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This research describes the development of motion-tracking algorithms for a new 

dynamic spinal motion analysis system. This system utilises digital image processing 

techniques to extract motion parameters from video cineradiographic sequences of the 

human spine. The automated tracking of vertebral motion results in accurate assessment 

of translational and rotational displacement. This has been verified by extensive testing 

on prescribed motion sequences generated by a digital image warping based algorithm. 

The use of the motion measurement system provides a new tool for spinal health care 

professionals in the diagnosis of spinal dysfunction. 
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1 
Introduction 

1.1 Background 

It will be 100 years this year, 1995, since Professor W. C. Roentgen first observed by accident, 

what he later called X-rays. Within weeks of the discovery, dentists and doctors were using 

X-rays in private practice, such was the rapid uptake of this new technology. In 1 938, forty 

years after Roentgen's results were published [ 1 . 1 ] , the first application of movie radiography or 

cineradiography was described by Reynolds [1.2]. Unfortunately using the technology of the 

time, high-energy continuous X-ray exposure was required, making the method unsafe for human 

subjects. A mere ten years later, the first X-ray image intensifiers were commercially available. 

These enabled the total X-ray dose to be reduced by many orders of magnitude. A complete 

cineradiographic system with video camera and VDU monitor was not to become commercially 

available, however for another 20 years. A further five years on from this, the first video 

recorders were available, and a practical system in which the motion of a section of the human 

spine could be recorded and replayed for visual examination became reality. 

One of the single most common medical conditions in modern society concerns problems with the 

spine, the so called 'back-problems'. Static radiography has been used for almost a century by 

spinal health professionals in determining the presence of vertebral misalignment and the extent 

of degeneration in the human spine. Traditionally the practitioner manually extracts 

measurements from a radiograph by drawing lines directly onto the film through well defined and 

repeatable points commonly known as ' landmarks'. A ruler and protractor are then used to 

measure the displacement and angle of each vertebra based on the reference lines. Typically as 

many as fifty measurements are taken from a single full spine radiograph, requiring up to an 

hour to determine. These measurements can be generic such as vertebral disk height, angle and 

body rotation [1 .3] .  They can be local, for example the Atlas/Axis angle, or regional as in 

lumbar curvature and radius. They can also be global, as is the weight bearing and stress lines 

[1 .3] .  

In order to interpret the significance of these measurements an understanding of the 

biomechanics of the spine is required. This understanding has been developed from quantitative 

measurements made on so-called standard normal spine radiographs [ 1 .4] and from mechanical 
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modelling of the spinal column. The difficulty in making a functional diagnosis based on this 

information is that it is all derived from a stationary spine, usually in only a single position. 

Predicting what will happen when the spine moves based only on the starting geometry and some 

basic mechanics, is very difficult. Video cineradiography potentially provides a means of 

resolving this problem since it can record the spine in normal, unconstrained motion. However, 

even a short sequence may contain many hundreds of images. Attempting to manually process 

this large number of images and extract the necessary measurements is totally impractical. 

Apart from being a very laborious process, repeatability and accuracy is likely to be poor due to 

operator fatigue. 

Previously several authors [ 1 .5]  have used cineradiography to infer the behaviour of the spine in 

motion. But to make the processing practical they have discarded all the images other than a 

centre image in the neutral position, and two images at the extremes of the motion. These 

"motion sequences" (consisting of only three images) have then been magnified and transferred 

to film or more recently [ 1 .6] digitised using a computer, and lines manually drawn so that 

measurements can be made. This approach is inherently unsatisfactory from both a mechanical 

and a signal processing point of view (see section 6.2 of chapter 6). There are only three 

snap-shots of the true motion and questionable assumptions have to be made about the motion in 

between in order to draw useful conclusions. Clearly there is a requirement for a system that can 

automatically and reliably extract motion information from cineradiographic sequences of the 

human spine. Such a system has the potential of greatly improving the understanding of spinal 

motion and the diagnosis of spinal dysfunction. 

1.2 Thesis Overview 

This thesis describes research into the development of suitable algorithms and systems to track 

the motion of vertebra in cineradiographic sequences of the human spine. Such a system should 

have the following properties: 

� High accuracy and repeatability - Within the resolution and noise limitations of video 

cineradiographic systems the measurements should be accurate and repeatable. 

� Automatic motion-tracking and measurement - Operator interaction should be 

minimised in this stage. 

� Provide an opportunity for operator interaction so that derived measurements can be 

readily related back to what can be seen visually in a sequence. 

� Be easy to use so that researchers (and potentially practitioners) will be encouraged to 

use such a system. 

� Run on standard hardware. 
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The last of these requirements, for the system to run on standard hardware, is very much a 

moving target. The personal computer will be celebrating only its fifteenth birthday next year by 

which time it will have world wide sales nearly equalling that of the motor car. Performance is 

currently two and a half orders of magnitude (500 times) better than the first PC, while costing 

less than half the price of the original machine. Just as importantly, it will come with a standard 

Graphical User Interface (Gill) and have enough memory, disk space and video performance to 

make video capture and editing common place. Thus the development described in this thesis is 

poised at an ideal time to exploit this technology. 

Knowledge from a range of diverse research disciplines is required in order to tackle the problem 

of the development of a system for spinal motion measurement. The first requirement is a 

fundamental understanding of X-ray radiography with a particular emphasis on the properties of 

video cineradiographic systems. Converting the video signal (images) to digital form requires a 

basic understanding of data acquisition. Once images are in digital form, a variety of disciplines 

need to corne together to realise such a system. These include digital image and signal 

processing for developing motion-tracking algorithms, and computer graphics to enable data 

visualisation and understanding. Lastly, all of this cannot be achieved without significant skill in 

software programming. These were the challenges to be met by the author. 

If successful, the computer analysis of the image sequences to establish dynamic motion 

characteristics will be of significant importance to spinal health-care specialists of all types. 

1.3 Contents by Chapter 

A book style structure has been chosen for this thesis, each chapter beginning with an 

introductory section that leads to the presentation of the core material, and finally a summary to 

provide connectivity to the following chapter. Each chapter builds on the previous chapters as 

the thesis develops. Each chapter is self-contained with its own set of references, all of which 

are brought together in a comprehensive bibliography at the end of the thesis. 

A short paragraph is presented below on each chapter to enable orientation of the material that 

will be subsequently detailed. 

Chapter 1 :  Provides background to the research and an overview of the thesis including a 

chapter-by-chapter breakdown. 

Chapter 2: Begins with an overview of the physics of radiographic imaging. Next the details 

of recording X-ray information for both static and dynamic radiography are presented. This 

leads to the issues of radiographic noise and information content, and finally the idea of the 
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application of radiography to spinal motion analysis and cineradiographic image segmentation 
are discussed. 

Chapter 3: This expansive chapter investigates approaches to detecting edges In 
cineradiographic images of the human spine. It is broadly divided into three sections. The first 
section introduces low-level approaches to edge detection and then evaluates their performance 
(using a developed quantitative measure) on cervical spine cineradiographic images. This 
approach is then mirrored in the second section for high-level edge detectors. In the last section 
an alternative high-level method is developed and evaluated. The chapter concludes with a 
summary of results/difficulties in edge detection and points towards an alternative solution. 

Chapter 4: An extensive overview of approaches to motion-tracking beginning from the idea of 
visual perception, then introducing fundamental definitions and theoretical constraints. The two 
main themes covered are matching approaches followed by optical flow techniques and how they 
can be adapted to radiographic imagery. Finally, based on theoretical and practical 
considerations a match based approach to motion-tracking is chosen. 

Chapter 5: At the core of template-based matching approaches to motion-tracking is a 
best-match measure. This chapter develops a feature-point selectivity measure and then uses it 
to evaluate the performance of the four match statistics in both intra- and interframe matching of 
cineradiographic images. Based on feature selectivity consistency, match stability and 
computational cost considerations, the best match statistic is chosen. 

Chapter 6: This chapter considers the issue of how to test a motion-tracking algorithm on 
cineradiographic sequences of the human spine when the motion to be measured is unknown. It 
covers the development of a digital image warping based animation system for the generation of 
test sequences with prescribed motion. 

Chapter 7: In this, the penultimate chapter, practical, implementation issues of a motion 
measurement system are considered and a number of solutions proposed and implemented. A 
full description of the motion-tracking algorithm is presented and theoretical performance 
constraints developed. The algorithm is then extensively tested on a wide range of prescribed 
motion cervical spine sequences. 

Chapter 8: This chapter concludes the research with a discussion of the motion-tracking 
algorithm developed and how it can be improved by the addition of adaptive elements based on 
material developed in the early chapters of this thesis. The chapter finally looks to the future by 
considering how a measurement system could be used to diagnose and characterise spinal 
dysfunction. 
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In the later chapters of this thesis a number of figures have been produced from a software 
programme called CineMetriX. The author was responsible for the supervision of the 
development of this programme and in particular the design of the user interface and motion 
tracking algorithm. CineMetriX was written in conjunction with the Whitehead Chiropractic and 
Research Clinic, Palmerston North, New Zealand. This programme is not currently available in 
commercial release. 

An enhanced version of CineMetriX was developed by the author during the writing of this thesis 
that incorporates many elements not in the original programme. 

Appendices: Not normally considered to be a core part of a thesis but in this case they have 
provided the author with an opportunity (within the constraints of printed material) to give the 
reader an experience of two prescribed motion cineradiographic sequences. Turn to the first 
page of appendix C (marked by the single coloured page at the back of the thesis) for reader 
interaction instructions. 

1.4 References 

[ 1 . 1 ]  Roentgen, W.e. Annus Physics Leipzig, Vol. 64, No. 1 ,  1 898.  

[ 1 .2] Reynolds R.J. Cineradiography by the Indirect Method. Journal of Radiography, 
Vol. 3 1 ,  pp 1 77 .. 1 82, 1 938 .  

[ 1 .3 ]  Johnson B.M. Measurements in Skeletal Radiography. Wiley, pp 1 80 . .  1 95, 1 977. 
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[ 1 .5 ]  Dimnet J .  Pasquet M.H., Krag M.H. and Panjabi M.M. Cervical spine motion in 

the sagittal plane: Kinematics and geometric parameters. Journal of Biomechanics, 
Vol. 15, pp 959 .. 969, 1 982.  

[ 1 .6] Fielding J.W. Normal and selected abnormal motion of the cervical spine from the 

second cervical vertebra to the seventh second cervical vertebra based on 

cineroentgenography. Journal of Bone Joint and Surgery, Vol. 47a, pp 1 779 . .  1 78 1 ,  
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2 
X-ray Radiography 

2.1 Radiographic Images - An Overview of The Physics 

X-rays are a form of ionising electromagnetic radiation having wavelengths in the range of 0.01 
to I nano metres (nm). Artificially generated X-rays are generally produced by bombarding a 
metal target with a stream of high energy electrons. X-rays travel in straight lines, are not 
affected by electromagnetic fields, have the ability to penetrate matter opaque to visible light, and 
have similar action to light on photographic media. The penetrating ability of an X-ray beam 
depends on its wavelength and the density of the matter through which it passes. 

According to quantum theory electromagnetic radiation is not continuous but occurs in small 
'packets' called quanta. The energy of the smallest quantity associated with a given phenomenon 
is called a quantum and is described by equation 2. 1 ,  

he E=hv=-A eq. 2 . 1  

where h is Planck's constant, V i s  the frequency of the radiation, e i s  the speed of light and A is 
the wavelength of the radiation. For light the term photon is used in place of quantum.  

The wavelength of  X-rays i s  commonly quoted in  centimetres, nanometres, or  Angstrom units 
(A.), where lA = lO-lom. The energy of X-rays is usually quoted in terms of the energy of the 
electrons (measured in electron-volts or eV) producing the X-rays. One electron-volt is the 
energy acquired by an electron when it is accelerated through a potential difference of one volt. 

2.1.1 X-ray Generation 

The method of artificially generating X-rays has changed little since they were first observed by 
Professor W. C. Roentgen in 1 895 [2. 1 ] .  Within a year of his discovery that these rays could 
penetrate a range of opaque materials, a remarkable number of applications had been described. 
Roentgen's X-ray tube was a gaseous high-voltage discharge tube in which electrons emitted 
from a hot cathode were accelerated towards an anode which they struck at high velocity. If an 
electron starts from zero velocity at the surface of the cathode and is accelerated towards an 
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anode across a potential difference of V volts, on arrival at the anode it will have gained kinetic 

energy given by: 

eq. 2.2 

where m is the mass of an electron, v is the electron velocity assumed to be small relative to the 

speed of light and e is the charge on an electron. 

When an electron hits the anode and loses energy, X-rays can be produced by two different 

mechanisms [2.1]. The first involves the sudden deceleration of the negatively charged electrons 

as they interact with the strong positive electric field of the nucleus. The energy lost due to this 

interaction results in general or Bremsstrahlung radiation. The minimum wavelength of the 

resulting quantum of radiation is: 

A . = � .: 123951 
rrun 

eV V 
nm eq. 2.3 

Usually the electron gives up only a small amount of its kinetic energy during the interaction so 

that a continuous spectrum of energies is produced. The majority of the electron energy does not 

produce x-rays and is converted directly into heat. 

The second mechanism for X-ray production occurs when an electron with sufficient velocity hits 

a target atom and knocks out an orbiting electron leaving the atom in an unstable excited state. 

An electron from another near-by orbital will tend to jump into the vacant orbital to restore 

stability. The energy difference between the two orbitals is emitted as a quantum of X-rays. 

Quantum physics [2.2] shows that the energy levels of orbitals are discrete with the highest 

energy being in the K-shell, closest to the nucleus, where it is most tightly bound. X-rays emitted 

due to the difference in orbital energies is called characteristic or line radiation. Most of the X

ray radiation emitted from the interaction of an electron beam with a target anode is of the low 

energy general radiation type. 

The quality and quantity of X-rays produced by an X-ray tube is defmed by two factors. The 

first is the number of electrons flowing across the anode-cathode gap. This is determined by the 

tube current usually specified in milliamperes (rnA). The value of this current effectively 

determines the number of electrons interacting with the target anode and hence the quantity of 

X-ray production. The maximum velocity the electrons obtain on collision with the target anode 

determines the maximum energy of the produced X-ray quantum. This is controlled by the 

applied potential difference between the cathode and anode and is usually specified as the k� or 

kilovoltage potential. 

The X-ray beam produced by an X-ray tube contains photons with a wide range of energies. 

Many of these photons are of low energy and cannot escape the X-ray tube and housing. Also 
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the generated X-ray photons are not directed in a single direction. This has the consequence that 
only a small fraction can pass through the X-ray tubes window to produce a useful X-ray beam 
outside. As the X-ray photons pass through the tube window the mean energy of the beam 
increases. Low-energy photons are more likely to be attenuated or absorbed by the window 
material, in effect selectively removing a high percentage of the low-energy photons .  This 
process is referred to as hardening of the X-ray beam. Hardening produces a higher quality, less 
polychromatic, X-ray beam with a more tightly defined range of energies. 

X-ray tubes come in two basic configurations. Figure 2. 1 shows these two fonns. 

Filament 

ANODE CATHODE 

Figure 2.la: Stationary anode X-ray tube 

Rotating ANODE 

Focal Spot 
CATHODE 

Figure 2.lb: Rotary anode X-ray tube 

The only fundamental difference between the two constructions is that in the second fonn the 
anode is not stationary but consists of a rotating disk. Typically, in excess of 990/0 of the energy 
of the electron beam is converted into heat. This heat must be conducted away from the X-ray 
tube otherwise it will overheat and become damaged. In the stationary anode configuration of 
figure 2 . 1 a, the anode consists of a tungsten block bonded to the end of a copper cylinder. The 
copper is required to ensure rapid heat transfer away from the tungsten block. Maximum output 
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from an X-ray tube is limited by the dissipation of heat. S tationary anode tubes can dissipate 
relatively little heat without incurring damage, thus they are usually found only in portable or 
low-power units where the lack of any moving parts is a significant advantage. The second tube 
configuration containing a rotating disk anode enables the heat produced by the electron beam to 
be distributed across the surface of the disk as it rotates thereby substantially reducing hot spots 
on the anode surface. Heat still has to be removed, but not as rapidly as in the static 
configuration since the active anode area is continuously being changed, so allowing time for the 
unexposed surface to recover. The overall effect of having a rotating disk anode is that higher 
currents and voltages can be applied to the tube for longer periods producing higher output 
X-ray flux. 

In most X-ray systems additional filtration is used to further harden the X-ray beam and hence 
increase the effective energy of the X-rays. This is achieved by the introduction of a thin sheet of 
aluminium in the path of the beam. Filtration is usually measured in millimetres (mm) of 
aluminium equivalents. Most manufacturers recommend a total filtration equivalent to 2.5 mm. 
This total filtration includes the equivalent thickness due to the X-ray tube window, housing and 
face plate. After filtration typically only 2.4% of the original beam remains. The net benefit of 
filtration is that the total X-ray dose to a patient is reduced by almost 80% compared to the 
non-filtrated case. 

A device that controls the area exposed to the primary X-ray beam is referred to as a collimator. 

Beam collimation decreases the X-ray exposure to the patient and operator while improving 
radiographic quality by decreasing the amount of X-ray scatter. They are available in several 
different forms but the most flexible and widely used collimator consists of adjustable lead 
shutters. Usually the horizontal and vertical shutters can be moved independently of each other, 
enabling non-square areas to be covered. Figure 2.2 shows a box type four-shutter collimator. 

Adjustable lead shutters 

Figure 2.2: Box, four-shutter collimator 
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2.1.2 X-ray Absorption 

As an X-ray beam passes through matter a portion of the energy of the X-ray beam is absorbed. 
This absorption process is not simple but is made up of a number of mechanisms. The process 
may result in the production of secondary radiation of variable energies that may not be in the 
same directio� as the primary X-ray beam. In practical radiography both X-ray absorption and 
scattering must be considered. 

Four main types of X-ray absorption occur in general radiography, they are: 

• Photoelectric scattering 

• Ray leigh scattering 

• Compton scattering 

• Pair production 

In medical diagnostic radiology where X-ray energy levels are typically 100 kVp '  only the first 
three types of absorption occur. The general law governing the absorption of ionising radiation 
as it passes through matter can be stated as : 'the fraction of radiation absorbed in passing 
through a thin layer of material is proportional to the thickness of the layer and an absorption 
coefficient'. This is mathematically described in equation 2.4. 

I - I  M _o_ = - = /.uh  
10 10 

eq. 2.4 

where 10 is the incident intensity, 1 is the emergent intensity, Lll IS the layer of material 
thickness and J1 is the absorption coefficient. 

To find the total absorption in passing through a homogenous material of thickness x ,  the above 
equation is integrated to give : 

1 = 10 exp(-,u x) eq. 2.5 

This is the standard X-ray absorption equation in which the absorption is exponentially 
proportional to the thickness of the material. The thicker the material the greater the absorption. 
Due to the four different types of absorption that may occur, the value of the absorption 
coefficient J1 ,  is dependent in a non-linear way on both the X-ray energy and the nature of the 
absorber. 

2.2 Recording of X-ray Radiation 

If an X-ray beam passes through an object that may contain internal cavities and other 
inhomogeneities there will be local variations in the spatial intensity of the emergent beam. The 
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emergent beam will be modulated by these internal properties and hence contain information 

about the internal structure. However X-rays are not directly perceivable by the human senses 

thus the information contained in the X-ray beam must be converted to a form that can be readily 

observed. A number of detecting mediums are available, they all depend on a secondary 

interaction of the X-rays with matter, to render the information. 

The first and most widely used method for X-ray detection is through the photographic effect. 
In this method the information is recorded directly as a variation in silver deposition on a 

processed film. The fIlm is full size and provides a permanent record, the radiograph. However 

in general this will contain only a record of the relative spatial variation of the X-ray intensity. 

The radiographs greatest advantage is that it is an integrating device. If sufficient exposure time 

is allowed the radiograph can record very low radiation fluxes. The object must be essentially 

stationary for the exposure period, however for biological material this means that the all 

important peak radiation dose can be substantially reduced. 

The second method of X-ray detection is to observe the visible fluorescent light emitted by a 

particular substance when exposed to an X-ray source. The substance is usually formed into a 

thin screen that is placed at the same location as a photographic film. The two disadvantages of 

fluorescent screens are that they do not provide a permanent record of the information and they 

do not integrate the exposure. The response of a screen is dependent purely on the X-ray 

intensity and not the overall quantity. However the lack of integration can be an advantage as it 

allows an object to be X-rayed when in motion and the results viewed. 

The third method is to use the fluorescent screen as a primary converter (X-rays to light) and use 

a video camera to image the screen. The output of the camera can then be displayed on a video 

monitor (CRT) allowing the operator to be out of the line of the primary X-ray beam. If the 

video signal from the camera is taken through an analogue-to-digital (AID) converter, the 

information can be stored permanently in digital form in a computer. 

Other methods enable X-ray radiation to be detected and measured, however most of these 

methods only allow point-by-point measurement to be made across the X-ray beam. An 
exception is the semiconductor detector in a matrix array [2.3] .  Each element in  the 

semiconductor array produces an electrical signal proportional to the integrated X-ray intensity 

at its location. These signals can be digitised by an AID converter in a computer and viewed as 

an image. The digital image may then be stored on disk for later processing. 

2.2.1 Static Radiography 

An X-ray fIlm consists of a thin base of acetate or polyester, which is transparent and flexible 

[2.4]. This is coated with a radiation-sensitive emulsion, usually a silver halide. The emulsion is 

attached to the base by a thin adhesive layer and the whole surface coated with a layer of gelatine 
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as a protective 'supercoat' to minimise abrasion. In order to obtain a useful photoelectric effect 
from X-ray radiation, the emulsion is much thicker than for light photography, and an emulsion 
is applied to both sides of the base, as shown in figure 2.3. 

Only a very small fraction of the X-ray radiation falling on a film is absorbed. Most of it passes 
through the film without interaction. However if a metal foil such as lead is placed in contact 
with the back emulsion of the film, then electrons ejected from the foil due to the X-ray 
interaction can enter the emulsion and assist in the formation of the latent image. This is the 
principle of metal intensifying screens [2.5]. 

a 
b 

c 

d 

c 
b 

a. 

Figure 2.3: Radiographic film construction 

a, emulsion protection layer; b, emulsion; c, adhesive substrate; d, base layer - polyester. 

If a film of uniform blackness is illuminated by a light source of intensity 10 and the transmitted 
intensity through the film is 1/ , then the photographic density D of the film is defined by:  

D = loa ( /0 J 010  
I / 

I where the ratio � is the optical opacity and its inverse is the transmittance of the film. 1/ 

eq. 2. 6 

Practical measurement of D depends on the grain size and distribution of the silver deposition on 
the film, and on the incident light. If D is plotted against the logarithm of the exposure 
(integrated intensity) to radiation (light or X-rays), then a characteristic curve for the film is 
produced. The characteristic curve of a film has three well-defined regions as illustrated in 
figure 2.4. With no exposure a small density is produced on development. This density is the 
fog level of figure 2.4. The fog density is produced by two factors; the inherent density of the 
base film and a chemical fog density due to the fact that some of the silver grains are capable of 
being developed even without exposure. 

As the exposure is increased from zero, the density slowly increases from the fog level, 
eventually reaching a region in the middle of the curve where the response is approximately 
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linearly proportional to a logarithmic change in exposure. A further increase in exposure causes 

the rate of increase in response to roll off as the chemical reaction nears completion. For very 

large exposures a maximum density Dmax is reached. 

In tQe linear region the curve equation is usually given as: 

eq. 2. 7 

where y is the slope of the approximately straight portion, and JoglO i is the intercept of this 

portion extrapolated to the fog density level. 

Film 
Density 

4 

3 

2 

1 

fog 
level 

logloExposure (dose) 

Figure 2.4: Film characteristic curve for X-ray exposure 

The slope or gradient G of a tangent line to any part of the curve is often termed the film 

contrast. Measured at a density D ,  this gradient is given by : 

GD = d( D) 
d( loglO E) eq. 2.8 

In reality the contrast gradient varies with both exposure E, and film density D .  The value GD 
is a fundamental parameter in film radiography as it provides a measure of the available film 

contrast for a specific density . The characteristic curve of a film is also greatly affected by the 
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development process. A typical system for the development of radiographic films i s  optimised to 

give maximum speed and contrast with a minimum of increase in fog density. For certain types 

of film emulsion the linear portion of the curve can cover a range as large as four densities, 

equivalent to a four-decade range in exposure. 

The finest detail that can be recorded on a film is dependent on a number of factors. One of the 

most important is the size of the silver grains in the emulsion. Generally, if the grains are 

smaller then finer detail can be resolved. Prior to exposure the halide grains that form the 

emulsion are well defined in shape and too small to be visible to the naked eye. Once exposed 

and developed, the reSUlting silver metal grains are filamentary in structure and in all 

orientations. The effect, when viewed, is that the silver deposit is non-uniform. This subjective 

impression is called graininess and is due to the statistical variation in density of grains per unit 

area and the overlapping of conglomerated grains. Graininess is affected by the developer 

composition and for a given emulsion increases with radiation energy. 

film 
density 

s 

film 

.......... . : "-.."._---

Figure 2.5: Inherent film unsharpness, U f 

a 

b 

c 

d 

The second factor that limits image resolution due to X-ray exposure is the generation of 

secondary electrons. A silver grain on the absorption of a primary X-ray photon may release a 
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new or secondary photon of X-ray energy. This secondary emission then sensitises adjacent 

grains that may then be rendered on development into small string of gains. The 

two-dimensional effect is to blur a point image into a disk. This type of loss of resolution is 

termed inherent unsharpness, Uf o At the 100 kVp X-ray energy level typically used for 

biological diagnostic radiography, about five grains are made developable for each photon 

absorbed in the emulsion. Below 33 kVp no appreciable secondary photon emission occurs . 

Theoretically the image of a sharp edge in an object would be as shown in figure 2.5a. 

Practically however the density variation across the image of a real edge will be of the general 

shape of figure 2.S(b,c,d), where the width of the band of density change is a measure of the film 

unsharpness. At low film densities the measured unsharpness is similar to that of figure 2.5d, a 

smoothed version of figure 2.Sc. At this level the slow rolloff at the ends of the transition makes 

it difficult to make a precise measurement of unsharpness. For 1 00 kVp diagnostic radiography, 

the value of un sharpness is approximately O.OSmm, rising to 0.09 rnrn at 200 kVp . 

Two further causes of radiographic un sharpness are 

Geometric unsharpness, UIi : 
arising from the finite size of the X-ray source, which is never a true point. 

Movement unsharpness, U m ; 
due to the relative movement between the specimen and the film. 

s . � 

1[\ ·  . /  
a 

1 b I 

\------
� :� 

Ug 

Figure 2.6: Geometric unsharpness 
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The value of the geometric unsharpness can be specified from the simple geometry of figure 2.6 

as: 
u = sb 

II a 
eq. 2.9 

where s is the width of the radiation source seen at the film, b is the distance from the object to 

the film and a is the distance from the source to the object. 

Assuming that the radiation source is uniform in intensity over its area, the latent image on the 

film will become progressively wider as the source size increases. 

Figure 2.7 shows the effect of increasing the source width from an ideal point source to a width 

much larger than the defect under inspection. Image contrast C decreases substantially from the 

reference level Co for a point source with increase source width. For diagnostic radiography at 

1 00 kVp and with a typical source width of 5mrn, the value of the geometric unsharpness is 

approximately the same as the film un sharpness, or about 0.05 mm. 
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Figure 2.7: Geometric unsharpness for increasing source width - contrast C is reduced 

2.2.2 Dynamic Radiography 

F 

The principle advantage of film radiography, exposure integration, becomes a major 

disadvantage when it is desired to radiograph an object in motion. The earliest successful work 

on motion radiography or Cineradiography, was performed by Reynolds in 1 92 1  [2.6]. In his 

system a 35mm movie film was used to record the moving X-ray images. In order to minimise 

motion blur while still enabling an adequate image to be recorded, a very high X-ray intensity 

was required compared to normal radiograph levels. The net effect of this high X-ray level was 

that the total integrated exposure for even a few seconds of motion, was extremely high. The 
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detrimental effects of a high X-ray dose on biological material were well established by this time, 

hence the technique was not used in general medical practice. 

However visualisation (viewed by a human eye, but not recorded) of X-ray motion sequences of 

biological material could be performed with relative safety using fluoroscopy. Fluoroscopic 

methods rely on the replacement of the photographic film with a thin screen of material that 

emits visible light (fluoresces) when exposed to an X-ray source. Thinner, less-absorbent parts 

of an object under inspection are seen as brighter areas on the screen, so the normal tonal range 

is reversed compared to a film radiograph. The fluoroscopic screen does not integrate the 

radiation, so no motion blur occurs. Apart from the obvious limitation of not producing a 

permanent record, the major disadvantage of fluoroscopy over film radiography is poor image 

detail and sensitivity. There are three main reasons for this loss of quality: 

1 )  The image produced by a fluoroscopic screen is very dim compared to the brightness 

of a film viewed on a light box. Available luminance levels are typically 1 00 times 

lower (0.003-0.3 cd m-2 ). At these very low levels, the human eye even when fully 

dark-adapted, cannot perceive the small contrast or fine detail that is discernible on a 

film radiograph. 

2) Fluoroscopic screens are designed to produce the brightest possible images. The 

resulting image is generally very coarse-grained and incapable of resolving fine detail. 

3) Fluoroscopic screens have a unity contrast gradient, whereas film has a contrast 

gradient of 4-6 at normal densities. The effect of this is that in film recording small 

differences in X-ray intensity across an object are enhanced by this factor. 

a) 

Screen 
r- Lead Glass 

' . '-

VIEWER 

Screen 

b) 

Figure 2.8: Typical fluoroscopic configurations 

�i�or 
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VIEWER 

Only a small fraction of the X-ray photons are converted into light on passing through a 

fluoroscopic screen. Thus viewing the screen directly can result in significant X-ray exposure to 

the operator. Two standard ways to minimise this exposure are shown in figures 2.8  a) and b). 



----------------------------------------------------

X-ray Radiography 19  

Both systems are encapsulated in a lead box. The first system has a lead glass sheet placed in 

front of the fluoroscopic screen. At the typical 1 00 k � energy levels used with fluoroscopy, a 

30mm sheet of lead glass provides effective attenuation while still providing adequate 

transparency. The second system of figure 2.8b uses a silver-surfaced mirror of approximately 

the same size as the screen. 

Although the use of fluoroscopic screens enables the X-ray visualisation of moving objects, the 

total X-ray dose is still very large because of the need for a high output (large rnA) X-ray tube in 

order to produce an adequately bright image. A number of methods have been devised to 

amplify the light output of a screen. The first developments were electronic X-ray intensifier 

tubes. In these devices an image from the output of a fluorescent screen positioned at one end of 

a tube is converted successively to light and then electrons .  These electrons are then focused 

onto a smaller screen at the other end of the tube where the image is reconverted back into light. 

Figure 2.9 shows such a system, where all elements are encapsulated in a vacuum envelope. The 

process of reduction in size and electron acceleration produces a significant increase in image 

brightness .  The output image can be between 300 and 1 000 times brighter than a simple 

fluoroscopic image. The first of these tubes was made in 1 948, both in Holland [2.7] and the 

United States [2.8] ,  with a primary or input screen diameter of 5 inches (approx. 1 27mm). 

Tubes today are available with diameters up to 325mm ( 1 3  inches), enabling relatively large 

objects or sections of an object to be imaged. 

/ 
X-rays ) 

~ 

conversion 
screens 

Figure 2.9: Simplified X-ray image intensifier tube 

Viewing screen 

The final output or viewing screen is typically only 60mm in diameter. The image produced at 

this screen is bright enough to be viewed under ordinary lighting conditions. However because 

of its small size, almost all practical systems use a video camera to view the image and display 
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the results on a video monitor (cathode ray tube, CRT). This has the added advantage that the 

operator can be well out of the line of the primary X-ray beam. 

The primary screen of the image intensifier tube consists of two layers back-ta-back. The first 

layer converts the X-ray image into light in the blue and ultra-violet part of the spectrum. This 

matches the characteristics of photoelectric layer which performs the light-ta-electron 

conversion. The electrons are then accelerated by a high potential (typically 30kV) and focused 

electrostatically onto the viewing screen. The viewing screen is a small disc on which a very thin 

layer of very fine grain phosphor is deposited. This results in a high conversion efficiency and 

good resolution. 

Image sensitivity and resolution attainable with modem X-ray image intensifier systems are in 

many cases better than direct fluoroscopy. Using high-sensitivity video cameras the net gain in 

intensity can be as large as 10,000. With this high gain, the total X-ray dose for a ten-second 

viewing of a section of the human spine in motion, can be as little as one quarter the dose 

required for a standard chest radiograph [2.9]. If the video signal from the camera is fed to a 

computer equipped with an analogue-ta-digital (AID) converter, it can be converted into digital 

form and permanently stored for later retrieval, viewing, and analysis. 

2.3 Radiographic Noise 

This overall gain obtained by using a video fluoroscopic system does however incur a number of 

penalties. The relatively simple film radiographic system is replaced by a complex system with 

many conversion stages. Apart from the high cost of such a system, the increase in resolution 

has been gained at the expense of reduced performance on low-contrast detail. Each stage of the 

process adds noise to the original signal and any attempts to produce a sharper image will 

enhance any noise present. Thus the problem of image quality is reduced to establishing the 

minimum signal that can be detected in the presence of noise. 

The quality of the resultant image will be fundamentally limited by the quantum fluctuations in 

the number of X-ray quanta utilised in forming the image. Each stage amplifies the previous 

stages output quanta, adding its own quantum fluctuation. Basic quantum physics shows that 

the nature of radiation emission (light, X-rays, electrons), absorption and conversion, and the 

associated natural fluctuations in quanta, is related to the square root of the average number of 

quanta involved at each stage. The source of statistical fluctuation in each stage of a video 

fluoroscopic system can be treated as being independent. The average statistical fluctuations at 

the end of a multistage process is given by: 

eq. 2. 10 
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where s� , s; , si , si , etc ., are the average fluctuations introduced at each stage referred to the 

value at the output. In a first approximation it can be shown that: 

eq. 2. 1 1  

where N" i s  the smallest number of quanta (photon or electrons) which are utilised at any stage 

of the complete process, and g is the gain of this minimum quanta stage referred to the output. If 

N quanta form the final output image then: 

eq. 2. 12 

A model derived by Sturm and Morgan [2. 10] to describe the overall video fluoroscopic system 

is: [ ]0.5 
d _ 2K g x C nt No 

100 eq. 2. 13 

where d is the diameter of the circular image of the fluorescent screen, C is the image contrast, 

No is the number of visible quanta leaving the screen per square millimetre per second, t is the 

storage time of the device viewing the screen, and K is a constant between 3 and 5. 

This equation specifies the smallest diameter image of contrast C in terms of the number of 

utilised quanta. If detail sensitivity is the major concern, it can be shown that for an image 

intensifier system the optimal overall amplification occurs when the number of quanta utilised at 

the output device equal to the number of X-ray quanta absorbed and utilised by the primary 

input fluorescent screen. 

2.3.1 Radiographic Characteristics: Frequency domain description 

The complete cineradiographic system from source to detector and display can also be modelled 

as an image transfer process using an imperfect recording system. At each stage of the transfer 

process the original image is modified due to the limitations in that stage. The recorded or 

output image for each stage is given by: 

eq. 2. 14 

where M (f) represents the transfer characteristics of the radiographic system, principally 

geometric unsharpness; and T(f) represents the recorder characteristics, unsharpness and noise 

both expressed in terms of spatial frequency f , in lines per miIIimetre. 

Figure 2 . 1 0  shows the spatial frequency transfer curve for an ideal and practical radiographic 

system. In the ideal system all frequencies are transmitted unattenuated. However for the 
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practical system the response has dropped to half its original value once the frequency has 

increased to approximately 1 5  lines/mm. Frequencies above this are rapidly attenuated to the 

extent that all frequencies above 20 lines/mm are not transmitted. 

1.0 

Response 

0.5 

5 15 frequency IImm 

Figure 2.10: Spatial frequency transfer functions - ideal and practical 

The basic parameters of radiographic imaging in terms spatial frequency theory are the Line 

Spread Function (LSF) and the Modulation Transfer Function (MTF). If an X-ray beam passes 

through a very narrow metal slit and the resulting image is recorded on film, then the film density 

will be as shown in figure 2. 1 1 . This is the line spread function for the setup and characterises 

the available image definition in a more formal way than was specified in section 2.2. 1 ,  relating 

to unsharpness. 
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Figure 2.1 1 :  Line spread function of a radiographic film 
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If an object consisting of a series of close regularly-spaced bars is radiographed, for a perfect 

system the resulting image should be that of figure 2. 1 2a. For practical systems however the 

image density distribution will be more like figure 2. 1 2b where the edges of the bars have 

become blurred and the contrast reduced. As the object bar and spacing is reduced, a stage will 

be reached when the pattern is no longer resolved. The difference in density between the bar and 

the space on the film is the image response, R ,  or modulation. The fineness of the pattern is the 

spatial frequency, f . A plot of the magnitude of R against f is defined as the Modulation 

Transfer Function, MTF. Strictly, the intensity distribution used to evaluate the MTF should be 

sinusoidal rather than the square-wave produced by the bar/space test pattern. However 

practically generating an object with this type of pattern is difficult. If the effects of phase are 

taken into account by plotting the actual response, not just the magnitude, then the resulting 

curve is referred to as the Optical Transfer Function (OTF) [2. 1 1 ] .  

X-rays 

• • • • • •  bars 

film 

D perfect 

a) 

practical 

b) 

Figure 2.12: Modulation transfer function 

Practically in radiography it is easier to determine the MTF or OTF mathematically from the 

experimental LSF curves by convolution with an appropriate sinusoidal function. If the line 

spread function Sex) ,  is symmetrical, then the modulation transfer function is given by: 
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f (S(x) cos(2nfx))dx R(f) = �-:;-----f S(x)dx eq. 2. 15 

MUltiple spread functions in space can be combined together by convolution to produce a joint or 

overall spread function. If f(x, y) represents the LSF due to geometric unsharpness and 

g(x, y) the LSF due to film unsharpness, then the joint spread function hex, y) is: 

h(x, y) = f(x, y) ® g(x,y) eq. 2. 16 

where ® represents the convolution operator. 

In the frequency domain the overall spread function can be simply found by multiplying the 

individual spread functions together. If F, G are the Fourier transforms of the line spread 

functions due to geometric and film unsharpness, and H is the combined result, all in terms of 

spatial frequencies u, v ,  then: 

H(u, v) = G(u, v) x F(u, v) eq. 2. 1 7  

There i s  a close relationship between the LSF and the unsharpness curves of section 2.2. 1 .  

Plotting the slope of the unsharpness curves against x , gives the LSF curve directly. Conversely 

integrating the LSF curve will give the unsharpness curve. 
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Figure 2.13:  Modulation transfer curves for video-fluoroscopic systems 
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Figure 2. 1 3  shows the modulation transfer function curves for each stage of a complete video 

radiographic system [2. 1 2] . It is clear from the curves that the limiting component in the system 

is the primary conversion screen (X-rays-to-light), the optical system has much better 

performance than is necessary. The curve for the camera is for an older Vidicon unit. Modem 

charge-coupled devices (CCD) have significantly better modulation transfer functions. 

Work by Schade [2. 13 ]  attempted to reduce the MTF for a system into a single value 

'quality-criterion'. He introduced the concept of noise equivalent pass-band ( Ne), defined as: 

Ne = (MFTidf eq. 2. 18 

and showed that this measure correlated very well with the subjective mean observer scores 

(MOS) of image sharpness. 

2.4 Radiographic Information 

Static radiographs potentially contain a large amount of information. The information capacity 

of a media or communications system can be computed from basic information theory [2. 14] by 

considering the signal-ta-noise ratio (SNR) of the system. Several authors [2. 15 ,  2. 1 6] have 

applied this approach to the characterisation of the information capacity of photographic film. 

The mean information content, I recorded in an area, A of an emulsion is given by: 

I = AJf(l + S(U, V) )dUdV bits 
N(u, v) 

where S(u, v) and N(u, v) are the signal and noise functions, respectively. 

eq. 2. 19 

Noise in a photographic emulsion can be characterised qualitatively in terms of granularity, as 

discussed in section 2.2. 1 A quantitative spatial frequency description of the noise properties of 

photographic film is given by the Weiner spectrum. The Weiner spectrum, W(f) , is analogous 

to the power spectrum of electrical noise in electric circuit theory. 

Because photographic emulsions are isotropic, measurements in only one direction are sufficient 

to completely describe the mean information content: 

I = 2nJ IOg (1 + Ro(f)2 P(f) )fdf bits per unit area 2 W(f) eq. 2.20 

where P(f) is the input signal to the film, W (f) is the film Wiener spectrum and Ro (f) is the 

normalised MTF of the system. 
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This equation is an over-simplification of the process as it does not account for the fact that the 

input signal consists of a finite number of X-ray quanta with their own inherent signal-ta-noise 

ratio. 

A useful description of the upper limit of the mean information content of a film can be made by 

considering the limiting case where the input signal tends to zero, as would be the case for a 

low-contrast image. This results in the following description: 

I ::::: 4. 36J (Ro(f)2 Jf df W(f) bits eq. 2.21 

Using this equation, the information content of a high quality 5 x 7 inch film is 5 xl 07 and for a 

single video frame 3x 104 ,  bits per square millimetre . Practically however, visual inspection h as 

shown that these figures highly over-estimate the available information content. At 70 k Vp on 

high-resolution film the information content is about 1 000 bits / mm 2 , while for the highest 

resolution video fluoroscopic systems the value is about a third of this figure . 

2.5 Application of Radiography 

In static diagnostic radiography of human or animal subjects, a practitioner is generally looking 

for both large and small scale abnormalities with varying ranges of contrast. Large scale 

dysfunction information may take the form of severe vertebral misalignment or a major breakage 

in a limb. Small scale information may be of the form of a hair-line fracture or a tumour in soft 

tissue . These diverse requirements greatly reduce the information content of importance in a 

radiograph however the extraction of this useful or desired information requires a trained 

radiologist. 

A great deal of work has been performed concerning the automatic detection of specific 

abnormalities in static film radiographs. Much of this effort has been directed at the detection of 

cancerous tumours. The radiograph is first digitised to a very high spatial and amplitude 

resolution and then algorithms proceed in the digital domain to locate a specific type of 

abnormality that may exist. Any located abnormalities are then high-lighted automatically, and a 

radiologist can visually check to ensure that the located item is in fact a true abnormality. These 

systems can detect up to 95% of abnormalities, with near 1 00% repeatability [2. 1 7] .  

I n  video cineradiography both spatial and amplitude resolution are substantially lower than static 

film radiography, thus this method is unsuitable for the detection of small low contrast features. 

However resolution is sufficiently high to enable the imaging of larger scale information. 
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2.5.1 Spinal Motion Analysis 

Static radiography has been used for almost a century by health professionals in determining 

vertebral misalignment and degeneration in the human spine. A practitioner manually extracts 

measurements by drawing lines directly onto the radiograph through well-defined and repeatable 

points commonly known as 'landmarks'. Typically, as many as fifty measurements are produced 

from a s ingle full spine radiograph, taking typically up to an hour to perform. Further to this, 

static radiography of the human spine provides no direct information concerning the kinematics 

of bone motion . The spine is a structure designed to move during normal operation, hence 

information concerning how vertebrae interact is vitally important to an accurate understanding 

and diagnosis of spinal dysfunction. Cineradiography provides a means of recording the spine in 

normal motion, however even a short sequence may contain many hundreds of images. 

Attempting to process this large number of images manually and to extract the necessary 

measurements is totally impractical. Apart from being a very laborious process, repeatability 

and accuracy is unlikely to be very high due to operator fatigue. Clearly there is a requirement 

for a system that can automatically and reliably extract the information of interest from each 

image. 
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3 
Detecting Edges In 

Cineradiographic Images 

3.1 Image Segmentation 

The aim of image segmentation is to decompose a scene into its components. At a high level, 

these components are ideally the objects that the human observer perceives in the scene. In the 

case of radiographs of the human spine, the main scene components are the vertebrae (including 

the skull and the pelvis). Soft tissue such as skin and cartilage may also be perceived, but are 

generally only of interest when looking for abnormalities such a tumours. For most scenes, the 

recognition of the objects that form the scene is implicit in the high level segmentation process. 

Image segmentation at a slightly lower level may involve the decomposition of the scene into 

planar, convex and concave surfaces. These surfaces are also likely to contain different colours, 

reflectance properties, and texture. The recognition of different spatial properties and 

relationships enables a human observer to readily segment the scene on this basis. In many cases 

this partitioning process can be considered as the identification of local intensity discontinuities. 

These discontinuities form the boundaries of the objects. 

There are three basic approaches to image segmentation: 

• Pixel-based methods 

• Region-based methods 

• Edge-based methods 

Pixel-based methods use only the value of the individual pixels. Region-based methods analyse 

the pixel values in larger areas. While edge-based methods attempt to detect edges and follow 

them to form the boundaries of objects. 

Pixel-based methods 

Pixel or point-based segmentation methods use only the value of a pixel to determine whether or 

not it belongs to an object. In order to do this, it is assumed that a range of intensity values will 

uniquely characterise the object of interest. This is generally only the case for simple, well 
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structured scenes in which there is a clearly defmed background (generally not of interest) and a 

foreground, containing the objects of interest. Most pixel-based methods begin by computing a 

histogram of the pixel values. If the histogram shows a bi-modal distribution with two distinct 

maxima, then ideally a zone will exist between the two maxima where no features exist. A 

threshold can be set in the middle of this zone to yield perfect separation of the objects and the 

background. In practice however this is rarely the case, the two distributions will usually 

overlap, resulting in a range of values that include both foreground and background pixels. 

Choosing an optimal threshold in this situation (one that minimises the number of false 

contributions) will usually involve a trial-and-error approach from a human operator. The 

histogram may also contain multiple modes due to uneven illumination or slight differences in the 

reflectance properties of some of the foreground objects. No single threshold will give 

satisfactory separation of foreground objects from the background. One way to tackle this 

situation directly but still maintain the simple point-based methods, is to determine the 

probability distributions of the foreground objects and the background. Statistical analysis can 

then be applied to the threshold decision process to minimise the number of erroneous inclusions 

[3. 1 ] . However if the probability distributions have significant overlap, point-based 

segmentation will not produce acceptable results. 

Region-based methods 

Region-based methods classify pixels using context. This can be effective because an important 

characteristic of an object is its connectivity. 

All the common approaches to region-based segmentation can be grouped under the common 

heading of region-growing. The goal of region-growing methods is to use object characteristics 

to map individual pixels into sets of pixels with similar local properties. Most commonly, 

geometric characteristics of regions are considered to be connected two-dimensional areas. A 

wide range of classes of connectivity can be specified, including disconnectivity, non-simple 

connectivity (holes are allowed) and boundary smoothness .  This connectivity may not be 

restricted to a single spatial resolution. The image may be decomposed into a pyramid structure 

via a set of rules and regions determined by scanning up through the pyramid [3.2].  In all 

methods the nature of the rules depends on the goals of the particular technique. A region may 

be an entire object or simply a part of an object. Higher level rules can be applied to part object 

regions to combine them to form an entire object. A wide range of region-growing algorithms 

have been described in the literature [3.3],  but a variation on an early method called the 

split-and-merge algorithm [3 .4] is often used. 
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Edge-based methods 

Early experiments by Attneave [3.5] on visual perception illustrated the extreme importance of 

boundaries to image recognition. Many objects may be easily recognised from crude (binary) 

outline sketches. Devising algorithms to find the boundaries of objects directly from their 

grey-level values proves to be a difficult task when the shape of the boundaries are complicated. 

Better results are obtained by first finding all the intensity discontinuities or edges in the image 

and then through appropriate rules, composing these edges into the actual objects boundaries . 

This intermediate representation approach serves to take boundaries that are highly 

model-dependent and decompose them into a series of local edges that are highly 

model-independent. However if the local edges are too fragmented, then the recomposition back 

into the actual object boundaries becomes a difficult task. 

Many different edge operators have been described in the literature. The reason for the large 

variety is that different edge operators perform best in different situations . The unifying feature 

of most of these operators is that they compute an orientation or direction, usually aligned with 

the direction of maximal grey-scale change, and a magnitude describing the size of the change. 

Edge operators fall into three categories: 

• operators that approximate the mathematical gradient 

• operators that use multiple masks with different orientations 

• operators that fit local intensities with parametric edge models 

In general all these methods will involve the setting of some form of threshold or decision 

parameter in order to determine the presence of an edge. 

If in a cineradiographic sequence of the human spine the vertebrae can be identified in each 

frame by tracing their outlines or boundaries, then the problem of determining their motion is 

greatly simplified. The difference in position and orientation of each vertebral boundary through 

the sequence will describe the motion. If this motion is the result of in-plane movement (parallel 

to the image plane), then as the vertebrae do not deform, their boundaries will not change shape. 

Determining the difference in position and orientation of two boundaries (closed outlines) with 

the same shape is relatively straightforward. However if the orientation of each vertebra is to be 

meaningful with respect to the alignment of the spine as a whole, then the reference orientation 

for each vertebra should be consistent with the orientation perceived by a spinal-care 

practitioner. Section 8 .2 of chapter 8, details some of the difficulties in computing natural or 

perceived orientation. 

The following sections contain a thorough investigation of edge operators with respect to the 

detection of vertebral boundaries in cineradiographic images of the human spine. 
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3.2 Low-level Edge Detection Operators 

The boundaries of objects are often indicated by local intensity discontinuities. In order to detect 

these intensity discontinuities a filter is required that emphasises changes in intensity and 

suppresses areas with constant intensity. Figure 3 . l  illustrates that derivative operators perform 

such an operation. The first derivative shows an extremum at the edge, while the second 

derivative crosses zero where the edge is at its steepest. Both these criteria can be used in the 

detection of edges. 

original 

first-order derivative 

second-order derivative 
+t 

. -t 

Figure 3.1 : Noisy 1-D edge and first and second derivatives 

For a continuous image I (x, y) , containing a simple intensity edge, the first derivative (or 

gradient) will reach a local maximum in the direction of the edge. If the gradient of I is 

measured along r in the direction 8, then this can be used to detect the presence of an edge (see 

figure 3 .2). 

Mathematically this gradient is: 

dI dI Jx dI Jy . -=--+--= 1 cos 8+ 1  sm 8 dr Jx dr Jy dr x Y eq. 3. 1 

The gradient takes on a maximum value when, dj d8( dI j dr) = 0 ,  corresponding to the direction 

n, normal to the edge. 

Applying this result to equation 3 . 1 produces the direction and magnitude equations, 

eq. 3.2 
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eq. 3.3 

Where 8g is the direction of the edge. 

From this result two types of edge detection operators can be defmed: gradient operators that 

use finite differences to approximate the orthogonal gradients Ix ' ly and compass operators that 

approximate the directional gradient ()j / ar . 

y I(x,y) 

Edge 

ly 
x 

Figure 3.2: Gradient of I (x, y )  along direction r 

Let H denote a p x p mask, then the inner product of this mask and an arbitrary image I , at 

location (m,n) is defined as: 

p p 
( I,H)m,n = LLh(x, y) i(x + m, y + n) eq. 3.4 

x=1 y=1 

3.2.1 Gradient Operators 

Gradient operators are represented by a pair of masks or templates HI ' H2 which measure the 

gradient of an image lex, y) in two orthogonal directions. At each location in the image the 

masks are convolved with the local region (inner product) and the results combined to give the 

gradient vector magnitude. 

Defining the two bi-directional gradients gl = (I, HI ) , g2 = (I,H2) then from equation m,n m,n 
3.3, the directional gradient magnitude is given by: 

g(m, n) = �g� (m,n) + g; (m,n )  eq. 3.5 
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In this situation a pixel location (m,n) is declared an edge pixel if g(m, n) exceeds some 

specified threshold. 

Table 3 . 1 contains three of the common gradient operators. The origin denoted by [ ] is located 

at the top right-hand comer for the Roberts [3 .6] operator, and in the centre for both Prewitt 

[3.7] and Sobel [3.8] operators. 

Operator HI H2 

Roberts [[0] I ] [[I] 0 ] 
- }  0 o - 1  

Prewitt [- I 0 

:J 

[ �I -I �I] 

-I [0] [0] 

-I 0 1 

Sobel [-I 0 

�] 

[ �I -2 �I
] -2 [0] [0] 

-I 0 2 

Table 3.1:  Some common gradient operators 

3.2.2 Compass Operators 

Compass operators use mUltiple gradient masks orientated in a selected number of directions to 

measure the local gradient. If gk (m,n) denotes the gradient computed in the direction (}k then 

the gradient at position (m, n) is given by: 

g(m, n) = max(lgk (m, n)l ) k eq. 3. 6 

A pixel location (m,n )  is once more declared an edge pixel if g(m, n) exceeds some specified 

threshold. 

Kirsch [3.9] was one of the first people to study the use of compass operators when working 

with biological images. Table 3 .2 contains four north-facing compass gradient masks. The mask 

for the other eight compass directions are obtained by a circular shift of each element about the 

centre position. Each shift corresponds to a rotation of 7(;/4 or 45°. 
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[ 1 iJ [ �I 1 �J [2] [0] 
- 1  -1 

a) b) 

[ �3 
5 

�3l (Kirsch) 
[ 
�I 

2 

�J 

[0] [0] 
-3 -3 -3 -2 

c) d) 

Table 3.2: Compass Gradients: North i direction 

3.2.3 Laplace Operators 

Let the gradient of a 2-d function f , be defined as: 

eq. 3. 7 

where V denotes the gradient operator and rrx ' �y are unit vectors in the direction of x and y 
respectively. 

Then the Laplacian of f is defined as: 

eq. 3.8 

where '.' denotes the vector dot-product operation 

From equation 3 .7 it is clear that the Laplacian is a second-order non-directional (isotropic) 
linear operator that can be formed by a double application of the gradient operator [3 . 10] .  

[ �
I 

- 1 

�
I

l 

[-I - 1  -I] 

[�2 

-2 
�2] [4] -1 [8] -1 [4] 

- 1  - 1  - 1  -1 -2 
a) b) c) 

Table 3.3: Discrete Laplace Operators 

Because the Laplace operator involves second-order derivatives and hence double 

differentiation, it is more sensitive to noise than the first-order gradient operator. Also, direct 

thresholding of V2 f produces a double edge (see figure 3 . 1 ) . For this reason the zero-crossings 
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of the Laplacian are better at detecting edge locations. On a 2-d grid, a zero-crossing is declared 

if there is a zero-crossing in at least one direction . 

Table 3.3 contains three standard 3x3 masks that approximate the Laplacian. 

3.2.4 Stochastic Gradients 

The previous two edge operators can be shown to perform poorly in the presence of noise [3 . 1 4] .  

Prefiltering the image by  some form of low-pass filter can improve their performance, however a 

better approach is to design the edge extraction masks to take into account the presence of noise 

in a controlled fashion. Masks designed in this way are called stochastic gradient [3 . 1 1 ] masks. 

Their calculation requires the postulation of an edge and noise model. 

Consider an edge model in which the edge transition is only one pixel wide (see figure 3 .4). To 

detect the presence of this type of edge at position (p, q) the horizontal gradient could be 

computed as: 

A A 

� � 
g) ( p, q) = If (p, q - 1) - Ih ( p, q  + 1 )  eq. 3.9 

Where If (p, q) and Ib (p,q) are the optimal forward and backward estimates of I(p, q)  based 

on the noisy data over some local region W. 

If the noise is assumed to be additive and Gaussian, then the best linear mean-square semicausal 
(causal in the n direction) FIR (Finite Impulse Response) estimate [3. 1 2] for If (p, q)  can be 

computed in the local neighbourhood from the observed values to the left of position ( p, q) . 
Similarly the best estimate for Ih ( p, q) can be computed from the observed values the right of 

position (p, q) . All that is required to perform this calculation is a specification of the expected 

signal-to-noise ratio (SNR) local to the edge. 

T l(m,n) --�) n 

x X X 0 X X X 

X X X a X X X (P,q 
X X X 0 X X X m 
X X X 0 X X X 

X X X 0 X X X 
W 

Figure 33:  One pixel wide edge transition model 
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Using the linear mean-square FIR estimation, the HI normalised stochastic masks for a low and 

high SNR are shown in table 3 .4. The complementary orthogonal mask H2 , is given simply by 

H� . For increasing SNR the mask weights decay rapidly, eventually leading to an edge estimate 

based only on the two values immediately adjacent to the centre position. 

Size SNR=l SNR=9 

[0 97 0 -0 97] [0 77 0 
3x3 1 . 00 [0] - 1 . 00 1 . 00 [0] 

0. 97 0 -0. 97 0. 77 0 
0. 80 0. 84 0 -0. 84 -0. 80 0. 27 0. 36 0 
0. 85 0. 90 0 -0. 90 -0. 85 0. 37 0. 56 0 

5xS 0. 87 1 .  00 [0] - 1 . 00 -0. 87 0.46 1 . 00 [0] 
0. 85 0. 90 0 -0. 90 -0. 85 0.37 0. 56 0 
0. 80 0. 84 0 -0. 84 -0. 80 0. 27 0. 36 0 

Table 3.4: Stochastic Gradient Masks 

3.2.5 Performance of Low-level Edge Detection Operators 

-0 77] 
- 1 . 00 
-0. 77 
-0. 36 
-0. 56 
- 1 . 00 
-0. 56 
-0. 36 

-0. 27 
-0. 37 
-0. 46 
-0. 37 
-0. 27 

Comparing the performance of edge detectors is a very difficult task. Some operators may find 

all edges but respond to noise, while others may be insensitive to noise but miss some important 

edges . A number of measures have been devised to quantitatively compare the performance of 

edge detectors in the presence of noise. 

Performance Measures 

A simple performance measure for edge detection in the presence of noise can be computed from 

the ratio of the number of declared edges pixels, nd ' to the number of new or missed edge pixels, 

ne . So long as nd is constant for both the noiseless and noisy images, then the edge detection 

error rate is : 

eq. 3. 10 

This error measure is too simplistic for realistically comparing edge operators as it  does not 

account for the location of a new edge pixel relative to the nearest true edge pixel. Pratt's [3 . 1 3 ]  

figure of merit attempts to take into account the effects of true and falsely detected edge points 

and their relative distance apart. This figure of merit is defined by : 

eq. 3. 1 1  
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where ND and N, represent the number of detected and ideal edge points respectively, a is a 

scaling parameter (often set to unity), and d is the distance from each detected edge point to the 

nearest ideal edge point. 

Using this performance measure, a reVIew of edge operators [3. 14] showed that stochastic 

operators performed best in the presence of additive Gaussian noise, followed by Prewitt, Sobel 

and Kirsch operators scoring similarly, and Roberts with the poorest performance. 

Pratt's performance measure does not compare well different edge operators when the detected 

edge segments are highly fragmented. This limitation prompted Kitchen and Rosenfeld [3 . 1 5] to 

develop a measure that provides information about the thinness and continuity of the edge 

segments. However their measure has not been widely used due to its poor discrimination. This 

poor discrimination has been illustrated by several authors [3 . 1 6] ,  where a fairly high score for 

the continuation measure was recorded for unrelated edge images. 

Low-level Edge Detection Results 

Figure 3 .4a contains a single frame from a cineradiographic sequence of the cervical section of 

the human spine. A vertical section of this image centred about the vertebrae and covering from 

the bottom of the skull to fourth vertebra, is shown enlarged in figure 3 .4b. This sub-image was 

used to test the performance of all the low level edge operators. 

Figure 3.4: a) Original cervical image b) Enlarged test section 

Table 3 .5  contains the results of applying the low-level edge operators to the small test image. 

The gradient images are the raw output of each operator scaled to fit the 0-255 byte range. The 

optimally thresholded images are the result of applying a global threshold to the gradient image 

chosen to maximise Pratt's figure of merit, shown at the bottom of each edge image. 
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Table 3.5 

Gradient 
(scaled) 

Optimally 
thresholded 

Roberts Prewitt 

P=42.8% P=45.3% 

Sobel Kirsch Laplacian 

P=42.7% P=44.7% P=24.3% 

Stochastic 3x3 
SNR = 9  

P=44.4% 

Stochastic 5x5 
SNR = 9  

P=43 .3% 
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The figure of merit was computed with respect to a reference edge image (see table 3 .6) 

generated manually, by tracing the vertebral outlines. The scaling parameter a, is set to unity . 

It is clear visually that none of the edge operators extract the vertebral edges satisfactorily. The 

edges are thick and very fragmented, with many detected pixels not related to the vertebral 

boundaries . For the second order Laplacian case (mask b from table 3 .2), the optimally 

thresholded image is the result of zero-crossing detection. A zero-crossing was declared if a 

change of sign in the gradient was detected in a 3x3 neighbourhood in any of the four directions 

about the middle pixel (see section 3 .3). To try and reduce the number of falsely detected edge 

pixels, the plus and minus deviation from zero had to exceed a threshold before a zero-crossing 

was declared. Although this improved the results, the thresholded Laplacian image in table 3 .5  is 

the best that could be obtained. It is extremely difficult to make out any of the vertebral edges in 

this image as they are extremely fragmented and severely contaminated with noise. 

The last pair of images in table 3 .5 were produced using the larger 5x5 stochastic masks 

computed for a signal-to-noise ratio of 9 (see table 3 .3) .  This larger operator produces greater 

smoothing, as is evident in the gradient image. Once thresholded, the edge image shows reduced 

noise, but this is at the expense of thicker edges and the non-detection of weak vertebral edges. 

Overall, the operators (with the exception of the Laplacian) score similar figures of merit even 

though the computational cost between operators is significantly different. The Prewitt gradient 

operator scored the highest with 45.3%. 

3.3 High-level Edge Detection 

The low-level edge operators of the previous section are principally characterised by the 

measurement of a local derivative to indicate the presence of an edge. This simplistic approach 

at first appears to make no assumptions about the nature of the intensity discontinuities (edges) 

or the underlining noise characteristic of the signal. However, implicit in this measurement is the 

assumption that the local derivative exists and can be reliably estimated from a small number of 

values in a local neighbourhood in the discrete image. This estimation problem is an 

ill-conditioned problem in the Hadamard [3 . 1 7]  sense. 

Most high-level edge detection schemes attempt to incorporate directly, assumptions about the 

nature of an edge, and its relative strength with respect to local background noise. There are 

three basic approaches : 

• Human visual theory computational approach 

• Optimal edge detector computational approach 

• Rule-based approaches 
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The basis for the first computational approach to  edge detection i s  from the framework of  the 

theory of human vision proposed by Marr and Poggio [3 . 1 8] with reference to Logan's [3 . 19] 

theorem of early vision. From this work Marr and Hildreth [3.20] proposed a theory for edge 

detection in which oriented primitives called zero-crossing segments are computed over a wide 

range of spatial scales. Rules are then applied to combine the oriented zero-crossing primitives 

to produce a description of the image called a primal sketch. 

Canny laid the foundations for the second of these three approaches with his theory for an 

optimal edge detector [3.2 1 ] . Methods that follow this approach proceed by postulating an edge 

and noise model (as for Stochastic gradients) and then compute an optimal operator for these 

proposed models using Canny's criteria. 

The third approach to high-level edge detection usually begins with edge strength and direction 

maps computed by low-level gradient based operators. Rules are then applied to these data to 

enable the linking and thinning of edge pixels and the removal of isolated non-edge pixels. 

Typical rules include such properties as smoothness of orientation and neighbourhood 

connectivity [3 .22]. 

3.3.1 Human Visual System (HVS) Based Edge Detection 

The theory of edge detection proposed by Marr and Hildreth in 1 980 was derived from 

physiological models of early human vision. Their theory produced results that were consistent 

with many of the findings of psychophysical experiments. The underlying premise for the 

Marr-Hildreth edge operator is that intensity changes in natural images occur over a wide range 

of spatial scales and thus should be detected separately at each scale. To realise this result the 

image must be locally smoothed by an optimal filter at various resolutions and then intensity 

changes detected at each resolution. Such an optimal smoothing filter should be approximately 

band limited to constrain the scale over which intensity changes take place. This filter should be 

smooth and localised in the spatial domain, and in particular its spatial variance should be small. 

The smoothing filter proposed by Marr and Hildreth, the Gaussian, is optimal in both its spatial 

and frequency localisation [3.23] . For two-dimensional continuous signals the Gaussian is given 

by: 

G(r) = _l-J�� 1 
2ncl 

where r is the radial distance from the origin and a is the filter variance. 

eq. 3. 12 

The maximum size of r constrains the size of the neighbourhood in which smoothing occurs. 

The filter variance a governs the rate at which the filter decays.  A small a produces a rapid 
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decay and hence a sharp localised response. While a large (J produces a slow decay with 

increased smoothing over a larger area (see figure 3.5). 
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Figure 3.5: Normalised Gaussian and Laplacian of a Gaussian (LOG) 

In order to detect intensity changes at each resolution Marr-Hildreth proposed the use of the 

non-directional second derivative operator the Laplacian (see section 3 .2.3) .  The Laplacian 

operator can be combined with the Gaussian filter to produce a single edge enhancement 

operator, the Laplacian of a Gaussian (LOG, see equation 3 . 1 2). This is approximately a 

bandpass operator with a half power bandwidth of about 1 .2 octaves. The use of this operator is 

consistent with the physiological models of simple visual cells proposed by Marr et al [3.24] . 

eq. 3. 13 

The third part of the Marr-Hildreth edge detector concerns the combination of zero-crossing 

segment information from different resolutions. Marr and Hildreth introduced the spatial 

coincidence assumption from which three rules were derived to combine data. This assumption 

can be briefly stated as: 

If the zero-crossing segments of independent LOG signals appear over a contiguous 

range of resolutions with consistent position and orientation at each resolution, then 



Detecting Edges In Cineradiographic Images 43 

the set of zero-crossing segments can be taken to indicate an intensity change due to a 

singLe physicaL phenomena. 

The three rules deal with the specific cases of isolated edges, spatially close parallel edges (bars), 

blobs and terminations. 

'\ V2G(q) � Zero-crossing -/ / detection 

--7 
Inpu t Image '\ Spatial 

'\ H Zero-crossing '\ ,- / . . . .  detection / coincidence 

rules 

r '\ � Zero-crossing V2G(a ) / n detection 

Figure 3.6: Marr-Hildreth Edge Detector 
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Figure 3 .6 shows a block diagram of the complete Marr-Hildreth edge detector. The input image 

is filtered by a bank of n, LOG filters, covering a range of spatial variances, a1 to an . The 

zero-crossings of the filter outputs are then detected and combined using the spatial coincidence 

rules to form the output primal edge image (sketch). 

A number of practical issues arise in the implementation of the Marr-Hildreth edge detector. The 

most important issue concerns the choice of the bank of LOG filters. The spacing of the filters 

has to be wide enough such that the channels are relatively independent. The half power 

bandwidth of a Gaussian is approximately 1 .2 octaves and it drops to less than 1 0% power at 

two octaves . Thus a practical filter spacing should be greater than 1 .2 octaves. Also to ensure 

that filter error (due to the discrete implementation) is constant at all scales, the size of the filter 

radius must increase in proportion to a. Furthermore, the range of resolutions (number of 

filters) needed to detect all intensity changes in an image is directly dependent on the content of 

the image, which in general is unknown. Marr and Hildreth used the results of psychophysical 

experiments [3.25] to infer the range of resolutions present in the human visual system. 

Attempting to implement this range of filters on a machine vision system results in reduced filter 

channel independence due to the relatively low spatial resolution of most machine vision systems 

in comparison to the human eye. This reduced channel independence may greatly reduce the 

effectiveness of the simple rules proposed by Marr and Hildreth for combining the zero-crossing 

segments from the output of each channel. 
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a) centred aligned b) off-centre 

Figure 3.7 : one-dimensional zero-crossing detection 

The second practical issue of concern in the implementation of the Marr-Hildreth edge detector is 

zero-crossing detection. This issue is almost ignored in the literature, when it is addressed, it 

usually takes the form of a statement such as, "in two-dimensional signals a zero-crossing is 

declared if a zero-crossing occurs in any direction ". The application of this statement appears 

at first to be a straight forward, as unlike most other methods for detecting intensity changes, no 

threshold is required. However, on closer examination, a number of difficulties arise due to the 

discrete nature of the signal [3.26]. A zero-crossing will be detected when there is a change of 

sign in any direction about a location. If the location is centred on the actual zero crossing as in 

figure 3 .7a, then detection is straight forward as the magnitude of the positive and negative 

deviation will almost be symmetric. A relatively uncritical threshold t, can be set to determine 

the presence of the zero-crossing. However in practice, zero-crossings will not be centred on the 

pixel grid, resulting in an asymmetric magnitude deviation about the true location (see figure 

3 .7b). The choice of the threshold now becomes more critical to successful detection of the 

zero-crossing. A new but elegant solution to this problem is to produce a magnitude image 

where the pixel value is weighted by how far it is away from the nearest local zero-crossing 

[3.27]. S imple linear interpolation can be used to perform this task resulting in what looks like 

an anti-aliased zero-crossing image. A global or adaptive threshold can then be applied to 

produce the zero-crossing map required for the standard Marr-Hildreth edge detector. 

Alternatively the additional information contained in zero-crossing magnitude images could be 

used to directly assist in combining the output of each channel. 

3.3.2 Optimal Edge Detector 

An edge can be defined as a specific shape in the intensity verse distance space. Thus edge 

detection can be reduced to searching for the right shape in this space. From this computational 
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definition of edge detection, Canny [3 . 1 8] proposed a theory for optimal edge detection. Central 

to his theory is the optimisation of three criteria; good signal-to-noise ratio, good localisation, 

and maximum suppression of false responses. He derived quantitative measures for these three 

qualities which are represented by equations 3. 1 3  to 3 . 1 5  respectively. 

Define f(x) as the optimal edge operator and E(x) as the edge signature to be detected. If the 

signal noise is assumed to be additive, white and Gaussian with variance d-, then the 

signal-to-noise ratio, S, at the edge location (x = 0) is : 

s =  ICE(-X)f(X)dxl (JJ f:: f2 (x)dx eq. 3. 14 

Good edge locality, L, can be measured as being inversely proportional to the position variance 

of the maximum of the filter, about the supposed edge location. 

L = 
)CE (-x)!' (x)dxl fJr (x)fdx eq. 3. 15 

where f' (x) is the first derivative of the optimal filter and E (x) is the first derivative of the 

edge signature. 

The third measure, suppression of false responses, C, can be defined as being proportional to the 

mean distance between the maxima of the filter response to Gaussian noise. 

C = _l_ 2w 
fJr (X)]2 dx f:)r I (X)]2 dx eq. 3. 16 

where f" (x) is second derivative of the optimal filter and w is the half width of the filter. 

Canny found the optimal operator for a step edge signature by combining the first two measures 

to produce an edge performance measure P, where P = (SL)2 . He then maximised P subject to 

the third criterion of minimal number of false responses. The equations resulting from this 

optimisation were long and complex and difficult to implement. This lead Canny to proposed an 

approximation to his best operator, the derivative of a Gaussian, V G(r) . 

VG(r) = -=-J;�l 2nd eq. 3. 1 7  
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The normalised response of this operator for a range of a, is shown in figure 3 .8 .  The operator 

is simple in fonn and its perfonnance measure is 80% relative to Canny's best operator. 
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Many other authors have extended Canny's work, notably Spacek [3.28] and Deriche [3 .29] . 

Spacek fonned a performance measure by combining all three of Canny's quantitative measures. 

In doing this he greatly simplified the differential equations whose solution is the optimal edge 

operator. The final filter contained six parameters, two of which Spacek fixed, and then found 

the other four by applying boundary conditions. Deriche followed the same approach as Canny 

but allowed his filter to have infinite extent. He then was able to show that filters of this kind 

can be implemented recursively and thus very efficiently. The final functional fonn of his filter 

contains only two parameters. These two parameters could be chosen freely so that the signal

to-noise ratio can be traded at the expense of good locality and vice versa. 

The algorithm that has become commonly known as the Canny edge detector is shown in 

figure 3.9.  The first stage is the linear Canny jilter, the derivative of a Gaussian. The output of 

this filter is passed through two very non-linear stages, non-maximum suppression and hysteresis 

thresholding, finally producing the output edge image. 

Non-maximum suppression had been used in other edge detectors [3 .30] prior to Canny's work. 

The basic operation attempts to determine if at a candidate edge point, the gradient magnitude is 

a local maxima in the direction of the gradient. If the edge point is not aligned with the gradient 

direction, then the location is suppressed. This operation can be implemented in a number of 

different ways. Canny originally fitted a 2-D linear surface to a 2x2 neighbourhood in order to 

estimate the direction of the local gradient. A more common approach is to use a 3x3 

neighbourhood containing the nearest eight neighbours. The centre value is a local maximum if 
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in the direction it points (to the nearest 45° increment) the two nearest neighbours have a lower 

gradient magnitude. 

Input Image 
, VG (o) , Non-maxima , / / Suppression " 

Figure 3.9: Canny Edge Detector 
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The combined effect of gradient filtering and non-maximum suppression is very similar to 

zero-crossing detection of the second derivative. However it has significant advantage in 

detecting local extrema when they are points of inflection. A point of inflection may occur as 

either a maximum or a minimum of the absolute value of the first derivative. Maximum points 

of inflection correspond to locations of sharp variation whereas minima points of inflection 

correspond to slow variations. Using a second derivative operator it is very difficult to 

distinguish between these two type of zero-crossings. In contrast, using a first-order derivative 

with non-maximum suppression, only points of sharp variation are chosen. 

The third stage of Canny's edge detector is thresholding with hysteresis. Canny's proposed this 

heuristic strategy as a way to reduce spurious responses while preventing the fragmentation of 

the detected edges . In this strategy, two threshold limits are set on the output signal-to-noise 

ratio of the operator. The start of an edge segment is declared at a point where the gradient 

magnitude is above the upper threshold. The edge segment is grown by adding the nearest 

neighbour pixels that have a gradient magnitude that is above the lower threshold. A segment is 

terminated in the direction of growth when the nearest neighbour gradient magnitude drops below 

the lower threshold. Control can also be put on the length of the edge segments. Segments 

shorter than a specified length can be discarded. 

In order to set the two threshold levels, an estimate has to be made of the image noise level. In 

Canny's original work the image model edges are assumed to be step transitions and the image is 

contaminated with additive white Gaussian noise. Applying a gradient of a Gaussian operator to 

such an image will produce an image whose histogram can be shown to be a Rayleigh 

distribution [3 .3 1 ]  everywhere, except at the edges. A Rayleigh distribution takes the form of 

equation 3 . 1 8 . It is very similar to the gradient of a Gaussian equation, 3 . 1 7 .  If a Rayleigh 

distribution is fitted to the lowest k% of the gradient magnitude histogram then the lower 

threshold can be set at say the 90 percentile of this fitted distribution. The upper threshold can 

then be set to be some ratio of the lower threshold. 
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Figure 3 . 1 0  illustrates the computation of the threshold levels from the histogram of the cervical 

section test image filtered with a gradient of a Gaussian with () = 0. 8 . The top graph is the 

normalised histogram for the image, while the bottom graph is an expanded histogram with a 

Rayleigh distribution fitted to the first 30 percentile data. The lower threshold (T-Iower) is 

computed at the 90 percentile level of the fitted distribution and the upper threshold (T-upper) is 

set to twice this lower threshold. 

Although the three-stage process described above is commonly referred to as the Canny edge 

detector, Canny originally proposed [3.2 1 ]  that it should be applied at a number of discrete 

resolutions and the results combined together using a set of predefined rules. Canny's feature 

synthesis stage performs the same basic operation as the last stage of the Marr-Hildreth edge 

detector, where spatial coincidence rules are applied to combine the zero-crossing maps. The 

underlying problem with both these methods is that there is no known optimal algorithm to 

integrate edge maps. In fact, integrating the edge maps is another ill-posed problem. 
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3.3.3 Rule-based Edge detection 

Rule-based edge detection schemes generally begin with the magnitude and direction information 

produced by applying some form of gradient operator(s) to the image. A decision strategy then 

proceeds to use this information to determine appropriate candidates (pixel locations) for the 

start of significant edge segments and then begins to build each edge segment. Because the edge 

segments build up incrementally, algorithms of this type are often called sequential edge 

detectors. A typical sequential edge detection algorithm by Delp and Chu [3 . 1 6] is implemented 

as an edge tracing algorithm, and is described as follows: 

"Search along each row (starting at the top Left corner) for a pixeL with an edge strength 

above a contour start threshold that is not already an edge point. This pixel is classified 

as an edge point and the algorithm begins to trace the edge segment. 

Candidates for the next edge point are those pixels within a one pixel radius whose 

direction is within ±�8 of the direction of the current edge point. The procedure then 

starts from this new edge point and checks locally for possible edge points. If another 

edge point is not found, the edge segment is terminated. If the length of a contour at 

termination is beLow a minimum then it is discarded. If the newly-found contour connects 

to an existing contour then they are merged. The aLgorithm then returns to the 

neighbourhood to search for the next start point. ALgorithm termination occurs when the 

bottom right corner of the image is reached. " 

The two critical elements of sequential edge detection algorithms are the next-point criteria and 

threshold selection. Approaches to choosing the next point based on the previous point include 

dynamic programming, graph-searching techniques [3.32],  non-maximum suppression and 

connectivity measures such as that of Kitchen and Rosenfeld [3 . 1 5] .  Similarly, a wide range of 

methods have been described for determining threshold selection. They include, simple fixed 

threshold, Frei-Chen classification rule [3 .30] ,  and a locally adaptive threshold [3 .33] .  

With such a wide choice of methods at every stage of a rule-based edge detection algorithm 

(including the selection of the operator to compute the local gradient and direction information), 

almost all practical implementations have been assembled heuristically, usually on specific types 

of images . Algorithmic complexity and computational 
'
cost vary greatly between different 

implementations . Performance of such algorithms can be extremely good, with figures of merit 

(see equation 3 . 1 1 ) in excess of 90% for image signal-to-noise ratios greater than 1 5dB [3. 1 6] .  

However for SNR's below 1 5dB, results are extremely variable and highly image dependent. 

3.3.4 Combining Fragmentary Edge information 

The result of applying an edge-detection algorithm to an image is the reduction of the grey-level 

information to binary information consisting of edge segments .  These edge segments mark the 
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location of the significant local intensity changes in the original image. Often the most 

significant intensity changes occur at the boundaries of objects or geometrical features. Due to 

photometric effects, noise and limitations of edge detection algorithms, an object boundary may 

have been detected as a number discrete edge segments. If geometric features of an object such 

as size and orientation are to be computed, then it is useful to have complete object boundaries. 

The task of combining the fragmentary edge information can be approached in a number of 

ways. Popular methods include edge-linking [3.34], heuristic graph searching [3.35], dynamic 

programming [3 .36], and the Hough transform [3.37]. 

The first three of these methods view a boundary as a path through a graph formed by linking 

edge segments together. The linkage rules form the procedure for connecting the edge segments. 

In the case of heuristic graph searching methods, a proposed path between two points A and B, is 

considered to consist of node locations xk , k = 1 , 2, . . . (corresponding to the pixel coordinates). 

If given an evaluation function ¢(xk ) which measures a value for the path constrained to go 

through node xk then each successor of the start node is examined and the one selected that 

maximises ¢(x ) . This selected node becomes the new start node and the process is repeated 

until B is reached. The node selection from A to B constitutes the boundary. The computational 

cost of such a procedure is highly dependent on the form of ¢ . 

Unlike heuristic graph searching methods, dynamic programming aims to find the global 

optimum of a multi-stage process, given a particular evaLuation function. The method is based 

on Bellman's principaL of optimality [3.36], which states: 

"The optimum path between two points is also the optimum between any two points lying 

on the path. " 

Thus if C is a point on the optimum path between A and B, then the path CB is the optimum path 

between C and B, no matter how one arrives at C. If there are N nodes to be considered for the 

path, then the dynamic programming procedure reduces the global optimisation problem to N 

stages of two variable optimisation. Furthermore, if ¢ can take on L possible values at each 

node, then the total number of search operations is J3 (N - 1) - L + N .  This will be 

significantly smaller than the LN - 1 operations required for an exhaustive search when N and L 

are large. 

The last of the popular methods for combining fragmentary edge information is the Hough 

transform [3.37]. This method was originally proposed for the detection and recognition of 

complex shapes. Unlike the previous three methods, this method requires the proposal of a 

geometric model for the object. It then proceeds to find all significant occurrences of objects (at 

any scale and orientation) fitting this model . The simplest object model that can be proposed is a 

straight line. If the perpendicular distance from a line to the origin is denoted s, and the angle it 
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forms with respect to the x-axis is denoted 8 (figure 3 .9a), then this line can be represented by 

the equation 

s = x cos 8+ y sin 8 eq. 3. 19 

Taking the Hough transform of this line results in just a point in the (s, 8) plane. In effect, all 

points on the line map into a single (s, 8) point (figure 3 .9b). This result can be used to detect 

straight lines in a given a set of boundary (edge) points. 

y 8 

• (s, 8)  

x s 

a) Straight line b) Hough transfonn 

Figure 3.11 :  The Hough Transform 

Practical implementations of the Hough transform proceed something like this. For a chosen 

quantisation in the value of the parameters s and 8 map the coordinates, (xi ' y), of the 

fragmentary edge points into the (s, 8) space. Count the number of edge points, C(s, 8) that 

map into each location in (s, 8) .  Finding the local maxima of the count will give the s and 8 

values of different straight line segments through the edge points. In practice a relatively coarse 

quantisation for s and 8 will be used in order to reduce the computational cost of searching for 

maxima in C(s, 8) . The location of detected edge points will also usually be quantised to the 

pixel grid spacing. Thus a single line will no longer transform into a single point in (s, 8) space, 

but will be spread out over several quantisation levels. Searching for local maxima in C(s, 8) 

now constitutes searching for clusters and requires the use of clustering techniques [3 .38] .  

Although the Hough transform can be generalised for the detection of arbitrary shapes [3 .39] ,  the 

dimensions of the parameter space that must be searched, become extremely large, even for 

simple curves. This has generally restricted the method to the detection of lines, circles, ellipses, 

and arcs. Although these shapes are important primitives for objects, a complete object will be 

made up of many of these primitives. Thus some form of geometric feature synthesis is required 

to interpret the detected primitives and combine them together to form a single geometric 
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description of an object. The Hough transform is a robust, but non-optimal, parametric curve 

fitting technique [3 .40], equivalent to binary template matching with a top-hat function [3 .4 1 ] . 

3.3.5 Performance of High-level Edge Detectors 

The Marr-Hildreth and Canny edge detectors have become the default standard by which other 

edge detectors are gauged. Because of this, and in light of the impractical nature of 

implementing and assessing the performance of many of the other edge detectors described in the 

literature, only the Marr-Hildreth and Canny edge detectors were assessed. These two edge 

detectors were applied to the same cervical cineradiographic test image (figure 3 .4b) used to 

evaluate the low-level edge operators. Results were assessed visually and also scored 

quantitatively using Pratt's figure of merit. Code for the implementation of these two edge 

detectors is contained in appendix C, page C-2 1 . 

In principle both the edge detectors required only a single control parameter, the standard 

deviation (J of the Gaussian filter, to be set by the user. For a range of (J, the resulting output 

edge maps are then combined using appropriate rules. Most comparisons using these two edge 

detectors are only performed for a single value of (J usually chosen visually to produce the best 

edges. In this assessment, the upper and lower value of a were determined visually by 

experimentation. The lower value of a was set such that the lowest contrast edges at the front 

of the third vertebra were detected. The upper value was set to a level where the high contrast 

edges were just beginning to lose their shape. Edge maps were generated for five values of a 

between these limits, spaced at a ratio of approximately 1 .3 .  These five edge maps were 

combined to produce a composite edge map. The criterion used to combine the edge maps for 

the Marr-Hildreth detector was that an edge pixel was declared if it occurred over at least three 

consecutive values of a. This amounts to the simple implementation of Marr-Hildreth's 

coincidence assumption (section 3 .3 1 ). For the Canny composite edge image, continuity of both 

location and direction, across at least three consecutive scales, was used. The tolerance on 

direction spread was set to 45° . 

In practice the Canny edge detector has several additional user adjustable parameters. They are 

the internal parameters for the two non-linear stages. In the non-maximum suppression stage, a 

parameter can be set to control the decision on the acceptable local gradient alignment. In the 

hysteresis threshold stage, information is required in order to set the upper and lower thresholds. 

Again in the literature, there appears to be no standard approach to setting these parameters. 

The way in which they are set usually depends on the particular implementation used. In this 

work, the 3x3 nearest neighbour approach was used for the non-maximum suppression stage. 

This approach has the advantage that it requires no additional computation in order to estimate 

the direction of the gradient plane. 
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For the hysteresis threshold stage, the Rayleigh distribution was fitted to the lower 30 percent of 

the gradient image histogram data. The lower threshold was computed at the 85 percent level of 

distribution and the upper threshold set to 1 .8 times the lower value. All the internal parameters 

for the two non-linear stages were determined experimentally. The 30 percent level for fitting the 

Rayleigh distribution was found to be relatively non-critical. Results were somewhat more 

sensitive to the selection of the other two parameters . 

Table 3 .6  contains the results of applying both the Marr-Hildreth and Canny edge detection 

algorithms to the cervical test image of column one, over a range of filter resolutions. The 

second row of the first column also contains the manually generated reference edge image on 

which the figure of merit for each edge image was computed. 

The first and most obvious difference between the output edge images of the Marr-Hildreth and 

Canny edge detectors is that the edges detected by the Marr-Hildreth detector are relatively thick 

compared to those of the Canny detector. The reason for this appears to be due to the inability 

of zero-crossing detection of the LOG to differentiate between maxima and minima points of 

inflection. This assumption was partially verified by removing the non-maxima suppression 

stage of the Canny detector and simply passing the gradient image directly to the hysteresis 

threshold stage. The detected edges were then of comparable thickness to those of 

Marr-Hildreth. 

As the standard deviation of the smoothing filter increases across the table, the figure of merit 

improves for the Marr-Hildreth detector but declines for the Canny detector. The pattern of 

improvement in value for the Marr-Hildreth detector is due to the reduction in detection of non

edge pixels. The decline in value for the Canny detector occurs because of edge fragmentation 

due to the non-detection of low-strength edges. 

The final column of table 3.6 contains the composite edge images . The figure of merit for the 

composite images is worse than the value for several of the single resolution images for both 

edge detectors . This result is a reflection of the non-optimality of the standard algorithms used 

to combine the edge maps. 

Overall the Canny edge detector performed slightly better than Marr-Hildreth, however the 

results are still very poor, with the best figure of merit less than 50%. This is principally due to 

significant fragmentation of the detected vertebral edges and the non-detection of the front edges 

of the second vertebra. None of the high-level edge image figures of merit exceeded the value 

computed for the low level, computationally inexpensive, Kirsch compass operator of section 

3 .2 .5 .  This result is a reflection on the difficulty in reliably detecting edges in cineradiographic 

images. 
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3.4. An Alternative HVS Inspired Approach to Edge Detection 

When an image is presented to a human observer it is transformed by the human visual system 

(HVS) into information. This perceived information may be represented by attributes such as 

brightness, colour, edges and texture. Understanding this perception process is founded in the 

results of psycho-physical experiments into human visual perception. Many of the early 

developments in image processing were based on quantitatively representing this perceptual 

information. 

One of the earliest studies into human visual perception concerned the phenomenon of 

simultaneous contrast. In figure 3 . 12a, the two smaller squares in the middle have equal 

luminance or intensity values, but the one to the left appears brighter. On the other hand in 

figure 3 . 1 2b, the two squares appear near equal in brightness although their luminance's are very 

different. The reason for the is that human visual perception is sensitive to luminance contrast 

rather than absolute luminance. 

According to Weber's Law [3 .42], if the intensity 10 of an object is just noticeably different from 

the intensity Is of its surround, then their difference ratio : 

I I - I I .r 0 = constant 10 eq. 3.20 

Redefining 10 = I and Is = I + tv, where tv is small for just noticeably different intensities, 

equation 3 .20 can be written as 

a) 

tv d - :::: -(Iog I) = !:::.c (constant) I dI 

b) 

Figure 3.12: Simultaneous contrast, simple image 

eq. 3.21 

For simple images such as those in figure 3 . 12 ,  the value of the contrast constant (called Weber's 

ratio) has been found to about 2% over a wide range of absolute intensity. At the extremes of 

the intensity range Weber's ratio increases rapidly to avoid sensor signal-to-noise limitations at 

low intensities and sensor saturation at high intensities (figure 3 . 1 3) .  
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For more complex images, the human visual system adapts to the average intensity level, which 
is dependent on the characteristics of the scene. As the eye roams about a scene the 
instantaneous adaptation level fluctuates about this average value. The effect of this adaptation 
is that the measured Weber's ratio for small areas within an image is generally much higher than 
the 2% value obtained for a simple single target case. Also the range over which the ratio is a 
constant is much narrower. 
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Figure 3.13: Weber's Law: Simple image 
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Figure 3.14: Weber's Law - complex image 
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Figure 3 . 1 4a) contains an image of a small square of constant intensity on a background with a 
linear intensity gradient diagonally from the top left hand corner to the bottom right hand corner. 
The small square appears to have the inverse intensity gradient to the background, darker in the 
bottom right-hand corner and lighter in the top left-hand corner, even though it is of constant 
intensity. Measuring Weber's ratio against the local average intensity at the edges of the small 
square results in figure 3 . 1 4b. Each of the 'U'-shaped curves represents Weber's law at a 
particular local average intensity. The range over which Weber's ratio is constant is narrow and 
its value is significantly higher than the 2% value for a constant intensity background. 
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3.4.1 Weber's Law and Profile Based Edge Detection 

In section 3 .2 it was established that boundaries of objects (edges) are often indicated by local 
intensity discontinuities. The magnitude of these local changes in intensity can be enhanced by 
applying a gradient filter or first derivative operator. A threshold can then be applied to the 
gradient enhanced image to produce an edge image. If a single global threshold is used to make 
the edge/no-edge decision then a number of difficulties arise. Setting a low threshold to allow 
low-strength edges to be registered will also register noise (both from photometric effects and 
random signal errors). Furthermore, high-strength edges will be registered as thick lines, often 
obscuring nearby low-strength edges . When the threshold is raised to improve the detection of a 
high-strength edges, low-strength edges will be lost. Thus using a global threshold will be a 
compromise, attempting to balance all three aspects above. Clearly if a threshold can be made 
dynamic, adapting to local image characteristics, then significantly better results should be 
produced. 

Many different adaptive thresholding algorithms have been proposed in the literature. One 
common approach involves computing the cumulative histogram of the gradient in a local 
neighbourhood. A threshold is then chosen such that a specified percentage of the pixels with the 
largest gradient are declared as edge pixels. In the Canny edge detector (section 3 .32) the upper 
and lower thresholds of the hysteresis threshold stage were computed by fitting a Rayleigh 
distribution to the low 30 percent of the gradient image histogram. A computationally 
inexpensive approach to adaptive thresholding was proposed by McIlroy et at [3 .43] based on 
Weber's law. In their algorithm the local average intensity (LAI) was computed on a 2x2 
neighbourhood, and the local change in intensity computed using the Roberts product (RP) 
gradient mask. Thresholding of the local gradient consisted of a simple comparison : 

RP c. f(LAl) eq. 3.22 

wherefis a function which was specified by a look-up table. 

The choice of the 2x2 neighbourhood enabled them to realise a hardware based real-time (at 
video rate) edge processor. The threshold or profile function f could be prograrruned on-the-fly 

to adapt to changes in the video signal. For scenes with a high signal-to-noise ratio their optimal 
experimental profile was found to be that shown in figure 3 . 1 5 . 

This threshold profile is implemented as a three section piece-wise linear function. It starts at a 
value of four (approximately 2% of the dynamic range) at zero LA! and increases slowly for low 
intensities. It then increases more rapidly for medium intensities and finally very rapidly at high 
intensities. This profile can be transformed to the Weber domain (M / I vs 1 ) by dividing each 
value by the corresponding LA!. This results in the Weber threshold profile of figure 3 . 1 6. 
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Figure 3.15: Threshold profile 

For low values of LA!, the shape of this profile is consistent with Weber's result for a constant 
intensity background (see figure 3 . 1 4) .  At high intensities the curve deviates significantly from 
Weber's result, increasing relatively slowly and reaching a maximum value only two times as 
large as the minimum profile value. 
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Figure 3.16: Weber threshold profile 

The original work of Mcilroy et at was primarily concerned with the actual hardware 
implementation of their Weber's law based edge detection algorithm. Their experimental results 
for a range of test images, indicated the potential effectiveness of their simple algorithm, but only 
with respect to hand-tuned threshold profiles. It was unclear how the profile generation could be 
automated and hence adaptively updated in a feedback loop for real-time edge processing of 
dynamic scenes. The next two sections in this chapter outline original work to investigate the 
effectiveness of the adaptive threshold algorithm of McIlroy et al and to extend their results with 
the potential for automatic threshold profile generation and hence the reliable detection of edges 
in cineradiographic sequences. 

• 
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3.4.2. Target Based Computation of Threshold Profiles 

The Weber's law based edge-detection algorithm assumes that the edge information in an image 
is uniquely defined by a range of Weber ratios (M / 1 ), represented by the threshold profile 
function. To investigate the degree to which this relationship holds, a method was devised where 
a human operator manually traced the desired edges in an image. The coordinates of these traced 
edges form an edge-template. The edge-template is then used as a target from which analysis 
can begin. A secondary advantage of this approach is that in using a human to specify the edges 
of interest, some of the mechanisms of human vis ion (namely Weber's law) will be incorporated 
implicitly into the selection process. 

a) black-background b) white-background 

Figure 3.17: Component test images 

To ensure that there was little subjectivity in the defining the edges of interest, two test images 
with specific properties were created. Both the images are of a simple manufactured component 
containing both blind and through holes . The test images are shown in figure 3 . 1 7 .  The first 
image, figure 3 . 1 7a, is of the component on a near black background, and the second image, 
figure 3 . 1 7b, is of the component on a near white background. The black-background image 
contains sharply defined edges and is relatively noise free. Most of the information in the white
background image is contained in a narrow range of intensities. The image appears relatively 
noisy and of low contrast. 

The main edges associated with the test component (holes and outside perimeter) were traced on 
each test image to produce the corresponding edge templates. These edge templates are shown 
overlaid on the original images in figure 3 . 18 .  
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Figure 3.18: Manually generated edge templates 

The edge-strength local-average-intensity statistics of the original image were computed at the 
pixels defined by the edge-templates, using the 2x2 operators of McIlroy et at. Figure 3 . 19  
shows the minimum, maximum and mean edge-strength profiles generated from the computed 
statistics. The mean profiles are calculated from the average of the range of edge-strengths 
recorded at each LA! in the image. If a value of LA! was not present in the image at an edge 
template position, then the profile value was set to 100 for clarity. 
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Figure 3.19: Edge-strength profiles 

The black-background image profiles (figure 3 . 1 9a) cover a LA! range from approximately 35 to 
1 35 .  There i s  little difference in shape between the minimum and mean profiles except a t  the 
ends of the active LA! range. The maximum profiles show elevated edge-strengths in the LA! 
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region from 3 0  to 70, with a number of high spiky values in the range 100 to 1 35 .  The profiles 
for the white-background image (figure 3 . 1 9b) cover a LA! range from approximately 55 to 1 40. 
This dynamic range is slightly smaller than the black-background image profiles . There are 
some large edge-strengths recorded at about 75 LA!, indicating the potential presence of high 
contrast edges . These values are most likely due to local shadowing at the edges of the test part. 
The minimum profile edge-strengths are generally very low relative to the mean and maximum 
profiles and reflect the noisy nature of the image. The maximum profile is similar in shape to the 
mean profile except that the edge-strengths and variance are increased 

The minimum, mean and maximum edge-strength profiles of the two test images computed at the 
pixels defined by the edge-templates were used in the Weber's law based edge detection 
algorithm of McIlroy et al. The resulting edge images are shown in table 3 .7 .  

