Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

The Development of
Motion-tracking Strategies
for Cineradiographic
Images

A thesis is presented in partial fulfilment of the requirements for
the degree of Doctor of Philosophy in Technology at Massey

University.

by
Wyatt H. Page

The Development of
Motion-tracking Strategies for
Cineradiographic Images

Wyatt H. Page

Department of Production Technology

Massey University
NEW ZEALAND

A AUstract

This research describes the development of motion-tracking algorithms for a new

dynamic spinal motion analysis system. This system utilises digital image processing
techniques to extract motion parameters from video cineradiographic sequences of the
human spine. The automated tracking of vertebral motion results in accurate assessment
of translational and rotational displacement. This has been verified by extensive testing
on prescribed motion sequences generated by a digital image warping based algorithm.
The use of the motion measurement system provides a new tool for spinal health care

professionals in the diagnosis of spinal dysfunction.

Key words -

cineradiography, image processing, motion-tracking, computer graphics, spinal kinematics.

Contents

Abstract iv
Preface xi
Dedication xii
Acknowledgments xiii
1 Introduction 1
1.1 BacKgrOoUNd......cccceiiiiieeiiienieeiee ettt sttt st et e e st ete e e s et e e s ene e e enne s 1

1.2 ThesSiS OVEIVIEWc.oouiiiiiieiiiieieeicseet et sttt ste e te st e saeste st e s e e s eeeesmsneeneen 2

1.3 Contents by Chapter..........ccoieuiemiiiiniiincetrcetete et seanee 3

1.4 REfEIENCES.. ..ottt ettt et 5

2 X-ray Radiography 7
2.1 Radiographic Images - An Overview of The Physics.........cccccecriiiiiiniincnnenncen. 7

P28 B8 D, € ¢\ X €15 115 ¢ 11 o) FN OO SO 7

2.1.2 X-ray ABSOTPUON....c..coviiriniietete sttt 11

2.2 Recording of X-ray Radi@tionccccoeeueririrninincncnneneneeeceseesecsee e e s 11
2.2.1 Static Radiography...........ccoceeiieiniiiciciceneteceeeee et 12

2.2.2 Dynamic Radiographyccccceooerinieniniicnninctneeseecececeesee e 17

2.3 Radiographic NOISE........ccecuieeuerruierienirieeneesite s e ste st eeseesseesreseseeeesseesssesseaenns 20
23.1 Radiographic Characteristics: Frequency domain description................ 21

2.4 Radiographic InfOrmation.........ccccceevuerirrienenieirticee ettt sae e 25

2.5 Application of Radiography...........cccoecceiiriirciininieesieereeee e eeeaee 26
2.5.1 Spinal Motion ANalysiS........ccecverrierieniuinneeiie et st 27

2.6 REfEIENCES......coeoueiiiieiie ettt et e 27

3 Detecting Edges In Cineradiographic Images 29
3.1 Image SegMENtAtiON.ccccecereierririeerieniteetestesee et et e et e e st e st e sse e e s sae e s e e e sansenane 29
Pixel-based Methods...........coevuererecienininie e 29

Region-based Methodscccooiviinniiiiiiiiiiii e, 30

Edge-based Methods..........cccueeviueeiieieeerireeeeeie ettt sae e ssnee s 31

3.2 Low Level Edge Detection OPErators...........cccererireeeeienuenienvenieseneeeessnsessesnne 32

vi

The Development of Motion-tracking Strategies for Cineradiographic Images

3.2.1 Gradient OPEIAOrScceevueruerereeieereriierereesestessreeereseesseeeseessennens 33

3.2.2 Compass OPETALOLSccceruerurerurerinreetenisresssiieesseesnesseesessesennessesssesnnne 34

3.2.3 Laplace OPErators.........ccccueruerruererireeriessesiensessesessessensnssneesnessessesseenees 35

3.2.4 Stochastic GIadientscccceuerueereerrerienientereeceeseere e s et esresseseesnens 36

3.2.5 Performance of Low Level Edge Detection Operators............cccccceuue.... 37
Performance MEaSUTEScouevveviiieiiiinieiiniicreie st sessene 37

Low-level Edge Detection Results..........ccccevoeeeeereiiccrcneencceneeieccneeenees 38

3.3 High-level Edge Detectioncccociviiiiiiiiiiiiiiiiiiinnncicncneiecncececiesnene 40
3.3.1 Human Visual System Based Edge Detection...........cccccueeeerveencierneenane 41

3.3.2 Optimal EAge DEetectorc.coeiviiiiinineneiiiieiceceeee e 44

3.3.3 Rule-based Edge-detection...........ccoceeeeeririeerniiinienienieecrienieseeeeeeaees 49

3.3.4 Combining Fragmentary Edge information...........cccceccovuevuienniinenicncnne. 49

3.3.5 Performance of High Level Edge Detectorscceccereemrieinncnneennennne 52

3.4. An Altermative HVS Inspired Approach To Edge Detection..............cccceueeneee. 55
3.4.1 Weber's Law and Profile Based Edge Detectioncccccvereeruenncnnnen. 57

3.4.2. Target Based Computation Of Threshold Profiles.............cccocceuvvvinennen. 59

3.4.3. Direct Thresholding Using ES-LAI Edge-Template Statistics............... 66

3.5. Summary of Edge Detection In Cineradiographic Images............cccccceevievuernnne 69
3.6 REfEIENCES......coueiiiiiiiei ettt 72
4 Motion-tracking: An Overview 76
4.1 Visual Motion Perception and DeSCIIPHON.........ccccveererieriernrcerieeeeeenennencnenane 76
4.1.1 The Aperture Problemccccccoiiiiniiiiiniiiiiicrcc e 79

4.2 Matching APPrOaChESccciirieriiiriiieee ettt e e s ere et s essaeeas 80
4.2.1 Matching In The Spatial Domain.........ccccceeceeverinirinnniieeece e e 81
Moment INVATIANLS.........cciiiiiiiii st 82

SUIface fItINE .. cooveieeeircere ettt 83

PrePrOCESSINE «.oeeiuiiiieeiieiie ettt e et e et e e s st 84

4.2.2 Matching In The Transform Domaincccccoccevvivnincineiininnccnnenne. 84
Energy Compaction and Decorrelation............cccecuvvieeiiiinienncinincnnccns 85

MALCHING ..ottt ettt e e e e e e sra st e s e nneene 86

The Fourier Transformc..oouciieriiiiiieecerceeecccee e e 86

Real TransfOrmnSccoecieiiiiiie ettt 87

4.2.3 Search Srate@iesccceevuieriiiiuiiriiiieiecee e 88
Two-dimensional logarithmic search........cc.ccceecerieiiiionieicne e 89

Sequential SEArCh........ccocciiiiieiiicirecte e 90

Contents vii

Hierarchical SEarchcceeceieieeverniinenenreneeteeereerere e 90

424 Motion PrediCtionccccocueeiiiiininecineneecneciesceeee e 90

4.3 Optical FlIow Methods........cccoeereererierieniiiieierienteecree ettt eees 91
4.3.1 Differential APProaches........ccceceevereeerueesierierseerierseesenseeeeesesseeessesneenns 92

4.3.2 Matching Approaches.........cccoeeveviiiineneniiincncnininieeceeeeeeesee e 93

4.3.3 Contour APPIOAChES......ccccerrveeruiereerieereeneeeerteestersiesitesneeeeeessseeesseeesnnes 94

4.3.4 Energy Based Approaches..........cccccevenrvenienieceenes e seeceeeeeesieeene 94

4.3.5 Phase based ApProachescccceceeeererrienenieneniteeieeeeeneeeee e 96

4.3.6 Adapting Optical Flow For Radiographic Imagescccccecevueeuenuenen. 97
Continuity EQUAtiONcccoceevceeeeneeieeietrenenircteceeseceeeeeee et seeeeeenen 97

4.4 A Suitable Tracking Method for Cineradiographic Images............cccceceevuuennenee 99
4.5 REfEIENCES......oiiiiiieeiiectee et 100
Match Statistic Performance 102
5.1 Template MatChingccccoeuieviiiniiniiinerieeeeee ettt es s sr e aseees 102
5.1.1 Match StatiStCSuccviueuinei et e e et 103

5.1.2 A Match Statistic Sharpness and Selectivity Measurecc.ccceu.e... 104

5.2 Salient Features and Optimising Match Selectivityccccoceevernenvennnccnnne. 106
5.3 Match Statistic Evaluation.............cocceiiiiiiiniininniccicnecccceneeee e 108
5.3.1 Auto-frame Feature Point Matchingcccccceveevennieniininnineniennee. 108

5.3.2 Interframe Feature Point Matching.........ccoeceeveevenneiinisiiene e 113
Selectivity and Positional Stability..........cccccceveeenrvereennncreniencnreneennen. 114

Interframe Match SUMMATYccocoinireiennreriee et e seeeeeeeeseeseenns 117

Interframe Selectivity CONSLANCYc.ccocveereeerinreerrerrercnceeesieneraeessneessneens 118

5.3.3 Global Image Match SelectiVity.........cccevuervirenirneenerreeeneriereneeneeenns 120

5.4 Match Statistic CONCIUSIONScoueiierueririeiirictctce e 122
925 RCTCIENCES. cimaiin. osnssiinanssaneree oeenesnnusnese sinasanssnnsd®sem oo sanamnnsanns sncesisns soiBhanee s sassns 123
Prescribed Motion Cineradiographic Sequences 126
6.1 INtrOAUCHIONottt sttt 126
6.2 The Stop-and-shoot Method..........cccccoveiiiniiiiiiiiiciiicice e 127
6.3 Articulated Equivalent Phantom...........c..cccovernienenennenenereceence e 128
6.4 Artificially Animated Cineradiographic SEqUENCescccceceeeererverervereeennne 129
6.4.1 Digital Image Warpingcccceeceruevuerererneinneentneenieseesenesseseseseeeennaes 129
Two-Pass Transformsccouioreeinieniernnnne et seee e 131

Two-Pass Mesh Warping.........cccecveeviereeneinirneieneeninseenteseesseesseseesnessanens 131

viii The Development of Motion-tracking Strategies for Cineradiographic Images
6.4.2 Image ROtationc..ccoiiiiiiiiiiiiiiir e e 133
Rotation Evaluation..........ccociiiiiiiiininiiieiccncnencncee 135
6.5 Motion Sequence GEnEerationceeeieeiiiueiniiininieieeieeereeeesseae e eaesaeees 138
6.5.1 Extended Image Warping...........cccoccvviiiiiiiiininiininniinniincccecceccens 139
Application to Cineradiographic SEQUENCESccoceeeverruerveerieerceennenne. 140
6.5.2 Initial Implementationcccceceerereriiiiiieiiiicntie e 141
6.5.3 Enhanced Implementation...........ccceceereirirreeniieieesiereeseeereeeee seeennene 144
6.5.4 Image Warping Reassessed.........cccccceveruieiiininiiieinincniiceee e 148
A Surface Fitting Paradigm for Geometric COrrectionceeeceeeeueennee. 149
6.5.5 Final Implementationcccccceeiiiiiiniinniinieniteeeerececceres e s 151
IMAE NOISE. ..ottt ettt msee e e e e 154
6.6 Motion Test SEQUENCEScocuiiriiiireiiriiiienieeiteecte ettt 158
6.7 REEIENCES.ottt 159
7 Motion-tracking Cineradiographic Images 161
7.1 INOUCHON ..ttt et sttt aae s re s ssaeses srsesacenne 162
7.2 Practical Implementation ISSUESccccciiiiiiiiiiiiiiii e 162
7.2.1 Defining Objects Of INtErest......ccoeceeruerrrerrierereeieereieneneeeeneesreaes e 162
7.2.2 Vertebral Displacement and Orientation..........ccccceeeeveeerveeseeereeeeennnenns 164
Orientation by MOMENLS......c.ccuiitirieeriieieeieerirereeesteseeee st esite st e eeneeeeeens 165
Orientation by Fold-and-Match, a new method.........cccccocceeiiineeennnne 166
7.2.3 Deriving Suitable Motion Measures...........ccccoeviiviiiinininniicecnnnnnncnnns 168
7.2.4 Displaying Motion Data Effectively.........cccocevveriiiniinienniinicineecienee. 171
Motion VisualiSationccoouiiiiiecciiiiiiic i 171
Operator INEETACHIONcccoureereeriieieereeieenieeesteeerseseneeeseesaesseeeesseeseeeenens 173
7.3 The Motion-tracking AIZOTIthImccooceiiiiiiiieiiiieieeeceee e 175
7.3.1 Theoretical Tracking COnStraints............ccccceeivervuieirisereeseenneeennennne 178
7.3.2 Practical Algorithmic Implementationcccceeeeiimirirciinieiiceeeeeeene 180
7.3.3 Image NOISE.....cccecvviriiiieiiiiiecctecceee ettt eaes e e 182
74 Tracking Performance..........cccocciiiiiiiininiiiceiiiiniiicicce e cnenne 183
7.4.1 Single-Cycle Linear Motion: Tracking Results...........ccccecumiencenncene. 184
Single-cycle Linear Translation...........ccccccveniniiiiniiiinncnncnenenieennens 186
Single-cycle Linear ROtationcccoecevcrioeienieieniesenee e e 189
Single-cycle Composite MOLION..........ccoueiirerreiieerernecnneeneeenteneeseeeseeeeens 191
7.4.2 Double-Cycle Composite Motion: Tracking Results.............c.c..c...... 192

Double-cycle Composite MOONccccoiiiiiiiiiiiicciiccce e 192

Contents ix

Double-cycle, Extended length, Composite Motionc.ccccecceveeeuennee. 193

7.4.3 Full Motion with Vertebral Interaction: Tracking Results.................... 194

Realistic MOION.......cceruiirieiteeccrcecete ettt et 195

7.5 Summary of Motion-tracking Performance...........ccceceeverererenencnicncnuenienne 199

76 REFEIENCES. ..ottt s eae 200

8 Discussion and Conclusions 202
8.1 INTOQUCHION ...ttt et s ee 202

8.2 Algorithm Enhancements...........ccccoioiereriricniiniceeeeeeiesecseneeiesee e seeeee e 203
8.2.1 Adaptive Enhancementsc..ccccceveriernieninnienieninenieceeeeeeeeeenee 205

8.3 FUUIE WOTK ...ttt et 206

8.4 REfEIENCES....c.eiiiniiieeeeeictetete ettt s 207
Bibliography 208
Appendix A - Gradient Mask Derivation A-1
Al INOUCHON ...ttt se s et see st neennes A-1

A.2 Curve Fitting Problem........ccocooiiiiiiiiiiiiiee et e A-1
A.2.1 Curve Fitting Formulationcceceevinienieiniienieereerces e e A-1

A.2.2 Application to Gradient Masksccccecererienenennenieneniienceieeeens A-2

Alternative Orthogonal Formulationcccceeververvenienenienseenieneeenens A-3

A.2.3 Gradient Mask Resultsccccooeeriiminieninneincceeccececeeee e A-3

A3 REEIENCES.ceeiuiiiiiiiiiictteeree ettt et A4
Appendix B - Computational Cost Calculations B-1
Bl INrOdUCHONooiiiiiiiiiieiicteeecccec et et e e sae e B-1

B.2 Match Statistic Calculations..........cccocceeutirnieriiiierenieneeeeeereees e B-1

B.3 Motion-tracking Algorithm Calculationsceceeeverersuererseenersesreereeeeneenne B-4

B4 REfEIENCES.....couiiiiiiiiiieiictcece ettt ettt B-5
Appendix C - Pascal Source Code C-1
C.l Gradient FIterscccooiuiieiiii ettt C-2

C.2 Canny Edge-detector..........cocciiuieiiiiiiieieeieneeeieeeeteeee ettt C-13

C.3 Edge Comparison FUNCHONSc..ccueeiiruiririnininiiicenecenicceeeec nencsaenens C-21

C.4 Weber's Law based Edge-detectioncccceeeeveiieneneeninenieneee e C-23

C.5 Match-statistic Performance Supportccccoevueierienenieeneneneerceeeee e C-33

The Development of Motion-tracking Strategies for Cineradiographic Images

C.6
C.7
C8
C.8

Image ROTALIONcooiiiiiiiiiieretccce ettt e C-49
Two-pass Mesh-warp Image Functionsc.ccecerverrveeniiinncnenceenceeneene C-52
Optimal TriangUIAtionc.ccccecueeimrereieieniee e et C-63
Prescribed Motion by Image Warping.........cccccoeceeveiiineicrnennenncnnneeneceenne C-67

C.10 MoHON-TTACKING ...cuverereeeiereieresterietereesereeteeeeeeetesseere e s sessesssenesesmeesesesenns C-82

xi

Dhreface

In the beginning (assuming there was a beginning) there was.... whatever there was!

And much, much later I came along, courtesy of my father, a man who inspired me with a talent
for almost anything requiring mental skill, creativity and mental dexterity. Nurtured by my
mother, a very talented person in her own right, whose greatest talent was her love for life and
almost everything in it, I was exposed to many marvellous things and in particular electrical
devices and electronics caught my fancy.

My father (the mad experimenter) introduced me to the joys of electrocution either by design in
the form of a Tesla coil or Windhurst machine or by accident in being reminded that the anode
voltage on a UX-807 (an old tetrode indirectly heated vacuum tube of the 1935 era) in an audio
amplifier is more than enough to give you a lift in life. It was probably this 'lift in life’ that I
received on a not too infrequent basis that gave me a head start on many of my friends. At age
nine I had not only built many a crystal set but had begun to design better ones, covering a
variety of frequencies from longwave to shortwave. One of my first real joys was building a
single-triode super-regenerative receiver (one of Colonel Armstrong's many genius ideas). It
has such economy of parts and performance that I could scarcely believe at the time plus it could
pickup both AM and FM signals. Through this sort of endeavour from receivers to transmitters
and lots of audio amplifiers in between, I acquired (guided by my father) the old language of
electronics and its handicraft.

It will be, in all probability, almost 10 years to the day that I received my first degree (BE
Electrical - first class) that I will be receiving my second degree for the work contained in this
volume. When I completed my first degree I had had enough of University and yearned for a
job and some money (not an unusual feeling, I'm sure!). This lead me to work for four-and-a-
half years for a small but diverse electronics manufacturing and design company in which my
industrial skills were honed and I met a lot of nice people. Later I joined the Production
Technology Department at Massey University where I completed this work and met even more
nice people!

It was on 19 July 1989 that I began this work (serendipity had its way) and early the following
year I attended the wedding of my best school friend who had also chosen to study and work in
electronics. Tragically only three months later he was dead with cancer. So before I continue I
will remember Ross Winton Jamieson, 'Rosco’ to his friends, a very talented person who on days
like this is badly missed. May the morphic resonance of your being ring somewhere in the
universe.

So in closing, I hope that the reader (may there be many of you in the future) finds the story that
unfolds is done right and done well.

Wyatt Page 14 November 1995

7S

-

s }ﬂ/?
= 0
<J

xii

@e&&m&b&v

A philosopher being asked what was the first

thing necessary to win the love of a woman
answered: "Opportunity."

Thomas Moore

To opportunity, may I always know you
when we meet.
WHP

Xiil

Ackno‘#(edgmen&

I wish to thank the following people

My supervisor Bill Monteith who was HOD when I started this research and Dean
by the time I finished! Your enthusiasm and ideas (very diverse at times), have
guided me well through this research.

My second supervisor Bob Hodgson who had just started as the first Professor of
Information Engineering in the Department when I started this research and was
HOD by the time I finished. Your gentle guidance and help particularly at the very
end was greatly appreciated thiee

Dr Les Whitehead of the Whitehead Chiropractic Clinic, thank you for access to
images from your cineradiographic system.

My very good friend Nicci Coffey who has in the last weeks proofread my work
with precision, I thank you greatly.

Brent Foster helped me out of those tricky Windows programming problems.

My great friend Bruce Rapley who I came to visit one day on my way to Australia
and ended up doing a PhD and becoming a lecturer all at the same time. Thank you
for your enthusiasm to set me on this path.

My family - now you will see me more often.

1

Introduction

1.1 Background

It will be 100 years this year, 1995, since Professor W. C. Roentgen first observed by accident,
what he later called X-rays. Within weeks of the discovery, dentists and doctors were using
X-rays in private practice, such was the rapid uptake of this new technology. In 1938, forty
years after Roentgen's results were published [1.1], the first application of movie radiography or
cineradiography was described by Reynolds [1.2]). Unfortunately using the technology of the
time, high-energy continuous X-ray exposure was required, making the method unsafe for human
subjects. A mere ten years later, the first X-ray image intensifiers were commercially available.
These enabled the total X-ray dose to be reduced by many orders of magnitude. A complete
cineradiographic system with video camera and VDU monitor was not to become commercially
available, however for another 20 years. A further five years on from this, the first video
recorders were available, and a practical system in which the motion of a section of the human

spine could be recorded and replayed for visual examination became reality.

One of the single most common medical conditions in modern society concerns problems with the
spine, the so called 'back-problems'. Static radiography has been used for almost a century by
spinal health professionals in determining the presence of vertebral misalignment and the extent
of degeneration in the human spine. Traditionally the practitioner manually extracts
measurements from a radiograph by drawing lines directly onto the film through well defined and
repeatable points commonly known as 'landmarks’. A ruler and protractor are then used to
measure the displacement and angle of each vertebra based on the reference lines. Typically as
many as fifty measurements are taken from a single full spine radiograph, requiring up to an
hour to determine. These measurements can be generic such as vertebral disk height, angle and
body rotation [1.3). They can be local, for example the Atlas/Axis angle, or regional as in
lumbar curvature and radius. They can also be global, as is the weight bearing and stress lines
[1.3].

In order to interpret the significance of these measurements an understanding of the
biomechanics of the spine is required. This understanding has been developed from quantitative

measurements made on so-called standard normal spine radiographs [1.4] and from mechanical

2 The Development of Motion-tracking Strategies for Cineradiographic Images

modelling of the spinal column. The difficulty in making a functional diagnosis based on this
information is that it is all derived from a stationary spine, usually in only a single position.
Predicting what will happen when the spine moves based only on the starting geometry and some
basic mechanics, is very difficult. Video cineradiography potentially provides a means of
resolving this problem since it can record the spine in normal, unconstrained motion. However,
even a short sequence may contain many hundreds of images. Attempting to manually process
this large number of images and extract the necessary measurements is totally impractical.
Apart from being a very laborious process, repeatability and accuracy is likely to be poor due to

operator fatigue.

Previously several authors [1.5] have used cineradiography to infer the behaviour of the spine in
motion. But to make the processing practical they have discarded all the images other than a
centre image in the neutral position, and two images at the extremes of the motion. These
“motion sequences” (consisting of only three images) have then been magnified and transferred
to film or more recently [1.6] digitised using a computer, and lines manually drawn so that
measurements can be made. This approach is inherently unsatisfactory from both a mechanical
and a signal processing point of view (see section 6.2 of chapter 6). There are only three
snap-shots of the true motion and questionable assumptions have to be made about the motion in
between in order to draw useful conclusions. Clearly there is a requirement for a system that can
automatically and reliably extract motion information from cineradiographic sequences of the
human spine. Such a system has the potential of greatly improving the understanding of spinal

motion and the diagnosis of spinal dysfunction.

1.2 Thesis Overview

This thesis describes research into the development of suitable algorithms and systems to track
the motion of vertebra in cineradiographic sequences of the human spine. Such a system should

have the following properties:

» High accuracy and repeatability - Within the resolution and noise limitations of video

cineradiographic systems the measurements should be accurate and repeatable.

> Automatic motion-tracking and measurement - Operator interaction should be

minimised in this stage.

» Provide an opportunity for operator interaction so that derived measurements can be

readily related back to what can be seen visually in a sequence.

» Be easy to use so that researchers (and potentially practitioners) will be encouraged to

use such a system.

> Run on standard hardware.

Introduction 3

The last of these requirements, for the system to run on standard hardware, is very much a
moving target. The personal computer will be celebrating only its fifteenth birthday next year by
which time it will have world wide sales nearly equalling that of the motor car. Performance is
currently two and a half orders of magnitude (500 times) better than the first PC, while costing
less than half the price of the original machine. Just as importantly, it will come with a standard
Graphical User Interface (GUI) and have enough memory, disk space and video performance to
make video capture and editing common place. Thus the development described in this thesis is

poised at an ideal time to exploit this technology.

Knowledge from a range of diverse research disciplines is required in order to tackle the problem
of the development of a system for spinal motion measurement. The first requirement is a
fundamental understanding of X-ray radiography with a particular emphasis on the properties of
video cineradiographic systems. Converting the video signal (images) to digital form requires a
basic understanding of data acquisition. Once images are in digital form, a variety of disciplines
need to come together to realise such a system. These include digital image and signal
processing for developing motion-tracking algorithms, and computer graphics to enable data
visualisation and understanding. Lastly, all of this cannot be achieved without significant skill in

software programming. These were the challenges to be met by the author.

If successful, the computer analysis of the image sequences to establish dynamic motion

characteristics will be of significant importance to spinal health-care specialists of all types.

1.3 Contents by Chapter

A book style structure has been chosen for this thesis, each chapter beginning with an
introductory section that leads to the presentation of the core material, and finally a summary to
provide connectivity to the following chapter. Each chapter builds on the previous chapters as
the thesis develops. Each chapter is self-contained with its own set of references, all of which

are brought together in a comprehensive bibliography at the end of the thesis.

A short paragraph is presented below on each chapter to enable orientation of the material that

will be subsequently detailed.

Chapter 1: Provides background to the research and an overview of the thesis including a

chapter-by-chapter breakdown.

Chapter 2: Begins with an overview of the physics of radiographic imaging. Next the details
of recording X-ray information for both static and dynamic radiography are presented. This

leads to the issues of radiographic noise and information content, and finally the idea of the

4 The Development of Motion-tracking Strategies for Cineradiographic Images

application of radiography to spinal motion analysis and cineradiographic image segmentation

are discussed.

Chapter 3: This expansive chapter investigates approaches to detecting edges in
cineradiographic images of the human spine. It is broadly divided into three sections. The first
section introduces low-level approaches to edge detection and then evaluates their performance
(using a developed quantitative measure) on cervical spine cineradiographic images. This
approach is then mirrored in the second section for high-level edge detectors. In the last section
an alternative high-level method is developed and evaluated. The chapter concludes with a

summary of results/difficulties in edge detection and points towards an alternative solution.

Chapter 4: An extensive overview of approaches to motion-tracking beginning from the idea of
visual perception, then introducing fundamental definitions and theoretical constraints. The two
main themes covered are matching approaches followed by optical flow techniques and how they
can be adapted to radiographic imagery. Finally, based on theoretical and practical

considerations a match based approach to motion-tracking is chosen.

Chapter S: At the core of template-based matching approaches to motion-tracking is a
best-match measure. This chapter develops a feature-point selectivity measure and then uses it
to evaluate the performance of the four match statistics in both intra- and interframe matching of
cineradiographic images. Based on feature selectivity consistency, match stability and

computational cost considerations, the best match statistic is chosen.

Chapter 6: This chapter considers the issue of how to test a motion-tracking algorithm on
cineradiographic sequences of the human spine when the motion to be measured is unknown. It
covers the development of a digital image warping based animation system for the generation of

test sequences with prescribed motion.

Chapter 7: In this, the penultimate chapter, practical, implementation issues of a motion
measurement system are considered and a number of solutions proposed and implemented. A
full description of the motion-tracking algorithm is presented and theoretical performance
constraints developed. The algorithm is then extensively tested on a wide range of prescribed

motion cervical spine sequences.

Chapter 8: This chapter concludes the research with a discussion of the motion-tracking
algorithm developed and how it can be improved by the addition of adaptive elements based on
material developed in the early chapters of this thesis. The chapter finally looks to the future by
considering how a measurement system could be used to diagnose and characterise spinal

dysfunction.

Introduction 5

In the later chapters of this thesis a number of figures have been produced from a software
programme called CineMetriX. The author was responsible for the supervision of the
development of this programme and in particular the design of the user interface and motion
tracking algorithm. CineMetriX was written in conjunction with the Whitehead Chiropractic and
Research Clinic, Palmerston North, New Zealand. This programme is not currently available in

commercial release.

An enhanced version of CineMetriX was developed by the author during the writing of this thesis

that incorporates many elements not in the original programme.

Appendices: Not normally considered to be a core part of a thesis but in this case they have
provided the author with an opportunity (within the constraints of printed material) to give the
reader an experience of two prescribed motion cineradiographic sequences. Turn to the first
page of appendix C (marked by the single coloured page at the back of the thesis) for reader

Interaction instructions.

1.4 References

[1.1] Roentgen, W.C. Annus Physics Leipzig, Vol. 64, No. 1, 1898.

[1.2] Reynolds R.J. Cineradiography by the Indirect Method. Journal of Radiography,
Vol. 31, pp 177..182, 1938.

(1.3] Johnson B.M. Measurements in Skeletal Radiography. Wiley, pp 180..195, 1977.
(1.4] Arnold C.F. and Green J. Standard Radiography, Medical Press, 1978.

[1.5] Dimnet J. Pasquet M.H., Krag M.H. and Panjabi M.M. Cervical spine motion in
the sagittal plane: Kinematics and geometric parameters. Journal of Biomechanics,
Vol. 15, pp 959..969, 1982.

[1.6] Fielding J.W. Normal and selected abnormal motion of the cervical spine from the
second cervical vertebra to the seventh second cervical vertebra based on
cineroentgenography. Joumal of Bone Joint and Surgery, Vol. 47a, pp 1779..1781,
1964.

The following is a list of papers by the author that have previously been published based on

elements of the research presented in this thesis.

(1.7] Page W.H and Monteith W. Edge Detection Based on Weber's Law Revisited.
Proceedings of the Image and Vision Computing Conference of New Zealand
(IVCNZ '94), pp 2.3.1-2.3.5 August 16-17, 1994.

The Development of Motion-tracking Strategies for Cineradiographic Images

[1.8]

(1.9]

[1.10]

[1.11)

[1.12]

[1.13]

Page W.H, Monteith W. and Whitehead L. Dynamic Spinal Analysis: Fact or
Fiction? Journal of the Australian Chiropractic Association (JACA), pp 82..85,
September 1993.

Page W.H. and Monteith W. Creating Deterministic Motion Using Digital Image
Warping. Proceedings of Digital Image Computing: Techniques and Applications
Conference (DICTA'93), pp 485..492, Sydney Australia, 1993.

Page W.H. and Hoogeeven R.M. An Analogue Video Preprocessor. Proceedings of
the Image and Vision Computing Conference of New Zealand (IVCNZ'93), pp 415..421,
August 1993.

Page W.H and Monteith W. Bone movement analysis from computer processing of
X-ray cinematic video images. Proceedings of the 4th IEE International Conference on
Image Processing and Its Application. pp 381..384, April 7-9, Maastricht, The
Netherlands. IEE London, 1992, ISBN 0 85296 543 5.

Page W.H and Monteith W. Weber's Law and its Application to Dynamic
Thresholding in Edge Detection. Proceedings of the 6th New Zealand Image
Processing Workshop, pp 71..76, August 1991.

Page W.H and Monteith W. A system for the Analysis of Bone Motion in Cinematic
X-ray Images. Proceedings of the 28th National Electronics Conference (NELCON 91),
pp. 75..80, August 1991.

p.
X-ray Radiography

2.1 Radiographic Images - An Overview of The Physics

X-rays are a form of ionising electromagnetic radiation having wavelengths in the range of 0.01
to 1 nano metres (nm). Artificially generated X-rays are generally produced by bombarding a
metal target with a stream of high energy electrons. X-rays travel in straight lines, are not
affected by electromagnetic fields, have the ability to penetrate matter opaque to visible light, and
have similar action to light on photographic media. The penetrating ability of an X-ray beam

depends on its wavelength and the density of the matter through which it passes.

According to quantum theory electromagnetic radiation is not continuous but occurs in small
'packets’ called quanta. The energy of the smallest quantity associated with a given phenomenon

is called a quantum and is described by equation 2.1,

E=hv=— eq. 2.1

where h is Planck's constant, V is the frequency of the radiation, c is the speed of light and A is

the wavelength of the radiation. For light the term phoron is used in place of quantum.

The wavelength of X-rays is commonly quoted in centimetres, nanometres, or Angstrom units
(A), where 1A =10"°m. The energy of X-rays is usually quoted in terms of the energy of the
electrons (measured in electron-volts or eV) producing the X-rays. One electron-volt is the

energy acquired by an electron when it is accelerated through a potential difference of one volt.

2.1.1 X-ray Generation

The method of artificially generating X-rays has changed little since they were first observed by
Professor W. C. Roentgen in 1895 [2.1]. Within a year of his discovery that these rays could
penetrate a range of opaque materials, a remarkable number of applications had been described.
Roentgen's X-ray tube was a gaseous high-voltage discharge tube in which electrons emitted
from a hot cathode were accelerated towards an anode which they struck at high velocity. If an

electron starts from zero velocity at the surface of the cathode and is accelerated towards an

8 The Development of Motion-tracking Strategies for Cineradiographic Images

anode across a potential difference of V volts, on arrival at the anode it will have gained kinetic
energy given by:
imv?=eVx10"] eq. 2.2

where m is the mass of an electron, v is the electron velocity assumed to be small relative to the

speed of light and e is the charge on an electron.

When an electron hits the anode and loses energy, X-rays can be produced by two different
mechanisms [2.1]. The first involves the sudden deceleration of the negatively charged electrons
as they interact with the strong positive electric field of the nucleus. The energy lost due to this
interaction results in general or Bremsstrahlung radiation. The minimum wavelength of the

resulting quantum of radiation is:

_ he 123951

)"min
eV %

eq. 2.3

Usually the electron gives up only a small amount of its kinetic energy during the interaction so
that a continuous spectrum of energies is produced. The majority of the electron energy does not

produce x-rays and is converted directly into heat.

The second mechanism for X-ray production occurs when an electron with sufficient velocity hits
a target atom and knocks out an orbiting electron leaving the atom in an unstable excited state.
An electron from another near-by orbital will tend to jump into the vacant orbital to restore
stability. The energy difference between the two orbitals is emitted as a quantum of X-rays.
Quantum physics [2.2] shows that the energy levels of orbitals are discrete with the highest
energy being in the K-shell, closest to the nucleus, where it is most tightly bound. X-rays emitted
due to the difference in orbital energies is called characteristic or line radiation. Most of the X-
ray radiation emitted from the interaction of an electron beam with a target anode is of the low

energy general radiation type.

The quality and quantity of X-rays produced by an X-ray tube is defined by two factors. The
first is the number of electrons flowing across the anode-cathode gap. This is determined by the
tube current usually specified in milliamperes (mA). The value of this current effectively
determines the number of electrons interacting with the target anode and hence the quantity of
X-ray production. The maximum velocity the electrons obtain on collision with the target anode
determines the maximum energy of the produced X-ray quantum. This is controlled by the
applied potential difference between the cathode and anode and is usually specified as the KV, or

kilovoltage potential.

The X-ray beam produced by an X-ray tube contains photons with a wide range of energies.

Many of these photons are of low energy and cannot escape the X-ray tube and housing. Also

X-ray Radiography 9

the generated X-ray photons are not directed in a single direction. This has the consequence that
only a small fraction can pass through the X-ray tubes window to produce a useful X-ray beam
outside. As the X-ray photons pass through the tube window the mean energy of the beam
increases. Low-energy photons are more likely to be attenuated or absorbed by the window
material, in effect selectively removing a high percentage of the low-energy photons. This
process is referred to as hardening of the X-ray beam. Hardening produces a higher quality, less

polychromatic, X-ray beam with a more tightly defined range of energies.

X-ray tubes come in two basic configurations. Figure 2.1 shows these two forms.

Filament

\

\

ANODE /J CATHODE

Figure 2.1a: Stationary anode X-ray tube

Rotating ANODE

Focal Spot CATHODE

Figure 2.1b: Rotary anode X-ray tube

The only fundamental difference between the two constructions is that in the second form the
anode is not stationary but consists of a rotating disk. Typically, in excess of 99% of the energy
of the electron beam is converted into heat. This heat must be conducted away from the X-ray
tube otherwise it will overheat and become damaged. In the stationary anode configuration of
figure 2.1a, the anode consists of a tungsten block bonded to the end of a copper cylinder. The

copper is required to ensure rapid heat transfer away from the tungsten block. Maximum output

10 The Development of Motion-tracking Strategies for Cineradiographic Images

from an X-ray tube is limited by the dissipation of heat. Stationary anode tubes can dissipate
relatively little heat without incurring damage, thus they are usually found only in portable or
low-power units where the lack of any moving parts is a significant advantage. The second tube
configuration containing a rotating disk anode enables the heat produced by the electron beam to
be distributed across the surface of the disk as it rotates thereby substantially reducing hot spots
on the anode surface. Heat still has to be removed, but not as rapidly as in the static
configuration since the active anode area is continuously being changed, so allowing time for the
unexposed surface to recover. The overall effect of having a rotating disk anode is that higher
currents and voltages can be applied to the tube for longer periods producing higher output

X-ray flux.

In most X-ray systems additional filtration is used to further harden the X-ray beam and hence
increase the effective energy of the X-rays. This is achieved by the introduction of a thin sheet of
aluminium in the path of the beam. Filtration is usually measured in millimetres (mm) of
aluminium equivalents. Most manufacturers recommend a total filtration equivalent to 2.5 mm.
This total filtration includes the equivalent thickness due to the X-ray tube window, housing and
face plate. After filtration typically only 2.4% of the original beam remains. The net benefit of
filtration is that the total X-ray dose to a patient is reduced by almost 80% compared to the

non-filtrated case.

A device that controls the area exposed to the primary X-ray beam is referred to as a collimator.
Beam collimation decreases the X-ray exposure to the patient and operator while improving
radiographic quality by decreasing the amount of X-ray scatter. They are available in several
different forms but the most flexible and widely used collimator consists of adjustable lead
shutters. Usually the horizontal and vertical shutters can be moved independently of each other,

enabling non-square areas to be covered. Figure 2.2 shows a box type four-shutter collimator.

N

Adjustable lead shutters

Figure 2.2: Box, four-shutter collimator

X-ray Radiography 11

2.1.2 X-ray Absorption

As an X-ray beam passes through matter a portion of the energy of the X-ray beam is absorbed.
This absorption process is not simple but is made up of a number of mechanisms. The process
may result in the production of secondary radiation of variable energies that may not be in the
same direction as the primary X-ray beam. In practical radiography both X-ray absorption and

scattering must be considered.

Four main types of X-ray absorption occur in general radiography, they are:
e Photoelectric scattering
e Rayleigh scattering
e Compton scattering

e Pair production

In medical diagnostic radiology where X-ray energy levels are typically 100 kVp, only the first
three types of absorption occur. The general law governing the absorption of ionising radiation
as it passes through matter can be stated as: 'the fraction of radiation absorbed in passing
through a thin layer of material is proportional to the thickness of the layer and an absorption

coefficient’. This is mathematically described in equation 2.4.

where [is the incident intensity, [is the emergent intensity, Ax is the layer of material

thickness and Lt is the absorption coefficient.

To find the total absorption in passing through a homogenous material of thickness x, the above

equation is integrated to give:

I=1,exp(—Ux) eq. 2.5

This is the standard X-ray absorption equation in which the absorption is exponentially
proportional to the thickness of the material. The thicker the material the greater the absorption.
Due to the four different types of absorption that may occur, the value of the absorption
coefficient 1L, is dependent in a non-linear way on both the X-ray energy and the nature of the

absorber.

2.2 Recording of X-ray Radiation

If an X-ray beam passes through an object that may contain internal cavities and other

inhomogeneities there will be local variations in the spatial intensity of the emergent beam. The

12 The Development of Motion-tracking Strategies for Cineradiographic Images

emergent beam will be modulated by these internal properties and hence contain information
about the internal structure. However X-rays are not directly perceivable by the human senses
thus the information contained in the X-ray beam must be converted to a form that can be readily
observed. A number of detecting mediums are available, they all depend on a secondary

interaction of the X-rays with matter, to render the information.

The first and most widely used method for X-ray detection is through the photographic effect.
In this method the information is recorded directly as a variation in silver deposition on a
processed film. The film is full size and provides a permanent record, the radiograph. However
in general this will contain only a record of the relative spatial variation of the X-ray intensity.
The radiographs greatest advantage is that it is an integrating device. If sufficient exposure time
is allowed the radiograph can record very low radiation fluxes. The object must be essentially
stationary for the exposure period, however for biological material this means that the all

important peak radiation dose can be substantially reduced.

The second method of X-ray detection is to observe the visible fluorescent light emitted by a
particular substance when exposed to an X-ray source. The substance is usually formed into a
thin screen that is placed at the same location as a photographic film. The two disadvantages of
fluorescent screens are that they do not provide a permanent record of the information and they
do not integrate the exposure. The response of a screen is dependent purely on the X-ray
intensity and not the overall quantity. However the lack of integration can be an advantage as it

allows an object to be X-rayed when in motion and the results viewed.

The third method is to use the fluorescent screen as a primary converter (X-rays to light) and use
a video camera to image the screen. The output of the camera can then be displayed on a video
monitor (CRT) allowing the operator to be out of the line of the primary X-ray beam. If the
video signal from the camera is taken through an analogue-to-digital (A/D) converter, the

information can be stored permanently in digital form in a computer.

Other methods enable X-ray radiation to be detected and measured, however most of these
methods only allow point-by-point measurement to be made across the X-ray beam. An
exception is the semiconductor detector in a matrix array [2.3]. Each element in the
semiconductor array produces an electrical signal proportional to the integrated X-ray intensity
at its location. These signals can be digitised by an A/D converter in a computer and viewed as

an image. The digital image may then be stored on disk for later processing.

2.2.1 Static Radiography

An X-ray film consists of a thin base of acetate or polyester, which is transparent and flexible
[2.4]. This is coated with a radiation-sensitive emulsion, usually a silver halide. The emulsion is

attached to the base by a thin adhesive layer and the whole surface coated with a layer of gelatine

X-ray Radiography 13

as a protective ‘supercoat’ to minimise abrasion. In order to obtain a useful photoelectric effect
from X-ray radiation, the emulsion is much thicker than for light photography, and an emulsion

is applied to both sides of the base, as shown in figure 2.3.

Only a very small fraction of the X-ray radiation falling on a film is absorbed. Most of it passes
through the film without interaction. However if a metal foil such as lead is placed in contact
with the back emulsion of the film, then electrons ejected from the foil due to the X-ray
interaction can enter the emulsion and assist in the formation of the latent image. This is the

principle of metal intensifying screens [2.5].

=

roeeey

etels
't
¥

Figure 2.3: Radiographic film construction

a, emulsion protection layer; b, emulsion; c, adhesive substrate; d, base layer - polyester.

If a film of uniform blackness is illuminated by a light source of intensity /, and the transmitted

intensity through the film is /, , then the photographic density D of the film is defined by:

D= loglo[i—oj eq. 2.6

t

where the ratio TO is the optical opacity and its inverse is the transmittance of the film.

t

Practical measurement of D depends on the grain size and distribution of the silver deposition on
the film, and on the incident light. If D is plotted against the logarithm of the exposure
(integrated intensity) to radiation (light or X-rays), then a characteristic curve for the film is
produced. The characteristic curve of a film has three well-defined regions as illustrated in
figure 2.4. With no exposure a small density is produced on development. This density is the
fog level of figure 2.4. The fog density is produced by two factors; the inherent density of the
base film and a chemical fog density due to the fact that some of the silver grains are capable of

being developed even without exposure.

As the exposure is increased from zero, the density slowly increases from the fog level,

eventually reaching a region in the middle of the curve where the response is approximately

14 The Development of Motion-tracking Strategies for Cineradiographic Images

linearly proportional to a logarithmic change in exposure. A further increase in exposure causes
the rate of increase in response to roll off as the chemical reaction nears completion. For very

large exposures a maximum density D__ is reached.
In the linear region the curve equation is usually given as:
D = y[log,,(E)—-1log,,(i)] eq. 2.7

where 7 is the slope of the approximately straight portion, and log,, i is the intercept of this

portion extrapolated to the fog density level.

Film
Density

2

fog_ .
level

log,,Exposure (dose)

Figure 2.4: Film characteristic curve for X-ray exposure

The slope or gradient G of a tangent line to any part of the curve is often termed the film

contrast. Measured at a density D), this gradient is given by:

d(D)

=—_— eq. 2.8
®" d(log,, E)

In reality the contrast gradient varies with both exposure E, and film density D. The value G/,
is a fundamental parameter in film radiography as it provides a measure of the available film

contrast for a specific density. The characteristic curve of a film is also greatly affected by the

X-ray Radiography 15

development process. A typical system for the development of radiographic films is optimised to
give maximum speed and contrast with a minimum of increase in fog density. For certain types
of film emulsion the linear portion of the curve can cover a range as large as four densities,

equivalent to a four-decade range in exposure.

The finest detail that can be recorded on a film is dependent on a number of factors. One of the
most important is the size of the silver grains in the emulsion. Generally, if the grains are
smaller then finer detail can be resolved. Prior to exposure the halide grains that form the
emulsion are well defined in shape and too small to be visible to the naked eye. Once exposed
and developed, the resulting silver metal grains are filamentary in structure and in all
orientations. The effect, when viewed, is that the silver deposit is non-uniform. This subjective
impression is called graininess and is due to the statistical variation in density of grains per unit
area and the overlapping of conglomerated grains. Graininess is affected by the developer

composition and for a given emulsion increases with radiation energy.

i }
s EEE e e e e e o)
film
a
film N \: b

density

Figure 2.5: Inherent film unsharpness, U R

The second factor that limits image resolution due to X-ray exposure is the generation of

secondary electrons. A silver grain on the absorption of a primary X-ray photon may release a

16 The Development of Motion-tracking Strategies for Cineradiographic Images

new or secondary photon of X-ray energy. This secondary emission then sensitises adjacent
grains that may then be rendered on development into small string of gains. The
two-dimensional effect is to blur a point image into a disk. This type of loss of resolution is
termed inherent unsharpness, U r At the 1004V, X-ray energy level typically used for
biological diagnostic radiography, about five grains are made developable for each photon

absorbed in the emulsion. Below 33 kV/, no appreciable secondary photon emission occurs.

Theoretically the image of a sharp edge in an object would be as shown in figure 2.5a.
Practically however the density variation across the image of a real edge will be of the general
shape of figure 2.5(b,c,d), where the width of the band of density change is a measure of the film
unsharpness. At low film densities the measured unsharpness is similar to that of figure 2.5d, a
smoothed version of figure 2.5c. At this level the slow rolloff at the ends of the transition makes
it difficult to make a precise measurement of unsharpness. For 100 kV,, diagnostic radiography,

the value of unsharpness is approximately 0.05mm, rising to 0.09 mm at 200kV,,.

Two further causes of radiographic unsharpness are

Geometric unsharpness, U X

arising from the finite size of the X-ray source, which is never a true point.

Movement unsharpness, U, ;

due to the relative movement between the specimen and the film.

Ug

Figure 2.6: Geometric unsharpness

X-ray Radiography 17

The value of the geometric unsharpness can be specified from the simple geometry of figure 2.6
as:
sb
U= eq. 2.9
a
where s is the width of the radiation source seen at the film, b is the distance from the object to

the film and a is the distance from the source to the object.

Assuming that the radiation source is uniform in intensity over its area, the latent image on the

film will become progressively wider as the source size increases.

Figure 2.7 shows the effect of increasing the source width from an ideal point source to a width
much larger than the defect under inspection. Image contrast C decreases substantially from the
reference level C, for a point source with increase source width. For diagnostic radiography at
100 kV,, and with a typical source width of 5mm, the value of the geometric unsharpness is

approximately the same as the film unsharpness, or about 0.05 mm.

S
.‘4
TR | 4\"4

F - F

[e rac

i) ii) iii)

Figure 2.7: Geometric unsharpness for increasing source width - contrast C is reduced

2.2.2 Dynamic Radiography

The principle advantage of film radiography, exposure integration, becomes a major
disadvantage when it is desired to radiograph an object in motion. The earliest successful work
on motion radiography or Cineradiography, was performed by Reynolds in 1921 [2.6]. In his
system a 35mm movie film was used to record the moving X-ray images. In order to minimise
motion blur while still enabling an adequate image to be recorded, a very high X-ray intensity
was required compared to normal radiograph levels. The net effect of this high X-ray level was

that the total integrated exposure for even a few seconds of motion, was extremely high. The

18 The Development of Motion-tracking Strategies for Cineradiographic Images

detrimental effects of a high X-ray dose on biological material were well established by this time,

hence the technique was not used in general medical practice.

However visualisation (viewed by a human eye, but not recorded) of X-ray motion sequences of
biological material could be performed with relative safety using fluoroscopy. Fluoroscopic
methods rely on the replacement of the photographic film with a thin screen of material that
emits visible light (fluoresces) when exposed to an X-ray source. Thinner, less-absorbent parts
of an object under inspection are seen as brighter areas on the screen, so the normal tonal range
is reversed compared to a film radiograph. The fluoroscopic screen does not integrate the
radiation, so no motion blur occurs. Apart from the obvious limitation of not producing a
permanent record, the major disadvantage of fluoroscopy over film radiography is poor image

detail and sensitivity. There are three main reasons for this loss of quality:

1) The image produced by a fluoroscopic screen is very dim compared to the brightness
of a film viewed on a light box. Available luminance levels are typically 100 times
lower (0.003-0.3 c¢d m™). At these very low levels, the human eye even when fully
dark-adapted, cannot perceive the small contrast or fine detail that is discernible on a

film radiograph.

2) Fluoroscopic screens are designed to produce the brightest possible images. The

resulting image is generally very coarse-grained and incapable of resolving fine detail.

3) Fluoroscopic screens have a unity contrast gradient, whereas film has a contrast
gradient of 4-6 at normal densities. The effect of this is that in film recording small

differences in X-ray intensity across an object are enhanced by this factor.

Screen Screen
st Lead Glass

Mirror
VIEWER

VIEWER
a) b)

Figure 2.8: Typical fluoroscopic configurations

Only a small fraction of the X-ray photons are converted into light on passing through a
fluoroscopic screen. Thus viewing the screen directly can result in significant X-ray exposure to

the operator. Two standard ways to minimise this exposure are shown in figures 2.8 a) and b).

X-ray Radiography 19

Both systems are encapsulated in a lead box. The first system has a lead glass sheet placed in
front of the fluoroscopic screen. At the typical 100kV, energy levels used with fluoroscopy, a
30mm sheet of lead glass provides effective attenuation while still providing adequate
transparency. The second system of figure 2.8b uses a silver-surfaced mirror of approximately

the same size as the screen.

Although the use of fluoroscopic screens enables the X-ray visualisation of moving objects, the
total X-ray dose is still very large because of the need for a high output (large mA) X-ray tube in
order to produce an adequately bright image. A number of methods have been devised to
amplify the light output of a screen. The first developments were electronic X-ray intensifier
tubes. In these devices an image from the output of a fluorescent screen positioned at one end of
a tube is converted successively to light and then electrons. These electrons are then focused
onto a smaller screen at the other end of the tube where the image is reconverted back into light.
Figure 2.9 shows such a system, where all elements are encapsulated in a vacuum envelope. The
process of reduction in size and electron acceleration produces a significant increase in image
brightness. The output image can be between 300 and 1000 times brighter than a simple
fluoroscopic image. The first of these tubes was made in 1948, both in Holland [2.7] and the
United States [2.8], with a primary or input screen diameter of 5 inches (approx. 127mm).
Tubes today are available with diameters up to 325mm (13 inches), enabling relatively large

objects or sections of an object to be imaged.

—

conversion
screens

X-rays ———————# Viewing screen

\ electrostatic lenses

Figure 2.9: Simplified X-ray image intensifier tube

The final output or viewing screen is typically only 60mm in diameter. The image produced at
this screen is bright enough to be viewed under ordinary lighting conditions. However because

of its small size, almost all practical systems use a video camera to view the image and display

20 The Development of Motion-tracking Strategies for Cineradiographic Images

the results on a video monitor (cathode ray tube, CRT). This has the added advantage that the

operator can be well out of the line of the primary X-ray beam.

The primary screen of the image intensifier tube consists of two layers back-to-back. The first
layer converts the X-ray image into light in the blue and ultra-violet part of the spectrum. This
matches the characteristics of photoelectric layer which performs the light-to-electron
conversion. The electrons are then accelerated by a high potential (typically 30kV) and focused
electrostatically onto the viewing screen. The viewing screen is a small disc on which a very thin
layer of very fine grain phosphor is deposited. This results in a high conversion efficiency and

good resolution.

Image sensitivity and resolution attainable with modern X-ray image intensifier systems are in
many cases better than direct fluoroscopy. Using high-sensitivity video cameras the net gain in
intensity can be as large as 10,000. With this high gain, the total X-ray dose for a ten-second
viewing of a section of the human spine in motion, can be as little as one quarter the dose
required for a standard chest radiograph [2.9]. If the video signal from the camera is fed to a
computer equipped with an analogue-to-digital (A/D) converter, it can be converted into digital

form and permanently stored for later retrieval, viewing, and analysis.

2.3 Radiographic Noise

This overall gain obtained by using a video fluoroscopic system does however incur a number of
penalties. The relatively simple film radiographic system is replaced by a complex system with
many conversion stages. Apart from the high cost of such a system, the increase in resolution
has been gained at the expense of reduced performance on low-contrast detail. Each stage of the
process adds noise to the original signal and any attempts to produce a sharper image will
enhance any noise present. Thus the problem of image quality is reduced to establishing the

minimum signal that can be detected in the presence of noise.

The quality of the resultant image will be fundamentally limited by the quantum fluctuations in
the number of X-ray quanta utilised in forming the image. Each stage amplifies the previous
stages output quanta, adding its own quantum fluctuation. Basic quantum physics shows that
the nature of radiation emission (light, X-rays, electrons), absorption and conversion, and the
associated natural fluctuations in quanta, is related to the square root of the average number of
quanta involved at each stage. The source of statistical fluctuation in each stage of a video
fluoroscopic system can be treated as being independent. The average statistical fluctuations at

the end of a multistage process is given by:

SS=st+ss 4845+ eq. 2.10

X-ray Radiography 21

2 2 . .
where 512 ,sz,s32 ,84, etc., are the average fluctuations introduced at each stage referred to the

value at the output. In a first approximation it can be shown that:

S=gNj eq. 2.11

where N, is the smallest number of quanta (photon or electrons) which are utilised at any stage
of the complete process, and g is the gain of this minimum quanta stage referred to the output. If

N quanta form the final output image then:

N=gN eq. 2.12

[’s

A model derived by Sturm and Morgan [2.10] to describe the overall video fluoroscopic system

1S:
0.5

x 100 eq. 2.13

g=2K|_¢g
C | mtN,

where d is the diameter of the circular image of the fluorescent screen, C is the image contrast,
N, is the number of visible quanta leaving the screen per square millimetre per second, ¢ is the

storage time of the device viewing the screen, and K is a constant between 3 and 5.

This equation specifies the smallest diameter image of contrast C in terms of the number of
utilised quanta. If detail sensitivity is the major concern, it can be shown that for an image
intensifier system the optimal overall amplification occurs when the number of quanta utilised at
the output device equal to the number of X-ray quanta absorbed and utilised by the primary

input fluorescent screen.

2.3.1 Radiographic Characteristics: Frequency domain description

The complete cineradiographic system from source to detector and display can also be modelled
as an image transfer process using an imperfect recording system. At each stage of the transfer
process the original image is modified due to the limitations in that stage. The recorded or

output image for each stage is given by:

Signaly,, ., = Signal,[M(f)* T(f)’] eq. 2.14

where M (f) represents the transfer characteristics of the radiographic system, principally
geometric unsharpness;and T'(f) represents the recorder characteristics, unsharpness and noise

both expressed in terms of spatial frequency f, in lines per millimetre.

Figure 2.10 shows the spatial frequency transfer curve for an ideal and practical radiographic

system. In the ideal system all frequencies are transmitted unattenuated. However for the

22 The Development of Motion-tracking Strategies for Cineradiographic Images

practical system the response has dropped to half its original value once the frequency has
increased to approximately 15 lines/mm. Frequencies above this are rapidly attenuated to the

extent that all frequencies above 20 lines/mm are not transmitted.

1.0
Ideal
Response |-
Practical
05 L

S 15 frequency Vmm

Figure 2.10: Spatial frequency transfer functions - ideal and practical

The basic parameters of radiographic imaging in terms spatial frequency theory are the Line
Spread Function (LSF) and the Modulation Transfer Function (MTF). If an X-ray beam passes
through a very narrow metal slit and the resulting image is recorded on film, then the film density
will be as shown in figure 2.11. This is the line spread function for the setup and characterises
the available image definition in a more formal way than was specified in section 2.2.1, relating

to unsharpness.

S
D
N
slit
e, e < >
density across the slit
film Y

Figure 2.11: Line spread function of a radiographic film

X-ray Radiography 23

If an object consisting of a series of close regularly-spaced bars is radiographed, for a perfect
system the resulting image should be that of figure 2.12a. For practical systems however the
image density distribution will be more like figure 2.12b where the edges of the bars have
become blurred and the contrast reduced. As the object bar and spacing is reduced, a stage will
be reached when the pattern is no longer resolved. The difference in density between the bar and
the space on the film is the image response, R, or modulation. The fineness of the pattern is the
spatial frequency, f. A plot of the magnitude of R against f is defined as the Modulation
Transfer Function, MTF. Strictly, the intensity distribution used to evaluate the MTF should be
sinusoidal rather than the square-wave produced by the bar/space test pattern. However
practically generating an object with this type of pattern is difficult. If the effects of phase are
taken into account by plotting the actual response, not just the magnitude, then the resulting

curve is referred to as the Optical Transfer Function (OTF) [2.11].

X-rays

SNZEN ZEN N PN N N PN 2

HEEEEN b

film
DA\ perfect
practical

Figure 2.12: Modulation transfer function

Practically in radiography it is easier to determine the MTF or OTF mathematically from the
experimental LSF curves by convolution with an appropriate sinusoidal function. If the line

spread function S(x), is symmetrical, then the modulation transfer function is given by:

24 The Development of Motion-tracking Strategies for Cineradiographic Images

[(S(x)cos(2mfx))dx
[S(x)dx

R(f)= eq. 2.15

Multiple spread functions in space can be combined together by convolution to produce a joint or

overall spread function. If f(x,y) represents the LSF due to geometric unsharpness and

g(x,y) the LSF due to film unsharpness, then the joint spread function h(x, y) is:

h(x,y)= f(x,y)®g(x,y) eq. 2.16
where ® represents the convolution operator.

In the frequency domain the overall spread function can be simply found by multiplying the
individual spread functions together. If F,G are the Fourier transforms of the line spread
functions due to geometric and film unsharpness, and H is the combined result, all in terms of

spatial frequencies u, v, then:
H(u,v)=Gu,v)x F(u,v) eq. 2.17
There is a close relationship between the LSF and the unsharpness curves of section 2.2.1.

Plotting the slope of the unsharpness curves against x, gives the LSF curve directly. Conversely

integrating the LSF curve will give the unsharpness curve.

1.0 =
= =~
B 3 NS \
0.8 ——rr—
g N .
Response - Q == Opics
AN
0.6 = '\
= Combined "\ . Display
W
0.4 B
I v
§creen . -
L " I e
= \L \‘ - Camera
-1.0 0.0 1.0

log (frequency) V/mm

Figure 2.13: Modulation transfer curves for video-fluoroscopic systems

X-ray Radiography 25

Figure 2.13 shows the modulation transfer function curves for each stage of a complete video
radiographic system [2.12]. It is clear from the curves that the limiting component in the system
is the primary conversion screen (X-rays-to-light), the optical system has much better
performance than is necessary. The curve for the camera is for an older Vidicon unit. Modem

charge-coupled devices (CCD) have significantly better modulation transfer functions.

Work by Schade [2.13] attempted to reduce the MTF for a system into a single value
'quality-criterion’. He introduced the concept of noise equivalent pass-band (N,), defined as:

N,=(MFT) df eq. 2.18

and showed that this measure correlated very well with the subjective mean observer scores

(MOS) of image sharpness.

2.4 Radiographic Information

Static radiographs potentially contain a large amount of information. The information capacity
of a media or communications system can be computed from basic information theory [2.14] by
considering the signal-to-noise ratio (SNR) of the system. Several authors [2.15, 2.16] have
applied this approach to the characterisation of the information capacity of photographic film.

The mean information content,/ recorded in an area, A of an emulsion is given by:

1= A& | 1+ S22 Vo bt eq. 2.19
N(u,v)

where S(u,v) and N(u,v) are the signal and noise functions, respectively.

Noise in a photographic emulsion can be characterised qualitatively in terms of granularity, as
discussed in section 2.2.1 A quantitative spatial frequency description of the noise properties of
photographic film is given by the Weiner spectrum. The Weiner spectrum, W(f), is analogous

to the power spectrum of electrical noise in electric circuit theory.

Because photographic emulsions are isotropic, measurements in only one direction are sufficient

to completely describe the mean information content:

I= 27L‘Jllog2 (1 +-R-'1(—fw)(—;))(ﬁ]fdf bits per unit area eq. 2.20

where P(f) is the input signal to the film, W(f) is the film Wiener spectrum and R,(f) is the

normalised MTF of the system.

26 The Development of Motion-tracking Strategies for Cineradiographic Images

This equation is an over-simplification of the process as it does not account for the fact that the
input signal consists of a finite number of X-ray quanta with their own inherent signal-to-noise

ratio.

A useful description of the upper limit of the mean information content of a film can be made by
considering the limiting case where the input signal tends to zero, as would be the case for a

low-contrast image. This results in the following description:

2
1=4.36 I % fdf bits eq. 2.21

Using this equation, the information content of a high quality 5 x 7 inch film is 5x10’ and for a
single video frame 3x10*, bits per square millimetre. Practically however, visual inspection has
shown that these figures highly over-estimate the available information content. At 70 kV, on
high-resolution film the information content is about 1000 bits / mm?, while for the highest

resolution video fluoroscopic systems the value is about a third of this figure.

2.5 Application of Radiography

In static diagnostic radiography of human or animal subjects, a practitioner is generally looking
for both large and small scale abnormalities with varying ranges of contrast. Large scale
dysfunction information may take the form of severe vertebral misalignment or a major breakage
in a limb. Small scale information may be of the form of a hair-line fracture or a tumour in soft
tissue. These diverse requirements greatly reduce the information content of importance in a
radiograph however the extraction of this useful or desired information requires a trained

radiologist.

A great deal of work has been performed concerning the automatic detection of specific
abnormalities in static film radiographs. Much of this effort has been directed at the detection of
cancerous tumours. The radiograph is first digitised to a very high spatial and amplitude
resolution and then algorithms proceed in the digital domain to locate a specific type of
abnormality that may exist. Any located abnormalities are then high-lighted automatically, and a
radiologist can visually check to ensure that the located item is in fact a true abnormality. These

systems can detect up to 95% of abnormalities, with near 100% repeatability [2.17].

In video cineradiography both spatial and amplitude resolution are substantially lower than static
film radiography, thus this method is unsuitable for the detection of small low contrast features.

However resolution is sufficiently high to enable the imaging of larger scale information.

X-ray Radiography 27

2.5.1 Spinal Motion Analysis

Static radiography has been used for almost a century by health professionals in determining
vertebral misalignment and degeneration in the human spine. A practitioner manually extracts
measurements by drawing lines directly onto the radiograph through well-defined and repeatable
points commonly known as 'landmarks'. Typically, as many as fifty measurements are produced
from a single full spine radiograph, taking typically up to an hour to perform. Further to this,
static radiography of the human spine provides no direct information concerning the kinematics
of bone motion. The spine is a structure designed to move during normal operation, hence
information concerning how vertebrae interact is vitally important to an accurate understanding
and diagnosis of spinal dysfunction. Cineradiography provides a means of recording the spine in
normal motion, however even a short sequence may contain many hundreds of images.
Attempting to process this large number of images manually and to extract the necessary
measurements is totally impractical. Apart from being a very laborious process, repeatability
and accuracy is unlikely to be very high due to operator fatigue. Clearly there is a requirement
for a system that can automatically and reliably extract the information of interest from each

image.

2.6 References
[2.1] Roentgen W.C. Annus Physics Leipzig, Vol. 64(1), 1898.

[2.2] Goodwin P.N., Quirby E.H. and Morgan R.H. Physical Foundation of Radiology,
4th Edition, Harper and Row Publisher Inc, pp 24..30, 1970.

[2.3] Maelissinos A.C. Experiments in Modern Physics, Academic Press, pp 28..32, 1966.

[2.4] Gorbunov V.I. and Melikhov V.S. Defektoscopia, No. 2, (A summary of
semiconductor X-ray sensors), pp 28..30, 1978.

[2.5] Juhl J.H. and Gummy A.B. Essentials of Radiologic Imaging, 6th Edition. J.B.
Lippincott Company, Philadelphia, pp 10..12, 1993.

[2.6] Halmshaw R. Industrial Radiology - theory and practice, Applied Science Publishers,
ISBN 0-85334-105-2, pp 122..125, 1982.

[2.7] Reynolds R.J. Cineradiography by the Indirect Method. Journal of Radiography,
vol. 31, pp 177..182, 1938.

[2.8] Teves M.C.and Tol, T. Philips Technical Review, No. 14, pp 33, 1952.
[2.9] Coltman J.W. Journal of Radiology, No. 51, pp 539, 1948.

[2.10] Internal Report, New Zealand Radiation Laboratory, 1986. Prepared for the Whitehead

Research and Chiropractic Clinic.

28

The Development of Motion-tracking Strategies for Cineradiographic Images

[2.11]

[2.12]

[2.13]

[2.14]

[2.15)
[2.16)
[2.17]

[2.18]

Sturm R.E., and Morgan, R.H. American Journal of Roentgenography, No. 62,
pp 617..622, 1949.

Jain A.K. Fundamentals of Digital Image Processing. Prentice-Hall Information and

System Science Series, pp 21..22, 1989.

Halmshaw R. Industrial Radiology - theory and practice, Applied Science Publishers,
ISBN 0-85334-105-2, p 297, 1982.

Schade O. Journal of the Society of Motion Pictures, Television and Engineering,
Vol. 73, No. 2, pp 81..84, 1964.

Shannon C.E. Journal of Bell System Techniques, No. 27, p 623, 1948.
Fellgett P. Journal of Photographic Science, Vol 11. No. 1, p 31, 1962.
Kanamori H. Japanese Journal of Applied Physics, Vol 7, No. 4, p 414, 1968.

Young A.A. and Axel L. Automatic Spot Detection in Chest Radiographs. IEEE
Transaction on Medical Imaging, Vol. 12, No. 4, pp 505..515, 1994.

3

Detecting Edges In
Cineradiographic Images

3.1 Image Segmentation

The aim of image segmentation is to decompose a scene into its components. At a high level,
these components are ideally the objects that the human observer perceives in the scene. In the
case of radiographs of the human spine, the main scene components are the vertebrae (including
the skull and the pelvis). Soft tissue such as skin and cartilage may also be perceived, but are
generally only of interest when looking for abnormalities such a tumours. For most scenes, the
recognition of the objects that form the scene is implicit in the high level segmentation process.
Image segmentation at a slightly lower level may involve the decomposition of the scene into
planar, convex and concave surfaces. These surfaces are also likely to contain different colours,
reflectance properties, and texture. The recognition of different spatial properties and
relationships enables a human observer to readily segment the scene on this basis. In many cases
this partitioning process can be considered as the identification of local intensity discontinuities.

These discontinuities form the boundaries of the objects.
There are three basic approaches to image segmentation:
e Pixel-based methods
e Region-based methods
e FEdge-based methods
Pixel-based methods use only the value of the individual pixels. Region-based methods analyse

the pixel values in larger areas. While edge-based methods attempt to detect edges and follow

them to form the boundaries of objects.

Pixel-based methods

Pixel or point-based segmentation methods use only the value of a pixel to determine whether or
not it belongs to an object. In order to do this, it is assumed that a range of intensity values will

uniquely characterise the object of interest. This is generally only the case for simple, well

30 The Development of Motion-tracking Strategies for Cineradiographic Images

structured scenes in which there is a clearly defined background (generally not of interest) and a
foreground, containing the objects of interest. Most pixel-based methods begin by computing a
histogram of the pixel values. If the histogram shows a bi-modal distribution with two distinct
maxima, then ideally a zone will exist between the two maxima where no features exist. A
threshold can be set in the middle of this zone to yield perfect separation of the objects and the
background. In practice however this is rarely the case, the two distributions will usually
overlap, resulting in a range of values that include both foreground and background pixels.
Choosing an optimal threshold in this situation (one that minimises the number of false
contributions) will usually involve a trial-and-error approach from a human operator. The
histogram may also contain multiple modes due to uneven illumination or slight differences in the
reflectance properties of some of the foreground objects. No single threshold will give
satisfactory separation of foreground objects from the background. One way to tackle this
situation directly but still maintain the simple point-based methods, is to determine the
probability distributions of the foreground objects and the background. Statistical analysis can
then be applied to the threshold decision process to minimise the number of erroneous inclusions
[3.1). However if the probability distributions have significant overlap, point-based

segmentation will not produce acceptable results.

Region-based methods

Region-based methods classify pixels using context. This can be effective because an important

characteristic of an object is its connectivity.

All the common approaches to region-based segmentation can be grouped under the common
heading of region-growing. The goal of region-growing methods is to use object characteristics
to map individual pixels into sets of pixels with similar local properties. Most commonly,
geometric characteristics of regions are considered to be connected two-dimensional areas. A
wide range of classes of connectivity can be specified, including disconnectivity, non-simple
connectivity (holes are allowed) and boundary smoothness. This connectivity may not be
restricted to a single spatial resolution. The image may be decomposed into a pyramid structure
via a set of rules and regions determined by scanning up through the pyramid [3.2]. In all
methods the nature of the rules depends on the goals of the particular technique. A region may
be an entire object or simply a part of an object. Higher level rules can be applied to part object
regions to combine them to form an entire object. A wide range of region-growing algorithms
have been described in the literature [3.3], but a variation on an early method called the

split-and-mer ge algorithm [3.4] is often used.

Detecting Edges In Cineradiographic Images 31

Edge-based methods

Early experiments by Attneave [3.5] on visual perception illustrated the extreme importance of
boundaries to image recognition. Many objects may be easily recognised from crude (binary)
outline sketches. Devising algorithms to find the boundaries of objects directly from their
grey-level values proves to be a difficult task when the shape of the boundaries are complicated.
Better results are obtained by first finding all the intensity discontinuities or edges in the image
and then through appropriate rules, composing these edges into the actual objects boundaries.
This intermediate representation approach serves to take boundaries that are highly
model-dependent and decompose them into a series of local edges that are highly
model-independent. However if the local edges are too fragmented, then the recomposition back

into the actual object boundaries becomes a difficult task.

Many different edge operators have been described in the literature. The reason for the large
variety is that different edge operators perform best in different situations. The unifying feature
of most of these operators is that they compute an orientation or direction, usually aligned with

the direction of maximal grey-scale change, and a magnitude describing the size of the change.

Edge operators fall into three categories:
e operators that approximate the mathematical gradient
e operators that use multiple masks with different orientations

e operators that fit local intensities with parametric edge models

In general all these methods will involve the setting of some form of threshold or decision

parameter in order to determine the presence of an edge.

If in a cineradiographic sequence of the human spine the vertebrae can be identified in each
frame by tracing their outlines or boundaries, then the problem of determining their motion is
greatly simplified. The difference in position and orientation of each vertebral boundary through
the sequence will describe the motion. If this motion is the result of in-plane movement (parallel
to the image plane), then as the vertebrae do not deform, their boundaries will not change shape.
Determining the difference in position and orientation of two boundaries (closed outlines) with
the same shape is relatively straightforward. However if the orientation of each vertebra is to be
meaningful with respect to the alignment of the spine as a whole, then the reference orientation
for each vertebra should be consistent with the orientation perceived by a spinal-care
practitioner. Section 8.2 of chapter 8, details some of the difficulties in computing natural or

perceived orientation.

The following sections contain a thorough investigation of edge operators with respect to the

detection of vertebral boundaries in cineradiographic images of the human spine.

39, The Development of Motion-tracking Strategies for Cineradiographic Images

3.2 Low-level Edge Detection Operators

The boundaries of objects are often indicated by local intensity discontinuities. In order to detect
these intensity discontinuities a filter is required that emphasises changes in intensity and
suppresses areas with constant intensity. Figure 3.1 illustrates that derivative operators perform
such an operation. The first derivative shows an extremum at the edge, while the second
derivative crosses zero where the edge is at its steepest. Both these criteria can be used in the

detection of edges.

original

L.

first-order derivative

second-order derivative

Figure 3.1: Noisy 1-D edge and first and second derivatives

For a continuous image /(x,y), containing a simple intensity edge, the first derivative (or
gradient) will reach a local maximum in the direction of the edge. If the gradient of I is
measured along r in the direction 0, then this can be used to detect the presence of an edge (see
figure 3.2).

Mathematically this gradient is:

%—i§t+%%=1xcose+lysin6 eq. 3.1

The gradient takes on a maximum value when, 9/d6(0l/dr) =0, corresponding to the direction

n, normal to the edge.

Applying this result to equation 3.1 produces the direction and magnitude equations,
3] &
6, =tan™'| X eq. 3.2

&
y

Detecting Edges In Cineradiographic Images 33

dl (2.
—_ =1+ 1 L B%
(ar],m y “

Where Gg is the direction of the edge.

From this result two types of edge detection operators can be defined: gradient operators that
use finite differences to approximate the orthogonal gradients /,, Iy and compass operators that

approximate the directional gradient gf /dr .

¥ I(xy)

~
P4
X

Figure 3.2: Gradient of I(x, y) along direction r

Let H denote a p x p mask, then the inner product of this mask and an arbitrary image I, at

location (m,n) is defined as:

r r
(I,H)m‘n = ZZh(x,y) i(x+m,y+n) eq. 3.4
x=l y=1
3.2.1 Gradient Operators

Gradient operators are represented by a pair of masks or templates H;, H, which measure the
gradient of an image /(x,y) in two orthogonal directions. At each location in the image the
masks are convolved with the local region (inner product) and the results combined to give the

gradient vector magnitude.

Defining the two bi-directional gradients g, =<I,H1>mn, &= <I,H2>mn then from equation

3.3, the directional gradient magnitude is given by:

g(m,n) =g’ (m.n) + g5 (m,n) eq. 3.5

34 The Development of Motion-tracking Strategies for Cineradiographic Images

In this situation a pixel location (m,n) is declared an edge pixel if g(m,n) exceeds some

specified threshold.

Table 3.1 contains three of the common gradient operators. The origin denoted by [] is located

at the top right-hand comer for the Roberts [3.6] operator, and in the centre for both Prewitt

[3.7] and Sobel [3.8] operators.

Operator H, H,
Roberts [O] 1 [1] 0
-1 0 0 -1
Prewitt -1 0 1 (=] -7 N
-1 [0] 1 0 [0] O
-1 0 1 B! 1 1]
Sobel -1 o 1 (-1 -2 -1]
=2 [0] 2 0 [0] O
-1 0 1 (12 1]

Table 3.1: Some common gradient operators

3.2.2 Compass Operators
Compass operators use multiple gradient masks orientated in a selected number of directions to
measure the local gradient. If g, (m,n) denotes the gradient computed in the direction 6, then

the gradient at position (m,n) is given by:
glm,n) = mkax(|gk(m,n)|) eq. 3.6

A pixel location (m,n) is once more declared an edge pixel if g(m,n) exceeds some specified

threshold.

Kirsch [3.9] was one of the first people to study the use of compass operators when working
with biological images. Table 3.2 contains four north-facing compass gradient masks. The mask
for the other eight compass directions are obtained by a circular shift of each element about the

centre position. Each shift corresponds to a rotation of 77/4 or 45°.

Detecting Edges In Cineradiographic Images 35

(1 1 1] (@ 1 1]

1 [2] 1 0 [0] ©

-1 -1 —1] -1 -1 -1]
a) b)

EE (1 2 1]

-3 [0] -3| (Kirsch) 0 [0] O

-3 -3 -3] -1 -2 -1
c) d)

Table 3.2: Compass Gradients: North T direction

3.2.3 Laplace Operators

Let the gradient of a 2-d function f, be defined as:

.

—n +—n, eq. 3.7

B¢ Zx 8)’ Ly

where V denotes the gradient operator and n,,n, are unit vectors in the direction of x and y

respectively.

Then the Laplacian of f is defined as:
If
%}2

V2f=Vf.Vf=£J;+ eq. 3.8
ax..
where '.' denotes the vector dot-product operation

From equation 3.7 it is clear that the Laplacian is a second-order non-directional (isotropic)

linear operator that can be formed by a double application of the gradient operator [3.10].

0O -1 O -1 -1 -1 1 -2 1

-1 [4] -1 -1 [8] -1 -2 [4] -2

0O -1 O -1 -1 -1 1 -2 1
a) b) c)

Table 3.3: Discrete Laplace Operators

Because the Laplace operator involves second-order derivatives and hence double
differentiation, it is more sensitive to noise than the first-order gradient operator. Also, direct

thresholding of V? f produces a double edge (see figure 3.1). For this reason the zero-crossings

36 The Development of Motion-tracking Strategies for Cineradiographic Images

of the Laplacian are better at detecting edge locations. On a 2-d grid, a zero-crossing is declared

if there is a zero-crossing in at least one direction.

Table 3.3 contains three standard 3x3 masks that approximate the Laplacian.

3.2.4 Stochastic Gradients

The previous two edge operators can be shown to perform poorly in the presence of noise [3.14].
Prefiltering the image by some form of low-pass filter can improve their performance, however a
better approach is to design the edge extraction masks to take into account the presence of noise
in a controlled fashion. Masks designed in this way are called stochastic gradient [3.11] masks.

Their calculation requires the postulation of an edge and noise model.

Consider an edge model in which the edge transition is only one pixel wide (see figure 3.4). To
detect the presence of this type of edge at position (p,q) the horizontal gradient could be

computed as:

gl(p,q)=f,(p,q—1)—?h(p,q+1) eq. 3.9

Where | f(p,q) and I:)(p.q) are the optimal forward and backward estimates of /(p,q) based

on the noisy data over some local region W.

If the noise is assumed to be additive and Gaussian, then the best linear mean-square semicausal
(causal in the n direction) FIR (Finite Impulse Response) estimate [3.12] for i f(p.q) can be
computed in the local neighbourhood from the observed values to the left of position (p,q).
Similarly the best estimate for fh(P,q) can be computed from the observed values the right of
position (p,q). All that is required to perform this calculation is a specification of the expected

signal-to-noise ratio (SNR) local to the edge.

@ @
I{m,n)
—Sn
° °
X X X @) X X X n
X X X @) X X X
(P4,
X X X ® X X X m
X X X (@) X X X
X X X @) X X X
W

Figure 3.3: One pixel wide edge transition model

Detecting Edges In Cineradiographic Images 37

Using the linear mean-square FIR estimation, the H, normalised stochastic masks for a low and
high SNR are shown in table 3.4. The complementary orthogonal mask H,, is given simply by
HIT. For increasing SNR the mask weights decay rapidly, eventually leading to an edge estimate

based only on the two values immediately adjacent to the centre position.

Size SNR=1 SNR=9
097 0 -0.97 0.77 0 -0.77
3x3 1.00 [0] -1.00 1.00 [0] -1.00
0.97 0 -0.97 0.77 0 -0.77

[0.80 0.84 0 -0.84 -0.80] [0.27 0.36 0 -0.36 —-0.27]

0.85 0.90 0 -0.90 -0.85 0.37 056 0 -0.56 -0.37

5x5 0.87 100 [0] -1.00 -0.87 0.46 1.00 [0] -1.00 -0.46

0.85 0.90 0 -0.90 -0.85 037 0.56 0 -0.56 —-0.37

(0.80 0.84 0 -0.84 —0.80] 0.27 036 0 -036 -0.27,

Table 3.4: Stochastic Gradient Masks

3.2.5 Performance of Low-level Edge Detection Operators

Comparing the performance of edge detectors is a very difficult task. Some operators may find
all edges but respond to noise, while others may be insensitive to noise but miss some important
edges. A number of measures have been devised to quantitatively compare the performance of

edge detectors in the presence of noise.

Performance Measures

A simple performance measure for edge detection in the presence of noise can be computed from
the ratio of the number of declared edges pixels, n,, to the number of new or missed edge pixels,
n,. Solong as n, is constant for both the noiseless and noisy images, then the edge detection

error rate is :

P=—= eq. 3.10

This error measure is too simplistic for realistically comparing edge operators as it does not
account for the location of a new edge pixel relative to the nearest true edge pixel. Pratt's [3.13]
figure of merit attempts to take into account the effects of true and falsely detected edge points

and their relative distance apart. This figure of merit is defined by :

1 X 1
= 1 BYlI
P 2[l+ad‘2] “d

max(ND, N,!) i=1

38 The Development of Motion-tracking Strategies for Cineradiographic Images

where N, and N, represent the number of detected and ideal edge points respectively, a is a

scaling parameter (often set to unity), and d is the distance from each detected edge point to the

nearest ideal edge point.

Using this performance measure, a review of edge operators [3.14] showed that stochastic
operators performed best in the presence of additive Gaussian noise, followed by Prewitt, Sobel

and Kirsch operators scoring similarly, and Roberts with the poorest performance.

Pratt's performance measure does not compare well different edge operators when the detected
edge segments are highly fragmented. This limitation prompted Kitchen and Rosenfeld [3.15] to
develop a measure that provides information about the thinness and continuity of the edge
segments. However their measure has not been widely used due to its poor discrimination. This
poor discrimination has been illustrated by several authors [3.16], where a fairly high score for

the continuation measure was recorded for unrelated edge images.

Low-level Edge Detection Results

Figure 3.4a contains a single frame from a cineradiographic sequence of the cervical section of
the human spine. A vertical section of this image centred about the vertebrae and covering from
the bottom of the skull to fourth vertebra, is shown enlarged in figure 3.4b. This sub-image was

used to test the performance of all the low level edge operators.

