expressed using the pProEX-1 vector, after separation on a 10 to 20 % SDS-PAGE gradient gel
Figure 3.19	SDS-PAGE of MD-ACO1, MD-ACO2 and MD-ACO3 following Metal Chelate Chromatography
Figure 3.20	Separation of active recombinant MD-ACO using a Mono Q Anion Exchange column
Figure 3.21	Recombinant His-tagged proteins after purification by metal Chelate Affinity Chromatography, Sephadex G-25 and Anion Exchange Chromatography
Figure 3.22	Detection of ACC oxidase in apple fruit and apple leaves using antibody raised against MD-ACO1 on western blot
Figure 3.23	Detection, using western analysis, of ACC oxidase in apple fruit and apple leaves by an antibody raised against MD-ACO3
Figure 3.24	Accumulation of MD-ACO1/MD-ACO2 and MD-ACO3 in various tissues of apple
Figure 3.25	Cleavage of the histidine tag from recombinant MD-ACO2 and MD-ACO3 using tobacco etch virus (TEV) protease, and subsequent evaluation of enzymatic activity

Figure 3.26	Effect of MD-ACO concentration on the V _{max} of MD-ACO1, MD-ACO2 and MD-ACO3
Figure 3.27	Activity assays of MD-ACO1, MD-ACO2 and MD-ACO3 without the presence of sodium bicarbonate (NaHCO ₃) in the reaction mixture
Figure 3.28	Recombinant MD-ACO1, MD-ACO2 and MD-ACO3 activity as a function of ACC concentration
Figure 3.29	Recombinant MD-ACO2 activity as a function of ACC concentration, expressed in the pGEX vector
Figure 3.30	Thermal stability of <i>Malus domestica</i> ACC oxidase at incubation temperatures of 25 °C, 35 °C and 45 °C
Figure 3.31	Changes in chlorophyll concentration as an indicator of leaf maturation in <i>Malus domestica</i>
Figure 3.32	Changes in chlorophyll concentration as an indicator of leaf senescence in <i>Malus domestica</i>
Figure 3.33	Chlorophyll concentration as an indicator of leaf senescence in <i>Malus domestica</i>
Figure 3.34	Leaf carbon assimilation in <i>Malus domestica</i> as an indicator of leaf senescence
Figure 3.35	ACC oxidase accumulation in the leaves of <i>Malus domestica</i> , from early to mid-season, using antibodies raised against MD-ACO1 164
Figure 3.36	ACC oxidase accumulation in the leaves of <i>Malus domestica</i> , from early to mid-season, using antibodies raised against MD-ACO3 165
Figure 3.37	Changes in ACC oxidase protein accumulation in leaf tissue from mid-season through to senescence (2003) in <i>Malus domestica</i> 166
Figure 3.38	RT-PCR analysis and cDNA Southern blot analysis of ACC oxidase gene expression (2003)
Figure 3.39	Gene expression and prote in accumulation of ACC oxidase from mid-season through to senescence
Figure 3.40	Circadian rhythm of ACC oxidase gene expression over 24 h in the leaves of <i>Malus domestica</i> (November, 2003)171
Figure 3.41	Circadian rhythm of ACC oxidase gene expression over 24 h in the leaves of <i>Malus domestica</i> (April, 2004)
Figure 3.42	Circadian rhythm of ACC oxidase gene expression over 24 h in the leaves of <i>Malus domestica</i> (fruit removed from the tree; April, 2005)
Figure 3.43	Circadian rhythm of ACC oxidase gene expression over 24 h in the leaves of <i>Malus domestica</i> (with fruit; April, 2005)