Table 3.7 

Black 
background 

White 
background 

Minimum Profiled Mean Profiled Maximum Profiled 

Table 3.7: Direct profile thresholding of test images 

Minimum edge-strength profiling tends to give greater emphasis on the LA! values rather than 
the edge-strengths. For both test images, the minimum profile edge image contains all the pixels 
of the edge template. However many other pixels are recovered because they also have an ES 

greater than or equal to the value of the template edge pixels at each LA!. This is particularly 
obvious in the white-background case where about 50% of all pixels are detected. The mean 
profile edge images show greater rejection of non-edge template pixels, though this has been at 
the expense of the non-detection of some of the genuine edge template pixels. Maximum 
edge-strength profiling recovers only the pixels defined by the edge-template with the largest ES 

recorded at each LA!. For the black-background image many of the edge-template pixels are 
recovered, though the edges are highly fragmented and the lower surface contour, due to uneven 
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illumination, is still present. Few surface pixels are recovered from the white-background image, 
but there are also few edge-template pixels detected and those detected are highly fragmented. 
This is particularly obvious for the bottom row of blind holes, where only a single pixel is 
detected on the large hole. 

The direct profiling results of table 3.7 are poor, even for the black-background image with its 
high contrast. This may be due to slight pixel placement inaccuracies in the target edge 
templates. To test this hypothesis, threshold profiles where recomputed for the growth of a one 
and two pixel layer about the original edge-template. The resulting mean profiles are shown in 
figure 3 .20. 
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Figure 3.20: Mean edge-strength profiles with growth 
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The mean profiles for the black-background test image (figure 3 .20 a) show little change after 
the first edge expansion. This is because the image is relatively binary in nature, with only two 
main region types being distributed about the target edges. On the other hand, the profiles for 
the white-background test image change rapidly for the first pixel layer, indicating the noisy low 
contrast nature of this image. Very little change occurs with the growth of the second layer, 
indicating that most pixels types (ES-LAI combinations) are now included in the profile. Using 
the minimum, mean and maximum edge-strength profiles with pixel growth, in the Weber edge 
detection algorithm, the results of table 3 .8  are produced. It is immediately noticeable that the 
minimum profile edge images now contain a very high percentage of the total image pixels for 
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both test images . The extreme case of this is the white-background edge image for a growth of 
two layers, where all but two pixels are not detected. 

Table 3.8 

Black 
background 
(growth=1) 

White 
background 
(growth=1) 

Black 
background 
(growth=2) 

White 
background 
(growth=2) 

Minimum Profiled Mean Profiled Maximum Profiled 

Table 3.8: Direct profile thresholding of test images with growth 

The mean profile edge images for the black-background test part now show a complete recovery 
of the outer edge without the appearance of the lower contour shown in row one of table 3 .7 .  
The top through holes are now also complete, however this i s  accompanied by the detection of 
surface noise and the partial loss of the blind holes at the bottom. There is little difference 
between the mean profile results for a growth of one layer and two layers. This is to be expected 
as the mean edge-strength profiles of figure 3 .20a change very little. The most significant 
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change for the white-background test image is with the mean profiles . The edge image for a 
growth of one layer no longer shows the contouring at the bottom right-hand side due to uneven 
illumination. There is improved edge continuity on the left and bottom outside edges, 
accompanied by some loss of the blind hole edges . Growing another layer on the edge-template 
and profiling the image further enhances the edge continuity at the bottom and left-hand edges, 
but results in partial fragmentation of the top and right-hand edges, with the complete loss of the 
blind holes. 

The results of table 3.8 are still relatively poor given the simple composition of the test images. 
and do not support the hypothesis that a profile computed from pixels on or local to specified 
edges, uniquely define the edge pixels when used in the McIlroy et al algorithm. To determine 
how well the McIlroy et al algorithm can perform on these test images, code was written to tune 
the mean profiles to maximise Pratt's figure of merit. At each occupied LAI position in the mean 
profile, the tuning procedure adjusted the edge-strength over a range of plus or minus three 
standard deviations. The current LAI position in the profile was then set to the edge-strength 
that maximised the figure of merit. The procedure then moved on to the next position, tuned that 
location and then continued until it had covered the occupied LAI range. Figure 3.2 1 contains 
the tuned profiles and the resulting edge images. 
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Figure 3.21 :  Tuned profiles and resulting images 

In both cases the tuned profiles are significantly different from the original mean profiles that 
they started from. The black-background tuned profile is similar in shape to the original zero 



-------------

Detecting Edges In Cineradiographic Images 65 

growth mean profile of figure 3 . 1 9, except that the threshold values are all lower. The white
background tuned profile also shows elevated values compared to the original mean profile. 
There is a rapid increase at a LA! of approximately 40, accompanied by an almost ramp increase 
in the 1 20 to 1 50 LA! range. The output edge images are greatly improved compared to all the 
previous results. On tuning, Pratt's figure of merit for black-background image increased from a 
mere 1 1 .7% to 59.8%. An even more dramatic improvement occurred for the white-background 
image where the merit figure increased from 22.3% to 7 1 .9%. The edges for the black
background image are contiguous except around edges of the bottom holes. The edges for the 
white-background image are not quite as complete, particularly down the right-hand side and 
around the bottom holes, where there is significant edge loss. This image scores a very high 
figure of merit because the recovered edges are generally only of one pixel width. 

It is worth while at this stage to compare best McIlroy et at algorithm results with the best that 
can be achieved using the Canny algorithm at a single filter resolution. Figure 3 .22 contains the 
best experimental results (with respect to Pratt's figure of merit) that could be achieved using the 
Canny algorithm of section 3 .3 .2 .  In both cases the optimal standard deviation of the Gaussian 
filter was found to be 0 .6. The percentile for determining the lower threshold was initially set to 
80%, but the resulting images showed complete loss of the bottom holes and the loss of the 
right-hand and top edge of the white-background image. Setting the value to 30% vastly 
improved the results for the white-background image, but a value this low would not normally be 
used because it is not consistent with the basic Canny edge/noise model . In reality this simply 
reflects the difficulty the Canny algorithm has in dealing with edges with such dramatically 
different edge strengths. The black-background edge image looks extremely good, yet only 
achieves a figure of merit of 59.8%. This relatively low score is partly due to the loss of edges 
around the bottom holes, but mostly due to a one pixel difference in the diameter between the 
detected holes and the edge-template holes. The white-background edge image also looks very 
good, except for a double edge on the left hand and bottom edges, and the near total loss of the 
bottom row of holes. This image scored a figure of merit of only 29.3% because of these last 
two characteristics. It may be argued that there is in fact a double edge at the left-hand and 
bottom sides of the test part due to shadowing. However this edge was not considered to be 
significant by the human observers due to its very close proximity to the physical edge of the test 
part. 

The results of figure 3 . 1 8  indicated that the McIlroy et at algorithm can be very effective, even 
when compared to the superior, though highly computationally expensive Canny algorithm. The 
difficulty with the McIlroy et at algorithm is that there is still no defined way to derive the 
optimal profile as it is not uniquely defined by the ES-LAI statistics of the edges. 



66 The Development of Motion-tracking Strategies for Cineradiographic Images 

a) black-background b) white-background 

Figure 3.22: Single resolution Canny results 

3.4.3. Direct Thresholding using ES-LAI Edge-template Statistics 

Back at the start of this section, Weber's law was introduced and defined by equation 3 .2 1  as the 
ratio of change in local intensity (edge-strength) to the local average intensity and was equal to a 
constant. The McIlroy et at algorithm does not actually implement this equation, but instead 
declares an edge pixel if the edge-strength is greater than the profile value at the computed LAI. 
In effect, the algorithm only allows a very limited range of unique Weber ratio's (ES to LAI) to 
be defined by the 1 -0 profile function. It may be because of this that the mean profiles were not 
found to uniquely define the target edges of the test images. To test this hypothesis, the two 
dimensional ES-LAI statistics, computed about the edge-template, should be used to directly 
threshold the image. Suitable code was written in which a pixel is declared an edge pixel, only 
if at the ES-LAI location in the 20 statistics array at least one pixel is recorded. The results of 
applying this algorithm to the two test images is shown in table 3 .9 .  

The first column of this table are the results of applying the ES-LAI statistics from the manually 
generated edge-templates to the two test images . All the specified edges are recovered but they 
are accompanied by many non-edge noise pixels, particularly for the white-background image. 
The recovered edges do have the redeeming property that they are generally only one pixel wide. 
An exception to this are the edges of the blind holes at the bottom which are lost in noise. This 
effect is further illustrated by the results in the third column of table 3.9 .  These results were 
produced by applying the ES-LAI statistics from the edited Canny edge-templates of column 
two. These edge-templates were generated from the Canny algorithm output images of figure 
3 .22, by manually filling in any missing edge pixels and removing any noise pixels. The black
background edge image of column three shows significant improvement over the result of column 
one. There are virtually no background noise pixels and the top row of holes is recovered fully 
with few noise pixels . Little improvement is shown for the bottom holes and edge, in fact there is 
a small increase in noise pixels in this area. The white-background edge image of column three 
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is significantly worse than the result of column one. Many more non-edge pixels are recovered 
over most areas in the image. 

Table 3.9 

Black 
background 

White 
background 

2-D profiled using 
manual edge-template 

P = 6.9% 

Edited Canny 
edge-template 

2-D profiled using 
edited edge-template 

P = 5 .8% 

Table 3.9: Direct thresholding with the two dimensional ES-LAI statistics 

The overall conclusion that can be drawn from these results is that the ES-LAI statistics 
computed about the target edges using 2x2 neighbourhoods, define relatively uniquely the edge 
pixels only when there is a high signal-to-noise ratio. A potential reason for this result is the 
poor performance of the Roberts product in noisy images and the asymmetric response of 2x2 
kernals. More robust results should be produced by using a 3x3 neighbourhood and computing 
the edge-strength using a Sobel mask. 

Table 3 . 10 contains the results of usmg the ES-LAI statistics computed about the 
edge-templates, on a 3x3 neighbourhood, to directly threshold the test images . The first column 
used the manually generated edge-template and the second column the edited Canny templates of 
table 3 .9 .  There is little difference between the black-background edge images for either 
template and this is reflected in their merit scores. Overall the images are slightly better than the 
best results obtained using a 2x2 neighbourhood. The white-background edge images show a 
significant improvement with respect to noise rejection, particularly for the Canny based 
template. This confirms that the pixel placement in edge-template is more important when the 
image is of low signal-to-noise ratio. 
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Table 3.10 

Black 
background 

White 
background 

2-D profiled using manual 
edge-template 

P = 7.7% 

2-D profiled using edited 
edge-template 

P = 1 6 .9% 

Table 3.10: Direct thresholding based on 3x3 neighbourhood ES-LAI statistics 

Although the use of a 3x3 neighbourhood to compute the ES-LAI edge statistics improved the 
quality of the recovered edges and hence implies that the edge pixels are better defined by these 
statistics, overall the results are still unsatisfactory and do not support the hypothesis that edge 
pixels are uniquely defined by their ES and LAI statistics. 

Manually generated 
edge-template 

2-D profiled 
2x2 neighbourhood 

2-D profiled 
3x3 neighbourhood 

Table 3.11 :  Direct thresholding of cervical spine test image 
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The main purpose of this section was to develop a high-performance edge-extraction algorithm 
suitable for cineradiographic images . Although the performance on the test-part images was not 
that good, it is worth while to see how well direct thresholding using ES-LAI statistics performs 
on cineradiographic images. Table 3 . 1 1  contains the results of applying the ES-LAI statistics 
computed about the edge-template, to directly threshold the cineradiographic cervical spine test 
image. Both edge images clearly show the recovery of the original edge-template pixels with full 
connectivity. The 3x3 neighbourhood edge image displays far greater suppression of non-edge 
pixels than the 2x2 neighbourhood image, but overall the results are still unsatisfactory . 

3.5. Summary of Edge Detection in Cine radiographic Images 

At the start of this chapter the concept of image segmentation was introduced. Image 
segmentation attempts to decompose a scene into its components . With respect to determining 
vertebral motion in spinal cineradiographic sequences, the components of interest are the 
vertebral boundaries . If in each frame of the sequence the vertebral boundaries can be reliably 
extracted, then the problem of determining the vertebral motion is relatively straight forward. 
Measuring the difference in position and orientation of each vertebral boundary through the 
sequence will describe the vertebral motion and hence the motion of the spine as a whole. None 
of the edge detection methods investigated in this chapter have been able to reliably extract the 
vertebral boundaries of the cervical spine test image. Recovered edges were generally 
fragmented and noisy. 

The test image used to evaluate the various edge detection schemes was from the middle of a 
typical cervical spine sequence. An image from a cervical sequence was chosen because these 
images tend to be of lower quality than images of the lower (lumbar) or middle (thoracic) spine. 
There are two reasons for this loss of quality. Firstly, the vertebrae occupy only a small fraction 
of the area of the frame due to the requirement to include the entire skull in the frame. This 
results in a relatively low spatial resolution for the vertebrae once digitised. The second image 
quality factor concerns the dynamic range of intensity. Although there is little soft tissue to 
scatter the X-ray beam, part of the scene will contain the X-ray beam unattenuated. The portion 
of the total area containing the unattenuated beam will vary depending on where the neck is in 
the scene. This would not be a problem if the intensity dynamic range of the imaging system was 
very large. A further complication is that the X-ray strength when imaging this area of the spine 
has to be kept low in order to prevent burn-in of the image intensifier tube. Even with this low 
level, the range of intensities that the camera experiences are very large. Cameras designed to 
work with X-ray image intensifiers are very sensitive compared to daylight cameras, but this 
high sensitivity is gained at the expense of increased noise and reduced intensity range handling. 
In order to prevent the camera sensor overloading, cameras are fitted with auto-gain circuitry. 
This circuitry dynamically adjusts the effective gain of the sensor based on the average intensity 
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in the scene. The effect of this gain adjustment over the passage of a sequence is to modulate the 
image contrast. For sequences of the cervical spine, with direct X-ray feed-through, this gain 
modulation is significant and can dramatically reduce the contrast of the images. 

Table 
3.12 

Full 

Section 

Line 
Profile 

C2 

First Image 

Intensity 
200 

1 50 

100 

500 10 20 30 40 50 
Position 

Intensity 
200 

1 50 

1 00  

Middle Image 

30 40 50 
Position 

Table 3.3: Contrast Modulation 

Last Image 

Intensity 
200 

100 

500 1 0  20 30 40 50 
Position 

The first row of table 3 . 1 2  contains frames from the start, middle and end of a typical cervical 
cineradiographic sequence in which the subject moved from full flection (neck tucked down) to 
full extension (neck extended back). The second row of this table contains enlarged views of the 
centre of the neck covering the first to fifth vertebrae. It is clear from these views that there is a 
considerable difference in contrast through the sequence. Maximum contrast is reached in the 
middle of the sequence where the amount of direct X-ray feed-through is balanced either side of 
the neck. At the extremes of the movement the feed-through area is predominantly at the back or 
front of the neck resulting in an increase in the average intensity. The auto-gain circuitry 
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compensates for this by reducing the camera gain and hence the contrast of the image. This 
effect is further illustrated by an intensity line profile taken through the second vertebrae. In 
these profiles the approximate position of the soft tissue to bone interface is marked with a 
vertical dotted line. At these transitions it is clear that the difference in intensity level is 
maximum for the middle image but is significantly reduced for the two end images. 

How the change in image contrast affects edge detection performance has not been explored so 
far in this chapter as none of the methods investigated were able to reliably extract the vertebral 
edges from an image in the centre of a sequence. To briefly explore the effect contrast 
modulation has on the Canny edge-detection algorithm (this algorithm scored the highest figure 
of merit on a single frame), the algorithm was applied to the three cervical sections contained in 
table 3 . 12 .  Only a single resolution was used with the internal algorithm parameters adjusted 
individually for each image to produce the best visual results. The resulting edge images are 
shown in table 3 . 1 3 . It is clear from these images that the change in image contrast due to the 
auto-gain circuitry, dramatically effects edge-detection performance. The edges detected in the 
middle image are reasonably good, while the edges recovered for the two end images are 
extremely fragmented and very noisy, with almost complete loss of the vertebral outlines. 

First Image Middle Image Last Image 

Table 3.4: Contrast effects on Canny Algorithm performance 

Section 3 .3.4 of this chapter covered several methods for combining fragmentary or noisy edge 
data. Tracing methods are generally only effective for filling in small gaps in boundaries and 
thus are unlikely to be useful on the edge images of table 3 . 1 3 .  Generalised fitting methods, such 
as the Hough transform, would require a geometric model for each vertebral boundary. 
Determining a suitable model to cover all the natural vertebral shape variations would be 
possible, but it is likely to be highly complex. The reason for this complexity can be easily 
illustrated by looking at the variation in vertebral shape that occurs in the middle image of 
table 3 . 1 3 . The shape of the front of a vertebral body is similar for most of the vertebrae, only 
the relative size changes. This is not the case for the back of the vertebrae where the 
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spinous-process protrudes . Here the complex shape varies dramatically between individual 
vertebra. Assuming that a suitable geometric model has been defined, then the computational 
cost of the fitting process will be extremely high, unless some of the model parameters of the 
individual vertebra can be estimated. The estimation of the main model parameters may be able 
to be achieved by first applying an edge-linking procedure to the edge-fragments computed by a 
Canny algorithm on the middle image in a sequence. However towards the ends of a cervical 
sequence the recovered edge information becomes so sparse and noisy (see table 3 . 1 3) that the 
fitting procedure is unlikely to produce stable results. 

More effort could be expended on exploring the vast range of edge detection algorithms 
described in the literature. Current thinking would indicate that a multi-resolutional, multi-model 
approach involving adaptive techniques would be the most appropriate place to start. This 
approach, if successful, is likely to be extremely computationally expensive and require special 
hardware if the operation it to completed in a realistic time. Assuming that all this is can be 
successfully achieved, then the original task of measuring the vertebral motion could be tackled. 

The reason for attempting to use edge-detection methods to extract the vertebral boundaries was 
that this would greatly simplify motion measurement since tracking binary boundaries is 
relatively straight forward. As reliable segmentation has not been achieved, then an alternative 
approach would be to attempt to track the actual gray-scale characteristics of the vertebra in the 
original sequence. The next chapter introduces the fundamental difficulties associated with 
motion perception. Various strategies for measuring and tracking motion are overviewed and a 
suitable approach to motion measurement in cineradiographic images is proposed. 
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4 
Motion-tracking: An Overview 

4.1 Visual Motion Perception and Description 

Our visual perception of motion is fundamental to our interaction and understanding of the 

world. It is the principle method by which we determine relative motion between different 

objects in the world. It also provides a rich source of information about depth and surface 

structure of objects. Pictures or two-dimensional projections of a scene represent a single shot in 

time and space where all information is represented by the intensity variation across the 

projection. Changing the viewpoint of the projection over time enables three-dimensional 

structural information to be collected and visual motion inferred. 

When an object moves relative to a camera, points on the surface of the object generate 

trajectories in space and time. The projection of these 3-d trajectories onto the camera sensor, as 

shown in figure 4. 1 ,  produces 2-d paths, the derivatives of which are 2-d velocities. The entire 

collection of these 2-d velocities forms what is commonly referred to as a 2-d motion field. The 

measurement of this motion field is called the optical flow [4. 1 ] . 

path of surface point y 

\ 

image plane 

camera centre 

x 
z 

Figure 4.1 : Motion Field 

In order to measure the image velocity, local descriptions of the motion field must be extracted 

from the spatiotemporal patterns of image intensity. The difficulty in measuring the image 
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velocity is that the intensity depends on several independent aspects of the image formation 

process .  For the simple case where the object is a plane surface, temporal image intensity 

variations may be caused by: 

Perspective Projection: As the surface moves in 3-d space the relative image locations 

of the projection of nearby points on the surface, undergo geometric deformations from 

image to image. Translation occurs as the surface moves across the line-oj-sight of the 

camera. Rotation and dilation occur as the surface rotates or moves toward or away 

from the camera; 

Photometric Effects: The reflectance properties of the surface such as shading or 

mirror-like reflection can significantly affect the image intensity over time. Similarly 

variations in scene illumination can also be significant; 

Camera Distortions: The sensor may cause variations in relative image intensity due 

spatiotemporal smoothing (motion blur) or automatic gain control. 

Because of the different sources of intensity variation, the image intensity corresponding to a 

single surface point is unlikely to remain constant at all times. Hence tracking points of constant 

intensity will not, in general, produce satisfactory estimates of the motion field. 

The fundamental problem in defining image velocity is that of devising a complementary 

measurement technique that yields a good approximation to the 2-d motion field. An alternative 

approach to the measurement of image velocity is to track an image property or feature from 

frame to frame. With sufficient features or image properties specified, it would be possible to 

build up an entire velocity field or optical flow of a motion sequence. 

Once the complete optical flow of a sequence has been constructed it must then be interpreted to 

extract information about the scene. This interpretation generally begins by going back to the 

original intensity images and spatially segmenting each frame into areas or features. This 

segmentation process is most commonly based on the detection of sudden changes in intensity, 

potentially indicating edge boundaries. The areas defined in the intensity spatial segmentation 

stage are then used to spatially segment the velocity field of each frame in the sequence. The 

velocity field for a simple sequence where a planar square object is moving at a constant velocity 

to the right of the visual field would be depicted as in figure 4.2a. The length of the arrows 

indicate the magnitude of the local velocity and the orientation the direction. The interpretation 

of this simple velocity field is straight forward, all vectors point in the same direction and are of 

the same length. In figure 4.2a there are only two features indicated based on edge information, 

a square object (dotted lines) and a constant intensity background. If this motion continued 

through the sequence then the interpretation of the entire scene would be straight forward. 

However if at some point in the sequence the translation stopped and object began to rotate 
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anti-clockwise at a constant speed then the velocity field would look like figure 4.2b. Edge 

segmentation still reveals a single object, however describing the motion based on the magnitude 

and orientation of the individual velocity vectors is now more difficult. Making the assumption 

that the square is rigid and moving in a single plane enables the vectors to be grouped together 

into a system of equations that can be solved to yield an estimate of the rotational velocity. 

Similarly if both translation and rotation occur simultaneously in the scene and the two previous 

assumptions hold, a system of equations can be formed and solved for the translational and 

rotational velocity (speed and orientation). For this simple approach to work it is vital that each 

frame in the sequence can be reliability segmented spatially to define each rigid object. This 

implies that photometric effects are minimal and edge information is near complete. If spatial 

segmentation cannot be performed reliably then grouping individual vectors is no longer trivial 

and requires additional assumptions concerning their association. 
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a) translation, constant speed b) rotation, constant speed 

Figure 4.2: Simple velocity field 

In real scenes the measured velocity fields will be noisy, perspective and photometric effects will 

be significant, camera distortion due to motion blur may be significant, and object occlusion will 

occur. Furthermore, objects will not all be rigid, they are likely to deform increasing photometric 

effects and invalidating the previous motion assumptions. The real difficulty is in interpreting 

the local velocity information contained in the optical flow data, to determine the nature of the 

motion in a scene. 

A simpler approach is possible, that is free from the difficulty of interpreting the local velocity 

information when the objects of interest in the scene can be specified in advance. If the objects 

of interest can be spatially segmented in the first frame, then the visual motion problem is 

reduced to tracking the objects or features through the sequence. This method is not free from 

the difficulties caused by temporal image intensity variations. However if the object tracking is 

reliable, then motion interpretation is straight forward. The most significant problem with 
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tracking an entire object concerns how to deal with object occlusion and deformation. The 
apparent deformation may be due to perspective effects or be real as in the case of an object 
changing its shape. The tracking algorithm must adapt to the changing shape of each object. 
Partial occlusion will also result in an apparent change in shape, while total occlusion will cause 
this method to fail all together. 

4.1.1 The Aperture Problem 

Two-dimensional translation is the simplest form of intensity variation that can be used to model 
the local temporal variations in an image sequence. In digital image sequences the information is 
discrete both in time and space. Estimating the local 2-d translation from the intensity variation 
usually involves defining a window in both space and time over which the translation is 
calculated. As long as this spatiotemporal region of support or aperture is narrow, the 2-d 
translation model provides an adequate description of the local motion without having to resort to 
a more complex description (account for rotation, dilation, etc. effects) over a larger 
neighbourhood. This localisation also helps to ensure good resolution of the velocity field as it is 
not necessary to determine where within the window of measurement support that the velocity 
estimate applies. Localisation also helps to minimise the adverse effects of occluding boundaries 
and the measurement of spatially disjoint objects, by treating them independently. 

intensity edge 

Figure 4.3: Component velocity and the aperture problem 

If measurements are restricted to a narrow aperture, then the intensity structure upon which the 
measurements are based will often be one dimensional. This effect is illustrated in figure 4.3 
where the intensity structure appears as a single edge. In this situation it is only possible to 
reliably measure the normal component v n '  of the 2-d velocity field v .  This is referred to as the 
aperture problem [4.2] .  The reason for this restriction can be readily explained by the fact that 
there are no clues to indicate motion in-line with the I -d intensity structure as all positions along 
the edge appear the same when viewed from the small aperture. Hence the component of 
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velocity tangential to the edge will not be distinguishable. Only movement perpendicular to the 

orientation of the edge will be readily perceivable, and hence be able to be reliably measured. 

This problem is inherent to any local scheme for calculating motion. The flow-an-effect of this 

problem is that it is not possible to fully recover motion using local information alone. 

4.2 Matching Approaches 

Region-based matching techniques aim to find the best match between image regions In one 

frame with neighbouring regions in the subsequent frames. Commonly this has been formulated 

as finding the degree-of-fit based on some form of correlation measure. 

Let Ik(m, n) be image k in a sequence and W(i, j) denote a 2-d window function centred at 

(x, y) with IW(x + i, y +  j)1 � 0 as IIU, jll � 00 . Then W(x + i, y +  j)Ik (x, y) denotes a 

windowed patch in image k .  The estimate of the local motion can be calculated by finding the 

displacement (Lli, Lly) about (x, y) in image k + l  that yields the best fit between the image 

patches: 

n 

1 
n 

-----7) m 

Ak+ l ) 1 o [X+6 x] J LJ  
[y+� y] 

Figure 4.4: Region-based matching 

eq. 4. 1 

eq. 4.2 

Finding the best match is essentially an optimisation problem in which a similarity measure is 

maximised or a difference measure minimised, over the local displacement (Lli, Lly) .  The most 

commonly used similarity measure involves the maximisation of the normalised discrete 

cross-correlation: 
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C(A (  ),A ( + A _ + A )) = (Ak(x, y), Ak+ I (X + &, y + fly)/ k x, y k+1 X LU, y Lly 
II I I II I I Ak (x, y) Ak+l (x + &, y + fly) 

8 1  

eq. 4.3 

A commonly used difference measure involves the minimisation of the sum-of-squares difference 
(SSD): 

eq. 4.4 

4.2.1 Matching in the Spatial Domain 

Spatial domain methods work directly in the image space with the intensity value of each pixel. 
The window function W(i,j) ,  is simply an aperture into the image that limits the match area to 
the object or neighbourhood of interest. Effectively Ak (x, y) is an object template for which a 
local search is made in the next frame to find the best match. 

The sum-of-squares difference, defined in equation 4.4, can be applied directly in the spatial 
domain by simply taking the difference between each pixel intensity in the object template Ak 
and the corresponding pixels in the match test area Ak+1 ' of the next frame. This measure can be 

written as : 
m n 

D2 = LL[Ak ( i, j) - Ak+1 (i, j)f 
;=0 j=O 

eq. 4.5 

An alternative measure to SSD is the absolute sum difference (ASD). The squared difference is 
replaced by the computationally less expensive absolute function. Equation 4.6 defines the ASD 
measure. 

m n 
Dl = L LIAk ( i, j) - Ak+1 (i, })1 

;=0 j=O 
eq. 4.6 

S imilarly the normalised discrete cross-correlation measure of equation 4.3 can be applied 
directly in the spatial domain as: 

m n 

L L[Ak (i, j )  * Ak+ 1 (i, j)] 
C1 = ---;===;==0=.1=·==0 ========== 

m n m n 
L I.JAk ( i, j)]2 * L L[Ak+1 ( i, })f 
;=0 j=O ;=0 j=O 

eq. 4. 7 

If the correlation measure is used as the match statistic then the object is located in the next 
frame by searching for the largest peak. Alternatively if one of the difference measures is used 
then the object will be located by searching for the largest trough. In both cases this will occur 
when the observed area and the template are spatially registered. In real sequences the object 
will not only be spatially translated but will also be rotated and possibly scaled. This is 
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illustrated by equation 4 .8 where Sx and Sy are scale factors, p and q are the displacement 

values, and e is the angle of rotation of the observed area with respect to the template: ( x + p  y + q  J Ak (x, y) = A --, -- , e 
hI s s x y 

eq. 4.8 

Finding the best match now involves searching the parameter space (p, q, sX , Sy , e) .  This 

becomes impractical unless reasonable estimates of Sx , Sy and e are known. 

Moment Invariants 

One way to work in the spatial domain but reduce the complexity of searching the parameter 

space is to use a match function that is invariant to geometric transformations such as 

translation, scaling, rotation and reflection. 

Let f(x , y) � ° be a real bounded function with support on a finite region R. The discrete 

(u+vyth order moment is defined as: 

mU.V = L L f(x, y) xUyV u, v = 0, 1, 2, . . .  eq. 4.9 
R 

The moment representation theorem [4.3]  states that the infmite set of moments 

{mu•v , u, v = 0, 1, 2, . . . } uniquely determines f(x,y) , and vice-versa. A reconstruction formula 

exists by which the original signal can be recovered from the infinite set of moments . However 

the series representation of the reconstruction formula cannot be simply truncated to find an 

approximation to the original signal . 

In spite of this difficulty, if moments of f (x, y) are calculated up to order N, then a match 

statistic can be formed by comparing each moment to the corresponding moment for the test 

area. A minimisation function may be formed by taking the sum-of-squares difference over all 

N moments. 

In situations where geometric scaling is not significant, the limiting factor in searching the 

parameter space is dealing with rotation. Performing a direct template match would require the 

rotation of the match area with respect to the template. The geometric rotation of discrete data is 

in itself not a trivial task. Great care has to be taken to minimise the effects of spatial aliasing 

[4.4] if a correct match is to be found. A suitable procedure would consist of interpolating the 

match area to form a continuous description, rotating the continuous description, then finally 

resampling the rotated description back onto the original discrete pixel grid. This series of 

operations would have to be performed for each iteration of the search with great computational 

cost. 
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Using the theory of algebraic invariants [4.5] it is possible to find certain polynomial moments 
that remain unchanged under the general linear coordinate rotation transform defined in equation 
4. 1 0, where e is the angle of rotation. 

These moment invariants are constructed from central moments defined by: 

Pp.q = L L [(X - xY(y - y)q f(x, y)] 
R 

where x = 111,,0 / rrlo.o and y = mo.1 / mo,o ' 

eq. 4. 10 

eq. 4. 1 1  

Table 4. 1 contains the first, second and third-order polynomial central moments that are 
invariant to both rotation and reflection. 

First-order moments 

(always invariant) 

Second-order moments (u+v=2) 

Third-order moments (u+v=3) 

P - J.l - 0  0,1 - 1.0 -

<PI = J.l2,0 + J.lO.2 

<P2 = (J.lz,o - J.lO.2 )
2 

+ 4J.l�, 

<P3 = (J.l3.0 - 3 J.l1,2 i + (J.lO.3 - 3 J.l2.1 )
2 

2 2 <P4 = (J.l3,0 + J.l1.2 ) + (J.lO,3 + P2,1 ) 
<P5 = (J.l3.0 - 3PI.2 ) (J.l3,0 + J.l1.2 ) * 

[(J.l3.0 + J.l1.2 )
2 

- 3(J.l2,1 + J.lO,3 i ]  

+ (J.lO,3 - 3 J.l2.1 ) (J.l0.3 + P2•1 ) * 

[(J.l0.3 + P2.1 )
2 

- 3(p1,2 + J.l3.0 )
2
] 

<P6 = (J.l2.0 - J.l0,2 )[ (J.l3,0 + J.lI,2 )
2 

- (J.l2.1 + J.l0,3 )
2
] 

+ 4 J.l1,I (J.l3.0 + J.l1.2 ) (J.lo,3 + J.lZ,1 ) 

Table 4.1 : Central moment invariants 

Higher-order moment invariants can be formed, but their computational complexity increases 
s ignificantly. Moment invariants up to third-order have been used successfully in shape 
recognition and scene matching applications [4.6, 4.7] .  

Surface fitting 

An alternative way to work in the spatial domain and reduce the computational cost of the match 
statistic is to approximate the image data with a simple geometric function. A low-order 
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polynomial surfaces is fitted to the match template and the test region in the next frame. A 

similarity measure can then be computed by some sort of weighted difference of the polynomial 

coefficients. In approximating the image regions with a polynomial surface, the information or 

structure has become filtered in some way. If the form of the polynomial is changed then the 

nature of the filtering effect also changes. An effective way to deal with this problem is to 

adaptively fit a polynomial to the match template [4. 8] .  This can be accomplished by starting 

with the simplest form of the surface polynomial and computing a goodness-oJ-fit measure such 

as the total sum-of-squares difference. The form of the polynomial is slowly made more 

comprehensive (more terms are added) until the goodness-oj-fit measure reaches a maximum. 

The form of the polynomial at this stage is then used in the fit-and-match process outlined above. 

This adaptive process ensures that the simplest polynomial that best approximates the template 

data is used. 

Preprocessing 

The sharpness of the best match is dependent on both the match statistic and the structure of the 

intensity information contained in the template. Sharpness relates to how rapidly the match 

value changes for small perturbations away from the optimal position in the parameter space. 

One way to improve the match sharpness is to enhance any structure present in the match 

template and the search area before performing the search. The enhancement may take the form 

of local histogram stretching or equalisation, or spatial filtering to reduce noise, or enhance 

intensity gradients around the boundaries of objects. In practice all these operations may be 

applied jointly. Chapter 5 introduces the concept of sharpness and selectivity with appropriate 

measures and shows how proper preprocessing can improve discrimination. 

4.2.2 Matching in the Transform Domain 

A classical method of signal representation is by orthogonal series expansions [4.9] .  For a one 

dimensional discrete signal {u(n), 0 � n � N - I } ,  represented as a vector u of size N, a unitary 

transformation is written as: 

N - I  

v = Au � vCk ) = I aCk, n )uCn), O � k � N - l  eq. 4. 12 
n=O 

where A is the transform matrix and v the transform vector. 

Unitary implies that the inverse of the transform matrix is equal to its conjugate transpose, 

A-I = A *T . The corresponding inverse transformation is given by: 

N-I 

U = A*TV � u(n) = I v(k)a* Ck, n), O � n � N - l  eq. 4. 13 
k=O 
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Equation 4. 1 3  can be viewed as a series representation of the signal u( n) . The colurrms of A *T 
are called the basis vectors of A .  The series coefficients v(k) provide a representation of the 

original signal that can be used in filtering, feature extraction and other types of analysis. 

The general orthogonal series expansion for an NxN image u(m,n) is a pair of transformations 

of the form: 
N-\ N-\ 

v(k,l) = LLu(m, n)ak.l (m, n), 0 5: k, I 5: N- l  eq. 4. 14 
m=O n=O 

N-\ N-\ 

u(m,n) = L Lv(k, l)a\l (m, n), 0 5: m, n 5: N- l  eq. 4. 15 
k=O 1=0 

where {ak/ m, n)} , called an image transform, is a set of complete orthonormal discrete basis 

functions. 

If the two-dimensional image transform can be written as the product of two one-dimensional 

transforms, then the transform· is termed separable, that is, 

eq. 4. 16 

where {ak (m), k = O, . . .  N, - l } ,  {bl (n), I = O, . . .  N, - l} are one-dimensional complete 

orthonormal sets of basis vectors. 

By choosing A == {aCk,m)} to be the same as B == {b(l,n)} equations 4 . 14  and 4. 1 5  reduce to: 

N-\ N-\ 

V = AUAT ¢::} v(k, l) =  LL.a(k,m)uCm, n)a(l ,n) eq. 4. 1 7  
m=O n=O 

N-\ N-\ 

U = A*VA*T ¢::} u(m,n) = L.L.a* Ck,m)v(k, l)a* CI, n) eq. 4. 18 
m=O n=O 

In the general sense matrix A is referred to as the transform kernel. By choosing different kernel 

generating functions all the standard linear transformations including the discrete Fourier, S ine, 

Cosine and Hadamard transforms, and the inverses, can be computed using equations 4. 1 7  and 

4. 1 8  respectively. 

Energy Compaction and Decorrelation 

An important property of most unitary transforms is the tendency to pack a large fraction of the 

average energy of the image into relatively few of the transform coefficients. Energy in this 

context is measured by the square of the Euclidean distance, represented by the symbol II II · 
Since the unitary transform preserves the total energy, 

eq. 4. 19 
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it follows that many of the coefficients will be small and contain very little energy. Even if the 

energy of original image values is uniformly distributed, the energy of the transform coefficients 

will be non-uniformly distributed. Also if the image data is highly correlated the transform 

coefficients will tend to be uncorrelated. 

Matching 

Matching in the transform domain consists of first transforming the object template, and the test 

match area in the next frame. These two signals are then compared using one of the difference or 

similarity measures, and a value computed. As with the spatial domain methods, the best match 

in the parameter space is found by searching for peaks or troughs in the local area. Many of the 

transform coefficients of the object template will be small due to energy compaction, thus only a 

small percentage of the transform coefficients are required in the computation of the match 

statistic. The actual coefficients of s ignificance can be determined in advance by inspection of 

the transformed object template. A suitable criterion may be to sort the coefficients into order, 

based on their absolute size and choose the largest 1 0%.  A large fraction of the template 

structure will be contained in this small percentage of coefficients due to the energy compaction 

and decorrelation properties of unitary transforms. Once the coefficients have been chosen, the 

test match area is transformed and the corresponding 1 0% of the coefficients are used to 

compute the match statistic. 

The Fourier Transform 

One of the most fundamental transforms in signal processmg is the Fourier transform. If 

I(x, y) is a continuous intensity image defined on the spatial coordinates x, y ,  then �X , �y are 

the spatial frequencies that represent the changes in intensity with respect to the spatial distances. 

The units of �x and �)' are reciprocals of x and y ,  respectively. Equations 4.20 and 4.2 1 defme 

the Fourier transform and the inverse Fourier transform of I(x, y) . 

eq. 4.20 

eq. 4.21  

From the form of  these equations i t  is clear that the Fourier transform is  a complex function. It 

takes the real valued function I (x, y) and produces the complex spatial frequency description 

F(�x' �y ) ·  
The Fourier transform possesses a number of very useful properties. The most commonly 

exploited property is that of convolution [4. 1 0] .  The results of the convolution theorem can be 
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readily extended to the spatial correlation of two functions. Let * represent a correlation 

operator, then the spatial correlation of two functions f(x, y) and g(x, y) is defined as: 

C(x, y) = h(x, y) *  f(x, y) eq. 4.22 

In the Fourier domain the correlation operator is replaced by a sign reversal of the spatial 

frequency terms in the first function and a simple multiplication. :  

eq. 4.23 

Another property of the Fourier transform that can be exploited in scene matching is the shift 

property. A shift or translation (Llx, b. y) in the spatial domain results in the multiplication by a 

complex exponential in the Fourier domain. Equation 4.24 defines the Fourier shift property. 

eq. 4.24 

Real Transforms 

Equations 4.20 and 4.21  show that the Fourier transform involves complex arithmetic. If the 

original signal is also complex then there is no computational overhead. However most practical 

applications involve real valued signals. Thus the use of the Fourier transform results in 

increased storage and computational requirements. Furthermore, once a signal has been 

processed in the Fourier domain and inverse transformed back, care must to be taken to ensure 

that the returned signal contains only real values. 

There exists a number of kernels that can be used in equation 4. 1 7  and 4. 1 8  to unitary transform 

a real signal, requiring only real arithmetic and producing only real values. They generally 

possess excellent energy compaction for highly-correlated data and result in highly decorrelated 

transform coefficients. The most well known of these kernels produce the Cosine, Sine and 

Hadamard transforms. All of these transforms have a fast discrete implementation due to their 

Kronecker product separability. 

The N x N cosine transform kernel (matrix) C = c(k, n) , also called the discrete cosine 

transform (DCT), is defined as: 

k = O, O � n � N - l  
eq. 4.25 

l � k � N - l, O � n � N - l  

The cosine transform is related to the symmetric extension of the discrete Fourier transform 

(DFT) . 
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Similarly the N x N sine transform kernel (matrix) S = s(k, n ) ,  also called the discrete sine 
transform (DST), defined as: 

(k ) = � 2 . ( n(k + l) (n + l ) )  s , n  Sin , 
N + I  N + I  

is related to the anti symmetric extension of the DFT. 

O � k, n � N - I eq. 4.26 

The DST is a self inverse due to it being symmetric and orthogonal, resulting in an 

implementation that is somewhat faster than both the fast Fourier and fast Cosine transforms. 

Unlike the Fourier, cosine and sine transforms, the Hadamard (or Walsh-Hadamard) [4. 1 1 ] 

transform matrix contains only the binary values ±I . This makes it well suited for digital signal 

processing resulting in an exceptionally fast transform requiring only additions and subtraction. 

The Hadamard transform matrices, Hn , are N x N matrices, where N == 2n , n = 1 , 2, 3. . .  These 

are easily generated from a core matrix HJ and Kronecker product recursion. Equation 4.27 

defines the core matrix, while equation 4.28 defines the recursion relationship (where the symbol 

® represents the Kronecker product operator) for generating larger matrices. 

1 [ 1 
H 

J - .,fi l  
eq. 4.27 

eq. 4.28 

When dealing with the Hadamard transform the concept of transform frequency is replaced with 

the term sequency since the function only takes on the values ±I . For sinusoidal signals 

frequency can be defined in terms of the number of zero crossings, sequency is simply the 

number of sign changes. 

4.2.3 Search Strategies 

Whether working in the spatial domain or transform domain, motion tracking using template 

matching requires the search of a parameter space to find the best fit. If the maximum 

interfrarne motion with respect to the parameter space can be estimated reliability, then the extent 

of the local search can be constrained. Even for relatively small areas, an exhaustive search can 

become computationally prohibitive. 

Direct search methods tend to be applied in the spatial domain although In many cases the 

approach is perfectly general to other forms of optimisation. A number of efficient direct search 

techniques exist. 



Motion-tracking: An Overview 89 

Two-dimensional logarithmic search 

Assuming that the motion can be approximated by pure translation, consider a local 

neighbourhood size ± p about the estimated position in the image space, for which a match with 

an object template of size M x N is sought. An exhaustive search would require (2 p + 1)2 

iterations, the logarithmic search reduces this to Iog(2 p + 1) iterations. A mean distortion 

function can be defined as: 

I M N 
D(i , j) = -IIfU(m,n) - Ik (m+ i,n +  j) , - p 5: i , j 5: P MN m=l n= l 

eq. 4.29 

where a suitable choice of the function f (x) may be x2 or lxi , corresponding to the 

sum-of-squares difference and absolute-sum-difference of equations 4.5 and 4.6. Define the 

direction of minimum distortion (DMD) as the direction of the vector (i , j) that minimises 

D( i , j) . The template match occurs when the DMD has been found within the search area. 

If D( i , j )  increases monotonically moving away from the DMD in any direction, then the search 

can be speeded up by successively reducing the area of search. Figure 4.5 illustrates the 

logarithmic search procedure for p = 4 ,  the 0 symbol marks the search positions. The 

algorithm begins by searching five locations between the midpoints of the centre and the four 

boundaries of the search area. These locations have been marked with I .  The optimum direction 

(the circled numbers) give the location of the centre for the next step. The procedure continues 

until the search plane is of size 3x3 in which all nine locations are searched to find the DMD. 

The final optimum direction is indicated by * in figure 4.5.  In this example the number of 

searched locations has been reduced to 1 3  out of the possible 8 1  positions. 

j-4 j-3 j-2 j - !  j+! j+2 j+3 j+4 i-4 2 cr;* i-3 3 3 3 
i-2 2 tD U> 3 2 
i- I 3 3 3 

! ! I 
i+ 1 
i+2 I 
i+3 
i+4 

Figure 4.3: 2-d logarithmic search in the direction of minimum distortion 
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The logarithmic search is simply a variation on a discrete 2-d implementation of the well known 

steepest decent algorithm. 

Sequential search 

There are several alternative ways in which a sequential search can be speeded up. The first 

involves computing a cumulative error and terminating the direction of search when some 

predefined threshold is exceeded. The search may only be continued in those directions that are 

below the threshold. 

Another common algorithm that is used as an alternative to steepest decent is the conjugate 

gradient algorithm [4. 1 2] .  With respect to searching a 2-d space, the search algorithm proceeds 

in the i direction until a minimum is found and then switches to the j direction until the next 

minimum is found. The search continues in alternating conjugate directions until the location of 

the minimum remains unchanged. 

Hierarchical search 

A hierarchical search is effective when the search parameter space is large. The method involves 

searching a low-resolution reduced copy using a likewise reduced copy of the template. If 

multiple matches occur, then these locations are searched at higher resolution to further refine 

and reduce the search area. The algorithm continues until the best match is found at the original 

resolution. 

Image processing structures that contain mUltiple copies of an image at successively lower 

resolution are called pyramids. The rule by which the resolution is reduced is important as it 

governs how information is preserved proceeding up the pyramid. A complete pyramidal 

representation of signal requires approximately 33% more storage than the original signal. This 

increased storage is offset by the greatly reduced computational cost in searching the pyramid 

from the top level down. For a simple half-scale rule (half size at each level), the coarse-fine 

search is logarithmically efficient. 

The resolution reduction rule for the pyramid may also be different a various levels. It can be 

adaptively chosen to preserve specific characteristics, at different levels of the pyramid. 

4.2.4 Motion Prediction 

If a reliable estimate of the most likely position and the maximum deviation from this position in 

the parameter space can be computed, then the size of the match region to be searched can be 

greatly reduced. Predicting the motion of the object to be tracked usually involves some a priori 

knowledge about the nature of this motion. The simplest assumption that can be made is the 

object moves smoothly and hence the interframe motion for the next frame will be similar to the 
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current frame. This single interframe step approach amounts to the linear interpolation of the 

motion parameters. If the smoothness assumption holds, then the only difficulty is in finding the 

first interframe match to form the prediction. This first step will usually involve an extensive 

search with practical estimates on the maximum possible extent of the search region. Once the 

method is started, the only difficulty that can occur is that the smoothness assumption may 

become invalid at some point, resulting in the predicted region not including the true match 

region. One way to deal with this problem is to compare the value of the best-match in the 

current frame with the best-match in the previous frame. If the difference exceeds some 

threshold then the tracking process resets itself and restarts from this frame as if it was the first 

frame. 

The effectiveness of motion prediction can be enhanced by computing the prediction over more 

than one frame. A quadratic predictor can be computed by initially starting with the linear 

predictor until two interframes have been tracked. At this stage the motion from these two 

interframes is fitted with a quadratic function which in turn is used to predict the next interframe 

motion. This fitting and prediction process than continues as the sequence is tracked. An added 

advantage of using mUltiple frames to form the prediction is that the threshold used to detect 

whether or not the prediction has failed (ie. the true match not in the prediction region) can in 

itself be made adaptive. The standard deviation of the best-match over several frames can be 

computed and used as the ± deviation for the allowable difference of match.  

Higher order interpolators such as splines can also be used in the prediction process, but 

computational cost begin to increase sharply. Also care has to be taken to ensure the stability of 

the interpolant. Cubic splines tend to 'ring ' and overshoot if the spacing between points becomes 

too non-uniform. This situation will occur if the sequence motion is rough, and can result in 

large prediction errors. 

4.3 Optical Flow Methods 

Motion tracking using optical flow methods involves computing the interframe optical flow or 

instantaneous velocity field of a scene and then locating the objects being tracked and computing 

their motion from the structure of the velocity field. One of the important features of optical 

flow is that it can be calculated using only local information. Five basic methods for the 

calculation of optical flow have been studied in the literature. 

I .  Point-based differential methods 

2 .  Region-based local match methods 

3 .  Contour-based approaches 

4. Energy-based approaches 

5 .  Phase-based approaches 
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All of these techniques extract local estimates of the image translation, and in some case the 

gradient of the velocity field. These methods will be reviewed in brief, in the following sections. 

4.3.1 Differential Approaches 

Differential techniques were the first methods to be studied in the computation of optical flow 

[4. 1 3, 4. 1 4] .  They modelled the image motion by a continuous variation of image intensity as a 

function of position and time. The intensity function I(x, y, t) is then expanded as a Taylor 

series. 

I (x + d.x, y + dy, t + dt) = 

(JI (JI (JI . I (x, y, t) + ax d.x + ()y dy + at dt + hIgher terms eq. 4.30 

Terms higher than the first term are discarded, making the partial differential description linear. 

If the image at some time t + dt is the same image at time t , translated by d.x and dy then: 

I(x + dx, y + dy, t + dt) = I(x, y, t) eq. 4.31 

Combining equations 4 .30 and 4.3 1 leads to the result: 

eq. 4.32 

known as the gradient constraint equation. 

h· 
. (JI (JI d (JI 

II bl 
. . 

d 
d.x 

d 
dy . h In t IS equatIon -, - an - are a measura e quantities, an - an - estimate w at we 

at ax ()y dt dt 
are looking for, the local velocity in the x and y direction. 

d.x dy 
4.33 Let, - = u  - = v  eq. dt dt 

(JI (JI (JI 
thus equation 4.32 gives, -- = -u +-v eq. 4.34 at ax dy 

(JI 
or equivalently, -- = V/. v eq. 4.35 at 

where V I is the spatial gradient of the image, '.' is the dot product operator, and v = (u, v) the 

velocity. 

Explicit measurement using equation 4.35 yields only the normal velocity with respect to the 

direction of the spatial gradient operator. This is because only one linear equation constrains 

both components of the velocity. 
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Many additional constraints have been proposed to over determine the system and hence enable a 

least-squares or similar solution. The most popular constraint involves global smoothness of v .  

This smoothness constraint can be defined by the following energy function over a local region of 

interest R, that is minimised with respect to the velocity field . 

m�n (E) = min f (( /xu + Iyv + 11 )2 + A(U; + U; + v; + v; )) dxdy 
R 

eq. 4.36 

where ux , uy , vx' Vy are partial derivatives of the velocity field with respect to the x and y, and A 
reflects the relative importance of smoothness in the solution. 

Implicit in the differential or gradient techniques is the calculation of the spatial and temporal 

derivatives. When only two frames are used in this computation the method is limited to only 

one pixel per frame displacement, and a linear intensity change in a region as large as the 

expected displacement. Practically this has led to the use of mUltiple frames in the calculation of 

the optical flow using this approach. This method also assumes that the derivatives of the 

velocity components do exist. However for the discrete image case both spatial and temporal 

aliasing may occur, corrupting the signal and leading to severe instability in the numerical 

differentiation. 

4.3.2 Matching Approaches 

Most of the essential elements in matching approaches to the computation of optical flow have 

already been covered in section 4.2 1 on spatial domain matching approaches to motion tracking. 

Region-based optical flow approaches are aimed at overcoming the difficulties of the point-based 

differential methods when accurate differentiation is not possible due to noise or where only a 

small number of frames exist. The scene is broken up into small regular areas and a match is 

sought for each area in the following frame. A similarity or difference measure is then used to 

find the best match. The velocity vector for each area is then computed from the differences in 

coordinates between the original location and the best fit location in the next frame. 

In practice two issues have proven to be important in applying matching methods to the 

computation of optical flow. First, the aperture problem (see section 4. 1 . 1 ) arises when the local 

intensity structure in the match template is one-dimensional. In this case the match statistic gives 

rise to surfaces that are ridge-like, without clearly defined maxima (or minima) as a function of 

shift. A conditioning measure such as the curvature of the match statistic may prove useful in 

dealing with this problem, but cannot eliminate it. The second difficult issue involves textured 

and periodic structures that may exist in a scene. For large interframe displacements and in the 

absence of good motion prediction, this can lead to multiple, equally-likely ridge matches in the 

search region. To handle this problem additional constraints or some form of control structure 
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can be incorporated. Band-pass filtering may prove useful in the removal of low frequency 

structure and can be applied in addition to a coarse-to-fine match strategy [4. 1 5 ] .  

4.3.3 Contour-based Approaches 

Contour-based or feature-based approaches appear in two basic forms. In the first form the 

image contours are explicitly used as features that are tracked from frame-ta-frame. The second 

form uses the contours as locations in the image where some form of differential method can be 

applied. 

Mostfeature-based approaches use edges . The motivation behind this choice is that it has been 

conjectured that edges are stable over time, correspond to salient image properties and are 

relatively high contrast features for images with a good signal-ta-noise ratio. However 

practically, the contours extracted with the current edge detection processes are rarely confined 

to a single smooth surface. 

The most commonly used edge detection methods such as Canny and Marr-Hildreth (see chapter 

3 )  provide a reasonably sparse collection of features from which image velocity can be 

measured. It is assumed that the edges move small distances relative to their density in the 

image, enabling relatively straight forward correspondence. The local velocity is then computed 

from the perpendicular distance between one contour and the corresponding contour in the next 

frame. However the apparently straight forward contour correspondence problem has proved to 

be the major difficulty in applying this method to motion analysis. Many methods have been 

devised to tackle this problem including the iteration of initial estimates [4. 1 6] and dynamic 

optimisation by the gradient descent procedures [4. 1 7 ] .  

I n  the second form of contour-based approach, edges are usually defined in terms of the output 

of a band-pass edge-enhancement filter. The velocity measurement is then based on a differential 

method restricted to edge locations and their local neighbourhoods.  

Several specific problems exist that have been argued to be a significant obstacle to feature

based approaches to optical flow. Correspondence is the most intractable, however the 

assumption that features (edges in particular) are well localised and stable over time has also 

proved to be weak in practical situations. Implicit to these method is that contours provide a rich 

description of the image so that no velocities will go undetected and that sparse isolated edges 

will facilitate easy correspondence. This has not proved to be the case [4. 1 8] .  

4.3.4 Energy-based Approaches 

Energy-based approaches use frequency analysis and an initial velocity-specific representation of 

the image sequence. A range of tuned filters are used to sample the local power spectrum of the 
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signal. The relative amplitudes of the output of these filters is then used to compute the image 

velocity. 

Let the vector x == (x, y)  denote the x and y spatial coordinates and v == (v x ' V y ) denote the x 

and y spatial velocities. Consider a 2-d intensity function i" (x) , translating at velocity a v .  

i(x,t) = io (x - vt) eq. 4.37 

Taking the Fourier transform of this equation and using the Fourier shift property (eq. 4.24), it 

follows that: 

l(k, ill) = If io (x _ vt)e-j(XTk+tCU) dx dt 

= lo Ck) f e-j/vTke-; /cu dt 

= lo Ck)8cm+ vTk) 

where 10 (k) is the Fourier transform of i" (x) and 8 is the Dirac or impulse function. 

eq. 4.38 

The result of equation 4.38 indicates that when the translating intensity function is expressed in 

the Fourier domain, all of its non-zero power lies on a plane containing the origin. This is 

because 8(ill + vTk) is non-zero only when ill = -vTk .  The magnitude of the velocity (speed), 

!lvii , determines the angle between the planes ill = -vTk and ill = O .  While the direction of v 
determines the orientation of the velocity plane about the ill-axis. 

The above analysis implies that if the temporal variation in an image is due to translation, then 

all the power will be concentrated on the appropriate plane in the frequency space. This result 

can be extended by considering the 3-d power spectrum 9t3 , of a region R , in a spatiotemporal 

image, as a distribution [4. 1 9] .  The principle directions of this distribution are given by the 

eigenvectors of its covariance matrix and the eigenvalues specify the variance of the power 

spectrum in the each of the principle directions. The main results of this analysis in terms of 

velocity measurement are: 

• A translating 1 -d profile has all its power concentrated about a line through the origin 

resulting in only one of the three eigenvalues being significantly non-zero. From the 

corresponding eigenvector the velocity of the line can be estimated 

• A translated 2-d textured image patch has its power concentrated about a plane in 

frequency space resulting in two significantly non-zero eigenvalues. As the eigenvectors 

are orthogonal, they will span the plane enabling the estimation of the 2-d velocity. 

• For constant intensity patches all three eigenvalues will be zero, while for more complex 

spatiotemporal variations all three eigenvalues will be non-zero. 
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The above results would seem to indicate that the computation of local image velocity by this 

method is straight forward. However in order to get an adequate estimate of the velocity several 

filters, tuned to different spatial and temporal frequencies, are needed. The output of these filters 

are then combined in some way to produce the final velocity estimate. Because the final 

estimate is based on the results of multiple filters, velocity resolution is significantly sacrificed. 

This poor resolution can lead to confusion, two different component velocities in the same 

neighbourhood may have the same distribution of output filter amplitudes as a single component 

velocity. In addition, there is little information with respect to robustness of these methods for 

common deviations from pure translation, such as incremental rotation and scale change. 

4.3.5 Phase-based Approaches 

Phase-based approaches to optical flow use a collection of velocity-tuned filters as in the 

energy-based approaches, however the phase behaviour of the filter outputs rather than the 

amplitude is used to compute the component velocity. The motivation behind the use of phase 

information is that spatial contours of constant phase provide a better approximation to the 

temporal evolution of a motion field than do contours of constant amplitude [4.20] . 

The importance of phase information can be readily demonstrated by the following. Fourier 

transform an image, convert the complex result to polar form (magnitude and phase); set all the 

magnitudes to unity, convert back to component form and inverse transform. The resulting 

image will be very low in contrast but will clearly be recognisable as the original image. This is 

because the phase information contains much of the images spatial structure. This result can be 

readily extended to 3-d signals such as image sequences. 

In principle if the change in image intensity in a motion sequence was solely due to translation, 

then all four methods covered in sections 4.3 . 1 to 4.3.4 would produce accurate estimates of the 

local velocity, so long as the aperture problem and aliasing of the signal were not severe. 

However, the typical time-varying behaviour of intensity image sequences is only crudely 

approximated by local translation. Tracking phase contours is less sensitive to contrast changes 

and local variations in scale, speed, and orientation, compared to tracking amplitude contours. 

This is because the calculation of the component velocity from phase information requires the 

computation of the phase gradient and it can be shown that the phase gradient uniquely defines 

the instantaneous spatial and temporal frequencies of a signal [4.2 1 ] . Unlike the energy-based 

approaches, the collection of filters used to compute the final velocity estimate are only tuned 

slightly differently from each other. This ensures that velocity resolution is not sacrificed. 

The accurate calculation of the phase gradient is not a trivial matter as the effects of phase 

wrapping/unwrapping and discontinuities have to be taken into account. Many of these 

difficulties can be avoided by computing the phase gradient directly from the response and 
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gradient of the response of the filters. This computation explicitly involves numerical integration 

and differentiation of the sampled signals. To avoid many of the difficulties associated with 

numerical integration and differentiation, the complex signals have to be low-pass filtered first. 

They may then be convolved with appropriate interpolation and differentiation kernels to yield 

fairly robust results. 

Overall the computational cost of phase-based techniques for the measurement of optical flow is 

very high, but results can be very good. 

4.3.6 Adapting Optical Flow for Radiographic Images 

In modelling the spatiotemporal intensity variation in an image sequence, optical flow techniques 

exploit a relatively simple scene model incorporating smooth surfaces, with both diffuse and 

specular components of reflection. This reflectance model does not include the effects of 

shadowing, but in many cases proves to be quite adequate. Radiographic images do not conform 

to the reflectance model. Chapter 2 clearly showed that radiographic information is the result of 

the integrated absorption of the X-ray beam as it passes through material. The relative 

absorption is dependent on the thickness of the material and its mass density. Thus the intensity 

of an object is dependent on its density and not its surface reflectance. This implies that 

measured velocities no longer represent a single point on the object. Making the assumption that 

density does not change with time, intensity changes will represent depth changes. 

In angiograms [4.22] a radio-opaque dye is injected into the bloodstream. The primary 

absorbers of the transmission in this situation are the dye and calcified bone. The assumption 

that the intensity changes represent depth changes in the heart is true in this case since the 

dye-filled heart is the primary source of motion. However for cineradiographic sequences of the 

human spine there is little bone deformation only small density changes due to stretching and 

compression of soft tissue. 

Continuity Equation 

The continuity equation anses from the study of fluid flow. It relates the spatiotemporal 

behaviour of a conserved fluid quantity to the fluid velocity. 

dp 
+ V. (pu) = 0 at eq. 4.39 

where p = p(x, t) is the fluid density, u = u(x, t) the fluid velocity, and X IS the spatial 

coordinates (x, y) in two dimensions and (x, y, z) in three dimensions. 

This fluid flow model, based on the continuity equation, is particularly appropriate in imaging 

situations where the intensity is proportional to the density of some conserved fluid quantity, 
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such as mass, charge or the projection of such a density. This is clearly the case for 

radiographic imaging [4.23] .  

In section 4.3 . 1 ,  differential approaches to the computation of optical flow were primarily based 

on the gradient constraint equation, equation 4.35. When this is applied to radiographic 

Images, the intensity term represents density, resulting in the equivalent equation: 

dp +Vp. v = O  
at 

where v = v(x, t) is now the velocity of 'constant-density'. 

eq. 4.40 

Expanding the gradient and dot-product operations in the continuity equation (4.39) enables a 

comparison between this equation and the gradient constraint equation. 

dp 
- + Y'p.u +pY'. u = 0 
at 

eq. 4.41 

Comparing equations 4.39 and 4.41 it is readily observed that if pY'. u  = 0, then u and v obey 

the same equation. This situation corresponds to the case where the fluid is both conserved and 

incompressible. Combining equations 4.40 and 4.41 produces the following result: 

Y'.u 
v = u  + ,----...,. 

g g iY'(logp)i eq. 4.42 

where the subscript 'g ' denotes the component measured in the direction of the density gradient 

Y'p. 
This equation shows that the additional term resulting from the fluid flow model involves two 

components . The first component Y'. u is the local divergence of the fluid flow (the gradient in 

the direction normal to the fluid velocity) and the second component is the gradient of the log of 

the density. The overall effect of this term is that the optical flow velocity in the direction of the 

gradient will be more positive than the fluid flow component at locations where the fluid flow is 

diverging, and more negative where the flow is converging. 

Although the continuity equation appears to be more appropriate than the standard optical flow 

equation for radiographic images since it is based on actual physical flow, it is insufficient in 

itself to uniquely determine the flow. Additional constraints are required, similar to those applied 

to the optical flow equation in section 4.3 . 1  to ensure a solution. In practice it is the application 

of these constraints and not the base model that is the most problematic. 
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4.4 A Suitable Tracking Method for Cineradiographic Images 

All of the methods covered in this chapter are constrained by the effects of both the aperture 

problem and the correspondence problem. The aperture problem (covered in section 4. 1 . 1 )  

restricts the estimation of the local velocity to its normal component. The correspondence 

problem is solved explicitly by object-based matching approaches when they find the best match 

to the object template in the next frame. Optical flow methods deal with this problem when they 

calculate the interframe temporal gradients on which local velocity estimates are made. Also 

when optical flow methods are used to track complete objects, local velocity estimates have to be 

associated (correspondence found) with the objects. These corresponding velocity vectors are 

then used in the estimate of the object motion. 

Another significant problem encountered by all the motion-tracking methods is occlusion. In the 

general case one object may pass behind another object and thus become partially or totally 

obscured only to reappear later in the sequence .  The effect of even partial occlusion in 

reflectance images will dramatically alter the recorded intensity information. Dealing with 

occlusion in radiographic images is in principle a far less difficult task as total occlusion can 

never occur since the image is formed by a density projection. 

In cineradiographic images of the human spine the motion of interest is the movement of the 

vertebrae. A description of the entire velocity field is not required. Occlusion is not generally a 

problem in the important cervical and lumbar regions. Thus template-based matching 

approaches would appear to be the most appropriate method for cineradiographic images of the 

human spine. 

Some means of segmenting the image and identifying the objects of interest (the vertebrae) is 

necessary. Chapter 3 covered in detail the application of edge-based segmentation methods to 

cineradiographic images of the human spine. The low contrast of these images combined with 

their noisy characteristics made this task very difficult. In a practical situation manual 

segmentation of a single frame in a sequence and labelling the objects of interest would be 

acceptable to a health care practitioner so long as the remainder of the tracking process is 

automated. 

A practical system for the measurement of spinal motion must perform the necessary 

calculations in an acceptable time. Acceptable time in this situation implies that it should take 

no longer than 30 minutes and preferably less. Given that a cineradiographic sequence may 

contain a hundred or more frames (even at half-video rates), then the overall computation 

required to track the vertebrae will be extremely high. Of the various methods reviewed in this 

chapter, template matching approaches are the least computationally expensive, especially when 

combined with good motion prediction and an effective match statistic. 
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In the following chapter the performance of the various match statistics proposed in sections 4.2 

and 4.3, are evaluated on real data from cineradiographic images of the human spine. 

4.5 References 

[4. 1 ]  Horn B.K.P. Robot Vision, MIT Press, Cambridge, 1 986 

[4.2] Marr D. and Ullman S. Directional selectivity and its use in early visual processing, 

Proceedings of the Royal Society of London, B 2 1 1 ,  pp 1 5 1 . . 1 80, 1 98 1 .  

[4.3] Aggarwal J. K., Duda R. O. and Rosenfeld A. (eds .). Computer Methods in Image 

Analysis. Chapter 4: Hu K., Visual Pattern Recognition by Moment Invariants. Los 

Angeles: IEEE Computer Society, 1977. 

[4.4] Pavlidis T. Algorithms for Graphics and Image Processing. Computer Science Press, 

Rockville, MD, 1 982. 

[4.5] Gurevich G. B. Foundations of Theory of Algebraic Invariants. Groningen, The 

Netherlands: P Noordhoff, 1 964. 

[4.6] Dudani S., Breeding K. and McGhee R. Aircraft Identification by Moment 

Invariants. IEEE Transactions on Computers C-26, No. 1 ,  pp 39 . .45, Jan. 1 977. 

[4 .7] Wong R. and Hall E. Scene Matching With Moment Invariants, Computer Graphics 

and Image Processing 8, pp 1 6  .. 24, 1978.  

[4.8]  Besl P.J. and Jain R.C. Segmentation Through Variable-Order Suiface Fitting. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 1 0, No. 2, 

pp 1 67 . .  92, March 1 988. 

[4.9] Ahmed, N. and Rao, K.R., Orthogonal Transforms for Digital Signal Processing. 

Springer Verlag, New York, 1975. 

[4. 10] Bracewell R.N. The Fourier Transform and its application. McGraw-Hill, pp 24 . .48, 

1 986. 

[4. 1 1 ] Walsh, J.L. A closed Set of OrthogonaL Functions., Proceedings of the London 

Mathematical Society., vol. 34, pp 24 1 . .279, 1932. 

[4. 1 2] Abdou I.F. and Wong K.Y. Applied Numerical Analysis. 2nd Edition, Addison

Wesley, 1978. 

[4. 1 3] Fennema C. and Thomson W. Velocity determination in scenes containing several 

moving objects. Computer Graphics and Image processing 9, pp 30 1 . . 3 15 ,  1979. 

[4. 14] Horn B.K.P. and Schunck B.G. Determining optical flow. Artificial Intelligence 1 7, 

pp 1 85 . .  204, 1 98 1 .  



Motion-tracking: An Overview 

[4. 1 5] Ballard D.H. and Brown C.M. Computer Vision. Prentice-Hall, 1 982. 

101 

[4. 1 6] Glazer F., Reynolds G. and Anandan P. Scene matching through hierarchical 

correlation. Proceedings IEEE CVPR, Washington, pp 432 . .  442, 1983.  

[4. 1 7] Wu J. Brockett R. and Wohn K. A contour-based recovery of image flow: Iteration 

method. Proceedings IEEE CVPR, San Diego, pp 124 . .  1 29, 1 989. 

[4. 1 8] Kass M., Witkin A. and Terzopoulos D. Snakes: Active contour models. 

International Journal of Computer Vision 1 ,  pp 32 1 .. 33 1 ,  1 988.  

[4. 1 9] Waxman A.M., Wu J. and Bergholm F. Convected activation profiLes: Receptive 

fieLds for real-time measurement of short range visuaL motion. Proceedings of CVPR, 

Ann Arbor, pp 7 l 7  .. 723, 1 988 .  

[4.20] Fleet D.J. and Jepsen A.D. Computation of image veLocity from LocaL phase 

information. International Journal of Computer Vision 5, pp 77 .. 1 04, 1 990. 

[4.2 1 ]  Adelson E.H. and Bergen J.R. SpatiotemporaL energy modeLs for the perception of 

motion. Journal of the Optical Society of America A2, pp 284 . .  299, 1985 .  

[4.22] Stevens A.s. Medical Imaging, Gold-Publishing, 1 99 1 .  

[4.23] Fitzpatrick J.M. A method for caLcuLating velocity in time dependent images based on 

the continuity equation. IEEE Motion: Representation and Perception, pp 78 .. 8 1 ,  

1 985. 



5 
Match Statistic Performance 

5.1 Template Matching 

It was concluded in chapter 4 that a template-based matching approach would be the most 

suitable method for tracking motion of the human spine in cineradiographic images. This was 

principally based on the fact that a general description of the motion field was not required since 

only the vertebra were of interest. The outlines of the vertebral boundaries in a single frame 

would form object templates for which a best match position would be sought in subsequent 

frames. Such an approach has the added advantage of directly solving the correspondence 

problem (see section 4 .3 .3) .  The potential success of this approach is further enhanced by the 

fact that the vertebral motion is reasonably well constrained to a single plane, resulting in little 

geometric distortion of the projected vertebral image. Also, due to constraints in the degrees of 

freedom associated with the motion of the spine, only partial occlusion of vertebrae can occur 

and its effect is significantly reduced since the image is a density projection. 

Template based tracking approaches are of low computational cost only when the size of the 

template is small and good estimates of both translation and rotation are available. While 

dealing with translation to within one pixel is straight forward, matching with template rotation 

is far from simple and can consume most of the computation in the motion tracking scheme. The 

issue of rotation is dealt with in detail in the following chapter where a method is developed to 

create cineradiographic sequences with prescribed motion. Matching with rotation requires that 

for each increment of rotation, the discrete template is interpolated to form a continuous 

description. This continuous description is then rotated and sampled back onto the original pixel 

grid, ready for matching. Ensuring that the rotation operation does not introduce any spatial 

aliasing artefacts or significant smoothing requires careful design and significant computational 

effort. If the object represented by the template changes very little, both geometrically and 

photometrically, then the rotated templates need only be computed once at the start of the 

tracking procedure for each increment of rotation. However in cineradiographic sequences, there 

are significant photometric changes principally due to the camera auto-gain control changes 

necessary to prevent system overload. Dealing with this and geometric effects would require that 

the template be incrementally updated after each interframe match and new rotated versions of 

template computed. This would introduce significant computational cost. 
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The effect of rotation on the template match can be made insignificant if the template is made 

small relative to the feature it represents .  For cineradiographic images digitised to 288x288 

pixels (half PAL composite video frame size), the bodies of the vertebra are typically 30x 1 8  

pixels for the cervical region and between two and three times that size in the lumbar region. 

Maximum speed of rotation and translation occurs in a lateral cervical view where the neck 

moves from full flexion to full extension. In this situation the vertebrae undergo rotation from 

approximately -450 to +450 • Assuming that the capture rate is sufficiently fast to restrict the 

inter-frame vertebral rotation to only a few degrees, there will still be at least half a pixel 

movement due to rotation at the edges of the vertebra. 

The disadvantage of making the template small enough so that rotation can be ignored is that it 

may not contain enough information to give a reliable match. It was shown in section 4. 1 . 1  of 

chapter 4 that the aperture problem restricts the accurate estimation of local velocity to its 

normal component when the intensity structure upon which the measurement is based is nearly 

one-dimensional. Table 5 . 1  illustrates some simple (noise-free) grey-scale intensity feature 

images and their relative dimensionality when viewed from a window centred at the middle of 

each image. 

Relative dimensionality Simple grey-scale feature images 

close to zero 

close to 1 

between 1 and 2 

Table 5.1: Simple grey-scale features and their relative dimensionality 
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Matching methods will suffer aperture problem effects when the feature forming the template is 

of low dimensionality. This will tend to occur when a template is made so small that it does not 

contain any comer and/or boundary information. Without this two-dimensional information, the 

match will be poor in the direction of the one-dimensional feature, and thus be prone to 

mismatching along the direction of the feature in the presence of noise. A method proposed to 

solve this problem is covered in detail in chapter 8, where the complete motion-tracking 

algorithm is assembled and tested. The solution involves defining a global match for a given 

vertebra by combining a number of small sub-templates positioned about the vertebra. Although 

any one of the sub-templates may contain a relatively one-dimensional feature, so long as the 

angle of orientation for each sub-template feature is significantly different, then the global match 

will not be prone to mismatch due to aperture effects. 

5.1.1 Match Statistics 

From the range of match statistics covered in chapter 4, four were chosen for evaluation on 

cineradiographic images . These statistics are all computed in the spatial domain where they 

offer low computational cost when small match templates are used [5 . 1 ] .  The first two match 

statistics correspond to normalised versions of the measures described by equations 4.5 and 4.6. 

m n 

Match Statistic 

L L[Ak (i, j) * Ak+1 (i, j)] 
Corr = -.=====i==O..;o,;,.i==O===========:= 

� (�t, [A, (i, J)]' * � t, [A'+1 (i, j)]' ) 
6 

�)Mk (i) * Mk+ 1 (i) ] 

eq. 5. 1 

eq. 5.2 

eq. 5.3 

eq. 5.4 

Computational Cost 

additions: 2.5 mn 

multiplications: 1 1 

additions: 2 mn 

multiplications: mn + 25 

additions: 3 mn 

multiplications: 3 mn + 26 

additions: 33 mn + 48 

multiplications: 48 mn + 57 

NOTE: See appendix B for full details of the computational cost calculations. 

Table 5.2: Match statistics and their computational cost 
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The Mean of Absolute Differences (MAD) statistic is a normalised version of the absolute sum 

of differences (ASD) of equation 4.6. The Root Mean of Squared differences (RMS) is a 

normalised version of the sum-of-squares difference (SSD) of equation 4.5 .  These first two 

statistics are based on intensity differences, for which a best match between the reference 

template Ak and target area Ak+1 produces a minimum. The third match statistic corresponds 

directly to the (discrete) normalised product Correlation (CORR) of equation 4.7, while the 

fourth match statistic is a normalised product correlation based on Moment invariants, (MCor). 

Table 5 . 1  lists these four measures along with an estimate of their computational cost. 

The two correlation based statistics produce a maximum at the best match position. The moment 

based correlation uses the first six normalised central moment invariants listed in table 4. 1 of 

chapter 4. The moments for the template, Mk (i ) ,  are matched to the target area moments, 

Mk+1 (i) , using a normalised product correlation. In principal this statistic should be invariant to 

rotation, scale and translation changes. Only the first six moment invariants have been used in 

this calculation as the computational cost of high order moment invariants increases rapidly. 

5.1.2 A Match Statistic Sharpness and Selectivity Measure 

An important performance measure in template matching is the uniqueness of a best match with 

respect to the local neighbourhood. One measure of uniqueness is that rate at which the match 

statistic decreases (or increases) as the template is moved away from the best match position. If 

the statistic changes monotonically in all directions about the best match, then the feature 

represented by the template is unique in a local sense. However, if the feature represented by the 

template is relatively one-dimensional (usually the case for small templates), then moving the 

match window normal to the orientation of the feature, the match statistic will decay rapidly, 

whereas moving parallel to the feature the decay will be significantly less rapid. 

Williams and Glazer [5.2] defined two sharpness measures for assessing the uniqueness of a 

template match. Their sharpness measures are based on calculating the sum of the differences 

between the value of the statistic at the best match position and values about this position moving 

out in a square annulus. This sum is then normalised by the difference between the best match 

value and the maximum value in a neighbourhood of radius r. The minimum sharpness rule, 

defined in equation 5 .5 ,  is sensitive to one-dimensional features . It will give a low value for a 

one-dimensional feature since it is based on the minimum difference in each annulus. 

eq. 5.5 

i=! 
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r 

I (MAve(;) -MJ 
S - i=l Ave - --=-=r'-------

I(MMax -MJ i=l 
eq. 5.6 

where: Mo is the match central minimum, M; is the minimum match in the square annulus of 

radius i, MAve(i) is the corresponding annulus average and MMax is the maximum in 

the entire neighbourhood of radius r. 

The average rule on the other hand (equation 5 .6) will be less affected by one-dimensional 

features since it involves a weighted sum of values in each annulus. 

Williams and Glazer compared their sharpness measures to the interest operators of Moravec 

[5 .3]  and Hannah [5 .4] on a number of test images using several s imple match statistics. Their 

match statistics were all computed as Euclidean distances for both point, area and gradient 

(Kirsch) differences. They acknowledged that their match statistics were not normalised and 

thus sensitive to changes in the average or DC intensity, but then proceeded to ignore this effect 

for the remainder of their analysis. The results of the last part of their work are of importance to 

general template matching in that points of high interest as defined by the Hannah operator were 

classified manually into nine categories according to their feature characteristics.  The categories 

included whether or not the position was near a border, with three sub-categories for the border 

type (straight, curved, or sharp corner). If the position was not near a border but within an 

object, then three sub-categories were used to describe the local area as homogeneous, somewhat 

textured or strongly textured. Although all these categories were subjectively assessed, the 

results provided considerable insight into the behaviour of the various match performance 

measures. Their minimum and average sharpness measures were used graphically to show how 

each responded to a different category feature. Based on these results, a match selectivity 

measure is proposed, computed from the ratio of the difference between the minimum and 

average sharpness values, and the average sharpness .  The difference component is a measure of 

dimensionality. It will be large if the feature is of low dimensionality, such as in the case of a 

homogeneous surface or a one-dimensional boundary. The average component provides a 

measure of the local mean match sharpness. For a highly selective feature, the difference 

component should be small and the average component large, thus producing a small ratio. One 

minus this ratio gives a selectivity measure (equation 5 .7) that will be close to unity for a highly 

selective feature match and close to zero for a poor feature match. 

( SA - SM' ) SM' Selectivity = 1 - ve In = _l_n 

SAve SAve eq. 5. 7 
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Applying this selectivity measure to the simple images of table 5 .2  usmg the MAD match 

statistic and a window and neighbourhood radius of five pixels, produces the results of figure 

5 . 1 .  With no noise added to the images the results are consistent with the relative dimensionality 

of each image. Images 1 through to 4 show zero selectivity since their dimensionality is less than 

or equal to one and hence their minimum sharpness value is zero. The other two images show 

high selectivity with image 6 recording a perfect value due to its single point structure. 

1 

0.9 

0 .8  

� 0.7 
;;; 
> 0.6 

"0 
.� 0.5 
;;; § 0.4 

� 0.3 

0.2 

0. 1 

O +---��r-�--�--��.---�� 

2 3 4 

Image number 
5 6 

• Selectivity 
(noise free) 

o Selectivity 
(+ 1 0% 
Gaussian) 

Figure 5.1 : Selectivity of the simple grey-scale images of table 5.2 

The addition of 1 0% gaussian noise to the images significantly changes their selectivity as is 

shown by the second set of bars in figure 5 . 1 .  The low dimensional images 1 through to 4 now 

show a small selectivity value. The one dimensional images 3 and 4 display a larger selectivity 

value than do the zero dimensional images 1 and 2. Image 5 (the corner image) displays a small 

drop in selectivity whereas the single point image, image 6, displays a large drop in selectivity. 

This large drop in selectivity is due to the point nature of this image that is easily corrupted by 

the noise. The corner image, image 5, is significantly less effected by the noise as its underlying 

structure covers a larger area. 

5.2 Salient Features and Optimising Match Selectivity 

Biological vision is inherently active. Humans and animals actively acquire visual information 

about their environment to guide their behaviour. The paradigm of active computer vision has in 

recent years led to the study and development of "seeing systems", as outlined by Aloimonos et 

al [5 .5]  and Pahlavan et al [5 .6] .  The most important concept underlying this approach is the 

concept of fixation. When a human views a scene the visual system is often directed to certain 

types of simple geometric features. The scene is scanned by jumping from one fixation feature to 

another in order to build up global and local geometric information. Bajcsy and Campos [5 .7] ,  
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and Rimey and Brown [5 .8]  have proposed a general framework for what has become known as 

the "where to look next" problem. Other researchers [5.9] have most recently acknowledged that 

the active choice of fixation points is task dependent. In the case of manufactured objects, 

important cues to shape are junctions, and their types, and boundary edges with classification as 

being curved or straight. When a scene is dynamic and contains moving objects, then fixation 

points become important to the task of object tracking and leads to the concept of feature 

saliency. Salient features should change only slowly during the motion of the objects thus 

greatly aiding the ability to track their motion. 

For cineradiographic images of the human spine the sal ient objects of interest are the vertebrae. 

The corners and junctions between the vertebral body and spinous-process could be considered 

as salient features of the individual vertebra. In order to evaluate the four match statistics 

defined in table 5 . 1 ,  salient points were defined on the skull, and first and second vertebra of the 

middle frame of a typical cervical cineradiographic sequence. The position of these points is 

indicted in figure 5 . 1 by the white crosses. The ease at which the individual feature points can be 

located visually varies significantly between points. The point on the back of the skull is of high 

contrast but is fairly one-dimensional, whereas the front bottom point of the second vertebra is of 

low contrast but highly two-dimensional as it occurs on a sharp corner. This variation in feature 

characteristics should be reflected in the match minimum and average sharpness measures and 

the selectivity measure. A single parameter determines the behaviour of the sharpness measures 

for a given feature and match statistic, and this is the shell radius .  The bigger the radius, the 

larger the area over which sharpness is computed and hence the less localised the measurement 

becomes . A suitable choice of radius should reflect the differences between each of the feature 

points. 

Figure 5.2: Salient feature points defined on a typical cervical cineradiographic image 
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All ten of the feature points defined in figure 5 .2  where processed by first computing an 
auto-match surface about each position and then calculating selectivity for a range o

f 
shell radii. 

The match was computed with a window radius from two to four pixels. At four pixels radius 
the feature window is approximately half the height of a typical cervical vertebra. 

Match Window Radius=2 Window Radius=3 Window Radius=4 
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Table 5.3: Variation in selectivity with increasing shell radius for MAD statistic 

Table 5.3 contains the selectivity results for the MAD match statistic for the three window sizes. 
Each of the traces on the graphs correspond to one of the ten feature points. The graphs show a 
general downward trend in selectivity for almost all match feature points. This general 
behaviour was also observed for the other three match statistics. The decline begins to level off 
for a shell radius of about three pixels. As the shell radius increases further past this value, the 
selectivity traces tend to converge for several of the feature points. This convergence implies 
that feature discrimination based on selectivity is lost at large radii. At a radius of three pixels 
the selectivity traces tend to be maximally separated from each other. This size radius will be 
used for the remainder of the match statistic performance evaluation. 

5.3 Match Statistic Evaluation 

One of the first steps in evaluating the performance of the match statistics on the feature points is 
to determine how sharpness and selectivity change as the size of the feature template increases. 
A single parameter, the window radius, controls the size of the template if it is made square. 

5.3.1 Auto-frame Feature Point Matching 

An initial sense of the behaviour of a match statistic can be obtained by matching the template 
onto itself in a local neighbourhood. This results in a match surface from which sharpness and 
selectivity can be computed. Table 5.4 contains examples of match surfaces for the position at 
the back of the skull and the front of the second vertebra. The data have been normalised and are 
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displayed as both an intensity image and as a 3-D plot. The dynamic range of the MAD and 

RMS statistics is inverted and displayed with the same polarity as the correlation data. 

Feature 

Skull: 
bottom-back 

Match 
Image 

Skull: 
bottom-back 

Match 
Surface 

Vertebra 2: 

front-bottom 

Match 

Image 

Vertebra 2: 

front-bottom 

Match 

Surface 

MAD RMS CORR 

0.8 

• 

0.6 
0.4 
0.2 

o 0 o 0 o 0 

o 0 o 0 

Table 5.4: Auto-match data for a window radius of three pixels 

For the position marked on the bottom of the skull at the back (bottom-back), the local feature is 

of high contrast but is relatively one-dimensional. The one-dimensionality of this region is 

reflected in the match data for all three match statistics. Parallel to the direction of the skull-line 

the match decreases very slowly whereas normal to this direction the match decays rapidly. Both 

difference statistics produce a sharp peak at the original template position whereas the 
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correlation match is much smoother in all directions without a sharply defmed peak. The peak 

for the RMS match is significantly greater than for the MAD match. 

The second set of match data shown in table 5 .4 corresponds to the bottom of the front of the 

vertebral body of the second vertebra (front-bottom). This local feature is of much lower 

contrast than the skull feature due to absorption and scattering in the local soft tissue. It is also 

more two-dimensional than the skull feature as it is located on a comer of the body of the 

vertebra. This increased dimensionality is reflected in the match data for all three match 

statistics .  The match decreases fairly rapidly in most directions with only a slight bias in one 

direction as indicated by a broad diagonal band. All of the statistics show a peak at the original 

template position with the RMS statistic showing the largest peak. The correlation match is 

significantly less smooth than the other two match statistics to the extent that the broad diagonal 

band displayed by the two difference statistics is not visible. 

Table 5 .5  contains graphs of match sharpness as a function of match window radius for all 

feature points for each match statistic. The feature points have been .grouped in terms of the 

feature with which they are associated. The solid traces represent the average sharpness while 

the broken traces represent the minimum sharpness .  Both difference statistics (MAD and RMS) 

show minimum and average sharpness increasing with increasing window radius for almost all 

the feature points . The average sharpness for a few of the points peaks and then decreases past a 

certain window size. This is particularly obvious for the top trace on the skull graphs where the 

trace represents the position at the back of the skull. This effect is due to the match window 

encompassing a greater area containing only skin, which is homogeneous and noisy. However 

the minimum sharpness continues to increase as more of the curvature of the skull-line is 

contained in the match window. This effect levels out at around six pixels by which time the 

slight comer of the skull-line is now contained in the match window and any further increase 

only introduces more of the essentially one-dimensional skull-line either side of the comer. 

Overall, sharpness for the RMS statistic is significantly greater than for the MAD statistic. This 

is principally due to the peaking effect illustrated in the match surfaces of table 5.3 .  Both the 

area correlation and moment-based correlation display significantly lower sharpness than either 

of the two difference statistics. The minimum sharpness for MCor is particularly low. There is 

also significant variation in sharpness between feature points. The correlation statistic (CORR) 

displays dramatic changes in both minimum and average sharpness for the feature points of the 

two vertebra. This variation is consistent with the notable visual difference between these feature 

points. An optimal window radius is reached for many of the vertebral feature points where 

sharpness is maximised. 
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The average sharpness for the moment based correlation statistic changes relatively smoothly, 

reaching a maximum at about a four-pixel radius for half of the feature points. For the other 

feature points the average sharpness goes through a minimum at this radius .  Minimum 

sharpness varies erratically as the window radius is increased going through several local minima 

and maxima. 

The selectivity measure described by equation 5.7 combines the minimum and average sharpness 

measures into a single measure describing the uniqueness of a given feature point and match 

statistic combination. Table 5.6 contains selectivity graphs for the three features for each of the 

match statistics .  Each of the graph traces can be keyed back to the actual feature position 

marked in figure 5 . 1 ,  using table 5 .6. 

Line-type and - - - -

feature (1) (2) 

Skull bottom-back -

Vertebra 1 and 2 back-bottom back-top 

- - - - -

(3) 

bottom-front 

front-bottom 

- - - - - . 

(4) 

-

- -

front-top 

Table 5.6: Key to match selectivity graph traces of tables 5.7 to 5.10 

The selectivity of the skull feature points increases with increasing window radius for all but the 

MCor statistic. Selectivity for the MCor statistic is low and relatively flat with small local 

minima. For the first vertebra the selectivity of both the MAD and RMS matches peak at about 

three pixels and then level out to similar values. Selectivity of the correlation match on the other 

hand peaks at different radii for each of the feature points, thus illustrating the greater 

discrimination of this statistic. The moment-based correlation selectivity is highly erratic and 

goes through several local maxima and minima, all comparatively low in value. This behaviour 

also occurs for the second vertebra. Greater selectivity discrimination can be seen for the two 

difference statistics for the second vertebra and this response carries over to the correlation 

match .  This improvement in selectivity discrimination is primarily due to the second vertebra 

being significantly larger than the first vertebra and that it contains more sharply-defined 

corners. The selectivity of the moment-based correlation still shows highly erratic behaviour, as 

observed for the first vertebra. 

The reason for the poor performance of the moment based match can be explained in terms of the 

properties of this statistic. Because it is based on moment invariants the match should not vary 

for changes in translation, rotation and scale. While rotation and scale invariance are highly 

desirable, translation in variance is not desirable when an accurate match in position is required. 
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Table 5.7: Match selectivity for varying window radius 
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Other authors [5 . 1 0] have noted that moment-based correlation will match silhouettes or binary 

outlines with high positional accuracy but matching grey-scale data generally does not produce a 

sharp match.  General scene matching schemes based on other translation invariant methods 

[5 . 1 1 ] for grey-scale data have used the invariant match as the top stage of a hierarchical 

multi-scale procedure. In such procedures potential template match candidate positions are fIrst 

found using large translation steps up to half the size of the match template. These potential 

sites are then investigated locally using a fIner step size and the remaining candidates then tested 

in detail using an area correlation to give the desired positional accuracy. For cineradiographic 

images of the human spine, locality is already known to be within a few pixels of the previous 

position due to the relatively small interframe motion. Thus moment-based matching with simple 

translation will not produce a suffIciently accurate positional match. 

5.3.2 Interframe Feature Point Matching 

In the previous section an initial idea of the performance of the four match statistics was 

obtained by computing a match on the original frame in a local neighbourhood about the feature 

position. An evaluation of this type is equivalent to the case where there is only interframe 

translation of pixel size increments. No information is gained about the behaviour of the 

statistics in the presence of noise, scale changes or rotation in such a situation. To assess the 

performance of the match statistics under real-world conditions (all these factors present), an 

interframe local match was performed about the middle frame of the cervical test sequence. The 

middle of the sequence was chosen because this is where maximum velocity usually occurs and 

hence maximum rotation and translation. The match process starts at the original frame position 

in the next frame, and searches in square annuli until the best match is found, or the limit of the 

search radius is reached. If a best match is found, then the selectivity is calculated at this 

location and the x and y coordinates recorded. 

Selectivity and Positional Stability 

The two factors important to interframe matching, and hence motion-tracking, they are the 

positional accuracy and positional stability of the best match. In order to assess positional 

accuracy for a given type of image data, image sequences with known motion are required. This 

issue is dealt with in the next chapter where methods are developed for the creation of 

cineradiographic sequences with prescribed motion. Interframe match positional stability can be 

assessed by plotting the position of the best match as the match window radius is increased. Any 

sudden change in either the x or y coordinate will be indicative of positional instability. This 

should only occur when match selectivity is low and/or there is a signifIcant change in selectivity 

between window radii. 
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Tables 5 .8  and 5.9 contain selectivity and best match x and y position graphs for the MAD 

statistic for each of the feature points, for previous and next interframe matches. The feature 

point represented by each trace is keyed according table 5.6. Positional data are plotted with 

respect to the original reference frame such that (x, y) = (0, 0) is the original position. A 

selectivity value or positional value that is at the limit of a graph scale implies that a best match 

was not found within the local search radius of five pixels. 
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Table 5.8: MAD previous frame match: Selectivity and x-y position 
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Both skull feature points for the MAD statistic for the previous interframe show low selectivity 

that decreases and then increases with increasing window radius. Selectivity for the bottom-back 

feature peaks at five pixels and levels out, while selectivity for the bottom-front feature peaks at 

seven pixels and then rapidly decreases. This sudden drop in selectivity is accompanied by a 

jump in the x-position. For all other values of the window radius the x and y position do not 

change, indicating that the best match is stable. The selectivity of the feature points of the first 

vertebra rapidly increases, then peak and stabilise at different window radii. The front-top 

feature peaks at the largest radius, five pixels, and then decreases. A transition occurs in the x 

position in only one of the feature points, all others are stable. However, the y position of most 

of the feature points undergo a transition at the selectivity peak and then stabilise. Quite a 

different behaviour can be seen for the second vertebra. Two of its feature points do not find a 

best match in the search area until the window radius is two pixels. The selectivity traces are 

also much more peaky and do not stabilise with increasing window radius . Both the x and y 

position undergo many transitions. The position for most of the feature points is stable for a 

window radius between five and seven pixels. This significant difference in behaviour compared 

to the first vertebra can be explained in terms of the difference in size of the vertebra, the 

difference in feature contrast, and also the proximity of other features. 

The second vertebra is significantly larger than the first and thus it is reasonable that match 

selectivity will peak at a larger window radius.  The rapid drop in selectivity after the peak, as 

the window radius is increased, is due to nearby features, namely the vertebrae above and below 

the second vertebra, beginning to appear in the match template. S ince the motion of these 

vertebrae is different to the second vertebra, the local match degrades rapidly as more of the 

interfering feature appears in the template area. This effect can also be seen for the front-bottom 

feature point of the first vertebra, with its close proximity to the top of the second vertebra. 

The selectivity and positional graphs for the next interframe match using the MAD statistic are 

shown in table 5.9. As with the previous frame match, the skull feature points show low 

selectivity that decreases and then increases with increasing window radius .  However, unlike the 

previous frame match, it is less obvious what the optimal window radius is as there is no 

well-defined peak in selectivity. Furthermore, the bottom-front feature point does not find a best 

match until a window radius of two pixels. The x and y position become stable between four and 

seven pixels window radius and then at eight pixels the x position moves a pixel. This shift in 

position occurs where there is a sudden increase in selectivity due to a nearby feature point on 

the skull becoming included in the match template area. The selectivity behaviour of the first 

vertebral feature points is similar to the previous interframe match except that selectivity IS 

generally lower and the peaks occur at different window radii. 
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Table 5.9: MAD next frame match: Selectivity and x-y position 

Also, the front-bottom feature does not find a best match until a window radius of two pixels_ 

Position is stable between two and six pixels radius after which the y position of two of the 

features moves due to a sudden increase in selectivity. The next interframe match behaviour of 

the second vertebra is significantly different to the previous interfrarne match. A best match is 

not found for three of the four feature points until a window radius of two pixels and is then lost 

at four pixels radius for the front-bottom feature. As with the skull feature points, it is difficult 

to define an optimal window radius for several of the second vertebra feature points due to the 

lack of a well defined selectivity peak. Selectivity of the back-top feature peaks at four pixels, 

begins to decrease and then increases past seven pixels as the bottom of the first vertebra begins 
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to appear in the template area. The position data undergo many transitions but then stabilise 

after five pixels radius. 

The notable difference In selectivity and positional stability for the next interframe match 

compared to the previous interframe match can be explained in terms of the actual interframe 

motion. Visualisation of a sequence consisting of only the middle frame and the two frames 

either side clearly revealed that the forward direction (next frame match) movement is 

significantly greater than in the backward direction (previous frame match). This increased 

movement results in greater vertebral rotation and hence a general reduction in feature point 

selectivity. 