Figure 3.4: a) Original cervical image b) Enlarged test section

Table 3.5 contains the results of applying the low-level edge operators to the small test image.
The gradient images are the raw output of each operator scaled to fit the 0-255 byte range. The
optimally thresholded images are the result of applying a global threshold to the gradient image

chosen to maximise Pratt's figure of merit, shown at the bottom of each edge image.

ageuw 159 [91A130 0) parjdde s10je1ado 23pa [9A3[-MOT] S'EIqeL

Table 3.5 Roberts Prewitt Sobel Kirsch Laplacian Stochastic 3x3 | Stochastic 5x5
SNR =9 SNR=9
Gradient
(scaled)
Optimally
thresholded

P=45.3%

1

P=42.7%

P2
P=44.7%

P=24.3%

| (B N
P=44.4%

P=433%

sadpwy oydpidoipriaui)) uj Sa3py SunI1a(q

6t

40 The Development of Motion-tracking Strategies for Cineradiographic Images

The figure of merit was computed with respect to a reference edge image (see table 3.6)

generated manually, by tracing the vertebral outlines. The scaling parameter g, is set to unity.

It is clear visually that none of the edge operators extract the vertebral edges satisfactorily. The
edges are thick and very fragmented, with many detected pixels not related to the vertebral
boundaries. For the second order Laplacian case (mask b from table 3.2), the optimally
thresholded image is the result of zero-crossing detection. A zero-crossing was declared if a
change of sign in the gradient was detected in a 3x3 neighbourhood in any of the four directions
about the middle pixel (see section 3.3). To try and reduce the number of falsely detected edge
pixels, the plus and minus deviation from zero had to exceed a threshold before a zero-crossing
was declared. Although this improved the results, the thresholded Laplacian image in table 3.5 is
the best that could be obtained. It is extremely difficult to make out any of the vertebral edges in

this image as they are extremely fragmented and severely contaminated with noise.

The last pair of images in table 3.5 were produced using the larger 5x5 stochastic masks
computed for a signal-to-noise ratio of 9 (see table 3.3). This larger operator produces greater
smoothing, as is evident in the gradient image. Once thresholded, the edge image shows reduced

noise, but this is at the expense of thicker edges and the non-detection of weak vertebral edges.

Overall, the operators (with the exception of the Laplacian) score similar figures of merit even
though the computational cost between operators is significantly different. The Prewitt gradient

operator scored the highest with 45.3%.

3.3 High-level Edge Detection

The low-level edge operators of the previous section are principally characterised by the
measurement of a local derivative to indicate the presence of an edge. This simplistic approach
at first appears to make no assumptions about the nature of the intensity discontinuities (edges)
or the underlining noise characteristic of the signal. However, implicit in this measurement is the
assumption that the local derivative exists and can be reliably estimated from a small number of
values in a local neighbourhood in the discrete image. This estimation problem is an

ill-conditioned problem in the Hadamard (3.17] sense.

Most high-level edge detection schemes attempt to incorporate directly, assumptions about the
nature of an edge, and its relative strength with respect to local background noise. There are

three basic approaches:
e Human visual theory computational approach
e Optimal edge detector computational approach

e Rule-based approaches

Detecting Edges In Cineradiographic Images 41

The basis for the first computational approach to edge detection is from the framework of the
theory of human vision proposed by Marr and Poggio [3.18] with reference to Logan's [3.19]
theorem of early vision. From this work Marr and Hildreth [3.20] proposed a theory for edge
detection in which oriented primitives called zero-crossing segments are computed over a wide
range of spatial scales. Rules are then applied to combine the oriented zero-crossing primitives

to produce a description of the image called a primal sketch.

Canny laid the foundations for the second of these three approaches with his theory for an
optimal edge detector [3.21]. Methods that follow this approach proceed by postulating an edge
and noise model (as for Stochastic gradients) and then compute an optimal operator for these

proposed models using Canny's criteria.

The third approach to high-level edge detection usually begins with edge strength and direction
maps computed by low-level gradient based operators. Rules are then applied to these data to
enable the linking and thinning of edge pixels and the removal of isolated non-edge pixels.
Typical rules include such properties as smoothness of orientation and neighbourhood

connectivity [3.22].

3.3.1 Human Visual System (HVS) Based Edge Detection

The theory of edge detection proposed by Marr and Hildreth in 1980 was derived from
physiological models of early human vision. Their theory produced results that were consistent
with many of the findings of psychophysical experiments. The underlying premise for the
Marr-Hildreth edge operator is that intensity changes in natural images occur over a wide range
of spatial scales and thus should be detected separately at each scale. To realise this result the
image must be locally smoothed by an optimal filter at various resolutions and then intensity
changes detected at each resolution. Such an optimal smoothing filter should be approximately
band limited to constrain the scale over which intensity changes take place. This filter should be
smooth and localised in the spatial domain, and in particular its spatial variance should be small.
The smoothing filter proposed by Marr and Hildreth, the Gaussian, is optimal in both its spatial
and frequency localisation [3.23). For two-dimensional continuous signals the Gaussian is given
by:

&
G(r)=?e 26" eq. 3.12

where r is the radial distance from the origin and O is the filter variance.

The maximum size of r constrains the size of the neighbourhood in which smoothing occurs.

The filter variance O govemns the rate at which the filter decays. A small ¢ produces a rapid

42 The Development of Motion-tracking Strategies for Cineradiographic Images

decay and hence a sharp localised response. While a large O produces a slow decay with

increased smoothing over a larger area (see figure 3.5).

KEY: solid s=1, dotted s=2, dotdash s=3, dashed s=4

1 T
normalised
response 0.81 7
0.6 .
0.4 S 5
~
U A
~
2
-10 8 10
radius r
KEY: solid s=1, dotted s=2, dotdash s=3, dashed s=4
1 T
0.5(-
normalised
response |- -
O)— =
=) / L; -
— S ——
-0.5
210 8 10
radius r

Figure 3.5: Normalised Gaussian and Laplacian of a Gaussian (LOG)

In order to detect intensity changes at each resolution Marr-Hildreth proposed the use of the
non-directional second derivative operator the Laplacian (see section 3.2.3). The Laplacian
operator can be combined with the Gaussian filter to produce a single edge enhancement
operator, the Laplacian of a Gaussian (LOG, see equation 3.12). This is approximately a
bandpass operator with a half power bandwidth of about 1.2 octaves. The use of this operator is

consistent with the physiological models of simple visual cells proposed by Marr et al [3.24].

" 2 | (207
V2G(r =—'-(1—-—’-—-)e
(r) ot 252 eq. 3.13
The third part of the Marr-Hildreth edge detector concerns the combination of zero-crossing
segment information from different resolutions. Marr and Hildreth introduced the spatial
coincidence assumption from which three rules were derived to combine data. This assumption

can be briefly stated as:

If the zero-crossing segments of independent LOG signals appear over a contiguous

range of resolutions with consistent position and orientation at each resolution, then

Detecting Edges In Cineradiographic Images 43

the set of zero-crossing segments can be taken to indicate an intensity change due to a

single physical phenomena.

The three rules deal with the specific cases of isolated edges, spatially close parallel edges (bars),

blobs and terminations.

2 Zero-crossing
v G(O;) detection

Output Image
Spatial | (primal sketch)

Input Image Zero-crossin —)

. i L ‘
ossing coincidence

detection

rules
Zero-crossing _,_9
VG :
Gl n) detection

Figure 3.6: Marr-Hildreth Edge Detector

Figure 3.6 shows a block diagram of the complete Marr-Hildreth edge detector. The input image
is filtered by a bank of n, LOG filters, covering a range of spatial variances, 0, to 0,. The
zero-crossings of the filter outputs are then detected and combined using the spatial coincidence

rules to form the output primal edge image (sketch).

A number of practical issues arise in the implementation of the Marr-Hildreth edge detector. The
most important issue concerns the choice of the bank of LOG filters. The spacing of the filters
has to be wide enough such that the channels are relatively independent. The half power
bandwidth of a Gaussian is approximately 1.2 octaves and it drops to less than 10% power at
two octaves. Thus a practical filter spacing should be greater than 1.2 octaves. Also to ensure
that filter error (due to the discrete implementation) is constant at all scales, the size of the filter
radius must increase in proportion to 0. Furthermore, the range of resolutions (number of
filters) needed to detect all intensity changes in an image is directly dependent on the content of
the image, which in general is unknown. Marr and Hildreth used the results of psychophysical
experiments [3.25] to infer the range of resolutions present in the human visual system.
Attempting to implement this range of filters on a machine vision system results in reduced filter
channel independence due to the relatively low spatial resolution of most machine vision systems
in comparison to the human eye. This reduced channel independence may greatly reduce the
effectiveness of the simple rules proposed by Marr and Hildreth for combining the zero-crossing

segments from the output of each channel.

44 The Development of Motion-tracking Strategies for Cineradiographic Images

a) centred aligned b) off-centre

Figure 3.7: one-dimensional zero-crossing detection

The second practical issue of concern in the implementation of the Marr-Hildreth edge detector is
zero-crossing detection. This issue is almost ignored in the literature, when it is addressed, it
usually takes the form of a statement such as, "in two-dimensional signals a zero-crossing is
declared if a zero-crossing occurs in any direction”. The application of this statement appears
at first to be a straight forward, as unlike most other methods for detecting intensity changes, no
threshold is required. However, on closer examination, a number of difficulties arise due to the
discrete nature of the signal [3.26]. A zero-crossing will be detected when there is a change of
sign in any direction about a location. If the location is centred on the actual zero crossing as in
figure 3.7a, then detection is straight forward as the magnitude of the positive and negative
deviation will almost be symmetric. A relatively uncritical threshold z, can be set to determine
the presence of the zero-crossing. However in practice, zero-crossings will not be centred on the
pixel grid, resulting in an asymmetric magnitude deviation about the true location (see figure
3.7b). The choice of the threshold now becomes more critical to successful detection of the
zero-crossing. A new but elegant solution to this problem is to produce a magnitude image
where the pixel value is weighted by how far it is away from the nearest local zero-crossing
[3.27]). Simple linear interpolation can be used to perform this task resulting in what looks like
an anti-aliased zero-crossing image. A global or adaptive threshold can then be applied to
produce the zero-crossing map required for the standard Marr-Hildreth edge detector.
Alternatively the additional information contained in zero-crossing magnitude images could be

used to directly assist in combining the output of each channel.

3.3.2 Optimal Edge Detector

An edge can be defined as a specific shape in the intensity verse distance space. Thus edge

detection can be reduced to searching for the right shape in this space. From this computational

Detecting Edges In Cineradiographic Images 45

definition of edge detection, Canny [3.18] proposed a theory for optimal edge detection. Central
to his theory is the optimisation of three criteria; good signal-to-noise ratio, good localisation,
and maximum suppression of false responses. He derived quantitative measures for these three

qualities which are represented by equations 3.13 to 3.15 respectively.

Define f(x) as the optimal edge operator and E(x) as the edge signature to be detected. If the
signal noise is assumed to be additive, white and Gaussian with variance o , then the

signal-to-noise ratio, S, at the edge location (x = 0) is :

J7B0 (0

S=
o[o

eq. 3.14

Good edge locality, L, can be measured as being inversely proportional to the position variance

of the maximum of the filter, about the supposed edge location.

7B 0f (ax
L= ‘ - ‘
W7Lr oPas

eq. 3.15

where f'(x) is the first derivative of the optimal filter and E' (x) is the first derivative of the

edge signature.

The third measure, suppression of false responses, C, can be defined as being proportional to the

mean distance between the maxima of the filter response to Gaussian noise.

1 [T @F e
2w\ [T (0T dx

eq. 3.16

where f'' (x) is second derivative of the optimal filter and w is the half width of the filter.

Canny found the optimal operator for a step edge signature by combining the first two measures
to produce an edge performance measure P, where P = (SL)z. He then maximised P subject to
the third criterion of minimal number of false responses. The equations resulting from this
optimisation were long and complex and difficult to implement. This lead Canny to proposed an

approximation to his best operator, the derivative of a Gaussian, VG(r).

VG(r)=~2—;’;7€(2°2] eq. 3.17

46 The Development of Motion-tracking Strategies for Cineradiographic Images

The normalised response of this operator for a range of 0, is shown in figure 3.8. The operator

is simple in form and its perforinance measure is 80% relative to Canny's best operator.

KEY: solid s=1, dotted s=2, dotdash s=3, dashed s=4

1 T) T T
~ .
. /
e 5
e
0.5k 7]
normalised " “
response nct
. —
0F —
P
/
'05 ™ / / 2
Y 7
= -
-1 L 1 L 1 |
-10 -8 -6 -4 -2 6 8 10
radius r

Figure 3.8: Normalised derivative of a Gaussian

Many other authors have extended Canny's work, notably Spacek [3.28] and Deriche [3.29].
Spacek formed a performance measure by combining all three of Canny's quantitative measures.
In doing this he greatly simplified the differential equations whose solution is the optimal edge
operator. The final filter contained six parameters, two of which Spacek fixed, and then found
the other four by applying boundary conditions. Deriche followed the same approach as Canny
but allowed his filter to have infinite extent. He then was able to show that filters of this kind
can be implemented recursively and thus very efficiently. The final functional form of his filter
contains only two parameters. These two parameters could be chosen freely so that the signal-

to-noise ratio can be traded at the expense of good locality and vice versa.

The algorithm that has become commonly known as the Canny edge detector is shown in
figure 3.9. The first stage is the linear Canny filter, the derivative of a Gaussian. The output of
this filter is passed through two very non-linear stages, non-maximum suppression and hysteresis

thresholding, finally producing the output edge image.

Non-maximum suppression had been used in other edge detectors [3.30] prior to Canny's work.
The basic operation attempts to determine if at a candidate edge point, the gradient magnitude is
a local maxima in the direction of the gradient. If the edge point is not aligned with the gradient
direction, then the location is suppressed. This operation can be implemented in a number of
different ways. Canny originally fitted a 2-D linear surface to a 2x2 neighbourhood in order to
estimate the direction of the local gradient. A more common approach is to use a 3x3

neighbourhood containing the nearest eight neighbours. The centre value is a local maximum if

Detecting Edges In Cineradiographic Images 47

in the direction it points (to the nearest 45° increment) the two nearest neighbours have a lower

gradient magnitude.

Input Image O(Utiput Image
E— Non-maxima Threshold edge map)
G with >

Suppression

Hysteresis

Figure 3.9: Canny Edge Detector

The combined effect of gradient filtering and non-maximum suppression is very similar to
zero-crossing detection of the second derivative. However it has significant advantage in
detecting local extrema when they are points of inflection. A point of inflection may occur as
either a maximum or a minimum of the absolute value of the first derivative. Maximum points
of inflection correspond to locations of sharp variation whereas minima points of inflection
correspond to slow variations. Using a second derivative operator it is very difficult to
distinguish between these two type of zero-crossings. In contrast, using a first-order derivative

with non-maximum suppression, only points of sharp variation are chosen.

The third stage of Canny's edge detector is thresholding with hysteresis. Canny's proposed this
heuristic strategy as a way to reduce spurious responses while preventing the fragmentation of
the detected edges. In this strategy, two threshold limits are set on the output signal-to-noise
ratio of the operator. The start of an edge segment is declared at a point where the gradient
magnitude is above the upper threshold. The edge segment is grown by adding the nearest
neighbour pixels that have a gradient magnitude that is above the lower threshold. A segment is
terminated in the direction of growth when the nearest neighbour gradient magnitude drops below
the lower threshold. Control can also be put on the length of the edge segments. Segments

shorter than a specified length can be discarded.

In order to set the two threshold levels, an estimate has to be made of the image noise level. In
Canny's original work the image model edges are assumed to be step transitions and the image is
contaminated with additive white Gaussian noise. Applying a gradient of a Gaussian operator to
such an image will produce an image whose histogram can be shown to be a Rayleigh
distribution [3.31] everywhere, except at the edges. A Rayleigh distribution takes the form of
equation 3.18. It is very similar to the gradient of a Gaussian equation, 3.17. If a Rayleigh
distribution is fitted to the lowest k% of the gradient magnitude histogram then the lower
threshold can be set at say the 90 percentile of this fitted distribution. The upper threshold can

then be set to be some ratio of the lower threshold.

48 The Development of Motion-tracking Strategies for Cineradiographic Images

m
R(r)=?.%e[?] an 3418

Histogram: Gradient of a Gaussian filtered image

1 T T T T T

Normalised Count

1 | L A Al

0 50 100 150 200 250
pixel value

Expanded Histogram; KEY: solid = original, dashed = Fitted Rayleigh distribution at 30%
1 U T

- T-lower T-upper

5 08r 1

o

(&]

= 06 -

3

£

= | -

£ 04

o ~

< 02t S -
30 % 0% > — M

0 5 i 5 I 1 I aliz= - —— L L
0 10 20 30 40 50 60 70 80 90 100
pixel value

Figure 3.10: Thresholding with Hysteresis - threshold selection

Figure 3.10 illustrates the computation of the threshold levels from the histogram of the cervical
section test image filtered with a gradient of a Gaussian with 0=0.8. The top graph is the
normalised histogram for the image, while the bottom graph is an expanded histogram with a
Rayleigh distribution fitted to the first 30 percentile data. The lower threshold (T-lower) is
computed at the 90 percentile level of the fitted distribution and the upper threshold (T-upper) is

set to twice this lower threshold.

Although the three-stage process described above is commonly referred to as the Canny edge
detector, Canny originally proposed [3.21] that it should be applied at a number of discrete
resolutions and the results combined together using a set of predefined rules. Canny's feature
synthesis stage performs the same basic operation as the last stage of the Marr-Hildreth edge
detector, where spatial coincidence rules are applied to combine the zero-crossing maps. The
underlying problem with both these methods is that there is no known optimal algorithm to

integrate edge maps. In fact, integrating the edge maps is another ill-posed problem.

Detecting Edges In Cineradiographic Images 49

3.3.3 Rule-based Edge detection

Rule-based edge detection schemes generally begin with the magnitude and direction information
produced by applying some form of gradient operator(s) to the image. A decision strategy then
proceeds to use this information to determine appropriate candidates (pixel locations) for the
start of significant edge segments and then begins to build each edge segment. Because the edge
segments build up incrementally, algorithms of this type are often called sequential edge
detectors. A typical sequential edge detection algorithm by Delp and Chu [3.16] is implemented

as an edge tracing algorithm, and is described as follows:

"Search along each row (starting at the top left corner) for a pixel with an edge strength
above a contour start threshold that is not already an edge point. This pixel is classified

as an edge point and the algorithm begins to trace the edge segment.

Candidates for the next edge point are those pixels within a one pixel radius whose
direction is within A0 of the direction of the current edge point. The procedure then
starts from this new edge point and checks locally for possible edge points. If another
edge point is not found, the edge segment is terminated. If the length of a contour at
termination is below a minimum then it is discarded. If the newly-found contour connects
to an existing contour then they are merged. The algorithm then returns to the
neighbourhood to search for the next start point. Algorithm termination occurs when the

bottom right corner of the image is reached."”

The two critical elements of sequential edge detection algorithms are the next-point criteria and
threshold selection. Approaches to choosing the next point based on the previous point include
dynamic programming, graph-searching techniques [3.32], non-maximum suppression and
connectivity measures such as that of Kitchen and Rosenfeld [3.15]. Similarly, a wide range of
methods have been described for determining threshold selection. They include, simple fixed

threshold, Frei-Chen classification rule [3.30], and a locally adaptive threshold [3.33].

With such a wide choice of methods at every stage of a rule-based edge detection algorithm
(including the selection of the operator to compute the local gradient and direction information),
almost all practical implementations have been assembled heuristically, usually on specific types
of images. Algorithmic complexity and computational cost vary greatly between different
implementations. Performance of such algorithms can be extremely good, with figures of merit
(see equation 3.11) in excess of 90% for image signal-to-noise ratios greater than 15dB [3.16].

However for SNR's below 15dB, results are extremely variable and highly image dependent.

3.3.4 Combining Fragmentary Edge information

The result of applying an edge-detection algorithm to an image is the reduction of the grey-level

information to binary information consisting of edge segments. These edge segments mark the

50 The Development of Motion-tracking Strategies for Cineradiographic Images

location of the significant local intensity changes in the original image. Often the most
significant intensity changes occur at the boundaries of objects or geometrical features. Due to
photometric effects, noise and limitations of edge detection algorithms, an object boundary may
have been detected as a number discrete edge segments. If geometric features of an object such
as size and orientation are to be computed, then it is useful to have complete object boundaries.
The task of combining the fragmentary edge information can be approached in a number of
ways. Popular methods include edge-linking [3.34], heuristic graph searching [3.35], dynamic

programming [3.36], and the Hough transform [3.37].

The first three of these methods view a boundary as a path through a graph formed by linking
edge segments together. The linkage rules form the procedure for connecting the edge segments.
In the case of heuristic graph searching methods, a proposed path between two points A and B, is
considered to consist of node locations x,,k =1,2,... (corresponding to the pixel coordinates).
If given an evaluation function ¢(x,) which measures a value for the path constrained to go
through node x, then each successor of the start node is examined and the one selected that
maximises @(x). This selected node becomes the new start node and the process is repeated
until B is reached. The node selection from A to B constitutes the boundary. The computational

cost of such a procedure is highly dependent on the form of ¢.

Unlike heuristic graph searching methods, dynamic programming aims to find the global
optimum of a multi-stage process, given a particular evaluation function. The method is based

on Bellman's principal of optimality [3.36], which states:

“The optimum path between two points is also the optimum between any two points lying

on the path.”

Thus if C is a point on the optimum path between A and B, then the path CB is the optimum path
between C and B, no matter how one arrives at C. If there are N nodes to be considered for the
path, then the dynamic programming procedure reduces the global optimisation problem to N
stages of two variable optimisation. Furthermore, if ¢ can take on L possible values at each
node, then the total number of search operations is I? (N-1D)—-L+N. This will be
significantly smaller than the V-1 operations required for an exhaustive search when N and L

are large.

The last of the popular methods for combining fragmentary edge information is the Hough
transform [3.37). This method was originally proposed for the detection and recognition of
complex shapes. Unlike the previous three methods, this method requires the proposal of a
geometric model for the object. It then proceeds to find all significant occurrences of objects (at
any scale and orientation) fitting this model. The simplest object model that can be proposed is a

straight line. If the perpendicular distance from a line to the origin is denoted s, and the angle it

Detecting Edges In Cineradiographic Images 51

forms with respect to the x-axis is denoted 6 (figure 3.9a), then this line can be represented by

the equation
s =xcos 6+ ysin eq. 3.19
Taking the Hough transform of this line results in just a point in the (s,6) plane. In effect, all

points on the line map into a single (s, 6) point (figure 3.9b). This result can be used to detect

straight lines in a given a set of boundary (edge) points.

N N
Y 0
*(s0)

§

0 . S
7 7

X A
a) Straight line b) Hough transform

Figure 3.11: The Hough Transform

Practical implementations of the Hough transform proceed something like this. For a chosen
quantisation in the value of the parameters s and 6 map the coordinates, (xi,yj), of the
fragmentary edge points into the (s,6) space. Count the number of edge points, C(s, 6) that
map into each location in (s,6). Finding the local maxima of the count will give the s and 6
values of different straight line segments through the edge points. In practice a relatively coarse
quantisation for s and 6 will be used in order to reduce the computational cost of searching for
maxima in C(s,6). The location of detected edge points will also usually be quantised to the
pixel grid spacing. Thus a single line will no longer transform into a single point in (s, 8) space,
but will be spread out over several quantisation levels. Searching for local maxima in C(s, 8)

now constitutes searching for clusters and requires the use of clustering techniques [3.38].

Although the Hough transform can be generalised for the detection of arbitrary shapes [3.39], the
dimensions of the parameter space that must be searched, become extremely large, even for
simple curves. This has generally restricted the method to the detection of lines, circles, ellipses,
and arcs. Although these shapes are important primitives for objects, a complete object will be
made up of many of these primitives. Thus some form of geometric feature synthesis is required

to interpret the detected primitives and combine them together to form a single geometric

52 The Development of Motion-tracking Strategies for Cineradiographic Images

description of an object. The Hough transform is a robust, but non-optimal, parametric curve

fitting technique [3.40], equivalent to binary template matching with a top-hat function [3.41].

3.3.5 Performance of High-level Edge Detectors

The Marr-Hildreth and Canny edge detectors have become the default standard by which other
edge detectors are gauged. Because of this, and in light of the impractical nature of
implementing and assessing the performance of many of the other edge detectors described in the
literature, only the Marr-Hildreth and Canny edge detectors were assessed. These two edge
detectors were applied to the same cervical cineradiographic test image (figure 3.4b) used to
evaluate the low-level edge operators. Results were assessed visually and also scored
quantitatively using Pratt's figure of merit. Code for the implementation of these two edge

detectors is contained in appendix C, page C-21.

In principle both the edge detectors required only a single control parameter, the standard
deviation O of the Gaussian filter, to be set by the user. For a range of O, the resulting output
edge maps are then combined using appropriate rules. Most comparisons using these two edge
detectors are only performed for a single value of 0 usually chosen visually to produce the best
edges. In this assessment, the upper and lower value of O were determined visually by
experimentation. The lower value of O was set such that the lowest contrast edges at the front
of the third vertebra were detected. The upper value was set to a level where the high contrast
edges were just beginning to lose their shape. Edge maps were generated for five values of O
between these limits, spaced at a ratio of approximately 1.3. These five edge maps were
combined to produce a composite edge map. The criterion used to combine the edge maps for
the Marr-Hildreth detector was that an edge pixel was declared if it occurred over at least three
consecutive values of ¢. This amounts to the simple implementation of Marr-Hildreth's
coincidence assumption (section 3.31). For the Canny composite edge image, continuity of both
location and direction, across at least three consecutive scales, was used. The tolerance on

direction spread was set to 45°.

In practice the Canny edge detector has several additional user adjustable parameters. They are
the internal parameters for the two non-linear stages. In the non-maximum suppression stage, a
parameter can be set to control the decision on the acceptable local gradient alignment. In the
hysteresis threshold stage, information is required in order to set the upper and lower thresholds.

Again in the literature, there appears to be no standard approach to setting these parameters.

The way in which they are set usually depends on the particular implementation used. In this
work, the 3x3 nearest neighbour approach was used for the non-maximum suppression stage.
This approach has the advantage that it requires no additional computation in order to estimate

the direction of the gradient plane.

aSeuur 159 [€91A130 0 parjdde s1032939p AFpa Auue)) pue YRIPIH-MIBJA :9°¢€ dqe],

Reference
Images

Edge Dectector

Sigma = 0.80

Sigma = 1.00

Sigma = 1.30

Sigma =1.70

Sigma = 2.30

Composite Image

Original

Marr-Hildreth

SOy

e

Manually
extracted edges

Canny

P=44.1%

P=42.6%

P=38.1%

P=34.6%

P=34.5%

P=313%

sadvwi] o1ydpadoippiaur) uy sa8py Sundalaqg

£S

54 The Development of Motion-tracking Strategies for Cineradiographic Images

For the hysteresis threshold stage, the Rayleigh distribution was fitted to the lower 30 percent of
the gradient image histogram data. The lower threshold was computed at the 85 percent level of
distribution and the upper threshold set to 1.8 times the lower value. All the internal parameters
for the two non-linear stages were determined experimentally. The 30 percent level for fitting the
Rayleigh distribution was found to be relatively non-critical. Results were somewhat more

sensitive to the selection of the other two parameters.

Table 3.6 contains the results of applying both the Marr-Hildreth and Canny edge detection
algorithms to the cervical test image of column one, over a range of filter resolutions. The
second row of the first column also contains the manually generated reference edge image on

which the figure of merit for each edge image was computed.

The first and most obvious difference between the output edge images of the Marr-Hildreth and
Canny edge detectors is that the edges detected by the Marr-Hildreth detector are relatively thick
compared to those of the Canny detector. The reason for this appears to be due to the inability
of zero-crossing detection of the LOG to differentiate between maxima and minima points of
inflection. This assumption was partially verified by removing the non-maxima suppression
stage of the Canny detector and simply passing the gradient image directly to the hysteresis
threshold stage. The detected edges were then of comparable thickness to those of

Marr-Hildreth.

As the standard deviation of the smoothing filter increases across the table, the figure of merit
improves for the Marr-Hildreth detector but declines for the Canny detector. The pattern of
improvement in value for the Marr-Hildreth detector is due to the reduction in detection of non-
edge pixels. The decline in value for the Canny detector occurs because of edge fragmentation

due to the non-detection of low-strength edges.

The final column of table 3.6 contains the composite edge images. The figure of merit for the
composite images is worse than the value for several of the single resolution images for both

edge detectors. This result is a reflection of the non-optimality of the standard algorithms used

to combine the edge maps.

Overall the Canny edge detector performed slightly better than Marr-Hildreth, however the
results are still very poor, with the best figure of merit less than 50%. This is principally due to
significant fragmentation of the detected vertebral edges and the non-detection of the front edges
of the second vertebra. None of the high-level edge image figures of merit exceeded the value
computed for the low level, computationally inexpensive, Kirsch compass operator of section
3.2.5. This result is a reflection on the difficulty in reliably detecting edges in cineradiographic

images.

Detecting Edges In Cineradiographic Images 55

3.4. An Alternative HVS Inspired Approach to Edge Detection

When an image is presented to a human observer it is transformed by the human visual system
(HVS) into information. This perceived information may be represented by attributes such as
brightness, colour, edges and texture. Understanding this perception process is founded in the
results of psycho-physical experiments into human visual perception. Many of the early
developments in image processing were based on quantitatively representing this perceptual

information.

One of the earliest studies into human visual perception concerned the phenomenon of
simultaneous contrast. In figure 3.12a, the two smaller squares in the middle have equal
luminance or intensity values, but the one to the left appears brighter. On the other hand in
figure 3.12b, the two squares appear near equal in brightness although their luminance's are very
different. The reason for the is that human visual perception is sensitive to luminance contrast

rather than absolute luminance.

According to Weber's Law [3.42], if the intensity [, of an object is just noticeably different from

the intensity /_ of its surround, then their difference ratio :

-1

—"—0|=c0nstant eq. 3.20
Iy

Redefining [y =1 and I = [+ Al, where Al is small for just noticeably different intensities,

equation 3.20 can be written as

L ;—l[(log I)=Ac (constant) eq. 321

!

a) b)

Figure 3.12: Simultaneous contrast, simple image

For simple images such as those in figure 3.12, the value of the contrast constant (called Weber's
ratio) has been found to about 2% over a wide range of absolute intensity. At the extremes of
the intensity range Weber's ratio increases rapidly to avoid sensor signal-to-noise limitations at

low intensities and sensor saturation at high intensities (figure 3.13).

56 The Development of Motion-tracking Strategies for Cineradiographic Images

For more complex images, the human visual system adapts to the average intensity level, which
is dependent on the characteristics of the scene. As the eye roams about a scene the
instantaneous adaptation level fluctuates about this average value. The effect of this adaptation
is that the measured Weber's ratio for small areas within an image is generally much higher than

the 2% value obtained for a simple single target case. Also the range over which the ratio is a

constant is much narrower.

100
Weber's ratio
(%)
50
/ 2%
0 — i i i

0 25 50 i3 100
% Intensity

Figure 3.13: Weber's Law: Simple image

100 | |

Weber's
ratio (%)

50

0 25 50 75 100
% Intensity

b) Weber's ratio curves

a) Testimage

Figure 3.14: Weber’s Law - complex image

Figure 3.14a) contains an image of a small square of constant intensity on a background with a
linear intensity gradient diagonally from the top left hand corner to the bottom right hand corner.
The small square appears to have the inverse intensity gradient to the background, darker in the
bottom right-hand corner and lighter in the top left-hand corner, even though it is of constant
intensity. Measuring Weber's ratio against the local average intensity at the edges of the small
square results in figure 3.14b. Each of the 'U'-shaped curves represents Weber's law at a
particular local average intensity. The range over which Weber's ratio is constant is narrow and

its value is significantly higher than the 2% value for a constant intensity background.

Detecting Edges In Cineradiographic Images 57

3.4.1 Weber's Law and Profile Based Edge Detection

In section 3.2 it was established that boundaries of objects (edges) are often indicated by local
intensity discontinuities. The magnitude of these local changes in intensity can be enhanced by
applying a gradient filter or first derivative operator. A threshold can then be applied to the
gradient enhanced image to produce an edge image. If a single global threshold is used to make
the edge/no-edge decision then a number of difficulties arise. Setting a low threshold to allow
low-strength edges to be registered will also register noise (both from photometric effects and
random signal errors). Furthermore, high-strength edges will be registered as thick lines, often
obscuring nearby low-strength edges. When the threshold is raised to improve the detection of a
high-strength edges, low-strength edges will be lost. Thus using a global threshold will be a
compromise, attempting to balance all three aspects above. Clearly if a threshold can be made
dynamic, adapting to local image characteristics, then significantly better results should be

produced.

Many different adaptive thresholding algorithms have been proposed in the literature. One
common approach involves computing the cumulative histogram of the gradient in a local
neighbourhood. A threshold is then chosen such that a specified percentage of the pixels with the
largest gradient are declared as edge pixels. In the Canny edge detector (section 3.32) the upper
and lower thresholds of the hysteresis threshold stage were computed by fitting a Rayleigh
distribution to the low 30 percent of the gradient image histogram. A computationally
inexpensive approach to adaptive thresholding was proposed by Mcllroy et al [3.43] based on
Weber's law. In their algorithm the local average intensity (LAl) was computed on a 2x2
neighbourhood, and the local change in intensity computed using the Roberts product (RP)

gradient mask. Thresholding of the local gradient consisted of a simple comparison :
RP2 f(LAI) eq. 3.22
where fis a function which was specified by a look-up table.

The choice of the 2x2 neighbourhood enabled them to realise a hardware based real-time (at
video rate) edge processor. The threshold or profile function f could be programmed on-the-fly
to adapt to changes in the video signal. For scenes with a high signal-to-noise ratio their optimal

experimental profile was found to be that shown in figure 3.15.

This threshold profile is implemented as a three section piece-wise linear function. It starts at a
value of four (approximately 2% of the dynamic range) at zero LAI and increases slowly for low
intensities. It then increases more rapidly for medium intensities and finally very rapidly at high

intensities. This profile can be transformed to the Weber domain (Al / I vs I') by dividing each

value by the corresponding LAL This results in the Weber threshold profile of figure 3.16.

58 The Development of Motion-tracking Strategies for Cineradiographic Images

40 = T . r T
35r E
30+ -
25}
20

f(LAI)

15F
10+
5L

0 i L L 1 1
0 50 100 150 200 250
LAI

Figure 3.15: Threshold profile

For low values of LAI, the shape of this profile is consistent with Weber's result for a constant
intensity background (see figure 3.14). At high intensities the curve deviates significantly from
Weber's result, increasing relatively slowly and reaching a maximum value only two times as

large as the minimum profile value.

30 L) L} L 1 T

25+ .

20 .

15 f 4

RP/LA}

%0 50 100 150 200 250
LAI

Figure 3.16: Weber threshold profile

The original work of Mcllroy er al was primarily concemed with the actual hardware
implementation of their Weber's law based edge detection algorithm. Their experimental results
for a range of test images, indicated the potential effectiveness of their simple algorithm, but only
with respect to hand-tuned threshold profiles. It was unclear how the profile generation could be
automated and hence adaptively updated in a feedback loop for real-time edge processing of
dynamic scenes. The next two sections in this chapter outline original work to investigate the
effectiveness of the adaptive threshold algorithm of Mcllroy et al and to extend their results with
the potential for automatic threshold profile generation and hence the reliable detection of edges

in cineradiographic sequences.

Detecting Edges In Cineradiographic Images 59

3.4.2. Target Based Computation of Threshold Profiles

The Weber's law based edge-detection algorithm assumes that the edge information in an image
is uniquely defined by a range of Weber ratios (Al /I), represented by the threshold profile
function. To investigate the degree to which this relationship holds, a method was devised where
a human operator manually traced the desired edges in an image. The coordinates of these traced
edges form an edge-template. The edge-template is then used as a target from which analysis
can begin. A secondary advantage of this approach is that in using a human to specify the edges
of interest, some of the mechanisms of human vision (namely Weber's law) will be incorporated

implicitly into the selection process.

a) black-background b) white-background

Figure 3.17: Component test images

To ensure that there was little subjectivity in the defining the edges of interest, two test images
with specific properties were created. Both the images are of a simple manufactured component
containing both blind and through holes. The test images are shown in figure 3.17. The first
image, figure 3.17a, is of the component on a near black background, and the second image,
figure 3.17b, is of the component on a near white background. The black-background image
contains sharply defined edges and is relatively noise free. Most of the information in the white-
background image is contained in a narrow range of intensities. The image appears relatively

noisy and of low contrast.

The main edges associated with the test component (holes and outside perimeter) were traced on
each test image to produce the corresponding edge templates. These edge templates are shown

overlaid on the original images in figure 3.18.

60 The Development of Motion-tracking Strategies for Cineradiographic Images

Figure 3.18: Manually generated edge templates

The edge-strength local-average-intensity statistics of the original image were computed at the
pixels defined by the edge-templates, using the 2x2 operators of Mcllroy er al. Figure 3.19
shows the minimum, maximum and mean edge-strength profiles generated from the computed
statistics. The mean profiles are calculated from the average of the range of edge-strengths
recorded at each LAI in the image. If a value of LAI was not present in the image at an edge

template position, then the profile value was set to 100 for clarity.

Minimum Minimum
100 100
o] o
éSO o 50+
@ @
ol bt g | I s
0 50 100 150 200 250 0 50 100 150 200 250
LAl LAI
Mean Mean
100 ' 100 -
© ©
‘% 50} % 50
E —_
0 = 0

50 100 150 200 250 50 100 150 200 250

LAl LAl
Maximum Maximum

o
o

o
=

(=]
o

Threshold _,
(93]
o
Threshold _,
(%))
[=]

o
o

50 100 150 200 250 50 100 150 200 250
LAl LAl

o
o

a) black-background b) white-background
Figure 3.19: Edge-strength profiles

The black-background image profiles (figure 3.19a) cover a LAI range from approximately 35 to
135. There is little difference in shape between the minimum and mean profiles except at the

ends of the active LAI range. The maximum profiles show elevated edge-strengths in the LAI

Detecting Edges In Cineradiographic Images 61

region from 30 to 70, with a number of high spiky values in the range 100 to 135. The profiles
for the white-background image (figure 3.19b) cover a LAI range from approximately 55 to 140.
This dynamic range is slightly smaller than the black-background image profiles. There are
some large edge-strengths recorded at about 75 LAI, indicating the potential presence of high
contrast edges. These values are most likely due to local shadowing at the edges of the test part.
The minimum profile edge-strengths are generally very low relative to the mean and maximum
profiles and reflect the noisy nature of the image. The maximum profile is similar in shape to the

mean profile except that the edge-strengths and variance are increased

The minimum, mean and maximum edge-strength profiles of the two test images computed at the
pixels defined by the edge-templates were used in the Weber's law based edge detection

algorithm of Mcllroy ez al. The resulting edge images are shown in table 3.7.

Table 3.7 Minimum Profiled Mean Profiled Maximum Profiled

Black
background

White
background

Table 3.7: Direct profile thresholding of test images

Minimum edge-strength profiling tends to give greater emphasis on the LAI values rather than
the edge-strengths. For both test images, the minimum profile edge image contains all the pixels
of the edge template. However many other pixels are recovered because they also have an ES
greater than or equal to the value of the template edge pixels at each LAI. This is particularly
obvious in the white-background case where about 50% of all pixels are detected. The mean
profile edge images show greater rejection of non-edge template pixels, though this has been at
the expense of the non-detection of some of the genuine edge template pixels. Maximum
edge-strength profiling recovers only the pixels defined by the edge-template with the largest ES
recorded at each LAI. For the black-background image many of the edge-template pixels are

recovered, though the edges are highly fragmented and the lower surface contour, due to uneven

62 The Development of Motion-tracking Strategies for Cineradiographic Images

illumination, is still present. Few surface pixels are recovered from the white-background image,
but there are also few edge-template pixels detected and those detected are highly fragmented.
This is particularly obvious for the bottom row of blind holes, where only a single pixel is

detected on the large hole.

The direct profiling results of table 3.7 are poor, even for the black-background image with its
high contrast. This may be due to slight pixel placement inaccuracies in the target edge
templates. To test this hypothesis, threshold profiles where recomputed for the growth of a one
and two pixel layer about the original edge-template. The resulting mean profiles are shown in
figure 3.20.

Growth=0 Growth =0
100 ' 100 : ' :
=
o 2
% 501 '% 50
£ €L S
0 50 100 150 200 250 0 50 100 150 200 250
LAl LAl
Growth = 1 Growth =1
100 ; ‘ . - ' 100 ' ' |
e e
° 2
'E 50 1 a 50T
= " = 0 HW\W\W .)
0 50 100 150 200 250 0 50 100 150 200 250
LAI LAI
Growth =2 Growth =2
: - 100 1 '
o] ©
£ 2
8 g 50
= &
i i A i 0 i i i
0 50 100 150 200 250 0 50 100 150 200 250
LAl LAI
a) black-background b) white-background

Figure 3.20: Mean edge-strength profiles with growth

The mean profiles for the black-background test image (figure 3.20 a) show little change after
the first edge expansion. This is because the image is relatively binary in nature, with only two
main region types being distributed about the target edges. On the other hand, the profiles for
the white-background test image change rapidly for the first pixel layer, indicating the noisy low
contrast nature of this image. Very little change occurs with the growth of the second layer,
indicating that most pixels types (ES-LAI combinations) are now included in the profile. Using
the minimum, mean and maximum edge-strength profiles with pixel growth, in the Weber edge
detection algorithm, the results of table 3.8 are produced. It is immediately noticeable that the

minimum profile edge images now contain a very high percentage of the total image pixels for

Detecting Edges In Cineradiographic Images 63

both test images. The extreme case of this is the white-background edge image for a growth of

two layers, where all but two pixels are not detected.

Table 3.8 Minimum Profiled Mean Profiled Maximum Profiled

Black
background
(growth=1)

White
background
(growth=1)

Black
background
(growth=2)

White
background
(growth=2)

Table 3.8: Direct profile thresholding of test images with growth

The mean profile edge images for the black-background test part now show a complete recovery
of the outer edge without the appearance of the lower contour shown in row one of table 3.7.
The top through holes are now also complete, however this is accompanied by the detection of
surface noise and the partial loss of the blind holes at the bottom. There is little difference
between the mean profile results for a growth of one layer and two layers. This is to be expected

as the mean edge-strength profiles of figure 3.20a change very little. The most significant

64 The Development of Motion-tracking Strategies for Cineradiographic Images

change for the white-background test image is with the mean profiles. The edge image for a
growth of one layer no longer shows the contouring at the bottom right-hand side due to uneven
illumination. There is improved edge continuity on the left and bottom outside edges,
accompanied by some loss of the blind hole edges. Growing another layer on the edge-template
and profiling the image further enhances the edge continuity at the bottom and left-hand edges,
but results in partial fragmentation of the top and right-hand edges, with the complete loss of the

blind holes.

The results of table 3.8 are still relatively poor given the simple composition of the test images.
and do not support the hypothesis that a profile computed from pixels on or local to specified
edges, uniquely define the edge pixels when used in the Mcllroy et al algorithm. To determine
how well the Mcllroy et al algorithm can perform on these test images, code was written to tune
the mean profiles to maximise Pratt's figure of merit. At each occupied LAI position in the mean
profile, the tuning procedure adjusted the edge-strength over a range of plus or minus three
standard deviations. The current LAI position in the profile was then set to the edge-strength
that maximised the figure of merit. The procedure then moved on to the next position, tuned that
location and then continued until it had covered the occupied LAI range. Figure 3.21 contains

the tuned profiles and the resulting edge images.

Tuned Profile Tuned Profile
150 ’ . 150
100} 1 100f
50 1 50t
0 0 . . - :
0 50 100 150 200 250 0 50 100 150 200 250

LAI LAI

a) black-background b) white-background

Figure 3.21: Tuned profiles and resulting images

In both cases the tuned profiles are significantly different from the original mean profiles that

they started from. The black-background tuned profile is similar in shape to the original zero

Detecting Edges In Cineradiographic Images 65

growth mean profile of figure 3.19, except that the threshold values are all lower. The white-
background tuned profile also shows elevated values compared to the original mean profile.
There is a rapid increase at a LAI of approximately 40, accompanied by an almost ramp increase
in the 120 to 150 LAI range. The output edge images are greatly improved compared to all the
previous results. On tuning, Pratt's figure of merit for black-background image increased from a
mere 11.7% to 59.8%. An even more dramatic improvement occurred for the white-background
image where the merit figure increased from 22.3% to 71.9%. The edges for the black-
background image are contiguous except around edges of the bottom holes. The edges for the
white-background image are not quite as complete, particularly down the right-hand side and
around the bottom holes, where there is significant edge loss. This image scores a very high

figure of merit because the recovered edges are generally only of one pixel width.

It is worth while at this stage to compare best Mcllroy et al algorithm results with the best that
can be achieved using the Canny algorithm at a single filter resolution. Figure 3.22 contains the
best experimental results (with respect to Pratt's figure of merit) that could be achieved using the
Canny algorithm of section 3.3.2. In both cases the optimal standard deviation of the Gaussian
filter was found to be 0.6. The percentile for determining the lower threshold was initially set to
80%, but the resulting images showed complete loss of the bottom holes and the loss of the
right-hand and top edge of the white-background image. Setting the value to 30% vastly
improved the results for the white-background image, but a value this low would not normally be
used because it is not consistent with the basic Canny edge/noise model. In reality this simply
reflects the difficulty the Canny algorithm has in dealing with edges with such dramatically
different edge strengths. The black-background edge image looks extremely good, yet only
achieves a figure of merit of 59.8%. This relatively low score is partly due to the loss of edges
around the bottom holes, but mostly due to a one pixel difference in the diameter between the
detected holes and the edge-template holes. The white-background edge image also looks very
good, except for a double edge on the left hand and bottom edges, and the near total loss of the
bottom row of holes. This image scored a figure of merit of only 29.3% because of these last
two characteristics. It may be argued that there is in fact a double edge at the left-hand and
bottom sides of the test part due to shadowing. However this edge was not considered to be
significant by the human observers due to its very close proximity to the physical edge of the test

part.

The results of figure 3.18 indicated that the Mcllroy et al algorithm can be very effective, even
when compared to the superior, though highly computationally expensive Canny algorithm. The
difficulty with the Mcllroy et al algorithm is that there is still no defined way to derive the
optimal profile as it is not uniquely defined by the ES-LAI statistics of the edges.

66 The Development of Motion-tracking Strategies for Cineradiographic Images

a) black-background b) white-background

Figure 3.22: Single resolution Canny results

3.4.3. Direct Thresholding using ES-LAI Edge-template Statistics

Back at the start of this section, Weber's law was introduced and defined by equation 3.21 as the
ratio of change in local intensity (edge-strength) to the local average intensity and was equal to a
constant. The Mcllroy et al algorithm does not actually implement this equation, but instead
declares an edge pixel if the edge-strength is greater than the profile value at the computed LAL
In effect, the algorithm only allows a very limited range of unique Weber ratio's (ES to LAI) to
be defined by the 1-D profile function. It may be because of this that the mean profiles were not
found to uniquely define the target edges of the test images. To test this hypothesis, the two
dimensional ES-LAI statistics, computed about the edge-template, should be used to directly
threshold the image. Suitable code was written in which a pixel is declared an edge pixel, only
if at the ES-LAI location in the 2D statistics array at least one pixel is recorded. The results of

applying this algorithm to the two test images is shown in table 3.9.

The first column of this table are the results of applying the ES-LALI statistics from the manually
generated edge-templates to the two test images. All the specified edges are recovered but they
are accompanied by many non-edge noise pixels, particularly for the white-background image.
The recovered edges do have the redeeming property that they are generally only one pixel wide.
An exception to this are the edges of the blind holes at the bottom which are lost in noise. This
effect is further illustrated by the results in the third column of table 3.9. These results were
produced by applying the ES-LAI statistics from the edited Canny edge-templates of column
two. These edge-templates were generated from the Canny algorithm output images of figure
3.22, by manually filling in any missing edge pixels and removing any noise pixels. The black-
background edge image of column three shows significant improvement over the result of column
one. There are virtually no background noise pixels and the top row of holes is recovered fully
with few noise pixels. Little improvement is shown for the bottom holes and edge, in fact there is

a small increase in noise pixels in this area. The white-background edge image of column three

Detecting Edges In Cineradiographic Images 67

is significantly worse than the result of column one. Many more non-edge pixels are recovered

over most areas in the image.

Table 3.9 2-D profiled using Edited Canny 2-D profiled using
manual edge-template edge-template edited edge-template

Black
background

White
background

Table 3.9: Direct thresholding with the two dimensional ES-LAI statistics

The overall conclusion that can be drawn from these results is that the ES-LAI statistics
computed about the target edges using 2x2 neighbourhoods, define relatively uniquely the edge
pixels only when there is a high signal-to-noise ratio. A potential reason for this result is the
poor performance of the Roberts product in noisy images and the asymmetric response of 2x2
kernals. More robust results should be produced by using a 3x3 neighbourhood and computing

the edge-strength using a Sobel mask.

Table 3.10 contains the results of using the ES-LAI statistics computed about the
edge-templates, on a 3x3 neighbourhood, to directly threshold the test images. The first column
used the manually generated edge-template and the second column the edited Canny templates of
table 3.9. There is little difference between the black-background edge images for either
template and this is reflected in their merit scores. Overall the images are slightly better than the
best results obtained using a 2x2 neighbourhood. The white-background edge images show a
significant improvement with respect to noise rejection, particularly for the Canny based
template. This confirms that the pixel placement in edge-template is more important when the

image is of low signal-to-noise ratio.

68 The Development of Motion-tracking Strategies for Cineradiographic Images

Table 3.10 2-D profiled using manual | 2-D profiled using edited
edge-template edge-template
Black DRI Ak
background @I
Fii‘.,...\‘..vg.;.-.:.,._ﬂﬁ.' I_.‘ﬂ_a"g'-w.",i.hj..a?.»_&-." < J
P=419% P=423%
White
background

Table 3.10: Direct thresholding based on 3x3 neighbourhood ES-LALI statistics

Although the use of a 3x3 neighbourhood to compute the ES-LAI edge statistics improved the
quality of the recovered edges and hence implies that the edge pixels are better defined by these

statistics, overall the results are still unsatisfactory and do not support the hypothesis that edge

pixels are uniquely defined by their ES and LAI statistics.

Manually generated
edge-template

2-D profiled
2x2 neighbourhood

2-D profiled
3x3 neighbourhood

Table 3.11: Direct thresholding of cervical spine test image

Detecting Edges In Cineradiographic Images 69

The main purpose of this section was to develop a high-performance edge-extraction algorithm
suitable for cineradiographic images. Although the performance on the test-part images was not
that good, it is worth while to see how well direct thresholding using ES-LALI statistics performs
on cineradiographic images. Table 3.11 contains the results of applying the ES-LAI statistics
computed about the edge-template, to directly threshold the cineradiographic cervical spine test
image. Both edge images clearly show the recovery of the original edge-template pixels with full
connectivity. The 3x3 neighbourhood edge image displays far greater suppression of non-edge

pixels than the 2x2 neighbourhood image, but overall the results are still unsatisfactory.

3.5. Summary of Edge Detection in Cineradiographic Images

At the start of this chapter the concept of image segmentation was introduced. Image
segmentation attempts to decompose a scene into its components. With respect to determining
vertebral motion in spinal cineradiographic sequences, the components of interest are the
vertebral boundaries. If in each frame of the sequence the vertebral boundaries can be reliably
extracted, then the problem of determining the vertebral motion is relatively straight forward.
Measuring the difference in position and orientation of each vertebral boundary through the
sequence will describe the vertebral motion and hence the motion of the spine as a whole. None
of the edge detection methods investigated in this chapter have been able to reliably extract the
vertebral boundaries of the cervical spine test image. Recovered edges were generally

fragmented and noisy.

The test image used to evaluate the various edge detection schemes was from the middle of a
typical cervical spine sequence. An image from a cervical sequence was chosen because these
images tend to be of lower quality than images of the lower (lumbar) or middle (thoracic) spine.
There are two reasons for this loss of quality. Firstly, the vertebrae occupy only a small fraction
of the area of the frame due to the requirement to include the entire skull in the frame. This
results in a relatively low spatial resolution for the vertebrae once digitised. The second image
quality factor concerns the dynamic range of intensity. Although there is little soft tissue to
scatter the X-ray beam, part of the scene will contain the X-ray beam unattenuated. The portion
of the total area containing the unattenuated beam will vary depending on where the neck is in
the scene. This would not be a problem if the intensity dynamic range of the imaging system was
very large. A further complication is that the X-ray strength when imaging this area of the spine
has to be kept low in order to prevent burn-in of the image intensifier tube. Even with this low
level, the range of intensities that the camera experiences are very large. Cameras designed to
work with X-ray image intensifiers are very sensitive compared to daylight cameras, but this
high sensitivity is gained at the expense of increased noise and reduced intensity range handling.
In order to prevent the camera sensor overloading, cameras are fitted with auto-gain circuitry.

This circuitry dynamically adjusts the effective gain of the sensor based on the average intensity

70 The Development of Motion-tracking Strategies for Cineradiographic Images

in the scene. The effect of this gain adjustment over the passage of a sequence is to modulate the
image contrast. For sequences of the cervical spine, with direct X-ray feed-through, this gain

modulation is significant and can dramatically reduce the contrast of the images.

Table First Image Middle Image Last Image
3.12

Full

Section

Intensity Intensity Intensity
200, 20 200,

Line
Profile
C2

150)

- 50 =
500 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Position Position Position

Table 3.3: Contrast Modulation

The first row of table 3.12 contains frames from the start, middle and end of a typical cervical
cineradiographic sequence in which the subject moved from full flection (neck tucked down) to
full extension (neck extended back). The second row of this table contains enlarged views of the
centre of the neck covering the first to fifth vertebrae. It is clear from these views that there is a
considerable difference in contrast through the sequence. Maximum contrast is reached in the
middle of the sequence where the amount of direct X-ray feed-through is balanced either side of
the neck. At the extremes of the movement the feed-through area is predominantly at the back or

front of the neck resulting in an increase in the average intensity. The auto-gain circuitry

Detecting Edges In Cineradiographic Images 71

compensates for this by reducing the camera gain and hence the contrast of the image. This
effect is further illustrated by an intensity line profile taken through the second vertebrae. In
these profiles the approximate position of the soft tissue to bone interface is marked with a
vertical dotted line. At these transitions it is clear that the difference in intensity level is

maximum for the middle image but is significantly reduced for the two end images.

How the change in image contrast affects edge detection performance has not been explored so
far in this chapter as none of the methods investigated were able to reliably extract the vertebral
edges from an image in the centre of a sequence. To briefly explore the effect contrast
modulation has on the Canny edge-detection algorithm (this algorithm scored the highest figure
of merit on a single frame), the algorithm was applied to the three cervical sections contained in
table 3.12. Only a single resolution was used with the internal algorithm parameters adjusted
individually for each image to produce the best visual results. The resulting edge images are
shown in table 3.13. It is clear from these images that the change in image contrast due to the
auto-gain circuitry, dramatically effects edge-detection performance. The edges detected in the
middle image are reasonably good, while the edges recovered for the two end images are

extremely fragmented and very noisy, with almost complete loss of the vertebral outlines.

First Image Middle Image Last Image

Table 3.4: Contrast effects on Canny Algorithm performance

Section 3.3.4 of this chapter covered several methods for combining fragmentary or noisy edge
data. Tracing methods are generally only effective for filling in small gaps in boundaries and
thus are unlikely to be useful on the edge images of table 3.13. Generalised fitting methods, such
as the Hough transform, would require a geometric model for each vertebral boundary.
Determining a suitable model to cover all the natural vertebral shape variations would be
possible, but it is likely to be highly complex. The reason for this complexity can be easily
illustrated by looking at the variation in vertebral shape that occurs in the middle image of
table 3.13. The shape of the front of a vertebral body is similar for most of the vertebrae, only

the relative size changes. This is not the case for the back of the vertebrae where the

72 The Development of Motion-tracking Strategies for Cineradiographic Images

spinous-process protrudes. Here the complex shape varies dramatically between individual
vertebra. Assuming that a suitable geometric model has been defined, then the computational
cost of the fitting process will be extremely high, unless some of the model parameters of the
individual vertebra can be estimated. The estimation of the main model parameters may be able
to be achieved by first applying an edge-linking procedure to the edge-fragments computed by a
Canny algorithm on the middle image in a sequence. However towards the ends of a cervical
sequence the recovered edge information becomes so sparse and noisy (see table 3.13) that the

fitting procedure is unlikely to produce stable results.

More effort could be expended on exploring the vast range of edge detection algorithms
described in the literature. Current thinking would indicate that a multi-resolutional, multi-model
approach involving adaptive techniques would be the most appropriate place to start. This
approach, if successful, is likely to be extremely computationally expensive and require special
hardware if the operation it to completed in a realistic time. Assuming that all this is can be

successfully achieved, then the original task of measuring the vertebral motion could be tackled.

The reason for attempting to use edge-detection methods to extract the vertebral boundaries was
that this would greatly simplify motion measurement since tracking binary boundaries is
relatively straight forward. As reliable segmentation has not been achieved, then an alternative
approach would be to attempt to track the actual gray-scale characteristics of the vertebra in the
original sequence. The next chapter introduces the fundamental difficulties associated with
motion perception. Various strategies for measuring and tracking motion are overviewed and a

suitable approach to motion measurement in cineradiographic images is proposed.

3.6 References

[3.1] Rosenfeld A. and Kak A.C. Digital picture processing, 2nd edition, Volume II,
Academic Press, Orlando, USA, 1982.

[3.2] Burt P.J. The pyramid as a structure for efficient computation. In Multiresolution
image processing and analysis, edited by Rosenfeld, A., Springer Series in Information

Sciences, Vol. 12, Springer, New York, 1984.

[3.3] Brice C.R. and Fennema C.L. Scene Analysis using Regions. In Computer methods
in Image Analysis, edited by Aggarwal J.K., Duda, R.O., and Rosenfeld, A., Los
Angeles: IEEE Computer Society, 1977.

[3.4] Horowitz N.J. and Pavlidis T. Picture segmentation by split-and-merge procedure.
Proceedings of the 2nd IJCPR, pp 424..433, August 1974.

[3.5] Attneave F. Some informational aspects of visual perception., Psychological Review
No. 61, 1954.

Detecting Edges In Cineradiographic Images 73

(3.6]

(3.7]

(3.8]

[3.9]

(3.10]

[3.11]

(3.12]

(3.13]
(3.14]

(3.15]

(3.16]

(3.17]

(3.18]

(3.19]

(3.20]

(3.21]

Roberts L.G. Machine perception of three-dimensional solids. In Optical and
Electro-optical Information Processing, Tippett J.P. et al editors, Cambridge, MA: MIT
Press, 1965.

Prewitt J.M.S. Object enhancement and extraction. In Picture Processing and
Psychopictorics, Lipkin, B.S., and Rosenfeld, A. editors, New York: Academic Press,
1970.

Pratt W.K. Digital Image Processing. New York: Wiley Interscience, 1978.

Kirsch R.A. Computer determination of the constituent structure of biological

images. Computers and Biomedical Research Vol. 4 (3), pp 315..328, June 1971.

Kreyszig E. Advanced Engineering Mathematics, 6th Edition, pp 457..504, Wiley,
1988.

Jain A.K. and Ranganath S. [mage restoration and edge extraction based on 2-D
stochastic models. Proceedings of ICASSP-82, Paris, May 1982.

Jain A.K. Fundamental of Digital Image Processing, Prentice-Hall Information and
System Sciences Series, Prentice-Hall, 1989, pp. 285-286, ISBN -013-332578-4.

Pratt W.K. Digital Image Processing. New York: Wiley Interscience, 1978.

Abdou LE. Quantitative methods of edge-detection, USCIPI Report 830, Image

processing Institute, University of Southern California, July 1978.

Kitchen L. and Rosenfeld A. FEdge evaluation using local edge coherence. IEEE
Transactions of Systems, Man, and Cybemetics, Vol. SMC-11, No. 9, pp 597..605,
Sept. 1981.

Delp H.J and Chu C.H. Detecting Edge Segments. IEEE Transactions on Systems,
Man and Cybemetics, Vol. SMC-15, No. 1, pp 144..152, Jan./Feb. 1981,

Abdou LI.F. and Wong K.Y. Applied Numerical Analysis. 2nd Edition, Addison-
Wesley, 1978.

Marr D. and Poggio T. A computational theory of human vision. Proceeding of the
Royal Society of London, B 204, pp 301..328, 1979.

Logan B.F. Jnr. Information in the zero-crossings of band pass signals. Bell Systems
Technical Journal, No. 56, pp. 487-510, 1977.

Marr D. and Hildreth E. Theory of Edge Detection. Proceedings of the Royal Society
of London, B 207, pp 187..217, 1980.

Canny J. A computational approach to edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 8, p. 679, November 1986.

74

The Development of Motion-tracking Strategies for Cineradiographic Images

[3.22]

(3.23]

(3.24]

[3.25]

(3.26]

(3.27)

[3.28]

[3.29]

(3.30)

(3.31)

[3.32]

(3.33]

[3.34]

[3.35]

(3.36)

(3.37]

Martell A. Edge-detection using Heuristic Search Methods. Proceedings of Computer
Graphics and Imaging 1, pp 169..182, August 1972.

Leipnik R. The extended entropy uncertainty principal. Information Control 3,
pp 18..25, 1960.

Marr D., Poggio T. and Ullman S. Bandpass channels, zero-crossings, and early
visual information processing. Journal Of The Optical Society of America 69,
pp 914..916, 1979.

Wilson H.R. and Bergen J.R. A four mechanism model for spatial vision. Vision
Research 19, pp. 19-32, 1979.

Page W.H. and Pugmire R.H. Internal communiqué, Department of Production

Technology, Massey University, New Zealand, 16 January 1994.

Page W.H. and Pugmire R.H. Internal communiqué, Department of Production

Technology, Massey University, New Zealand, 8 February 1994.

Spacek L.A. Edge detection and motion detection. Image Vision Computing, vol. 4,
pp 43..51, 1986.

Deriche R. Using Canny's criteria to recursively implemented optimal edge detector.

International Journal of Computer Vision, Vol. 1, No. 2, 1987.

Frei W. and Chen C. Fast boundary detection: A generalisation and a new

algorithm. IEEE Transactions on Computing, pp 988..998, Oct. 1977.

Bracewell R.N. The Fourier Transform and its application. McGraw-Hill, pp 56,
1986.

Davis L. A survey of edge detection techniques. Computer Graphics and Image
Processing, Vol. 4, pp 248..270, 1975.

Robinson G. Edge detection by compass gradients. Computer Graphics and Image
Processing, Vol. 6, pp 492..501, 1977.

Nevatia R. Locating Object boundaries in textured environments. 1EEE Transactions
on Computing, Vol. 25, pp 1170..1180, Nov. 1976.

Martelli A. Edge detection using heuristic search methods. Computer Graphics

Image Processing 1, pp 169..182, Aug. 1972.

Bellman R.E. and Dreyfus S. Applied Dynamic Programming, Princeton, N.J.,

Princeton University Press, 1962.

Hough P.V.C. Method and means of recognising complex patterns. US Patent no.
3,069,654, 1962.

Detecting Edges In Cineradiographic Images 75

(3.38]

[3.39]
[3.40]

[3.41]

[3.42]

[3.43]

Anderberg M.R. Cluster Analysis for Application. New York: Academic Press,
1971.

Ballard D.H. and Brown C.M. Computer Vision. Prentice-Hall, 1982.

Princen J. Hough Transform methods for curve detection and parameter estimation.

PhD thesis, University of Surrey, June 1990.

Stockman G.C. and Agrawala A.K. Equivalence of Hough transform curve detection
to template matching. Communications of the ACM, Vol. 20, pp 820..822, 1977.

Hecht S. The visual discrimination of intensity and the Weber-Frechner law. Journal

of General Physiology, pp 241..250, 1924.

Mcllroy C.D., Linggard R. and Monteith W. Hardware for real-time image
processing. 1EE Proceedings, Vol. 131, part E, no. 6, November 1984.

4

Motion-tracking: An Overview

4.1 Visual Motion Perception and Description

Our visual perception of motion is fundamental to our interaction and understanding of the
world. It is the principle method by which we determine relative motion between different
objects in the world. It also provides a rich source of information about depth and surface
structure of objects. Pictures or two-dimensional projections of a scene represent a single shot in
time and space where all information is represented by the intensity variation across the
projection. Changing the viewpoint of the projection over time enables three-dimensional

structural information to be collected and visual motion inferred.

When an object moves relative to a camera, points on the surface of the object generate
trajectories in space and time. The projection of these 3-d trajectories onto the camera sensor, as
shown in figure 4.1, produces 2-d paths, the derivatives of which are 2-d velocities. The entire
collection of these 2-d velocities forms what is commonly referred to as a 2-d motion field. The

measurement of this motion field is called the optical flow [4.1].

path of surface point 1

image plane

camera centre

/\X

z/

VAV,

Figure 4.1: Motion Field

In order to measure the image velocity, local descriptions of the motion field must be extracted

from the spatiotemporal patterns of image intensity. The difficulty in measuring the image

Motion-tracking: An Overview 77

velocity is that the intensity depends on several independent aspects of the image formation
process. For the simple case where the object is a plane surface, temporal image intensity

variations may be caused by:

Perspective Projection: As the surface moves in 3-d space the relative image locations
of the projection of nearby points on the surface, undergo geometric deformations from
image to image. Translation occurs as the surface moves across the line-of-sight of the
camera. Rotation and dilation occur as the surface rotates or moves toward or away

from the camera;

Photometric Effects: The reflectance properties of the surface such as shading or
mirror-like reflection can significantly affect the image intensity over time. Similarly

variations in scene illumination can also be significant;

Camera Distortions: The sensor may cause variations in relative image intensity due

spatiotemporal smoothing (motion blur) or automatic gain control.

Because of the different sources of intensity variation, the image intensity corresponding to a
single surface point is unlikely to remain constant at all times. Hence tracking points of constant

intensity will not, in general, produce satisfactory estimates of the motion field.

The fundamental problem in defining image velocity is that of devising a complementary
measurement technique that yields a good approximation to the 2-d motion field. An alternative
approach to the measurement of image velocity is to track an image property or feature from
frame to frame. With sufficient features or image properties specified, it would be possible to

build up an entire velocity field or optical flow of a motion sequence.

Once the complete optical flow of a sequence has been constructed it must then be interpreted to
extract information about the scene. This interpretation generally begins by going back to the
original intensity images and spatially segmenting each frame into areas or features. This
segmentation process is most commonly based on the detection of sudden changes in intensity,
potentially indicating edge boundaries. The areas defined in the intensity spatial segmentation
stage are then used to spatially segment the velocity field of each frame in the sequence. The
velocity field for a simple sequence where a planar square object is moving at a constant velocity
to the right of the visual field would be depicted as in figure 4.2a. The length of the arrows
indicate the magnitude of the local velocity and the orientation the direction. The interpretation
of this simple velocity field is straight forward, all vectors point in the same direction and are of
the same length. In figure 4.2a there are only two features indicated based on edge information,
a square object (dotted lines) and a constant intensity background. If this motion continued
through the sequence then the interpretation of the entire scene would be straight forward.

However if at some point in the sequence the translation stopped and object began to rotate

78 The Development of Motion Tracking Strategies For Cineradiographic Images

anti-clockwise at a constant speed then the velocity field would look like figure 4.2b. Edge
segmentation still reveals a single object, however describing the motion based on the magnitude
and orientation of the individual velocity vectors is now more difficult. Making the assumption
that the square is rigid and moving in a single plane enables the vectors to be grouped together
into a system of equations that can be solved to yield an estimate of the rotational velocity.
Similarly if both translation and rotation occur simultaneously in the scene and the two previous
assumptions hold, a system of equations can be formed and solved for the translational and
rotational velocity (speed and orientation). For this simple approach to work it is vital that each
frame in the sequence can be reliability segmented spatially to define each rigid object. This
implies that photometric effects are minimal and edge information is near complete. If spatial
segmentation cannot be performed reliably then grouping individual vectors is no longer trivial

and requires additional assumptions concerning their association.

N \
> > s l/ S e E ,\
4 ‘ .
oy N N : '
7 7 7 <«
N N N \/ T
7.4 7 7 ° "
N N N .L f
7 7 z : > /I
> —> > AV
AN N N \I /I
7 7 7 \, IR I
a) translation, constant speed b) rotation, constant speed

Figure 4.2: Simple velocity field

In real scenes the measured velocity fields will be noisy, perspective and photometric effects will
be significant, camera distortion due to motion blur may be significant, and object occlusion will
occur. Furthermore, objects will not all be rigid, they are likely to deform increasing photometric
effects and invalidating the previous motion assumptions. The real difficulty is in interpreting
the local velocity information contained in the optical flow data, to determine the nature of the

motion In a scene.

A simpler approach is possible, that is free from the difficulty of interpreting the local velocity
information when the objects of interest in the scene can be specified in advance. If the objects
of interest can be spatially segmented in the first frame, then the visual motion problem is
reduced to tracking the objects or features through the sequence. This method is not free from
the difficulties caused by temporal image intensity variations. However if the object tracking is

reliable, then motion interpretation is straight forward. The most significant problem with

Motion-tracking: An Overview 79

tracking an entire object concerns how to deal with object occlusion and deformation. The
apparent deformation may be due to perspective effects or be real as in the case of an object
changing its shape. The tracking algorithm must adapt to the changing shape of each object.
Partial occlusion will also result in an apparent change in shape, while total occlusion will cause

this method to fail all together.

4.1.1 The Aperture Problem

Two-dimensional translation is the simplest form of intensity variation that can be used to model
the local temporal variations in an image sequence. In digital image sequences the information is
discrete both in time and space. Estimating the local 2-d translation from the intensity variation
usually involves defining a window in both space and time over which the translation is
calculated. As long as this spatiotemporal region of support or aperture is narrow, the 2-d
translation model provides an adequate description of the local motion without having to resort to
a more complex description (account for rotation, dilation, etc. effects) over a larger
neighbourhood. This localisation also helps to ensure good resolution of the velocity field as it is
not necessary to determine where within the window of measurement support that the velocity
estimate applies. Localisation also helps to minimise the adverse effects of occluding boundaries

and the measurement of spatially disjoint objects, by treating them independently.

intensity edge \
narrow aperature

14

\

Figure 4.3: Component velocity and the aperture problem

If measurements are restricted to a narrow aperture, then the intensity structure upon which the
measurements are based will often be one dimensional. This effect is illustrated in figure 4.3
where the intensity structure appears as a single edge. In this situation it is only possible to
reliably measure the normal component v, , of the 2-d velocity field v. This is referred to as the
aperture problem [4.2). The reason for this restriction can be readily explained by the fact that
there are no clues to indicate motion in-line with the 1-d intensity structure as all positions along

the edge appear the same when viewed from the small aperture. Hence the component of

80 The Development of Motion Tracking Strategies For Cineradiographic Images

velocity tangential to the edge will not be distinguishable. Only movement perpendicular to the

orientation of the edge will be readily perceivable, and hence be able to be reliably measured.

This problem is inherent to any local scheme for calculating motion. The flow-on-effect of this

problem is that it is not possible to fully recover motion using local information alone.

4.2 Matching Approaches

Region-based matching techniques aim to find the best match between image regions in one
frame with neighbouring regions in the subsequent frames. Commonly this has been formulated

as finding the degree-of-fit based on some form of correlation measure.

Let I,(m,n) be image k in a sequence and W(i, j) denote a 2-d window function centred at
(x,y) with |[W(x+i,y+j)|—>0 as |(i,j| > . Then W(x+i,y+j)l(x,y) denotes a
windowed patch in image k. The estimate of the local motion can be calculated by finding the
displacement (Ax,Ay) about (x,y) in image k +1 that yields the best fit between the image
patches:

A(x,y)=W(x+i,y+) (x,y) eq. 4.1

A (x+Ax,y+Ay)= W(x+Ax+i,y+Ay+j)l,,,(x,y) eq. 4.2

j : \L"‘:."'[X‘*'AX]

Figure 4.4: Region-based matching

Finding the best match is essentially an optimisation problem in which a similarity measure is
maximised or a difference measure minimised, over the local displacement (Ax, Ay). The most

commonly used similarity measure involves the maximisation of the normalised discrete

cross-correlation:

Motion-tracking: An Overview 81

(A(x,), Apoy(x +Ax, y +Ay))
[Ac G YA Cx + Ax, y + Ay)|

CA,(x,)A,, (x+Ax,y+Ay))= eq. 4.3

A commonly used difference measure involves the minimisation of the sum-of-squares difference
(SSD):

D(A,(x,¥), Apyy (x + Ax, y + Ay)) = [A, (x,y) = Apyy (x + Ax, y + Ay)”z eq. 4.4

4.2.1 Matching in the Spatial Domain

Spatial domain methods work directly in the image space with the intensity value of each pixel.
The window function W (i, j), is simply an aperture into the image that limits the match area to
the object or neighbourhood of interest. Effectively A, (x,y) is an object template for which a

local search is made in the next frame to find the best match.

The sum-of-squares difference, defined in equation 4.4, can be applied directly in the spatial
domain by simply taking the difference between each pixel intensity in the object template A,

and the corresponding pixels in the match test area A, ,,, of the next frame. This measure can be

+1°

written as:

D, = Y [AG, /)= A, i,)T eq. 4.5

i=0 j=0

An alternative measure to SSD is the absolute sum difference (ASD). The squared difference is
replaced by the computationally less expensive absolute function. Equation 4.6 defines the ASD

measure.

D= |AG, 1)~ AL G) eq. 4.6

i=0 j=0

Similarly the normalised discrete cross-correlation measure of equation 4.3 can be applied

directly in the spatial domain as:

Y D 1A)* A G,)]
C= J =0 eq. 4.7

> 2IAGHT* Y D (A G)E

i=0 j=0 i=0 j=0

If the correlation measure is used as the match statistic then the object is located in the next
frame by searching for the largest peak. Alternatively if one of the difference measures is used
then the object will be located by searching for the largest trough. In both cases this will occur
when the observed area and the template are spatially registered. In real sequences the object

will not only be spatially translated but will also be rotated and possibly scaled. This is

82 The Development of Motion Tracking Strategies For Cineradiographic Images

illustrated by equation 4.8 where s _and s are scale factors, p and g are the displacement

values, and 6 is the angle of rotation of the observed area with respect to the template:

+ +
Axy)=A |22 274 g cq. 4.8

5 S,

Finding the best match now involves searching the parameter space (p,q,s,,s,,8). This

becomes impractical unless reasonable estimates of 5,5, and 6 are known.

Moment Invariants

One way to work in the spatial domain but reduce the complexity of searching the parameter
space is to use a match function that is invariant to geometric transformations such as

translation, scaling, rotation and reflection.

Let f(x,y)20 be a real bounded function with support on a finite region R. The discrete

(u+v)th order moment is defined as:
m, =Y > f,yx"y uv=012,.. eq. 4.9
R

The moment representation theorem [4.3] states that the infinite set of moments

{m,,, u,v=0,1,2,...} uniquely determines f(x,y), and vice-versa. A reconstruction formula
exists by which the original signal can be recovered from the infinite set of moments. However
the series representation of the reconstruction formula cannot be simply truncated to find an

approximation to the original signal.

In spite of this difficulty, if moments of f(x,y) are calculated up to order N, then a match
statistic can be formed by comparing each moment to the corresponding moment for the test
area. A minimisation function may be formed by taking the sum-of-squares difference over all

N moments.

In situations where geometric scaling is not significant, the limiting factor in searching the
parameter space is dealing with rotation. Performing a direct template match would require the
rotation of the match area with respect to the template. The geometric rotation of discrete data is
in itself not a trivial task. Great care has to be taken to minimise the effects of spatial aliasing
[4.4] if a correct match is to be found. A suitable procedure would consist of interpolating the
match area to form a continuous description, rotating the continuous description, then finally
resampling the rotated description back onto the original discrete pixel grid. This series of
operations would have to be performed for each iteration of the search with great computational

cost.

Motion-tracking: An Overview 83

Using the theory of algebraic invariants [4.5] it is possible to find certain polynomial moments
that remain unchanged under the general linear coordinate rotation transform defined in equation

4.10, where 6 is the angle of rotation.

[x} [cos@ sin 9]{{]
— i eq. 4.10
Ylnew L—SING cosb]y |,

These moment invariants are constructed from central moments defined by:

Hpo= 22— (=5 f(x,)] eq. 411
R
where X =m, , / my, and y =mq, /' my,.

Table 4.1 contains the first, second and third-order polynomial central moments that are

invariant to both rotation and reflection.

First-order moments Moy =Hio= 0
(always invariant)

O = Myot Mo,
O, = (Hyo — #0_2)2 + 4/112.1

Second-order moments (u+v=2)

Third-order moments (u+v=3) Oy = (30— 3M,,)+ (Hoz = 3H,,)

05 = (Hsg +lul.2)2 + (Hos +)?
G5 = (Hy0 =38y 5) (U + 1, 5)*

(a0 + 1y,) - 3(Hy, + Mos)]
+(Roa =31y (Mo s + 1y) *

[(Kos + Hay) = 3(Hy 2 + Hyp)’]
06 = (Koo — Ho2 (s + 1y,) (Ha1 + Hos)’]

AU (o + 1) (Hos + Myy)

Table 4.1: Central moment invariants

Higher-order moment invariants can be formed, but their computational complexity increases
significantly. Moment invariants up to third-order have been used successfully in shape

recognition and scene matching applications [4.6, 4.7].

Surface fitting

An alternative way to work in the spatial domain and reduce the computational cost of the match

statistic is to approximate the image data with a simple geometric function. A low-order

84 T he Development of Motion Tracking Strategies For Cineradiographic Images

polynomial surfaces is fitted to the match template and the test region in the next frame. A
similarity measure can then be computed by some sort of weighted difference of the polynomial
coefficients. In approximating the image regions with a polynomial surface, the information or
structure has become filtered in some way. If the form of the polynomial is changed then the
nature of the filtering effect also changes. An effective way to deal with this problem is to
adaptively fit a polynomial to the match template [4.8]. This can be accomplished by starting
with the simplest form of the surface polynomial and computing a goodness-of-fit measure such
as the total sum-of-squares difference. The form of the polynomial is slowly made more
comprehensive (more terms are added) until the goodness-of-fit measure reaches a maximum.
The form of the polynomial at this stage is then used in the fir-and-match process outlined above.
This adaptive process ensures that the simplest polynomial that best approximates the template

data is used.

Preprocessing

The sharpness of the best match is dependent on both the match statistic and the structure of the
intensity information contained in the template. Sharpness relates to how rapidly the match
value changes for small perturbations away from the optimal position in the parameter space.
One way to improve the match sharpness is to enhance any structure present in the match
template and the search area before performing the search. The enhancement may take the form
of local histogram stretching or equalisation, or spatial filtering to reduce noise, or enhance
intensity gradients around the boundaries of objects. In practice all these operations may be
applied jointly. Chapter 5 introduces the concept of sharpness and selectivity with appropriate

measures and shows how proper preprocessing can improve discrimination.

4.2.2 Matching in the Transform Domain

A classical method of signal representation is by orthogonal series expansions [4.9]. For a one

dimensional discrete signal {u(n), 0 <n < N —1}, represented as a vector u of size N, a unitary

transformation is written as:

N-l
v=Au = v(k)=) a(k,n)u(n), 0<k<N-I eq. 4.12

n=0
where A is the transform matrix and v the transform vector.

Unitary implies that the inverse of the transform matrix is equal to its conjugate transpose,

C =T . g J 5 g
A7'= A" . The corresponding inverse transformation is given by:

N-1
u=A"v = un)=3 vk)a (k,n), 0<n<N-1 eq. 4.13

k=0

Motion-tracking: An Overview 85

; 0 . : : T
Equation 4.13 can be viewed as a series representation of the signal u(n). The columns of A
are called the basis vectors of A. The series coefficients v(k) provide a representation of the

original signal that can be used in filtering, feature extraction and other types of analysis.

The general orthogonal series expansion for an NxN image u(m,n) is a pair of transformations

of the form:
N=1N-1
v(k,l)= ZZu(m,n)aky,(m,n), 0<k,ISN-1 eq. 4.14
m=0 n=0
N-1N-1
u(m,n) = v(k,D)a'xi(m,n), 0Smn<N-1 eq. 4.15

bl
—
1}

o

where {a, ,(m,n)}, called an image transform, is a set of complete orthonormal discrete basis

functions.

If the two-dimensional image transform can be written as the product of two one-dimensional

transforms, then the transform is termed separable, that is,

a, (m,n) = a,(m)b(n)= a(k,m)b(l,n) eq. 4.16

where {a,(m),k=0,...N,-1}, ({b(n),l=0,...N,—1} are one-dimensional complete

orthonormal sets of basis vectors.

By choosing A = {a(k,m)} to be the same as B = {b(l,n)} equations 4.14 and 4.15 reduce to:

N-1 N-1
V=AUA” vk, = ZZa(k,m)u(m,n)a(l,n) eq. 4.17
m=0 n=0
« «T ! - *
U=A'VA" o u(mn)=Y a’(k,m)v(k,l)a"(l,n) eq. 4.18
m=0n=0

In the general sense matrix A is referred to as the transform kernel. By choosing different kernel
generating functions all the standard linear transformations including the discrete Fourier, Sine,
Cosine and Hadamard transforms, and the inverses, can be computed using equations 4.17 and

4.18 respectively.