LIST OF TABLES

Table 1.1	Summary of some properties of ACC oxidase purified from apple	33
Table 1.2	Summary of the requirements of apple ACC oxidase for co-substrate and co- factors	35
Table 2.1	Names and addresses of the manufacturers of reagents and specialized equipment	41
Table 2.2	Primers used in this study	52
Table 3.1	Distribution of colonies and clones containing ACC oxidase inserts from apple leaf tissue	97
Table 3.2A	Results of a nucleotide BLAST search against JEB:α, 819 bp cDNA sequence	99
Table 3.2B	Results of a nucleotide BLAST search against JEB: β , 816 bp	
	cDNA sequence	100
Table 3.3A	Partial cDNAs of JEB:α and JEB:β aligned with ACC oxidase sequences from the NCBI Genebank database	102
Table 3.3B	Nucleotide identity (%) between JEB:α and JEB:β and ACC oxidase sequences from three cultivars of <i>Malus domestica</i>	103
Table 3.4	Identity (%) between EST 153710 and the cDNA X61390 (pAP4), JEB:α:AF015787 and JEB:β	105
Table 3.5	Identity (%) between ESTs (192136 and 179706) and the cDNA pAP4, JEB:α and JEB:β sequences	107
Table 3.6	Identity amongst the genomic DNA sequences of <i>MD-ACO1</i> , <i>MD-ACO2</i> and <i>MD-ACO3</i>	110
Table 3.7A	Opening reading frame nucleotide sequence identities of <i>MD-ACO1</i> , <i>MD-ACO2</i> and <i>MD-ACO3</i>	112
Table 3.7B	Nucleotide sequence identities of the 3'-UTR of <i>MD-ACO1</i> , <i>MD-ACO2</i> and <i>MD-ACO3</i>	112
Table 3.7C	Translated amino acid sequence identities of MD-ACO1, MD-ACO2 and MD-ACO3	112
Table 3.8A	Results of a nucleotide BLAST search against the <i>Malus domestica</i> ACC oxidase (<i>MD-ACO1</i>) 942 bp cDNA entire open reading frame sequence	113
Table 3.8B	Results of a nucleotide BLAST search against the <i>Malus domestica</i> ACC oxidase (<i>MD-ACO2</i>) 990 bp cDNA entire open reading frame sequence	114
Table 3.8C	Results of a nucleotide BLAST search against the <i>Malus domestica</i> ACC oxidase (<i>MD-ACO3</i>) 966 bp cDNA entire open reading frame sequence	114

Table 3.9	A comparison of MD-ACO1, (putative) MD-ACO2 and (putative) MD-ACO3	132
Table 3.10	NaCl concentration at which MD-ACO1, MD-ACO2 and MD-ACO3 elute from the Mono Q column at pH 7.5, compared with the estimated pI of each of the proteins	139
Table 3.11	Summary of substrate and co-factor requirements for MD-ACO1, MD-ACO2 and MD-ACO3 for optimal activity	149
Table 3.12	Summary of kinetic properties of MD-ACO1, MD-ACO2 and MD-ACO3.	152
Table 3.13	Some kinetic properties using the pGEX and pProEX-1 expression vectors	153
Table 3.14	Summary of thermal stability of <i>Malus domestica</i> ACC oxidases at incubation temperatures of 25 °C, 35 °C and 45 °C	156
Table 4.1	Comparison of the kinetic properties of recombinant and purified ACOs from apple and other species	189
Table 4.2	Summary of the specific activities of ACOs	191

LIST OF ABBREVIATIONS

A ₅₉₅	Absorbance at 595 λ nm
ACC	l-aminocyclopropane-l-carboxylic acid
ACO	ACC Oxidase
ACS	ACC Synthase
AEC	l-amino-2-ethyl-cyclopropane-1-carboxylic acid
AdoMet	S-adenosyl-L-methionine
AEC	l-amino-2-ethyl-cyclopropane-l-carboxylic acid
Amp ¹⁰⁰	Ampicillin (100 mg mL ⁻¹)
amu	Atomic mass unit
ANS	Anthocyanidin synthase
APS	Ammonium persulphate
BCIP	5-bromo-4-chloro-3-indoyl phosphate
BLAST	Basic Logical Alignment Search Tool
Borax	di-Sodium tetraborate decahydrate
bp	Base-pair
BSA	Bovine serum albumin
°C	Degrees Celsius
ca.	circa (approximately)
CAPS	3-(Cyclohexylamino)propanesulfonic acid
CBB	Coomassie Brilliant Blue
cv.	Cultivar
Ci	1 Curie = 3.7×10^{10} disintegrations per second
CTAB	Hexadecyltrimethylammonium bromide
DAFB	Days after full bloom
cDNA	DNA complimentary to a RNA, synthesized from RNA by reverse transcription in vitro
dATP	2'-deoxyadenosine 5'-triphosphate
dCTP	2'-deoxycytidine 5'-triphosphate
dGTP	2'-deoxyguanosine 5'-triphosphate
DAOCS	Deacetoxycephalosporin C synthase
DEAE	Diethylaminoethyl
DEPC	Diethyl pyrocarbonate
DMF	N,N-dimethyl formamide
DMSO	Dimethyl sulphoxide
DNA	Deoxyribonucleic acid