Interframe Match Summary 

The selectivity and positional behaviour of the MAD, RMS and CORR match statistics, for 

previous and next interframe matches, has been summarised in table 5 . 1 0. The moment based 

match, MCor, has not been included in the table because for almost all feature points a best 

match was not found within the search radius. The reason for this is that the value of the 

Moment correlation is extremely close to unity throughout the search area, for all window radii. 

Hence the match surface is essentially flat and the minimum sharpness is nearly zero. The 

reason for this lack of discrimination in the interframe match is as explained at the end of section 

5 .3 . 1 for the auto-frame match. Rotation, scale and translation invariant schemes generally do 

not produce accurate positional matches but do indicate that the general area contains the feature 

of interest. 

The selectivity graphs have been summarised in terms of average selectivity and average degree 

of selectivity peakiness, for the three vertebral features. These two summary categories are 

scored using a low, medium or high (L,M or H) rating. Also contained in the summary table is 

the best window radius for each of the feature points . The best window radius is defmed as the 

window radius at which selectivity reaches a local maximum and the x and y position are stable. 

The window radii are in order of the feature points defined left to right in table 5.6 .  The pattern 

of selectivity and selectivity peakiness is almost the same for the two difference statistics (MAD 

and RMS) for the previous interframe match, and covers the full range in both categories. In 

contrast, the correlation match ratings are more stable and do not score high in either category. 

There is also a strong degree of consistency in the best window radius for the two difference 

statistics, covering a range from two to seven pixels across all feature points. Less variation in 

the best window radius is observed for the correlation match, with the range now from three to 

six pixels. 

The pattern of selectivity and selectivity peakiness for the next interframe match for both the 

MAD and Correlation statistic is the same as for the previous interframe match. The next 
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interframe RMS match on the other hand shows a slightly different pattern to the previous 

interframe match. High-score cases have been reduced to a medium score. For all the statistics 

match, the best window radius tends to be smaller for the next interframe match than the 

previous interframe match.  This reduction in size is principally due to the greater forward 

interframe vertebral rotation that degrades the match for larger window radii. 

Frame 
Statistic MAD RMS CORR 

Feature S VI V2 S VI V2 S VI V2 

Selectivity L H M L H M L M M 

Previous 
Selectivity 

L M H L M H L L M peakiness 

Best window 5,7 3,2 7,4 5 ,5 3,2 7,4 4,6 5 ,3 6,5 
radius 2,5 6,5 2,4 6,5 3,4 6,4 

Selectivity L H M L M M L M M 

Next 
Selectivity 

L M H L M L L L M peakiness 

Best window 5,6 3,3 7,4 4,4 3,3 6,3 4,4 5 ,4 2,3 
radius 4,6 5,3 4,3 5 ,4 5,6 3,3 

KEY: S = skull, VI = first vertebra, V2 = second vertebra, 

L, M, H = low, medium, high 

Table 5.10: Summary - Interframe matching 

Interframe Selectivity Constancy 

Although the best match window radius for the forward interframe was generally smaller than 

for the backward interframe match, it is important that the selectivity of each feature point at the 

best match window radius should remain relatively constant between interframes. Visually it is 

reasonable that this should be the case as there is very little observable change in local feature 

characteristics between the two interframes. Thus plotting interframe match selectivity at the 

best window radius for each feature point should show little difference between the previous and 

next interframe data. Table 5. 1 1  contains the best interframe match selectivity graphs for the 

MAD, RMS and Correlation statistics.  The continuous trace on each graph represents the 

previous interframe match, while the broken trace is the next interfrarne match. Each position on 

the x-axis corresponds to the feature points listed in order, in table 5.6. 
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Table 5.11 :  Best interframe match selectivity 

For the MAD statistic there is little difference in selectivity between the previous and next 

interframe match for some of the feature points, while for others points there is a fairly large 

difference. High-selectivity constancy occurs for three of the four feature points on the first 

vertebra. The RMS match consistently shows a large variation in selectivity between the two 

interframes for all the feature points. Only the correlation based match displays best match 

selectivity that changes very little between the forward and backward interframes. This is in 
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spite of the fact that for some of the feature points the best match window radius has been 

reduced significantly due to the greater vertebral rotation. 

5.3.3 Global Image Match Selectivity 

Determining the locations in an image that are locally unique in the sense that they have a high 

match selectivity for a particular match statistic and template window size, will indicate features 

that are potentially good for template based motion-tracking. The same procedure that was used 

in the auto-frame and interframe feature point matching described in the two previous sections, 

can be applied globally to any given frame or interframes. About each location in the reference 

image a square template of a specified window radius is matched in a local neighbourhood (auto

or interframe) of a specified search radius. This will produce a match surface for each location 

from which a single selectivity value is calculated about the best match position. The selectivity 

values can then be formed into a matrix and visualised as an image. The advantage of this 

approach for interframe matching is that the only assumption made is that the maximum 

interframe translation anywhere in the image is smaller than the search radius. 

Table 5 . 1 2  contains selectivity images for the previous and next interframe matches, and also the 

current frame (auto-frame) match, for the middle of the cineradiographic cervical test sequence. 

The first colurrm in the table contains MAD statistic images, while the second column contains 

the product correlation selectivity images. A window radius of four pixels has been used for all 

the images, this being the average of the best window radii for the interframe vertebral feature 

point match, summarised in table 5 . 10.  A large search radius of seven pixels was used to ensure 

that the maximum observed interframe translation would be matched. If a best match was not 

found within the search radius then the recorded selectivity was set to zero. For interframe 

matching, this will only occur when the template contains no significant structure, such as in the 

relatively homogenous soft tissue areas. 

Looking at the MAD auto-frame selectivity image obvious features such as the skull-line show 

low selectivity due to their local one-dimensional characteristic. However, many locations in the 

image show high selectivity in areas that are visually relatively homogenous. This effect is 

particularly obvious in the area of the skin at the back of the neck. Local to the circular aperture 

produced by the image intensifier, a wide selectivity band occurs. This indicates that the MAD 

statistic is not particularly discriminating, for high contrast features. In comparison, the 

correlation statistic shows much greater discrimination throughout the image. Very few points in 

soft tissue areas score high in selectivity, while high contrast features such as the circular 

aperture are localised to only a few pixels. The centre of both auto-frame selectivity images 

clearly show that the vertebral bodies have much higher selectivity than do the vertebral tails (the 

spinous-processes). 
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Table 5.12: Global Match Selectivity 

Looking at the interframe match selectivity images, far fewer points are displayed with high 

selectivity and hence potentially good candidates for tracking. This is to be expected since there 

is significant motion (rotation and translation) between these images . Selectivity of the skull in 

particular is greatly reduced due to its comparatively large rotation. Selectivity of many of the 

vertebrae is reduced to a larger extent in the forward or next interframe match than the previous 

interframe. This is once again due to the greater motion (mainly rotation) present in this 

interframe. The correlation statistic consistently displays better selectivity discrimination and 

feature localisation than does the MAD statistic for both interframe matches. 
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5.4 Match Statistic Conclusions 

This chapter has primarily been concerned with the experimental assessment of the performance 

of four template match statistics. The purpose of the assessment was to choose a suitable match 

statistic to be used in the evolution of a complete motion-tracking algorithm for cineradiographic 

images of the human spine. A feature selectivity measure was developed to aid in this choice. 

This measure incorporates the effects of both feature dimensionality and local sharpness. While 

feature selectivity is an important property in its own right, it is the positional stability and 

positional accuracy of the match that are of prime importance to a motion-tracking algorithm. 

The MAD statistic showed good selectivity characteristics for the ten chosen feature points for 

both interframe matches, but positional stability for some of these feature points was not 

particularly good. The banding seen in the selectivity images of table 5 . 1 2  further illustrated this 

property. This general behaviour was also observed for the other difference statistic, where even 

greater positional instability was detected. 

The moment invariant based correlation statistic proved to be totally unsuitable for template 

matching of these type of images due to its low selectivity and poor positional stability. Only the 

simple product correlation produced reliable and consistent behaviour for all feature points for 

both interframe matches . Match positional localisation was also shown to be very good, as 

clearly illustrated in the global interframe match selectivity images . Furthermore, there was a 

high degree of selectivity constancy between the interframes for all ten prescribed feature points. 

The computational cost of a product correlation is relatively low, particularly when small sized 

templates are used, as will be the case for the proposed motion-tracking algorithm. One further 

advantage of the correlation measure described in this chapter is that it is inherently normalised. 

This is important because the complete motion-tracking algorithm described in chapter 7 will 

take advantage of this property by forming a global match for an object based on a number of 

small sub-templates positioned about the object. 

The development of methods in this chapter to assess the performance of the match statistics 

does in itself provide a means of making a motion-tracking algorithm adaptive to the changes in 

the characteristics of a moving object. The initial choice of the feature points at the start of the 

tracking procedure is critical to the overall tracking success. By computing the forward and 

backward optimal (best template window radius) interframe selectivity of a feature point, a 

figure of merit could be calculated to score the potential success of tracking this location. 

Alternatively, having defined a feature point, a local optimisation could be performed to find the 

local optimal feature position based on a forward and backward interframe selectivity 

assessment. These ideas will be expanded upon later in the thesis. 
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6 
Prescribed Motion 

Cineradiographic Sequences 

6.1 Introduction 

Many of the elements necessary to develop a motion-tracking algorithm for cineradiographic 

sequences of the human spine have already been described. The previous chapter was about the 

selection of a suitable template match statistic. Of the four statistics evaluated, the normalised 

product correlation was shown to have the best selectivity and positional stability under 

interframe matching conditions. Although good positional stability does not necessary imply 

high positional accuracy, a severe mismatch will generally only occur when the location has poor 

selectivity, as in the case of low dimensional or low contrast features. Assuming at this stage 

that a system for the measurement of vertebral spinal motion has been completed, the evaluation 

of such a system would be extremely difficult as there is no independent method by which the 

internal vertebral motion can be measured. 

One approach to solving this problem might be to record a range of real sequences and then get a 

number of experts to mark each frame manually in a sequence to locate defined feature points. 

Experience has shown that manually tracking individual feature points in cineradiographic 

images is extremely difficult, even over just a few interframes. This is because the feature points 

of interest are generally poorly defined. In the previous chapter (see section 5 .5 .3)  it was shown 

that the comers of the vertebral bodies were the best feature points to track. However, even 

these so called corner points are not sharply defined. Thus attempting to manually track them 

with good reliability over 50- 1 00 interframes would be extremely difficult. 

More reliable tracking results could be obtained manually by using outline templates. In this 

approach the outline of the entire vertebra is traced onto a transparency (or stored digitally). In 

each subsequent frame a best match is found for the entire outline by positioning it over the 

corresponding vertebra. Good results can be obtained using this method since the entire 

structure of the vertebra is used in the match. Like the manual point-based case, the only way to 

ensure an accurate result over an entire sequence is to combine the results of a number different 

experts. 
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An alternative to taking a real sequence and trying to measure the motion by some other means 

would be to create sequences with known motion. An artificial sequence must possess similar 

properties to a real sequence to ensure that it provides an effective test for any proposed motion 

tracking and measurement scheme and it must not introduce any additional artefacts. 

6.2 The Stop-and-shoot Method 

A common approach used to create sequences with known motion is the stop-and-shoot method 

[6. 1 ] . In this method the objects that are to appear to be in motion in the scene are manually 

positioned at the desired starting location for the sequence and a single frame is captured. The 

objects are then moved to the next location and another frame is captured. In this way sequence 

will be built up in which the objects appear to be in motion. Superficially, this approach appears 

to be a totally satisfactory method for the creation of a prescribed motion sequence. This is true 

if the motion to be prescribed is sufficiently small that at a normal rate of capture the object can 

be considered to be near stationary. Consider the case in which the area of a scene is 1 x 1 metre 

and is digitised linearly to one pixel per millimetre. Assuming that the capture rate is 25 frames 

per second (equivalent of 50 fields per second in conventional interlaced video) and that 

stationary simply implies that movement should be substantially less than one pixel per frame, 

say a tenth of a pixel, then the maximum velocity of an object must not exceed 0.1 * 25 = 2.5 

millimetres per second. At this speed an object would take two hundred seconds to move from 

one side of the scene to the other. Even if the stationary criterion is relaxed to half a pixel per 

frame, at maximum speed an object would still take some forty seconds to traverse the image. 

If the actual motion in a scene exceeds half-a-pixel per frame, as would be the case in most 

cineradiographic motion sequences, then during the frame integration time a moving object 

would traverse across many sensor elements. The effect of this motion is that edges of the object 

in the direction of the motion will not appear sharp, but will be spread across several pixels. 

This phenomenon is called motion blur [6.2], and is readily observed in photographs of fast

moving objects such as racing cars where the detail of the car is blurred in the direction of 

motion. Although motion blur is sometimes seen as a problem, it the natural result of ensuring 

the integrity of the data representation and hence the temporal derivatives. This guarantees that 

the data can be interpolated and differentiated (see chapter 4, section 4.2. 1 ), two essential 

requirements for the success of most motion-tracking algorithms. This happens because the 

signal becomes temporally band limited, thus reducing or preventing temporal aliasing [6.3]. 

Temporal aliasing manifests itself as sudden jumps in the position of an object known to be in a 

smooth continuous motion. In a sequence created using the stop-and-shoot method the real 

object is always stationary when the frame is recorded, thus no motion blur occurs and hence 

temporal aliasing will take place. If however the positional jumps are relatively small, then when 

the sequence is viewed by a human observer at an appropriate frame rate the motion will appear 
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continuous due to persistence of vision. Persistence of vision results from the temporal 

integration that is a fundamental property of the human visual system. Several different 

temporal integration time-constants have been experimentally measured [6.4], the longest being 

approximately lOOms and the shortest ISms. There is good practical and theoretical evidence 

[6.5] to suggest that temporal integration over several resolutions is responsible for many of the 

remarkable motion-related properties of the human visual system. 

6.3 Articulated Equivalent Phantom 

The stop-and-shoot method for the creation of a motion sequence described in the previous 

section, will suffer temporal aliasing unless the interframe motion is at a sub-pixel level or some 

form of velocity-dependent smoothing is applied. When considering the application of such an 

approach to the creation of cineradiographic sequences of the human spine the first thing that 

must be considered is the spine itself. Long-term X-ray radiation exposure is a health risk. 

Furthermore, only the external position of the spine can be accurately measured. A partial 

solution to this problem, commonly used by medical biomechanics researchers, is cadaver use. 

This clearly overcomes the exposure problem, but the only way to get an accurate measurement 

of the location of the vertebrae is to remove much of the soft tissue surrounding the spine. This 

approach is unsatisfactory for a number of reasons. Firstly, there are the ethical concerns of 

using a cadaver for research and the practical issues of availability and hygiene. There is also an 

important biomechanical issue often ignored by researchers in this field, that is a preserved body 

cannot be positioned in the same way as a live one since the preservation process significantly 

changes the mechanical properties of the major connecting tissue such as tendons and ligaments. 

A better solution to the problem would be to build an equivalent phantom human spine that can 

be accurately positioned and has similar X-ray absorption characteristics to a real living spine. 

A basic human skeleton can be used as the starting point for building such a phantom. Firstly 

the important connecting soft tissue needs to be simulated with suitable materials. The entire 

structure can then be sealed and immersed in a saline solution or embedded in a suitable flexible 

resin to simulate the bulk soft tissue X-ray absorption properties. The only major difficulty 

remaining with such a near equivalent phantom is animating the structure through a range of 

motion in a known measurable way. For generating equivalent sequences, only a section of the 

spine needs to be animated since the largest image intensifiers available are only 350 mrn in 

diameter (see chapter 2, section 2.2.2). This could be done using some form of mechanical jig 

made out of non X-ray absorbing material that is attached to a number of vertebra. The jig 

could then be moved under machine control to produce a range of motion. However this 

approach still leaves unresolved the problem of accurately measuring the produced motion in 

each vertebra. Various sensor technologies could be used, but getting many of them to work 

reliably under X-ray bombardment is an entirely different matter. 
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6.4 Artificially Animated Cineradiographic Sequences 

Rather than taking the conventional approach of producing a physical phantom spine which is 

then mechanically animated and cineradiographed, a more flexible alternative would be to 

synthesis the X-ray sequence directly. Synthesis in the computer graphics sense usually begins 

with a model for the components that will form the scene. For the biomechanical radiographic 

case both the mechanical and X-ray absorption related physical properties of the components 

must be quantified and modelled. The main components of a cineradiographic sequence of the 

human spine are the vertebra themselves (including the skull) and to a lesser extent the soft 

tissue. Figures for the relative X-ray absorption coefficient of bone and soft tissue can be 

determined from conventional radiographs, while the three-dimensional structure of typical 

vertebrae can be obtained from standard reference CT (computerised tomography) [6.6] images. 

Next the mechanical articulation of the structure has to be quantified. With all this data the task 

of building an accurate three-dimensional animation model could be embarked upon but would 

be a substantial undertaking. An alternative and more tractable task would be to begin with a 

single frame from a real cineradiographic sequence and to produce a two-dimensional animated 

sequence from it. 

6.4.1 Digital Image Warping 

Digital image warping is an active research area in computer graphics. Image warping involves 

a geometric transformation, for which there are three integral components : spatial 

transformation, resampling, and anti-aliasing. A spatial transformation defines a geometric 

relationship or mapping that establishes a spatial correspondence between all points in the input 

and output images. The input image is treated as consisting of a set of reference points that are 

known precisely, while the output image comprises the observed or warped data. 

A general spatial mapping can be specified in two forms: 

I,"Ax, y] = I;,. [X(u, v), Y(u, v)] 
I;,. [u, v] = I"ut [U(x, y), V(x, y)] 

eq. 6. 1 

eq. 6.2 

where I is the image intensity, [u, v] refers to the input image coordinates and [x , y] to the 

output image coordinates, and X, Y, U and V are arbitrary mapping functions that uniquely 

specify the spatial transformation. 

Functions X and Y map the input image to the output image and are referred to as the forward 

mapping, while U and V map the output image back to the input image and are known as the 

inverse-mapping functions. Both forward and inverse mapping can be used to produce a warp. 

However the forward or target mapping has significant advantages when the input image is to be 
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read sequentially as in the case of raster scanned images. It is particularly useful for separable 

algorithms that operate in scan line order (see Two-Pass Mesh Warping later in this chapter) . 

In a forward mapping each input pixel is copied onto the output image at positions determined by 

X and Y. Figure 6. 1 illustrates a forward mapping for a simple one-dimensional case. The input 

and output spatial distributions are shown for a line of grayscale pixels lying on a discrete 

integer grid. Each input pixel is passed through the spatial transformation where it is assigned a 

new output coordinate. The spacing of the horizontal arrows represent the input and output 

spatial distribution of the forward mapping. In this example the distance between input pixels A 

and B has been compressed resulting in a closer projected spacing between output pixels A' and 

B'. Conversely the distance between input pixels C and D has been expanded, reSUlting in a 

wider projected spacing between output pixels C' and D'. Whereas the input pixels lie on an 

integer grid, the projected output position of the mapping may take on continuous or real values. 

Thus an interpolation stage is required to fit a continuous function to the discrete input data. 

The continuous function may then be sampled at arbitrary positions. This interpolation 

operation is known as image reconstruction. Jointly, image reconstruction followed by sampling 

is known as image resampling [6 .7] .  

The real valued output positions assigned by the forward-mapping functions X and Y cause 

complications since the output pixels must also lie on a discrete integer grid. Holes may appear 

where the input-output mapping bypasses an output position as in the case of pixel E' in 

figure 6. 1 .  Alternatively an overlap may occur where two or more consecutive input samples 

collapse into a single output pixel, as depicted by output pixel F' . 

Input Output 

A A' 

B B' 

C 
Forward 

C'  

D 
Mapping 

D' 

E E' 

F F' 

Figure 6.1 : One-dimensional forward mapping 

These two resampling problems arise because point sampling (zero-spread) has been used on the 

reconstructed input to assign the discrete output. Point sampling is where each input sample 

point is taken independently of its neighbours and thus can affect only one output point. With 

point sampling, entire intervals between samples may be discarded and their information content 

lost. If the input data changes smoothly the lost data may be recovered through appropriate 
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interpolation (reconstruction). However, when the discarded interval contains complex changes, 

interpolation maybe inadequate and the lost data unrecoverable. In this situation the input signal 

is said to be undersampled giving rise to aliasing. The filtering used to counter aliasing is 

known as anti-aliasing and typically requires that the input be blurred before resampling, 

ensuring that the sampled points are influenced by their discarded neighbours. 

In theory, aliasing can be prevented entirely by sampling at a sufficiently high frequency, as 

dictated by sampling theory or by designing an ideal anti-aliasing filter to suit the data. But due 

to practical limitations in the implementation of an ideal filter, many approximate anti-aliasing 

methods have been proposed. The four-corner mapping paradigm is one such solution to the 

problems produced by the simple point-to-point mapping. Four-comer mapping is an area 

sampling method in which input pixels are considered as square patches that may be transformed 

into arbitrary quadrilaterals in the output image. This ensures that the input remains contiguous 

after the mapping. However, this approach introduces two other complications that require the 

use of adaptive sampling of the input, based on the size of the projected quadrilateral, in order to 

resolve them. If the projected input patch covers more than one output pixel, as would be the 

case for local magnification, intermediate values must be interpolated to correctly fill the output 

positions. Alternatively if more than one projected input patch resides in an output position, as is 

the case for local minification (reduction in scale), then the patches must be averaged, based on 

their area, to fill the output position. 

Two-Pass Transforms 

Consider the case of a spatial transform specified as a forward mapping by functions X and Y 
such that: 

[x, y] = T(u, v) = [X(u, v), Y(u, v)] eq. 6.3 

The transformation T is said to be separable if T(u, v) = F(u) G(v) . The order of the 

functions implies that G is applied after F. thus T( u, v) is said to be two-pass transformable. 

The functions F and G are known as the two-pass functions, each operating along a different 

axes . This approach enables the forward mapping of equation 6. 1 to be rewritten as two 

one-dimensional mappings. F along the horizontal axis and G along the vertical axis. 

Two pass algorithms have been shown to apply to a wide class of transformations [6.8] of 

general interest including perspective projection of rectangles and bivariant patches. 

Two-Pass Mesh Warping 

An important class of the two-pass warp algorithm is defined in terms of piecewise continuous 

mapping functions. The input and output images can be partitioned into a mesh of patches. 
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Each patch delimits the area over which the continuous mapping function applies. The mapping 

operation is reduced to transforming each patch onto its counterpart in the second image, thus 

giving rise to the term mesh warping. The term morphing (short for geometric metamorphosis) 

has been coined to describe a particular application of this method used by Industrial Light and 

Magic [6.9] to create the extra special effects seen in popular films such as The Abyss and 

Terminator-2. Figure 6.2 shows an example of a non-uniform mesh of patches with the control 

point placed at the vertices. The control points are indexed by integer (u, v) coordinates and 

serve as pointers to their real position. In effect this is a parametric grid that partitions the image 

into a contiguous set of patches . Each patch can be fitted with a bivariant function to produce a 

piecewise continuous mapping function. 

Figure 6.2: A mesh of patches 

The algorithm [6. 10] accepts a source image and two two-dimensional arrays of mesh 

coordinates. The first array contains the control points for the source image while the second 

array specifies the corresponding coordinates in the destination image. These two arrays must be 

the same size to establish a one-to-one correspondence but the points are real-valued numbers 

and can lie anywhere in the image plane. The only requirement of these arrays is that they be 

topologically equivalent. That is to say, there must be no folding or discontinuities and hence no 

self-intersection. Figure 6.3 shows an example where a regularly-spaced grid has been used for 

the source mesh array and the non-uniform patches of figure 6.2 used as the destination mesh 

array. Each (u,v) point in the source array is mapped to the corresponding (x,y) point in the 

destination array and the direction of the warp indicated by the arrows. A complete description 

of the algorithm can be found in Wolberg [6. 1 1 ] .  Below is a brief outline of the steps of this 

two-pass, forward mesh warp algorithm. 

Horizontal Warp, Phase 1 :  

Take each horizontal line of the input and output meshes and interpolate them onto the input 

image base coordinates. This produces the input and intermediate image tables for the y

intercepts of horizontal scanlines. 
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Horizontal Warp, Phase 2: 

Resample each horizontal scan line of the input image based on the intermediate and input 

tables to produce an intermediate image. 

Vertical Warp, Phase 1 :  

Take each vertical line of the input and output meshes and interpolate them onto the input 

image base coordinates. This produces the intermediate and output image tables for the x

intercepts of vertical scanlines. 

Vertical Warp, Phase 2: 

Resample each vertical scan line of the intermediate image based on the intermediate and 

output tables to produce the output image. 

This algorithm is fast and produces anti-aliased images over a wide range of input-output scale 

changes. Linear interpolation is used for magnification and box filtering for minification. A 

cubic interpolator is used in the first phase of each pass to regularise the input and output mesh 

grids onto the input image base coordinates. 

0 =  source • = destination 

Figure 6.3: Example of source and destination arrays 

At the time of this research (November 1993) there were no readily available commercial 

image-warping software packages. Based on C code-fragments found in the book Digital Image 

Warping [6. 1 1 ] ,  a Pascal language unit called WarpFtns was written to implement the complete 

warp algorithm. This code can be found in its entirety in appendix C starting at page C-52. 

6.4.2 Image Rotation 

Translating an object and changing its scale digitally is a much easier task than rotating the 

object. In order to produce a prescribed motion sequence the creation algorithm must be able to 

perform translation, scaling and rotation simultaneously. Before looking in detail at the task of 
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creating a motion sequence using two-pass mesh warping, the issue of how accurately this type 

of algorithm can perform object rotation must be investigated. 

Many simple spatial transformations can be expressed in terms of a general 3x3 transformation 

matrix T shown in equation 6.4. For two-dimensional image projections (eg. mapping between 

the uv- and xy-coordinate system) the third dimension can be ignored without loss of generality. 

[x' , y' , z' ]  = [u, v, z] T eq. 6.4 [al l a12 al3 ] 
where T = a21 a22 �3 a3 1 a32 a33 
When this general matrix is used to specify a two-dimensional coordinate transformation it 

operates in what is known as the homogeneous coordinate system [6. 1 2). The use of 

homogenous coordinates was introduced to provide a consistent representation for affine and 

perspective transformations. The general representation of an affine transformation is: [al l 
[x,  y, 1 ]  = [u, v, 1 ]  Clzl a3 1 �] eq. 6.5 

This is a special case of the 3x3 transformation in which the homogeneous coordinate z' has 

been set such that z' = z = 1 .  An affine mapping corresponds to an orthographic or parallel 

plane projection from the source uv-plane to the destination xy-plane. It will accommodate only 

simple planar mappings such as translation, rotation, scaling and shearing. Each of these 

operation can be seen by partitioning the affine matrix. Translation by offsets � and � to u 

and v coordinates respectively takes the form 

[x,  y, 1 ]  = [u, v, 1 ][ � 
� 

o 
1 �] 

Similarly scaling u and v by arbitrary factors Su and Sv respectively is specified by 

[Su 

[x, y, 1 ]  = [u, v, 1 ]  � o 

�l 

Rotation about the origin anti-clockwise through an angle 8 is given by 

eq. 6.6 

eq. 6. 7 
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[ COS e sin 0 0
] [x, y, l ] = [u, v, l] - sin e cos e 0 

o 0 1 

1 35 

eq. 6.8 

Finally, a shear along the u-axis by a factor Hu and the v-axis by a factor Hv is defined by 

[x, y, I] = [u, v, I{ �, eq. 6.9 

A composite transformation consisting of any combination of these four basic transfonns can be 

computed by forming the matrix product of the individual matrices. Shown below in equation 

6. 10  is an example of a composite transform consisting of rotation followed by a scale change 

and finally translation. Because matrix mUltiplication is generally non-commutative, changing 

the order of the transforms will result in a different composite transformation matrix. 

where 

[x, y, 1] = [u, v ,  1] Mcomp [ cos II sin II or 
MComp = - sin 0 cos O 0 0 

o 0 1 0 

�l [ S. cos II Sv sin 0 
= -Sv sin 0 Su cos O 

� � 

0 
Sv 
0 

eq. 6. 10 

�H 0 �J 1 
� 

As stated in section 6.4. 1 ,  the only restriction on the form of the warp that can be created using 

the two-pass mesh algorithm is that there can be no self-intersection of the mesh coordinates. 

Hence all transformations realisable by the general affine mapping should be possible. The only 

obvious limit on this statement concerns the maximum angle of rotation achievable. For angles 

greater than ±45° , mesh self-intersection will tend to occur thus limiting the useful rotation range 

to this value. This does not present any problems with respect to the creation of 

cineradiographic sequences of the human spine because in general the vertebrae do not exceed 

this range of rotation. 

Rotation Evaluation 

To assess the quality of image rotation produced by a two-pass mesh warp, an algorithm 

designed specifically to perform image rotation is required. One of the most significant 

algorithm developments in image rotation was proposed recently by two independent researchers 
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[6. 1 3, 6 . 14]. They demonstrated that the rotation transform could be decomposed into three 

one-dimensional shear transforms. This decomposition is shown in equation 6.4. [ COS e sin 8] R =  
- sin 8 cos 8 

= [_ tan

1

(8j2} a� sin 8][ 1 0] 
1 - tan (8/2) 1 

eq. 6. 11  

The fIrst shear skews the image in a horizontal direction by displacing each row. The resultant 

image is then skewed in the vertical direction and the last part finally performs another skew in 

the horizontal direction to complete the rotation. 

The main advantage of this algorithm is that there are no scaling operations. By not requiring 

any scaling, sampling and filtering complications, and their associated degradations, are avoided. 

Furthermore, a shear transformation can be performed efficiently requiring little more than linear 

interpolation. It can also be shown that the sum of the pixel intensities along any scanline 

remains unchanged after a shear operation, thus no visible spatial-variant artefacts are produced 

by this algorithm. Code for this algorithm can be found in appendix C page C-49 in a Pascal 

language unit called Rotate. 

Figure 6.4: Checker-board test image 

One of the most popular test images for assessing the performance of an implementation of a two 

dimensional transform is the checker board. This is because the image contains very high 

spatial frequency terms due to the binary intensity transitions. These clearly-bounded transitions 

provide an effective test for an algorithm since excessive smoothing will appear as blurring of the 

boundaries and aliasing (due to under-sampling or poor reconstruction) will appear as jaggedness 

in the boundaries. Figure 6.4 contains the checker-board test image used to evaluate the rotation 

algorithms. The squares are size 1 6  pixels, this being approximately the height of the smallest 

vertebra in the cervical spine. 

Table 6. 1 contains the results of rotating the checker-board test image through a range of angles 

up to 40° . The images in the third column were produced using a popular algorithm based on 
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bicubic interpolation [6. 15 ] ,  for additional comparison. Mesh warp rotation was performed 

using a grid resolution equal to the pixel size in the original checker-board image. 

Rotation 
Angle 

5 degrees 

10 degrees 

15 degrees 

20 degrees 

30 degrees 

40 degrees 

Three-pass shear Two-pass Mesh 
Warp 

Table 6.1 :  Rotation of checker-board test image 

Bicubic 
Interpolation 
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Three-pass shear Two-pass Mesh Warp Bicubic Interpolation 

Table 6.2: 4x magnified 200 rotation of checker-board test image section 

Visually there is little difference between the quality of the images generated by all three 

methods. The images show good maintenance of the checker-board boundaries, free from 

excessive jaggedness .  Table 6 .2 contains the centre section of the three images for the 20° 

rotation case magnified by 4. Even at this higher magnification there is very little visual 

differences between the three methods, all show good reconstruction of the boundaries. 

The results of table 6. 1 and 6.2 clearly show that the general two-pass mesh warp algorithm is 

capable of image rotation with an accuracy comparable to purpose build rotation algorithms and 

thus is suitable for the creation of prescribed motion cineradiographic sequences. 

6.5 Motion Sequence Generation 

In principle, motion sequence generation using the digital image warping offers the ultimate in 

flexibility in the specification of the motion characteristics and hence special effects. Using the 

basic mesh warping algorithm described in section 6.3. 1 a wide range of planar motion 

transformations can be generated. The illusion of full three-dimensionally is also possible if 

range information is available. The start of the creation of a cinematic illusion using image 

warping normally begins with the separate recording of the two (or more) sequences. The first 

sequence is the source or start sequence and the last sequence is the target or destination 

sequence. The warp will form a new sequence in which the first frame is the same as the first 

frame of the start sequence and the last frame is the same as the last frame of the last sequence. 

The intermediate frames will be a spatial and colour combination of the intermediate frame of 

each sequence. For complex scenes each sequence is often recorded on a plain background 

(usually chroma-tone blue) to prevent scene elements other than the objects of interest from 

interfering with the each other during the warp. The final background can then be merged in last 

of all. The remaining steps required to achieve the warp can be illustrated with the s imple case 

where there is just one source frame and one destination frame. The popular case of a picture of 



-----------------------------------------------------

Prescribed Motion Cineradiographic Sequences 1 39 

one human face morphing to another face is a typical example. In each frame points of 

correspondence are marked, that is locations in the source frame that will become the new 

location in the destination frame. Once this has been done geometric mesh grids for the source 

and destination frames are formed from the correspondence points. A sequence of intermediate 

meshes is then formed that starts from the source mesh and ends with the destination mesh. To 

generate each frame of the sequence both the source frame and the destination frames are warped 

based on the intermediate mesh data. For the source frame the warp is a forward warp in which 

its original mesh is the input mesh and the intermediate mesh is the output mesh.  In the 

destination frame case the intermediate mesh becomes the input mesh and the original mesh is the 

output mesh producing a reverse warp. These two intermediate frames are then combined using 

a method called cross-dissolve in which each frame is weighted by a value dependent on how far 

through the sequence the frame is and the two frames added together. For colour sequences the 

process is applied three times, once to each of the red, green and blue image planes. The main 

steps of sequence generation are thus summarised as: 

1 .  Define correspondence points in the source and destination frames and form a geometric 

mesh grid from the points for each frames. 

2. Generate an intermediate mesh grid interpolated between the source and destination grids. 

3. Warp the source frame towards the destination image and the destination frame towards 

the source frame based on the intermediate mesh grid. 

4. Cross-dissolve the warp source and destination frames to produce the a new intermediate 

frame. 

S .  Repeat steps 2 to 4 to produce all subsequent frames of the sequence. 

Simple animation warping programs commonly automate the mesh generation by using linear 

interpolation between the input image mesh and the final output image mesh, over the specified 

number of frames. Sophisticated animation warping programs such as those used by Industrial 

Light and Magic [6.9], enable the partitioning of the input mesh and the definition of functions 

that specify how the partitioned areas move towards the final output mesh over the desired 

number of frames. This increased complexity in mesh specification enables more visually 

realistic warp sequences to be created since the rate of metamorphosis of small and extensive 

detail can be directly controlled. 

6.5.1 Extended Image Warping 

Image warping is normally used to create a visual illusion in which a source image and 

destination image geometrically distorts towards each other as the sequence progresses. The 

only requirement of the warp is that it is aesthetically pleasing. In this sense the sequence must 

appear to be visually smooth and certain key components such as eyes, mouth and nose of a face 



140 The Development of Motion-tracking Strategies for Cineradiographic Images 

must be clearly recognisable through the warp and not dissolve into a blur of the source and 

destination frames. The goal of the application of image warping to cineradiographic images of 

the human spine is to produce an animation in which the components of the spine move through a 

prescribed path of motion in accordance with physical constraints 

Application to Cine radiographic Sequences 

In order to produce a realistic animated cineradiographic sequence of the human spine, general 

constraints on the spatial and temporal motion characteristics need to be known. At a simplistic 

level the most obvious constraint on the allowable motion is that the vertebra must behave as 

rigid bodies conserving their geometric shape. Soft tissue surrounding the vertebrae must 

therefore mould or distort to accommodate the movement of the vertebrae. Digital image 

warping can readily achieve this since sections of the mesh grids can be made to keep their 

relative shape while the surrounding areas deform (stretch or compress) to account for the new 

locations of the fixed sections. 

When a vertebra (the fixed sections of the mesh grids) is moved, the local geometric distortion 

will be propagated away from the vertebrae into the surroundings as if the surrounding was made 

of an elastic material that obeyed natural physical laws. The soft tissue between the vertebrae 

(the discs) has very different mechanical properties to the general soft tissue (skin and muscle, 

etc.) .  Thus constraints must be applied to ensure that compression and shear on the disc tissue is 

within known mechanical limits. An additional constraint can be used to simplify the problem 

when applied to lateral and anteriposterior (AP) views of the human spine. Vertebra in these 

views are generally non-occluding, allowing only close contact interaction. 

As stated previously in section 6.5, image warping requires a source and a target frame and the 

definition of points of correspondence defining object of interest. To create complex warps 

containing many objects of interest each object is usually recorded separately or is separated 

from a frame and then processed individually. The difficulty in applying this technique directly 

to cineradiographic images is that the separation of each component, the skull, vertebrae and soft 

tissue, is not readily possible. Radiographing a skeleton could be used to specify the hard tissue, 

but the layering effect of the density projection of both soft and hard tissue would be difficult to 

achieve. Cineradiographic images of the spine are in effect only available as two-dimensional 

projections of the complete structure. A useful animated cineradiographic sequence could be 

produced from a single frame in a real sequence if a detailed spatial description of the main 

components (skull, vertebrae, soft tissue boundaries) is available. From these spatial 

descriptors, all objects would then have to be processed collectively and all spatial interactions 

adequately accounted for. 
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The manual placement of landmark points on static radiographs i s  routine when making simple 

biomechanical measurements. This same manual approach can be applied digitally to a single 

frame from a cineradiographic sequence to define the corner points of the vertebrae and other 

important features. Interpolating between these corner points yields an outline or boundary 

description of the object enclosed within. These outline coordinates can then be used to form a 

suitable spatial description of each object. Alternatively the Canny edge detection algorithm 

described in chapter 3 could be used to generate an initial edge map. Although this map will be 

noisy and the vertebral boundaries discontinuous, it can be readily tidied up by overlaying it on 

the original image and manually editing each pixel. The resulting edge image can then be chain 

coded [6. 1 6] to produce a spatial representation of the vertebra and other boundaries. 

6.5.2 Initial Implementation 

A very simplistic approach was used for the initial implementation of the warp-based animation 

algorithm. A trajectory file containing x-y position and orientation of each vertebra was 

predefined to prescribe the motion. The steps of this implementation are summarised as follows: 

• Outline each vertebra (object) of interest on the reference image 

• From the outline compute the minimum enclosing rectangle of each object 

• Use a I -pixel resolution grid in the object area and a coarse grid outside. Include a 

clearance zone around each object (see figure 6.5 b) 

• From a prescribed trajectory file (x, y, 8) compute the new output mesh coordinates of 

each object. All internal coordinates of the enclosing rectangle are transformed, point 

by point using a general coordinate transformation 

• Warp the image using the computed mesh grids 

• Get the next trajectory data, compute new mesh coordinates, and repeat the process 

This initial implementation has a number of significant limitations. Firstly the use of a minimum 

enclosing rectangle for the vertebral outlines results in motion boundary artefacts. Also due to 

the irregular shape of the vertebrae, a minimum enclosing rectangle outline description severely 

limited the range of motion that can be generated without having to explicitly deal with object 

interference. It was also found that for some trajectory values the output images appeared as if 

they have been stretched to all four corners and folded back on themselves . This was initially 

considered to be a bug in the mesh generation routine. However a thorough investigation 

revealed that the sudden transition from the fine single-pixel grid in the object area to the coarse 

grid in the surroundings caused the cubic spline interpolator used in the first phase of each pass 

of the warp algorithm, to become unstable and overshoot. This overshoot resulted in the 

unexpected special effects. This problem can be easily illustrated for the I -D case in which 
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irregularly sampled data IS regularised to a constant sampling interval by cubic spline 

interpolation. 

coarse grid 

a) reference image b) 

Figure 6.5: Initial implementation 

clearance zone 
/ 

/ 

fine (1 pixel grid) 

mesh geometry 

In figure 6.6 the middle of the three traces from position 60 to 100 is sampled at unity spacing. 

Outside this region on either side there are two other data samples at irregular intervals before 

the end samples. The spacing of these two samples for the three traces is defined in the key to 

the right hand side of the figure. The irregularly spaced data is regularised to unity spacing 

using cubic spline interpolation and results are shown in figure 6.7. 

I rregularly Sampled Data 

200 . . . . 

1 50 

1 00 

o 20 40 60 80 100 1 20 1 40 1 60 
Position 

Figure 6.6: Irregularly sampled data 

KEY Spacing 

± l O, ±20 

± 1 O, ±35 

±25, ±50 

For the first trace with the sample points closely spaced either side of the middle section there is 

significant overshoot above and below the original. Moving the second sample either side further 

out begins to stabilise the interpolation, but even for the third case with even spacing about the 
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middle section significant undershoot occurs. This behaviour is the classic result of severely 

undersampling the original data for which the only valid solution is to increase the number of 

samples. In the case of the initial implementation of the cine-warp program reducing the coarse 

grid spacing below 1 0  pixels stabilised the interpolation in the region outside the clearance zone. 

II 
::J � 

Regularised Data 

200 . .  

1 50 

1 00 

50 

I 
: i -: ) . 

: -i/  
i . .  , .1. . , ' . ' ;: .' " j ' . - : � . , 

....... .../ '- ' ' , 

o 20 40 60 80 1 00 1 20 1 40 1 60 
Position 

KEY Spacing 

±10, ±20 
±lO, ±35 
±25, ±50 
Original 

Figure 6.7: Regularised data by cubic spline interpolation 

The use of an overall clearance zone, computed from the maximum pixel shift of any object in 

the scene, was a simple step designed to deal with propagating local distortion due to object 

motion, into the surroundings. The assumption was that the interpolation inherent in the warping 

routine would adequately propagate the distortion due to the fine ( 1  pixel grid) to coarse mesh 

grid transition. This assumption holds adequately for a small range of motion but with 

increasing translation the distance over which the distortion is propagated varies markedly 

between vertebra. This results in the spacing between the last position on a vertebrae and the 

first position outside the clearance zone varying markedly. This change in an interval spacing on 

a l ine-by-line basis results in local regIOns of the mesh still severely overshooting after 

regularisation, 

The other severe limitation of this implementation is due to the use of a rectangular outline to 

describe each object. This limits the useful rotation to only a few degrees with a fine mesh 

spacing of I -pixel, before mesh self-intersection occurs. Making the fme grid spacing larger 

does enable a wider range of motion to be prescribed but the accuracy of image rotation in 

particular is reduced due to the more coarsely defined mesh co-ordinates. The use of a 

rectangular outline in layered warping does not cause any problems since each layer contains 

only the object on a plain background. Boundary artefacts are not visible in each layer since the 

background is homogeneous in value. When the object layers are combined, cross interactions 

are dealt with by either merging or overlaying. This emphasises the fact that warping is usually 

used to generate cinematic illusions, not create accurately prescribed motion sequences. 
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6.5.3 Enhanced Implementation 

In principle most of the limitations of this first implementation are eliminated by the use the 

object outline as the natural boundary and automating the generation of the entire output mesh 

co-ordinates. The following programme routines perform the required functions. 

FormObjects: 

Take each defined object and linearly interpolate an outline from its edge points. From these 

outlines an object description is created in terms of the start and end co-ordinates of both 

horizontal and vertical scanline segments. 

CollectScanlineSegments: 

Scan all object descriptions and collect all horizontal scanline segments existing on a 

common y-coordinate and vertical scan line segments on a common x-coordinate. Sort into 

order to produce the horizontal and vertical mesh interference arrays. 

InitialiseOutputGrid: 

Initialise output mesh grid to a regular one-pixel spacing. 

PlaceObjects: 
Using the trajectory data (x,  y, 8) adjust the mesh coordinates of each object (defined by the 

scan line segment coordinates) to reflect the new position and orientation. 

PropagateObjectDistortion: 

Propagate the distortion (using interpolation) due to object movement into the surrounding 

area. Try to propagate back over the distance of the local mesh coordinate displacement plus 

ObjectClearance, otherwise propagate back to the nearest object. 

Cine Warp (Main procedure) 

Read the reference image and object edge-point data 

Read the trajectory data for each object 

Form Objects 

CollectScanlineSegments 

WarpSequence (Number of images) 

InitialiseOutputMesh 

PlaceObjects 

PropagateObjectDistortion 

MeshWarpImage 

The last part of the algorithm uses the original MeshWarpimage function to perform the actual 

warp. However, because the input mesh grid is already on a regular one-pixel spacing, the 

regularisation of input mesh performed in the first phase of both the vertical and horizontal 

passes, is not actually necessary. Modifying the warping function to detect this significantly 
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speeds up the execution time per image warp. Also since the PropagateObjectDistortion 

function is already having to perform much of the mesh regularisation, the mesh warp routine 

only has to perform image scanline resampling. This results in a further speed-up in warp 

execution. 

The most complex part of the entire CineWarp algorithm is the generation of the output mesh 

with the coordinates adjusted to propagate the distortion produced by the motion of each object. 

Two functions are integral to this operation. The first function is CollectScanlineSegments, this 

produces a global spatial representation for all potential interfering horizontal and vertical 

scanline segments (ie. segments on same x or y coordinate) across all objects. It is from this 

representation that the second function PropagateObjectDistortion, is able to deal with the local 

spatial distortion produced by each moving object. 
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Table 6.3: Mesh coordinates after object placement (x, y, 9) = (1.  5, 1. 5, 0)  

Table 6.3 shows part of the output mesh for a small irregular object (indicted by the black 

outline) just after the P[aceObjects function has adjusted the mesh coordinates in accordance 

with the trajectory data for the current frame. In this case the motion is a translation of 1 .5 

pixels in both the x and y direction with no rotation. This is easily recognised by scanning across 

in the x-direction or down in the y-direction from the top left-hand corner. If the coordinates do 

not increase incrementally in unit steps in the direction of the scan then motion has occurred. 

Scanning across grid line y = 29 a sudden change occurs at x = 33 where the x-coordinate jumps 

from 32.0 to 34.5 and the y-coordinate jumps from 28.0 to 30.5. The normal change should only 

be one unit, thus this object start coordinate has translated 1 .5 pixels in both directions. 

Continuing down or across this the mesh from this position, the grid resumes the normal unit 
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pixel change until the end of the object scanline. At this location there is a negative 0.5 unit 

change in both directions after which the unit pixel spacing is resumed once more. 

The PropagateObjectDistortion function begins at the top of the list of (potentially) interfering 

horizontal scanline segments. If there is only one segment in this top entry then no interference 

can occur and hence the function is free to propagate the distortion without interference. If there 

is more than one segment in the top entry, then the horizontal distance between the end of each 

segment and the start of the next segment is computed along with the horizontal displacement of 

these end points from their reference (original) mesh position. The signed horizontal distance of 

the end points from their reference position is a direct measure of the end point local horizontal 

displacement. If the sum of the signed displacement between two contiguous segments is less 

than the original segment end point separation then the space between the pair of segments has 

become compressed. If the sum is greater, then there has been an overall local expansion 

between the segments. This local expansion could be the result of compression in one segment 

direction and a greater expansion in the other segment direction, or expansion in both segment 

directions. Each segment is now considered in turn to determine the nature of the end-point 

translation. These results are then combined together and the mesh x-coordinates adjusted to 

propagate the distortion due to the inter-segment motion. S imple linear interpolation is used to 

propagate the motion distortion. This is equivalent to assuming that the inter-segment material is 

homogenous and perfectly elastic over the propagation distance. 

The above procedure is repeated for all remaining segments in the top entry of the horizontal 

scanline interference array. Once all segments are processed the function moves to the next entry 

(on the next valid y-coordinate) and repeats the operation. With all the horizontal scanline 

interference array entries processed, the same procedure is repeated for the vertical scanline 

interference array moving in the y-direction. 

At the end of this stage the x-coordinates along each horizontal line and the y-coordinates along 

each vertical line have be adjusted to account for the motion distortion. Test sequences 

generated with an implementation of PropagateObjectDistortion to this stage worked correctly 

for either horizontal or vertical translation and for small rotation angles, but with combined 

motion the object outlines began to lose their integrity in the vertical direction whenever 

expansion occurred. Because this effect appeared in one direction only it was initially assumed 

to be due to a coding error. However, a thorough check of the code showed that the mesh 

generation in both the horizontal and vertical direction were identical. Close inspection of the 

way in which the object outlines began to lose their integrity revealed that it was due to a 

shearing action. The vertical shear increased with horizontal movement, beginning from the 

corner where expansion was present. It was concluded that the reason for this effect was that the 

propagation of distortion had ignored the interaction between the horizontal and vertical 
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peripheral scanlines. Careful inspection of a printout of a section of the mesh around the object 

periphery eventually revealed this edge-effect. The reason it had not been readily apparent 

previously, was the confusion between mesh index coordinates and physical image coordinates. 

The mesh index coordinates do not represent the object coordinates, but the entries at the location 

do. For simple motion they are very similar because the initial mesh spacing is one also pixel. 

This shearing problem did not show up in the horizontal direction because of the scanline nature 

of the MeshWarplmage routine. Reversing the order of the horizontal and vertical passes of this 

routine shifted the shearing effect to the horizontal direction. 

With this new insight revealed, the PropagateObjectDistortion function was extended to account 

for this effect .  The extra code begins from the outer ends of each peripheral horizontal scanline 

segment. Based on the vertical displacement at this position the x-coordinate is maintained 

vertically spaced away from the object over the number of mesh elements equivalent to the local 

vertical displacement. The same procedure is performed on the vertical peripheral segments 

where the y-coordinate is maintained horizontally away from the object over the number of mesh 

elements equivalent to the local horizontal displacement. The effect of these two one

dimensional operations is to move the peripheral shear outside the physical region of the object. 
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(29.0,36.0) 1 (30.0,36.0) : (3 1 .0,36.0) t (32.0,36.0) (33 .0,36.0)� (34.0.36.0)1 (35 .0,36.0) (36.0,36.0)1 (37.0,36.0) 

I I I 

Table 6.4: Mesh coordinates after the final phase of distortion propagation 
(x, y, 8) = (1. 5, 1. 5, 0 ) ,  ObjectClearance = 1 

38 

(38.0,26.0) 

(38.0,27.0) 

(38.0,28.0) 

(38.0,29.0) 

(38.0,30.0) 

(38.0,3 1 .0) 

(38.0,32.0) 

(38.0.33.0) 

(38.0.34.0) 

(38.0.35.0) 

(38.0.36.0) 

Table 6,4 shows the mesh coordinates of table 6.3 after distortion propagation has been 

completed. The extent of the distortion propagation is shown geometrically by the grey border. 

Note that this is in mesh index coordinates not the actual spatial coordinates of the image, To 

determine the physical propagation distance the mesh grid entries need to be inspected. 
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An additional user-defined parameter ObjectClearance, enables control of the distance over 

which motion distortion is propagated. The sum of this value and the actual local displacement 

is the physical propagation distance. This sum is in effect the distance over which the 

surrounding material behaves as an elastic medium. 

Although this enhanced implementation removed the comer shearing effect local to the object it 

has done so by shifting it away from the object by a distance that is dependent on the object 

motion and the value of ObjectClearance. This causes problems when the source image 

contains many objects in close proximity since there is no space to shift the distortion into. Also 

when two objects in close proximity undergo a vastly different range of motion the regions of 

overlap and underlap are not adequately described by I -dimensional interpolation. This is easily 

illustrated in figure 6.8 where due to horizontal translation to the right of the top vertebra relative 

to the bottom one, what was an overlap in one frame becomes an underlap in the next and 

vice-versa. 

- f-I - r- .... - r-- r-- f-
I' f--f--

Figure 6.8: Vertebral overlap becomes underlap 

6.5.4 Image Warping Reassessed 

Although an affine mapping is separable and the prescribed motion of the vertebrae can be 

represented by an affme transform of the vertebral coordinates, the need for boundary conditions 

at the edge of the image means that distortion of the inter-vertebral regions is not defined by an 

affme transform but by a perspective transform. A perspective transform is not separable hence 

the limited effectiveness the adjustment of the mesh coordinates to account for object movement 

using I -dimensional interpolation in the x and y directions. The effectiveness is further limited 

by the fact that the control points are sparsely defined and hence severely undersample the 

coordinates (see figures 6.6 and 6.7). 

The image warping problem can be restated as; 

given the initial coordinates of a set of control points on a reference image (defined by the 

vertebral outlines) and their new coordinates on a new image (defined by the prescribed 

motion) geometrically distort the base image so that it is aligned at the new coordinates. 
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The problem is, in effect, the same as the standard geometric correction or rectification problem 

where the control points are tessellated into a number geometric patches. Each patch can then be 
mapped to a new patch defined by the new coordinates of the control points. The mapping 

function can then be used to interpolate internal coordinates of each patch and hence enable the 

regularisation of the entire image mesh. 

A Surface Fitting Paradigm for Geometric Correction 

The problem of determining the forward mapping functions U and V can be conveniently posed 

as a surface fitting problem. Consider M control points labelled (xk ' Yk )  in an observed image 

and (Uk ' vk ) in the reference image, where 1 � k � M .  The mapping process i s  equivalent to 

determining two smooth surfaces: one that passes through points (Xk 'Yk ' Uk ) and the other that 

passes through (xk ' Yk '  vk ) ,  for 1 � k � M .  The simplest mapping i s  achieved when only three 

control points are used. In this situation the fitted surfaces will be a delineated by triangular 

regions. It can be shown [6. 17] that fitting a linear interpolant, ie. a plane, enables the mapping 

of an arbitrary triangular region to another arbitrary triangle region in which the two regions are 

related by an affine mapping. S ince the general MeshWarplmage algorithm is limited to defming 

affine warps, triangular regions will thus be adequate. 

The equation of a plane through three points (XI ' YI , uI ) ,  (x2 ' Y 2 , u2 ) and (x3 '  Y3 ' u3 )  is given by 

Aux + Buy + Cuu + Du = 0 eq. 6. 12 

YI ul 1 XI ul 1 XI YI 1 Xl YI � 
where A = u Y2 u2 1 B = -

u x2 U2 1 c =  u x2 Y2 1 D = -u x2 Y2 u2 
Y3 � 1 X3 U, 1 x, y, X3 Y3 u3 

given by 

�x + BvY + Cvu + Dv = 0 eq. 6. 13 

YI VI XI VI 1 XI YI 1 XI YI VI 
where A = v Y2 V2 B = -

v X2 V2 1 c =  v x2 Y2 D = -
v x2 Y2 v2 

y, v, x, v, 1 x, Y3 x, Y3 V3 

and the parallel lines ' I I ' represent the determinant of the 3x3 matrices. 

Once the surface coefficients A,B, C and D have been determined, equations 6. 12  and 6. 1 3  can be 

rearranged into equations 6. 14 and 6. 1 5  and used to interpolate intermediate values of u and v 

for any arbitrary x-y location in the triangular surface. 
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v = -(A.,x + BvY + Dv ) / Cv 

eq. 6. 14 

eq. 6. 15 

By choosing these x-y coordinates for all patches to lie on a regular grid, piecewise mesh grids 

representing the complete forward mapping functions U and V can be realised in a form suitable 

for the MeshWarplmage routine. 

TrianguLation is the processes of tessellating the convex hull of a set of N distinct points into 

triangular regions. Although many configurations are possible the most useful is one in which 

points inside the triangles are closer to their vertices than to the vertices of other triangles. This 

form of partitioning is called optimal triangulation and avoids the production of long triangles 

with sharp corners. Lawson [6. 1 8] defined three criteria for optimality. 

1 .  Max-min criterion: For each quadrilateral in a set of triangles, choose the triangulation 

that maximises the minimum interior angle of the two obtained triangles. This biases the 

partitioning against undesirable long thin triangles. 

2. The circle criterion: For each quadrilateral in a set of triangles fit a circle through three 

of its vertices . If the forth vertex does not line within the circle, split the quadrilateral 

into two triangles by drawing a diagonal that does not pass through the fourth vertex. 

3. Thessian region criterion: For each quadrilateral in a set of triangles, construct the 

Thessian region [6. 19]. In computational geometry the Thessian region is the result of 

intersecting the perpendicular bisectors of the quadrilateral edges. This serves to ensure 

that regions around a control point are closer to the point than to other control points. 

A A 
c c 

B 
a) b) c) 

Figure 6.9: Application of the optimal triangulation criteria 

Figure 6.9 contains examples of the application of these three criteria. In figure 6.9a, triangle 

ABC is chosen in preference of triangle BCD on application of the first criterion. Point D in 

figure 6.9b lies outside the fitted circle (application of the second criterion) and thus the diagonal 
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is not drawn through this point. While in figure 6.9c, the intersection of the edge bisectors shows 

that the interior region of each triangle is closer to its own vertices than to the vertices of the 

other triangle. 

The only component remaining IS the initial triangulation of the control points pnor to 

optimisation using Lawson's criteria. This can be conveniently handled by the recursive 

algorithm of Lee [6.20] in which the control points are split into halves based alternately on their 

x and y coordinates. The splitting continues until each subset contains only three or four points 

which can then be easily triangulated using Lawson's three criteria. Each subset is then merged 

into larger subsets until all the triangular subsets are consumed. This results in a convex hull of 

triangles that must be extended in some way to the boundaries of the image. This can be 

performed by considering the triangles on the border of the hull and extending their size to the 

limit dictated by their intersection with other neighbouring triangles and the image borders. 

6.5.5 Final Implementation 

The final implementation of the warp-based animation routine uses a very efficient recursive 

Delaunay triangulation algorithm described by Watson [6.2 1 ] .  This algorithm is very fast and 

can be applied equally to two and three dimensional data. Although the algorithm does not apply 

Lawson's optimality criteria directly, it does in effect use the second or circle criterion of 

Lawson. A revised list of the functions used in the final implementation is shown below. 

CineWarp (Main procedure) 

Read the reference image and object edge point data 

Read the trajectory data for each object 

FormControlPoints 

Triangulate 

WarpSequence (Number of images) 
I ni tialiseOu tpu tMesh 

TransformTriPoints 

FitTriangularPatch 

InterpolateOutputMesh 

SmoothOutputMesh 

Mesh WarplmageO 

The function FormControlPoints extracts the edge points of each object and then adds boundary 

control points to the list. Because all the boundary points lie along the image border, after 

triangulation the resulting convex hull is the same as the image border. Thus a separate operation 

to extend the hull to the image border is not required. Triangulate performs the actual triangular 

tessellation of the control points and is a 2-D implementation of the Watson algorithm. With the 

triangulation completed the tessellation information is passed to the main WarpSequence 
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procedure to begin the animation. The output mesh grids are initialised and the trajectory data is 

then used by TransformTriPoints to adjust the output coordinates of each triangular patch. 

Based on these new coordinates of each patch, the linear coefficients for both the x and y 

triangular planes are computed by FitTriangularPatch. Next the function 

InterpolateOutputMesh uses the coefficients of each patch to regularise the output mesh grids 

ready for the MeshWarplmage routine. 

6.5 

Tri
Patches 

xMesh 

yMesh 

Forward 

Original (two objects) 

1 4  I 
1 70 

1 �  1 99 

85 227 + 
57 

29 

i 
29 

57 

85 

1 1 4 

1 42 

1 70 

1 99 

227 

Object trajectories 

Warp (x,y, 8)Objec, 1 = (-8, 8, 30" ) 

Images (x,y, 8)Objecl 2 = (8, -8, -30" ) 

Four Boundary Points 

Table 6.5: MeshWarp Stages 

Eight Boundary Points 

1 99 
227 
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Mesh-smoothness problems [6.22] can occur with the above approach since each patch involves 

only a linear mapping and the patches can vary significantly in size. A simple solution adopted 

by the author to alleviate this problem was to smooth the mesh coordinates (using a 7x7 box 

filter) in areas outside the vertebrae. This ensures the vertebrae maintain their geometric 

integrity while boundaries between linear patches are concealed. The function 

SmoothOutputMesh performs this operation. 

Table 6.5 illustrates many of the steps involved in the warp-based animation algorithm. The first 

entry in the first row is the reference image (a 16  pixel size checker-board) with two 

diamond-shaped objects defined by four vertex points and four mid-points. The next two entries 

in the row show the reference image with the tessellation resulting from triangulation super

imposed. Increasing the number of boundary points per axis from four to eight increases the 

number of triangular patches overall, but not all of these new patches improve the spatial 

distribution. This is due to the formation of boundary patches where all three vertices are fixed 

at the boundary. The effect can be seen in the bottom-left and top-right corners of the 

tessellation and will produce poor spatial interpolation in these areas. In practice the objects 

contain many more outline points than is illustrated in this simple example and consequently very 

few boundary patches occur. 

Rows two and three of the table 6.5 contain the x and y output mesh grids displayed as contour 

plots. There are eight equi-spaced contour lines and each line is labelled with its value and coded 

with a grey-scale intensity (black to white, smallest to largest). The first entry in each row is the 

grid with no object displacement, resulting in a linear plane with evenly spaced contours. The 

other two entries correspond to the top diamond moving with a trajectory (x, y, 8) = (-8, +8, 30° ) 

and the bottom diamond moving (x, y, 8) = (+8, -8, -30° ) ,  where the displacements are in pixels. 

The contours for these entries clearly show the non-linear spacing of the x and y grid coordinates 

required for this simple mesh warp. Increasing the number of boundary points from four to eight 

improves inter-object coordinate sampling as is indicated by the gradual smoothing of the 

contour lines. 

Figure 6. 1 0  shows the tracking points dialogue from CineMetriX [6.23] software package 

incorporating some of the elements developed by the author in this chapter. The point group list 

to the right of the figure shows that the second vertebra of the cervical spine is selected. The 

point groups indicated by the '>' symbol represent the tri-patches formed automatically by 

triangulation. In this case 2 1 0  tri-patches were generated for the six defined vertebrae. The 

sixteen-corner boundary patches shown in the figure do not reduce spatial acuity since they lie 

outside the circle of the image intensifier. 
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(�:.: Tracking Points 
I mage £ursor 
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large crosshair 

Point groups 
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� > 97 
� > 98 
W > 99 
� 

Figure 6.10: Track Points dialogue - cervical spine fully tessellated 

Image Noise 

One remaining component needs to be added to the warp-based animation routine in order to 

produce realistic sequences . Noise in a cineradiographic system was shown in chapter 2, section 

2.3 to be limited by the smallest number of quanta (photon or electrons) utilised at any stage of 

the process. In practice there are two main sources of image noise. The first is due to X-ray 

scattering (see chapter 2, section 2. 1 .2) while the second results from the amplification process in 

the X-ray image intensifier tube. The amount of X-ray scattering for a given material is 

proportional to its thickness and absorption coefficient. The effective noise of an image 

intensifier tube is dependent on its design and overall amplification factor. However these noise 

contributions are effectively frozen in the warp based animation since it begins from just a single 

frame of a real sequence. Furthermore, the image resampling used in the animation process 

involves spatial filtering (box filtering for minification and linear interpolation for maxification) 

that tends to smooth this frozen noise in a velocity dependent manner. This smoothing effect is 

readily apparent when viewing one of the prescribed motion sequences. The reference frame 

which is usually the centre frame in a sequence is noticeably sharper but more noisy than the 

created frames. Thus in order to produce a realistic motion sequence using warping, appropriate 

noise needs to be added on a frame-by-frame basis. 
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In order to determine the characteristics of the noise present In a typical digitised 

cineradiographic sequence, two factors first need to be considered: 

1 .  Video camera auto-gain effects 

2. Area of interest, soft tissue and hard tissue 

Both factors can be addressed by using a frames from cineradiographic sequence of the cervical 

spine. In imaging this part of the spine a very wide range of intensities are present and camera 

auto-gain effects are at a maximum to prevent overload. It is possible to find both soft tissue 

and hard tissue areas of reasonable homogeneity. Using ten frames from the middle of a 

sequence three regions were defined to sample the image noise. One of the frames with the three 

sample regions indicated is shown in figure 6. 1 1 . 

The first region is near the circular edge of the intensifier and is part of one of the lead shutters 

of the collimator. This was used as a reference to ensure that camera auto-gain changes between 

frames did not significantly alter the recorded noise. Region two is at the back of the neck and 

encompasses a large area of relatively homogenous soft tissue. The third region is on the lower 

centre of the skull and was chosen to be representative of an area with the greatest thickness and 

highest absorption coefficient. 

Figure 6.1 1 :  Image noise estimate regions 

In order to remove the effects of any underlying structure in these three regions from the 

estimated noise, each frame was subtracted from a filtered version. Filtering involved the 

recursive application of a 7x7 box filter. By visually inspecting a magnified copy of these 

regions it was found that five passes of the filter adequately removed the image noise while 
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preserving any general underlying intensity trends. The differences in data for each region over 

the ten frames were then combined together and normalised histograms of their distributions 

generated.  

Figure 6. 1 2a through to 6. 1 2c show the normalised distribution of the noise in the three regions 

with a least-squares best fit gaussian distribution superimposed (see equation 3 . 1 2  of chapter 3).  
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Figure 6.12: Normalised noise distribution 

For the reference region (region 1) of figure 6. 1 1 a the fit of the gaussian is reasonably good with 

a standard deviation of 1 .9 .  For the other two regions the gaussian fit is not particularly good, 

nevertheless the standard deviations do provide a comparative measure of noise between the 

regions. Region 2 (figure 6. 1 1  b) containing the soft tissue at the back of the neck was the 

noisiest region with a standard deviation over twice that of region 1 .  This high noise in a low 
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absorption region is principally due to scattering in the layers of the soft tissue. The third region 

shows a noise level between those of regions 1 and 2 (see figure 6. 1 1  c). Total absorption in this 

region is comparable to that of region 1 containing the lead collimator shutter, but due to the 

greater thickness of the skull, scattering is increased and hence noise is also increased. 

Based on the noise estimate results above , the magnitude of the noise added to each frame of the 

warp sequence should vary on a pixel-by-pixel basis dependent on the recorded intensity and 

hence the total absorption. In the low-absorption area of the skin the noise should be greater 

than in a higher absorption area such as the skull. However in practice the region of interest is 

the vertebrae where absorption is moderate but significant scattering occurs due to the layers of 

soft tissue. Thus rather than make the standard deviation of the noise added to each pixel 

dependent in the intensity of the pixel, a simpler approach was taken in which noise was added to 

each frame drawn from a zero mean gaussian distribution with standard deviation of 4.0. 

Complete Pascal source code for the final implementation of the warp-based animation routine 

can be found in appendix C page C-67. This code includes an additional routine for object 

collision detection and limiting. This routine is necessary since the warp based animation can 

not allow object cross-over and hence mesh intersection. Object collision detection is achieved 

by computing the intersection of each object outline for the given trajectory data. If any of the 

objects are found to collide in any frame of the prescribed sequence then the trajectory of the 

bottom colliding object is limited. The routine is then run recursively until no objects are found 

to collide at which stage the actual animation begins with the new trajectory. 

6.6 Motion Test Sequences 

With the method for prescribed motion sequence generation by digital image warping now 

described, attention is shifted to considering what constitutes a suitable test sequence for a 

motion-tracking algorithm for cineradiographic images of the human spine. In testing any 

motion-tracking algorithm it is desirable to start off with sequences that contain simple motion 

and then increases the complexity and speed of the motion. This approach enables incremental 

assessment of tracking performance and the setting of limits on the accuracy and reliability of a 

given method. The final prescribed motion should realise a level of complexity that is at least 

equivalent to that found in real-world sequences of the type for which the algorithm is designed. 

In diagnostic cineradiographic images of the human spine translation is mainly constrained to the 

horizontal axis. The only exception to this is when considering pelvic alignment in the lumbar

sacral region. It was noted in section 5 . 1 that the maximum speed of rotation and translation 

usually occurs in the lateral cervical area where the neck moves from full flexion to full 

extension. This cycle of movement is normally completed in a little less than four seconds, in 

which the top vertebra (atLas, axis and skull) may under go a range of rotation from 
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approximately -45() to +45(} . At half video frame rate ( 12.5 frames per second) the mean 

interframe rotation will be constrained to less then two degrees .  Interframe rotation of this 

magnitude was shown in section 5.3 .2 to not significantly degrade the interframe match. 

However, this calculation assumes normal biomechanical operation. Under conditions of 

dysfunctional operation, where a vertebra may lock and an adjacent vertebra then hyper-extend 

(-mobilise) to compensate, interframe rotation may be much larger than two degrees. 

Sequence length is important for incremental motion-tracking algorithms working to single pixel 

accuracy (± half a pixel). This is because the overall accuracy will tend to degrade as the 

sequence length becomes longer and the errors in the best match positions tend to accumulate. 

At half-video capture rate, four seconds of motion (equivalent to a single cervical cycle) will 

require approximately fifty frames. With pre-captured sequences the number of frames to track 

can be halved by starting in the middle of the sequence and tracking to both ends. Since only 

half the number of frames is traversed, error propagation should be substantially reduced. 

Based on the preceding discussion, a suitable strategy for motion sequence generation would be 

to create sequences of the cervical spine in the following order: 

1 .  Horizontal linear translation of individual vertebra (no adjacent vertebral interference). 

2. Simple linear rotation of individual vertebra (no adjacent interference). 

3 .  Extended length, multi-cycle sequences to access mis-match propagation effects. 

4. A comprehensive sequence with full adjacent vertebral interference with typical range and 

type of motion. 

Animation of the skull presents a slight problem with respect to the third point in this list. This 

is because the skull is large, has few corner points, and its outer edges often disappear from the 

field of view. One way of dealing with some of these difficulties is to segment the skull into a 

number of objects. These objects are then collectively animated such that their geometrical 

integrity is maintained. 

The last point in the list of prescribed motion generation offers the ability to place limits on the 

fastest moving (complex motion) object that can be reliably tracked. Algorithms working to 

fixed spatial accuracy (eg. ± half a pixel) will often introduce jitter [6.24] style noise into the 

data. Knowing the frequency limits (translation and rotation) of a given motion-tracking 

algorithm many enable the prefiltering of the data before analysis to reduce the effects of this 

noise. 

Prescribed motion sequences created in accordance with the above philosophy will be utilised in 

the next chapter in the assessment of the motion-tracking algorithm described in early sections of 

that chapter. 
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7.1 Introduction 

7 
Motion-tracking 

Cineradiographic Images 

Information on the detailed kinematics of the human spine is potentially of great interest to spinal 

health professionals in the diagnosis of spinal dysfunction. This information is in principle 

contained in a cineradiographic sequence of the spine in normal motion. The application of 

image processing techniques in the form of a motion-tracking algorithm offers the potential to 

automatically extract this information, so making it more readily available for analysis. 

In chapter 4, it was concluded that template based matching approaches were the most 

appropriate method for motion-tracking in cineradiographic images of the human spine. This 

conclusion was reached by careful consideration of the many alternative approaches described in 

the literature. One of the important criteria with respect to the development of a practical 

motion-tracking system is computational cost. Template based matching approaches are the 

least computationally expensive method when they are combined with good motion prediction 

and an effective match statistic. This assertion will now be discussed. 

When the object templates are small, matching is
. 
most efficiently achieved directly in the spatial 

domain. However to find a match for an entire object such as a cervical vertebra, that is 

undergoing both rotation and translation (assuming no scale change), a three dimensional 

parameter space (x, y, 8) needs to be searched . Searching the first two dimensions to within 

single pixel accuracy is straight forward since it only involves sliding the template in the x and y 

direction in the local neighbourhood and fmding the best match. The real difficulty arises in 

dealing with object-template rotation. The template(s) need to be rotated through a range of 

angles at each x and y location where a match is to be computed. Image rotation was shown in 

chapter 6 section 6.4.2 to be a resampling process and although fast scan line rotation algorithms 

are available, their computational cost is high relative to a typical template match based 

algorithm using a sum-of-squared differences (see SSD in section 4.2. 1 of chapter 4). 

Speeding up the template interframe match search is only possible if the match function is well 

behaved as was illustrated in section 4.2.3 of chapter 4. In general this will not be the case so 
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motion prediction is one of the few practical ways to improve the search speed. Since the 

vertebra in a spine normally move in a relatively smooth manner, simple prediction based on 

one-dimensional cubic interpolation [7. 1 ]  of all three search parameters (x, y, 8) should prove 

adequate. 

It was illustrated in chapter 4 that all motion-tracking methods are constrained by the effects of . 

the aperture and correspondence problems. The correspondence problem is solved explicitly by 

object-based matching approaches when they fmd the best match to the object template in the 

next frame. However, if the feature points representing the object template are of low 

dimensionality (one dimension or less), then aperture effects will prevent a good match except in 

a direction normal to the local motion of the feature. The selectivity measure developed in 

chapter 5 incorporates the effects of both feature dimensionality and local sharpness. When this 

measure was applied to ten feature points of interest in a cineradiographic cervical spine 

sequence, the low dimensionality and sharpness of these local features was evident. In selecting 

the best match statistic for a motion-tracking algorithm, positional stability and positional 

accuracy of the match were also of prime importance. The normalised product correlation 

statistic was found to exhibit the best positional stability and accuracy, displaying reliable and 

consistent behaviour for all the feature points in both forward and backward interframe 

matching. One further advantage of the correlation measure is that it is inherently normalised. 

This important property will be exploited by the complete motion-tracking algorithm that will be 

shortly described. 

7.2 Practical Implementation Issues 

There are a number of practical implementation issues concerning the actual algorithm and 

motion-tracking system that will be briefly explored before the algorithm is described and the 

results of comprehensive tests reported. These issues include: 

• Defining the objects of interest ('the vertebrae ,) 

• Vertebral displacement and orientation 

• Deriving suitable motion measures 

• Displaying motion data effectively 

7.2.1 Defining Objects Of Interest 

For a motion-tracking algorithm to begin the objects of interest must be specified. Chapter 3 

looked at various methods of segmenting a cineradiographic image and identifying the objects of 

interest ('the vertebra'). However the low contrast of these images combined with their noisy 

characteristics made this task very difficult. A pragmatic solution to this problem is to get a 
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human operator to manually segment the objects of interest in a single frame in the sequence to 

be tracked. This can be done by placing a number of landmark points to outline each vertebra of 

interest. Since this procedure is very similar to what is performed by spinal health specialist on 

standard static radiographs, the same well established landmark points can be used. Such points 

include the front and back of the vertebral bodies and the centre of the tip of the 

spinus-processors. 

Figure 7. 1 contains the reference frame for a cervical cineradiographic sequence part way 

through the point placement procedure. This figure represents a graphical dialog from the 

software package CineMetriX [7.2] and currently shows that the skull and ftrst three vertebra 

have been completed and the fifth point on the fourth vertebra is being placed. The top corner 

indicates that a range of marking cursors are available. Currently a large cross-hair is selected 

and the active point is at the intersection of the lines. The cross-hair lines are set to the inverse 

gray-level of the image pixels they cover. This makes the cross-hair lines appear near 

transparent as they are moved, thus preventing masking of the underlying structure and assisting 

greatly in point placement. 

Tracking Points 
I mage £ursor 

Arrow 
® .[mall crosshair 
� [h�r.g:�::�i����:!:�!.! 

Poinl groups 
@;;3 Skull 
!1lo6 Verlebr a C1 
®;(I Verlebra C2 � Verlebra C3 

Figure 7. 1 :  CineMetriX track points dialog - placement of the fifth landmark for vertebra C4 

The coordinates of each landmark point are stored as a point-group structure to be used by the 

motion-tracking algorithm. The dialog also shows buttons for adding new point-groups and 

renaming and deleting previously defined groups. 
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7.2.2 Vertebral Displacement and Orientation 

The orientation of an object is simply a measure of its rotation from a given view. In the context 

of a human observer the idea of natural or visual orientation arises [7 .3] .  For a naturally 

occurring item such as a kiwi fruit, measuring its length requires knowledge of its orientation. 

This is usually performed by the observer physically manipulating the fruit until the position of 

natural orientation is found. The actual orientation determined by the observer is dependent on 

the context, the objective (in this case measuring the length), the frame of reference, any 

geometric symmetry of the object and an individual 's  perception of orientation. Thus 

determining the natural orientation of an object requires contextual information and is often 

highly task dependent. 

The two most commonly used terms when dealing with geometric objects are axis and centroid. 

Axis refers to a line indicating the rotation of a shape and is analogous to the standard x, y and z 

cartesian axes used to indicate the orientation of the Cartesian plane. A circle for instance would 

have an infinite number of axes all through its centre, whereas a square would have four axes 

through its centre at most. Symmetry plays an important roll in the determination of orientation. 

A symmetric object may have many axes whereas most asymmetrical shapes will have only two 

axes, commonly termed the major and minor axes. These two axes are usually orthogonal 

(perpendicular) and rotation of the object through the major axis is very closely related to visual 

orientation. The axes are usually drawn through the centroid of the object. For a simple 

two-dimensional object the centroid corresponds to the centre of area, or the point on the surface 

of the object about which the total area is evenly distributed. In the case of three-dimensional 

objects (which may have be non-homogeneous) the centroid corresponds to the centre of mass. 

An idealised point inside the object that has the mass of the object evenly distributed about it. 

When considering groups of connected objects such as the vertebrae in the human spine, 

knowledge cues such as the continuity of orientation and its smoothness are also important. 

Deciding on the orientation of a particular vertebra in isolation is complicated by the irregular 

shape and density of a vertebra when viewed as a density projection in a radiograph. Thus for 

practical reasons it is common to use the base-line of the body of each vertebra as a datum for 

measuring its orientation. The base-line of a vertebra is also important from a biomechanical 

point of view since it represents a projection of the main loading surface. When there are several 

landmark points available that may or may not include points along the base-line, it essential to 

have an automatic method that will determine orientation in a consistent and meaningful way. If 

the orientation of each vertebra is not determined in a meaningful way with respect to the spine 

as a connected structure, then only relative measurements may be displayed in an intelligent 

fashion. 
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Orientation by Moments 

Orientation of an arbitrary two-dimensional shape is commonly computed using a moment based 

approach. In chapter 4 section 4.2. 1 central moments were introduced with respect to matching 

approaches. Using the three second-order central moments, what is commonly called object 

orientation can be computed using equation 7 . 1 .  The definition of orientation in this case is the 

angle of the axis of the least moment of inertia. 

where PI I , P02 and P20 are the three second-order central moments. 

eq. 7. 1 

This axis is drawn through the centroid of the shape at an angle () to the horizontal. If this 

approach is applied to a simple shape similar to one formed by the land-mark points placed to 

define the corners of a vertebra, then the figures of table 7 . 1  result. The middle of the circle in 

each figure is the centroid of the shape while the crosses mark the position of the outline points. 

The results in the first column of this table are based on central moments computed using just the 

perimeter or outline of the shape interpolated with ten discrete evaluations per unit length on the 

grid. The second column results are computed using the entire area of the shape with ten 

evaluations per unit area. Beginning at the first row of the table, the shape is defined by four 

points to form a simple rectangle of 2: 1 aspect ratio. In both cases the moment-based approach 

results in an axis drawn horizontally (an orientation angle of zero) as expected. If a ftfth point is 

added to the outline set three-quarters the way along the top edge then the result is the two 

figures in the second row of table 7. 1 .  The first thing that is immediately noticeable is that the 

orientation of the axes is no longer horizontal for the perimeter case even though the object shape 

has not changed. The centroid position is unaltered for the area method while there is 

considerable shift upwards towards the new point for the perimeter method. The reason the first 

method produces a slight shift in the orientation from the horizontal even though the shape is 

unchanged is that in practice it is necessary to compute the moments at a number of discrete 

positions along each edge segment. Increasing the number of evaluations by a factor of ten to 

one hundred per unit length still leaves an orientation of -0. 1 10 .  

If the top right-hand point i s  now moved down and to the left by one grid unit and the centroid 

and orientation recomputed, the results are those of the third and fourth row of the table 7 . 1 .  

The centroid for both implementations have barely moved from their previous location but the 

axis of orientation has suddenly shifted downward. This shift in angle increases rapidly as the 

point is moved another grid unit downward and to the left as can be seen in the third row. 

The simple set of results of table 7 . 1  clearly show that computing orientation using moment 

based methods is very sensitive to small changes in the position and number of outline-points. 
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The calculated angle for a shape similar to a vertebra can change greatly with small variations in 

the placement of the landmark points and thus IS unsuitable for use m a spinal motion 

measurement system, 

Table 7.1 
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Table 7.1 :  Moment based orientation of a simple shape 

Orientation by Fold-and-Match 

Moment-based methods, when used to compute object orientation, do not produce results 

consistent with natural orientation because they are based on the axis of minimum inertia, a 

concept only relevant with respect to forces and mass distribution, Experimental work carried 
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out by the author [7 .4] in conjunction with an undergraduate project came up with a new 

definition for natural orientation. 

Natural orientation is (almost) purely related to the axis oj (projected) area balance, 

it is the angle (usually to the horizontal) oj the longest axis oj maximum symmetry, 

drawn through the centroid. 

With this new and more precise definition it becomes possible to formulate an algorithm to 

compute natural orientation for an arbitrary shape. The basis of the algorithm is quite simple. If 

a piece of card is cut to the same shape as the that formed by the given set of outline points and 

the centroid marked (a task humans have little difficulty in performing for almost any shape). 

Then the natural orientation axis is found by folding the card in half through the centroid and 

finding the fold angle that results in the best match between the two halves which is along the 

longest fold line. This description of the algorithm thus resulted in an appropriate name, the 

Jold-and-match method. 

The algorithm can in principle be implemented by simple numerical integration using the 

trapezoidal rule [7 .5] .  If a line is drawn through the centroid at an angle e and then lines are 

drawn from the vertices (outline points) to this line at right angles, then this partitions the shape 

into a number of trapezoidal areas (see figure 7 .2) . These areas are computed using the 

trapezoidal rule and the total area above the fold-line is subtracted from the total area below the 

fold to produce an area mismatch for the given angle. If e is swept from -900 to +900 in /::"8 

increments and the area mismatch recorded at each position, then the natural orientation axis is 

at the angle with the minimum mismatch along the longest axis. 

a) area partitioning b) virtual fold and area match 

Figure 7.2: Thefold-and-match method steps 

In practice e needs to be swept through a range slightly greater than ±90° to ensure that the true 

position is found. A coarse-fine strategy is used to minimise computation by initially using an 

angular increment of 1 00 to find the approximate position and then 10 increments to flnd the 
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orientation to with half a degree. Pascal source code for this algorithm can be found ill 

appendix C (page C-85) as a part of the motion-tracking code. 

Table 7 .2  contains the results of applying the fold-and-match method to the same five outline 

point shapes processed by the moment based methods. These figures show the change in 

orientation angle as the third point is progressively moved downward and to the left in one unit 

increments. As can be seen the method is robust with respect to the slight shift in the position of 

the point since the computed angle changes very s lowly. These results are also consistent with 

the visual or natural orientation shift of this simple object as it slowly changes shape. 
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Table 7.2: Orientation of a simply changing shape by thefold-and-match method 

If the shape of the object was much more complex than the simple examples shown above, in 

particular if it contained concavities or highly asymmetric protrusions, then the task of 

determining the natural orientation becomes very dependent on interpretation. Depending on 

what a human observer thinks the shape represents will greatly affect the selected orientation. 

Thus the simple fold-and-match algorithm would not necessarily produce results consistent with 

the average human observer. However for the simple shapes formed by placing landmark points 

to define vertebrae in the human spine the results will be highly consistent with perceived 

orientation. 

7.2.3 Deriving Suitable Motion Measures 

Early work by Jones [7 .6] in 1 959 on qualitatively assessing motion in the normal cervical spine 

using cineradiography determined that the motion of vertebrae during a normal cycle from full 

flexion to full extension is not simple. The kinematics for this region of the spine differ greatly 

----------------- ----
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between the neutral to full flexion and neutral to full extension parts of the cycle. This is 

reflected in the shape of the curve drawn along the posterior aspects of the vertebral bodies in 

these two positions. Figure 7 .3  shows a typical AlP cervical view of the spine in full extension 

and full flexion. The smoothness of the curve in extension indicates relatively equal participation 

of the vertebra in the overall motion. In contrast the bow-shaped curve for the flexion case 

indicates varying participation. This is due to both a gliding and rocking motion of the cervical 

segments. 

a) full extension ('smooth' curve) b) full flexion ('bow' shaped curve) 

Figure 7.3: AlP cervical spine vertebral curve 

A gliding motion implies translation of a vertebra near the plane of its baseline. This sort of 

motion should be readily apparent by comparing the relative translation of the centroid of 

adjacent vertebrae. A rocking motion implies a cyclic change in the orientation of vertebrae and 

should be readily apparent by viewing the rotational displacement of each vertebra. 
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Figure 7.4: Graph control dialog 
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Figure 7 .4 shows the dialog for controlling the data displayed in the graph window (see 

figure 7.7b) of CineMetriX. Consistent with the work of Jones, two basic types of movement 

translation (of the outline centroid) and rotation (orientation of the outline about the centroid) 

have been defined. All or a selected set of the tracked features (in this case the first, third and 

fifth vertebra) can be chosen. For each of the movements three measurements can be displayed. 

The first measurement is the raw data from the feature-tracking algorithm, the displacement 

(either translational or rotational). The other two measurements are velocity and acceleration. 

Discontinuities in the vertebral motion should be highlighted by looking at the velocity. While 

vertebral acceleration may give an indication of forces exerted on each vertebra. These 

measurements can be derived from the raw displacement values using suitable first and second 

order derivative filters [7 .7] .  Great care has to be taken in the design of the filter to ensure that 

noise does not invalidate the derived measurements . 

One other indicator of biomechanical motion of the spine that has recently [7 .8]  been investigated 

by manually tracking vertebra in a short cervical spine cineradiographic sequence is 

instantaneous centres of rotation or ICR's. These were originally proposed by Penning [7.9] and 

Dvorak et al [7 . 10] as an indicator of cervical segment instability. The basic idea is that any 

object that is undergoing motion containing rotation and/or translation has an apparent point 

where the rotation could be said to be centred. For smooth motion this virtual centre should 

change slowly. However for unstable motion the centre or ICR may move erratically from 

frame-to-frame. The ICR may be calculated by finding the intersection of the major axis 

between adjacent frames in a sequence. This is shown diagrammatically in figure 7.5 below. 

------/ 
frame (n+ l )  

---
-------

Figure 7.5: Determining ICR's from main axes intersection 

For the ICR to be reasonably accurate the difference in angle must be significant. Van Mameren 

[7 .8] suggested that seven degrees was the minimum angular difference necessary for repeatable 

results. Within an accurate automated measurement system this should be able to be 

significantly improved using data filtering and interpolation techniques. 
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7.2.4 Displaying Motion Data Effectively 

Spinal health practitioners routinely have to deal with and interpret static radiographs. Most are 

not familiar with the interpretation of time-varying data such as the measurements from a 

cineradiographic measurement system. Technologists, engineers and scientists on the other hand 

routinely deal with time-varying, multi-dimensional data. Most commonly this data is presented 

in the form of a number of two-dimensional graphs. Interpretation of these graphs becomes 

difficult when the data comes from a number of different and disparate sources. Somehow the 

data need to be unified or connected together so they can be viewed from a common framework 

and interacted with by the observer to gain understanding. An active research area central to 

dealing with this problem is Data Visualisation [7 . 1 1 ] and most recently Virtual Reality (VR) 

[7 . 1 2] has become synonymous with this research area. Although work in this area was not 

central to this research, a number of VR inspired approaches have been implemented to assist in 

the interpretation of cineradiographic data. The general philosophy of these implementations 

was to maximise operator interaction. 

Motion Visualisation 

Visualisation is an important technique applied in the preliminary assessment of any spinal 

condition. A static radiograph of the spine is placed on a light box and magnifying glass used to 

assist in the drawing lines to extract simple geometric information. To assist visualising the 

information present in a cineradiographic sequences three viewing modes were provided. Figures 

7 .6a to 7 .6c illustrate images in each of the modes . In Figure 7 .6a, the standard mode, the image 

appears just as it would directly from the output of the video camera (coupled to the image X-ray 

intensifier), as a photographic positive. The brightness and contrast of the image can be adjusted 

interactively as the sequence is played using the image controls at the bottom of the image 

window. The settings of these sliders are stored as a part of the cineradiographic document and 

are automatically loaded when the document is opened. These controls can be hidden once set to 

provide greater display area. An image inversion button to the right of the slider controls 

provides the ability to view the sequence in the usual radiographic mode (photographic negative). 

Figure 7 .6b shows the same image as in figure 7.6a but viewed in this mode. The image now 

appears like a standard static radiograph, a negative image. The invert button can be toggled 

interactively as the sequence is played, greatly assisting in perceiving low contrast features .  

The third image mode has i t  origins in the early work by the author on gradient-based edge 

detection. The later half of this work is reported in chapter 3 section 3 .4 on an alternative HVS 

(Human Visual System) inspired approach to edge detection (see the side panel). Figure 7 .6c 

shows the result of this process.  The edge content of the image has been enhanced while 

suppressing much of the intensity information. 
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Figure 7.6 a) standard mode 

Figure 7.6 b) radiographic mode 

Figure 7.6 c) Gradient enhancement mode 

By taking a surface-fitting approach it 

can be shown (see appendix A) that 

the heuristically derived Sobel 

operator (see chapter 3 section 3.2. 1 )  

can be arrived at by fitting a parabolic 

surface to a 3x3 neighbourhood. In 

practice it has been shown by the 

author that better gradient information 

is often extracted if the orthogonal 

axes of the surface are not made 

collinear with the image axes but are 

rotated by 45°' .  Setting the axes up 

this way and refitting the parabolic 

surface results in the pair of modified 

Sobel gradient masks shown in table 

7.3 below. 

+45 -45 

t2 - 1  � �� 1 � - 1  0 0 
0 1 -2 - 1  

Table 7.3: Modified Sobel gradient 

masks 

Applying these masks to an image 

produces an estimate of the intensity 

gradient at each location. For 

cineradiographic images the resulting 

gradient data occupies a large 

dynamic range with most of the 

information about the vertebrae 

residing at the low end of the range. 

Thus it is necessary to scale the 

gradient values upwards to make the 

vertebral information visible when 

presented as a grey-scale image. 

After scaling large gradient values are 

truncated to the maximum grey-scale 

value. 



Motion-tracking Cineradiographic Images 1 73 

The image looks very similar to that produced by Magnetic Resonance Imaging (MRI), although 

the information presented is different. This mode has been found by the author to be very 

effective in the subjective assessment of spinal motion. 

Figure 7.7a shows the dialog box 'Cine Options' that controls the playback characteristics of the 

cineradiographic sequence. The first control of importance is the playback speed slider. Very 

often visual information can be seen more readily if the frames are played faster or slower than 

the original rate. In the current implementation of CineMetriX the speed can be adjusted 

interactively from less than one frame per second to up to twice the original capture rate. 

Low-speed playback enables image-by-image assessment while high-speed playback permits 

more global assessment of motion trends. 

The next feature controllable from this dialog box is the playback mode. There are three modes 

currently defined, Continuous, Reversing and Swinging. The continuous mode runs the entire 

image sequence in a loop, from start to finish, repeating endless ly. The reversing mode in 

contrast replays the sequence from the beginning reversing at the end and replays backwards to 

the beginning, in a continuous loop. This produces a sequence with a more natural appearance 

than the continuous mode since there is no abrupt transition at the ends of the loop. In the 

swinging mode the loop goes from start to end and back to the start as in the reversing mode, but 

with a special additional feature. As the sequence advances forward say by five images, it then 

reverses back say four images . The overall motion in this case is forward but with a backward 

swing. This swinging technique has been utilised previously in meteorology [7. 1 3] ,  proving 

effective in the visualisation of complex dynamic weather patterns. 

Operator Interaction 

It is important that measurements derived from a cineradiographic sequence can be readily 

related back to what can be seen visually since this provides the opportunity for greater 

understanding of the motion. Figure 7 .7b shows a full-screen snap-shot from CineMetriX with 

both the graph and image windows displayed. The graph window currently shows the rotational 

displacement or orientation of the three cervical vertebra C 1 ,C3 and C5 versus the frame 

number. 

The top of the image window indicates that the current frame displayed is number 22 of 35 .  This 

is reflected in the position of the vertical scroll bar on the right-hand side of the image window 

which is just over half-way down. It is also reflected in the position of scanning bar on the graph 

window. Outlines of each tracked feature (skull, jaw and C l  to C7) have been overlaid on the 

image window. Their angle indicates their orientation in the current frame while their centroid 

position is marked by a small dot at the centre of each outline. 
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As the sequence is played the image window slider and graph window scanning bar move in 

synchronism. The effect of this is that each position on the graph is visually locked to the image 

it occurs in and vice-versa. An operator can manually drag either the image slider or graph 

scanning bar while in any of the replay modes and the two windows will track together. This is 

particularly useful when placed in the swinging playback mode with the number of forward and 

backward frames set to the same value, say five. 

The graph scanning bar can then be positioned at the centre of a discontinuity in one of the traces 

and the image window will repeat a short reversing sequence of five frames about the 

discontinuity. This approach enables the quick isolation of just the frames relevant to the 

discontinuity. 

Both the image window and graph window are interactively scaleable by simply clicking on the 

window and dragging a corner to the desired size. This is particularly useful for the image 

window when displayed with feature outlines overlaid as scaling the window up allows simple 

visual confirmation of the tracking accuracy. 

7.3 The Motion-tracking Algorithm 

In the introduction of this chapter the difficulties in searching for the match to a template 

representing an object undergoing both translation and rotation, were summarised. One of the 

most obvious problems with this approach is the computational cost associated with rotating the 

object templates for each interframe match. One solution to this might be to pre-compute an 

ensemble of templates based on a rotated version of each base object template. One degree 

increments over an range of ±45° should be adequate for the worst case of the cervical spine 

vertebrae, resulting in a total of 96 templates for each object. This approach reduces the search 

match problem to simply seeking the best match at a given x-y location from the ensemble of 

rotated object templates . Since the template rotation is performed only once at the beginning of 

the tracking procedure, computational cost is low and storage requirements will be modest for 

typical vertebral dimensions. However, there are a number of problems associated with this 

approach. Firstly, although a template match based on the normalised product correlation will 

compensate for overall intensity changes between template and match area, it can not 

compensate for local changes within the area of the template. Local changes in intensity and 

contrast through a cineradiographic sequence were clearly illustrated in section 3 . 5  of chapter 3 .  

This contrast modulation, due to the auto-gain control necessary to prevent camera overload, 

was shown graphically in table 3 . 12 where a line intensity profile through the second cervical 

vertebra at the beginning middle and end of a sequence was extracted. The last line of this table 

(reproduced below as table 7 .4) clearly shows the significant change in intensity and contrast 

across the vertebra through the sequence. Thus there is no simple way to adequately compensate 
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for this effect if the rotated template ensemble is precomputed once at the beginning of the 

sequence. 

The second problem with this approach is that all rotation algorithms involve image resampling 

and thus will introduce a degree of blur or smoothing in the rotated template that is angle and 

algorithm dependent. To compensate for this effect, the match area would need to be 

equivalently blurred before the match, adding further to the computational burden. The third 

problem with precomputing the rotated templates concerns scale change effects. Although the 

motion in a typical cineradiographic sequence of the human spine is constrained predominantly 

to be within the image plane, there is some out of plane motion that results in small scale 

changes . On an interframe basis scale change is not significant but when taken over a large 

number of frames it may result in significant mismatch at the true (x, y, 8) position. 