Energy Compaction and Decorrelation

An important property of most unitary transforms is the tendency to pack a large fraction of the
average energy of the image into relatively few of the transform coefficients. Energy in this
context is measured by the square of the Euclidean distance, represented by the symbol " ||

Since the unitary transform preserves the total energy,

"U“2 = ||V|]2 eq. 4.19

86 The Development of Motion Tracking Strategies For Cineradiographic Images

it follows that many of the coefficients will be small and contain very little energy. Even if the
energy of original image values is uniformly distributed, the energy of the transform coefficients
will be non-uniformly distributed. Also if the image data is highly correlated the transform

coefficients will tend to be uncorrelated.

Matching

Matching in the transform domain consists of first transforming the object template, and the test
match area in the next frame. These two signals are then compared using one of the difference or
similarity measures, and a value computed. As with the spatial domain methods, the best match
in the parameter space is found by searching for peaks or troughs in the local area. Many of the
transform coefficients of the object template will be small due to energy compaction, thus only a
small percentage of the transform coefficients are required in the computation of the match
statistic. The actual coefficients of significance can be determined in advance by inspection of
the transformed object template. A suitable criterion may be to sort the coefficients into order,
based on their absolute size and choose the largest 10%. A large fraction of the template
structure will be contained in this small percentage of coefficients due to the energy compaction
and decorrelation properties of unitary transforms. Once the coefficients have been chosen, the
test match area is transformed and the corresponding 10% of the coefficients are used to

compute the match statistic.

The Fourier Transform

One of the most fundamental transforms in signal processing is the Fourier transform. If
f(x,y) is a continuous intensity image defined on the spatial coordinates x,y, then fx,éy are
the spatial frequencies that represent the changes in intensity with respect to the spatial distances.
The units of & and é)_ are reciprocals of x and y, respectively. Equations 4.20 and 4.21 define

the Fourier transform and the inverse Fourier transform of f(x,y).

FE.E)= || flx.y)expl—j2n(xE, +yE,))dx dy eq. 420

fy=[" [FE&,&)explj2n(x, +yE)1dE, dE, eq. 421

From the form of these equations it is clear that the Fourier transformis a complex function. It

takes the real valued function f(x,y) and produces the complex spatial frequency description

F(&..5,).

The Fourier transform possesses a number of very useful properties. The most commonly

exploited property is that of convolution [4.10]. The results of the convolution theorem can be

Motion-tracking: An Overview 87

readily extended to the spatial correlation of two functions. Let % represent a correlation

operator, then the spatial correlation of two functions f(x,y) and g(x,y) is defined as:
c(x,y)=h(x,y)* f(x,y) eq. 4.22

In the Fourier domain the correlation operator is replaced by a sign reversal of the spatial

frequency terms in the first function and a simple multiplication.:
C(E,:6,)=H(~E.,~5)F(E,.6,) eq. 4.23

Another property of the Fourier transform that can be exploited in scene matching is the shift

property. A shift or translation (Ax,Ay) in the spatial domain results in the multiplication by a

complex exponential in the Fourier domain. Equation 4.24 defines the Fourier shift property.

fxthx,ytdy) o expl£j2mAxE, +MENIF(E,LE) eq 4.24

Real Transforms

Equations 4.20 and 4.21 show that the Fourier transform involves complex arithmetic. If the
original signal is also complex then there is no computational overhead. However most practical
applications involve real valued signals. Thus the use of the Fourier transform results in
increased storage and computational requirements. Furthermore, once a signal has been
processed in the Fourier domain and inverse transformed back, care must to be taken to ensure

that the returned signal contains only real values.

There exists a number of kernels that can be used in equation 4.17 and 4.18 to unitary transform
a real signal, requiring only real arithmetic and producing only real values. They generally
possess excellent energy compaction for highly-correlated data and result in highly decorrelated
transform coefficients. The most well known of these kemels produce the Cosine, Sine and
Hadamard transforms. All of these transforms have a fast discrete implementation due to their

Kronecker product separability.

The N x N cosine transform kernel (matrix) C=c(k,n), also called the discrete cosine

transform (DCT), is defined as:

— k=0,0sn<N-1

C(k,n)z eq. 425

2 (E(2n+l)k
cos| ————

], 1<kSN-1,0sn<N-1
2N

The cosine transform is related to the symmetric extension of the discrete Fourier transform
(DFT).

88 The Development of Motion Tracking Strategies For Cineradiographic Images

Similarly the N x N sine transform kemel (matrix) S = s(k,n), also called the discrete sine

transform (DST), defined as:

A sin(ﬂ(k+])(n+l)} 0<kn<N-1 eq. 4.26
N+1 N+1

is related to the antisymmetric extension of the DFT.

The DST is a self inverse due to it being symmetric and orthogonal, resulting in an

implementation that is somewhat faster than both the fast Fourier and fast Cosine transforms.

Unlike the Fourier, cosine and sine transforms, the Hadamard (or Walsh-Hadamard) [4.11]
transform matrix contains only the binary values *1. This makes it well suited for digital signal
processing resulting in an exceptionally fast transform requiring only additions and subtraction.
The Hadamard transform matrices, H,, are N x N matrices, where N =2",n=1,2,3... These
are easily generated from a core matrix H, and Kronecker product recursion. Equation 4.27
defines the core matrix, while equation 4.28 defines the recursion relationship (where the symbol

® represents the Kronecker product operator) for generating larger matrices.

1 (1 1
H=— . 4.27
: ﬁ[l _1] “

l Hn-l
H =H,_®H=H®H, =—

H,, 4.28
7lH eq. 4.

_Hn—l

n=1

When dealing with the Hadamard transform the concept of transform frequency is replaced with
the term sequency since the function only takes on the values *1. For sinusoidal signals
frequency can be defined in terms of the number of zero crossings, sequency is simply the

number of sign changes.

4.2.3 Search Strategies

Whether working in the spatial domain or transform domain, motion tracking using template
matching requires the search of a parameter space to find the best fit. If the maximum
interframe motion with respect to the parameter space can be estimated reliability, then the extent
of the local search can be constrained. Even for relatively small areas, an exhaustive search can

become computationally prohibitive.

Direct search methods tend to be applied in the spatial domain although in many cases the
approach is perfectly general to other forms of optimisation. A number of efficient direct search

techniques exist.

Motion-tracking: An Overview 89

Two-dimensional logarithmic search

Assuming that the motion can be approximated by pure translation, consider a local

neighbourhood size + p about the estimated position in the image space, for which a match with
an object template of size M x N is sought. An exhaustive search would require (2 p + 1)
iterations, the logarithmic search reduces this to log(2p+1) iterations. A mean distortion

function can be defined as:

1 M N
D(i, j) =WZZf(I(m,n)-Ik(m+i,n+j)), -p<i,j<p eq. 4.29

m=] n=1

where a suitable choice of the function f(x) may be x* or ’x, corresponding to the
sum-of-squares difference and absolute-sum-difference of equations 4.5 and 4.6. Define the
direction of minimum distortion (DMD) as the direction of the vector (i,j) that minimises

D(i, j). The template match occurs when the DMD has been found within the search area.

If D(i, j) increases monotonically moving away from the DMD in any direction, then the search
can be speeded up by successively reducing the area of search. Figure 4.5 illustrates the
logarithmic search procedure for p =4, the O symbol marks the search positions. The
algorithm begins by searching five locations between the midpoints of the centre and the four
boundaries of the search area. These locations have been marked with 1. The optimum direction
(the circled numbers) give the location of the centre for the next step. The procedure continues
until the search plane is of size 3x3 in which all nine locations are searched to find the DMD.
The final optimum direction is indicated by * in figure 4.5. In this example the number of

searched locations has been reduced to 13 out of the possible 81 positions.

4 j-3 2 1§ j+l j+2 j+3 j+4

i-4 =
2 *
| ©
i-3 B—a—a
3 J3 |3
i-2 B—a8—a——

2]
8]

v
—
rn
b
h

n
Ly

w
u""
w

m
K
o
m
[*F)

i+1

1+2 1

i+3

+4

Figure 4.3: 2-d logarithmic search in the direction of minimum distortion

90 The Development of Motion Tracking Strategies For Cineradiographic Images

The logarithmic search is simply a variation on a discrete 2-d implementation of the well known

steepest decent algorithm.

Sequential search

There are several alternative ways in which a sequential search can be speeded up. The first
involves computing a cumulative error and terminating the direction of search when some
predefined threshold is exceeded. The search may only be continued in those directions that are

below the threshold.

Another common algorithm that is used as an alternative to steepest decent is the conjugate
gradient algorithm [4.12]. With respect to searching a 2-d space, the search algorithm proceeds
in the i direction until a minimum is found and then switches to the j direction until the next
minimum is found. The search continues in alternating conjugate directions until the location of

the minimum remains unchanged.

Hierarchical search

A hierarchical search is effective when the search parameter space is large. The method involves
searching a low-resolution reduced copy using a likewise reduced copy of the template. If
multiple matches occur, then these locations are searched at higher resolution to further refine
and reduce the search area. The algorithm continues until the best match is found at the original

resolution.

Image processing structures that contain multiple copies of an image at successively lower
resolution are called pyramids. The rule by which the resolution is reduced is important as it
governs how information is preserved proceeding up the pyramid. A complete pyramidal
representation of signal requires approximately 33% more storage than the original signal. This
increased storage is offset by the greatly reduced computational cost in searching the pyramid
from the top level down. For a simple half-scale rule (half size at each level), the coarse-fine

search is logarithmically efficient.

The resolution reduction rule for the pyramid may also be different a various levels. It can be

adaptively chosen to preserve specific characteristics, at different levels of the pyramid.

4.2.4 Motion Prediction

If a reliable estimate of the most likely position and the maximum deviation from this position in
the parameter space can be computed, then the size of the match region to be searched can be
greatly reduced. Predicting the motion of the object to be tracked usually involves some a priori
knowledge about the nature of this motion. The simplest assumption that can be made is the

object moves smoothly and hence the interframe motion for the next frame will be similar to the

Motion-tracking: An Overview 91

current frame. This single interframe step approach amounts to the linear interpolation of the
motion parameters. If the smoothness assumption holds, then the only difficulty is in finding the
first interframe match to form the prediction. This first step will usually involve an extensive
search with practical estimates on the maximum possible extent of the search region. Once the
method is started, the only difficulty that can occur is that the smoothness assumption may
become invalid at some point, resulting in the predicted region not including the true match
region. One way to deal with this problem is to compare the value of the best-match in the
current frame with the best-match in the previous frame. If the difference exceeds some
threshold then the tracking process resets itself and restarts from this frame as if it was the first

frame.

The effectiveness of motion prediction can be enhanced by computing the prediction over more
than one frame. A quadratic predictor can be computed by initially starting with the linear
predictor until two interframes have been tracked. At this stage the motion from these two
interframes is fitted with a quadratic function which in turn is used to predict the next interframe
motion. This fitting and prediction process than continues as the sequence is tracked. An added
advantage of using multiple frames to form the prediction is that the threshold used to detect
whether or not the prediction has failed (ie. the true match not in the prediction region) can in
itself be made adaptive. The standard deviation of the best-match over several frames can be

computed and used as the *deviation for the allowable difference of match.

Higher order interpolators such as splines can also be used in the prediction process, but
computational cost begin to increase sharply. Also care has to be taken to ensure the stability of
the interpolant. Cubic splines tend to ‘ring’ and overshoot if the spacing between points becomes
too non-uniform. This situation will occur if the sequence motion is rough, and can result in

large prediction errors.

4.3 Optical Flow Methods

Motion tracking using optical flow methods involves computing the interframe optical flow or
instantaneous velocity field of a scene and then locating the objects being tracked and computing
their motion from the structure of the velocity field. One of the important features of optical
flow is that it can be calculated using only local information. Five basic methods for the

calculation of optical flow have been studied in the literature.
1. Point-based differential methods
2. Region-based local match methods
3. Contour-based approaches
4. Energy-based approaches
5

Phase-based approaches

92 The Development of Motion Tracking Strategies For Cineradiographic Images

All of these techniques extract local estimates of the image translation, and in some case the

gradient of the velocity field. These methods will be reviewed in brief, in the following sections.

4.3.1 Differential Approaches

Differential techniques were the first methods to be studied in the computation of optical flow

[4.13, 4.14]. They modelled the image motion by a continuous variation of image intensity as a

function of position and time. The intensity function /(x,y,?) is then expanded as a Taylor
series.
I(x+dx,y+dy,t+dt)=

dal

ol ol . eq. 4.30
I(x,y,t)+—dx +—dy+—dt + higher terms
(x,y,1) > 3 Yt g

Terms higher than the first term are discarded, making the partial differential description linear.
If the image at some time +dt is the same image at time ¢ , translated by dx and dy then:

I(x+dx,y+dy,t+dt)=1(x,y,t) eq. 4.31

Combining equations 4.30 and 4.31 leads to the result:

— eq. 4.32
oxdt dydt ot
known as the gradient constraint equation.
dx d
In this equation ﬂ,i and ﬂ are all measurable quantities, and — and 4 estimate what we
dr ok dy dt dt
are looking for, the local velocity in the x and y direction.
dx d
Let, —=u A v eq. 4.33
dt dt
o dl . d
thus equation 4.32 gives, ——=—u+—v eq. 4.34
q g EEY 5 q
: dal
or equivalently, Y =VI.v eq. 4.35

where VI is the spatial gradient of the image, ' is the dot product operator, and v = (u, V) the

velocity.

Explicit measurement using equation 4.35 yields only the normal velocity with respect to the
direction of the spatial gradient operator. This is because only one linear equation constrains

both components of the velocity.

Motion-tracking: An Overview 93

Many additional constraints have been proposed to over determine the system and hence enable a
least-squares or similar solution. The most popular constraint involves global smoothness of v.
This smoothness constraint can be defined by the following energy function over a local region of

interest R, that is minimised with respect to the velocity field.

m‘;n(E) = minj((lxu+1yv+ I,)2 + l(uf +u§ + vf +v§)) dxdy eq. 4.36
R

where u_, U,v,,v, are partial derivatives of the velocity field with respect to the x and y, and A

reflects the relative importance of smoothness in the solution.

Implicit in the differential or gradient techniques is the calculation of the spatial and temporal
derivatives. When only two frames are used in this computation the method is limited to only
one pixel per frame displacement, and a linear intensity change in a region as large as the
expected displacement. Practically this has led to the use of multiple frames in the calculation of
the optical flow using this approach. This method also assumes that the derivatives of the
velocity components do exist. However for the discrete image case both spatial and temporal
aliasing may occur, corrupting the signal and leading to severe instability in the numerical

differentiation.

4.3.2 Matching Approaches

Most of the essential elements in matching approaches to the computation of optical flow have
already been covered in section 4.21 on spatial domain matching approaches to motion tracking.
Region-based optical flow approaches are aimed at overcoming the difficulties of the point-based
differential methods when accurate differentiation is not possible due to noise or where only a
small number of frames exist. The scene is broken up into small regular areas and a match is
sought for each area in the following frame. A similarity or difference measure is then used to
find the best match. The velocity vector for each area is then computed from the differences in

coordinates between the original location and the best fit location in the next frame.

In practice two issues have proven to be important in applying matching methods to the
computation of optical flow. First, the aperture problem (see section 4.1.1) arises when the local
intensity structure in the match template is one-dimensional. In this case the match statistic gives
rise to surfaces that are ridge-like, without clearly defined maxima (or minima) as a function of
shift. A conditioning measure such as the curvature of the match statistic may prove useful in
dealing with this problem, but cannot eliminate it. The second difficult issue involves textured
and periodic structures that may exist in a scene. For large interframe displacements and in the
absence of good motion prediction, this can lead to multiple, equally-likely ridge matches in the

search region. To handle this problem additional constraints or some form of control structure

94 The Development of Motion Tracking Strategies For Cineradiographic Images

can be incorporated. Band-pass filtering may prove useful in the removal of low frequency

structure and can be applied in addition to a coarse-to-fine match strategy [4.15].

4.3.3 Contour-based Approaches

Contour-based or feature-based approaches appear in two basic forms. In the first form the
image contours are explicitly used as features that are tracked from frame-to-frame. The second
form uses the contours as locations in the image where some form of differential method can be

applied.

Most feature-based approaches use edges. The motivation behind this choice is that it has been
conjectured that edges are stable over time, correspond to salient image properties and are
relatively high contrast features for images with a good signal-to-noise ratio. However
practically, the contours extracted with the current edge detection processes are rarely confined

to a single smooth surface.

The most commonly used edge detection methods such as Canny and Marr-Hildreth (see chapter
3) provide a reasonably sparse collection of features from which image velocity can be
measured. It is assumed that the edges move small distances relative to their density in the
image, enabling relatively straight forward correspondence. The local velocity is then computed
from the perpendicular distance between one contour and the corresponding contour in the next
frame. However the apparently straight forward contour correspondence problem has proved to
be the major difficulty in applying this method to motion analysis. Many methods have been
devised to tackle this problem including the iteration of initial estimates [4.16] and dynamic

optimisation by the gradient descent procedures [4.17].

In the second form of contour-based approach, edges are usually defined in terms of the output
of a band-pass edge-enhancement filter. The velocity measurement is then based on a differential

method restricted to edge locations and their local neighbourhoods.

Several specific problems exist that have been argued to be a significant obstacle to feature-
based approaches to optical flow. Correspondence is the most intractable, however the
assumption that features (edges in particular) are well localised and stable over time has also
proved to be weak in practical situations. Implicit to these method is that contours provide a rich
description of the image so that no velocities will go undetected and that sparse isolated edges

will facilitate easy correspondence. This has not proved to be the case [4.18].

4.3.4 Energy-based Approaches

Energy-based approaches use frequency analysis and an initial velocity-specific representation of

the image sequence. A range of tuned filters are used to sample the local power spectrum of the

Motion-tracking: An Overview 95

signal. The relative amplitudes of the output of these filters is then used to compute the image

velocity.

Let the vector X = (x,y) denote the x and y spatial coordinates and v =(v_,v,) denote the x

and y spatial velocities. Consider a 2-d intensity function i (X), translating at velocity a v.
i(x,t)=iy(x—vt) eq. 4.37

Taking the Fourier transform of this equation and using the Fourier shift property (eq. 4.24), it

follows that:

I(k,w)= _U o (X — Ve)e TR g gy

= I, (k) e e dr eq. 4.38

=I,(k)d(w+v'k)
where 1, (K) is the Fourier transform of i,(x)and & is the Dirac or impulse function.

The result of equation 4.38 indicates that when the translating intensity function is expressed in
the Fourier domain, all of its non-zero power lies on a plane containing the origin. This is
because &(®+ v'k) is non-zero only when @ =—v’K. The magnitude of the velocity (speed),
[v]|, determines the angle between the planes @=—v'k and @=0. While the direction of v

determines the orientation of the velocity plane about the @-axis.

The above analysis implies that if the temporal variation in an image is due to translation, then
all the power will be concentrated on the appropriate plane in the frequency space. This result
can be extended by considering the 3-d power spectrum R*, of a region R, in a spatiotemporal
image, as a distribution [4.19]. The principle directions of this distribution are given by the
eigenvectors of its covariance matrix and the eigenvalues specify the variance of the power
spectrum in the each of the principle directions. The main results of this analysis in terms of

velocity measurement are:

e A translating 1-d profile has all its power concentrated about a line through the origin
resulting in only one of the three eigenvalues being significantly non-zero. From the

corresponding eigenvector the velocity of the line can be estimated

e A translated 2-d textured image patch has its power concentrated about a plane in
frequency space resulting in two significantly non-zero eigenvalues. As the eigenvectors

are orthogonal, they will span the plane enabling the estimation of the 2-d velocity.

e For constant intensity patches all three eigenvalues will be zero, while for more complex

spatiotemporal variations all three eigenvalues will be non-zero.

96 The Development of Motion Tracking Strategies For Cineradiographic Images

The above results would seem to indicate that the computation of local image velocity by this
method is straight forward. However in order to get an adequate estimate of the velocity several
filters, tuned to different spatial and temporal frequencies, are needed. The output of these filters
are then combined in some way to produce the final velocity estimate. Because the final
estimate is based on the results of multiple filters, velocity resolution is significantly sacrificed.
This poor resolution can lead to confusion, two different component velocities in the same
neighbourhood may have the same distribution of output filter amplitudes as a single component
velocity. In addition, there is little information with respect to robustness of these methods for

common deviations from pure translation, such as incremental rotation and scale change.

4.3.5 Phase-based Approaches

Phase-based approaches to optical flow use a collection of velocity-tuned filters as in the
energy-based approaches, however the phase behaviour of the filter outputs rather than the
amplitude is used to compute the component velocity. The motivation behind the use of phase
information is that spatial contours of constant phase provide a better approximation to the

temporal evolution of a motion field than do contours of constant amplitude [4.20].

The importance of phase information can be readily demonstrated by the following. Fourier
transform an image, convert the complex result to polar form (magnitude and phase); set all the
magnitudes to unity, convert back to component form and inverse transform. The resulting
image will be very low in contrast but will clearly be recognisable as the original image. This is
because the phase information contains much of the images spatial structure. This result can be

readily extended to 3-d signals such as image sequences.

In principle if the change in image intensity in a motion sequence was solely due to translation,
then all four methods covered in sections 4.3.1 to 4.3.4 would produce accurate estimates of the
local velocity, so long as the aperture problem and aliasing of the signal were not severe.
However, the typical time-varying behaviour of intensity image sequences is only crudely
approximated by local translation. Tracking phase contours is less sensitive to contrast changes
and local variations in scale, speed, and orientation, compared to tracking amplitude contours.
This is because the calculation of the component velocity from phase information requires the
computation of the phase gradient and it can be shown that the phase gradient uniquely defines
the instantaneous spatial and temporal frequencies of a signal [4.21]. Unlike the energy-based
approaches, the collection of filters used to compute the final velocity estimate are only tuned

slightly differently from each other. This ensures that velocity resolution is not sacrificed.

The accurate calculation of the phase gradient is not a trivial matter as the effects of phase
wrapping/unwrapping and discontinuities have to be taken into account. Many of these

difficulties can be avoided by computing the phase gradient directly from the response and

Motion-tracking: An Overview 97

gradient of the response of the filters. This computation explicitly involves numerical integration
and differentiation of the sampled signals. To avoid many of the difficulties associated with
numerical integration and differentiation, the complex signals have to be low-pass filtered first.
They may then be convolved with appropriate interpolation and differentiation kernels to yield

fairly robust results.

Overall the computational cost of phase-based techniques for the measurement of optical flow is

very high, but results can be very good.

4.3.6 Adapting Optical Flow for Radiographic Images

In modelling the spatiotemporal intensity variation in an image sequence, optical flow techniques
exploit a relatively simple scene model incorporating smooth surfaces, with both diffuse and
specular components of reflection. This reflectance model does not include the effects of
shadowing, but in many cases proves to be quite adequate. Radiographic images do not conform
to the reflectance model. Chapter 2 clearly showed that radiographic information is the result of
the integrated absorption of the X-ray beam as it passes through material. The relative
absorption is dependent on the thickness of the material and its mass density. Thus the intensity
of an object is dependent on its density and not its surface reflectance. This implies that
measured velocities no longer represent a single point on the object. Making the assumption that

density does not change with time, intensity changes will represent depth changes.

In angiograms [4.22] a radio-opaque dye is injected into the bloodstream. The primary
absorbers of the transmission in this situation are the dye and calcified bone. The assumption
that the intensity changes represent depth changes in the heart is true in this case since the
dye-filled heart is the primary source of motion. However for cineradiographic sequences of the
human spine there is little bone deformation only small density changes due to stretching and

compression of soft tissue.

Continuity Equation

The continuity equation arises from the study of fluid flow. It relates the spatiotemporal

behaviour of a conserved fluid quantity to the fluid velocity.
%+ V.(pu)=0 eq. 4.39

where p=p(x,t) is the fluid density, u=wu(x,?) the fluid velocity, and X is the spatial

coordinates (x, y) in two dimensions and (x, y, z) in three dimensions.

This fluid flow model, based on the continuity equation, is particularly appropriate in imaging

situations where the intensity is proportional to the density of some conserved fluid quantity,

98 The Development of Motion Tracking Strategies For Cineradiographic Images

such as mass, charge or the projection of such a density. This is clearly the case for

radiographic imaging [4.23].

In section 4.3.1, differential approaches to the computation of optical flow were primarily based
on the gradient constraint equation, equation 4.35. When this is applied to radiographic
images, the intensity term represents density, resulting in the equivalent equation:

dp

> +Vp.v=0 eq. 4.40

where v = v(X,1) is now the velocity of ‘constant-density'.

Expanding the gradient and dot-product operations in the continuity equation (4.39) enables a
comparison between this equation and the gradient constraint equation.

—a£+Vp.u+pV.u=O eq. 4.41

or
Comparing equations 4.39 and 4.41 it is readily observed that if pV.u =0, then uand vobey

the same equation. This situation corresponds to the case where the fluid is both conserved and

incompressible. Combining equations 4.40 and 4.41 produces the following result:

V.au
Vg = I.lg e
[V(logp)

eq. 4.42

where the subscript 'g’ denotes the component measured in the direction of the density gradient
Vp.

This equation shows that the additional term resulting from the fluid flow model involves two
components. The first component V.u is the local divergence of the fluid flow (the gradient in
the direction normal to the fluid velocity) and the second component is the gradient of the log of
the density. The overall effect of this term is that the optical flow velocity in the direction of the
gradient will be more positive than the fluid flow component at locations where the fluid flow is

diverging, and more negative where the flow is converging.

Although the continuity equation appears to be more appropriate than the standard optical flow
equation for radiographic images since it is based on actual physical flow, it is insufficient in
itself to uniquely determine the flow. Additional constraints are required, similar to those applied
to the optical flow equation in section 4.3.1 to ensure a solution. In practice it is the application

of these constraints and not the base model that is the most problematic.

Motion-tracking: An Overview 99

4.4 A Suitable Tracking Method for Cineradiographic Images

All of the methods covered in this chapter are constrained by the effects of both the aperture
problem and the correspondence problem. The aperture problem (covered in section 4.1.1)
restricts the estimation of the local velocity to its normal component. The correspondence
problem is solved explicitly by object-based matching approaches when they find the best match
to the object template in the next frame. Optical flow methods deal with this problem when they
calculate the interframe temporal gradients on which local velocity estimates are made. Also
when optical flow methods are used to track complete objects, local velocity estimates have to be
associated (correspondence found) with the objects. These corresponding velocity vectors are

then used in the estimate of the object motion.

Another significant problem encountered by all the motion-tracking methods is occlusion. In the
general case one object may pass behind another object and thus become partially or totally
obscured only to reappear later in the sequence. The effect of even partial occlusion in
reflectance images will dramatically alter the recorded intensity information. Dealing with
occlusion in radiographic images is in principle a far less difficult task as total occlusion can

never occur since the image is formed by a density projection.

In cineradiographic images of the human spine the motion of interest is the movement of the
vertebrae. A description of the entire velocity field is not required. Occlusion is not generally a
problem in the important cervical and lumbar regions. Thus template-based matching
approaches would appear to be the most appropriate method for cineradiographic images of the

human spine.

Some means of segmenting the image and identifying the objects of interest (the vertebrae) is
necessary. Chapter 3 covered in detail the application of edge-based segmentation methods to
cineradiographic images of the human spine. The low contrast of these images combined with
their noisy characteristics made this task very difficult. In a practical situation manual
segmentation of a single frame in a sequence and labelling the objects of interest would be
acceptable to a health care practitioner so long as the remainder of the tracking process is

automated.

A practical system for the measurement of spinal motion must perform the necessary
calculations in an acceptable time. Acceptable time in this situation implies that it should take
no longer than 30 minutes and preferably less. Given that a cineradiographic sequence may
contain a hundred or more frames (even at half-video rates), then the overall computation
required to track the vertebrae will be extremely high. Of the various methods reviewed in this
chapter, template matching approaches are the least computationally expensive, especially when

combined with good motion prediction and an effective match statistic.

100

The Development of Motion Tracking Strategies For Cineradiographic Images

In the following chapter the performance of the various match statistics proposed in sections 4.2

and 4.3, are evaluated on real data from cineradiographic images of the human spine.

4.5
[4.1]

(4.2]

[4.3]

[4.4]

[4.5]

[4.6]

(4.7]

(4.8]

[4.9]

[4.10]

(4.11)

[4.12]

[4.13]

[4.14]

References
Horn B.K.P. Robot Vision, MIT Press, Cambridge, 1986

Marr D. and Ullman S. Directional selectivity and its use in early visual processing,

Proceedings of the Royal Society of London, B 211, pp 151..180, 1981.

Aggarwal J. K., Duda R. O. and Rosenfeld A. (eds.). Computer Methods in Image
Analysis. Chapter 4. Hu K., Visual Pattern Recognition by Moment Invariants. Los

Angeles: IEEE Computer Society, 1977.

Pavlidis T. Algorithms for Graphics and Image Processing. Computer Science Press,
Rockville, MD, 1982.

Gurevich G. B. Foundations of Theory of Algebraic Invariants. Groningen, The
Netherlands: P Noordhoff, 1964.

Dudani S., Breeding K. and McGhee R. Aircraft ldentification by Moment
Invariants. 1IEEE Transactions on Computers C-26, No. 1, pp 39..45, Jan. 1977.

Wong R. and Hall E. Scene Matching With Moment Invariants, Computer Graphics
and Image Processing 8, pp 16..24, 1978.

Besl P.J. and Jain R.C. Segmentation Through Variable-Order Surface Fitting.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 2,
pp 167..92, March 1988.

Ahmed, N. and Rao, K.R., Orthogonal Transforms for Digital Signal Processing.
Springer Verlag, New York, 1975.

Bracewell R.N. The Fourier Transform and its application. McGraw-Hill, pp 24..48,
1986.

Walsh, J.L. A closed Set of Orthogonal Functions., Proceedings of the London
Mathematical Society., vol. 34, pp 241..279, 1932.

Abdou LF. and Wong K.Y. Applied Numerical Analysis. 2nd Edition, Addison-
Wesley, 1978.

Fennema C. and Thomson W. Velocity determination in scenes containing several

moving objects. Computer Graphics and Image processing 9, pp 301..315, 1979.

Horn B.K.P. and Schunck B.G. Determining optical flow. Artificial Intelligence 17,
pp 185..204, 1981.

Motion-tracking: An Overview 101

[4.15]

[4.16]

[4.17]

[4.18)

[4.19]

[4.20)

[4.21]

[4.22]

[4.23)

Ballard D.H. and Brown C.M. Computer Vision. Prentice-Hall, 1982.

Glazer F., Reynolds G. and Anandan P. Scene matching through hierarchical
correlation. Proceedings IEEE CVPR, Washington, pp 432..442, 1983.

Wu J. Brockett R. and Wohn K. A contour-based recovery of image flow: Iteration
method. Proceedings IEEE CVPR, San Diego, pp 124..129, 1989.

Kass M., Witkin A. and Terzopoulos D. Snakes: Active contour models.

International Journal of Computer Vision 1, pp 321..331, 1988.

Waxman A.M., Wu J. and Bergholm F. Convected activation profiles: Receptive
fields for real-time measurement of short range visual motion. Proceedings of CVPR,
Ann Arbor, pp 717..723, 1988.

Fleet D.J. and Jepsen A.D. Computation of image velocity from local phase

information. International Journal of Computer Vision 5, pp 77..104, 1990.

Adelson E.H. and Bergen J.R. Spatiotemporal energy models for the perception of
motion. Journal of the Optical Society of America A2, pp 284..299, 1985.

Stevens A.S. Medical Imaging, Gold-Publishing, 1991.

Fitzpatrick J.M. A method for calculating velocity in time dependent images based on

the continuity equation. IEEE Motion: Representation and Perception, pp 78.81,
1985.

S

Match Statistic Performance

5.1 Template Matching

It was concluded in chapter 4 that a template-based matching approach would be the most
suitable method for tracking motion of the human spine in cineradiographic images. This was
principally based on the fact that a general description of the motion field was not required since
only the vertebra were of interest. The outlines of the vertebral boundaries in a single frame
would form object templates for which a best match position would be sought in subsequent
frames. Such an approach has the added advantage of directly solving the correspondence
problem (see section 4.3.3). The potential success of this approach is further enhanced by the
fact that the vertebral motion is reasonably well constrained to a single plane, resulting in little
geometric distortion of the projected vertebral image. Also, due to constraints in the degrees of
freedom associated with the motion of the spine, only partial occlusion of vertebrae can occur

and its effect is significantly reduced since the image is a density projection.

Template based tracking approaches are of low computational cost only when the size of the
template is small and good estimates of both translation and rotation are available. While
dealing with translation to within one pixel is straight forward, matching with template rotation
is far from simple and can consume most of the computation in the motion tracking scheme. The
issue of rotation is dealt with in detail in the following chapter where a method is developed to
create cineradiographic sequences with prescribed motion. Matching with rotation requires that
for each increment of rotation, the discrete template is interpolated to form a continuous
description. This continuous description is then rotated and sampled back onto the original pixel
grid, ready for matching. Ensuring that the rotation operation does not introduce any spatial
aliasing artefacts or significant smoothing requires careful design and significant computational
effort. If the object represented by the template changes very little, both geometrically and
photometrically, then the rotated templates need only be computed once at the start of the
tracking procedure for each increment of rotation. However in cineradiographic sequences, there
are significant photometric changes principally due to the camera auto-gain control changes
necessary to prevent system overload. Dealing with this and geometric effects would require that
the template be incrementally updated after each interframe match and new rotated versions of

template computed. This would introduce significant computational cost.

Match Statistic Performance 103

The effect of rotation on the template match can be made insignificant if the template is made
small relative to the feature it represents. For cineradiographic images digitised to 288x288
pixels (half PAL composite video frame size), the bodies of the vertebra are typically 30x18
pixels for the cervical region and between two and three times that size in the lumbar region.
Maximum speed of rotation and translation occurs in a lateral cervical view where the neck
moves from full flexion to full extension. In this situation the vertebrae undergo rotation from
approximately —45° to +45°. Assuming that the capture rate is sufficiently fast to restrict the
inter-frame vertebral rotation to only a few degrees, there will still be at least half a pixel

movement due to rotation at the edges of the vertebra.

The disadvantage of making the template small enough so that rotation can be ignored is that it
may not contain enough information to give a reliable match. It was shown in section 4.1.1 of
chapter 4 that the aperture problem restricts the accurate estimation of local velocity to its
normal component when the intensity structure upon which the measurement is based is nearly
one-dimensional. Table 5.1 illustrates some simple (noise-free) grey-scale intensity feature
images and their relative dimensionality when viewed from a window centred at the middle of

each image.

Relative dimensionality Simple grey-scale feature images

close to zero

close to 1

between 1 and 2 -!

Table 5.1: Simple grey-scale features and their relative dimensionality

104 The Development of Motion Tracking Strategies For Cineradiographic Images

Matching methods will suffer aperture problem effects when the feature forming the template is
of low dimensionality. This will tend to occur when a template is made so small that it does not
contain any corner and/or boundary information. Without this two-dimensional information, the
match will be poor in the direction of the one-dimensional feature, and thus be prone to
mismatching along the direction of the feature in the presence of noise. A method proposed to
solve this problem is covered in detail in chapter 8, where the complete motion-tracking
algorithm is assembled and tested. The solution involves defining a global match for a given
vertebra by combining a number of small sub-templates positioned about the vertebra. Although
any one of the sub-templates may contain a relatively one-dimensional feature, so long as the
angle of orientation for each sub-template feature is significantly different, then the global match

will not be prone to mismatch due to aperture effects.

5.1.1 Match Statistics

From the range of match statistics covered in chapter 4, four were chosen for evaluation on
cineradiographic images. These statistics are all computed in the spatial domain where they
offer low computational cost when small match templates are used [5.1]. The first two match

statistics correspond to normalised versions of the measures described by equations 4.5 and 4.6.

Match Statistic Computational Cost
], et additions: 25 mn
MAD =— A, J)—A.00,) eq. 5.1
mn g;‘ gl (] tihd | multiplications: 11
1 m n additions: 2 mn
_ - ; exid
RMS'E ZE[A!:(‘!J)_AHI(‘J)] eq- 5.2 | multiplications: mn + 25
i=0 j=0
L) . additions: 3 mn
ZE[A[((I!])*AIH.](I,J)] . .
Corr = i=0 j=0 eq. 5.3 multiplications: 3 mn + 26
m n 21 n
Y S AGHE*D Y (A6 HF
i=0 j=0 i=0 j=0
additions: 33 mn + 48

6
Y M, (i)* My, ()]
MCor = izl eq. 54

6 6
\/[Z[Mk(i)]z *Z[Mm(i)]zJ

i=l i=l

multiplications: 48 mn + 57

NOTE: Seeappendix B for full details of the computational cost calculations.

Table 5.2: Match statistics and their computational cost

Match Statistic Performance 105

The Mean of Absolute Differences (MAD) statistic is a normalised version of the absolute sum
of differences (ASD) of equation 4.6. The Root Mean of Squared differences (RMS) is a
normalised version of the sum-of-squares difference (SSD) of equation 4.5. These first two
statistics are based on intensity differences, for which a best match between the reference
template A, and target area A,,, produces a minimum. The third match statistic corresponds
directly to the (discrete) normalised product Correlation (CORR) of equation 4.7, while the
fourth match statistic is a normalised product correlation based on Moment invariants, (MCor).

Table 5.1 lists these four measures along with an estimate of their computational cost.

The two correlation based statistics produce a maximum at the best match position. The moment
based correlation uses the first six normalised central moment invariants listed in table 4.1 of
chapter 4 The moments for the template, M, (i), are matched to the target area moments,
M., (i), using a normalised product correlation. In principal this statistic should be invariant to
rotation, scale and translation changes. Only the first six moment invariants have been used in

this calculation as the computational cost of high order moment invariants increases rapidly.

5.1.2 A Match Statistic Sharpness and Selectivity Measure

An important performance measure in template matching is the uniqueness of a best match with
respect to the local neighbourhood. One measure of uniqueness is that rate at which the match
statistic decreases (or increases) as the template is moved away from the best match position. If
the statistic changes monotonically in all directions about the best match, then the feature
represented by the template is unique in a local sense. However, if the feature represented by the
template is relatively one-dimensional (usually the case for small templates), then moving the
match window normal to the orientation of the feature, the match statistic will decay rapidly,

whereas moving parallel to the feature the decay will be significantly less rapid.

Williams and Glazer [5.2] defined two sharpness measures for assessing the uniqueness of a
template match. Their sharpness measures are based on calculating the sum of the differences
between the value of the statistic at the best match position and values about this position moving
out in a square annulus. This sum is then normalised by the difference between the best match
value and the maximum value in a neighbourhood of radius ». The minimum sharpness rule,
defined in equation 5.5, is sensitive to one-dimensional features. It will give a low value for a

one-dimensional feature since it is based on the minimum difference in each annulus.

r

E(M;_Mn)

SM' =_i=1 eq. 5.5

106 The Development of Motion Tracking Strategies For Cineradiographic Images

Z (MAve(i) - M})
Sy, ==L eq. 5.6

> My —M,)

where: M, is the match central minimum, M; is the minimum match in the square annulus of
radius i, M, is the corresponding annulus average and M, is the maximum in

the entire neighbourhood of radius r.

The average rule on the other hand (equation 5.6) will be less affected by one-dimensional

features since it involves a weighted sum of values in each annulus.

Williams and Glazer compared their sharpness measures to the interest operators of Moravec
[5.3] and Hannah [5.4] on a number of test images using several simple match statistics. Their
match statistics were all computed as Euclidean distances for both point, area and gradient
(Kirsch) differences. They acknowledged that their match statistics were not normalised and
thus sensitive to changes in the average or DC intensity, but then proceeded to ignore this effect
for the remainder of their analysis. The results of the last part of their work are of importance to
general template matching in that points of high interest as defined by the Hannah operator were
classified manually into nine categories according to their feature characteristics. The categories
included whether or not the position was near a border, with three sub-categories for the border
type (straight, curved, or sharp corner). If the position was not near a border but within an
object, then three sub-categories were used to describe the local area as homogeneous, somewhat
textured or strongly textured. Although all these categories were subjectively assessed, the
results provided considerable insight into the behaviour of the various match performance
measures. Their minimum and average sharpness measures were used graphically to show how
each responded to a different category feature. Based on these results, a match selectivity
measure is proposed, computed from the ratio of the difference between the minimum and
average sharpness values, and the average sharpness. The difference component is a measure of
dimensionality. It will be large if the feature is of low dimensionality, such as in the case of a
homogeneous surface or a one-dimensional boundary. The average component provides a
measure of the local mean match sharpness. For a highly selective feature, the difference
component should be small and the average component large, thus producing a small ratio. One
minus this ratio gives a selectivity measure (equation 5.7) that will be close to unity for a highly
selective feature match and close to zero for a poor feature match.

SAve = SMin — SMiﬂ eq. 5.7

SA ve SA ve

Selectivity=1-

Match Statistic Performance 107

Applying this selectivity measure to the simple images of table 5.2 using the MAD match
statistic and a window and neighbourhood radius of five pixels, produces the results of figure
5.1. With no noise added to the images the results are consistent with the relative dimensionality
of each image. Images 1 through to 4 show zero selectivity since their dimensionality is less than
or equal to one and hence their minimum sharpness value is zero. The other two images show

high selectivity with image 6 recording a perfect value due to its single point structure.

1 =

0.9 B Selectivity

0.8 1 (noise free)
5 0.7 4
S 064 O Selectivity
9 (+10%
% 0.5 A Gaussian)

0.4 1
:
Z 0.3 4

0.2 -

0.1 -

0 T — L |__I] |_| L L} 1
1 2 3 4 5 6

Image number
Figure 5.1: Selectivity of the simple grey-scale images of table 5.2

The addition of 10% gaussian noise to the images significantly changes their selectivity as is
shown by the second set of bars in figure 5.1. The low dimensional images 1 through to 4 now
show a small selectivity value. The one dimensional images 3 and 4 display a larger selectivity
value than do the zero dimensional images 1 and 2. Image 5 (the corner image) displays a small
drop in selectivity whereas the single point image, image 6, displays a large drop in selectivity.
This large drop in selectivity is due to the point nature of this image that is easily corrupted by
the noise. The corner image, image 5, is significantly less effected by the noise as its underlying

structure covers a larger area.

5.2 Salient Features and Optimising Match Selectivity

Biological vision is inherently active. Humans and animals actively acquire visual information
about their environment to guide their behaviour. The paradigm of active computer vision has in
recent years led to the study and development of "seeing systems", as outlined by Aloimonos et
al [5.5] and Pahlavan er al [5.6]. The most important concept underlying this approach is the
concept of fixation. When a human views a scene the visual system is often directed to certain
types of simple geometric features. The scene is scanned by jumping from one fixation feature to

another in order to build up global and local geometric information. Bajcsy and Campos [5.7],

108 The Development of Motion Tracking Strategies For Cineradiographic Images

and Rimey and Brown [5.8] have proposed a general framework for what has become known as
the "where to look next" problem. Other researchers [5.9] have most recently acknowledged that
the active choice of fixation points is task dependent. In the case of manufactured objects,
important cues to shape are junctions, and their types, and boundary edges with classification as
being curved or straight. When a scene is dynamic and contains moving objects, then fixation
points become important to the task of object tracking and leads to the concept of feature
saliency. Salient features should change only slowly during the motion of the objects thus

greatly aiding the ability to track their motion.

For cineradiographic images of the human spine the salient objects of interest are the vertebrae.
The corners and junctions between the vertebral body and spinous-process could be considered
as salient features of the individual vertebra. In order to evaluate the four match statistics
defined in table 5.1, salient points were defined on the skull, and first and second vertebra of the
middle frame of a typical cervical cineradiographic sequence. The position of these points is
indicted in figure 5.1 by the white crosses. The ease at which the individual feature points can be
located visually varies significantly between points. The point on the back of the skull is of high
contrast but is fairly one-dimensional, whereas the front bottom point of the second vertebra is of
low contrast but highly two-dimensional as it occurs on a sharp corner. This variation in feature
characteristics should be reflected in the match minimum and average sharpness measures and
the selectivity measure. A single parameter determines the behaviour of the sharpness measures
for a given feature and match statistic, and this is the shell radius. The bigger the radius, the
larger the area over which sharpness is computed and hence the less localised the measurement
becomes. A suitable choice of radius should reflect the differences between each of the feature

points.

Figure 5.2: Salient feature points defined on a typical cervical cineradiographic image

Match Statistic Performance 109

All ten of the feature points defined in figure 5.2 where processed by first computing an
auto-match surface about each position and then calculating selectivity for a range of shell radii.
The match was computed with a window radius from two to four pixels. At four pixels radius

the feature window is approximately half the height of a typical cervical vertebra.

Match Window Radius=2 Window Radius=3 Window Radius=4

MAD

3 2 3 4 3
Radius Radius Radius

Table 5.3: Variation in selectivity with increasing shell radius for MAD statistic

Table 5.3 contains the selectivity results for the MAD match statistic for the three window sizes.
Each of the traces on the graphs correspond to one of the ten feature points. The graphs show a
general downward trend in selectivity for almost all match feature points. This general
behaviour was also observed for the other three match statistics. The decline begins to level off
for a shell radius of about three pixels. As the shell radius increases further past this value, the
selectivity traces tend to converge for several of the feature points. This convergence implies
that feature discrimination based on selectivity is lost at large radii. At a radius of three pixels
the selectivity traces tend to be maximally separated from each other. This size radius will be

used for the remainder of the match statistic performance evaluation.

5.3 Match Statistic Evaluation

One of the first steps in evaluating the performance of the match statistics on the feature points is
to determine how sharpness and selectivity change as the size of the feature template increases.

A single parameter, the window radius, controls the size of the template if it is made square.

5.3.1 Auto-frame Feature Point Matching

An initial sense of the behaviour of a match statistic can be obtained by matching the template
onto itself in a local neighbourhood. This results in a match surface from which sharpness and
selectivity can be computed. Table 5.4 contains examples of match surfaces for the position at

the back of the skull and the front of the second vertebra. The data have been normalised and are

110 The Development of Motion Tracking Strategies For Cineradiographic Images

displayed as both an intensity image and as a 3-D plot. The dynamic range of the MAD and

RMS statistics is inverted and displayed with the same polarity as the correlation data.

Feature MAD RMS CORR

Skull:
bottom-back

Match

Image

1

Skull: 0.8 ,"‘»"'

bottom-back | os ':‘\\‘&‘:‘M’:”
el RS
Match 0.2 e
Surface
00

Vertebra 2:

front-bottom

Match

Image

Vertebra 2: | ;¢

L
ALRE Toe

/7
front-bottom | 26 SO
0.4 RN
0.2
Match
Surface

Table 5.4: Auto-match data for a window radius of three pixels

For the position marked on the bottom of the skull at the back (bottom-back), the local feature is
of high contrast but is relatively one-dimensional. The one-dimensionality of this region is
reflected in the match data for all three match statistics. Parallel to the direction of the skull-line
the match decreases very slowly whereas normal to this direction the match decays rapidly. Both

difference statistics produce a sharp peak at the original template position whereas the

Match Statistic Performance 111

correlation match is much smoother in all directions without a sharply defined peak. The peak

for the RMS match is significantly greater than for the MAD match.

The second set of match data shown in table 5.4 corresponds to the bottom of the front of the
vertebral body of the second vertebra (front-bottom). This local feature is of much lower
contrast than the skull feature due to absorption and scattering in the local soft tissue. It is also
more two-dimensional than the skull feature as it is located on a comner of the body of the
vertebra. This increased dimensionality is reflected in the match data for all three match
statistics. The match decreases fairly rapidly in most directions with only a slight bias in one
direction as indicated by a broad diagonal band. All of the statistics show a peak at the original
template position with the RMS statistic showing the largest peak. The correlation match is
significantly less smooth than the other two match statistics to the extent that the broad diagonal

band displayed by the two difference statistics is not visible.

Table 5.5 contains graphs of match sharpness as a function of match window radius for all
feature points for each match statistic. The feature points have been grouped in terms of the
feature with which they are associated. The solid traces represent the average sharpness while
the broken traces represent the minimum sharpness. Both difference statistics (MAD and RMS)
show minimum and average sharpness increasing with increasing window radius for almost all
the feature points. The average sharpness for a few of the points peaks and then decreases past a
certain window size. This is particularly obvious for the top trace on the skull graphs where the
trace represents the position at the back of the skull. This effect is due to the match window
encompassing a greater area containing only skin, which is homogeneous and noisy. However
the minimum sharpness continues to increase as more of the curvature of the skull-line is
contained in the match window. This effect levels out at around six pixels by which time the
slight corner of the skull-line is now contained in the match window and any further increase

only introduces more of the essentially one-dimensional skull-line either side of the corner.

Overall, sharpness for the RMS statistic is significantly greater than for the MAD statistic. This
is principally due to the peaking effect illustrated in the match surfaces of table 5.3. Both the
area correlation and moment-based correlation display significantly lower sharpness than either
of the two difference statistics. The minimum sharpness for MCor is particularly low. There is
also significant variation in sharpness between feature points. The correlation statistic (CORR)
displays dramatic changes in both minimum and average sharpness for the feature points of the
two vertebra. This variation is consistent with the notable visual difference between these feature
points. An optimal window radius is reached for many of the vertebral feature points where

sharpness is maximised.

112

The Development of Motion Tracking Strategies For Cineradiographic Images

Match Skull Vertebra 1 Vertebra 2
0.8 08 0.8
07 07 0.7
0.6 0.6
MAD 05 05 =)
0.4 — 04 A —
- » ; . « T
03 ’/ 0.3y /// 0.3 /f
e L L& ‘, ;
02| | g 02" 0.2 §
L /
oM 0.1 0.1
0 0 0
2 4 i 2 4 6 2 4 6 8
Window Radius Window Radius Window Radius
RMS
0.2 02 0.2
0.1 0.1 0.1
0 o 0
2 4 6 2 4 6 2 4 6 8
Window Radius Window Radius Window Radius
O.SI 038 0.8
0.7 0.7 0.7
0.6/ 0.6
CORR
al s S
0. : . - =
w— G
o1f it
T i
0 0]
)] 2 4 6 2 4 6 8
Window Radius Window Radius window Radius
0.8 0.8 0.8
07 07 0.7
0.6 0.6 0.6
0.5 0.5 0.5
MCOl' 04 04 04— —
0.3 - 03 03
02 02 \/4’ o
0.1— 0.1 0.1 .~
c-—- e Y= ;15:545- ;.’/E‘z:‘f_‘._'-—_-f"
0 2
2 4 6 2 4 6 e 2 4 6 8
Window Radius Window Radius Window Radius

Table 5.5: Match sharpness for increasing window radius

Match Statistic Performance 113

The average sharpness for the moment based correlation statistic changes relatively smoothly,
reaching a maximum at about a four-pixel radius for half of the feature points. For the other
feature points the average sharpness goes through a minimum at this radius. Minimum
sharpness varies erratically as the window radius is increased going through several local minima

and maxima.

The selectivity measure described by equation 5.7 combines the minimum and average sharpness
measures into a single measure describing the uniqueness of a given feature point and match
statistic combination. Table 5.6 contains selectivity graphs for the three features for each of the
match statistics. Each of the graph traces can be keyed back to the actual feature position

marked in figure 5.1, using table 5.6.

Line-type and () — ——— el — - — - —] -
feature (§)) ?2) 3) (©))
Skull bottom-back - bottomn-front -

Vertebra 1 and 2 back-bottom back-top front-bottom front-top

Table 5.6: Key to match selectivity graph traces of tables 5.7 to 5.10

The selectivity of the skull feature points increases with increasing window radius for all but the
MCor statistic. Selectivity for the MCor statistic is low and relatively flat with small local
minima. For the first vertebra the selectivity of both the MAD and RMS matches peak at about
three pixels and then level out to similar values. Selectivity of the correlation match on the other
hand peaks at different radii for each of the feature points, thus illustrating the greater
discrimination of this statistic. The moment-based correlation selectivity is highly erratic and
goes through several local maxima and minima, all comparatively low in value. This behaviour
also occurs for the second vertebra. Greater selectivity discrimination can be seen for the two
difference statistics for the second vertebra and this response carries over to the correlation
match. This improvement in selectivity discrimination is primarily due to the second vertebra
being significantly larger than the first vertebra and that it contains more sharply-defined
corners. The selectivity of the moment-based correlation still shows highly erratic behaviour, as

observed for the first vertebra.

The reason for the poor performance of the moment based match can be explained in terms of the
properties of this statistic. Because it is based on moment invariants the match should not vary
for changes in translation, rotation and scale. While rotation and scale invariance are highly

desirable, translation invariance is not desirable when an accurate match in position is required.

114 The Development of Motion Tracking Strategies For Cineradiographic Images
Match Skull Vertebra 1 Vertebra 2
0.9
MAD
0.2 0.2
0.1 01 0.1
0 0 0
2 4 6 8 2 4 6 8 2 4 6 8
Wwindow Radius Wwindow Radius Window Radius
RMS
0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 04 0.1
o 0 0
2 a 6 8 2 4 6 8 2 4 6 8
Window Radius Window Radius Window Radius
09 0.9 0.9
! ’ 0.8 :
08 - o
0.7 - 0.7 / .)
0.6 / 0.6 o #
CORR | P
05 P s}, g
0.4 04f
03 03
02 0.2} 0.2
0.1 0.1 0.1
0 0 0
2 4 6 8 2 a4 6 8 2 4 6 8
Window Radius Window Radius Window Radius
0.45 0.45 0.45
0.4 0.4 04
0.35 0.35 035
03 03 0.3
0.25 0.25 0.25
MCor
0.2
o1sf SN ——
0.1 Ao —_— . = 4
T o~
0.05
0
2 4 6 8

Window Radius

Window Radius

Window Radius

Table 5.7: Match selectivity for varying window radius

Match Statistic Performance 115

Other authors [5.10] have noted that moment-based correlation will match silhouettes or binary
outlines with high positional accuracy but matching grey-scale data generally does not produce a
sharp match. General scene matching schemes based on other translation invariant methods
[5.11] for grey-scale data have used the invariant match as the top stage of a hierarchical
multi-scale procedure. In such procedures potential template match candidate positions are first
found using large translation steps up to half the size of the match template. These potential
sites are then investigated locally using a finer step size and the remaining candidates then tested
in detail using an area correlation to give the desired positional accuracy. For cineradiographic
images of the human spine, locality is already known to be within a few pixels of the previous
position due to the relatively small interframe motion. Thus moment-based matching with simple

translation will not produce a sufficiently accurate positional match.

5.3.2 Interframe Feature Point Matching

In the previous section an initial idea of the performance of the four match statistics was
obtained by computing a match on the original frame in a local neighbourhood about the feature
position. An evaluation of this type is equivalent to the case where there is only interframe
translation of pixel size increments. No information is gained about the behaviour of the
statistics in the presence of noise, scale changes or rotation in such a situation. To assess the
performance of the match statistics under real-world conditions (all these factors present), an
interframe local match was performed about the middle frame of the cervical test sequence. The
middle of the sequence was chosen because this is where maximum velocity usually occurs and
hence maximum rotation and translation. The match process starts at the original frame position
in the next frame, and searches in square annuli until the best match is found, or the limit of the
search radius is reached. If a best match is found, then the selectivity is calculated at this

location and the x and y coordinates recorded.

Selectivity and Positional Stability

The two factors important to interframe matching, and hence motion-tracking, they are the
positional accuracy and positional stability of the best match. In order to assess positional
accuracy for a given type of image data, image sequences with known motion are required. This
issue is dealt with in the next chapter where methods are developed for the creation of
cineradiographic sequences with prescribed motion. Interframe match positional stability can be
assessed by plotting the position of the best match as the match window radius is increased. Any
sudden change in either the x or y coordinate will be indicative of positional instability. This
should only occur when match selectivity is low and/or there is a significant change in selectivity

between window radii.

116 The Development of Motion Tracking Strategies For Cineradiographic Images

Tables 5.8 and 5.9 contain selectivity and best match x and y position graphs for the MAD
statistic for each of the feature points, for previous and next interframe matches. The feature
point represented by each trace is keyed according table 5.6. Positional data are plotted with
respect to the original reference frame such that (x,y)=(0,0) is the original position. A
selectivity value or positional value that is at the limit of a graph scale implies that a best match

was not found within the local search radius of five pixels.

Feature Skull Vertebra 1 Vertebra 2
0.9 0.9 OSH -
0.8’ 0.8 0.8
0.7 0.7.‘
'
0.6 1
Selectivity 0.5}
0.4} N
— "
0.3 ’
/
0.2 ’
e |
0.1 0.1
0 0
2 4 6 8 2 2 4 6 8 2 4 6 8
Window Radius Wwindow Radius Window Radius
Delta-x Delta-x Delta-x
5| 5 5|
4 4 4
3 3t 3
2 2:» 2t
. 1 1]
Xx-position o 0
B -1
24— — — — = -2 -
-3 i
-4 -4
5 6 51 i
2 4 6 8 2 4 8 2 4 6 8
Window Radius Window Radius Window Radius
Delta-y Defta-y Delta-y
5 SF— 5
4 4 a4,
3 3 3t N
gl — — — — I3 2 o — o — 2l -
. L /
. 1 = MiSENE & oo I 1 P
y-position o o > I ZEEN
-1 A— — 7 -1: \+Z
-2 -2 -2
-3 -3 3
.4 -4 1 4
s Y2 a4 & s -5
2 4 6 8 . O 2 4 6 8
Window Radius Window Radius Window Radius

Table 5.8: MAD previous frame match: Selectivity and x-y position

Match Statistic Performance 117

Both skull feature points for the MAD statistic for the previous interframe show low selectivity
that decreases and then increases with increasing window radius. Selectivity for the bottom-back
feature peaks at five pixels and levels out, while selectivity for the bottom-front feature peaks at
seven pixels and then rapidly decreases. This sudden drop in selectivity is accompanied by a
jump in the x-position. For all other values of the window radius the x and y position do not
change, indicating that the best match is stable. The selectivity of the feature points of the first
vertebra rapidly increases, then peak and stabilise at different window radii. The front-top
feature peaks at the largest radius, five pixels, and then decreases. A transition occurs in the x
position in only one of the feature points, all others are stable. However, the y position of most
of the feature points undergo a transition at the selectivity peak and then stabilise. Quite a
different behaviour can be seen for the second vertebra. Two of its feature points do not find a
best match in the search area until the window radius is two pixels. The selectivity traces are
also much more peaky and do not stabilise with increasing window radius. Both the x and y
position undergo many transitions. The position for most of the feature points is stable for a
window radius between five and seven pixels. This significant difference in behaviour compared
to the first vertebra can be explained in terms of the difference in size of the vertebra, the

difference in feature contrast, and also the proximity of other features.

The second vertebra is significantly larger than the first and thus it is reasonable that match
selectivity will peak at a larger window radius. The rapid drop in selectivity after the peak, as
the window radius is increased, is due to nearby features, namely the vertebrae above and below
the second vertebra, beginning to appear in the match template. Since the motion of these
vertebrae is different to the second vertebra, the local match degrades rapidly as more of the
interfering feature appears in the template area. This effect can also be seen for the front-bottom

feature point of the first vertebra, with its close proximity to the top of the second vertebra.

The selectivity and positional graphs for the next interframe match using the MAD statistic are
shown in table 5.9. As with the previous frame match, the skull feature points show low
selectivity that decreases and then increases with increasing window radius. However, unlike the
previous frame match, it is less obvious what the optimal window radius is as there is no
well-defined peak in selectivity. Furthermore, the bottom-front feature point does not find a best
match until a window radius of two pixels. The x and y position become stable between four and
seven pixels window radius and then at eight pixels the x position moves a pixel. This shift in
position occurs where there is a sudden increase in selectivity due to a nearby feature point on
the skull becoming included in the match template area. The selectivity behaviour of the first
vertebral feature points is similar to the previous interframe match except that selectivity is

generally lower and the peaks occur at different window radii.

118 The Development of Motion Tracking Strategies For Cineradiographic Images

Feature Skull Vertebra 1 Vertebra 2
| os
|
08},
07t
06 '\
. oSt |
Selectivity I
oaf | /7
03 '\ PN
o2 o g
oar |- 01t
0 0
2 4 6 8 =3 4 6 8 2 4 6 8
Window Radius Window Radius Window Radius
Delta-x Delta-x Detta-x
5]l 5 ‘I S
4 4 at .
af | \) R 3t /\
2]| j' 22— 2 \/__...
1t 1 1 :
x-position o | / | 0 0 '
R / 1 A} ¢
-2 \ / 2, 2r,
-3 L 3 -3f
4 4 -4
¥ 2 4 6 ¢ i
2 4 3 [) { 2 4 3
Window Radius Window Radius Window Radius
Delta-y Delta-y Delta-y
5 5 s
4 4
3 3
2 2
1 1=
y-position | 0
-1 -1
-2 [————— -2
3 / -3
< 4
5 5
4 6 8 2 4 6 8 2 4 6
Window Radius Window Radius Window Radius

Table 5.9: MAD next frame match: Selectivity and x-y position

Also, the front-bottom feature does not find a best match until a window radius of two pixels.
Position is stable between two and six pixels radius after which the y position of two of the
features moves due to a sudden increase in selectivity. The next interframe match behaviour of
the second vertebra is significantly different to the previous interframe match. A best match is
not found for three of the four feature points until a window radius of two pixels and is then lost
at four pixels radius for the front-bottom feature. As with the skull feature points, it is difficult
to define an optimal window radius for several of the second vertebra feature points due to the
lack of a well defined selectivity peak. Selectivity of the back-top feature peaks at four pixels,

begins to decrease and then increases past seven pixels as the bottom of the first vertebra begins

Match Statistic Performance 119

to appear in the template area. The position data undergo many transitions but then stabilise

after five pixels radius.

The notable difference in selectivity and positional stability for the next interframe match
compared to the previous interframe match can be explained in terms of the actual interframe
motion. Visualisation of a sequence consisting of only the middle frame and the two frames
either side clearly revealed that the forward direction (next frame match) movement is
significantly greater than in the backward direction (previous frame match). This increased
movement results in greater vertebral rotation and hence a general reduction in feature point

selectivity.

Interframe Match Summary

The selectivity and positional behaviour of the MAD, RMS and CORR match statistics, for
previous and next interframe matches, has been summarised in table 5.10. The moment based
match, MCor, has not been included in the table because for almost all feature points a best
match was not found within the search radius. The reason for this is that the value of the
Moment correlation is extremely close to unity throughout the search area, for all window radii.
Hence the match surface is essentially flat and the minimum sharpness is nearly zero. The
reason for this lack of discrimination in the interframe match is as explained at the end of section
5.3.1 for the auto-frame match. Rotation, scale and translation invariant schemes generally do
not produce accurate positional matches but do indicate that the general area contains the feature

of interest.

The selectivity graphs have been summarised in terms of average selectivity and average degree
of selectivity peakiness, for the three vertebral features. These two summary categories are
scored using a low, medium or high (L,M or H) rating. Also contained in the summary table is
the best window radius for each of the feature points. The best window radius is defined as the
window radius at which selectivity reaches a local maximum and the x and y position are stable.
The window radii are in order of the feature points defined left to right in table 5.6. The pattern
of selectivity and selectivity peakiness is almost the same for the two difference statistics (MAD
and RMS) for the previous interframe match, and covers the full range in both categories. In
contrast, the correlation match ratings are more stable and do not score high in either category.
There is also a strong degree of consistency in the best window radius for the two difference
statistics, covering a range from two to seven pixels across all feature points. Less variation in
the best window radius is observed for the correlation match, with the range now from three to

six pixels.

The pattern of selectivity and selectivity peakiness for the next interframe match for both the

MAD and Correlation statistic is the same as for the previous interframe match. The next

120 The Development of Motion Tracking Strategies For Cineradiographic Images

interframe RMS match on the other hand shows a slightly different pattern to the previous
interframe match. High-score cases have been reduced to a medium score. For all the statistics
match, the best window radius tends to be smaller for the next interframe match than the
previous interframe match. This reduction in size is principally due to the greater forward

interframe vertebral rotation that degrades the match for larger window radii.

Frame Statistic MAD RMS CORR
Feature S \%1 V2 S \%| V2 S A% V2
Selectivity L H M L H M L M M
. Selectivity
Previous peakiness L M H L M H L L M
Best window | 5,7 312, 7,4 SKS 382 74 | 4,6 | 5,3 6,5
radius 2,5 6,5 2,4 6,5 3,4 6,4
Selectivity L H M L M M (] M M
Selectivity
Next peakiness L M H L M L L L M
Best window | 5,6 3,3 7.4 44 | 3,3 6,3 | 44| 54 2,3
radius 4,6 5,3 4,3 5.4 5,6 3.3
KEY: S =skull, V1 =first vertebra, V2 = second vertebra,
L, M, H = low, medium, high

Table 5.10: Summary - Interframe matching

Interframe Selectivity Constancy

Although the best match window radius for the forward interframe was generally smaller than
for the backward interframe match, it is important that the selectivity of each feature point at the
best match window radius should remain relatively constant between interframes. Visually it is
reasonable that this should be the case as there is very little observable change in local feature
characteristics between the two interframes. Thus plotting interframe match selectivity at the
best window radius for each feature point should show little difference between the previous and
next interframe data. Table 5.11 contains the best interframe match selectivity graphs for the
MAD, RMS and Correlation statistics. The continuous trace on each graph represents the
previous interframe match, while the broken trace is the next interframe match. Each position on

the x-axis corresponds to the feature points listed in order, in table 5.6.

Match Statistic Performance 121

Statistic Best Match Interframe Selectivity
08 T
2
2
MAD 8
(5]
w
0 + + + z
- o~ o~ o -4 — o~ Laal <
= % =3 & 2 — ~ ~ ~ ~
=2 = > > > > > > > >
%2} w
Feature Point
2
2 -
RMS 8
Q
w
0 ' ; ' :
-_ o~ -— o~ o < — o~ L) <
= =) - — -— - ~ ~ ~ ~
£ v > > > > > > > >
w w
Feature Point
08 T
06 -+
12
=
CORR T "1
©
5]
02 +
0 . " " 2 "
- N o 2 = R E o o A
E E s S > BS N S N N
w w
Feature Point

Table 5.11: Best interframe match selectivity

For the MAD statistic there is little difference in selectivity between the previous and next
interframe match for some of the feature points, while for others points there is a fairly large
difference. High-selectivity constancy occurs for three of the four feature points on the first
vertebra. The RMS match consistently shows a large variation in selectivity between the two
interframes for all the feature points. Only the correlation based match displays best match

selectivity that changes very little between the forward and backward interframes. This is in

122 The Development of Motion Tracking Strategies For Cineradiographic Images

spite of the fact that for some of the feature points the best match window radius has been

reduced significantly due to the greater vertebral rotation.

5.3.3 Global Image Match Selectivity

Determining the locations in an image that are locally unique in the sense that they have a high
match selectivity for a particular match statistic and template window size, will indicate features
that are potentially good for template based motion-tracking. The same procedure that was used
in the auto-frame and interframe feature point matching described in the two previous sections,
can be applied globally to any given frame or interframes. About each location in the reference
image a square template of a specified window radius is matched in a local neighbourhood (auto-
or interframe) of a specified search radius. This will produce a match surface for each location
from which a single selectivity value is calculated about the best match position. The selectivity
values can then be formed into a matrix and visualised as an image. The advantage of this
approach for interframe matching is that the only assumption made is that the maximum

interframe translation anywhere in the image is smaller than the search radius.

Table 5.12 contains selectivity images for the previous and next interframe matches, and also the
current frame (auto-frame) match, for the middle of the cineradiographic cervical test sequence.
The first column in the table contains MAD statistic images, while the second column contains
the product correlation selectivity images. A window radius of four pixels has been used for all
the images, this being the average of the best window radii for the interframe vertebral feature
point match, summarised in table 5.10. A large search radius of seven pixels was used to ensure
that the maximum observed interframe translation would be matched. If a best match was not
found within the search radius then the recorded selectivity was set to zero. For interframe
matching, this will only occur when the template contains no significant structure, such as in the

relatively homogenous soft tissue areas.

Looking at the MAD auto-frame selectivity image obvious features such as the skull-line show
low selectivity due to their local one-dimensional characteristic. However, many locations in the
image show high selectivity in areas that are visually relatively homogenous. This effect is
particularly obvious in the area of the skin at the back of the neck. Local to the circular aperture
produced by the image intensifier, a wide selectivity band occurs. This indicates that the MAD
statistic is not particularly discriminating, for high contrast features. In comparison, the
correlation statistic shows much greater discrimination throughout the image. Very few points in
soft tissue areas score high in selectivity, while high contrast features such as the circular
aperture are localised to only a few pixels. The centre of both auto-frame selectivity images
clearly show that the vertebral bodies have much higher selectivity than do the vertebral tails (the

spinous-processes).

Match Statistic Performance 123

Frame Coor-4

Previous

Current

(Auto)

Next

Table 5.12: Global Match Selectivity

Looking at the interframe match selectivity images, far fewer points are displayed with high
selectivity and hence potentially good candidates for tracking. This is to be expected since there
is significant motion (rotation and translation) between these images. Selectivity of the skull in
particular is greatly reduced due to its comparatively large rotation. Selectivity of many of the
vertebrae is reduced to a larger extent in the forward or next interframe match than the previous
interframe. This is once again due to the greater motion (mainly rotation) present in this
interframe. The correlation statistic consistently displays better selectivity discrimination and

feature localisation than does the MAD statistic for both interframe matches.

124 The Development of Motion Tracking Strategies For Cineradiographic Images

5.4 Match Statistic Conclusions

This chapter has primarily been concerned with the experimental assessment of the performance
of four template match statistics. The purpose of the assessment was to choose a suitable match
statistic to be used in the evolution of a complete motion-tracking algorithm for cineradiographic
images of the human spine. A feature selectivity measure was developed to aid in this choice.
This measure incorporates the effects of both feature dimensionality and local sharpness. While
feature selectivity is an important property in its own right, it is the positional stability and

positional accuracy of the match that are of prime importance to a motion-tracking algorithm.

The MAD statistic showed good selectivity characteristics for the ten chosen feature points for
both interframe matches, but positional stability for some of these feature points was not
particularly good. The banding seen in the selectivity images of table 5.12 further illustrated this
property. This general behaviour was also observed for the other difference statistic, where even

greater positional instability was detected.

The moment invariant based correlation statistic proved to be totally unsuitable for template
matching of these type of images due to its low selectivity and poor positional stability. Only the
simple product correlation produced reliable and consistent behaviour for all feature points for
both interframe matches. Match positional localisation was also shown to be very good, as
clearly illustrated in the global interframe match selectivity images. Furthermore, there was a
high degree of selectivity constancy between the interframes for all ten prescribed feature points.
The computational cost of a product correlation is relatively low, particularly when small sized
templates are used, as will be the case for the proposed motion-tracking algorithm. One further
advantage of the correlation measure described in this chapter is that it is inherently normalised.
This is important because the complete motion-tracking algorithm described in chapter 7 will
take advantage of this property by forming a global match for an object based on a number of

small sub-templates positioned about the object.

The development of methods in this chapter to assess the performance of the match statistics
does in itself provide a means of making a motion-tracking algorithm adaptive to the changes in
the characteristics of a moving object. The initial choice of the feature points at the start of the
tracking procedure is critical to the overall tracking success. By computing the forward and
backward optimal (best template window radius) interframe selectivity of a feature point, a
figure of merit could be calculated to score the potential success of tracking this location.
Alternatively, having defined a feature point, a local optimisation could be performed to find the
local optimal feature position based on a forward and backward interframe selectivity

assessment. These ideas will be expanded upon later in the thesis.

Match Statistic Performance 125

5.5

[5.1]

[5.2]

[5.3]

(5.4]

[5.5]

[5.6]

[5.7]

[5.8]

[5.9]

[5.10]

[5.11]

References

Gonzalez R. and Wintz P. Digital Image Processing. Addison-Wesley, pp 69..72,
1977.

Williams T.D. and Glazer F. Comparison of Feature Operators For Use In Matching
Image Pairs. Image Sequence Processing and Dynamic Scene Analysis. Springer-
Verlag, Berlin-Heidelberg, pp 395..423, 1983.

Morevec H.P. Rover Visual Obstacle Avoidance. Proceedings of IJCAI-7, Vancouver
B.C., August 1981.

Hannah M.J. Bootstrap Stereo. Proceedings of Image Understanding Workshop,
DARPA Conference, pp 201..208, April 1980.

Aloimonos Y., Weiss I. and Bandyopadhyay A. Active Vision. Proceedings of the

First International Conference on Computer Vision, pp 35..54, 1987.

Pahlavan K., Uhlin T. and Eklundh J.O. /[Integrating Primary Ocular Processes.
Proceeding of the Second European Conference on Computer Vision, Vol 588,

PP 526..541, Lecture Notes in Computer Science, Springer-Verlag, May 1992.

Bajcsy R. and Campos M. Active and Exploratory Perception. CVIGIP: Image
Understanding, Vol 56 (1), pp 31..40, July 1992.

Rimey R.D. and Brown C.M. Where to Look Next Using a Bayes Net: Incorporating
Geometric Relations. Proceeding of the Second European Conference on Computer
Vision, pp 542..550, May 1992.

Brunnstrom K. and Eklundh J. Active Fixation for Junction Classification.

Proceedings of the Second European Conference Computer Vision, pp 452..459, 1992.

Wong,R. and Hall E. Scene Matching With Moment Invariants, Computer Graphics
and Image Processing 8, pp 16..24, 1978.

Schutte H., Frydrychowicz S. and Schroder J. Scene Matching With Translation
Invariant Transforms. Proceedings of the Sth International Conference on Pattern
Recognition. pp 195.198, IEEE, New York, 1980.

6

Prescribed Motion
Cineradiographic Sequences

6.1 Introduction

Many of the elements necessary to develop a motion-tracking algorithm for cineradiographic
sequences of the human spine have already been described. The previous chapter was about the
selection of a suitable template match statistic. Of the four statistics evaluated, the normalised
product correlation was shown to have the best selectivity and positional stability under
interframe matching conditions. Although good positional stability does not necessary imply
high positional accuracy, a severe mismatch will generally only occur when the location has poor
selectivity, as in the case of low dimensional or low contrast features. Assuming at this stage
that a system for the measurement of vertebral spinal motion has been completed, the evaluation
of such a system would be extremely difficult as there is no independent method by which the

internal vertebral motion can be measured.

One approach to solving this problem might be to record a range of real sequences and then get a
number of experts to mark each frame manually in a sequence to locate defined feature points.
Experience has shown that manually tracking individual feature points in cineradiographic
images is extremely difficult, even over just a few interframes. This is because the feature points
of interest are generally poorly defined. In the previous chapter (see section 5.5.3) it was shown
that the commers of the vertebral bodies were the best feature points to track. However, even
these so called corner points are not sharply defined. Thus attempting to manually track them

with good reliability over 50-100 interframes would be extremely difficult.

More reliable tracking results could be obtained manually by using outline templates. In this
approach the outline of the entire vertebra is traced onto a transparency (or stored digitally). In
each subsequent frame a best match is found for the entire outline by positioning it over the
corresponding vertebra. Good results can be obtained using this method since the entire
structure of the vertebra is used in the match. Like the manual point-based case, the only way to
ensure an accurate result over an entire sequence is to combine the results of a number different

experts.

Prescribed Motion Cineradiographic Sequences 127

An alternative to taking a real sequence and trying to measure the motion by some other means
would be to create sequences with known motion. An artificial sequence must possess similar
properties to a real sequence to ensure that it provides an effective test for any proposed motion

tracking and measurement scheme and it must not introduce any additional artefacts.

6.2 The Stop-and-shoot Method

A common approach used to create sequences with known motion is the stop-and-shoot method
[6.1]. In this method the objects that are to appear to be in motion in the scene are manually
positioned at the desired starting location for the sequence and a single frame is captured. The
objects are then moved to the next location and another frame is captured. In this way sequence
will be built up in which the objects appear to be in motion. Superficially, this approach appears
to be a totally satisfactory method for the creation of a prescribed motion sequence. This is true
if the motion to be prescribed is sufficiently small that at a normal rate of capture the object can
be considered to be near stationary. Consider the case in which the area of a scene is 1 x 1 metre
and is digitised linearly to one pixel per millimetre. Assuming that the capture rate is 25 frames
per second (equivalent of 50 fields per second in conventional interlaced video) and that
stationary simply implies that movement should be substantially less than one pixel per frame,
say a tenth of a pixel, then the maximum velocity of an object must not exceed 0.1*25=2.5
millimetres per second. At this speed an object would take two hundred seconds to move from
one side of the scene to the other. Even if the stationary criterion is relaxed to half a pixel per

frame, at maximum speed an object would still take some forty seconds to traverse the image.

If the actual motion in a scene exceeds half-a-pixel per frame, as would be the case in most
cineradiographic motion sequences, then during the frame integration time a moving object
would traverse across many sensor elements. The effect of this motion is that edges of the object
in the direction of the motion will not appear sharp, but will be spread across several pixels.
This phenomenon is called motion blur [6.2], and is readily observed in photographs of fast-
moving objects such as racing cars where the detail of the car is blurred in the direction of
motion. Although motion blur is sometimes seen as a problem, it the natural result of ensuring
the integrity of the data representation and hence the temporal derivatives. This guarantees that
the data can be interpolated and differentiated (see chapter 4, section 4.2.1), two essential
requirements for the success of most motion-tracking algorithms. This happens because the
signal becomes temporally band limited, thus reducing or preventing temporal aliasing [6.3].
Temporal aliasing manifests itself as sudden jumps in the position of an object known to be in a
smooth continuous motion. In a sequence created using the stop-and-shoot method the real
object is always stationary when the frame is recorded, thus no motion blur occurs and hence
temporal aliasing will take place. If however the positional jumps are relatively small, then when

the sequence is viewed by a human observer at an appropriate frame rate the motion will appear

128 The Development of Motion-tracking Strategies for Cineradiographic Images

continuous due to persistence of vision. Persistence of vision results from the temporal
integration that is a fundamental property of the human visual system. Several different
temporal integration time-constants have been experimentally measured [6.4], the longest being
approximately 100ms and the shortest 15ms. There is good practical and theoretical evidence
[6.5] to suggest that temporal integration over several resolutions is responsible for many of the

remarkable motion-related properties of the human visual system.

6.3 Articulated Equivalent Phantom

The stop-and-shoot method for the creation of a motion sequence described in the previous
section, will suffer temporal aliasing unless the interframe motion is at a sub-pixel level or some
form of velocity-dependent smoothing is applied. When considering the application of such an
approach to the creation of cineradiographic sequences of the human spine the first thing that
must be considered is the spine itself. Long-term X-ray radiation exposure is a health risk.
Furthermore, only the external position of the spine can be accurately measured. A partial
solution to this problem, commonly used by medical biomechanics researchers, is cadaver use.
This clearly overcomes the exposure problem, but the only way to get an accurate measurement
of the location of the vertebrae is to remove much of the soft tissue surrounding the spine. This
approach is unsatisfactory for a number of reasons. Firstly, there are the ethical concerns of
using a cadaver for research and the practical issues of availability and hygiene. There is also an
important biomechanical issue often ignored by researchers in this field, that is a preserved body
cannot be positioned in the same way as a live one since the preservation process significantly

changes the mechanical properties of the major connecting tissue such as tendons and ligaments.

A better solution to the problem would be to build an equivalent phantom human spine that can
be accurately positioned and has similar X-ray absorption characteristics to a real living spine.
A basic human skeleton can be used as the starting point for building such a phantom. Firstly
the important connecting soft tissue needs to be simulated with suitable materials. The entire
structure can then be sealed and immersed in a saline solution or embedded in a suitable flexible
resin to simulate the bulk soft tissue X-ray absorption properties. The only major difficulty
remaining with such a near equivalent phantom is animating the structure through a range of
motion in a known measurable way. For generating equivalent sequences, only a section of the
spine needs to be animated since the largest image intensifiers available are only 350 mm in
diameter (see chapter 2, section 2.2.2). This could be done using some form of mechanical jig
made out of non X-ray absorbing material that is attached to a number of vertebra. The jig
could then be moved under machine control to produce a range of motion. However this
approach still leaves unresolved the problem of accurately measuring the produced motion in
each vertebra. Various sensor technologies could be used, blit getting many of them to work

reliably under X-ray bombardment is an entirely different matter.

Prescribed Motion Cineradiographic Sequences 129

6.4 Artificially Animated Cineradiographic Sequences

Rather than taking the conventional approach of producing a physical phantom spine which is
then mechanically animated and cineradiographed, a more flexible alternative would be to
synthesis the X-ray sequence directly. Synthesis in the computer graphics sense usually begins
with a model for the components that will form the scene. For the biomechanical radiographic
case both the mechanical and X-ray absorption related physical properties of the components
must be quantified and modelled. The main components of a cineradiographic sequence of the
human spine are the vertebra themselves (including the skull) and to a lesser extent the soft
tissue. Figures for the relative X-ray absorption coefficient of bone and soft tissue can be
determined from conventional radiographs, while the three-dimensional structure of typical
vertebrae can be obtained from standard reference CT (computerised tomography) [6.6] images.
Next the mechanical articulation of the structure has to be quantified. With all this data the task
of building an accurate three-dimensional animation model could be embarked upon but would
be a substantial undertaking. An alternative and more tractable task would be to begin with a
single frame from a real cineradiographic sequence and to produce a two-dimensional animated

sequence from it.

6.4.1 Digital Image Warping

Digital image warping is an active research area in computer graphics. Image warping involves
a geometric transformation, for which there are three integral components: spatial
transformation, resampling, and anti-aliasing. A spatial transformation defines a geometric
relationship or mapping that establishes a spatial correspondence between all points in the input
and output images. The input image is treated as consisting of a set of reference points that are

known precisely, while the output image comprises the observed or warped data.

A general spatial mapping can be specified in two forms:
I!m![x7 y] = Iin[X(u$ V), Y(ua V)] eq. 6_1
L,luv)=1,[U(x, y),V(x,y)] eq. 6.2

where / is the image intensity, [u,v] refers to the input image coordinates and [x, y] to the
output image coordinates, and X,Y,U and V are arbitrary mapping functions that uniquely

specify the spatial transformation.