DNase	Deoxyribonuclease
DSBH	Double stranded beta helix (jellyroll)
dNTP	2'-deoxynucleotide 5'-triphosphate
DTT	Dithiothreitol
dTTP	2'-deoxythymidine 5'-triphosphate
DW	Dry weight
E. coli	Escherichia coli
EDTA	Ethylenediaminetetra acetic acid
EFE	Ethylene forming enzyme
EIN	Ethylene insensitive
EST	Expressed Sequenced Tag
ExPASy	Expert protein analysis system: proteomics server of the Swiss Institute of
	Bioinformatics (SIB)
FID	Flame ionization detector
FPLC	Fast protein liquid chromatography
FW	Fresh weight
GACC	l-(gamma-L-glutamylamino)cyclopropane-l-carboxylic acid
g	Acceleration due to gravity (9.8 m/s^2)
g	Gram
GC	Gas Chromatography
GCG	Gene Computer Group
GST	Glutathione S-Transferase
GUS	<i>E. coli</i> β-glucuronidase
h	Hour
His-tag	Histidine tagged
IgG	Immunoglobulin G
IEC	Internal ethylene concentration
IPTG	Isopropyl- β -D-thiogalactopyranoside (C ₉ H ₁₈ O ₅ S)
IPNS	Isopenicillin N synthase
Kb	Kilo base-pairs
kDa	Kilo Daltons
K _i	Inhibition constant
K _m	The Michaelis constant (substrate needed to occupy 50 % of the active sites)
L	Litre
LB	Luria-Bertani (media or broth)
Log	Logarithm
Μ	Molar (moles per litre)

MACC	1-(malonylamino) cyclopropane-1-carboxylic acid
MCS	Multiple cloning site
MD-ACO	Malus domestic ACC Oxidase
mol	mole (amount of a substance, Avogadro's number)
µmol	Micromole
mg	Milligram
μg	Microgram
mL	Millilitre
μL	Microlitre
Milli-Q water	Water purified by a Milli-Q ion exchange column
min	Minute
MOPS	Sodium [3-(N-Morpholino)]propanesulphonate
Mr	Relative molecular mass (g mol ⁻¹)
n	Number of replicate
NBT	<i>p</i> -nitro blue tetrazolium chloride
NCBI	National Center for Biotechnology Information
ng	Nanograms
Ni-NTA	Nickel-nitrilotriacetic acid
nL	Nanolitres
nmol	Nanomole
2-ODD	2-oxogluturate dependent dioxygenase
OD ₅₉₅	Optical Density at 595 λ nm
ORF	Open reading frame
PA	1,10-phenanthroline
PAGE	Polyacrylamide gel electrophoresis
PBS	Phosphate buffered saline (50 mM sodium phosphate, pH 7.4 containing 250 mM NaCl)
PBS-T	Phosphate buffered saline containing 0.5 % (v/v) Tween-20
PCR	Polymerase chain reaction
Pers. Comm.	Personal communication
pН	-Log (H ⁺)
pI	Isoelectric point
pmol	Picomole
pn	Net photosynthesis (carbon assimilation measurements)
ppm	Parts per million
PVDF	Polyvinylidine difluoride
PVP-40	Polyvinyl pyrrolidone
PVPP	Polyvinyl polypyrrolidone

3'RACE	Three prime-rapid amplification of cDNA ends	
RNA	Ribonucleic acid	
RNase	Ribonuclease	
RO	Reverse osmosis	
RT-PCR	Reverse Transcriptase-polymerase chain reaction	
S	Second	
SAM	S-adenosyl- _L -methionine	
SAP	Shrimp alkaline phosphatase	
SDS	Sodium dodecyl sulphate	
SEM	Standard error of the mean	
SSPE	Saline, sodium phosphate, and EDTA buffer	
TEMED	N, N, N', N'-tetramethylethylenediamine	
T _m	Melting temperature (in molecular biology: the temperature at which DNA strands separate in preparation for annealing)	
TEV	Tobacco etch virus	
Tris	Tris (hydroxymethyl) aminomethane	
Triton X-100	Octylphenoxy polyethoxyethanol	
Tween-20	Polyoxyethylenesorbitan monolaurate	
U	Unit (commercial enzymes are in U μL^{-1} , where unit is based on enzyme activity)	
UTR	Untranslated region	
UV	Ultra violet light	
V	Volt $(m^2 \text{ kg s}^{-3}\text{A}^{-1})$	
V _{max}	Maximum velocity	
v/v	Volume per volume	
w/v	Weight per volume	
w/w	Weight per weight	
X-Gal	5-Bromo-4-chloro-3-indolyl β -D-galactopyranoside	

AMINO ACID ABBREVIATIONS

Amino Acid (AA)	Three-letter abbreviation	One-letter abbreviation
Alanine	Ala	А
Arginine	Arg	R
Asparagine	Asn	Ν
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamine	Gln	Q
Glutamic acid	Glu	E
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	Ι
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	М
Phenylalanine	Phe	F
Proline	Pro	Р
Serine	Ser	S
Threonine	Thr	Т
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V