Table 7.4 
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Table 7.4: Contrast Modulation 

When these three problems are taken into account, the original direct search approach involving 

rotating each template over an appropriate range for each interframe match would appear the 

only effective solution. However there is an alternative approach that exploits one of the 

properties of small templates some of which were discussed in section 5 . 1  of chapter 5 .  
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Small template related properties: 

1 .  If  the interframe motion i s  small (specifically rotation and scale change), then there i s  no  

significant error in the template match when approximated by pure translation (to within 

pixel resolution). 

2. Small templates will contain only a small amount of information about the underlying 

object and this information is likely to be of low dimensionality. 

3. A normalised match statistic can adequately compensate for intensity and contrast 

changes on an interframe basis for small templates. 

Although the first property looks attractive with respect to reducing computational cost for 

general matching, the second property indicates that not enough information is likely to be 

contained in a small template to make the match reliable. However the third property indicates 

that it should be possible to combine the match results of a number of small templates distributed 

about an object of interest to produce an overall match for the object. In order for the resultant 

match to be useful, the sub-templates or sub-windows need to be locked together in the original 

geometry of the object. Thus in order to search for the best match to the object in the next frame, 

an object outline defined by the centre coordinates of the sub-windows, is moved through the 

search space (x, y, 8) and at each discrete location the centre coordinate of each sub-window is 

assigned to the nearest pixel grid. Each sub-window is then matched and the results combined 

together to produce an estimate of the total object match at that location in the search space. 

Since the assignment of the sub-window centre coordinates to a pixel grid is not until the local 

match is computed, the object outline can be translated and rotated in real coordinates through 

the search space. 

With the best match of the entire template located in the next frame, the sub-templates are 

updated to use the new pixel values in this frame. The process is then repeated for each 

subsequent frame with the sub-template pixel values being updated after each match. Thus the 

algorithm works incrementally by matching between pairs of frames. 

Figure 7.8 shows an enlarged section of the centre of a cervical spine from a frame of a 

cineradiographic sequence where the outline of the middle vertebra has been manually traced in 

black. Four points represented by diagonal white crosses have been placed to indicate the 

important landmark points of the front and back of the vertebral body. These four locations are 

the centres of four square sub-templates (drawn in grey) which are locked together geometrically 

to form an object template whose outline is represented by the white trapezoid. The centroid of 

this structure is indicated by the white cross in the middle of the figure. 
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Figure 7.8: Sub-templates geometrically locked together to form an object template 

As the object template is translated and rotated about the centroid (in specified increments of x, y 

and 8) and the sub-templates are in effect 'shuffled' like blocks to best approximate the new real 

position of the object outline. 

There are a number of potential advantages to this new, geometrically-locked small-template 

matching approach: 

1.  Each sub-template match is  local and thus can readily compensate for intensity contrast 

changes such as present cervical cineradiographic images. 

2. The method is in principle able to achieve sub-pixel resolution since it involves moving 

the object-template in real coordinates while finding the best match of each sub-template 

to the nearest pixel. 

3. If the original locked geometry of the sub-templates is relaxed over time by performing 

some additional independent local match of each sub-template, it will be possible to track 

objects that slowly undergo scale and perspective changes. 

7.3.1 Theoretical Tracking Constraints 

For perfect (noise free) data it is possible to estimate the theoretical rrummum interframe 

movement that is detectable by this new algorithm. Three basic motion cases are summarised 

below: 

Pure translation: With the object-template initially defined only on an integer pixel grid, an 

object undergoing pure translation (in x and/or y direction), can only at best be located to 

within one pixel. 

Pure Rotation: With rotation both the x or y coordinates of the object-template outline 

points will change (in real coordinates) thus offering the potential of significant sub-pixel 
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resolution. The improvement is dependent on the size of the template and distance from the 

object-template centroid to the centre of rotation. 

Translation and Rotation: If the motion results in greater than half a pixel change in 

either the x or y coordinate of an outline point then improved tracking resolution can be 

achieved. 

As stated above for the pure rotation case, the amount of sub-pixel resolution improvement is 

dependent on the size of the object-template and its centre of rotation. The worst case occurs 

when the centre of rotation corresponds to the centroid of the object-template since at this 

position the average distance to the outline-points is at its minimum. This situation is illustrated 

below in figure 7.9 for the top right-hand corner of a rectangular object-template with its 

centroid used as the origin. 

sub-template 

(x,y) 

Figure 7.9: Sub-template geometry to determine the minimum detectable rotation 

By applying basic geometry and considering the change in coordinate of the centre of the corner 

sub-template as the object-template is rotated, equations 7. 1 and 7.2 result. If for a change in 

angle (t:.8) there is a change in the x or y coordinate of greater than half a pixel, the position of 

the match sub-template will change. 

x ± ill = r Cas ( 8+ t:.8) 
y ± i1y = r Sin(8± i18) 

where: 8 = tan -I (y / x)  and r = � x2 + l 

eq. 7.2 

eq. 7.3 

For a cineradiographic image of the cervical spme, digitised to 256x256 pixels, a typical 

vertebral body has the approximate dimensions height= 15 ,  width=30 (pixels) . Substituting these 

vertebral dimensions into the equations above and rearranging to solve for the positive and 

negative deviation in angle for a 0.5 pixel shift in either coordinate, gives: 
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(ile; ,  ile� )  = (-4. 1 2° , 3 . 60° ) 

(ile; , ile; )  = ( 1 . 92° , - 1 . 89° ) eq. 7.4 

Thus for noise free data an angular deviation of about 4° is required for a detectable change in 

the x-coordinate while for the y-coordinate it is only 2° .  

Applying this same approach to the case where the motion contains both rotation and translation 

there should be an improvement in the translational resolution from 1 .0 to within 0.5 of a pixel. 

This improvement is due to the object-template position being computed in real coordinates and 

only the position of the sub-templates being constrained to the nearest pixel grid when computing 

each local match. Once a best match is found, the position recorded is the location in the real 

parameter space (x, y, e) . 

7.3.2 Practical Algorithmic Implementation 

In coding a practical implementation of the small-template based motion-tracking algorithm, a 

number of variations are possible that can significantly alter the computational time. One simple 

approach is to pre-compute a translation path or trail. A suitable path would be an integer spiral 

made from a set of square annular shells. All that is then required to traverse the (x, y) part of 

the search space is to is to increment along this predefined path. It was shown in the previous 

chapter (section 6.4.2) that a transform involving both translation and rotation is separable and 

can be performed in two passes. This property can be exploited by placing the computationally 

more expensive rotation part of the search in the outer loop. Thus for each value of theta in the 

search space the full translational path is traversed. 

Shown over the page is pseudo code for the central section of the tracking algorithm. This code 

segment is called during each interframe comparison in which the new location of each object 

template is searched for using the normalised correlation match statistic. 

S ince the object tracking is based on interframe matching and the best match for a particular 

interframe may be slightly in error due to noise or finite resolution limitations, it is possible for 

the mismatch to accumulate and result in a significant tracking error. The greater the number of 

frames to match the more likely this will occur. However with pre-recorded sequences the 

number of frames to traverse from the reference frame can be halved by beginning the tracking 

procedure in the middle of the sequence and tracking to both ends . With only half the number of 

frames to traverse from the middle reference frame error propagation should be significantly 

reduced. 

In order to track an object while keeping the computation to a minimum some limits on the 

maximum range of translation and rotation and a suitable sub-template size are required. It was 

stated in chapter 5 section 5 . 1  that the fastest movement (rotation and translation) of the human 
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spine under normal diagnostic conditions occurs in a lateral cervical view where the neck moves 

from full flexion to full extension. In this situation the vertebrae undergo rotation from 

approximately -450 to +450 • If the motion is assumed to be nearly cyclic then an estimate of the 

maximum change in angle per interframe is given by dividing this range by the half the number 

of frames in a given sequence. At a third speed video capture a sequence will contain about 50 

frames resulting in a maximum interframe angle of about 3 .60 • Most of the translational 

movement in a typical lateral cervical sequence is constrained to be horizontal due to vertical 

support produced by the spinal column. For an image digitised to 256x256 pixels the maximum 

movement is about ±40 pixels horizontally and about a third of this value in the vertical 

direction. If the motion is assumed once more to be cyclic then the maximum interframe 

translational values are about & = 3 .2  and t.y = l .  06 pixels. 

( Main obj ec t - templ a te ma tching} 
l oop for each obj ec tTemp l a t e  

l oop The t a  from minThe ta t o  maxThe ta in s teps o f  de l taThe t a ,  

rotate the obj e c tTemp l a teCoords by ang l e  The t a  

l oop though t h e  path from s t a r t Path to endPa th , 

trans l a t e  the obj ec tTemp l a t eCoords by current path 

a s s i gn obj ec tTemp l a t eCoords t o  near e s t  i n t eger grid 

i ni t i a l i s e  obj e c tMa t ch 

l oop through int eger obj e c tTemp l a teCoords , 

i f  pos i t i on has changed 

then c ompu te the new subTemp l a t e  ma tch and s tore i t  

e l s e  use the previ ou s ly computed ma tch 

add the current subTemp l a t e  ma tch to obj e c tMa tch 

con t i nue wi th i nt eger obj ec tTemp l a t eCoords l oop 

i f  obj ec tMa t ch is grea ter than bes tMa tch then 

rep l a c e  bes tMa tch by obj ec tMa tch and s tore path as 

b e s t Path and The ta as bes tThe t a  

c on t i nue w i t h  p a t h  loop 

cont i nue wi th the t a  l oop 

s tore the b e s t  ma tch locat ion o f  obj ec tTemp l a t e  g iven by 

the c oordinates a t  the be s t Path pos i t i on and bes tThe t a  

c on t i nu e  w i th n e x t  obj ec tTemp l a t e  

The only parameter that remains to be specified is  the size of the sub-templates or sub-windows 

used in the match. Based on the experimental results of chapter 5, a square template of radius 5 

pixels should prove adequate for most cervical spinal feature points. 

Figure 7 . 1 0  shows the track options dialog used to select the objects or point-groups to track and 

the track parameters . Currently the second and fifth vertebrae have been selected and the 

'defaults' button has been pressed to set the tracking parameters . The default translation step and 

rotation step size are set at the theoretical limits of the sub-pixel resolution achievable by the 

algorithm. The 'radio-button' has been activated to display the outline of the point-groups 
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representing each selected vertebra, as it is tracked. All that remains is to press the 'OK' button 

to start the tracking procedure. 

Track Options 
Point groups T racking QPtions 

� Vertebra 1 lranslation step: 10.5 pixels 
. I 

� Vertebra 3 
T ranslation radius: 15 pixels !i)i;S Vertebr a .. 

. I 
� Vertebra 6 R otation �tep: 11 degrees 

R otation rAnge: ±15 degrees 

Window radius: 15 pixels 

:"'::1 
� D isplay point groups while tracking 

O K  

Figure 7 .10 :  CineMetriX track options dialog 

7.3.3 Image Noise 

It was initially found that without performing some form of image noise filtering prior to running 

the tracking algorithm, the best-match interframe location would begin to wander away from the 

true match after only four or five interframes. The reason for this becomes apparent when 

looking at the image noise estimates presented in figure 6.2 of section 6 .5 .5 of chapter 6 and 

reproduced in part over the page in figure 7 . 1 1 .  In both the hard and soft-tissue noise estimates a 

best-fit (least-squares) gaussian has been superimposed on the histogram. It is clear from the 

middle of the histograms that the fit of the gaussians is not particularly good, with many values 

extending above and below the curves. The effect of this non-gaussian noise is to produce a 

biased estimate of the best-match and hence match position. For the normalised product 

correlation (like many match measures), it can be shown that the estimate of the true match will 

be unbiased only for data contaminated by normal gaussian noise [7. 14] .  

The nature of noise in cineradiographic images was discussed previously in detail in chapter 2 

section 2.3 where it was shown that the primary limitation on noise is the initial number of 

quanta recorded in the first conversion stage. However this result deals only with the average 

noise level and not its characteristics. For homogeneous materials (both in density and X-ray 

absorption) the noise is well approximated by a normal gaussian as was illustrated in the noise 

estimates through the lead collimator shutters in figure 6.2 of chapter 6.  For non-homogeneous 
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materials such as a human spine, the nOIse deviates significantly from a gaussian due to 

secondary X-ray emission and scattering through the soft and hard tissue layers. 
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Figure 7.11 :  Cervical spine cineradiographic image noise 

The median filter is a commonly used non-linear filter from the set of rank-based ordered 

statistical filters [7 . 1 5 ] .  An extended class of the median filter is the weighted median filter 

(WMF) [7 . 1 6] for which the more commonly used nearest neighbour filter (NNMF) [7. 1 7] is a 

sub-class .  The median filter and its near relatives have general edge preserving and noise 

reduction properties [7. 1 8] .  They are particularly effective in reducing noise for distributions 

that show outliners or impulse variations similar to those shown in figure 7 . 1 0. Thus before 

each interframe match is performed by the motion-tracking algorithm the images are median 

filtered using a 3x3 window. 

7.4 Tracking Performance 

At the end of chapter 6 the composition of a range of motion sequences suitable for testing the 

tracking performance of a given algorithm on cineradiographic sequences of the human spine, 

was described. This range can be broadly split into those that involve adjacent vertebral motion 

and those that do not. This distinction was made so that testing could begin with relatively 

simple isolated motion and progress to more complex and realistic motion. 

Simple cyclic motion has a number of advantages in terms of analysis. Firstly, in a single cycle 

there are three zero-points which can be used as reference points to test long-term tracking 

accuracy and hence mis-match error propagation. Further, if the cyclic motion is made linear, 

hence forming a triangular wave, then for a fixed length sequence a single control parameter, the 

wave amplitude uniquely defines the motion. The other advantage of linear-cyclic motion is that 
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the magnitude of the velocity is constant (except at the waveform peaks) enabling velocity to be 

used as a single analysis parameter. The other cyclic motion that is useful in testing a tracking 

algorithm is sinusoidal motion. In sinusoidal motion the velocity changes continuously 

throughout the sequence reaching a maximum value at the zero-crossings and a minimum value 

at the peaks. Thus the search for the best match will be exercised more fully than for the linear 

case and any discretisation effects of an algorithm should be exposed. 

The results of tracking tests for cervical spine vertebrae in cineradiographic sequences using the 

sub-template based matching algorithm are presented in the following sections for a wide range 

of prescribed motion. In all cases the default settings defined by the track options dialog (see 

figure 7 .9) have been used [TranslationStep=0.5 (pixels), TranslationRadius=5 (pixels), 

RotationStep= 1 0 ,  RotationRange= ±So , Window Radius=5 (pixels)] . 

An odd number of frames in a sequence is preferable to ensure that there is a genuine middle 

frame. Thus all the graphs in tables 7.5 to 7 . 1 0  all contain 35 frames since this is an odd 

number and enabled a single sequence to be fitted on a single 1 .44 MByte floppy disk without 

loss, using simple run-length coding. 

7.4.1 Single-Cycle Linear Motion: Tracking Results 

The first and simplest prescribed motion test sequences used to evaluate tracking performance 

consists of single-cycle linear motion independently in x, then y and finally 8, for a range of 

amplitudes. Table 7 . 5  contains typical prescribed trajectories in (x, y, 8) and their values 

determined by the motion-tracking algorithm. These graphs are presented here to orientate the 

direction of the reader. Error graphs (prescribed minus tracked) will be used for the majority of 

the remainder of this section. 

The prescribed amplitude for all the graphs in the table 7 .5  is 20. This value corresponds to 20 

pixels for translation in x and y and 20° for rotation in 8. The key at the bottom of the table 

defines what each of the three traces on the graphs represent. Working down the first column of 

the table, the traces show that the prescribed motion changes from pure translation in x across 

the first row, to pure translation in y across the second row and finally pure rotation in third row. 

All of these prescribed trajectories display the expected three zero-crossings (the middle and at 

either end) but also show a flattening of the waveform peaks. This truncation of the peaks is due 

purely to sampling the waveform over a fixed number of frames and none of the frames exactly 

occurring at the peaks in the wave. Since the waveform already had a discontinuity in the 

velocity at these points, the effect of the truncation is to limit the velocity at these points to less 

than would ideally occur. 
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Table 7.5: Typical prescribed trajectories and tracked values for single-cycle linear motion 

1 85 

Visually there is little difference between the prescribed trajectory and the tracked results for 

pure translation in either x or y. The only slight difference occurs immediately after the first 

interfrarne match in both directions about the middle frame (frame 1 7), the best-match was found 

at an angle 10 less than the starting value. Once this slight rotation was adopted, the remainder 

of the sequences shows vertebral rotation, as prescribed. In simple terms this is due to the 

algorithm finding a more stable match to one or more of the sub-templates forming the 

object-template, at a location a pixel away from the original position. Once adopted, this new 

sub-template geometry becomes the geometry that is tracked through the remainder of the 

sequence. The reason for this slight change will be discussed in detail in section 7.4.3. 
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The results of tracking the sequence containing only rotation IS somewhat different to the 

translation cases. Firstly, the rotation trace (dotted line) is not particularly smooth but varies 

above and below a straight-line rotational velocity. There is slight under-shoot when the rotation 

is at its minimum, with the x-coordinate moving slightly positive to compensate. The reason for 

this behaviour will be explained in detail shortly, but it is principally due to the algorithm 

attempting to work to sub-pixel performance. With a peak angle of 20° , the angular velocity is 

only about 1 .  75° per frame which is slightly below the minimum theoretical interframe angle that 

can be detected by the algorithm. 

Single-cycle Linear Translation 

Six single-cycle linear sequences were generated for a range of peak amplitudes in x, y, and 8. 
The maximum amplitude for the pure translation sequences was set at 40 pixels, this being twice 

the value measured experimentally in real cineradiographic of the cervical spine. The maximum 

amplitude of the pure rotation sequences was set at 40° , this being just below the limit of the 

ability of the animation algorithm to produce correct motion and about the same as the value 

measured in real sequences of the cervical spine. The mean and peak tracking error for two 

vertebra in the cervical spine have been plotted against interframe velocity for the three groups of 

one-dimensional motion. The results are contained in tables 7.6 through to 7.8 .  The two 

vertebra, the second and fifth cervical (C2 and C5) were chosen because they are representative 

of the difference in geometric structure between the vertebra at the ends of this section of the 

spine. 

From table 7 .6 it can be seen that the mean tracking error in the x-coordinate for translational 

motion prescribed only in the x-direction, decreases linearly from one pixel at an interframe 

velocity of 4 pixels per frame to less than a third of a pixel at one pixel per frame for both 

vertebrae. It then quickly rises and then falls once more, as the velocity is decreased further. 

The sudden rise and peaking in error at 0.5 pixels per frame is because below this value the 

algorithm loses lock of the vertebra due to the interframe motion being below the resolution of 

the algorithm under the condition of simple translational motion. This effect is seen more clearly 

in the peak tracking error graphs where, at the theoretical limit of one pixel per frame, the error 

is equal to the theoretical value of half a pixel. In all cases the maximum peak error occurred at 

the peak or trough of the triangular trajectory. This is because at these locations the prescribed 

velocity is in fact zero due to the truncation of the waveform as shown in table 7.S. 

The results for the second set of prescribed sequences with motion only in the y-direction (table 

7 .7),  are in many respects similar to the previous set for motion only in the x-direction, however 

there are some important differences. 
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Table 7.6 Vertebra C2 Vertebra CS 
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Table 7.6: Tracking error versus velocity for translational motion in the x-direction 

Looking down the first column of the table 7.7 it can be seen that in tracking vertebra C2 there is 

speed dependent change in angle. This is quite different to the small fixed value that occurred in 

the previous set and which is displayed in this set by the second test vertebra C5. The reason for 

this velocity-dependent rotation is that the algorithm is having difficulty maintaining a reliable 

lock on the vertebra and is incrementally shifting the angle in an attempt to find the best match. 

The actual angular shift is below the theoretical minimum detectable angle of about 2° and so is 

in fact the result of some of the sub-templates translating slightly. The reason for this effect can 

be found by going back to chapter 5 section 5.3 .2 on interframe feature-point matching. The 

selectivity of the various match statistics was measured for all the defined feature-points for both 

the forward and backward interframe about the middle of a sequences and the results p resented 

in table 5 . 1 0. 

The last row of this table containing the normalised product correlation match results has been 

extracted and is presented below as figure 7. 12 .  If the small difference in selectivity between the 

forward (solid line) and the backward (dashed line) interframe match is ignored, it can be seen 

that there is a significant difference in selectivity between the four feature-points defined on the 

second vertebra C2 (last four points on the graph). 
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Table 7.7: Tracking error versus velocity for translational motion in y-direction 

The two points defined at the front of the vertebral body (e2: 1 and C2: 2) show much lower 

selectivity than the two points at the back (C2: 3 and C2: 4). Visually the two front points are of 

moderate contrast but they are also very one-dimensional since they lie along the almost straight 

front edge of the vertebra. This low dimensionality in the vertical direction means that if the 

motion of the vertebra is predominantly in the y-direction, then the best-match will tend to slide 

along the front edge in the direction of the motion. Also since the motion-tracking algorithm in 

its current form gives equal weighting to all the sub-templates forming the total object-template 

match, the effect of these front points sliding vertically is to produce a small incrementa! rotation 

of the object-template match. This does not occur for the second test vertebra C5 since the front 

and back of the vertebral body is far more irregular and thus of high dimensionality and 

selectivity. 



Motion-tracking Cineradiographic Images 1 89 

0.8 

0.6 1\ Y"'\ / \ � � 
.::: .// � \ ./ -
U 0.4 If ./ <1.l f � ./ Q) 
CI:l � / 

\� / 0.2 

0 
N N M V N M V 

:; :; - N N N N 
-'" -'" u u u u u u u U 
en en 

Feature-point 

Figure 7.11 :  Interframe best-match selectivity for the normalised correlation measure 

Single-cycle Linear Rotation 

The third set of s ingle-cycle prescribed motion test sequences are for a constant linear rotational 

velocity. The mean and peak tracking errors for two of the vertebrae in these sequences are 

presented in table 7.8  for a range of velocities. 

The first thing that is obviously different from the previous series of results is that all three 

search space parameters now show a velocity dependent variation. This variation is particularly 

evident in the peak tracking error graph for vertebra C2. An important observation is that right 

across the range of prescribed angular velocities the mean tracking error for both vertebrae is 

closely bounded by the theoretical minimum measurable angle of about 20 • However the peak 

tracking error shows values over two times this range with the error generally increasing with 

decreasing velocity until it suddenly drops at just below the limit of trackability. Translational 

errors in x and y decrease with decreasing velocity but the error in the y-value is about twice the 

x-value which is in itself within the theoretical trackable range of ± l  pixel. In order to 

understand this complex interaction it is necessary to look at actual tracked parameter values and 

their respective errors for a typical sequence. 

Table 7.9 contains the results for a sequence with a prescribed peak angular amplitude of 200 • 

This corresponds to a velocity of about 2 .50 per frame on the graphs in table 7 .8 .  The results for 

vertebra C5 contained in the second column of table 7 .9 are in close agreement with the 

theoretical trackability constraints of the algorithm. The maximum angular error occurs at the 

peak of the waveform where the velocity is zero for one frame and then changes sign as it 
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continues. Also at the waveform peak positions the x and y values are non-zero as they try to 

compensate for the slight overshoot and undershoot of the measured angle. Thus it can be 

concluded that the traces for C5 are within the range of what is to be expected from the 

algorithm. 
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Table 7.8: Tracking error versus angular velocity for pure rotational motion 

However, the traces for vertebra C2 are very different and display a highly irregular shape. The 

reason for this irregularity sterns from the low selectivity of this feature as a whole and the 

degree to with which a match lock can be maintained. The start of this problem was first seen in 

the tracking results for C2 for the case of pure translation in y where the error in the y coordinate 

changed in a velocity dependent way. Since rotation involves both a change in the x and y 

coordinates, then if the match lock is not particularly good in the y direction due to poor 

selectivity (low dimensionality and low contrast) then the best match will not be found at the true 

position. The general effect of this is that the best match will tend to lag behind the true position 

to such an extend that small changes in the x and y coordinates can not compensate sufficiently 

to maintain a reliable lock on the feature. 
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Table 7.9: Single-cycle linear rotation - tracked parameter values and resulting errors 

Single-cycle Composite Motion 

1 9 1  

The last set of results in this section are for the case where the prescribed motion is linear and 

cyclic in all three dimensions of the search space, The relative proportions of peak amplitude of 

the motion have been set to (x,y, 8) = (l 8, 9, 200 ) which are comparable to those observed 

experimentally in the middle of the cervical spine in real cineradiographic sequences. The results 

are presented in table 7 , 1 0  for vertebra C5 which is typical for this part of the spine_ 

Although the tracking error varies throughout the sequence this variation is generally irregular 

and below the theoretical minimum trackable values of the algorithm The reason the algorithm 

is able to produce these results which are significantly better than the three previous cases where 

the prescribed motion was only in one of the dimensions of the search space, is to do with the 

way the sliding of the sub-templates attempts to find a best match for the object-template as a 

whole. This effect is evident in the size of the incremental variations in each of the search space 

dimensions. Translational changes as small as a quarter of a pixel and angular changes of a 

fraction of a degree, can be seen. The maximum error in all three dimensions occurs at the peak 

of the wave where the angular error is just approaching the theoretical minimum detectable value 

and the x and y coordinates are moving slightly positive to compensate. A similar but smaller 
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effect is seen towards the beginning of the sequence (Note - this is the end of the first phase of 

the algorithm since it tracks from the centre frame to the beginning of the sequence and then from 

the centre frame to the end of the sequence). 

Prescribed Motion (C5) Tracking Error (C5) 
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Table 7.10: Tracking a sequence with composite motion prescribed in both x, y and e 

7.4.2 Double-Cycle Composite Motion: Tracking Results 

In order to assess the long-term tracking ability of the algorithm, two styles of sequences were 

constructed. The first set used a total of 35 frames as previously, but the prescribed motion now 

covered two linear cycles. The peak amplitude of the motion was reduced to half the value of the 

single-cycle sequences in order to keep the interframe velocity of all three search parameters 

constant between sequences . The second style of test sequences was designed to specifically 

assess interframe mismatch propagation. These sequences covered two linear cycles and 

maintained the same interframe velocity of the three search parameters as previously, but were 

twice the length. In this case the algorithm has to perform twice as many interframe match 

compansons in order to track the entire sequence, thus highlighting mismatch propagation 

effects. 

Double-cycle Composite Motion 

Table 7 . 1 1  contains the tracking results for a prescribed sequence in which the peak amplitude of 

the motion of the two vertebra is (x, y, 8) = (9, 5, 1 0° ) ,  where x and y are in pixels. Looking at 

the tracking error traces for C2 it can be seen that the error in x and y varies approximately 

cyclically with the prescribed motion. The maximum error in both cases occurs roughly at the 

peaks of the prescribed motion, but are generally within a ±l pixel band. By contrast the 

angular error is proportionally greater and at most positions is positive in value. This result is 

consistent with the loss of tracking lock previously displayed in table 7.9 for this same vertebra. 
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Table 7.1 1 :  Double-cycle composition motion - tracked parameter values and resulting errors 

Although the centroid remains close to the true position as indicated by the displacement errors, a 

good match is not maintained for the angle due to the low dimensionality of the overall match

template, for this vertebra. A much better picture is seen for the other vertebra CS, The 

displacement errors are cyclic but are in most cases close to the theoretical tracking limit of half 

a pixel. Angular tracking accuracy is extremely good, displaying an error less than one degree 

throughout the sequence. The error is about half the value predicted from the simple theoretical 

analysis of section 7.3 . 1 .  

Double-cycle, Extended length, Composite Motion 

The second set of results in this section are for an extended length, double-cycle, composite 

motion sequence. What is immediately noticeable about these results (presented above in table 

7 . 1 2) is that the relative difference in tracking angle error between vertebra C2 and CS is almost 

the opposite of what was shown previously. The displacement errors are generally within one 

pixel (particularly for C5) but a match lock on the vertebral angle is not be maintained for C5. 

The effect of this is that the match angle slides increasingly positive with respect to the 

prescribed motion for about two third of the forward and backward track paths. In the forward 

path it then stabilises as a better lock is achieved around frame 50, whereas the backward path 



1 94 The Development of Motion-tracking Strategies for Cineradiographic Images 

suddenly changes direction at about frame 1 0  and then rapidly converges back to the original 

location. 
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Table 7.12: Double-cycle composite motion, extended sequence 
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Experimenting with the manual placement the points that define the sub-template centres for C5 

could not achieve significantly better results than those displayed in table 7 . 1 2. Consistently the 

angle would slide and then stabilise in the forward direction, while in the backward direction the 

angle would slide and then converge rapidly back to the true location. Although the interframe 

motion with respect to the parameter search space is constant through the test sequences, 

increasing the number of frames and hence the number of interframe comparisons greatly effect 

the overall tracking performance. 

7.4.3 Full Motion with Vertebral Interaction: Tracking Results 

All of the previous test sequences have been produced with no prescribed adjacent vertebral 

motion, This was achieved by defining a clearance zone around each vertebra and then 



Motion-tracking Cineradiographic Images 1 95 

prescribing motion only to alternate vertebrae in the cervical region. Some local interaction does 

however occur using this approach since the space between alternate vertebra is distorted in 

order to produce the animation. This approach was used so that testing the motion-tracking 

algorithm could begin with relatively simple isolated motion and progress to more complex and 

realistic motion. 

Realistic Motion 

Producing realistic motion in which there is full vertebral interaction with typical range and type 

of motion requires knowledge of the biomechanics of the spine. If the cervical region is 

considered to be a simply connected system in which the bottom vertebra (C7) is fixed with 

respect to displacement, but is free to rotate. Then for a cycle of motion from full extension to 

full inflection, rotation and displacement will decrease progressively from top to bottom and the 

motion will be relatively linear but decreasing towards the extremes of the range. The approach 

used to determine typical trajectories for vertebrae in the cervical spine was to take a real 

sequence, place land-mark points to define all the vertebrae (including the skull and jaw) and 

then motion track the sequence with the algorithm. The resulting track data (x, y, 8) can then be 

passed to the animation routines along with the object outline information and a sequence will be 

produced with motion very similar to the original sequence. For this approach to be successful 

the motion-tracking algorithm has to perform fairly well on the real sequence. S light differences 

between the real (as yet unknown) motion and the measured motion however should not cause 

any problems since actual test sequence(s) will be the prescribed (known) motion from the warp

based animator. 

Table 7 . 1 3  illustrates typical motion in the cervical spine of a real sequence measured using the 

algorithm. Only the motion for alternate vertebrae starting at C l  is shown for clarity. The 

quality of this data was assessed visually by playing the sequence in a continuous swinging loop 

(see section 7 .2.4) with the vertebral outlines superimposed. Visually there was close 

correspondence between the observed motion and the measured motion in the sequence. As can 

be seen working through the vertebrae in table 7 . 1 3, the motion is largest at the top and 

decreases progressively down the spine till at the bottom (C7) where the displacement is nearly 

zero and the vertebra simply rotates a small amount. Translational motion in the y-direction is 

generally only about a third of the x value. Overall motion for all three parameters can be 

described as approximately linear and decreasing towards the beginning and end of sequence. 

There are a couple exceptions to this in the form of the motion of C5 where this vertebra 

suddenly rotates faster at the end of the sequence. This measured motion was consistent with 

what was observed visually in a number of real sequences. 
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Table 7.13: Typical measured cervical motion 

The typical motion in the cervical spine for full range sequences can be summarised by plotting 

the mean velocity in (x, y, O) against each region. Figure 7. 1 3  shows the results of this for the 

jaw, skull and working down the spine from C 1 to C7. From the top of the cervical region to the 

bottom, translational velocity in x and y decreases fairly smoothly until C5 where it reaches a 

minimum. The rotational velocity on the other hand initially drops rapidly from the skull to C 1 

but then decreases more slowly reaching its minimum at C7. 

In principle the performance of the tracking algorithm should only be effected if adjacent 

vertebrae move close enough together such that part of one vertebra moves into the field of one 

or more of the sub-templates that form another vertebra's template. This interference may occur 

from above and below a given vertebra. If the motion of the two interfering vertebra is similar, 

then tracking performance will be less effected. However if the motion of the vertebrae is greatly 

different, then the faster-moving vertebra will tend to drag the template of the slower moving 

vertebra towards it. How strong this effect will be is highly dependent on the relative selectivity 

of the interfering areas. 
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Figure 7. 12: Measured mean velocity in the cervical region 

Figure 7. 1 4  contains a graph of the mean tracking error for a typical prescribed motion cervical 

sequence. If the skull, jaw and C4 are initially ignored, then the tracking error for the remaining 

features is very close to the theoretical limits of the algorithm. Displacement errors are typically 

between a half to one pixel and rotational errors about 2° . This is not the case for the fourth 

vertebra (C4) where the tracking error for all three search parameters is about twice the expected 

value. Experimenting with the placement of the landmark points that define the vertebra' s 

outline template did not significantly improve the results. Consistently C4 did not track the 

motion well, yet C3 and C5 either side of it did track adequately. 
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Figure 7.13: Typical mean tracking error in the cervical region 
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Visually playing the sequence in a swinging loop with the vertebral outlines overlaid, the outline 

for C4 was seen to either stick in one place or slide towards the vertebra above or below it, 

depending on the placement of the land-mark points. Digitally magnifying this region while the 

sequences was played revealed that this particular vertebra had a much smoother outline 

compared to the vertebra either side of it. The corners of the vertebral body are much more 

round (see figure 7 . 1 5) resulting in reduced selectivity of the sub-templates and hence poorer 

overall trackability for the vertebra. 

Figure 7.14: Enlarged lower cervical section 

One of the slowest moving vertebra C6 has returned the lowest overall tracking error particularly 

with respect to angle. Even though the vertebra moves at an average velocity of just 1° per 

frame, a sub-template point placed on the tail of the spinous-process could be reliably matched 

and hence tracked. This significantly increases the effective object-template width and thus the 

minimum discernible change in angle. 

The skull and jaw are the fastest moving features of those defined yet they display tracking errors 

two to three times the other features. The reason for this again comes down to the relative 

selectivity of the sub-template points that form each of these feature object-templates. Points 

placed on the lower back of the skull and the bottom surface of the jaw (see figure 7 . 1 6) are of 

high contrast but their dimensionality is low as they lie along a very slowly changing arc which is 

free from any significant changes . In contrast, the only points that can be placed towards the 

front of the skull and the front top of the jaw are in regions of low contrast but medium 

dimensionality and thus very poor selectivity overall. 
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Figure 7.16: Skull and Jaw feature point selectivity 

7.5 Summary of Motion-tracking Performance 

The motion-tracking algorithm described in section 7.3 has been tested on a wide range of 

prescribed motion cineradiographic sequences of the cervical spine. The short-term tracking 

accuracy has been tested by creating sequences with single and double-cycle linear motion, 

initially independently in the three dimensions, and then combined cyclic motion. This was then 

followed by extended length sequences designed to specifically test long-term tracking accuracy. 

Two important issues have been addressed: 

• The potential of sub-pixel tracking accuracy 

• Mis-match error propagation 

The algorithm clearly demonstrated its ability to track motion to a finer resolution than the image 

pixel grid. This was particularly apparent for the measured orientation of the features. The 

algorithm was also shown to be reasonably robust with respect to mis-match error propagation. 

It displayed the ability to compensate for small errors in orientation by making a small correction 

in either the x or y coordinate. 

The final set of test sequences was based on the trajectories of the features measured in real 

cervical sequences . These measured values (measured by the algorithm and visually verified) 
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were then used to produce realistic sequences with full vertebral interaction but of known 

motion. 

Overall it can be concluded that with well chosen landmark points to define each vertebral 

outline, the motion-tracking algorithm is capable of tracking motion in the cervical region of the 

spine with a displacement error of about ± 1 pixel and an angular error of ±2° . For the larger 

vertebra towards the bottom of this region the angular error may be reduced to almost half the 

above value. Also, since the vertebra increase in size descending down the spine, it would be 

reasonably expected that the angular tracking error will be reduced even further in these regions. 

When the interframe motion is below the trackability of the algorithm (for the cervical region the 

values are: displacement less than half pixel, rotation below 2°) the position of the centroid of 

the feature will be tracked but in steps the size of the displacement limit. However orientation 

will not be maintained. 

The most important factor in the success of the motion-tracking algorithm is the placement of the 

landmark points to define each feature of interest. Poorly chosen points will results in large 

tracking errors and thus inadequate performance. The next chapter will conclude this research 

and discuss various ways of automating the landmark placement process and then dynamically 

monitor the performance of tracking the algorithm as it proceeds. 
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8 
Discussion and Conclusions 

8.1 Introduction 

The overall aim of the research was to develop practical motion measurement strategies for 

cineradiographic images of the human spine. The core of this research began from the simple 

premise that if detecting the edges in a cineradiographic sequence of the human spine could be 

achieved, then the task of tracking the motion would be straight forward since it would involve a 

simple binary match to find the positions of the features in subsequent frames (see section 3 . 1 of 

chapter 3 under edge-based methods). However, the implementation and extensive testing of 

standard edge detection algorithms and even the development of a custom algorithm (see chapter 

3) did not produce sufficiently consistent results for further work based on the original premise. 

The next phase of the research consisted of an investigation into a general framework for motion

tracking and perception, including the wide range of approaches presented in the literature. In 

particular the technique of adapting optical-flow methods to radiographic images (see section 

4.3 .6 of chapter 4) was researched. An estimate of the entire velocity field is not required as the 

only features of interest are the vertebrae. Occlusions were not a problem due to physical 

constraints on the movement. A template-based match approach was found to be the most 

appropriate method and computationally has a relatively low cost when performed in the spatial 

domain using small object-templates. 

Central to the template based motion tracking approach is the match statistic that is used to find 

the best match in subsequent frames. In order to access the performance of a given match 

statistic a performance measure or figure of merit is needed. Such a metric was developed (see 

section 5 . 1 .2 of chapter 5) .  This measure incorporated the effects of both feature match 

sharpness and dimensionality. The metric was then used to evaluate four match statistics in both 

intra and interframe matching of cervical cineradiographic images. The simple normalised 

product correlation match statistic was found to perform best overall, displaying good selectivity 

consistency and match positional stability. 

With the framework of the motion-tracking algorithm complete, the research then turned to the 

problem of creating cineradiographic test sequences with known motion. Without such 

sequences any proposed algorithm could only be assessed qualitatively by observing the results 
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visually. After considering mechanical approaches such as stop-and-shoot and an articulated 

equivalent phantom, an animation approach based on digital image warping was developed. The 

fmal implementation was the result of a number of stages of revision of the original algorithm 

(see section 6.5.5 of chapter 6). The prescribed motion sequences generated by this algorithm 

incorporate the effects of image noise and are visually of a quality comparable to real sequences. 

Finally in chapter 7, the complete motion-tracking system was described, assembled and tested. 

Solutions to several practical system implementation problems were also developed, and in 

particular, an algorithm called 'Fold-and-Match' was developed to determine the orientation of 

vertebrae in a natural and consistent way. The fmal motion-tracking algorithm is the result of a 

pragmatic approach based on using the properties of small-templates with the aim of minimising 

computational cost. This new algorithm, Geometrically-Locked, Small-Template based or 

GLST for short, displayed tracking performance that satisfies the flfst of the system objectives 

stated in the introduction. Within the resolution and noise limitations of a video cineradiographic 

imaging system, the measured displacement and orientation of vertebra are accurate and 

repeatable. 

The last three objectives stated in the introduction and repeated below for reference, have been 

readily met by the development of a system written for Microsoft Windows that incorporates 

elements of data visualisation complete with an easy to use interface running on standard 

hardware. 

» Provide an opportunity for operator interaction so that derived measurements can be 

readily related back to what can be directly perceived in a sequence. 

� Be easy to use so that researchers (and potentially practitioners) will want to use such a 

system. 

» Run on standard hardware 

All the elements of the system were generalised except the video capture card driver. There were 

no interface standards when this part of the code was written, but this could be easily remedied 

by using the Video for Windows [8. 1 ]  application programming interface (API). 

One objective that has only been partially met is that of minimising operator interaction in the 

motion-tracking process by automating landmark point placement. Typically the operator 

currently has to place six points to define each vertebra and then specify the motion tracking 

parameters. In practice the default tracking settings prove adequate. Once these two things have 

been done, the remainder of the process is fully automatic requiring no user input. 
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8.2 Algorithm Enhancements 

It was concluded in chapter 7 that with well chosen landmark points used to define each vertebral 

outline, the motion-tracking algorithm is capable of tracking motion in the cervical region of the 

spine to within a displacement accuracy of about ±1 pixel and an angular accuracy of ±20 • 

These figures could be improved significantly by digiti sing the images at the full resolution 

available from a composite video signal. This change would quadruple the amount of storage 

required relative to that used in this research and necessitate the use of larger sub-template 

windows to ensure sufficient information is contained within them for a reliable match. The 

overall computational cost of the algorithm would also be increased by a similar factor. Further 

enhancements could be made by replacing the analogue camera with a CCD camera with a direct 

digital output [8.2] . This would provide images at close to the resolution of the sensor rather 

than the reduced horizontal resolution [8.3] (relative to the vertical resolution) available from an 

analogue composite video signal. This would also help combat the reduced selectivity of feature 

points in the horizontal direction. 

A potential problem common to all interframe based matching algorithm is the possibility of 

mis-match error propagation. This phenomenon was accessed in section 7.4.2 of chapter 7 by 

creating extended length sequences. For an object moving at a speed above the trackability limit 

this effect does not become significant unless the sequence is very long. However for slow 

moving objects a gradual lag develops behind the true position in the search space. This was 

evident in the results obtained for tracking the prescribed motion sequences containing just 

rotation (see table 7 .9 of chapter 7). For cyclic motion this lag did not accumulate and was 

restored when the motion returned the objects to their original position. The basic reason for this 

lag is that the interframe motion is so small that none of the sub-templates that form the object

template change position on the integer pixel grid and thus the best match does not move. In the 

general case, if for a sub-area in the search-space none of sub-templates move, then the actual 

best position that is recorded is dependent on how the best decision is made. The first position in 

this sub-area will be kept as the best position if a 'keep if greater-than ruLe ' is used, while the 

last position in this sub-area will be declared the best position if a 'keep if greater-than or equaL 

too rule' is used. The first case will tend to produce greater lag than the second one, but the long 

term effect will be generally unpredictable. 

There are two approaches that would help improve the above situation. The simplest of these 

would be to keep the first frame in the interframe search as the reference until there is a genuine 

change position measured. This would prevent the motion lag from developing but correspond to 

sub-sampling in time. This would result in increased coarseness in the plots of the measured 

position. This is essentially a temporal aliasing effect. A more sophisticated approach would be 

to keep all the match values in a neighbourhood about the no-motion sub-area and fit a 

three-dimensional interpolant to estimate the true location to greater precision. As long as the 
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behaviour of the match in the sub-area is relatively smooth this should also improve the overall 

resolution of the algorithm in the situation where there is detectable interframe motion. 

8.2.1 Adaptive Enhancements 

None of the enhancements suggested m the previous section will be of much value if the 

landmark points placed by the operator are poorly chosen. Ideally, defming the features or the 

vertebra should be automated and not require any operator input. In the research to date this has 

not been investigated. A number of adaptive enhancements are possible all based on the methods 

developed in chapter 5 to access the performance of the match statistics. 

The following elements of the algorithm could be made adaptive: 

• Tune initial track point placement - At the start of the tracking procedure search locally 

about the user placed points and adjust their position to ensure that there is good 

selectivity in both the forward and backward interframes. 

• Tune the track points as the algorithm proceeds to minimise feature mis-match and 

compensate for feature contrast changes. 

For a given feature match statistic, the track point placement can be optimised by a combination 

of shifting the location and changing the size and shape of the sub-templates . Although this 

appears to be a computationally significant task, in practice, this will not be the case if a little 

a priori knowledge is applied. Firstly the maximum size of the sub-template is governed by how 

much rotation is expected in the current interframe and how close the nearest interfering feature 

is. The expected rotation can be estimated from the motion prediction values while the proximity 

to the nearest feature can be easily determined if all the vertebra have been defined as being of 

interest, which is usually the case. The shape of the sub-templates can also be significantly 

constrained using geometric knowledge about where a sub-template is relative to the underlying 

structure. Due to local point syrmnetry, sub-templates near the corners of the front of a vertebral 

body are likely to be best represented by a square window. Sub-templates positioned along the 

sides of the vertebrae are more likely to be represented by a suitably oriented rectangular 

window. 

Without motion prediction, it was found during the testing of the motion-tracking algorithm that 

sometimes the best-match for a fast moving feature was detected far from the true match 

position. This usually occurred over only a few frames in which a new feature was locked onto 

or by the algorithm randomly moving the object template about in an attempt to fmd the best 

match to the previous location. This was due to the relative selectivity of the sub-templates and 

the effects of nearby strong features. With good motion prediction this problem should be 

eliminated. There remains the possibility that a mis-match could occur and invalidate the final 
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results. One solution may be to set a threshold on the minimum selectivity of an object template 

corresponding to reliable tracking. If this threshold is violated part way through the sequence, 

then the operator can be warned and asked if they wish to continue. 

8.3 Future Work 

For a spinal health care practitioner a system that is able to measure the internal motion of the 

spine in a relatively non-invasive way is of great importance. Such a system has the potential to 

increase the understanding of the motion of the human spine. It is likely that, it is the patterns of 

motion or motion signatures that will provide the clue to the diagnosis of patient condition [8.4] .  

The challenge will be for professionals to identify appropriate operational techniques and to link 

these measurements both to diagnosis and subsequent treatment. For example, the use of the 

system may enable a professional to embark upon a program of planned preventive maintenance 

to avoid impending dysfunction. This could be possible since the motion signatures contain 

trends which may be extrapolated using suitable statistical analysis to predict potential failure. It 

is l ikely that archives of past tests will be most useful in this manner. 

Several secondary measures can be derived from basic trajectory data that may also contain the 

key information both for predicting potential dysfunction and characterising existing conditions. 

In section 7.2.3 of chapter 7, instantaneous centres of rotation (lCR's) were presented as a way 

of detecting vertebral instability. More useful and fundamental information may be obtained by 

determining the acceleration profiles of the vertebrae. When this is combined with an estimate of 

the relative mass of a vertebra, perhaps determined from the integrated optical density (IOD) of 

the feature, dynamic force estimate may be possible. This is feasible since the recorded image 

intensity is a measure of bone density. 

Three generic digital image processing based techniques have been developed during this 

research, they are: 

1 .  Motion-tracking based on the GLST algorithm 

2. Generation of prescribed motion sequences using digital image warping 

3 .  Object orientation measurement using the simple Fold-and-Match algorithm 

The good performance and low computational cost of the GLST algorithm may make it a 

suitable candidate for real-time applications. The adaptation of image warping techniques to 

produce sequences with prescribed motion can be applied to a wide range of situations where an 

image based motion measurement system is being developed. The robustness of the simple 

fold-and-match algorithm may provide a better understanding of how the human visual system 

determines object orientation but this theory needs to be investigated. 
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So in conclusion, this research has resulted in the development of a set of specialised tools for the 

measurement of spinal motion from cineradiographic sequences. These tools also include an 

animation component for creating prescribed motion sequences that can be used for the 

evaluation of future algorithms. 

All that is now required for the realisation of a system of practical use is the implementation of 

the algorithmic enhancements discussed in this chapter. 
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Appendix A 
Gradient Mask Derivation 

A.I Introduction 

This appendix contains the derivation of several of the small-window gradient-masks 

traditionally used in low-level edge detection algorithms. 

A.2 Curve Fitting Problem 

In order to compute a partial derivative about any point in an image, a function describing how 

the intensity varies with position is required. A polynomial function approximation can be found 

in a real image by initially fitting a low-order function and then testing for overall 

goodness-of-fit. The polynomial order is then increased until a satisfactory fit is obtained. 

Usually this approach results in a unique function for every pixel in the image from which the 

gradient can be computed. This variable-order surface fitting method has been used by Besl and 

Jain [A. I ]  for the segmentation of images with good success. However an alternative to 

continuously computing a new function at each location is to assume a specific order of function 

holds for the image as a whole and compute a generalised algebraic equation that uses weighted 

pixel intensities to evaluate the local gradient. 

A.2.1 Curve Fitting Formulation 

Let W be a window (mxn) in the Euclidean image plane to which a 2-D function or surface is to 

be fitted. It can be shown [A. l ]  that an order N polynomial surface function, of the general form 

N N 
SN (X, y) = L L CkJXkyl eq. A.I  

k=O 1=0 

where ckl are the polynomial coefficients and where the total number of coefficients is given by 

N 
Nc = L (k + l) eq. A.2 

k=O 
Equation A. I is linearly parameterisable and can be written in matrix form as: 

Ax = b eq. A.3 
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112 • • •  Imn ] , Iij = intensity at each (x, y) location in W where: bT = [ II I  
xT = [ci c2 • • •  cNc ] ' cj = polynomial coefficients, and A = position coefficient matrix 

The number of discrete locations in W must be at least as large as the number of polynomial 

coefficients for there to be a unique solution. Generally there are more rows than colunms in A 
and thus the system is over-determined. A best solution can be sought by choosing vector x 

such that the residual vector R given by equation A.4 , is minimised in some way. 

R = Ax - b  eq. A.4 

The most commonly used numerical measure of goodness-of-fit is the least-squares criterion. A 

unique least-squares solution for an arbitrary right-hand side can be obtained using the 

Moore-Penrose generalised inverse [A.2] 

! ( T )-1 T 
where A = A A A 

A.2.2 Application to Gradient Masks 

Taking an Nth order 2-D polynomial 

SN(X, y) = Coo + clOx + C01Y + C20X2 + co2l +Cl lxy+' "  

and partially differentiating with respect to x and y gives 

Evaluating these partial derivatives at the origin (0,0) results in, 

aSN I _ dx - clO and 
(0.0) 

= COl dy (0.0) 

eq. A.5 

eq. A.6 

eq. A. 7 

eq. A.8 

eq. A.9 

This implies that by choosing the geometric centre as the origin when fitting the surface 

polynomial to an arbitrary window, the linear coefficients clO and COl represent approximations 

to the x and y gradients at the centre of the window. This approach can be extended (with 

caution) to higher order gradients. 

If a generalised inverse is used to solve the polynomial fitting problem. then the polynomial 

coefficients and hence the gradient estimates can be found for any arbitrary b vector of pixel 

intensities. 
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Alternative Orthogonal Formulation 

If the window W is square (as is commonly the case) then there is an alternative set of orthogonal 

axes to those aligned with the pixel grid. These axes are aligned with the diagonals of the grid 

and due to symmetry should be of equal merit. 

Mathematically using the diagonal axes can be realised by rotating the original axes by 45° 

about the origin of the window [A.3], 

[x] [ cos 45 

Y New - -sin 45 
sin 45][X] 
cos 45 Y Old 

eq. A.JO 

and then using these new co-ordinates to compute the position matrix A45 . From this the 

polynomial surface coefficient matrix can be obtained using a generalised inverse. 

A.2.3 Gradient Mask Results 

Shown below in table A. I are the gradient mask pairs for a 2x2 window fitted with a linear 

surface and 3x3 window fitted with quadratic surface, using the generalised inverse approach of 

equation A.5. 

Table A.I 2x2 Window 

0° gradient G2 = ![E o 4 -1  + 1  

90° gradient G -2 IGffiE 
90 - 4' +1 +1 

+45° gradient G2 = ![ill +45 2 - I 0 

-45° gradient 
I tlliIj G�5 = 
2 0 + 1  

3x3 Window 

G' - .!. 0 -
6 

::I 1 G90 = -6 

::I 1 G�5 = -8 

- 1  
- 1  
- 1  

- 1  
0 

+ 1  

0 
- 1  
-2 

-2 
::I 1 G�5 = -

8 
- 1  

0 

0 +1 
0 +1 
0 +1 

-1 - 1  
0 0 

+1 +1  

+1  +2 
0 + 1  

- 1  0 

-1 0 
0 +1 

+1  +2 

Table A.I: Small window gradient mask pairs 

Several of the well known gradient masks appear in this set. In particular the Robert's Product 

G�5 and G�5' smoothed Prewitt G� and G�o ' and the modified Sobel G!5 and G�5 (see chapter 

3 section 3 .2. 1 for full details and references). 



A-4 The Development of Motion-tracking Strategies for Cine radiographic Images 

The output of the modified Sobel masks were combined in a root-mean-square to produce the 

gradient enhanced images of section 7.2.4 in chapter 7. 

A.3 References 

[A I ]  Besl P.J. and Jain R.C. Segmentation Through Variable-Order Surface Fitting. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 2, 

pp 1 67 .. 92, March 1 988.  

[A2] Ben-Israel A. and Greville T.N.E. Generalised Inverses - Theory and Applications. 

Wiley Interscience, pp. 103 .. 1 58,  1974. 

[A3] Numerical Analysis, 2nd Ed. ,  Schaum's Outline series in Mathematics. McGraw-Hill, 

pp 405 . . 449, 1982. 



Appendix B 
Computational Cost Calculations 

B.I Introduction 

This appendix contains details of the computational cost calculations for the four match statistics 

described in chapter 5 and also the complete motion-tracking algorithm described in chapter 7.  

B.2 Match Statistic Calculations 

The first of the match statistics is the mean absolute difference (MAD) given by 

eq. B. l 

At each pixel in the mxn window one subtraction is performed, followed by an absolute function. 

If an absolute function is computationally equated to half an addition and a subtraction equal to 

an addition, then so far there are 1 .5 mn additions. The absolute pixel differences are then 

accumulated, another mn additions and finally the result is divided by the number of pixels, one 

multiplication and one division. The division is a floating point operation and can be equated to 

approximately 1 0  long integer multiplications on modern micro processors. Thus the total 

computational cost of the MAD match is: 

Additions = 1 .5 mn + mn = 2.5 mn Multiplications = 1 + 1 0  = 1 1  

The second match statistic is the root-mean-square (RMS) and is given by 

1 ( m  n ) RMS = mn ��[�(i,j) - Ak+l (i, j)]2 eq. B.2 

At each pixel in the mxn window one subtraction is performed and the result is multiplied by 

itself to form the square resulting in mn additions and mn multiplications.  The squared pixel 

differences are then accumulated, another mn additions and the square root of the accumulated 

result taken. The square root is another floating point operation and can be equated to 

approximately 1 5  long integer multiplications. Finally the result is divided by the number of 

pixels, one multiplication and one floating point division equivalent. This gives the estimates of 

the total computational cost of the RMS match as: 
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Additions = mn + mn = 2mn Multiplications = mn + 15 + 1 0  = mn + 25 

The third match statistics investigated in chapter 5 was the normalised product correlation 

(Corr) which is given by equation B3. 

m n 

L:2)�(i,j) * �+l (i, j)] 
eq. B.3 

The top line of this equation requires mxn multiplications and mn additions. The bottom line 

requires each value in the target and reference window to be squared and accumulated adding 

2 x (mn multiplications + mn additions). A product of these resultant sums is then formed and 

the square root taken, another 1 + 1 5  long integer multiplication equivalents. Finally the top line 

result is divided by the bottom line, adding a further 1 0  multiplications to produce a total 

computational cost of: 

Additions = mn + 2 mn = 3mn Multiplications = mn + 2mn + 1 6  + 10  = 3 mn + 26 

The forth and final match statistic evaluated in chapter 5 was based on a normalised product 

correlation of the first six central moment invariants listed below in table B. 1 .  

¢I = J.12.0 + J.10.2 
Second-order moments (u+v=2) ¢2 = (J.12.0 - J.10.2 )

2 
+ 4J.1�., 

¢3 = (J.13.0 - 3J.11.2 )
2 

+ (J.10.3 - 3J.12.1 f 
Third-order moments (u+v=3) ¢4 = (J.13.0 + J.11.2 )

2 
+ (J.10.3 + �.I )

2 

¢5 = (J.13.0 - 3 J.11,2 ) (J.13.0 + J.11.2 ) * 

[(J.13.0 + J.11.2 )
2 

- 3(J.12.1 + J.1oJ
2

] 

+ (J.10.3 - 3 J.12.1 )(J.10.3 + J.12.1 ) * 

[(J.10.3 + J.12.1 )
2 

- 3(/11.2 + J.13.0)
2
] 

¢6 = (J.12.0 - J.10.2 )[ (J.13.0 + J.11.2 )
2 

- (J.12.1 + /10.3 )
2
] 

+ 4J.11,1 (J.13.0 + J.11.2 )(/10.3 + J.12.1 ) 

Table B.t: Central moment invariants 

The central moments are computed from equation B.5 using the centroid coordinates calculated 

from the zero and first order moments of equation BA. If the centroid coordinates are 

approximated by rounding to the nearest integer then the majority of the remaining operations 

can be formed in integer arithmetic and not floating point. On this basis the computational cost 

of second and third order central moments has been calculated and is summarised in table B.2. 
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mu,v = LLfCx, y) xUyV u, V = 0, 1, 2, . . .  
R 

J.1p,q = L 2 )Cx - xYCy - y)q fCx, y)] R 
where x = m1,o / %,0 and y = %.1 / %,0 ' 

Central moment Computational Cost 

Additions Multiplications J.11 1 3 mn 2 mn J.102 mn mn J.120 mn mn J.112 3 mn 3 mn J.121 3 mn 3 mn J.103 mn 3 mn J.130 mn 3 mn 

Table B.2: Second and third order central moments - computational cost 

B-3 

eq. B.4 

eq. B.5 

Combining the central moments together to produce the first six moment invariants adds further 

computational cost. The total cost of each moment invariant is summarised in table B.3 below, 

Central moment Total Computational Cost 

invariant Additions Multiplications 0/1 2 mn + 1 2 mn 

0/2 5 mn + 2 4 mn +  3 0/3 5 mn +3 9 mn + 4  0/4 5 mn +3 9 mn + 2  0/5 8 mn + 1 0  1 2 mn +  1 2  0/6 8 mn +7 1 2  mn + 6 

Total Sum 33 mn + 26 48 mn + 27 

Table B.3: Central moment invariant total computational cost 

The final stage of the moment invariant match statistic calculation is to combine the SIX 

invariants in a normalised product correlation as given by equation B.6. 

6 
� [o/k (i) * o/k+1 (i)] 

MCor = -;==d:i-�1 ==========;= (�[Mi)l' * �[CPk+, (i)12 ) eq. B.6 
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Based on the calculations for the Corr measure this adds a further 3x6 = 1 2  additions and 3x6 

+ 1 5  + 10 = 43 multiplication equivalents. Thus the final computational burden for the moment 

invariant based match is: 

Additions = 33 mn + 26 + 12 = 33 mn + 48 

Multiplications = 48 mn + 27 + 43 = 48 mn + 57 

The total computational cost of the four match statistics is summarised in table B . 1  below. 

These results are also contained in table 5 . 1  of chapter 5 .  

Statistic Additions Multiplications 

MAD 2.5 mn 1 1  

RMS 2 mn mn + 25 

Corr 3 mn 3 mn + 1 2  

MCo" 33 mn +48 48 mn + 57 

Table B.4: Summary of computational cost of the match statistics 

B.3 Motion-tracking Algorithm Calculations 

The motion-tracking algorithm described and tested in chapter 7 is based on the normalised 

product correlation match. At each location in the search space a match to the object template 

(formed by geometrically locked sub-templates) is computed. Typically six landmark points are 

placed to defined each feature of interest, resulting in a computational cost per feature per search 

location of 

Additions = 6 x (3 mn) = 1 8  mn Multiplications = 6 x (3 mn + 1 2) = 1 8  mn + 72 

Based on the default tracking parameters (TranslationStep=0.5 pixels, TranslationRange=5 

pixels, RotationStep=lo,  RotationRange=±5° , WindowRadius=5 pixels) given in section 7.4 of 

chapter 7, the total computational cost per feature best-match search is computed as follows: 

Additions = ( 1 8  x l 1x l l )  x (2 x 5/0.5) x (2 x 5/1 )  = 435600 / '/ / 
window size Iranslation steps rotation steps 

Multiplications = ( 1 8  x l lx l l + 72) x (2 x 5/0.5) x (2 x 5/1) = 450000 / / / 
window size translation steps rotation steps 

In practice this cost is reduced substantially since as the object template is moved from position 

to position in the search space only a few of the sub-templates actually change position on the 

integer pixel grid. Only those sub-templates that change position with respect to the previous 
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search space location need to be recomputed. Also, with good motion prediction further 

reductions can be made as the translation and rotation range that define the sub-region in the 

search space will be smaller. 

Before each interframe match of the motion tracking algorithm is made, the image is median 

filtered to reduce noise. Only the region of interest containing the features needs to be filtered. 

This is typically only a third of the total image area. A fast histogram modification [B . 1 ,  B.2] 

based implementation was used. This requires approximately the equivalent of 8 long integer 

multiplications per pixel. Thus for an image 255x255 pixels the total equivalent computational 

cost per frame is 

Multiplications = 8 x ( 1 13 x 25Sx2SS) = 1 73000 / / active fraction image size· 

This is about a third of the equivalent computational cost of a typical single feature search 

match. 

Using the default tracking parameters, no motion prediction and with the algorithm implemented 

in 1 6-bit code, it takes approximately 2. 1 seconds per feature match (six landmark points per 

feature) running on a 486 DXSO personal computer. Median filtering the region of interest 

typically take 1 .S seconds. Thus a complete cervical sequence consisting of SO frames and with 

nine features of interest defined, will take 1 7  minutes to track. The code itself has been written 

to multi-task so tracking can occur in the background. This slows things down slightly but 

enables the analysis of the results from a previous sequence while the current sequence is 

tracked. 

B.4 References 

[B .  1 ]  Garibotto G. and Lambarelli L. Fast on-line impLementation of two-dimensionaL 

median fiLter. Electronics Letters Vol. 1 6, pp 24 .. 2S, January 1 979. 

[B .2] Ataman E., Aatre V.K. and Wong K.M. A fast method for real-time median 

filtering. IEEE Transactions on Acoustics, Speech and Signal Processing. Vol 27, pp 

1 3  . .  8 ,  1 979. 
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Appendix C 

Pascal Source Code 

This appendix contains the majority of the important pascal language (Borland Pascal 7.0) 

source code that was written by the author during the course of the research.  It is included in its 

entirety for the following reasons: 

(iF Completeness -

Excluding the two units WarpFtns and Opt_Tri which were produced from code 

fragments of C language source, all the remaining code was written by the author. 

(iF Reduce the frustration of other researchers -

This researcher was frustrated by published code said to be complete that was full of 

errors. The majority of the errors were incorrect syntax, presumably due to some other 

person manually re-typing the source code and it not being re-checked. All the code 

presented in this appendix is the original working code. A special high-lighting macro 

was written in MS Word to format the plain text in a similar fashion to modern 

computer language editors. Bold is used for key words and Italics for comments. 

(iF An opportunity to place movie into the thesis -

The research described in this thesis is all about motion yet without a computer it is 

difficult to demonstrate what is a very visual experience. This is compounded by that 

fact the motion of interest is contained in cineradiographic X-ray sequences of the 

human spine, not something of everyday experience. In an attempt to give the reader an 

opportunity for interaction with this piece of work two short animations have been 

included. This has been achieved by the age-old method of the cartoon strip. 

© Reader Interaction Instructions 

Holding the volume in its normal position and with fingers held lightly on the bottom 

right hand edge of this page. Gently release the pressure and allow the pages to flick by 

while looking at the images. Do the same thing again but this time with the volume on 

its back and starting from page C-70. The odd page sequence will run in reverse and 

contains single-cycle linear prescribed motion for C2 and C5. The even page sequence 

contains full prescribed motion based on trajectories measured in a real sequence. 

Rotallon n 0 

Wa�60�====================�==============d 
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C.I Gradient Filters 

The following Pascal unit 'GFilters' implements six different gradient filters that form the basis 
of the low-level edge-detection algorithms described in section 3.2. 1 of chapter 3 .  

unit G F i l ters ; 
{ A range of gradien t based image fi l ters and support functi ons . }  

interface 
uses 

WinCrt ,  WinDos , WinProc s ,  WinTypes , 
PMXProcs , PMXTypes , F i l e s , Global s ,  Images , PMXU t i l s ,  
ImageWH P ,  F i l ters ; 

Procedure Rober tsGradient Image ( InImageH , OutImageH : ImageHandl e ;  Gain : real ) ;  
Procedure Prewi t tGradient Image ( InImageH , Out ImageH : ImageHand l e ;  Gain : real ) ;  
Procedure SobelGradi ent Image ( InImageH , OutImageH : ImageHand l e ;  Gain : real ) ;  
Procedure KirschGradient Image ( InlmageH , Out lmageH : ImageHandl e ;  Gain : real ) ;  
Procedure Lapl aceGradientImage ( InImage H ,  Out lmageH : ImageHandle ;  Gain : real ) ;  
Procedure Stochas t i cGradientImage ( InImage H ,  OutImageH : ImageHandle ; 

WSi z e ,  SNR : byt e ;  Gain : real ) ;  
Procedure LogSca l eImage ( InlmageH , OutlmageH : ImageHandle ; MinValu e ,  MaxValue byte ) ;  

implementation 
{=========================================================================================} 
Procedure RobertsGradientlmage ( InImageH, Out ImageH : ImageHandle ;  Gain : real ) ;  

{ Roberts produc t  gradi en t  fi l t ers InImageH to produce Ou tImageH. i f  Gain = a then 
the image is a u tosca l ed after fi l tering, else if Gain < 0, fi l tered image is 
threshol ded by this val u e  else Gain > 0,  fi l tered image sca l ed by the Gai n ,  truca ted 
if necessary. 

} 
var 

Thres byte ;  
src Image , 
d e s tImage ImageP t r ;  
destPixel P t r ,  
srcPixe l P t r  PBy t e ;  
XSUffi , 
ySum Integer ; 
des tPixe l ,  
rowByteCoun t ,  
x ,  y ,  
MinVal , MaxVal : Word ; 

begin {RobertsGradi en tImage} 
des t lmage := G lobalLoc k (Out ImageH ) ;  
src Image : =  GlobalLock ( InImageH ) ;  
rowByteCount : =  A l i gn3 2 ( de s t Image � . header . s i z e . x ) ; 
if Gain < 0 . 0  then begin ( Threshold fi l tered image wi th val u e  of gain 

Gain : =  abs ( Gain ) ; 
if Gain > Whi t e  then Thres : =  Whi t e  else Thres : =  Trunc ( Gain/ 2 ) ; 
for y : =  0 to dest lmage A . header . s i z e . y  - 2 do begin 

destpixelPtr : =  O f f s et Poin ter ( @de s t ImageA . da t a ,  longin t ( y )  * rowByteCoun t ) ; 
srcPixe l P t r  : =  O f f s e t Pointer ( @src lmageA . data,  l ongin t ( y )  � rowByteCoun t ) ; 
for x : =  0 to dest Image A . header . si z e . x  - 2 do begin 

xSum : =  PByte ( srcPixel P t r ) �  
- PByte ( O f fse tPointer ( src Pixe l P t r ,  rowByteCount + 1 » � ;  

ySum : =  PByt e ( O f fse tPointer ( srcPixe l Pt r ,  1 » � 
- PByte ( O f fse tPointer ( srcPixel Pt r ,  rowByteCoun t » � ;  

d e s t Pixel : =  Trunc ( Sqrt ( Sqr ( Longint ( xSum» + Sqr ( Longint (ySum » » ; 
if des t P ixel > Thres then des tPixel Pt r A  : =  Whi t e  else destpixelPtrA . - B l a c k ;  
des tpixe l P t r  . - O f f s e t Pointer ( destPixe l P t r ,  1 ) ; 
s rc P ixe1Ptr : =  O f f s e t Pointer ( srcPixe 1 P t r ,  1 ) ; 

end; (for x) 
end; ( for y ) 

end ( i f  Gain < 0 . 0  
e l s e  i f  Gain > 0 then begin fi l ter and sca l e  image by gai n ,  trunca te i f  necessary ) 

Gain : =  Gain / 2 ;  ( ensures uni ty gain response ) 

Aotalion ("J 
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for y : =  0 to dest lmage A . header . s i z e . y  - 2 do begin 
destpixe1 Ptr : =  O f f se tPointer ( @dest lmage A . data,  l ongint (y)  * rowByteCount ) ;  
srcPixe 1 Ptr : =  O f fse tPointer ( @ srclmage A . data,  longint (y)  * rowByteCount ) ; 
for x : =  0 to des t lmageA . header . s i ze . x  - 2 do begin 

C-3 

xSum : =  PByte ( srcPixelPtr)  A - PByte (Offse tPointer ( srcPixe 1 Ptr,  rowByteCount + l ) ) A ; 
ySum : =  PByte (OffsetPointer ( srcPixe1Ptr,  l ) ) A  

- PByte (Of fsetPointer ( srcPixe1Ptr , rowByteCoun t )  ) A ;  
destPixel : =  Trunc (Gain * Sqrt ( Sqr ( longint ( xSum) ) + Sqr ( longint (ySum ) ) ) ) ;  
if des tPixel > Whi t e  then des tpixe1PtrA : =  Whi t e  
e l s e  des tPixelPtrA : =  des tPixe 1 ;  
des tPixe l Ptr : =  O f fsetPointer ( destPixe 1 P t r ,  1 ) ; 
srcPixe 1 Ptr : =  Of fsetPointer ( srcPixe 1 P t r ,  1 ) ; 

end; (for x) 
end; ( for y ) 

end ( i f  Gain > O )  
e l s e  begin ( Gain = 0 ,  -> Auto -scale after fil tering ) 

MinVa1 : =  2 *Maxln t ;  
MaxVa1 : =  0 ;  
for y : =  0 to destlmageA . header . s i ze . y  - 2 do begin ( find min and max val ues 

destPixe 1 Ptr : =  Offse tPointer ( @destlmage A . data ,  longint (y )  * rowByteCount ) ; 
srcPixe1Ptr : =  OffsetPointer ( @ srclmage A . data,  longint (y )  * rowByteCoun t ) ; 
for x : =  0 to dest lmageA . header . s i ze . x  - 2 do begin 

xSum : =  PByte ( srcPixelPtr ) A  
- PByte ( O f f setPointer ( srcPixe1Ptr , rowByteCount + l ) ) A ; 

ySum : =  PByte (Of fsetPointer ( srcPixelPtr,  l ) ) A  
- PByte ( O f f setPointer ( srcPixe 1 P t r ,  rowByteCoun t ) ) A ;  

dest Pixel : =  Trunc ( Sqrt ( Sqr ( longint ( xSum ) ) + Sqr ( longint (ySum) ) ) ) ;  
i f  des tpixe1 > MaxVal then MaxVa1 : =  des tPixe 1 ;  
i f  dest pixel < MinVal then MinVal : =  des tPixe 1 ;  
destpixelPtr : =  O f f setPointer ( des tPixe 1 P t r ,  1 ) ; 
srcpixelPtr : =  O f fsetPointer ( srcPixelPtr,  1 ) ; 

end; (for x) 
end; ( for y ) 
wri teln (MaxVal , ' ,  ' , MinVal ) ;  

for y : =  0 to des tlmage A . header . s i z e . y  - 2 do begin ( fi l ter and sca l e  the image) 
destpixel Ptr : =  Offse tPointer ( @destlmage A . data,  longint (y )  * rowByteCount ) ;  
srcPixe1 Ptr : =  Offse tPointer ( @srclmageA . data,  longint (y)  * rowByteCoun t ) ; 
for x : =  0 to destlmage A . header . s i ze . x  - 2 do begin 

xSum : =  PByte ( srcPixelPtr ) A 
- PByte (Offse tPointer ( srcPixe l Pt r ,  rowByteCount + 1 )  ) A ;  

ySum : =  PByte ( O f fsetPointer ( srcPixelPtr,  l ) ) A  
- PByte (Of fsetPointer ( srcPixe1Ptr , rowByteCoun t ) ) A ; 

des tPixel : =  Trunc ( Sqr t ( Sqr ( Longint ( xSum ) ) + Sqr ( Longint (ySum) ) ) ) ;  
destpixelPtrA : =  ( longint (Whi t e ) * ( des tPixel - MinVal ) )  div ( MaxVa1 -MinVa1 ) ;  
destPixel Ptr . - Offse tPointer ( destPixelPtr,  1 ) ; 
srcPixelPtr : =  Offse tPointer ( srcPixelPtr,  1 ) ; 

end; (for x) 
end; ( for y ) 

end; ( else -> Gain <0 ) 
G1obalUn1ock ( InlmageH ) ; 
G1oba1Un1ock (OutlmageH ) ;  

end; (RobertsGradi en tImage) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 

Procedure Prewi t tGradientImage ( InImageH , Ou tlmageH : ImageHandl e ;  Gain : real ) ; 
( Prewi t t  gradi en t fi l ters InImageH to produce Ou t ImageH. If Gain = 0 then the image 

is a u t oscaled after fi l tering, else if Gain < 0, fi l tered image is threshol ded by 
this val u e  else Gain > 0,  i fi l tered image sca l ed by the Gai n ,  truca ted i f  necessary. ) 

var 
srcPixe 1 ,  
Thres Byt e ;  
srclmage , 
des tlmage ImagePtr;  
des tPixe 1 P t r ,  
srcPixe lPtr PByte ;  
xSum , 
ySum Intege r ;  
destPixe 1 ,  
rowByteCoun t ,  
x , y ,  
MinVal , MaxVal Word ; 



C-4 The Development of Motion Tracking Strategies For Cineradiographic Images 

Procedure CalcGradi ent ; 
begin 

xSurn : = 0 ;  
ySurn : = 0 ;  
Inc ( xSurn , Word ( PByte (OffsetPointer ( srcPixelPtr,  - l ) ) A ) ) ;  
srcPixel : =  PByt e ( O f fsetPointer ( srcPixe lPtr,  - rowByteCount - l ) ) A ; 
Inc ( xSurn , srcPixe l ) ;  
Inc (ySurn , srcPixe l ) ;  
Inc (ySurn, Word ( PByte ( O f fsetPointer ( srcPixel Ptr,  - rowByteCount ) ) A ) ) ;  
srcPixe l : =  PByte ( O f fse tPointer ( srcPixe lPtr,  rowByteCount - l ) ) A ; 
Inc ( xSurn , srcPixe l ) ;  
Dec (ySurn, srcPixel ) ;  
srcpixel : =  PByte ( O f fse tPointer ( srcPixe l P t r ,  - rowByteCount + l ) ) A ; 
Dec ( xSurn , srcPixe l ) ;  
Inc (ySurn, srcPixel ) ;  
Dec ( ySurn , Word ( PByt e ( O f fse tPointer ( srcPixel Ptr,  rowByteCoun t )  ) A ) ) ;  
srcPixel : =  PByt e ( O f fsetPointer ( srcPixel P t r ,  rowByteCount + l ) ) A ; 
Dec ( xSurn , srcPixe l ) ;  
Dec (ySurn , s rcPixe l ) ; 
Dec ( xSurn , Word ( PByte ( Of f se tPointer ( srcPixel P t r ,  l ) ) A ) ) ;  

end; {Cal cGradi en t }  

begin {Prewi t tGradien tImage} 
des t Image : =  GlobalLock ( Out IrnageH ) ;  
src Irnage : =  GlobalLock ( InIrnageH ) ;  
rowByteCount : =  Al ign3 2 ( de s t IrnageA . header . s i z e . x ) ; 
if Gain < 0 . 0  then begin { threshold image a fter fi l ter} 

Gain : =  abs ( Gain ) ;  
i f  Gain > Whi t e  then Thres : =  Whi t e  else Thres : =  Trunc ( Ga in ) ; 
for y : =  1 to dest lrnage A . header . si z e . y  - 2 do begin 

1 0 -1 
1 0 - 1 
1 0 - 1 

destpixelPtr : =  O f f se tPointer ( @de s t lrnage A . data , longint ( y )  * rowByteCount + 1 ) ; 
srcPixe lPtr : =  Of fse tPointer ( @srclrnageA . data , longint ( y )  * rowByteCount + 1 ) ; 
for x : =  1 to destIrnage A . header . s i z e . x  - 2 do begin 

Cal cGradien t ;  
des t Pixel : =  Trunc ( Sqrt ( Sqr ( Longint ( xSurn) ) + Sqr ( Longint (ySurn ) ) ) ) ;  
if des t pixel > 3 * Thres then des tPixelPtrA : =  Whi te 
e l s e  des tPixe l PtrA : =  Black;  
destPixe l Ptr . - Offse tPointer ( des tPixe l P t r ,  1 ) ; 
src PixelPtr : =  Offse tPointer ( srcPixel P t r ,  1 ) ;  

end; {for x} 
end; { for y } 

end { i f  Gain < 0 
e l s e  if Gain > 0 . 0  then begin { fi l ter and sca l e  image by gai n ,  trunca te i f  necessary } 

Gain : = Gain I 3 ;  { ensures uni ty response } 
for y : =  1 to destlrnageA . header . s i z e . y  - 2 do begin 

destpixelPtr : =  O f f s etPointer ( @de s tlrnageA . data , longin t (y)  * rowByteCount + 1 ) ; 
srcPixe 1Ptr : =  Of fse tPointer ( @ srclmageA . da t a ,  longint ( y )  * rowByteCount + 1 ) ; 
for x : =  1 to des tlrnage A . header . s i z e . x  - 2 do begin 

Cal cGradi en t ;  
des tpixel : =  Trunc ( Gain * Sqr t ( Sqr ( Longint ( xSurn) ) + Sqr ( Longint ( ySurn ) ) ) ) ;  
if des tPixel > Whi t e  then destPixe l PtrA : =  Whi te 
e l s e  destPixelPtrA : =  destPixe l ;  
destpixelPtr . - O f f s e tPointer ( des tPixel P t r ,  1 ) ; 
srcPixe lPtr : =  O f f s e tPointer ( srcPixe 1Ptr,  1 ) ; 

end; {for x} 
end; { for y } 

end {else i f  Gain > O . O} 
e l s e  begin { Gain = 0 . 0  -> a u t osca l e  } 

MinVal : =  2 *Maxlnt ;  
MaxVal : =  0 ;  
for y : =  1 to dest Irnage A . header . si z e . y  - 2 do begin { find min and max val ues } 

destPixelPtr : =  O f f s e tPointer ( @des tlrnageA . da t a ,  longint ( y )  * rowByteCount + 1 ) ; 
srcPixel Pt r  : =  O f f s e tPointer ( @srcIrnageA . da t a ,  l ongint (y)  • rowByteCount + 1 ) ; 
for x : =  1 to des tlrnageA . header . s i z e . x  - 2 do begin 

Cal cGradien t ;  
des tp ixel : =  Trunc ( Sqrt ( Sqr ( Longin t ( xSurn ) ) + Sqr ( Longint (ySurn) ) ) ) ;  
i f  des tpixel > MaxVal then MaxVal : =  des t Pixe l ;  
i f  des tPixel < MinVal then MinVal : =  des tPixe 1 ;  
destPixelPtr : =  Offse tPointer ( destPixe l P t r ,  1 ) ; 
srcPixe lPtr : =  O f f s e tPointer ( srcPixe lPtr,  1 ) ; 

end; { for x} 
end; { for y } 
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Appendix C - Pascal Source Code 

for y : =  1 to dest Image A . header . s i z e . y  - 2 do begin 
destPixe l P t r  : =  Offse tPointer ( @de s t Image A . da t a ,  1ongint (y) * rowByteCount + 1 ) ; 
srcpixel Pt r  : =  OffsetPointer ( @ srcImageA . data , l ongint (y) * rowByteCount + 1 ) ; 
for x : =  1 to des tImage A . header . s i z e . x  - 2 do begin 

CalcGradien t ;  
des t pixel : =  Trunc ( Sqrt ( Sqr ( Longint (xSum ) ) + Sqr ( Longint (ySum ) ) ) ) ;  
des tPixelPtrA : =  ( longint (Whi te ) * ( des tPixel - MinVa l ) ) div (MaxVa l -MinVa l ) ;  
destPixelPtr : =  OffsetPointer ( des t Pixe l P t r ,  1 ) ; 
s rcPixe l Ptr : =  OffsetPointer ( srcPixe l P t r ,  1 ) ; 

end; ( for xj 
end; { for y } 

end; ( else Gain = 0 . 0 ) 
Gl obalUn lock ( InImageH ) ; 
Gl obalUnlock ( Ou tImageH ) ;  

end; (Prewi t tGradien tImage) 

C-5 

( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Procedure SobelGradientImage ( InImageH , Out ImageH : ImageHandle ;  Gain : real ) ;  

( Sobel gradien t fi l ters InImageH t o  produce Ou tImageH. If Gain = 0 then the image i s  
a u tosca l ed after fi l tering, else i f  Gain < 0 ,  fi l tered image i s  thresholded by this 
val ue else Gain > 0, fi l tered image scaled by the Gain,  truca ted if necessary. 

var 
srcPixel ,  
Thres Byte ;  
srcImage , 
dest Image ImagePtr ; 
destPixe l P t r ,  
srcPixe l Ptr PByte ;  
xSum , 
ySum Intege r ;  
destPixe l , 
rowByteCoun t ,  
x , y ,  
MinVa l , MaxVal : Word ; 

Procedure CalcGradient ; 
begin 

xSum : = 0 ;  
ySum : =  0 ;  
Inc ( xSum , 2 * Word ( PByte (Offse tPointer ( srcPixel Pt r ,  - 1 ) ) A ) ) ;  
srcPixel : =  PByte (OffsetPointer ( srcPixe l P t r ,  - rowByteCount - 1 ) ) A ; 
Inc (xSum , srcPixe l ) ; 
Inc (ySum , s rcPixe l ) ;  
I nc ( ySum , 2 * Word ( PByte (Offse tPointer ( srcPixe l P t r ,  - rowByteCount )  ) A ) ) ;  
srcPixe l : =  PByte (OffsetPointer ( srcPixe l P t r ,  rowByteCount - 1 ) ) A ; 
Inc ( xSum , srcPixe l ) ;  
Dec (ySum , srcPixe l ) ;  
srcPixel : =  PByte (Of fse tPointer ( srcpixelPtr , - rowByteCount + 1 ) ) A ;  
Dec (xSum ,  s rcPixe l ) ;  
Inc (ySum, srcPixel ) ;  
Dec ( ySum , 2 * Word ( PByte ( O f fse tPointer ( srcPixe l P t r ,  rowByteCoun t ) ) A ) ) ;  
s rcpixel : =  PByte (OffsetPointer ( srcPixe l P t r ,  rowByteCount + 1 ) ) A ;  
Dec ( xSum, srcPixe l ) ; 
Dec (ySum , srcPixe1 ) ;  
Dec (xSum , 2 * Word ( PByt e (OffsetPointer ( srcPixe l Ptr , 1 )  ) A ) ) ;  

end; (CalcGradien t )  

begin (SobelGradi en t Image) 
destImage : =  GlobalLock ( Out ImageH) ; 
src Image : =  GlobalLock ( InImageH) ; 
rowByteCount : =  Align3 2 ( dest Image A . header . s i z e . x ) ; 
i f  Gain < 0 . 0  then begin ( threshold image after fil ter 

Gain : =  abs ( Gain ) ;  
i f  Gai n > Whi t e  then Thres : =  Whi t e  else Thres : =  Trunc ( Gain ) ;  
for y : =  1 to dest ImageA . header . s i z e . y  - 2 do begin 

1 0 -1 
2 0 -2 
1 0 -1 

destpixe1Ptr : =  O f fsetPointer ( @de s tImage A . da t a ,  1ongint (y )  * rowByteCount + 1 ) ; 
srcPixe1Ptr : =  OffsetPointer ( @src ImageA . da t a ,  1ongint (y )  * rowByteCount + 1 ) ; 
for x : =  1 to des tImageA . header . s i z e . x  - 2 do begin 

CalcGradient ; 
des tPixe1 : =  Trunc ( Sqrt ( Sqr ( Longint (xSum ) ) + Sqr ( Longi n t (ySum) ) ) ) ;  
i f  dest Pixe1 > 5 * Thres then des tPixe 1 PtrA : =  Whi te 
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C-6 The Development of Motion Tracking Strategies For Cineradiographic Images 

e l s e  destpixe lPtrA  : =  Black;  
destpixelPtr . - Offse tPointer ( destPixe l Ptr , 1 ) ; 
srcPixelPtr : =  OffsetPointer ( srcPixel P t r ,  1 ) ; 

end; ( for x) 
end; { for y } 

end (i f Gain < 0 . 0  
e l s e  i f  Gain > 0 . 0  then begin ( fi l ter and sca l e  image by gai n ,  trunca te i f  necessary) 

Gain : = Gain / 5 ;  ( ensures uni ty response ) 
for y : =  1 to dest IrnageA . header . s i z e . y  - 2 do begin 

des tPixe l P t r  : =  O f fse tPointer ( @dest Irnage A . da t a ,  longin t (y) * rowByteCount + 1 ) ; 
srcPixe l Ptr : =  O f fse tPointer ( @srclrnage A . da t a ,  l ongint (y)  * rowByteCount + 1 ) ; 
for x : =  1 to dest IrnageA . header . si ze . x  - 2 do begin 

CalcGradi en t ;  
dest Pixel : =  Trunc (Gain * Sqrt ( Sqr ( Longint ( xSurn ) ) + Sqr ( Longint ( ySurn) ) ) ) ;  
i f  destpixel > Whi t e  then des t pixe l PtrA : =  Whi t e  
e l s e  destPixe l PtrA : =  destpixe l ; 
des t pixelPtr : =  OffsetPointer ( des tPixe l P t r ,  1 ) ; 
srcPixe l P t r  : =  Offset Pointer ( srcPixe l P t r ,  1 ) ; 

end; (for x) 
end; ( for y ) 

end {else i f  Gain > O . O } 
e l s e  begin { Gain = 0 . 0 -> au tosca l e  after fi l ter } 

MinVal : =  2 *Maxlnt ; 
MaxVal : =  0 ;  
for y : =  1 t o  des tlrnage A . header . s i z e . y  - 2 do begin ( find min and max val u es ) 

destPixelPtr : =  Offse tPointer ( @destlrnage A . da t a ,  l ongin t (y )  * rowByteCount + 1 ) ; 
srcPixel Ptr : =  Offse tPointer ( @src Irnage A . da t a ,  longint (y)  * rowByteCount + 1 ) ; 
for x : =  1 to dest Irnage A . header . s i z e . x  - 2 do begin 

CalcGradien t ;  
des t p ixel : =  Trunc ( Sqrt ( Sqr ( Longint (xSurn ) ) + Sqr ( Longint (ySurn) ) ) ) ;  

i f  destpixel > MaxVal then MaxVal : =  destPixe l ;  
i f  des tpixel < MinVal then MinVal : =  des tpixe l ;  
dest pixe l P t r  : =  Offse tPointer ( des tPixe l Ptr , 1 ) ; 
srcPixe l Ptr : =  Offset Pointer ( srcPixel Pt r ,  1 ) ; 

end; (for x) 
end; {for y} 

wri teln (MaxVal , ' ' , MinVal ) ;  
for y : =  1 to des tlrnage A . header . s i z e . y  - 2 do begin { fi l ter and sca l e  the image } 

destPixelPtr : =  O f f s e t Poin ter ( @dest lrnage A . data,  longin t (y) * rowByteCount + 1 ) ; 
s rcPixe l Ptr : =  Offse tPoint er ( @src lrnage A . da t a ,  l ongint (y) * rowByteCount + 1 ) ; 
for x : =  1 to dest lrnage A . header . s i z e . x  - 2 do begin 

CalcGradi en t ;  
des tpixel : =  Trunc ( Sqrt ( Sqr ( Longint ( xSurn ) ) + Sqr ( Longint (ySurn) ) ) ) ;  
des tpixe l P t r A  : =  ( longint (Wh i te ) * ( destPixel - MinVal ) )  div (MaxVal -MinVal ) ;  
des tpixe l P t r  : =  Offse tPointer ( destPixe l Ptr , 1 ) ; 
s rcPixe l P t r  : =  Offse tPointer ( srcPixelPtr , 1 ) ; 

end; { for x} 
end; ( for y) 

end; {else Gain = O . O} 
GlobalUnl ock ( InlrnageH ) ;  GlobalUnloc k ( Ou t lrnageH ) ;  

end; (SobelGradi en t Image) 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 

Procedure KirschGradi ent lrnage ( InlrnageH , Out lrnageH : IrnageHandl e ; Gain : real ) ; 
{ Kirsch compass gradi en t fi l ters InImageH to produce O u t ImageH. If Gain = 0 then the 

image is a u t osca l e d  a fter fi l tering, else if Gain < 0, fi l tered image is thresholded 
by this val u e  else Gain > 0, fi l tered image scaled by the Gai n ,  truca ted if necessary 

var 
srcPixe l , 
Thres Byt e ; 
srclrnage , 
dest lrnage IrnagePt r ;  
des tPixe l P t r ,  
s rcPixel Ptr PByte ;  
xSurn1 , ySurn1 , 
xSurn2 , ySurn2 : I ntege r ;  
destpixe l , 
rowByteCoun t ,  
x , y ,  
MinVal , MaxVal Word ; 
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Procedure CalcGradient ;  
begin 

Appendix C - Pascal Source Code C-7 

xSuml : =  0 ;  
ySuml : =  0 ;  
Inc (xSum1 , Word ( PByte (Offse tPointer ( s rcPixe l P t r ,  - 1 ) ) � ) ) ;  

( 4  Kirsch masks) 
( 1 0 -1 

srcPixel : =  PByte (OffsetPointer ( srcPixe l P t r ,  - rowByteCount - 1 ) ) � ;  
Inc ( xSuml , srcPixe l ) ; 

( 1 0 -1 
( 1 0 - 1 

Inc (ySuml , srcPixe l ) ;  
Inc (ySuml , Word ( PByte (Of fsetPointer ( srcPixe l Pt r ,  - rowByteCount )  ) � ) ) ;  
srcpixel : =  PByte (Of fse tPointer ( srcPixe l Pt r ,  rowByteCount - l ) ) � ; 
Inc ( xSum1 , srcPixe l ) ;  
Dec (ySum1 , src Pixe l ) ;  
s rcpixel : =  PByte (Of fsetPointer ( srcPixe l Ptr , - rowByteCount + l ) ) � ; 
Dec (xSum1 , srcPixe l ) ; 
Inc (ySum1 , srcPixe l ) ;  
Dec (ySum1 , Word ( PByte (Of fsetPointe r ( srcPixe l Pt r ,  rowByteCount ) ) � ) ) ;  
srcPixel : =  PByte ( O f f setPointer ( srcPixe l Pt r ,  rowByteCount + 1 ) ) � ;  
Dec ( xSum1 , srcPixe l ) ;  
Dec (ySuml , srcPixe l ) ;  
Dec ( xSum1 , Word ( PByte ( O f f setPointer ( srcPixe l P t r ,  1 ) ) � ) ) ;  
xSuml : =  abs (xSum1 ) ;  
ySum1 : =  abs (ySum1 ) ;  
xSum2 : =  0 ;  
ySum2 : =  0 ;  
Inc ( xSum2 , Word ( PByte (Of fse tPointe r ( s rcPixel Pt r ,  - rowByteCount - l ) ) � ) ) ;  
srcPixel : =  PByte (OffsetPointer ( srcPixe l Pt r ,  - rowByteCoun t ) ) � ;  
Inc ( xSum2 , srcPixe l ) ;  
Inc (ySum2 , s rcPixe l ) ;  
Inc (ySum2 , Word ( PByte (Off setPointer ( s rcPixe l P t r ,  - rowByteCount + 1 ) ) � ) ) ;  
srcpixel : =  PByte ( O f f se tPointer ( srcPixe lPtr,  - 1 )  ) � ;  
Inc ( xSum2 , srcPixe l ) ; 
Dec (ySum2 , srcPixe l ) ;  
srcPixel : =  PByte (OffsetPointer ( srcPixel Pt r ,  + 1 ) ) � ; 
Dec ( xSum2 , srcPixe l ) ;  
Inc (ySum2 , srcPixe l ) ;  
Dec (ySum2 , Word ( PByte (OffsetPointer ( srcPixe l Ptr , rowByteCount - 1 ) ) � ) ) ;  
srcpixel : =  PByte ( O f fsetPointer ( srcPixe l P t r ,  rowByteCoun t ) ) � ;  
Dec ( xSum2 , srcPixel ) ;  
Dec (ySum2 , srcPixel ) ;  
Dec ( xSum2 , Word ( PByte (Of fse tPointer ( srcPixe l Pt r ,  rowByteCount + 1 )  ) � ) ) ;  
xSum2 : =  abs ( xSum2 ) ;  
ySum2 : =  abs (ySum2 ) ;  

( find largest partial gradi en t ) 
des t pixel : =  xSuml ; 
if ySum1 > des tPixe l then destpixel : =  
if xSum2 > des tpixel then destpixel : =  
if  ySum2 > destPixel then destpixel : =  

end; (Cal cGradi en t )  

begin (KirschGradi en tlmage) 
destImage : =  GlobalLock (OutImageH) ; 
src Image : =  GlobalLock ( InImageH ) ;  

ySuml ; 
xSum2 ; 
ySum2 ; 

rowByteCount : =  Al ign32 ( destImage � . header . s i ze . x ) ; 
if Gai n  < 0 . 0  then begin ( threshold image after fi l ter 

Gain : =  abs (Gain ) ;  
i f  Gain > White then Thres : =  White else Thres : =  Trunc (Gain ) ;  
for y : =  1 to destImage� . header . s i z e . y  - 2 do begin 

1 1 1  
0 0 0  

-1 -1 -1 

1 1 
1 0 
0 -1 

( 0 1 
( -1 0 
( -1 -1 

des t pixe l Ptr : =  O f fsetPointer ( @des tImage � . data, l ongint (y)  * rowByteCount + 1 ) ; 
s rcPixel Ptr : =  O f fsetPointer ( @srcImage� . data, longint (y)  * rowByteCount + 1 ) ; 
for x : =  1 to destImage � . header . s i ze . x  - 2 do begin 

Cal cGradien t ;  
i f  destpixel > 5 * Thres then destPixel Ptr� : =  Whi te 
e l s e  des tPixel Ptr� : =  Black; 
destPixel Ptr . - OffsetPointer ( des tPixe l P t r ,  1 ) ; 
srcPixelPtr : =  OffsetPointer ( srcPixe l Ptr , 1 ) ; 

end; (for x) 
end; ( for y ) 

end ( i f  Gain < 0 . 0 

0 
-1 
-1 

1 
1 
0 

e l s e  if Gain > 0 . 0  then begin ( fi l ter and sca l e  image by gai n ,  trunca te i f  necessary) 
Gain : =  Gain / 5 ;  ( ensures uni ty response ) 
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C-8 The Development of Motion Tracking Strategies For Cineradiographic Images 

for y : =  1 to des t lmage A . header . s i z e . y  - 2 do begin 
destPixe l P t r  : =  OffsetPointer ( @dest lmageA . da t a ,  l ongint ( y )  * rowByteCount + 1 ) ; 
srcPixel P t r  : =  Offse tPointe r ( @srclmage A . da t a ,  longint (y)  * rowByteCount + 1 ) ; 
for x : =  1 to des tlmage A . header . si z e . x  - 2 do begin 

CalcGradien t ;  
des t p ixel : =  Trunc (Gain * destPixel ) ;  
i f  des tpixel > Whi t e  then des tPixelPtrA : =  Whi t e ;  
destPixelPtrA : =  des tPixe l ;  
destPixelPtr . - OffsetPointer ( destPixe l P t r ,  1 ) ; 
srcPixel P t r  . - Offse t Pointer ( srcPixe1Ptr , 1 ) ; 

end; ( for x) 
end; ( for y ) 

end (else i f  Gain > 0 . 0 )  
e l s e  begin ( Gain = 0 . 0  -> a u t osca l e  a fter fi l ter ) 

MinVal : =  2 *Maxln t ;  
MaxVal : =  0 ;  
for y : =  1 t o  dest lmage A . header . s i z e . y  - 2 do begin ( find min and max values ) 

destPixelPtr : =  O f f s e t Pointer ( @de s tlmage A . da t a ,  l ongin t ( y )  * rowByteCount + 1 ) ; 
s rcPixel Ptr : =  O f f s etPointer ( @ srclmage A . da t a ,  l ongint ( y )  * rowByteCount + 1 ) ; 
for x : =  1 to des t lmage A . header . s i z e . x  - 2 do begin 

CalcGradien t ;  
i f  des tpixel > MaxVa l then MaxVal : =  destPixe l ;  

i f  des t p ixel < MinVal then MinVal : =  des tpixe l ; 
destPixelPtr : =  Offse tPointer ( destPixelPtr , 1 ) ; 
s rcPixe l P tr : =  Offse tPointer ( srcPixelPtr , 1 ) ; 

end; ( for x) 
end; ( for y ) 

for y : =  1 to destlmage A . header . s i z e . y  - 2 do begin ( fi l ter and sca l e  the image ) 
destpixelPtr : =  Offse tPointer ( @dest lmageA . da t a ,  longint (y)  * rowByteCount + 1 ) ; 
srcPixel P t r  : =  Offse tPointer ( @ src ImageA . da t a ,  l ongint (y)  * rowByteCount + 1 ) ; 
for x : =  1 to dest Image A . header . si z e . x  - 2 do begin 

Cal cGradien t ;  
destpixe 1 PtrA : =  ( l ongint (Whi te ) * (des tPixel - MinVal ) )  div (MaxVal -MinVal ) ;  
destPixelPtr . - O f f s e t Pointer ( des tPixe l P t r ,  1 ) ; 
s rcPixe l Ptr : =  O f f s et Pointer ( srcPixe l P t r ,  1 ) ; 

end; ( for x) 
end; ( for y ) 

end; ( else Gain = 0 . 0  ) 
GlobalUnlock ( In ImageH ) ; 
Gl obalUnlock ( Ou tImageH ) ;  

end; (KirschGradi en t Image) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 

Procedure Lapl aceGradientImage ( InImage H ,  OutImageH : ImageHandle ;  Gain : real ) ;  
( Lapl aci an fi l ters InImageH using a 3x3 mask to produce OutImageH. If Gain = a then 

the image is au toscaled a fter fi l tering, else i f  Gain > 0, fi l tered image scaled by 
the Gai n ,  truca ted i f  necessary. if Gain < a then Gain is the threshold used to 
detec ted zero -crossings . 