Functions X and Y map the input image to the output image and are referred to as the forward
mapping, while U and V map the output image back to the input image and are known as the
inverse-mapping functions. Both forward and inverse mapping can be used to produce a warp.

However the forward or target mapping has significant advantages when the input image is to be

130 The Development of Motion-tracking Strategies for Cineradiographic Images

read sequentially as in the case of raster scanned images. It is particularly useful for separable

algorithms that operate in scanline order (see Two-Pass Mesh Warping later in this chapter).

In a forward mapping each input pixel is copied onto the output image at positions determined by
X and Y. Figure 6.1 illustrates a forward mapping for a simple one-dimensional case. The input
and output spatial distributions are shown for a line of grayscale pixels lying on a discrete
integer grid. Each input pixel is passed through the spatial transformation where it is assigned a
new output coordinate. The spacing of the horizontal arrows represent the input and output
spatial distribution of the forward mapping. In this example the distance between input pixels A
and B has been compressed resulting in a closer projected spacing between output pixels A" and
B'. Conversely the distance between input pixels C and D has been expanded, resulting in a
wider projected spacing between output pixels C' and D'. Whereas the input pixels lie on an
integer grid, the projected output position of the mapping may take on continuous or real values.
Thus an interpolation stage is required to fit a continuous function to the discrete input data.
The continuous function may then be sampled at arbitrary positions. This interpolation
operation is lown as image reconstruction. Jointly, image reconstruction followed by sampling

is known as image resampling [6.7].

The real valued output positions assigned by the forward-mapping functions X and Y cause
complications since the output pixels must also lie on a discrete integer grid. Holes may appear
where the input-output mapping bypasses an output position as in the case of pixel E' in
figure 6.1. Alternatively an overlap may occur where two or more consecutive input samples

collapse into a single output pixel, as depicted by output pixel F'.

Input Output

Forward

Mapping

G2 oo B = B o B -

Figure 6.1: One-dimensional forward mapping

These two resampling problems arise because point sampling (zero-spread) has been used on the
reconstructed input to assign the discrete output. Point sampling is where each input sample
point is taken independently of its neighbours and thus can affect only one output point. With
point sampling, entire intervals between samples may be discarded and their information content

lost. If the input data changes smoothly the lost data may be recovered through appropriate

Prescribed Motion Cineradiographic Sequences 131

interpolation (reconstruction). However, when the discarded interval contains complex changes,
interpolation maybe inadequate and the lost data unrecoverable. In this situation the input signal
is said to be undersampled giving rise to aliasing. The filtering used to counter aliasing is
known as anti-aliasing and typically requires that the input be blurred before resampling,

ensuring that the sampled points are influenced by their discarded neighbours.

In theory, aliasing can be prevented entirely by sampling at a sufficiently high frequency, as
dictated by sampling theory or by designing an ideal anti-aliasing filter to suit the data. But due
to practical limitations in the implementation of an ideal filter, many approximate anti-aliasing
methods have been proposed. The four-corner mapping paradigm is one such solution to the
problems produced by the simple point-to-point mapping. Four-corner mapping is an area
sampling method in which input pixels are considered as square patches that may be transformed
into arbitrary quadrilaterals in the output image. This ensures that the input remains contiguous
after the mapping. However, this approach introduces two other complications that require the
use of adaptive sampling of the input, based on the size of the projected quadrilateral, in order to
resolve them. If the projected input patch covers more than one output pixel, as would be the
case for local magnification, intermediate values must be interpolated to correctly fill the output
positions. Alternatively if more than one projected input patch resides in an output position, as is
the case for local minification (reduction in scale), then the patches must be averaged, based on

their area, to fill the output position.

Two-Pass Transforms

Consider the case of a spatial transform specified as a forward mapping by functions X and Y

such that:
[x,y1=T(u,v)=[X(u,v), Y (u,v)] eq. 6.3

The transformation T is said to be separable if T(u,v)=F(u)G(v). The order of the
functions implies that G is applied after F, thus T(u,V) is said to be two-pass transformable.
The functions F and G are known as the two-pass functions, each operating along a different
axes. This approach enables the forward mapping of equation 6.1 to be rewritten as two

one-dimensional mappings, F along the horizontal axis and G along the vertical axis.

Two pass algorithms have been shown to apply to a wide class of transformations [6.8] of

general interest including perspective projection of rectangles and bivariant patches.

Two-Pass Mesh Warping

An important class of the two-pass warp algorithm is defined in terms of piecewise continuous

mapping functions. The input and output images can be partitioned into a mesh of patches.

132 The Development of Motion-tracking Strategies for Cineradiographic Images

Each patch delimits the area over which the continuous mapping function applies. The mapping
operation is reduced to transforming each patch onto its counterpart in the second image, thus
giving rise to the term mesh warping. The term morphing (short for geometric metamorphosis)
has been coined to describe a particular application of this method used by Industrial Light and
Magic [6.9] to create the extra special effects seen in popular films such as The Abyss and
Terminator-2. Figure 6.2 shows an example of a non-uniform mesh of patches with the control
point placed at the vertices. The control points are indexed by integer (1,v) coordinates and
serve as pointers to their real position. In effect this is a parametric grid that partitions the image
into a contiguous set of patches. Each patch can be fitted with a bivariant function to produce a

piecewise continuous mapping function.

Figure 6.2: A mesh of patches

The algorithm [6.10] accepts a source image and two two-dimensional arrays of mesh
coordinates. The first array contains the control points for the source image while the second
array specifies the corresponding coordinates in the destination image. These two arrays must be
the same size to establish a one-to-one correspondence but the points are real-valued numbers
and can lie anywhere in the image plane. The only requirement of these arrays is that they be
topologically equivalent. That is to say, there must be no folding or discontinuities and hence no
self-intersection. Figure 6.3 shows an example where a regularly-spaced grid has been used for
the source mesh array and the non-uniform patches of figure 6.2 used as the destination mesh
array. Each (u,v) point in the source array is mapped to the corresponding (x,y) point in the
destination array and the direction of the warp indicated by the arrows. A complete description
of the algorithm can be found in Wolberg [6.11]. Below is a brief outline of the steps of this

two-pass, forward mesh warp algorithm.

Horizontal Warp, Phase 1:
Take each horizontal line of the input and output meshes and interpolate them onto the input
image base coordinates. This produces the input and intermediate image tables for the y-

intercepts of horizontal scanlines.

Prescribed Motion Cineradiographic Sequences 133

Horizontal Warp, Phase 2:
Resample each horizontal scanline of the input image based on the intermediate and input

tables to produce an intermediate image.

Vertical Warp, Phase 1:
Take each vertical line of the input and output meshes and interpolate them onto the input
image base coordinates. This produces the intermediate and output image tables for the x-

intercepts of vertical scanlines.

Vertical Warp, Phase 2:
Resample each vertical scanline of the intermediate image based on the intermediate and

output tables to produce the output image.

This algorithm is fast and produces anti-aliased images over a wide range of input-output scale
changes. Linear interpolation is used for magnification and box filtering for minification. A
cubic interpolator is used in the first phase of each pass to regularise the input and output mesh

grids onto the input image base coordinates.

O = source ® = destination

Figure 6.3: Example of source and destination arrays

At the time of this research (November 1993) there were no readily available commercial
image-warping software packages. Based on C code-fragments found in the book Digital Image
Warping [6.11], a Pascal language unit called WarpFtns was written to implement the complete

warp algorithm. This code can be found in its entirety in appendix C starting at page C-52.

6.4.2 Image Rotation

Translating an object and changing its scale digitally is a much easier task than rotating the
object. In order to produce a prescribed motion sequence the creation algorithm must be able to

perform translation, scaling and rotation simultaneously. Before looking in detail at the task of

134 The Development of Motion-tracking Strategies for Cineradiographic Images

creating a motion sequence using two-pass mesh warping, the issue of how accurately this type

of algorithm can perform object rotation must be investigated.

Many simple spatial transformations can be expressed in terms of a general 3x3 transformation
matrix T shown in equation 6.4. For two-dimensional image projections (eg. mapping between

the uv- and xy-coordinate system) the third dimension can be ignored without loss of generality.

(x'.y,z]=[uv,z]T eq. 6.4

a;y 4 a3
where T=|ay a; ay

asz; Gz QAss

When this general matrix is used to specify a two-dimensional coordinate transformation it
operates in what is known as the homogeneous coordinate system [6.12]). The use of
homogenous coordinates was introduced to provide a consistent representation for affine and

perspective transformations. The general representation of an affine transformation is:

a, a, 0
@ ap 1

This is a special case of the 3x3 transformation in which the homogeneous coordinate z' has
been set such that z'=z=1. An affine mapping corresponds to an orthographic or parallel
plane projection from the source uv-plane to the destination xy-plane. It will accommodate only
simple planar mappings such as translation, rotation, scaling and shearing. Each of these
operation can be seen by partitioning the affine matrix. Translation by offsets T, and T, to u

and v coordinates respectively takes the form

1 0 O
(x,y,1]=[u,v,1]] O 1 O eq. 6.6
Lz L

Similarly scaling « and v by arbitrary factors S, and S, respectively is specified by

[x,y,1]=[u,v,1] eq. 6.7

e o
S O
— O o

Rotation about the origin anti-clockwise through an angle 0 is given by

Prescribed Motion Cineradiographic Sequences 135

cos@ sin@ O
[x,y,1]=[u,v,1][—sin@ cos@ O eq. 6.8
0 0 1

Finally, a shear along the u-axis by a factor H, and the v-axis by a factor H, is defined by

1 H, 0
(x,y.1]=[w,v,1]]H, 1 O eq. 6.9
0 0 1

A composite transformation consisting of any combination of these four basic transforms can be
computed by forming the matrix product of the individual matrices. Shown below in equation
6.10 is an example of a composite transform consisting of rotation followed by a scale change
and finally translation. Because matrix multiplication is generally non-commutative, changing

the order of the transforms will result in a different composite transformation matrix.

[x7ya 1]=[u7v,1] MCOm[) eq. 610
cos@ sinB OfS, 0 Of1 O O
Mc,mp=|—sin6 cos6 00 S 0)0 1 O
0 0 1JJ0 0 1J7, T, 1

where

S,cos6 S,sin@ O
=|=S,sin@ S,cos6 O
) & 1

u v

As stated in section 6.4.1, the only restriction on the form of the warp that can be created using
the two-pass mesh algorithm is that there can be no self-intersection of the mesh coordinates.
Hence all transformations realisable by the general affine mapping should be possible. The only
obvious limit on this statement concerns the maximum angle of rotation achievable. For angles
greater than +45°, mesh self-intersection will tend to occur thus limiting the useful rotation range
to this value. This does not present any problems with respect to the creation of
cineradiographic sequences of the human spine because in general the vertebrae do not exceed

this range of rotation.

Rotation Evaluation

To assess the quality of image rotation produced by a two-pass mesh warp, an algorithm
designed specifically to perform image rotation is required. One of the most significant

algorithm developments in image rotation was proposed recently by two independent researchers

136 The Development of Motion-tracking Strategies for Cineradiographic Images

[6.13, 6.14). They demonstrated that the rotation transform could be decomposed into three

one-dimensional shear transforms. This decomposition is shown in equation 6.4.
cos@ sin6
R=| |
—sin6 cos6
1 01 sin@ 1 0
B ~tan(6/2) 1[0 1 |[-tan(6/2) 1

The first shear skews the image in a horizontal direction by displacing each row. The resultant

eq. 6.11

image is then skewed in the vertical direction and the last part finally performs another skew in

the horizontal direction to complete the rotation.

The main advantage of this algorithm is that there are no scaling operations. By not requiring
any scaling, sampling and filtering complications, and their associated degradations, are avoided.
Furthermore, a shear transformation can be performed efficiently requiring little more than linear
interpolation. It can also be shown that the sum of the pixel intensities along any scanline
remains unchanged after a shear operation, thus no visible spatial-variant artefacts are produced
by this algorithm. Code for this algorithm can be found in appendix C page C-49 in a Pascal

language unit called Rotate.

Figure 6.4: Checker-board test image

One of the most popular test images for assessing the performance of an implementation of a two
dimensional transform is the checker board. This is because the image contains very high
spatial frequency terms due to the binary intensity transitions. These clearly-bounded transitions
provide an effective test for an algorithm since excessive smoothing will appear as blurring of the
boundaries and aliasing (due to under-sampling or poor reconstruction) will appear as jaggedness
in the boundaries. Figure 6.4 contains the checker-board test image used to evaluate the rotation
algorithms. The squares are size 16 pixels, this being approximately the height of the smallest

vertebra in the cervical spine.

Table 6.1 contains the results of rotating the checker-board test image through a range of angles

up to 40°. The images in the third column were produced using a popular algorithm based on

Prescribed Motion Cineradiographic Sequences

137

bicubic interpolation [6.15], for additional comparison.

using a grid resolution equal to the pixel size in the original checker-board image.

Rotation
Angle

Three-pass shear Two-pass Mesh

Bicubic

Warp Interpolation

S degrees

10 degrees

15 degrees

20 degrees

30 degrees

40 degrees

Table 6.1: Rotation of checker-board test image

Mesh warp rotation was performed

138 The Development of Motion-tracking Strategies for Cineradiographic Images

Three-pass shear Two-pass Mesh Warp Bicubic Interpolation

Table 6.2: 4x magnified 20° rotation of checker-board test image section

Visually there is little difference between the quality of the images generated by all three
methods. The images show good maintenance of the checker-board boundaries, free from
excessive jaggedness. Table 6.2 contains the centre section of the three images for the 20°
rotation case magnified by 4. Even at this higher magnification there is very little visual

differences between the three methods, all show good reconstruction of the boundaries.

The results of table 6.1 and 6.2 clearly show that the general two-pass mesh warp algorithm is
capable of image rotation with an accuracy comparable to purpose build rotation algorithms and

thus is suitable for the creation of prescribed motion cineradiographic sequences.

6.5 Motion Sequence Generation

In principle, motion sequence generation using the digital image warping offers the ultimate in
flexibility in the specification of the motion characteristics and hence special effects. Using the
basic mesh warping algorithm described in section 6.3.1 a wide range of planar motion
transformations can be generated. The illusion of full three-dimensionally is also possible if
range information is available. The start of the creation of a cinematic illusion using image
warping normally begins with the separate recording of the two (or more) sequences. The first
sequence is the source or start sequence and the last sequence is the target or destination
sequence. The warp will form a new sequence in which the first frame is the same as the first
frame of the start sequence and the last frame is the same as the last frame of the last sequence.
The intermediate frames will be a spatial and colour combination of the intermediate frame of
each sequence. For complex scenes each sequence is often recorded on a plain background
(usually chroma-tone blue) to prevent scene elements other than the objects of interest from
interfering with the each other during the warp. The final background can then be merged in last
of all. The remaining steps required to achieve the warp can be illustrated with the simple case

where there is just one source frame and one destination frame. The popular case of a picture of

Prescribed Motion Cineradiographic Sequences 139

one human face morphing to another face is a typical example. In each frame points of
correspondence are marked, that is locations in the source frame that will become the new
location in the destination frame. Once this has been done geometric mesh grids for the source
and destination frames are formed from the correspondence points. A sequence of intermediate
meshes is then formed that starts from the source mesh and ends with the destination mesh. To
generate each frame of the sequence both the source frame and the destination frames are warped
based on the intermediate mesh data. For the source frame the warp is a forward warp in which
its original mesh is the input mesh and the intermediate mesh is the output mesh. In the
destination frame case the intermediate mesh becomes the input mesh and the original mesh is the
output mesh producing a reverse warp. These two intermediate frames are then combined using
a method called cross-dissolve in which each frame is weighted by a value dependent on how far
through the sequence the frame is and the two frames added together. For colour sequences the
process is applied three times, once to each of the red, green and blue image planes. The main

steps of sequence generation are thus summarised as:

1. Define correspondence points in the source and destination frames and form a geometric
mesh grid from the points for each frames.
Generate an intermediate mesh grid interpolated between the source and destination grids.
Warp the source frame towards the destination image and the destination frame towards
the source frame based on the intermediate mesh grid.

4. Cross-dissolve the warp source and destination frames to produce the a new intermediate
frame.

5. Repeat steps 2 to 4 to produce all subsequent frames of the sequence.

Simple animation warping programs commonly automate the mesh generation by using linear
interpolation between the input image mesh and the final output image mesh, over the specified
number of frames. Sophisticated animation warping programs such as those used by Industrial
Light and Magic [6.9], enable the partitioning of the input mesh and the definition of functions
that specify how the partitioned areas move towards the final output mesh over the desired
number of frames. This increased complexity in mesh specification enables more visually
realistic warp sequences to be created since the rate of metamorphosis of small and extensive

detail can be directly controlled.

6.5.1 Extended Image Warping

Image warping is normally used to create a visual illusion in which a source image and
destination image geometrically distorts towards each other as the sequence progresses. The
only requirement of the warp is that it is aesthetically pleasing. In this sense the sequence must

appear to be visually smooth and certain key components such as eyes, mouth and nose of a face

140 The Development of Motion-tracking Strategies for Cineradiographic Images

must be clearly recognisable through the warp and not dissolve into a blur of the source and
destination frames. The goal of the application of image warping to cineradiographic images of
the human spine is to produce an animation in which the components of the spine move through a

prescribed path of motion in accordance with physical constraints

Application to Cineradiographic Sequences

In order to produce a realistic animated cineradiographic sequence of the human spine, general
constraints on the spatial and temporal motion characteristics need to be known. At a simplistic
level the most obvious constraint on the allowable motion is that the vertebra must behave as
rigid bodies conserving their geometric shape. Soft tissue surrounding the vertebrae must
therefore mould or distort to accommodate the movement of the vertebrae. Digital image
warping can readily achieve this since sections of the mesh grids can be made to keep their
relative shape while the surrounding areas deform (stretch or compress) to account for the new

locations of the fixed sections.

When a vertebra (the fixed sections of the mesh grids) is moved, the local geometric distortion
will be propagated away from the vertebrae into the surroundings as if the surrounding was made
of an elastic material that obeyed natural physical laws. The soft tissue between the vertebrae
(the discs) has very different mechanical properties to the general soft tissue (skin and muscle,
etc.). Thus constraints must be applied to ensure that compression and shear on the disc tissue is
within known mechanical limits. An additional constraint can be used to simplify the problem
when applied to lateral and anteriposterior (AP) views of the human spine. Vertebra in these

views are generally non-occluding, allowing only close contact interaction.

As stated previously in section 6.5, image warping requires a source and a target frame and the
definition of points of correspondence defining object of interest. To create complex warps
containing many objects of interest each object is usually recorded separately or is separated
from a frame and then processed individually. The difficulty in applying this technique directly
to cineradiographic images is that the separation of each component, the skull, vertebrae and soft
tissue, is not readily possible. Radiographing a skeleton could be used to specify the hard tissue,
but the layering effect of the density projection of both soft and hard tissue would be difficult to
achieve. Cineradiographic images of the spine are in effect only available as two-dimensional
projections of the complete structure. A useful animated cineradiographic sequence could be
produced from a single frame in a real sequence if a detailed spatial description of the main
components (skull, vertebrae, soft tissue boundaries) is available. From these spatial
descriptors, all objects would then have to be processed collectively and all spatial interactions

adequately accounted for.

Prescribed Motion Cineradiographic Sequences 141

The manual placement of landmark points on static radiographs is routine when making simple
biomechanical measurements. This same manual approach can be applied digitally to a single
frame from a cineradiographic sequence to define the corner points of the vertebrae and other
important features. Interpolating between these corner points yields an outline or boundary
description of the object enclosed within. These outline coordinates can then be used to form a
suitable spatial description of each object. Alternatively the Canny edge detection algorithm
described in chapter 3 could be used to generate an initial edge map. Although this map will be
noisy and the vertebral boundaries discontinuous, it can be readily tidied up by overlaying it on
the original image and manually editing each pixel. The resulting edge image can then be chain

coded [6.16] to produce a spatial representation of the vertebra and other boundaries.

6.5.2 Initial Implementation

A very simplistic approach was used for the initial implementation of the warp-based animation
algorithm. A trajectory file containing x-y position and orientation of each vertebra was

predefined to prescribe the motion. The steps of this implementation are summarised as follows:

e Outline each vertebra (object) of interest on the reference image
e From the outline compute the minimum enclosing rectangle of each object

e Use a I-pixel resolution grid in the object area and a coarse grid outside. Include a

clearance zone around each object (see figure 6.5 b)

e From a prescribed trajectory file (x, y, 8) compute the new output mesh coordinates of
each object. All internal coordinates of the enclosing rectangle are transformed, point

by point using a general coordinate transformation
e Warp the image using the computed mesh grids

e Get the next trajectory data, compute new mesh coordinates, and repeat the process

This initial implementation has a number of significant limitations. Firstly the use of a minimum
enclosing rectangle for the vertebral outlines results in motion boundary artefacts. Also due to
the irregular shape of the vertebrae, a minimum enclosing rectangle outline description severely
limited the range of motion that can be generated without having to explicitly deal with object
interference. It was also found that for some trajectory values the output images appeared as if
they have been stretched to all four corners and folded back on themselves. This was initially
considered to be a bug in the mesh generation routine. However a thorough investigation
revealed that the sudden transition from the fine single-pixel grid in the object area to the coarse
grid in the surroundings caused the cubic spline interpolator used in the first phase of each pass
of the warp algorithm, to become unstable and overshoot. This overshoot resulted in the

unexpected special effects. This problem can be easily illustrated for the 1-D case in which

142 The Development of Motion-tracking Strategies for Cineradiographic Images

irregularly sampled data is regularised to a constant sampling interval by cubic spline

interpolation.

clearance zone

//

o
y

coarse grid fine (1 pixel grid)

a) reference image b) mesh geometry

Figure 6.5: Initial implementation

In figure 6.6 the middle of the three traces from position 60 to 100 is sampled at unity spacing.
Outside this region on either side there are two other data samples at irregular intervals before
the end samples. The spacing of these two samples for the three traces is defined in the key to
the right hand side of the figure. The irregularly spaced data is regularised to unity spacing

using cubic spline interpolation and results are shown in figure 6.7.

Irregularly Sampled Data

150----_'---:----:---:-Pg-:----:---:-/:%-?-- KEY Spacing
3 A R e T
2) /v-w,j Vo . . o
S LI CARAE TIEY . N 10,135
A N I +25, £50
- L)W - -
/__'....-—".L-"') » ¥ ‘ ' .
S Sl
0 20 40 60 80 100 120 140 160
Position

Figure 6.6: Irregularly sampled data

For the first trace with the sample points closely spaced either side of the middle section there is
significant overshoot above and below the original. Moving the second sample either side further

out begins to stabilise the interpolation, but even for the third case with even spacing about the

Prescribed Motion Cineradiographic Sequences 143

middle section significant undershoot occurs. This behaviour is the classic result of severely
undersampling the original data for which the only valid solution is to increase the number of
samples. In the case of the initial implementation of the cine-warp program reducing the coarse

grid spacing below 10 pixels stabilised the interpolation in the region outside the clearance zone.

Regularised Data

200
150 KEY Spacing
-]
2 — — — %10,%20
> S
= +10, £35
""" +25, £50
— Original

50

0 20 40 60 80 100 120 140 160
Position

Figure 6.7: Regularised data by cubic spline interpolation

The use of an overall clearance zone, computed from the maximum pixel shift of any object in
the scene, was a simple step designed to deal with propagating local distortion due to object
motion, into the surroundings. The assumption was that the interpolation inherent in the warping
routine would adequately propagate the distortion due to the fine (1 pixel grid) to coarse mesh
grid transition. This assumption holds adequately for a small range of motion but with
increasing translation the distance over which the distortion is propagated varies markedly
between vertebra. This results in the spacing between the last position on a vertebrae and the
first position outside the clearance zone varying markedly. This change in an interval spacing on
a line-by-line basis results in local regions of the mesh still severely overshooting after

regularisation.

The other severe limitation of this implementation is due to the use of a rectangular outline to
describe each object. This limits the useful rotation to only a few degrees with a fine mesh
spacing of 1-pixel, before mesh self-intersection occurs. Making the fine grid spacing larger
does enable a wider range of motion to be prescribed but the accuracy of image rotation in
particular is reduced due to the more coarsely defined mesh co-ordinates. The use of a
rectangular outline in layered warping does not cause any problems since each layer contains
only the object on a plain background. Boundary artefacts are not visible in each layer since the
background is homogeneous in value. When the object layers are combined, cross interactions
are dealt with by either merging or overlaying. This emphasises the fact that warping is usually

used to generate cinematic illusions, not create accurately prescribed motion sequences.

144 The Development of Motion-tracking Strategies for Cineradiographic Images

6.5.3 Enhanced Implementation

In principle most of the limitations of this first implementation are eliminated by the use the
object outline as the natural boundary and automating the generation of the entire output mesh

co-ordinates. The following programme routines perform the required functions.

FormObjects:
Take each defined object and linearly interpolate an outline from its edge points. From these
outlines an object description is created in terms of the start and end co-ordinates of both

horizontal and vertical scanline segments.

CollectScanlineSegments:
Scan all object descriptions and collect all horizontal scanline segments existing on a
common y-coordinate and vertical scanline segments on a common x-coordinate. Sort into

order to produce the horizontal and vertical mesh interference arrays.

InitialiseOutputGrid:

Initialise output mesh grid to a regular one-pixel spacing.

PlaceObjects:
Using the trajectory data (x,y,0) adjust the mesh coordinates of each object (defined by the

scanline segment coordinates) to reflect the new position and crientation.

PropagateObjectDistortion:
Propagate the distortion (using interpolation) due to object movement into the surrounding
area. Try to propagate back over the distance of the local mesh coordinate displacement plus

ObjectClearance, otherwise propagate back to the nearest object.

CineWarp (Main procedure)
Read the reference image and object edge-point data
Read the trajectory data for each object
FormQObjects

CollectScanlineSegments

WarpSequence (Number of images)
InitialiseOut put Mesh
PlaceObjects
PropagateObjectDistortion
MeshWarplmage

The last part of the algorithm uses the original MeshWarplmage function to perform the actual
warp. However, because the input mesh grid is already on a regular one-pixel spacing, the
regularisation of input mesh performed in the first phase of both the vertical and horizontal

passes, is not actually necessary. Modifying the warping function to detect this significantly

Prescribed Motion Cineradiographic Sequences 145

speeds up the execution time per image warp. Also since the PropagateObjectDistortion
function is already having to perform much of the mesh regularisation, the mesh warp routine
only has to perform image scanline resampling. This results in a further speed-up in warp

execution.

The most complex part of the entire CineWarp algorithm is the generation of the output mesh
with the coordinates adjusted to propagate the distortion produced by the motion of each object.
Two functions are integral to this operation. The first function is CollectScanlineSegments, this
produces a global spatial representation for all potential interfering horizontal and vertical
scanline segments (ie. segments on same x or y coordinate) across all objects. It is from this
representation that the second function PropagateObjectDistortion, is able to deal with the local

spatial distortion produced by each moving object.

| » % om | om om . m I3 36 3 38
il |
26 | 29026.0) (300260) (31.0260) (32026.0) (330260) (34.0.260) (35026.0) | (36.026.0)| (37.0.26.0) (38.026.0)
27 [29027.0) (300270) (31.027.0) (32.027.0) (33.0.27.0) (38027.0) (35.027.0) (36.0.27.0) (37.027.0) (38.0.27.0)
28 [(29028.0) (300280) (310280) (32.0280) (330,28.0) (36.0280) (35.0280) (36.0280)| (37.0280) (38.0.280)
29 [200290) (300290) (31.0290) (320290)[G45305) (355305 (350290 (36.0290) (370290) (80290)
30 |290300) 30.0300)] (31030.0), (32.030.0)| (34.5315) (35531.5) (36531.9)] (36.030.0) (37.030.0). (38.0.30.0)
31 [29031.0) G00310) (31031.0[33.533.5), 345315 (355325 (36532.5)](36.031.0) 37.031.0) (38.031.0)
[32 [@oo 320) (300320) (31.032.0)| (33534.5) (385325 (35.5.33.5) (36.533.5)| (36.032.0)| (37.032.0) | (38.0.32.0
33 (29 0, 033 0) (30.0.33.0) (31.033.0)! (32.0,33.0), (33.0,33.0)] (35. 5__3_;;;(;_5_34 5) ?36_0 33.0 0)! 1 (15_6;;3-.(-52;6 330—)
34| (290340) (:00340) (31.0340) (20340) (330340) (340340) (350340)| G6.0340) (70.340) (38.0340)
35 [(29.0350) (30.0350) (31.035.0) (32.0.35.0) (33.035.0) (34.0350) (35.035.0)| (36.0.35.0) | (37.035.0) | (38.035.0)
36 |(29.0360) (30.0360) (31.0360) (32036.0) (330360) (340360) (35036.0)| (36.036.0)| 37.0.36.0) (38.0.360)

Table 6.3: Mesh coordinates after object placement (x, y,0) =(1.5,1.5,0)

Table 6.3 shows part of the output mesh for a small irregular object (indicted by the black
outline) just after the PlaceObjects function has adjusted the mesh coordinates in accordance
with the trajectory data for the current frame. In this case the motion is a translation of 1.5
pixels in both the x and y direction with no rotation. This is easily recognised by scanning across
in the x-direction or down in the y-direction from the top left-hand corner. If the coordinates do
not increase incrementally in unit steps in the direction of the scan then motion has occurred.
Scanning across grid line y =29 a sudden change occurs at x = 33 where the x-coordinate jumps
from 32.0 to 34.5 and the y-coordinate jumps from 28.0 to 30.5. The normal change should only
be one unit, thus this object start coordinate has translated 1.5 pixels in both directions.

Continuing down or across this the mesh from this position, the grid resumes the normal unit

146 The Development of Motion-tracking Strategies for Cineradiographic Images

pixel change until the end of the object scanline. At this location there is a negative 0.5 unit

change in both directions after which the unit pixel spacing is resumed once more.

The PropagateObjectDistortion function begins at the top of the list of (potentially) interfering
horizontal scanline segments. If there is only one segment in this top entry then no interference
can occur and hence the function is free to propagate the distortion without interference. If there
is more than one segment in the top entry, then the horizontal distance between the end of each
segment and the start of the next segment is computed along with the horizontal displacement of
these end points from their reference (original) mesh position. The signed horizontal distance of
the end points from their reference position is a direct measure of the end point local horizontal
displacement. If the sum of the signed displacement between two contiguous segments is less
than the original segment end point separation then the space between the pair of segments has
become compressed. If the sum is greater, then there has been an overall local expansion
between the segments. This local expansion could be the result of compression in one segment
direction and a greater expansion in the other segment direction, or expansion in both segment
directions. Each segment is now considered in turn to determine the nature of the end-point
translation. These results are then combined together and the mesh x-coordinates adjusted to
propagate the distortion due to the inter-segment motion. Simple linear interpolation is used to
propagate the motion distortion. This is equivalent to assuming that the inter-segment material is

homogenous and perfectly elastic over the propagation distance.

The above procedure is repeated for all remaining segments in the top entry of the horizontal
scanline interference array. Once all segments are processed the function moves to the next entry
(on the next valid y-coordinate) and repeats the operation. With all the horizontal scanline
interference array entries processed, the same procedure is repeated for the vertical scanline

interference array moving in the y-direction.

At the end of this stage the x-coordinates along each horizontal line and the y-coordinates along
each vertical line have be adjusted to account for the motion distortion. Test sequences
generated with an implementation of PropagateObjectDistortion to this stage worked correctly
for either horizontal or vertical translation and for small rotation angles, but with combined
motion the object outlines began to lose their integrity in the vertical direction whenever
expansion occurred. Because this effect appeared in one direction only it was initially assumed
to be due to a coding error. However, a thorough check of the code showed that the mesh
generation in both the horizontal and vertical direction were identical. Close inspection of the
way in which the object outlines began to lose their integrity revealed that it was due to a
shearing action. The vertical shear increased with horizontal movement, beginning from the
corner where expansion was present. It was concluded that the reason for this effect was that the

propagation of distortion had ignored the interaction between the horizontal and vertical

Prescribed Motion Cineradiographic Sequences 147

peripheral scanlines. Careful inspection of a printout of a section of the mesh around the object
periphery eventually revealed this edge-effect. The reason it had not been readily apparent
previously, was the confusion between mesh index coordinates and physical image coordinates.
The mesh index coordinates do not represent the object coordinates, but the entries at the location
do. For simple motion they are very similar because the initial mesh spacing is one also pixel.
This shearing problem did not show up in the horizontal direction because of the scanline nature
of the MeshWarplmage routine. Reversing the order of the horizontal and vertical passes of this

routine shifted the shearing effect to the horizontal direction.

With this new insight revealed, the PropagateObjectDistortion function was extended to account
for this effect. The extra code begins from the outer ends of each peripheral horizontal scanline
segment. Based on the vertical displacement at this position the x-coordinate is maintained
vertically spaced away from the object over the number of mesh elements equivalent to the local
vertical displacement. The same procedure is performed on the vertical peripheral segments
where the y-coordinate is maintained horizontally away from the object over the number of mesh
elements equivalent to the local horizontal displacement. The effect of these two one-

dimensional operations is to move the peripheral shear outside the physical region of the object.

- . .
Cey)| 20 | 30 31 R 3 34 35 36 37 38

26](29.0.26.0)/ (30.0.26.0) (310260) (320260)! (330260) (340260)% (350260) (360260)‘(370260)1(380260)

>

27](29.0.27.0); (30.0.27. O)E (31.0,27.0): (32.0,27.0) | (34 527.5)| (35.5.27. 5) (36.0,27.0) ; (36.0,27. 0)r (37.0.27.0) (38.0,27.0)

28](29.0,28. 0] (30.0,28. 0} ('{I .0.28.0) (33.5,28.0) | (34.5,29.0) | (35.5,29.0) | (36.0,28.5) : (36.0,28.0) (37.0,28.0)| (38.0,28.0)

29](29.0,29. 0) (30 0,29.0) (31 5.30. 5) (33.5,30.5) (34 5.30. 5) (35 5.30.5)] (36.0,30.5) (36.5,30. 5);& (37.0.29.0)§ (38.0,29.0)

30 |(29.0,30.0)! (30.0.31.0) (31.5.31.5) (33.5,31.5)] (34.5.31. 5) (35. 5 3l ‘5] (36.5.31. ‘i) (37 0,31. S) (37.5,31.5) (38.0,30.0)

31 :(29.031.0) (30.5.32.5) (32.0,32.5)] (33.5,32.5) | (34.5.32.5) (355325) (36532 S) (370325) (37.5,32.5)| (38.0,31.0)

32 1 (29.0,32. 0) (30 5 33 5) (32 0, 33 5)} (3. 5 33 5) (34.533. 5)1 (35! 5 33. 5) (36.5,33.5) (37.0.33.5)i (37.5,33.5)| (38.0,32.0)

33](29.0,33.0) (30 0, 33 0) (31 0. 34 5) (33.5,34.5) | (34.5,34.5)] (35.5 34.5)| (36.5,34.5)| (37.0, 34.5)i (37.5,34.5)| (38.0,33.0)

34 |(29.0. 34 0) (30.0,34.0) (31.0, 34 0):(33.5,34. 5) | (34.5,34.5)| (35.5.35. 0)| (36.5,35.0) ! (37.0,34.0) | (37.0,34.0) § (38.0,34.0)

35](29.0.35. 0}| (30.0.35.0) (31.0,35 0) (32.0,35. 0) (33.0.35. ICl)|l (35.5.35. 5) (36.5.35.5)§ (36.0.35.0)! (37.0,35.0) § (38.0,35.0)

36 (29‘0,36.0)5 (30.0,36.0) ' (31.0,36.0) (32.0,36.0):[33.0.36.0)§ (34.0,36.0)| (35.0,36.0) ¢ (36.0,36.0)} (37.0,36.0) | (38.0,36.0)

Table 6.4: Mesh coordinates after the final phase of distortion propagation
(x,y,0)=(1.5,1.5,0), ObjectClearance = 1

Table 6.4 shows the mesh coordinates of table 6.3 after distortion propagation has been
completed. The extent of the distortion propagation is shown geometrically by the grey border.
Note that this is in mesh index coordinates not the actual spatial coordinates of the image. To

determine the physical propagation distance the mesh grid entries need to be inspected.

148 The Development of Motion-tracking Strategies for Cineradiographic Images

An additional user-defined parameter ObjectClearance, enables control of the distance over
which motion distortion is propagated. The sum of this value and the actual local displacement
is the physical propagation distance. This sum is in effect the distance over which the

surrounding material behaves as an elastic medium.

Although this enhanced implementation removed the corner shearing effect local to the object it
has done so by shifting it away from the object by a distance that is dependent on the object
motion and the value of ObjectClearance. This causes problems when the source image
contains many objects in close proximity since there is no space to shift the distortion into. Also
when two objects in close proximity undergo a vastly different range of motion the regions of
overlap and underlap are not adequately described by 1-dimensional interpolation. This is easily
illustrated in figure 6.8 where due to horizontal translation to the right of the top vertebra relative
to the bottom one, what was an overlap in one frame becomes an underlap in the next and

vice-versa.

il

P>

Figure 6.8: Vertebral overlap becomes underlap

6.5.4 Image Warping Reassessed

Although an affine mapping is separable and the prescribed motion of the vertebrae can be
represented by an affine transform of the vertebral coordinates, the need for boundary conditions
at the edge of the image means that distortion of the inter-vertebral regions is not defined by an
affine transform but by a perspective transform. A perspective transform is not separable hence
the limited effectiveness the adjustment of the mesh coordinates to account for object movement
using 1-dimensional interpolation in the x and y directions. The effectiveness is further limited
by the fact that the control points are sparsely defined and hence severely undersample the

coordinates (see figures 6.6 and 6.7).

The image warping problem can be restated as;
given the initial coordinates of a set of control points on a reference image (defined by the
vertebral outlines) and their new coordinates on a new image (defined by the prescribed

motion) geometrically distort the base image so that it is aligned at the new coordinates.

Prescribed Motion Cineradiographic Sequences 149

The problem is, in effect, the same as the standard geometric correction or rectification problem
where the control points are tessellated into a number geometric patches. Each patch can then be
mapped to a new patch defined by the new coordinates of the control points. The mapping
function can then be used to interpolate internal coordinates of each patch and hence enable the

regularisation of the entire image mesh.

A Surface Fitting Paradigm for Geometric Correction

The problem of determining the forward mapping functions U and V can be conveniently posed
as a surface fitting problem. Consider M control points labelled (x,,y,) in an observed image
and (u,,v,) in the reference image, where 1 <k < M. The mapping process is equivalent to
determining two smooth surfaces: one that passes through points (x,,y,,%,) and the other that
passes through (x,,y,,v,), for 1 <k < M. The simplest mapping is achieved when only three
control points are used. In this situation the fitted surfaces will be a delineated by triangular
regions. It can be shown [6.17] that fitting a linear interpolant, ie. a plane, enables the mapping
of an arbitrary triangular region to another arbitrary triangle region in which the two regions are
related by an affine mapping. Since the general MeshWarplmage algorithm is limited to defining

affine warps, triangular regions will thus be adequate.

The equation of a plane through three points (x,, y;,%,), (x,,Y,,u4,) and (x;,y,,u,) is given by

Ax+By+Cu+D, =0 eq. 6.12

» u 1 oy w x, % 0 X N &
where A, =|y, u, 1| B,=—|x, w, 1| C,=|x, y, || D,=—x, y, u

u

y, oy 1 X, uy 1 X, ¥, 1 Xy Yy W4

Similarly the second plane through the three points (x,,y,,v,), (x,,¥,,V,) and (x;,y,,v;) is
given by
Ax+By+Cu+D, =0 eq. 6.13

» v 1 x v 1 x oy 1 X n VY
where A, =y, v, 1| B, =-x, v, 1| C

v

y, vy 1 o v | o o bRV

=lx, y, | D=—|x, y, v,

and the parallel lines 'l I' represent the determinant of the 3x3 matrices.

Once the surface coefficients A,B,C and D have been determined, equations 6.12 and 6.13 can be
rearranged into equations 6.14 and 6.15 and used to interpolate intermediate values of u# and v

for any arbitrary x-y location in the triangular surface.

150 The Development of Motion-tracking Strategies for Cineradiographic Images

u=—(Ax+By+D,)/C, eq. 6.14

V=_(A~.,X+va+Dv)/Cv eq. 6.15

By choosing these x-y coordinates for all patches to lie on a regular grid, piecewise mesh grids
representing the complete forward mapping functions U and V can be realised in a form suitable

for the MeshWarplmage routine.

Triangulation is the processes of tessellating the convex hull of a set of N distinct points into
triangular regions. Although many configurations are possible the most useful is one in which
points inside the triangles are closer to their vertices than to the vertices of other triangles. This
form of partitioning is called optimal triangulation and avoids the production of long triangles

with sharp comers. Lawson [6.18] defined three criteria for optimality.

1. Max-min criterion: For each quadrilateral in a set of triangles, choose the triangulation
that maximises the minimum interior angle of the two obtained triangles. This biases the

partitioning against undesirable long thin triangles.

2. The circle criterion: For each quadrilateral in a set of triangles fit a circle through three
of its vertices. If the forth vertex does not line within the circle, split the quadrilateral

into two triangles by drawing a diagonal that does not pass through the fourth vertex.

3. Thessian region criterion: For each quadrilateral in a set of triangles, construct the
Thessian region [6.19]. In computational geometry the Thessian region is the result of
intersecting the perpendicular bisectors of the quadrilateral edges. This serves to ensure

that regions around a control point are closer to the point than to other control points.

D D

a) b) c)

Figure 6.9: Application of the optimal triangulation criteria

Figure 6.9 contains examples of the application of these three criteria. In figure 6.9a, triangle
ABC is chosen in preference of triangle BCD on application of the first criterion. Point D in

figure 6.9b lies outside the fitted circle (application of the second criterion) and thus the diagonal

Prescribed Motion Cineradiographic Sequences 151

is not drawn through this point. While in figure 6.9c, the intersection of the edge bisectors shows
that the interior region of each triangle is closer to its own vertices than to the vertices of the

other triangle.

The only component remaining is the initial triangulation of the control points prior to
optimisation using Lawson's criteria. This can be conveniently handled by the recursive
algorithm of Lee [6.20] in which the control points are split into halves based alternately on their
x and y coordinates. The splitting continues until each subset contains only three or four points
which can then be easily triangulated using Lawson's three criteria. Each subset is then merged
into larger subsets until all the triangular subsets are consumed. This results in a convex hull of
triangles that must be extended in some way to the boundaries of the image. This can be
performed by considering the triangles on the border of the hull and extending their size to the

limit dictated by their intersection with other neighbouring triangles and the image borders.

6.5.5 Final Implementation

The final implementation of the warp-based animation routine uses a very efficient recursive
Delaunay triangulation algorithm described by Watson [6.21]. This algorithm is very fast and
can be applied equally to two and three dimensional data. Although the algorithm does not apply
Lawson's optimality criteria directly, it does in effect use the second or circle criterion of

Lawson. A revised list of the functions used in the final implementation is shown below.

CineWarp (Main procedure)
Read the reference image and object edge point data
Read the trajectory data for each object
FormControlPoints
Triangulate

WarpSequence (Number of images)
InitialiseOutputMesh
TransformTriPoints
FitTriangularPatch
InterpolateOutputMesh
SmoothOutputMesh
MeshWarplmage()

The function FormControlPoints extracts the edge points of each object and then adds boundary
control points to the list. Because all the boundary points lie along the image border, after
triangulation the resulting convex hull is the same as the image border. Thus a separate operation
to extend the hull to the image border is not required. Triangulate performs the actual triangular
tessellation of the control points and is a 2-D implementation of the Watson algorithm. With the

triangulation completed the tessellation information is passed to the main WarpSequence

152 The Development of Motion-tracking Strategies for Cineradiographic Images

procedure to begin the animation. The output mesh grids are initialised and the trajectory data is
then used by TransformTriPoints to adjust the output coordinates of each triangular patch.
Based on these new coordinates of each patch, the linear coefficients for both the x and y
triangular planes are computed by FitTriangularPatch. Next the function
InterpolateOutputMesh uses the coefficients of each patch to regularise the output mesh grids

ready for the MeshWar plmage routine.

6.5 Original (two objects) Four Boundary Points Eight Boundary Points
Tri-
Patches
xMesh
yMesh
Forward Object trajectories
Warp | (x,y, 0)opject1 = (—8,8,30")
I o
mages | .Y, Oobjeaz = (8,~8,-30")

Table 6.5: MeshWarp Stages

Prescribed Motion Cineradiographic Sequences 153

Mesh-smoothness problems [6.22] can occur with the above approach since each patch involves
only a linear mapping and the patches can vary significantly in size. A simple solution adopted
by the author to alleviate this problem was to smooth the mesh coordinates (using a 7x7 box
filter) in areas outside the vertebrae. This ensures the vertebrae maintain their geometric
integrity while boundaries between linear patches are concealed. The function

SmoothOutputMesh performs this operation.

Table 6.5 illustrates many of the steps involved in the warp-based animation algorithm. The first
entry in the first row is the reference image (a 16 pixel size checker-board) with two
diamond-shaped objects defined by four vertex points and four mid-points. The next two entries
in the row show the reference image with the tessellation resulting from triangulation super-
imposed. Increasing the number of boundary points per axis from four to eight increases the
number of triangular patches overall, but not all of these new patches improve the spatial
distribution. This is due to the formation of boundary patches where all three vertices are fixed
at the boundary. The effect can be seen in the bottom-left and top-right corners of the
tessellation and will produce poor spatial interpolation in these areas. In practice the objects
contain many more outline points than is illustrated in this simple example and consequently very

few boundary patches occur.

Rows two and three of the table 6.5 contain the x and y output mesh grids displayed as contour
plots. There are eight equi-spaced contour lines and each line is labelled with its value and coded
with a grey-scale intensity (black to white, smallest to largest). The first entry in each row is the
grid with no object displacement, resulting in a linear plane with evenly spaced contours. The
other two entries correspond to the top diamond moving with a trajectory (x, y,6) = (—8,+8,30°)
and the bottom diamond moving (x, y, 6) = (+8,—8,—30°), where the displacements are in pixels.
The contours for these entries clearly show the non-linear spacing of the x and y grid coordinates
required for this simple mesh warp. Increasing the number of boundary points from four to eight
improves inter-object coordinate sampling as is indicated by the gradual smoothing of the

contour lines.

Figure 6.10 shows the tracking points dialogue from CineMetriX [6.23] software package
incorporating some of the elements developed by the author in this chapter. The point group list
to the right of the figure shows that the second vertebra of the cervical spine is selected. The
point groups indicated by the '>' symbol represent the tri-patches formed automatically by
triangulation. In this case 210 tri-patches were generated for the six defined vertebrae. The
sixteen-corner boundary patches shown in the figure do not reduce spatial acuity since they lie

outside the circle of the image intensifier.

154 The Development of Motion-tracking Strategies for Cineradiographic Images

Tracking Paoints

Image cursor — |

® Anow
@ Small crosshair
@ Large crosshair

[Point groups

8=3>96
8=3>97
£=3>98
£=3>99
=3 Vertebra 1

8=3 Vertebra 3
=3 Vertebra 4
83 Vertebra b
=3 Vertebra 6

Figure 6.10: Track Points dialogue - cervical spine fully tessellated

Image Noise

One remaining component needs to be added to the warp-based animation routine in order to
produce realistic sequences. Noise in a cineradiographic system was shown in chapter 2, section
2.3 to be limited by the smallest number of quanta (photon or electrons) utilised at any stage of
the process. In practice there are two main sources of image noise. The first is due to X-ray
scattering (see chapter 2, section 2.1.2) while the second results from the amplification process in
the X-ray image intensifier tube. The amount of X-ray scattering for a given material is
proportional to its thickness and absorption coefficient. The effective noise of an image
intensifier tube is dependent on its design and overall amplification factor. However these noise
contributions are effectively frozen in the warp based animation since it begins from just a single
frame of a real sequence. Furthermore, the image resampling used in the animation process
involves spatial filtering (box filtering for minification and linear interpolation for maxification)
that tends to smooth this frozen noise in a velocity dependent manner. This smoothing effect is
readily apparent when viewing one of the prescribed motion sequences. The reference frame
which is usually the centre frame in a sequence is noticeably sharper but more noisy than the
created frames. Thus in order to produce a realistic motion sequence using warping, appropriate

noise needs to be added on a frame-by-frame basis.

Prescribed Motion Cineradiographic Sequences 155

In order to determine the characteristics of the noise present in a typical digitised

cineradiographic sequence, two factors first need to be considered:

1. Video camera auto-gain effects

2. Area of interest, soft tissue and hard tissue

Both factors can be addressed by using a frames from cineradiographic sequence of the cervical
spine. In imaging this part of the spine a very wide range of intensities are present and camera
auto-gain effects are at a maximum to prevent overload. It is possible to find both soft tissue
and hard tissue areas of reasonable homogeneity. Using ten frames from the middle of a
sequence three regions were defined to sample the image noise. One of the frames with the three

sample regions indicated is shown in figure 6.11.

The first region is near the circular edge of the intensifier and is part of one of the lead shutters
of the collimator. This was used as a reference to ensure that camera auto-gain changes between
frames did not significantly alter the recorded noise. Region two is at the back of the neck and
encompasses a large area of relatively homogenous soft tissue. The third region is on the lower
centre of the skull and was chosen to be representative of an area with the greatest thickness and

highest absorption coefficient.

Hard

Tissue

Figure 6.11: Image noise estimate regions

In order to remove the effects of any underlying structure in these three regions from the
estimated noise, each frame was subtracted from a filtered version. Filtering involved the
recursive application of a 7x7 box filter. By visually inspecting a magnified copy of these

regions it was found that five passes of the filter adequately removed the image noise while

156 The Development of Motion-tracking Strategies for Cineradiographic Images

preserving any general underlying intensity trends. The differences in data for each region over
the ten frames were then combined together and normalised histograms of their distributions

generated.

Figure 6.12a through to 6.12c show the normalised distribution of the noise in the three regions

with a least-squares best fit gaussian distribution superimposed (see equation 3.12 of chapter 3).

SD=1.9

Normalised Count
©o o o
H o)) (o]

o
(S

L J
-10 -5 0 5 10
Pixel Difference

a) Region1-Lead shutter

i~ - 1 o
SD=5.0 - SD=2.9
324 10:8F i . 08
: 1 : {
3 3 8 .
© 0.6 - 0.6
L rlit 3
[} I]
g 0.4 (‘ g 0.4
2 ' P4
02f - . 0.2] ,
0 HJ‘I‘J-I 0 Ll n |-L“n..

-10 -5 0 5 10 -10 5 0 5 10

Pixel Difference Pixel Difference
b) Region 2 - Soft tissue ¢) Region 3 - Hard tissue (skull)

Figure 6.12: Normalised noise distribution

For the reference region (region 1) of figure 6.11a the fit of the gaussian is reasonably good with
a standard deviation of 1.9. For the other two regions the gaussian fit is not particularly good,
nevertheless the standard deviations do provide a comparative measure of noise between the
regions. Region 2 (figure 6.11 b) containing the soft tissue at the back of the neck was the

noisiest region with a standard deviation over twice that of region 1. This high noise in a low

Prescribed Motion Cineradiographic Sequences 157

absorption region is principally due to scattering in the layers of the soft tissue. The third region
shows a noise level between those of regions 1 and 2 (see figure 6.11 c). Total absorption in this
region is comparable to that of region 1 containing the lead collimator shutter, but due to the

greater thickness of the skull, scattering is increased and hence noise is also increased.

Based on the noise estimate results above , the magnitude of the noise added to each frame of the
warp sequence should vary on a pixel-by-pixel basis dependent on the recorded intensity and
hence the total absorption. In the low-absorption area of the skin the noise should be greater
than in a higher absorption area such as the skull. However in practice the region of interest is
the vertebrae where absorption is moderate but significant scattering occurs due to the layers of
soft tissue. Thus rather than make the standard deviation of the noise added to each pixel
dependent in the intensity of the pixel, a simpler approach was taken in which noise was added to

each frame drawn from a zero mean gaussian distribution with standard deviation of 4.0.

Complete Pascal source code for the final implementation of the warp-based animation routine
can be found in appendix C page C-67. This code includes an additional routine for object
collision detection and limiting. This routine is necessary since the warp based animation can
not allow object cross-over and hence mesh intersection. Object collision detection is achieved
by computing the intersection of each object outline for the given trajectory data. If any of the
objects are found to collide in any frame of the prescribed sequence then the trajectory of the
bottom colliding object is limited. The routine is then run recursively until no objects are found

to collide at which stage the actual animation begins with the new trajectory.

6.6 Motion Test Sequences

With the method for prescribed motion sequence generation by digital image warping now
described, attention is shifted to considering what constitutes a suitable test sequence for a
motion-tracking algorithm for cineradiographic images of the human spine. In testing any
motion-tracking algorithm it is desirable to start off with sequences that contain simple motion
and then increases the complexity and speed of the motion. This approach enables incremental
assessment of tracking performance and the setting of limits on the accuracy and reliability of a
given method. The final prescribed motion should realise a level of complexity that is at least

equivalent to that found in real-world sequences of the type for which the algorithm is designed.

In diagnostic cineradiographic images of the human spine translation is mainly constrained to the
horizontal axis. The only exception to this is when considering pelvic alignment in the lumbar-
sacral region. It was noted in section 5.1 that the maximum speed of rotation and translation
usually occurs in the lateral cervical area where the neck moves from full flexion to full
extension. This cycle of movement is normally completed in a little less than four seconds, in

which the top vertebra (arlas, axis and skull) may under go a range of rotation from

158 The Development of Motion-tracking Strategies for Cineradiographic Images

approximately —45” to +45°. At half video frame rate (12.5 frames per second) the mean
interframe rotation will be constrained to less then two degrees. Interframe rotation of this
magnitude was shown in section 5.3.2 to not significantly degrade the interframe match.
However, this calculation assumes normal biomechanical operation. Under conditions of
dysfunctional operation, where a vertebra may lock and an adjacent vertebra then hyper-extend

(-mobilise) to compensate, interframe rotation may be much larger than two degrees.

Sequence length is important for incremental motion-tracking algorithms working to single pixel
accuracy (* half a pixel). This is because the overall accuracy will tend to degrade as the
sequence length becomes longer and the errors in the best match positions tend to accumulate.
At half-video capture rate, four seconds of motion (equivalent to a single cervical cycle) will
require approximately fifty frames. With pre-captured sequences the number of frames to track
can be halved by starting in the middle of the sequence and tracking to both ends. Since only

half the number of frames is traversed, error propagation should be substantially reduced.

Based on the preceding discussion, a suitable strategy for motion sequence generation would be

to create sequences of the cervical spine in the following order:
1. Horizontal linear translation of individual vertebra (no adjacent vertebral interference).
2. Simple linear rotation of individual vertebra (no adjacent interference).
3. Extended length, multi-cycle sequences to access mis-match propagation effects.

4. A comprehensive sequence with full adjacent vertebral interference with typical range and

type of motion.

Animation of the skull presents a slight problem with respect to the third point in this list. This
is because the skull is large, has few corner points, and its outer edges often disappear from the
field of view. One way of dealing with some of these difficulties is to segment the skull into a
number of objects. These objects are then collectively animated such that their geometrical

integrity is maintained.

The last point in the list of prescribed motion generation offers the ability to place limits on the
fastest moving (complex motion) object that can be reliably tracked. Algorithms working to
fixed spatial accuracy (eg. * half a pixel) will often introduce jitter [6.24] style noise into the
data. Knowing the frequency limits (translation and rotation) of a given motion-tracking
algorithm many enable the prefiltering of the data before analysis to reduce the effects of this

noise.

Prescribed motion sequences created in accordance with the above philosophy will be utilised in
the next chapter in the assessment of the motion-tracking algorithm described in early sections of

that chapter.

Prescribed Motion Cineradiographic Sequences 159

6.7

[6.1]

[6.2-3]

[6.4]
[6.5]

[6.6]

[6.7]

[6.8]

[6.9]

[6.10]

[6.11]

[6.12]

[6.13]

[6.14]

[6.15]

[6.16)

(6.17]

References

Duntta R., Manmatha R., Williams L. and Risman E.M. A Dara Set For
Quantitative Motion Analysis. Proceedings IEEE CVPR, San Diego, pp 159..164,
1989.

Fleet D.J. Measurement Of Image Velocity. Kluwer Academic Publishers, pp 26..28,
1992.

Overington 1. Vision and Acquisition. Pentech Press, London, 1976.

Overington I. Computer Vision - A unified biologically-inspired approach.
pp 231..239, Elsevier, 1992.

IEEE Proceedings, Special Issue on Computerised Tomography. Vol. 71, No. 3, March
1983.

Wolberg G. Digital Image Warping. IEEE Computer Society Press, California, USA,
pp 138..145, 1991.

Smith A.R. Planar 2-Pass Texture Mapping and Warping. Computer Graphics,
vol. 21, no. 4, pp 263..272, July 1987.

Industrial Light and Magic, a division of Lucasfilm Ltd, Twentieth Century Fox, USA

Smythe D.B. A Two-Pass Mesh Warping Algorithm for Object Transformation and
Interpolation. Industrial Light and Magic (IML) Technical Memo #1030, Computer
Graphics Department, Lucasfilm Ltd., 1990.

Wolberg G. Digital Image Warping. IEEE Computer Society Press, California, USA,
pp 222..241, 1991.

Maxwell E.A. General Homogeneous Coordinates in Place of Three Dimensions.

University Press, Cambridge , 1951.

Tanaka A.M., Kameyama M., Kazama S. and Watanabe O. Processing Method for
the Rotation of an Image. U.S. Patent 4,618,991, Hatachi Ltd., October 21, 1986.

Paeth A.W. A Fast Algorithm for General Raster Rotation. Graphics Interface '86,
pp 77..81, May 1986.

Hou H.S. and Andrews H.C. Cubic Splines for Image Interpolation and Digital
Filtering. IEEE Transactions on Acoustics, Speech, Signal Processing (ASSP),
Vol. 26, pp 508..517, 1987.

Freeman H. Computer Processing of Line Drawing Images. Computer Surveys 6,
pp 57..98, March 1974.

Goshtasby A. Piecewise Linear Mapping Functions for Image Registration. Pattern
Recognition, Vol. 19, No. 6, 1986.

160

The Development of Motion-tracking Strategies for Cineradiographic Images

[6.18]

[6.19]

[6.20]

[6.21]

[6.22)
[6.23]
[6.24)

Lawson C.L. Software for C! Surface Interpolation. Mathematical Software III, Ed.
by Rice J.R., Academic Press, London, pp 161..194, 1977.

Read F.J. Applied Computational Geometry, 2nd Edition, Waite-Group, 1988.

Lee D.T. Two Algorithms for Constructing Delaunay Triangulation. International

Journal in Computer Information Science, Vol. 9, pp 219..242, 1980.

Watson D.F. Computing the n-dimensional Delaunay tessellation with application to

Voronoi polytopes. The Computer Journal, Vol. 24(2), pp 167..172, 1981.
Doctor Dobbs Journal, pp 67..75, May 1993.
CineMetriX - seethe note atthe end of Chapter 1, Palmerston North, New Zealand.

Smith Y.K. Noise and Stochastic Processes. Cambridge-Press, 1986.

7

Motion-tracking
Cineradiographic Images

7.1 Introduction

Information on the detailed kinematics of the human spine is potentially of great interest to spinal
health professionals in the diagnosis of spinal dysfunction. This information is in principle
contained in a cineradiographic sequence of the spine in normal motion. The application of
image processing techniques in the form of a motion-tracking algorithm offers the potential to

automatically extract this information, so making it more readily available for analysis.

In chapter 4, it was concluded that template based matching approaches were the most
appropriate method for motion-tracking in cineradiographic images of the human spine. This
conclusion was reached by careful consideration of the many alternative approaches described in
the literature. One of the important criteria with respect to the development of a practical
motion-tracking system is computational cost. Template based matching approaches are the
least computationally expensive method when they are combined with good motion prediction

and an effective match statistic. This assertion will now be discussed.

When the object templates are small, matching is most efficiently achieved directly in the spatial
domain. However to find a match for an entire object such as a cervical vertebra, that is
undergoing both rotation and translation (assuming no scale change), a three dimensional
parameter space (x,y,6) needs to be searched . Searching the first two dimensions to within
single pixel accuracy is straight forward since it only involves sliding the template in the x and y
direction in the local neighbourhood and finding the best match. The real difficulty arises in
dealing with object-template rotation. The template(s) need to be rotated through a range of
angles at each x and y location where a match is to be computed. Image rotation was shown in
chapter 6 section 6.4.2 to be a resampling process and although fast scanline rotation algorithms
are available, their computational cost is high relative to a typical template match based

algorithm using a sum-of-squared differences (see SSD in section 4.2.1 of chapter 4).

Speeding up the template interframe match search is only possible if the match function is well

behaved as was illustrated in section 4.2.3 of chapter 4. In general this will not be the case so

162 The Development of Motion-tracking Strategies for Cineradiographic Images

motion prediction i1s one of the few practical ways to improve the search speed. Since the
vertebra in a spine normally move in a relatively smooth manner, simple prediction based on

one-dimensional cubic interpolation [7.1] of all three search parameters (x,y,6) should prove

adequate.

It was illustrated in chapter 4 that all motion-tracking methods are constrained by the effects of .
the aperture and correspondence problems. The correspondence problem is solved explicitly by
object-based matching approaches when they find the best match to the object template in the
next frame. However, if the feature points representing the object template are of low
dimensionality (one dimension or less), then aperture effects will prevent a good match except in
a direction normal to the local motion of the feature. The selectivity measure developed in
chapter 5 incorporates the effects of both feature dimensionality and local sharpness. When this
measure was applied to ten feature points of interest in a cineradiographic cervical spine
sequence, the low dimensionality and sharpness of these local features was evident. In selecting
the best match statistic for a motion-tracking algorithm, positional stability and positional
accuracy of the match were also of prime importance. The normalised product correlation
statistic was found to exhibit the best positional stability and accuracy, displaying reliable and
consistent behaviour for all the feature points in both forward and backward interframe
matching. One further advantage of the correlation measure is that it is inherently normalised.
This important property will be exploited by the complete motion-tracking algorithm that will be

shortly described.

7.2 Practical Implementation Issues

There are a number of practical implementation issues concerning the actual algorithm and
motion-tracking system that will be briefly explored before the algorithm is described and the

results of comprehensive tests reported. These issues include:
e Defining the objects of interest (the vertebrae’)
e Vertebral displacement and orientation
e Deriving suitable motion measures

e Displaying motion data effectively

7.2.1 Defining Objects Of Interest

For a motion-tracking algorithm to begin the objects of interest must be specified. Chapter 3
looked at various methods of segmenting a cineradiographic image and identifying the objects of
interest (‘the vertebra'). However the low contrast of these images combined with their noisy

characteristics made this task very difficult. A pragmatic solution to this problem is to get a

Motion-tracking Cineradiographic Images 163

human operator to manually segment the objects of interest in a single frame in the sequence to
be tracked. This can be done by placing a number of landmark points to outline each vertebra of
interest. Since this procedure is very similar to what is performed by spinal health specialist on
standard static radiographs, the same well established landmark points can be used. Such points
include the front and back of the vertebral bodies and the centre of the tip of the

spinus-processors.

Figure 7.1 contains the reference frame for a cervical cineradiographic sequence part way
through the point placement procedure. This figure represents a graphical dialog from the
software package CineMetriX [7.2] and currently shows that the skull and first three vertebra
have been completed and the fifth point on the fourth vertebra is being placed. The top corner
indicates that a range of marking cursors are available. Currently a large cross-hair is selected
and the active point is at the intersection of the lines. The cross-hair lines are set to the inverse
gray-level of the image pixels they cover. This makes the cross-hair lines appear near
transparent as they are moved, thus preventing masking of the underlying structure and assisting

greatly in point placement.

Tracking Points

~lmage cursor

@ Auow
@ Small crosshair

DiLarge
[Point groups

=3 Skull

&3 Vertebra C1
63 Vertebra C2
£=) Vertebra C3

¢ Vertebra C4

B2

s Cursarl oVl e inoge MU

Figure 7.1: CineMetriX track points dialog - placement of the fifth landmark for vertebra C4

The coordinates of each landmark point are stored as a point-group structure to be used by the
motion-tracking algorithm. The dialog also shows buttons for adding new point-groups and

renaming and deleting previously defined groups.

164 The Development of Motion-tracking Strategies for Cineradiographic Images

7.2.2 Vertebral Displacement and Orientation

The orientation of an object is simply a measure of its rotation from a given view. In the context
of a human observer the idea of natural or visual orientation arises [7.3]. For a naturally
occurring item such as a kiwi fruit, measuring its length requires knowledge of its orientation.
This is usually performed by the observer physically manipulating the fruit until the position of
natural orientation is found. The actual orientation determined by the observer is dependent on
the context, the objective (in this case measuring the length), the frame of reference, any
geometric symmetry of the object and an individual’s perception of orientation. Thus
determining the natural orientation of an object requires contextual information and is often

highly task dependent.

The two most commonly used terms when dealing with geometric objects are axis and centroid.
Auxis refers to a line indicating the rotation of a shape and is analogous to the standard x, y and z
cartesian axes used to indicate the orientation of the Cartesian plane. A circle for instance would
have an infinite number of axes all through its centre, whereas a square would have four axes
through its centre at most. Symmetry plays an important roll in the determination of orientation.
A symmetric object may have many axes whereas most asymmetrical shapes will have only two
axes, commonly termed the major and minor axes. These two axes are usually orthogonal
(perpendicular) and rotation of the object through the major axis is very closely related to visual
orientation. The axes are usually drawn through the centroid of the object. For a simple
two-dimensional object the centroid corresponds to the centre of area, or the point on the surface
of the object about which the total area is evenly distributed. In the case of three-dimensional
objects (which may have be non-homogeneous) the centroid corresponds to the centre of mass.

An idealised point inside the object that has the mass of the object evenly distributed about it.

When considering groups of connected objects such as the vertebrae in the human spine,
knowledge cues such as the continuity of orientation and its smoothness are also important.
Deciding on the orientation of a particular vertebra in isolation is complicated by the irregular
shape and density of a vertebra when viewed as a density projection in a radiograph. Thus for
practical reasons it is common to use the base-line of the body of each vertebra as a datum for
measuring its orientation. The base-line of a vertebra is also important from a biomechanical
point of view since it represents a projection of the main loading surface. When there are several
landmark points available that may or may not include points along the base-line, it essential to
have an automatic method that will determine orientation in a consistent and meaningful way. If
the orientation of each vertebra is not determined in a meaningful way with respect to the spine
as a connected structure, then only relative measurements may be displayed in an intelligent

fashion.

Motion-tracking Cineradiographic Images 165

Orientation by Moments

Orientation of an arbitrary two-dimensional shape is commonly computed using a moment based
approach. In chapter 4 section 4.2.1 central moments were introduced with respect to matching
approaches. Using the three second-order central moments, what is commonly called object
orientation can be computed using equation 7.1. The definition of orientation in this case is the

angle of the axis of the least moment of inertia.

= ltan" [&:l eq. 7.1
2 Hao — Hoz

where [, l4,, and [L,, are the three second-order central moments.

This axis is drawn through the centroid of the shape at an angle 6 to the horizontal. If this
approach is applied to a simple shape similar to one formed by the land-mark points placed to
define the corners of a vertebra, then the figures of table 7.1 result. The middle of the circle in

each figure is the centroid of the shape while the crosses mark the position of the outline points.

The results in the first column of this table are based on central moments computed using just the
perimeter or outline of the shape interpolated with ten discrete evaluations per unit length on the
grid. The second column results are computed using the entire area of the shape with ten
evaluations per unit area. Beginning at the first row of the table, the shape is defined by four
points to form a simple rectangle of 2:1 aspect ratio. In both cases the moment-based approach
results in an axis drawn horizontally (an orientation angle of zero) as expected. If a fifth point is
added to the outline set three-quarters the way along the top edge then the result is the two
figures in the second row of table 7.1. The first thing that is immediately noticeable is that the
orientation of the axes is no longer horizontal for the perimeter case even though the object shape
has not changed. The centroid position is unaltered for the area method while there is
considerable shift upwards towards the new point for the perimeter method. The reason the first
method produces a slight shift in the orientation from the horizontal even though the shape is
unchanged is that in practice it is necessary to compute the moments at a number of discrete
positions along each edge segment. Increasing the number of evaluations by a factor of ten to

one hundred per unit length still leaves an orientation of —0.11°.

If the top right-hand point is now moved down and to the left by one grid unit and the centroid
and orientation recomputed, the results are those of the third and fourth row of the table 7.1.
The centroid for both implementations have barely moved from their previous location but the
axis of orientation has suddenly shifted downward. This shift in angle increases rapidly as the

point is moved another grid unit downward and to the left as can be seen in the third row.

The simple set of results of table 7.1 clearly show that computing orientation using moment

based methods is very sensitive to small changes in the position and number of outline-points.

166 The Development of Motion-tracking Strategies for Cineradiographic Images

The calculated angle for a shape similar to a vertebra can change greatly with small variations in
the placement of the landmark points and thus is unsuitable for use in a spinal motion

measurement system.

Table 7.1 Perimeter based (10 x interpolation) Area based (10 x interpolation)
20 v T T y T H T 20
15} - = ,b’ 15 /
Four outline B o
points 10F = f- =« = « =« « = r:‘\. I 10F & afir= = = =0s 2 {‘.\ AAAAAA
5 5
1]]
6=0.0 6=0.0
0 ! —X of - X
-5 5
-5 0 5 10 15 20 25 30 5 0 5 10 15 20 25 30
20 20 _
15 - (15 V- G
Five outline 3 :
pOiﬂtS 10F = wf=o=o= = mom = /_\ ------- o - =} - -t ’
© ———
5 - & - u 5 v ea.
16=-1.10 ©0=0.0
0 - 0 =
5 3 " 12 A .
-5 0 5 10 15 20 25 30 -5 0 5 10 15 20 25 30
20 20
15} + Sy Mttt
Th!rdoutlme o] e Shift=1 ‘
point moved —t——— 1
1 pixel Py (P! e RO - R Tt
L 6=-3.48 |
0 < —x,
5 5
-5 0 5 10 15 20 25 30 -5 0 5 10 15 20 25 30
20 20

Third outline
point moved
2 pixels

Table 7.1: Moment based orientation of a simple shape

Orientation by Fold-and-Match

Moment-based methods, when used to compute object orientation, do not produce results
consistent with natural orientation because they are based on the axis of minimum inertia, a

concept only relevant with respect to forces and mass distribution. Experimental work carried

Motion-tracking Cineradiographic Images 167

out by the author [7.4] in conjunction with an undergraduate project came up with a new
definition for natural orientation.

Natural orientation is (almost) purely related to the axis of (projected) area balance,

it is the angle (usually to the horizontal) of the longest axis of maximum symmetry,

drawn through the centroid.

With this new and more precise definition it becomes possible to formulate an algorithm to
compute natural orientation for an arbitrary shape. The basis of the algorithm is quite simple. If
a piece of card is cut to the same shape as the that formed by the given set of outline points and
the centroid marked (a task humans have little difficulty in performing for almost any shape).
Then the natural orientation axis is found by folding the card in half through the centroid and
finding the fold angle that results in the best match between the two halves which is along the
longest fold line. This description of the algorithm thus resulted in an appropriate name, the

fold-and-match method.

The algorithm can in principle be implemented by simple numerical integration using the
trapezoidal rule (7.5]. If a line is drawn through the centroid at an angle 6 and then lines are
drawn from the vertices (outline points) to this line at right angles, then this partitions the shape
into a number of trapezoidal areas (see figure 7.2). These areas are computed using the
trapezoidal rule and the total area above the fold-line is subtracted from the total area below the
fold to produce an area mismatch for the given angle. If 6 is swept from —90° to +90° in A@
increments and the area mismatch recorded at each position, then the natural orientation axis is

atthe angle with the minimum mismatch along the longest axis.

N&\\\\\\\\“‘ __‘\\ /

N\

™

a) area partitioning b) virtual fold and area match

Figure 7.2: The fold-and-match method steps

In practice 6 needs to be swept through a range slightly greater than +90° to ensure that the true
position is found. A coarse-fine strategy is used to minimise computation by initially using an

angular increment of 10° to find the approximate position and then 1° increments to find the

168 The Development of Motion-tracking Strategies for Cineradiographic Images

orientation to with half a degree. Pascal source code for this algorithm can be found in

appendix C (page C-85) as a part of the motion-tracking code.

Table 7.2 contains the results of applying the fold-and-match method to the same five outline
point shapes processed by the moment based methods. These figures show the change in
orientation angle as the third point is progressively moved downward and to the left in one unit
increments. As can be seen the method is robust with respect to the slight shift in the position of
the point since the computed angle changes very slowly. These results are also consistent with

the visual or natural orientation shift of this simple object as it slowly changes shape.

20 20
P OSSN SN O 16 + et V‘ﬁ
' ‘ ! Shift=0 § i * Shift= k
10- s affe & e a @ & e s sle ste = - 10. e afle o« & o a'a 2 e o @ e & = = 1 SP e
o/ Ly '
5- A o_ 5- - ;= - - -
. 6=00 6=-04r
of - % e ¢ of - 3
5 -5
5 0 5 10 15 20 25 30 -5 0 5 10 15 20 25 30
20 20

Table 7.2: Orientation of a simply changing shape by the fold-and-match method

If the shape of the object was much more complex than the simple examples shown above, in
particular if it contained concavities or highly asymmetric protrusions, then the task of
determining the natural orientation becomes very dependent on interpretation. Depending on
what a human observer thinks the shape represents will greatly affect the selected orientation.
Thus the simple fold-and-match algorithm would not necessarily produce results consistent with
the average human observer. However for the simple shapes formed by placing landmark points
to define vertebrae in the human spine the results will be highly consistent with perceived

orientation.

7.2.3 Deriving Suitable Motion Measures

Early work by Jones [7.6] in 1959 on qualitatively assessing motion in the normal cervical spine
using cineradiography determined that the motion of vertebrae during a normal cycle from full

flexion to full extension is not simple. The kinematics for this region of the spine differ greatly

Motion-tracking Cineradiographic Images 169

between the neutral to full flexion and neutral to full extension parts of the cycle. This is
reflected in the shape of the curve drawn along the posterior aspects of the vertebral bodies in
these two positions. Figure 7.3 shows a typical A/P cervical view of the spine in full extension
and full flexion. The smoothness of the curve in extension indicates relatively equal participation
of the vertebra in the overall motion. In contrast the bow-shaped curve for the flexion case
indicates varying participation. This is due to both a gliding and rocking motion of the cervical

segments.

jﬁa@

a) full extension (‘smooth' curve) b) full flexion ('bow' shaped curve)

Figure 7.3: A/P cervical spine vertebral curve

A gliding motion implies translation of a vertebra near the plane of its baseline. This sort of
motion should be readily apparent by comparing the relative translation of the centroid of
adjacent vertebrae. A rocking motion implies a cyclic change in the orientation of vertebrae and

should be readily apparent by viewing the rotational displacement of each vertebra.

Dynamic

rPoint groups—™ | [Movement

=3 Jaw @ Translation
9‘? 5'?“'! @ Rotation

=3 V?llebla 2 ~ Measurement

€=] Vertebra 4 @ Displacement

o= Vortebra 6 @ Velocity
=3 Vertebra 7 @ Acceleration

 Aotation

@ Absolute
@ Relative

Figure 7.4: Graph control dialog

170 The Development of Motion-tracking Strategies for Cineradiographic Images

Figure 7.4 shows the dialog for controlling the data displayed in the graph window (see
figure 7.7b) of CineMetriX. Consistent with the work of Jones, two basic types of movement
translation (of the outline centroid) and rotation (orientation of the outline about the centroid)
have been defined. All or a selected set of the tracked features (in this case the first, third and
fifth vertebra) can be chosen. For each of the movements three measurements can be displayed.
The first measurement is the raw data from the feature-tracking algorithm, the displacement
(either translational or rotational). The other two measurements are velocity and acceleration.
Discontinuities in the vertebral motion should be highlighted by looking at the velocity. While
vertebral acceleration may give an indication of forces exerted on each vertebra. These
measurements can be derived from the raw displacement values using suitable first and second
order derivative filters [7.7). Great care has to be taken in the design of the filter to ensure that

noise does not invalidate the derived measurements.

One other indicator of biomechanical motion of the spine that has recently [7.8] been investigated
by manually tracking vertebra in a short cervical spine cineradiographic sequence is
instantaneous centres of rotation or ICR's. These were originally proposed by Penning [7.9] and
Dvorak ez al [7.10] as an indicator of cervical segment instability. The basic idea is that any
object that is undergoing motion containing rotation and/or translation has an apparent point
where the rotation could be said to be centred. For smooth motion this virtual centre should
change slowly. However for unstable motion the centre or ICR may move erratically from
frame-to-frame. The ICR may be calculated by finding the intersection of the major axis

between adjacent frames in a sequence. This is shown diagrammatically in figure 7.5 below.

frame (n)

frame (n+1)

ICR

Figure 7.5: Determining ICR's from main axes intersection

For the ICR to be reasonably accurate the difference in angle must be significant. Van Mameren
[7.8] suggested that seven degrees was the minimum angular difference necessary for repeatable
results. Within an accurate automated measurement system this should be able to be

significantly improved using data filtering and interpolation techniques.

Motion-tracking Cineradiographic Images 171

7.2.4 Displaying Motion Data Effectively

Spinal health practitioners routinely have to deal with and interpret static radiographs. Most are
not familiar with the interpretation of time-varying data such as the measurements from a
cineradiographic measurement system. Technologists, engineers and scientists on the other hand
routinely deal with time-varying, multi-dimensional data. Most commonly this data is presented
in the form of a number of two-dimensional graphs. Interpretation of these graphs becomes
difficult when the data comes from a number of different and disparate sources. Somehow the
data need to be unified or connected together so they can be viewed from a common framework
and interacted with by the observer to gain understanding. An active research area central to
dealing with this problem is Data Visualisation [7.11] and most recently Virtual Reality (VR)
[7.12] has become synonymous with this research area. Although work in this area was not
central to this research, a number of VR inspired approaches have been implemented to assist in
the interpretation of cineradiographic data. The general philosophy of these implementations

was to maximise operator interaction.

Motion Visualisation

Visualisation is an important technique applied in the preliminary assessment of any spinal
condition. A static radiograph of the spine is placed on a light box and magnifying glass used to
assist in the drawing lines to extract simple geometric information. To assist visualising the
information present in a cineradiographic sequences three viewing modes were provided. Figures
7.6a to 7.6¢ illustrate images in each of the modes. In Figure 7.6a, the standard mode, the image
appears just as it would directly from the output of the video camera (coupled to the image X-ray
intensifier), as a photographic positive. The brightness and contrast of the image can be adjusted
interactively as the sequence is played using the image controls at the bottom of the image
window. The settings of these sliders are stored as a part of the cineradiographic document and
are automatically loaded when the document is opened. These controls can be hidden once set to
provide greater display area. An image inversion button to the right of the slider controls
provides the ability to view the sequence in the usual radiographic mode (photographic negative).
Figure 7.6b shows the same image as in figure 7.6a but viewed in this mode. The image now
appears like a standard static radiograph, a negative image. The invert button can be toggled

interactively as the sequence is played, greatly assisting in perceiving low contrast features.

The third image mode has it origins in the early work by the author on gradient-based edge
detection. The later half of this work is reported in chapter 3 section 3.4 on an alternative HVS
(Human Visual System) inspired approach to edge detection (see the side panel). Figure 7.6¢
shows the result of this process. The edge content of the image has been enhanced while

suppressing much of the intensity information.

172

The Development of Motion-tracking Strategies for Cineradiographic Images

Figure 7.6 ¢) Gradient enhancement mode

By taking a surface-fitting approach it
can be shown (see appendix A) that
the heuristically derived Sobel
operator (see chapter 3 section 3.2.1)
can be arrived at by fitting a parabolic
surface to a 3x3 neighbourhood. In
practice it has been shown by the
author that better gradient information
is often extracted if the orthogonal
axes of the surface are not made
collinear with the image axes but are
rotated by 45°. Setting the axes up
this way and refitting the parabolic
surface results in the pair of modified
Sobel gradient masks shown in table

7.3 below.

+45 -45
=2 [=1"330 0 =¥l 152
=7 SEEO —1%80 .=
0 N1 s2 =2 =1 =40

Table 7.3: Modified Sobel gradient
masks

Applying these masks to an image
produces an estimate of the intensity
gradient at each location. For
cineradiographic images the resulting
gradient data occupies a large
dynamic range with most of the
information about the vertebrae
residing at the low end of the range.
Thus it is necessary to scale the
gradient values upwards to make the
vertebral information visible when
presented as a grey-scale image.
After scaling large gradient values are
truncated to the maximum grey-scale

value.

Motion-tracking Cineradiographic Images 173

The image looks very similar to that produced by Magnetic Resonance Imaging (MRI), although
the information presented is different. This mode has been found by the author to be very

effective in the subjective assessment of spinal motion.

Figure 7.7a shows the dialog box 'Cine Options' that controls the playback characteristics of the
cineradiographic sequence. The first control of importance is the playback speed slider. Very
often visual information can be seen more readily if the frames are played faster or slower than
the original rate. In the current implementation of CineMetriX the speed can be adjusted
interactively from less than one frame per second to up to twice the original capture rate.
Low-speed playback enables image-by-image assessment while high-speed playback permits

more global assessment of motion trends.

The next feature controllable from this dialog box is the playback mode. There are three modes
currently defined, Continuous, Reversing and Swinging. The continuous mode runs the entire
image sequence in a loop, from start to finish, repeating endlessly. The reversing mode in
contrast replays the sequence from the beginning reversing at the end and replays backwards to
the beginning, in a continuous loop. This produces a sequence with a more natural appearance
than the continuous mode since there is no abrupt transition at the ends of the loop. In the
swinging mode the loop goes from start to end and back to the start as in the reversing mode, but
with a special additional feature. As the sequence advances forward say by five images, it then
reverses back say four images. The overall motion in this case is forward but with a backward
swing. This swinging technique has been utilised previously in meteorology [7.13], proving

effective in the visualisation of complex dynamic weather patterns.