) 
type 

MinMaxRec = record 
min,  max : intege r ;  

end; 
var 

srcPixe l ,  
i 
s rclmage , 
des tlmage 
intImage 
int ImageH 
destPixe l P t r , 

Byte ;  

ImagePtr ; 
intImagePtr ; 
THandle ; 

s rcpixe l Pt r  PByte ;  
intPixelPtr I n t P t r ;  
MinVal , MaxVal , 
Value , 
Thres , 
des t p ixel 
rowByteCoun t ,  
x , y ,  

In teger ;  

Word;  Width 
pos i t ion 
Z eroCross 

Array [ l  . .  4 ]  of MinMaxRec ;  ( spa tial posi t i on for zero -crossing t e s t )  
Bool ean ; ( true i f  a Zero -crossing i s  detected ) 

Aol.,ion(") 
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Appendix C - Pascal Source Code 

Error : ErrorCod e ;  

begin (Lapl aceGradi en t Image) 
des t Image : =  GlobalLock ( Ou t ImageH ) ;  
src Image : =  GlobalLock ( InImageH ) ; 
rowByteCount : =  Al ign3 2 ( dest Image A . header . si ze . x ) ; 

C-9 

Error : =  CreateIntImage ( intImageH , destImage A . header . s i z e . x ,  dest Image A . header . s i z e . y ) ; 
i f  Error <> NoErr then begin 

wri teln ( ' Insufficient memory ' ) ;  
Exi t ;  

end; 

intImage : =  GlobalLock ( intImageH ) ; 
Width : =  destImage A . header . s i ze . x ;  
MinVal : =  Max In t ;  
MaxVal : =  - MinVa1 ; 
for y : =  1 to destImage A . header . si z e . y  - 2 do begin 

intpixelPtr : =  OffsetPointer ( @ in tImage A . da t a ,  ( longint (y) * Width + 1 )  * Si z eO f I n t ) ;  
srcPixe1 Ptr : =  O f fsetPointer ( @srcImage A . da t a ,  1ongint (y) * rowByteCount + 1 ) ; 
for x : =  1 to dest Image A . header . s i ze . x  - 2 do begin 

des tpixel : =  
- PByte (OffsetPointer ( srcPixe 1 Pt r ,  
- PByte (Of fse tPointer ( srcPixe 1 Pt r ,  
- PByte (Offse tPointer ( srcPixe 1 P t r ,  
- PByte ( O f fsetPointer ( srcPixe1Ptr , 
+ 8 • PByte ( srcPixe1 Ptr) A 

- rowByteCount - 1 ) ) A  
_ rowByteCoun t ) ) A  
- rowByteCount + 1 ) ) A  
_ 1 ) ) A 

- PByte (OffsetPointer ( srcPixe 1 Pt r ,  + 1 ) ) A  
- PByte (Offse tPointer ( srcPixe 1 Pt r ,  + rowByteCount - 1 ) ) A  
- PByte ( O f f se tPointer ( srcPixe1 P t r ,  + rowByteCoun t ) ) A  
- PByte (Of fse tPointer ( srcPixe l P t r ,  + rowByteCount + 1 )  ) A ;  

i f  des tpixe1 > MaxVal then MaxVa1 : =  des tpixe l ;  
i f  des tPixe1 < MinVal then MinVal : =  des tPixe l ;  
i n t pixe l PtrA : =  des tPixel ; 
intPixelPtr : =  O f fse tPointer ( in tPixelPtr,  S i zeOfInt ) ;  
srcPixel Ptr : =  OffsetPointer ( srcPixelPtr,  1 ) ; 

end; ( for x) 
end; ( for y ) 

If Gain < 0 . 0  then begin ( find all zero-crossings and set to Whi te 

-1 -1 - 1  

-1  8 -1 

-1 -1 -1  

Thres : =  Trunc (Gain ) ;  ( in ternal + / - threshold for zero-crossing de t e c t i on 
( A zero-crossing is declare i f  in any direct i on -ve a +ve ) 
Pos i ti on [ 1 )  . min : =  - Width - 1 ;  Pos i t i on [ 1 )  . max : =  + Width + 1 ;  
Pos i tion [ 2 )  . min : =  + Width - 1 ;  Pos i tion [ 2 )  . max : =  - Width + 1 ;  
Posi tion [ 3 )  . min : =  - Width ; Pos i t ion [ 3 )  . max : =  + Width ; 
Pos i t ion [ 4 )  . min : =  - 1 ;  Pos i tion [ 4 )  . max : =  + 1 ;  
for y : =  1 to destImageA . header . s i ze . y  - 2 do begin 

intPixelPtr : =  

+ diagonal 
- diagonal 
up/down 
l ef t /righ t 

O f f s e tPointer ( @ intImageA . da t a ,  ( longint (y)  * Width + l )  * S i zeOf In t ) ; 
des tpixel Ptr : =  Offse tPointer ( @de s tImage A . da t a ,  longint (y)  * rowByteCount + 1 ) ; 
for x : =  1 to dest Image A . heade r . s i ze . x  - 2 do begin 

ZeroCross : =  Fal s e ;  
i : = 1 ;  
Whi le not ( ZeroCross ) and ( i  < = 4 )  do begin 

MinVal : =  
Integer ( PByte (Of fse tPointer ( intPixelPtr , Pos i t i on [ i )  . min * S i zeOfInt ) ) A ) ;  

MaxVal : = 
Integer ( PByte ( O f fsetPointer ( intPixel Pt r ,  Pos i t i on [ i )  . max * S i zeOfIn t ) ) A ) ; 

i f  ( (MinVal < -Thres ) and (MaxVal > Thres ) )  
or ( (MinVal > Thres ) and (MaxVal < -Thres ) )  then ZeroCross : =  Tru e ;  

inc ( i ) ; 
end; (while) 
i f  ZeroCross then destpixel PtrA : =  Whi t e  else des tpixe l PtrA : =  Black; 
intPixelPtr : =  OffsetPointer ( intPixel Ptr,  S i zeO f In t ) ; 
des tPixelPtr . - OffsetPointer ( destPixel P t r ,  1 ) ; 

end; ( for x) 
end; ( for y ) 

end ( If Gain < 0 . 0 
else i f  Gain > 0 . 0  then begin ( fixed scale by gain 

for y : =  1 to destImageA . header . s i ze . y  - 2 do begin 
i nt pixe1 Ptr : =  OffsetPointer ( @ intImage A . da t a ,  ( 1ongint (y )  * Width + 1 ) * S i zeOfInt ) ;  
destPixelPtr : =  OffsetPointer ( @dest Image A . da t a ,  l ongint (y)  * rowByteCount + 1 ) ; 
for x : =  1 to dest Image A . header . s i ze . x  - 2 do begin 

Rotatjonal Di!o!fCemen! 
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C- l O  The Development of Motion Tracking Strategies For Cineradiographic Images 

des t p ixel : =  
Trunc ( ( l ongint (Whi t e ) * ( Gain*integer ( intPixe l PtrA ) - MinVal ) ) / ( MaxVal -MinVa l ) ) ;  

I f  des tPixel > Whi t e  then des tpixel : =  Whi t e  
e l s e  if des t pixel < Black then destPixel : =  Black; 
destPixelPtrA : =  destPixe l ;  
int pixe lPtr : =  OffsetPointer ( intPixe l P t r ,  Si zeOfInt ) ;  
dest pixe l Ptr : =  O f f s e tPointer ( destPixe l Pt r , 1 ) ; 

end; {for x} 
end; { for y } 

end { else i f  Gain > 0 . 0 } 
else begin ( Gain = 0 . 0  -> a u t osca l e  to byte range ) 

for y : =  1 to dest Image A . header . s i z e . y  - 2 do begin 

intPixelPtr : =  O f f s et Poin ter ( @ i nt Image A . data,  ( longint ( y )  * Width + 1 ) * S i z eO f I nt ) ; 
destpixe l Pt r  : =  O f f s e tPointe r ( @destImage A . data,  longin t (y)  * rowByteCount + 1 ) ; 
for x : =  1 to des tImage A . header . s i z e . x  - 2 do begin 

destPixe l PtrA : =  
( longint (Whi t e )  * ( in teger ( intPixe l PtrA ) - MinVa l ) ) div ( MaxVal -MinVal ) ;  

intPixe l P t r  : =  OffsetPointe r ( intPixe l P t r ,  Si zeO f I n t ) ;  
des tpixel Ptr : =  Offse tPointe r ( de s tPixe l P t r ,  1 ) ; 

end; { for x} 
end; ( for y ) 

end; { else Gain = O . O} 
GlobalUn l ock ( InImageH ) ;  
GlobalUnlock (Ou t ImageH ) ;  
DestroyIn t Image ( in t ImageH ) ; 

end; {Lapl aceGradi en tImage} 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 
Procedure S t ochas ticGradient Image ( InImageH,  Out ImageH : ImageHandl e ;  

WSi z e ,  SNR : byt e ;  Gain : real ) ;  
Stochas ti c gradi en t fi l ters InImageH to produce Ou tImageH. If Gain = a then the 
image is a u t oscaled a f t er fi l t ering, else if Gain < 0, fi l tered image is thresholded 
by thi s val u e  else Gain > 0, fi l tered image scaled by the Gai n ,  truca ted i f  
necessary. SNR (signal - to-noise ra t i o )  si ze 1 and 9 only supported . 

var 

srcPixe l , 
Thres , 
Hal fWS i z e  
s rcImage , 
dest Image 
destPixe l P t r , 
s rcPixe l Pt r  
xSum , ySum , 
i ,  j 
dest Pixe l , 
rowByteCoun t ,  
x , y ,  
MinVal , MaxVal 
wt 

Byt e ;  

ImagePtr ; 

PByt e ;  

I n tege r ;  

: Word;  
Array [ - 2  . .  + 2 , - 2 . .  + 2 ] of Shortint ; 

Procedure CalcGradient ; 
var 

i ,  j : short i n t ;  
begin 

xSum : = 0 ;  
ySum : = 0 ;  
for i : =  -Hal fWS i z e  to +Hal fWS i z e  do begin 

for j : =  -Hal fWS i z e  to +Hal fWS i z e  do begin 

inc ( xSum , wt [ i , j ]  * Word ( PByte ( O f f se tPointer ( srcPixelPtr , i * rowByteCount + j ) ) A ) ) ;  
inc (ySum, wt [ j , i ] * Word ( PByte (OffsetPointer ( srcPixe lPtr , i * rowByteCount + j ) ) A ) ) ;  

end; ( for j ) 
end; { for i } 

xSum : =  xSum div 3 2 ; 
ySum : =  ySum div 3 2 ;  

end; {Cal cGradi en t }  

begin {Stochasti cGradi en tImage} 
dest lmage : =  GlobalLock (Ou tlmageH ) ;  
srclmage : =  GlobalLock ( In ImageH ) ;  
rowByteCount : =  Al ign 3 2  ( de s t lmage A . header . s i z e . x )  ; 
if WSi z e  = 3 then begin 
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Appendix C - Pascal Source Code 

i f  SNR = 1 then begin 

wt [ - l , - l )  : =  3 1 ;  wt [ - l , O ) : =  0 ;  wt [ - l , l )  : =  - 3 1 ;  
wt [ O , - l )  : =  3 2 ;  wt [ O , O )  : =  0 ;  wt [ O , l )  : =  - 3 2 ; 
wt [ 1 ,  - 1 )  : = 3 1 ;  wt [ 1 ,  0 )  : = 0 ;  wt [ 1 ,  1 )  : = - 3 1  ; 

end ( SNR=l ) 
else begin ( SNR=9) 

wt [ - 1 ,  - 1 )  : = 2 5 ;  wt [ - 1  , 0)  : = 0 ;  wt [ - 1  , 1 ) : = - 2 5 ; 
wt [ O , - l )  : =  3 2 ;  wt [ O , O )  : =  0 ;  wt [ O , l )  : =  - 3 2 ; 
wt [ 1 ,  - 1 )  : = 2 5 ;  wt [ 1 ,  0 )  : = 0 ;  wt [ 1 ,  1 )  : = - 2 5  ; 

end; 

end ( WSi ze 
else begin 

3 } 

if SNR = 1 then begin 

wt [ - 2 , - 2 )  : =  2 6 ;  wt [ -2 , - l )  : =  2 7 ; wt [ - 2 , O ) : =  
wt [ - 1 , - 2 )  : =  2 7 ; wt [ - l , - l )  : =  2 9 ;  wt [ - l , O )  : =  
wt [ 0 ,  - 2 )  : = 2 8 ;  wt [ 0 ,  - 1 )  : = 3 2 ;  wt [ 0  , 0 )  : = 0 ;  
wt [ 1 , - 2 )  : =  2 7 ;  wt [ l , - l )  . - 2 9 ;  wt [ l , O ) : =  0 ;  
wt [ 2 ,  - 2 )  : = 2 6 ;  wt [ 2  , - 1 )  : = 2 7 ;  wt [ 2  , 0 )  : = 0 ;  

end ( SNR=l ) 
else begin ( SNR=9) 

0; wt [ -2 , l )  : =  
0 ;  wt [ - l , l ) : =  
wt [ O , l )  : =  - 3 2  
wt [ l , l )  : =  - 2 9  
wt [ 2 , l )  : =  - 2 7  

- 2 7 ;  wt [ - 2 , 2 ) : =  
- 2 9 ;  wt [ - 1 , 2 )  : =  

wt [ 0 , 2 )  : =  - 2 8 ; 
wt [ 1 ,  2 )  : = - 2 7 ; 
wt [ 2 , 2 )  : =  - 2 6 ;  

C-l l 

- 2 6  ; 
- 2 7 ; 

wt [ -2 , - 2 )  : = 9 ;  wt [ - 2 , - l )  : = 1 2 ; wt [ - 2 , O ) : =  0 ;  wt [ - 2 , l ) : =  - 1 2 ;  wt [ - 2 , 2 )  : =  - 9 ;  
wt [ - 1 , - 2 )  : =  1 2 ; wt [ - l , - l )  : =  1 8 ;  wt [ - l , O )  : =  0 ;  wt [ - l , l ) : =  - 1 8 ; wt [ - 1 , 2 )  : =  - 1 2 ; 
wt [ 0 ,  - 2 )  : = 1 5 ;  wt [ 0 ,  - 1 )  : = 3 2 ;  wt [ 0  , 0 )  : = 0 ;  wt [ 0 ,  1 )  : = - 3 2 ;  wt [ 0 ,  2 )  : = - 1 5 ;  
wt [ 1 , - 2 )  : = 1 2 ;  w t  [ 1 ,  - 1 )  : = 1 8 ;  wt [ 1  , 0 )  : = 0 ;  wt [ 1 ,  1 )  : = - 1 8 ; wt [ 1 ,  2 )  : = - 1 2 ;  
w t  [ 2  , - 2 )  : = 9 ;  wt [ 2 ,  - 1 )  : = 1 2 ;  wt [ 2 ,  0 )  : = 0 ;  wt [ 2  , 1 ) : = - 1 2 ;  w t  [ 2 ,  2 )  : = - 9 ; 

end; 

end; ( else wSi ze = 5 ) 
Hal fWSi z e  : =  WSi z e  div 2 ;  
i f  Gain < 0 . 0  then begin ( threshold image a fter fi l ter ) 

Gain : =  abs (Gain ) ;  
i f  Gain > Whi t e  then Thres : =  Whi te else Thres : =  Trunc (Gain ) ;  
for y : =  H a l fWS i z e  t o  des t lrnage A . header . s i ze . y  - 1 - Ha1 fWS i z e  do begin 

destpixel P t r  : =  
O f f s e tPointer ( @destlrnageA . data,  longint ( y )  * rowByteCount + Hal fWS i z e ) ; 

srcpixel P t r  : =  
Offse tPointer ( @srclrnage A . da t a ,  l ongint ( y )  * rowByteCount + Hal fWSi z e ) ; 

for x : =  Hal fWS i z e  to destlrnage A . header . s i z e . x  - 1 - Ha1 fWS i z e  do begin 

CalcGradien t ;  
des tpixel : =  Trunc ( Sqr t ( Sqr ( Longint (xSurn ) ) + Sqr ( Longint (ySurn ) ) ) ) ;  
i f  des tPixel > Thres then des tpixe l PtrA : =  Whi te 
else des t Pixel PtrA : =  Black; 
destpixelPtr : =  OffsetPointer ( des t Pixe l P t r ,  1 ) ; 
srcpixe lPtr : =  O f fse tPointer ( srcPixe l Pt r , 1 ) ; 

end; (for x) 
end; ( for y ) 

end ( i f  Gain < 0 
else if Gain > 0 . 0  then begin ( fi l ter and sca l e  image by gai n ,  trunca te i f  necessary ) 

for y : =  Hal fWS i z e  to destlmageA . header . s i ze . y  - 1 - Hal fWS i z e  do begin 
destPixe l P t r  : =  

O f f s e tPointer ( @des tlmage A . data,  l ongin t (y)  * rowByteCount + Hal fWS i z e ) ; 
srcpixel P t r  : =  O f f s e tPointer ( @ srclrnageA . data , l ongint (y) * rowByteCount + Hal fWSi z e ) ; 
for x : =  Hal fWSi z e  to dest lrnage A . header . s i ze . x  - 1 - Hal fWS i z e  do begin 

CalcGradien t ;  
des tPixel : =  Trunc (Gain * Sqrt ( Sqr ( Longint ( xSurn ) ) + Sqr ( Longint (ySurn) ) I ) ;  
i f  des tpixel > Whi t e  then des tpixe1PtrA : =  Whi t e ;  
destPixelPtrA : =  destPixe l ;  
destpixe l Ptr : =  O f f se tPointer ( destPixe l P t r ,  1 ) ; 
srcPixelPtr : =  O f fse tPointer ( srcPixe 1 Pt r ,  1 ) ; 

end; (for x) 
end; ( for y ) 

end (else i f  Gain > O . O) 
else begin ( Gain = 0 . 0 -> au tosca l e  ) 

MinVal : =  2 *Maxlnt ;  
MaxVal : =  0 ;  
for y : =  H a l fWS i z e  to dest lmage A . header . s i z e . y- 1 -Ha l fWSi z e  do begin 

(Find min and max val ues ) 
destPixe l P t r  : =  

O f f s e tPointer ( @destlrnage A . data,  l ongin t ( y )  * rowByteCount + Hal fWSi z e ) ; 
srcpixe l Ptr : =  

O f f s e t Pointer ( @ src lrnage A . data,  l ongint ( y )  * rowByteCount + Hal fWSi z e ) ; 

45 
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for x : =  Hal fWS i z e  to des t lmage A . header . s ize . x- l -Hal fWS i z e  do begin 

CalcGradi ent ; 
des tPixel : =  Trunc ( Sqrt ( Sqr ( Longin t ( xSum ) ) + Sqr ( Longint (ySum ) ) ) ) ;  
i f  destPixel > MaxVal then MaxVal : =  des tPixe l ;  
i f  des tPixel < MinVal then MinVal : =  des tPixe l ; 
destpixelPtr : =  O f fse tPointer ( destPixelPtr,  1 ) ; 
srcPixelPtr . - O f fse tPointer ( srcPixelPtr,  1 ) ; 

end; ( for x) 
end; ( for y ) 

for y : =  Hal fWS i z e  to dest lmage A . header . s i ze . y- l -Hal fWSi z e  do begin 

destPixelPtr : =  
O f f s etPointer ( @destlmageA . data,  l ongint ( y )  * rowByteCount + Hal fWS i z e ) ;  

srcPixel P t r  : =  
O f f s e tPointer ( @ src lmage A . data,  longint ( y )  * rowByteCount + Hal fWS i z e ) ;  

for x : =  Hal fWS i z e  to destlmageA . header . s ize . x- l -Hal fWS i z e  do begin 

CalcGradient ; 
destpixel : =  Trunc ( Sqrt ( Sqr ( Longint (xSum ) ) + Sqr ( Longint (ySum) ) ) ) ;  
des tpixelPtrA : =  ( longint (Whi t e ) * ( destPixel - MinVal ) )  div (MaxVa l -MinVal ) ;  
destpixe l Ptr : =  O f f se tPointer ( destPixel Ptr,  1 ) ; 
s rcPixelPtr : =  OffsetPointer ( srcPixelPtr,  1 ) ; 

end; ( for x) 
end; ( for y ) 

end; ( else Gain = 0 . 0  ) 
GlobalUnlock ( InlmageH ) ;  
GlobalUnloc k ( Ou t lmageH ) ;  

end; (Stochas t i cGradi en t Image) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - )  

Procedure LogScalelmage ( InlmageH, Out lmageH : ImageHandl e ;  MinValue , MaxValue : byte ) ; 
( Logari thmi cal ly sca l e  the val ues in InImageH to produce Ou tImageH. For X-ray ) 
( images this is equ i va l en t  to a rel a t i ve densi ty image . Min Va l u e  and MaxVa l u e  set ) 
( the dynami c range of Ou t Image . ) 

var 

minVal , 
maxVal ,  
Value byt e ;  
destPixel intege r ;  
srclmage , 
des t lmage ImagePtr;  
des tPixelPtr , 
srcPixe l P t r  PByte ;  
rowByteCoun t ,  
x ,  y word ; 
Log Array [ O  . .  2 5 5 ]  of byte ; 

begin (LogScal eImage) 
des tlmage : =  GlobalLock ( Ou tlmageH ) ; 
s rclmage : =  GlobalLock ( InlmageH ) ; 
rowByteCount : =  Align 3 2  (destlmageA . heade r . s i z e . x )  ; 
for y : =  0 to des tlmageA . header . s i z e . y  - 1 do begin ( find min and max val ues 

des tpixelPtr : =  O f fsetPointer ( @destlmageA . da t a ,  longint ( y )  * rowByteCoun t ) ; 
srcPixe l P tr : =  Of fse tPointer ( @srclmageA . data,  longint (y)  * rowByteCount ) ; 
for x : =  0 to des tlmage A . header . s i z e . x  - 1 do begin 

Value : =  PByte ( srcPixelPtr ) A ;  
i f  Value > maxVal then maxVal : =  Valu e ;  
i f  Value < minVal then minVal : =  Valu e ;  
des tPixelPtr : =  O f fse tPointer ( des tPixelPtr,  1 ) ; 
s rcPixelPtr : =  O f fse tPointer ( srcPixelPtr,  1 ) ; 

end; ( for x) 
end; ( for y ) 

for x : =  minVal to maxVal do begin ( compu te the l ogari tmic l ookup tabl e 
log [ x ]  : =  Trunc (White * ( In ( x-minVal + l ) ) / I n ( maxVal -minVal + l ) ) ;  

end; ( for x) 
for y : =  0 to des tlmageA . header . s ize . y  - 1 do begin ( l og sca l e  the image 

des tpixel P t r  : =  O f fse tPointer ( @destlmageA . da t a ,  longin t ( y )  * rowByteCount ) ; 
srcPixe l P t r  : =  Offse tPointer ( @srclmage A . data,  longint (y)  * rowByteCount ) ; 
for x : =  0 to des t lmage A . header . si z e . x  - 1 do begin 

des t pixel : =  
Trunc ( Whi te * longin t ( log [ PByte ( srcPixe l Pt r ) A ]  - minValue ) / (maxValue-minValue ) ) ;  

i f  des tPixel > Whi t e  then destPixel : =  Whi te 
else i f  des t pixel < Black then destPixel : =  Black; 
destPixe l PtrA : =  destpixe l ; 
destPixe lPtr : =  O f f se tPointer ( destPixelPtr,  1 ) ; 
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Appendix C - Pascal Source Code 

s rc Pixe lPtr : =  Offse tPointer ( srcPixe l Ptr , 1 ) ; 
end; (for x) 

end; ( for y ) 
end; (LogScal eImage) 

C- 1 3  

{ = = = = = = = = = = = = = = = ============= =================================== = = = = = = = = = = = = = = = == = = = = = = = = = }  

end . { GFil ters } 

C.2 Canny Edge-detector 

The following Pascal unit 'Canny' is an implementation of the Canny edge-detection algorithm 

described in detail in section 3 .2.2 of chapter 3 .  

unit Canny ; 

interface 

uses 

WinCrt ,  WinDos , WinProcs , WinTypes , 
PMXProcs , PMXTypes , Files , Globa l s ,  Images , PMXUt i l s ,  
ImageWHP,  Fi l ters ; 

const 

Black 0 ;  
Grey 1 2 8 ; 
Whi t e  2 5 5 ;  

Function GradGFil terlmage ( InlmageH : ImageHandl e ;  
var GradlmageH : Real ImageHandl e ;  
var DirectionlmageH : ImageHandl e ;  S tDev : real ; 

Ful lDirection : bool ean ) : ErrorCode ; 
Function NMSFil terImage ( InGradlmageH, DirectionlmageH : ImageHandl e ;  

var Ou tGradlmageH : ImageHandl e ) : ErrorCode ; 
Procedure Thresholdlmage2 ( InlmageH , OutlmageH : ImageHandl e ) ; 
Procedure Hys teresi sThresholdlmage (GradlmageH , NMSGradlmageH, ThreslmageH ImageHand le ) ; 
Function ArcTan2 (var x, y real ) real ; 
Function ArcTan3 {var x, y : rea l )  : real ; 

implementation 

( = = = == = = == =============================================== = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = )  

Function ArcTan2 (var x,  y : real ) : real ; 
( Proper arctan O ->2pi ) 

var 
V : real ; 

begin 

if x 0 . 0  then begin 
if y 0 . 0  then v : =  0 . 0  
else v : =  p i / 2  * abs ( y ) /y; 

end 
else v : =  y/x;  
i f  x < 0 . 0  then ArcTan2 : =  pi + arcTan (v)  
else i f  y < 0 . 0  then ArcTan2 . - 2 *pi + arcTan ( v )  
else ArcTan2 : =  arcTan (v) ; 

end; 

( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Function ArcTan3 (var x, y : real ) : real ; 

( Mirror Arctan, 0 - 2pi becomes : O->pi/2->pi ->pi /2 ->O ) 
var 

v : 
begin 

i f  x 
i f  

real ; 

0 . 0  then begin 
y = 0 . 0  then v : =  0 . 0  

Rot.tion (') 

Wa�60�====================�==============� 



C- 14 The Development of Motion Tracking Strategies For Cineradiographic Images 

else v : =  pi / 2  * abs ( y ) /y;  
end 

else v : =  y / x ;  
i f  x < 0 . 0  then begin 

if y < 0 . 0  then ArcTan3 : =  pi - arcTan ( v )  
e l s e  ArcTan3 : =  pi + arcTan ( v )  

end 

else ArcTan3 : =  arcTan ( abs ( v) ) ;  
end ; 

( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Function GradGFil terlmage ( InlmageH : ImageHandl e ;  

var GradlmageH : Real lmageHand l e ;  
var Direc tionlmageH : ImageHandl e ;  StDev rea l ; 
Fu llDirection : boolean ) : ErrorCode ; 

const 

WinRadiusToStDevRa t i o  = 3 . 0 ;  
label 

Exi tPoint ; 
type 

MaskArray Array [ - 1 2  . .  1 2 , - 1 2  . .  1 2 ]  of Rea l ; 
var 

InPixel , 
WinRadius , 
dx ,  dy 
Inlmage 
Gradlmage 
Directionlmage 

integer ;  
ImagePtr;  
Real lmagePtr ; 

Image Ptr;  
GradlmageCreated 

boolean ; 
TopLe f t ,  
BottomRight TPoin t ;  
InPixelPtr,  
DirectionPixe lPtr 

GradPixelPtr 

xGradPixel , 
yGradPixe l ,  
TwoS 2 ,  
Twopis4 
rowByteCoun t ,  

PByte ;  

Real Ptr ; 

rea l ;  

x , y  longin t ;  
ImageWidth, 
ImageHeight Word ; 
Error ErrorCode ; 
Mask AMaskArray; 

begin (GradGFi l terImage) 
Error : =  NoErr ; 
Inlmage . - Gl obaILock ( InlmageH ) ;  
ImageWidth : =  Inlmage A . header . s ize . x ;  
ImageHei ght : =  Inlmage A . header . s i z e . y ;  
GradlmageCreated : =  Fal s e ;  
Error : =  CreateReal lmage ( GradlmageH , ImageWidth, ImageHeight ) ;  
i f  Error < >  NoErr then goto Exi tPoint ; 
GradlmageCreated : =  True ; 
Gradlmage : =  GlobaILock ( GradlmageH ) ;  
rowByteCount : =  Al ign 3 2  ( Inlmage A . header . s i ze . x ) ; 
Error : =  Createlmage ( Di rectionlmageH , rowByteCount , ImageHeight ) ;  
if Error < >  NoErr then goto Exi tPoint ; 
Directionlmage : =  GlobaILock ( DirectionlmageH ) ;  
WinRadius : =  Round (WinRadiusToS tDevRatio * S tDev) ; 
if MaxAvai l  > ( sqr ( 2 5 )  * S i z eOfRea l ) then New (Mask ) 
else begin 

Error : =  1 ;  
goto Exi tPoint ; 

end; 

TopLe f t . x  : =  WinRadius ; 
TopLe f t . y  : =  WinRadius ; 
BottomRigh t . x  . - ImageWidth - l  - WinRadius ; 
BottomRight . y  : =  ImageHe ight - l  - WinRadius ; 
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Appendix C - Pascal Source Code 

TwoS2 : =  2 * sqr ( StDev ) ; 
TwoPiS4 : =  2 * pi * sqr ( sqr ( StDev ) ) ;  
writeln ( ' Gradient of Gauss ian Fi l tering ' ) ;  
writeln ( ' Standard Deviation = " StDev : l : 2 ,  , Window Size = ' , 2  * WinRadius + 1 ) ; 
for y : =  -WinRadius to +WinRadius do begin { Compu t e  convol u t i on mask } 

for x : =  -WinRadius to +WinRadius do begin 

Maskh [ x , y ]  : =  - 1 0  * x * exp ( - ( sqr ( x )  + sqr (y ) ) /TwoS 2 ) /TwoPiS 4 ;  
end; {for x} 

end; {for y} 
for y : =  0 to IrnageHeight - l  do { ini tial i s  ou tp u t  real images } 

for x : =  0 to IrnageWidth - l  do begin 

C- l S  

Real Ptr ( O f f setPointer ( @Gradlrnageh . data,  ( y  * IrnageWidth + x ) * SizeOfReal ) ) h  : =  0 . 0 ;  
PByte (Offse tPointer ( @Directionlrnageh . data,  y * rowByteCount + X ) ) h  : =  Black; 

end; (for x) 
i f  Ful lDirection then begin 

for y : =  TopLeft . y  to Bot tornRight . y  do begin 
GradPixe lPtr : =  

O f fsetPointer ( @Gradlrnageh . data,  (y * IrnageWidth + TopLe f t . x ) * Si zeOfReal ) ;  
DirectionPixel Ptr : =  

OffsetPointer ( @Directionlrnageh . data,  y * rowByteCount + TopLef t . x ) ; 
InPixel Ptr : =  Offse tPointer ( @ Inlrnageh . data,  y * rowByteCount + TopLe f t . x ) ; 
for x : =  TopLe ft . x  to Bot tornRight . x  do begin 

xGradPixel : =  0 . 0 ;  
yGradPixel : =  0 . 0 ; 

for dy : =  -WinRadius to +WinRadius do begin 

for dx : =  -WinRadius to +WinRadius do begin 

InPixel : =  PByte (Of fsetPointer ( InPixelPtr,  dy * rowByteCount + dX ) ) h ; 
xGradPixel : =  xGradPixel + InPixel * Maskh [ dx , dy] ; 
yGradPixel : = yGradPixel + InPixel * Maskh [ dy ,  dx] ; (y-mask= transpose x-mask) 

end; { for dx} 
end; { for dy} 

GradPixe l Ptrh : =  sqrt ( sqr (xGradPixel )  + sqr ( yGradPixe l ) ) ;  
DirectionPixe l Ptrh : =  Byte ( Round (ArcTan2 ( xGradPixel ,  yGradPixel ) / ( 2 *pi ) *wh i te ) ) ;  
InPixel Ptr : =  O f f setPointer ( InPixe l Ptr , 1 ) ;  
GradPixe l Ptr : =  OffsetPointer ( GradPixe l Ptr,  Si zeOfReal ) ;  
DirectionPixe 1 Ptr : =  OffsetPointer ( DirectionPixe1 Ptr , 1 ) ; 

end; {for x} 
wr i te ( ' . ' ) ;  

end; (for y) 
end ( i f  Full Direction) 

else begin (No t Ful l Di rection) 
for y : =  TopLe f t . y  to BottornRight . y  do begin 

GradPixe1 Ptr : =  
OffsetPointer ( @Gradlrnageh . data , (y * IrnageWidth + TopLef t . x) * S i z eO f Real ) ;  

DirectionPixe 1Ptr : =  
O f f setPointer ( @Directionlrnageh . data,  y * rowByteCount + TopLe f t . x ) ; 

InPixe1 Ptr : =  Of fsetPointer ( @ Inlrnageh . data , y * rowByteCount + TopLe f t . x ) ; 
for x : =  TopLef t . x  to Bot tornRight . x  do begin 

xGradPixe1 : =  0 . 0 ; 
yGradPixe1 : =  0 . 0 ; 
for dy : =  -WinRadius to +WinRadius do begin 

for dx : =  -WinRadius to +WinRadius do begin 
InPixe1 : =  PByte (OffsetPointer ( InPixe l Ptr,  dy * rowByteCount + dx ) ) h ; 
xGradPixe1 : =  xGradPixe1 + InPixel * Maskh [dx , dy] ; 
yGradPixe1 : =  yGradPixe1 + InPixe1 * Mask h [ dy , dx ] ; (y-mask=transpose x-mask) 

end; {for dx} 
end; (for dy) 

GradPixe1 Ptrh : =  sqrt ( sqr ( xGradPixe1 )  + sqr (yGradPixe 1 ) ) ;  
DirectionPixelPtrh : =  Byte ( Round (ArcTan3 ( xGradPixel ,  yGradPixel ) /pi *wh i te ) ) ;  
I nPixe l Ptr : =  O f fse tPointer ( InPixelPtr,  1 ) ; 
GradPixe lPtr : =  O f fse tPointer (GradPixelPtr,  SizeOfReal ) ;  
DirectionPixel Ptr . - OffsetPointer ( DirectionPixe l Ptr,  1 ) ; 

end; (for x) 
wri te ( , . ' ) ; 

end; (for y) 
end; (else Not Ful l Direction) 

Exi tPoint :  
GlobalUnlock ( InlrnageH ) ;  
G1oba1Unlock (GradlrnageH ) ;  
Globa1Un 1 ock ( Direct ionlrnageH) ; 
i f  ( Error <> NoErr ) and (GradlrnageCreated True ) then DestroyReal lrnage ( GradlrnageH ) ;  
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Di spose ( Ma s k )  ; 
GradGFi l t erlmage : =  Erro r ;  

end; (GradGFi l terImage) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 

Function NMSF i l terlmage ( InGradlmageH ,  Direct ionlmageH : ImageHandl e ;  
var OutGradlmageH : ImageHandle ) : ErrorCode ; 

( Nonmaxima Suppression of InGradImage using Directi onImageH. ) 
label 

Exi t Poin t ;  
const 

Del taThe ta 3 1 ;  (Tol erance on Direc t i on a l i gnmen t )  
var 

InGradlmage ,  
OutGradlmage , 
Directi onlmage 

Image P t r ;  
OutImageCreated 

: boo l ean ; 
InPixe lPtr , 
Out Pixe l P t r ,  
Direc t i onPixe l P t r  

xGradPixe l ,  
yGradPixe l ,  
destPixe l ,  
rowByteCoun t ,  
x , y ,  
Sum , 
AveDirect ion 

Direction 
ImageWidth,  
ImageHei gh t ,  
dx ,  dy 

Value 

: PByte ; 

longint ; 
byt e ;  

intege r ;  
Word;  

Error ErrorCode ; 
begin (NMSFi l terImage) 

wri te l n ( ' Non-maxima suppres i on of gradient ' ) ;  
Error : =  NoErr ; 
InGradlmage . - G l obalLock ( InGradlmageH ) ;  
ImageWidth : =  InGradlmage � . header . s i z e . x ;  
ImageHeight . - InGradlmage � . header . s i z e . y ; 
Dire c t i onlmage : =  Global Lock ( Direct i onlmageH ) ;  
Out lmageCreated : =  False ; 
rowByteCount : =  Al ign3 2 ( InGradlmage� . header . s i z e . x ) ; 
Error : =  Create lmage ( Ou tGradlmageH,  rowByteCount ,  ImageHe i gh t ) ; 
i f  Error <> NoErr then goto Exi tPoint ; 
OutlmageCreated : =  Tru e ;  
OutGradlmage : =  G l obalLock ( Ou tGradlmage H ) ; 
for y : =  1 to ImageHeight-2 do begin 

InPixe l P t r  : =  O f f setPointer ( @ InGradlmage� . dat a ,  y * rowByteCount + 1 ) ; 
Direc t i onPixel Ptr : =  O f f s e tPointer ( @Di rec tionlmage � . data , y * rowByteCount + 1 ) ; 
OutPixe l P t r  : =  O f f s e tPointer ( @OutGradlmage� . da t a ,  y * rowByteCount + 1 ) ; 
for x : =  1 to ImageWidth-2 do begin 

(Compu te direc t i on to nearest 45 degress, from 8 corresponding neares t neighbours) 
Direction : =  ( ( ( Direc t i onPixe1Ptr� + 1 5 )  mod 2 5 5 )  + 1 )  div 3 2 ;  
case Direc t i on of 

0 ,  4 :  i f  ( InPixe l Ptr� >= PByte ( O f f s e t Pointer ( InPixe l P t r ,  - 1 » � )  
and ( InPixel Ptr� >= PByte ( O f fsetPointer ( InPixel Pt r ,  + 1 » � )  

then OutPixelPtr� : =  InPixe1Ptr� 
else OutPixe l P tr �  : =  Black;  

1 ,  5 :  i f  ( InPixel Ptr� >= PByte ( Of f se tPointer ( InPixe1 P t r ,  -rowByteCount+ 1 » � )  
and ( InPixe l P tr� >= PByte ( OffsetPointer ( InPixe l P t r ,  rowByteCount - 1 » � )  

then OutPixel Ptr� : =  InPixe l Ptr� 
else OutPixe l Ptr� : =  Black;  

2 ,  6 :  i f  ( InPixe l Ptr� >= PByte ( O f fsetPointer ( InPixe l P t r ,  - rowByteCoun t » � )  
and ( InPixe l Ptr� > =  PByte ( OffsetPointer ( InPixe l P t r ,  + rowByteCoun t » � )  

then OutPixelPtr� : =  InPixe l P t r �  
else OutPixelPtr� : =  Black;  

3 ,  7 :  i f  ( InPixe l P t r �  >= PByt e ( O f fse tPointer ( InPixe l Ptr , - rowByteCount - 1 » � )  
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and ( InPixel Ptrh > =  PByte ( OffsetPointer ( InPixe l P t r ,  rowByteCount + 1 ) ) h ) 
then OutPixe1Ptrh : =  InPixel Ptrh 

else OutPixelPtrh : =  Black;  
end; (case) 

InPixelPtr 
OutPixelPtr 

: =  O f f s etPointer ( InPixe l P t r ,  1 ) ; 
: =  Offse tPointer ( Ou tPixe l P t r ,  1 ) ; 

Direc t i onPixelPtr : =  Offse tPointer ( DirectionPixe l Pt r ,  1 ) ; 
end; (for x) 

end; ( for y) 
Exi tPoint : 

GlobalUnlock ( InGradlmageH ) ; 
G l obalUnlock ( Directi onlmageH ) ;  
G l obalUn l oc k ( OutGradlmageH ) ;  
i f  ( Error < >  NoErr)  and ( Ou tlmageCreated 
NMSFil terlmage : =  Error ; 

end; (NMSFi l terImage ) 

True ) then Destroylmage ( Ou tGradlmageH ) ;  

C- 1 7  

( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - )  
Procedure Thresholdlmage2 ( InlmageH, OutlmageH : ImageHand l e ) ; 

var 

rowByteCoun t ,  
x ,  y 
i ,  
des tP ixel 
dest lmage , 
srclmage 
des tPixe l P t r ,  
srcPixe l Pt r  
l ocalVariance 
l ocalMean 

begin 

Word ; 

intege r ;  

Image P t r ;  

PByt e ;  
longin t ;  
longin t ;  

des t lmage : =  GlobalLock (OutlmageH ) ; 
srclmage : =  GlobalLock ( InlmageH ) ; 
rowByteCount : =  A l i gn3 2 ( de s tlmageh . header . s i ze . x ) ; 
for y : =  1 to des tlmageh . header . s i z e . y  - 2 do begin 

destpixe1Ptr : =  OffsetPointer ( @destlmage h . da t a ,  longint (y)  * rowByteCount ) ;  
s rcPixe 1 P t r  : =  Offse tPointer ( @src lmageh . data , longint ( y )  * rowByteCoun t ) ; 
for x : =  1 to destlmage h . header . si z e . x  - 2 do begin 

l ocalMean : =  

( PByte ( O f f s e tPointer ( srcPixe l P t r ,  
+ PByte ( Of fse tPointer ( srcPixe l P t r ,  
+ PByt e ( Offse tPointer ( srcPixe l P t r ,  
+ PByte ( O f f s et Pointer ( srcPixe l P t r ,  

- rowByteCount 
- rowByteCount 
- rowByteCount 
x- 1 ) ) h  

+ PByt e ( O f fse tPointer ( srcPixe l Pt r ,  X ) ) h  
+ PByte ( O f fsetPointer ( srcPixe l P t r ,  x+ 1 ) ) h  

+ x - 1 ) ) h  
+ x ) ) h 
+ x+ 1 ) ) h  

+ PByte ( O f fsetPointer ( srcPixel P t r ,  rowByteCount + x - 1 ) ) h  
+ PByte ( O f f s e tPointer ( srcPixe l P t r ,  rowByteCount + X ) ) h  
+ PByte ( O f f s e t Pointer ( srcPixe l P t r ,  rowByteCount + x+1 ) ) h ) div 9 ;  

localVariance : =  0 ;  
for i : =  0 to 2 do begin 

inc ( l ocalVariance , 
sqr ( PByte ( O f f s e t Pointer ( srcPixe l P t r ,  - rowByteCount + i ) ) h  - localMean ) ) ;  
inc ( localVariance ,  sqr ( PByte ( Of f s e t Pointer ( srcPixe l P t r ,  i ) ) h  - l ocalMean ) ) ;  
inc ( localVariance ,  

sqr ( PByte ( O f fse tPointer ( srcPixe l P t r ,  rowByteCount + i ) ) h  - l ocalMean ) ) ;  
end; 

localVariance : =  Round ( sqrt ( l ocalVarianc e ) / 9 ) ; 
if ( LocalVariance > 0 )  

and ( PByte ( O f fsetPointer ( srcPixe l Pt r ,  X ) ) h  > ( localMean + LocalVarianc e ) ) 
then PByte ( O f f s e tPointer ( des tPixe l P t r ,  X ) ) h  : =  Whi t e  

e l s e  PByte ( Of f s e t Pointer ( destPixe l Ptr,  X ) ) h  : =  B l ack ; 
end; (for x) 

end; ( for y) 
G l obalUn l oc k ( InlmageH ) ; 
GlobalUn l oc k ( Ou t lmageH ) ;  

end; (Threshold2Image) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - )  

Procedure Hys teresisThresholdlmage ( GradlmageH , NMSGradlmageH ,  ThreslmageH : ImageHand le ) ; 
type 

H i s tArray Array [ Black . .  Whi te l of word ; 
canst 

RFi tFrac = 0 . 3 0 ; (Fraction of da ta to fi t Rayl eigh dis tribu t i on )  

VVarp60�c=====================�5===============� 
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RLoThresFrac 
Lo2HiThresRat i o  

0 . 8 0 ;  
1 .  7 ;  

(Fra c t i on of Rayl eigh di s tribu t i on for l ow threshold) 
{Ra t i o  of LoThreshold to Hi Threshold} 

var 

rowByteCoun t ,  
ImageWidth , 
ImageHe i gh t ,  
x ,  y ,  
dx 
LoThres , 
HiThres 
Coun t , 
destpixel 
Gradlmage , 
NMSGradlmage , 
Threslmage 

des tPixe l P t r ,  
srcPixel P tr 

Sum 

h i s t  
kl , k2 , 
RSum , TRSum 

ESPos t ion 

intege r ;  

byte ;  

intege r ;  

Image P t r ;  

PByt e ;  

longint ; 
His tArray ; 

real ; 
( Edge-s tart -posi t i on array ) 

Array [ O  . . 2 5 5 ]  of word ; 

Procedure F i tRaylei ghDi s tribu tion ( H  : His tArray ; FStar t , FEnd : byt e ;  var c l , c2 : real ) ;  
( Fi ts a Rayl ei gh dis tribu t i on to the h i s togram H, be tween FStart and FEnd ) 
( R e turns the two di s tribu t i on coeffi ci en ts c1 = Normalise,  c2 = time cons tan t 

const 
Max l ter 
S tepS i z e  

var 

i 
YSum, 
CountOu t 
ErrorSum , 
kl , k2 

1 0 0 0 ;  
0 . 0 0 0 1 ;  

byte ; 

l ongin t ;  

: real ; 
Function Compu teError ( k  

var 
x 
x2 
RSum , 

byte ;  
l ongin t ;  

Sum real ; 
begin (Compu t eError) 

RSum : =  0 . 0 ; 

real ) real ; 

for x : =  FStart to FEnd do RSum : =  RSum + ( k* x * exp ( -k * sqr ( longint ( x ) ) ) ) ;  
RSum : =  YSum / RSum ; 
Sum : =  0 . 0 ;  
for x : =  FStart to FEnd do begin 

x2 : =  sqr ( l ongint ( x ) ) ;  
Sum : =  Sum + ( RSum * x * k * ( 1 -k*x2 ) * exp ( -k*x2 ) - hist [ x ] * ( 1 - k * x2 ) ) ;  

end; 
Compu teError : =  Sum ; 

end; {Compu t eError} 
begin {MAIN: Fi tRayl eighDi s t ribu t i on} 

ySum : = 0 ;  
for i : =  FStart to FEnd do inc (ySum, h [ i ] ) ;  

( Find s tarting val ues of k tha t brack e t  the sol u t i on ) 
k1 : = 0 . 0 0 2 ;  
k 2  : = k1 ; 
ErrorSum : =  ComputeError ( k2 ) ; 
if ErrorSum < 0 . 0  then begin { -ve error} 

k2 : =  k2 + S tepS i z e ;  
i f  ComputeError ( k2 )  > ErrorSum then (going i n  the ri gh t  di rec t i on) 

whi l e  Comput eError ( k2 ) < 0 . 0  do k2 . - k2 + S tepS i z e  
e l s e  {go t h e  o ther di rec t i on} 

whi le ComputeError ( k 2 ) < 0 . 0  do k2 . - k2 - S tepS i z e ;  
end (i f) 
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else begin { + ve error} 
k2 : =  k2 + S t epS i z e ;  

Appendix C - Pascal Source Code 

i f  ComputeError ( k2 )  < ErrorSum then {going in the ri gh t  di rec t i on} 
whi le Compu teError ( k2 )  > 0 . 0  do k2 : =  k2 + StepS i z e  

e l s e  {go the o ther direct i on} 
whil e  Compu teError ( k2 )  > 0 . 0  do k2 : =  k2 - StepS i z e ;  

end; {else} 
{Itera t e  by Bisection t o  find sol u t i on} 

CountOut : =  0 ;  
i f  Compu teError ( k1 )  < 0 . 0  then {kl val ue -ve} 

Repeat 

inc ( CountOu t )  ; 
ErrorSum : =  ComputeError ( ( k1+k2 ) / 2 ) ;  
i f  ErrorSum < 0 . 0  then k1 : =  ( k1+k2 ) / 2 
else k2 : =  ( k1 + k2 ) / 2 ;  

Unt i l  ( abs ( ErrorSum) < 0 . 0 0 1  * ySum) or ( CountOut > Max l t e r )  
e l s e  {va l u e  for kl +ve} 

Repeat 
inc ( CountOu t )  ; 
ErrorSum : =  ComputeError ( ( k1+k2 ) / 2 ) ; 
i f  ErrorSum > 0 . 0  then k1 : =  ( k1 + k2 ) / 2 
else k2 : =  ( k1 + k2 ) / 2 ;  

Unti l  ( abs ( ErrorSum) < 0 . 0 0 1  * ySum) or ( CountOut > Max l te r ) ; 
i f  Countout > Maxlter then begin 

wri teln ( ' Max i terations exceeded ErrorSum = ' , ErrorSum ) ; 
readln ;  

end; 

ErrorSum : =  0 . 0 ;  
c 2  : =  ( k1 + k2 ) / 2 ;  
c 1  : = 0 . 0 ;  
for i : =  FStart to FEnd do c1 : =  cl + ( c 2 * i * exp ( -c 2 * sqr ( longint ( i » » ;  
c 1  . - ySum/ c 1 ;  

end; {Fi tRayl eighDis tribu t i on} 

begin {MAIN: Hys teresisThreshol dImage} 
Gradlmage : =  GlobalLock ( GradlmageH ) ;  
NMSGradlmage : =  GlobalLock (NMSGradlmage H ) ; 
Threslmage : =  GlobalLock (Thres lmage H ) ; 
rowByteCount : =  Align3 2 ( Threslmage� . header . s i z e . x ) ; 
ImageWidth : =  Thres lmage� . header . s i ze . x ;  
ImageHeight : =  Threslmage � . header . s i z e . y ;  
for x : =  Black t o  Whi te do hist [ x ]  : =  0 ;  

{Comp u t e  GradImage h i s togram} 
for y : =  0 to ImageHeight - 1 do begin 

srcPixe lPtr : =  O f fsetPointer ( @Gradlmage � . data , longint ( y )  * rowByteCount ) ;  
for x : =  0 to ImageWidth - 1 do begin 

inc ( h i s t [ PByte ( O f fse tPointer ( srcPixe 1 Pt r ,  x) ) � ] ) ;  
end ; { for x} 

end; { for y} 
{Find i ndex for RFi tLow fra c t i on of histogram} 

x : =  1 ;  
Sum : =  0 ;  
repeat 

inc ( Sum, hist [ x ] ) ;  
inc ( x ) ; 

Unti l  Sum >= RFi tFrac * ( longint ( ImageHeight ) * ImageWidth - his t [ O ] ) ;  
dec ( x )  ; 
Fi tRayle i ghDis tribu t i on ( H i s t ,  1 ,  x, k 1 ,  k2 ) ;  
{ Compu te lower threshold for the dis t ribu t i on} 

RSum : =  0 . 0 ; 
for x : =  Black to Whi te do RSum : =  RSum + k1 * k2 *x*exp ( -k2 * sqr ( l ongint ( x » ) ;  
TRSum : = RSum ; 
LoThres : =  0 ;  
RSum : =  0 . 0 ; 
Repeat 

RSum : =  RSum + k1 *k2 *LoThres * exp ( -k2 *sqr ( longint ( LoThres » ) ;  
inc ( LoThres ) ; 

Unti l  ( RSum/TRSum) > RLoThresFrac ; 
dec ( LoThres ) ; 

{Ini t i a l i s e  ThresImage } 
for y : =  0 to ImageHeight - 1 do begin 
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destPixe l P t r  : =  O f f se tPointer ( @Threslmage A . da t a ,  longin t ( y )  * rowByteCount ) ; 
for x : =  0 to ImageWidth - 1 do 

PByte ( O ffsetPointer ( destPixe l P t r ,  X ) ) A  : =  Black;  
end; ( for y) 

i f  Round ( Lo2HiThresRatio * LoThres ) > Whi t e  then HiThres : =  Whi te 
else HiThres : =  Round ( Lo2HiThresRatio * LoThre s ) ; 
wri teln ( ' Thresho l ds : Low = ' , LoThres , '  High = ' , HiThres ) ;  

(Trace edge segmen ts : Start edge-pixel > Hi Thres, con tinue un t i l  edge-pixel < LoThres) 
for y : =  0 to ImageHei ght - 1 do begin 

srcPixe l Ptr : =  O f f se tPointer ( @NMSGradlmage A . data,  longin t ( y )  * rowByteCoun t ) ; 
i f  y = 0 then begin (firs t  row a special case) 

(Scan a l ong the row and find val i d  s tart edge pixels and then extend l ef t  & ri gh t )  
f o r  x : =  0 to ImageWidth - 1 d o  begin 

if PByt e ( O f f s e t Pointer ( s rcPixe l Pt r ,  X ) ) A  >= HiThres then begin 
dx : =  x ;  
whi le ( PByte ( Of f s e t Pointer ( srcPixel Pt r ,  dx ) ) A  > LoThres ) and ( dx > = 0 )  

and ( PByte ( Of fsetPointer ( @Threslmage A . data,  l ongint ( y )  * rowByteCount + dX ) ) A  
< >  Whi t e )  

do begin (Extend from s tart edge -pixel to the l e f t  i f  > LoThres) 
PByte ( O f fse tPointer ( @Threslmage A . data , longint ( y )  * rowByteCount + dx ) ) A : =  

Whi t e ; 
dec ( dx )  ; 

end; (whi l e )  
d x  : =  x+ l ;  
while ( dx<= ImageWidth- l )  and ( PByt e ( O f fsetPointer ( srcPixe l P t r ,  dX ) ) A> LoThres ) 

and ( PByte ( O f fse tPointer ( @Threslmage A . data,  l ongint ( y )  * rowByteCount + dX) ) A  
<> Whi t e )  

d o  begin (Extend from s tart edge -pixel to the right i f  > LoThres) 
PByte ( O f f s e t Pointer ( @Threslmage A . data,  l ongin t ( y )  * rowByteCount + dX ) ) A  : =  

Whi t e ;  
inc ( dx )  ; 

end; (wh i l e )  
end; ( i f) 

end; ( for x) 
end (i f y= O) 

else begin ( a l l  other rows ) 
(Scan a l ong a l l  o ther rows and find val i d  s tart edge pixels and then extend 

l e f t  and righ t )  
for x : =  0 t o  ImageWidth - 1 do begin 

if ( PByte ( O f f s e t Pointer ( src Pixel Pt r ,  X ) ) A  > HiThres ) 
or ( PByt e ( O f f s e t Pointer ( @Threslmage A . data, l ongint (y-l ) * rowByteCoun t+x ) ) A = Whi t e )  

then begin 

dx : =  x ;  
while ( dx >= 0 )  and ( PByt e ( Of fsetPointer ( srcPixe l P t r ,  dx ) ) A  > LoThres ) 

and ( PByt e ( O f f se tPoin ter ( @ThreslmageA . da t a ,  
l ongint ( y )  * rowByteCount + dx ) ) A  < >  Whi t e )  

d o  begin (Ex t end from s tart edge -pixel to the l ef t )  
PByt e ( O f fs e t Pointer ( @Thres lmage A . data , 

dec ( dx )  ; 
end; (whi l e )  

d x  : =  x+ l ;  

longint ( y )  * rowByteCount + dx ) ) A  : =  Whi t e ;  

while ( dx < = ImageWidth- l )  and ( PByte ( O f f s e t Pointer ( srcPixe l P tr , dx ) ) A  > LoThres ) 
and ( PByte ( O f f s et Pointer ( @ThreslmageA . da t a ,  

longint ( y )  * rowByteCount + dx ) ) A  < >  Whi t e )  
do begin (Extend from s tart edge -pixel to the righ t )  

PByte ( O f fse tPointer ( @ThreslmageA . data,  

inc ( dx )  ; 
end; (wh i l e )  

end; (i f) 
end; ( for x) 

end; (else y > 0 )  

end; (for y )  
G l obalUnloc k ( Gradlmage H ) ; 
G l obalUnl ock ( NMSGradlmage H ) ; 
GlobalUnl ock ( Thres lmageH) ; 

end; (Hys teresisThreshol dImage) 

l ongint ( y )  * rowByteCount + dx ) ) A  Whi t e ;  

( == ============================================= ==========================================) 
end . ( Canny ) 
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Appendix C - Pascal Source Code C-2 1 

C.3 Edge Comparison Functions 

The following Pascal unit 'Edge_Ops' contains an implementation of Pratt's figure of merit (See 

equation 3 . 1 1  of section 3.2 .5 in chapter 3 for full details) for assessing the quality of the output 
of any edge-detection algorithm with respect to a reference edge-image. 

interface 

uses 

WinCr t ,  WinDo s ,  WinProcs ,  WinTypes ,  
PMXProcs , PMXTypes , F i l e s , Globa l s ,  Images , PMXUt i l s ,  
F i l ters ; 

Function CompareEdges ( Re fImageH, CompImageH : ImageHand l e ;  var MaxRadius : byt e )  : rea l ;  

implementation 

(======================================================================================= == ) 
Function Max ( i , j  : intege r )  : integer ; 
begin 

if i > j then Max : =  i else Max : =  j ;  
end; (Max) 

Function Min ( i , j  : integer ) : integer; 
begin 

if i < j then Min : =  i else Min : =  j ;  
end; (Max) 

( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Function CompareEdges ( Re f ImageH, CompImageH : ImageHandl e ;  var MaxRadius : byte ) : rea l ; 

( Compares ComplmageH binary edge image (where and edge pixel i s  Whi te )  to ReflmageH ) 
( based on Pra t t ' s  figure of meri t .  The re turned val u e  i s  a percen tage , 1 0 0 %  impl i es ) 
( the two images are i den t i cal . MaxRadi us i s  the maximum dis tance from a Comp edge ) 
( pixel tha t had to be scanned to find the nearest reference edge pixel . ) 
type 

EdgeArray = Array [ l  . .  MaxInt div 4 1  of TPoint ; 
label 

repeatExi t ;  
var 

minVal , 
maxVal ,  
Value , 
Radius 
x , y ,  
i ,  
des tpixel 
srclmage , 
dest Image 
d e s t Pixe l P t r ,  
srcPixe l Ptr 
rowByteCoun t ,  
Width , Height , 
Coun t ,  
Re fEdgeCount ,  
CompEdgeCount 
Sum 
EdgeLoca ted 
CompEdges 
TopLe f t ,  
BottomRight 

byte ;  

integer; 

ImagePtr ; 

PByte ;  

word ; 
real ; 
boolean ; 
AEdgeArray; 

TPoint ; 

begin (CompareEdges) 
des t Image : =  GlobalLock ( CompImageH ) ;  
srcImage : =  GlobalLock ( Re f ImageH ) ;  
rowByteCount : =  Align3 2 ( dest ImageA . header . si ze . x ) ; 
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RefEdgeCount : =  0 ;  
CompEdgeCount : =  0 ;  
Width : =  dest lmageh . header . s i z e . x ;  
Heigh t  : =  des t lmage h . header . s i ze . y ;  
for y : =  0 t o  Height - l  do begin ( Count the n umber o f  Ref and Comp edges pixel s .  

des tPixe l Ptr : =  O f f s e t Pointer ( @destlmage h . da t a ,  longint ( y )  * rowByteCount ) ;  
srcPixe l P t r  : =  O f fse tPointer ( @ s rc lmage h . da t a ,  l ongint ( y )  * rowByteCount ) ; 
for x : =  0 to Width - l  do begin 

if PByte ( srcPixe lPtr ) h  = Whi t e  then inc ( RefEdgeCoun t )  ; 
i f  PByte ( des tPixel Ptr ) h = Whi t e  then inc (CompEdgeCount ) ; 
des tpixelPtr . - O f fse t Pointer ( de s t Pixel Ptr , 1 ) ; 
srcPixe l Ptr : =  O f fse tPointer ( srcPixel Ptr,  1 ) ; 

end; { for x} 
end; {for y} 
If CompEdgeCount > ( ( 2 *Maxlnt )  div Si zeOf ( TPoint ) )  then begin 

writeln ( ' Too many edges pixe l : ' , CompEdgeCount ) ; 
Compare Edges . - - 1 . 0 ;  
exit ;  

end; 
GetMem ( CompEdges , (CompEdgeCount )  * s i zeof ( TPoint ) ) ;  
{ Store the l oca t i on of each Comp edge pixel . } 

CompEdgeCount : =  0 ;  
for y : =  0 t o  Heigh t - 1  do begin 

des t PixelPtr : =  O f f s e tPointer ( @des tlmageh . da t a ,  longi nt ( y )  * rowByteCoun t ) ; 
for x : =  0 to Width - 1  do begin 

if PByte ( destPixe l P tr ) h = Whi te then 
begin 

inc ( CompEdgeCoun t ) ; 
CompEdgesh [ CompEdgeCoun t ] . x  . - x ;  
CompEdges h [ CompEdgeCou n t ] . y  : =  y ;  

end; {if} 
des t Pixe l Ptr : =  O f f s e t Pointer ( des tPixe l Pt r ,  1 ) ; 

end; { for x} 
end; { for y} 
{ Take each Comp edge in turn and find the di s tance , d, to nearest ref edge . } 
( Accumul a t e  1 / (1 +dh2) , the error sum as you go . } 

Sum : =  0 ;  
MaxRadius : =  0 ;  
for Count : =  1 to CompEdgeCount do begin 

EdgeLocated : =  Fals e ;  
Radius : =  0 ;  
Repeat 

if Radius > MaxRadius then MaxRadius : =  Radius ; 
TopLe f t . x  : =  Max ( CompEdgesh [Coun t ]  . x  - Radius , 0 ) ; 
TopLe f t . y  : =  Max ( CompEdges h  [Coun t ]  . y  - Radius , 0 ) ; 
BottomRight . x  : =  Min ( CompEdge s h  [ Coun t ]  . x  + Radius , Width- 1 ) ; 
Bot tomRigh t . y  : =  Min ( CompEdgesh [ Coun t ]  . y  + Radius , Heigh t - l ) ;  
x : =  TopLe f t . x ; 
y : =  TopLe f t . y; 
Whi l e  not ( EdgeLocated ) and ( x<=Bot tomRight . x )  do begin ( t op row L2R 

if PByte ( O f f s e tPointer ( @srclmage h . da t a ,  longint ( y )  * rowByteCount + X ) ) h  Whi te 
then EdgeLocated . - True ; 

inc ( x ) ; 
end; (whi l e )  

d e c  ( x )  ; 
i f  EdgeLocated then goto repeatExi t ;  
Whil e  not ( EdgeLocated)  and (y<=BottomRight . y )  do begin ( Righ t  col umn T2B ) 

i f  PByt e ( O f f s e tPointer ( @srclmage h . da t a ,  longin t ( y )  * rowByteCount + X ) ) h  = Whi t e  
then EdgeLocated : =  Tru e ;  
inc ( y ) ; 

end; (whi l e )  
dec ( y )  ; 
i f  EdgeLocated then goto repeatExi t ;  
While not ( EdgeLocated)  and ( x> =TopLe f t . x )  do begin ( Bo t tom row R2L 

if PByte ( O f f s e tPoin ter ( @srclmage h . data,  longint ( y )  * rowByteCount + X ) ) h  Whi te 
then EdgeLocated : =  Tru e ;  

dec ( x )  ; 
end; {whi l e }  

i n c  ( x )  ; 
i f  EdgeLocated then goto repeatExi t ;  
While not ( EdgeLocated)  and (y>=TopLe f t . y )  do begin ( Left col umn B2T ) 
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if PByt e ( Of fset Pointer ( @src lmage h . data,  longint ( y )  • rowByteCount + X ) ) h  
then EdgeLocated : =  True ; 

Whi te 

dec ( y ) ; 
end; (whi l e )  

i n c  ( y ) ; 
inc ( Radius ) ; 
repeatEx i t : 

Unti l  EdgeLocated ; 
sum : =  sum + 1 / ( 1  + sqr ( CompEdges h [Count ) . x  - x) + sqr ( CompEdges A [ Count ) . y  - y ) ) ;  

end; (for Coun t )  
FreeMem ( CompEdges ,  CompEdgeCount • s i z eo f ( TPoint ) ) ;  
Compare Edges : =  1 0 0  • sum / Max ( Re f EdgeCount , CompEdgeCoun t ) ; 

end; (CompareEdges) 
(=========================================================================================) 

end . (Edge_Ops) 

C.4 Weber's Law based Edge-detection 

The following Pascal program 'Weber' contains an implementation of the Weber's law based 
edge-detection algorithm described in section 3.4 chapter 3 .  The top of the code describes the 
five key routines that have been implemented. The main section of the program at the end links 
the routines together to form the algorithm and provide control of the various internal 
parameters. 

Program Weber ; 
Program to impl emen t Webers Law opera tions . 

1 .  Compu teWeberMap : Genera t e  LAI-ES Maps 
2 .  ComputeWeberEdgeMap : Genera t e  LAI-ES map abou t edge- templa te 
3 .  Profi l eImage : Profi l e  edge de tect an image LowerProfi l e  <= X <= UpperProfi l e  
4 .  Compu teProfi l es :  Extract profi l e  from an LAI-ES map based Min ,  Max, Average 

SD of ES . 
5 .  Incl udeProfi l eImage : Genera t e  2 -D profi les,  use LAI-ES map dire c t ly 

(wi th incl ude ra t i o )  

uses 

WinCrt ,  WinDos , WinProcs ,  WinTypes ,  Strings , 
PMXProcs , PMXTypes , (Fi l es , ) Global s , Images , PMXUt i l s ,  

F i l ters , GFil ters , Edge_Ops , MLab_ops ; 

const 

MaxES = 2 5 5 ;  ( Maximum Edge Strength covered ) 
MaxLAI = 2 5 5 ;  ( Maximum Local Average Intensity covered ) 
GradientGain 0 . 5 ; ( Gain for gradi en t fil tering = 0 . 0  -> a u toscal e  ) 
AverageGain 1 .  0 ;  ( Gain for all smoothing average fi l ters = 0 . 0 -> a u t osca l e  
UseRoberts : bool ean = True ; 
LAIWinRadius = 1 ;  

type 

TypeArray array [ O  . .  1 )  of Char ; 
Bi tmapIn foRec = record 

header : TBi tmapInfoHeader; 
colors : array [ O  . . 2 5 5 )  o f  TRGBQuad ; 

end; 
Pro f i l eArray Array [ O  . . MaxLAI ) of byte ; 

var 

Header 
MachineType 
MName 
Error 

HeaderRec ;  
longint ; 
Array [ O  . .  2 0 )  of Char ; 
ErrorCode ; 
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InF i l e ,  
Out F i l e  

outTextFile 
R e fImageFi l e l , 
R e fImageFi l e 2 , 
RefEdgeImageFi l e l , 
RefEdgeImageF i l e 2 , 
EdgeImageFi l e l , 
EdgeImageFi l e 2 , 
OutImageNamel ,  
Ou t ImageName2 ,  
Out F i l eName , 
OutMatrixName , 
OutPro f i l eName l ,  
OutPro f i l eName2 

f i l e ;  
tex t ;  

: string ; 

Ref ImageH , RefEdgeImage H ,  
EdgeImageH , 
ESImage H ,  LAIImageH 

Ref Image , RefEdgeImage , 
EdgeImage , 
ESImag e ,  LAIImage 

ImageWeberMapH ,  
EdgeWeberMapH 

ImageWeberMap , 
EdgeWeberMap 

LowerPro f i l e ,  
AverageProf i l e ,  
UpperPro f i l e , 
SDPro f i l e  

KPro f i le 
s rc P t r ,  
destPtr 
ImageWidth , 
ImageHe ight , 
rowByteCount 
x, y ,  
ImageSize 
E S ,  LAI , 
LAIStar t ,  LAIEnd , 
ESStar t ,  ESEnd, 
Pos ,  
Radius 

Figure , 
MaxFigure 
Bi tmapInf o ,  
Bi tmapInfoTemp 
Fi leInfo 

ImageHand l e ; 

ImagePtr ; 

MatrixHandl e ;  

MatrixPtr ; 

Pro f i l eArray; 
Array [ O  . .  MaxES ] of word ; 

PByte ; 

word ; 

l ongint ; 

byte ; 

rea l ; 

Bi tmapInfoRec ; 

TBi tmapFi l eHeader; 
TopLef t ,  BottomRight TPoint ; 

( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -ComputeWeberMap- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Procedure ComputeWeberMap (WeberMapH : Mat rixHandl e ;  Roberts boolean ) ; 

( Computes the Weber map ES vs LAI for the gi ven Ref Image . ) 
var 

ESMax : byte ; 
WeberMap : MatrixPt r ;  

begin (Comp u teWeberMap) 
ESMax : =  B l a c k ;  
i f  Roberts then begin 

RobertsGradientImage ( Ref ImageH , ESImage H ,  GradientGa in ) ; (Compu t e  edge-s trength) 
ExtendImage ( ES lmageH , 1 ) ; 
(Compu t e  l ocal average i n t ensi ty) 
Smooth2x2 F i l terlmage ( Re f lmageH , LAIImage H ,  AverageGa i n ) ; 
ExtendImage ( LAI lmageH , 1 ) ; 

end 
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else begin 

Sobe lGradi en tImage ( Re f ImageH, ESImageH , GradientGain ) ; {Compu te edge -s trength} 
ExtendImage ( ES ImageH , 1 ) ; 

{Compute l ocal average intensi ty} 
SmoothFi l terImage ( Re f ImageH, LAIImageH , LAIWinRadius , AverageGain ) ; 
ExtendImage ( LAI ImageH , 1 ) ; 

end, {else} 
ES Image : =  G l obalLock ( ESImage H ) ; 
LAIImage : =  Global Lock ( LAI ImageH ) ;  
WeberMap : =  Global Lock ( WeberMapH ) ;  
for x : =  0 to word (MaxLAI ) , MaxES - 1 do (Ini t i a l i se ImageWeberMap 

Real Ptr ( O f f s etPointer ( @WeberMap� . data,  x ' Si zeOfReal ) ) � : =  0 . 0 ; 
wri t e l n ( ' Forming LAI - ES map ' ) ;  
for y : =  0 to ImageHe igh t - 1  do begin 

for x : =  0 to ImageWidth- 1 do begin 

ES : =  PByte ( Offset Pointer ( @ ES Image� . da t a ,  y , rowByteCount + x ) ) � ; 
if ES > ESMax then ESMax : =  ES ; 
if ES > MaxES then ES : =  MaxES ; 
LAI : =  PByte ( O f f s e tPointer ( @LAIImage � . da t a ,  y , rowByteCount + x ) ) � ;  
i f  LAI > MaxLAI then LAI : =  MaxLAI ; 
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Real Ptr ( Of f s e t Pointer ( @WeberMap� . da t a ,  ( 1 ongint ( E S )  , MaxLAI + LAI ) '  S i zeOfReal ) ) �  
: =  Rea1Ptr ( O f fs e t Pointer ( @WeberMap� . data,  

( l ongint ( E S )  , MaxLAI + LAI ) '  S i z eO f Real ) ) � + 1 ;  
end; {for x} 

wri t e  ( , . ' ) ; 
end, {for y} 

wri te l n ; 
wri te1n ( ' Max Edge-S trength = ' , ESMax ) ; 
G l obalUn1ock ( ESImageH ) ;  G1obalUn1ock ( LAI ImageH ) ;  
GlobalUn l oc k ( WeberMapH ) ; 

end; {Compu teWeberMap} 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Compu teWeberEdgeMap- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 

Procedure Compu teWeberEdgeMap ( WeberMapH : MatrixHandl e ;  EdgeGrowth : byt e ;  
Roberts : boolean ) ; 

{ -Compu t es Weber map ES vs LAI for the gi ven Ref Image abou t the speci fied edge image . }  
var 

WeberMap : MatrixPt r ;  
begin {ComputeWeberEdgeMap} 

wri te ln (  ' Compu ting Weber Edge map ' ) ;  
ThresholdImage ( RefEdgeImageH, EdgeImageH , 2 5 4 ) ; 
ExtendImage ( EdgeImageH, 3 ) ; 
for x : =  1 to EdgeGrowth do begin 

wri t e l n ( ' Growing edge layer ' , x ) ; 
RankFi l terImage ( Edge ImageH , ESImageH, 9 ) ; 
ExtendImage ( ES ImageH, 1 ) ; 
NoF i l terImage ( ESImageH, EdgeImageH ) ;  

end ; {for x} 
if Roberts then begin 

RobertsGradient Image ( RefImageH,  ESImageH, GradientGai n ) ; (Compute edge-s trength) 
ExtendImage ( ES ImageH,  1 ) ; 

(Compute l ocal average intensi ty) 
Smooth2 x 2 F i l terImage ( Re fImageH , LAI ImageH , AverageGain ) ; 
ExtendImage ( LAI ImageH, 1 ) ; 

end 

else begin {3x3 opera tor} 
wri te 1 n ( ' Sobe1 f i l tering ' ) ;  
SobelGrad i entImage ( Re fImageH , ESImageH, GradientGai n ) ; {Compu te edge-s trength} 
ExtendImage ( ES ImageH, 1 ) ; 

{Compu te l ocal average intensi ty} 
SmoothFi 1 terImage ( Re f Image H ,  LAIImageH, LAIWinRadius , AverageGain ) ; 
ExtendImage ( LAI ImageH , 1 ) ; 

end, {else} 
EdgeImage : =  G l oba1Lock ( EdgeImageH ) ;  
ES Image : =  G1oba1Lock ( ES ImageH ) ;  
LAI Image : =  GlobalLock ( LAI ImageH ) ;  
WeberMap : =  G1oba1Lock ( WeberMapH ) ;  
for x : =  0 to word (MaxLAI + 1 )  * (MaxES+ 1 )  - 1 do ( ini tial i se ma trix 

Rea1Ptr ( Of fse tPointer ( @WeberMap� . data,  x ' S i z eOfRea1 ) ) �  : =  0 . 0 ;  
wri tel n ( ' Forming LAI -ES edge map ' ) ;  
for y : =  0 to ImageHe igh t - 1  do begin 

for x : =  0 to ImageWidth- l  do begin 
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i f  PByte ( O f fsetPointer ( @EdgeImage A . da t a .  y - rowByteCount + X ) ) A  = Whi te then begin 

ES : =  PByte ( O f f se tPointer ( @ESImage A . da t a .  y - rowByteCount + X ) ) A ; 
i f  ES > MaxES then ES : =  MaxES ; 
LAI : =  PByte ( O f fse tPointer ( @LAIImage A . data . y - rowByteCount + X ) ) A ; 
i f  LAI > MaxLAI then LAI : =  MaxLAI ; 
Rea l Ptr ( Of fsetPointer ( @WeberMapA . data.  ( longint ( ES ) -MaxLAI + LAI ) - S i zeOfReal ) ) A  

: =  RealPtr ( O f fs etPointer ( @WeberMapA . da t a .  

end; (i E) 
end; (Eor x) 

write ( ' . ' I ;  
end; ( Eor y) 

wri te l n ;  

( l ongin t ( ES )  - MaxLAI + LAI ) - Si zeOfReal ) ) A  + 1 ;  

GlobalUnlock ( EdgeImageH ) ;  GlobalUnloc k ( LAI ImageH ) ;  
GlobalUnloc k (WeberMapH ) ;  

end; (ComputeWeberEdgeMap) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -ProEi l eImage- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 

Procedure Pro f i leImage (var LowerProf i l e .  UpperPro f i l e  : Pro f i l eArray; Roberts boolean ) ; 
( Extracts the edges Erom ReEImage based on the gi ven ProEi les . ) 
( An edge is declared i E  LowerProEi l e [LAI) <= ES[LAI} <= UpperProEi l e [LAI} . 

var 

ES . LAI 
: byte ;  

begin (ProEi l eImage) 
wri t e ln ( ' Applying 1 - 0  Pro f i l e ' ) ;  
i f  Roberts then begin 

RobertsGradientImage ( Re f ImageH.  ESImage H .  GradientGain) ; (Compu t e  edge -strength) 
ExtendImage ( ESImage H .  1 ) ; 

(Comp u t e  l ocal average i n t ensi ty) 
Smooth2x2Fil terImage ( Re f ImageH . LAIImageH . AverageGa i n ) ; 
ExtendImage ( LAI Image H .  1 ) ; 

end 

e1.e begin (3x3 opera tor) 
SobelGradientImage ( Re fImageH . ESImageH . GradientGai n ) ; (Comp u t e  edge-s trength) 
ExtendImage ( ESImageH. 1 ) ; 

{Comp u t e  l ocal average i n tensi ty} 
SmoothF i l terImage ( Re f ImageH . LAIImage H .  LAIWinRadius . AverageGain ) ; 
ExtendImage ( LAI ImageH . 1 ) ; 

end; (else) 
EdgeImage : =  GlobalLock ( EdgeImageH ) ;  
ESImage : =  GlobalLock ( ESImageH ) ;  
LAIImage : =  GlobalLock ( LAI ImageH ) ;  
for y : =  0 to ImageHe i gh t - l  do begin 

for x . - 0 to ImageWidth-1 do begin 
ES . - PByte ( O f fsetPointer ( @ESImage A . data.  y - rowByteCount + X ) ) A ; 
LAI . - PByte ( O f fse t Pointer ( @ LAI Image A . data.  y - rowByteCount + X ) ) A ; 
i f  ( ES >= LowerPro f i l e [ LAI ] ) and ( ES < =  UpperPro f i l e [ LAI ] ) then 

PByt e ( O ff s e tPointer ( @EdgeImageA . da t a .  y - rowByteCount + X ) ) A  : =  Whi te 
e1.e PByte ( O f fse tPointer ( @EdgeImageA . data . y - rowByteCount + X ) ) A  . - Black;  

end; ( Eor x)  
end; ( Eor y) 

GlobalUnlock ( EdgeImageH) ; GlobalUnl ock ( ESImageH ) ;  GlobalUnloc k ( LAI ImageH ) ;  
end; (ProEi l e Image) 

( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -ProEi l eImage2D- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Procedure Pro f i le Image 2 0 ( WeberMapH : MatrixHand l e ;  Roberts : bool e an ) ; 

( Extracts the edges Erom ReEImage based on the gi ven ES-LAI WeberMap . 
An edge i s  declared i E  WeberMap [LAI. ES) > O .  

} 
const 

CountThres 
var 

ES. LAI 

0 ;  (minimum pixel coun t to declare an edge pixel ) 

: byte ; 
WeberMap : MatrixPt r ;  

begin (ProEi l eImage) 
wri te l n ( ' Applying 2 -0 Pro f i l e ' ) ;  
i f  Roberts then begin 

RobertsGradient lmage ( Re f lmageH . ESlmageH . GradientGain ) ;  (Compu t e  edge -s trength) 
ExtendImage ( ES Image H .  1 ) ; 

(Compu t e  l ocal average in tensi ty) 
Smooth2x 2 F i l terImage ( Re f ImageH . LAIImageH . AverageGa in ) ; 
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ExtendImage ( LAI ImageH, 1 ) ; 
end { i f  Roberts} 

e1.e begin {3x3 opera tor} 
Sobe1GradientImage ( Re f ImageH , ESImageH, GradientGain ) ; {Compu te edge -s trength} 
ExtendImage ( ES ImageH, 1 ) ; 

{Compu te l ocal average intensi ty} 
SmoothF i 1 terlmage ( Ref ImageH , LAlImageH , LAIWinRadius , AverageGain) ; 
Extendlmage ( LAl lmageH , 1 ) ; 

end; {else} 
Edgelmage : =  G1oba1Lock ( EdgeImageH ) ;  
ESImage : =  G1oba1 Lock ( ESlmageH ) ;  
LAllmage : =  G1obalLoc k ( LAllmageH ) ;  
WeberMap : =  G l obalLock ( WeberMapH ) ;  
for y : =  0 to ImageHeigh t - 1  do begin 

for x : =  0 to ImageWidth-1 do begin 

ES : =  PByte ( O f fsetPointer ( @ESlmage h . data,  y • rowByteCount + X » h ;  
i f  ES > MaxEs then ES : =  MaxES ; 
LAI : =  PByte ( O f fse tPointer ( @LAl lmage h . data , y • rowByteCount + X » h ;  
i f  Rea l Ptr ( O f fse tPointer ( @WeberMapA . data,  
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( longint ( ES )  • MaxLAI + LAI ) • S i z eOfRea l » h > CountThres 
then PByte ( O f fsetPointer ( @ Edgelmageh . data,  y • rowByteCount + X » h : =  Whi te 

el.e PByte ( OffsetPointer ( @ EdgelmageA . data,  y • rowByteCount + X » A : =  Black;  
end; {for x}  

end; {for y} 
GlobalUnlock ( EdgelmageH ) ;  GlobalUn1ock ( ESlmageH ) ;  G1oba1Un1 ock ( LAI lmageH ) ;  
G l oba1Unlock ( WeberMapH ) ;  

end; {Profi l eImage2D} 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -ComputeProfi l es - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -} 

Procedure ComputePro f i les ( 
WeberMapH : MatrixHandle ; 
var LowerPro f i l e ,  UpperProf i l e ,  AveragePro f i l e ,  SOPro f i l e  : Pro f i l eArray ) ; 

Compu tes the Min ,  Max and Average and Standard Devi a t i on profi l e s  
(Profi l e {LAI) = m i n  (ES) , max (ES) Ave (ES) , SDAve (ES) ) for t h e  gi ven Weber (LAI-ES) map . 

type 

LargePro f i l eArray 
var 

SumPro f i 1 e ,  

Array [ O  . .  2 5 5 )  of longint ; 

VarianceProf i l e  ALargePro f i l eArray; 
CountPro f i l e  A Pro f i l eArray; 
Count l ongi n t ;  
WeberMap MatrixPtr ; 

begin {Compu teProfi l es} 
new ( SumPro f i l e )  ; 
new ( variancePro f i 1 e ) ; 
new ( CountPro f i 1 e )  ; 
WeberMap : =  G l obalLock ( WeberMapH ) ;  
wri te1n ( ' Computing 1 - 0  Profi les from LAI - ES map ' ) ;  
for x : =  0 to MaxLAI do begin { ini tial ise profi l es 

LowerPro f i l e [ x ]  : =  Whi t e ;  
UpperProf i l e  [ x ]  : = B l a c k ;  
AveragePro f i l e [ x ]  : =  0 ;  
CountPro f i l e h  [ x ]  : = 0 ;  
SOProf i l e [ x ]  . - 0 ;  
SumPro f i l e A [ x ]  : =  0 ;  
VariancePro f i l e h [ x ]  : =  0 ;  

end; {for xj 
for y ; =  0 to Max LA I do begin { Compu te Min,  Max and Sum profi l es } 

for x : =  0 to MaxES do begin 
Count ; =  

Round ( Real Ptr ( OffsetPointer ( @WeberMapA . data, ( x ' MaxLAI + y ) ' S i z eOfReal » A ) ; 
i f  Count > 0 then begin {a pixel a t  this LAI-ES posi t i on was recorded} 

if LowerPro f i l e [ y ]  = Whi t e  then LowerPro f i l e [ y ]  ; =  x ;  
i f  x > UpperPro f i l e [ y ]  then UpperPro f i l e [y] : =  x ;  
inc ( SumProf i le A [ y ) , x ) ; 
inc ( CountPro f i l e A [ y ] ) ; 

end; { i f  Count > O }  
end ; {for xj 
if UpperPro f i l e [ y ]  = B lack {no val u e  recorded} 

then UpperPro f i l e [ y )  ; =  Whi te ; 
end; { for y} 
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for x : =  0 to MaxLAI do begin (Average SumProfi l e) 
if CountPro f i le h [ x ]  = 0 (no val u e  recorded) 

then AverageProf i l e [ x ]  : =  Whi te 
else AveragePro f i l e [ x ]  : =  SumPro f i l e h [ x ]  div CountProfi le h [ x ] ; 

end; (for x) 
for y : =  0 to MaxLAI do begin (Compu te Vari anceProfi l e) 

for x : =  0 to MaxES do begin 

Count : =  
Round ( Real Pt r ( O f f s etPointer ( @WeberMaph . data,  (x ' MaxLAI + y ) ' S i zeOfRea l » h ) ; 

if Count > 0 then inc (VarianceProf i l eh [ y ] , Round ( sqr (x - AveragePro f i l e [ y ] » ) ;  
end; ( for x) 

end; ( for y) 
for x : =  0 to MaxLAI do begin (Compu te SDProfi l e  for VarianceProfi l e} 

if CountProf i l e h  [ x ]  = 0 then SDProf i l e  [ x ]  : = 0 
else SDPro f i l e [ x ]  : =  Round ( Sqrt ( VarianceProf i l eh [ x ]  I / CountPro f i le h [ x ]  I ;  

end; (for x) 
G l obalUnlock ( EdgeImageH ) ; G l obalUnlock ( ESImageH I ;  GlobalUnlock ( LAI ImageH I ;  
Dispose ( SumPro f i l e )  ; 
Dispose (VariancePro f i l e )  ; 
Di spose ( CountPro f i l e l  ; 

end; (ComputeProfi l es) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -TuneProfi l e - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 

Procedure TunePro f i l e ( Roberts : boolean ) ; 
const 

TuneSDRatio : integer = 4 ;  
O f fset = 4 ;  

var 

c : cha r ;  
begin 

( Tune the Average profi l e  to maximise Pra t ts ' s  figure of meri t .  Tune range + /- 2SD ) 
LAI Start : =  Black;  
while AveragePro f i l e [ LAIS tart ] = Whi te do inc ( LAIStar t l ; 
LAIEnd : =  Whi t e - l ;  
while AverageProf i l e [ LAIEnd] = Whi t e  do dec ( LAIEnd) ; 
writeln ( ' LAI ( Start , End) = ( ' , LAIS tar t , ' ,  ' , LAIEnd , ' )  ' I ;  
for LAI : =  LAI Start to LAIEnd do begin 

Pos : =  AveragePro f i l e [ LAI ] ; 
if (AveragePro f i l e [ LAI ] - TuneSDRati o ' SDPro f i l e [ LA I ]  - O f f s e t l  < 0 then ESStart : =  0 
else ESStart : =  Round (AverageProf i l e  [ LAI ] - TuneSDRatio • SDPro f i le [ LAI ] - O f f se t ) ;  
i f  (AveragePro f i l e [ LAI ] + TuneSDRatio • SDPro f i l e [ LA I ]  + O f f s e t l  > MaxES then 

ESEnd : =  MaxES 
else ESEnd : =  Round (AverageProf i l e  [ LAI ] + TuneSDRatio • SDPro f i l e [ LA I ]  + O f f set ) ; 
MaxFigure : =  0 . 0 ; 
wri te ( LAI , ' :  ( ' , ESStart , ' ' , ESEnd , ' ) ' ) ;  
for ES : =  ESStart to ESEnd do begin 

AveragePro f i l e [ LAI ] : =  E S ;  
Pro f i l e Image ( AveragePro f i l e ,  UpperProf i l e ,  Roberts ) ;  
ExtendImage ( EdgeImage H ,  2 ) ; 
F i gure : =  CompareEdges ( RefEdgeImageH , EdgeImageH, Radius ) ;  
if Figure > MaxFigure then begin 

MaxFigure : =  Figure ; 
Pos : = E S ;  

end; ( i f) 
end ; (for ES) 

wri teln ( ' MaxF = ' , MaxFigure : 2 : 1 , ' ' I ;  
AveragePro f i l e [ LAI ] : =  Pos ; 
if Keypressed then begin 

c : =  Readkey; 
wri teln ( ' Do you want to qui t ?  ( YIN)  ' I ;  
repeat until keypressed ; 
c : =  readkey; 
c : =  upcase ( c ) ; 
if c ' Y '  then exit ;  

end; 

end; (for LAI) 
end; (TuneProfi l e )  

( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -LoadRefImage- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Procedure LoadRefImage ( Image F i l e  : string ) ; 
begin 

Ass ign ( inFi l e ,  ImageFi l e ) ; 
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i f  IORes u l t  < >  0 then begin 

Wri te l n ( ' Error Reading Input Fila ' ) ;  

Exi t ;  
and; 

Rese t ( inFi l e ,  1 ) ; 
if IOResu l t  <> 0 than begin 

Wri teln ( ' Error Reading Inpu t File ' ) ;  
Exi t ;  

and; 

Error : =  F i l eRead (TFileRec ( inFi l e ) , @ f i l eInfo,  Si zeOf ( fi leInfo ) ,  0 ) ; 
if Error <> 0 then Exi t ;  

Error : =  F i l eRead (TFileRec ( inFil e ) , @bi tmapIn f o ,  Si zeOf ( b i tmapInfo ) ,  0 ) ; 
ImageWidth : =  bi tmapInfo . header . biWidth; 

ImageHeight : =  bi tmapIn fo . header . biHeigh t ;  
wri te l n ( ' Image S i z e : ' , ImageWidth, ' x ' , ImageHeight ) ; 
rowByteCount : =  Al ign3 2 ( ImageWidth) ; 
Error : =  CreateImage ( Re f ImageH ,  rowByteCount ,  ImageHeight ) ;  
i f  Error <> NoErr then begin 

wri te l n ( ' Insu f f ic ient memory ' ) ;  
Exi t ;  

end; 
Ref Image : =  GlobalLock ( Ref ImageH ) ;  
Error : =  F i l eRead ( TF i l eRec ( inFile ) , @RefImage� . data,  

longin t ( rowByteCount )  • ImageHeight , 0 ) ; 
if Error <> NoErr then begin 

wri teln ( ' Error reading Ref Image ' ) ;  
Exit ;  

end; 

C l ose ( inFi l e )  ; 
GlobalUnlock ( Ref ImageH ) ;  

C-29 

end; (LoadReflmage ) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -LoadRefEdgelmage- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 

Procedura LoadRefEdgeImage ( ImageFile : string ) ; 
begin 

Error : =  CreateImage ( EdgeImageH , rowByteCount ,  ImageHeigh t ) ; 
if Error <> No Err than begin 

wri te l n ( ' Insu f f ic ient memory ' ) ;  
Exit ;  

and; 
EdgeImage : =  G l obalLock ( EdgelmageH ) ;  
Error : =  CreateImage ( Re f EdgeImageH, rowByteCount ,  ImageHe i gh t ) ; 
if Error <> NoErr then begin 

wri teln ( ' Ins u f f i cient memory ' ) ;  
Exi t ;  

end; 

RefEdgeImage : =  G l obalLock ( Re fEdgeImage H ) ; 
As s i gn ( in F i l e ,  ImageFi l e ) ;  
If IORe s u l t  <> 0 than bagin 

Wri teln ( ' Error Reading RefEdgeImage Fila ' ) ;  
Exit ; 

end; 
Rese t ( inFi l e ,  1 ) ; 
If IORes u l t  <> 0 then begin 

Wri teln ( ' Error Reading RefEdgelmage Fila ' ) ;  
Exi t ;  

end ; 
Error : =  F i leRead (TFileRec ( inFile ) ,  @ f i l e In f o ,  Si zeOf ( f i leInfo) , 0 ) ; 
if Error <> 0 then Exit ;  

Error : =  F i l eRead (TFileRec ( inFi le ) , @bi tmapInfoTemp , Si zeOf ( b i tmapInfo ) , 0 ) ; 
if Error <> 0 then Exit ; 

Error : =  F i l eRead (TFileRec ( inFile ) , @Re fEdgeImage� . da t a ,  
longint ( rowByteCount )  • ImageHeigh t ,  0 ) ; 

if Error <> NoErr than bagin 
wri teln ( ' Error reading Re fEdgeImage ' ) ;  
Exi t ;  

and; 

Close ( inFi l e )  ; 
G l obalUnlock ( Re f Edge ImageH ) ;  

end; (LoadRefEdgelmage) 
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{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -SaveImage - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _ _ _ _ _  } 
Procedure SaveImage {var ImageH : ImageHandl e ;  ImageFi l e  : string ; 

InvertPal e t t e  : boo l ean ) ; 
var 

Image 
rowByteCount 
F i l eInfo 
Bi tmapInfo 

begin 

ImagePtr ; 
word ; 
TBi tmapFi leHeader ;  
Bi tmapInfoRec ;  

Image : =  GlobalLock { ImageH ) ;  
rowByteCount : =  Al ign3 2 { Image� . header . s i z e . x ) ; 

{ setup ou tpu t fi l e  Bi tMap info } 
TypeArray { f i leInfo . bfTyp e )  : =  ' BM ' ; 
f i l eInfo . bfS i z e  : =  

Si zeOf { fi le I n f o )  + S i z eO f { b i tmapInfo ) + longint { rowByteCount )  • ImageHeight ; 
f i leInfo . bfReservedl : =  0 ;  
f i leInfo . b f Reserved2 : =  0 ;  

f i leInfo . b fO f fB i ts : =  S i zeOf { f i le I n f o )  + S i z eOf {bi tmapInfo ) ;  
bi tmapInfo . header . bi S i z e  : =  S i zeOf { b i tmapInfo . header ) ;  
bi tmapInfo . header . biWidth : =  Image � . header . si z e . x ; 
bi tmapInfo . header . biHeight : =  Image � . header . s i z e . y ; 
bi tmapInfo . header . bi Planes : =  1 ;  
bi tmapInfo . header . biBi tCount : =  8 ;  
bi tmapInfo . header . biCompress ion : =  0 ;  
bi tmapInfo . header . bi S i zeImage : =  0 ;  ( non -compressed 
bi tmapInfo . header . biXPe l s PerMeter : =  0 ;  
bi tmapInfo . header . biYPelsPerMeter : =  0 ;  
bi tmapInfo . header . biClrUsed : =  0 ;  
bi tmapInfo . heade r . biClrImportant : =  0 ;  
i f  Not { InvertPale t t e )  then begin 

for x : =  0 to 2 5 5  do 
with bi tmapInfo . colors [ x ]  do begin 

rgbBlue . - x ;  
rgbGreen : =  x ;  
rgbRed . - x ;  
rgbReserved : =  0 ;  

end; {wi th } 
end { i f  } 
a1se begin 

for x : =  0 to 2 5 5  do 

with bi tmapInfo . col ors [ x ]  do begin 
rgbBl ue : =  2 5 5 - x ;  

rgbGreen : =  2 5 5 - x ;  
rgbRed : =  2 5 5 - x ;  

rgbReserved : =  0 ;  
end; {wi th} 

end; { else } 
Ass i gn { o u t Fi l e ,  ImageF i l e ) ; 
If IOResul t  <> 0 then begin 

Wri teln { ' Error wri t ing OutImage File ' ) ;  
Exi t ;  

and; 

Rewr i t e { ou t F i l e , 1 ) ; 
If IOResu l t  <> 0 then begin 

Wri teln { ' Error wri ting Ou t Image File ' ) ;  
Exi t ;  

end; 
Error : =  F i leWri te { TF i l eRec { outFi l e ) , @ f i leInfo,  S i zeO f { f i 1 eInfo ) , 0 ) ; 

if Error < >  0 then Exit ;  

Error : =  F i l eWri te {TFi leRec { ou t F i le ) , @bi tmapIn f o ,  S i zeOf { b i tmapInfo ) ,  0 ) ; 
i f  Error <> 0 then Exi t ;  

Error : =  F i l eWri te { TF i leRec { ou t F i l e ) ,  @ Image � . data,  
longin t { rowByteCount )  • Image� . header . s i z e . y ,  0 ) ; 

i f  Error <> NoErr than bagin 

writeln { ' Error wri t i ng Out Image ' ) ;  
Exi t ;  

and; 
C l ose { ou t F i l e ) ; 
GlobalUnloc k { ImageH ) ; 

end; {SaveEdgeOu tImage} 
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{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -SaveWeberImageArray- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 
Procadure SaveWeberlmageArray (ArrayF i l e  : string ) ; 
begin 

Out F i leName : ;  OutMatrixName + ' . mat ' ;  
MachineType : ; 0 ;  { found this val ue by reading a MATLAB fi l e .  } 
Ass ign ( ou t Fi l e .  Out F i leName ) ;  
i f  IORe su l t  < >  0 then begin 

wri teln ( ' Fila Error ' ) ;  
Exi t ;  

end; 

Rewr i t e ( ou t F i l e .  1 ) ; 
if IOResu l t  <> 0 then begin 

wri teln ( ' File Error ' ) ;  
Exit ; 

end; 
ImageWeberMap : ;  GlobalLock ( ImageWeberMapH ) ;  
with Header do begin 

mat type : ;  MachineType ; 
matrows : ;  ImageWeberMap� . s i z e . x ;  
matcols : ;  ImageWeberMap� . s i z e . y ;  
image f : ;  0 ;  
namel en : ;  Length ( Ou tMatrixName ) + 1 ;  {nu l l  termina ted} 

and; {wi th Header} 
( Wri te ou t header i n forma t i on )  

Error : ;  F i leWri te ( TF i l e Rec ( ou t Fi l e ) . @Heade r .  S i z eO f ( Header ) .  0 ) ; 
if Error < >  NoErr than bagin 

wri teln ( ' Fila wri t e  Error ' ) ;  
Exit ;  

and; 

S trPCopy ( MName . OutMatrixName ) ;  ( convert pas -s tring to nul -s t ring 
Error : ;  F i l eWri te ( T F i l eRec ( ou t Fi l e ) . @MName . header . name l e n .  0 ) ; 
if Error <> No Err than bagin 

wri te l n ( ' Fila wri t e  Error ' ) ;  
Exi t ;  

end; 
Error : ;  F i l eWri t e ( T F i l eRec ( ou t F i l e ) .  @ ImageWeberMap� . da t a .  ImageWeberMap� . dataS i ze . O ) ; 
if Error <> NoErr than bagin 

wri teln ( ' Fi l a  wri te Error ' ) ;  
Exit ;  

and; 

C l ose ( ou t F i l e ) ;  
and; (SaveWeberImageArray) 

( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -SaveProfi l e- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Procedura SavePro f i l e ( Prof i l e  : Pro f i l eArray; Pro f i le F i l e  : string ) ; 

bagin 
Assign ( ou tText F i l e .  Pro f i leFi l e ) ; 
If IORe s u l t  <> 0 than bagin 

Wri t e ln ( ' Error wri t ing Outlmage Fila ' ) ;  
Exi t ;  

and; 
Rewr i t e  ( ou tTextFi l e )  ; 
If IOResu l t  <> 0 than bagin 

Wri teln ( ' Error wri t ing Out lmage Fila ' ) ;  
Exit ;  

end; 
for x : ;  Black to Whi t e  do 

wri teln ( ou tTextFi l e .  Pro f i l e [ x ] ) ;  
C l os e ( ou tTextFi l e ) ; 

end; (SaveProfi l e )  
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -SaveAl l Profi l es - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 

Procadure SaveAllPro f i les ( Profi l e F i l e  : string ) ; 
bagin 

Assign ( ou tTex t Fi l e .  Pro f i le Fi le ) ; 
If IOResu l t  <> 0 than bagin 

Wri teln ( ' Error wri ting Out lmage Fila ' ) ;  
Exi t ;  

and; 
Rewr i t e  ( ou tTextFi l e )  ; 
If IORe s u l t  <> 0 then begin 

Wri te l n ( ' Error wri t ing Outlmage Fila ' ) ;  
Exit ; 
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end; 

for x : = B lack to Whi te do 
wri teln ( ou tTextF i l e , LowerProf i l e [ x l , '  ' , AveragePro f i l e [ x l , 

, ' , UpperPro f i l e  [ x l , ' ' , SDPro f i l e  [ x l ) ; 
C l ose ( outTextFi l e ) ; 

end ; (SaveAIIProfi l es) 

( ====================================Weber MAIN===========================================) 
begin ( Weber MAIN) 

Ref lmageFi l e l  : =  { ' e : \ph d \ edges \ l o_level . ops \ wt . bmp ' ; }  

RefEdgelmage F i l e l  

OutlmageName1 

· -

: =  

' e : \phd\ edges \ hi_level . ops\neck_sec . tn \ 4 1 5 - 1 . bmp ' ;  
( ' e : \phd \ edges \ l o_level . ops \ wt_can_e . bmp ' ; )  
' e : \phd\edges\hi_level . ops \neck_sec . tn\marh i l \ sec-edg2 . bmp ' ; 
, 4 1 5  - 1 - s . bmp , ; 

( . 

. ) 
( . 

OutPro f i l eName1 
Re f lmageFi l e 2  
RefEdgelmage F i l e 2  
Ou tlmageName2 
OutPro f i l eName2 
OutMatrixName 
OutFileName 

· -
: = 
: =  
: =  

: =  

: ; 
· -

' bk-prof .  txt ' ; 
' e : \phd\edge s \ l o_level . ops\weber \wt_med . bmp ' ; 
' e : \phd\edge s \ l o_level . ops\wt_e . bmp ' ;  
' wt_tune . bmp ' ; 
' wt-pro f .  txt ' ; 
' te s t_web ' ;  ( Name mus t not s tart wi th a numbe r !  ) 

OutMatrixName + ' . mat ' ;  

LoadReflmage (Reflmage F i l e 1 ) ;  
ExtendImage (RefImageH, 3 ) ; )  
LoadRefEdgeImage (RefEdgeImageFi l el ) ; )  

Error : = Createlmage ( ESlmageH , rowByteCount ,  ImageHeight ) ;  
i f  Error < >  NoErr then begin 

wri teln ( ' Insuf f ici ent memory ' ) ;  
Exi t ;  

end; 

ESlmage : =  G l obalLock ( ESlmageH ) ;  
Error : = Createlmage ( LAl lmageH, rowByteCount , ImageHe igh t ) ; 
if Error <> NoErr then begin 

wri te l n ( ' Ins u f f i c ient memory ' ) ;  
Exit ;  

end; 

LAllmage : = GlobalLock ( LAl lmageH ) ;  
G lobalUnl ock ( Re flmageH ) ;  G l obalUnlock ( EdgelmageH ) ;  GlobalUnloc k ( ESlmageH ) ;  
Error : =  CreateMatrix ( EdgeWeberMapH , MaxLAI + l ,  MaxES+ 1 ) ; 
if Error <> NoErr then begin 

wri teln ( ' Mem error ' ) ;  
exi t ;  

end; 

Error : =  CreateMatrix ( ImageWeberMapH , MaxLAI + 1 ,  MaxES + 1 ) ; 
i f  Error <> NoErr then begin 

wri te l n ( ' Mem error ' ) ;  
exi t ;  

end; 
{ • • • •  Select appropri a te fun c t i ons to perform desired PROCESSING • • • •  } 

UseRoberts : =  False (True ) ; 
ComputeWeberEdgeMap ( EdgeWeberMapH , 0 ,  UseRoberts ) ;  
Pro f i l e lmage 2 D ( EdgeWeberMapH , UseRobert s ) ; 

ComputePro f i l e s ( EdgeWeberMapH , LowerProf i l e ,  UpperProf i l e ,  AveragePro f i l e ,  SDPro f i le ) ; 
Pro f i le lmage ( AverageProf i l e ,  UpperProf i l e ,  UseRoberts ) ;  

. ) 
( Poi n t Fi l t erImage (EdgeImageH, LAIImageH) ; )  

Des troylmage ( LAl lmageH ) ;  
(Hi s togramImage (RefImageH, LAIImageH) ; )  

TopLe f t . x  : = 9 5 ;  
TopLe f t . y  : =  5 0 ;  
Bot tomRight . x  : =  TopLe f t . x  + 7 0 ;  
BottomRight . y  : =  TopLe f t . y  + 1 1 0 ;  
wri tel n ( ' Copy ' ) ;  
Error : = CopySectionOf lmage ( Re f lmageH ,  LAllmageH, TopLef t ,  BottomRigh t ) ; 
i f  Error <> NoErr then writeln ( ' Error in Copy ' ) ;  

NoFi l terImage (EdgelmageH, LAIlmageH) ; 
ExtendImage (LAllmageH, I ) ; }  
Savelmage ( (Edge} LAllmageH , OutlmageName1 ,  False ) ; 

( . 
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{ Tune profi l e  for first image } 
Compu teWeberEdgeMap ( EdgeWeberMapH , 0 ) ; 
ComputePro f i les ( EdgeWeberMapH, LowerProf i l e ,  UpperProf i l e ,  AveragePro f i l e ,  SDPro f i le ) ; 
SaveAl l Profi l es ( 'bk-prof2 . txt ' ) ;  
Pro f i l e Image (AverageProfi l e ,  UpperPro f i le ) ; 
TuneProf i l e ;  
ExtendImage ( EdgeImageH , 2 ) ; 
EdgeImage : = Globa l Loc k ( EdgeImageH ) ; 
SaveEdgeOu t Image (Out ImageName1 ) ; 
SavePro f i 1 e (AverageProf i 1 e ,  Ou tPro f i leName 1 ) ;  

{ Tune profi l e  for second image } 
Des troyImage ( RefImageH ) ; Des troyImage ( EdgeImageH ) ;  
LoadRe f Image ( Re fImageF i l e2 ) ; 
LoadRefEdgeImage ( RefEdgeImageFi l e 2 ) ; 
ComputeWeberEdgeMap ( EdgeWeberMapH , 0 ) ; 
ComputePro f i l e s ( EdgeWeberMapH , LowerPro f i le , UpperProf i l e ,  AverageProf i l e ,  SDPro f i le ) ; 
Pro f i le Image (AverageProf i l e ,  UpperPro f i l e ) ; 
TunePro f i 1 e ;  
ExtendImage ( EdgeImageH, 1 ) ; 
EdgeImage : = GlobalLock ( Edge ImageH) ; 
SaveEdgeOu tImage (Out ImageName2 ) ; 
SaveProf i 1 e ( AverageProf i 1 e ,  Out Pro f i leName2 ) ;  

G l obalUnlock ( ImageWeberMapH ) ; 
Des troyImage ( Re f ImageH ) ; Des troyImage ( EdgeImageH ) ; 
Des troyImage ( ES ImageH ) ;  Des troyImage ( LAI ImageH ) ;  
Des troyMa trix ( ImageWeberMapH ) ;  DestroyMatrix ( EdgeWeberMapH ) ;  
wri te1 n ( ' Finished ' ) ;  read 1 n ;  
DoneWinCrt ; 
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{=========================================================================================} 
end . {Weber} 

c.s Match-statistic Performance Support 

The following Pascal program 'Match' contains support code and functions for the match 
statistics described in section 5 . 1 . 1  of chapter 5 and summarised in table 5 . 1 .  It also contains an 
implementation of the selectivity measure given by equation 5.7 used to compare the various 
statistics in both intraframe and interframe matches. 

This program was used to generate all the results of section 5 .3  of chapter 5 .  

Program Match;  
{ Impl emen ts a range of Ma tch s ta t i s t i cs and support rou tines for for i n t erframe 

comparisons . 

usa. 

WinCrt , WinDos , WinProcs ,  WinTypes ,  Strings , 
PMXProcs , PMXTypes ,  PMXUti l s , 
Points , F i les , G 1 obals ,  Images , 
Maths 2 , MLab_ops , F i l ters ; 

label 

Exi t Point ; 
const 

MemErr = 1 0 ;  
AbsMeanDi f f  
RMSDi f f  
NormCorr 
Moment 

1 ;  
2 ; 
3 ; 
4 ; 

Aototion (') 

45· 

(Mean of sum of absol u t e  di fferences) 
{Root mean -square of di fferences} 
{Normal i sed area corre l a t i on} 
{Momen t invarian ts} 

RotAtjonai Displacement 
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RT1 1 ;  
RT2 RT1 + 1 ;  
RT3 RT2 + 1 ;  
RT4 RT3 + 1 ; 
RT6 RT4 + 1 ; 
RTS2 RT6 + 1 ; 
RTS4 RTS2 + 

RTS6 RTS4 + 

var 

imageNo , 
pointGroupNo , 
rowByteCount 
PointNo , 
WindowRadius , 
SearchRadius , 
MomentType , 
MatchType , 
NoShe l l s  

1 ;  
1 ; 

SelectivityBase 
f i l eNo 
lmagePath , 
CMXDocPath , 
CMXDocName , 
DataDocName , 
F i l eTyp e ,  
S 
Backward 
DocName , 
CMXDocPathP , 
CMXDocNameP 
Name 
inFi l e ,  outFi l e  
F i l eFound,  
Append 
Error 
DataS i z e  
Documentlnfo 
doc lD 
PointlnfoH 
path 

searchlnfo 
pointGroupName 
trackInfo 
ImageSi z e ,  
Point 
Image 1 H ,  lmage2 H ,  
Image 3 H ,  IMage4H 
Image1 ,  Image2 , 
Image3 ,  Image4 
MatchMapH , 
Selectivi tyH , 
SelMinMapH , 
Se lAveMapH 
MatchMap , 
Selectivity , 
SelMinMap , 
SelAveMap 
MinSel ,  AveSel 

{Rot a t i on ,  
{Ro t a t i on ,  
{Ro t a t i on ,  
{Ro t a t i on ,  
(Ro t a t i on ,  
(Ro t a t i on ,  
(Ro t a t i on ,  
{Ro t a t i on ,  

word ; 

byt e ;  
intege r ;  
longint ; 

string; 

boolean ; 

transla t i on 
transl a t i on 
transl a t i on 
transl a t i on 
transla t i on 
trans l a t i on 
transla t i on 
transl a t i on 

Array [ D  . . 6 3 1  of char ; 
Str2 5 5 ;  
TFilerec ; 

boolean ; 
ErrorCode ; 

: Longin t ;  
: DocInfoRec ; 

DocIDRec ; 
: PointInfoHandl e ;  
: PathS t r ;  

: TSearchRec ; 
PointGroupNameS t r ;  
TrackI n f oRec ; 

TPoin t ;  

ImageHandl e ;  

ImagePtr ; 

MatrixHandl e ;  

MatrixP t r ;  
real ; 

DataName Name S t r ;  

invarian t momen t 1 }  

invari an t momen t 1 . .  2}  

invarian t momen t 1 . .  3 }  
invarian t momen t 1 . .  4 }  
invariant momen t 1 . .  6) 
and sca l e  invarian t momen t 1 .  . 2) 
and sca l e  invari an t momen t 1 . .  4 )  
and sca l e  invari an t momen t 1 . .  6} 

( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Compu teMa tchMap- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -) 
Procedure ComputeMatchMap ( Source ImageH , TargetImageH : ImageHandl e ;  

SearchRadius , WindowRadius , MatchType : byte ;  
Centre : TPo i n t ;  
var MatchMapH : MatrixHandl e ) ; 

Abou t  the Poi n t  coords a fea ture is defined of si ze WindowRadi us . Thi s  fea ture i s  
then ma t ched in a l ocal area of radi us SearchRadi us using the speci fied Ma tchType . 
Ma tch s t rength val ues are then s t ored in Ma t chMap . } 

var 
i ,  j ,  
TargetPixe l , 
SourcePixel 

(Counter) 

byt e ;  



SourceSum , 
TargetSum , 
SumMatch 

SourceSumD, 
Targe tSumD , 
Mat chSumD 

Source Image , 
TargetImage 
ImageData 
MatrixMap 
CentrePixel 
rowByteCount 
WindowPixelCoun t ,  
SearchWidth , 
dx , dy, x ,  y 
MaxDi f f ,  
MinDi f f ,  
ex, cy 
sBM 
sCM 
tBM 
tCM 
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long In t ;  

doubl e ;  

ImagePtr ; 
ByteP t r ;  
MatrixP t r ;  
Byt e P t r ;  
longin t ;  

intege r ;  

centre of area coords} 
longin t ;  {Source Base momen ts O . .  J }  
rea l ;  {Source Cen tral momen ts O . .  J }  
longin t ;  {Targe t Base momen ts O . . J }  
real ; {Targe t Cen tral momen t s  O . . J }  
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sMI 
tMI 

real ; 
Array [ 0  . .  3 ,  
Array [ 0  . .  3 ,  
Array [ 0  . . 3 ,  
Array [ O  . .  3 ,  
Array [ 1  . .  7 ]  

Array [ 1  . .  7 ]  

{x and y 
0 . .  3 ]  of 

O • •  3 ]  of 

O • •  3 ]  of 
O • •  3 ]  of 

of real ; 
of real ; 

{Fi rs t seven source momen t invari ants} 
{First seven target momen t invarian t s }  

begin 

SourceImage : =  Globa1Lock ( SourceImageH ) ;  
rowByteCount : =  A1 i gn3 2 ( SourceImage A . header . s i ze . x ) ; 
MatchMap : =  GlobalLock (Ma tchMapH ) ;  
WindowPixelCount : =  sqr ( 2 *WindowRadius + 1 ) ; 
SearchWidth : =  2 * SearchRadius + 1 ;  
i f  TargetImageH = 0 { sel fma tch} 

then Target Image : =  GlobalLock ( SourceImageH) 
e l a e  TargetImage : =  GlobalLock ( Targe tImageH ) ;  
case MatchType of 

AbsMeanDi f f  : begin 
for y : =  - SearchRadius to SearchRadius do begin 

for x : =  -SearchRadius to SearchRadius do begin 
SumMatch : =  0 ;  
for dy : =  -WindowRadius t o  WindowRadius do begin 

for dx : =  -WindowRadius to WindowRadius do begin 

SourcePixel : =  

BytePt r ( O f fset Pointer ( @SourceImage A . data , 
centre . x  + dx + ( centre . y  + dy ) * rowByteCount » A ;  

Target Pixe1 : =  

BytePtr ( O f fse tPointer ( @TargetImageA . data,  
centre . x  + x+dx + ( centre . y  + y+dy ) * rowByteCount » A ;  

SumMatch : =  SumMatch + abs ( integer ( SourcePixe l ) - TargetPixel ) ;  
end; {for dx} 

end; {for dy} 
Rea1Ptr ( O f fs e t Pointer ( @MatchMapA . data , 

( ( SearchRadius-y ) *SearchWidth + x+SearchRadius ) * S i z eO fReal » A 
: =  SumMatch/WindowPixelCount /Whi t e ;  

and; {for x }  
end; {for y} 

and ; {AbsMeanDi ff} 
RMSDi f f  : begin 

for y : =  - SearchRadius to SearchRadius do bagin 
for x : =  - SearchRadius to SearchRadius do begin 

SumMatch : =  0 ;  
for dy : =  -WindowRadius to WindowRadius do begin 

for dx : =  -WindowRadius to WindowRadius do begin 
Source Pixel : =  

BytePtr ( O f fse tPointer ( @ SourceImage A . data,  
centre . x  + dx + ( centre . y  + dy) * rowByteCount » A ;  

Targe tPixel : =  
BytePtr ( Of fsetPointer ( @Target Image A . data , 

centre . x  + x+dx + ( centre . y+y+dy ) * rowByteCount )  ) A ; 
SumMatch : =  SumMatch + abs ( sqr (word ( SourcePixe l » - sqr ( Target Pixe l » ; 

and; {for dx} 
and; {for dy} 



C-36 The Development of Motion Tracking Strategies For Cineradiographic Images 

Real Ptr ( O f fsetPointer ( @MatchMapA . da t a ,  
( ( SearchRadiu s -y ) · SearchWidth + x+SearchRadius ) • Si zeO f Real » A 

: =  sqrt ( SumMa t ch ) /WindowPixelCount/Wh i t e ;  
end; { for x} 

end; {for y} 
end; {RMSDiff} 

NormCorr : begin 

for y : =  -SearchRadius to SearchRadius do begin 
for x : =  - S earchRadius to SearchRadius do begin 

Source Sum : = 0 ;  
TargetSum : =  0 ;  
SumMatch : =  0 ;  
for dy : =  -WindowRadius to WindowRadius do begin 

for dx : =  -WindowRadius to WindowRadius do begin 

SourcePixel : =  

BytePtr ( O f fsetPointer ( @ SourcelmageA . da t a ,  
centre . x  + dx + ( centre . y  + d y )  • rowByteCount » A ;  

Targe tPixel : =  

BytePtr ( O f f se t Poin ter ( @Target lmageA . data,  
centre . x  + x+dx + ( centre . y+y+dy ) · rowByteCoun t » A ;  

SumMa tch : =  SumMatch + integer ( SourcePixe l )  • Targe tPixe l ;  
inc ( TargetSum , sqr ( l ongint ( Target Pixel ) » ;  
inc ( SourceSum , sqr ( longint ( SourcePixel » ) ;  

end; { for dx} 
end; {for dy} 

i f  ( SourceSum = 0 )  or ( TargetSum = 0 )  then 
Rea l Ptr ( O f fse tPointer ( @MatchMapA . da t a ,  

( ( SearchRadiu s - y ) · SearchWidth + x+SearchRadius ) • Si zeOfReal » A : =  ° 
e l s e  

Real P t r ( O f fs e t Pointer ( @MatchMapA . data , 
( ( SearchRadius -y ) · SearchWidth + x+SearchRadius ) • S i zeOfReal » A 

: =  SumMatch/ ( sqrt ( SourceSum • TargetSum» ; 
end; { for x} 

end; {for y} 
end; {NormCorr} 

Moment : begin 

{Ca l c  source base momen ts} 
for i : =  ° to 3 do {ini t i al i se sEM} 

for j : =  ° to 3 do 
sBM [ i ,  j )  : = 0 ;  

for dy : =  -WindowRadius to WindowRadius do begin 
for dx : =  -WindowRadius to WindowRadius do begin 

SourcePixel : =  

BytePt r ( OffsetPointer ( @ SourcelmageA . da t a ,  
centre . x  + d x  + ( centre . y  + d y )  • rowByteCount » A ;  

inc ( sBM [ O , O ) , SourcePixe l ) ; 
inc ( sBM [ O , l ) , dy· SourcePixe l ) ;  
inc ( s BM [ 0 , 2 ) , sqr ( dy ) · SourcePixe l ) ; 
inc ( s BM [ 0 , 3 ] , sqr ( dy ) · dy · SourcePixe l ) ; 
inc ( s BM [ l , O ) , dx· SourcePixe l ) ; 
inc ( s BM [ l , l ) , dx· dy · SourcePixe l ) ;  
i nc ( s BM [ 1 , 2 ] , dx· sqr ( dy ) · SourcePixe l ) ; 
inc ( s BM [ 2 , 0 ) , sqr ( dx ) · SourcePixel ) ;  
inc ( sBM [ 2 , 1 ) , sqr ( dx ) · dy · SourcePixe l ) ;  
inc ( sBM [ 3 , 0 ] ,  sqr ( dx ) · dx· SourcePixe l ) ;  

end; {for dx} 
end; {for dy} 

cx : =  sBM [ l , O ) / s BM [ O , O ) ;  cy : =  sBM [ O , l ) / sBM [ O , O ) ; {Calc centre of area coords} 
if MomentType >= RTS2 then begin {Ca l c  source normalised cen tral momen ts} 

s cM [ O , O ) : =  1 ;  
sCM [ 0 ,  1 )  : = 0 ;  
sCM [ 0 , 2 ]  : =  ( s BM [ 0 , 2 )  - cy·sBM [ O , l » / sqr ( s BM [ O , O ] ) ;  
sCM [ O ,  3 )  : = 

( s BM [ 0 , 3 )  - 3 · cy·sBM [ 0 , 2 )  + 2 · sqr ( cy ) · sBM [ 0 , 1 » / ( sqr ( s BM [ 0 , 0 ] ) · sqrt ( s BM [ 0 , 0 » ) ;  
sCM [ 1 , 0 ]  : = 0 ;  
sCM [ l , l ]  : =  ( sBM [ l , l )  - cy·sBM [ l ,  0 ] ) / sqr ( sBM [ O ,  0 ] ) ;  
sCM [ 1 , 2 ]  : =  ( sBM [ 1 , 2 )  - 2 · cy·sBM [ 1 , 1 ] - cx·sBM [ 0 , 2 ) + 2 · sqr ( cy ) · s BM [ 1 , 0 J ) 

/ ( sqr ( sBM [ O , O » · s qr t ( sBM [ O , O » ) ;  
sCM [ 1 ,  3 )  : = 0 ;  
sCM [ 2 , 0 )  . - ( sBM [ 2 , 0 ) - cx·sBM [ l ,  0 »  / sqr ( sBM [ O ,  0 » ; 
sCM [ 2 , 1 ) : =  ( s BM [ 2 , 1 ) - 2 ·cx·sBM [ 1 , 1 ] - cy· s BM [ 2 , 0 ] + 2 · sqr ( cx ) · sBM [ 1 , 0 J ) 

/ ( s qr ( sBM [ O ,  0 »  · sqrt ( s BM [ O ,  0 » ) ;  
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sCM [ 2 , 2 ] : = 0 ;  
sCM [ 3 , O ] : =  ( sBM [ 3 , O ]  - 3 * cx*sBM [ 2 , O ] + 2 * sqr ( cx ) * sBM [ l , O ) ) 

/ ( sqr ( s BM [ O , O ] ) * sqrt ( s BM [ O , O ] ) )  ; 
and 

e 1 . e  begin (Ca l c  source non -norma l ised central momen ts) 
scM [ O , O ]  : =  sBM [ O , O ] ; 
sCM [ 0 , 1 ] : = 0 ;  
sCM [ 0 , 2 ]  : = ( sBM [ 0 , 2 ]  - cy* sBM [ 0 ,  1 ]  ) ; 
sCM [ O , 3 ]  : =  ( sBM [ O , 3 ]  - 3 * cy* sBM [ O , 2 ]  + 2 * sqr ( cy ) * s BM [ O , l ] ) ;  
sCM [ 1 ,  0 ]  . - 0 ;  
sCM [ l , l ]  : =  ( s BM [ l , l ]  
sCM [ 1 ,  2 ]  : =  ( s BM [ l , 2 ]  
sCM [ 2 , O ] : = ( sBM [ 2 ,  0 ]  
sCM [ 2 , l ]  : =  ( s BM [ 2 , l ] 
sCM [ 3 , O ] : =  ( sBM [ 3 , O ] 

and/ (else) 

- cy* sBM [ l ,  0 ] ) ;  
- 2 *cy*sBM [ l , l ] 
- cx*sBM [ l , O ] ) ;  
- 2 * cx*sBM [ l , l ]  
- 3 * cx*sBM [ 2 , O ] 

(Ca l c  source momen t invarian ts ) 
sMI [ 1 ]  : = sCM [ 2 ,  0 ]  + sCM [ 0 ,  2 ]  ; 

- cx*sBM [ O , 2 ]  + 2 * sqr ( cy ) * sBM [ l , O ] ) ;  

- cy* s BM [ 2 , O ] + 2 * sqr ( cx ) * sBM [ l , O ] ) ;  
+ 2 * sqr ( cx ) *sBM [ l , O ] ) ;  

sMI [ 2 ]  : =  sqr ( sCM [ 2 , O ) -sCM [ O , 2 ] ) + 4 * sqr ( sCM [ l , l ] ) ;  
sMI ( 3 )  : =  sqr ( sCM [ 3 , O ) - 3 * sCM [ l , 2 ) ) + sqr ( 3 *sCM [ 2 , l ) + sCM [ O , 3 ) ) ;  
sMI ( 4 )  : =  sqr ( sCM [ 3 , O ) +sCM [ l , 2 ) ) + sqr ( sCM [ 2 , l ) + sCM [ O , 3 ) ) ;  
sMI [ 5 ]  : = ( sCM [ 3 ,  0 ]  - 3 * sCM [ 1 ,  2 )  ) * ( sCM [ 3 , 0 ] +sCM [ 1 , 2 ]  ) * ( sqr ( sCM [ 3 , 0 )  + sCM [ 1 ,  2 )  ) 

- 3 * sqr ( sCM [ 2  , I ] + sCM [ 0 , 3 )  ) )  + ( 3 * sCM [ 2  , l ) -sCM [ O ,  3 )  ) * ( sCM [ 2 , 1 )  
+ sCM [ O , 3 ) ) * ( 3 * sqr ( sCM [ 3 , O ] +sCM [ l , 2 ) ) - sqr ( sCM [ 2 , l ) +sCM [ O , 3 ) ) ) ;  

sMI ( 6 )  . - ( sCM [ 2 , O ) - sCM [ O , 2 ) ) * ( sqr ( sCM [ 3 , O ) +sCM [ l , 2 ) ) - sqr ( sCM [ 2 , l ) +sCM [ O , 3 ) ) )  
+ 4 * sCM [ 1 , 1 )  * ( sCM [ 3 ,  0 )  +sCM [ 1 ,  2 )  ) * ( sCM [ 2 , 1 ) +sCM [ 0 ,  3 )  ) ; 

sMI ( 7 )  : = ( 3 *sCM [ l ,  2 ) -sCM [ 3 ,  0 )  ) * ( sCM [ 3 , 0 )  +sCM [ l ,  2 )  ) * ( sqr ( sCM [ 3 ,  0 )  +sCM [ l ,  2 )  ) 
- 3 * sqr ( sCM [ 2 , l ) +sCM [ O , 3 ) ) )  + ( 3 *sCM [ 2 , l ] - sCM [ O , 3 ) ) * ( sCM [ 2 , l ) 
+ sCM [ O , 3 ) ) * ( 3 * sqr ( sCM [ 3 , O ) +sCM [ l , 2 ) ) - sqr ( sCM [ 2 , l ) +sCM [ O , 3 ) ) ) ;  

for y : =  - SearchRadius to SearchRadius do bagin 

for x : =  - SearchRadius to SearchRadius do begin 

(compu te target base momen ts) 
for i : =  0 to 3 do (ini t i a l i se tBM) 

for j : =  0 to 3 do 

tBM [ i , j ]  : =  0 ;  
for dy : =  -WindowRadius to WindowRadius do bagin 

for dx : =  -WindowRadius to WindowRadius do begin 
TargetPixe1 : =  

BytePtr ( O f f s e t Pointer ( @TargetImageA . da t a ,  
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centre . x  + x+dx + ( centre . y  + y+dy) *rowByteCoun t ) ) A ; 
inc ( tBM [ O , O ) , TargetPixe 1 ) ; 
inc ( tBM [ O , l ] , dy*Targe tPixe 1 ) ;  
inc ( tBM [ O , 2 ) , sqr ( dy) *Targe tPixe1 ) ;  
inc ( tBM [ O , 3 ) , sqr ( dy ) * dy*TargetPixe 1 ) ; 
inc ( tBM [ l , O ) , dx*TargetPixe1 ) ;  
inc ( tBM [ l , l ] , dx*dy*TargetPixe l ) ; 
inc ( tBM [ l , 2 ] , dx*sqr ( dy ) *TargetPixe 1 ) ; 
inc ( tBM [ 2 , O ] , sqr ( dx ) *TargetPixe1 ) ;  
inc ( tBM [ 2 , l ] ,  sqr ( dx ) *dy*TargetPixe l ) ;  
inc ( tBM [ 3 , O ] , sqr ( dx ) *dx*TargetPixe 1 ) ; 

and ; (for dx) 
and/ (for dy) 

cx : =  tBM [ l , O ) / tBM [ O , O ) ; cy : =  tBM [ O , l ] / tBM [ O , O ) ; (Ca l c  cen tre of area coords) 
i f  MomentType >= RTS2 than bagin (Ca l c  Normalise target central momen ts) 

tcM [ 0 , 0 ]  : = 1 ;  
tCM [ 0 ,  1 )  : = 0 ;  
tCM [ 0 ,  2 )  : = ( tBM [ 0 ,  2 )  - cy* tBM [ 0 ,  1 )  ) / sqr ( tBM [ 0 ,  0 ]  ) ; 
tCM [ O , 3 )  : =  ( tBM [ O , 3 )  - 3 * cy* tBM [ O , 2 ]  + 2 * sqr ( cy ) * tBM [ O , l ) ) 

/ ( sqr ( tBM [ 0 , 0 )  ) * sqrt ( tBM [ 0 , 0 )  ) ) ; 
tCM [ 1 .  0 )  : = 0 ;  
tCM [ 1 . 1 )  : =  ( tBM [ l , l ]  - cy* tBM [ l , O ) ) / sqr ( tBM [ O , O ) ) ;  
tCM [ l , 2 ]  : =  ( tBM [ l , 2 ]  - 2 * cy* tBM [ l , l )  - cx*tBM [ O , 2 )  + 2 * sqr ( cy) * tBM [ l , O ) ) 

/ ( sqr ( tBM [ 0 ,  0 ]  ) * sqrt ( tBM [ 0 ,  0 )  ) ) ; 
tCM [ 2 , O ) : =  ( tBM [ 2 , O ) - cx* tBM [ l ,  0 ) ) / sqr ( tBM [ O ,  0 ) ) ;  
tCM [ 2 , l ) : =  ( tBM [ 2 , 1 ) - 2 *cx* tBM [ 1 . 1 )  - cy* tBM [ 2 , O ) + 2 * sqr ( cx ) * tBM [ l , O ) ) 

/ ( sqr ( tBM [ 0 , 0 )  ) * sqrt ( tBM [ 0 , 0 )  ) ) ; 
tCM [ 3 , O )  : =  ( tBM [ 3 , O ) - 3 * cx* tBM [ 2 , O ) + 2 * sqr ( cx ) * tBM [ 1 , O ) ) 

/ ( sqr ( tBM [ O ,  0 ) ) * sqrt ( tBM [ O ,  0 ) ) ) ;  
and 

al.e bagin (Calc non -normalised central target momen ts) 
tcM [ 0 , 0)  : = tBM [ 0 ,  0]  ; 
tCM [ 0 , 1 )  . - 0 ;  
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tCM [ 0 , 2 ]  : =  ( tBM [ 0 , 2 ]  - cy* tBM [ O ,  1 ] ) ;  
tCM [ 0 , 3 ]  : = ( tBM [ 0 , 3 ]  - 3 * cy* tBM [ 0 , 2 ]  + 2 * sqr ( cy) * tBM [ 0 , 1 ] ) ;  
tCM [ 1 , 0 ]  . - ° . 
tCM [ 1 , 1 ]  : =  ( tBM [ 1 , 1 ]  - cy*tBM [ 1 ,  0 ] ) ;  
tCM [ 1 , 2 ]  : =  ( tBM [ 1 , 2 ]  - 2 * cy*tBM [ 1 , 1 ]  - cx* tBM [ 0 , 2 ]  + 2 * sqr ( cy ) * tBM [ 1 , 0 ]  ) ;  
tCM [ 2 , 0 ] : = ( tBM [ 2 , 0 ]  - cx* tBM [ l ,  0 ] ) ;  
tCM [ 2 , 1 ] : : ( tBM [ 2 , 1 ]  - 2 * cx* tBM [ 1 , 1 ]  - cy* tBM [ 2 , 0 ] + 2 * sqr ( c x ) * tBM [ 1 , 0 ] ) ; 
tCM [ 3 , 0 ]  : = ( tBM [ 3 , 0 ] - 3 * cx* tBM [ 2 , 0 ] + 2 * sqr ( cx) * tBM [ 1 , 0 ] ) 

and; 

(Ca l c  target momen t invari ants ) 
tMI [ 1 ]  : = tCM [ 2 ,  0 ]  + tCM [ 0 ,  2 ]  ; 
tMI [ 2 ]  . - sqr ( tCM [ 2 , 0 ] - tCM [ 0 , 2 ] ) + 4 * sqr ( tCM [ 1 , 1 ] ) ;  
tM! [ 3 ]  : = sqr ( tCM [ 3 ,  0 ] - 3  * tCM [ l ,  2 ] ) + sqr ( 3 * tCM [ 2 ,  1 ]  + tCM [ O ,  3 ]  ) ; 
tMI [ 4 ]  : =  sqr ( tCM [ 3 , 0 ] + tCM [ 1 , 2 ] ) + sqr ( tCM [ 2 , 1 ] + tCM [ 0 , 3 ] ) ;  
tMI [ 5 ]  : =  ( tCM [ 3 , 0 ] - 3 * tCM [ 1 , 2 ] ) * ( tCM [ 3 , 0 ] + tCM [ 1 , 2 ] ) * ( sqr ( tCM [ 3 , 0 ] + tCM [ 1 , 2 ] ) 

- 3 *sqr ( tCM [ 2 , 1 ] + tCM [ 0 , 3 ] ) )  + ( 3 * tCM [ 2 , 1 ] - tCM [ 0 , 3 ] ) * ( tCM [ 2 , 1 ]  
+ tCM [ 0 , 3 ] ) * ( 3 * sqr ( tCM [ 3 , 0 ] + tCM [ 1 , 2 ] ) - sqr ( tCM [ 2 , 1 ] + tCM [ 0 , 3 ] ) ) ;  

tMI [ 6 ]  . - ( tCM [ 2 , 0 ] - tCM [ 0 , 2 ] ) * ( sqr ( tCM [ 3 , 0 ] + tCM [ 1 , 2 ] ) - sqr ( tCM [ 2 , 1 ] + tCM [ 0 , 3 ] ) )  
+ 4 * tCM [ 1 ,  1 ]  * ( tCM [ 3 ,  0 ]  + tCM [ 1 ,  2 ]  ) * ( tCM [ 2  , 1 ]  HCM [ 0 ,  3 ]  ) ; 

tMI [ 7 ]  : = ( 3  * tCM [ 1 ,  2 ]  - tCM [ 3  , 0 ]  ) * ( tCM [ 3 ,  0 ]  HCM [ 1 ,  2 ]  ) * ( sqr ( tCM [ 3 ,  0 ]  + tCM [ 1 ,  2 ]  ) 
- 3 *sqr ( tCM [ 2 , 1 ] + tCM [ 0 , 3 ] ) )  + ( 3 * tCM [ 2 , 1 ] - tCM [ 0 , 3 ] ) * ( tCM [ 2 , 1 ]  
+ tCM [ 0 , 3 ] ) * ( 3 * sqr ( tCM [ 3 , 0 ] + tCM [ 1 , 2 ] ) - sqr ( tCM [ 2 , 1 ] + tCM [ O , 3 ] ) ) ;  

case MomentType of 
RT2 : Real Ptr ( Of f s e t Pointer ( @MatchMap� . da t a ,  

( ( SearchRadius-y) * SearchWidth + x+SearchRadius ) * S i z eOfReal ) ) �  : =  
4 * abs ( ln ( abs ( sMI [ 1 ] ) ) - ln ( abs ( tMI [ 1 ] ) ) )  

+ O . 2 5 * abs ( 1n ( abs ( sMI [ 2 ] ) ) - l n ( abs ( tMI [ 2 ] ) ) ) ;  
RT4 : RealPtr ( O f f s et Pointer ( @MatchMap� . da t a ,  

( ( SearchRadius-y) * SearchWidth + x+SearchRadiu s )  * S i zeOfReal ) ) �  : =  
4 * abs ( ln ( abs ( sMI [ 1 ] ) ) - ln ( abs ( tMI [ 1 ] ) ) )  

+ abs ( ln ( abs ( sMI [ 2 ] ) ) -ln ( abs ( tMI [ 2 ] ) ) )  
+ abs ( ln ( abs ( sMI [ 3 ] ) ) -ln ( abs ( tMI [ 3 ] ) ) )  
+ abs ( ln ( abs ( sMI [ 4 ] ) ) -ln ( abs ( tMI [ 4 ] ) ) ) ;  

RT6 : RealPtr ( O f f s e tPointer ( @MatchMap� . da t a ,  
( ( SearchRadius-y) * SearchWidth + x+SearchRadius ) * S i zeOfReal ) ) � : =  

abs ( ln ( abs ( sMI [ 1 ] ) ) - In ( abs ( tMI [ 1 ] ) ) )  
+ abs ( ln ( abs ( sMI [ 2 ] ) ) - In ( abs ( tMI [ 2 ] ) ) )  
+ abs ( ln ( abs ( sMI [ 3 ] ) ) - ln ( abs ( tMI [ 3 ] ) ) )  
+ abs ( ln ( abs ( sMI [ 4 ] ) ) - ln ( abs ( tMI [ 4 ] ) ) )  
+ abs ( ln ( abs ( sMI [ 5 ] ) ) - l n ( abs ( tMI [ 5 ] ) ) )  
+ abs ( 1n ( abs ( sMI [ 6 ] ) ) - l n ( abs ( tMI [ 6 ]  ) ) ) ;  

RTS 2 : Real Ptr ( Of fs e tPointer ( @Ma tchMap� . data,  
( ( SearchRadius -y) * SearchWidth + x+SearchRadius ) * S i z eOfReal ) ) �  . _  

abs ( sMI [ 1 ] - tMI [ 1 ] ) + abs ( sMI [ 2 ] - tMI [ 2 ] ) ;  
RTS4 : RealPtr ( O f f s e t Pointer ( @MatchMap� . da t a ,  

( ( SearchRadi u s -y ) * SearchWidth + x+SearchRadius ) * S i zeOfReal ) ) � : =  
abs ( sMI [ 1 ] - tMI [ 1 ] ) + abs ( sMI [ 2 ] - tMI [ 2 ] ) 
+ abs ( sMI [ 3 ] - tMI [ 3 ] ) + abs ( sMI [ 4 ] - tMI [ 4 ] ) ;  

RTS 6 : begin (Combine first 6 momen t invari en ts using a norma l i sed correla t i on) 
MatchSumD : = 0 ;  
SourceSumD : =  0 ;  
TargetSumD . - 0 ;  
for i : =  1 to 6 do begin 

MatchSumD : =  Mat chSumD + abs ( sMI [ i ] * tMI [ i ] ) ;  
SourceSumD : =  SourceSumD + sqr ( sMI [ i ] ) ;  
TargetSumD : =  TargetSumD + sqr ( tMI [ i ] ) ;  

end; (for i )  
Real Ptr ( Of f s e t Pointer ( @MatchMap� . da t a ,  

( ( SearchRadi u s -y ) * SearchWidth + x+SearchRadius ) * S i zeOfRea l ) ) �  . 
Mat chSumD / sqrt ( SourceSumD * Targe tSumD ) ;  

end; (RTS6) 
end / (case) 

end; ( for x) 
end; (for y) 

end; (Momen t )  
end; (Case Ma tchType of) 

end; (Comp u t eMa t chMap) 
(==========================================================================================) 

end. (Ma tching) 
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{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -CalcMa tchSel ectivi ty- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 
Procedure CalcMatchSel e c t ivi ty (  

MatchMapH : MatrixHand l e ;  CentreBase : intege r ;  NumShel l s  : byte ;  
var MinSel ,  AveSel : real ; var MatchPosi tion : TPoin t ) ; 

Calcula tes the sel ectivi ty from the Ma tchMap . Thi s  measure compu tes the minimum 
di fference between the centre ma tch val u e  and val ues in a square ann u l us of radi us 
1 . .  NumShel l s .  These minima are norma l i sed by the maximum di fference across all she l l  
annulus and averaged . 

Sel Va l u e  = (min (MO-Ml } /Mmax + min (MO -M2 } /Mmax + min (MO -M3 } /Mmax + . . .  } /NumShel l s  

If Cen treBase 0 then the centre i s  taken a s  the middle o f  Ma tchMapH 
If Cen treBase < 0 then the l oca t i on of the minimum i s  used as cen tre 
if Cen treBase > 0 then the l oca t i on of the maximum is used as the cen tre . 

) 
const 

MaxNumShel ls = 5 ;  ( number of shel l s  scanned t o  compu te sel e c t i vi ty ) 
var 

She l lNo 
x , y , i ,  j 
CenVa l u e ,  
Value 

MinD i f f  

byte ;  
intege r ;  

{ Val u e  a t  the Cen tre o f  Ma tchMap } 

rea l ;  
Array [ l  . .  MaxNumShel l s ]  of real ; 

(Min di fference be tween the centre val u e  and val u es in each she l l  ) 
MaxD i f f ,  
Max , Min 

{Max di fference between the centre val u e  and val ues across a l l  4 shel l s }  

real ; 
SumD i f f  {Sum of the di fferences bet ween the centre val u e  for t h e  curren t shel l }  

Array [ l  . .  MaxNumShel l s ]  o f  real ; 
MatchMap MatrixPtr ; 
Centre TPoint ; 

begin 

if NumShel l s  > MaxNumShe l l s  then begin 

wri teln ( ' Error : too many shel l s ,  max of 5 ' ) ;  
read l n ;  
exi t ;  

end; 

MatchMap : =  Global Lock (MatchMapH ) ;  
x : =  MatchMap� . s i z e . x ; 
y : = MatchMap� . si z e . y ; 
i f  CentreBase 0 then begin ( use middl e of Ma tchMap as base cen tre) 

Centre . x  : =  x div 2 ;  
Centre . y  : =  y div 2 ;  

end 

else if CentreBase > 0 then begin { Find maximum val u e  coords } 
Max : = - 1 ;  
for i : =  0 to y - 1  do 

for j : =  0 to x - I  do begin 

Value : =  Rea l Ptr ( O f fs e t Pointer ( @MatchMap� . data , ( j  + i • x ) • S i z eO fRea1 » � ;  
i f  Value > Max then begin 

Max : =  Value ; 
Centre . x  : =  j ;  Centre . y : =  i 

end; (if) 
end ; (for j )  

end {elseif} 
else begin ( Find minimum val u e  coords ) 

Min : =  1E9 ; 
for i : =  a to y - I  do 

for j : =  0 to x - I  do begin 

Value : =  Rea1 Ptr ( OffsetPointer ( @MatchMap� . data,  ( j  + i • x) • S i zeOfRea1 » � ;  
i f  Value < Min then begin 

end/ 

Min : ,;  Value ; 
Centre . x  : =  j ;  Centre . y : = i 

end; {if} 
end/ {for j }  

MatchPos i t i on . x  : =  Centre . x ;  
MatchPos i t i on . y  : = Centre . y; 
if ( Centre . x  >= NumShe l l s )  and ( Centre . x  < x-l -NumShe 1 1 s )  

and ( Centre . y  > =  NumShe 1 l s ) and ( Centre . y  < y-I -NumShe 1 1 s ) then begin 
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for i : =  1 to NumShe l l s  do MinDi f f [ i ]  : =  l E 9 ; 
MaxD i f f  : =  0 ;  
CenValue : =  

ReaIPtr ( O f fs etPeinter ( @MatchMap� . da t a ,  ( Centre . x  + Centre . y  * y )  * S i z eOfReal » � ;  
for Shel INe : =  1 to NumShel l s  do begin 

SumDi f f [ ShellNe ]  : =  0 ;  
for i : =  -Shel INe to Shel lNe-l do begin 

{ Tep : left to ri gh t } 
Value : =  

abs ( CenValue - ReaI P t r ( O f fs e tPointer ( @MatchMap� . da t a ,  
( Centre . x+ i  + (Centre . y-SheI INo ) * y )  * Si zeOfRea l )  ) � ) ;  

SumDi f f [ ShellNo] : =  SumDi f f [ Shel lNo ] + Value ; 
i f  Value < MinDi f f [ Shel lNo ]  then MinDi f f [ Shel lNo ] : =  Value ;  
i f  Value > MaxDi f f  then MaxDi f f  : =  Valu e ;  

{ Righ t :  top to bo t t om } 
Value : =  

abs ( CenValue - RealPtr ( Of fs etPointer ( @MatchMap� . data,  
( Centre . x+ Shel lNo + ( Centre . y+ i )  * y )  * S i z eO fRea l ) ) � ) ; 

SumD i f f  [ She llNe ]  : = SumDi f f  [ ShellNo ]  + Value ; 
i f  Value < MinDi f f [ Shel lNe ]  then MinDi f f [ ShellNe ]  : =  Value ; 
i f  Value > MaxD i f f  then MaxDi f f  . - Value ; 

( Bottom :  l eft to right ) 
Value : =  

abs ( CenValue - RealPtr ( Of f s etPointer ( @MatchMap� . data,  
( Centre . x+ i + l  + ( Centre . y+ShellNo ) *y)  * S i z eO fReal » � ) ; 

SumDi f f  [ ShellNo ]  : = SumDi f f  [ ShellNe ]  + Val u e ;  
i f  Value < MinDi f f [ Shel l No ]  then MinDi f f [ Shel lNo ]  : =  Val u e ;  
i f  Value > MaxDi f f  then MaxDi f f  : =  Valu e ;  

( Righ t :  top to bot tom ) 
Value : =  

abs ( CenValue - RealPtr ( O f f s e t Peinter ( @MatchMap� . data,  
( Centre . x-Shel lNo + ( Centre . y+ i + l ) * y )  * S i zeOfReal » � ) ; 

SumDi f f [ ShellNo ]  : =  SumDi f f [ ShellNo ]  + Val u e ;  
i f  value < MinDi f f [ Shel lNo ]  then MinDi f f [ Shel lNo ] . - Val u e ;  
i f  Value > MaxDi f f  then MaxDi f f  : =  Val u e ;  

end; (for i )  
end; (for Shel lNo) 

MinSel : =  0 ;  
AveS e l  : =  0 ;  
for Shel lNe . - 1 to NumShel l s  do begin 

MinSel : =  MinSel + MinDi f f [ ShellNo ] ; 
AveSel : =  AveSel + SumDi f f [ Shel lNo ] / ( S * Shel lNo ) 

end; (for i )  
I f  MaxDi f f  = 0 . 0  then begin 

MinSel . - 0 ;  
AveS e l  : =  0 ;  

end 
e l s e  begin 

MinSel : =  MinSel / (MaxD i f f  * NumShe l l s ) ; 
Ave S e l  : =  AveSel / (MaxDi f f  * NumShe l l s ) ; 

end; 

end ( i f  Cen tre wi thin MapMa tch Area) 
e l s e  begin 

MinSel : =  - 0 . 0 2 ;  
AveSel : =  - 0 . 0 2 ;  

end; 

end; (Ca l cMa t chSe l e c t i vi ty) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -ReadBackwardAndForwardImages - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Procedure ReadBackwardAndFerwardlmages ; 

( Read the previ ous and next images abo u t  the centre image 
previ ous ->Image3H, Next ->Image4H ) 

var 

Name : S t r2 5 5 ;  
begin 

S trPCopy ( Name , " ) ; 
writeln ( ' l oading images ' ) ;  
CMXDocName : =  ' cervical ' ;  

(Find the documen t )  
S trPCepy ( CMXDocPathP, CMXDecPath ) ; 
f i l eNo : =  0 ;  
LS trCat ( LS trCat ( @Nam e ,  CMXDocPathP) , ' \doc ? ? ? ? ?  . cmx ' ) ;  
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FindFi r s t ( @Name , faReadOnly, searchlnf o ) ; 
error : =  BPError ( DosError ) ;  
i f  Error < >  NoErr then begin 

wri t e ln ( ' Error f inding CMX document s ,  path incorrect 
Exi t ;  

end; 
F i leFound : =  Fal s e ;  

Name ) ; 

while ( Error = NoErr ) and not ( Fi l eFound ) do begin 

LS trCat ( LS trCat ( S trPCopy ( @Name , CMXDocPath P ) , ' / ' ) ,  @searchlnfo . name ) ;  
Error : =  F i l eOpen ( T F i leRec ( in F i le ) , @name , Version, Ni l ,  False ) ; 
If Error <> NoErr then begin 

wri t e l n ( ' Error opening input file " name ) ; 
Exi t ;  

end; 

Error : =  ReadDoc l D ( TF i l eRec ( inFile ) , doc lD ) ; 
i f  Error <> NoErr then begin 

wri te l n ( ' Error reading input f i l e  info header 
F i l eClos e ( TF i leRec ( inFi le ) , Error ) ; 
Exit ;  

and; 
S trPCopy ( CMXDocNameP, CMXDocName ) ;  
i f  LStrcmpi ( Docl D . name , CMXDocNameP )  

F i l eFound : =  True ; 
end 

el.e FindNext ( s earchlnfo ) ;  
Error : =  BPError ( DosError ) ;  

F i leClose (TFileRec ( in F i l e ) , Error ) ; 
end; (whi l e )  

o then begin 

Error ) ; 

If Error <> NoErr then begin 

wri teln ( ' Error f inding matching CMX f i le 

Exit ;  

CMXDocName ) ; 

and; 

Error : =  F i l eOpen (TFileRec ( inFi l e ) , @name , Vers ion , Ni l ,  False ) ; 
If Error <> NoErr then begin 

wri teln ( ' Error opening input f i l e ' ,  name ) ; 
Exi t ;  

end; 

Error : =  

C-4 1 

F i leReadData ( TF i l eRec ( inFile ) , Doc l nfoDatal D , @Documen t l n fo , SizeOf ( Document l n f o ) , ni l , O ) ; 
i f  Error <> No Err then begin 

wri teln ( ' Error reading input f i l e  info header " Error ) ; 
F i l eClose (TFileRec ( in F i l e ) , Error ) ; 
Exit ;  

end; 
Error : =  Readlmage ( lmage2H,  lnFi l e ,  lmageDatalD + ( Documentlnfo . lmageCount div 2 ) - 1 ) ; 
if Error <> No Err then begin 

wri te1n ( ' Error reading centre image ' ) ;  
Exi t ;  

end; 

Error : =  Decompress lmage ( lmage2 H ,  lmage 3 H ) ; 
i f  Error <> NoErr then begin 

wri teln ( ' Error decompres sing image ' ) ;  
Exi t ;  
end; 

Gradien t F i 1 t erlmage ( Image3 H ,  Image2 H ,  6 . 0 / 5  ) ;  
NoF i 1 terlmage ( Image2H,  Image 3 H ) ; 

(Image3H crea ted by decompress) 

Error : =  Readlmage ( Image 2 H , InFi l e ,  ImageDataID + ( Documentlnfo . lmageCount div 2 » ; 
i f  Error < >  NoErr then begin 

wri teln ( ' Error reading centre image ' ) ;  
Exi t ;  

end; 

Error : =  Decompresslmage ( Image2 H ,  Image 1 H ) ; 
i f  Error <> NoErr then begin 

wri te1n ( ' Error decompres s ing image ' ) ;  
Exi t ;  

end; 

if Error <> NoErr then begin 

wri te l n ( ' Error decompress ing image ' ) ;  
Exit ;  

and ; 

GradientFi 1 terlmage ( lmagel H ,  Image2 H ,  6 . 0 / 5  ) ;  
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NoF i l terlmage ( Image 2 H ,  Image 1 H ) ; 
Error : =  Readlmage ( Image2H ,  InFi 1 e ,  ImageDataID + ( Documentlnfo . lmageCount div 2 ) + 1 ) ; 

if Error <> NoErr then begin 

write1n ( ' Error reading centre image ' ) ;  
Exit ;  

end; 

Error : =  Decompresslmage ( Image 2 H ,  Image 4 H ) ;  
i f  Error <> NoErr then begin 

wri te 1 n ( ' Error decompressing image ' ) ;  
Exit ;  

end; 

Gradient F i 1 terlmage ( Image4 H ,  Image 2 H ,  6 . 0 / 5  ) ;  
NoF i 1 terlmage ( Image 2 H ,  Image 4 H ) ; 

F i l eClose ( TFi leRec ( inFile ) ,  Error ) ; 
if Error <> NoErr then begin 

Wri te l n ( ' Error closing input f i le ' ) ;  

Exi t ;  

end; 

{Image4H crea ted by decompress} 

end; { ReadBackwardAndForwardImages} 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Ma tchMarkedPoints - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 

Procedure MatchMarkedPoints ;  
var 

MatchCoord : TPo i n t ;  
begin 

for pointGroupNo : =  ° to GetPointGroupCount ( pointlnfoH ) - l do begin 
GetPointGroupName (pointlnfoH , pointGroupNo , pointGroupName ) ;  
for PointNo : =  ° to GetPointCount ( pointlnfoH , @pointGroupName ) - l do begin 

GetPoint ( pointlnfoH , @pointGroupName , pointNo , Point ) ; 
wri teln ( ' Process ing Name : " pointGroupName , '  No : I ,  

PointNo , ' ( x ,  y)  = ' , Point . x , ' , ' , Point . y )  ; 
ComputeMatchMap ( Imagel H ,  0 ,  SearchRadius , WindowRadiu s ,  MatchType , Poin t ,  MatchMapH ) ;  
Cal cMatchSelectivity (MatchMapH , SelectivityBa s e ,  NoShe l l s ,  MinSe l , AveSel ,  MatchCoord) ; 
Rea l Ptr ( @Selectivity� . data ) � : =  MinSel ;  
RealPtr ( O f fse tPointer ( @ Select ivi ty� . da t a ,  Si zeOfReal ) ) �  : =  AveSel ;  

end; {for Poin tNo} 
DataName : =  S trPas ( pointGroupName ) ;  
i f  PointGroupNo = ° then begin 

Error : =  SaveMat ( DataDocName , DataName , MatchMapH , 0 ,  False ) ; 
Error : =  SaveMat ( DataDocName , DataName + ' _sel ' ,  Selec tivi tyH , 0 ,  True ) ; 

end 

else begin 
Error : =  SaveMat ( DataDocName , DataName , MatchMapH , 0 , True ) ; 
Error : =  SaveMa t ( DataDocName , DataName + ' _sel ' ,  SelectivityH , 0 ,  True ) ; 

end; 

end; (for poin tGroupNo) 
end; {Ma tchMarkedPoints} 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Ma tchAI IPoints - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 

Procedure MatchAl l Points ; 
var 

x ,  y ,  
Cl earance longint ; 
MatrixSi z e  Tpoi n t ;  
MatchCoord TPoin t ;  
Ou tMapH MatrixHandl e ;  

begin 

ReadBackwardAndForwardlmages ; 
Cl earance : =  WindowRadius + SearchRadius ; 
MatrixS i z e . x  : =  ImageSi z e . x- ( 2 * C learance+ 1 ) ; 
MatrixS i z e . y  : =  ImageS i ze . y - ( 2 *Clearance + l ) ; 
Error : =  CreateMatrix ( SelMinMapH , MatrixS i ze . x ,  MatrixS i ze . y ,  DoublePreci s io n ) ; 
i f  Error <> NoErr then begin 

Wri teln ( ' Error creating Matrix SelMin ' ) ;  
Exi t ;  

end; 

SelMinMap : =  GlobalLock ( Se lMinMapH ) ;  
Error : =  CreateMatrix ( SelAveMapH , MatrixS i z e . x , MatrixSi z e . y ,  DoublePrec i s i on ) ; 
if Error <> NoErr then begin 

Wri te l n ( ' Error creating Matrix Se lAve ' ) ;  
exit ;  

end; 

SelAveMap : =  GlobalLoc k ( SelAveMapH ) ;  
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wri teln ( ' Matching previous image ' ) ;  
for y : =  0 to MatrixS i z e . y- l  do begin 

for x : =  0 to MatrixSi ze . x- l  do begin 
Point . x  : =  x+Clearance ; 
Poin t . y  : =  y+Cl earanc e ;  
ComputeMatchMap ( ImagelH,  Image3 H ,  SearchRadius , 

WindowRadiu s ,  MatchType , Point , MatchMapH ) ;  
CalcMatchSelect ivi ty (MatchMapH , Selectivi tyBase ,  NoShe l l s , 

MinSel ,  AveSe l ,  MatchCoord ) ;  
ReaI Ptr ( O f fse t Pointer ( @SeIMinMap� . da t a ,  

( x  + ( MatrixSi ze . y- l -y ) *MatrixS i z e . x )  * Si zeOfDouble » � : =  MinSe l ; 
ReaI Ptr ( O f fset Pointer ( @SeIAveMap� . da t a ,  

(x + ( MatrixS i ze . y- l -y) *MatrixS i ze . x )  * Si zeOfDoub l e » � . - AveSel ; 
and; (for x) 

and ; (for y) 
Error : =  ConvertMatrix ( SelMinMapH, Ou tMapH , BytePrecis ion , True ) ; 
if Error <> NoErr than begin 

wri teln ( ' ConvertError ' ) ;  
exi t ;  

end; 

Error : =  SaveMat ( Fi l eType + ' minp . mat ' ,  ' Sel_min '  , OutMapH , 0 ,  False ) ; 
DestroyMatrix (OutMapH ) ;  
Error : =  ConvertMatrix ( SelAveMapH , OutMapH, BytePrecision,  True ) ;  
Error : =  SaveMat ( F i leType + ' avep . mat ' ,  ' Sel_ave ' ,  OutMapH, 0 ,  Fal se ) ; 
DestroyMatrix ( OutMapH ) ;  
wri teln ( ' Matching current image ' ) ;  
for y : =  0 to MatrixSi ze . y- l  do begin 

for x : =  0 to MatrixS i ze . x- l  do begin 
Point . x  : =  x+Clearan c e ;  
Point . y  : =  y+Clearance ;  
Compu teMatchMap ( Imagel H ,  Imagel H ,  SearchRadius , WindowRadius , 

MatchType , Poi n t ,  MatchMapH ) ;  
Cal cMatchSelect ivity ( MatchMapH , Select ivi tyBase ,  NoShe l l s , 

MinSe l ,  AveSe l , MatchCoord ) ;  
ReaI Ptr ( Of f s e t Pointer ( @SeIMinMap� . da t a ,  

( x  + ( Ma trixS i ze . y- l -y ) *MatrixSize . x )  * S i zeOfReal » � . - MinSel ; 
ReaI Ptr ( O f f se tPointer ( @SeIAveMap� . da t a ,  

( x  + ( MatrixS i z e . y- l -y ) *MatrixS i ze . x )  * S i zeOfRea l » � : =  AveSel ; 
and; ( for x) 
wri te ( ' . ' ) ;  

end; (for y) 
Error : =  ConvertMa trix ( SelMinMapH, OutMapH , BytePrecis ion , True ) ; 
Error : =  SaveMat ( F i l eType + ' minc . mat ' ,  ' Sel_min ' ,  OutMapH , 0 ,  False ) ; 
DestroyMatrix ( OutMapH ) ;  
Error : =  ConvertMatrix ( SelAveMapH , OutMapH , BytePreci s i on ,  True ) ; 
Error : =  SaveMat ( Fi leType + ' avec . mat ' ,  ' Sel_ave ' , OutMapH , 0 ,  Fa l s e ) ;  
DestroyMatrix (OutMapH ) ; 
wri teln ( ' Matching next image ' ) ;  
for y : =  0 to MatrixSi ze . y - l  do begin 

for x : =  0 to MatrixSi ze . x- l  do begin 

Point . x  : =  x+Clearance ; 
Poin t . y  : =  y+Clearance ; 
Compu teMatchMap ( Imagel H ,  Image4 H ,  SearchRadius , WindowRadius , 

MatchType , Point , MatchMapH ) ;  
CalcMatchSel e c t iv i ty (MatchMapH , SelectivityBase ,  NoShe l l s ,  

MinSel ,  AveSel , MatchCoord ) ;  
ReaIPtr ( O f f se t Pointer ( @SeIMinMap� . da t a ,  

( x  + (MatrixS i z e . y- l  - y ) *MatrixS i z e . x )  * s i zeOfReal » � : =  MinSe l ; 
ReaI Ptr ( O f fse tPointer ( @Se IAveMap� . da t a ,  

( x  + (MatrixS i z e . y- 1  - y ) *MatrixS i z e . x )  * Si zeOfReal » � : =  AveSel ; 
and; (for x) 
wri te ( ' . ' ) ;  

and; (for y) 
Error : =  ConvertMatrix ( SelMinMapH , OutMapH, BytePrecision,  True ) ; 
Error : =  SaveMa t ( Fi l eType + ' minn . mat ' ,  ' Se l_min ' , OutMapH , 0 ,  False ) ; 
Des troyMatrix ( OutMapH ) ;  
Error : =  ConvertMa trix ( SelAveMapH , OutMapH, BytePrecision ,  True ) ; 
Error : =  SaveMat ( F i l eType + ' aven . mat ' ,  ' Sel_ave ' ,  OutMapH, 0 ,  False ) ; 
DestroyMatrix ( OutMapH ) ; 
DestroyMa trix ( Se IMinMapH ) ;  
DestroyMatrix ( SeIAveMapH ) ;  

and; (Ma tchAl lPoin ts) 
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( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -CalcSelRadEffects - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -) 
Procedure CalcSelRadEffects ; 
var 

SelRadius , 
PointGroupCount 

byte ;  
MinSelRadmapH , 
AveSelRadMapH 

MatrixHandl e ;  
MinSelRadmap , 
AveSelRadMap 

: MatrixP t r ; 
MatchCoord : TPoint ; 

begin 

PointGroupCount : =  GetPointGroupCoun t ( pointlnfoH ) ; 
Error : = CreateMatrix (MinSelRadMapH , S ,  PointGroupCount ,  DoublePrec i s ion) ; 
MinSelRadMap : =  GlobalLock (MinSelRadMapH ) ;  
Error : =  CreateMatrix (AveSelRadMapH , 5 ,  PointGroupCount , Doubl ePre c i s i on ) ; 
AveS e lRadMap : = GlobalLock ( Ave S e l RadMapH ) ;  
for pointGroupNo : = 0 to PointGroupCount - l  do begin 

GetPo intGroupName ( pointlnfoH , pointGroupNo , pointGroupName ) ;  
for PointNo : =  0 to GetPointCount ( po i n t lnfoH,  @pointGroupName ) - l do begin 

for SelRadius : = 1 to 5 do begin 
G e t Poin t ( pointlnfoH, @pointGroupName , pointNo , Poin t ) ; 
wri teln ( ' Processing Name : ' ,  pointGroupName , 

, No : ' , PointNo , ' ( x , y) = ' , Point . x , ' , ' , Point . y ) ; 
ComputeMatchMap ( Imag e l H ,  0 ,  SearchRadius , WindowRadius,  

MatchType , Point ,  MatchMapH ) ;  
Cal cMatchS e l e c tivity (Ma tchMapH , S e l e c t ivi tyBase ,  Sel Radius , 

MinS e l ,  AveSe l ,  MatchCoord ) ;  
Real Ptr ( O f f s et Pointer ( @MinSelRadMapA . da t a ,  

(pointGroupNo + ( S elRadius - l ) * PointGroupCount ) * S i zeOfReal ) ) A  . - MinSel ;  
Real Ptr ( O f fs et Pointer ( @AveS e lRadMapA . data , 

( pointGroupNo + ( Se l Radius - l ) * PointGroupCount ) * S i z eO fReal ) ) A : =  AveSe l ;  
end; (for SelRadi us) 

end; ( for Poin tNo) 
end; (for poin tGroupNo) 
Error : =  SaveMat ( ' corS_min . ma t ' ,  ' Se l_min ' ,  MinSel RadMapH , D ,  False ) ; 
Error : =  SaveMat ( ' corS_ave . mat ' ,  ' Se l_ave ' ,  AveSel RadMapH , 0 ,  False ) ;  
Des troyMatrix ( MinSelRadMapH ) ;  
Des troyMatrix (AveSe l RadMapH ) ;  

end ; (Cal cSelRadEffects) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -CalcSel WindowEffects - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Procedure CalcSelWindowEffec t s ;  

( Cal cu l a tes the selectivi ty for vari ous window radi us ) 
var 

PointGroupCount 

MinSelRadmapH , 
AveS e lRadMapH 

MinSe l Radmap , 
AveSelRadMap 

byte ; 

MatrixHand l e ;  

: MatrixPt r ;  
MatchCoord : TPoint ; 

begin 

PointGroupCount : =  Ge tPointGroupCount ( po intlnfoH ) ; 
Error : =  CreateMatrix ( MinSe l RadMapH , 6 ,  PointGroupCount ,  DoublePre c i s i on ) ; 
MinSelRadMap : = G l obalLoc k ( MinSelRadMapH ) ; 
Error : = CreateMatrix (AveS e lRadMapH , 6 ,  PointGroupCount , DoublePrec i s i on ) ; 
AveSe lRadMap : =  GlobalLock ( AveSel RadMapH ) ;  
for poin tGroupNo : =  0 to PointGroupCount - l  do begin 

GetPointGroupName ( point lnfoH , pointGroupNo , pointGroupName ) ;  
for PointNo : =  0 to GetPointCount (pointlnfoH , @pointGroupName ) - l do begin 

for WindowRadius : =  1 to 6 do begin 

GetPoin t ( pointlnfoH ,  @pointGroupNam e ,  pointNo , Poin t ) ; 
wri teln ( ' Process ing Name : ' ,  pointGroupName , 

, No : ' , PointNo , ' ( x , y) = ' , Point . x , ' ,  ' , Po i n t . y ) ; 
ComputeMatchMap ( Imagel H ,  0 ,  SearchRadius , WindowRadius , 

MatchTyp e ,  Point ,  MatchMapH ) ;  
Cal cMatchS e l e c t iv i ty ( MatchMapH , S e l e c t i v i tyBase ,  NoShe l l s , 

MinS e l , AveSe l ,  MatchCoord ) ;  
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Real Ptr ( O f fsetPointer ( @MinSelRadMap� . data,  
( pointGroupNo + ( WindowRadius - l ) * PointGroupCoun t ) * S i z eOfReal ) ) �  : = MinSe l ; 

Real Ptr ( O f fsetPointer ( @AveSelRadMap� . data,  
( pointGroupNo + (WindowRadius - l )  * PointGroupCount )  * S i zeOfReal ) ) �  : =  AveSel ; 

end; { for WindowRadi us} 
end; {for Poin tNo} 

end; { for poin tGroupNo} 
Error : = SaveMat ( , rms_wrad . mat ' , ' rms_min " MinSelRadMapH, 0 ,  False ) ; 
Error : = SaveMat ( ' rms_wrad . mat ' ,  ' rms_ave ' ,  AveSelRadMapH , 0 ,  True ) ; 
DestroyMa tr ix ( MinSelRadMapH ) ;  
Des troyMa t ri x (AveSel RadMapH ) ;  

end; {CalcSelWindowEffects} 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -CalcSelWindowEffectsBe tweenImages - - - - - - - - - - - - - - - - - - - - - - - - - - } 

Procedure CalcSelWindowEf fectsBetweenlmages ; 
{ Cal cula tes the sel ectivi ty for vari ous window radi us, between images } 

var 

PointGroupCoun t ,  
MaxWinRadius 

SelWinRadmapH , 
OutMa trixH , 
xCoordsH , 
yCoordsH 

SelWinRadmap , 
xCoords , 
yCoords 

byte ;  

MatrixHand l e ;  

MatrixPt r ;  
MatchCoord TPoint ; 

begin 

MaxWinRadius : =  8 ;  
ReadBackwardAndForwardlmages ;  
PointGroupCount : = GetPointGroupCoun t ( pointlnfoH ) ; 
Error : =  CreateMatrix ( SelWinRadMapH , MaxWinRadius , 6 * PointGroupCount , Doubl e Preci s i on ) ; 
SelWinRadMap : =  GlobalLoc k ( Se lWinRadMapH ) ;  
Error : = CreateMatrix ( xCoords H ,  MaxWinRadius , 3 * PointGroupCount ,  DoublePre c i s i on ) ; 
xCoords : =  GlobalLock ( xCoords H ) ; 
Error : =  CreateMatrix (yCoordsH, MaxWinRadius , 3 * PointGroupCount ,  DoublePrec i s i on ) ; 
yCoords : =  G l obalLock (yCoords H ) ; 
for pointGroupNo : =  0 to PointGroupCount - l  do begin 

GetPointGroupName ( pointlnfoH,  pointGroupNo , pointGroupName ) ;  
for PointNo : =  0 to GetPointCoun t ( pointlnfoH ,  @pointGroupName ) - l do begin 

{ Ma tch Previ ous frame } 
wri teln ( ' Previous Frame ' ) ;  
for WindowRadius : =  1 to MaxWinRadius do begin 

GetPoint (pointlnfoH ,  @pointGroupName , pointNo , Point ) ;  
ComputeMatchMap ( ImagelH , Image3 H ,  SearchRadius , WindowRadius , 

MatchType , Poin t ,  MatchMapH ) ;  
Cal cMatchSelectivi ty (MatchMapH , Selectivi tyBase ,  NoShe l l s ,  MinSel ,  

AveSe l , MatchCoord ) ;  
writeln ( ' Process ing Name : ' ,  pointGroupName , , ( x , y ) = ' , Point . x , ' ,  ' , Po i n t . y ,  

, , WindowRadius , , , , MatchCoord . x ,  ' , ' , MatchCoord . y)  ; 
Real Ptr ( Offse tPointer ( @SelWinRadMap� . data,  ( ( O *pointGroupCoun t )  + PointGroupNo 

+ (WindowRadius - l ) * 6 * PointGroupCount ) * S i zeOfReal ) ) � : =  MinSe l ; 
Real Ptr ( O ffse tPointer ( @Se lWinRadMap� . data , ( ( 3 * PointGroupCount )  + PointGroupNo 

+ (WindowRadius - l ) * 6 * PointGroupCoun t ) * Si zeOfReal ) ) � : =  AveSel ; 
Real P t r ( O f fse t Pointer ( @xCoords � . data,  ( 0  * PointGroupCount + PointGroupNo 

+ (WindowRadiu s - l ) *  3 * PointGroupCoun t ) * Si z eOfReal ) ) �  : =  MatchCoord . x ;  
Real Ptr ( O f fse tPointer ( @yCoords � . data,  ( 0  * PointGroupCount + PointGroupNo 

+ (WindowRadius - l ) * 3 * PointGroupCount ) * Si zeOfReal ) ) � : =  MatchCoord . y ;  
end ; {for WindowRadi us} 

{ Ma tch Centre frame } 
writeln ( ' Middle Frame ' ) ;  
for WindowRadius : =  1 to MaxWinRadius do begin 

GetPoint ( pointlnfoH,  @poin tGroupName , pointNo , Point ) ; 
ComputeMa tchMap ( Imagel H ,  Imagel H ,  SearchRadius , WindowRadius , 

MatchType,  Poin t ,  MatchMapH ) ;  
Cal cMatchSelect ivity ( MatchMapH , {Sel ectivi tyBase} 0 ,  NoShe l l s ,  

MinSe l ,  AveSel , MatchCoord ) ;  
wri teln ( ' Process ing Name : " pointGroupName , ' ( x ,  y) = '  , Point . x ,  ' , ' , Point . y ,  

, , WindowRadius , ' , , MatchCoord . x ,  ' , ' , MatchCoord . y) .; 
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ReaI Ptr ( O f fset Pointer ( @SeIWinRadMap� . da t a .  ( ( 1 * pointGroupCount ) + PointGroupNo 
+ (WindowRadius - 1 ) * 6 * PointGroupCoun t ) * S i zeOfReal ) ) �  : =  MinSe l ; 

ReaI Ptr ( O f f s e t Pointer ( @SeIWinRadMap� . da t a .  ( ( 4 * PointGroupCount ) +  PointGroupNo 
+ (WindowRadius - 1 ) * 6 * PointGroupCount ) * S i zeOfReal ) ) � : =  AveSel ;  

ReaI Ptr ( O f fsetPointer ( @xCoords � . da t a .  ( 1  * PointGroupCount + PointGroupNo 
+ ( WindowRadius - 1 ) * 3 * PointGroupCoun t ) * S i zeOfReal ) ) �  : =  MatchCoord . x ;  

ReaI Ptr ( Of fs e tPointer ( @yCoords � . da t a .  ( 1  * PointGroupCount + PointGroupNo 
+ ( WindowRadius - 1 ) *  3 * PointGroupCount ) * S i z eO fReal ) ) � : =  MatchCoord . y ;  

end; (for WindowRadi us) 
( Ma tch next frame ) 

wri teln ( ' Next Frame ' ) ;  
for WindowRadius : =  1 to MaxWinRadius do begin 

Ge t Poin t ( pointlnfoH . @poin tGroupName . pointNo . Point ) ;  
ComputeMatchMap ( Image1 H .  Image4 H .  SearchRadius . WindowRadius . 

MatchType . Poin t .  MatchMapH ) ;  
CalcMatchSelect ivity (MatchMapH. Select ivi tYBa s e .  NoShe l l s .  

MinSe l . AveSel .  MatchCoord ) ;  
wri teln ( . Processing Name : ' .  pointGroupName . · ( x .  y )  = ' , Poin t . x • •  , • •  Poin t . y • 

• • WindowRadius , ' • •  MatchCoord . x • • • • •  MatchCoord . y) ; 
ReaI Ptr ( O f fsetPointer ( @SeIWinRadMap� . da t a ,  ( ( 2 * pointGroupCount ) + PointGroupNo 

+ (WindowRadiu s - 1 ) * 6 * PointGroupCoun t ) * S i zeOfReal ) ) � : = MinSel ; 
ReaI P t r ( O f f s e t Pointer ( @Se IWinRadMap� . da t a .  ( ( 5 * PointGroupCount ) +  PointGroupNo 

+ ( WindowRadius - l ) * 6 * PointGroupCoun t ) * S i z eO fReal ) ) �  : =  AveSe l ;  
ReaI P t r ( O f fse tPointer ( @xCoords � . da t a .  ( 2  * PointGroupCount + PointGroupNo 

+ ( WindowRadius - l ) *  3 * PointGroupCount ) * S i z eOfReal ) ) �  : =  MatchCoord . x ;  
Real Ptr ( O f fsetPoin ter ( @yCoords � . da t a .  ( 2  * PointGroupCount + PointGroupNo 

+ (WindowRadius - l ) * 3 * PointGroupCoun t ) * S i zeOfReal ) ) � : =  MatchCoord . y ;  
end; (for WindowRadi us) 

end; (for Poin tNo) 
end; ( for poin tGroupNo) 
Error : =  SaveMat ( · RTS 6drad . mat · ,  
Error : =  SaveMat ( · RTS 6drad . mat · .  
Error : = SaveMat ( · RTS6drad . mat · .  
DestroyMatrix ( S elWinRadMapH) ; 
DestroyMa trix ( xCoords H )  ; 
Des troyMatrix (yCoords H )  ; 

· dyna_sel · .  SelWinRadMapH , O .  False ) ; 
· dyna_x · .  xCoords H .  O .  True ) ; 
· dyna-y · . yCoordsH. O .  True ) ; 

end; (Ca l cSel WindowEffectsBe tweenlmages) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Ma tchPoin tsBe tweenlmages - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Procedure MatchPointsBe tweenlmages ( Backward : boolean ) ; 

var 

MatchCoord : TPoint ; 
begin 

writeln ( '  MatchPointsBetweenlmages ' ) ;  
ReadBackwardAndForwardlmages ; 
for pointGroupNo : =  0 to GetPointGroupCount ( pointlnfoH ) - l  do begin 

GetPointGroupName ( pointln foH . pointGroupNo . pointGroupName ) ;  
for PointNo : = 0 to GetPointCount ( pointlnfoH, @pointGroupName ) - l do begin 

GetPo in t ( pointlnfoH . @pointGroupName . pointNo , Poin t ) ; 
wri teln ( ' Process ing Name : ' ,  pointGroupName • 

• No : · . PointNo , · ( x . y ) = · . Point . x , · . · . Point . y ) ; 
if BackWard then 

ComputeMatchMap ( Image 1 H ,  Image3H , SearchRadius . WindowRadius . 
MatchType , Poin t .  MatchMapH ) 

e l s e  ComputeMatchMap ( Image1 H ,  Image4 H ,  SearchRadius . WindowRadius , 
MatchType . Point . MatchMapH ) ;  

CalcMatchSelectivi ty ( Ma tchMapH , Selectivi tyBa s e ,  NoShe l l s .  
MinSel . AveSel . MatchCoord ) ;  

ReaI Ptr ( @Selectivity� . data ) � : = MinSel ; 
Real P t r ( O f f s e tPointer ( @Selectivi ty� . da t a .  Si zeOfReal ) ) � : = AveSe l ;  

end; ( for Poin tNo) 
DataName : = S trPas ( pointGroupName ) ;  
i f  PointGroupNo = 0 then begin 

Error : =  SaveMat ( DataDocName , DataName , MatchMapH , O .  Fa lse ) ; 
Error : = SaveMat ( DataDocName . DataName + · _sel · .  Select ivi tyH . O .  True ) ; 

end 

e l s e  begin 
Error : = SaveMat ( DataDocName , DataName . MatchMapH . O .  True ) ; 
Error : =  SaveMa t ( DataDocName , DataName + · _sel · .  Selectivi tyH , 0 ,  True ) ; 

and; 

end; (for poin tGroupNo) 
end; (Ma tchPointsBe tweenlmages) 
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Appendix C - Pascal Source Code C-47 

(======================================= Main Mapping ====================================)  
begin 

ScreenS i z e . x  : =  6 5 ;  
ScreenS i z e . y  : =  2 5 ;  

(Define run parameters) 
WindowRadius . - 5 ;  
SearchRadius . - 7 ;  
MatchType : = (AbsMeanDiff) (RMSDiff) (NormCorr)Moment ; 
MomentType : = RTS 6 ;  
s tr ( WindowRadius , S ) ; 
Case MatchType of 

AbsMeanDi f f  F i leType : =  ' abs ' + s ;  
RmsDi f f  F i leType : = ' rms ' + s ;  
NormCorr 

.
F i l eType : =  ' cor ' + s ;  

Moment : 
case MomentType of 

RTS2 F i leType : = ' RTS2 ' ;  
RTS4 F i l eType . - ' RTS4 ' ;  
RT2 F i leType : =  ' RT2 ' ;  
RTS4 FileType : = ' RT4 ' ;  

end; (case ) 
end; (case) 

NoShel l s  : = 3 ;  (Number of shells for selectivi ty measure) 
S e l e c t ivi tyBase : =  + 1 ;  { O=use centre, -ve use min, +ve use max, coords 
CMXDocPath : = ' e : \ cmxdocs ' ;  
CMXDocName : =  ' Re f l ' ;  (CMX reference documen t with marked poin ts) 
DataDocName : =  ' rt s 6_ 6 7 . mat ' ;  

(Find the documen t) 
StrPCopy ( CMXDocPathP , CMXDocPath ) ; 
f i l eNo : = 0 ;  
LS trCat ( LStrCat ( @Name , CMXDocPathP ) ,  ' \ doc ? ? ? ? ? cmx ' ) ;  
FindFirs t ( @Name , faReadOnly, searchlnfo ) ;  
error : = BPError ( DosError ) ;  
i f  Error <> NoErr then begin 

wr i t e l n ( ' Error finding CMX documents , path incorrec t ' , Name ) ; 
goto Exi tPoin t ;  

and; 

F i l eFound : =  Fal s e ;  
whi l e  ( Error = NoErr ) and not ( F i l eFound) do begin 

LS trCat ( LS trCat ( StrPCopy ( @Name , CMXDocPathP ) ,  ' j ' ) ,  @searchlnfo . name ) ;  
Error : = F i leOpen (TFileRec ( inFile ) , @name , Vers ion ,  Ni l ,  False ) ; 
If Error <> NoErr then begin 

wri teln ( ' Error opening input f i l e  " name ) ; 
goto Exi tPoin t ;  

end; 
Error : = ReadDocID ( TFi leRec ( inFile ) , doclD ) ; 
i f  Error <> NoErr then begin 

wri teln ( ' Error reading input f i l e  info header 
F i l eClose ( TF i l eRec ( inFi le ) , Error ) ;  
goto Exi tPoint ; 

end; 

StrPCopy ( CMXDocNameP, CMXDocName ) ;  
i f  LStrcmpi ( DocID . name , CMXDocNameP )  0 then begin 

F i l eFound : =  True ; 
end 

e l s e  FindNext ( searchlnf o ) ; 
Error : = BPError ( DosError ) ;  

F i l eClose ( TF i l eRec ( inFile ) , Error ) ; 
end; (wh i l e )  

I f  Error <> NoErr then begin 

Error ) ; 

writeln ( ' Error f inding matching CMX f i l e  CMXDocName ) ;  
goto Exi tPoint ;  

end; 
Error : = F i leOpen (TFileRec ( inFi l e ) , @name , Version,  Ni l ,  False ) ; 
I f  Error <> NoErr then begin 

wri teln ( ' Error opening input file ' ,  name ) ; 
goto Exi t Point ; 

end; 

Error : =  
F i l eReadData ( TF i leRec ( inFi l e ) , DoclnfoDatalD, @Documentlnfo , Si z eO f ( Documentlnf o ) , ni l , O ) ; 

Rolatlon (') 0 
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i f  Error <> NoErr then begin 

wri te l n ( ' Error reading input file info header 
F i l eClose ( TF i leRec ( inFile ) , Error ) ; 
gata Exi tPoint ; 

end; 

Erro r )  ; 

Error : =  CreatePoint lnfo ( PointlnfoH , Documentlnfo . imageCoun t ) ; 
i f  Error <> NoErr then begin 

wri te l n ( ' Error creating Pointslnfo ' ) ;  
F i l eClose ( TF i l eRec ( inFi l e ) , Error ) ; 
gota Exi tPoint ; 

end; 

Error : =  ReadPointlnfo ( PointlnfoH , TFi leRec ( inFile ) , PointlnfoDataI D ) ; 
If Error <> No Err then begin 

wri teln ( ' Error reading Point informat ion = " Error ) ; 
F i l eC 1 o s e ( TF i 1 eRec ( inFi 1 e ) ,  Error ) ; 
goto Exi tPoint ; 

end; 

Image S i z e . x  : =  Documentlnfo . image S i ze . x ;  
rowByteCount . - Al ign3 2 ( Image S i z e . x ) ; ( zero s tuffed t o  l ongin t a l i gnment ) 
Image S i z e . y  : =  Documentlnfo . imageS i z e . y ;  
wri teln ( ' Image S i z e :  ' , Image S i z e . x ,  ' x ' , ImageSi z e . y ) ; 
Error : =  Createlmage ( Image2H , rowByteCount ,  ImageSi z e . y ) ; 
i f  Error <> NoErr then begin 

wri te l n ( ' OutOfMem ' ) ;  
gata Exi tPoint ; 

end; 

Image2 : =  G l obalLock ( Image 2 H ) ; 
(read the middl e image) 

Error : =  Readlmage ( Image2 H ,  InFi l e ,  ImageDataID + ( Documentlnfo . lmageCount div 2 ) ) ;  
i f  Error < >  NoErr then begin 

wri te l n ( ' Error reading centre image ' ) ;  
gata Exi tPoint ; 

end; 

Error : =  Decompresslmage ( Image2 H ,  Image l H ) ; 
i f  Error <> NoErr then begin 

wri te 1 n ( ' Error decompress ing image ' ) ;  
goto Exi tPoint ; 
end; 

G l obalUnlock ( Image 2H ) ; 
Fi leClos e ( TF i 1 eRec ( inFile ) , Error ) ; 
i f  Error <> NoErr then begin 

Wri te l n ( ' Error c los ing input f i le ' ) ;  

goto Exi t Point ; 
end; 

($I- ) 

(ImagelH crea ted by decompress) 

Error : =  CreateMatrix (MatchMapH , 2 * SearchRadius+1 , 2 * SearchRadius+ 1 ,  DoublePre c i s i on ) ; 
i f  Error < >  NoErr then begin 

Wri te l n ( ' Error creating Matrix ' ) ;  
gato Exi tPoint ; 

end; 

MatchMap : =  G l obalLock (MatchMapH ) ;  
Error : =  CreateMatrix ( Se l e c t ivi tyH , 2 ,  1 ,  Doub1ePre c i s i on ) ; 
i f  Error <> No Err then begin 

Wri te1n ( ' Error Selectivi ty Matrix ' ) ;  
goto Exi t Point ; 

end; 

S e l e c t ivi ty : =  G l obalLock ( Se l e c t ivi tyH ) ; 
MatchMarkedPoin t s ; (Comp u t e  fea ture -strength maps and sel ectivi ty abo u t  marked poin ts) 
MatchAl l Points ; (Comp u t e  sel ectvi ty of a l l  poin ts in the image) 
s tr (WindowRadius , S ) ; 
F i l eType : =  ' RTS 6_ ' + s ;  
S e 1 e c t i v i tyBase : =  + 1 ;  
Ca1c S e l RadE f fe c t s ; (Comp u t e  the effects of number of shells on Sel ectivi ty measure) 
CalcSelWindowE f fects ; (Comp u t e  selectvi ty for vari ous window sizes ) 

(Comp u t e  selectvi ty for various window sizes for previous,  curren t and next images) 
C a l c S e 1WindowE f f ectsBetweenlmages ; 

(Comp u t e  fea ture -s trength maps and selectivi ty abo u t  marked points be tween frames) 
MatchPointsBetweenlmages ( Backward )  ; 

Exi tpoint : 
i f  Error <> NoErr then readln ;  
DestroyPoin t lnfo ( PointlnfoH ) ; 

Rotational Displacement 
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Destroylmage ( Imagel H )  ; 
Destroylmage ( Image2 H ) ; 
Des troylmage ( Image3 H ) ;  
Des troylmage ( Image4 H )  ; 
Des troyMatrix (MatchMapH ) ; 
DoneWinCrt ; 

Appendix C - Pascal Source Code C-49 

( =========================================================================================) 
end . (Ma t ching) 

C.6 Image Rotation 

The following Pascal unit 'Rotate' implements an image rotation function based on the three-pass 
shear scanline algorithm described in section 6.4.2 of chapter 6. This function was used to 
generate the results of column one of table 6. 1 .  

unit Rotate ; 
(Routines to produce ro ta ted an t i a l i ased images using the three -pass shear me thod . 

) 
interface 

(=========================================INTERFACE=======================================) 
uses 

WinProcs ,  WinTypes ,  
PMXTypes , PMXProcs , PMXUt i l s , Globa l s ; 

Procedure SkewLine ( 
Source PByte ;  (Source image da ta) 
SrcLen, (Source image scaline l ength) 
DestLen intege r ;  (Des tina t i on image scaline l ength) 
S tart double ; (Real starting posi t i on of firs t pixel ) 
O f f s e t  integer ; (Offset to next scanline) 
Dest PByte ) ;  (Des tina t i on image da ta) 

Skew scanl i n e  in Source (lenght SrcLen ) in to Dest ( l ength DestLen ) s tarting at posi t i on 
Start . Offset be tween scalines = 1 for rows or images wi dth for col umns . 