Operator Interaction

It is important that measurements derived from a cineradiographic sequence can be readily
related back to what can be seen visually since this provides the opportunity for greater
understanding of the motion. Figure 7.7b shows a full-screen snap-shot from CineMetriX with
both the graph and image windows displayed. The graph window currently shows the rotational
displacement or orientation of the three cervical vertebra C1,C3 and C5 versus the frame

number.

The top of the image window indicates that the current frame displayed is number 22 of 35. This
is reflected in the position of the vertical scroll bar on the right-hand side of the image window
which is just over half-way down. It is also reflected in the position of scanning bar on the graph
window. Outlines of each tracked feature (skull, jaw and C1 to C7) have been overlaid on the
image window. Their angle indicates their orientation in the current frame while their centroid

position is marked by a small dot at the centre of each outline.

Cine Options

Mode

@& Continous
@ Reversing
@ Swinging:

Foriward swing: E

Backward swing: EI

Speed

Fast

Figure 7.7a: Cine Options dialog

SO KIS

‘S| File Edit Document Image Graph Window Help

CineMetriX - [Roger Warp - CCRef: Warp32 3/0771995] 25/10/95 8 07 am [5[2

Rotational Displacement

45

i [1] TRNNER i
‘ i : | |
o i e S S S B D B o e -
) | L] /&,;—k’i'_/,li/_//
£8 | ! 17 LT |) =
FERE | [il lA—T1 1A i | |
| | | | | LA | | E| | |
T L/—/ AL
Rotation [*) 01 55/ et | o O ———‘ Feature overlays

! 1 | { | 1|
0 5 10 15 20 25 30

35

Scanning bar

Image scroll bar

/-/

Figure 7.7b: Graphical Interaction in CineMetriX

vL1

sadvwi] o1ydpaoippaaun) 1of $21821p415 Suryova-uonoy Jo uawdojaaaq ay |

Motion-tracking Cineradiographic Images 175

As the sequence is played the image window slider and graph window scanning bar move in
synchronism. The effect of this is that each position on the graph is visually locked to the image
it occurs in and vice-versa. An operator can manually drag either the image slider or graph
scanning bar while in any of the replay modes and the two windows will track together. This is
particularly useful when placed in the swinging playback mode with the number of forward and

backward frames set to the same value, say five.

The graph scanning bar can then be positioned at the centre of a discontinuity in one of the traces
and the image window will repeat a short reversing sequence of five frames about the
discontinuity. This approach enables the quick isolation of just the frames relevant to the

discontinuity.

Both the image window and graph window are interactively scaleable by simply clicking on the
window and dragging a corner to the desired size. This is particularly useful for the image
window when displayed with feature outlines overlaid as scaling the window up allows simple

visual confirmation of the tracking accuracy.

7.3 The Motion-tracking Algorithm

In the introduction of this chapter the difficulties in searching for the match to a template
representing an object undergoing both translation and rotation, were summarised. One of the
most obvious problems with this approach is the computational cost associated with rotating the
object templates for each interframe match. One solution to this might be to pre-compute an
ensemble of templates based on a rotated version of each base object template. One degree
increments over an range of +45° should be adequate for the worst case of the cervical spine
vertebrae, resulting in a total of 96 templates for each object. This approach reduces the search
match problem to simply seeking the best match at a given x-y location from the ensemble of
rotated object templates. Since the template rotation is performed only once at the beginning of
the tracking procedure, computational cost is low and storage requirements will be modest for
typical vertebral dimensions. However, there are a number of problems associated with this
approach. Firstly, although a template match based on the normalised product correlation will
compensate for overall intensity changes between template and match area, it can not
compensate for local changes within the area of the template. Local changes in intensity and
contrast through a cineradiographic sequence were clearly illustrated in section 3.5 of chapter 3.
This contrast modulation, due to the auto-gain control necessary to prevent camera overload,
was shown graphically in table 3.12 where a line intensity profile through the second cervical
vertebra at the beginning middle and end of a sequence was extracted. The last line of this table
(reproduced below as table 7.4) clearly shows the significant change in intensity and contrast

across the vertebra through the sequence. Thus there is no simple way to adequately compensate

176 The Development of Motion-tracking Strategies for Cineradiographic Images

for this effect if the rotated template ensemble is precomputed once at the beginning of the

sequence.

The second problem with this approach is that all rotation algorithms involve image resampling
and thus will introduce a degree of blur or smoothing in the rotated template that is angle and
algorithm dependent. To compensate for this effect, the match area would need to be
equivalently blurred before the match, adding further to the computational burden. The third
problem with precomputing the rotated templates concerns scale change effects. Although the
motion in a typical cineradiographic sequence of the human spine is constrained predominantly
to be within the image plane, there is some out of plane motion that results in small scale

changes. On an interframe basis scale change is not significant but when taken over a large

number of frames it may result in significant mismatch at the true (x, y,0) position.

Table 7.4 First Image Centre Image Last Image

Cervical
Section

Intensity Intensity Intensity
2 2

Intensity
Profile
through
C2

150§ 150]

: SC Fa— " ") 5 g
SC0 10 20 30 40 0 10 20 30 40 50 0 10 20 30 40 50

Position Position Position

Table 7.4: Contrast Modulation

When these three problems are taken into account, the original direct search approach involving
rotating each template over an appropriate range for each interframe match would appear the
only effective solution. However there is an alternative approach that exploits one of the

properties of small templates some of which were discussed in section 5.1 of chapter 5.

Motion-tracking Cineradiographic Images 177

Small template related properties:

1. If the interframe motion is small (specifically rotation and scale change), then there is no
significant error in the template match when approximated by pure translation (to within

pixel resolution).

2. Small templates will contain only a small amount of information about the underlying

object and this information is likely to be of low dimensionality.

3. A normalised match statistic can adequately compensate for intensity and contrast

changes on an interframe basis for small templates.

Although the first property looks attractive with respect to reducing computational cost for
general matching, the second property indicates that not enough information is likely to be
contained in a small template to make the match reliable. However the third property indicates
that it should be possible to combine the match results of a number of small templates distributed
about an object of interest to produce an overall match for the object. In order for the resultant
match to be useful, the sub-templates or sub-windows need to be locked together in the original
geometry of the object. Thus in order to search for the best match to the object in the next frame,
an object outline defined by the centre coordinates of the sub-windows, is moved through the
search space (x,y,0) and at each discrete location the centre coordinate of each sub-window is
assigned to the nearest pixel grid. Each sub-window is then matched and the results combined
together to produce an estimate of the total object match at that location in the search space.
Since the assignment of the sub-window centre coordinates to a pixel grid is not until the local
match is computed, the object outline can be translated and rotated in real coordinates through

the search space.

With the best match of the entire template located in the next frame, the sub-templates are
updated to use the new pixel values in this frame. The process is then repeated for each
subsequent frame with the sub-template pixel values being updated after each match. Thus the

algorithm works incrementally by matching between pairs of frames.

Figure 7.8 shows an enlarged section of the centre of a cervical spine from a frame of a
cineradiographic sequence where the outline of the middle vertebra has been manually traced in
black. Four points represented by diagonal white crosses have been placed to indicate the
important landmark points of the front and back of the vertebral body. These four locations are
the centres of four square sub-templates (drawn in grey) which are locked together geometrically
to form an object template whose outline is represented by the white trapezoid. The centroid of

this structure is indicated by the white cross in the middle of the figure.

178 The Development of Motion-tracking Strategies for Cineradiographic Images

Sub-templates

Figure 7.8: Sub-templates geometrically locked together to form an object template

As the object template is translated and rotated about the centroid (in specified increments of x, y
and 6) and the sub-templates are in effect 'shuffled' like blocks to best approximate the new real

position of the object outline.

There are a number of potential advantages to this new, geometrically-locked small-template

matching approach:

1. Each sub-template match is local and thus can readily compensate for intensity contrast

changes such as present cervical cineradiographic images.

2. The method is in principle able to achieve sub-pixel resolution since it involves moving

the object-template in real coordinates while finding the best match of each sub-template

to the nearest pixel.

3. If the original locked geometry of the sub-templates is relaxed over time by performing
some additional independent local match of each sub-template, it will be possible to track

objects that slowly undergo scale and perspective changes.

7.3.1 Theoretical Tracking Constraints

For perfect (noise free) data it is possible to estimate the theoretical minimum interframe
movement that is detectable by this new algorithm. Three basic motion cases are summarised

below:

Pure translation: With the object-template initially defined only on an integer pixel grid, an
object undergoing pure translation (in x and/or y direction), can only at best be located to

within one pixel.

Pure Rotation: With rotation both the x or y coordinates of the object-template outline

points will change (in real coordinates) thus offering the potential of significant sub-pixel

Motion-tracking Cineradiographic Images 179

resolution. The improvement is dependent on the size of the template and distance from the

object-template centroid to the centre of rotation.

Translation and Rotation: If the motion results in greater than half a pixel change in
either the x or y coordinate of an outline point then improved tracking resolution can be

achieved.

As stated above for the pure rotation case, the amount of sub-pixel resolution improvement is
dependent on the size of the object-template and its centre of rotation. The worst case occurs
when the centre of rotation corresponds to the centroid of the object-template since at this
position the average distance to the outline-points is at its minimum. This situation is illustrated
below in figure 7.9 for the top right-hand cormer of a rectangular object-template with its

centroid used as the origin.

' sub-template

(xy)

Ay

Figure 7.9: Sub-template geometry to determine the minimum detectable rotation

By applying basic geometry and considering the change in coordinate of the centre of the corner
sub-template as the object-template is rotated, equations 7.1 and 7.2 result. If for a change in
angle (AQ) there is a change in the x or y coordinate of greater than half a pixel, the position of

the match sub-template will change.
x+*Ax =rCos(6%+ AB) eq. 7.2

yx Ay =rSin(6+ AB) eq. 7.3

where: @=tan™'(y/ x) and r =/x* +)’

For a cineradiographic image of the cervical spine, digitised to 256x256 pixels, a typical
vertebral body has the approximate dimensions height=15, width=30 (pixels). Substituting these
vertebral dimensions into the equations above and rearranging to solve for the positive and

negative deviation in angle for a 0.5 pixel shift in either coordinate, gives:

180 The Development of Motion-tracking Strategies for Cineradiographic Images

(A6',A]) = (~4.12°,3.60°)

. 74
(A6}, A67) = (1.92°,-1.89°) “

Thus for noise free data an angular deviation of about 4°is required for a detectable change in

the x-coordinate while for the y-coordinate it is only 2°.

Applying this same approach to the case where the motion contains both rotation and translation
there should be an improvement in the translational resolution from 1.0 to within 0.5 of a pixel.
This improvement is due to the object-template position being computed in real coordinates and
only the position of the sub-templates being constrained to the nearest pixel grid when computing
each local match. Once a best match is found, the position recorded is the location in the real

parameter space (x, y,0).

7.3.2 Practical Algorithmic Implementation

In coding a practical implementation of the small-template based motion-tracking algorithm, a
number of variations are possible that can significantly alter the computational time. One simple
approach is to pre-compute a translation path or trail. A suitable path would be an integer spiral
made from a set of square annular shells. All that is then required to traverse the (x,y) part of
the search space is to is to increment along this predefined path. It was shown in the previous
chapter (section 6.4.2) that a transform involving both translation and rotation is separable and
can be performed in two passes. This property can be exploited by placing the computationally
more expensive rotation part of the search in the outer loop. Thus for each value of theta in the

search space the full translational path is traversed.

Shown over the page is pseudo code for the central section of the tracking algorithm. This code
segment is called during each interframe comparison in which the new location of each object

template is searched for using the normalised correlation match statistic.

Since the object tracking is based on interframe matching and the best match for a particular
interframe may be slightly in error due to noise or finite resolution limitations, it is possible for
the mismatch to accumulate and result in a significant tracking error. The greater the number of
frames to match the more likely this will occur. However with pre-recorded sequences the
number of frames to traverse from the reference frame can be halved by beginning the tracking
procedure in the middle of the sequence and tracking to both ends. With only half the number of
frames to traverse from the middle reference frame error propagation should be significantly

reduced.

In order to track an object while keeping the computation to a minimum some limits on the
maximum range of translation and rotation and a suitable sub-template size are required. It was

stated in chapter 5 section 5.1 that the fastest movement (rotation and translation) of the human

Motion-tracking Cineradiographic Images 181

spine under normal diagnostic conditions occurs in a lateral cervical view where the neck moves
from full flexion to full extension. In this situation the vertebrae undergo rotation from
approximately —45° to +45° . If the motion is assumed to be nearly cyclic then an estimate of the
maximum change in angle per interframe is given by dividing this range by the half the number
of frames in a given sequence. At a third speed video capture a sequence will contain about 50
frames resulting in a maximum interframe angle of about 3.6°. Most of the translational
movement in a typical lateral cervical sequence is constrained to be horizontal due to vertical
support produced by the spinal column. For an image digitised to 256x256 pixels the maximum
movement is about *+40 pixels horizontally and about a third of this value in the vertical
direction. If the motion is assumed once more to be cyclic then the maximum interframe

translational values are about Ax =3.2 and Ay =1.06 pixels.

{Main object-template matching}
loop for each objectTemplate
loop Theta from minTheta to maxTheta in steps of deltaTheta,
rotate the objectTemplateCoords by angle Theta
loop though the path from startPath to endPath,
translate the objectTemplateCoords by current path
assign objectTemplateCoords to nearest integer grid
initialise objectMatch
loop through integer objectTemplateCoords,
if position has changed
then compute the new subTemplate match and store it
else use the previously computed match
add the current subTemplate match to objectMatch
continue with integer objectTemplateCoords loop
if objectMatch is greater than bestMatch then
replace bestMatch by objectMatch and store path as
bestPath and Theta as bestTheta
continue with path loop
continue with theta loop
store the best match location of objectTemplate given by
the coordinates at the bestPath position and bestTheta
continue with next objectTemplate

The only parameter that remains to be specified is the size of the sub-templates or sub-windows
used in the match. Based on the experimental results of chapter 5, a square template of radius 5

pixels should prove adequate for most cervical spinal feature points.

Figure 7.10 shows the track options dialog used to select the objects or point-groups to track and
the track parameters. Currently the second and fifth vertebrae have been selected and the
'defaults’ button has been pressed to set the tracking parameters. The default translation step and
rotation step size are set at the theoretical limits of the sub-pixel resolution achievable by the

algorithm. The 'radio-button’ has been activated to display the outline of the point-groups

182 The Development of Motion-tracking Strategies for Cineradiographic Images

representing each selected vertebra, as it is tracked. All that remains is to press the 'OK' button

to start the tracking procedure.

= Track Options

Point groups ~ Tracking options

&3 Vertebra 1 % Translation step: pixels

. E EDId
&3 Vertebra 3 T (ati dius: .
83 Vertebra 4 ranslation radius: pixels

&3 Vertebra 6 Rotation step: degrees

Rotation range: tlZl degrees

Window radius: pixels

(] Display point groups while tracking
Defaults’

Figure 7.10: CineMetriX track options dialog

7.3.3 Image Noise

It was initially found that without performing some form of image noise filtering prior to running
the tracking algorithm, the best-match interframe location would begin to wander away from the
true match after only four or five interframes. The reason for this becomes apparent when
looking at the image noise estimates presented in figure 6.2 of section 6.5.5 of chapter 6 and
reproduced in part over the page in figure 7.11. In both the hard and soft-tissue noise estimates a
best-fit (least-squares) gaussian has been superimposed on the histogram. It is clear from the
middle of the histograms that the fit of the gaussians is not particularly good, with many values
extending above and below the curves. The effect of this non-gaussian noise is to produce a
biased estimate of the best-match and hence match position. For the normalised product
correlation (like many match measures), it can be shown that the estimate of the true match will

be unbiased only for data contaminated by normal gaussian noise [7.14].

The nature of noise in cineradiographic images was discussed previously in detail in chapter 2
section 2.3 where it was shown that the primary limitation on noise is the initial number of
quanta recorded in the first conversion stage. However this result deals only with the average
noise level and not its characteristics. For homogeneous materials (both in density and X-ray
absorption) the noise is well approximated by a normal gaussian as was illustrated in the noise

estimates through the lead collimator shutters in figure 6.2 of chapter 6. For non-homogeneous

Motion-tracking Cineradiographic Images 183

materials such as a human spine, the noise deviates significantly from a gaussian due to

secondary X-ray emission and scattering through the soft and hard tissue layers.

1t] N
SD=5.0) SD=2.9
. 08} i _ 08f
c - c
= , 35
3 3 -'
- 0.6 ’_ » 0.6}
2 M 2
E - £
5 04 fi 5 04
pd -
0.2} i 0.2 _ . :
0 - rrﬂ 0 " 'ri | l I.L‘ ‘o
-10 -5 0 5 10 -10 -5 0) 10
Pixel Difference Pixel Difference
b) Soft tissue ¢) Hard tissue (skull)

Figure 7.11: Cervical spine cineradiographic image noise

The median filter is a commonly used non-linear filter from the set of rank-based ordered
statistical filters [7.15]. An extended class of the median filter is the weighted median filter
(WMF) [7.16] for which the more commonly used nearest neighbour filter (NNMF) [7.17] is a
sub-class. The median filter and its near relatives have general edge preserving and noise
reduction properties [7.18]. They are particularly effective in reducing noise for distributions
that show outliners or impulse variations similar to those shown in figure 7.10. Thus before

each interframe match is performed by the motion-tracking algorithm the images are median

filtered using a 3x3 window.

7.4 Tracking Performance

At the end of chapter 6 the composition of a range of motion sequences suitable for testing the
tracking performance of a given algorithm on cineradiographic sequences of the human spine,
was described. This range can be broadly split into those that involve adjacent vertebral motion
and those that do not. This distinction was made so that testing could begin with relatively

simple isolated motion and progress to more complex and realistic motion.

Simple cyclic motion has a number of advantages in terms of analysis. Firstly, in a single cycle
there are three zero-points which can be used as reference points to test long-term tracking
accuracy and hence mis-match error propagation. Further, if the cyclic motion is made linear,
hence forming a triangular wave, then for a fixed length sequence a single control parameter, the

wave amplitude uniquely defines the motion. The other advantage of linear-cyclic motion is that

184 The Development of Motion-tracking Strategies for Cineradiographic Images

the magnitude of the velocity is constant (except at the waveform peaks) enabling velocity to be
used as a single analysis parameter. The other cyclic motion that is useful in testing a tracking
algorithm 1is sinusoidal motion. In sinusoidal motion the velocity changes continuously
throughout the sequence reaching a maximum value at the zero-crossings and a minimum value
at the peaks. Thus the search for the best match will be exercised more fully than for the linear

case and any discretisation effects of an algorithm should be exposed.

The results of tracking tests for cervical spine vertebrae in cineradiographic sequences using the
sub-template based matching algorithm are presented in the following sections for a wide range
of prescribed motion. In all cases the default settings defined by the track options dialog (see
figure 7.9) have been used [TranslationStep=0.5 (pixels), TranslationRadius=5 (pixels),

RotationStep=1°, RotationRange=+5°, WindowRadius=5 (pixels)].

An odd number of frames in a sequence is preferable to ensure that there is a genuine middle
frame. Thus all the graphs in tables 7.5 to 7.10 all contain 35 frames since this is an odd
number and enabled a single sequence to be fitted on a single 1.44 MByte floppy disk without

loss, using simple run-length coding.

7.4.1 Single-Cycle Linear Motion: Tracking Results

The first and simplest prescribed motion test sequences used to evaluate tracking performance
consists of single-cycle linear motion independently in x, then y and finally 8, for a range of
amplitudes. Table 7.5 contains typical prescribed trajectories in (x,y,6) and their values
determined by the motion-tracking algorithm. These graphs are presented here to orientate the
direction of the reader. Error graphs (prescribed minus tracked) will be used for the majority of

the remainder of this section.

The prescribed amplitude for all the graphs in the table 7.5 is 20. This value corresponds to 20
pixels for translation in x and y and 20° for rotation in 8. The key at the bottom of the table
defines what each of the three traces on the graphs represent. Working down the first column of
the table, the traces show that the prescribed motion changes from pure translation in x across
the first row, to pure translation in y across the second row and finally pure rotation in third row.
All of these prescribed trajectories display the expected three zero-crossings (the middle and at
either end) but also show a flattening of the waveforh peaks. This truncation of the peaks is due
purely to sampling the waveform over a fixed number of frames and none of the frames exactly
occurring at the peaks in the wave. Since the waveform already had a discontinuity in the
velocity at these points, the effect of the truncation is to limit the velocity at these points to less

than would ideally occur.

Motion-tracking Cineradiographic Images

185

Table 7.5 Prescribed Motion (CS) Tracked Motion (C5)
20 20
Trans-x | 10 10}
(pixels)
Ot —_ — 0t
-10¢ 10}
-20 - -20
5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Image number Image number
20 20
/\\ /N
Trans-y | 0 7 N 10t J R
(pixels) / \ / \
0 e —_ — 0 T — = —_Le = = =
/
N / \
d0t N/ af N 7
7/ NE4
e 5 10 15 20 25 30 3 | 2% 5 10 15 20 25 30 35
Image number Image number
20 f] 20}
,/ \ o i
Rot-6 107 4 \ T / . N
(degrees) | | ‘ 0 b =————— /' %
. 7 \ .
0F N\ : 104 ° /
: Y, ~ .
20} Ne ‘ 20} -]
5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Image number Image number
KEY =x-value — — — - =Yy-value — - — - -=0-value

Table 7.5: Typical prescribed trajectories and tracked values for single-cycle linear motion

Visually there is little difference between the prescribed trajectory and the tracked results for

pure translation in either x or y. The only slight difference occurs immediately after the first

interframe match in both directions about the middle frame (frame 17), the best-match was found

at an angle 1° less than the starting value. Once this slight rotation was adopted, the remainder

of the sequences shows vertebral rotation, as prescribed.

In simple terms this is due to the

algorithm finding a more stable match to one or more of the sub-templates forming the

object-template, at a location a pixel away from the original position. Once adopted, this new

sub-template geometry becomes the geometry that is tracked through the remainder of the

sequence. The reason for this slight change will be discussed in detail in section 7.4.3.

186 The Development of Motion-tracking Strategies for Cineradiographic Images

The results of tracking the sequence containing only rotation is somewhat different to the
translation cases. Firstly, the rotation trace (dotted line) is not particularly smooth but varies
above and below a straight-line rotational velocity. There is slight under-shoot when the rotation
is at its minimum, with the x-coordinate moving slightly positive to compensate. The reason for
this behaviour will be explained in detail shortly, but it is principally due to the algorithm
attempting to work to sub-pixel performance. With a peak angle of 20°, the angular velocity is
only about 1.75° per frame which is slightly below the minimum theoretical interframe angle that

can be detected by the algorithm.

Single-cycle Linear Translation

Six single-cycle linear sequences were generated for a range of peak amplitudes in x, y, and 6.
The maximum amplitude for the pure translation sequences was set at 40 pixels, this being twice
the value measured experimentally in real cineradiographic of the cervical spine. The maximum
amplitude of the pure rotation sequences was set at 40°, this being just below the limit of the
ability of the animation algorithm to produce correct motion and about the same as the value
measured in real sequences of the cervical spine. The mean and peak tracking error for two
vertebra in the cervical spine have been plotted against interframe velocity for the three groups of
one-dimensional motion. The results are contained in tables 7.6 through to 7.8. The two
vertebra, the second and fifth cervical (C2 and C5) were chosen because they are representative
of the difference in geometric structure between the vertebra at the ends of this section of the

spine.

From table 7.6 it can be seen that the mean tracking error in the x-coordinate for translational
motion prescribed only in the x-direction, decreases linearly from one pixel at an interframe
velocity of 4 pixels per frame to less than a third of a pixel at one pixel per frame for both
vertebrae. It then quickly rises and then falls once more, as the velocity is decreased further.
The sudden rise and peaking in error at 0.5 pixels per frame is because below this value the
algorithm loses lock of the vertebra due to the interframe motion being below the resolution of
the algorithm under the condition of simple translational motion. This effect is seen more clearly
in the peak tracking error graphs where, at the theoretical limit of one pixel per frame, the error
is equal to the theoretical value of half a pixel. In all cases the maximum peak error occurred at
the peak or trough of the triangular trajectory. This is because at these locations the prescribed

velocity is in fact zero due to the truncation of the waveform as shown in table 7.5.

The results for the second set of prescribed sequences with motion only in the y-direction (table
7.7), are in many respects similar to the previous set for motion only in the x-direction, however

there are some important differences.

Motion-tracking Cineradiographic Images 187

Table 7.6 Vertebra C2 Vertebra C5
3 3 ' ' S
M ean 25 2.5
Error 2 2

05 1 1.5 2 2.5 3 S 4 0.5 1 15 2 2.5 3! 3.5 4
Velocity (pixels/frame) Velocity (pixels/frame)
3t

Peak
Error

0.5 1 15 2 25 3 35 4 0.5 1 1.5 2 25 3 3.5 4

Velocity (pixels/frame) Velocity (pixels/frame)

KEY — — x -value — — — - =y-value — - — - -=@-value

Table 7.6: Tracking error versus velocity for translational motion in the x-direction

Looking down the first column of the table 7.7 it can be seen that in tracking vertebra C2 there is
speed dependent change in angle. This is quite different to the small fixed value that occurred in
the previous set and which is displayed in this set by the second test vertebra C5. The reason for
this velocity-dependent rotation is that the algorithm is having difficulty maintaining a reliable
lock on the vertebra and is incrementally shifting the angle in an attempt to find the best match.
The actual angular shift is below the theoretical minimum detectable angle of about 2° and so is
in fact the result of some of the sub-templates translating slightly. The reason for this effect can
be found by going back to chapter 5 section 5.3.2 on interframe feature-point matching. The
selectivity of the various match statistics was measured for all the defined feature-points for both
the forward and backward interframe about the middle of a sequences and the results presented

in table 5.10.

The last row of this table containing the normalised product correlation match results has been
extracted and is presented below as figure 7.12. If the small difference in selectivity between the
forward (solid line) and the backward (dashed line) interframe match is ignored, it can be seen
that there is a significant difference in selectivity between the four feature-points defined on the

second vertebra C2 (last four points on the graph).

188 The Development of Motion-tracking Strategies for Cineradiographic Images

/) Vertebra C2 Vertebra C5
3 3
Mean 2.5 1 2.5¢
Error 2 = 2t
—
150 r 1.5
1} Ee— — 1k _— = — = = ==
0.5 { /,//’ o.s-\,< -
05 1 1.5 2 25 3 3.5 4 0.5 1 1.5 2 25 3 3.5 4
Velocity (pixels/frame) Velocity (pixels/frame)
3t)\ 3
Peak 2.5¢ / \ 1 25
\
Error 2f] 2L a3
\ e -
154 T 1 15F N\ -
—
1t \ - - 1t - A _____ ,‘._/____ . m— o —
- -
/\ — \ —
o I 0'5_\”
o -/ . A e . s o' i i s i i " " "
05 1 1.5 2 2.5 3 3.5 4 0.5 1 1.5 2 25 3 35 4
Velocity (pixels/frame) Velocity (pixels/frame)
KEY —— =x-value — — — - =y-value — - — - -=0@-value

Table 7.7: Tracking error versus velocity for translational motion in y-direction

The two points defined at the front of the vertebral body (C2: 1 and C2: 2) show much lower
selectivity than the two points at the back (C2: 3 and C2: 4). Visually the two front points are of
moderate contrast but they are also very one-dimensional since they lie along the almost straight
front edge of the vertebra. This low dimensionality in the vertical direction means that if the
motion of the vertebra is predominantly in the y-direction, then the best-match will tend to slide
along the front edge in the direction of the motion. Also since the motion-tracking algorithm in
its current form gives equal weighting to all the sub-templates forming the total object-template
match, the effect of these front points sliding vertically is to produce a small incremental rotation
of the object-template match. This does not occur for the second test vertebra C5 since the front
and back of the vertebral body is far more irregular and thus of high dimensionality and

selectivity.

Motion-tracking Cineradiographic Images 189

08

Selectivity

0 + + t t + y t y i
—_] — S\ ™ < —_ 3] ™ ~
% % .l — — - N N o N
& = ®) &) O & &) &) &) &)
7] 77}

Feature-point

Figure 7.11: Interframe best-match selectivity for the normalised correlation measure

Single-cycle Linear Rotation

The third set of single-cycle prescribed motion test sequences are for a constant linear rotational
velocity. The mean and peak tracking errors for two of the vertebrae in these sequences are

presented in table 7.8 for a range of velocities.

The first thing that is obviously different from the previous series of results is that all three
search space parameters now show a velocity dependent variation. This variation is particularly
evident in the peak tracking error graph for vertebra C2. An important observation is that right
across the range of prescribed angular velocities the mean tracking error for both vertebrae is
closely bounded by the theoretical minimum measurable angle of about 2°. However the peak
tracking error shows values over two times this range with the error generally increasing with
decreasing velocity until it suddenly drops at just below the limit of trackability. Translational
errors in x and y decrease with decreasing velocity but the error in the y-value is about twice the
x-value which is in itself within the theoretical trackable range of +1 pixel. In order to
understand this complex interaction it is necessary to look at actual tracked parameter values and

their respective errors for a typical sequence.

Table 7.9 contains the results for a sequence with a prescribed peak angular amplitude of 20°.
This corresponds to a velocity of about 2.5° per frame on the graphs in table 7.8. The results for
vertebra C5 contained in the second column of table 7.9 are in close agreement with the
theoretical trackability constraints of the algorithm. The maximum angular error occurs at the

peak of the waveform where the velocity is zero for one frame and then changes sign as it

190 The Development of Motion-tracking Strategies for Cineradiographic Images

continues. Also at the waveform peak positions the x and y values are non-zero as they try to
compensate for the slight overshoot and undershoot of the measured angle. Thus it can be

concluded that the traces for C5 are within the range of what is to be expected from the

algorithm.
7.8 Vertebra C2 Vertebra C5
8F 8
7 7
Mean 6t 6]
Error 5¢ 5
at 4
3 ~ T s~ 9 3 =
2t / o o 2},]
1+ e = 1 - = = = —
O_Jf | X 1
05 1 15 2 25 3 35 4 45 05 1 16 2 25 3 35 4 4.5
Velocity (degrees/frame) Velocity (degrees/frame)
8 g
7 / T~ 7 r.
~ .
Peak 6) - o N
Error | 5 / i St N
4 — a/ o — . 1
—_— -
at/ - 3
- — =1
2 — - 2 —cE i 1
-
1 f— 1/\
gt
0 0 1
os5) | 1§ 2 25 8 35 4 45 05 | 16 2 25 3 35 4 45
Velocity (degrees/frame) Velocity (degrees/frame)
KEY - =x-value — — — - =y-value — - — - -=@-value

Table 7.8: Tracking error versus angular velocity for pure rotational motion

However, the traces for vertebra C2 are very different and display a highly irregular shape. The
reason for this irregularity stems from the low selectivity of this feature as a whole and the
degree to with which a match lock can be maintained. The start of this problem was first seen in
the tracking results for C2 for the case of pure translation in y where the error in the y coordinate
changed in a velocity dependent way. Since rotation involves both a change in the x and y
coordinates, then if the match lock is not particularly good in the y direction due to poor
selectivity (low dimensionality and low contrast) then the best match will not be found at the true
position. The general effect of this is that the best match will tend to lag behind the true position
to such an extend that small changes in the x and y coordinates can not compensate sufficiently

to maintain a reliable lock on the feature.

Motion-tracking Cineradiographic Images 191

Table 7.9 Vertebra C2 Vertebra CS
20 20 \
115! ya i 15 / 6
Tracked | 10} ~ V. 0t \
Motion Sk ¢ ~ 5t - \
. Vs Sy meere|
-5 . oA -5 \ /
-10 N\ -10 ‘\
-151 -15} « /
-20 20} N
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Image number Image number
6 ~ [Aa 6
o 4 4 4
Tracking /
: - W
Error 2 q
0
-2
4 -4 4
6 -6
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Image number Image number
KEY ———— =xwvalue @ — — — - =y-value — - — - ~=06-value

Table 7.9: Single-cycle linear rotation - tracked parameter values and resulting errors

Single-cycle Composite Motion

The last set of results in this section are for the case where the prescribed motion is linear and
cyclic in all three dimensions of the search space. The relative proportions of peak amplitude of
the motion have been set to (x,y,0)=(18,9,20°) which are comparable to those observed
experimentally in the middle of the cervical spine in real cineradiographic sequences. The results

are presented in table 7.10 for vertebra C5 which is typical for this part of the spine.

Although the tracking error varies throughout the sequence this variation is generally irregular
and below the theoretical minimum trackable values of the algorithm. The reason the algorithm
is able to produce these results which are significantly better than the three previous cases where
the prescribed motion was only in one of the dimensions of the search space, is to do with the
way the sliding of the sub-templates attempts to find a best match for the object-template as a
whole. This effect is evident in the size of the incremental variations in each of the search space
dimensions. Translational changes as small as a quarter of a pixel and angular changes of a
fraction of a degree, can be seen. The maximum error in all three dimensions occurs at the peak
of the wave where the angular error is just approaching the theoretical minimum detectable value

and the x and y coordinates are moving slightly positive to compensate. A similar but smaller

192 The Development of Motion-tracking Strategies for Cineradiographic Images

effect is seen towards the beginning of the sequence (Note - this is the end of the first phase of
the algorithm since it tracks from the centre frame to the beginning of the sequence and then from

the centre frame to the end of the sequence).

Prescribed Motion (C5) Tracking Error (C5)

N A : A ; i i -3
200 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Image number Image number
KEY ———— = x-value — — — - =y-value — - — - —=@-value

Table 7.10: Tracking a sequence with composite motion prescribed in both x, y and 6

7.4.2 Double-Cycle Composite Motion: Tracking Results

In order to assess the long-term tracking ability of the algorithm, two styles of sequences were
constructed. The first set used a total of 35 frames as previously, but the prescribed motion now
covered two linear cycles. The peak amplitude of the motion was reduced to half the value of the
single-cycle sequences in order to keep the interframe velocity of all three search parameters
constant between sequences. The second style of test sequences was designed to specifically
assess interframe mismatch propagation. These sequences covered two linear cycles and
maintained the same interframe velocity of the three search parameters as previously, but were
twice the length. In this case the algorithm has to perform twice as many interframe match
comparisons in order to track the entire sequence, thus highlighting mismatch propagation

effects.

Double-cycle Composite Motion

Table 7.11 contains the tracking results for a prescribed sequence in which the peak amplitude of
the motion of the two vertebra is (x,y,0) =(9,5,10°), where x and y are in pixels. Looking at
the tracking error traces for C2 it can be seen that the error in x and y varies approximately
cyclically with the prescribed motion. The maximum error in both cases occurs roughly at the
peaks of the prescribed motion, but are generally within a +]1 pixel band. By contrast the
angular error is proportionally greater and at most positions is positive in value. This result is

consistent with the loss of tracking lock previously displayed in table 7.9 for this same vertebra.

Motion-tracking Cineradiographic Images 193

7.11 Vertebra C2 Vertebra CS

Tracked 5
Motion

-10 -10
0 5 10 15 20 25 30 35 0 5 1 15 20 25 30 35
Image number Image number
4 . af
3 ; 3
Tracking | 2 2
Error 1 1
0 0
K o}
2 2
43 -3
4 -4
0 5 10 15 20 25 30 35 o 5 1 15 20 25 30 35
Image number Image number
KEY —— =x-value — — — - =y-value — - — - -=0f-value

Table 7.11: Double-cycle composition motion - tracked parameter values and resulting errors

Although the centroid remains close to the true position as indicated by the displacement errors, a
good match is not maintained for the angle due to the low dimensionality of the overall match-
template, for this vertebra. A much better picture is seen for the other vertebra C5. The
displacement errors are cyclic but are in most cases close to the theoretical tracking limit of half
a pixel. Angular tracking accuracy is extremely good, displaying an error less than one degree
throughout the sequence. The error is about half the value predicted from the simple theoretical

analysis of section 7.3.1.

Double-cycle, Extended length, Composite Motion

The second set of results in this section are for an extended length, double-cycle, composite
motion sequence. What is immediately noticeable about these results (presented above in table
7.12) is that the relative difference in tracking angle error between vertebra C2 and C5 is almost
the opposite of what was shown previously. The displacement errors are generally within one
pixel (particularly for C5) but a match lock on the vertebral angle is not be maintained for CS5.
The effect of this is that the match angle slides increasingly positive with respect to the
prescribed motion for about two third of the forward and backward track paths. In the forward

path it then stabilises as a better lock is achieved around frame 50, whereas the backward path

194 The Development of Motion-tracking Strategies for Cineradiographic Images

suddenly changes direction at about frame 10 and then rapidly converges back to the original

location.

7.12 Vertebra C2 Vertebra C5

Tracked
Motion

-25 .
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Image number Image number
8 —_— —
8 A [V }\a’
6 BY /i J A
Tracking | ,| i H p al . vy v ;
\ 4 .
Error 2 b2 2l
0 I 0}
2 ¢
-4 |
6|
-8 4 8} . 1
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Image number Image number
KEY —— —x-value — — — - =y-value — - — - —-=@-value

Table 7.12: Double-cycle composite motion, extended sequence -

tracked parameter values and resulting errors

Experimenting with the manual placement the points that define the sub-template centres for C5
could not achieve significantly better results than those displayed in table 7.12. Consistently the
angle would slide and then stabilise in the forward direction, while in the backward direction the
angle would slide and then converge rapidly back to the true location. Although the interframe
motion with respect to the parameter search space is constant through the test sequences,
increasing the number of frames and hence the number of interframe comparisons greatly effect

the overall tracking performance.

7.4.3 Full Motion with Vertebral Interaction: Tracking Results

All of the previous test sequences have been produced with no prescribed adjacent vertebral

motion. This was achieved by defining a clearance zone around each vertebra and then

Motion-tracking Cineradiographic Images 195

prescribing motion only to alternate vertebrae in the cervical region. Some local interaction does
however occur using this approach since the space between alternate vertebra is distorted in
order to produce the animation. This approach was used so that testing the motion-tracking
algorithm could begin with relatively simple isolated motion and progress to more complex and

realistic motion.

Realistic Motion

Producing realistic motion in which there is full vertebral interaction with typical range and type
of motion requires knowledge of the biomechanics of the spine. If the cervical region is
considered to be a simply connected system in which the bottom vertebra (C7) is fixed with
respect to displacement, but is free to rotate. Then for a cycle of motion from full extension to
full inflection, rotation and displacement will decrease progressively from top to bottom and the
motion will be relatively linear but decreasing towards the extremes of the range. The approach
used to determine typical trajectories for vertebrae in the cervical spine was to take a real
sequence, place land-mark points to define all the vertebrae (including the skull and jaw) and
then motion track the sequence with the algorithm. The resulting track data (x, y,6) can then be
passed to the animation routines along with the object outline information and a sequence will be
produced with motion very similar to the original sequence. For this approach to be successful
the motion-tracking algorithm has to perform fairly well on the real sequence. Slight differences
between the real (as yet unknown) motion and the measured motion however should not cause
any problems since actual test sequence(s) will be the prescribed (known) motion from the warp-

based animator.

Table 7.13 illustrates typical motion in the cervical spine of a real sequence measured using the
algorithm. Only the motion for alternate vertebrae starting at C1 is shown for clarity. The
quality of this data was assessed visually by playing the sequence in a continuous swinging loop
(see section 7.2.4) with the vertebral outlines superimposed. Visually there was close
correspondence between the observed motion and the measured motion in the sequence. As can
be seen working through the vertebrae in table 7.13, the motion is largest at the top and
decreases progressively down the spine till at the bottom (C7) where the displacement is nearly
zero and the vertebra simply rotates a small amount. Translational motion in the y-direction is
generally only about a third of the x value. Overall motion for all three parameters can be
described as approximately linear and decreasing towards the beginning and end of sequence.
There are a couple exceptions to this in the form of the motion of C5 where this vertebra
suddenly rotates faster at the end of the sequence. This measured motion was consistent with

what was observed visually in a number of real sequences.

196

The Development of Motion-tracking Strategies for Cineradiographic Images

Vertebra C1

30 f

30

20

Vertebra C3

10 15 20 25 30 35 10 15 20 25 30 35
Image number Image number
Vertebra CS Vertebra C7
30F 30 F
20 | 20 |
10} _ 10}
— — - —
0| ="~— — — Qf=—— —-- _.__._"-' r—
-~ -
i —
-10 -10
-20 -20
-30 k -30k . 4
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Image number Image number
KEY =x-value — — — - =y-value — - — - -=6-value

Table 7.13: Typical measured cervical motion

The typical motion in the cervical spine for full range sequences can be summarised by plotting
the mean velocity in (x,y,6) against each region. Figure 7.13 shows the results of this for the
jaw, skull and working down the spine from C1 to C7. From the top of the cervical region to the
bottom, translational velocity in x and y decreases fairly smoothly until C5 where it reaches a
minimum. The rotational velocity on the other hand initially drops rapidly from the skull to CI

but then decreases more slowly reaching its minimum at C7.

In principle the performance of the tracking algorithm should only be effected if adjacent
vertebrae move close enough together such that part of one vertebra moves into the field of one
or more of the sub-templates that form another vertebra's template. This interference may occur
from above and below a given vertebra. If the motion of the two interfering vertebra is similar,
then tracking performance will be less effected. However if the motion of the vertebrae is greatly
different, then the faster-moving vertebra will tend to drag the template of the slower moving
vertebra towards it. How strong this effect will be is highly dependent on the relative selectivity

of the interfering areas.

Motion-tracking Cineradiographic Images 197

—— X (pixels/frame)

— — Y (pixels/frame)
— - —Theta (degrees/frame)

Mean Velocity

Feature

Figure 7.12: Measured mean velocity in the cervical region

Figure 7.14 contains a graph of the mean tracking error for a typical prescribed motion cervical
sequence. If the skull, jaw and C4 are initially ignored, then the tracking error for the remaining
features is very close to the theoretical limits of the algorithm. Displacement errors are typically
between a half to one pixel and rotational errors about 2°. This is not the case for the fourth
vertebra (C4) where the tracking error for all three search parameters is about twice the expected
value. Experimenting with the placement of the landmark points that define the vertebra’s
outline template did not significantly improve the results. Consistently C4 did not track the

motion well, yet C3 and CS5 either side of it did track adequately.

4.5 -
A ﬁ : X (pixels)
N — — Y(pixels)
5 35 + N N — - — Theta (degrees)
N .
S 31 N
a0 [2 N " \
% S i o \ N\ - - ~
g 2 - ~. .-
[—(~
8§ 1.5 4
(9]
= 34
<7 T
05 4 o = s A o~
S o e
0 ; : : - ; ; t |
Jaw Skull Cl C2 C3 C4 (@5 C6 C7
Feature

Figure 7.13: Typical mean tracking error in the cervical region

198 The Development of Motion-tracking Strategies for Cineradiographic Images

Visually playing the sequence in a swinging loop with the vertebral outlines overlaid, the outline
for C4 was seen to either stick in one place or slide towards the vertebra above or below it,
depending on the placement of the land-mark points. Digitally magnifying this region while the
sequences was played revealed that this particular vertebra had a much smoother outline
compared to the vertebra either side of it. The corners of the vertebral body are much more
round (see figure 7.15) resulting in reduced selectivity of the sub-templates and hence poorer

overall trackability for the vertebra.

Figure 7.14: Enlarged lower cervical section

One of the slowest moving vertebra C6 has returned the lowest overall tracking error particularly
with respect to angle. Even though the vertebra moves at an average velocity of just 1° per
frame, a sub-template point placed on the tail of the spinous-process could be reliably matched
and hence tracked. This significantly increases the effective object-template width and thus the

minimum discernible change in angle.

The skull and jaw are the fastest moving features of those defined yet they display tracking errors
two to three times the other features. The reason for this again comes down to the relative
selectivity of the sub-template points that form each of these feature object-templates. Points
placed on the lower back of the skull and the bottom surface of the jaw (see figure 7.16) are of
high contrast but their dimensionality is low as they lie along a very slowly changing arc which is
free from any significant changes. In contrast, the only points that can be placed towards the
front of the skull and the front top of the jaw are in regions of low contrast but medium

dimensionality and thus very poor selectivity overall.

Motion-tracking Cineradiographic Images 199

low contrast, low to

medium dimensionality

high contrast,
low dimensionality

high contrast,
low dimensionality

Figure 7.16: Skull and Jaw feature point selectivity

7.5 Summary of Motion-tracking Performance

The motion-tracking algorithm described in section 7.3 has been tested on a wide range of
prescribed motion cineradiographic sequences of the cervical spine. The short-term tracking
accuracy has been tested by creating sequences with single and double-cycle linear motion,
initially independently in the three dimensions, and then combined cyclic motion. This was then
followed by extended length sequences designed to specifically test long-term tracking accuracy.

Two important issues have been addressed:

e The potential of sub-pixel tracking accuracy

e Mis-match error propagation

The algorithm clearly demonstrated its ability to track motion to a finer resolution than the image
pixel grid. This was particularly apparent for the measured orientation of the features. The
algorithm was also shown to be reasonably robust with respect to mis-match error propagation.
It displayed the ability to compensate for small errors in orientation by making a small correction

in either the x or y coordinate.

The final set of test sequences was based on the trajectories of the features measured in real

cervical sequences. These measured values (measured by the algorithm and visually verified)

200 The Development of Motion-tracking Strategies for Cineradiographic Images

were then used to produce realistic sequences with full vertebral interaction but of known

motion.

Overall it can be concluded that with well chosen landmark points to define each vertebral
outline, the motion-tracking algorithm is capable of tracking motion in the cervical region of the
spine with a displacement error of about *1 pixel and an angular error of +2°. For the larger
vertebra towards the bottom of this region the angular error may be reduced to almost half the
above value. Also, since the vertebra increase in size descending down the spine, it would be

reasonably expected that the angular tracking error will be reduced even further in these regions.

When the interframe motion is below the trackability of the algorithm (for the cervical region the
values are: displacement less than half pixel, rotation below 2°) the position of the centroid of
the feature will be tracked but in steps the size of the displacement limit. However orientation

will not be maintained.

The most important factor in the success of the motion-tracking algorithm is the placement of the
landmark points to define each feature of interest. Poorly chosen points will results in large
tracking errors and thus inadequate performance. The next chapter will conclude this research
and discuss various ways of automating the landmark placement process and then dynamically

monitor the performance of tracking the algorithm as it proceeds.

7.6 References

(7.11 Davis P.J. Interpolation and Approximation. pp 67..69, Dover, New York, 1963.
[7.2] CineMetriX, see the note at the end of chapter 1, Palmerston North, New Zealand.

[7.3] Howard, LLP. Human Visual Orientation, John Wiley and Sons, Toronto Canada,
pp 23..45, 1982.

[7.4] Holman D. Digital Image processing Techniques For natural Orientation of Shape.
Undergraduate thesis, Department of Production Technology, Massey University,

Palmerston North, New Zealand, 1993.

[7.5] Kreyszig E. Engineering Mathematics. 6th edition, pp 978..986, John Wiley and
Sons, 1988.

[7.6] Jones, M.D. Cineradiographic Studies of the Normal Cervical Spine. Journal of
California Medicine, vol. 93, pp 293..296, November 1959.

[7.7] Wylie C.R. and Barrett L.C. Advanced Engineering Mathematics. 6th edition,
pp 339..344, McGraw-Hill, 1995.

Motion-tracking Cineradiographic Images 201

[7.8]

[7.9]

[7.10]

[7.11]

[7.12]

[7.13]

[7.14]
[7.15)

[7.16]

[7.17]

[7.18]

Van Mameren H., Sanches H., Beursgens J., Drukker J. Cervical Spine Motion in
the Sagittal Plane lI. Spine, vol. 17, No. 5, pp 467..474, 1992.

Penning, L. Differences in anatomy, motion development and aging of the upper and

lower cervical disk segments. Clinical Biomechanics, vol. 3, pp 37..47, 1988.

Dvorak J., Froelich D., Penning L., Baumgarten H., Panjabi M.M. Functional
radiographic diagnosis of the cervical spine: Flexion/extension. Spine vol. 13, no. 3
pp 748..755, 1988.

Tufte E.R. Envisioning Information. Graphics Press, 1990.
Brown H.J., New Frontiers in Virtual Reality. Limited-Press, 1994.

Warnecke G. The visualisation of the ceaseless atmosphere. Remote Sensing
Applications in Meteorology and Climatology, Vaughan RA, Editor, Lancaster UK;
pp 128..133, 1987.

Pratt W.K. Digital Image Processing, 2th Edition, McGraw-Hill, 1993.
Tukey J.W. Exploratory Data Analysis. Reading, Adison-Wesley, pp 100..149, 1971.

Brownrigg D.R.K., The Weighted Median Filter. Computer ACM 27, pp 807..813,
1984.

Asano A., Itoh K., and Ichioka Y. The Nearest Neighbour Median Filter: Some
Deterministic Properties and Implementations. Pattern Recognition, vol. 23, no. 10,
pp 1059..1066, 1990.

Hodgson R.M., Bailey D.G., Naylor M.J., Ng A.L. and McNeill S.J. Properties,
implementation and applications of Rank filters. Image Vision and Computing, vol. 3,
no. 1, pp 3..14,1985.

8

Discussion and Conclusions

8.1 Introduction

The overall aim of the research was to develop practical motion measurement strategies for
cineradiographic images of the human spine. The core of this research began from the simple
premise that if detecting the edges in a cineradiographic sequence of the human spine could be
achieved, then the task of tracking the motion would be straight forward since it would involve a
simple binary match to find the positions of the features in subsequent frames (see section 3.1 of
chapter 3 under edge-based methods). However, the implementation and extensive testing of
standard edge detection algorithms and even the development of a custom algorithm (see chapter

3) did not produce sufficiently consistent results for further work based on the original premise.

The next phase of the research consisted of an investigation into a general framework for motion-
tracking and perception, including the wide range of approaches presented in the literature. In
particular the technique of adapting optical-flow methods to radiographic images (see section
4.3.6 of chapter 4) was researched. An estimate of the entire velocity field is not required as the
only features of interest are the vertebrae. Occlusions were not a problem due to physical
constraints on the movement. A template-based match approach was found to be the most
appropriate method and computationally has a relatively low cost when performed in the spatial

domain using small object-templates.

Central to the template based motion tracking approach is the match statistic that is used to find
the best match in subsequent frames. In order to access the performance of a given match
statistic a performance measure or figure of merit is needed. Such a metric was developed (see
section 5.1.2 of chapter 5). This measure incorporated the effects of both feature match
sharpness and dimensionality. The metric was then used to evaluate four match statistics in both
intra and interframe matching of cervical cineradiographic images. The simple normalised
product correlation match statistic was found to perform best overall, displaying good selectivity

consistency and match positional stability.

With the framework of the motion-tracking algorithm complete, the research then turned to the
problem of creating cineradiographic test sequences with known motion. Without such

sequences any proposed algorithm could only be assessed qualitatively by observing the results

Discussion and Conclusions 203

visually. After considering mechanical approaches such as stop-and-shoot and an articulated
equivalent phantom, an animation approach based on digital image warping was developed. The
final implementation was the result of a number of stages of revision of the original algorithm
(see section 6.5.5 of chapter 6). The prescribed motion sequences generated by this algorithm

incorporate the effects of image noise and are visually of a quality comparable to real sequences.

Finally in chapter 7, the complete motion-tracking system was described, assembled and tested.
Solutions to several practical system implementation problems were also developed, and in
particular, an algorithm called 'Fold-and-Match' was developed to determine the orientation of
vertebrae in a natural and consistent way. The final motion-tracking algorithm is the result of a
pragmatic approach based on using the properties of small-templates with the aim of minimising
computational cost. This new algorithm, Geometrically-Locked, Small-Template based or
GLST for short, displayed tracking performance that satisfies the first of the system objectives
stated in the introduction. Within the resolution and noise limitations of a video cineradiographic
imaging system, the measured displacement and orientation of vertebra are accurate and

repeatable.

The last three objectives stated in the introduction and repeated below for reference, have been
readily met by the development of a system written for Microsoft Windows that incorporates
elements of data visualisation complete with an easy to use interface running on standard

hardware.

» Provide an opportunity for operator interaction so that derived measurements can be

readily related back to what can be directly perceived in a sequence.

» Be easy to use so that researchers (and potentially practitioners) will want to use such a

system.

» Run on standard hardware

All the elements of the system were generalised except the video capture card driver. There were
no interface standards when this part of the code was written, but this could be easily remedied

by using the Video for Windows [8.1] application programming interface (API).

One objective that has only been partially met is that of minimising operator interaction in the
motion-tracking process by automating landmark point placement. Typically the operator
currently has to place six points to define each vertebra and then specify the motion tracking
parameters. In practice the default tracking settings prove adequate. Once these two things have

been done, the remainder of the process is fully automatic requiring no user input.

204 The Development of Motion Tracking Strategies For Cineradiographic Images

8.2 Algorithm Enhancements

It was concluded in chapter 7 that with well chosen landmark points used to define each vertebral
outline, the motion-tracking algorithm is capable of tracking motion in the cervical region of the
spine to within a displacement accuracy of about 1 pixel and an angular accuracy of +2°.
These figures could be improved significantly by digitising the images at the full resolution
available from a composite video signal. This change would quadruple the amount of storage
required relative to that used in this research and necessitate the use of larger sub-template
windows to ensure sufficient information is contained within them for a reliable match. The
overall computational cost of the algorithm would also be increased by a similar factor. Further
enhancements could be made by replacing the analogue camera with a CCD camera with a direct
digital output [8.2]. This would provide images at close to the resolution of the sensor rather
than the reduced horizontal resolution [8.3] (relative to the vertical resolution) available from an
analogue composite video signal. This would also help combat the reduced selectivity of feature

points in the horizontal direction.

A potential problem common to all interframe based matching algorithm is the possibility of
mis-match error propagation. This phenomenon was accessed in section 7.4.2 of chapter 7 by
creating extended length sequences. For an object moving at a speed above the trackability limit
this effect does not become significant unless the sequence is very long. However for slow
moving objects a gradual lag develops behind the true position in the search space. This was
evident in the results obtained for tracking the prescribed motion sequences containing just
rotation (see table 7.9 of chapter 7). For cyclic motion this lag did not accumulate and was
restored when the motion returned the objects to their original position. The basic reason for this
lag is that the interframe motion is so small that none of the sub-templates that form the object-
template change position on the integer pixel grid and thus the best match does not move. In the
general case, if for a sub-area in the search-space none of sub-templates move, then the actual
best position that is recorded is dependent on how the best decision is made. The first position in
this sub-area will be kept as the best position if a 'keep if greater-than rule' is used, while the
last position in this sub-area will be declared the best position if a 'keep if greater-than or equal
too rule' is used. The first case will tend to produce greater lag than the second one, but the long

term effect will be generally unpredictable.

There are two approaches that would help improve the above situation. The simplest of these
would be to keep the first frame in the interframe search as the reference until there is a genuine
change position measured. This would prevent the motion lag from developing but correspond to
sub-sampling in time. This would result in increased coarseness in the plots of the measured
position. This is essentially a temporal aliasing effect. A more sophisticated approach would be
to keep all the match values in a neighbourhood about the no-motion sub-area and fit a

three-dimensional interpolant to estimate the true location to greater precision. As long as the

Discussion and Conclusions 205

behaviour of the match in the sub-area is relatively smooth this should also improve the overall

resolution of the algorithm in the situation where there is detectable interframe motion.

8.2.1 Adaptive Enhancements

None of the enhancements suggested in the previous section will be of much value if the
landmark points placed by the operator are poorly chosen. Ideally, defining the features or the
vertebra should be automated and not require any operator input. In the research to date this has
not been investigated. A number of adaptive enhancements are possible all based on the methods

developed in chapter 5 to access the performance of the match statistics.

The following elements of the algorithm could be made adaptive:

® Tune initial track point placement - At the start of the tracking procedure search locally
about the user placed points and adjust their position to ensure that there is good

selectivity in both the forward and backward interframes.

® Tune the track points as the algorithm proceeds to minimise feature mis-match and

compensate for feature contrast changes.

For a given feature match statistic, the track point placement can be optimised by a combination
of shifting the location and changing the size and shape of the sub-templates. Although this
appears to be a computationally significant task, in practice, this will not be the case if a little
a priori knowledge is applied. Firstly the maximum size of the sub-template is governed by how
much rotation is expected in the current interframe and how close the nearest interfering feature
is. The expected rotation can be estimated from the motion prediction values while the proximity
to the nearest feature can be easily determined if all the vertebra have been defined as being of
interest, which is usually the case. The shape of the sub-templates can also be significantly
constrained using geometric knowledge about where a sub-template is relative to the underlying
structure. Due to local point symmetry, sub-templates near the corners of the front of a vertebral
body are likely to be best represented by a square window. Sub-templates positioned along the
sides of the vertebrae are more likely to be represented by a suitably oriented rectangular

window.

Without motion prediction, it was found during the testing of the motion-tracking algorithm that
sometimes the best-match for a fast moving feature was detected far from the true match
position. This usually occurred over only a few frames in which a new feature was locked onto
or by the algorithm randomly moving the object template about in an attempt to find the best
match to the previous location. This was due to the relative selectivity of the sub-templates and
the effects of nearby strong features. With good motion prediction this problem should be

eliminated. There remains the possibility that a mis-match could occur and invalidate the final

206 T he Development of Motion Tracking Strategies For Cineradiographic Images

results. One solution may be to set a threshold on the minimum selectivity of an object template
corresponding to reliable tracking. If this threshold is violated part way through the sequence,

then the operator can be warned and asked if they wish to continue.

8.3 Future Work

For a spinal health care practitioner a system that is able to measure the internal motion of the
spine in a relatively non-invasive way is of great importance. Such a system has the potential to
increase the understanding of the motion of the human spine. It is likely that, it is the patterns of
motion or motion signatures that will provide the clue to the diagnosis of patient condition [8.4].
The challenge will be for professionals to identify appropriate operational techniques and to link
these measurements both to diagnosis and subsequent treatment. For example, the use of the
system may enable a professional to embark upon a program of planned preventive maintenance
to avoid impending dysfunction. This could be possible since the motion signatures contain
trends which may be extrapolated using suitable statistical analysis to predict potential failure. It

is likely that archives of past tests will be most useful in this manner.

Several secondary measures can be derived from basic trajectory data that may also contain the
key information both for predicting potential dysfunction and characterising existing conditions.
In section 7.2.3 of chapter 7, instantaneous centres of rotation (ICR's) were presented as a way
of detecting vertebral instability. More useful and fundamental information may be obtained by
determining the acceleration profiles of the vertebrae. When this is combined with an estimate of
the relative mass of a vertebra, perhaps determined from the integrated optical density (IOD) of
the feature, dynamic force estimate may be possible. This is feasible since the recorded image

intensity is a measure of bone density.

Three generic digital image processing based techniques have been developed during this

research, they are:
1. Motion-tracking based on the GLST algorithm
2. Generation of prescribed motion sequences using digital image warping

3. Object orientation measurement using the simple Fold-and-Match algorithm

The good performance and low computational cost of the GLST algorithm may make it a
suitable candidate for real-time applications. The adaptation of image warping techniques to
produce sequences with prescribed motion can be applied to a wide range of situations where an
image based motion measurement system is being developed. The robustness of the simple
fold-and-match algorithm may provide a better understanding of how the human visual system

determines object orientation but this theory needs to be investigated.

Discussion and Conclusions 207

So in conclusion, this research has resulted in the development of a set of specialised tools for the

measurement of spinal motion from cineradiographic sequences. These tools also include an

animation component for creating prescribed motion sequences that can be used for the

evaluation of future algorithms.

All that is now required for the realisation of a system of practical use is the implementation of

the algorithmic enhancements discussed in this chapter.

84

(8.1]

[8.2]

[8.3]

(8.4]

References

Video for Windows API, Microsoft Corporation, 1994.

Schalkoff R.J. Direct Image Processing and Computer Vision. pp 395..404, John
Wiley and Sons, 1987.

Netravali A.N. and Haskell B.G. Digital Pictures - Representation and Compression.
pp 90..112, Applications of Communications Theory, Series Editor Luck R.W., Wiley,
1988.

Page W.H and Monteith W. Bone movement analysis from computer processing of
X-ray cinematic video images. Proceedings of the 4th IEE International Conference on
Image Processing and Its Application. pp 381..384, 1992 April 7-9; Maastricht, The
Netherlands. IEE London, 1992, ISBN 0 85296 543 5.

Bibliography

Abdou L.LE. Quantitative methods of edge-detection, USCIPI Report 830, Image processing
Institute, University of Southern California, July 1978.

Abdou I.F.and Wong K.Y. Applied Numerical Analysis. 2nd Edition, Addison-Wesley, 1978.

Adelson E.H. and Bergen J.R. Spatiotemporal energy models for the perception of motion.
Journal of the Optical Society of America A2, pp 284..299, 1985.

Aggarwal J. K., Duda R. O. and Rosenfeld A. (eds.). Computer Methods in Image Analysis.
Chapter 4: Hu K., Visual Pattern Recognition by Moment Invariants. Los Angeles: IEEE
Computer Society, 1977.

Ahmed, N. and Rao, K.R., Orthogonal Transforms for Digital Signal Processing. Springer Verlag,
New York, 1975.

Aloimonos Y., Weiss 1. and Bandyopadhyay A. Active Vision. Proceedings of the First
International Conference on Computer Vision, pp 35..54, 1987.

Anderberg M.R. Cluster Analysis for Application. New York: Academic Press, 1971.
Arnold C.F. and Green J. Standard Radiography, Medical Press, 1978.

Asano A., Itoh K., and Ichioka Y. The Nearest Neighbour Median Filter: Some Deterministic
Properties and Implementations. Pattern Recognition, vol. 23, no. 10, pp 1059..1066, 1990.

Attneave F. Some informational aspects of visual perception., Psychological Review No. 61,
1954.

Bajcsy R. and Campos M. Active and Exploratory Perception. CVIGIP: Image Understanding,
Vol 56 (1), pp 31..40, July 1992.

Ballard D.H. and Brown C.M. Computer Vision. Prentice-Hall, 1982.

Bellman R.E. and Dreyfus S. Applied Dynamic Programming, Princeton, N.J., Princeton
University Press, 1962.

Besl PJ. and Jain R.C. Segmentation Through Variable-Order Surface Fitting. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 2, pp 167..92,
March 1988.

Bracewell R.N. The Fourier Transform and its application. McGraw-Hill, pp 56, 1986.

Brice C.R. and Fennema C.L. Scene Analysis using Regions. In Computer methods in Image
Analysis, edited by Aggarwal J.K., Duda, R.O., and Rosenfeld, A., Los Angeles: IEEE
Computer Society, 1977.

Brown H.J., New Frontiers in Virtual Reality. Limited-Press, 1994.

Brownrigg D.R.K., The Weighted Median Filter. Computer ACM 27, pp 807.813, 1984.

Bibliography 209

Brunnstrom K. and Eklundh J. Active Fixation for Junction Classification. Proceedings of the
Second European Conference Computer Vision, pp 452..459, 1992.

Burt PJ. The pyramid as a structure for efficient computation. In Multi-resolution image
processing and analysis, edited by Rosenfeld, A., Springer Series in Information Sciences,
Vol. 12, Springer, New York, 1984.

Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 8, p. 679, November 1986.

Coltman J.W. Journal of Radiology, No. 51, pp 539, 1948.

Davis L. A survey of edge detection techniques. Computer Graphics and Image Processing, Vol. 4,
pp 248..270, 1975.

Davis P.J. Interpolation and Approximation. pp 67..69, Dover, New York, 1963.

Delp H.J and Chu C.H. Detecting Edge Segments. IEEE Transactions on Systems, Man and
Cybemetics, Vol. SMC-15, No. 1, pp 144..152, Jan./Feb. 1981,

Deriche R. Using Canny's criteria to recursively implemented optimal edge detector. International
Journal of Computer Vision, Vol. 1, No. 2, 1987.

Dimnet J. Pasquet M.H., Krag M.H. and Panjabi M.M. Cervical spine motion in the
sagittal plane: Kinematics and geometric parameters. Journal of Biomechanics, Vol.
15, pp 959..969, 1982.

Dudani S., Breeding K. and McGhee R. Aircraft Identification by Moment Invariants. IEEE
Transactions on Computers C-26, No. 1, pp 39..45, Jan. 1977.

Duntta R., Manmatha R., Williams L. and Risman E.M. A Data Set For Quantitative Motion
Analysis. Proceedings [IEEE CVPR, San Diego, pp 159..164, 1989.

Dvorak J., Froelich D., Penning L., Baumgarten H., Panjabi M.M. Functional radiographic
diagnosis of the cervical spine: Flexion/extension. Spine vol. 13, no. 3 pp 748..755, 1988.

Fielding J.W. Normal and selected abnormal motion of the cervical spine from the second
cervical vertebra to the seventh second cervical vertebra based on
cineroentgenography. Joumal of Bone Joint and Surgery, Vol. 47a, pp 1779..1781,
1964.

Fitzpatrick J.M. A method for calculating velocity in time dependent images based on the
continuiry equation. IEEE Motion: Representation and Perception, pp 78..81, 1985.

Fellgett, P. Journal of Photographic Science, Vol 11. No. 1, p 31, 1962.

Fennema C. and Thomson W. Velocity determination in scenes containing several moving
objects. Computer Graphics and Image processing 9, pp 301..315, 1979.

Fleet D.J. and Jepsen A.D. Computation of image velocity from local phase information.
International Journal of Computer Vision S, pp 77..104, 1990.

Fleet D.J. Measurement Of Image Velocity. Kluwer Academic Publishers, pp 26..28, 1992.

210 The Development of Motion-tracking Strategies for Cineradiographic Images

Freeman H. Computer Processing of Line Drawing Images. Computer Surveys 6, pp 57..98,
March 1974.

Frei W. and Chen C. Fast boundary detection: A generalisation and a new algorithm. IEEE
Transactions on Computing, pp 988..998, Oct. 1977.

Glazer F., Reynolds G. and Anandan P. Scene matching through hierarchical correlation.
Proceedings [EEE CVPR, Washington, pp 432..442, 1983.

Gonzalez R. and Wintz P. Digital Image Processing. Addison-Wesley, pp 69..72, 1977.

Goodwin P.N., Quirby E.H. and Morgan R.H. Physical Foundation of Radiology, 4th Edition,
Harper and Row Publisher Inc, pp 24..30, 1970.

Gorbunov V.I. and Melikhov V.S. Defektoscopia, No. 2, (A summary of semiconductor X-ray
sensors), pp 28..30, 1978.

Goshtasby A. Piecewise Linear Mapping Functions for Image Registration. Pattern Recognition,
Vol. 19, No. 6, 1986.

Gurevich G. B. Foundations of Theory of Algebraic Invariants. Groningen, The Netherlands: P
Noordhoff, 1964.

Halmshaw R. [Industrial Radiology - theory and practice, Applied Science Publishers, ISBN 0-
85334-105-2, pp 122..125, 1982.

Hannah M.J. Bootstrap Stereo. Proceedings of Image Understanding Workshop, DARPA
Conference, pp 201..208, April 1980.

Hecht S. The visual discrimination of intensity and the Weber-Frechner law. Joumnal of General
Physiology, pp 241..250, 1924.

Hodgson R.M., Bailey D.G., Naylor M.J., Ng A.L. and McNeill S.J. Properties, implementation
and applications of Rank filters. Image Vision and Computing, vol. 3, no. 1, pp 3..14,1985.

Holman D. Digital Image processing Techniques For natural Orientation of Shape. Undergraduate
thesis, Department of Production Technology, Massey University, Palmerston North, New
Zealand, 1993.

Horowitz N.J. and Pavlidis T. Picture segmentation by split-and-merge procedure. Proceedings
of the 2nd UCPR, pp 424..433, August 1974.

Horn B.K.P. Robot Vision, MIT Press, Cambridge, 1986

Horn B.K.P. and Schunck B.G. Determining optical flow. Artificial Intelligence 17, pp 185..204,
1981.

Hou H.S. and Andrews H.C. Cubic Splines for Image Interpolation and Digital Filtering. IEEE
Transactions on Acoustics, Speech, Signal Processing (ASSP), Vol. 26, pp 508..517, 1987.

Hough P.V.C. Method and means of recognising complex patterns. US Patent no. 3,069,654,
1962.

Howard, I.P. Human Visual Orientation, John Wiley and Sons, Toronto Canada, pp 23..45, 1982.

Bibliography 211

Jain A.K. Fundamentals of Digital Image Processing. Prentice-Hall Information and System
Science Series, pp 21..22, 1989.

Jain A.K. and Ranganath S. Image restoration and edge extraction based on 2-D stochastic
models. Proceedings of ICASSP-82, Paris, May 1982.

Johnson B.M. Measurements in Skeletal Radiography. Wiley, pp 180..195, 1977.

Jones, M.D. Cineradiographic Studies of the Normal Cervical Spine. Joumnal of California
Medicine, vol. 93, pp 293..296, November 1959.

Juhl J.H. and Guinmy A.B. Esstentials of Radiologic Imaging, 6th Edition. J.B. Lippincott
Company, Philadelphia, pp 10..12, 1993.

Kanamori, H. Japanese Journal of Applied Physics, Vol 7, No. 4, p 414, 1968.

Kass M., Witkin A. and Terzopoulos D. Snakes: Active contour models. International Journal of
Computer Vision 1, pp 321..331, 1988.

Kitchen L. and Rosenfeld A. Edge evaluation using local edge coherence. IEEE Transactions of
Systems, Man, and Cybemetics, Vol. SMC-11, No. 9, pp 597..605, Sept. 1981.

Kreyszig E. Advanced Engineering Mathematics, 6th Edition, pp 457..504, Wiley, 1988.

Lawson C.L. Software for C! Surface Interpolation. Mathematical Software III, Ed. by Rice J.R.,
Academic Press, London, pp 161..194, 1977.

Lee D.T. Two Algorithms for Constructing Delaunay Triangulation. International Journal in
Computer Information Science, Vol. 9, pp 219..242, 1980.

Leipnik R. The extended entropy uncertainty principal. Information Control 3, pp 18..25, 1960.

Logan B.F. Jar. Information in the zero-crossings of band pass signals. Bell Systems Technical
Joumal, No. 56, pp. 487-510, 1977.

Marr D. and Poggio T. A computational theory of human vision. Proceeding of the Royal Society
of London, B 204, pp 301..328, 1979.

Marr D. and Hildreth E. Theory of Edge Detection. Proceedings of the Royal Society of London,
B 207, pp 187..217, 1980.

Marr D. and Ullman S. Directional selectivity and its use in early visual processing, Proceedings
of the Royal Society of London, B 211, pp 151..180, 1981.

Marr D., Poggio T. and Ullman S. Bandpass channels, zero-crossings, and early visual
information processing. Journal Of The Optical Society of America 69, pp 914..916, 1979.

Martell A. Edge-detection Using Heuristic Search Methods. Proceedings of Computer Graphics
and Imaging 1, pp 169..182, August 1972.

Maxwell E.A. General Homogeneous Coordinates in Place of Three Dimensions. University
Press, Cambridge , 1951.

Mcliroy C.D., Linggard R. and Monteith W. Hardware for real-time image processing. IEE
Proceedings, Vol. 131, part E, no. 6, November 1984.

212 The Development of Motion-tracking Strategies for Cineradiographic Images

Melissinos A.C. Experiments in Modern Physics, Academic Press, pp 28..32, 1966.

Morevec H.P. Rover Visual Obstacle Avoidance. Proceedings of IICAI-7, Vancouver B.C.,
August 1981.

Netravali A.N. and Haskell B.G. Digital Pictures - Representation and Compression. pp 90..112,
Applications of Communications Theory, Series Editor Luck R W., Wiley, 1988.

Nevatia R. Locating Object boundaries in textured environments. IEEE Transactions on
Computing, Vol. 25, pp 1170..1180, Nov. 1976.

Overington I. Vision and Acquisition. Pentech Press, London, 1976.

Overington I. Computer Vision - A unified biologically-inspired approach. pp 231..239, Elsevier,
1992.

Paeth A.W. A Fast Algorithm for General Raster Rotation. Graphics Interface '86, pp 77..81, May
1986.

Page W.H and Monteith W. Edge Detection Based on Weber's Law Revisited. Proceedings
of the Image and Vision Computing Conference of New Zealand (IVCNZ '94), pp 2.3.1-
2.3.5, August 16-17, 1994.

Page W.H, Monteith W. and Whitehead L. Dynamic Spinal Analysis: Fact or Fiction?
Journal of the Australian Chiropractic Association (JACA), pp 82..85, September 1993.

Page W.H. and Monteith W. Creating Deterministic Motion Using Digital Image Warping.
Proceedings of Digital Image Computing: Techniques and Applications Conference
(DICTA'93), pp 485..492, Sydney Australia, 1993.

Page W.H. and Hoogeeven R.M. An Analogue Video Preprocessor. Proceedings of the Image
and Vision Computing Conference of New Zealand (IVCNZ'93), pp 415..421, August
1993.

Page W.H and Monteith W. Bone movement analysis from computer processing of X-ray
cinematic video images. Proceedings of the 4th IEE International Conference on Image
Processing and Its Application. pp 381..384, 1992 April 7-9; Maastricht, The
Netherlands. IEE London, 1992, ISBN 0 85296 543 5.

Page W.H and Monteith W. Weber's Law and its Application to Dynamic Thresholding in
Edge Detection. Proceedings of the 6th New Zealand Image Processing Workshop, pp
71..76, August, 1991.

Page W.H and Monteith W. A system for the Analysis of Bone Motion in Cinematic X-ray
Images. Proceedings of the 28th National Electronics Conference (NELCON 91), pp.
75..80, August 1991.

Bibliography 213

Pahlavan K., Uhlin T. and Eklundh J.O. Integrating Primary Ocular Processes. Proceeding of
the Second European Conference on Computer Vision, Vol. 588, pp 526..541, Lecture Notes
in Computer Science, Springer-Verlag, May 1992.

Pavlidis T. Algorithms for Graphics and Image Processing. Computer Science Press, Rockville,
MD, 1982.

Penning, L. Differences in anatomy, motion development and ageing of the upper and lower
cervical disk segments. Clinical Biomechanics, vol. 3, pp 37..47, 1988.

Prewitt J.M.S. Object enhancement and extraction. In Picture Processing and Psychopictorics,
Lipkin, B.S., and Rosenfeld, A. editors, New York: Academic Press, 1970.

Pratt W.K. Digital Image Processing. 2th Edition, New York: Wiley Interscience, 1978.
Pratt W.K. Digital Image Processing, 6h Edition, McGraw-Hill, 1993.

Princen J. Hough Transform methods for curve detection and parameter estimation. PhD thesis,
University of Surrey, June 1990.

Read F.]J. Applied Computational Geometry, 2nd Edition, Waite-Group, 1988.

Reynolds R.]J. Cineradiography by the Indirect Method. Joumal of Radiography, Vol. 31, pp
177..182, 1938.

Rimey R.D. and Brown C.M. Where to Look Next Using a Bayes Net: Incorporating Geometric
Relations. Proceeding of the Second European Conference on Computer Vision, pp 542..550,
May 1992.

Roberts L.G. Machine perception of three-dimensional solids. In Optical and Electro-optical
Information Processing, Tippett J.P. et al editors, Cambridge, MA: MIT Press, 1965.

Robinson G. Edge detection by compass gradients. Computer Graphics and Image Processing,
Vol. 6, pp 492..501, 1977.

Roentgen, W.C. Annus Physics Leipzig, Vol. 64, No. 1, 1898.

Rosenfeld A. and Kak A.C. Digital picture processing, 2nd edition, Volume II, Academic Press,
Orlando, USA, 1982.

Schutte H., Frydrychowicz S. and Schroder J. Scene Matching With Translation Invariant
Transforms. Proceedings of the Sth International Conference on Pattern Recognition. pp
195..198, IEEE, New York, 1980.

Schalkoff R.J. Direct Image Processing and Computer Vision. pp 395..404, John Wiley and Sons,
1987.

Schade, O. Journal of the Society of Motion Pictures, Television and Engineering, Vol. 73, No. 2,
pp 81..84, 1964.

Shannon, C.E. Journal of Bell System Techniques, No. 27, p 623, 1948.

Smith A.R. Planar 2-Pass Texture Mapping and Warping. Computer Graphics, vol. 21, no. 4, pp
263..272, July 1987.

214 The Development of Motion-tracking Strategies for Cineradiographic Images

Smith Y.K. Noise and Stochastic Processes. Cambridge-Press, 1986.

Smythe D.B. A Two-Pass Mesh Warping Algorithm for Object Transformation and Interpolation.
Industrial Light and Magic (IML) Technical Memo #1030, Computer Graphics Department,
Lucasfilm Ltd., 1990.

Spacek L.A. Edge detection and motion detection. Image Vision Computing, vol. 4, pp 43..51,
1986.

Stevens A.S. Medical Imaging, Gold-Publishing, 1991.

Stockman G.C. and Agrawala A.K. Equivalence of Hough transform curve detection to template
matching. Communications of the ACM, Vol. 20, pp 820..822, 1977.

Sturm, R.E., and Morgan, R.H. American Journal of Roentgenography, No. 62, pp 617..622,
1949.

Tanaka A.M., Kameyama M., Kazama S. and Watanabe O. Processing Method for the
Rotation of an Image. U.S. Patent 4,618,991, Hatachi Ltd., October 21, 1986.

Teves M.C. and Tol, T. Philips Technical Review, No. 14, pp 33, 1952.
Tufte E.R. Envisioning Information. Graphics Press, 1990.
Tukey J.W. Exploratory Data Analysis. Reading, Adison-Wesley, pp 100..149, 1971.

Van Mameren H., Sanches H., Beursgens J., Drukker J. Cervical Spine Motion in the Sagittal
Plane II. Spine, vol. 17, No. 5, pp 467..474, 1992.

Walsh, J.L. A closed Set of Orthogonal Functions., Proceedings of the London Mathematical
Society., vol. 34, pp 241..279, 1932.

Warnecke G. The visualisation of the ceaseless atmosphere. Remote Sensing Applications in
Meteorology and Climatology, Vaughan RA, Editor, Lancaster UK; pp 128..133, 1987.

Watson D.F. Computing the n-dimensional Delaunay tessellation with application to Voronoi
polytopes. The Computer Journal, Vol. 24(2), pp 167..172, 1981.

Waxman A.M., Wu J. and Bergholm F. Convected activation profiles: Receptive fields for real-
time measurement of short range visual motion. Proceedings of CVPR, Ann Arbor, pp
717..723, 1988.

Williams T.D. and Glazer F. Comparison of Feature Operators For Use In Matching Image
Pairs. Image Sequence Processing and Dynamic Scene Analysis. Springer-Verlag, Berlin-
Heidelberg, pp 395..423, 1983.

Wilson H.R. and Bergen J.R. A four mechanism model for spatial vision. Vision Research 19, pp.
19-32, 1979.

Wolberg G. Digital Image Warping. IEEE Computer Society Press, California, USA, pp 138..145,
1991.

Wong R. and Hall E. Scene Matching With Moment Invariants, Computer Graphics and Image
Processing 8, pp 16..24, 1978.

Bibliography 215

Wau J., Brockett R. and Wohn K. A contour-based recovery of image flow: Iteration method.
Proceedings [EEE CVPR, San Diego, pp 124..129, 1989.

Wylie C.R. and Barrett L.C. Advanced Engineering Mathematics. 6th edition, pp 339..344,
McGraw-Hill, 1995.

Young A.A. and Axel L. Automatic Spot Detection in Chest Radiographs. IEEE Transaction on
Medical Imaging, Vol. 12, No. 4, pp 505..515, 1994.

Appendix A

Gradient Mask Derivation

A.1 Introduction

This appendix contains the derivation of several of the small-window gradient-masks

traditionally used in low-level edge detection algorithms.

A.2 Curve Fitting Problem

In order to compute a partial derivative about any point in an image, a function describing how
the intensity varies with position is required. A polynomial function approximation can be found
in a real image by initially fitting a low-order function and then testing for overall
goodness-of-fit. The polynomial order is then increased until a satisfactory fit is obtained.
Usually this approach results in a unique function for every pixel in the image from which the
gradient can be computed. This variable-order surface fitting method has been used by Besl and
Jain [A.1] for the segmentation of images with good success. However an alternative to
continuously computing a new function at each location is to assume a specific order of function
holds for the image as a whole and compute a generalised algebraic equation that uses weighted

pixel intensities to evaluate the local gradient.

A.2.1 Curve Fitting Formulation

Let W be a window (mxn) in the Euclidean image plane to which a 2-D function or surface is to

be fitted. It can be shown [A.1] that an order N polynomial surface function, of the general form

N N
Sy(x,y)= Zch,xky‘ eq. A.l

k=0 [=0

where c,, are the polynomial coefficients and where the total number of coefficients is given by
N
Nc=2(k+l) eq. A2
k=0

Equation A.1 is linearly parameterisable and can be written in matrix form as:

Ax=Db eq. A3

A-2 The Development of Motion-tracking Strategies for Cineradiographic Images

where: b” =[1ll n,, = 1,,,,,], I; = intensity at each (x, y) location in W

x' = [c1 c, cN‘], ¢; = polynomial coefficients, and A = position coefficient matrix

The number of discrete locations in W must be at least as large as the number of polynomial
coefficients for there to be a unique solution. Generally there are more rows than columns in A
and thus the system is over-determined. A best solution can be sought by choosing vector x

such that the residual vector R given by equation A4 , is minimised in some way.
R=Ax-b eq. A4
The most commonly used numerical measure of goodness-of-fit is the least-squares criterion. A

unique least-squares solution for an arbitrary right-hand side can be obtained using the

Moore-Penrose generalised inverse [A.2]
x=A'b eq. AS

where A'=(ATA) AT

A.2.2 Application to Gradient Masks

Taking an Mb order 2-D polynomial

2 2
Sy (X,) = Cg F €oX T 61y T CppX” + €Y +CpyXy+--- eq. A6

and partially differentiating with respect to x and y gives

aSN
ox
as
'a)‘l:r = CIO +2Czox +C“y+... eq. A.8

Evaluating these partial derivatives at the origin (0,0) results in,

%,
ax (0.0)

35S,
ay (0.0)

=¢, and = Cp, eq. A.9

This implies that by choosing the geometric centre as the origin when fitting the surface
polynomial to an arbitrary window, the linear coefficients c,, and ¢,, represent approximations
to the x and y gradients at the centre of the window. This approach can be extended (with

caution) to higher order gradients.