Function Rotate lmage ( 
InlmageH ImageHandl e ;  
Theta doub l e ;  

var OutlmageH ImageHandl e ) : ErrorCode ; 
Rotates image InImageH abo u t  i ts centre by angle The ta (in radi ans) to produce 
Ou tImageH. The angle is assummed to be in the range of +/ - pi . NOTE: Does n o t  work 
for nega t i ve angl es, need to correct offset to skew line when angle -ve . 

implementation 
(=======================================IMPLEMENTATION====================================) 

( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SkewLine - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -) 
Procedure SkewLine ( 

Source 
SrcLen , 
DestLen 
S tart 

PByte ; 

integer ; 
double ; 

Offset integer ; 
Dest PByte ) ;  

Skew scan l i n e  in Source (lenght 
Start . Offs e t  between scalines 

(Source image da ta) 
(Source image scaline l ength) 
(Des tina t i on image sca l ine l ength) 
(Real s tarting posi t i on of first pixel ) 
(Offset to next scanline) 
(Destin a t i on image da ta) 
SrcLen ) i n t o  Dest (length DestLen) s tarting at posi t i on 
= 1 for rows or images wi dth for col umns . 
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var 

i ,  
IntStar t , 
Limi t 
F ,  G ,  W1 , W2 

integer; 
doubl e ;  

begin {Procedure : SkewLine} 
{ -Process left end of o u tpu t :  ei ther prepare for cl ipping or add padding} 

I n t S tart : =  Trunc ( Start ) ;  {In teger index} 
i f  I nt S tart < a then {Nega t i ve skew} 

{Advance inpu t poin ter for cl ipping} 
Source . - O f f s e tPointer ( Sour c e ,  - I n t S tart * longint ( of fs et ) ) ;  

Limi t : =  MinL ( SrcLen + IntStar t ,  Des tLen ) ; {Find index for end edge (va l i d  range ) }  
i : = 0 ;  
whil e  i < IntStart do begin 

Des t �  . - 0 ;  
{Vi si t a l l  n u l l  o u tput pixels a t  s tart edge and pad wi th O }  

D e s t  : =  O f f s e tPointer ( Des t ,  O f f s e t ) ;  {Advance o u tp u t  poin ter} 
inc ( i )  ; {Incremen t index} 

end; {wh i l e }  
F : =  Abs ( S tart - IntS tart ) ;  {Weight for end s traddl e} 
G : =  1 . 0  - F;  {Weight for s tart s traddl e} 
i f  F = 0 . 0  then begin {Simple in teger shi f t ,  no i n terpola t i on }  

while i < Limi t d o  begin {Visi t a l l  pixels in val i d  range} 
Des t �  . - Source � ;  (Copy inp u t  t o  ou tpu t )  
Source : =  O f fse tPointer ( Sourc e ,  O f f s e t ) ;  {Advance inpu t poin ter} 
Des t . - O f f s e t Pointer ( Des t ,  O f f se t ) ; {Advance o u tp u t  poin ter} 
inc ( i )  ; {Incremen t index} 

end; { whi l e }  
end { i f  F=O . O }  

e l s e  begin (Fractional shi ft : i n t erpolate)  
i f  S tart > 0 . 0  then begin 

W1 : =  F ;  {Weigh t  for start pixel } 
{Weigh t for end pixe l }  
{First pixel special case} 

W2 : =  G ;  
Des t �  . - Round ( G  * Source� ) ;  

O f f s e tPointer ( Des t ,  Dest . 
inc ( i ) ; 

O f fs e t ) ;  {Advance ou tp u t  poin ter} 
(Incremen t index) 

end 

e l s e  begin {Start <= 0 . 0  -> nega tive skew} 
W1 : =  G ;  {Weight for start pixe l }  
W 2  : = F ;  {Weight for end pixel } 
if Limi t < DestLen then dec ( Limi t ) ; 

end; 

whil e  i < Limi t do begin {Visi t all pixels in val i d  range} 
{Linear i n terpola ti on }  

Des t �  : =  Round ( W 1 * Source� + W2 * PByte ( O f f s e tPointer ( Sourc e ,  O f f s et ) ) � ) ;  
Source : = O f f s etPointer ( Sourc e ,  O f f s e t ) ;  {Advance inp u t  poin ter} 
Dest : =  O f f s e t Pointer ( Des t ,  O f f s e t ) ;  {Advance o u tp u t  poin t er} 
inc ( i )  ; {Incremen t index} 

end; { wh i l e }  
i f  i < DestLen then begin 

Des t �  : =  Round (W1 * Source� ) ;  {Last pixel special case} 
Dest . - O f f s e t Pointer ( De s t ,  O f f s e t ) ;  {Advance o u tp u t  poin ter} 
inc ( i )  ; (Incremen t index) 

end; 

end; {else Fractional shi f t  . . .  } 
while i < DestLen do begin {Visi t a l l  remaining pixels at end edge and pad wi th O }  

D e s t �  : =  0 ;  
Des t : =  O f f s et Pointer ( Des t ,  O f f s et ) ; {Advance o u tp u t  poin ter} 
inc ( i ) ; (Incremen t index) 

end; {whi l e }  
end; (Procedure : SkewLine) 

{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Ro t a teImage - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 
Function Rotatelmage ( 

InlmageH ImageHandl e ;  
Theta doubl e ;  

var Out lmageH ImageHand l e ) : ErrorCode ; 
{ Rota tes image InImageH abo u t  i ts centre by angle Theta (in radi ans) to produce 

Ou tImageH. The angle is assummed to be in the range of + / - pi . } 
label 

Exi tPoint ;  
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ErrorCode ; 
var 

Error 
x ,  y (Row and col umn coun ters ) 

longint ; 
InlmageWidth, InImageHe igh t ,  
TmpImageWidth, (Tempory image wi dth final o u tpu t image wi dth } 
OutImageHeight , OutImageWi dth 

word; 
TmpImageH (Tempory image for in termedi a t e  resul ts) 

ImageHandl e ;  
InImage , 
TmpImage ,  
Out Image 

Src ImagePt r ,  
Des t ImagePtr 

Cosine , 
S ine , 
Tangen t ,  
O f f s e t  

(Pointers to Inpu t ,  Tempory, a n d  Ou tpu t images) 

ImagePt r ;  . 
(Pointers to Source and Des tina t i on image pixels ) 

PByte ; 
(cosine of rot a t i on angl e )  
(Sine of rota t i on angl e) 
(Tangen t of ro t a t i on half the angl e) 
(Offset from top of image) 

doubl e ;  
( Da ta fl ow: InImage -> Ou tImage -> TmpImage -> Ou tImage, 

+1 added to dimensions due to last fractional pixel . ) 

begin (Func t i on : Ro tateImage) 
if abs ( Theta)  > PI then begin 

Error : =  2 ;  
goto Exi tPoin t ;  

end; 
InImage : =  GlobalLock ( InImageH ) ;  
InImageWidth : =  InImage h . heade r . s i ze . x ;  
InImageHeight : =  InImageh . header . s i ze . y ;  
Sine : =  Sin ( Theta ) ; 
Cosine : =  Cos (The ta ) ; 
Tangent : =  Sin (Theta/ 2 )  / Cos ( Theta / 2 ) ; 
TmpImageWidth : =  InImageWidth + abs ( Trunc ( InImageHeight * Tangen t ) ) + 1 ;  
Out ImageHeight : =  Trunc ( InImageWidth * abs ( Sine ) + InImageHeight * Cos ine ) + 1 ;  
Out ImageWidth : =  Trunc ( InImageHeight * abs ( Sine ) + InImageWidth * Cos ine ) + 1 ;  
Error : =  CreateImage ( TmpImageH ,  TmpImageWidth, OutImageHe igh t ) ; 
rf Error <> No Err then goto Exi tPoint ; 
Tmplmage : =  GlobalLock ( TmpImageH ) ;  
Error : =  CreateImage ( Ou tImageH , OutImageWidth, OutImageHei gh t ) ; 
rf Error <> No Err then goto Exi tPoint ; 
Outlmage : =  GlobalLoc k ( Ou t ImageH ) ;  

( -First pass : Skew x (hori zon tal scanlines) } 
for y : =  0 to InImageHeigh t - l  do begin (Visi t each row in InImage) 

SrcImagePtr : =  OffsetPointer ( @ InImageh . da t a ,  y * InImageWidth ) ;  
Dest ImagePtr : =  O f fse tPointer ( @Ou tImageh . da t a ,  y * TmpImageWidth) ; 
SkewL ine ( SrcImagePt r ,  InImageWidth , TmpImageWidth , y * Tangen t ,  1 ,  Des t ImagePtr ) ;  

end; (for y) 
( -Second pass : Skew y (vertical scanlines ) . Use TmpImage for i n t ermedi a t e  s torage 

O f fset : =  ( InlmageWidth - l ) * Sine ; (Offset from top of image) 
for x : =  0 to TmplmageWidth - l  do begin (Visi t each col umn in Ou tImage) 

SrcImagePtr : =  Of fsetPointer ( @OutImage h . data,  x ) ; 
Des t lmagePtr : =  Offse tPointer ( @Tmplmage h . data,  x ) ; 
SkewLine ( S rclmagePt r ,  InlmageHe ight , Out ImageHei gh t ,  

Offset-x*Sine,  TmpImageWidth, Des tImagePt r ) ; 
end; (for x) 
( -Third pass : Skew x (hori zon tal scanlines) } 

for y : =  0 to OutlmageHeight - l  do begin (Visi t each row in InImage ) 
SrcImagePtr : =  O f fsetPointer ( @TmpImageh . da t a ,  y * TmpImageWi dth ) ; 
Des tImagePtr : =  OffsetPointer ( @Out Image h . da t a ,  y * OutImageWidt h ) ; 
SkewLine ( SrcImagePtr,  TmpImageWidth, OutlmageWidth,  

(y - O f f se t )  * Tangen t ,  1,  Des t ImagePtr ) ; 
end; (for y) 

Exi tPoint : 
DestroyImage ( TmpImageH ) ;  
i f  Error < >  NoErr then DestroyImage ( Ou tImageH ) ;  
Rotate Image : =  Erro r ;  

end; (Fun c t i on :  Ro tateImage) 

C-S l 

(= = = = = = = = = = = = = == = = = = = = = = = = = = = = = == = = = = = = = = = = = = = = = = = = = = = == = = = = = = = = = = = == = = = = = = = = = = = = = = = = = = = = =) 
end . ( Uni t :  Rota t e )  
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C-52 The Development of Motion Tracking Strategies For Cineradiographic Images 

C.7 Two-pass Mesh-warp Image Functions 

The following Pascal unit 'WarpFtns' contains all the functions of the two-pass mesh-warp 

image resampling algorithm that was used as the basis of the generation of the prescribed motion 
cineradiographic sequences of chapter 7 .  

unit WarpFtns ; 
{Rou tines to perform 2 -D Mesh warping of images 

{$r warpftns . res} 

INTERFACE 

{ =======================================INTERFACE=========================================} 
uses 

WinCrt , WinTypes , WinProc s ,  PMXTypes ,  PMXProcs , PMXU t i l s , U t i l s ,  
G l oba l s ,  Resource , MLab_ops , Images ; 

const 

{Extra error 
MemoryErr 
DivByZeroErr 
OutOfRangeErr 

type 

types} 
1 1 ;  
1 2 ;  
1 3 ;  

Real = S i ngl e ;  
RealLine Array [ O  . .  MaxWord div RS i z e  - RSi z e ]  of Real ; 
PRealLine �RealLine ; 
ByteLine Array [ O  . .  MaxWord-WS i z e ]  of Byte ; 
PByteLine �ByteLine ; 
Real lmageHandle = THand l e ;  
Real lmageRec = record 

Da taS i z e  Longint ; 
S i z e  TPoin t ;  
Data Array [ O  . .  0] of Real ; 

end; 

Real lmagePtr 
MeshHandle 
MeshPtr 

�Real lmageRec ;  
ReallmageHandl e ;  
Real lmagePtr ; 

Function CreateReal Imag e ( 
var Real lmageH : Real lmageHandl e ;  
width , height : Word ) : ErrorCode ; 

Procedure DestroyReal lmage (var Real ImageH : Real ImageHandle ) ; 

Function InterpolateCubi c ( {Generali sed cubic spl ine i n t erpola t or . } 
XDa t a l n ,  YDataln : PRealLine ; Lengthln word ; 
XDataOut ,  YDataOut : PRea lLine ; LengthOut word) : ErrorCod e ;  

Function In terpolateLinear ( {Genera l i sed l inear spl ine i n terpol a tor . } 
XDataln,  YDataln PRealLine ; Lengthln word; 
XDataOut ,  YDataOut : PRealLine ; LengthOut word) : ErrorCod e ;  

Function MeshWarplmage ( 
InlmageH 

var OutlmageH 

{Inpu t image handl e }  
ImageHandl e ;  

{Ou tpu t image handl e }  
ImageHand l e ; 

XMeshlnH , YMeshlnH , 
XMeshOut H ,  YMeshOu tH 

{Handl e to x and y coords of inp u t  image mesh} 
{Handle x and y coords of o u tpu t image mesh} 

MeshHandl e ;  
RegularisedOutMesh : Boolean ) : ErrorCode ; 

(A func t ion to resamples InlmageH to produce OutlmageH based on the forward mesh maps 
de f i ned by the relationship between ( XMesh I n ,  XMeshOu t )  and ( YMeshIn , YMeshOu t ) . 
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Appendix C - Pascal Source Code C-53 

{General ised image ByteLine resampling. } Function ResampleScanl ine ( 
ForwardMap {Table for poin t  samples of the forward mapping fun c t i on }  

PRealLine ; 
InpLine , 
OutLine 

{Poin ter to Input scanline to be resampl ed} 
{Pointer to the resul ting Ou tput scanl ine} 

PByte ; 
LineLength,  
LineOf f s e t  

{Inpu t scanline l ength} 
{Offset between scanlines} 

Word) : ErrorCode ; 

Implementation 
{ ======================================IMPLEMENTATION=====================================} 

{ - - - - - - - - - - - - - - - - �- - - - - - - - - - - - - - - - - - - -Crea teRealImage - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 
Function Creat eReal lmage ( 

var Real lmageH : Real lmageHandl e ;  
width, height : word) : ErrorCode ; 

{ -Al l oca tes memory for a real image "Real ImageH" of size "width " x "heigh t "  of rea l }  
If a n  error occurs "RealImageH ' wi l l  b e  O .  Returns the code o f  any error tha t occurs . 

var 
Error : ErrorCode ; 
Real lmage : Real lmagePtr;  

begin {Crea teRealImage} 

{Code of any error tha t has occurred} 
{Pointer to RealArray} 

Error : = CreateHandl e ( Real lmageH , 
Si zeOf ( Real lmageRec )  + ( Longint ( width ) * height - l )  * RS i z e ,  0 ) ; 

if Error = NoErr then begin 
Real lmage : =  GlobalLock ( Real lmageH ) ;  
Real lmage h . DataS i z e  : =  Longint (width ) * height * RS i z e ;  
S e t Point ( Real lmage h . s i z e ,  width, height ) ;  
G l obalUnloc k ( Real lmageH ) ;  

end; { i t} 
CreateReal lmage : = Erro r ;  

end; {Crea teReal Image} 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -DestroyRealImage- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -} 
Procedure DestroyReal lmage (var Real lmageH : Real lmageHandl e ) ; 

{ -Destroys the "RealArrayH " and sets i t  to a } 
begin {DestroyReal Image} 

Des troyHand l e ( Real lmageH ) ; 
end; {DestroyRealImage} 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Sol veTri diagonalMa trix - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 

Function SolveTridiagonalMatrix ( 
BandA, BandB , BandC , VectorD : PRealLine ; 
Length : word) : ErrorCode ; 

Gauss Elimina t i on wi th backsubsti tu tion for solving a tridiagonal ma trix of s i z e  
"Length " ,  with bands "BandA , BandB, BandC " a n d  col umn vector ' VectorD " 

var 
i 
Pivot 
TempVec tor 

integer ; {coun ter} 
Rea l ;  

: PRealLine ; 

begin { -Sol veTri diagonalMa trix} 
if MaxAvai l  < Length * RSize then begin 

SolveTridiagonalMatrix : = MemoryEr r ;  
Exi t ;  

end; 
GetMem ( TempVector , Length * RSi ze ) ; 
Pivot : = BandBh [ O ) ; 
VectorDh [ O )  : = VectorDh [ O )  / pivo t ;  
for i : = 1 to Length- l do begin {Perform Forward subs t i t u tion} 

TempVec torh [ i )  : =  BandCh [ i - 1 J / Pivo t ;  
Pivot : = BandBh [ i )  - BandAh [ i J  * TempVec torh [ i J ; 
if pivot = 0 then begin 

SolveTridiagonalMatrix : = DivByZeroErr; 
FreeMem ( TempVector , Length * RS i z e ) ; 
Exit ;  

end; {if} 
Vec torDh [ i )  : = (VectorDh [i  J - Vec torDh [ i - l )  * BandAh [ i J ) / pivo t ;  

end; ( for i )  

45 

-+m1 Rot.tion l·} a 

-M I I .450 5 1 0 

Warp60 

B2l§ml Oi;I2I§,�mcol 

.. -

1 5  

1 I I IJ 1 ilifF ·· ; I I I  
I I , I ,  i 
I I I I 

20 25 
Image 

JW I 
I 30 :r.; 



C-54 The Development of Motion Tracking Strategies For Cineradiographic Images 

for i : =  Length-2 downto 0 do {Perform Backsubs ti t u ti on }  
Vec t orDA [ i )  : =  VectorDA [ i )  - VectorDA [ i + l )  * TempVectorA [ i + l ) ; 

SolveTridi agonalMatrix : =  NoErr ; 
FreeMem ( TempVector,  Length * RSiz e ) ; 

end; { -Fun c t i on :  Sol veTri diagonalMatrix} 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Comp u t e YDeri vs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _ _ _ _  } 

Function Compu teYDerivs ( XData,  YData : PRea l Line ; 
var YDerivs : PRealLine ; 
Length : Word) : ErrorCode ; 

{ -Comp u t e  the 1 s t  deri va tives " YDeri vs " of da ta in "XDa ta,  YDa t a " of "Length " en tri es .  
The n o t -a -kno t  condi tion i s  used . If successful re turns No Err else MemoryErr for 
insuffi ci en t  memory or Di vByZeroErr for divide by zero, indi ca ting a t  l ea s t  one 
undefined deri va ti ve .  

var 

i 
BandA, BandB , 
BandC 

integer; {Counter } 
{The three bands of the tridiagonal matrix} 

PRealLine ; 
DeltaXO , De l taXl , 
S l ope O , S l opel 

{Change i n  xda ta between the curren t and the next segmen t }  
(Slope be tween curren t and the next segmen t) 

Rea l ; 
Unde f inedSlope {True if any segmen t slope is undefined} 

boolean ; 
begin { -Fun c t i on Comp u t e YDerivs} 

if MaxAvai l  < ( 3  * l ongint ( Length) * RSi z e )  then begin 
Compu teYDerivs : =  MemoryErr ; 
Exit ;  

end; 
{ -A l l oca t e  memory for tridiagonal bands A , B, C . } 

GetMem ( BandA, Length * RS i z e ) ; 
Ge tMem ( BandB , Length * RSi z e ) ; 
Ge tMem ( BandC , Length * RSize ) ; 

( -Ini ti a l i se first row. ) 
Del taXO : =  XDataA [ l )  - XDataA [ O ) ; 
Del taXl : =  XDataA ( 2 )  - XDataA [ l ) ; 
i f  ( De l taXO <> 0 )  and ( Del taXl <> 0 )  then begin (Firs t slope defined) 

Undef i nedSlope : =  Fal s e ;  
S l opeO : =  ( YDataA [ l )  - YDataA [ O ) ) / De l t aXO ; 
S lope l : =  ( YData A [ 2 J  - YData A [ l J ) / De l t aXl ; 
BandAA [ O J  : =  0 ;  {No t stri ctly necessary} 
BandB A [ O J  : =  Del taXO * ( De l taXO + Del taXl ) ;  
BandCA [ O J  : =  Sqr ( Del taXO + Del taXl ) ;  
YDerivs A [ O J  : =  S l opeO * ( 3 * De l taXO * De l taXl + 2 * Sqr ( De l taXl ) )  + S l opel * Sqr ( Del taXO ) ;  

{ -Ini ti a l i se tridi agonal bands A , B, C and col umn vector YDerivs} 
i : = l ;  
repeat 

Del taXO : =  XDataA [ i J  - XDataA ( i - l J ; 
Del taXl : =  XDataA ( i + l J  - XData A [ i J ; 
i f  ( De l taXO < >  0 ) and ( De l taXl <> 0 )  then begin {Sl ope defined} 

S lopeO : =  ( YDataA ( i )  - YDataA ( i - l J ) / DeltaXO ; 
S l opel : =  ( YDataA [ i + l J  - YDataA ( i ) ) / Del t aXl ; 
BandA A [ i  J : = DeltaXl ; 
BandB A [ i J  : =  2 * ( Del taXO + Del taXl ) ;  
BandCA [ i  J : = Del taXO ; 
YDerivs A ( i J  : =  3 * ( S lope O * Del taXl + S l ope l * De l taXO ) ;  

end { i f  the sl ope defined} 
e l s e  Unde f inedSlope : =  Tru e ;  
inc ( i )  ; 

unti l  ( i  = Leng th- I )  or ( Unde f inedSlope ) ;  
( -Ini ti a l i se l a s t  row) 

if not Unde f inedSlope then begin 
BandAA ( Length - l J  . - Sqr ( De l taXO + Del taXI ) ;  
BandB A [ Length - l J  : =  Del taXO * ( Del taXO + Del taXl ) ;  
BandC A ( Length - l J  : =  0 ;  {No t s tri ctly necessary} 
YDerivs A [ Length- I J  : =  

S l opeO * Sqr ( De l taXl ) + S l opel * ( 3 *Del taXO * Del taXl + 2 * Sqr ( De l taXO ) ) ;  
( -Sol ve for the tridiagonal ma trix : YDeri vs = YDeri vs * inverse (Tri diag ma trix) . }  

ComputeYDerivs : =  SolveTridiagonalMa trix ( BandA, BandB , BandC , YDerivs , Length ) ; 
end 

e l s e  Compu teYDerivs : =  DivByZeroErr ; 
end { i f  Sl opeDefined} 
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Appendix C - Pascal Source Code C-55 

e l s e  ComputeYDerivs : =  DivByZeroErr ; i e .  a t l east one of the deri va ti ves is undefined} 
{ -Dealloca te tridiagonal bands} 

FreeMem ( BandA, Length · RS i ze ) ; 
FreeMem ( BandB , Length · RSi ze ) ; 
FreeMem ( BandC , Length · RSi ze ) ; 

end; {Fun c t i on :  ComputeYDeri vs} 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - In terpola teCubic - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 

Function InterpolateCubic ( 
XDatal n ,  YDataln : PRealLine ; Lengthln : word; 
XDataOu t ,  YDataOut : PRealLine ; LengthOut : word) : ErrorCode ; 

General ised In terpola ting cubic spl ine function for irregularly-spaced poin ts 
INPUT : " YDa taIn ' is a l i s t  of irregular da ta points ( "LengthIn " en tri es) 

Their x-coordina tes are specified in "XDa taIn " 
OUTPUT : " YDataOu t "  a cubic spl ine sampled according to "XDa taOu t "  ( "LengthOu t "  en tries) 

Assumes tha t "XDa taIn " ,  "XDa taOu t "  en tries are mon o t on i cally increasing. 
If successful re turns NoErr, else MemoryErr for insuffi ci en t  memory, 
Di vByZeroErr for divide by zero : indi ca ting entries Not mon o t on i ca l ly 
increasing, OutOfRangeErr if XDa taOu t does not l i e  ful ly in the range of 

XDa taIn . 
} 
var 

i ,  
InDatalndex {Index for inpu t da ta in curren t i n t erva l }  

intege r ;  
YDerivs 

Le f tEndPoint , 
SamplePoint , 
RightEndPoin t ,  
Coe f f O , Coe f f l , 
Coe f f 2 , Coe f f 3 , 
Del taX , Del taY , 
Lef tToSample 

Error 

{ YData 1 s t  deriva tives} 
PRealLin e ;  

{Left end poin t  of the i n t erva l }  
{Sample poin t  in the interva l }  
{Right end poi n t  of the i n t erva l }  
{Constant and l inear coeffi cen ts of t h e  spl ine} 
{Quadra t i c  and cubic coeffi cents of the spl ine} 
{Curren t interval di fferences for X and Y} 

{Difference in curren t i n t erval from LeftEndPoint to Sampl ePo i n t }  
Real ; 

: ErrorCode ; 

begin {Fun c t i on :  Interpol a teCubi c} 
i f  MaxAvai l  < ( Lengthln • RSi z e )  then begin 

InterpolateCubi c  : =  MemoryErr ; 
Exit ;  

end; 
{ -Al l oca te memory for 1 s t  Y Deri va t i ves} 

Ge tMem ( YDerivs , Lengthln · RSi ze ) ; 
{Comp u t e  1 s t  deriva t i ves of each poi n t }  

Error : =  ComputeYDerivs ( XDataln , YDataln , YDerivs , Lengthln ) ;  
i f  Error = NoErr then begin {All deriva tives defined} 

{Error check da ta ranges} 
if ( XDataOut � [ O l  < XDataln� [ O l ) or ( XDataOu t � [ LengthOu t - 1 1  > XDataln� [ Lengthln - 1 1 ) 
then begin 

Interpo lateCubic : =  OutOfRangeErr ; 
FreeMem ( YDerivs , Lengthln · RSi z e ) ; 
Exit ;  
end; 

{Force coeffi cien t ini tial isa t i on }  
RightEndPoint : =  XDataOu t � [ O l  - 1 ;  
InDatalndex : =  0 ;  
for i : =  a to LengthOut - l  do begin 

{Check if in new i n t erva l }  
Sampl ePoint : =  PReal ( OffsetPointe r ( XDataOut ,  i • RSi ze ) ) � ; 
i f  ( SamplePoint > RightEndPoint ) then begin 

{Find the i n terval tha t con tains the SamplePoi n t }  
while ( InDatalndex < Lengthln - 2 )  

and ( SamplePoint > XDataln� [ InDatalndex l ) do inc ( InDatalndex ) ;  
i f  SamplePoint < XDataln� [ InDatalndexl then dec ( InDatalndex ) ;  
L e ftEndPoint : =  XDataln� [ InDatalndexl ; { Upda te left end poin t }  

{Comp u t e  Spline coeffi ci en ts} 
Del taX : =  1 . 0  / ( XDataln� [ InDatalndex+1 1 - XDataln� [ InDatalndex l ) ; 
Del taY : =  Del taX • ( YDataln� [ InDatalndex+ 1 1  - YDataln� [ InDatalndex l ) ; 

Coe f f O  : =  YDataln� [ InDatalndex l ; 
Coef f 1  : =  YDerivs � [ InDatalndexl ; 
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Coef f 2  : =  Del taX 
* ( 3 . 0  * Del taY - 2 . 0  * YDerivs A [ InDatalndex] - YDerivs A [ InDatalndex+ 1 ] ) ;  

Coe f f 3  : =  Sqr ( De 1 taX ) 
* ( - 2 . 0  * Del taY + YDerivs A [ InDatalndex] + YDerivs A [ InDatalndex+ 1 ] ) ;  

end; (i f Sampl ePoi n t  > . . .  ) 
( - Use Horner ' s  rule to cal cu l a t e  the cubic polynomial ) 

Lef tToSample : =  SamplePoint - Lef tEndPoint ; 
YDataOu t A [ i ]  

: =  ( ( Coe f f 3 *Lef tToSample + Coe f f 2 ) * Lef tToSample + Coef f 1 ) *Lef tToSampl e  + Coe f f O ; 
end; ( for i )  

end; (i f Error = NoErr) 
FreeMem ( YDerivs , Lengthln * RS i z e ) ; 
I nterpol a t eCubic : =  Erro r ;  

end; (Fun c t i on :  In terpola teCubi c) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - In terpol a t eLinear - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 

Function Interpo 1 ateLinear ( 
XDataln , YDataln : PRea1Line ; Lengthln : word ; 
XDataOut ,  YDataOut : PRealLine ; LengthOu t : word) ErrorCode ; 

General ised In terpola ting l inear spl ine fun c t i on for i rregularly-spaced poin ts 
INPUT : " YDa taIn " is a l i s t  of irregular da ta points ( "LengthIn " en tri es) 

Their x-coordina tes are speci fied in "XDa taIn " 
OUTPUT : " YDa taOu t "  a l inear spl ine sampled according to "XDa taOu t "  (LengthOu t "  en tri es) 

Assumes tha t  'XDa taIn " ,  "XDa taOu t "  en tries are monotonically increasing .  
If successful ret urns NoErr, else Di vByZeroErr for divide by zero indi ca ting 
en tries not mon o t on i cally increasing or OutOfRangeErr if 'XDa taOu t "  does not 
l i e  fully in the range of ·XDa taIn " .  

var 
i ,  
InDatalndex (Index for inpu t da ta in curren t in terva l )  

integer ; 
(Left end poin t  of the i n t erval ) 

(Sample poin t  in the i n t erva l )  
(Right end poin t  of the i n t erva l )  
(Constan t  a n d  linear coeffi cen ts of i n t erpolan t )  

Lef tEndPoint , 
SamplePoin t , 
RightEndPoi n t ,  
Coef f O , Coe f f l , 
Lef tToSamp 1 e  (Di fference in curren t i n t erval from LeftEndPoin t  to Sampl ePoin t )  

Rea l ;  
Error : ErrorCode ; 

begin (Fun c t i on :  In terpol a teLinear) 
Error : =  NoErr ; 
if ( XDataOu t A ( O ]  < XDatalnA ( O ] ) or ( XDataOu t A ( LengthOut - 1 ]  > XDatalnA ( Lengthln - 1 ] ) 
then begin 

Interpo1ateLinear . - OutOfRangeErr; 
Exit ;  
end; 

(Force coeffi ci en t  i n i t i a l i sa ti on )  
RightEndPoint : =  XDataOu t A [ O ]  - 1 ;  
InDatalndex : =  0 ;  
for i : =  0 to LengthOut - 1  do begin 

(Check if in new i n t erva l )  
Sampl ePoint : =  XDataOu t A ( i ] ; 
if ( Sampl ePoint > RightEndPoint ) then begin 

(Find the i n terval tha t con tains the Sampl ePoin t )  
whi l e  ( InDa talndex < Lengthln- 2 )  

and ( Sampl ePoint > XDatalnA [ InDatalndex ] ) do inc ( InDatalndex ) ; 
i f  SamplePoint < XDatalnA ( InDatalndex ] then dec ( InDatalndex ) ;  

Le f tEndPoint : =  XDatalnA ( InDatalndex ] ; ( Upda te l eft poi n t )  
(Comp u t e  l i n ear coeffi ci en ts) 

Coe f f O  : =  YDatalnA [ InDatalndex ] ; 
Coe f f 1  : =  ( YDatalnA [ InDatalndex+ 1 ]  - Coe f fO ) 

/ ( ( XDatalnA [ InDatalndex+ 1 ]  - Lef tEndPoin t ) ) ;  
end; ( i f  Sampl ePoin t  > . . .  ) 

Lef tToSample : =  SamplePoint - LeftEndPoint ; 
YDataOu t A ( i ]  : =  Coe f f O  + Lef tToSample * Coe f f 1 ; 

end; ( for i )  
Interpo l ateLinear : =  Error ;  

end; (Functi on :  In terpola teLinear) 
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( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Resampl eScanline - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -) 
Function Resamp leScanl ine ( 

ForwardMap (Table for 
PRealLine ; 

poi n t  samples of the forward mapping fun c t i on }  

InpLine , 
OutLine 

{Pointer to Inp u t  scanline to be resampl ed} 
(Poin ter to the resul ting Ou tp u t  scanline) 

LineLength , 
LineOffset 

PByte ;  
(Inpu t ByteLine l ength) 

(Offse t  between scanl ines) 
Word) : ErrorCode ; 

Resampl es an Input ByteLine " InLine "  based on the spacially varying "ForwardMap " tabl e 
to produce an anti -a l i ased o u tp u t  scan line "Ou tLine " of the same l ength, "LineLength " .  
The LineOffset = 1 for hori zontal scanlines and LineLength vert i cal scan l ines . 
Impl emen t a t i on based on Fan t ' s  resampl ing algori thm, Box fi l tering for mini fi ca t i on ,  
l inear i n t erpol a ti on for maxifi ca t i on . I f  successful re turns NoErr else MemoryErr. 

var 
Outlndex , 
Inlndex 

Accumu l a t o r ,  
Value , 

(Ou tp u t  line pixel coun ter) 
(Inp u t  line pixel coun ter) 

Longint ; 
(Accumula ted weigh ted con tribu t i on )  
(Calcula ted new pixel val u e )  

( InverseScaleFactor , 
InSegment , 
OutSegment 

(Proportion of inpu t pixel availabl e) 
(Proporti on of o u tput pixel avai labl e) 

Real ; 
InPos i t ion (Input l ine index for each o u tput pixel ) 

PRealL ine ; 
begin ( -Function :  ResampleScanline)  

i f  MaxAvai l  < ( LineLength * RS i z e )  then begin 
Resampl eScanl ine : =  MemoryErr ; 
Exit ;  

end; 
GetMem ( InPos i t ion , longint ( LineLength)  * R S i ze ) ; 

(Precomp u t e  inpu t index posi t i ons for each o u tput pixel ) 
Inlndex : =  0 ;  
for Outlndex : =  0 to LineLength - l  do begin 

while ForwardMap� [ Inlndex+ l J  < Outlndex do Inc ( Inlndex ) ; 
InPos i t ion� [ Ou tlndexJ : =  Inlndex 

+ (Outlndex - ForwardMap� [ InlndexJ ) 
end; ( for Ou tIndex) 

( ForwardMap� [ Inlndex + 1 J  - ForwardMap� [ Inlndex J ) ;  

( -Ini t i a l i s e )  
InSegment : =  1 . 0 ;  
OutSegment : =  InPosi tion� [ l J ; 
InverseScal eFac tor : =  OutSegment ; 
Accumulator : =  0 . 0 ;  
( -Comp u t e  a l l  o u tput pixels) 
Inlndex : =  0 ;  
Outlndex : =  0 ;  

(En tire inpu t pixel i s  avai labl e) 
(Number of inp u t  pixel tha t maps on t o  o u tput pixel I )  

(Clear acclumula tor) 

whi le ( Ou t l ndex < LineLength ) do begin 
(Use l inear interpola ti on for recons tru c t i on) 

i f  Inlndex < LineLength - 1 then 
Value : =  InSegment * PByt e ( O f fsetPointer ( InpLin e ,  Inlndex * LineOffse t ) ) �  

+ ( l - InSegment ) * PByte ( O f fs etPointer ( InpLine , ( Inlndex + l ) * LineOf f s e t )  ) � ; 
if ( InSegment < Ou tSegment )  then begin (Input pixel en tirely consumed before ou tp u t )  

Accumulator : =  Accumul ator + Value * InSegment ;  (Accumula te weigh t ed contribu t i on )  
OutSegment : =  OutSegment - InSegmen t ;  (Inpu t segmen t portion has been fi l l ed) 
InSegment : = 1 . 0 ;  (New inp u t  pixel wi l l  be avai lable) 
inc ( Inlndex ) ; (Index in to next inpu t pixel ) 

end ( i f) 
e l s e  begin ( -Inpu t pixel NOT en tirely consumed before o u tp u t  pixe l )  

Accumulator : =  Accumulator + Value * OutSegment ; (Accumul a t e  weigh t ed contribu t i on )  
PByte ( O f fse tPointer ( OutLine , Outlndex * LineO f f s e t ) ) �  

: =  Trunc (Accumulator / InverseScaleFac tor ) ; 
( -Ini ti a l i s e  o u tpu t wi th normal i sed accumula tor) 

Accumu lator : =  0 . 0 ;  (Clear accumula tor for 
InSegment : =  InSegment - OutSegment ; (Ou tpu t  segmen t por t i on 
inc ( Ou t lndex) ; (Index in to next o u tput 
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C-58 The Development of Motion Tracking Strategies For Cineradiographic Images 

if Out lndex < LineLength- l  then 
InverseScaleFactor : =  InPos i t ion� [ Ou t l ndex+ l J  - InPos i tion� [ Ou t lndex J ; 

OutSegment : =  InverseScaleFac tor ; {Ini tialise spacially varying size factor} 
end; {else} 

end; { whi l e  Ou tIndex <}  
FreeMem ( InPos i tion ,  LineLength * RSiz e ) ; 
ResampleSc anl ine : =  NoErr ; 

end; { -Fun c t i on :  ResampleScanl ine} 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MeshWarpImage - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 

Function MeshWarplmage ( 
InlmageH 

var OutlmageH 

{Inp u t  image handl e} 
ImageHandl e ;  

{Ou tp u t  image handl e} 
ImageHand l e ; 

XMeshlnH, YMeshlnH , 
XMeshOu tH , YMeshOutH 

{Handle to x and y coords of inpu t image mesh} 
{Handl e x and y coords of o u tp u t  image mesh} 

MeshHandl e ;  
Regu larisedOutMesh : Boolean) : ErrorCod e ;  

{ -Mesh Warps t h e  InImage gi ven i ts X and Y Mesh coords to produce the Ou tImage gi ven the 
new o u tp u t  X and Y mesh coords . Warp performed in two passes and i s  based on Smythe ' s  
algori thm . If XMeshInH or YMeshInH are zero, inpu t mesh assummed to be a regular one 
pixel grid the s i z e  of size of InImage . If Regul arisedOu tMesh is true i t  is assumed 
tha t the o u tput mesh grids represen t the resampling maps directly and thus ImageH i s  
resamled based on them . 

} 
label 

MeshWarplmageExi t ;  
var 

Buf ferS i z e ,  
x ,  y ,  
Time , 
address 

: Longin t ;  
imageWidth,  imageHei gh t ,  
meshHei gh t ,  meshWidth,  
rowByteCount 

: Word; 
Inlmage , Outlmag e ,  
Interlmage 

: Image Pt r ;  
I nlmageDa t a ,  Out lmageData,  
InterImageData 

PByt e ;  

{Size o f  i n t erpola ted l i n e  and index bu ffers} 
{General x and y coord coun ters} 
{Execu tion time s t ore} 
{mesh/image e l emen t address coun ter} 

{Si ze of inp u t  and o u tpu t images} 
{Height and wi dth of mesh tabl es} 

{Number of byte in a mesh row} 

{Input and o u tp u t  images} 
{In termedi a t e  image} 

{Pointers to Inpu t ,  Ou tpu t and} 
{In termedi a t e  image da ta . }  

InterImageH {Handl e to i n t ermedi a t e  image} 
ImageHand l e ;  

XMeshln , YMeshln , 
XMeshOut ,  YMeshOut 

: MeshPtr ; 
XMeshlnDat a ,  YMeshlnDa t a ,  
XMeshOut Da t a ,  YMeshOutData 

PRea l ; 
Source , Dest 

PByt e ;  

{x and y coords o f  inpu t mesh} 
{x and y coords of o u tp u t  mesh} 

{Poi n ters to X and Y inp u t  mesh val u es} 
{Poi n t ers to X and Y o u tp u t  mesh val u es} 

{Source and des t i n a t i on poi n t ers for ByteLines} 

{ 1 s t  row and col umn buffer} 
{2nd row and col umn bu ffer} 

XRowl , YRowl , 
XRow2 , YRow2 , 
Mapl , Map2 , 
Index 

{Mapping fun c t i on from sampled spl i n es} 
{Stores indi ces for sampled spl ines} 

PRealLine ; 
{Handl es for 1 s t  row and col umn buffer} 
{Handl es for 2nd row and col umn bu ffer} 

XRowl H ,  YRowlH , 
XRow2H ,  YRow2H ,  
MaplH ,  Map 2 H ,  
IndexH 

{Handles for mapping fun c t i on from sampl ed spl ines} 
{Handle for Index} 

InTableH , 
InterTab l e H ,  
OutTableH 

InTabl e ,  
InterTabl e ,  
OutTable 

THandl e ;  
(Handl es t o  inpu t ,  i n termedi a t e  and o u tput image tabl es) 

Real lmageHandl e ;  
{Inpu t image tabl e} 
{In termedia t e  image tabl e} 
{Ou tput image tabl e} 

Real lmage P t r ;  
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InTableData, 
I n terTableDa t a ,  
OutTabl eData 

Error 

Appendix C - Pascal Source Code 

{Poi n ters to the da ta in each tabl e} 

PRea l ; 
{General error} 

ErrorCode ; 

C-59 

InMeshSpeci fied {True if an inpu t mesh has been speci fi ed, False assumes an 
inpu t mesh of l -pixel regul ar spacing . }  

: Boolean ; 
begin {Fun c t i on :  MeshWarpImage 

{Check i f  an inpu t mesh has been speci fi ed } 
i f  ( XMeshInH = 0 )  or ( YMeshInH = 0 )  then InMeshSpeci f i ed : =  False 
else InMeshSpeci f i ed : =  Tru e ;  

{Comp u t e  bu ffe� si zes and a l l oca te them i n  memory } 
InImage : =  G l obalLock ( InImageH ) ;  
imageWidth : =  InImage � . header . s i z e . x ;  
imageHe ight : =  InImage � . header . s i z e . y ; 
InImageData : =  @ InImage � . da t a ;  

{Ini tial ise handl es} 
InterImageH : =  0 ;  Out ImageH : =  0 ;  
InTableH : =  0 ;  InterTableH : =  0 ;  OutTableH : =  0 ;  
XRowlH : =  0 ;  YRowlH : =  0 ;  XRow2H : =  0 ;  YRow2H : =  0 ;  
IndexH : =  0 ;  Mapl H  : =  0 ;  Map2H : =  0 ;  

{Crea te ou tp u t  image} 
Error : =  CreateImage ( Ou tImageH , imageWidth, imageHeigh t ) ; 
if Error <> NoErr then goto MeshWarpImageExi t ;  
OutImage : =  GlobalLock ( Ou t ImageH ) ;  
Ou tImageData : =  @OutImage � . da t a ;  

{Crea te in termedi a t e  image} 
Error : =  CreateImage ( InterImageH, imageWidth, imageHeight ) ;  
i f  Error < >  NoErr then goto MeshWarpImageExi t ;  
InterImage : =  GlobalLock ( InterImageH ) ;  
InterImageData : =  @ InterImage � . da t a ;  

{Poin t t o  meshes} 
XMeshln : =  GlobalLock ( XMeshInH ) ; YMeshIn : =  GlobalLock ( YMeshInH ) ; 
XMeshOut : =  GlobalLock ( XMeshOu tH ) ; YMeshOut : =  GlobalLock ( YMeshOut H ) ; 
meshWidth . - XMeshOut � . s i z e . x ;  
meshHeight : =  XMeshOu t � . s i z e . y ;  
i f  imageWidth > imageHe ight then BufferSize : =  imageWidth else Bu f ferS i z e  : =  imageHei gh t ;  
B u f f er S i z e  : =  ( Bu f ferSize + 1 )  * RSi ze ; 
if RegularisedOutMesh then begin 

Error : =  CreateHandle (Map1H , BufferS i z e ,  0 ) ; 
if Error <> NoErr then goto MeshWarpImageExi t ;  
Map1 : =  GlobalLoc k ( Map1H ) ;  

end {if} 
e l s e  begin {No t RegularisedOu tMesh} 

{Crea te inp u t  tabl e} 
Error : =  CreateReal Image ( InTableH,  meshWidth , imageHeight ) ;  
i f  Error < >  NoErr then goto MeshWarpImageEx i t ;  
InTab l e  : =  GlobalLock ( InTable H ) ; 
InTableData : =  @InTabl e � . data;  {Get s tart address of tabl e da ta} 

(Crea te index, row and map buffers) 
Error : =  CreateHandl e ( IndexH , Buf ferSi z e ,  0 ) ; 
if Error <> NoErr then goto MeshWarplmageExi t ;  
Index : =  GlobalLock ( IndexH ) ; 
Error : =  CreateHandle ( xRowl H ,  BufferS i z e ,  0 ) ; 
i f  Error <> NoErr then gete MeshWarpImageExi t ;  
xRowl : =  G l obalLock ( xRowlH ) ;  
Error : =  CreateHandle (yRowlH , Bu fferS i z e ,  0 ) ; 
if Error <> NoErr then gote MeshWarpImageEx i t ;  
yRowl : =  G l obalLock (yRow1 H ) ; 
Error : =  CreateHandle ( xRow2H ,  BufferS i z e ,  0 ) ; 
if Error <> NoErr then gote MeshWarpImageExi t ;  
xRow2 : =  GlobalLock ( xRow2 H ) ; 
Error : =  CreateHandl e (yRow2H ,  BufferS i z e ,  0 ) ; 
if Error <> NoErr then gote MeshWarplmageExi t ;  
yRow2 : =  GlobalLock (yRow2H ) ; 
Error : =  CreateHandle (MaplH,  BufferS i z e ,  0 ) ; 
if Error <> No Err then gete MeshWarplmageExi t ;  
Map1 : =  GlobalLock (MaplH ) ; 
Error : =  CreateHandle (Map2H,  Bu f ferS i z e ,  0 ) ; 
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C-60 The Development of Motion Tracking Strategies For Cine radiographic Images 

i f  Error <> NoErr then goto MeshWarplmageExi t ;  
Map2 : ;  G l obalLock ( Map2H ) ;  

end; {else n o t  RegularisedOu tMesh} 
{ -FIRST PASS (Phasel ) :  Crea te input and in termedia te image tables for } 
{ x-i n t ercepts of vertical spl ines , } 

Time : ;  GetTickCount ;  
i f  InMeshSpec i f i ed then begin (Poi n t  t o  start of inpu t mesh da ta) 

XMeshlnData : ;  @XMeshln� , da t a ;  
YMeshlnData : ;  @YMeshln� , da t a ;  

end; 
XMeshOutData : ;  @XMeshOu t � , data ; 
YMeshOutData : ;  @YMeshOut � , da t a ;  

{Poi n t  t o  s tart of o u tp u t  mesh da ta} 

if not ( Regul ari sedOutMesh)  then begin 
wri teln ( '  F i r s t  Pass : Hori zontal warp ' ) ;  
for y : ; 0 to imageHeight- l  do Index� [yl  , - y ;  
i f  InMeshSpe c i f i ed then begin 

{Cre a t e  i n t ermedia te tabl e} 

{Indices to sample vertica l  spl ines} 

Error : ;  CreateReal lmage ( InterTableH , meshWidth, imageHeight ) ;  
i f  Error <> NoErr then goto MeshWarpImageExi t ;  
InterTable : ;  Globa l Loc k ( InterTab l eH ) ; 
InterTabl eData : ;  @ In terTabl e � , da t a ;  
rowByteCoun t : ;  meshWidth * RSi z e ;  
x : ;  0 ;  
repeat {Visi t each vertical spl ine} 

address : ;  x * RSi z e ;  
for y : ; 0 to meshHeigh t - l  d o  begin 

{Get s tart address of tabl e da ta} 

xRowl � [y l  : ;  PReal ( Of f s e t Pointer ( XMeshInDa t a ,  address ) ) � ; 
yRowl � [y l  : ;  PReal ( O f fsetPointer ( YMeshInDa t a ,  address ) ) � ;  
xRow2 � [yl  : ;  PReal ( O f fse tPointer ( XMeshOutDa t a ,  addres s ) ) � ; 
Inc ( address , rowByteCount ) ; 

end; {for y} 
{Scan convert vertical spl ines of inp u t  and i n t ermedia t e  image} 

Error : ;  Interpol a teLinear ( yRowl , xRowl , meshHei gh t ,  Index, Mapl , imageHeigh t ) ; 
i f  ( Error ; NoErr ) and 

( In terpolateLinear ( yRowl , xRow2 , meshHeigh t ,  Index , Map2 , imageHeight ) ; NoErr ) 
then begin 

address : ;  x * RSi z e ;  
f o r  y : ; 0 to imageHeigh t - l  d o  begin {Store resampled rows back i n  Tabl e col s} 

PReal ( O f fse tPointer ( InTableData, address ) ) � : ;  Mapl � [ y l ; 
PReal ( O f fsetPointer ( InterTableDa t a ,  address ) ) �  : ;  Map2 � [ y l ; 
Inc ( address , rowByteCoun t ) ; 

end; {for y} 
end; {i f No Err } 

Inc ( x )  ; 
unt i l  ( x  >; meshWidth ) or ( Error <> NoErr ) ; 

end { i f  InMeshSpeci fi ed} 
e l s e  begin {InMesh NOT speci fi ed, hence assummed regular l -pixel} 

rowByteCount : ;  meshWidth * RSi z e ;  
for x : ;  0 to meshWidth- l  d o  begin {Visi t each vertical spl ine of the Ou tMeshes} 

address : ;  x * RS i z e ;  {El emen t address} 
for y : ;  0 to imageHeigh t - l  do begin {Store resampled cols back i n t o  Tabl e cols} 

PReal ( O f fset Pointer ( InTableData , address ) ) �  , - x ;  {Regular gri d} 
Inc ( address ,  rowByteCoun t ) ;  

end; {for y} 
end; {for x} 

InterTab leData : ;  XMeshOutData ; {Poin t i n termedi a t e  tabl e at xMeshOu t }  
end ; {else no InMeshSpeci fi ed, hence a regular gri d used} 

{ -FIRST PASS (Phase2 ) : Warp in X direction using inpu t and in termedi a t e }  
{ tabl es to produce t h e  in termedi a t e  image } 

i f  Error ; NoErr then begin 
for x : ; 0 to imageWidth- l do Index� [ x l  
for y : ; 0 to imageHeigh t - l  d o  begin 

: ;  x; {Indices to sampl e hori zon tal splines} 
{Visi t each row} 

{Fi t a spl ine to x-i n tercepts and resampl e over a l l  col umns} 
address : ;  y * meshWidth * RSi z e ;  
for x : ; 0 t o  meshWidth-l do begin 

xRowl � [ x )  : ;  PReal ( O f fse tPointer ( InTableDa ta ,  addres s ) ) � ; 
xRow2 � [ x )  , - PReal ( O f fse tPointer ( InterTableDa t a ,  addres s )  ) � ; 
Inc ( address , RS i ze ) ; 

end; { for x} 
Error : ;  Interpol ateLinear ( xRowl , xRow2 , meshWidth, Index, Mapl , imageWidt h ) ; 
i f  Error <> NoErr then goto MeshWarplmageExi t ;  
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{Resample input image row based on mapl in to i n t ermedia te image} 
Source : =  PByte ( O f fsetPointer ( InImageDa t a ,  y * imageWidth ) ) ;  
Dest : =  PByte ( O f f s e tPointer ( InterlmageDa t a ,  y * imageWidth ) ) ;  
Error : =  ResampleScanl ine ( Mapl , Source ,  Des t ,  imageWidth , 1 ) ; 
if Error <> NoErr then goto MeshWarpImageExi t ;  

end; { for y} 
end { i f  NoErr} 

else goto MeshWarpImageExi t ;  
DestroyReal lmage ( InTableH ) ; 
Des t royReal Image ( InterTableH ) ;  

end { i f  not RegularisedOu tMesh} 
else begin {RegularisedOu tMesh} 

wri teln ( '  First Pass : Hori zontal warp ( regularised)  ' ) ;  
GlobalUnlock ( MaplH )  ; 
for y : =  0 to imageHeight - l  do begin {Visi t each row} 

for x : =  0 to meshWidth-l do 
Mapl A [x l  : =  PReal ( O f f s e tPointer ( XMeshOutDa t a ,  ( x  + y * imageWidth ) * RS i ze ) ) A ;  

{Resample inpu t image row based on mapl into i n t ermedi a t e  image} 
Source : =  PByte (OffsetPointer ( InImageData , y * imageWidth ) ) ;  
Dest : =  PByte ( Of f s e t Pointer ( InterImageDa t a ,  y * imageWidth ) ) ;  
Error : =  ResampleScanl ine (Map l ,  Source , Des t ,  imageWidth , 1 ) ; 
if Error <> NoErr then goto MeshWarplmageExi t ;  

end; {for y} 
Mapl : =  G l obalLock ( Mapl H ) ; 

end; {else RegularisedOu tMesh} 
{ -SECOND PASS (phase 1 ) : crea tes tables for y-i n t ercep ts of horizon tal spl ines } 
{ of i n termedi a t e  and o u tput images } 

if not ( Regulari sedOutMesh ) then begin 
wri te l n ( '  Second Pass : Vertical warp ' ) ;  

Error : =  CreateReal Image ( InterTableH , imageWidth,  meshHeigh t ) ; 
if Error <> NoErr then goto MeshWarpImageExi t ;  
InterTable : =  GlobalLoc k ( InterTabl eH ) ;  
Error : =  CreateReal lmage ( Ou tTableH , imageWidth,  meshHeight ) ;  
i f  Error < >  NoErr then goto MeshWarplmageExi t ;  
OutTable : =  GlobalLock ( Ou tTableH ) ; 
InterTableData : =  @InterTabl e A . data;  {Get s tart address of tabl e da ta} 
OutTabl eData : =  @OutTable A . da t a ;  

C-61 

for x : =  0 to imageWidth-l do IndexA [ x l  . - x ;  {Indices t o  sample hori zon tal splines} 
y : =  0 ;  
i f  InMeshSpec i f ied then begin 

y : =  0 ;  
repeat {Scan convert hori zontal spl ines of i n t ermedi a te and o u tp u t  images} 

address : =  y * meshWidth * RSi z e ; 
for x : =  0 to meshWid th - l  do begin 

yRowl A [ x l  : =  PReal ( Of f s e tPointer ( YMeshInDat a ,  addres s ) ) A ; 
xRow2 A [ xl : =  PReal ( O f f s e tPointer ( XMeshOutDa t a ,  address ) ) A ; 
yRow2 A [xl  : = PReal ( O f fsetPointer ( YMeshOu tData,  address ) ) A ;  
Inc ( address ,  RS i ze ) ; 

end; { for x} 
Error : =  InterpolateLinear ( xRow2 , yRowl , meshWidth , Index , Mapl , imageWidth ) ;  
i f  ( Error = NoErr ) then begin 

Error : =  InterpolateLinear ( xRow2 , yRow2 , meshWidth , Index , Map2 , imageWidth ) ;  
end; { i f  NoErr} 

address : =  y * meshWidth * RSi z e ;  
for x : =  0 t o  meshWidth-l do begin (Store resampl ed rows ) 

PReal ( O f fsetPointer ( InterTableData,  address ) ) A  : =  Mapl A [ x l ; 
PReal ( O f fsetPointer ( OutTableDa t a ,  address ) ) A : =  Map2 A [ x l ; 
Inc ( address ,  RSize ) ; 

end; {for x} 
Inc ( y ) ; 

unti l  (y >= meshHeight ) or ( Error <> NoErr ) ;  
end { i f  InMeshSpecified} 

else begin (Regular l -pixel InMesh grid assumed) 
repeat {Scan convert horizon tal splines of i n t ermedi a t e  and o u tp u t  images} 

address : =  y * meshWidth * RSi z e ; 
for x : =  0 to meshWidth- l do begin 

yRowl A [ x l  : =  y; (Regular gri d) 
xRow2 A [ x l  : =  PReal ( OffsetPointer ( XMeshOutDa t a ,  addres s ) ) A ; 
yRow2 A [ x l  : =  PReal ( O f fsetPointer ( YMeshOutData,  addre s s ) ) A ;  
Inc ( addres s ,  RS i ze ) ; 

end; { for x} 
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Error : =  InterpolateLinear ( xRow2 , yRowl , meshWidth,  Index , Mapl , imageWid th ) ; 
if ( Error = NoErr ) then 

' Error : =  InterpolateLinear (xRow2 , yRow2 , meshWidth , Index , Map2 , imageWidt h ) ; 
address : =  y • meshWidth • RSi z e ;  
f o r  x : =  0 to meshWidth- 1 d o  begin (Copy i n t erpola ted val ues back) 

PReal ( O f f s e tPointer ( InterTableData,  address ) ) h  : =  Map1 h [ x ] ; 
PRea l ( O f f s e t Pointer ( Ou tTableData , address ) ) h : =  Map2 h [ x ] ; 
Inc ( address , RSi ze ) ; 

end; ( for x) 
inc ( y ) ; 

unt i l  (y = meshHeight ) or ( Error <> NoErr ) ; 
end; (else n o t  InMeshSpeci fied) 

( -SECOND PASS (Phase 2 ) : Warp y using in termedia te and o u tput tabl es) 
i f  Error = NoErr then begin 

for y : =  0 to imageHeigh t - l  do Index h [y] : =  y ;  
rowByteCount : =  l ongint (meshWidth) • RSi z e ;  
for x : =  0 to imageWidth- l d o  begin (Visi t each vertical spl ine) 

address : =  x • RSi z e ;  
for y : =  0 to meshHei gh t - l  d o  begin (Store each col umn a s  a row for spl ining) 

XRowl h [y ]  : =  PReal ( O f fsetPointer ( InterTab l eDa t a ,  addres s ) ) h ; 
YRow1 h [y]  : =  PReal ( O f fsetPointer ( Ou tTableDa t a ,  address ) ) h ;  
Inc ( address , rowByteCount ) ; 

end; ( for y) 
(Scan convert vertical spl ines of inp u t  and i n termedia t e  image) 

Error : =  Interpol a teLinear ( XRowl , YRow1 , meshHeight , Index , Map1 , imageHeigh t ) ; 
if Error <> NoErr then goto MeshWarpImageExi t ;  

(Resampl e in termedi a t e  image col umns based on Mapl ) 
Source : =  PByte ( O f fsetPointer ( InterImageDat a ,  x ) ) ;  
Des t  : =  PByte ( O f f setPointer (Out ImageData , x ) ) ;  
Error : =  ResampleScanl ine (Map1 , Sourc e ,  Des t ,  imageHei gh t ,  imageWidth) ; 
i f  Error <> NoErr then goto MeshWarpImageExi t ;  

end; ( for x) 
end; (i f NoErr) 

end (i f n o t  RegularisedOu tMesh) 
e l s e  begin (Regulari sedOu tMesh) 

wri teln ( '  Second Pass : Vert ical warp ( regularised ) ' ) ;  
rowByteCount : =  longint (meshWidth) • RSi z e ;  
for x : =  0 to imageWidth - 1  d o  begin (Visi t each vertical spl ine) 

(Store each col umn as a row for spl ining) 
address : =  x • RS i z e ;  
for y : =  0 t o  imageHeigh t - 1  do begin 

Map1 h [y ]  : =  PReal ( O f fse tPointer ( YMeshOu tDa t a ,  addres s ) ) h ; 
Inc ( address , rowByteCoun t ) ; 

end; (for y) 
(Resampl e i n t ermedi a t e  image col umns based on Mapl ) 

Source : =  PByte ( O f fsetPointer ( InterImageDa t a ,  x ) ) ;  
Dest : =  PByte ( O f fse tPoin ter ( Ou tImageDat a ,  x ) ) ;  
Error : =  Resamp1eScan1 ine (Mapl , Source , Des t ,  imageHeight , imageWidth) ; 
if Error <> NoErr then goto MeshWarpImageExi t ;  

end; ( for x) 
end; (else Regulari sedOu tMesh) 

Time : =  GetTickCount - Time ; 
wri teln ( '  Execut ion Time = ' , ( T ime / 1 0 0 0 ) : 2 : 1 , ' sec ' ) ;  

MeshWarpImageExi t :  
Des t royImage ( InterImageH ) ;  
i f  ( Error < >  NoErr ) then Des troyImage (OutImage H )  
e l s e  G l obalUnl ock ( Ou tImageH ) ;  
GlobalUnlock ( InImageH ) ;  
G l obalUn l ock ( XMeshInH ) ; G l obalUnloc k ( YMeshInH ) ; 
G l obalUnlock ( XMeshOutH ) ;  G l obalUnlock ( YMeshOu tH ) ; 
Des troyReal Image ( InTableH ) ; 
Des troyReal Image ( InterTableH ) ;  
Des troyReal Image ( Ou tTableH ) ;  
Des troyHandle ( IndexH ) ; 
Des troyHand l e ( XRow1H ) ; DestroyHandle ( YRowlH ) ; 
Des troyHandle ( XRow2 H ) ; DestroyHandle ( YRow2H ) ;  
Des troyHandle ( Mapl H ) ;  DestroyHandle ( Map2 H ) ; 
MeshWarpImage : =  Erro r ;  

end; (Fun c t i on :  MeshWarpImage) 
( = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =) 

end " (Uni t :  WarpFtns) 
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Appendix C - Pascal Source Code C-63 

c.s Optimal Triangulation 

The following Pascal unit 'OpCTri' contains a function called Triangulate that perfonns optimal 
Delaunay triangulation of an arbitrary set of two-dimensional scatter points. This function was 
used to perfonn the segmentation of the reference image used in the generation of the prescribed 
motion cineradiographic sequences described of chapter 7. 

unit Opt_Tri ; 
{Delaunay Tri angul a t i on for a set of 2 -D sca t ter poi n t s .  Can be easily extended to 3 -D . } 

INTERFACE 
{=======================================INTERFACE=========================================} 

uses 
WinDos , WinTypes ,  WinProcs . 
PMXTypes , PMXProcs ,  PMXUt i l s .  Ut i l s .  Globa l s ,  
MLab_ops , WarpFtns ; 

const 
BigNum 1E3 7 ;  
Eps i l on 1E- 5 ;  
T S i z e  ( 1  • 2 )  • 7 5 ;  
Range 1 0 . 0 ;  
MaxPoints (MaxWord div 3 )  
DimensionCount = 2 ;  

type 
Real 

{A large val ue for in tialisa t i on }  
{Sma l l es t  no-zero val ue} 
{Tempory s torage size factor} 
{Factor for radi us of control poin ts} 

div RSi z e ;  {Maximum number of control 
{Curren tly hardwired} 

poin ts} 

ControlPo intArrayPtr 
ControlPointArray 
IndexArrayPtr 
IndexArray 
Tri IndicesArrayPtr 
Tri IndicesArray 
CentresArrayPtr 
CentresArray 

Single ; 
�Control PointArray; 
Array [ O  . .  MaxPoints - l ,  
� IndexArray; 

O . .  DimensionCoun t - 1 ]  of .Real ; 

Array [ O  . . MaxPoints - 1 ]  
�TriIndicesArray; 
Array [ O  . . MaxPoints - l .  
...... CentresArrayi 

of Integer ; 

O . .  2 ]  of Intege r ;  

Array [ O  . . MaxPoin ts - 1 . O . . DimensionCoun t ]  of Real ; 

Function Triangulate ( PointsH {Handl e t o  the input 2 -D con trol poin ts} 

implementation 

: THandle ;  
pointCount {Number of inpu t control poin ts} 

: integer; 
var Tri IndicesH {Handl e to o u tpu t triangles and their poin t indi ces} 

var TriCount 
: THandle ; 

{Number of triangles in the tessel l a t i on }  
: intege r )  : ErrorCode ; 

{=========================================================================================} 
Function Triangulate ( PointsH {Handl e to the inpu t 2 -D control poin ts} 

: THandle ; 
pointCount {Number of inpu t control poin ts} 

: Intege r ;  
var Tri IndicesH {Handle to o u tput triangles and their poin t indi ces} 

: THand l e ;  
var TriCount {Number of triangles in the tessel l a ti on }  

: Intege r )  : ErrorCode ; 
{ -Performs Delaunay op timal triangu l a t i on ( triangular tessel la t i on )  on a s e t  of 2 -D real 

control points s tored in PointH. The o u tp u t  is an l i s t  of triangl es (Tri Indi cesH) wi th 
indices to their corresponding pos t i on in Poin tsH. The actual size of Poin tH needs to 
be two en tri es larger than poin tCoun t for i n t ermedi a t e  working. 

Based on C- code by Dave Wa tson , algori thm described in -
Wa tson , D . F . , 1 981 , Compu ting the n -dimensi onal Delaunay tessel l a t i on wi th 

appl ica t i on to Voronoi polytopes : The Computer J . , 24 (2) , p .  1 67-1 72 .  
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C-64 The Development of Motion Tracking Strategies For Cineradiographic Images 

Addi t i onal informa t i on abo u t  this algori thm can be found in -

CONTOURING : A guide to the analysis and display of spa tial da ta,  by Davi d F .  Wa tson, 
Pergamon Press, 1 992,  ISBN 0 08 040286 0 

label 
TriangulateExi t ,  
Corner1 , Corner2 , Corner 3 ; 

var 

Points 

xx ,  yy, 
MaxDi f f  

MinMaxPoints 

CalcMat 

Cen tresH , 
indexH , 
a3sH 

Centres 

a3 s ,  
Tri Indi ces 

i I ndex 

index 

Tmp 

dim, 
dimMinus 1 ,  
i O ,  i l ,  i 2 , i 3 , 
i 4 ,  i s ,  i 6 ,  i 7 , 
i s ,  i 9 ,  i l O , 
s toreS i z e ,  
s toreCount 

Error 

begin 
Error : =  NoErr ; 

(Poin ter to x-y da ta poin ts) 
Control Po intArrayPtr ; 
(x and y i n termedi a t e  val ues) 
{Absol u t i on max control poi n t  coord di fference} 

Real ; 
(Holds the min and max x and y poi n t  va l u es) 

Array [ O  . .  l,  0 . .  1)  of Real ; 

(Calcu l a t i on matrix) 
Array [ O  . . 1 ,  O . .  2 )  of Real ; 
{Handl e to ci rcl e centres of each poi n t }  
(Handle control point index array) 
(Handle to triangl e o u tp u t  indices array) 

THandl e ;  
(Poin ter t o  circl e centres of each poin t) 

CentresArrayPtr ; 
(Pointer to triangle o u tput indices array) 
(Poin ter to o u tp u t  triangles and their poin t  indi ces) 

TriIndicesArrayPt r ;  
( A  singl e triangle index) 
Array [ O  . .  2 )  of I n teger ; 
{Poin ter control point index array} 
IndexArrayPtr ; 
(Tempory array to s t ore poi n t  indices) 

Array [ O  . .  TSi z e ,  0 . . 1) of integer ; 
(Number of dimensions 2 or J )  
(Number of dimensions minus one) 
(General l oop coun ters) 

(Es tima ted number of array e l emen ts for cal cu l a t i on )  
(Actual n umber of array el emen ts used in cal es) 
intege r ;  
(General error holder) 
ErrorCode ; 

if pointCount > MaxPoints then begin 
wri te l n ( ' Too many point s ,  max MaxPoi n ts ) ; 
Triangu l a t e  : =  OutOfRangeErr; 
Exit ;  

end; (i f poin tCoun t )  
i f  PointsH < >  0 then Points : =  GlobalLock ( PointsH) 
e l s e  begin 

wri te ln ( ' No points spec i fi ed ' ) ;  
Triangulate : =  OutO fRangeErr ; 
Exit ;  

end; (else PointsH = O) 
(Ini t i a l i s e  handl es) 

CentresH : =  0 ;  
indexH : =  0 ;  
a3sH : = 0 ;  
dim : = DimensionCount ;  (Numver o f  dimensions curren tly hardwi red) 
dimMinu s 1  : =  dim - 1 ;  
for i O  : =  0 to TSi z e - 1  do begin (Ini tialise Tmp) 

tmp [ i 0 ,  0 j : = 0 ;  
tmp [ i 0 ,  1 ) : = 0 ;  

end; ( for i O )  
for i O  : =  0 to 2 d o  (Ini tialise i Index) 

i I ndex [ i O j  : =  0 ;  
for i O  : =  0 to dimMinus1 do begin (Intial ise MinMaxPoints) 

MinMaxPoints [ O ,  i O j  : =  - BigNum; 
MinMaxPoints [ l ,  i O j  : =  + BigNum; 

end; ( for i O )  
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Appendix C - Pascal Source Code 

for i O  : =  a to dimMinu s 1  do {Ini tialise cal cu l a t i on ma trix} 
for i1 : =  a to dim do CalcMat [ i O ,  i l l  : =  -Range ; 

for i O  : = a to dimMinus1 do Ca1cMat [ i O ,  iO 1 : = 5 • Range ; 
for i O  : =  a to pointCoun t - 1  do {Find poin t s  wi th min and max, x and y val u es} 

for i1 : =  a to dimMinu s 1  do begin 
if MinMaxPoints [ O ,  i l l  < Points � [ i O ,  i l l  

then MinMaxPoints [ O ,  i l l  : =  Points� [ i O ,  i l l ; 
if MinMaxPoints [ l ,  i l l  > Points � [ i O ,  i l l  

then MinMaxPoints [ l ,  i l l  : =  Points� [ i O ,  i l l ; 
end; {for i l }  

MaxDi f f  : =  0 ;  
for i O  : =  a to dimMinu s 1  do begin {Find max poin t  di fference from the min -max poi n ts} 

MinMaxPoints [ O ,  i O l  : =  MinMaxPoints [ O ,  i O l  - MinMaxPoints [ l ,  i O l ; 
if MaxDi f f  < MinMaxPoints [ O ,  i O l  then MaxDi f f  : =  MinMaxPoints [ O ,  i O l ; 

end; {for i O }  
MaxD i f f  : =  MaxDi f f  • Eps i l on ;  
RandSeed : =  3 6 7 ;  

{Sca l e  max poi n t  di fference by eps i l on }  
{Ini tialise random gen} 
{Add random perturba t i on to poin ts} for i O  : =  a to pointCoun t - 1  do 

for i1 : =  a to dimMinusl do 
Points � [ i O ,  i l l  : =  Points � [ i O ,  

for i O  : =  a t o  dim do 
i l l  + MaxD i f f  * ( 0 . 5  - Random ( MaxWord ) /MaxWord ) ;  

for i 1  : =  a to dimMinus1 do 
Point s �  [ pointCount + i O ,  i l l  : = 

MinMaxPoints [ l ,  i l l  + Ca1cMat [ i 1 ,  i O l  • MinMaxPoints [ O ,  i l l ; 
s toreSi z e  : =  dim ' ( pointCount + dim) ; {Es tima te s torage alloca ti on needed} 
Error : =  CreateHand1e ( indexH, s toreS i z e  * I S i z e ,  0 ) ; 
i f  Error <> NoErr then begin 

wri teln ( ' Not enough memory to create indexH ' ) ;  
goto TriangulateExi t ;  

end; 
index : =  G l obalLock ( indexH ) ; 
for i O  : =  a to s toreS i z e - 1  do {Ini tialise index array} 

index� [ i O l  : =  i O ;  
Error : =  CreateHandle ( a3 s H ,  s toreS i z e  • ( 3  * I S i ze ) , 0 ) ; 
i f  Error <> NoErr then begin 

wri teln ( ' Not enough memory to create a3sH ' ) ;  
goto TriangulateExi t ;  

end; 
a3 s  : =  G l obalLock ( a3 sH ) ; 
Error : =  CreateHandle ( CentresH, s toreS i ze * ( 3  * RSi ze ) , 0 ) ; 
if Error <> NoErr then begin 

wri teln ( ' Not enough memory to create CentresH ' ) ;  
goto TriangulateExi t ;  

end; 
Centres : =  GlobalLock ( C entresH ) ;  
for i O  : =  a to s tore S i z e - 1  do {Ini tialise aJs and Cen tres} 

for i1 : =  a to dim do begin 
a 3 s � [ i O ,  i l l  : =  0 ;  
Centres � [ i O ,  i l l  : =  0 ;  

end; { for i l }  
for i O  : =  0 t o  dim do a 3 s � [ 0 ,  i O l  : =  pointCount + i O ;  

{Ini tialise Centres} 
Centres� [ O ,  diml : =  BigNum ; 
for i O  : =  a to dimMinu s 1  do Centres� [ O ,  i O l  : =  0 ;  

{ -Start triangu l a tion} 
s toreCount : =  1 ;  
i 4  : = 1 ;  
for i O  : =  a to pointCount - 1  do begin 

i1 : =  - 1 ;  
i 7  : =  - 1 ;  
i 9  : = 0 ;  
i 1 0  : =  0 ;  
whil e  i 1 0  < s toreCount do begin 

inc ( i l )  ; 
whi l e  a 3 s � [ i l ,  0 1  < a do inc ( i l ) ; 
xx : =  Centres� [ i l ,  diml ; 
for i2 : =  a to dimMinu s 1  do begin 

xx : =  xx - sqr ( Points � [ i O ,  i 2 l  - Centres � [ i 1 ,  i 2 l ) ;  
i f  xx < a then goto Corner3 ; 

end; {for i 2 }  
dec ( i 9 ) ; 
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dec ( i 4 ) ; 
index A [ i 4 ]  : =  i 1 ;  
i 2  : = 0 ;  
whi l e  i 2  < ( dim+ 1 )  do begin 

i I ndex [ O ]  : =  0 ;  
i f  i Index [ O ]  = i 2  then inc ( i Index [ O ] ) ;  
for i 3  : =  1 to dimMinus1 do begin 

i I ndex [ i 3 ]  : =  i Index [ i 3 - 1 ]  + 1 ;  
i f  i I ndex [ i 3 ]  = i 2  then inc ( i Index [ i 3 ] ) ;  

end; { for i 3 }  
i f  i 7  > dimMinus1 then begin 

is : =  i 7 ; 
i 3  : = 0 ;  
whi l e  i 3  <= i s  do begin 

Corner1 : 

for i s  : =  0 to dimMinus1 do 
if a 3 s A [ i 1 ,  i I ndex [ i S ] ] <> Tmp [ i 3 ,  i s ]  then goto Corner1 ; 

for i 6  : =  0 to dimMinu s 1  do 

Tmp [ i 3 ,  i 6 ]  : = Tmp [ i s ,  i 6 ]  ; 
dec ( i 7 )  ; 
goto Corner2 ; 

Inc ( i 3 ) ; 
end; {wh i l e  i 3 }  

end; { i f  i 7} 
inc ( i  7 )  ; 
if i 7  > ( TS i ze - 1 ) then begin 

wri te l n ( ' Tempory s torage exceeded- increase TSize ' ) ;  
Error : =  memoryErr j 
goto Tri angulateExi t ;  

end; {i f i 7} 
for i 3  : =  0 to dimMinus 1 do Tmp [ i 7 ,  i 3 ] : =  a 3 s A [ i l ,  i Index [ i 3 ] l ;  

Corner2 : 
Inc ( i2 )  ; 

end; {whi l e  i 2 }  
a3 s A [ i l ,  0 ]  : = - 1 ;  

Corner3 : 
I nc ( i l O ) ; 

end; {whi l e  i l O } 
for i 1  : =  0 to i7 do begin 

i f  not ( fa l s e  and ( tmp [ i 1 ,  0 ]  < pointCoun t ) ) then begin { }  
f o r  i 2  : = 0 to dimMinus1 d o  begin 

CalcMat [ i 2 ,  dim] : =  0 ;  
for i 3 : = 0 to dimMinus 1 do begin 

CalcMat [ i 2 , D ]  : =  Points A [Tmp [ i l , i 2 ] , i 3 ]  - Points A [ i O ,  i 3 ] ; 
CalcMat [ i 2 ,  dim] : =  CalcMat [ i 2 ,  dim] 

+ Ca1cMat [ i 2 ,  i 3 ]  * ( Points A [ Tmp [ i l ,  i 2 ] , i 3 ]  + Points A [ i O ,  i 3 ] ) I 2 ;  
end; {for i 3 }  

end; { for i 2 }  
xx : =  CalcMat [ O ,  0 ]  * CalcMat [ 1 ,  1 ]  - CalcMat [ 1 ,  0 ]  * CalcMat [ O ,  1 ] ; 
Centres A [ indexA [ i 4 ] , 0 ]  

: =  ( Ca 1 cMat [ 0 ,  2 ]  * CalcMat [ l ,  1 ]  - CalcMat [ 1 ,  2 ]  * CalcMat [ O ,  1 ] ) xx ;  

Centres A [ indexA [ i 4 ]  , 1 ]  
: =  ( CalcMat [ O ,  0 ]  * CalcMa t [ l ,  2 ]  - CalcMat [ 1 ,  0 ]  * CalcMat [ O ,  2 ] ) xx ; 

Centres A [ indexA [ i 4 ] , dim] : = 0 ;  
for i 2  : =  0 t o  dimMinus1 do begin 

Centres A [ indexA [ i 4 ] , dim] 
: =  Centres A [ indexA [ i 4 ] , dim] + sqr ( PointsA [ i O ,  i 2 ]  - Centres A [ indexA [ i 4 ]  , i 2 ] ) ;  

a 3 s A [ indexA [ i 4 ] , i 2 ]  : = Tmp [ i l ,  i 2 ] ; 
end; ( for i 2 )  

a 3 s A [ indexA [ i 4 J . d i m ]  : =  i O ;  
inc ( i 4 ) ; 
inc ( i 9 ) ; 

end; ( i f  not . .  ) 
end; ( for i l )  

Inc ( s toreCount ,  i 9 ) ;  
end; ( for i O )  
(Crea te ou tpu t triangle indi ces array) 

Error : =  CreateHandl e ( Tr i Indi cesH , s toreCount * ( 3  * I S i ze ) , 0 ) ; 
i f  Error < >  No Err then begin 

wri te l n ( ' Not enough memory to create Tri I ndicesH ' ) ;  
goto TriangulateExi t ;  

end; 
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Appendix C - Pascal Source Code 

Tri Indices : =  GlobalLock ( TriIndicesH ) ;  
{Con tinue wi th the Tri angul a t i on }  

i O  : =  - 1 ;  
triCount : =  0 ;  
for i 1 0  : =  ° t o  s t oreCoun t - 1  do begin 

inc ( i O ) ; 
while a 3 s A [ i O ,  0 ]  < ° do inc ( i O ) ; 
if a 3 s A [ i O ,  0 ]  < pointCount then begin 

for i1 : =  ° to dimMinus1 do for i2 : =  ° to dimMinus1 do 
CalcMat [ i 1 ,  i 2 ]  : =  PointsA [ a 3 s A [ i O ,  i 1 ] , i 2 ]  - Points A [ a3 s A [ i O ,  dim] , i 2 ] ; 

xx : =  CalcMat [ O , O ]  • CalcMat [ l , l ]  - CalcMat [ O , l ]  • CalcMat [ l , O ] ; 

C-67 

if abs ( xx )  > Eps i lon then begin {A physical triangl e exi ts so copy to Tri Indi ces} 
Tri Indice s A [ triCoun t ,  0 ]  : =  a3sA [ i O ,  0 ] ; 
if xx < 0. then begin 

Tri Indice s A [ triCoun t ,  1 ]  : =  a 3 s A [ i O ,  2 ] ; 
Tri Indices A [ triCoun t ,  2 ]  : =  a 3 s A [ i O ,  · 1 ] ; 

end { i f  xx < O }  
e l s e  begin 

Tri Indices A [ triCoun t ,  1 ]  : =  a 3 s A [ i O ,  1 ] ; 
TriIndices A [ triCoun t ,  2 ]  . - a 3 s A [ i O , 2 ] ; 

end; {else} 
Inc ( triCoun t )  ; 

end; { i f  abs . .  } 
end; { i f  a3s} 

end; { for i l O }  
{Reduce the size o f  Tri Indices to the actual size required . }  

Error : =  Res i z eHandle ( Tri IndicesH , TriCount • ( 3  • I S i ze ) , 0 ) ; 
i f  Error <> NoErr then begin 

wri teln ( ' Error res i z ing Tri IndicesH ' ) ;  
end; 

TriangulateExi t :  
DestroyHandle ( indexH ) ; 
DestroyHandl e ( a 3 s H )  ; 
DestroyHandle ( CentresH ) ; 
if Error <> NoErr then Des troyHandl e ( Tri IndicesH ) ;  
GlobalUnlock ( PointsH ) ; 
Triangul a t e  : = Error;  

end; {Triangu l a t e }  
{=========================================================================================} 

end. (Opt_Tri ) 

c.s Prescribed Motion by Image Warping 

The following Pascal program 'Cine Warp' was used to generate the prescribed motion 
cineradiographic sequences utilised in chapter 7 in the evaluation of the motion-tracking 
algorithm.  Based on a trajectory file (defining the motion of the defmed features) the reference 
image is warped to produce the animation. 

Program C ineWarp ; 
{ -Program to anima te ve terbra from a single cineradi ographi c  image using Digi tal Image 

Warping Techi ques . Anima t i on based on traj ectory fi l e  da ta . 

uses 
WinCrt ,  WinDos , WinProcs ,  WinTypes ,  Strings , 
Globa l s ,  Resourc e ,  F i l es , PMXTypes ,  PMXProc s ,  PMXUti l s ,  Points , U t i l s ,  
WarpFtns , Images , F i l ters , MLab_ops ,  Opt_Tri ;  

label 
C ineWarpExi t ;  

Rot.tion (.) 

Warp60 
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const 
TabChar = 0 ;  {Ascii TAB charac ter} 
TriPatchS tr ' > ' ;  {Triangle s tring represen t a t i on }  
Traj ec torySpec F i l eExtn ' . t j s ' ;  {Fi l e  extension of a trajectory speci fica t i on fi l e }  
Traj ectoryDataFi l eExtn ' . t j d ' ; {Fi l e  extension of a traj ectory da ta fi l e }  
CMXDocPath ' d : \ crnxdocs ' ; {Path to CMX documen ts} 
InFil eName CMXDocPath + ' \ ccrefl . crnx ' ; {Fi l e  con taining corrected ref x-ray da ta 

$ 1 0 0 ;  
3 2 ;  

with o u tl ine poi n ts} 
{Curren t CMX pa t i en t  fil e  version} 
{Max n umber of edge points all owed} 

vers i on 
MaxEdgePointCount 
MaxObj ec tCount 
MaxOut l inePointCount 

1 6 ; {Max number of obj ects tha t can be anima ted} 
24 * MaxEdgePointCount ;  {Max number of poin ts forming an obj e c t }  

MaxImageCount 
MaxTriPatchCount 

{Max n umber of images in a sequence} 
div 6 4 ; {Max number of TriPa tches in an image} 

{Max n umber of scanlines in an obj e c t }  MaxScan l ineCount 
BPCount 

7 5 ;  
MaxInt 
1 2 7 ; 
1 0 ;  {Number o f  points defined on each axis o f  the boundary} 

{Program con trol . }  
AddTriPatchesToPointGroups 
AddTriPatchesToImages 
SaveOu tputMeshes 
Defau l tTraj ectoryFi l eName 

{Tru e } Fal se ; 
{Tru e } False ; 
{Tru e } Fal s e ;  
' Warp6 3 ,  ; {Name of the traj ectory fi l e }  

type 
RPoint record 

Real ; 
{Real precision x, y coords} 

x ,  y 
end; 

Obj e c tIndexRec 
obj ec tNum 

centroid 

= record {Structure for objects defined in the image} 
{The n umber of the obj e c t ,  0 impl i es boundary obj e c t }  

byt e ; 
{The centroid of the obj e c t }  
RPoint ;  

end; {Obj ectIndexRec} 
Obj e c t I ndexArrayPtr = �Obj e c tIndexArray; 

Obj e c t I ndexArray = Array [ O  . . MaxObj ec tCount - l ]  of Obj ectIndexRec ; 
XYThetaRec = record 

x, y .  { x  and y transl a t i on i n  pixel s} 
Theta {ro t a t i on in radians} 

Real 

Array [ O  . .  MaxOb j e c tCoun t - l ]  of XYThetaRec ; 
Array [ O  . . MaxImageCount - l ] of Obj e c t s Pos i t i onArray; 
�Traj ec toryArray; 

end; {XYTh e t a }  
Obj e c t s Pos i tionArray 
Traj e c toryArray 
Tra j e c toryArrayPtr 
Tri PatchRec record 

ipt 

(Triangular planar pa tches in x and y affine mapping ip ' s  t o  op ' s )  
{Input coords of the three points forming the pa tch} 

opt 

apt 

ax, bx, ex , dx , 
ay , by , cy, dy 

end; {TriPatchRec} 

Array [ 0  . .  2 ]  of TPoint ; 
{Ou tput coords of the three poin ts forming the pa tch} 

Array [ O  . .  2 ]  of RPoin t ; 
{Object associ a ti on of the three poin ts} 

Array [ O  . . 2 ]  o f  Obj e c tIndexRec ; 
{x-pa tch coeffs of the fi t ted TriPa tch} 
{y-pa tch coeffs of the fi t ted TriPa tch} 
Rea l ;  

TriPatchArray = Array [ O  . .  MaxTri PatchCount - l ] of TriPatchRe c ;  
TriPatchArrayPtr = �Tri PatchArray; 
Hori zontalScan l i neRec = record 

y, xStar t .  xEnd : word ; 
end; 
TriPatchScanl ineArrayPtr = �Tri PatchScan l i neArray; 

Tri PatchScanl ineArray = Array [ O  . .  MaxScan l ineCount- l ]  of Hori zontalScan l ineRe c ;  

Outl inePointArray = Array [ O  . . MaxOu t l inePointCoun t - l ]  of TPoint ; 

{Define fi l e  componen ts} 
f PathStr Array [ O  . . f s PathName ] of Char ; 
fDirStr Array [ O  . . fsDirectory] of Char ; 
fNameS t r  Array [ O  . . f s F i l eName ] o f  Char ; 
fExtnS tr Array [ O  . .  fsExtens ion ] of Char ; 

var 

X, y ,  
ImageByte s ,  
f i l eNum 

{General col umn and row coun ters for each image} 
{ To tal s i z e  of each image in byt es} 
{Number of the CMX doc fi l e }  
Longint ; 
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i ,  j I 
imageNum, 
l ineNum, 
rowByteCoun t ,  
pointGroupNum, 
o u t l inePointCoun t ,  
o u t l i nePointNum 

imageCoun t ,  
obj ectCount , 
obj e c tNum , 
EdgePointCou n t ,  
EdgePointNum, 
controlPointCoun t ,  
tri PatchCoun t ,  
tri PatchNum, 
pointNum 

F i leComment 

searchlnfo 

Obj e c tlndicesH , 
ControlPointsH , 
Tri lndicesH , 
Traj ectoryH , 
TriPatchesH 

Obj ec tlndices 

Control Points 

Tri lndices 

Traj ec tory 

Obj e c tlnc lude 

TriPatches 

TriPatchScanl ines 

O u t l inePoints 

imageS i z e ,  
meshS i z e ,  
point 

rePoint 

obPoint 

InlmageH , 
OutlmageH , 
InterlmageH 

Inlmage , Outlmag e ,  
Interlmage 

inFi l e , outFile 

path , 
o u t F i l eName , 
Anima t i on F i leName , 
Traj ec toryF i leName 

Name 

Directory 

Appendix C - Pascal Source Code 

{General coun ters} 
{Counter for each image in the anima t i on }  
{Scan line coun ter} 
{Width of an image scanl ine,  accoun ts for l ongin t a l i gnmen t }  
{Curren t Poin t Group number} 
{Number of points in the current tri -pa tch o u tl ine} 
{Coun ter for points in the curren t tri -pa tch ou tline} 

Word; 
{Number of image in the anima ted sequence} 
{Number of objects to anima te} 
{Counter for number of objects} 
{Number of edge poin t in the curren t obj e c t }  
{Counter o f  edge poin t in t h e  curren t obj e c t }  
{Number o f  control poin ts defined } 
{Number of triangular pa tches} 
{TriPa tch coun ter} 
{Poi n t  counter} 
integer; 
{Warp fi l e  commen t }  
Str2 5 5 ;  

{Fi l e  search info} 
TSearchRec ;  
{Handle for the s tructure defining the vertebra t o  be anima ted} 
{Handl e for the control points} 
{Handle to the tri -indices array to the control poin t s }  
{Handl e for t h e  trajectory pa th of the vertebra } 
{Handle for Tri Patches} 

THand l e ;  
{Defines obj ects i n terms of hori zontal and vertical l ines} 

Obj ectlndexArrayPtr;  
{Poin ter to the control points}  

Control PointArrayP tr ; 
{Poin ter to the tri -indices array to the control poin ts} 

Tri lndicesArrayPt r ;  
{Trajec tory o f  the four vertebra to b e  anima ted} 

Traj ectoryArrayPt r ;  
{Defines whether a n  obj ect wi l l  be incl uded in the anima t i on }  

Array [ O  . .  MaxObj ec tCoun t - l )  of boolean; 
{An array of triangul ar pa tches tessala ting the image} 

TriPatchArrayPt r ;  
{Structure to h o l d  the scanl ines of a singl e tri -pa tch }  

Tri PatchScan l ineArray; 
{All poin ts forming a tri -pa tch outline } 

Outl inePointArray; 
{Image dimensi ons , x and y} 
{Mesh dimensi ons , wi dth and heigh t }  
{General TPoin t }  

TPoint ; 
{General RPoi n t }  
RPoint ; 
{General ObjectIndexRec var} 

Obj ect lndexRe c ;  
{Handl e for the input image} 
(Handl e for the Ou tpu t image) 
{Handl e for the In termedi a te image} 
ImageHandl e ;  
{Images poin t ers} 

ImagePtr ; 
{General inpu t and o u tp u t  fi l e }  

T F i l eRe c ;  
{Pa th var to CMX docs} 
{General o u tput fi l e  name} 
{Name of the o u tp u t  warp anima t i on CMX fi l e} 
( )  
fPathS tr ; 
(Name component of a fi l e  pa th after fi l eSpl i t )  
fName S t r ;  
{Directory componen t of a pa th after fi l eSpl i t }  
fDi r S t r ;  
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Extension 

dataF i l e  

s ,  f i l eName 
Error 

Documentlnfo 
doc l D  
PatData 
ss 

OptData 
Data S i z e  
Point InfoH , 
Pointlnfo2H 

pointlnfo 
Poin tGroupName 
Sorted 

{Extensi on componen t of a path a fter fi leSpl i t } 
fExtn S t r ;  

( )  
Tex t ;  
String; 
ErrorCode ; 

: Doc lnfoRec ; 
: DoclDRec ; 

PatientlDRec ; 

F i l e S t r ;  
OperatorS t r ;  
Longint ; 
{Handl es to poi n t  da ta} 

PointlnfoHandl e ;  
pointlnfoptr ; 
PointGroupNameS t r ;  
{True i f  a l i s t  of da ta is sorted i n  order} 
Boo l ean ; 

{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -FormTrajectory- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -} 
Function FormTraj ec tory ( traj ec toryFi leName : fPathS t r )  ErrorCode ; 

{ -Reads the specified traj ectory speci fica tion fi l e  and based on the spec i fi ed 
parameters genera tes the trajectories for each obj e c t  in the anima t i on sequence . 
R e t urns a handle to the trajectory a l ong wi th the number of images and a commen t 
abou t the form of the trajec tory. Also produces a trajectory da ta fil e  con taining 
the actual trajectory. } 

var 
traj ectoryF i l e  

Traj ec tory 

tForm 

tPLim, tNLim,  
tCycles , 
dFrame , 
value , 
dValue , 
x, y ,  the ta 

{Trajectory fi l e }  
Text ; 
{Trajectory of the four vertebra to be anima ted} 

Traj ectoryArrayP tr ; 
{Trajectory form, N=Normal or L=Li s t }  

Cha r ;  
{Posi t i ve a n d  nega ti ve l imi ts for t h e  curren t obj ect param} 
{Number of cycl es for the curren t object param} 
{Number of frames per cycle for the curren t object param} 
{Va l u e  of the current parameter for the current obj ect} 
{Va l u e  step size for the current object param} 
{Trajectory val u es} 

Rea l ;  
{Number o f  frames i n  the sequence} t Frame s ,  

tType , 
frameNum, 
obj e c tNum, 
pararnNum 

{Type of sequence for the current obj ect param, l =Linear, 2=Sin e }  
{Frame c o  u n  ter} 

Ver tebraName 

begin 
Error : =  NoErr ; 
Traj ec toryH : =  0 ;  

{Object coun ter} 
{Curren t object parame ter coun ter} 

Byt e ;  

String; 

Assign ( traj ec t oryF i l e ,  traj ec toryFi l eName ) ;  
Rese t ( traj ec toryF i l e ) ; 
if lORes u l t  <> 0 then Error : =  f i l eErr ; 
if Error = No Err then readln ( traj ectoryF i l e ,  F i l eCornrnen t ) ; 
if lOResu l t  < >  0 then Error : =  f i leErr ; 
wri te l n ( Fi l eCornrnent ) ;  
i f  Error = No Err then readln ( trajec toryF i l e ,  tForm , t Frames ) ;  
i f  lOResul t  < >  0 then Error : =  f i l eErr ; 
tForm : =  UpCase ( tForm ) ; 
i f  ( Error < >  NoEr r )  or ( tFrames > MaxlmageCount )  then begin 

wri teln ( ' Too many frames speci fied in traj ectory tFrames ) ;  
Traj e c toryH : =  0 ;  
Error : =  OutofRangeErr ; 

end { i f  tFrames} 
else begin 

imageCount : =  tFrames ;  
Error : =  CreateHand l e ( Trajec toryH , imageCount * S i zeof ( Obj e c tsPos i t i onArray ) , 0 ) ; 

end; {else} 
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i f  Error = NoErr then begin 

Traj ectory ; =  GlobalLoc k ( Traj ectoryH ) ; 
obj ec tNum ; =  0 ;  
whil e  not ( Eof ( traj ectoryF i le ) ) do begin 

if tForm = ' N '  then begin {Normal defini t i on fil e }  
read ( traj ec toryF i l e ,  tType ) ;  
i f  tType = a then Obj ect Include [ obj ectNum] ; = False 
e l s e  begin 

Obj e c tlnclude [ ob j e c tNum] ; = Tru e ;  
f o r  paramNum ; = 1 to 3 d o  begin 

if paramNum > 1 then read ( traj ectoryF i l e ,  tType ) ;  
case tType o f  

1 ;  {Linear sequence} 
begin 

read ( trajectoryF i l e , tCyc les , tNLim, tPLim ) ; 
if paramNum = 3 then begin {Convert l imi ts to radians} 

tPLim : =  pi • tPLim 1 8 0 ;  tNLim ; = p i  • tNLim / 1 8 0 ; 
end; { i f  tParam} 

dFrame : =  ( tFrame s - 1 )  / ( tCycles ) ;  {Number of frames per cycl e }  
dValue ; = - 1 /  dFrame ; {ini tialise dVa l u e }  
f o r  frameNum ; =  a to tFrame s - 1  d o  begin 

dValue : =  dValue + 1 / dFrame ; 

C-7 1 

if dValue > 1 . 0  then dValue ; =  dValue - 1 . 0 ;  {pin dVa l u e  to range O -l }  
{Piecewise peri odi c map dVa l u e :  0 . 0 -> 0 . 25 -> 0 . 75->1 . 0  

becomes O . O ->l . O-> -l . O -> O . O} 
i f  ( dValue < 0 . 2 5 )  then value ; = 4 • dVal ue 
else if ( dValue < 0 . 7 5 )  then value : =  1 . 0  - 4 • ( dValue - 0 . 2 5 )  
else value ; =  - 1 . 0  + 4 • ( dValue - 0 . 7 5 ) ; 

{Sca l e  to limi ts} 
value ; = ( tPLim + tNLim ) / 2  + ( tPLim - tNLim) / 2  • valu e ;  

case paramNum o f  
1 Traj ectory� [ frameNum , obj e c tNum ] . x  : = value ; 
2 ; Tra j ec tory� [ frameNum , obj e c tNum ] . y  ; = value ; 
3 ; Tra j ec tory� [ frameNum, obj ectNum) . theta ; =  value ; 

end; {case tParam} 
end; {for frameNum} 

end; {case l }  
2 {Sinusodial sequence} 

begin 
read ( traj ectoryFi l e ,  tCyc les , tNLim, t PLim ) ; 
if paramNum = 3 then begin {Convert limi ts to radians} 

tPLim ; = pi • tPLim / 1 8 0 ; 
tNLim ; = pi • tNLim / 1 8 0 ;  

end; { i  f tParam} 
dFrame : = ( tFrames - 1 )  / ( tCycl es ) ;  
for frameNum ; =  a to tFrame s - 1  do begin 

value : =  
( tPLim + tNLim ) / 2  + ( tPLim - tNLim) / 2  • Sin ( 2 ·pi • frameNum/ dFrame ) ;  

case paramNum of 
1 Tra j ec tory� [ frameNum , obj ectNum] . x  ; = value ; 
2 : Tra j ec tory� [ f rameNum, obj ectNum ] . y  ; = value ; 
3 ; Traj ectory� [ frameNum , obj ectNum] . theta ; = value ; 

end; {case tParam} 
end; {for frameNum} 

end; {case 2 }  
end; {case tTYPe} 

end; {for paramNum} 
end; {else t TYPe > O }  

readln ( traj ectoryF i l e ) ; {move to next line} 
Inc ( obj ec tNum) ; 

end { i f  tForm} 
e l s e  begin {List Fi l e  defini t i on }  

obj ectNum ; = 0 ;  
whil e  not ( EOF ( trajec toryFi l e )  ) do begin 

readl n ( traj ectoryFi l e ,  VertebraName ) ;  
for f rameNum ; =  a to tFrame s - 1  do begin 

wi t h  Traj ectory� [ frameNum, obj ec tNum] do begin 
read1n ( traj ectoryFile , x, y, theta ) ; 
theta : = theta / 1 8 0 ·pi ; {Convert to radians} 
if IORes u l t  <> 0 then begin 

wri teln ( ' Error reading ' , obj ectNum , ' " frameNum) ;  readln ;  
FormTraj ectory ; = IOResul t ;  
Close ( traj ectoryFil e ) ; 
Exi t ;  

end; { i f  Error} 
end; {wi th Trajectory} 

end; {for frameNum} 
Obj ectInclude [ obj ectNum] . - True ; 
inc ( ob j e c tNum ) ; 

end; {whi l e  not EOF} 
end; {else List defin i t i on }  

end; {wh i l e  not Eof} 
C l os e ( traj ectoryFi l e ) ; 
obj e c tCount : =  obj e c tNum ; 

end { i f  trajectory crea ted} 
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else wri teln ( ' Error not enough memory for tra j e ctory ' ) ;  
GlobalUnlock (Traj ectoryH ) ;  
FormTraj ec tory : =  Erro r ;  

end; (FormTrajectory) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -FormCon trolPoi n t s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -) 

Function FormControlPoints : ErrorCode ; 
( -Ge t the edge poin ts for each object and add them to the con trolPoi n t s  l i s t  and compu t e  

the cen troid of each object and add i t  to the ObjectIndices l i s t  a l ong t h e  i ts object 
number. Finally add evenly spaced boundary con trol points based on BPCoun t .  

var 
Error 
x, y ,  
coun t ,  
edgePointCoun t ,  
edgePointNum, 
pointGroupNum 

xSum, ySum 

centroi d  

ErrorCode ; 
(x and y coord coun t ers) 
(general counter) 
(Number of edge poin ts in the curren t poin tGroup) 
(Curren t Edge poi n t  number) 
(Curren t Poi n t  group number) 

Integer ; 
(x and y coord sum used in object cen troi d cal cula t i on )  

longin t ;  
(Centroid of the curren t obj e c t )  

RPoint ;  
begin (MAIN: FormCon trolPoints)  

Error : =  NoErr ; 
pointGroupNum : =  0 ;  
repeat ( -Range check the number of edge points i n  each obj e c t )  

GetPointGroupName ( PointInfoH, pointGroupNum, PointGroupName ) ;  
edgePointCount : =  Ge tEdgePointCount ( PointInfoH , @ PointGroupName ) ;  
i f  EdgePointCount > =  MaxEdgePointCount then Error : =  OutOfRangeErr ; 
inc (pointGroupNum ) ; 

until (poin tGroupNum = Obj ectCoun t )  or ( Error <> NoErr ) ; 
if Error = NoErr then begin 

control PointCount : =  0 ;  
for pointGroupNum : =  0 to objectCount- 1 do begin 

if Obj e c t Include [ pointGroupNum) then begin ( a dd the obj e c t )  
xSum : =  0 ;  (Ini tialise object centroid sums) 
ySum : =  0 ;  
GetPointGroupName ( PointInfoH , pointGroupNum , PointGroupName ) ;  
edgePointCount : =  GetEdgePointCount ( PointlnfoH ,  @PointGroupName ) ;  
for edgePointNum : =  0 to edgePointCoun t - 1  do begin 

GetPoint ( PointInfoH , @PointGroupName , edgePointNum , point ) ;  
C ontrolPo ints� [ contro1PointCount , 0 ]  : =  point . x ;  
Contro1Point s � [ contro1PointCoun t ,  1 ]  : =  poin t . y ;  
Obj e ctIndice s � [ controlPointCoun t ]  . objectNum : =  pointGroupNum+ 1 ;  
Inc ( contro1PointCoun t ) ; 
inc ( xSum, point . x ) ; (Add x and y val ues to sums) 
inc (ySum, point . y ) ; 

end; (for edgePoin tNum) 
centroi d . x  : =  xSum / edgePointCount ; 
centroid . y  : =  ySum / edgePointCoun t ;  
for count : =  ( contro1PointCount - edgePointCount )  t o  contro1PointCount - 1  do 

Obj ectlndices � [ count ) . centroid : =  centroi d ;  ( fi l l  in object cen troi d) 
end; ( i f  Obj ectInclude) 

end; ( for pointGroupNum) 
( -Add in four corner boundary control poin ts) 

ControlPoints� [ controlPointCount , 0]  : =  0 ;  
Contro l Point s � [ controlPointCount ,  1 ]  : =  0 ;  
Obj ectlndices � [ controlPointCoun t )  . objectNum : =  0 ;  (boundary obj e c t )  
Inc ( control PointCount ) ;  
ControlPoints� [ controlPointCount , 0 ]  : =  image S i z e . x- 1 ;  
ControlPoints� [ controlPointCount , 1 ]  : =  0 ;  
Obj ectlndices � [ controlPointCoun t ]  . objectNum . - 0 ;  (boundary obj e c t )  
Inc ( controlPointCount ) ;  
Control Point s � [ controlPointCoun t ,  0 ]  : =  0 ;  
Contro1 Point s � [ controlPointCoun t ,  1 )  : =  imageSi z e . y- 1 ; 
Obj ectlndices � [ contro1PointCount ] . obj ectNum : =  0 ;  (boundary obj e c t )  
Inc ( contro1PointCount ) ;  
Control Point s � [ contro1PointCoun t ,  0 ]  : =  imageSize . x - 1 ; 
ControlPoin ts � [ contro1PointCount , 1 ]  : =  imageSize . y- 1 ; 
Obj ect l ndices � [ controlPointCoun t ) . objectNum : =  0 ;  {boundary obj e c t }  
Inc ( controlPointCoun t ) ; 

( -Add in evenly space boundary poin t on each axis) 
count : =  imageSize . x  div ( BPCount- 1 ) ; 
X : =  coun t ;  
while x < ( imageSi ze . x  - count ) do begin (Define x axis mid boundary control poi n t s )  

Contro1Points � [ contro1PointCount ,  0 )  : =  x ;  
ControlPoint s � [ controlPointCoun t , 1 ]  : =  0 ;  
Obj ectlndices� [ contro1 PointCount ] . objectNum . - 0 ;  {boundary obj e c t }  
Inc ( contro1PointCoun t ) ; 
ControlPoints� [ contro1PointCount ,  0 ]  : =  x ;  
ControlPoints � [ controlPointCount , 1 ]  : =  imageSize . y- l ;  
Obj ectlndices � [ contro1PointCount ]  . obj ectNum : =  0 ;  (boundary object) 
Inc ( controlPointCount )  ; 
Inc ( x ,  count ) ;  

end; {whi l e  x} 
(Define y axis mid-boundary con trol poi n ts) 

count : =  imageSize . y  div ( BPCount - 1 ) ; 
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y : =  coun t ;  
while y < ( imageSi z e . y  - count ) do begin 

ControlPointsA [ controlPointCoun t ,  0) : =  0 ;  
ControlPointsA [ control PointCount , 1 )  : =  y ;  
Obj ectIndices A [ controlPointCount)  . objectNum : =  0 ;  {boundary obj e c t }  
I n c  ( controlPointCoun t )  ; 
Con trol Points A [ controlPointCount , 0 )  : = imageSi ze .  x- 1 ;  
ControlPointsA [ controlPointCount , 1 )  : =  y ;  
Obj ectIndicesA [ controlPointCount)  . objectNum . - 0 ;  {boundary obj e c t }  
Inc ( control PointCount ) ;  
Inc ( y ,  count ) ;  

end; {wh i l e  y} 
end; { i f  NoErr} 

FormControlPoints : =  Error;  
end; {Functi on : FormCon trolPoin ts} 
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{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Fi tTriangularPa tch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 
Function Fi tTriangularPatch (var TriPatch : TriPatchRec )  : ErrorCode ; 

{ -Computes the affine coeffi ci en ts tha t map the i npu t triangl e formed by ipt ' s  to the 
ou tput triangle formed by opt ' s .  The coeffi en ts o f  the triangular mapping are re turned 
in ax, bx, cx, dx for x and ay, by, cy, dy for y planes . 

var 

ax • i n . x  + bx • in . y  + cx • ou t . x  + dx 0 

ay • i n . x  + by • in . y  + cy • ou t . y  + dy 0 

di f f l , di f f 2 ,  
d i f f 3  

{ Point coords di fferences} 

Real ; 

begin {Fi tTriangu l arPa tch} 
Error : =  NoEr r ;  
with TriPatch d o  begin 

{Cal cul a te the x pa t ch coefficen ts . } 
d i f f 1  : =  opt ( 1 ) . x  - opt ( 2 ) . x ;  
d i f f 2  : =  longint ( ipt [ 1 ] . y )  - ipt ( 2 )  . y ;  
d i f f 3  : =  longint ( ipt [ l )  . x )  - ipt ( 2 ) . x ;  
ax : =  ipt [ O ) . y  * di f f l  

- opt [ O ) . x  * d i f f 2  + ( ipt [ l ) . y  • opt ( 2 ) . x  - opt ( 1 ) . x  * ipt [ 2 )  . y ) ; 
bx . - - ( ipt [ O ) . x  * d i f f 1  - opt [ O ] . x  • d i f f 3  

c x  : =  
+ ( ipt [ l ) . x  * opt ( 2 ) . x  - ipt [ 2 ] . x  * opt [ l ) . x ) ) ;  

ipt [ O ) . x  * d i f f 2  - ipt [ O ) . y  • d i f f 3  
+ ( l ongint ( ipt [ l )  . x )  * ipt ( 2 ) . y  - longint ( ipt [ 2 )  . x )  * ipt [ l )  . y ) ; 

dx . - - ( ipt [ O ) . x  * ( ipt [ l ) . y  • opt ( 2 ) . x  - ipt ( 2 ) . y  * opt [ l ) . x )  
- ipt [ O ) . y  • ( ipt [ l ) . x  • opt ( 2 ) . x  - ipt [ 2 ] . x  • opt ( 1 ) . x )  
+ opt [ O ) . x  * ( l ongint ( ip t [ l )  . x )  • ipt ( 2 ) . y  - l ongint ( ipt [ 2 )  . x )  • ipt [ l )  . y) ) ;  

{Ca l c u l a t e  the y pa t ch coefficen ts . }  
d i f f l  : =  opt [ l ] . y  - opt ( 2 )  . y ;  
di f f 2  : =  l ongint ( ipt [ l )  . y )  - ipt ( 2 )  . y ;  
d i f f 3  : =  longint ( ipt [ l )  . x )  - ipt ( 2 )  . x ;  
ay . - ipt [ O ) . y · d i f f l  - opt [ O ) . y  * d i f f 2  

+ ( ipt [ l ) . y  • opt ( 2 ) . y  - opt [ l ) . y  • ipt ( 2 )  . y ) ; 
by : =  - ( ipt [ O ) . x  • d i f f l  - opt [ O ) . y  • d i f f 3  

c y  : =  

+ ( ipt [ l ) . x  * opt ( 2 ) . y  - ipt ( 2 ) . x  * opt [ l )  . y) ) ;  
ipt [ O ) . x  * d i f f 2  - ipt [ O ) . y  • d i f f 3  
+ ( l ongint ( ipt [ l )  . x )  • ipt [ 2 ) . y  - l ongint ( ipt [ 2 )  . x ) * ipt [ l )  . y ) ; 

dy : =  - ( ipt [ O ) . x  * ( ipt [ l ) . y  • opt ( 2 ) . y  - ipt ( 2 ) . y  • opt [ l ) . y )  
- ipt [ O ) . y  * ( ipt [ l ) . x  • opt ( 2 ) . y  - ipt ( 2 ) . x  • opt ( l ) . y )  
+ opt [ O ) . y  • ( longint ( ipt [ l ) . x )  • ipt ( 2 ) . y  - longint ( ipt [ 2 )  . x )  • ipt [ l )  . y) ) ;  

end; {wi th Tri Patch} 
Fi tTriangularPatch : =  Error;  

end; {Fi tTriangul arPa tch }  
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -TransformPoin t - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 

Procedure TransformPoint ( 
inPoint 

centrePoint 

XYTheta 

var outPoint 

{Inpu t poi n t  coords} 
TPoint;  

{Cen troid o f  transform sys t em} 
: RPo in t ;  

{x, y  a n d  theta defining the transform} 
XYThetaRec ; 

{Transformed coords} 
RPoint)  ; 

{ - Transforms the InPoin t to ge t the OutPoi n t  abo u t  the CentrePoin t .  
invol ves simple transla t i on and ro tation abou t the centre poi n t .  

} 
begin {TransformPoin t }  

with XYTheta do begin 
outPoint . x  : =  ( inPoint . x  - centrePoint . x )  * Cos ( Theta ) 

The transform 

- ( inPoint . y  - centrePoint . y )  • Sin ( Theta ) + x + centrePoint . x ;  

outPoint . y  . - ( inPoint . x  - centrePoint . x )  • S i n  (Theta) 
+ ( inPoint . y  - centrePoint . y )  • Cos (Theta)  + y + centrePoint . y ;  

end; {wi th XYTheta} 
end; {TransiormPoin t }  

{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -LineProc- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 
Procedure LineProc (x, y : intege r ;  lParam : Longint ) ;  Export ; 

begin { - Used by LineDDA in i n terpola ting object o u t l ines }  
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Outl inePoints [ outl inePointNum ] . x  : �  x ;  
Ou tlinePoints [ outl inePointNum ] . y  : �  y ;  
inc ( outl inePointNurn ) ;  

end; {LinProc} 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -SaveOu tpu tMesh - - - - - - - - - - - - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _  � _ _ _ _ _ _ _ _  } 
Function SaveOutputMesh (xMeshH , yMeshH : meshHandle ;  meshNumber : integer) : ErrorCode ; 

{ -Saves the curren t x and y o u tp u t  mesh grids as bi tmap image fil es :  xMesh n . bmp, 
ymesh_n . bmp where n � image n umber 

-

type 

TypeArray � array [ O  . .  l ]  of Char ; 
B i trnaplnfoRec � record 

header TBitrnaplnfoHeader ;  
colors : array [ O  . . 2 5 5 ]  o f  TRGBQuad ; 

end; 
var 

X, y ,  
addre s s ,  
rneshWidth, rneshHeigh t ,  
rowByteCount 

xBu f fe r ,  yBu f f er 

xMeshfi l e ,  yMeshf i l e  

bitrnaplnfo 
f i l elnfo 
xMesh, yMesh 

xMeshData,  yMeshData 

s 
Error 

begin (SaveOu tpu tMesh) 

{Coun ters} 
{Mesh e l ement address} 
{Mesh width and heigh t }  
{Number of bytes per row i n  BMP} 
long in t ;  
{ x  and y l ine buffers} 
Array [ 0  . .  1 0 2 3 ] of byte ;  
{x and y mesh fi l e s }  
TFileRe c ;  
B i tmapln f oRec ; 
TBi trnapFi leHeader ; 
{Poin t ers to x and y mesh} 

MeshPtr ; 
{Poin ter to x and y mesh da ta} 
PReal ; 
string; 

{General Error var} 
ErrorCode ; 

i f  ( xMeshH > 0 )  and (yMeshH > 0 )  then begin (Mesh gri ds are defined) 
wri teln ( '  Saving Mesh grids ' ) ;  
xMesh : �  GlobalLock ( xMeshH ) ; 
yMesh : �  GlobalLock ( yMeshH) ; 
xMeshData : �  @xMeshA . data ; 
yMeshData : �  @yMeshA . data;  
rneshWidth : �  xMeshA . si z e . x ;  
meshHeight . - xMeshA . s i z e . y ;  
Str ( meshNumber , s ) ; 
Assign (File (xMeshF i le ) , ' Meshx_ ' + s + ' . bmp ' ) ;  
Assign (File (yMeshF i le ) , ' Meshy_ ' + s + ' . bmp ' ) ;  
Rewrite ( File (xMeshF i l e ) , 1 ) ; 
i f  IORe s u l t  <> a then wri teln ( ' Error xMeshFi le ' ) ;  
Rewrite (Pile (yMesh Fi l e ) , 1 ) ; 
i f  IOResul t  < >  a then wri te l n ( ' Error yMeshFi le ' ) ;  
TypeArray ( f ilelnfo . bfType ) : �  ' BM ' ; 
f i l elnfo . bf S i z e  : �  S i zeOf ( f i 1elnfo)  + Si zeOf (bitmapln f o )  + meshWidth • meshHeight ; 
f i 1 elnfo . bfReservedl : =  0 ;  
f i l e lnfo . bfReserved2 : �  0 ;  

f i lelnfo . bfOf f B i t s  : =  SizeOf ( f i l e lnfo) + S i zeOf (bitmaplnf o ) ; 
Error : �  F i l eWri te (xMeshFi l e ,  @ f i 1elnf o ,  S i zeOf ( filelnfo ) , 0 ) ; 

i f  Error <> NoErr then write1n ( ' 1  Error wri t ing output f i l e l  info Error ) ; 
Error : �  FileWri te ( yMeshFi l e ,  @ f i 1elnfo , S izeOf ( filelnfo ) ,  0 ) ; 

i f  Error <> NoErr then write1n ( ' 2  Error wri t ing output f i l e 2  info Error ) ; 
bi tmaplnfo . Header . bi S i z e  : �  S iz eO f (bitmaplnfo . Header ) ;  
bi tmaplnfo . Header . biWidth : =  meshWidth; 
bi tmaplnfo . Header . biHeight . - meshHeight ; 
bi tmaplnfo . Header . bi P l anes : �  1 ;  
bitmaplnfo . Header . biBi tCount : =  8 ;  
bitmaplnfo . Header . biCompres s i on : =  0 ;  
bitmaplnfo . Header . bi S i z e lmage : �  meshWidth • meshHeigh t ;  
bi tmaplnf o . Header . biXPel s PerMeter : =  0 ;  
bi tmaplnfo . Header . biYPelsPerMe ter : �  0 ;  
bi tmaplnfo . Header . biC1rUsed : �  0 ;  
bi tmaplnfo . Header . biC1rlmportant : =  0 ;  
for x : �  a to 2 5 5  do 

with bi tmaplnf o . Co lors [ x ]  do begin 
rgbBlue . - x ;  
rgbGreen : �  x ;  
rgbRed : = x ;  
rgbReserved . - 0 ;  

end; {wi th} 
Error : �  FileWri te ( xMeshFi l e ,  @bi tmaplnf o ,  S i zeOf (bi tmaplnfo) , 0 ) ; 
i f  Error <> NoErr then write1n ( ' 3 Error wri t ing Output Filel  " Error ) ; 
Error : �  F i l eWri te (yMeshFi l e ,  @bi tmaplnfo ,  S i zeOf (bitmaplnfo ) , 0 ) ; 
i f  Error <> NoErr then writeln ( ' 4  Error wri t ing Outpu t F i le2 " Error ) ; 
rowByteCount : =  Al i gn3 2 (meshWidth) ;  
address : =  0 ;  
for y : =  a to meshHeigh t - l  do begin 

for x : =  a to meshWidth - l  do begin 

xBu f f e r  [ x ]  : = 



Appendix C - Pascal Source Code 

Round ( 2 5 5  • PReal ( O f fsetPointer ( xMeshData , address » A meshWidth ) ;  
yBuf fer [xl  . -

Round ( 2 5 5  • PReal ( O f fs e tPointer ( yMeshData,  address » A meshHeigh t ) ; 
Inc ( address , RSi ze ) ; 

end; ( for x) 
Error : =  F i l eWri te (xMeshFi l e ,  @xBu f fer,  rowByteCount ,  0 ) ; 

if Error <> NoErr then wri teln ( ' Error writing Output Filel ' ) ;  
Error : =  FileWri te ( yMeshFi l e ,  @yBu f fe r ,  rowByteCount , 0 ) ; 

if Error <> NoErr then wri teln ( ' Error wri ting Output File2 ' ) ;  
end; (for y) 

C lose ( file ( xMeshFi l e »  ; 
C l ose ( file ( yMeshFi l e »  ; 
G lobalUnlock ( xMeshH ) ;  
G lobalUnlock ( yMeshH) ; 

end ( i f  mesh grids defined) 
else Error : =  memoryEr r ;  
SaveOutputmesh : =  Error ; 

end; (SaveOu tpu tMesh) 
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( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -WarpSequence - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Function WarpSequence ( InImageH , Out ImageH : THandl e ;  

ImageCount : Byte ;  
Traj ectoryH : THand l e )  : ErrorCode ; 

( -Begining from the InImageH produce an animated sequence of ImageCount images given the 
trajectoryH da ta . 

) 
label 

WarpSequenceExi t ;  
var 

meshSize 

xMeshInH , yMeshInH , 
xMeshOutH , yMeshOutH 

xMeshl n ,  yMeshIn, 
xMeshOu t ,  yMeshOut 

Image 

Traj ectory 

ImageNum , 
rowByteCount 

x, y ,  
address 

Centroid ,  
InPoint 

OutPoint 

Error 

(Input and ou tp u t  image mesh dimensi ons,  x , y) 
TPoint ; 
(Handles for inpu t image x and y meshes) 
(Handl es for o u tput image x and y meshes) 

MeshHandl e ;  
(Input image x and y meshes) 
(Ou tput image x and y meshes) 

MeshPtr ; 
(General image pointer) 
ImagePt r ;  
(Trajectory o f  obj ects t o  move) 

Traj ectoryArrayPt r ;  
(Counter for images) 
(Number of bytes in a mesh row) 

Word ; 
(Row and col umn counters) 
(El emen t address) 

Longin t ;  
(Centroid o f  curren t obj ec t )  
(Inpu t poin t t o  b e  transformed) 
TPoint ; 
(Ou tpu t transformed poin t )  
RPoint ; 
(General error) 

: ErrorCode ; 
( ----------------------------------Ini t i a l i seOutpu tMesh---------------------------------) 
Procedure Initiali seOutpu tMes h ;  

( -In tialise o u tpu t mesh gri d  to a regular I -pixel spacing. ) 
var 

x, y ,  
address 

xData,  yData 

(Coun ters) 
(El emen t address) 

l ongint ;  

PRea l ; 
begin (Ini t i a l iseOutpu tMesh) 

if (xMeshInH < >  0 )  and (yMeshlnH <> 0 )  then begin (ini tialise the inpu t meshes) 
xData : =  @xMeshInA . data;  
yData : =  @yMeshInA . data;  
address : =  0 ;  

for y : =  a to meshSize . y- l  do begin 
for x : =  0 to meshSi ze . x - l  do begin 

PReal (Of fsetPointer (xData, address » A : =  x ;  
PReal (Of fsetPointer (yData,  address » A : =  y ;  
Inc ( address ,  RSize ) ; 

end; ( for x) 
end; ( for y) 

end; ( i f  inpu t mesh gri ds defined) 
xData : =  @xMeshOutA . data;  
yData : =  @yMeshOut A . data;  
address : =  0 ;  

for y : =  0 to meshSize . y- l  do begin (Ini tialise o u tp u t  meshes) 
for x : =  0 to meshSize . x- l do begin 

PReal ( O f f s e tPointer (xData,  address » A : =  x ;  
PReal (Of fsetPointer (xData , addre s s » A : =  y ;  
Inc ( addres s ,  RSize ) ; 

end; ( for x) 
end; (for y) 

end; (Ini t i a l i seOu tpu tMesh) 
(---------------------------------AddTri Pa tchesToImage----------------------------------) 
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Function AddTriPatchesTolmage : ErrorCode ; 
{Draws the Tri Pa t ch o u t l ines on ou tlmageH. } 

const 

Colour = 1 2 7 ; 
var 

{greyscal e  i ndex of tripa tch l ine col our} 

address , 
imageWidth 

{Adress in image of curren t el emen t }  
{Wi d th of the image} 

Outlmage 

OutlmageData 

longin t ;  
{Poin ter t o  the outpu t image} 
ImagePt r ;  
{Poin ter t o  o u tp u t  image da ta} 
PByt e ; 

Error {General error} 
ErrorCode ; 

begin 

Error : =  NoErr ; 
wri teln ( '  Adding TriPatch outl ines to image ' ) ;  
Outlmage : =  GlobalLock ( OutlmageH) ; 
imageWidth : =  Outlmage� . header . size . x ;  
OutlmageData : =  @Outlmage � . data; 
for triPatchNum : =  0 to triPatchCoun t - l  do begin 

with Tri Patche s � [ tr i PatchNuml do begin 

{Interpola t e  a l l  the ou t l ine poin ts of the triPa tch} 
outlinePointNum : =  0 ;  
LineDDA ( Round ( opt [ O l  . x ) , Round ( opt [ O l . y ) , 

Round ( opt [ l l  . x) , Round ( opt [ l l  . y ) , @LineProc , Nil ) ; {poin t O -l }  
LineDDA ( Round ( opt [ l l  . x ) , Round ( opt [ l l . y ) , 

Round ( opt [ 2 l . x ) , Round ( opt [ 2 l  . y ) , @LineProc , Nil ) ; {poin t  l -2 }  
LineDDA ( Round ( opt [ 2 l . x ) , Round ( opt [ 2 l . y ) , 

Round ( opt [ O l . x ) , Round ( opt [ O l  . y ) , @LineProc , Nil ) ; {poi n t  2 - 0 }  
outlinePointCount : =  ou tl inePointNum; 
i f  outl inePointCount > MaxOutl inePointCount then begin 

writeln ( ' ERROR : Too many TriPatch outline points ' ) ;  
Error : =  OutOfRangeErr ; 

end; (if) 
if Error = NoErr then begin 

for outlinePointNum : =  0 to outl inePointCount - l  do begin 
address : =  Outl inePoints [ out l inePointNum l . x  

+ Outl inePoints [ ou t linePointNum l . y  • imageWidth; 
PByte ( Of f se t Pointer ( OutlmageData , address » � : =  Colou r ;  

end; {for o u t l inePoin tNum} 
end; { i f  NoErr} 

end; {wi th TriPa tches} 
end; {for triPa tchNum} 

GlobalUnlock ( Out lmageH ) ; 
AddTri PatchesTolmage : =  Error;  

end; {AddTri Pa t chesToImage} 
{------------------------------------SmoothOu tpu tMesh-----------------------------------} 
Function SmoothOu tputMesh : ErrorCod e ;  

{ -Smooths t h e  ou tpu t x a n d  y mesh grids using a 3x3 box fi l ter} 
var 

Error 
x, y 

meshWidth 

xBu f ferlH , xBu f fer2 H ,  
yBu f ferlH , yBu f fer2H 

xBu f ferl , xBu f fer2 , 
yBu f ferl , yBu f fer 2 , 
tmpBuf fer,  
xSrc , ySrc 

ErrorCode ; 
{Coun t ers} 

longint ; 
{ } 

Word ; 
{Handles t o  two xMesh l ine buffers} 
{Handles t o  two yMesh l ine buffers} 

THandl e ;  
{Poin ters t o  two xMesh l ine buffers} 
{Pointers to two xMesh l ine buffers} 
{Tempory l i n e  buffer} 
{xMesh and yMesh source poin ters} 

PRealLine ; 
begin {Smoo thOu tputMesh} 

MeshWidth : =  MeshSi z e . x ;  
Error : =  CreateHandle (xBufferlH,  MeshWidth , 0 ) ; 
i f  Error = NoErr then Error : =  CreateHandle (xBuf fer2H , MeshWidth, 0 ) ; 
Error : =  CreateHandle (yBu f ferlH , MeshWidth, 0 ) ; 
if Error NoErr then Error : =  CreateHandle (yBu f f er2H,  MeshWidth, 0 ) ; 
if Error NoErr then begin 

xBuf ferl : =  GlobalLock ( xBu f ferlH ) ; 
xBuffer2 . - GlobalLock ( xBu f fer2H ) ;  
yBuf ferl : =  GlobalLock ( yBufferlH ) ;  
yBuffer2 : =  GlobalLock ( yBu ffer2 H ) ; 

{Copy firs t  two l ines of x and y meshes into bu ffers} 
xSrc : =  PRealLine ( @xMeshOu t � . data ) ; 
ySrc : =  PRealLine ( @yMeshOu t � . data ) ; 
for x : =  0 to MeshWidth - 1 do begin 

xBuf ferl � [ x l  : = xSrc� [ x l ; 
xBu f f er2 � [ x l  . - xSrc� [ MeshWidth + xl ; 
yBuf ferl � [ x l  : = ySrch [ x l ; 
yBu f fe r 2 �  [ x l  : = ySrc� [MeshWidth + x l ; 

end; {for x} 
{Smooth the meshes} 

for y : =  1 to MeshSi z e . y  - 2 do begin 
xSrc : =  PRealLine ( Of fsetPointer ( @xMeshOut � . data,  ( y ' MeshS i ze . x )  • RS i z e » ; 
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ySrc : =  PRealLine (Of fsetPointer ( @yMeshOu t A . data,  ( y ' MeshSi ze . x )  • RS i z e » ; 
for x : =  1 to MeshWidth-2 do begin 

xSrc A [ x ]  : =  {x a verage} 
(xBuf ferl A [ x- l ]  + xBuf ferl A [x] + xBuf ferl A [x+ l ]  

+ xBuf fer2 A [ x - l ]  + xBuf fer2 A [x]  + xBuf fer2 A [x+ l ]  
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+ xSrc A [MeshWidth + x-l]  + xSrc A [ MeshWidth + x] + xSrcA [ MeshWidth + x+ l ] ) / 9 ;  
ySrc A [ x ]  : =  {y average} 

(yBu f ferl A [x- l ]  + yBuf ferl A [x]  + yBuf ferl A [ x+l ]  
+ yBuf fer2 A [ x- l ]  + yBuf fer2 A [x ]  + yBuf fer2 A [ x+ l ]  
+ ySrcA [ MeshWidth + x- l ]  + ySrcA [MeshWidth + x ]  + ySrcA [MeshWidth + x+ l ] ) / 9 ;  

end; ( for x) 
{ Swap buffer poi n ters} 

tmpBuffer : =  xBu f ferl ; xBuf ferl : =  xBu f fer2 ; 
xBu f fer2 : =  tmpBuf fe r ;  tmpBuffer : =  yBu f f erl ; 
yBu f ferl : =  yBu f fer2 ; 
yBu f fer2 . - tmpBuf fer;  
f o r  x : =  0 to MeshWidth-l d o  begin {Buffer t h e  next mesh x a n d  y l ines} 

xBu f fer2 A [ x] : = xSrcA [MeshWidth + x ] ; 
yBuf fer2 A [x]  : =  ySrcA [MeshWidth + x ] ; 

end; (for x) 
end; {for y} 
{Des troy buffers} 

DestroyHandle ( xBuf ferlH ) ; Des troyHandle ( xBuffer2H) ; 
Des t royHandle ( yBufferlH) ; Des troyHandle (yBuf fer2H ) ; 

end; { i f  NoErr} 
SmoothOutputMesh : =  Erro r ;  

end; { Smoo thOu tpu tMesh} 

{ ----------------------------------Interpola t eOu tpu tMesh--------------------------------} 
Function InterpolateOutputMesh : ErrorCode ; 

{ - In terpola tes o u tput mesh to adju s t  for obj e c t  motion . 
Uses the triPa tch coeffi ci en ts to cal cul a t e  the new i n t ernal pa tch coords . 

var 

count , 
l i neCount , 
meshWidth , 
meshHeigh t , 
><Min , ><Max 

xNew, yNew 

x ,  y ,  
address 

{Number of scanlines in the curren t triPa tch }  
{Width of the images} 
(Height of the images) 
(Min and max x coords of a triPa tch scanline) 
Word ; 
{The new x and y mesh coordina t es} 
Rea l ; 
(x and y coun ters) 
(Address of cureen t mesh el emen t )  
Longint ; 

begin {In terpol a t eOu tputMesh} 
meshWidth : =  MeshS i z e . x ;  
meshHeight : =  MeshSize . y ;  
for triPatchNum : =  0 t o  triPatchCoun t - l  do begin 

with Tri PatchesA [ triPa tchNum] do begin 

{In t erpol a t e  a l l  the o u tlin e  poi n t s  of the triPa tch} 
ou t l inePointNum : =  0 ;  

LineDDA ( ipt [ O ] . x ,  ipt [ O ] . y ,  ipt [ l ] . x ,  ipt [ l ] . y ,  @LineProc , Ni l ) ; (poin t  0 -1 )  
LineDDA ( ipt [ l ] . x ,  ipt [ l ] . y ,  ipt [ 2 ] . x ,  ipt [ 2 ] . y ,  @LineProc , Ni l ) ; {point 1 -2 }  
L ineDDA ( ipt [ 2 ] . x ,  ipt [ 2 ] . y ,  ipt [ O ] . x ,  ipt [ O ] . y ,  @LineProc, Nil ) ; {poin t 2 - 0 }  

ou t l i nePointCount : =  outl inePointNum ; 
if ou t l inePointCount > MaxOutl inePointCount then begin 

wri teln ( ' ERROR : Too many TriPatch outl ine points ' ) ;  
Error : =  OutOfRangeErr ; 

end; { i f} 
if Error = NoErr then begin 

count : =  0 ;  
{Find the start and end xCoord of each scanl ine in the curren t TriPa tch }  

for y : =  ipt [ 2 ] . y  t o  ipt [ O ] . y  do begin 
><Min : =  MaxInt ; 
><Max : = 0 ;  
for outl inePointNum : =  0 t o  outlinePointCount - l  do begin 

if Outl inePoints [ outl inePointNum] . y  = Y then begin 

{On the same hori zontal scanline} 
x : = Outl inePoints [ outl inePointNum] . x ;  
if x > ><Max then ><Max : =  x ;  
i f  x < ><Min then ><Min : =  x ;  

end; { i f  on the same hori zon tal 
end; {for o u t l in ePoin tNum} 

scanline} 

TriPatchScanLines [ count ] . y  . - y ;  
TriPatchScanLines [ coun t ]  . xStart . - ><Min;  
Tri PatchScanLines [ count]  . xEnd : =  ><Max; 
Inc ( coun t )  ; 

end; {for y} 
l ineCount : =  coun t ;  

(Interpolate the new in ternal coords o f  the curren t TriPatch) 
for count : =  0 t o  l ineCoun t - l  do begin 

y : =  TriPatchScanLines [ count]  . y ;  
address : =  (TriPatchScanLines [ count]  . xS tart + y * meshWidth) * RSi z e ;  
for x : =  TriPatchScanLines [ count]  . xS tart 

to TriPatchScanLines [ coun t ]  . xEnd do begin 
PReal (OffsetPointer ( @xMeshOu t A . data,  addres s » A 



C-78 The Development of Motion Tracking Strategies For Cineradiographic Images 

: =  - ( ax · x + bx • y + dx) /cx;  
PReal ( O f fsetPointer ( @yMeshOut� . data,  addre s s » � 

: =  - C ay • x + by * y + dy ) / cy ; 
Inc ( address ,  RSize ) ; (increment to next elemen t )  

end; (for x )  
end; (for coun t )  

end; (i f NoErr) 
end; (wi th TriPa t ches) 

end; ( for triPatchNum) 
InterpolateOutputMesh : =  Erro r ;  

end; (In t erpola t eOu tpu tMesh) 
{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Main : WarpSequence - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 

begin {MAIN: WarpSequence} 
(Ge t image dimensi ons) 

Image : =  GlobalLock ( InImageH ) ;  
MeshSize : =  Image� . header . Si z e ;  
GlobalUnl ock ( InImageH ) ;  

{Ini t i a l ise handles} 
xMeshInH : =  0 ;  yMeshInH : =  0 ;  
xMeshOutH : =  0 ;  yMeshOutH : =  0 ;  

(Crea t e  o u tp u t  image meshes) 
Error : =  CreateRealImage ( xMeshOut H ,  MeshSize . x ,  MeshS i z e . y ) ; 
if Error <> NoErr then gat a WarpSequenceExi t ;  
xMeshOut : =  GlobalLock (xMeshOutH ) ;  
Error : =  CreateRealImage (yMeshOutH , MeshSize . x ,  MeshSi z e . y) ; 
if Error <> NoErr then gate WarpSequenceExi t ;  
yMeshOut : =  GlobalLock (yMeshOutH ) ;  
Trajectory : =  GlobalLock (Traj ectoryH ) ;  
for imageNum : =  0 to ImageCount -l do begin 

for tri PatchNum : =  0 to triPatchCount- 1  do begin 

with TriPatches � [ triPatchNum) do begin {Upda te curren t triPa t ch o u tput poi n ts} 
for pointNum : =  0 to 2 do begin 

if apt [ pointNum) . obj ectNum > 0 than {Move the object poin t }  
TransformPoint ( ipt [ po intNum) , apt [ pointNum) . centroid, 

Traj ectory� [ imageNum, apt [pointNum) . ob j ectNum - 1 ) , opt [pointNum) ; 
end; {for poin tNum} 

end; {with TriPa tches} 
{Determine the coefficents for curren t TriPa tch} 

Error : =  Fi tTriangularPatch ( Tri Patches� [ triPatchNum) ; 
if Error <> NoErr then bagin 

wri teln ( ' Error f i tting triangles ' , Error ) ; readl n ;  
and; { i f  Err} 

end; { for triPa tchNum} 
Ini tialiseOutputMesh;  {Ini t i a l i se meshes to a regular gri d} 
Error : =  InterpolateOutputMesh; {In terpola t e  o u tpu t mesh to adj u s t  for obj e c t  m o t i on} 
if Error < >  NoErr then begin 

wri te1n ( ' Error Interpolating meshes : ' , Error ) ; 
readln ;  

end ;  {i f Err} 
{Force mesh boundries to image border. Preven ts ou t of range errors during warping. } 

rowByteCount : =  longint (meshSi z e . x )  • RS i z e ;  
address : =  0 ;  

for y : =  0 to meshSize . y-1 do begin {Left verti cal } 
PRea l ( OffsetPointer ( @xMeshOu t � . data, addres s » � : =  0 ;  
PReal ( O f fsetPointer ( @yMeshOu t � . data, address » � : =  y ;  
Inc ( address , rowByteCoun t ) ; 

end; { for y} 
address : =  (meshS i z e . x- 1 )  • RSi z e ;  
for y : =  0 t o  meshS i z e . y-l do begin {Righ t  verti cal } 

PReal ( O f fsetPointer ( @xMeshOut� . data, addre s s » � : =  meshS ize . x - 1 ; 
PReal ( O f fsetPointer ( @yMeshOut � . data, addre s s » � : =  y ;  
Inc ( address , rowByteCoun t ) ; 

end; { for y} 
address : =  0 ;  
for x : =  0 to meshSi ze . x-1 do begin {Bot tom hori zon ta l }  

PReal (OffsetPointer ( @xMeshOu t � . data, address » � x ;  
PReal ( O f f setPointer ( @yMeshOut � . data, address » � : =  0 ;  
Inc ( address , RSi ze ) ; 

and; { for x} 
address : =  longint (meshSi ze . y  - 1 )  • meshSize . x  • RSi z e ;  
for x : =  0 t o  meshS i ze . x-1 do begin {Top hori zon t a l }  

PReal ( O f fsetPointer ( @xMeshOut � . data, addre s s » � : =  x ;  
PReal ( O f fsetPointer ( @yMeshOu t � . data, addre s s » � : =  meshS i ze . y- 1 ; 
Inc ( address ,  RSi ze ) ; 

end; (for x) 
if SaveOutputMeshes then begin 

Error : =  SaveOutputMesh (xMeshOutH , yMeshOutH, imageNum ) ; 
if Error <> NoErr then wri teln ( ' Error Saving output mesh grids ' ) ;  

and; ( i f  SaveOu tpu tMeshes) 
Error : =  SmoothOutpu tMesh ; (Box 3x3 fil ter o u tp u t  meshes) 
if Error <> NoErr then begin 

wri teln ( ' Error smoothing output meshes : ' , Error ) ; readln;  
end; (if Err) 

GlobalUnlock (xMeshOutH ) ;  
GlobalUnlock (yMeshOutH ) ;  
writeln ( ' Mesh Warping image : imageNum ) ; 

Error : =  MeshWarpImage ( InImageH , OutImageH , 



case Error of 

MemoryErr 
DivByZeroErr 
OutOfRangeErr 

end; 
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xMeshInH, yMeshInH , xMeshOutH , yMeshOutH , False ) ;  

writeln ( ' Insuf f icient memory to warp image ' ) ;  
wri teln ( ' Divide-by- zero : an image may NOT be warped correct ly ' ) ;  
writeln ( ' Out-of-range : ,  an image has not been created ' ) ;  

i f  AddTri PatchesTolmages then begin 

Error : =  AddTriPatchesTolmage ; 
if Error <> NoErr then wri teln ( ' Error adding TriPatches to image ' ) ;  

end; (AddTri Pa tchesToImages) 
if ( Error = NoErr ) then Error : =  Compress Image ( OutlmageH , InterlmageH ) ;  
i f  Error <> NoErr then begin 

wri teln ( ' Error Compressing image ' ,  imageNum ) ; 
goto WarpSequenceExi t ;  

end ( i f  Err) 
else begin 

Error : =  FileOpen ( outFi l e ,  @AnimationFi leName , Version ,  Nil ,  False ) ; 
i f  Error <> NoErr then wri teln ( ' Error opening output file : " Erro r )  
else Error : =  Wri telmage ( InterlmageH , outFi l e ,  ImageDataID + imageNum ) ; 
i f  Error <> NoErr then wri teln ( ' wri ting image ' ,  imageNum ) ; 
Fi leClose ( OutFi l e ,  Error ) ;  
Des troylmage ( InterlmageH )  ; 

end; (else NoErr) 
Destroylmage (OutlmageH ) ;  
end; (for ImageNum) 

WarpSequenceExi t :  
GlobalUnlock ( Traj ectoryH ) ;  
DestroyReallmage ( xMeshOutH ) ;  DestroyReal Image (xMeshOutH) ; 
WarpSequence : =  Erro r ;  

end; ( WarpSequence) 
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(===== ====================================================================================) 
begin (MAIN Program : CineWarp) 

i f  ParamCount > 0 then begin 

f i leName : =  ParamStr ( l ) ; (Get the compl e te trajectory speci fi ca ti on fi l e  name) 
StrPCopy ( Path , f i leName ) ; 
FileSpl i t ( Path, Directory, Name , Extension ) ;  
LStrCpy (TrajectoryFileName , Name ) ; 

end ( i f  ParamCou n t )  
e l s e  S t rCopy ( Traj ectoryFileName , Defau l tTrajectoryFileName ) ;  
ScreenS i ze . x  : =  6 0 ; 
ScreenS i ze . y  : =  4 0 ;  
i f  Error = NoErr then Error : =  CreateHandle ( Tr i PatchesH , Sizeof (TriPatchArray ) , 0 ) ; 

i f  Error = NoErr then TriPatches : =  GlobalLock (TriPatchesH ) ; 
( -Read trajectory fi l e  and form object trajectory) 

S t rCopy ( outFileName , TrajectoryFileName ) ;  (Form the fi l e  name) 
LStrCat ( outFileName , Traj ectorySpecFileExtn) ; (add the extension) 
Error : =  FormTraj ectory ( outFileName ) ;  
i f  Error = NoErr then Traj ec tory : =  GlobalLock (Traj ectoryH ) 
else wri teln ( ' Error forming trajectory " Erro r ) ; 

( -Open the reference pa tien t  fi l e  and ge t the i n fo ) 
i f  Error = NoErr then 

Error : =  FileOpen ( inFi l e ,  PathPtr ( S tringPtr ( InFileName ) ) ,  Vers ion , Nil ,  True ) ; 
if Error = NoErr then 

Error : =  FileReadData ( inFi l e ,  docInfoDataID ,  @DocumentInfo,  S i z eO f ( DocInfoRec ) ,  Nil , O ) ; 

i f  Error = NoErr then begin 
ImageSi ze . x  : =  DocumentInf o . imageS i z e . x ;  
rowByteCount : =  Align32 ( ImageS ize . x )  ; 
ImageS i ze . y  : =  DocumentInfo . imageSi z e . y ;  
writeln ( ' Image Size : " ImageSize . x ,  ' x ' , ImageSi z e . y ) ; 

end; ( i f  NoErr) 
( -Ge t pa tien t  i nforma t i on) 

i f  Error NoErr then Error : =  ReadPatientID ( inFi l e ,  PatData ) ; 
i f  Error = NoErr then Error : =  ReadDocID ( inFi l e ,  doc ID) ; 
if Error = NoErr then 

Error : =  FileReadData ( inFi l e ,  OperatorDataID, @OptData , Sizeof ( OperatorStr ) ,  ni l , 0 ) ; 
i f  Error NoErr then Error : =  CreatePointInfo ( PointlnfoH , 0 ) ; 
i f  Error = NoErr then Error : =  ReadPointInfo ( PointInfoH , InFi l e ,  PointInfoDataI D ) ; 
i f  Error <> NoErr then F ileClose ( inFi l e ,  Error) 
else ObjectCount : =  GetPointGroupCount (pointInfoH ) ; 

(Crea te images) 
if Error NoErr then Error : =  CreateImage ( InterImageH , rowByteCount ,  ImageSi z e . y ) ; 

if Error NoErr then InterImage : =  GlobalLock ( InterImageH ) ;  

i f  Error NoErr then (Get centre image) 
Error : =  ReadImage ( InterImageH , inFi l e ,  ImageDataID + ( DocumentIn f o . ImageCount div 2 ) ) ;  

i f  Error = NoErr then Fi leClose ( inFi l e ,  Error ) ;  
i f  Error = NoErr then 

Error : =  Decompresslmage ( InterlmageH , InlmageH ) ;  (InImage crea ted by decompress) 
( -Find firs t ava i l abl e document n umber) 

if Error = NoErr then begin 

f i l eNum : =  0 ;  
while ( Error < >  abortErr ) and ( fi l eNum < =  9 9 9 9 9 )  do begin 

L StrCat (LS trCat (LStrCpy ( @outFileName , CMXDocPath) , ' \ doc%O S l u ' ) ,  ' .  cmx ' ) ; 
WVSPrintF ( @path , @outFileName , f i leNum ) ; 
Inc ( f i leNum) ; 
FindFirs t ( @path , faReadOnly, searchInfo ) ; 
e rror : =  BPError ( DosErro r ) ; 

end; (wh i l e )  
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i f  ( fi l eNum > 9 9 9 9 9 )  then writeln ( ' File count exceeded Erro r )  
e l s e  begin 

StrCopy ( outFileName , path ) ; 
Error : =  NoErr ; 

end; (else) 
end; {i f NoErr} 

StrCopy ( AnimationFileName,  outFileName ) ; 
(Crea t e  and open the ou tpu t fi l e  ) 

if Error = NoErr then Error : =  F i l eCreate ( @path , crnxFileChar , Version ) ; 
i f  Error = NoErr then 

Error : =  FileOpen ( OutFi l e ,  @path , Version,  Nil ,  False ) ;  
i f  Error = NoErr then Error : =  Wri tePatientID (OutFile,  @PatData , False ) ; 
LStrCa t ( LStrCat ( DocID . name , ' ) ,  Traj ectoryFi leName } ;  
i f  Error = NoErr then Error : =  Wri teDocI D ( OutFile,  @docI D ,  true ) ; 
if Error = NoErr then begin 

DocumentInf o . imageNo : =  imageCount div 2 ;  
DocumentInfo . imageCount : =  imageCount ; 

end; { i f  NoErr} 

{curren t image the centre image} 
{Number of images} 

if Error = NoErr then {Add Documen t Info to new fi l e }  
Error : =  FileWri teData ( OutFi le , DocInfoDataID, @DocumentInfo , SizeOf ( DocInfoRec } , Fal se , O ) ; 

if Error = NoErr then {Add opera tor info to new fi l e }  
Error : =  

FileWriteData ( Ou tFi le,  OperatorDataID ,  @OptData, Sizeof ( OperatorStr } ,  Fal s e ,  O } ; 
DestroyImage ( InterImageH ) ; 

{Crea t e  and wri t e  pointInfo t o  o u t  fi l e } 
if Error = NoErr then Error : =  CreatePointInf o ( PointInfo2 H ,  DocumentInf o . imageCount} ; 

{Crea t e  an Obje c t Indi ces Array to hold the control poi n t  . . .  } 
if Error NoErr then 

Error : =  CreateHandle (Obj ect Indi cesH, MaxInt div Si zeOf ( ObjectIndexRec}  , 0 ) ;  
i f  Error = NoErr then Obj ectIndices : =  GlobalLock ( Obj ectIndicesH ) ;  

{Crea te an arrys t o  hold the control poin t s }  
i f  Error = NoErr then 

Error : =  CreateHandle (Control PointsH , MaxInt div Si zeOf ( ObjectIndexRec ) , O } ; 
i f  Error = NoErr then Control Points : =  GlobalLock (ControlPointsH ) ;  

{ -Assembl e control points from obj ec t s }  
i f  Error = NoErr then Error : =  FormControl Points ; 
if Error <> NoErr then begin 

wri teln ( ' Error Forming Control Points " Error ) ; 
goto CineWarpExi t ;  

end; 

GlobalUnlock ( ControlPointsH ) ;  
GlobalUnl ock ( Tri IndicesH ) ;  

{ -Form the triangul ar tessel l a t i on of the control poi n t s }  
i f  Error = NoErr then 

Error : =  Triangulate ( Contro l PointsH , controlPointCount , Tri IndicesH , tri PatchCoun t ) ; 
if Error <> NoErr then begin 

wri teln ( ' Error Triangulation " Error ) ;  
goto C ineWarpExit ;  

end ;  
Tri Indices :=  GlobalLoc k ( Tr i IndicesH ) ; 
i f  Error = NoErr then begin 

{Copy poin tGroups to ou tp u t  fi l e  s truc ture } 
for PointGroupNum : =  0 to obj ectCount-l do begin 

if Obj ectInclude [ pointGroupNum) then begin {add the objec t }  
GetPointGroupName (pointInfoH , PointGroupNum, PointGroupName) ; 
Error : =  AddPointGroup ( pointInfo2H , @PointGroupName } ;  
i f  Error < >  NoErr then writeln ( ' Error Adding new point group ' ) ;  
EdgePointCount : =  GetEdgePointCoun t ( pointInfoH , @PointGroupName ) ;  
i f  EdgePointCount > MaxEdgePointCount then writeln ( ' Error MaxEdgePoints exceeded ' ) ;  
for EdgePointNum : =  0 to EdgePointCoun t - l  do begin 

GetPoint (pointInfoH, @ PointGroupName , EdgePointNum, Point ) ; 
Error : =  AddPoint ( pointIn fo2H,  @ PointGroupName , Point ) ; 
i f  Error <> NoErr then wri teln ( ' Error Adding new point ' ) ;  

end; {for EdgePointNo} 
end; {if ObjectInclude} 

end; {for Poi n t GroupNum} 
{Add in the triangu l a t i on groups } 

for triPatchNum : =  0 to tri PatchCoun t - l  do begin 

if AddTri PatchesToPointGroups then begin 
S t r ( triPatchNum, s ) ; 
StrCopy ( pointGroupName , StrPCopy ( s s ,  triPatchStr + s ) } ;  
Error : =  AddPointGroup ( pointInfo2H, @pointGroupName ) ;  
if Error < >  NoErr then writeln ( ' Error adding point group ' ) ;  

end; { i f  AddTriPa tchesToPoin t Groups} 
for pointNum : =  0 to 2 do begin {Extrac t  each poi n t  and i ts info} 

Point . x  : =  Round ( Control Points � [TriIndices � [ triPatchNum , pointNum) , 0 ) ; 
Point . y  : =  Round ( ControlPoints � [ Tri Indices� [ tri PatchNum , pointNum) , 1 ) ; 
Tri Patches � [ tri PatchNum) . ip t [ pointNum) : =  point ; 
TriPatches � [ tri PatchNum ) . op t [ pointNum ) . x  : =  point . x ;  
Tri Patches � [ triPatchNum) . op t [ pointNum ) . y  : =  point . y ;  
Tri Patches � [ triPatchNum) . apt [ pointNum) 

: =  Obj ec tIndices � [Tri Indices � [ triPatchNum, pointNum) ) ;  
i f  AddTriPatchesToPointGroups then begin 

Error : =  AddPoint (pointIn f o 2 H ,  @pointGroupName , Point ) ; 
if Error <> NoErr then wri teln ( ' Error adding TriPoint ' ) ;  

end; { i f  AddTri Pa tchesToPoin tGroups} 
end; {for poin tNum} 
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(Reorder the tri -poin ts in descending order of y) 
repeat (Sorted) 

Sorted : =  Tru e ;  
for pointNum : = 0 to 1 d o  begin (Extract each poi n t  and i ts info) 

with TriPatchesA [ tr i PatchNum] do begin 

if ipt [pointNum+ l ] . y  > ipt [ pointNum] . y  then begin 

(Swap order of the tri -poi n t  da ta) 
point : =  ipt [ pointNum ] ; 
ipt [ pointNum] : =  ipt [pointNum+ l ] ; 
ipt [pointNum+ l ]  : =  point ; 
rePoint : = opt [pointNum] ; 
opt [pointNum] : = opt [pointNum+ l ] ; 
opt [ pointNum+ l ]  : =  rePoint ; 
obPoint : =  apt [pointNum] ; 
apt [pointNurn] : =  apt [pointNurn+ l ] ; 
apt [pointNum+l ]  : =  obPoint ; 
Sorted : =  Fal s e ;  

end; ( i f  n o t  in order) 
end ; (wi th TriPatches) 

end; ( for poin tNum) 
until Sorted; 

end; (for triPa tchNum) 
DestroyHand l e (ControlPointsH ) ;  
DestroyHandle ( ObjectlndicesH ) ;  
DestroyHand l e ( TrilndicesH ) ; 

end; ( i f  NoErr) 
if Error = NoErr then Error : =  WritePointlnfo ( Pointlnfo2H, OutF i l e ,  PointlnfoDataID) ; 
i f  Error <> NoErr then begin 

wri teln ( ' Error writing pointinfo " Error ) ;  
F i l eClose ( ou t F i l e ,  Error ) ;  
goto CineWarpExi t ;  

end; (Error )  
DestroyPointlnf o ( Pointlnfo2H ) ;  

( -Ou tpu t t ra j e c t ory to da ta fi le) 
S t rCopy ( outFileNarne , Tra j e ctoryFi leName ) ;  (Form the fi l e  name) 
L S trCat ( outF i l eNarne , Traj ectoryDataFileExt n ) ; (add the extension) 
Ass ign ( dataF i l e ,  outFileNarne ) ;  
Rewrite ( dataF i l e ) ; 
for obj ectNum : =  0 to GetPointGroupCount (pointlnfoH ) - l  do begin 

if Obj ectlnclude [ obj ectNum] then begin 

GetPointGroupNarne ( pointlnfoH, obj ectNum, PointGroupNarne ) ;  
write ( dataF i l e ,  ' "  " , " ' ,  PointGroupNarne , ' " , " " , ' ) ;  

end; ( i f  ObjectIncl ude) 
end; (for objectNum) 

writeln ( dataFi l e ) ; 
for obj ectNurn : = 0 to GetPointGroupCount (pointlnfoH ) - l  do begin 

if Obj ectlnclude [ obj ectNum ] then 
wri te ( dataF i l e ,  ' " x ( pixe l s ) " ,  "y (pixels ) " ,  · theta ( degrees ) · , ' ) ;  

end; (for obj ectNum) 
writeln ( dataF i l e ) ; 
for irnageNurn : = 0 to irnageCount-l do begin 

for objec tNum : =  0 to GetPointGroupCount (pointlnfoH ) - l  do begin 
if Obj e c t lnclude [ obj ectNum] then 

with Traj ectoryA [ irnageNum , obj ectNum] do 
wri t e  ( dataFile , · · ' , x : 2 : l . " . ·  . .  , y : 2 : l , ' " . · · , ( theta * l B O/pi ) : 2 : l ,  . ) ;  

end; (for objectNum) 
wri teln ( dataF i le ) ; 

end; (for imageNum) 
Clos e ( dataFi l e ) ; 
DestroyPointlnfo ( PointlnfoH ) ;  

(Add commen t t o  the ou tp u t  fi l e )  
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i f  Error = NoErr then Error . - FileWriteData (TFileRec ( outFi le ) , docCornrnentDataID, 
@FileCornrnent , Strl en ( FileCornrnent ) ,  False , O ) ; 

F i leClose (outF i l e ,  Error ) ; 
i f  Error <> NoErr then wri te ln ( ' Error clos ing file ' ) ;  

(Start Image Warping, InImage con tains the reference image) 
G lobalUnlock ( InlrnageH ) ;  
G lobalUnlock ( Ou tlrnageH ) ;  
Error : =  WarpSequence ( InlrnageH , OutlrnageH , irnageCount ,  TrajectoryH ) ; 
i f  Error <> NoErr then writeln ( ' Error warping ' ) ;  

CineWarpExi t :  ( -EXIT Block- ) 
if Error <> NoErr then begin 

writeln ( ' ERROR : ' , Error ) ; readln ; 
end; 

Des troylmage ( InlrnageH ) ; Destroylrnage ( OutlrnageH ) ;  
Des troyHand l e ( Traj ectoryH ) ; 
DestroyHand l e ( TriPatchesH ) ; 
wri teln ( ' FINISHED ' ) ;  
DoneWinCrt ;  

( =========================================================================================) 
end . (Program : CineWarp) 



C-82 The Development of Motion Tracking Strategies For Cineradiographic Images 

C.I0 Motion-Tracking 

The following Pascal unit 'Tracking' implements the motion-tracking algorithm developed 
through chapters 4 to 6 and then described and tested in detail in chapter 7. An important part of 

the algorithm is the feature orientation calculation. This is based on the Fold-and-Match 
algorithm described in section 7.2.2 of chapter 7 and contained in the TrackFirst function that 
begins at the bottom of page C-84. 

unit Tracking ; 

interface 
( ==================================== =========== ==== ============ ==================== = == = = = )  

uses 
PMXProcs ,  PMXTypes ,  PMXUt i l s ,  WinProcs , WinTypes ,  
Dialogs , Images ,  Global s ,  Maths , Points,  Resource , Uti l s ;  

Function BeginTrack (window : HWnd ) : ErrorCode ; 
Procedure EndTrack (window : HWnd ) ; 
Function Track (window : HWnd ) : ErrorCode ; 

implamentation 
{========================================IMPLEMENTATION===================================} 
type 

CentreLInfoPtr = hCentreLInfoRe c ;  
CentreLInfoRec = record 

xSum : Long in t ;  
ySum : Long in t ;  
count : Wor d ;  

end; 

TrackDInfoPtr = hTrackDInfoRe c ;  
TrackDInfoRec = record 

poin t InfoChanged : Boolean ; 
trackOp t i onsChanged : Boolean ; 
window : HWnd; 

end; 

TrackingInfoPtr = hTrackingInfoRec ; 
TrackingInfoRec = record 

f i l ter : Boolean ; 
unused : Boolean ; 
f i l terlmageInfo : F i l t erlmagelnfoRec ; 
destlmage : ImageHandl e ;  
srclmage : ImageHandl e ;  
imageNoOf fs e t  : Integer ; 
pointL i s t  : PointListHandle ; 
srcPointWindowLis t  : PointWindowLi s tHand l e ;  
bestMatch : Rea l ;  
orientat ion : Real ; 
centre : RealPoint ; 
destPoint L i s t  : RealPointListHandle ; 
pointLis t l  : RealPointLis tHandle ; 
pointLis t 2  : RealPointLis tHand l e ;  
trackingPointList : TrackingPointListHandle ;  
des tlmageFi l ter : Word ; 
destlmageNo : Word ; 
maxPointCount : Wor d ;  
pointCount : Word; 
pointGroupIndex : Word ; 
pointGroupNo : Wor d ;  
pointWindowRecSize : Word ; 
rotCount : Word ; 
rotNo : Word ; 
srclmageFil t er : Word ; 
srclmageNo : Word; 
s tartPointGroupNo : Word ; 

end; 

Procedure CentreLineProc ( x ,  y : Integer ;  l Info : CentreLInfoP t r ) ; export ; forward ; 
Function TrackF i rs t ( window : HWnd ; wInfo : DocWInfoPtr;  

trackinglnfo : TrackingInfoPtr )  : ErrorCode ; forward ;  
Function TrackNext (window : HWnd ; wInfo : DocWInfoPtr;  

trackingInfo : TrackingInfoPtr )  : ErrorCode ; forward ; 

{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -BeginTrack- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -} 
Function BeginTrack (window : HWnd) : ErrorCode ; 

{Prepares everything for the s tart of the motion - tracking procedure 
} 
var 

wInfo 
error 
dInfo 

DocWInfoP t r ;  
ErrorCode ; 
TrackDlnfoRe c ;  
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trackinglnfo : TrackinglnfoPtr ; 
pointCount : Word; 
pointGroupCount : Word; 
pointGroupNo : Word ; 

begin {Begin Track) 
error : =  SendMessage ( window, getDocDataMs g ,  pointlnfoDataI D ,  Longint ( ni l ) ) ;  
i f  error = noErr then begin 

dln f o . window : =  window; 
case Dia1ogBoxParam ( hlnstance , PChar ( trackD1ogID) , app1Window, 

@TrackDia1ogProc , Longin t ( @dlnfo ) ) of 
- 1 

error : =  dia1ogEr r ;  
id_Cance1 : 

error : =  abortEr r ;  
end; (case) 

end; ( i f )  
wlnf o  : =  DocWlnfoPtr ( SendMessage ( window, lockWlnfoMsg, 1,  0 ) ) ;  
i f  error = noErr then 

error : =  CreateHand1e (wlnfoh . trackingln f o ,  S i z eOf ( trackinglnfoRec ) ,  gmem_Zerol n i t ) ;  
if error = noErr then begin 

trackinglnfo : =  GlobalLock (wlnfoh . trackingl n fo ) ; 
trackinglnfoA . fi l ter : =  true ; 
trackinglnfoh . startPointGroupNo : =  $FFFF;  
pointGroupCount : =  0 ;  
for pointGroupNo : =  0 to GetPointGroupCount ( wlnfoh . pointlnfo)  - 1 do 
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if not PointGroupMarked (wlnfoh . pointlnf o ,  PointGroupNamePtr (pointGroupNo ) , trackMark) 
then begin 

pointCount : =  GetEdgePointCount (wlnfoh . pointlnfo , PointGroupNamePtr ( pointGroupNo ) ) ;  
i f  pointCount > trackinglnfoh . maxPointCount then 

trackinglnfoh . maxPointCount : =  pointCount ; 
i f  pointCount > 0 then begin 

if trackinglnfoh . startPointGroupNo = $ FFFF then 
trackinglnfoA . s tartPointGroupNo : =  pointGroupNo ; 

Inc ( pointGroupCount ) ;  
end; ( i f )  

end; (i f) 
error : =  CreateHandle ( trackinglnfoh . pointLi s t ,  

SizeOf ( TPoint ) • ( trackinglnfo h . maxPointCount + 1 ) , 0 ) ; 
if error noErr then 

error : =  CreateHandle ( trackinglnfoA . pointLi s t 1 , 
Si zeOf ( RealPoint ) • ( trackinglnfo h . maxPoi ntCount + 2 ) , 0 ) ; 

if error = noErr then 

error : =  CreateHandle ( trackingInfoA . pointL i s t 2 , 
Si zeOf ( RealPoint ) • ( trackinglnfoh . maxPoi ntCount + 2 ) , 0 ) ; 

i f  error = noErr then begin 

SendMessage (wInfoh . messageControl , setMessageMaxMsg , 
wInfoh . imageCount • pointGroupCount - 1 ,  0 ) ; 

trackingInfoA . de s tImageNo : =  wlnfoA . pointlmageNo ; 
trackinglnfoh . srclmageNo : =  wlnfoh . pointlmageNo ; 
trackinglnfoh . pointGroupNo : =  trackingInfoh . startPointGroupNo ; 
wlnfoA . showPoints : =  wlnfoA . trackOptions . display; 
Enab1eWindow ( wlnfoA . s topButton,  true ) ; 

end; ( i f )  
i f  error = noErr then 

error : =  Pos tBackgroundMessage ( window, trackMsg , 0 ,  0 ) ; 
if error <> noErr then 

EndTrac k ( window) ; 
end; ( i f) 

SendMessage ( window, lockWlnfoMsg,  0 ,  0 ) ; 
BeginTrack : =  error ; 

end; (BeginTrack) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -CentreLineProc- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 

Procedure CentreLineProc ( x ,  y : I nteger ; lInfo : CentreLlnfoP tr ) ; 
( Used in the ori t a t i on calcula t i on to find the axis l in e  
) 

begin (Cen treLineProc) 
Inc ( l Infoh . xSum, x ) ; 
Inc ( l Infoh . ySum, y ) ; 
Inc ( l Infoh . count ) ;  

end; (Cen treLineProc) 

( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -EndTrack- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Procedure EndTrack ( window : HWnd ) ;  

(Cal l ed a t  the concl usi on of the tracking procedure to t i dyup and s t ore the resu l t s .  
) 
var 

wlnfo : DocWlnfoPtr ; 
image : ImageHand1 e ;  
trackingI n f o  : TrackinglnfoPtr ;  

begin (EndTrack) 
RemoveBackgroundMessage (window, trackMsg) ; 
wInfo : =  DocWInfoPtr ( SendMessage (window, l ockWInfoMsg , 1 ,  0 ) ) ;  

if wInfoh . trackinglnfo < >  0 then begin 

trackingI n f o  : =  G1oba1Lock (wlnfoh . trackinglnf o ) ; 
SetDiscard ( trackinglnfoh . des tlmage , true ) ; 
SetDiscard ( trackinglnfoh . srclmage,  true ) ; 
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Des troyHandle ( trackingInfo� . pointLis t ) ; 
Des troyHandle ( trackingInfo� . srcPointWindowL i s t ) ; 
DestroyHandle ( trackingInfo� . des tPointLis t )  ; 
Des troyHandle ( trackinglnfo� . pointLis t l ) ; 
DestroyHandle ( trackingInfo� . pointList2 ) ; 
Des troyHandle ( trackinglnfo� . trackingPointLi s t ) ;  
if ( trackingInfo � . de s t ImageFilter <> noFil te r )  

o r  ( trackingInfo� . srcImageFil ter <> noFi l t e r )  then begin 

image : =  EndFi l te rImage ( trackingInfo � . f i l te rImageI n fo ) ; 
Des troy Image ( image ) ; 

end; ( i f) 
SendMessage (wInfo� . messageCont ro l ,  s e tMessagePosMs g ,  0 ,  0 ) ; 

and; ( i f) 
DestroyHandle (wInfo� . trackingln f o ) ; 
SendMessage ( window, l ockWInfoMs g ,  0 ,  0 ) ; 

end; (EndTrack) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Track- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 
Function Track ( window : HWnd) : ErrorCode ; 

(Control rou tine for runnning the tracking algori thm . 
) 
var 

wInfo : DocWInfoP t r ;  
error : ErrorCode ;  
trackingInfo : TrackinglnfoPtr ; 

begin (Track) 
error : =  noEr r ;  
wInfo : =  DocWInfoPtr ( SendMessage (window, l ockWInfoMsg,  1 ,  0 ) ) ;  
trackingInfo : =  G l obalLock (wInfo� . trackinglnf o ) ; 
if trackingInfo� . de s t ImageNo = wInfo� . imageCount than 

EndTrack ( window) 
alae begin 

if t rackingInfo� . de s t ImageNo = trackingInfo� . srcImageNo than 
error : =  TrackFi r s t (window, wIn f o ,  trackingInfo) 

alae 

error . - TrackNex t ( window, wIn f o ,  trackingInfo ) ;  
if ( error = noEr r )  and (wInfo h . trackingInfo < >  0 )  then 

error : =  PostBackgroundMessage (window, trackMsg , 0 ,  0 ) ; 
if error <> noErr than 

EndTrack (window) ;  
ErrorA1ert ( error , nil ) ; 

end; (else) 
if wInfoh . trackingI n f o  < >  0 then 

GlobalUnlock (wInfoh . trackingInf o ) ; 
SendMessage ( window, l oc kWInfoMs g ,  0 ,  0 ) ; 
Track : =  error ; 

and; (Track) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -TrackFi l t er- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ) 

Function TrackFi l ter ( wi ndow : HWnd ; var trackingInfo : TrackingInfoRec ; imageNo : Word ; 
var image : ImageHandle ; var imageFi l ter : Word) : ErrorCode ; 

( -Con trol rou tine for fil tering the images using ei ther a median fil ter during tracking 
or a gra di en t  enhancemen t fil ter for visual i sa t i on .  ) 

var 
error : ErrorCode ; 
f i l te re dImage : ImageHandle ; 

begin ( TrackFi l ter) 
error : =  noErr ; 
if image = a than begin 

error : =  SendMessage ( window, getDocDataMs g ,  imageDataID + imageNo , Longin t ( @ image ) ) ;  
if ( error = noEr r )  and trackingInfo . fi l te r  than begin 

Inc ( imageNo ) ; 
SendMessage (window , setMessageMsg, f i l terlmageStrID, Longint ( @ imageNo ) ) ;  
imageFil ter : =  rankFi l ter ; 
error : =  BeginFil terImage ( trackingInfo . f i l t erImage I n f o ,  image , rankFi l t e r ,  5 ) ; 

and; ( i f) 
end ( i f) 

alaa if F i 1 terImage ( trackingIn fo . f i l terImageI n f o )  than begin 
f i l teredImage : =  EndF i l terlmage ( trackinglnfo . f i l terlrnage lnfo ) ;  
if irnage F i l ter = rankFi l te r  than begin 

SetDiscard ( image , true ) ; 
image : =  f i l t eredlmage ; 
imageF i l ter : =  gradientF i l t er ;  
error : =  BeginFi l terImage ( trackinglnfo . fi l terlmagelnf o ,  image , gradientFil ter , 2 ) ; 

and ( i f) 
elsa begin 

Des troyImage ( image ) ;  
image : =  f i l t e redlmage ; 
imageFi l ter . - noF i l t e r ;  

end; ( else) 
and; ( i f) 

TrackF i l ter : =  erro r ;  
and; ( TrackFi l ter) 
( - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -TrackFi rs t - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -) 

Function TrackFi rst (window : HWnd ; wInfo : DocWInfoPtr ; 
trackinglnfo : TrackinglnfoPtr)  : ErrorCode ; 

{ -Ini t i a l i se the s tart of the tracking procedure and incl udes the the fea t ure ori en t a t i on 
calcu l a t i on .  



var 

error : ErrorCode ; 
pointLis t  : PointListPtr;  
orientation : Real ; 
centre : Real Point ; 
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pointLis t l  Real PointListPtr;  
pointLi s t 2  : RealPointListPtr;  
pointCount : Word; 
pointGroupNo : Word ; 
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{---------------------------------------Cal cCen tre---------------------------------------} 
Procedure CalcCentre ; 

{ Calcula t e  curren t poi n t  group cen troi d } 
var 

centreLlnfo : CentreL l nfoRec ; 
pointNo : Word ; 

begin {CalcCen tre} 
if pointCount = 1 then begin 

GetPoint (wlnfoh . poin t l n f o ,  PointGroupNamePtr ( trackinglnfo h . pointGroupNo ) ,  
0 ,  pointLis t h [ O ) ) ;  

PointToRealPoin t ( pointLi s t h [ O )  , centre ) ; 
end { i t} 

else begin 

GetPoint ( wlnfo h . point l n f o ,  PointGroupNamePtr ( trackinglnfoh . pointGroupNo ) ,  
0 ,  pointListh [ O ) ) ;  

centreLlnfo . xSum : =  0 ;  
centreLlnf o . ySum : =  0 ;  
centreLlnfo . count : =  0 ;  
for pointNo : =  1 to pointCount do begin 

GetPoint (wlnfoh . pointln f o ,  PointGroupNamePtr ( trackinglnfoh . pointGroupNo ) ,  
pointNo mod pointCount , pointListh [pointNo) ) ;  

LineDDA ( pointListh [ po intNo - 1 )  . x ,  pointListh [ pointNo - 1 )  . y ,  
pointListh [ pointNo) . x ,  pointListh [pointNo ) . y ,  
@CentreLineProc , @centreLln f o ) ; 

end; { tor} 
centre . x  : =  centreLlnf o . xSum 
centre . y  : =  centreLlnfo . ySum 

end; {else} 
end; {Cal cCen tre} 

centreLlnfo . count ; 
centreLlnfo . count ; 

{------------------------------------Cal cOri en t a t i on------------------------------------} 
Procedure CalcOri entation ; 

{ Cal cula te curren t poin t group orien t a t i on to the horizon t a l  } 
var 

angle : Real ; 
currentArea : Real ; 
currentLength : Real ; 
lastArea : Real ; 
maxAngle : Real ; 
maxLength : Real ; 
minAngle : Real ; 
nextArea : Real ; 
s tepAngle : Real ; 
direction : Real Point ; 
endPoint : RealPoint ;  
s tartPoint : Real Point ; 
i : Word ; 
j : Word ; 
pointLis t lCount 
pointLis t2Count 

Procedure CalcArea ; 
var 

Word ; 
Word ; 

dis tance : Real ; 
maxDis tancel Real ; 
maxDistance2 Rea l ; 
minDi s tancel Rea l ; 
minDistance2 Rea l ; 
line Point : RealPoin t ; 
point RealPoin t ;  
vector RealPoint ; 
i ,  j Word; 

begin {Ca l cArea} 
nextArea : =  0 ;  
l inePoint : =  s tartPoint ;  
i f  RealEqualZero ( @direc t i on . x )  then 

i : =  Round « endPoint . y  - startPoint . y) / direc tion . y )  
else 

i := Round « endPoint . x  - startPoint . x )  / direction . x ) ; 
vector . x  : =  -direction . y ;  
vector . y  : =  direction . x ;  
for i : =  0 t o  i do begin 

minDi s tancel : =  maxRea l ; 
maxDis tancel : =  -maxReal ; 
for j : =  0 to pointLi s tlCount - 2 do begin 

point : =  l inePoint ;  
i f  LinelntersectsSegment (point , @vec tor , @pointListl h [ j ) ,  @pointLi s t 1 h [ j  + 1 ) ) 
then begin 

LineToLength ( @ l i nePoint , @point , distance ) ;  
i f  dis tance < minDistancel than 
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minDis tance1 : =  dis tance;  
if dis tance > maxDistance1 then 

maxDis tance1 : =  distanc e ;  
end; { i f} 

end; {for} 
minDis tance2 : =  maxReal ; 
maxDis tance2 : =  -maxRea l ;  
for j : =  0 t o  pointLi st2Count - 2 d o  begin 

point : =  l inePoint ; 
if LinelntersectsSegment (point , @vector , @pointList2 A [ j ] , @pointLi s t2 A [ j  + 1 ] ) 

then begin 
LineToLength ( @ l inePoint , @po in t ,  dis tance ) ;  
i f  dis tance < minDis tance2 then 

minDis tance2 : =  distance;  
if dis tance > maxDistance2 then 

maxDis tance2 . - distance ; 
end; {i f} 

end ; { for} 
if minDis tance2 > minDistance1 then 

minDi s tance1 : =  minDistance2 ; 
if maxDis tance2 < maxDi s tance1 then 

maxDis tance1 : =  maxDistance2 ;  
i f  minDistance1 < maxDis tance1 then 

nextArea : =  nextArea + maxDistance1 - minDis tance 1 ;  
l inePoint . x  : =  l inePoin t . x  + direction . x ;  
l inePoin t . y  : =  l inePoin t . y  + direction . y ;  

end; { for} 
end; {CalcArea} 

Procedure CalcLineSegment ;  
var 

distance : Rea l ;  
maxDis tance : Rea l ;  
minDis tance : Real ; 
point : TPoint;  
pointNo : Word; 

begin {CalcLineSegmen t }  
minDistance : =  0 ;  
maxDistance : =  0 ;  
for pointNo . - 0 t o  GetPointCount ( wlnfo A . pointlnfo , PointGroupNamePtr ( pointGroupNo» - 1  
d o  begin 

GetPoint ( wlnfoA . pointlnfo,  PointGroupNamePtr ( po intGroupNo ) ,  pointNo , point ) ;  
distance : =  direction . x  * ( point . x  - centre . x )  

+ direct i on . y  • ( point . y  - centre . y) ; 
if dis tance < minDistance then 

minDis tance : =  distance 
else if distance > maxDistance then 

maxD i stance : =  distanc e ;  
end; {for} 

s tartPoint . x  : =  centre . x  + minDistance • direction . x ; 
s tartPoint . y  : =  centre . y  + minDistance • direction . y ;  
endPoint . x  : =  centre . x  + maxDistance • direction . x ;  
endPoint . y  : =  centre . y  + maxDis tance • direction . y ;  

end; {Cal cLineSegmen t} 

Procedure Spl i tShape ; 
var 

point : RealPoint ;  
point1 : RealPoint ; 
point2 : Real Point ; 
pointNo : Word ; 

begin {Spl i tShape} 
pointNo : =  0 ;  
pointLis t 1 Count : =  0 ;  
repeat 

PointToRealPoint ( pointListA [pointNo ] , pointLis t 1 A [pointLis t 1Count l ) ;  
Inc ( pointListlCount ) ;  
point : =  centre ; 
PointToRealPoint ( pointListA [pointNo ] , point1 ) ;  
Inc (po intNo ) ;  
PointToRea1Point ( pointListA [pointNo ] , point2 ) ;  

until LinelntersectsSegment (point , @direction, @point1 , @point2 ) ;  
if not EqualRea1Point ( @point1 , @poin t )  then begin 

pointLi s t 1 A [ pointLi s t1Count ] : =  point ; 
Inc ( pointLi s t 1Count ) ;  

end; ( i f )  
pointLis t 2 A  [ 0 ]  : =  point ; 
pointList2Count : =  1 ;  
repeat 

PointToRealPoint ( pointLi s t A [pointNo] , pointLi s t2 A [pointList2Count ] ) ;  
Inc ( pointLis t2Count ) ;  
point : =  centre ; 
PointToRealPoint ( pointListA [pointNo ] , point1 ) ;  
Inc ( pointNo ) ; 
PointToRealPoint ( pointLi stA [pointNo ] , point2 ) ;  

until LinelntersectsSegment (point , @direction , @point1 , @point2 ) ;  
if not Equa1Rea1Point ( @point1 , @poin t )  then begin 
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pointLi s t2 � [ pointList2Count] : =  point ; 
Inc ( pointList2Count )  ; 

end; ( i f) 
pointLis t 2 �  [pointLis t2Count ] : = pointLi st2� [ 0 ]  ; 
Inc (pointList2Count ) ;  
PointToRealPoint ( pointList� [pointNo ] , point 1 ) ; 
i f  not EqualRealPoint ( @point , @pointl )  then begin 

pointList1 � [ pointLis t1Count] : = poin t ;  
I n c  ( pointList1Coun t )  ; 

end; ( i f )  
while pointNo <= pointCount d o  begin 

PointToRealPoint ( pointList� [pointNo] , pointList1� [pointListlCount ] ) ;  
Inc ( pointNo ) ; 
Inc ( pointList1Count ) ; 

end; (wh i l e )  
end; (Spli tShape) 

begin (MAIN: Cal cOri en t a t i on )  
case pointCount of 

1 
orientation : =  0 ;  

2 : begin 

i : = 1 ;  
direction . x  : =  pointList� [ O ] . x  - pointLi s t � [ i ]  . x ;  
direction . y  : =  pointList� [ O ] . y  - pointList � [ i ]  . y ;  
VectorToAng1e ( @direction, orientation ) ; 

end; (2) 
else begin 

minAngle := -pi / 2 - maxStepAngl e ;  
maxAngl e  : =  pi / 2 + maxStepAngl e ;  
stepAngl e  : =  maxStepAngl e ;  
for i : =  0 t o  Round « Ln (maxStepAngl e )  - Ln ( minStepAng l e »  / Ln ( 1 0 »  d o  begin 

angl e  : =  minAngl e ;  
lastArea : =  maxReal ; 
currentArea : =  maxReal ; 
maxLength : = 0 ;  
for j : =  0 to Round « maxAngle - minAngle)  / stepAng l e )  do begin 

AngleToVector ( @angle,  direction ) ; 
Spl i  tShape ; 
CalcLineSegment ;  
CalcAre a ;  
i f  RealLessThan ( @ l astArea, @currentArea) 

and RealLessThan ( @nextArea, @currentArea) 
and RealLessThan ( @maxLength , @currentLength ) then begin 

ori entation : =  angle - stepAngl e ;  
maxLength : =  currentLength ; 

end; (if) 
startPoint : =  pointLi st2 � [ O l ; 
endPoint : =  pointList2� [pointList2Count - 2 ] ; 
lastArea : =  currentArea ; 
currentArea : =  nextArea ; 
LineToLength ( @ s tartPoin t ,  @endPoint , currentLength) ;  
angle : =  angl e  + s tepAngl e ;  

end; ( for) 
maxAngle : =  orientat ion + stepAngl e ;  
if maxAngle > pi / 2 then 

maxAngle : =  pi / 2 ;  
minAngl e  : =  orientation - stepAngl e ;  
if minAngle < - p i  / 2 then 

minAngle : =  -pi / 2 ;  
stepAngle : =  s t epAngle 1 0 ;  

end; (for) 
orientation : =  (maxAngle + minAngl e )  / 2 ;  

end; (else) 
end; (case) 

end; (Cal cOri en ta ti on )  

C-87 

( -----------------------------------------------------------------------------------------) 
begin (MAIN: TrackFirs t )  

pointGroupNo : =  trackingInfo� . pointGroupNo; 
pointCount : =  Ge tEdgePointCount (wInfo� . pointInfo , PointGroupNamePtr ( pointGroupNo » ; 
C learTracklnfo ( wlnfo� . pointlnfo, PointGroupNamePtr (pointGroupNo » ; 
wInfo� . changed : =  wInfo� . changed or pointInfoChangedBi t ;  
pointLi st : =  G lobalLock ( trackingInfo� . pointLi st ) ; 
pointList1 : =  GlobalLock ( trackingInfo� . pointLis t1 ) ;  
pointList2 : =  GlobalLock ( trackingInfo� . pointList2 ) ;  
CalcCentre ; 
CalcOrientation ; 
GlobalUnlock ( trackingIn fo� . pointLis t ) ; 
GlobalUnlock ( trackinglnfo� . pointList l ) ; 
GlobalUnlock ( trackinglnfo� . pointList2 ) ;  
SetTrackInfo (wInfo� . pointInfo,  PointGroupNamePtr ( pointGroupNo ) ,  

trackingInfo� . des tImageNo , @centre , @orientation) ; 
error : =  noEr r ;  
i f  NextPointGroupNo (wlnfo� . pointlnfo , trackinglnfo� ) then begin 

DestroyHandle ( tracking Info� . pointLis t )  ; 
DestroyHandle ( tracking Info� . pointList 1 ) ; 
DestroyHandle ( trackinglnfo� . pointLi s t2 ) ;  
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if wlnf o A . trackOptions . display then 

SendMessage (window, set ImageMsg ,  trackingIn f o A . destImageNo , 1 ) ; 
trackinglnfoA . maxPointCount : =  0 ;  
for pointGroupNo : =  0 t o  GetPointGroupCount ( wlnfoA . pointlnfo)  - 1 do 

if not PointGroupMarked (wInfoA . pointInf o ,  PointGroupNamePtr (pointGroupNo ) ,  trackMark) 
then begin 

pointCount : =  GetPointCount ( wInfoA . pointI n f o ,  PointGroupNamePtr (pointGroupNo ) ) ;  
if pointCount > trackinglnfoA . maxPointCount than 

trackinglnfoA . maxPointCount : =  pointCoun t ;  
end; { i f} 

trackingInfoA . pointWindowRecSize : =  

S izeOf ( PointWindowRec )  - S i zeOf ( Byte ) 
+ SizeOf ( Byte ) * Sqr ( 2  * wInfoA . trackOptions . windowRadius + 1 ) ; 

error : =  CreateHand1e ( trackinglnfo A . srcPointWindowL i s t ,  

if error noErr than 
trackinglnf o A . pointWindowRecSi ze* trackingInfoA . maxPointCount ,  0 ) ; 

error : =  CreateHandle ( trackingInfoA . destPointLi s t ,  

if error = n o  Err then 
CreateTrackPointLis t ;  

S i zeOf ( Re a 1 Point ) * trackingInfoA . maxPointCount ,  0 ) ; 

if error = noErr then begin 

trackingInfoA . des tImageNo : =  wInfo A . pointlmageNo - 1 ;  
trackingInfo A . imageNoOffset : =  - 1 ;  
trackingInfoA . pointCount : =  

GetPointCount ( wI n fo A . pointIn f o , PointGroupNamePtr ( trackingInfoA . s tartPointGroupNo ) ) ;  
trackingInfo A . pointGroupNo : =  trackinglnfoA . s tartPointGroupNo; 
trackingInfoA . rotCount : =  

Round ( 2  * wInfoA . trackOptions . ro tRange / wInfoA . trackOptions . rotStep ) + 1 ;  
trackingInfoA . rotNo : =  Word ( - l ) ; 
trackingInfoA . srcImageNo . - wInfo A . pointlmageNo ; 

end; { i f} 
end; { i f} 

if error = noErr than 
SendMessage (wInfoA . messageControl , setMessagePosMsg , 

LoWord ( SendMessage ( wI n fo A . messageContro l ,  getMessagePosMsg , 0 ,  0 ) ) + 1 ,  0 ) ; 

TrackFirst : =  error;  
end; {TrackFirst }  
{ - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - TrackNext - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - } 

Function TrackNext (window : HWnd; wInfo : DocWInfoPtr;  
tracking Info : TrackingInfoPtr ) : ErrorCode ; 

{ - Performs the main core of the motion- tracking algorithm . I t  does this in the 
background using timer events . 

var 

windowPixel Ptr : BytePtr ; 
pixe l Ptr : BytePt r ;  
error : ErrorCode ; 
destImage : ImageP t r ;  
srcImage : ImagePtr ; 
x : Intege r ;  
y : Intege r ;  
sum : Longint ; 
pointGroupName : PointGroupNameS t r ;  
pointWindowList : PointWindowListPtr ; 
pointWindow : PointWindowPtr ; 
direction : Real ; 
match : Rea l ;  
centre RealPoint ; 
of fset : RealPoint ; 
vector : RealPoin t ;  
destPointList : Rea l PointLi stPtr; 
paramLis t  : racord 

pointGroupName : PCha r ;  
imageNo Word; 

end; 

destPoint TPoint ;  
srcTracklnfo : TracklnfoRec ; 
trackingPointList : TrackingPointLi s tPtr ; 
trackOptions : TrackOptionsRe c ;  
destSum : Word; 
length : Word ; 
pixelNo : Word ; 
pointCount : Word; 
pointGroupIndex : Wor d ;  
pointGroupNo : Word;  
pointNo : Word ; 
rowByteCount : Word;  
windowDiameter : Word;  

begin { TrackNext }  
error : =  noEr r ;  
i f  ( trackingInfoA . srcImage = 0 )  o r  ( trackingInf o A . srcImageFi lter <> nOFi l te r )  than 

error : =  TrackFi lter (window, trackingInfo A ,  trackingInfoA . srcImageNo , 
trackingInfoA . srcImage , trackingInfoA . srcImageFi l t e r )  

else i f  ( trackingInfoA . de s t Image = 0 )  or ( trackinglnfo A . des tlmageFi1ter < >  noFi 1 te r ) than 
error : = TrackFi lter (window, trackinglnfo A ,  trackinglnfoA . des tlmageNo , 

trackingln fo A . destImage , trackingInfoA . destImageFil ter ) 
elsa begin 

pointWindowList : =  G lobalLock ( trackingInfoA . srcPointWindowList ) ; 
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trackingPointList : =  GlobalLoc k ( trackingInfo h . trackingPointLis t ) ; 
trackOptions : =  wlnfoh . trackOptions ; 
pointCount : =  trackinglnfoh . po intCount ;  
pointGroupIndex : =  trackingInfo h . pointGroupIndex ; 
pointGroupNo : =  trackinglnfoh . pointGroupNo ; 
rowByteCount : =  Align3 2 (wlnfoh . bi tmapInfo . width ) ;  
windowDiameter : =  2 * trackOptions . windowRadius + 1 ;  
i f  trackingInf o h . rotNo = Word ( - l )  then begin 

GetPointGroupName (wInfoh . pointIn f o ,  pointGroupNo , pointGroupName ) ;  
paramList . pointGroupName : =  @pointGroupName ; 
paramList . imageNo : =  trackingInf oh . destImageNo + 1 ;  
SendMessage ( window, setMessageMs g ,  imageTrackStrID, Longint (@paramLis t ) ) ;  
srcImage : =  GlobalLock ( trackingInfoh . srcImage ) ;  
pointWindow : =  PointWindowPtr (pointWindowList ) ; 
GetTrackInf o (wInfoh . pointIn f o , 
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PointGroupNamePtr ( pointGroupNo ) , trackingInfoh . srcImageN0, srcTrackInfo ) ;  
for pointNo : =  0 to pointCount - 1 do begin 

direction : =  
srcTrackInfo . orientation+trackingPointLis t h [pointGroupIndex + pointNo] . di rection ;  

PinAngle2Pi ( direction ) ; 
AngleToVector ( @direction, vec tor ) ; 
SetPoint ( destPoint , Round ( srcTrackInfo . centre . x  + 

trackingPointLi s t h [ pointGroupIndex + pointNo] . l ength • vec tor . x ) , 
Round ( srcTrackInf o . centre . y  + 

trackingPointListh [ po intGroupIndex + pointNo] . length • vec to r . y) ) ;  
pointWindowh . sum : =  0 ;  
pixel Ptr : =  

O f fsetPointer ( @ s rcImage h . data , ( des tPoint . y  + trackOptions . windowRadius ) 
• rowByteCount + destPoint . x  - trackOptions . windowRadius ) ; 

windowPixelPtr : =  @pointWindowh . data;  
f o r  y : =  1 to windowDiameter do begin 

for x : =  1 to windowDiameter do begin 
Inc ( pointWindowh . sum, pixelPtrh ) ;  
windowpixelPtrh : =  pixe lPtrh ; 
Inc ( PChar (windowPixel Ptr ) ) ;  
pixe l Ptr : =  O f fsetPointer ( pixe l P t r ,  1 ) ;  

end; {for} 
pixelPtr : =  O f fs etPointe r ( pixelPtr , - ( rowByteCount + windowDiameter ) ) ;  

end; {for} 
pointWindow : =  PointWindowPtr ( windowPixelPtr ) ; 

end; {for} 
GlobalUnlock ( trackingInfoh . srcImage ) ; 
trackingInfoh . bes tMatch : =  0 ;  
trackingInfo h . orientation : =  

s rcTrackInfo . orientation - pi • trackOptions . ro tRange I 1 8 0 ; 
PinAngle2Pi ( trackingInfoh . or i entation ) ; 
trackingInfoh . centre : =  srcTrackInfo . centre ; 
trackingInfoh . rotNo . - 0 ,  

end { i f} 
al.e begin 

dest Image : =  GlobalLock ( trackingInfoA . destImage ) ;  
destPointLis t  : =  GlobalLock ( trackingIn fo h . destPointLi st ) ; 
if trackingInfoh . rotNo < trackingInfoh . rotCount then begin 

centre : =  trackingInfoh . centre ; 
for pointNo : =  0 to pointCount - 1 do begin 

direction : =  trackingInfoh . orientation + trackingPointLis t h [pointGroupIndex 
+ pointNo] . di rection; 

PinAngle2 Pi ( di rection ) ; 
Angl eToVector ( @direction , vector ) ; 
destPointLi st A [ pointNo ] . x  : =  

centre . x  + trackingPointLis th [pointGroupIndex + pointNo] . l ength • vec to r . x ;  
destPointLi s t h [ pointNo ] . y  : =  

centre . y  + trackingPointListh [pointGroupIndex + pointNo] . l ength • vec tor . y ;  
end; {for} 

o f fset . x  : =  trackOptions . transStep ; 
o f f set . y  : =  0 ,  
length : =  1 ;  
whi l e  length < =  2 • trackOpti ons . transRadius do begin 

for pixelNo : =  1 to length do begin 
match : =  0 ;  
pointWindow : =  PointWindowPtr (pointWindowLi s t ) ; 
for pointNo : =  0 to pointCount - 1 do begin 

SetPoint ( destPoint , Round (destPointListh [pointNo ] . x ) , 
Round ( destPointListh [pointNo ] . y) ) ;  

sum : =  0 ;  
des tSum : =  0 ;  
pixel Ptr : =  

Offse tPointer ( @destImage h . data , ( destPoint . y  + trackOptions . windowRadius ) 
• rowByteCount + destPoint . x  - trackOptions . windowRadius ) ; 

windowPixelPtr : =  @pointWindowh . data ; 
for y : =  1 to windowDiameter do begin 

for x : =  1 to windowDiameter do begin 

Inc ( sum , Abs (pixelPtrh • Longint (windowPixe1Ptrh ) ) ) ;  
Inc ( des tSum , pixe l Ptrh ) ;  
pixe l Ptr : =  Offse tPointer (pixelPtr,  1 ) ; 
Inc ( PChar (windowPixelPtr) ) ; 

and; {for} 
pixelPtr : =  OffsetPointer (pixe l Ptr,  - ( rowByteCount + windowDiame t e r ) ) ;  
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end; {for} 
if destSum • Longint (pointWindow� . surn) <> 0 then 

match : =  match + sum / (destSum • Longint (pointWindow� . sum» ; 
pointWindow : =  PointWindowPtr (windowPixelPtr) ; 

end; {for} 
if match > trackinglnfo� . bestMatch then begin 

SetTracklnfo (wlnf o � . pointlnf o ,  PointGroupNamePtr (pointGroupNo ) , 
trackinglnfo� . de s t ImageNo , @centre , @trackinglnfo� . orientation ) ; 

trackinglnfo� . bestMatch : =  match; 
and; {i f }  

centre . x  : =  centre . x  + o ffset . x ;  
centre . y  : =  centre . y  + o f fset . y ;  
for pointNo : =  0 t o  pointCount - 1 do bagin 

destPointListA [pointNo ] . x  : =  destPointLi s t A [ pointNo ] . x  + offset . x i  
des tPointListA [ pointNo ] . y  : =  destPointLi s t A [pointNo ] . y  + o f f se t . Y i  

end; (for) 
end; {for} 

direction : =  o f fset . x ;  
o f fset . x  : =  - o f fset . y ;  
o f fset . y  : =  direc tion ; 
i f  not Real EqualZero ( @ o f f set . x )  then 

Inc ( length )  ; 
end; {wb i l e }  

trackinglnfo� . orientation : =  
trackinglnfo� . orientation + pi • trackOptions . rotStep / 1 8 0 ; 

PinAngl e 2 Pi ( trackinglnfo� . orientat i on ) ; 
Inc ( trackinglnfo� . rotNo ) ;  

and {if} 
else begin � 

if NextPointGrOupNo (wlnfo� . pointI�fo , trackinglnfo� ) then begin 
if wlnfo� . trackOptions . display then 

SendMe ssage ( window, setlmageMsg ,  trackinglnfo� . destlmageNo , 1 ) ; 
i f  trackinglnfo� . fi l te r  then 

Destroylmage ( trackinglnfo� . src lmage ) 
else 

SetDiscard ( trackinglnfo � . srclmage , true ) ; 
if trackinglnfo� . destlmageNo = 0 then begin 

if trackinglnfo� . f i l ter then 

Destroylmage ( trackinglnfo� . dest lmage) 
else 

SetDiscard ( trackinglnfo� . dest lmage,  true ) ; 
trackinglnfo� . destlmage : =  0 ;  
trackingl n fo � . srclmage : =  0 ;  
trackinglnfo� . des tlmageNo : =  wlnfo� . pointlmageNo + 1 ;  
trackinglnfo� . imageNoOf fset : =  1 ;  
trackinglnfo� . srclmageNo : =  wlnfo� . pointlmageNo ; 

end ( i f )  
e l s e  begin 

trackinglnfo� . srclmage : =  trackinglnfo� . des t lmage ; 
trackinglnfo� . destlmage : =  0 ;  
trackinglnf o � . srclmageNo : =  trackinglnfo� . des tlrnageNo ; 
trackinglnfo� . des t lmageNo : =  

trackinglnfo� . destlrnageNo + trackinglnfo� . irnageNoOffse t ;  
end; {el s e }  

trackingl n f o � . pointGrouplndex : =  0 ;  
trackingl n f o � . pointGroupNo : =  trackinglnfo� . s tartPointGroupNo; 

end { i f} 
else 

Inc ( trackinglnfo� . pointGrouplndex, trackinglnfo� . pointCoun t ) ; 
trackinglnfo� . pointCount : =  

GetPointCount ( wlnfo� . pointlnf o ,  PointGroupNamePtr ( trackinglnfo� . pointGroupNo » ; 
trackinglnfo � . rotNo : =  Word ( - 1 ) ; 
SendMes sage ( wlnfo� . messageControl , setMessagePosMsg, 

LoWord ( SendMes sage ( wlnfo � . messageContro l ,  getMessagePosMsg,  0 ,  0 »  + 1 ,  0 ) ; 
end; (else) 

G lobalUnlock ( trackinglnfo � . destlmage ) ;  
GlobalUnlock ( t rackinglnfo� . destPointLi s t } ; 

end; {else} 
Gl obalUnl ock ( trackinglnfo� . srcPointWindowLi s t ) ; 
Gl obalUnlock ( trackinglnfo� . t rackingPointL i s t ) ; 
i f  trackinglnf o � . destlrnageNo = wlnfo� . imageCount then 

EndTrack ( window ) ;  
end; (else) 

TrackNext : =  error ; 
end; { TrackNex t }  
( == = = = = = ======================================= ===========================================)  
end . { UNIT: Tracking} 
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