If a generalised inverse is used to solve the polynomial fitting problem, then the polynomial
coefficients and hence the gradient estimates can be found for any arbitrary b vector of pixel

Intensities.

Appendix A - Gradient Mask Derivation A-3

Alternative Orthogonal Formulation

If the window W is square (as is commonly the case) then there is an alternative set of orthogonal
axes to those aligned with the pixel grid. These axes are aligned with the diagonals of the grid

and due to symmetry should be of equal merit.

Mathematically using the diagonal axes can be realised by rotating the original axes by 45°

about the origin of the window [A.3],
B _| cos 45 sind5 | x eq. A.1O
Yy, L—sin45 cos 45 y -

and then using these new co-ordinates to compute the position matrix A,;. From this the

polynomial surface coefficient matrix can be obtained using a generalised inverse.

A2.3 Gradient Mask Results

Shown below in table A.1 are the gradient mask pairs for a 2x2 window fitted with a linear
surface and 3x3 window fitted with quadratic surface, using the generalised inverse approach of

equation A.5.

Table A.1 2x2 Window 3x3 Window

—-1| 0 | +1

0° gradient G?,:l _1 = (;3:l -1]10 |+1
4 -1 +1 6

—-1] 0 | +1

90° gradient | G2, = L =11~ G: =1 —(; —(; -(;
gradien =2+ o=g

+1 | +1]+1

O +1]|+2

+45° gradient | G2 =l 0 &l 6 =l —-1| 0] +1
+45 -1 5 8

2 2 =1] 0

=2[-1] O
. 1I{-1| O 1

—45° gradient | G2 _ = — G, =1l o+

¢ w2 0]+1 el R

Table A.1: Small window gradient mask pairs

Several of the well known gradient masks appear in this set. In particular the Robert's Product
Gi, and G2, smoothed Prewitt G} and G}, and the modified Sobel G} and G2, (see chapter

3 section 3.2.1 for full details and references).

A-4 The Development of Motion-tracking Strategies for Cineradiographic Images

The output of the modified Sobel masks were combined in a root-mean-square to produce the

gradient enhanced images of section 7.2.4 in chapter 7.

A.3 References

[A.1] Besl P.J. and Jain R.C. Segmentation Through Variable-Order Surface Fitting.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 2,
pp 167..92, March 1988.

[A.2] Ben-Israel A. and Greville T.N.E. Generalised Inverses - Theory and Applications.
Wiley Interscience, pp. 103..158,1974.

[A.3] Numerical Analysis, 2nd Ed., Schaum's Outline series in Mathematics. McGraw-Hill,
pp 405..449, 1982.

Appendix B

Computational Cost Calculations

B.1 Introduction

This appendix contains details of the computational cost calculations for the four match statistics

described in chapter 5 and also the complete motion-tracking algorithm described in chapter 7.

B.2 Match Statistic Calculations

The first of the match statistics is the mean absolute difference (MAD) given by

MAD = iim(f, 7= A (i) eq. B.1

1

mn - j=0
At each pixel in the mxn window one subtraction is performed, followed by an absolute function.
If an absolute function is computationally equated to half an addition and a subtraction equal to
an addition, then so far there are 1.5 mn additions. The absolute pixel differences are then
accumulated, another mn additions and finally the result is divided by the number of pixels, one
multiplication and one division. The division is a floating point operation and can be equated to
approximately 10 long integer multiplications on modern micro processors. Thus the total

computational cost of the MAD match is:

Additions = 1.5 mn+mn=2.5 mn Multiplications=1+ 10=11

The second match statistic is the root-mean-square (RMS) and is given by

mn \/\ i=0 j=0

RMS = (Zi[Ak(i,j)—Akﬂ(i,j)]zj eq. B2

At each pixel in the mxn window one subtraction is performed and the result is multiplied by
itself to form the square resulting in mn additions and mn multiplications. The squared pixel
differences are then accumulated, another mn additions and the square root of the accumulated
result taken. The square root is another floating point operation and can be equated to
approximately 15 long integer multiplications. Finally the result is divided by the number of
pixels, one multiplication and one floating point division equivalent. This gives the estimates of

the total computational cost of the RMS match as:

B-2 The Development of Motion-tracking Strategies for Cineradiographic Images

Additions = mn + mn = 2mn Multiplications = mn + 15 + 10 = mn + 25

The third match statistics investigated in chapter 5 was the normalised product correlation

(Corr) which is given by equation B3.

D LA * A (i,)]
Corr = i=0 j=0 eq. B.3

J [Z Y IAGNE * D, D [A)F

i=0 j=0 i=0 j=0

The top line of this equation requires mxn multiplications and mn additions. The bottom line
requires each value in the target and reference window to be squared and accumulated adding
2 x (mn multiplications + mn additions). A product of these resultant sums is then formed and
the square root taken, another 1+15 long integer multiplication equivalents. Finally the top line
result is divided by the bottom line, adding a further 10 multiplications to produce a total

computational cost of:

Additions = mn + 2 mn = 3mn Multiplications = mn + 2mn + 16 + 10 =3mn + 26

The forth and final match statistic evaluated in chapter 5 was based on a normalised product

correlation of the first six central moment invariants listed below in table B.1.

G =My +Ho2
Second-order moments (u+v=2) 0, = (Uyo — Mo 2)2 +4 'ulz .

0= (Ha0 = 3th2)" +(Hoz =34y,)
Third-order moments (u+v=3) 0, = Uy + U, 2)2 +(Uos + My, i

05 = (M3 =3H12) (U + 1, 2) *
(Mo +H12)" = 3(Hay + Ho)]
+ (Mo =3 (o3 + Hpy) *
[(Hoa + Hau)* = 3(i +)’
B = (20— Hoa) (g +112)° = My, +143)"]
+aAp, (o + My 2)(Hos + Hay)

Table B.1: Central moment invariants

The central moments are computed from equation B.5 using the centroid coordinates calculated
from the zero and first order moments of equation B.4. If the centroid coordinates are
approximated by rounding to the nearest integer then the majority of the remaining operations
can be formed in integer arithmetic and not floating point. On this basis the computational cost

of second and third order central moments has been calculated and i1s summarised in table B.2.

Appendix B - Computational Cost Calculations B-3

m“=22f(x,y)x“y” u,v=0,1,2,...
R

Hoy =D D [(x=XY (y=5) f(x,)]
R

eq. B4
eq. B.S

where X =m, ,/ my, and y =my, /I my,.

Central moment Computational Cost
Additions Multiplications
My, 3 mn 2 mn
Hoo mn mn
Hao mn mn
Ky 3 mn 3 mn
jos 3 mn 3 mn
Hoz mn 3 mn
Mo mn 3 mn

Table B.2: Second and third order central moments - computational cost

Combining the central moments together to produce the first six moment invariants adds further

computational cost. The total cost of each moment invariant is summarised in table B.3 below.

Central moment Total Computational Cost
invariant Additions Multiplications
[0} 2mn+1 2 mn
o, Smn+2 4mn+3
o, 5mn+3 I9mn+4
?, 5 mn+3 9mn+2
O 8 mn +10 12mn + 12
[0} 8 mn +7 12mn+6
Total Sum 33 mn + 26 48 mn + 27

Table B.3: Central moment invariant total computational cost

The final stage of the moment invariant match statistic calculation is to combine the six

invariants in a normalised product correlation as given by equation B.6.

6
PN CAOR WD)
MCor = izl

6 6
\/(Z[%(f)]’i *Z[qu(f)]z)
i=l i=1

eq. B.6

B-4 The Development of Motion-tracking Strategies for Cineradiographic Images

Based on the calculations for the Corr measure this adds a further 3x6 = 12 additions and 3x6
+15 +10 = 43 multiplication equivalents. Thus the final computational burden for the moment
invariant based match is:

Additions =33 mn+26 + 12 =33 mn + 48

Multiplications =48 mn + 27 + 43 =48 mn + 57

The total computational cost of the four match statistics is summarised in table B.1 below.

These results are also contained in table 5.1 of chapter 5.

Statistic Additions Multiplications
MAD 2.5 mn 11
RMS 2 mn mn + 25
Corr 3 mn 3mn+12
MCorr 33 mn +48 48 mn + 57

Table B.4: Summary of computational cost of the match statistics

B.3 Motion-tracking Algorithm Calculations

The motion-tracking algorithm described and tested in chapter 7 is based on the normalised
product correlation match. At each location in the search space a match to the object template
(formed by geometrically locked sub-templates) is computed. Typically six landmark points are
placed to defined each feature of interest, resulting in a computational cost per feature per search

location of

Additions=6 x (3 mn) =18 mn Multiplications = 6 x 3 mn + 12) = 18 mn + 72

Based on the default tracking parameters (TranslationStep=0.5 pixels, TranslationRange=5
pixels, RotationStep=1°, RotationRange=15°, WindowRadius=5 pixels) given in section 7.4 of

chapter 7, the total computational cost per feature best-match search is computed as follows:

Additions = (18 x 1 I1x11) x (2 x 5/0.5) x (2 x 5/1) = 435600
— > iy

window size translation steps rotation steps

Multiplications = (18 x 11x11 +72) x (2 x 5/0.5) x (2 x 5/1) =450000
— o /

window size translation steps rotation steps

In practice this cost is reduced substantially since as the object template is moved from position
to position in the search space only a few of the sub-templates actually change position on the

integer pixel grid. Only those sub-templates that change position with respect to the previous

Appendix B - Computational Cost Calculations B-5

search space location need to be recomputed. Also, with good motion prediction further
reductions can be made as the translation and rotation range that define the sub-region in the

search space will be smaller.

Before each interframe match of the motion tracking algorithm is made, the image is median
filtered to reduce noise. Only the region of interest containing the features needs to be filtered.
This is typically only a third of the total image area. A fast histogram modification [B.1, B.2]
based implementation was used. This requires approximately the equivalent of 8 long integer
multiplications per pixel. Thus for an image 255x255 pixels the total equivalent computational

cost per frame is

Multiplications = 8 x (1/3 x 255x255) = 173000
i —

active fraction image size-

This is about a third of the equivalent computational cost of a typical single feature search

match.

Using the default tracking parameters, no motion prediction and with the algorithm implemented
in 16-bit code, it takes approximately 2.1 seconds per feature match (six landmark points per
feature) running on a 486 DXS0 personal computer. Median filtering the region of interest
typically take 1.5 seconds. Thus a complete cervical sequence consisting of 50 frames and with
nine features of interest defined, will take 17 minutes to track. The code itself has been written
to multi-task so tracking can occur in the background. This slows things down slightly but
enables the analysis of the results from a previous sequence while the current sequence is

tracked.

B.4 References

[B.1] Garibotto G. and Lambarelli L. Fast on-line implementation of two-dimensional

median filter. Electronics Letters Vol. 16, pp 24..25, January 1979.

[B.2] Ataman E., Aatre V.K. and Wong K.M. A fast method for real-time median
filtering. IEEE Transactions on Acoustics, Speech and Signal Processing. Vol 27, pp
13..8, 1979.

Appendix C

Pascal Source Code

t@wﬂty%@d&a;y&w/@ufaena&ga&%mnfo%&&
appendl.

Pleadlers who accept the awthior' s cnubation to infesact with thes volume
and expesicnce fhe e cinetndliographic seguences conkained cn Ehed
appendey sl fendd €4es page most woetiid.

UOH1O &

Appendix C

Pascal Source Code

This appendix contains the majority of the important pascal language (Borland Pascal 7.0)
source code that was written by the author during the course of the research. It is included in its

entirety for the following reasons:

< Completeness -

Excluding the two units WarpFtns and Opt_Tri which were produced from code
fragments of C language source, all the remaining code was written by the author.

@ Reduce the frustration of other researchers -
This researcher was frustrated by published code said to be complete that was full of
errors. The majority of the errors were incorrect syntax, presumably due to some other
person manually re-typing the source code and it not being re-checked. All the code
presented in this appendix is the original working code. A special high-lighting macro
was written in MS Word to format the plain text in a similar fashion to modem
computer language editors. Bold is used for key words and /zalics for comments.

@~ An opportunity to place movie into the thesis -
The research described in this thesis is all about motion yet without a computer it is
difficult to demonstrate what is a very visual experience. This is compounded by that
fact the motion of interest is contained in cineradiographic X-ray sequences of the
human spine, not something of everyday experience. In an attempt to give the reader an
opportunity for interaction with this piece of work two short animations have been
included. This has been achieved by the age-old method of the cartoon strip.

@ Reader Interaction Instructions

Holding the volume in its normal position and with fingers held lightly on the bottom
right hand edge of this page. Gently release the pressure and allow the pages to flick by
while looking at the images. Do the same thing again but this time with the volume on
its back and starting from page C-70. The odd page sequence will run in reverse and
contains single-cycle linear prescribed motion for C2 and C5. The even page sequence
contains full prescribed motion based on trajectories measured in a real sequence.

45

Rotation (*) 0

45

Warp60

C-2 The Development of Motion Tracking Strategies For Cineradiographic Images

C.1 Gradient Filters

The following Pascal unit 'GFilters' implements six different gradient filters that form the basis
of the low-level edge-detection algorithms described in section 3.2.1 of chapter 3.

unit GFilters;
{ A range of gradient based image filters and support functions.)
interface
uses
WinCrt, WinDos, WinProcs, WinTypes,
PMXProcs, PMXTypes, Files, Globals, Images, PMXUtils,
ImageWHP, Filters;

Procedure RobertsGradientImage(InImageH, OutImageH : ImageHandle; Gain : real);
Procedure PrewittGradientImage(InImageH, OutImageH : ImageHandle; Gain : real);
Procedure SobelGradientImage(InImageH, OutImageH : ImageHandle; Gain : real);
Procedure KirschGradientImage (InImageH, OutImageH : ImageHandle; Gain : real);
Procedure LaplaceGradientImage (InImageH, OutImageH : ImageHandle; Gain : real);
Procedure StochasticGradientImage(InImageH, OutImageH : ImageHandle;

WSize, SNR : byte; Gain : real);
Procedure LogScaleImage(InImageH, OutImageH : ImageHandle; MinValue, MaxValue : byte);

implementation

Procedure RobertsGradientImage (InImageH, OutImageH : ImageHandle; Gain : real);

{ Roberts product gradient filters InImageH to produce OutImageH. 1if Gain = 0 then
the image is autoscaled after filtering, else if Gain < 0, filtered image is
thresholded by this value else Gain > 0, filtered image scaled by the Gain, trucated
i1f necessary.

)

var
Thres : byte;
srcImage,
destImage : ImagePtr;
destPixelPtr,
srcPixelPtr : PByte;
xSum,
ySum : Integer;
destPixel,
rowByteCount,

x’ YI
Minval, MaxVal : Word;
begin (RobertsGradientImage)
destImage := GlobalLock(OutImageH) ;
srcImage := GlobalLock (InImageH);
rowByteCount := Align32(destImage”.header.size.x);
if Gain < 0.0 then begin (Threshold filtered image with value of gain }
Gain := abs(Gain);
if Gain > White then Thres := White else Thres := Trunc(Gain/2);
for y := 0 to destImage”.header.size.y - 2 do begin
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount);
srcPixelPtr := OffsetPointer(@srcImage”.data, longint(y) * rowByteCount) ;
for x := 0 to destImage”.header.size.x - 2 do begin
xSum := PByte(srcPixelPtr)"
- PByte(OffsetPointer (srcPixelPtr, rowByteCount + 1)}%;
ySum := PByte(OffsetPointer (srcPixelPtr, 1))}"
- PByte(OffsetPointer (srcPixelPtr, rowByteCount))";
destPixel := Trunc(Sqrt (Sqr(Longint(xSum)) + Sqr (Longint (ySum))));
if destPixel > Thres then destPixelPtr” := White else destPixelPtr” := Black;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr = OffsetPointer (srcPixelPtr, 1);
end; (for x)
end; (for y }
end (if Gain < 0.0)
else if Gain > 0 then begin { filter and scale image by gain, truncate if necessary }
Gain := Gain / 2; (ensures unity gain response }

45

Rotation [*} 0

Warp30

Appendix C - Pascal Source Code C-3

for y := 0 to destImage”.header.size.y - 2 do begin
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y) * rowByteCount) ;
for x := 0 to destImage”.header.size.x - 2 do begin

xSum := PByte(srcPixelPtr)”~-PByte (OffsetPointer (srcPixelPtr, rowByteCount + 1))";

ySum PByte (OffsetPointer (srcPixelPtr, 1))"
- PByte(OffsetPointer (srcPixelPtr, rowByteCount))";
destPixel := Trunc(Gain * Sqrt(Sqr(longint (xSum)) + Sqgr(longint (ySum))));
if destPixel > White then destPixelPtr” := White
else destPixelPtr” := destPixel;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr = OffsetPointer (srcPixelPtr, 1);

end; (for x)

end; (for y)

end (if Gain > 0}
else begin (Gain = 0, -> Auto-scale after filtering)

MinVal := 2*MaxInt;
MaxVal := 0;
for y := 0 to destImage”.header.size.y - 2 do begin (find min and max values)}
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y) * rowByteCount);
for x := 0 to destImage”.header.size.x - 2 do begin
xSum := PByte(srcPixelPtr)"

- PByte(OffsetPointer (srcPixelPtr, rowByteCount + 1))";
ySum := PByte(OffsetPointer (srcPixelPtr, 1))"*

- PByte(OffsetPointer (srcPixelPtr, rowByteCount))";
destPixel := Trunc(Sqrt(Sqr(longint(xSum)) + Sqr (longint(ySum))));
if destPixel > MaxVal then MaxVal := destPixel;
if destPixel < MinVal then MinVal := destPixel;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr = OffsetPointer (srcPixelPtr, 1);

end; (for x)
end; (for y)

writeln(Maxval, ', ',Minval);
for y := 0 to destImage”.header.size.y - 2 do begin (filter and scale the image)
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y) * rowByteCount);
for x := 0 to destImage”.header.size.x - 2 do begin
xSum := PByte (srcPixelPtr)”
- PByte(OffsetPointer(srcPixelPtr, rowByteCount + 1))%;
ySum := PByte(OffsetPointer(srcPixelPtr, 1))"*
- PByte(OffsetPointer (srcPixelPtr, rowByteCount))";
destPixel := Trunc(Sqrt (Sqr(Longint (xSum)) + Sqr (Longint (ySum))));
destPixelPtr” := (longint(White)* (destPixel - MinVal)) div (MaxVal-MinVal);
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr = OffsetPointer (srcPixelPtr, 1);

end; (for x)
end; (for y)}
end; (else -> Gain <0)
GlobalUnlock (InImageH) ;
GlobalUnlock (OutImageH) ;
end; (RobertsGradientImage)

Procedure PrewittGradientImage (InImageH, OutImageH : ImageHandle; Gain : real);

(Prewitt gradient filters InImageH to produce OutImageH. If Gain = 0 then the image
is autoscaled after filtering, else if Gain < 0, filtered image is thresholded by
this value else Gain > 0, ifiltered image scaled by the Gain, trucated if necessary.)

var

srcPixel,

Thres : Byte;

srclmage,

destImage : ImagePtr;

destPixelPtr,

srcPixelPtr : PByte;

xSum,

ySum : Integer;

destPixel,

rowByteCount,

X, Y.,

MinVal, MaxVal : Word;

45

Rotation (7] 0

-45

Warp60

C-4 The Development of Motion Tracking Strategies For Cineradiographic Images

Procedure CalcGradient;

begin
xSum := 0;
ySum := 0;
Inc (xSum, Word(PByte(OffsetPointer(srcPixelPtr, - 1))%)); {10 -1
srcPixel := PByte(OffsetPointer(srcPixelPtr, - rowByteCount - 1))"; {10 -1
Inc(xSum, srcPixel); {10 -1)

Inc (ySum, srcPixel);
Inc (ySum, Word(PByte (OffsetPointer(srcPixelPtr, - rowByteCount))"));
srcPixel := PByte(OffsetPointer (srcPixelPtr, rowByteCount - 1))%;
Inc(xSum, srcPixel);
Dec (ySum, srcPixel);
srcPixel := PByte(OffsetPointer(srcPixelPtr, - rowByteCount + 1))";
Dec (xSum, srcPixel) ;
Inc (ySum, srcPixel);
Dec (ySum, Word (PByte(OffsetPointer (srcPixelPtr, rowByteCount))"));
srcPixel := PByte(OffsetPointer (srcPixelPtr, rowByteCount + 1))";
Dec (xSum, srcPixel);
Dec (ySum, srcPixel);
Dec (xSum, Word(PByte(OffsetPointer (srcPixelPtr, 1))"));

end; (CalcGradient)

begin (PrewittGradientImage)

destImage := GlobalLock (OutImageH) ;
srcImage := GlobalLock(InImageH);
rowByteCount := Align32(destImage”.header.size.x);
if Gain < 0.0 then begin (threshold image after filter)
Gain := abs(Gain);
if Gain > White then Thres := White else Thres := Trunc(Gain);
for y := 1 to destImage”.header.size.y - 2 do begin
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount + 1);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y) * rowByteCount + 1);
for x := 1 to destImage”.header.size.x - 2 do begin
CalcGradient;
destPixel := Trunc(Sqrt(Sqr(Longint(xSum)) + Sqr(Longint (ySum))));
if destPixel > 3 * Thres then destPixelPtr” := White
else destPixelPtr” := Black;
destPixelPtr := OffsetPointer (destPixelPtr, 1);

srcPixelPtr := OffsetPointer (srcPixelPtr, 1);
end; (for x)
end; (for y)
end (if Gain < 0)
else if Gain > 0.0 then begin (filter and scale image by gain, truncate if necessary)
Gain := Gain / 3; { ensures unity response)
for y := 1 to destImage”.header.size.y - 2 do begin
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount + 1);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y) * rowByteCount + 1);
for x := 1 to destImage”.header.size.x - 2 do begin
CalcGradient;
destPixel := Trunc(Gain * Sqrt(Sqr (Longint(xSum)) + Sqr(Longint(ySum))));
if destPixel > White then destPixelPtr” := White
else destPixelPtr” := destPixel;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr := OffsetPointer (srcPixelPtr, 1);
end; (for x)
end; (for y)
end (else if Gain > 0.0)
else begin (Gain = 0.0 -> autoscale)

Minval := 2*MaxInt;
MaxVal := 0;
for y := 1 to destImage”.header.size.y - 2 do begin (find min and max values)
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount + 1);
srcPixelPtr := OffsetPointer(@srcImage”.data, longint(y) * rowByteCount + 1);
for x := 1 to destImage”.header.size.x - 2 do begin
CalcGradient;
destPixel := Trunc(Sqrt(Sqr(Longint(xSum)) + Sqr(Longint(ySum))));
if destPixel > MaxVal then MaxVal := destPixel;
i£ destPixel < MinVal themn MinVal := destPixel;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr = OffsetPointer (srcPixelPtr, 1);

end; (for x)
end; (for y)

&5

Rotation (] 01~

TR e

Warp30

Appendix C - Pascal Source Code C-5

for y := 1 to destImage”.header.size.y - 2 do begin
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount + 1);
srcPixelPtr := OffsetPointer(@srcImage”.data, longint(y) * rowByteCount + 1);
for x := 1 to destImage”.header.size.x - 2 do begin
CalcGradient;
destPixel := Trunc(Sqrt (Sqr (Longint(xSum)) + Sqr(Longint (ySum))));
destPixelPtr” := (longint (White)* (destPixel - MinVal)) div (MaxVal-MinVal) ;
destPixelPtr := OffsetPointer(destPixelPtr, 1);
srcPixelPtr := OffsetPointer(srcPixelPtr, 1);

end; (for x)
end; (for y)
end; (else Gain = 0.0)
GlobalUnlock (InImageH) ;
GlobalUnlock (OutImageH) ;
end; (PrewittGradientImage)

Procedure SobelGradientImage (InImageH, OutImageH : ImageHandle; Gain : real);

(Sobel gradient filters InImageH to produce OutImageH. If Gain = 0 then the image 1is
autoscaled after filtering, else if Gain < 0, filtered image is thresholded by this
value else Gain > 0, filtered image scaled by the Gain, trucated if necessary.

}

var
srcPixel,

Thres : Byte;
srcImage,

destImage : ImagePtr;
destPixelPtr,
srcPixelPtr : PByte;
xSum,

ySum : Integer;
destPixel,
rowByteCount,

X,Y,

MinVal, MaxVal : Word;

Procedure CalcGradient;

begin
xSum := 0;
ySum := 0;
Inc (xSum, 2 * Word(PByte(OffsetPointer(srcPixelPtr, - 1))")); {10 -1
srcPixel := PByte(OffsetPointer (srcPixelPtr, - rowByteCount - 1))"; { 20 -2}
Inc (xSum, srcPixel); {1 0 -1 }
Inc (ySum, srcPixel);
Inc(ySum, 2 * Word(PByte(OffsetPointer (srcPixelPtr, - rowByteCount))"));
srcPixel := PByte(OffsetPointer(srcPixelPtr, rowByteCount - 1))*;
Inc (xSum, srcPixel);
Dec (ySum, srcPixel);
srcPixel := PByte(OffsetPointer(srcPixelPtr, - rowByteCount + 1))%;
Dec (xSum, srcPixel);
Inc (ySum, srcPixel);
Dec(ySum, 2 * Word(PByte(OffsetPointer (srcPixelPtr, rowByteCount))"));
srcPixel := PByte(OffsetPointer(srcPixelPtr, rowByteCount + 1))";
Dec (xSum, srcPixel);
Dec (ySum, srcPixel);
Dec (xSum, 2 * Word (PByte(OffsetPointer (srcPixelPtr, 1))%));
end; (CalcGradient)
begin (SobelGradientImage)
destImage := GlobalLock (OutImageH) ;
srcImage := GlobalLock(InImageH) ;
rowByteCount := Align32(destImage”.header.size.x);
if Gain < 0.0 then begin (threshold image after filter }
Gain := abs(Gain);
if Gain > White then Thres := White else Thres := Trunc(Gain);
for y := 1 to destImage”.header.size.y - 2 do begin
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount + 1);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y) * rowByteCount + 1);
for x := 1 to destImage”.header.size.x - 2 do begin
CalcGradient;
destPixel := Trunc(Sqrt (Sqr (Longint (xSum)) + Sqr (Longint (ySum))));
if destPixel > 5 * Thres then destPixelPtr” := White

45

Rotation (') 0]+

-45

Warp60

C-6 The Development of Motion Tracking Strategies For Cineradiographic Images

else destPixelPtr” := Black;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr := OffsetPointer(srcPixelPtr, 1);
end; (for x)
end; (fory)
end (if Gain < 0.0 }
else if Gain > 0.0 then begin (filter and scale image by gain, truncate if necessary)
Gain := Gain / 5; (ensures unity response }
for y := 1 to destImage”.header.size.y - 2 do begin
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount + 1);
srcPixelPtr := OffsetPointer(@srcImage”.data, longint(y) * rowByteCount + 1);
for x := 1 to destImage”.header.size.x - 2 do begin
CalcGradient;
destPixel := Trunc(Gain * Sqrt(Sqr(Longint (xSum)) + Sqr (Longint(ySum))));
if destPixel > White then destPixelPtr” := White
else destPixelPtr” := destPixel;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr := OffsetPointer(srcPixelPtr, 1);
end; (for x)
end; (for y)
end (else if Gain > 0.0)
else begin (Gain = 0.0 -> autoscale after filter }
MinVal := 2*MaxInt;
MaxVal := 0;
for y := 1 to destImage”.header.size.y - 2 do begin (find min and max values }
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount + 1);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y) * rowByteCount + 1);
for x := 1 to destImage”.header.size.x - 2 do begin
CalcGradient;
destPixel := Trunc(Sqrt(Sqr(Longint (xSum)) + Sqr (Longint(ySum))));
if destPixel > MaxVal then MaxVal := destPixel;
if destPixel < MinVal then MinVal := destPixel;
destPixelPtr := OffsetPointer(destPixelPtr, 1);
srcPixelPtr := OffsetPointer (srcPixelPtr, 1);
end; (for x)
end; (for y)

writeln(MaxVal, ' ',MinVal);
for y := 1 to destImage”.header.size.y - 2 do begin (filter and scale the image)
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount + 1);
srcPixelPtr := OffsetPointer(@srcImage”.data, longint(y) * rowByteCount + 1);
for x := 1 to destImage”.header.size.x - 2 do begin
CalcGradient;
destPixel := Trunc(Sqrt(Sqr (Longint (xSum)) + Sqr (Longint (ySum))));
destPixelPtr” := (longint(White)* (destPixel - MinVal)) div (MaxVal-MinVal) ;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr = OffsetPointer (srcPixelPtr, 1);

end; (for x)
end; (for y)
end; (else Gain = 0.0}
GlobalUnlock (InImageH); GlobalUnlock(OutImageH);
end; (SobelGradientImage)

Procedure KirschGradientImage (InImageH, OutImageH : ImageHandle; Gain : real);

(Kirsch compass gradient filters InImageH to produce OutImageH. If Gain = 0 then the
image 1is autoscaled after filtering, else if Gain < 0, filtered image is thresholded
by this value else Gain > 0, filtered image scaled by the Gain, trucated if necessary

}

var
srcPixel,

Thres : Byte;
srclmage,

destImage : ImagePtr;
destPixelPtr,
srcPixelPtr : PByte;
xSuml, ySuml,

xSum2, ySum2 : Integer;
destPixel,

rowByteCount,

X, Y,

MinVal, MaxVal : Word;

s
o

|Fotation (7] 0{-

T

___.__"..__

r'S
an

35

Warp30

Appendix C - Pascal Source Code

C-7

Procedure CalcGradient;

begin
xSuml := 0;
ySuml := 0; {4 Kirsch masks)
Inc (xSuml, Word(PByte(OffsetPointer(srcPixelPtr, - 1))%)); (1 0 -1
srcPixel := PByte(OffsetPointer (srcPixelPtr, - rowByteCount - 1))%; (1 0 -1}
Inc (xSuml, srcPixel); (1 0 -1}
Inc (ySuml, srcPixel);
Inc(ySuml, Word(PByte(OffsetPointer (srcPixelPtr, - rowByteCount))®)); f 1 1 1}
srcPixel := PByte(OffsetPointer(srcPixelPtr, rowByteCount - 1))"; { 0 0 0)
Inc (xSuml, srcPixel); { -1 -1 -1)
Dec (ySuml, srcPixel);
srcPixel := PByte(OffsetPointer (srcPixelPtr, - rowByteCount + 1))%;
Dec (xSuml, srcPixel) ;
Inc (ySuml, srcPixel);
Dec (ySuml, Word (PByte(OffsetPointer(srcPixelPtr, rowByteCount))"));
srcPixel := PByte(OffsetPointer(srcPixelPtr, rowByteCount + 1))"%;
Dec (xSuml, srcPixel);
Dec (ySuml, srcPixel);
Dec (xSuml, Word(PByte(OffsetPointer (srcPixelPtr, 1))°7));
xSuml := abs(xSuml);
ySuml := abs(ySuml);
xSum2 := 0;
ySum2 := 0;
Inc(xSum2, Word(PByte(OffsetPointer(srcPixelPtr, - rowByteCount - 1))7%)); {1 1 0}
srcPixel := PByte(OffsetPointer (srcPixelPtr, - rowByteCount))"; {1 0 -1
Inc(xSum2, srcPixel); {f 0 -1 -1
Inc (ySum2, srcPixel);
Inc (ySum2, Word(PByte (OffsetPointer (srcPixelPtr, - rowByteCount + 1))7*)); (0 1 1}
srcPixel := PByte(OffsetPointer (srcPixelPtr, - 1))%; (-1 0 1)
Inc (xSum2, srcPixel); (-1 -1 0}
Dec (ySum2, srcPixel);
srcPixel := PByte(OffsetPointer (srcPixelPtr, + 1))";
Dec (xSum2, srcPixel);
Inc (ySum2, srcPixel);
Dec (ySum2, Word(PByte(OffsetPointer (srcPixelPtr, rowByteCount - 1))%));
srcPixel := PByte(OffsetPointer (srcPixelPtr, rowByteCount))”;
Dec (xSum2, srcPixel);
Dec (ySum2, srcPixel);
Dec (xSum2, Word(PByte (OffsetPointer (srcPixelPtr, rowByteCount + 1))%));
xSum2 := abs(xSum2) ;
ySum2 : = abs(ySum2);
(find largest partial gradient)
destPixel := xSuml;
if ySuml > destPixel then destPixel := ySuml;
if xSum2 > destPixel then destPixel := xSum2;
if ySum2 > destPixel then destPixel := ySum2;
end; (CalcGradient)
begin (KirschGradientImage)
destImage := GlobalLock (OutImageH) ;
srcImage := GlobalLock(InImageH):;
rowByteCount := Align32(destImage”.header.size.x);
if Gain < 0.0 then begin (threshold image after filter }
Gain := abs(Gain);
if Gain > White then Thres := White else Thres := Trunc(Gain);
for y := 1 to destImage”.header.size.y - 2 do begin
destPixelPtr := OffsetPointer(@destImage”.data, longint(y) * rowByteCount + 1);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y) * rowByteCount + 1);
for x := 1 to destImage”.header.size.x - 2 do begin
CalcGradient;
if destPixel > 5 * Thres then destPixelPtr” := White
else destPixelPtr” := Black;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr := OffsetPointer (srcPixelPtr, 1);

end; (for x)
end; (for y)
end (if Gain < 0.0)}
else if Gain > 0.0 then begin (filter and scale image by gain,
Gain := Gain / 5; { ensures unity response)}

truncate if necessary)

45

Rotation *) 01+

Warp60

* rowByteCount + 1);
* rowByteCount + 1);

C-8 The Development of Motion Tracking Strategies For Cineradiographic Images
for y := 1 to destImage”.header.size.y - 2 do begin
destPixelPtr := OffsetPointer (@destImage”.data, longint(y)
srcPixelPtr := OffsetPointer(@srcImage”.data, longint(y)
for x := 1 to destImage”.header.size.x - 2 do begin
CalcGradient;
destPixel := Trunc(Gain * destPixel);
if destPixel > White then destPixelPtr” := White;
destPixelPtr” := destPixel;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr := OffsetPointer (srcPixelPtr, 1);
end; (for x)
end; (for y }

end (else if Gain > 0.0)

else begin (Gain =
*MaxInt;

Minval :=
MaxVal :=
for y :=

2
0

7

destPixelPtr :=

srcPixelPtr

0.0 -> autoscale after filter)

OffsetPointer (@destImage”.data,

:= OffsetPointer (@srcImage”.data, longint (y)

for x := 1 to destImage”.header.size.x - 2 do begin
CalcGradient;
if destPixel > MaxVal then MaxVal := destPixel;
if destPixel < MinVal then MinVal := destPixel;

1 to destImage”.header.size.y - 2 do begin (find min and max values }
longint (y)

* rowByteCount + 1);
* rowByteCount + 1);

destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr := OffsetPointer (srcPixelPtr, 1);
end; (for x)
end; (for y }
for y := 1 to destImage”.header.size.y - 2 do begin (filter and scale the image }
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount + 1);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y) * rowByteCount + 1);
for x := 1 to destImage”.header.size.x - 2 do begin

CalcGradient;

destPixelPtr” :=

(longint (White) * (destPixel - MinVal))

div (MaxVal-MinVal) ;

Gain real);

destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr := OffsetPointer (srcPixelPtr, 1);
end; (for x)
end; (for y)
end; (else Gain = 0.0)
GlobalUnlock (InImageH) ;
GlobalUnlock (OutImageH) ;
end; (KirschGradientImage)
e R W M ____ B _____crcooooog
Procedure LaplaceGradientImage (InImageH, OutImageH ImageHandle;

{ Laplacian filters InImageH using a 3x3 mask to produce OutImageH.

the image is autoscaled after filtering,
if Gain < 0 then Gain is the threshold used to

If Gain = 0 then

else i1f Gain > 0, filtered image scaled by

{ spatial position for zero-crossing test)

the Gain, trucated if necessary.
detected zero-crossings.
)
type
MinMaxRec = record
min, max integer;
end;
var
srcPixel,
i Byte;
srcImage,
destImage : ImagePtr;
intImage : intImagePtr;
intImageH : THandle;
destPixelPtr,
srcPixelPtr : PByte;
intPixelPtr : IntPtr;
Minval, MaxVal,
Value,
Thres,
destPixel : Integer;
rowByteCount,
X,Y,
width : Word;
Position Array([l..4] of MinMaxRec;
ZeroCross Boolean; (true if a Zero-crossing is detected)

45

Rotation(*) 0

Warp30

Appendix C - Pascal Source Code

C-9

Error ErrorCode;

begin (LaplaceGradientImage)

destImage := GlobalLock(OutImageH) ;

srcImage := GlobalLock(InImageH) ;
rowByteCount := Align32(destImage”.header.size.x);
Error := CreatelIntImage(intImageH, destImage”.header.size.x,

if Error <> NoOErr then begin
writeln('Insufficient memory');

destImage”.header.size.y);

Exit;
end;
intImage := GlobalLock(intImageH) ;
Width := destImage”.header.size.x;
MinvVal := MaxInt;
MaxVal := - MinVal;
for y := 1 to destImage”.header.size.y - 2 do begin
intPixelPtr := OffsetPointer (@intImage”.data, (longint(y) * Width + 1) * SizeOfInt);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y) * rowByteCount + 1);

for x := 1 to destImage”.header.size.x - 2 do begin
destPixel :=
- PByte(OffsetPointer (srcPixelPtr, - rowByteCount - 1))" -1 -1 -1}
- PByte (OffsetPointer (srcPixelPtr, - rowByteCount))" (-1 8 -1
- PByte (OffsetPointer (srcPixelPtr, - rowByteCount + 1))" { -1 -1 -1)
- PByte(OffsetPointer(srcPixelPtr, - 1))~
+ 8 * PByte(srcPixelPtr)"
- PByte(OffsetPointer(srcPixelPtr, + 1))"°
- PByte(OffsetPointer (srcPixelPtr, + rowByteCount - 1))"
- PByte(OffsetPointer(srcPixelPtr, + rowByteCount))"
- PByte(OffsetPointer(srcPixelPtr, + rowByteCount + 1))%;
if destPixel > MaxVal then MaxVal := destPixel;
if destPixel < MinVal then MinVal := destPixel;
intPixelPtr” := destPixel;
intPixelPtr := OffsetPointer (intPixelPtr, SizeOfInt);
srcPixelPtr := OffsetPointer (srcPixelPtr, 1};
end; (for x)
end; (for y)

If Gain < 0.0 then begin (find all zero-crossings and set to White)}

Thres := Trunc(Gain);
(A zero-crossing is declare if in any direction -ve 0 +ve

{ internal +/- threshold for zero-crossing detection }

}

Position[l]) .min := - Width - 1; Position(l).max := + Width + 1; { + diagonal)
Position(2].min := + Width - 1; Position(2]).max := - Width + 1; { - diagonal)}
Position(3) .min := - Width; Position([3] .max := + Width; { up/down J
Position[4]).min := - 1; Position(4) .max := + 1; { lefet/right)}
for y := 1 to destImage”.header.size.y - 2 do begi

intPixelPtr :=

OffsetPointer (@intImage”.data, (longint(y) * wWidth + 1)

destPixelPtr := OffsetPointer (@destImage”.data, longint(y) *
for x := 1 to destImage”.header.size.x - 2 do begin
ZeroCross := False;
.= 10
While not (ZeroCross) and (i <= 4) do begin
Minval :=
Integer (PByte (OffsetPointer(intPixelPtr,
MaxVal :=

Integer (PByte(OffsetPointer (intPixelPtr,
if ((MinvVal < -Thres) and (MaxVal > Thres))
or ((MinVal > Thres) and (MaxVal <
inc(i);
end; (while)
if ZeroCross then destPixelPtr” :=

intPixelPtr := OffsetPointer (intPixelPtr, SizeOfInt);
destPixelPtr := OffsetPointer (destPixelPtr, 1);
end; (for x)

end; (for y)

end (If Gain < 0.0 }
else if Gain > 0.0 then begin (fixed scale by gain }
for y := 1 to destlmage”.header.size.y - 2 do begin
intPixelPtr := OffsetPointer (@intImage”.data, (longint(y)
destPixelPtr := OffsetPointer (@destImage”.data,
for x := 1 to destImage”.header.size.x - 2 do begin

Position(i] .max *

-Thres)) then ZeroCross :=

White else destPixelPtr” :=

longint (y)

* SizeOfInt);
rowByteCount + 1);

Position(i].min * SizeOfInt))");

SizeOfInt))");

True;

Black;

* Width + 1) *SizeOfInt);
* rowByteCount + 1);

45

|Rotation ('] 0

iE
4

Warp60

C-10 The Development of Motion Tracking Strategies For Cineradiographic Images

destPixel :=
Trunc ((longint (White) * (Gain*integer (intPixelPtr”) - MinVal))/(MaxVal-MinVal));
If destPixel > White then destPixel := White
else if destPixel < Black then destPixel := Black;
destPixelPtr” := destPixel;
intPixelPtr := OffsetPointer(intPixelPtr, SizeOfInt);
destPixelPtr := OffsetPointer(destPixelPtr, 1);

end; (for x)
end; (for y)
end (else if Gain > 0.0)
else begin (Gain = 0.0 -> autoscale to byte range)
for y := 1 to destImage”.header.size.y - 2 do begin
intPixelPtr := OffsetPointer(@intImage”.data, (longint(y)
destPixelPtr := OffsetPointer (@destImage”.data, longint(y)
for x := 1 to destImage”.header.size.x - 2 do begin
destPixelPtr” :=

* Width + 1)*SizeOfInt);

* rowByteCount + 1);

(longint (White) * (integer (intPixelPtr”) - MinVal)) div (MaxVal-MinVal);

intPixelPtr := OffsetPointer(intPixelPtr, SizeOfInt);
destPixelPtr := OffsetPointer(destPixelPtr, 1);
end; (for x)
end; (for y)
end; (else Gain = 0.0)
GlobalUnlock (InImageH) ;
GlobalUnlock (OutImageH) ;
DestroyIntImage (intImageH) ;
end; (LaplaceGradientImage)

Procedure StochasticGradientImage (InImageH, OutImageH : ImageHandle;

WSize, SNR : byte; Gain : real):
If Gain = 0 then the

{ Stochastic gradient filters InImageH to produce OutImageH.

image 1s autoscaled after filtering, else if Gain < 0, filtered image 1s thresholded
by this value else Gain > 0, filtered image scaled by the Gain, trucated if
necessary. SNR (signal-to-noise ratio) size 1 and 9 only supported.

}

var
srcPixel,
Thres,
HalfWSize : Byte;
srcImage,
destImage : ImagePtr;
destPixelPtr,
srcPixelPtr : PByte;
xSum, ySum,
i, j : Integer;
destPixel,
rowByteCount,
X,y,
MinvVal, MaxVal : Word;
wt : Array[-2..+2,-2..+2) of Shortint;

Procedure CalcGradient;

var
i1, j = Shoxrtint;
begin
xSum := 0;
ySum := 0;
for i := -HalfWSize to +HalfWSize do begin
for j := -HalfWSize to +HalfWSize do begin

inc (xSum, wt([i,j] * Word(PByte(OffsetPointer (srcPixelPtr,
inc(ySum, wt{j,i] * Word(PByte(OffsetPointer (srcPixelPtr,
end; (for j }
end; (for 1)
xSum := xSum div 32;
ySum := ySum div 32;
end; (CalcGradient)

begin (StochasticGradientImage)

destImage := GlobalLock (OutImageH) ;
srcImage := GlobalLock(InImageH);
rowByteCount := Align32(destImage”.header.size.x);

if WSize = 3 then begin

i*rowByteCount + j))~

));
i*rowByteCount + j))"));

45

Rolston (1 0+

Warp30

Appendix C - Pascal Source Code C-11

if SNR = 1 then begin

wt(-1,-1] := 31; wt[-1,0] := 0; wt(-1,1] := -31;
wt(0,-1]) := 32; wt([0,0] := 0; wt(0,1] := -32;
wt[l,-1] := 31; wt([l,0] := 0; wt(l,1] := -31;
end (SNR=1)
else begin (SNR=9)
wt[-1,-1] := 25; wt(-1,0)] := 0; wt([-1,1) := -25;
wt(0,-1] := 32; wt(0,0] := 0; wt([0,1] := -32;
wt(1l,-1] := 25; wt[1,0] := 0; wt[l,1] := -25;
end;
end (WSize = 3)
else begin
if SNR = 1 then begin
wt([-2,-2] := 26; wt(~2,-1]) := 27; wt[-2,0] := 0; wt([-2,1] := -27; wt([-2,2] := -26;
wt[-1,-2] := 27; wt([-1,-1])] :=29; wt[-1,0] := 0; wt[-1,1] := -29; wt[-1,2] := -27;
wt[0,-2] := 28; wt(0,-1] := 32; wt(0,0] := 0; wt[0,1] := -32; wt([0,2] := -28;
wt(l,-2] := 27; wt([l,-1] := 29; wt(1,0] := 0; wt[1l,1] := -29; wt([1l,2] := -27;
wt([2,-2] :=26; wt(2,-1] := 27; wt(2,0] := 0; wt([2,1] := -27; wt([2,2] := -26;
end (SNR=1)
else begin (SNR=9)
wt[-2,-2] := 9; wt[-2,-1] := 12; wt[-2,0] := 0; wt([-2,1] := -12; wt[-2,2] := -9;
wt(-1,-2] := 12; wt(-1,-1] := 18; wt[-1,0] := 0; wt([-1,1) := -18; wt[-1,2] := -12;
wt[0,-2] := 15; wt([0,-1] := 32; wt(0,0] := 0; wt[0,1] := -32; wt([0,2] := -15;
wt(l,-2] :=12; wt[l,-1) := 18; wt([1l,0} := 0; wt([1l,1]) := -18; wt[1,2] := -12;
wt[2,-2] := 9; wt([2,-1] := 12; wt([2,0] := 0; wt([2,1] := -12; wt[2,2] := -9;
end;
end; (else wSize = 5)
HalfwSize := WSize div 2;
if Gain < 0.0 then begin (threshold image after filter)
Gain := abs(Gain);
if Gain > White then Thres := White else Thres := Trunc(Gain);
for y := HalfWSize to destImage”.header.size.y - 1 - HalfWSize do begin
destPixelPtr :=
OffsetPointer (@destImage”.data, longint(y) * rowByteCount + HalfWSize);
srcPixelPtr :=
OffsetPointer (@srcImage”.data, longint(y) * rowByteCount + HalfWSize);
for x := HalfWSize to destImage”.header.size.x - 1 - HalfWSize do begin
CalcGradient;
destPixel := Trunc(Sqrt(Sqr (Longint (xSum)) + Sqr (Longint(ySum))));
if destPixel > Thres then destPixelPtr” := White
else destPixelPtr”~ := Black;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr := OffsetPointer(srcPixelPtr, 1);

end; (for x)
end; (for y)
end (if Gain < 0)
else if Gain > 0.0 then begin (filter and scale image by gain, truncate 1f necessary)

for y := HalfWSize to destImage”.header.size.y - 1 - HalfWSize do begin
destPixelPtr :=
OffsetPointer (@destImage”.data, longint(y) * rowByteCount + HalfWSize);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y)*rowByteCount + HalfWSize);
for x := HalfWSize to destImage”.header.size.x - 1 - HalfWSize do begin
CalcGradient;
destPixel := Trunc(Gain * Sqrt(Sqr(Longint(xSum)) + Sgr(Longint(ySum))));
if destPixel > White then destPixelPtr” := White;
destPixelPtr” := destPixel;

destPixelPtr := OffsetPointer(destPixelPtr, 1);
srcPixelPtr = OffsetPointer(srcPixelPtr, 1);
end; (for x)}
end; (for y)
end (else if Gain > 0.0)
else begin (Gain = 0.0 -> autoscale)}
MinVal := 2*MaxInt;
MaxVal := 0;
for y := HalfWSize to destImage”.header.size.y-1-HalfWSize do begin
(Find min and max values)
destPixelPtr :=
OffsetPointer (@destImage”.data, longint(y) * rowByteCount + HalfWSize);
srcPixelPtr :=
OffsetPointer (@srcImage”.data, longint(y) * rowByteCount + HalfWSize);

45

Rotation (*) 04-+-+

Warp60

C-12 The Development of Motion Tracking Strategies For Cineradiographic Images

for x := HalfWSize to destImage”.header.size.x-1-HalfWSize do begin
CalcGradient;
destPixel := Trunc(Sqrt(Sqr(Longint(xSum)) + Sqr(Longint(ySum))));
if destPixel > MaxVal then MaxVal := destPixel;
if destPixel < MinVal then MinVal := destPixel;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr := OffsetPointer (srcPixelPtr, 1);

end; (for x)

end; (for y }

for y := HalfWSize to destImage”.header.size.y-1-HalfWSize do begin
destPixelPtr :=
OffsetPointer (@destImage”.data, longint(y) * rowByteCount + HalfWSize);
srcPixelPtr :=
OffsetPointer (@srcImage”.data, longint(y) * rowByteCount + HalfWSize);
for x : = HalfWSize to destImage”.header.size.x-1-HalfWSize do begin
CalcGradient;
destPixel := Trunc(Sqrt(Sqr(Longint(xSum)) + Sqr(Longint(ySum))));
destPixelPtr” := (longint(White) *(destPixel - MinVal)) div (MaxVal-MinVal) ;
destPixelPtr := OffsetPointer(destPixelPtr, 1);
srcPixelPtr = OffsetPointer(srcPixelPtr, 1);

end; (for x)
end; (for y)
end; (else Gain = 0.0)
GlobalUnlock(InImageH) ;
GlobalUnlock(OutImageH) ;
end; (StochasticGradientImage)

I R e e e
Procedure LogScalelImage(InImageH, OutImageH : ImageHandle; MinValue, MaxValue : byte);
(Logarithmically scale the values in InImageH to produce OutImageH. For X-ray)

{ images this 1is equivalent to a relative density image. MinValue and MaxValue set)
{ the dynamic range of OutImage.)}
var
minVval,
maxVal,
Value : byte;
destPixel : integer;
srcIlmage,
destImage : ImagePtr;
destPixelPtr,
srcPixelPtr : PByte;
rowByteCount,
X, Y : word;
Log : Array(0..255] of byte;
begin (LogScaleImage)
destImage := GlobalLock(OutImageH) ;
srcImage := GlobalLock(InImageH);
rowByteCount := Align32(destImage”.header.size.x);
for vy := 0 to destImage”.header.size.y - 1 do begin (find min and max values }
destPixelPtr := OffsetPointer(@destImage”.data, longint(y) * rowByteCount);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y) * rowByteCount);
for x := 0 to destImage”.header.size.x - 1 do begin
Value := PByte(srcPixelPtr)";
i £ value > maxVal then maxVal := Value;
if value < minVal them minVal := Value;
destPixelPtr Of fsetPointer (destPixelPtr, 1);

srcPixelPtr
end; (for x)
end; (for y)

OffsetPointer (srcPixelPtr, 1);

for x := minVal to maxVal do begin (compute the logaritmic lookup table }
log(x] := Trunc(White * (ln(x-minVal+l)) / ln(maxVal-minVal+1l));
end; (for x)
for vy := 0 to destImage”.header.size.y - 1 do begin (log scale the image)
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount);
srcPixelPtr := OffsetPointer (@srcImage”.data, longint(y) * rowByteCount);
for x := 0 to destImage”.header.size.x - 1 do begin
destPixel :=
Trunc (White * longint(log[PByte(srcPixelPtr)”] - minValue)/(maxValue-minValue)) ;
if destPixel > White then destPixel := White
else if destPixel < Black then destPixel := Black;
destPixelPtr” := destPixel;
destPixelPtr := OffsetPointer (destPixelPtr, 1);

45

[Rotation(*) O

Warp30

Appendix C - Pascal Source Code C-13

srcPixelPtr := OffsetPointer(srcPixelPtr, 1);
end; (for x)
end; (for y)
end; (LogScaleImage)

end. (GFilters)}

C.2 Canny Edge-detector

The following Pascal unit 'Canny' is an implementation of the Canny edge-detection algorithm
described in detail in section 3.2.2 of chapter 3.

unit Canny;
interface

uses
WinCrt, WinDos, WinProcs, WinTypes,
PMXProcs, PMXTypes, Files, Globals, Images, PMXUtils,
ImageWHP, Filters;

const
Black = 0;
Grey = 128;
White = 255;
Function GradGFilterImage (InImageH : ImageHandle;
var GradImageH : ReallmageHandle;
var DirectionImageH : ImageHandle; StDev : real;
FullDirection : boolean) : ErrorCode;
Function NMSFilterImage (InGradImageH, DirectionImageH : ImageHandle;

var OutGradImageH : ImageHandle): ErrorCode;

Procedure ThresholdImage2 (InImageH, OutImageH : ImageHandle);
Procedure HysteresisThresholdImage (GradImageH, NMSGradImageH, ThresImageH : ImageHandle);

Function ArcTan2(var x, y : real) : real;

Function ArcTan3(var x, y : real) : real;
implementation
(=====z======z=z=====z=z=z=z=====z=z=========z==z====z=============s===============z======z=z=z======z=z=z=z)

Function ArcTan2(var x, y : real) : real;
{ Proper arctan 0->2pi)
var
v : real;
begin
if x = 0.0 then begin
if y = 0.0 then v := 0.0
else v := pi/2 * abs(y)/y:
end
else v := y/x;
if x < 0.0 then ArcTan2 := pi + arcTan(v)
else if y < 0.0 then ArcTan2 := 2*pi + arcTan(v)
else ArcTan2 := arcTan(v);
end;
___)
Function ArcTan3 (var x, y : real) : real;
(Mirror Arctan, 0-2pi becomes: 0->pi/2->pi->pi/2->0)
var
v real;
begin
if x = 0.0 then begin
if y = 0.0 then v := 0.0

45

MNMMF]u\TfST?“ g

i
o

Warp60

C-14 The Development of Motion Tracking Strategies For Cineradiographic Images

else Vv := pi/2 * abs(y)/y:

end
else v := y/x;
if x < 0.0 then begin
if y < 0.0 then ArcTan3 := pi - arcTan(v)
else ArcTan3 := pi + arcTan(v)
end
else ArcTan3 := arcTan(abs(v));
end;
[e et T T T T LSNP
Function GradGFilterImage(InImageH : ImageHandle;
var GradImageH : ReallImageHandle;
var DirectionImageH : ImageHandle; StDev : real;
FullDirection : boolean) : ErrorCode;
const
WinRadiusToStDevRatio = 3.0;
label
ExitPoint;
type
MaskArray = Array[-12..12,-12..12] of Real;
var
InPixel,
WinRadius,
dx, dy : integer;
InImage : ImagePtr;
GradImage : ReallImagePtr;
DirectionImage
: ImagePtr;
GradImageCreated
: boolean;
TopLeft,
BottomRight : TPoint;
InPixelPtr,
DirectionPixelPtr
r PByte;
GradPixelPtr
RealPtr;
xGradPixel,
yGradPixel,
TwoS2,
TwoPiS4 : real;
rowByteCount,
X,Y : longint;
ImageWidth,
ImageHeight : Word;
Error : ErrorCode;
Mask : "MaskArray;
begin (GradGFilterImage)}
Error := NoOErr;
InImage := GlobalLock(InImageH) ;
ImageWidth := InImage”.header.size.x;
ImageHeight := InImage”.header.size.y;
GradImageCreated := False;
Error := CreateReallImage (GradImageH, ImageWidth, ImageHeight);
if Error <> NoErr then goto ExitPoint;
GradImageCreated := True;
GradImage := GlobalLock(GradImageH) ;
rowByteCount := Align32(InImage”.header.size.x);
Error := CreateImage(DirectionImageH, rowByteCount, ImageHeight) ;
if Error <> NoErr then goto ExitPoint;
DirectionImage := GlobalLock(DirectionImageH);
WinRadius := Round(WinRadiusToStDevRatio * StDev) ;

if MaxAvail > (sqr(25) * SizeOfReal) then New(Mask)
else begin

Error := 1;

goto ExitPoint;
end;
TopLeft.x := WinRadius;
TopLeft.y := WinRadius;

ImageWidth-1 - WinRadius:;
ImageHeight-1 - WinRadius;

BottomRight.x
BottomRight.y

1Ro{a(ion (WIN;

&
&

Appendix C - Pascal Source Code C-15

TwoS2 = 2 * sqr(StDev);
TwoPiS4 := 2 * pi * sqr(sqr(StDev));
writeln('Gradient of Gaussian Filtering');
writeln('Standard Deviation = ', StDev:1:2,' Window Size = ',2 * WinRadius + 1);
for y := -WinRadius to +WinRadius do begin (Compute convolution mask)
for x := -WinRadius to +WinRadius do begin
Mask”[x,y] := -10 * x * exp(-(sqr(x) + sqr(y))/TwoS2)/TwoPiS4;

end; (for x)
end; (for y)

for y := 0 to ImageHeight-1] do (initial is output real images)
for x := 0 to ImageWidth-1 do begin
RealPtr (OffsetPointer (@GradImage”.data, (y * ImageWidth + x) *SizeOfReal))” := 0.0;
PByte (OffsetPointer (@DirectionImage”.data, y * rowByteCount + x))”~ := Black;

end; (for x)
if FullDirection then begin
for y := TopLeft.y to BottomRight.y do begin
GradPixelPtr :=
OffsetPointer (@GradImage”.data, (y * ImageWidth + TopLeft.x) * SizeOfReal);
DirectionPixelPtr :=
OffsetPointer(@DirectionImage”.data, y * rowByteCount + TopLeft.x);

InPixelPtr := OffsetPointer(@InImage”.data, y * rowByteCount + TopLeft.x);
for x := TopLeft.x to BottomRight.x do begin
xGradPixel := 0.0;
yGradPixel := 0.0;
for dy := -WinRadius to +WinRadius do begin
for dx := -WinRadius to +WinRadius do begin
InPixel := PByte(OffsetPointer (InPixelPtr, dy * rowByteCount + dx))";
xGradPixel := xGradPixel + InPixel * Mask”[dx,dy]):;
yGradPixel := yGradPixel + InPixel * Mask"[dy,dx]; (y-mask=transpose x-mask)

end; (for dx)
end; (for dy)

GradPixelPtr” := sqrt(sqr(xGradPixel) + sqr(yGradPixel));
DirectionPixelPtr” := Byte (Round(ArcTan2 (xGradPixel, yGradPixel)/(2*pi)*white));
InPixelPtr : = OffsetPointer (InPixelPtr, 1);
GradPixelPtr := OffsetPointer (GradPixelPtr, SizeOfReal);
DirectionPixelPtr : = OffsetPointer (DirectionPixelPtr, 1);
end; (for x)
write('.');

end; (for y)
end (if FullDirection})
else begin (Not FullDirection)
for y := TopLeft.y to BottomRight.y do begin
GradPixelPtr :=
OffsetPointer (@GradImage”.data, (y * ImageWidth + TopLeft.x) * SizeOfReal);
DirectionPixelPtr :=
OffsetPointer (@DirectionImage”.data, y * rowByteCount + TopLeft.x);

InPixelPtr := OffsetPointer (@InImage”.data, y * rowByteCount + TopLeft.x);
for x := TopLeft.x to BottomRight.x do begin
xGradPixel := 0.0;
yGradPixel := 0.0;
for dy := -WinRadius to +WinRadius do begin
for dx := -WinRadius to +WinRadius do begin
InPixel := PByte(OffsetPointer(InPixelPtr, dy * rowByteCount + dx))";
xGradPixel := xGradPixel + InPixel * Mask”[dx,dy];
yGradPixel := yGradPixel + InPixel * Mask”"({dy,dx]: (y-mask=transpose x-mask)

end; (for dx)
end; (for dy)

GradPixelPtr” := sqrt(sqr(xGradPixel) + sqr(yGradPixel)) ;
DirectionPixelPtr” := Byte(Round(ArcTanl (xGradPixel, yGradPixel) /pi*white));
InPixelPtr : = OffsetPointer (InPixelPtr, 1);
GradPixelPtr := OffsetPointer (GradPixelPtr, SizeOfReal);
DirectionPixelPtr := OffsetPointer(DirectionPixelPtr, 1);
end; (for x)
write('.');

end; (for y)
end; (else Not FullDirection})
ExitPoint:
GlobalUnlock(InImageH) ;
GlobalUnlock (GradImageH) ;
GlobalUnlock(DirectionImageH) ;
if (Error <> NoErr) and (GradImageCreated = True) then DestroyRealImage (GradImageH) ;

45

Rotation (] 01~

Warp60

C-16

The Development of Motion Tracking Strategies For Cineradiographic Images

Dispose (Mask) ;
GradGFilterImage := Error;
end; (GradGFilterImage)

Function NMSFilterImage (InGradImageH, DirectionImageH
ImageHandle) :

var OutGradImageH

ImageHandle;
ErrorCode;

{ Nonmaxima Suppression of InGradImage using DirectionImageH. }

label
ExitPoint;
const
DeltaTheta =
var
InGradImage,
OutGradImage,
DirectionImage
ImagePtr;
OutImageCreated
boolean;

31;

InPixelPtr,
OutPixelPtr,
DirectionPixelPtr
PByte;

xGradPixel,

yGradPixel,

destPixel,
rowByteCount,

X,Y,

Sum,

AveDirection

: longint;

Direction : byte;
ImageWidth,
ImageHeight,

dx, dy

integer;
Value Word;
Error : ErrorCode;
begin (NMSFilterImage)

writeln('Non-maxima suppresion of gradient');

(Tolerance on Direction alignment)

y * rowByteCount +1);

Error := NoErr;

InGradImage := GlobalLock (InGradImageH) ;

ImageWidth := InGradImage”.header.size.x;

ImageHeight := InGradImage”.header.size.y;

DirectionImage := GlobalLock (DirectionImageH) ;

OutImageCreated := False;

rowByteCount := Align32(InGradImage”.header.size.x);

Error := CreatelImage (OutGradImageH, rowByteCount, ImageHeight);

if Error <> NoErr then goto ExitPoint;

OutImageCreated := True;

OutGradImage := GlobalLock(OutGradImageH) ;

for y := 1 to ImageHeight-2 do begin
InPixelPtr := OffsetPointer (@InGradImage”.data, y * rowByteCount +1);
DirectionPixelPtr := OffsetPointer (@DirectionImage”.data,
OutPixelPtr := OffsetPointer (@OutGradImage”.data, y * rowByteCount +1);
for x := 1 to ImageWidth-2 do begin

{Compute direction to nearest 45 degress,
Direction := (((DirectionPixelPtr” + 15)
case Direction of

mod 255)

from 8 corresponding nearest neighbours)

+ 1) div 32;

0, 4: if (InPixelPtr” >= PByte(OffsetPointer (InPixelPtr, -1))")
and (InPixelPtr” >= PByte(OffsetPointer (InPixelPtr, +1))")
then OutPixelPtr” := InPixelPtr”®
else OutPixelPtr” := Black;
1, 5: if (InPixelPtr” >= PByte(OffsetPointer (InPixelPtr, -rowByteCount+l))")
and (InPixelPtr” >= PByte(OffsetPointer (InPixelPtr, rowByteCount-1))")
then OutPixelPtr” := InPixelPtr”®
else OutPixelPtr” := Black;
2, 6: if (InPixelPtr” >= PByte(OffsetPointer (InPixelPtr, -rowByteCount)}")
and (InPixelPtr” >= PByte(OffsetPointer (InPixelPtr, +rowByteCount))")
then OutPixelPtr” := InPixelPtr”
else OutPixelPtr” := Black;
3, 7: 1if (InPixelPtr” >= PByte(OffsetPointer (InPixelPtr, -rowByteCount-1))*)

Warp30

Appendix C - Pascal Source Code

and (InPixelPtr” >= PByte(OffsetPointer (InPixelPtr,

then OutPixelPtr” := InPixelPtr”
else OutPixelPtr” := Black;
end; (case)
InPixelPtr = OffsetPointer (InPixelPtr, 1);
OutPixelPtr OffsetPointer (OutPixelPtr, 1);

DirectionPixelPtr := OffsetPointer (DirectionPixelPtr, 1);

end; (for x)

end; (for y)
ExitPoint:

GlobalUnlock (InGradImageH) ;

GlobalUnlock (DirectionImageH) ;
GlobalUnlock (OutGradImageH) ;

if (Error <> NoErr) and (OutImageCreated
NMSFilterImage := Error;

end; (NMSFilterImage)

rowByteCount+1)) ")

True) then DestroyImage (OutGradImageH) ;

Procedure ThresholdImage2 (InImageH, OutImageH ImageHandle) ;
var
rowByteCount,
X, Y : Word;
oty
destPixel : integer;
destImage,
srcImage : ImagePtr;
destPixelPtr,
srcPixelPtr : PByte;
localVariance : longint;
localMean : longint;
begin
destImage := GlobalLock (OutImageH) ;
srcImage := GlobalLock(InImageH);
rowByteCount := Align32(destImage”.header.size.x);
for y := 1 to destImage”.header.size.y - 2 do begin
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount);
srcPixelPtr := OffsetPointer(@srcImage”.data, longint(y) * rowByteCount);
for x := 1 to destImage”.header.size.x - 2 do begin
localMean :=
(PByte (OffsetPointer (srcPixelPtr, - rowByteCount + x-1))"
+ PByte(OffsetPointer(srcPixelPtr, - rowByteCount + x))*
+ PByte(OffsetPointer (srcPixelPtr, - rowByteCount + x+1))"*
+ PByte(OffsetPointer (srcPixelPtr, x-1))"
+ PByte(OffsetPointer (srcPixelPtr, x))"*
+ PByte (OffsetPointer (srcPixelPtr, x+1))"
+ PByte (OffsetPointer(srcPixelPtr, rowByteCount + x-1))"
+ PByte(OffsetPointer(srcPixelPtr, rowByteCount + x))°
+ PByte (OffsetPointer (srcPixelPtr, rowByteCount + x+1))") div 9;
localVariance := 0;
for i := 0 to 2 do begin
inc(localVariance,
sqr (PByte (OffsetPointer (srcPixelPtr, - rowByteCount + i))” - localMean));
inc(localVariance, sqr(PByte(OffsetPointer(srcPixelPtr, i))”" - localMean));
inc(localVariance,
sqr (PByte (OffsetPointer (srcPixelPtr, rowByteCount + i))” - localMean));
end;
localVariance := Round(sgrt(localVariance)/9);

if (LocalVariance > 0)

and (PByte (OffsetPointer (srcPixelPtr,
then PByte (OffsetPointer (destPixelPtr, x))"
else PByte(OffsetPointer (destPixelPtr, x))" :=

end; (for x)
end; (for y)
GlobalUnlock (InImageH) ;
GlobalUnlock (OutImageH) ;
end; (Threshold2Image)

x))"~ >

(localMean + LocalVariance))

:= White
Black;

Procedure HysteresisThresholdImage (GradImageH, NMSGradImageH, ThresImageH

type
HistArray = Array([Black..White] of word;
const
RFitFrac = 0.30; (Fraction of data to fit

Rayleigh distribution)

ImageHandle) ;

S

[Rotation (] 04

45}

Warp60

C-18 The Development of Motion Tracking Strategies For Cineradiographic Images
RLoThresFrac = 0.80; (Fraction of Rayleigh distribution for low threshold)
Lo2HiThresRatio = 1.7; (Ratio of LoThreshold to HiThreshold)

var
rowByteCount,

ImageWidth,
ImageHeight,
X, Y
dx : integer;
LoThres,
HiThres : byte;
Count,
destPixel : integer;
GradImage,
NMSGradImage,
ThresImage

ImagePtr;
destPixelPtr,
srcPixelPtr

PByte;
Sum »

: longint;
hist : HistArray;
kl, k2,

RSum, TRSum

: real;

ESPostion { Edge-start-position array)
Array(0..255]) of word;

Procedure FitRayleighDistribution(H : HistArray; FStart,FEnd : byte; var cl,c2 real);
{ Fits a Rayleigh distribution to the histogram H, between FStart and FEnd)
(Returns the two distribution coefficients cl = Normalise, c2 = time constant }

const
MaxIter = 1000;
StepSize = 0.0001;
var
i : byte;
YSum,
CountOut : longint;
ErrorSum,
kl, k2
: real;
Function ComputeError(k : real) : real;
var
x : byte;
x2 : longint;
RSum,
Sum : real;
begin (ComputeError)
RSum := 0.0;
for x := FStart to FEnd do RSum := RSum + (k*x*exp(-k*sqr(longint(x))));
RSum := YSum/RSum;
Sum := 0.0;
for x := FStart to FEnd do begin
x2 := sgr(longint(x));
Sum := Sum + (RSum*x*k*(l-k*x2)*exp(-k*x2) - hist[x])*(1-k*x2));
end;
ComputeError := Sum;

end; (ComputeError)

begin (MAIN: FitRayleighDistribution)

ySum := 0;
for i := FStart to FEnd do inc(ySum, h([i]);
(Find starting values of k that bracket the solution)
kl := 0.002;
k2 = kl;
ErrorSum := ComputeError (k2);
if ErrorSum < 0.0 then begin (-ve error)
k2 := k2 + StepSize;
if ComputeError (k2) > ErrorSum then (going in the right direction)
while ComputeError(k2) < 0.0 do k2 := k2 + StepSize
else (go the other direction)
while ComputeError(k2) < 0.0 do k2 := k2 - StepSize;
end (if)

5

Rotation (*) O

-45

Warp30

Appendix C - Pascal Source Code C-19

else begin (+ve error)

k2 := k2 + StepSize;

if ComputeError(k2) < ErrorSum then (going in the right direction)
while ComputeError(k2) > 0.0 do k2 := k2 + StepSize

else (go the other direction)
while ComputeError(k2) > 0.0 do k2 := k2 - StepSize;

end; (else)

(Iterate by Bisection to find solution)
CountOut := 0;
if ComputeError(kl) < 0.0 then (k1 value -ve)

Repeat
inc (CountOut) ;
ErrorSum := ComputeError((kl+k2)/2);
if ErrorSum < 0.0 then kl := (kl+k2)/2
else k2 := (kl+k2)/2;

Until (abs(ErrorSum) < 0.001 * ySum) or (CountOut > MaxIter)
else (value for kl +ve)

Repeat
inc(CountOut) ;
ErrorSum := ComputeError((kl+k2)/2);
if ErrorSum > 0.0 then kl := (kl+k2)/2
else k2 := (kl+k2)/2;

Until (abs(ErrorSum) < 0.001 * ySum) or (CountOut > MaxIter);
if Countout > MaxIter then begin

writeln('Max iterations exceeded ErrorSum = ', ErrorSum);
readln;
end;
ErrorSum := 0.0;
c2 := (kl+k2)/2;
cl :=_0..0x
for i := FStart to FEnd do cl := cl + (c2*i*exp(-c2*sgr(longint(i))));

cl := ySum/cl;
end; (FitRayleighDistribution)

begin (MAIN: HysteresisThresholdImage)
GradImage := GlobalLock (GradImageH) ;

NMSGradImage GlobalLock (NMSGradImageH) ;

ThresImage GlobalLock (ThresImageH) ;

rowByteCount Align32 (ThresImage”.header.size.x);

ImageWidth := ThresImage”.header.size.x;

ImageHeight := ThresImage”.header.size.y;

for x := Black to White do hist([x] := 0;
(Compute GradImage histogram)

for y := 0 to ImageHeight - 1 do begin
srcPixelPtr := OffsetPointer (@GradImage”.data, longint(y) * rowByteCount);
for x := 0 to ImageWidth - 1 do begin

inc(hist[PByte (OffsetPointer (srcPixelPtr, x))"]);
end; (for x)
end; (for y)
(Find index for RFitLow fraction of histogram)
x := 1;
Sum := 0;
repeat
inc(Sum, hist([x]);
inc(x);
Until Sum >= RFitFrac * (longint(ImageHeight) * ImageWidth - hist[0]);
dec(x);
FitRayleighDistribution(Hist, 1, x, k1, k2);
{ Compute lower threshold for the distribution)

RSum := 0.0;
for x := Black to White do RSum := RSum + kl*k2*x*exp(-k2*sqr(longint(x)));
TRSum = RSum;
LoThres := 0;
RSum = 0.0;
Repeat
RSum := RSum + kl*k2*LoThres*exp(-k2*sqr (longint (LoThres)));

inc (LoThres) ;
Until (RSum/TRSum) > RLoThresFrac;
dec (LoThres) ;

(Initialise ThresImage)
for y := 0 to ImageHeight - 1 do begin

45

[Rotation (') 04~

45

Warp60

C-20 The Development of Motion Tracking Strategies For Cineradiographic Images

destPixelPtr := OffsetPointer (@ThresImage”.data, longint(y) * rowByteCount);
for x := 0 to ImageWidth - 1 do
PByte (OffsetPointer(destPixelPtr, x))" := Black;
end; (for y)
if Round(Lo2HiThresRatio * LoThres) > White then HiThres := White
else HiThres := Round(Lo2HiThresRatio * LoThres);
writeln('Thresholds: Low = ', LoThres,' High = ',HiThres);
{Trace edge segments: Start edge-pixel > HiThres, continue until edge-pixel < LoThres)
for y := 0 to ImageHeight - 1 do begin
srcPixelPtr := OffsetPointer (@NMSGradImage”.data, longint(y) * rowByteCount);

if y = 0 then begin (first row a special case)
(Scan along the row and find valid start edge pixels and then extend left & right)
for x := 0 to ImageWidth - 1 do begin
if PByte(OffsetPointer (srcPixelPtr, x))”~ >= HiThres then begin
dx := x;
while (PByte(OffsetPointer (srcPixelPtr, dx))”~ > LoThres) and (dx >= 0)
and (PByte(OffsetPointer (@ThresImage”.data, longint(y) * rowByteCount + dx))"
<> White)
do begin (Extend from start edge-pixel to the left if > LoThres)
PByte (OffsetPointer (@ThresImage”.data, longint(y) * rowByteCount + dx))" :=
White;
dec (dx) ;
end; (while)
dx := x+1;
while (dx<=ImageWidth-1) and (PByte (OffsetPointer (srcPixelPtr, dx))"> LoThres)
and (PByte(OffsetPointer (@ThresImage~.data, longint(y) * rowByteCount + dx))~
<> White)
do begin (Extend from start edge-pixel to the right if > LoThres)
PByte (OffsetPointer (@ThresImage”.data, longint(y) * rowByteCount + dx))" :=
White;
inc(dx);
end; (while)
end; (if)
end; (for x)
end (if y=0)
else begin (all other rows)
(Scan along all other rows and find valid start edge pixels and then extend
left and right)
for x := 0 to ImageWidth - 1 do begin
if (PByte(OffsetPointer (srcPixelPtr, x))” > HiThres)

or (PByte(OffsetPointer (@ThresImage”.data,longint(y-1)*rowByteCount+x))"= White)
then begin

dx := x;
while (dx >= 0) and (PByte(OffsetPointer (srcPixelPtr, dx))”~ > LoThres)
and (PByte(OffsetPointer (@ThresImage”.data,
longint (y) * rowByteCount + dx))”" <> White)
do begin (Extend from start edge-pixel to the left)
PByte(OffsetPointer (@ThresImage”.data,
longint (y) * rowByteCount + dx))”~ := White;
dec (dx) ;
end; (while)
dx := x+1;
while (dx<=ImageWidth-1) and (PByte(OffsetPointer(srcPixelPtr,dx))”~ > LoThres)
and (PByte(OffsetPointer (@ThresImage”.data,
longint (y) * rowByteCount + dx))"~ <> White)
do begin (Extend from start edge-pixel to the right)
PByte (OffsetPointer (@ThresImage”.data,
longint (y) * rowByteCount + dx))”~ := White;
inc(dx);
end; (while)
end; (if)
end; (for x)
end; (else y > 0)
end; (for y)
GlobalUnlock (GradImageH) ;
GlobalUnlock (NMSGradImageH) ;
GlobalUnlock (ThresImageH) ;
end; (HysteresisThresholdImage)

45—

Rotation (] 0f—+1=

| Warp30

Appendix C - Pascal Source Code C-21

C.3 Edge Comparison Functions

The following Pascal unit 'Edge_Ops' contains an implementation of Pratt's figure of merit (See
equation 3.11 of section 3.2.5 in chapter 3 for full details) for assessing the quality of the output
of any edge-detection algorithm with respect to a reference edge-image.

unit Edge_Ops;:

interface
uses
WinCrt, WinDos, WinProcs, WinTypes,
PMXProcs, PMXTypes, Files, Globals, Images, PMXUtils,

Filters;

Function CompareEdges (RefImageH, CompImageH : ImageHandle; var MaxRadius : byte) : real;
implementation
(===z==z==zz=z=z======)

Function Max(i,j : integer) : integer;

begin

if i > j then Max := i else Max := j;

end; (Max)

Function Min(i,j : integer) : integer;

begin

if i < j then Min := i else Min := j;

end; (Max)

(P T T T T T T T T e T T T T T T T T T o O o o o e e D e S S e SIS SISt~ = }

Function CompareEdges (RefImageH, CompImageH : ImageHandle; var MaxRadius : byte) : real;

{ Compares CompImageH binary edge image (where and edge pixel is White) to RefImageH)
(based on Pratt's figure of merit. The returned value is a percentage, 100% implies)
{ the two images are identical. MaxRadius is the maximum distance from a Comp edge }
{ pixel that had to be scanned to find the nearest reference edge pixel.)
type

EdgeArray = Array[l..MaxInt div 4] of TPoint;

label
repeatExit;
var
minval,
maxVal,
Value,
Radius : byte;
X,Y.
i,
destPixel : integer;
srcIlmage,
destImage : ImagePtr;
destPixelPtr,
srcPixelPtr : PByte;
rowByteCount,
width, Height,
Count,
RefEdgeCount,
CompEdgeCount : word;
Sum : real;
EdgeLocated : boolean;
CompEdges : "EdgeArray;
TopLeft,
BottomRight : TPoint;
begin (CompareEdges)
destImage := GlobalLock (CompImageH) ;
srcImage := GlobalLock(RefImageH) ;
rowByteCount := Align32(destImage”.header.size.x);

Sy

|Rotation (] 01~

Warp60

C-22 The Development of Motion Tracking Strategies For Cineradiographic Images

RefEdgeCount := 0;
CompEdgeCount := 0;
Width := destImage”.header.size.x;
Height := destImage”.header.size.y;
for y := 0 to Height-1 do begin (Count the number of Ref and Comp edges pixels.)}
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount);
srcPixelPtr := OffsetPointer(@srcImage”.data, longint(y) * rowByteCount);
for x := 0 to Width-1 do begin
if PByte(srcPixelPtr)” = White then inc(RefEdgeCount);
if PByte(destPixelPtr)” = White then inc (CompEdgeCount) ;
destPixelPtr := OffsetPointer (destPixelPtr, 1);
srcPixelPtr := OffsetPointer(srcPixelPtr, 1);
end; (for x)
end; (for y)
If CompEdgeCount > ((2*MaxInt) div SizeOf (TPoint)) then begin

writeln('Too many edges pixel: ', CompEdgeCount);
CompareEdges := -1.0;

exit;
end;

GetMem (CompEdges, (CompEdgeCount) * sizeof (TPoint));
(Store the location of each Comp edge pixel.)

CompEdgeCount := 0;
for y := 0 to Height-1 do begin
destPixelPtr := OffsetPointer (@destImage”.data, longint(y) * rowByteCount);
for x := 0 to Width-1 do begin
if PByte(destPixelPtr)” = White then
begin
inc (CompEdgeCount) ;
CompEdges” [CompEdgeCount] .x := x;
CompEdges” [CompEdgeCount] .y := y;
end; (if)
destPixelPtr := OffsetPointer (destPixelPtr, 1);

end; (for x)
end; (for y)
(Take each Comp edge in turn and find the distance ,d, to nearest ref edge.)
(Accumulate 1/(1+d"~2), the error sum as you go.)}

Sum := 0;
MaxRadius := 0;
for Count := 1 to CompEdgeCount do begin
EdgeLocated := False;
Radius := 0;
Repeat
if Radius > MaxRadius then MaxRadius := Radius;
TopLeft.x := Max(CompEdges”[Count].x - Radius, 0);
TopLeft.y := Max(CompEdges” [Count].y - Radius, 0);
BottomRight.x := Min (CompEdges” [Count].x + Radius, Width-1);
BottomRight.y := Min(CompEdges”[Count].y + Radius, Height-1);
x := TopLeft.x;

y := TopLeft.y;
While not (EdgeLocated) and (x<=BottomRight.x) do begin (top row L2R }
if PByte (OffsetPointer(@srcImage”.data, longint(y) * rowByteCount + x))” = White
then EdgeLocated := True;
inc (x);
end; (while)
dec(x);
if EdgeLocated then goto repeatExit;
While not (EdgeLocated) and (y<=BottomRight.y) do begin { Right column T2B)
if PByte(OffsetPointer(@srcImage”.data, longint(y) * rowByteCount + x))” = White
then EdgeLocated := True;
inc(y);
end; (while)
dec(y);
if EdgeLocated then goto repeatExit;
While not (EdgeLocated) and (x>=TopLeft.x) do begin (Bottom row R2L }
if PByte (OffsetPointer(@srcImage”.data, longint(y) * rowByteCount + x))" = White
then EdgeLocated := True;
dec(x);
end; (while)
inc(x);
if EdgeLocated then goto repeatExit;
While not (EdgeLocated) and (y>=TopLeft.y) do begin (Left column B2T)

—
454 e [RE= - — ——
!‘ ‘ i ﬂ i | il.-% ["£!|
T
o iE EEA '. 1l L .Il r..'...:
(L A T A
| 1] 11 I 2T
|i{i| 1111 |||/—’“:/—'—Z/;/
| 1114 — 1
o o T T
T \!_l.,/ =.
| LT [
- ‘: '._ T . .
111 | | |
HUTTT |
!i:‘ l | |
e 5 10 15 2 s %0
|
o 11 Warp30

Appendix C - Pascal Source Code C-23

if PByte(OffsetPointer(@srcImage”.data, longint(y) * rowByteCount + x))~ = White
then EdgeLocated := True;
dec (y) ;
end; (while)
incl(y):
inc (Radius) ;
repeatExit:
Until EdgeLocated;
sum := sum + 1/(l1 + sqr(CompEdges”[Count].x - x) + sqr (CompEdges”[Count].y - y));
end; (for Count)
FreeMem (CompEdges, CompEdgeCount * sizeof(TPoint));
CompareEdges := 100 * sum / Max(RefEdgeCount, CompEdgeCount);
end; (CompareEdges)

C.4 Weber's Law based Edge-detection

The following Pascal program 'Weber' contains an implementation of the Weber's law based
edge-detection algorithm described in section 3.4 chapter 3. The top of the code describes the
five key routines that have been implemented. The main section of the program at the end links
the routines together to form the algorithm and provide control of the various intemal

parameters

Program Weber;
{ Program to implement Webers Law operations.

1. ComputeWeberMap: Generate LAI-ES Maps
2. ComputeWeberEdgeMap: Generate LAI-ES map about edge-template
3. ProfileImage: Profile edge detect an image LowerProfile <= X <= UpperProfile
4. ComputeProfiles: Extract profile from an LAI-ES map based Min, Max, Average
SD of ES.
5. IncludeProfileImage: Generate 2-D profiles, use LAI-ES map directly
(with include ratio)
J
uses

WinCrt, WinDos, WinProcs, WinTypes, Strings,
PMXProcs, PMXTypes, (Files,)} Globals, Images, PMXUtils,
Filters, GFilters, Edge_Ops, MLab_ops;

const
MaxES = 255; (Maximum Edge Strength covered)
MaxLAI = 255; { Maximum Local Average Intensity covered)
GradientGain = 0.5; { Gain for gradient filtering = 0.0 -> autoscale)}
AverageGain = 1.0; { Gain for all smoothing average filters = 0.0 -> autoscale }
UseRoberts boolean = True;
LAIWinRadius = 1;

type

TypeArray = array[0..1]) of Char;
BitmapInfoRec = record

header : TBitmapInfoHeader;

colors : array({0..255] of TRGBQuad;

end;
ProfileArray = Array(0..MaxLAI] of byte;
var
Header : HeaderRec;
MachineType : longint;
MName : Array(0..20) of Char;
Error : ErrorCode;

457

BRotation [0}-1-4—-4-13

45

Warp60

C-24 The Development of Motion Tracking Strategies For Cineradiographic Images

InFile,
OutFile
file;
outTextFile text;
RefImageFilel,
RefImageFile?2,
RefEdgeImageFilel,
RefEdgelmageFile2,
EdgeImageFilel,
EdgeImageFile2,
OutImageNamel,
OutImageName2,
OutFileName,
OutMatrixName,
OutProfileNamel,
OutProfileName2
string;
RefImageH, RefEdgelmageH,
EdgelImageH,
ESImageH, LAIImageH
: ImageHandle;
RefImage, RefEdgelmage,
EdgelImage,
ESImage, LAIImage
: ImagePtr;
ImageWeberMapH,
EdgeWeberMapH
MatrixHandle;
ImageWeberMap,
EdgeWeberMap
MatrixPtr;
LowerProfile,
AverageProfile,
UpperProfile,
SDProfile
: ProfileArray;
KProfile : Array[0..MaxES] of word;
srcPtr,
destPtr : PByte;
ImageWidth,
ImageHeight,
rowByteCount : word;
x' y1
ImageSize : longint;
ES, LAI,
LAIStart, LAIEnd,
ESStart, ESEnd,
Pos,
Radius
: byte;
Figure,
MaxFigure : real;
BitmapInfo,
BitmapInfoTemp : BitmapInfoRec;
FileInfo
: TBitmapFileHeader;
TopLeft, BottomRight : TPoint;
(—mmmmm e e ComputeWeberMap--------=—-- oo m o
Procedure ComputeWeberMap (WeberMapH : MatrixHandle; Roberts : boolean);
(Computes the Weber map ES vs LAI for the given RefImage.)
var
ESMax : byte;
WeberMap : MatrixPtr;
begin (ComputeWeberMap)
ESMax := Black;
if Roberts then begin
RobertsGradientImage (RefImageH, ESImageH, GradientGain); (Compute edge-strength)
ExtendImage (ESImageH, 1);
(Compute local average intensity)
Smooth2x2FilterImage (RefImageH, LAIImageH, AverageGain);
ExtendImage (LAIImageH, 1);
end

45

Rotation () 0

&
a

Warp30

Appendix C - Pascal Source Code C-25

else begin
SobelGradientImage (RefImageH, ESImageH, GradientGain); (Compute edge-strength)
ExtendImage (ESImageH, 1);
(Compute local average intensity)
SmoothFilterImage (RefImageH, LAIImageH, LAIWinRadius, AverageGain);
ExtendImage (LAIImageH, 1);
end; (else)

ESImage = GlobalLock (ESImageH) ;
LAIImage := GlobalLock(LAIImageH) ;
WeberMap := GlobalLock (WeberMapH) ;
for x := 0 to word(MaxLAI) * MaxES - 1 do (Initialise ImageWeberMap }
RealPtr (OffsetPointer (@WeberMap”~.data, x * SizeOfReal))” := 0.0;
writeln('Forming LAI-ES map');
for y := 0 to ImageHeight-1 do begin
for x := 0 to ImageWidth-1 do begin
ES := PByte(OffsetPointer (@ESImage”.data, y * rowByteCount + x))";
if ES > ESMax then ESMax := ES;
if ES > MaxES then ES := MaxES;
LAI := PByte(OffsetPointer (@LAIImage”.data, y * rowByteCount + x))”*;
if LAI > MaxLAI then LAI := MaxLAI;

RealPtr (OffsetPointer (@WeberMap”.data, (longint(ES) * MaxLAI + LAI)* SizeOfReal))"
: = RealPtr (OffsetPointer (@WeberMap~.data,
(longint (ES) * MaxLAI + LAI)* SizeOfReal))”™ + 1;
end; (for x)

write('.");
end; (for y)
writeln;
writeln('Max Edge-Strength = ', ESMax);

GlobalUnlock (ESImageH) ; GlobalUnlock (LAIImageH) ;
GlobalUnlock (WeberMapH) ;
end; (ComputeWeberMap)
——————————————————————————————————— ComputeWeberEdgeMap--------------—--——————————cc——-)
Procedure ComputeWeberEdgeMap (WeberMapH : MatrixHandle; EdgeGrowth : byte;
Roberts : boolean);
(-Computes Weber map ES vs LAI for the given RefImage about the specified edge image.)
var
WeberMap : MatrixPtr;
begin (ComputeWeberEdgeMap)
writeln('Computing Weber Edge map');
ThresholdImage (RefEdgeImageH, EdgeImageH, 254);
ExtendImage (EdgeImageH, 3);
for x := 1 to EdgeGrowth do begin
writeln('Growing edge layer ', x);
RankFilterImage (EdgeImageH, ESImageH, 9);
ExtendImage (ESImageH, 1);
NoFilterImage (ESImageH, EdgeImageH);
end; (for x)
if Roberts then begin
RobertsGradientImage (RefImageH, ESImageH, GradientGain) ; (Compute edge-strength)
ExtendImage (ESImageH, 1);
(Compute local average intensity})
Smooth2x2FilterImage (RefImageH, LAIImageH, AverageGain);
ExtendImage (LAIImageH, 1);
end
else begin (3x3 operator)
writeln('Sobel filtering');
SobelGradientImage (RefImageH, ESImageH, GradientGain) ; (Compute edge-strength)
ExtendImage (ESImageH, 1);
(Compute local average intensity)
SmoothFilterImage (RefImageH, LAIImageH, LAIWinRadius, AverageGain);
ExtendImage (LAIImageH, 1);
end; (else)

EdgeImage := GlobalLock (EdgeImageH) ;
ESImage = GlobalLock (ESImageH) ;
LAIImage = GlobalLock (LAIImageH) ;
WeberMap = GlobalLock (WeberMapH) ;
for x := 0 to word(MaxLAI+1l) * (MaxES+l) - 1 do { initialise matrix)}
RealPtr (OffsetPointer (@WeberMap”~.data, x * SizeOfReal))” := 0.0;
writeln('Forming LAI-ES edge map');
for y := 0 to ImageHeight-1 do begin
for x := 0 to ImageWidth-1 do begin
Rotation (7] O-+-+——+-1

45

Warp60

C-26 The Development of Motion Tracking Strategies For Cineradiographic Images

if PByte(OffsetPointer (@EdgeImage”.data, y * rowByteCount + x))”~ = White then begin

ES := PByte(OffsetPointer (8ESImage”.data, y * rowByteCount + x))";
if ES > MaxES then ES := MaxES;

LAI := PByte(OffsetPointer (@LAIImage”.data, y * rowByteCount + x))"*;
if LAI > MaxLAI then LAI := MaxLAI;

RealPtr (OffsetPointer (@WeberMap”~.data, (longint(ES)*MaxLAI + LAI)*SizeOfReal))"
: = RealPtr(OffsetPointer (@WeberMap”.data,
(longint (ES) * MaxLAI + LAI)* SizeOfReal))” + 1;
end; (if)
end; (for x)
write('."');
end; (for y)
writeln;
GlobalUnlock (EdgeImageH); GlobalUnlock(LAIImageH) ;
GlobalUnlock (WeberMapH) ;
end; (ComputeWeberEdgeMap)
(R e L LT e e ProfileImage--------==-=ccc- - mmem oo -)
Procedure ProfileImage (var LowerProfile, UpperProfile : ProfileArray; Roberts : boolean);
(Extracts the edges from RefImage based on the given Profiles.)
(An edge is declared if LowerProfile[LAI]) <= ES[LAI] <= UpperProfile([LAI). }
var
ES, LAI
: byte;
begin (ProfileImage)
writeln('Applying 1-D Profile');
if Roberts then begin
RobertsGradientImage (RefImageH, ESImageH, GradientGain); (Compute edge-strength)
ExtendImage (ESImageH, 1);
(Compute local average intensity)
Smooth2x2FilterImage (RefImageH, LAIImageH,AverageGain);
ExtendImage (LAIImageH, 1);
end
else begin (3x3 operator)
SobelGradientImage (RefImageH, ESImageH, GradientGain); (Compute edge-strength)
ExtendImage (ESImageH, 1);
{Compute local average intensity)
SmoothFilterImage (RefImageH, LAIImageH, LAIWinRadius, AverageGain);
ExtendImage (LAIImageH, 1);
end; (else)

EdgeImage := GlobalLock(EdgelmageH) ;
ESImage := GlobalLock (ESImageH) ;
LAIImage := GlobalLock(LAIImageH) ;
for y := 0 to ImageHeight-1 do begin
for x := 0 to ImageWidth-1 do begin
ES := PByte(OffsetPointer (@ESImage”.data, y * rowByteCount + x))";

LAI := PByte(OffsetPointer (LAIImage”.data, y * rowByteCount + x))*;
if (ES >= LowerProfile[LAI]) and (ES <= UpperProfile(LAI]) then
PByte(OffsetPointer (@EdgeImage”.data, y * rowByteCount + x))” := White
else PByte(OffsetPointer (@EdgeImage”.data, y * rowByteCount + x))” := Black;
end; (for x)
end; (for y)
GlobalUnlock (EdgeImageH) ; GlobalUnlock(ESImageH); GlobalUnlock(LAIImageH) ;
end; (ProfilelImage)
[ettt ProfileImage2D---------- - - e e)
Procedure ProfileImage2D(WeberMapH : MatrixHandle; Roberts : boolean);
{ Extracts the edges from RefImage based on the given ES-LAI WeberMap.
An edge is declared if WeberMap([LAI,ES] > 0.

)
const
CountThres = 0; (minimum pixel count to declare an edge pixel)
var
ES, LAI
byte;

WeberMap : MatrixPtr;
begin (ProfileImage)

writeln('Applying 2-D Profile');

if Roberts then begin
RobertsGradientImage (RefImageH, ESImageH, GradientGain); (Compute edge-strength)
ExtendImage (ESImageH, 1);

(Compute local average intensity)

Smooth2x2FilterImage (RefImageH, LAIImageH, AverageGain);

45

Rotation (1) 0

FS
a

Warp30

Appendix C - Pascal Source Code C-27

ExtendImage (LAIImageH, 1);
end (if Roberts)
else begin (3x3 operator)
SobelGradientImage (RefImageH, ESImageH, GradientGain); (Compute edge-strength)
ExtendImage (ESImageH, 1);
(Compute local average intensity)
SmoothFilterImage (RefImageH, LAIImageH, LAIWinRadius, AverageGain);
ExtendImage (LAIImageH, 1);
end; (else)

Edgelmage := GlobalLock (EdgelImageH) ;
ESImage := GlobalLock (ESImageH) ;
LAIImage = GlobalLock (LAIImageH) ;
WeberMap := GlobalLock(WeberMapH) ;
for y := 0 to ImageHeight-1 do begin
for x := 0 to ImageWidth-1 do begin
ES = PByte(OffsetPointer (@ESImage”.data, y * rowByteCount + x))*;
if ES > MaxEs then ES := MaxES;
LAI := PByte (OffsetPointer (@LAIImage”.data, y * rowByteCount + x))";

if RealPtr (OffsetPointer (@WeberMap”.data,
(longint (ES) * MaxLAI + LAI) * SizeOfReal))” > CountThres
then PByte(OffsetPointer (8Edgelmage”.data, y * rowByteCount + x))”* := White
else PByte(OffsetPointer (8EdgeImage”.data, y * rowByteCount + x))}” := Black;
end; (for x)
end; (for y)
GlobalUnlock (EdgeImageH) ; GlobalUnlock (ESImageH); GlobalUnlock(LAIImageH) ;
GlobalUnlock (WeberMapH) ;
end; (ProfileImage2D)

Procedure ComputeProfiles(
WeberMapH : MatrixHandle;
var LowerProfile, UpperProfile, AverageProfile, SDProfile : ProfileArray):
{ Computes the Min, Max and Average and Standard Deviation profiles
(Profile(LAI] = min(ES), max(ES) Ave(ES), SDAve(ES)) for the given Weber (LAI-ES) map.

}
type
LargeProfileArray = Array(0..255) of longint;
var
SumProfile,
VarianceProfile : "“LargeProfileArray;
CountProfile : "ProfileArray;
Count : longint;
WeberMap : MatrixPtr;

begin (ComputeProfiles)
new (SumProfile);
new(VarianceProfile) ;
new(CountProfile);

WeberMap := GlobalLock (WeberMapH) ;
writeln('Computing 1-D Profiles from LAI-ES map');
for x := 0 to MaxLAI do begin (initialise profiles }
LowerProfile[x] = White;
UpperProfile[x] = Black;
AverageProfile([x] := 0;
CountProfile”[x] = 0;
SDProfile(x] =.0;
SumProfile” [x] = 0;
VarianceProfile”[x] := 0;
end; (for x)
for y := 0 to MaxLAI do begin (Compute Min, Max and Sum profiles)
for x := 0 to MaxES do begin

Count :=
Round (RealPtr (OffsetPointer (@WeberMap”.data, (x * MaxLAI + y)* SizeOfReal))");
if Count > 0 then begin (a pixel at this LAI-ES position was recorded)
if LowerProfile[y] = White then LowerProfile(y] := x;
if x > UpperProfile(y] then UpperProfile(y] := x;
inc(SumProfile”~[y], x);
inc (CountProfile”(y]);
end; (if Count > 0)
end; (for x)
if UpperProfile(y] = Black (no value recorded)
then UpperProfile(y] := White;
end; (for y)

|
gl |

it AT

Rotation(") 0

4
ﬂ

Warp60

C-28 The Development of Motion Tracking Strategies For Cineradiographic Images

for x := 0 to MaxLAI do begin (Average SumProfile)
if CountProfile”[x]) = 0 (no value recorded)
then AverageProfile[x] := White
else AverageProfile[x] := SumProfile”([x] div CountProfile”([x];
end; (for x)
for y := 0 to MaxLAI do begin (Compute VarianceProfile)
for x := 0 to MaxES do begin
Count :=

Round (RealPtr(OffsetPointer (@WeberMap”.data, (x * MaxLAI + y)* SizeOfReal))");
if Count > 0 then inc(VarianceProfile”[y], Round(sqgr(x - AverageProfilel(y]))):
end; (for x)
end; (for y)

for x := 0 to MaxLAI do begin(Compute SDProfile for VarianceProfile)
if CountProfile”([x] = 0 then SDProfile(x] := 0
else SDProfile(x] := Round(Sgrt(VarianceProfile”[x]) / CountProfile”([x]);

end; (for x)
GlobalUnlock (EdgeImageH); GlobalUnlock(ESImageH); GlobalUnlock(LAIImageH) ;
Dispose (SumProfile);
Dispose(VarianceProfile);
Dispose (CountProfile);
end; (ComputeProfiles)

R it TuneProfile-----=------ e e
Procedure TuneProfile (Roberts : boolean);
const
TuneSDRatio : integer = 4;
Offset = 4;
var
c : char;
begin
(Tune the Average profile to maximise Pratts's figure of merit. Tune range +/- 2SD)
LAIStart := Black;
while AverageProfile[LAIStart] = White do inc(LAIStart);

LAIEnd := White-1;
while AverageProfile[LAIEnd] = White do dec(LAIEnd);

writeln('LAI (Start,End) = (', LAIStart,',',LAIEnd,"')"');
for LAI := LAIStart to LAIEnd do begin
Pos := AverageProfile[LAI];
if (AverageProfile[LAI] - TuneSDRatio*SDProfile(LAI] - Offset) < 0 them ESStart := 0
else ESStart := Round (AverageProfile([LAI] - TuneSDRatio * SDProfile[LAI] - Offset);
if (AverageProfile([LAI] + TuneSDRatio * SDProfile[LAI] + Offset) > MaxES then
ESEnd := MaxES
else ESEnd := Round(AverageProfile[LAI] + TuneSDRatio * SDProfile([LAI] + Offset);
MaxFigure := 0.0;
write(LAI,': (',ESStart,' ',6ESEnd,')');
for ES := ESStart to ESEnd do begin
AverageProfile[LAI] := ES;

ProfileImage (AverageProfile, UpperProfile, Roberts);
ExtendImage (EdgeImageH, 2);

Figure := CompareEdges(RefEdgeImageH, EdgeImageH, Radius);
if Figure > MaxFigure then begin
MaxFigure := Figure;
Pos := ES;
end; (if)
end; (for ES)}
writeln('MaxF = ',6MaxFigure:2:1,' ');
AverageProfile[LAI] := Pos;

if Keypressed then begin
c := Readkey;
writeln('Do you want to quit? (Y/N)');
repeat until keypressed;

c := readkey;

c := upcase(c);

if ¢ = 'Y' then exit;
end;

end; (for LAI)
end; (TuneProfile)
R i i LoadRefImage-—---—-—-—c -
Procedure LoadRefImage (ImageFile : string);
begin
Assign(inFile, ImageFile);

45 - e

|Rotation () O:

'y
a

Warp30

Appendix C - Pascal Source Code C-29

if IOResult <> 0 then begin
Writeln('Error Reading Input File');
Exit;

end;

Reset (inFile, 1);

if IOResult <> 0 then begin
Writeln('Error Reading Input File');

Exit;

end;

Error := FileRead(TFileRec(inFile), @fileInfo, SizeOf(fileInfo), 0);

if Error <> 0 then Exit;

Error := FileRead(TFileRec(inFile), @bitmapInfo, SizeOf (bitmapInfo), 0);
ImageWidth := bitmapInfo.header.biWidth;

ImageHeight := bitmapInfo.header.biHeight;

writeln('Image Size: ', ImageWidth, 'x',ImageHeight);

rowByteCount := Align32(ImageWidth);

Error := CreateImage (RefImageH, rowByteCount, ImageHeight);

if Error <> NoErr then begin
writeln('Insufficient memory');

Exit;
end;
RefImage := GlobalLock(RefImageH) ;
Error := FileRead(TFileRec(inFile), @ReflImage”.data,

longint (rowByteCount) * ImageHeight, 0);

if Error <> NoErr then begin

writeln('Error reading RefImage');

Exit;
end;
Close (inFile) ;
GlobalUnlock (RefImageH) ;

end; (LoadRefImage)

(G e e e L L PP LoadRefEdgeImage----=-======--cccceccccccecrcc—ceee—aoo--)
Procedure LoadRefEdgeImage (ImageFile : string);
begin
Error := CreatelImage (EdgeImageH, rowByteCount, ImageHeight);

if Error <> NoErr then begin
writeln('Insufficient memory');

Exit;
end;
EdgeImage := GlobalLock (EdgelmageH) ;
Error := CreateImage(RefEdgeImageH, rowByteCount, ImageHeight);

if Error <> NoErr then begin
writeln('Insufficient memory');
Exit;
end;
RefEdgeImage := GlobalLock(RefEdgeImageH) ;
Assign(inFile, ImageFile);
If IOResult <> 0 then begin
Writeln('Error Reading RefEdgeImage File');
Exit;
end;
Reset (inFile, 1);
If IOResult <> 0 then begin
Writeln('Error Reading RefEdgelmage File');

Exit;
end;
Error := FileRead(TFileRec(inFile), @fileInfo, SizeOf(fileInfo), 0);
if Error <> 0 then Exit;
Error := FileRead(TFileRec(inFile), @bitmapInfoTemp, SizeOf (bitmapInfo), 0);
if Error <> 0 then Exit;
Error := FileRead(TFileRec(inFile), @RefEdgeImage”.data,

longint (rowByteCount) * ImageHeight, 0);

if Error <> NoErr then begin

writeln('Error reading RefEdgeImage');

Exit;
end;
Close(inFile);
GlobalUnlock (RefEdgeImageH) ;

end; (LoadRefEdgeImage)

45—

lrosion() of |1--1]

45

Warp60

C-30 The Development of Motion Tracking Strategies For Cineradiographic Images

—————————————————————————————————— SavelImage------—-—-—----~ """ - e m e — -
Procedure Savelmage (var ImageH : ImageHandle; ImageFile : string;
InvertPalette : boolean) ;

var
Image : ImagePtr;
rowByteCount : word;
FileInfo : TBitmapFileHeader;
BitmapInfo : BitmapInfoRec;
begin
Image := GlobalLock(ImageH) ;
rowByteCount := Align32(Image”.header.size.x);
{ setup output file BitMap info)
TypeArray (fileInfo.bfType) := 'BM';

fileInfo.bfSize :=
SizeOf (fileInfo) + SizeOf (bitmapInfo) + longint(rowByteCount) * ImageHeight;

fileInfo.bfReservedl := 0;
fileInfo.bfReserved2 := 0;
fileInfo.bfOffBits := SizeOf(fileInfo) + SizeOf (bitmapInfo);
bitmapInfo.header.biSize := SizeOf (bitmapInfo.header);
bitmapInfo.header.biWidth := Image”.header.size.Xx;
bitmapInfo.header.biHeight := Image”.header.size.y;
bitmapInfo.header.biPlanes := 1;
bitmapInfo.header.biBitCount := 8;
bitmapInfo.header.biCompression := 0;
bitmapInfo.header.biSizeImage := 0; (non-compressed }
bitmapInfo.header.biXPelsPerMeter := 0;
bitmapInfo.header.biYPelsPerMeter := 0;
bitmapInfo.header.biClrUsed := 0;
bitmapInfo.header.biClrImportant := 0;
if Not(InvertPalette) then begin
for x := 0 to 255 do
with bitmapInfo.colors(x] do begin

rgbBlue := x;

rgbGreen := x;

rgbRed Hod o

rgbReserved := 0;

end; (with)
end (if)

else begin
for x := 0 to 255 do
with bitmapInfo.colors(x] do begin

rgbBlue = 255-x;
rgbGreen := 255-x;
rgbRed = 255-x;

rgbReserved := 0;

end; (with)

end; (else)

Assign (outFile, ImageFile);

If IOResult <> 0 then begin
Writeln('Error writing OutImage File');
Exit;

end;

Rewrite(outFile, 1);

If IOResult <> 0 then begin
Writeln('Error writing OutImage File');

Exit;
end;
Error := FileWrite(TFileRec(outFile), @fileInfo, SizeOf(fileInfo), 0);
if Error <> 0 then Exit;
Error := FileWrite(TFileRec(outFile), @bitmapInfo, SizeOf (bitmapInfo), 0);
if Error <> 0 then Exit;
Error := FileWrite(TFileRec(outFile), @Image”.data,

longint (rowByteCount) * Image”.header.size.y, 0);

if Error <> NoErr then begin

writeln('Error writing OutImage');

Exit;
end;
Close (outFile);
GlobalUnlock (ImageH) ;

end; (SaveEdgeOutImage)

45

|Rotation (*) 0

Appendix C - Pascal Source Code C-31

————————————————————————————————— SaveWeberImageArray-------------=--c---ccc-ccccccco-----)
Procedure SaveWeberImageArray(ArrayFile : string);
begin

OutFileName := OutMatrixName + '.mat';

MachineType := 0; { found this value by reading a MATLAB file.)
Assign(outFile, OutFileName) ;
if IOResult <> 0 then begin
writeln('File Error');
Exit;
end;
Rewrite(outFile, 1);
if IOResult <> 0 then begin
writeln('File Error');

Exit;

end;
ImageWeberMap := GlobalLock (ImageWeberMapH) ;
with Header do begin

mattype := MachineType;

matrows := ImageWeberMap”.size.x;

matcols := ImageWeberMap”.size.y;

imagef := 0;

namelen := Length(OutMatrixName) + 1; (null terminated)

end; (with Header)

(Write out header information})
Error := FileWrite(TFileRec(outFile), @Header, SizeOf(Header), 0);
if Error <> NoErr then begin

writeln('File write Error');

Exit;

end;
StrPCopy (MName, OutMatrixName); (convert pas-string to nul-string)}
Error := FileWrite(TFileRec(outFile), @MName, header.namelen, 0);

if Error <> NoErr then begin
writeln('File write Error');
Exit;

end;

Error := FileWrite(TFileRec(outFile), @ImageWeberMap”.data, ImageWeberMap”.dataSize,0);

if Error <> NoErr then begin
writeln('Pile write Error');
Exit;

end;

Close(outFile);

end; (SaveWeberImageArray)

Procedure SaveProfile(Profile : ProfileArray; ProfileFile : string);
begin

Assign (outTextFile, ProfileFile);

If IOResult <> 0 then begin
Writeln('Error writing OutImage File');
Exit;

end;

Rewrite(outTextFile);

If IOResult <> 0 then begin
Writeln('Error writing OutImage File');
Exit;

end;

for x := Black to White do
writeln(outTextFile, Profile[x]);

Close(outTextFile);

end; (SaveProfile)

R e] SaveAllProfilesS--====---c-mmeecme e ecmemmeee——e)
Procedure SaveAllProfiles(ProfileFile : string);
begin

Assign(outTextFile, ProfileFile);

If IOResult <> 0 then begin
Writeln('Error writing OutImage File');
Exit;

end;

Rewrite (outTextFile);

If IOResult <> 0 then begin
Writeln('Error writing OutImage File');
Exit;

45

|Fotetion (') of-1

45

Warp60

C-32 The Development of Motion Tracking Strategies For Cineradiographic Images

end;
for x := Black to White do
writeln(outTextFile, LowerProfile([x],' ',AverageProfile([x],

' ',UpperProfile[x],' ',6SDProfile([x]);
Close (outTextFile);
end; (SaveAllProfiles)

((====s======================s==========Weber MAIN=z========s==================s===s==s========
begin (Weber MAIN)
RefImageFilel := ('e:\phd\edges\lo_level.ops\wt.bmp';)
'e:\phd\edges\hi_level.ops\neck_sec.tn\415-1.bmp"';
RefEdgelmageFilel := ('e:\phd\edges\lo_level.ops\wt_can_e .bmp';)
'e:\phd\edges\hi_level.ops\neck_sec.tn\marhil\sec-edg2.bmp"';
OutImageNamel := '415-1-s.bmp’;
OutProfileNamel := 'bk_prof.txt';
RefImageFile2 := 'e:\phd\edges\lo_level.ops\weber\wt_med.bmp";
RefEdgeImageFile2 := 'e:\phd\edges\lo_level.ops\wt_e.bmp';
OutImageName2 := 'wt_tune.bmp';
OutProfileName2 := 'wt_prof.txt';
OutMatrixName := 'test_web'; { Name must not start with a number!)}
OutFileName := OutMatrixName + '.mat';

LoadRefImage (RefImageFilel) ;

{ ExtendImage (RefImageH, 3);)
{ LoadRefEdgeImage (RefEdgeImageFilel);)
Error := CreatelImage(ESImageH, rowByteCount, ImageHeight);
if Error <> NoErr then begin
writeln('Insufficient memory');
Exit;
end;
ESImage := GlobalLock(ESImageH) ;
Error := CreateImage (LAIImageH, rowByteCount, ImageHeight);
if Error <> NoErr then begin
writeln('Insufficient memory');
Exit;
end;
LAIImage := GlobalLock(LAIImageH);
GlobalUnlock (RefImageH); GlobalUnlock (EdgeImageH); GlobalUnlock(ESImageH) ;
Error := CreateMatrix(EdgeWeberMapH, MaxLAI+1l, MaxES+l);

if Error <> NoErr then begin
writeln('Mem error');
exit;
end;
Error := CreateMatrix(ImageWeberMapH, MaxLAI+1l, MaxES+1l);
if Error <> NOErr then begin
writeln('Mem error');
exit;
end;
(**** Select appropriate functions to perform desired PROCESSING ****)
(*
UseRoberts := False(True};
ComputeWeberEdgeMap (EdgeWeberMapH, 0, UseRoberts);
ProfileImage2D (EdgeWeberMapH, UseRoberts) ;
*
)
ComputeProfiles (EdgeWeberMapH, LowerProfile, UpperProfile, AverageProfile, SDProfile);
ProfileImage (AverageProfile, UpperProfile, UseRoberts) ;
*)
{ PointFilterImage (EdgeImageH, LAIImageH);)}
DestroyImage (LAIImageH) ;
(HistogramImage (RefImageH, LAIImageH);)
TopLeft.x := 95;
TopLeft.y := 50;
BottomRight.x := TopLeft.x + 70;
BottomRight .y := TopLeft.y + 110;

writeln('Copy');
Error := CopySectionOfImage(RefImageH, LAIImageH, TopLeft, BottomRight);

if Error <> NoOErr then writeln('Error in Copy');
{ NoFilterImage (EdgeImageH, LAIImageH);

ExtendImage (LAIImageH, 1);)

Savelmage ((Edge}LAIImageH, OutImageNamel, False);

45

| Rotation [) 0

.‘:

Warp30

Appendix C - Pascal Source Code C-33

(Tune profile for first image)
ComputeWeberEdgeMap (EdgeWeberMapH, 0);
ComputeProfiles (EdgeWeberMapH, LowerProfile, UpperProfile, AverageProfile, SDProfile);
SaveAllProfiles('bk_prof2.txt');
ProfileImage (AverageProfile, UpperProfile);
TuneProfile;
ExtendImage (EdgeImageH, 2);
EdgeImage := GlobalLock(EdgeImageH) ;
SaveEdgeOutImage (Out ImageNamel) ;
SaveProfile (AverageProfile, OutProfileNamel) ;

(Tune profile for second image)

DestroyImage (RefImageH); DestroyImage (EdgeImageH) ;
LoadRefImage (RefImageFile2) ;
LoadRefEdgeImage (RefEdgeImageFile2) ;
ComputeWeberEdgeMap (EdgeWeberMapH, 0);
ComputeProfiles (EdgeWeberMapH, LowerProfile, UpperProfile, AverageProfile, SDProfile);
ProfileImage (AverageProfile, UpperProfile);

TuneProfile;
ExtendImage (EdgeImageH, 1);
EdgeImage := GlobalLock (EdgeImageH) ;

SaveEdgeOutImage (OutImageName2) ;
SaveProfile (AverageProfile, OutProfileName2) ;
*)
GlobalUnlock (ImageWeberMapH) ;
DestroyImage (RefImageH); DestroylImage (EdgelmageH) ;

DestroyImage (ESImageH); DestroyImage(LAIImageH);

DestroyMatrix(ImageWeberMapH); DestroyMatrix(EdgeWeberMapH) ;

writeln('Finished'); readln;

DoneWinCrt;
(s=====z=z=z=z=z===z=z=z=z=z=z=z==z=z=z=z==z=z=z=z==z=z=z=z===z=z=z===z=z=z=z==z=z=z====z=z=z===z=z=z=======z=z=z=z=z======z=z=z=z=z=z=z======z)

end. (Weber)

C.5 Match-statistic Performance Support

The following Pascal program 'Match’ contains support code and functions for the match
statistics described in section 5.1.1 of chapter 5 and summarised in table 5.1. It also contains an
implementation of the selectivity measure given by equation 5.7 used to compare the various
statistics in both intraframe and interframe matches.

This program was used to generate all the results of section 5.3 of chapter 5.

Program Match;
(Implements a range of Match statistics and support routines for for interframe

comparisons.
}
uses
WinCrt, WinDos, WinProcs, WinTypes, Strings,
PMXProcs, PMXTypes, PMXUtils,
Points, Files, Globals, Images,
Maths2, MLab_ops, Filters;
label
ExitPoint;
const
MemErr = 10;
AbsMeanDiff = 1; (Mean of sum of absolute differences)
RMSDiff s 2; (Root mean-square of differences)
NormCorr = 3; (Normalised area correlation)
Moment = 4; (Moment invariants)
45
|Aotation (*) 0
4%

Warp60

C-34 The Development of Motion Tracking Strategies For Cineradiographic Images

RT1 =1; (Rotation, translation invariant moment 1)
RT2 = RT1 + 1; (Rotation, translation invariant moment 1..2}
RT3 = RT2 + 1; (Rotation, translation invariant moment 1..3)}
RT4 = RT3 + 1; (Rotation, translation invariant moment 1..4}
RT6 = RT4 + 1; (Rotation, translation invariant moment 1..6)
RTS2 = RT6 + 1; (Rotation, translation and scale invariant moment 1..2}
RTS4 = RTS2 + 1; (Rotation, translation and scale invariant moment 1..4}
RTS6 = RTS4 + 1; (Rotation, translation and scale invariant moment 1..6)}
var
imageNo,
pointGroupNo,
rowByteCount : word;
PointNo,
WindowRadius,
SearchRadius,
MomentType,
MatchType,
NoShells
: byte;
SelectivityBase : integer;
fileNo : longint;
ImagePath,
CMXDocPath,
CMXDocName,
DataDocName,
FileType,
S : string;
Backward : boolean;
DocName,
CMXDocPathP,
CMXDocNameP : Array([0..63] of char;
Name : Str2SS;
inFile, outFile : TFilerec;
FileFound,
Append : boolean;
Error : ErrorCode;
DataSize : Longint;
DocumentInfo : DocInfoRec;
docID : DocIDRec;
PointInfoH : PointInfoHandle;
path : PathStr;
searchInfo : TSearchRec;
pointGroupName : PointGroupNameStr;
trackInfo : TrackInfoRec;
ImageSize,
Point : TPoint;
ImagelH, Image2H,
Image3H, IMagedH : ImageHandle;
Imagel, Image2,
Image3, Imaged : ImagePtr;
MatchMapH,
SelectivityH,
SelMinMapH,
SelAveMapH : MatrixHandle;
MatchMap,
Selectivity,
SelMinMap,
SelAveMap : MatrixPtr;
MinSel, AveSel : real;
DataName : NameStr;
[t e ittt ComputeMatchMap-~------=-—=-————————-———~———~—~—————————=

Procedure ComputeMatchMap (SourceImageH, TargetImageH : ImageHandle;
SearchRadius, WindowRadius, MatchType : byte;
Centre : TPoint;
var MatchMapH : MatrixHandle);

{ About the Point coords a feature is defined of size WindowRadius. This feature 1is
then matched in a local area of radius SearchRadius using the specified MatchType.
Match strength values are then stored in MatchMap.)

var

%k (Counter)
TargetPixel,
SourcePixel : byte;

Wi TTTT T T |
i (1] i
| L
| 1 |
|Rotation (') O A ' / I L~ it i i
1 , | '
:'—: | | | I
I T
A5 5 10 .3 0 f‘ﬂrl
Warp30

Appendix C - Pascal Source Code C-35

SourceSum,
TargetSum,
SumMatch

: longInt;
SourceSumD,
TargetSumD,
MatchSumD

: double;
SourcelImage,
TargetImage : ImagePtr;
ImageData : BytePtr;
MatrixMap : MatrixPtr;
CentrePixel : BytePtr;
rowByteCount : longint;
WindowPixelCount,
SearchWidth,
dx, dy, x, y : integer;
MaxDiff,
MinDiff,
cx, cy : real; (x and y centre of area coords)
sBM : Array(0..3, 0..3) of longint; (Source Base moments 0..3)
sCM : Array(0..3, 0..3] of real; (Source Central moments 0..3)
tBM : Array[0..3, 0..3] of longint; (Target Base moments 0..3)
tCM : Array(0..3, 0..3) of real; (Target Central moments 0..3)
sSMI : Array[l..7]) of real; (First seven source moment invariants)
tMI : Array(l..7] of real; (First seven target moment invariants)

begin
SourcelImage := GlobalLock(SourceImageH) ;
rowByteCount := Align32(SourcelImage”.header.size.x);
MatchMap := GlobalLock (MatchMapH) ;
WindowPixelCount := sqgr(2*WindowRadius + 1);
SearchWidth := 2*SearchRadius + 1;
if TargetImageH = 0 (selfmatch)
then TargetImage := GlobalLock (SourceImageH)
else TargetImage := GlobalLock(TargetImageH) ;
case MatchType of
AbsMeanDiff : begin
for y := -SearchRadius to SearchRadius do begin
for x := -SearchRadius to SearchRadius do begin
SumMatch := 0;
for dy := -WindowRadius to WindowRadius do begin
for dx := -WindowRadius to WindowRadius do begin
SourcePixel :=

BytePtr (Of fsetPointer (@SourcelImage”.data,
centre.x + dx + (centre.y + dy) * rowByteCount))}"*;
TargetPixel :=
BytePtr (OffsetPointer (@TargetImage”.data,
centre.x + x+dx + (centre.y + y+dy)*rowByteCount))”;
SumMatch := SumMatch + abs(integer(SourcePixel) - TargetPixel);
end; (for dx)
end; (for dy)
RealPtr (OffsetPointer (@MatchMap”.data,
((SearchRadius-y) *SearchWidth + x+SearchRadius) * SizeOfReal))”
:= SumMatch/WindowPixelCount/White;
end; (for x)
end; (for y)
end; (AbsMeanDiff)
RMSDiff : begin
for y := -SearchRadius to SearchRadius do begin
for x := -SearchRadius to SearchRadius do begin
SumMatch := 0;
for dy := -WindowRadius to WindowRadius do begin
for dx := -WindowRadius to WindowRadius do begin
SourcePixel :=
BytePtr (OffsetPointer (@Sourcelmage”.data,
centre.x + dx + (centre.y + dy) * rowByteCount))";
TargetPixel :=
BytePtr (Of fsetPointer (@TargetImage”.data,
centre.x + x+dx + (centre.y+y+dy)*rowByteCount))";
SumMatch := SumMatch + abs(sqr (word(SourcePixel)) - sgr(TargetPixel));
end; (for dx)
end; (for dy)

|Rotation (7]

Warp60

C-36 The Development of Motion Tracking Strategies For Cineradiographic Images

RealPtr (OffsetPointer (@MatchMap”.data,
((SearchRadius-y) *SearchWidth + x+SearchRadius) * SizeOfReal)}”
:= sqrt (SumMatch) /WindowPixelCount/White;

end; (for x
end; (for y)
end; (RMSDiff)
NormCorr : begin

J

for y := -SearchRadius to SearchRadius do begin
for x := -SearchRadius to SearchRadius do begin

SourceSum :

TargetSum
SumMatch
for dy :=

for dx

-WindowRadius to WindowRadius do begin
:= -WindowRadius to WindowRadius do begin

SourcePixel :=
BytePtr (Of fsetPointer (@SourceImage”.data,

centre.x + dx + (centre.y + dy) * rowByteCount))";

TargetPixel :=
BytePtr (OffsetPointer (@TargetImage”.data,

centre.x + x+dx + (centre.y+y+dy)*rowByteCount))”";

SumMatch := SumMatch + integer(SourcePixel) * TargetPixel;
inc(TargetSum, sqr(longint (TargetPixel)));
inc(SourceSum, sqr(longint (SourcePixel)));

end; (for dx)

end; (for

dy)

if (SourceSum = 0) or (TargetSum = 0) then
RealPtr (OffsetPointer (@MatchMap”.data,

else

((SearchRadius-y) *SearchWidth + x+SearchRadius) * SizeOfReal))}” := 0

RealPtr (OffsetPointer (@MatchMap”.data,

((SearchRadius-y) *SearchWidth + x+SearchRadius) * SizeOfReal))}"

:= SumMatch/ (sqgrt (SourceSum * TargetSum));
end; (for x)

end; (for y)
end; (NormCorr)

Moment : begin
(Calc source

base moments)

for i := 0 to 3 do (initialise sBM)
for j := 0 to 3 do
sBM([i,j] := 0;
for dy := -WindowRadius to WindowRadius do begin
for dx := -WindowRadius to WindowRadius do begin
SourcePixel :=

BytePtr (OffsetPointer (@Sourcelmage”.data,
centre.x + dx + (centre.y + dy) * rowByteCount))";
inc(sBM[0,0], SourcePixel);
inc(sBM[0,1], dy*SourcePixel);
inc(sBM[0,2], sgr(dy)*SourcePixel);
inc(sBM[0,3), sqr(dy)*dy*SourcePixel) ;
inc(sBM[1,0], dx*SourcePixel);
inc(sBM[1,1]), dx*dy*SourcePixel);
inc (sBM[1,2], dx*sqr(dy) *SourcePixel);
inc(sBM(2,0]), sqr(dx) *SourcePixel) ;
inc(sBM([2,1], sqr(dx)*dy*SourcePixel) ;
inc(sBM[3,0], sqr(dx)*dx*SourcePixel);
end; (for dx)

end; (for dy)

cx := sBM[1,0)/sBM({0,0]); cy := sBM[0,1])/sBM[0,0]); (Calc centre of area coords)
if MomentType >= RTS2 then begin (Calc source normalised central moments)

scM(0,0]) := 1;

sCM[0,1] := 0;

sCM[0,2] := (sBM[0,2) - cy*sBM[0,1])/sqr(sBM[0,0]);

sCM[0,3] :=

(sBM[0,3] - 3*cy*sBM[0,2] + 2*sqr(cy)*sBM[0,1])/(sqr(sBM[0,0])*sqrt(sBM([0,0]));

sCM[1,0] := 0;

sCM[1,1]) := (sBM[1l,1]) - cy*sBM[1,0])/sqr(sBM([0,0]);

sCM[1,2] := (sBM[1,2] - 2*cy*sBM[1,1] - cx*sBM[0,2) + 2*sqr(cy)*sBM[1,0])

/(sqr (sBM[0,0])*sqgrt(sBM(0,0]));

sCM[1,3] := 0;

sCM[2,0) := (sBM[2,0] - cx*sBM[1,0])/sqr(sBM[0,0]);

sCM[2,1]) := (sBM[2,1]) - 2*cx*sBM[1,1] ~- cy*sBM[2,0] + 2*sqr(cx)*sBM[1,0])

/(sqr(sBM[0,0]) *sqrt(sBM[0,0]));

45 T
||

Rotation (1) 0f——

AN

o

&~

Appendix C - Pascal Source Code C-37

sCM[2,2] := 0;
sCM([3,0] := (sBM[3,0] - 3*cx*sBM[2,0] + 2*sqr(cx)*sBM[1,0])
/(sqr(sBM(0,0)) *sqrt (sBM[0,0]));
end
else begin (Calc source non-normalised central moments)
scM[0,0] := sBM[0,0];
sCM[0,1] := 0;
sCM[0,2] := (sBM[0,2] - cy*sBM[O0,1]);
sCM[(0,3] := (sBM[0,3] - 3*cy*sBM[0,2] + 2*sqr(cy)*sBM[0,1]);
sCM[1,0] := 0;
sCM[1,1]) := (sBM[1l,1] - cy*sBM[1,0]);
sCM[1,2] := (sBM[1,2] - 2*cy*sBM[1l,1] - cx*sBM[0,2] + 2*sgr(cy)*sBM[1,0]);
sCM[(2,0] := (sBM[2,0) - cx*sBM[1,0]);
sCM([2,1] := (sBM[2,1]) - 2*cx*sBM[1l,1] - cy*sBM[2,0] + 2*sqr(cx)*sBM[1,0]);
sCM[3,0] := (sBM[3,0] - 3*cx*sBM[2,0] + 2*sgr(cx)*sBM([1,0]);
end; (else)

(Calc source moment invariants)

sMI[1] := sCM[2,0] + sCM[0,2];
SMI(2] := sqr(sCM[2,0]-sCM([0,2])) + 4*sgr(sCM[1,1]));
sMI[3] := sqr(sCM[3,0]-3*sCM[1,2]) + sqr(3*sCM[2,1] + sCM[0,3]);
sMI[4] := sqr(sCM[3,0]+sCM[1,2]) + sqgr(sCM[2,1] + sCM[0,3]);
sSMI(5] := (sCM[3,0] - 3*sCM[1,2])*(sCM[3,0)+sCM[1,2])*(sqr(sCM[3,0]+sCM[1,2])
-3*sqr(sCM[2,1]+sCM[0,3]))) + (3*sCM[2,1)-sCM[0,3]))*(sCM[2,1])
+ sCM([0,3))*(3*sqr(sCM[3,0]+sCM[1,2))-sqr(sCM[2,1])+sCM[0,3])));
SMI[6] := (sCM[2,0)-sCM[0,2]))*(sqr(sCM([3,0)+sCM([1,2]))-sqr(sCM[2,1)+sCM[0,3]))
+ 4*sCM([1,1) *(sCM[3,0]+sCM[1,2])*(sCM[2,1)+sCM[0,3]);
sMI(7) := (3*sCM[1,2)-sCM[3,0]))*(sCM[3,0)+sCM([1,2]))*(sqr(sCM[3,0)+sCM[1,2])
~-3*sqr(sCM([2,1])+sCM[0,3]))) + (3*sCM[2,1])-sCM[0,3])*(sCM[2,1]
+ sCM([0,3))*(3*sgr(sCM[3,0)+sCM[1,2])-sqr(sCM([2,1])+sCM[0,3]));
for y := -SearchRadius to SearchRadius do begin
for x := -SearchRadius to SearchRadius do begin
{compute target base moments) .
for i := 0 to 3 do (initialise tBM)
for j := 0 to 3 do
tBM([i,3] := 0;
for dy := -WindowRadius to WindowRadius do begin
for dx := -WindowRadius to WindowRadius do begin
TargetPixel :=

BytePtr (OffsetPointer (@TargetImage”.data,
centre.x + x+dx + (centre.y + y+dy) *rowByteCount))";
inc (tBM[0,0), TargetPixel);
inc(tBM([0,1), dy*TargetPixel);
inc(tBM[0,2]), sqr(dy)*TargetPixel);
inc (tBM[0,3], sqr(dy)*dy*TargetPixel);
inc(tBM[1,0], dx*TargetPixel);
inc(tBM[1,1]), dx*dy*TargetPixel);
inc(tBM(1,2]), dx*sqr(dy) *TargetPixel) ;
inc(tBM[2,0], sqr(dx)*TargetPixel);
inc(tBM[2,1), sqr(dx)*dy*TargetPixel);
inc (tBM[3,0], sqgr(dx)*dx*TargetPixel);
end; (for dx)

end; (for dy)
cx := tBM[1,0)/tBM[0,0]); cy := tBM[0,1)/tBM[0,0); (Calc centre of area coords)
if MomentType >= RTS2 then begin (Calc Normalise target central moments)

tcM(0,0] := 1;

tCM[0,1) := 0;

tCM([0,2] := (tBM[0,2] - cy*tBM[0,1]))/sqr(tBM[0,0]);

tCM[0,3] := (tBM[0,3] - 3*cy*tBM[0,2] + 2*sqr(cy)*tBM(0,1)])
/ (sqr (tBM[0,0])) *sqrt (tBM[(0,0])));

tCM([1,0]) := 0;

tCM[1,1) := (tBM[1,1] - cy*tBM([1,0])/sqr(tBM([0,0]);

tCM(1,2] := (tBM[1,2] - 2*cy*tBM([1l,1) - cx*tBM([0,2] + 2*sqr(cy)*tBM[1,0])
/(sqr(tBM[0,0]) *sqrt (£tBM(0,0]));

tCM[2,0]) := (tBM[2,0]) - cx*tBM[1,0])/sqr(tBM[0,0]);

tCM(2,1] := (tBM[2,1] - 2*cx*tBM[1l,1] - cy*tBM[2,0] + 2*sqgr(cx)*tBM[(1,0])
/(sqr (tBM[0,0]) *sgrt (tBM[0,0]));

tCM([3,0] := (tBM[3,0] - 3*cx*tBM([2,0] + 2*sqr(cx)*tBM[1,0])
/(sqr (tBM[(0,0)) *sqrt (£tBM[0,0]));

end
else begin (Calc non-normalised central target moments)
tcM[0,0) := tBM[O0,0];
tCM[0,1) := 0;

|Rotation (']

Warp60

C-38 The Development of Motion Tracking Strategies For Cineradiographic Images

tCM([0,2] := (tBM[0,2] - cy*tBM[0,1]);
tCM([0,3] := (tBM([0,3]) - 3*cy*tBM[0,2] + 2*sqr(cy)*tBM[0,1]);
tCM([(1,0] := 0;
tCM([1,1] := (tBM[1,1] - cy*tBM[1,0]);
tCM(1,2] := (tBM[1,2] - 2*cy*tBM([1l,1] - cx*tBM[0,2] + 2*sqr(cy)*tBM([1,0]);
tCM(2,0] := (tBM[2,0] - cx*tBM[1,0]);
tCM([2,1] := (tBM[2,1] - 2*cx*tBM[1l,1] - cy*tBM([2,0] + 2*sqr(cx)*tBM[1,0]);
tCM([3,0] := (tBM[3,0] - 3*cx*tBM[2,0] + 2*sqgr(cx)*tBM[1,0])
end;

(Calc target moment invariants)

tMI(1] := tCM[2,0] + tCM[O0,2];

tMI[2] := sgr(tCM([2,0]-tCM[0,2]) + 4*sqgr(tCM([1l,1]);

tMI[3] := sqr(tCM([3,0]-3*tCM([1,2]) + sgr(3*tCM[2,1] + tCM[0,3]);

tMI[4] := sqr(tCM[3,0]+tCM(1,2]) + sgr(tCM([2,1] + tCM[0,3]);

tMI[S] := (tCM[3,0]-3*tCM(1,2])*(tCM([3,0]+tCM[1,2])*(sqr(tCM[3,0]+tCM[1,2])

-3*sqr(tCM([2,1]+tCM[0,3])) + (3*tCM[2,1]-tCM([0,3])*(tCcM([2,1]

+ tCM[0,3])*(3*sgr(tCM([3,0]+tCM([1,2])-sqr(tCM([2,1]+tCM[0,3]));
tMI[(6] := (tCM[2,0]-tCM([0,2])*(sqr(tCM(3,0]+tCM[1,2])-sgr(tCM[2,1]+tCM[0,3]))
+ 4*tCM(1,1]*(tCM[3,0]+tCM[1,2])*(tCM[2,1])+tCM[0,3]);
(3*tCM([1,2]-tCM([3,0])*(tCM(3,0]+tCM[1,2]) *(sqr(tCM([3,0]+tCM[1,2])
-3*sqr(tCM([2,1]+tCM[0,3])) + (3*tCM[2,1]-tCM[0,3])*(eCM[2,1]

+ tCM[0,3])*(3*sgr(tCM(3,0]+tCM(1,2])~-sqr(tCM([2,1]+tCM[0,3]));
case MomentType of
RT2: RealPtr (OffsetPointer (@MatchMap”.data,
((SearchRadius-y) *SearchWidth + x+SearchRadius) * SizeOfReal))"
4*abs (1n(abs (sMI[1]))-1n(abs(tMI[(1])))
+ 0.25*abs(ln(abs(sMI[2]))-1n(abs(tMI[2])));
RT4: RealPtr (OffsetPointer (@MatchMap”.data,
((SearchRadius-y) *SearchWidth + x+SearchRadius) * SizeOfReal))"
4*abs (1n (abs(sMI[1]))-1n(abs (tMI([1])))
+ abs(ln(abs(sMI[2]))-1ln(abs(tMI[(2])))
+ abs (ln(abs(sMI[3]))-1ln(abs(tMI[3])))
+ abs (1ln(abs(sMI[4)))-1n(abs(tMI[4])))
RT6: RealPtr (OffsetPointer (@MatchMap”.data,
((SearchRadius-y) *SearchWidth + x+SearchRadius) * SizeOfReal))"”
abs(ln(abs(sMI[1]))-1n(abs(tMI[1])))
abs(ln(abs(sMI[2]))-1n(abs(tMI[2])
abs (1n(abs (sMI[3]))-1n(abs(tMI[3]
abs (1n (abs (sMI[4]))-1n(abs(tMI[4]
abs (1n(abs(sMI[5]))-1n(abs (tMI[5S]
+ abs(1ln(abs(sMI[(6]))-1n(abs(tMI[6]
RTS2: RealPtr(OffsetPOLnter(@MatchMap .data,
((SearchRadius-y) *SearchWidth + x+SearchRadius) * SizeOfReal))” :=
abs(sMI[1]-tMI[1l]) + abs(sMI[2]-tMI[2]);
RTS4: RealPtr (OffsetPointer (@MatchMap”.data,
((SearchRadius-y) *SearchWidth + x+SearchRadius) * SizeOfReal))”
abs (sMI[1]-tMI(1])) + abs(sMI[2]-tMI[(2])
+ abs(sMI[3]-tMI(3]) + abs(sMI[4]-tMI[4]);
RTS6: begin (Combine first 6 moment invarients using a normalised correlation)

tMI (7]

i

+ + + +

))
)))
)))
)))
)))

i

MatchSumD = 0;

SourceSumD := 0;

TargetSumD := 0;

for i := 1 to 6 do begin
MatchSumD = MatchSumD + abs(sMI[i]*tMI[i]);
SourceSumD := SourceSumD + sqr(sMI[i]);
TargetSumD := TargetSumD + sqr(tMI(i]);

end; (for i)
RealPtr(OffsetPointer (@MatchMap”.data,
((SearchRadius-y) *SearchWidth + x+SearchRadius) * SizeOfReal))" :=
MatchSumD / sqgrt(SourceSumD * TargetSumD) ;
end; (RTS6)
end; (case)
end; (for x)
end; (for y)
end; (Moment)
end; (Case MatchType of)}
end; (ComputeMatchMap})

end. (Matching)

Warp30

Appendix C - Pascal Source Code C-39

Procedure CalcMatchSelectivity(
MatchMapH : MatrixHandle; CentreBase : integer; NumShells : byte;
var MinSel, AveSel : real; var MatchPosition : TPoint);
{ Calculates the selectivity from the MatchMap. This measure computes the minimum
difference between the centre match value and values in a square annulus of radius
1..NumShells. These minima are normalised by the maximum difference across all shell

annulus and averaged.
SelValue = (min(MO-M1)/Mmax + min(MO-M2)/Mmax + min(M0-M3)/Mmax + ...)/NumShells

If CentreBase = (0 then the centre is taken as the middle of MatchMapH
If CentreBase < 0 then the location of the minimum is used as centre
if CentreBase > 0 then the location of the maximum is used as the centre.

}
const
MaxNumShells = 5; { number of shells scanned to compute selectivity)
var
ShellNo : byte;
x,¥, i,3 : integer;
CenValue, (Value at the Centre of MatchMap)
Value
: real;
MinDiff : Array[l..MaxNumShells] of real;
(Min difference between the centre value and values in each shell)
MaxDiff, (Max difference between the centre value and values across all 4 shells)
Max, Min
: real;
SumDiff (Sum of the differences between the centre value for the current shell)
: Array[l..MaxNumShells] of real;
MatchMap : MatrixPtr;
Centre : TPoint;
begin

if NumShells > MaxNumShells then begin
writeln('Error: too many shells, max of 5');
readln;
exit;
end;
MatchMap := GlobalLock(MatchMapH) ;
x := MatchMap”.size.x;
y := MatchMap”.size.y;
if CentreBase = 0 then begin (use middle of MatchMap as base centre)
Centre.x := x div 2;
Centre.y := y div 2;
end
else if CentreBase > 0 then begin (Find maximum value coords)
Max := -1;
for i := 0 to y-1 do
for j := 0 to x-1 do begin
Value := RealPtr (OffsetPointer(@MatchMap”.data, (j + i * x) * SizeOfReal))";
if Value > Max then begin
Max := Value;
Centre.x := j; Centre.y := i
end; (if)
end; (for j)
end (elseif)
else begin (Find minimum value coords)}
Min := 1E9;
for i := 0 to y-1 do
for j := 0 to x-1 do begin
Value := RealPtr (OffsetPointer (@MatchMap”.data, (j + i * x) * SizeOfReal))";
if Value < Min then begin
Min := Value;
Centre.x := j; Centre.y := i
end; (if)
end; (for j)
end;
MatchPosition.x := Centre.x;
MatchPosition.y := Centre.y;
if (Centre.x >= NumShells) and (Centre.x < x-1-NumShells)
and (Centre.y >= NumShells) and (Centre.y < y-1-NumShells) then begin

'S
a

|Rotation ') 0

Warp60

C-40 The Development of Motion Tracking Strategies For Cineradiographic Images
for i := 1 to NumShells do MinDiff([i] := 1lE9;
MaxDiff := 0;
CenValue :=

RealPtr (OffsetPointer (@MatchMap”.data,
for ShellNo 1 to NumShells do begin
SumDif f{ShellNo] 0;
for i -ShellNo to ShellNo-1 do begin
{ Top: left to right)
Value :=

(Centre.x + Centre.y * y)

* SizeOfReal))";

abs (CenValue - RealPtr(OffsetPointer (@MatchMap”.data,

(Centre.x+i +
SumDif f[ShellNo] SumDif f[ShellNo] + Value;
if Value < MinDiff[ShellNo] then MinDiff[ShellNo]
if Value > MaxDiff then MaxDiff Value;
(Right: top to bottom)}
Value

(Centre.y-ShellNo)

*y) SizeOfReal))");

Value;

abs(CenValue - RealPtr (OffsetPointer (@MatchMap”.data,

(Centre.x+ShellNo +
SumDiff [ShellNo] SumDiff [ShellNo] + Value;
if Value < MinDiff[ShellNo] then MinDiff [ShellNo]
if Value > MaxDiff then MaxDiff Value;
(Bottom: left to right)
Value

(Centre.y+1i)

*y) SizeOfReal)) ")

Value;

abs (CenValue - RealPtr (OffsetPointer (@MatchMap”.data,

(Centre.x+i+l +
SumDiff[ShellNo] SumDiff[(ShellNo] + Value;
if Value < MinDiff(ShellNo] then MinDiff[ShellNo]
if Value > MaxDiff then MaxDiff Value;
(Right: top to bottom)
Value

(Centre.y+ShellNo) *y)

SizeOfReal))");

Value;

abs(CenValue - RealPtr (OffsetPointer (@MatchMap”.data,

(Centre.x-ShellNo +
SumDiff [ShellNo] SumDiff[ShellNo] + Value;
if value < MinDiff(ShellNo] then MinDiff[ShellNo]

if Value > MaxDiff then MaxDiff := Value;
end; (for 1)
end; (for ShellNo)
MinSel := 0;
AveSel := 0;
for ShellNo := 1 to NumShells do begin
MinSel := MinSel + MinDiff[ShellNo];
AveSel := AveSel + SumDiff [ShellNo]/(8*ShellNo)
end; (for 1)
If MaxDiff = 0.0 then begin
MinSel := 0;
AveSel := 0;
end
else begin
MinSel := MinSel /(MaxDiff * NumShells);
AveSel := AveSel /(MaxDiff * NumShells);
end;

end (if Centre within MapMatch Area)
else begin

MinSel := -0.02;
AveSel := -0.02;
end;

end; (CalcMatchSelectivity)
—————————————————————————————— ReadBackwardAndForwardImages
Procedure ReadBackwardAndForwardImages;

(Read the previous and next images about the centre image

previous->Image3H, Next->Imaged4H)
var
Name Str255;
begin

StrPCopy (Name, '*);
writeln('loading images');
CMXDocName ‘cervical';

(Find the document}
StrPCopy (CMXDocPathP, CMXDocPath) ;
fileNo 0;
LStrCat (LStrCat (@Name,

CMXDocPathP), cmx') ;

(Centre.y+i+1)*y)

SizeOfReal))");

Value;

Rotation (*) 0

45—

Warp30

Appendix C - Pascal Source Code C-41

FindFirst (@Name, faReadOnly, searchInfo);

error := BPError (DosError);
if Error <> NoErr then begin
writeln('Error finding CMX documents, path incorrect ', Name);
Exit;
end;
FileFound := False;
while (Error = NoErr) and not(FileFound) do begin
LStrCat (LStrCat (StrPCopy (@Name, CMXDocPathP), '/'), @searchInfo.name);
Error := FileOpen(TFileRec(inFile), @name, Version, Nil, False);
If Error <> NoErr then begin
writeln('Error opening input file ', name);
Exit;
end;
Error := ReadDocID(TFileRec(inFile), docID);
if Error <> NoOErr then begin
writeln('Error reading input file info header ', Error);
FileClose(TFileRec(inFile), Error);
Exit;
end;

StrPCopy (CMXDocNameP, CMXDocName) ;
if LStrcmpi(DocID.name, CMXDocNameP) = 0 then begin
FileFound := True;
end
else FindNext (searchInfo);
Error := BPError (DosError);
FileClose (TFileRec(inFile), Error);
end; (while)
If Error <> NoErr then begin

writeln('Error finding matching CMX file ', CMXDocName) ;
Exit;
end;
Error := FileOpen(TFileRec(inFile), @name, Version, Nil, False);

If Error <> NoErr then begin
writeln('Error opening input file', name);
Exit;
end;
Error :=
FileReadData(TFileRec(inFile), DocInfoDataID, @DocumentInfo, SizeOf (DocumentInfo),nil,0);
if Error <> NoErr then begin

writeln('Error reading input file info header ', Error);
FileClose (TFileRec(inFile), Error);
Exit;
end;
Error := ReadImage(Image2H, InFile, ImageDatalID + (DocumentInfo.ImageCount div 2)-1);

if Error <> NoErr then begin
writeln('Error reading centre image');
Exit;
end;
Error := DecompressImage (Image2H, ImagelH); (Image3H created by decompress)
if Error <> NoOErr then begin
writeln('Error decompressing image');
Exit;
end;
GradientFilterImage (Image3H, Image2H, 6.0/5);
NoFilterImage (Image2H, Image3lH);
Error := ReadImage(Image2H, InFile, ImageDataID + (DocumentInfo.ImageCount div 2));
if Error <> NoErr then begin
writeln('Error reading centre image');
Exit;
end;
Error := DecompressImage (Image2H, ImagelH); (ImagelH created by decompress)
if Error <> NoErr then begin
writeln('Error decompressing image');
Exit;
end;
if Error <> NoErr then begin
writeln('Error decompressing image');
Exit;
end;
GradientFilterImage (ImagelH, Image2H, 6.0/5);

45: .
i
|Rotation (*) 0 ~L|\,_
-4
50

Warp60

C-42 The Development of Motion Tracking Strategies For Cineradiographic Images

NoFilterImage (Image2H, ImagelH);
Error := ReadImage(Image2H, InFile, ImageDatalID + (DocumentInfo.ImageCount div 2)+1);
if Error <> NoErr then begin
writeln('Error reading centre image');
Exit;
end;
Error := Decompresslmage(Image2H, ImagedH); (ImagedH created by decompress)
if Error <> NoOErr then begin
writeln('Error decompressing image');
Exit;
end;
GradientFilterImage (Image4H, Image2H, 6.0/5);
NoFilterImage (Image2H, ImagedH);
FileClose(TFileRec(inFile), Error);
if Error <> NoErr then begin
Writeln('Error closing input file');

Exit;
end;
end; (ReadBackwardAndForwardImages)
(mm e e e MatchMarkedPolntS——————= == e)
Procedure MatchMarkedPoints;
var
MatchCoord : TPoint;
begin
for pointGroupNo := 0 to GetPointGroupCount (pointInfoH)-1 do begin
GetPointGroupName (pointInfoH, pointGroupNo, pointGroupName);
for PointNo := 0 to GetPointCount(pointInfoH, @pointGroupName)-1 do begin
GetPoint (pointInfoH, @pointGroupName, pointNo, Point);
writeln('Processing Name:', pointGroupName,' No:',

PointNo, ' (x,y)=',Point.x,*',',Point.y);
ComputeMatchMap (ImagelH, 0, SearchRadius, WindowRadius, MatchType, Point, MatchMapH) ;
CalcMatchSelectivity(MatchMapH, SelectivityBase, NoShells, MinSel, AveSel,MatchCoord);

RealPtr(@Selectivity”.data)” := MinSel;

RealPtr(OffsetPointer (@Selectivity”~.data, SizeOfReal))” := AveSel;

end; (for PointNo)
DataName := StrPas(pointGroupName) ;
if PointGroupNo = 0 then begin

Error := SaveMat (DataDocName, DataName, MatchMapH, 0, False);

Error := SaveMat (DataDocName, DataName + '_sel', SelectivityH, 0, True);
end
else begin

Error := SaveMat (DataDocName, DataName, MatchMapH, 0, True);

Error := SaveMat (DataDocName, DataName + '_sel', SelectivityH, 0, True);
end;

end; (for pointGroupNo)
end; (MatchMarkedPoints)

E e L e L PR MatCchAllPOINtS—========= == —mm—m—————)
Procedure MatchAllPoints;
var

xl y1

Clearance : longint;

MatrixSize : Tpoint;
MatchCoord : TPoint;

OutMapH : MatrixHandle;
begin
ReadBackwardAndForwardImages;
Clearance := WindowRadius + SearchRadius;
MatrixSize.x := ImageSize.x-(2*Clearance+l);
MatrixSize.y := ImageSize.y-(2*Clearance+l);
Error := CreateMatrix(SelMinMapH, MatrixSize.x, MatrixSize.y, DoublePrecision);

if Error <> NoOErr then begin
Writeln('Error creating Matrix SelMin');

Exit;
end;
SelMinMap := GlobalLock({SelMinMapH) ;
Error := CreateMatrix(SelAveMapH, MatrixSize.x, MatrixSize.y, DoublePrecision);

if Error <> NoErr then begin
Writeln('Error creating Matrix SelAve');
exit;

end;

SelAveMap := GlobalLock(SelAveMapH) ;

45

[Rotation ('} 0

A5,
-4

Warp30

Appendix C - Pascal Source Code C-43

writeln('Matching previous image ');

for y := 0 to MatrixSize.y-1 do begin
for x := 0 to MatrixSize.x-1 do begin
Point.x := x+Clearance;
Point.y := y+Clearance;

ComputeMatchMap (ImagelH, Image3H, SearchRadius,
WindowRadius, MatchType, Point, MatchMapH) ;
CalcMatchSelectivity (MatchMapH, SelectivityBase, NoShells,
MinSel, AveSel, MatchCoord);
RealPtr (OffsetPointer (@SelMinMap”.data,
(x + (MatrixSize.y-1l-y)*MatrixSize.x) * SizeOfDouble))"
RealPtr (OffsetPointer (@SelAveMap”.data,
(x + (MatrixSize.y-1l-y)*MatrixSize.x) * SizeOfDouble))” := AveSel;
end; (for x)
end; (for y)
Error := ConvertMatrix(SelMinMapH, OutMapH, BytePrecision, True);
if Error <> NoOErr then begin
writeln('ConvertError');

MinSel;

exit;

end;
Error := SaveMat(FileType + 'minp.mat', '‘'Sel_min', OutMapH, 0, False);
DestroyMatrix (OutMapH) ;
Error := ConvertMatrix(SelAveMapH, OutMapH, BytePrecision, True);
Error := SaveMat(FileType + ‘'avep.mat', 'Sel_ave', OutMapH, 0, False);

DestroyMatrix (OutMapH) ;
writeln('Matching current image');

for y := 0 to MatrixSize.y-1 do begin
for x := 0 to MatrixSize.x-1 do begin
Point.x := x+Clearance;
Point.y := y+Clearance;

ComputeMatchMap (ImagelH, ImagelH, SearchRadius, WindowRadius,
MatchType, Point, MatchMapH) ;
CalcMatchSelectivity (MatchMapH, SelectivityBase, NoShells,
MinSel, AveSel, MatchCoord) ;
RealPtr (OffsetPointer (@SelMinMap”.data,

(x + (MatrixSize.y-1l-y)*MatrixSize.x) * SizeOfReal))” := MinSel;
RealPtr (OffsetPointer (@SelAveMap”.data,
(x + (MatrixSize.y-l-y)*MatrixSize.x) * SizeOfReal))” := AveSel;
end; (for x)
write('."');
end; (for y)
Error := ConvertMatrix(SelMinMapH, OutMapH, BytePrecision, True);
Error := SaveMat (FileType + 'minc.mat', 'Sel_min', OutMapH, 0, False);
DestroyMatrix (OutMapH) ;
Error := ConvertMatrix(SelAveMapH, OutMapH, BytePrecision, True);
Error := SaveMat (FileType + 'avec.mat',6 'Sel_ave',6 OutMapH, 0, False);

DestroyMatrix (OutMapH) ;
writeln('Matching next image');

for y := 0 to MatrixSize.y-1 do begin
for x := 0 to MatrixSize.x-1 do begin
Point.x := x+Clearance;
Point.y := y+Clearance;

ComputeMatchMap (ImagelH, Imaged4H, SearchRadius, WindowRadius,
MatchType, Point, MatchMapH);
CalcMatchSelectivity (MatchMapH, SelectivityBase, NoShells,
MinSel, AveSel, MatchCoord);
RealPtr (OffsetPointer (@SelMinMap”.data,

(x + (MatrixSize.y-1 - y)*MatrixSize.x) * SizeOfReal))” := MinSel;
RealPtr (OffsetPointer (@SelAveMap”.data,

(x + (MatrixSize.y-1 - y)*MatrixSize.x) * SizeOfReal))” := AveSel;
end; (for x)

write('.");
end; (for y)
Error := ConvertMatrix(SelMinMapH, OutMapH, BytePrecision, True);

Error := SaveMat(FileType + 'minn.mat', ‘Sel_min', OutMapH, 0, False);
DestroyMatrix(OutMapH) ;

Error := ConvertMatrix(SelAveMapH, OutMapH, BytePrecision, True);
Error := SaveMat (FileType + 'aven.mat', 'Sel_ave',6 OutMapH, 0, False);

DestroyMatrix (OutMapH) ;
DestroyMatrix (SelMinMapH) ;
DestroyMatrix (SelAveMapH) ;
end; (MatchAllPoints)

45y

|Rotation (") O

-4
ﬂ

Warp60

(=mmmmmm e e - CalcSelRadEffectS-------~--—-m oo)]
Procedure CalcSelRadEffects;
var

SelRadius,

PointGroupCount

byte;
MinSelRadmapH,
AveSelRadMapH
: MatrixHandle;
MinSelRadmap,
AveSelRadMap
MatrixPtr;

MatchCoord : TPoint;
begin

PointGroupCount := GetPointGroupCount (pointInfoH) ;

Error := CreateMatrix(MinSelRadMapH, 5, PointGroupCount, DoublePrecision);

MinSelRadMap := Globallock (MinSelRadMapH) ;

Error := CreateMatrix(AveSelRadMapH, 5, PointGroupCount, DoublePrecision) ;

AveSelRadMap := GlobalLock(AveSelRadMapH) ;

for pointGroupNo := 0 to PointGroupCount-1 do begin

GetPointGroupName (pointInfoH, pointGroupNo, pointGroupName) ;
for PointNo := 0 to GetPointCount (pointInfoH, @pointGroupName)-1l do begin
for SelRadius := 1 to 5 do begin
GetPoint (pointInfoH, @pointGroupName, pointNo, Point);
writeln('Processing Name:', pointGroupName,
' No:',PointNo,' (x,y)=',Point.x,',',Point.y);

ComputeMatchMap (ImagelH, 0, SearchRadius, WindowRadius,
MatchType, Point, MatchMapH) ;
CalcMatchSelectivity (MatchMapH, SelectivityBase, SelRadius,
MinSel, AveSel, MatchCoord);
RealPtr (OffsetPointer (@MinSelRadMap”.data,

(pointGroupNo + (SelRadius-1) *PointGroupCount)*SizeOfReal))” := MinSel;
RealPtr (OffsetPointer (RAveSelRadMap”.data,
(pointGroupNo + (SelRadius-1)*PointGroupCount)*SizeOfReal))” := AveSel;

end; (for SelRadius)
end; (for PointNo)
end; (for pointGroupNo)
Error := SaveMat('cor5_min.mat', ‘'Sel_min', MinSelRadMapH, 0, False);
Error := SaveMat('cor5_ave.mat', 'Sel_ave', AveSelRadMapH, 0, False);
DestroyMatrix(MinSelRadMapH) ;
DestroyMatrix (AveSelRadMapH) ;
end; (CalcSelRadEffects)

Procedure CalcSelWindowEffects;
(Calculates the selectivity for various window radius)}
var
PointGroupCount
: byte;
MinSelRadmapH,
AveSelRadMapH
: MatrixHandle;
MinSelRadmap,
AveSelRadMap
MatrixPtr;
MatchCoord : TPoint;
begin
PointGroupCount := GetPointGroupCount (pointInfoH) ;
Error := CreateMatrix(MinSelRadMapH, 6, PointGroupCount, DoublePrecision);
MinSelRadMap := GlobalLock(MinSelRadMapH) ;
Error := CreateMatrix(AveSelRadMapH, 6, PointGroupCount, DoublePrecision);
AveSelRadMap := GlobalLock (AveSelRadMapH) ;
for pointGroupNo := 0 to PointGroupCount-1 do begin
GetPointGroupName (pointInfoH, pointGroupNo, pointGroupName) ;
for PointNo := 0 to GetPointCount (pointInfoH, @pointGroupName)-1 do begin

for WindowRadius := 1 to 6 do begin
GetPoint (pointInfoH, @pointGroupName, pointNo, Point);
writeln('Processing Name:', pointGroupName,
' No:',PointNo,' (x,y)=',Point.x,',',Point.y);

ComputeMatchMap (ImagelH, 0, SearchRadius, WindowRadius,
MatchType, Point, MatchMapH) ;
CalcMatchSelectivity (MatchMapH, SelectivityBase, NoShells,
MinSel, AveSel, MatchCoord);

Warp30

Appendix C - Pascal Source Code C-45

RealPtr (OffsetPointer (@MinSelRadMap”.data,

(pointGroupNo + (WindowRadius-1)*PointGroupCount)*SizeOfReal))”~ := MinSel;
RealPtr (OffsetPointer (@AveSelRadMap”.data,
(pointGroupNo + (WindowRadius-1) *PointGroupCount)*SizeOfReal))” := AveSel;

end; (for WindowRadius)
end; (for PointNo)

end; (for pointGroupNo)

Error := SaveMat ('rms_wrad.mat', 'rms_min', MinSelRadMapH, 0, False);

Error := SaveMat('rms_wrad.mat', 'rms_ave', AveSelRadMapH, 0, True);

DestroyMatrix (MinSelRadMapH) ;

DestroyMatrix (AveSelRadMapH) ;
end; (CalcSelWindowEffects)
(—mmmmmm e e - CalcSelwWindowEffectsBetweenImagesS--------=--=-—--——=——————————)
Procedure CalcSelWindowEffectsBetweenImages;

(Calculates the selectivity for various window radius, between images)
var

PointGroupCount,
MaxWinRadius
: byte;
SelWinRadmapH,
OutMatrixH,
xCoordsH,
yCoordsH
: MatrixHandle;
SelWinRadmap,
xCoords,
yCoords
: MatrixPtr;
MatchCoord : TPoint;
begin
MaxWinRadius := 8;
ReadBackwardAndForwardImages;
PointGroupCount := GetPointGroupCount (pointInfoH) ;
Error := CreateMatrix(SelWinRadMapH, MaxWinRadius, 6*PointGroupCount, DoublePrecision);
SelWinRadMap := GlobalLock (SelWinRadMapH) ;
Error := CreateMatrix(xCoordsH, MaxWinRadius, 3*PointGroupCount, DoublePrecision);
xCoords := GlobalLock (xCoordsH) ;
Error := CreateMatrix(yCoordsH, MaxWinRadius, 3*PointGroupCount, DoublePrecision);
yCoords := GlobalLock (yCoordsH) ;
for pointGroupNo := 0 to PointGroupCount-1 do begin
GetPointGroupName (pointInfoH, pointGroupNo, pointGroupName) ;
for PointNo := 0 to GetPointCount(pointInfoH, @pointGroupName)-1l do begin

(Match Previous frame)

writeln('Previous Frame');

for WindowRadius := 1 to MaxWinRadius do begin
GetPoint (pointInfoH, @pointGroupName, pointNo, Point);
ComputeMatchMap (ImagelH, Image3H, SearchRadius, WindowRadius,

MatchType, Point, MatchMapH);
CalcMatchSelectivity (MatchMapH, SelectivityBase, NoShells, MinSel,
AveSel, MatchCoord) ;

writeln('Processing Name:', pointGroupName,' (x,y)=',Point.x,',"',Point.y,
*, ',WindowRadius,' ', MatchCoord.x, ', ',MatchCoord.y):;
RealPtr (OffsetPointer (@SelWinRadMap”.data, ((0*pointGroupCount) + PointGroupNo
+ (WindowRadius-1)*6*PointGroupCount) *SizeOfReal))” := MinSel;
RealPtr (OffsetPointer (@SelWinRadMap”.data, ((3*PointGroupCount) + PointGroupNo
+ (WindowRadius-1) *6*PointGroupCount) *SizeOfReal))"~ := AveSel;
RealPtr (OffsetPointer (@xCoords”.data, (0 * PointGroupCount + PointGroupNo
+ (WindowRadius-1)* 3*PointGroupCount) *SizeOfReal))” := MatchCoord.x;
RealPtr (OffsetPointer (@yCoords”~.data, (0 * PointGroupCount + PointGroupNo
+ (WindowRadius-1) * 3*PointGroupCount) *SizeOfReal))” := MatchCoord.y;

end; (for WindowRadius)
(Match Centre frame)
writeln('Middle Frame');
for WindowRadius := 1 to MaxWinRadius do begin
GetPoint (pointInfoH, @pointGroupName, pointNo, Point);
ComputeMatchMap (ImagelH, ImagelH, SearchRadius, WindowRadius,
MatchType, Point, MatchMapH) ;
CalcMatchSelectivity(MatchMapH, (SelectivityBase) 0, NoShells,
MinSel, AveSel, MatchCoord);
writeln('Processing Name:', pointGroupName,' (x,y)=',6Point.x,',', Point.y,
', ',WindowRadius,' ',MatchCoord.x,',',MatchCoord.y);

45

|Rotation '] 0{-|-

45

Warp60

C-46 The Development of Motion Tracking Strategies For Cineradiographic Images

RealPtr (OffsetPointer (@SelWinRadMap”.data, ((l1 * pointGroupCount)+ PointGroupNo
+ (WindowRadius-1) *6*PointGroupCount) *SizeOfReal))” := MinSel;
RealPtr (OffsetPointer (@SelWinRadMap”.data, ((4 * PointGroupCount)+ PointGroupNo
+ (WindowRadius-1)*6*PointGroupCount) *SizeOfReal))” := AveSel;
RealPtr (OffsetPointer (@xCoords”.data, (1 * PointGroupCount + PointGroupNo
+ (WindowRadius-1)* 3*PointGroupCount) *SizeOfReal))” := MatchCoord.x;
RealPtr (OffsetPointer (@yCoords”.data, (1 * PointGroupCount + PointGroupNo
+ (WindowRadius-1)* 3*PointGroupCount)*SizeOfReal))” := MatchCoord.y;
end; (for WindowRadius)
(Match next frame)
writeln('Next Frame');
for WindowRadius := 1 to MaxWinRadius do begin
GetPoint (pointInfoH, @pointGroupName, pointNo, Point);
ComputeMatchMap (ImagelH, Imaged4H, SearchRadius, WindowRadius,
MatchType, Point, MatchMapH);
CalcMatchSelectivity(MatchMapH, SelectivityBase, NoShells
MinSel, AveSel, MatchCoord);

writeln('Processing Name:', pointGroupName,' (x,y)=',6Point.x,', ', Point.y,
', ',WindowRadius, ' ‘' ,MatchCoord.x, ', ' ,MatchCoord.y) ;
RealPtr (OffsetPointer (@SelWinRadMap”.data, ((2 * pointGroupCount)+ PointGroupNo
+ (WindowRadius-1) *6*PointGroupCount) *SizeOfReal))” := MinSel;
RealPtr (OffsetPointer (@SelwWinRadMap”.data, ((5 * PointGroupCount)+ PointGroupNo
+ (WindowRadius-1) *6*PointGroupCount) *SizeOfReal))” := AveSel;
RealPtr (OffsetPointer (@xCoords”.data, (2 * PointGroupCount + PointGroupNo
+ (WindowRadius-1)* 3*PointGroupCount) *SizeOfReal))” := MatchCoord.x;
RealPtr (OffsetPointer (@yCoords”.data, (2 * PointGroupCount + PointGroupNo
+ (WindowRadius-1)* 3*PointGroupCount) *SizeOfReal))” := MatchCoord.y;

end; (for WindowRadius)
end; (for PointNo)
end; (for pointGroupNo)

Error := SaveMat('RTS6drad.mat', 'dyna_sel',6 SelWinRadMapH, 0, False);
Error := SaveMat('RTS6drad.mat', ‘'dyna_x', xCoordsH, 0, True);
Error := SaveMat ('RTS6drad.mat', 'dyna_y', yCoordsH, 0, True);

DestroyMatrix(SelWinRadMapH) ;
DestroyMatrix (xCoordsH) ;
DestroyMatrix (yCoordsH) ;

end; (CalcSelWindowEffectsBetweenImages)

(=== mmmm e MatchPointsBetweenImagesS--=--==============—— - _____
Procedure MatchPointsBetweenImages (Backward : boolean) ;
var
MatchCoord : TPoint;
begin

writeln(' MatchPointsBetweenImages');
ReadBackwardAndForwardImages;
for pointGroupNo := 0 to GetPointGroupCount (pointInfoH)-1 do begin
GetPointGroupName (pointInfoH, pointGroupNo, pointGroupName) ;
for PointNo := 0 to GetPointCount (pointInfoH, @pointGroupName)-1 do begin
GetPoint (pointInfoH, @pointGroupName, pointNo, Point);
writeln('Processing Name:', pointGroupName,
' No:',PointNo,' (x,y)=',Point.x,',"',Point.y);
if BackWard then
ComputeMatchMap (ImagelH, Image3H, SearchRadius, WindowRadius,
MatchType, Point, MatchMapH)
else ComputeMatchMap (ImagelH, Imaged4H, SearchRadius, WindowRadius,
MatchType, Point, MatchMapH) ;
CalcMatchSelectivity(MatchMapH, SelectivityBase, NoShells
MinSel, AveSel, MatchCoord) ;
RealPtr (@Selectivity”~.data)” := MinSel;
RealPtr (OffsetPointer (@Selectivity”.data, SizeOfReal))” := AveSel;
end; (for PointNo)
DataName := StrPas(pointGroupName);
if PointGroupNo = 0 then begin
Error := SaveMat (DataDocName, DataName, MatchMapH, 0, False);
Error := SaveMat (DataDocName, DataName + '_sel', SelectivityH, 0, True);
end

Error := SaveMat (DataDocName, DataName, MatchMapH, 0, True);
= SaveMat (DataDocName, DataName + '_sel‘', SelectivityH, 0, True);

end; (for pointGroupNo)
end; (MatchPointsBetweenImages)

45

|Rotation () of-—++—

i~
o

Appendix C - Pascal Source Code

coords }

i===ssss===s=s===sss================z=====: Maan Mapping ==========================
begin
ScreenSize.x := 65;
ScreenSize.y := 25;
(Define run parameters)
WindowRadius := 5;
SearchRadius := 7;
MatchType := (AbsMeanDiff) (RMSDiff) (NormCorr)Moment ;
MomentType := RTS6;
str (WindowRadius, 8S);
Ccase MatchType of
AbsMeanDiff FileType ‘abs' + s;
RmsDiff FileType : ‘rms' + s;
NormCorr FileType := 'cor' + s;
Moment
case MomentType of
RTS2 : FileType := 'RTS2';
RTS4 : FileType := 'RTS4';
RT2 : FileType := 'RT2';
RTS4 : FileType := 'RT4‘';
end; (case)
end; (case)
NoShells := I3 (Number of shells for selectivity measure)
SelectivityBase := +1; { O=use centre, -ve use min, +ve use max,
CMXDocPath := 'e:\cmxdocs';
CMXDocName := 'Refl"’; (CMX reference document with marked points)
DataDocName := 'rts6_67.mat';

(Find the document)
StrPCopy (CMXDocPathP, CMXDocPath) ;
fileNo := 0;
LStrCat (LStrCat (@Name, CMXDocPathP),
FindFirst (@Name, faReadOnly, searchInfo);
error := BPError(DosError);
if Error <> NoErr then begin
writeln('Error finding CMX documents,
goto ExitPoint;
end;
FileFound := False;
while (Error = NoErr) and not(FileFound)
LStrCat (LStrCat (StrPCopy (@Name,
Error := FileOpen(TFileRec(inFile),
If Error <> NoErr then begin
writeln('Error opening input file ',
goto ExitPoint;
end;
Error := ReadDocID(TFileRec(inFile),
if Error <> NoErr then begin

@name,

writeln('Error reading input file info header ‘',

FileClose(TFileRec(inFile),
goto ExitPoint;
end;
StrPCopy (CMXDocNameP, CMXDocName) ;
if LStrcmpi(DocID.name, CMXDocNameP) =
FileFound := True;
end
else FindNext (searchlInfo);
Error := BPError (DosError);
FileClose(TFileRec (inFile),
end; (while)

If Error <> NoErr then begin
writeln('Error finding matching CMX file '
goto ExitPoint;

end;

Error := FileOpen (TFileRec(inFile),

If Error <> NoErr then begin
writeln('Error opening input file',
goto ExitPoint;

end;
Error :=

Error) ;

Error) ;

@name,

name) ;

path incorrect',

CMXDocPathP) ,

docID) ;

’

Version,

Version,

‘\doc?????.cmx');

Name) ;

do begin

AR

@searchInfo.name) ;
Nil, False);

name) ;

Error) ;

0 then begin

CMXDocName) ;

Nil, False);

FileReadData (TFileRec (inFile),DocInfoDatalID, @DocumentInfo, SizeOf (DocumentInfo),nil,0);

Rotation{*) 0

Warp60

C-48 The Development of Motion Tracking Strategies For Cineradiographic Images

if Error <> NoErr then begin
writeln('Error reading input file info header ', Error);
FileClose(TFileRec(inFile), Error);
goto ExitPoint;
end;
Error := CreatePointInfo(PointInfoH, DocumentInfo.imageCount) ;
if Error <> NoErr then begin
writeln('Error creating PointsInfo');
FileClose(TFileRec(inFile), Error);
goto ExitPoint;

end;
Error := ReadPointInfo(PointInfoH, TFileRec(inFile), PointInfoDatalD);
If Error <> NoErr then begin

writeln('Error reading Point information = ', Error);

FileClose(TFileRec(inFile), Error);
goto ExitPoint;

end;
ImageSize.x := DocumentInfo.imageSize.x;
rowByteCount := Align32(ImageSize.x); (zero stuffed to longint alignment)}
ImageSize.y := DocumentInfo.imageSize.y;
writeln('Image Size: ',6 ImageSize.x,'x',6 ImageSize.y);
Error := Createlmage(Image2H, rowByteCount, ImageSize.y);

if Error <> NoErr then begin
writeln('OutOfMem') ;
goto ExitPoint;

end;
Image2 := GlobalLock (Image2H) ;

(read the middle image)
Error := ReadImage(Image2H, InFile, ImageDatalID + (DocumentInfo.ImageCount div 2));

if Error <> NoErr then begin
writeln('Error reading centre image');
goto ExitPoint;
end;
Error := DecompressImage(Image2H, ImagelH); (ImagelH created by decompress)
if Error <> NoErr then begin
writeln('Error decompressing image');
goto ExitPoint;
end;
GlobalUnlock (Image2H) ;
FileClose(TFileRec(inFile), Error);
if Error <> NoErr then begin
Writeln('Error closing input file');
goto ExitPoint;
end;
($I-)
Error := CreateMatrix(MatchMapH, 2*SearchRadius+l, 2*SearchRadius+l, DoublePrecision);
if Error <> NoErr then begin
Writeln('Error creating Matrix');
goto ExitPoint;

end;
MatchMap := GlobalLock (MatchMapH) ;
Error := CreateMatrix(SelectivityH, 2, 1, DoublePrecision);

if Error <> NoErr then begin
Writeln('Error Selectivity Matrix');
goto ExitPoint;

end;
Selectivity := GlobalLock(SelectivityH);
MatchMarkedPoints; (Compute feature-strength maps and selectivity about marked points)
MatchAllPoints; (Compute selectvity of all points in the image)
str (WindowRadius, S);
FileType := 'RTS6_' + s;
SelectivityBase := +1;
CalcSelRadEffects; (Compute the effects of number of shells on Selectivity measure)
CalcSelWindowEffects; (Compute selectvity for various window sizes)}

(Compute selectvity for various window sizes for previous, current and next images)
CalcSelWindowEffectsBetweenImages;

(Compute feature-strength maps and selectivity about marked points between frames)
MatchPointsBetweenImages (Backward) ;
Exitpoint:

if Error <> NoOErr them readln;

DestroyPointInfo (PointInfoH) ;

45

Rotation (') 0

Warp30

Appendix C - Pascal Source Code C-49

DestroyImage (ImagelH) ;
DestroylImage (Image2H) ;
DestroyImage (Image3H) ;
DestroyImage (ImagedH) ;
DestroyMatrix(MatchMapH) ;
DoneWinCrt;

end. (Matching)

C.6 Image Rotation

The following Pascal unit 'Rotate' implements an image rotation function based on the three-pass
shear scanline algorithm described in section 6.4.2 of chapter 6. This function was used to

generate the results of column one of table 6.1.

unit Rotate;
(Routines to produce rotated antialiased images using the three-pass shear method.

}

interface
uses
WinProcs, WinTypes,
PMXTypes, PMXProcs, PMXUtils, Globals;

Procedure SkewLine (

Source : PByte; (Source image data)

SrcLen, (Source image scaline length)

DestLen : integer; (Destination image scaline length)
Start : double; (Real starting position of first pixel)
Offset : integer; (Offset to next scanline)

Dest : PByte); (Destination image data)

{ Skew scanline in Source (lenght SrcLen) into Dest (length DestLen) starting at position
Start. Offset between scalines = 1 for rows or images width for columns.

}
Punction RotatelImage (
InImageH : ImageHandle;
Theta : double;
var OutImageH : ImageHandle) : ErrorCode;

{ Rotates image InImageH about its centre by angle Theta (in radians) to produce
OutImageH. The angle is assummed to be in the range of +/- Pi. NOTE: Does not work
for negative angles, need to correct offset to skew line when angle -ve.

}

implementation

(=========================ssssssssssss=s== IMPLEMENTATION====================================)
e e e e SlcewBHm el == = = = =Tt e STt e —)
Procedure SkewLine (

Source : PByte; (Source image data)

SrcLen, (Source image scaline length)

DestLen : integer; (Destination image scaline length)

Start : double; (Real starting position of first pixel)

Offset : integer; (Offset to next scanline)

Dest : PByte); (Destination image data)

{ Skew scanline in Source (lenght SrcLen) into Dest (length DestLen) starting at position
Start. Offset between scalines = 1 for rows or 1images width for columns.

]

4517

|Rotation [*] 0+

-45

Warp60

C-50 The Development of Motion Tracking Strategies For Cineradiographic Images

var
i,
IntStart,
Limit : integer;
F, G, Wl, W2 : double;

begin (Procedure: SkewLine)
(-Process left end of output: either prepare for clipping or add padding)
IntStart := Trunc(Start); (Integer index)
if IntStart < 0 then (Negative skew)
(Advance input pointer for clipping)
Source := OffsetPointer (Source, -IntStart * longint(offset));

Limit := MinL(SrcLen + IntStart, DestLen); (Find index for end edge (valid range))
i:=0;
while i < IntStart do begin (Visit all null output pixels at start edge and pad with 0)
Dest”™ := 0;
Dest = OffsetPointer (Dest, Offset); (Advance output pointer)
inc (i) ; (Increment index)
end; (while)
F := Abs(Start-IntStart); (Weight for end straddle)
G :=1.0 - F; (Weight for start straddle)
if F = 0.0 then begin (Simple integer shift, no interpolation)
while i < Limit do begin (Visit all pixels in valid range)
Dest” := Source”; (Copy input to output)
Source := OffsetPointer (Source, Offset); (Advance input pointer)
Dest := OffsetPointer (Dest, Offset); (Advance output pointer)
inc(i); (Increment index)

end; (while)
end (if F=0.0)
else begin (Fractional shift: interpolate)
if Start > 0.0 then begin

Wl := F; (Weight for start pixel)
W2 := G; (Weight for end pixel)
Dest” := Round(G * Source®); (First pixel special case)
Dest = OffsetPointer (Dest, Offset); (Advance output pointer)
inc(i); (Increment index)
end
else begin (Start <= 0.0 -> negative skew)
Wl := G; (Weight for start pixel)
W2 := F; (Weight for end pixel)
if Limit < DestLen then dec(Limit);
end;
while i < Limit do begin (Visit all pixels in valid range)
(Linear interpolation)
Dest” := Round(Wl*Source” + W2*PByte(OffsetPointer(Source, Offset))");
Source := OffsetPointer (Source, Offset); (Advance input pointer)
Dest := OffsetPointer (Dest, Offset); (Advance output pointer)
inc (i) ; (Increment index)

end; (while)
if i < DestLen then begin

Dest” := Round(Wl * Source”); (Last pixel special case)
Dest := OffsetPointer(Dest, Offset); (Advance output pointer)
inc (i) ; (Increment index)
end;
end; (else Fractional shift...)
while i < DestLen do begin (Visit all remaining pixels at end edge and pad with 0)
Dest” := 0;
Dest = OffsetPointer (Dest, Offset); (Advance output pointer)
inc(i); (Increment index)

end; (while)
end; (Procedure: SkewLine)

(=== m - RotateImage ------—==-===--=—--— - mm—m————— o __)
Function RotateImage (
InImageH : ImageHandle;
Theta : double;
var OutImageH : ImageHandle) : ErrorCode;

(Rotates image InImageH about its centre by angle Theta (in radians) to produce
OutImageH. The angle 1s assummed to be in the range of +/- Pi.)

label
ExitPoint;

45

Rotation (*] 0

Warp30

Appendix C - Pascal Source Code C-51

var
Error : ErrorCode;
X, Y (Row and column counters)}
: longint;
InImageWidth, InImageHeight,
TmpImageWidth, (Tempory image width = final output image width }
OutImageHeight, OutImageWidth
: word;
TmpImageH (Tempory image for intermediate results)
: ImageHandle;
InImage, (Pointers to Input, Tempory, and Output images)
TmpImage,
OutImage
: ImagePtr;
SrcImagePtr, (Pointers to Source and Destination image pixels)
DestImagePtr
: PByte;
Cosine, (Cosine of rotation angle)
Sine, (Sine of rotation angle)
Tangent, (Tangent of rotation half the angle)
Offset (Offset from top of image)
: double;

(Data flow: InImage -> OutImage -> TmpImage -> OutImage,
+1 added to dimensions due to last fractional pixel.)
begin (Function: RotateImage)
if abs(Theta) > PI then begin
Error := 2;
goto ExitPoint;
end;
InImage := GlobalLock(InImageH) ;
InImageWidth := InImage”.header.size.x;
InImageHeight := InImage”.header.size.y;
Sine := Sin(Theta);
Cosine := Cos(Theta);
Tangent := Sin(Theta/2) / Cos(Theta/2);
TmpImageWidth := InImageWidth + abs(Trunc(InImageHeight * Tangent)) + 1;
OutImageHeight := Trunc(InImageWidth * abs(Sine) + InImageHeight * Cosine) + 1;
OutImageWidth := Trunc(InImageHeight * abs(Sine) + InImageWidth * Cosine) + 1;
Error := Createlmage (TmpImageH, TmpImageWidth, OutImageHeight) ;
If Error <> NoErr then goto ExitPoint;
TmpImage := GlobalLock (TmpImageH) ;
Error := CreateImage(OutImageH, OutImageWidth, OutImageHeight);
If Error <> NoErr then goto ExitPoint;
OutImage := GlobalLock(OutImageH) ;
(-First pass: Skew x (horizontal scanlines))
for y := 0 to InImageHeight-1 do begin (Visit each row in InImage)
SrcImagePtr := OffsetPointer(@InImage”.data, y * InImageWidth);
DestImagePtr := OffsetPointer (@OutImage”.data, y * TmpImageWidth);
SkewLine (SrcImagePtr, InImageWidth, TmpImageWidth, y * Tangent, 1, DestImagePtr) ;
end; (for y)
(-Second pass: Skew y (vertical scanlines). Use TmpImage for intermediate storage)}

Offset := (InImageWidth-1) * Sine; (Offset from top of image)

for x := 0 to TmpImageWidth-1 do begin (Visit each column in OutImage)
SrcImagePtr := OffsetPointer (@OutImage”.data, Xx);
DestImagePtr := OffsetPointer (@TmpImage”.data, x);

SkewLine (SrcImagePtr, InImageHeight, OutImageHeight,
Offset-x*Sine, TmpImageWidth, DestImagePtr);
end; (for x}
(-Third pass: Skew x (horizontal scanlines))

for y := 0 to OutImageHeight-1 do begin (Visit each row in InImage)
SrcImagePtr := OffsetPointer(@TmpImage”.data, y * TmpImageWidth);
DestImagePtr := OffsetPointer (@OutImage”.data, y * OutImageWidth);

SkewLine (SrcImagePtr, TmpImageWidth, OutImageWidth,
(y - Offset) * Tangent, 1, DestImagePtr);
end; (for y)
ExitPoint:
DestroyImage (TmpImageH) ;
if Error <> NoErr then DestroyImage (OutImageH) ;
RotateImage := Error;
end; (Function: RotateImage)

end. (Unit: Rotate)

45

[Rotation () 0

Warp60

C-52 The Development of Motion Tracking Strategies For Cineradiographic Images

C.7 Two-pass Mesh-warp Image Functions

The following Pascal unit 'WarpFins' contains all the functions of the two-pass mesh-warp
image resampling algorithm that was used as the basis of the generation of the prescribed motion
cineradiographic sequences of chapter 7.

unit WarpFtns;
(Routines to perform 2-D Mesh warping of images }

(Sr warpftns.res)
INTERFACE

uses

WinCrt,
Globals,

wWinTyp
Resou

const
(Extra error

MemoryErr
DivByZeroErr
OutOfRangeErr

type
Real =
RealLine
PRealLine
ByteLine
PByteLine

Singl

wonuwn

RealImageHandle =

RealImageRec
DataSize

winProcs, PMXProcs, PMXUtils,

MLab_ops,

PMXTypes,
Images;

es,
rce,

types)
11;

12;

185

e;

Array(0..MaxWord div RSize - RSize] of Real;
“ReallLine;

Array(0..MaxWord-WSize] of Byte;

~ByteLine;

THandle;

= record

Longint;

Utils,

TPoint;

Size 3
: Array(0..0] of Real;

Data
end;
ReallImagePtr
MeshHandle

MeshPtr

~“ReallImageRec;
RealImageHandle;
ReallImagePtr;

Function CreateReallImage (
var ReallImageH RealImageHandle;
width, height Word) ErrorCode;
Procedure DestroyRealImage (var RealImageH RealImageHandle) ;

Function InterpolateCubic((Generalised cubic spline interpolator.)

XDatalIn, YDataln PRealLine; LengthIn : word;

XDataOut, YDataOut PRealLine; LengthOut word) ErrorCode;
Function InterpolatelLinear((Generalised linear spline interpolator.)

XDatalIn, YDataln PRealLine; LengthIn word;

XDataOut, YDataOut PRealLine; LengthOut word) ErrorCode;

Function MeshWarpImage (

InImageH (Input image handle}
ImageHandle;

var OutImageH (Output image handle}
ImageHandle;

(Handle to x and y coords of input image mesh)
(Handle x and y coords of output image mesh)
: MeshHandle;
RegularisedOutMesh Boolean) ErrorCode;
(A function to resamples InImageH to produce OutImageH based on the forward mesh maps
defined by the relationship between (XMeshIn, XMeshOut) and (YMeshIn, YMeshOut).

}

XMeshInH, YMeshInH,
XMeshOutH, YMeshOutH

45

Rotation () 0

-45

Warp30

Appendix C - Pascal Source Code C-53

Function ResampleScanline((Generalised image ByteLine resampling.)

ForwardMap (Table for point samples of the forward mapping function)
: PRealLine;
InpLine, (Pointer to Input scanline to be resampled)
OutLine (Pointer to the resulting Output scanline)
: PByte;
LineLength, (Input scanline length)
LineOffset (Offset between scanlines)
: Word) : ErrorCode;
Implementation
(==================z=z===================IMPLEMENTATION=====================================)
(EEEEEE =T - == = e e = =] GreajteReallllmag eEEEEEEERE == = — I = e T =)

Function CreateRealImage (
var ReallImageH : RealImageHandle;
width, height : word) : ErrorCode;
(-Allocates memory for a real image "RealImageH" of size "width" x "height" of real)
If an error occurs "RealImageH' will be 0. Returns the code of any error that occurs.

}

var
Error : ErrorCode; (Code of any error that has occurred)
RealImage : ReallmagePtr; (Pointer to RealArray)
begin (CreateRealImage)
Error := CreateHandle(RealImageH,

SizeOf (RealImageRec) + (Longint(width) * height-1) * RSize, 0);
if Error = NoErr then begin
RealImage := GlobalLock(ReallImageH) ;
RealImage”.DataSize := Longint (width) * height * RSize;
SetPoint (RealImage”.size, width, height);
GlobalUnlock (RealImageH) ;

end; (if)
CreateReallImage := Error;
end; (CreateReallImage)

DestroyRealImage----------———-========—-—————c-————c——=)
Procedure DestroyRealImage(var RealImageH : RealImageHandle);
(-Destroys the "RealArrayH" and sets it to 0)
begin (DestroyRealImage)
DestroyHandle (RealImageH) ;
end; (DestroyReallImage)
(—mmmmmm e - SolveTridiagonalMatrix -------—--—---c-ccmmm oo)
Function SolveTridiagonalMatrix(
BandA, BandB, BandC, VectorD : PReallLine;
Length : word) : ErrorCode;
(Gauss Elimination with backsubstitution for solving a tridiagonal matrix of size
"Length", with bands "BandA, BandB, BandC" and column vector "VectorD"

}

var
ol : integer; (counter)
Pivot : Real;
TempVector : PRealLine;

begin (-SolveTridiagonalMatrix)
if MaxAvail < Length * RSize then begin

SolveTridiagonalMatrix := MemoryErr;
Exit;
end;
GetMem (TempVector, Length * RSize);
Pivot := BandB"[0];
VectorD”" (0] := VectorD"[0] / Pivot;
for i := 1 to Length-1 do begin (Perform Forward substitution)
TempVector”[i] := BandC"[i-1)/Pivot;
Pivot := BandB”[i] - BandA"(i] * TempVector”([i];
if Pivot = 0 then begin
SolveTridiagonalMatrix := DivByZeroErr;
FreeMem(TempVector, Length * RSize);
Exit;
end; (if)
VectorD”[i] := (VectorD"[i) - VectorD”[i-1l] * BandA”™[i]) / Pivot;

end; (for 1)

451~

Rotation {*) 0

4%

Warp60

C-54 The Development of Motion Tracking Strategies For Cineradiographic Images

for i := Length-2 downto 0 do (Perform Backsubstitution)
VectorD"[i] := VectorD"[i] - VectorD"[i+l] * TempVector”[i+l];
SolveTridiagonalMatrix := NoErr;

FreeMem(TempVector, Length * RSize);
end; (-Function: SolveTridiagonalMatrix)

(R et T ComputeYDerivs =—----=-=------ - ——e
Function ComputeYDerivs(XData, YData : PRealline;

var YDerivs : PRealLine;

Length : Word) : ErrorCode;

(-Compute the lst derivatives "YDerivs" of data in "XData, YData" of "Length" entries.
The not-a-knot condition is used. If successful returns NoErr else MemoryErr for
insufficient memory or DivByZeroErr for divide by zero, indicating at least one
undefined derivative.

}
var
i : integer; (Counter)
BandA, BandB, (The three bands of the tridiagonal matrix)
BandC
: PRealLine;
DeltaX0, DeltaXl, (Change in xdata between the current and the next segment)
Slope0O, Slopel (Slope between current and the next segment)
: Real;
UndefinedSlope (True if any segment slope is undefined)
boolean;

begin (-Function ComputeYDerivs)
if MaxAvail < (3 * longint(Length) * RSize) then begin
ComputeYDerivs := MemoryErr;
Exit;
end;
(-Allocate memory for tridiagonal bands A,B,C.)
GetMem(BandA, Length * RSize);
GetMem (BandB, Length * RSize);
GetMem (BandC, Length * RSize);
(-Initialise first row.)
DeltaX0 := XData~[l] - XData"[0];
DeltaXl := XData~[2] - XData"[l];
if (DeltaX0 <> 0) and (DeltaXl <> 0) then begin (First slope defined)
UndefinedSlope := False;
Slope0 := (YData~[l) - YData"[0]) / DeltaXo0;
Slopel = (YData~[2]) - YData"[l]) / DeltaXl;
BandA~[0] 0; (Not strictly necessary)
BandB"~[0] DeltaX0 * (DeltaX0 + DeltaXl):;
BandC” [0]) Sqgr (Deltax0 + DeltaXl);
YDerivs~[0] := Slope0 * (3*DeltaX0*DeltaXl + 2*Sqr(DeltaXl)) + Slopel*Sqgr(DeltaX0);
(-Initialise tridiagonal bands A,B,C and column vector YDerivs)
i=1;
repeat
DeltaX0 := XData"[i] - XData"[i-1];
DeltaXl := XData”[i+l]) - XData"[i];
if (DeltaX0 <> 0) and (DeltaXl <> 0) then begin (Slope defined)
Slope0 := (YData"[i) - YData"(i-1)) / DeltaXO0;
Slopel = (YData"[i+1l] - YData"([i]) / DeltaXl;
BandA~[1i) DeltaXl;
BandB"~[1i] 2 * (DeltaX0 + DeltaXl);
BandC" [1i]) DeltaXO0;
YDerivs”~[i] := 3 * (Slope0O*DeltaXl + Slopel*DeltaX0);
end (if the slope defined)
else UndefinedSlope := True;
inc (d);
until (i = Length-1) or (UndefinedSlope) ;
(-Initialise last row)
if not UndefinedSlope then begin
BandA” [Length-1] := Sgr(DeltaX0 + DeltaXl);
BandB”~ [Length-1] := DeltaX0 * (DeltaX0 + DeltaXl);
BandC” [Length-1] := 0; (Not strictly necessary)
YDerivs” [Length-1] :=
Slope0 * sSgr(DeltaXl) + Slopel * (3*DeltaX0 * DeltaXl + 2*Sqr(DeltaX0));
(-Solve for the tridiagonal matrix: YDerivs = YDerivs * inverse(Tridiag matrix).)

wonon

ComputeYDerivs := SolveTridiagonalMatrix(BandA, BandB, BandC, YDerivs, Length);
end
else ComputeYDerivs := DivByZeroErr;

end (if SlopeDefined)

[Rotation () 01

i

)
- MM &

Warp30

Appendix C - Pascal Source Code C-55

else ComputeYDerivs := DivByZeroErr; (ie. atleast one of the derivatives is undefined)
(-Deallocate tridiagonal bands)
FreeMem (BandA, Length * RSize);
FreeMem(BandB, Length * RSize);
FreeMem(BandC, Length * RSize);
end; (Function: ComputeYDerivs)
[et e Tt InterpolateCubiC -----=--=----cecemcemm e ccccceeme)
Function InterpolateCubic(
XDataIn, YDataIn : PReallLine; LengthIn : word;
XDataOut, YDataOut : PRealLine; LengthOut : word) : ErrorCode;
{ Generalised Interpolating cubic spline function for irregularly-spaced points
INPUT: "YDataIn" is a list of irregular data points ("LengthIn" entries)
Their x-coordinates are specified in *"XDataIn"
OUTPUT: “"YDataOut" a cubic spline sampled according to *"XDataOut" (*"LengthOut" entries)
Assumes that "XDataIn“, *"XDataOut" entries are monotonically increasing.
If successful returns NoErr, else MemoryErr for insufficient memory,
DivByZeroErr for divide by zero: indicating entries Not monotonically
increasing, OutOfRangeErr if XDataOut does not lie fully in the range of

XDataln.
)
var
i,
InDataIndex (Index for input data in current interval)
: integer;
YDerivs (YData 1lst derivatives)
: PRealLine;
LeftEndPoint, (Left end point of the interval)
SamplePoint, (Sample point in the interval)
RightEndPoint, (Right end point of the interval)
Coeff0, Coeffl, (Constant and linear coefficents of the spline)
Coeff2, Coeff3, (Quadratic and cubic coefficents of the spline)
DeltaX, Deltay, (Current interval differences for X and Y)
LeftToSample (Difference in current interval from LeftEndPoint to SamplePoint)
: Real;
Error : ErrorCode;

begin (Function: InterpolateCubic)
if MaxAvail < (LengthIn * RSize) then begin
InterpolateCubic := MemoryErr;
Exit;
end;
(-Allocate memory for 1lst Y Derivatives)
GetMem(YDerivs, LengthIn * RSize);
(Compute lst derivatives of each point)
Error := ComputeYDerivs(XDatalIn, YDatalIn, YDerivs, Lengthln);
if Error = NoErr then begin (All derivatives defined)
(Error check data ranges)
if (XDataOut”~[0] < XDataIn"[(0)) or (XDataOut”[LengthOut-1) > XDataIn”([LengthIn-1])
then begin
InterpolateCubic := OutOfRangeErr;
FreeMem(YDerivs, LengthIn * RSize);
Exit;
end;
(Force coefficient initialisation)
RightEndPoint := XDataOut”[0] - 1;
InDataIndex := 0;
for i := 0 to LengthOut-1 do begin
(Check if in new interval)
SamplePoint := PReal (OffsetPointer(XDataOut, i * RSize))";
if (SamplePoint > RightEndPoint) then begin
(Find the interval that contains the SamplePoint)
while (InDataIndex < LengthIn-2)
and (SamplePoint > XDataIn”[InDataIndex]) do inc(InDataIndex) ;
if SamplePoint < XDataIn”[InDataIndex] then dec(InDatalndex);

LeftEndPoint := XDataIn”[InDatalIndex]; (Update left end point)
(Compute Spline coefficients)

DeltaX := 1.0 / (XDataIn”[InDataIndex+l] - XDataIn”[InDatalIndex]):

DeltaY := DeltaX * (YDataIn”(InDataIndex+l) - YDataIn”[InDataIndex]):

Coeff0 := YDataIn”[InDataIndex];

Coeffl := YDerivs”[InDatalndex];

45

Rotation (*) &-I

45

Warp60

C-56 T he Development of Motion Tracking Strategies For Cineradiographic Images

Coeff2 := DeltaX
* (3.0 * DeltaY - 2.0 * YDerivs~[InDataIndex] - YDerivs”[InDatalIndex+l]);
Coeff3 := Sgr(DeltaX)
* (-2.0 * DeltaY + YDerivs”[InDataIndex] + YDerivs”[InDataIndex+1]);
end; (if SamplePoint > ...)
(-Use Horner's rule to calculate the cubic polynomial)
LeftToSample := SamplePoint - LeftEndPoint;

YDataOut”~[i]
:= ((Coeff3*LeftToSample + Coeff2) * LeftToSample + Coeffl)*LeftToSample + Coeff0;
end; (for 1)
end; (if Error = NoOErr)
FreeMem(YDerivs, LengthIn * RSize);

InterpolateCubic := Error;
end; (Function: InterpolateCubic)
R et it InterpolateLinear ------------ - - - mm——m)
Function InterpolateLinear (
XDatalIn, YDataln : PReallLine; LengthIn : word;

XDataOut, YDataOut : PRealLine; LengthOut : word) : ErrorCode;
{ Generalised Interpolating linear spline function for irregularly-spaced points

INPUT: “"YDatalIn" is a list of irregular data points ("LengthIn" entries)
Their x-coordinates are specified in "XDataIn"

OUTPUT: "YDataOut" a linear spline sampled according to "XDataOut" (LengthOut" entries)
Assumes that "XDatalIn", "XDataOut" entries are monotonically increasing.
If successful returns NoErr, else DivByZeroErr for divide by zero indicating
entries not monotonically increasing or OutOfRangeErr if "XDataOut" does not
lie fully in the range of "XDataIn".

}
var
Y
InDataIndex (Index for input data in current interval)
integer;
LeftEndPoint, (Left end point of the interval)
SamplePoint, (Sample point in the interval)
RightEndPoint, (Right end point of the interval)
Coeff0, Coeffl, (Constant and linear coefficents of interpolant)
LeftToSample (Difference in current interval from LeftEndPoint to SamplePoint)
Real;
Error : ErrorCode;

begin (Function: InterpolateLinear)

Error := NOErr;
if (XDataOut”~[0] < XDataIn~[0]) or (XDataOut”[LengthOut - 1] > XDataIn”[LengthIn - 1])
then begin

InterpolateLinear := OutOfRangeErr;

Exit;

end;

(Force coefficient initialisation)
RightEndPoint := XDataOut"[0] - 1;
InDataIndex := 0;
for i := 0 to LengthOut-1 do begin

(Check 1i1f in new interval)

SamplePoint := XDataOut”[i];

if (SamplePoint > RightEndPoint) then begin
(Find the interval that contains the SamplePoint)
while (InDataIndex < LengthIn-2)
and (SamplePoint > XDatalIn”[InDataIndex]) do inc(InDatalIndex);
if SamplePoint < XDataIn"[InDataIndex] then dec(InDataIndex) ;

LeftEndPoint := XDataIn”[InDataIndex]; (Update left point)
(Compute linear coefficients)
Coeff0 := YDataIn"[InDatalIndex];
Coeffl := (YDataIn”[InDataIndex+l] - Coeff0)
/ ((XDataIn”[InDataIndex+l] - LeftEndPoint));
end; (if SamplePoint > ...)
LeftToSample := SamplePoint - LeftEndPoint;
YDataOut”~[i] := Coeff0 + LeftToSample * Coeffl;
end; (for i)
InterpolateLinear := Error;

end; (Function: InterpolateLinear)

45

|Rotation (') 0

Warp30

Appendix C - Pascal Source Code C-57

@55 s SRLEEEL — —— ResampleSeanline==--==-====-—=r----——S=-c-—ofCa——S=r-==)
Function ResampleScanline (
ForwardMap (Table for point samples of the forward mapping function)
: PRealline;
InpLine, (Pointer to Input scanline to be resampled)
OutLine (Pointer to the resulting Output scanline)
: PByte;
LineLength, (Input ByteLine length)
LineOffset (Offset between scanlines)
: Word) : ErrorCode;

{ Resamples an Input ByteLine "InLine" based on the spacially varying "ForwardMap" table
to produce an anti-aliased output scan line "OutLine" of the same length, "LineLength".
The LineOffset = 1 for horizontal scanlines and LineLength vertical scanlines.
Implementation based on Fant's resampling algorithm, Box filtering for minification,
linear interpolation for maxification. If successful returns NoErr else MemoryErr.

}
var
OutIndex, (Output line pixel counter)
InIndex (Input line pixel counter)
: Longint;
Accumulator, (Accumulated weighted contribution)
Value, (Calculated new pixel value)
InverseScaleFactor, {
InSegment, (Proportion of input pixel available)
OutSegment (Proportion of output pixel available)
: Real;
InPosition (Input line index for each output pixel)
: PRealLine;

begin (-Function: ResampleScanline)
if MaxAvail < (LineLength * RSize) then begin
ResampleScanline := MemoryErr;
Exit;
end;
GetMem(InPosition, longint(LineLength) * RSize);
(Precompute input index positions for each output pixel)

InIndex := 0;
for OutIndex := 0 to LineLength-1 do begin
while ForwardMap”[InIndex+l] < OutIndex do Inc(InIndex) ;
InPosition”[OutIndex]) := InIndex
+ (OutIndex - ForwardMap”[InIndex)) / (ForwardMap”[InIndex+l) - ForwardMap”[InIndex]);

end; (for OutIndex)
(-Initialise)

InSegment := 1.0; (Entire input pixel is available)

OutSegment := InPosition”[1]); (Number of input pixel that maps onto output pixel 1)}
InverseScaleFactor := OutSegment;

Accumulator := 0.0; (Clear acclumulator)

(-Compute all output pixels)

InIndex := 0;

OutIndex := 0;

while (OutIndex < LineLength) do begin
(Use linear interpolation for reconstruction)
if InIndex < LineLength - 1 then

Value := InSegment * PByte(OffsetPointer (InpLine, InIndex * LineOffset))”

+ (l-InSegment) * PByte(OffsetPointer(InpLine, (InIndex+l) * LineOffset))";
if (InSegment < OutSegment) then begin (Input pixel entirely consumed before output)
Accumulator := Accumulator + Value * InSegment; (Accumulate weighted contribution)

OutSegment = OutSegment - InSegment; (Input segment portion has been filled)
InSegment :=1.0; (New input pixel will be available)
inc(InIndex); (Index into next input pixel)

end (if)

else begin (-Input pixel NOT entirely consumed before output pixel)
Accumulator := Accumulator + Value * OutSegment; (Accumulate weighted contribution)

PByte (OffsetPointer (OutLine, OutIndex * LineOffset))”
: = Trunc(Accumulator / InverseScaleFactor);
(-Initialise output with normalised accumulator)

Accumulator := 0.0; (Clear accumulator for next output pixel)
InSegment := InSegment - OutSegment; (Output segment portion of input been filled)
inc (OutIndex) ; (Index into next output pixel)
45~
Rotation(*) 0:

45,
-8

Warp60

C-58 The Development of Motion Tracking Strategies For Cineradiographic Images
if OutIndex < LineLength-1 then
InverseScaleFactor := InPosition”[OutIndex+l] - InPosition”[OutIndex];
OutSegment := InverseScaleFactor; (Initialise spacially varying size factor)
end; (else)
end; (while OutIndex <)
FreeMem(InPosition, LineLength * RSize);
ResampleScanline := NoOErr;
end; (-Function: ResampleScanline)
I e e T e MeshWarpImage ---—-—-——= = mmm e e)
Function MeshWarpImage (
InImageH (Input image handle)
: ImageHandle;
var OutImageH {Output image handle)
: ImageHandle;

(Handle to x and y coords of input image mesh)
(Handle x and y coords of output image mesh)
: MeshHandle;
RegularisedOutMesh Boolean) ErrorCode;

(-Mesh Warps the InImage given its X and Y Mesh coords to produce the OutImage given the
new output X and Y mesh coords. Warp performed in two passes and is based on Smythe's
algorithm. If XMeshInH or YMeshInH are zero, input mesh assummed to be a regular one
pixel grid the size of size of InImage. If RegularisedOutMesh is true it 1is assumed

XMeshInH, YMeshInH,
XMeshOutH, YMeshOutH

that the output mesh grids represent the resampling maps directly and thus ImageH 1is

resamled based on them.

)
label
MeshWarpImageExit;
var
BufferSize, (Size of interpolated line and index buffers)
X, Y, (General x and y coord counters)
Time, (Execution time store)
address (mesh/image element address counter)
Longint;
imageWidth, imageHeight, (Size of input and output images)
meshHeight, meshWidth, (Height and width of mesh tables)
rowByteCount (Number of byte in a mesh row)
Word;
InImage, OutImage, (Input and output images)
InterImage (Intermediate image)
ImagePtr;
InImageData, OutImageData, (Pointers to Input, Output and)
InterImageData (Intermediate image data.)
PByte;
InterImageH (Handle to intermediate image)
ImageHandle;
XMeshIn , YMeshIn, (x and y coords of input mesh)
XMeshOut, YMeshOut (x and y coords of output mesh)
MeshPtr;
XMeshInData, YMeshInData, (Pointers to X and Y input mesh values)
XMeshOutData, YMeshOutData (Pointers to X and Y output mesh values)
PReal;
Source, Dest (Source and destination pointers for ByteLines)
PByte;
XRowl, YRowl, (1st row and column buffer)
XRow2, YRow2, (2nd row and column buffer)
Mapl, Map2, (Mapping function from sampled splines)
Index (Stores indices for sampled splines)
PRealLine;
XRowlH, YRowlH, (Handles for 1st row and column buffer)
XRow2H, YRow2H, (Handles for 2nd row and column buffer)
MaplH, Map2H, (Handles for mapping function from sampled splines)
IndexH (Handle for Index)
THandle;
InTableH, (Handles to input, intermediate and output image tables)
InterTableH,
OutTableH
RealImageHandle;
InTable, (Input image table)
InterTable, (Intermediate image table)
OutTable (Output image table)
RealImagePtr;

F'S
a

|Rotation(*) 0

Warp30

Appendix C - Pascal Source Code

C-59

InTableData, (Pointers to the data in each table)
InterTableData,
OutTableData
: PReal;
Error (General error})
: ErrorCode;
InMeshSpecified (True if an input mesh has been specified, False assumes an

input mesh of l-pixel regular spacing.)
Boolean;

begin (Function: MeshwWarpImage)

(Check if an input mesh has been specified)
if (XMeshInH = 0) or (YMeshInH = 0) then InMeshSpecified := False
else InMeshSpecified := True;
(Compute buffer sizes and allocate them in memory }
InImage := GlobalLock(InImageH) ;
imageWidth InImage”.header.size.x;

imageHeight := InImage”.header.size.y;
InImageData := @InImage”.data;

(Initialise handles)
InterImageH := 0; OutImageH := 0;
InTableH := 0; InterTableH := 0; OutTableH := 0;
XRowlH := 0; YRowlH := 0; XRow2H := 0; YRow2H := 0;
IndexH := 0; MaplH := 0; Map2H := 0;

(Create output image}
Error := Createlmage (OutImageH, imageWidth, imageHeight);
if Error <> NOErr then goto MeshWarpImageExit;
OutImage := GlobalLock (OutImageH) ;
OutImageData := @OutImage”.data;

(Create intermediate image)
Error := Createlmage(InterImageH, imageWidth, imageHeight);
if Error <> NoErr then goto MeshWarpImageExit;
InterImage := GlobalLock (InterImageH) ;
InterImageData := @InterImage”.data;

(Point to meshes)
XMeshIn := GlobalLock (XMeshInH) ; YMeshIn := GlobalLock(YMeshInH) ;
XMeshOut := GlobalLock (XMeshOutH) ; YMeshOut := GlobalLock (YMeshOutH) ;
meshWidth := XMeshOut".size.x;
meshHeight := XMeshOut”.size.y;
if imageWidth > imageHeight then BufferSize := imageWidth else BufferSize
BufferSize := (BufferSize + 1) * RSize;
if RegularisedOutMesh then begin

Error := CreateHandle (MaplH, BufferSize, 0);

if Error <> NoErr then goto MeshWarpImageExit;

Mapl := GlobalLock(MaplH);

end (if)

else begin (Not RegularisedOutMesh)
(Create input table)
Error := CreateReallImage(InTableH, meshWidth, imageHeight);
if Error <> NoErr then goto MeshWarpImageExit;
InTable := GlobalLock(InTableH);

InTableData := @InTable"~.data; (Get start address of table data)
(Create index, row and map buffers)

Error := CreateHandle(IndexH, BufferSize, 0);

if Error <> NoErr then goto MeshWarpImageExit;

Index := GlobalLock (IndexH) ;

Error := CreateHandle (xRowlH, BufferSize, 0);

if Error <> NoOErr then goto MeshWarpImageExit;

xRowl := GlobalLock (xRowlH) ;

Error := CreateHandle (yRowlH, BufferSize, 0);

if Error <> NoErr then goto MeshWarpImageExit;

yYRowl := GlobalLock (yRowlH) ;

Error := CreateHandle(xRow2H, BufferSize, 0);

if Error <> NOErr then goto MeshWarpImageExit;

xRow2 := GlobalLock (xRow2H) ;

Error := CreateHandle (yRow2H, BufferSize, 0);

if Error <> NoErr then goto MeshWarpImageExit;

yRow2 := GlobalLock (yRow2H) ;

Error := CreateHandle(MaplH, BufferSize, 0);

if Error <> NoErr then goto MeshWarpImageExit;

Mapl := GlobalLock (MaplH);

Error := CreateHandle (Map2H, BufferSize, 0);

imageHeight;

45

|Rotation () 0

Warp60

C-60 The Development of Motion Tracking Strategies For Cineradiographic Images

if Error <> NoOErr then goto MeshWarpImageExit;

Map2 := GlobalLock(Map2H) ;
end; (else not RegularisedOutMesh)

(-FIRST PASS (Phasel): Create input and intermediate image tables for)
(x-intercepts of vertical splines.)

Time := GetTickCount;
if InMeshSpecified then begin (Point to start of input mesh data)

XMeshInData := @XMeshIn”.data;

YMeshInData := @YMeshIn”.data;

end;
XMeshOutData := @XMeshOut”.data; {Point to start of output mesh data)
YMeshOutData := @YMeshOut”.data;
if not (RegularisedOutMesh) then begin

writeln(*' First Pass: Horizontal warp '});

for y := 0 to imageHeight-1 do Index"[y] := y; (Indices to sample vertical splines)

if InMeshSpecified then begin
(Create intermediate table)

Error := CreateReallmage(InterTableH, meshWidth, imageHeight);
if Error <> NoErr then goto MeshWarpImageExit;
InterTable := GlobalLock(InterTableH);
InterTableData := @InterTable”.data; (Get start address of table data)
rowByteCount := meshWidth * RSize;
x := 0;
repeat (Visit each vertical spline)
address := x * RSize;
for y := 0 to meshHeight-1 do begin
xRowl” [y] := PReal(OffsetPointer (XMeshInData, address))";
yRowl” [y] PReal (OffsetPointer (YMeshInData, address))";
xRow2” [y] := PReal (OffsetPointer (XMeshOutData, address))”;

Inc (address, rowByteCount);
end; (for y)
(Scan convert vertical splines of input and intermediate image)

Error := InterpolateLinear (yRowl, xRowl, meshHeight, Index, Mapl, imageHeight);
if (Error = NoErr) and
(InterpolateLinear (yRowl, xRow2, meshHeight, Index, Map2, imageHeight) = NoErr)
then begin
address := x * RSize;
for y := 0 to imageHeight-1l do begin (Store resampled rows back in Table cols)
PReal (OffsetPointer (InTableData, address))” = Mapl~(y);
PReal (OffsetPointer (InterTableData, address))” := Map2”(y]:

Inc (address, rowByteCount) ;
end; (for y)
end; (if NOErr)
Inc(x);
until (x >= meshWidth) or (Error <> NoOErr);
end (if InMeshSpecified)
else begin (InMesh NOT specified, hence assummed regular l-pixel)
rowByteCount := meshWidth * RSize;
for x := 0 to meshWidth-1 do begin (Visit each vertical spline of the OutMeshes)
address := x * RSize; (Element address)
for y := 0 to imageHeight-1 do begin (Store resampled cols back into Table cols)
PReal (OffsetPointer(InTableData, address))” := x; (Regular grid)
Inc(address, rowByteCount);
end; (for y)
end; (for x)
InterTableData := XMeshOutData; (Point intermediate table at xMeshoOut)
end; (else no InMeshSpecified, hence a regular grid used)
(-FIRST PASS (Phase2): Warp in X direction using input and intermediate)
(tables to produce the intermediate image)
if Error = NoErr then begin

for x 0 to imageWidth-1 do Index"([x] := Xx; (Indices to sample horizontal splines)
for y := 0 to imageHeight-1l do begin (Visit each row)
(Fit a spline to x-intercepts and resample over all columns)
address := y * meshWidth * RSize;
for x := 0 to meshWidth-1 do begin
xRowl” [x] := PReal (OffsetPointer(InTableData, address))";
xRow2" [x] := PReal (OffsetPointer (InterTableData, address))";

Inc (address, RSize);

end; (for x)
Error := InterpolateLinear (xRowl, xRow2, meshWidth, Index, Mapl, imageWidth);
if Error <> NoErr then goto MeshWarpImageExit;

45

|Rotation () 0O

Warp30

Appendix C - Pascal Source Code C-61

(Resample input image row based on mapl into intermediate image)

Source := PByte(OffsetPointer (InImageData, y * imageWidth));
Dest := PByte(OffsetPointer (InterImageData, y * imageWidth));
Error := ResampleScanline(Mapl, Source, Dest, imageWidth, 1);

if Error <> NoErr then goto MeshWarpImageExit;
end; (for y)
end (if NoOErr)
else goto MeshWarpImageExit;
DestroyRealImage (InTableH) ;
DestroyRealImage (InterTableH) ;
end (if not RegularisedOutMesh)
else begin (RegularisedOutMesh)

writeln(' First Pass: Horizontal warp (regularised)');
GlobalUnlock (MaplH) ;
for y := 0 to imageHeight-1 do begin (Visit each row)
for x := 0 to meshWidth-1 do
Mapl~([x] := PReal (OffsetPointer (XMeshOutData, (x + y * imageWidth) * RSize))";
(Resample input image row based on mapl into intermediate image)
Source := PByte(OffsetPointer(InImageData, y * imageWidth));
Dest = PByte(OffsetPointer (InterImageData, y * imageWidth));

Error ResampleScanline (Mapl, Source, Dest, imageWidth, 1);
if Error <> NoOErr then goto MeshWarplmageExit;
end; (for y)

Mapl := GlobalLock(MaplH);

end; (else RegularisedOutMesh)

(-SECOND PASS (phase 1): creates tables for y-intercepts of horizontal splines)
(of intermediate and output images)
if not (RegularisedOutMesh) then begin

writeln(' Second Pass: Vertical warp');
Error := CreateRealImage(InterTableH, imageWidth, meshHeight);
if Error <> NoOErr then goto MeshWarpImageExit;
InterTable := GlobalLock(InterTableH) ;
Error := CreateReallmage(OutTableH, imageWidth, meshHeight);

if Error <> NoErr then goto MeshWarpImageExit;
OutTable := GlobalLock(OutTableH) ;

InterTableData := @InterTable”.data; (Get start address of table data)
OutTableData := @OutTable”.data;
for x := 0 to imageWidth-1 do Index"[x] := x; (Indices to sample horizontal splines)
y := 0;
if InMeshSpecified then begin
y := 0;
repeat (Scan convert horizontal splines of intermediate and output images)
address := y * meshWidth * RSize;
for x := 0 to meshWidth-1 do begin
YRowl” [x]) := PReal (OffsetPointer (YMeshInData, address))”;
XRow2” [x] := PReal (OffsetPointer (XMeshOutData, address))";

yRow2 * [x] PReal (OffsetPointer (YMeshOutData, address))”;
Inc (address, RSize);
end; (for x)

Error := InterpolateLinear (xRow2, yRowl, meshWidth, Index, Mapl, imageWidth);
if (Error = NoErr) then begin

Error := InterpolatelLinear (xRow2, yRow2, meshWidth, Index, Map2, imageWidth);
end; (if NOErr)
address := y * meshWidth * RSize;
for x := 0 to meshWidth-1 do begin (Store resampled rows)

PReal (OffsetPointer (InterTableData, address))” := Mapl~”(x];

PReal (OffsetPointer (OutTableData, address))”® = Map2~(x];

Inc(address, RSize);
end; (for x)
Inc(y);:
until (y >= meshHeight) or (Error <> NOErr);
end (if InMeshSpecified)
else begin (Regular l-pixel InMesh grid assumed)
repeat (Scan convert horizontal splines of intermediate and output images)

address := y * meshWidth * RSize;

for x := 0 to meshWidth-1 do begin
YRowl” [x] := y; (Regular grid)
xRow2”~ [x] := PReal (OffsetPointer (XMeshOutData, address))”;
yRow2~[x] := PReal (OffsetPointer (YMeshOutData, address))";

Inc (address, RSize);
end; (for x)

45

Rotation (*) 01—

-45

Warp60

C-62 The Development of Motion Tracking Strategies For Cineradiographic Images

Error := InterpolateLinear (xRow2, yRowl, meshWidth, Index, Mapl, imageWidth);
if (Error = NoErr) then

"Error := InterpolatelLinear (xRow2, yRow2, meshWidth, Index, Map2, imageWidth);
address := y * meshWidth * RSize;
for x := 0 to meshWidth-1 do begin (Copy interpolated values back)

PReal (OffsetPointer (InterTableData, address))” := Mapl~™([x];

PReal (OffsetPointer (OutTableData, address))” := Map2”[x];

Inc (address, RSize);
end; (for x)
inc(y);
until (y = meshHeight) or (Error <> NoOErr);
end; (else not InMeshSpecified)
(-SECOND PASS (Phase 2): Warp y using intermediate and output tables)
if Error = NoErr then begin

for y := 0 to imageHeight-1 do Index"[y] := y;
rowByteCount := longint (meshWidth) * RSize;
for x := 0 to imageWidth-1 do begin (Visit each vertical spline)
address := x * RSize;
for y := 0 to meshHeight-1 do begin (Store each column as a row for splining)
XRowl” (y] PReal (OffsetPointer (InterTableData, address))”;

YRowl” [y] := PReal (OffsetPointer (OutTableData, address))”;
Inc (address, rowByteCount);
end; (for y)
(Scan convert vertical splines of input and intermediate image)
Error := InterpolateLinear (XRowl, YRowl, meshHeight, Index, Mapl, imageHeight);
if Error <> NOErr then goto MeshWarpImageExit;
(Resample intermediate image columns based on Mapl)

Source := PByte(OffsetPointer(InterImageData, x));
Dest := PByte (OffsetPointer (OutImageData, x));
Error := ResampleScanline (Mapl, Source, Dest, imageHeight, imageWidth);

if Error <> NoOErr then goto MeshWarpImageExit;
end; (for x)
end; (if NoErr)
end (if not RegularisedOutMesh)
else begin (RegularisedOutMesh)

writeln(' Second Pass: Vertical warp (regularised)');
rowByteCount := longint (meshWidth) * RSize;
for x := 0 to imageWidth-1 do begin (Visit each vertical spline)
(Store each column as a row for splining)
address := x * RSize;
for y := 0 to imageHeight-1 do begin
Mapl” (y] := PReal (OffsetPointer (YMeshOutData, address))”;

Inc(address, rowByteCount);
end; (for y)
(Resample intermediate image columns based on Mapl)

Source := PByte(OffsetPointer(InterImageData, x));
Dest := PByte(OffsetPointer (OutImageData, x));
Error := ResampleScanline(Mapl, Source, Dest, imageHeight, imageWidth);

if Error <> NoOErr then goto MeshWarpImageExit;
end; (for x)
end; (else RegularisedOutMesh)

Time := GetTickCount - Time;
writeln("' Execution Time = ', (Time / 1000):2:1,' sec');
MeshWarpImageExit:

DestroyImage (InterImageH) ;
if (Error <> NoErr) then DestroyImage (OutImageH)
else GlobalUnlock (OutImageH) ;
GlobalUnlock (InImageH) ;
GlobalUnlock (XMeshInH); GlobalUnlock(YMeshInH) ;
GlobalUnlock (XMeshOutH) ; GlobalUnlock (YMeshOutH) ;
DestroyRealImage (InTableH) ;
DestroyReallImage (InterTableH) ;
DestroyRealImage (OutTableH) ;
DestroyHandle (IndexH) ;
DestroyHandle (XRowlH); DestroyHandle (YRowlH) ;
DestroyHandle (XRow2H) ; DestroyHandle (YRow2H) ;
DestroyHandle (MaplH); DestroyHandle(Map2H);
MeshWarpImage := Error;

end; (Function: MeshWarpImage)

end. (Unit: WarpFtns)

|Rotation {*) 0

—

Warp30

Appendix C - Pascal Source Code C-63

C.8 Optimal Triangulation

The following Pascal unit 'Op¢_Tri' contains a function called Triangulate that performs optimal
Delaunay triangulation of an arbitrary set of two-dimensional scatter points. This function was
used to perform the segmentation of the reference image used in the generation of the prescribed
motion cineradiographic sequences described of chapter 7.

unit Opt_Tri;
(Delaunay Triangulation for a set of 2-D scatter points. Can be easily extended to 3-D.)

INTERFACE

uses
WinDos, WinTypes, WinProcs,
PMXTypes, PMXProcs, PMXUtils, Utils, Globals,
MLab_ops, WarpFtns;

const
BigNum = 1E37; (A large value for intialisation)
Epsilon = 1lE-5; (Smallest no-zero value)
TSize = (1] = 2) * 75§ {Tempory storage size factor)
Range = 10.0; (Factor for radius of control points)
MaxPoints = (MaxWord div 3) div RSize; (Maximum number of control points)
DimensionCount = 2; (Currently hardwired)
type
Real Single;

~“ControlPointArray;
Array[0..MaxPoints-1, 0..DimensionCount-1) of .Real;

ControlPointArrayPtr
ControlPointArray

IndexArrayPtr = "“IndexArray;
IndexArray = Array[0..MaxPoints-1] of Integer;
TriIndicesArrayPtr = "TriIndicesArray;
TriIndicesArray = Array[0..MaxPoints-1, 0..2] of Integer;
CentresArrayPtr = “CentresArray;
CentresArray = Array(0..MaxPoints-1, 0..DimensionCount] of Real;
Function Triangulate(PointsH (Handle to the input 2-D control points)
THandle;
pointCount (Number of input control points)
integer;
var TrilIndicesH (Handle to output triangles and their point indices)
THandle;
var TriCount (Number of triangles in the tessellation)
integer) : ErrorCode;
implementation
===)
Function Triangulate(PointsH (Handle to the input 2-D control points)
THandle;
pointCount (Number of input control points)
Integer;
var TriIndicesH (Handle to output triangles and their point indices)
THandle;
var TriCount (Number of triangles in the tessellation)
Integer) : ErrorCode;

(-Performs Delaunay optimal triangulation (triangular tessellation) on a set of 2-D real
control points stored in PointH. The output is an list of triangles (TrilndicesH) with
indices to their corresponding postion in PointsH. The actual size of PointH needs to
be two entries larger than pointCount for intermediate working.

Based on C-code by Dave Watson, algorithm described in -
wWatson, D.F., 1981, Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes: The Computer J., 24(2), p. 167-172.

45

Rotation (") 0

F'S
]

o

Warp60

C-64 The Development of Motion Tracking Strategies For Cineradiographic Images

Additional information about this algorithm can be found in -
CONTOURING: A guide to the analysis and display of spatial data, by David F. Watson,
Pergamon Press, 1992, ISBN 0 08 040286 0
}
label
TriangulateExit,
Cornerl, Corner2, Corner3;

var
Points (Pointer to x-y data points)
: ControlPointArrayPtr;
XX, YY. (x and y intermediate values)
MaxDiff (Absolution max control point coord difference)
: Real;
MinMaxPoints (Holds the min and max x and y point values)
: Array(0..1, 0..1) of Real;
CalcMat (Calculation matrix)
: Array[0..1, 0..2]) of Real;
CentresH, (Handle to circle centres of each point)
indexH, (Handle control point index array)
a3sH (Handle to triangle output indices array)
: THandle;
Centres (Pointer to circle centres of each point)
: CentresArrayPtr;
als, (Pointer to triangle output indices array)
TriIndices (Pointer to output triangles and their point indices)
: TriIndicesArrayPtr;
iIndex (A single triangle index)
: Array[0..2] of Integer;
index {Pointer control point index array)
: IndexArrayPtr;
Tmp (Tempory array to store point indices)
: Array(0..TSize, 0..1) of integer;
dim, (Number of dimensions 2 or 3}
dimMinusl, (Number of dimensions minus one)
i0, i1, i2, i3, (General loop counters)
i4, is, 1i6, 17,
ig, 19, 1ilo,
storeSize, (Estimated number of array elements for calculation)
storeCount (Actual number of array elements used in calcs)
: integer;
Error (General error holder)
ErrorCode;
begin
Error := NoErr;
if pointCount > MaxPoints then begin
writeln('Too many points, max = ', MaxPoints);
Triangulate := OutOfRangeErr;
Exit;
end; (if pointCount)
if PointsH <> 0 then Points := GlobalLock(PointsH)

else begin
writeln('No points specified');
Triangulate := OutOfRangeErr;
Exit;
end; (else PointsH = 0)
(Initialise handles)
CentresH
indexH
a3sH
dim := DimensionCount; (Numver of dimensions currently hardwired)
dimMinusl := dim - 1;
for i0 := 0 to TSize-1 do begin (Initialise Tmp)
tmp(i0, 0] := 0;
tmp(i0, 1] := 0;
end; (for 1i0)
for i0 := 0 to 2 do (Initialise iIndex)
iIndex[i0] := 0;
for i0 := 0 to dimMinusl do begin (Intialise MinMaxPoints)
MinMaxPoints [0, i0) := - BigNum;
MinMaxPoints[1l, i0) := + BigNum;
end; (for i0)

nwoun
ooo

i
i
i

45

|Rotation ') 0

Appendix C - Pascal Source Code

C-65

for i0 := 0 to dimMinusl do (Initialise calculation matrix)
for il := 0 to dim do CalcMat(iO, il] := -Range;
for i0 := 0 to dimMinusl do CalcMat([iO, i0] := S * Range;
for i0 := 0 to pointCount-1 do (Find points with min and max, x and y values)
for il := 0 to dimMinusl do begin
if MinMaxPoints[0, il] < Points”(i0, il]
then MinMaxPoints([0, il] := Points”[i0, il];
if MinMaxPoints([l, il] > Points”[i0, il]
then MinMaxPoints([1l, il] := Points”~[i0, il];
end; (for il)
MaxDiff := 0;
for i0 := 0 to dimMinusl do begin (Find max point difference from the min-max points)
MinMaxPoints[0, i0] := MinMaxPoints[0, i0] - MinMaxPoints([1,
if MaxDiff < MinMaxPoints([0, i0] then MaxDiff := MinMaxPoints[0,
end; (for 1i0)
MaxDiff := MaxDiff * Epsilon; (Scale max point difference by epsilon)
RandSeed := 367; (Initialise random gen)
for i0 := 0 to pointCount-1l do (Add random perturbation to points)
for il := 0 to dimMinusl do
Points”~[i0, il] := Points”~[i0, il] + MaxDiff * (0.5 - Random(MaxWord)/MaxWord) ;
for i0 := 0 to dim do
for il := 0 to dimMinusl do

Points” [pointCount + i0, il] :=

MinMaxPoints[1l, il] + CalcMat[il, i0] * MinMaxPoints(O0,
storeSize := dim * (pointCount + dim); (Estimate storage allocation needed)

Error := CreateHandle(indexH, storeSize * ISize, 0);
if Error <> NoErr then begin
writeln('Not enough memory to create indexH');
goto TriangulateExit;
end;
index := GlobalLock(indexH) ;

for i0 := 0 to storeSize-1 do (Initialise index array)

index”[i0] := i0;
Error := CreateHandle(a3sH, storeSize * (3 * ISize),
if Error <> NoErr then begin
writeln('Not enough memory to create a3sH');
goto TriangulateExit;
end;
als := GlobalLock(a3sH);

0);

Error := CreateHandle(CentresH, storeSize * (3 * RSize),

if Error <> NoErr then begin
writeln('Not enough memory to create CentresH');
goto TriangulateExit;

end;

Centres := GlobalLock(CentresH) ;

for i0 := 0 to storeSize-1 do (Initialise a3s and Centres)

for il := 0 to dim do begin
a3s”~ (10, il] := 0;
Centres”~[i0, il]) := 0;
end; (for 1il1)

for i0 := 0 to dim do a3s” [0, i0]) := pointCount + i0;

(Initialise Centres)
Centres” [0, dim] := BigNum;
for i0 := 0 to dimMinusl do Centres”~[0, i0] := 0;
(-Start triangulation)
storeCount := 1;
1 "= s
for i0 := 0 to pointCount-1 do begin
ALl ~-1;
5.7/ -1;
i9 0;
Y150 1= 105
while 110 < storeCount do begin
inc(il);
while a3s”[(il, 0] < 0 do inc(il);
xx := Centres”[il, dim];
for i2 := 0 to dimMinusl do begin
XX := xX - sqr(Points”[i0, i2] - Centres”[il,
if xx < 0 then goto Corner3;
end; (for 1i2)
dec (i9);

i2]);

45

1F|otation (] o

FS
o

Warp60

C-66 The Development of Motion Tracking Strategies For Cineradiographic Images

dec(id);

index” [(14] := il;

i2 := 0;

while i2 < (dim+1l) do begin
iIndex([0]) := 0;
if iIndex(0) = i2 then inc(iIndex(0]);
for i3 := 1 to dimMinusl do begin

iIndex[i3] := iIndex[i3-1] + 1;

if iIndex[(i3] = i2 then inc(iIndex[i3]);
end; (for i3)
if i7 > dimMinusl then begin

i8 := i7;
13 1= 0%
while i3 <= 18 do begin
for i5 := 0 to dimMinusl do
if a3s~[il, iIndex[i5]] <> Tmp[i3, iS] then goto Cornerl;
for i6 := 0 to dimMinusl do
Tmp(i3, i6] := Tmp(i8, i6]);
dec(i7);

goto Corner2;
Cornerl:
Inc(i3);
end; (while 1i3)
end; (if 1i7)
inc (17);
if i7 > (TSize-1) then begin
writeln('Tempory storage exceeded- increase TSize');
Error := memoryErr;
goto TriangulateExit;
end; (if 17)

for i3 := 0 to dimMinusl do Tmp[i7, i3] := a3s”[il, iIndex([i3]];
Corner2:
Inc(i2);
end; (while 1i2)
a3s~[il, 0] := -1;
Corner3d:
Inc(il0);
end; (while 110)
for il := 0 to i7 do begin
if not(false and (tmp[il, 0] < pointCount)) then begin ()
for i2 := 0 to dimMinusl do begin
CalcMat(i2, dim] := 0;
for i3 := 0 to dimMinusl do begin
CalcMat(i2, i3] := Points”([Tmp[il,i2]), i3] - Points”[i0, i3]);
CalcMat([i2, dim] := CalcMat[i2, dim]

+ CalcMat([i2, i3] * (Points”([Tmp[il, i2], i3] + Points”[i0, i3]) / 2;
end; (for i3)
end; (for i2)

xx := CalcMat([0, 0] * CalcMat[l, 1] - CalcMat(l, 0] * CalcMat(0, 1];
Centres”[index~[i4], 0]
:= (CalcMat (0, 2] * CalcMat[l, 1) - CalcMat[l, 2] * CalcMat([0, 1)) / xx;

Centres”[index"[i4], 1]
:= (CalcMat [0, 0] * CalcMat(l, 2] - CalcMat(l, 0] * CalcMat([0, 2]) / xx;

Centres”[index”[(i4], dim] := 0;
for i2 := 0 to dimMinusl do begin
Centres”[index~[i4], dim]
:= Centres”[index”~[i4], dim] + sgr(Points”([i0, i2] - Centres”[index"~[i4],i2]):
a3ds~[index"~[(i4], 1i2]) := Tmp[il, i2);
end; (for 1i2)
alds”[(index”[i4], dim] := 1i0;
inc(i4);
inc (i9);

end; (if not..)
end; (for il)

Inc(storeCount, i9);

end; (for 1i0)

{Create output triangle indices array)
Error := CreateHandle(TriIndicesH, storeCount * (3 * ISize), 0);
if Error <> NoErr then begin

writeln('Not enough memory to create TriIndicesH');

goto TriangulateExit;

end;

BTTTTTTTTTT

Jﬂmdbnﬂ 1}

Warp30

Appendix C - Pascal Source Code C-67

TriIndices := GlobalLock(TriIndicesH);
(Continue with the Triangulation})
i0 := -1;
triCount := 0;
for i10 := 0 to storeCount-1 do begin
inc (i0);
while a3s~[i0, 0] < 0 do inc(i0);
if a3s”[i0, 0] < pointCount then begin
for il := 0 to dimMinusl do for i2 := 0 to dimMinusl do
CalcMat[il, i2] := Points*[a3s”~[i0, il1], i2] - Points”~[a3s”[i0, dim], i2];
xx := CalcMat(0,0] * CalcMat([l,1] - CalcMat(0,1] * CalcMat(l1l,0];
if abs(xx) > Epsilon then begin (A physical triangle exits so copy to TrilIndices)
TriIndices”[triCount, 0] := a3s~[i0, 0];
if xx < 0 then begin

TriIndices”(triCount, 1] := a3s~[i0, 2];
TriIndices”[triCount, 2] := a3s”[i0, 1];
end (if xx < 0)

else begin
TriIndices”[triCount, 1] := a3s~[i0, 1];
TriIndices”[triCount, 2] := a3s”[i0, 2];

end; (else)
Inc(triCount);
end; (if abs..)
end; (if a3s)

end; (for 110)

(Reduce the size of TrilIndices to the actual size required.)
Error := ResizeHandle(TriIndicesH, TriCount * (3 * ISize), 0);
if Error <> NoOErr then begin

writeln('Error resizing TrilndicesH');

end;

TriangulateExit:
DestroyHandle (indexH) ;
DestroyHandle(a3sH) ;
DestroyHandle (CentresH) ;
if Error <> NoErr then DestroyHandle(TriIndicesH) ;
GlobalUnlock (PointsH) ;
Triangulate := Error;
end; (Triangulate}

end. (Opt_Tri)

C.8 Prescribed Motion by Image Warping

The following Pascal program 'CineWarp' was used to generate the prescribed motion
cineradiographic sequences utilised in chapter 7 in the evaluation of the motion-tracking
algorithm. Based on a trajectory file (defining the motion of the defined features) the reference
image is warped to produce the animation.

Program CineWarp;
(-Program to animate veterbra from a single cineradiographic image using Digital Image
wWarping Techiques. Animation based on trajectory file data.

)

uses
WinCrt, WinDos, WinProcs, WinTypes, Strings,
Globals, Resource, Files, PMXTypes, PMXProcs, PMXUtils, Points, Utils,
WarpFtns, Images, Filters, MLab_ops, Opt_Tri;

label
CineWarpExit; (Exit goto point for the program)

a

o~

|Rotation (*} 0f-

a5,
-4%

Warp60

C-68 The Development of Motion Tracking Strategies For Cineradiographic Images

const
TabChar = 0; (Ascii TAB character)
TriPatchStr = =y (Triangle string representation)
TrajectorySpecFileExtn = '.tjs'; (File extension of a trajectory specification file)
TrajectoryDataFileExtn = '.tjd'; (File extension of a trajectory data file)
CMXDocPath = 'd:\cmxdocs'; (Path to CMX documents)
InFileName = CMXDocPath + '\ccrefl.cmx'; (File containing corrected ref x-ray data
with outline points)

Version = §100; (Current CMX patient file version)
MaxEdgePointCount = 32; (Max number of edge points allowed)
MaxObjectCount = 16; (Max number of objects that can be animated)
MaxOutlinePointCount = 24 * MaxEdgePointCount; (Max number of points forming an object)
MaxImageCount = 75; (Max number of images in a sequence)
MaxTriPatchCount = MaxInt div 64; (Max number of TriPatches in an image)
MaxScanlineCount = 127; (Max number of scanlines in an object)
BPCount = 10; (Number of points defined on each axis of the boundary)

(Program control.)
AddTriPatchesToPointGroups = (True)False;
AddTriPatchesToImages = (True)False;
SaveQutputMeshes = (True}False;
DefaultTrajectoryFileName = 'Warp63'; (Name of the trajectory file)

type

RPoint = record (Real precision x,y coords)

X, Y : Real;

end;
ObjectIndexRec = record (Structure for objects defined in the image)

objectNum (The number of the object, 0 implies boundary object)

: byte;
centroid (The centroid of the object)
RPoint;

end; (ObjectIndexRec)

ObjectIndexArrayPtr = "“ObjectIndexArray;

ObjectIndexArray = Array[0..MaxObjectCount-1] of ObjectIndexRec;
XYThetaRec = record

X, Y, (x and y translation in pixels)
Theta (rotation in radians)
Real

end; (XYTheta)
ObjectsPositionArray = Array([0..MaxObjectCount-1] of XYThetaRec;

TrajectoryArray = Array(0..MaxImageCount-1] of ObjectsPositionArray;
TrajectoryArrayPtr = “TrajectoryArray:;
TriPatchRec = record (Triangular planar patches in x and y affine mapping ip's to op's)
ipt (Input coords of the three points forming the patch)
: Array(0..2] of TPoint;
opt (Output coords of the three points forming the patch)
. Array(0..2] of RPoint;
apt (Object association of the three points)
: Array(0..2] of ObjectIndexRec;
ax, bx, cx, dx, (x-patch coeffs of the fitted TriPatch)
ay, by, cy., dy (y-patch coeffs of the fitted TriPatch)
Real;

end; (TriPatchRec)
TriPatchArray = Array[0..MaxTriPatchCount-1] of TriPatchRec;
TriPatchArrayPtr = ~TriPatchArray;
HorizontalScanlineRec = record
y, xStart, xEnd : word;
end;
TriPatchScanlineArrayPtr = "“TriPatchScanlineArray;
TriPatchScanlineArray = Array[0..MaxScanlineCount-1] of HorizontalScanlineRec;
OutlinePointArray = Array[0..MaxOutlinePointCount-1] of TPoint;
(Define file components)
fPathStr = Array(0..fsPathName] of Char;
fDirStr = Array(0..fsDirectory] of Char;
fNameStr = Array([0..fsFileName] of Char;
fExtnStr = Array(0..fsExtension] of Char;

var
X, Y. (General column and row counters for each image)
ImageBytes, (Total size of each image in bytes)

fileNum (Number of the CMX doc file)
: Longint;

|Rotation {*] 0

FS
a

Warp30

Appendix C - Pascal Source Code

C-69

ivy .

imageNum,

lineNum,
rowByteCount,
pointGroupNum,
outlinePointCount,
outlinePointNum

imageCount,
objectCount,
objectNum,
EdgePointCount,
EdgePointNum,
controlPointCount,
triPatchCount,
triPatchNum,
pointNum
FileComment
searchInfo
ObjectIndicesH,
ControlPointsH,
TriIndicesH,
TrajectoryH,
TriPatchesH
ObjectIndices
ControlPoints
TriIndices
Trajectory
ObjectInclude
TriPatches
TriPatchScanlines
OutlinePoints
imageSize,
meshSize,

point

rePoint

obPoint

InImageH,
OutImageH,
InterImageH

InImage, OutImage,
InterImage

inFile, outFile
path,

outFileName,
AnimationFileName,
TrajectoryFileName
Name

Directory

(General counters})

(Counter for each image in the animation})

(Scan line counter)

(Width of an image scanline, accounts for longint alignment)
(Current PointGroup number)

(Number of points in the current tri-patch outline)

(Counter for points in the current tri-patch outline)
Word;

(Number of image in the animated seguence}

(Number of objects to animate)

(Counter for number of objects)

(Number of edge point in the current object)

(Counter of edge point in the current object)

(Number of control points defined }

(Number of triangular patches)

(TriPatch counter)

(Point counter)
integer;

(Warp file comment)
Str255;

(File search info}
TSearchRec;

(Handle for the structure defining the vertebra to be animated)
(Handle for the control points)

(Handle to the tri-indices array to the control points)
(Handle for the trajectory path of the vertebra)

(Handle for TriPatches)
THandle;

(Defines objects interms of horizontal and vertical lines)
ObjectIndexArrayPtr;

(Pointer to the control points)
ControlPointArrayPtr;

(Pointer to the tri-indices array to the control points})
TriIndicesArrayPtr;

(Trajectory of the four vertebra to be animated)
TrajectoryArrayPtr;

(Defines whether an object will be included in the animation)
Array[0..MaxObjectCount-1] of boolean;

(An array of triangular patches tessalating the image}
TriPatchArrayPtr;

(Structure to hold the scanlines of a single tri-patch)
TriPatchScanlineArray;

(All points forming a tri-patch outline)
OutlinePointArray;
(Image dimensions,
(Mesh dimensions,
(General TPoint)
TPoint;

(General RPoint})
RPoint;

(General ObjectIndexRec var)
ObjectIndexRec;

(Handle for the input image)
(Handle for the Output image)
(Handle for the Intermediate image)
ImageHandle;

(Images pointers)

x and y)
width and height)

ImagePtr;

(General input and output file)

TFileRec;

(Path var to CMX docs)

(General output file name)

(Name of the output warp animation CMX file)

()

frPathStr;

(Name component of a file path after fileSplit)
fNameStr;

(Directory component of a path after fileSplit)
fDirStr;

45

Rotation () O

-45

Warp60

C-70 The Development of Motion Tracking Strategies For Cineradiographic Images

Extension (Extension component of a path after fileSplit)
: fExtnStr;

dataFile {)
: Text;

s, fileName : String;

Error : ErrorCode;

DocumentInfo : DocInfoRec;

docID : DocIDRec;

PatData : PatientIDRec;

ss
: FileStr;

OptData : OperatorStr;

DataSize : Longint;

PointInfoH, (Handles to point data)

PointInfo2H
: PointInfoHandle;

pointInfo : pointInfoPtr;

PointGroupName : PointGroupNameStr;

Sorted (True if a list of data is sorted in order)
: Boolean;

(mmmmm e - FOrmTrajeCtory —~———== === oo
Function FormTrajectory(trajectoryFileName : fPathStr) : ErrorCode;

(-Reads the specified trajectory specification file and based on the specified
parameters generates the trajectories for each object in the animation seguence.
Returns a handle to the trajectory along with the number of images and a comment
about the form of the trajectory. Also produces a trajectory data file containing
the actual trajectory.)

var
trajectoryFile (Trajectory file)
: Text;
Trajectory (Trajectory of the four vertebra to be animated)
: TrajectoryArrayPtr;
tForm (Trajectory form, N=Normal or L=List)
: Char;
tPLim, tNLim, (Positive and negative limits for the current object param)
tCycles, {Number of cycles for the current object param)
dFrame, (Number of frames per cycle for the current object param)
value, {Value of the current parameter for the current object)
dvalue, (Value step size for the current object param)
X, Y., theta (Trajectory values)
: Real;
tFrames, (Number of frames in the sequence)
tType, (Type of sequence for the current object param, l=Linear, 2=Sine)
frameNum, (Frame counter)
objectNum, (Object counter)
paramNum (Current object parameter counter)
Byte;
VertebraName
String;
begin
Error := NoOErr;
TrajectoryH := 0;

Assign(trajectoryFile, trajectoryFileName) ;
Reset (trajectoryFile);

if IOResult <> 0 then Error := fileErr;
if Error = NoErr then readln(trajectoryFile, FileComment) ;
if IOResult <> 0 then Error := fileErr;

writeln(FileComment) ;
if Error = NoErr then readln(trajectoryFile, tForm, tFrames);
if IOResult <> 0 then Error := fileErr;
tForm := UpCase(tForm) ;
if (Error <> NoErr) or (tFrames > MaxImageCount) then begin

writeln('Too many frames specified in trajectory ', tFrames);

TrajectoryH := 0;

Error := OutofRangeErr;

end (if tFrames)
else begin

imageCount := tFrames;

Error := CreateHandle(TrajectoryH, imageCount * Sizeof (ObjectsPositionArray), 0);
end; (else)

45

Rotation () 0

Warp30

Appendix C - Pascal Source Code C-71

if Error = NoErr then begin
Trajectory := GlobalLock(TrajectoryH);
objectNum := 0;
while not (Eof (trajectoryFile)) do begin
if tForm = 'N' then begimn (Normal definition file)
read(trajectoryFile, tType);
if tType = 0 then ObjectInclude(objectNum] := False
else begin
ObjectInclude [objectNum] := True;
for paramNum := 1 to 3 do begin
if paramNum > 1 then read(trajectoryFile, tType);
case tType of
1 (Linear sequence)
begin
read(trajectoryFile, tCycles, tNLim, tPLim);
if paramNum = 3 then begin {Convert limits to radians)

tPLim := pi * tPLim / 180; ¢tNLim := pi * tNLim / 180;
end; (if tpParam)
dFrame := (tFrames-1) / (tCycles); (Number of frames per cycle)
dvalue := - 1/ dFrame; (initialise dValue)
for frameNum := 0 to tFrames-1 do begin
dvalue := dvalue + 1 / dFrame;

if dvalue > 1.0 them dValue := dvValue - 1.0; (pin dValue to range 0-1)
(Piecewise periodic map dValue: 0.0->0.25->0.75->1.0
becomes 0.0->1.0->-1.0->0.0)

if (dvalue < 0.25) then value := 4 * dValue
else if (dvalue < 0.75) them value := 1.0 - 4 * (dValue - 0.25)
else value := -1.0 + 4 * (dvalue - 0.75);
(Scale to limits)
value := (tPLim + tNLim)/2 + (tPLim - tNLim)/2 * value;

case paramNum of
1 : Trajectory”[frameNum, objectNum].x := value;
2 : Trajectory”[frameNum, objectNum].y := value;
3 : Trajectory” [frameNum, objectNum].theta := value;
end; (case tParam)
end; (for frameNum)
end; (case 1)
2 : (Sinusodial sequence)
begin
read(trajectoryFile, tCycles, tNLim, tPLim);
if paramNum = 3 them begin (Convert limits to radians)
tPLim := pi * tPLim / 180;
tNLim := pi * tNLim / 180;
end; (if tParam)

dFrame := (tFrames-1) /(tCycles);
for frameNum := 0 to tFrames-1 do begin
value :=

(tPLim + tNLim)/2 + (tPLim - tNLim)/2 * Sin(2*pi * frameNum/dFrame) ;
case paramNum of
1 : Trajectory” [frameNum, objectNum].x := value;
2 : Trajectory”[frameNum, objectNum].y := value;
3 : Trajectory”[frameNum, objectNum].theta := value;
end; (case tParam)
end; (for frameNum)
end; (case 2)
end; (case tType)
end; (for paramNum)
end; (else tType > 0}
readln (trajectoryFile); (move to next line)
Inc (objectNum) ;
end (if tForm)
else begin (List File definition)
objectNum := 0;
while not (EOF(trajectoryFile)) do begin
readln(trajectoryFile, VertebraName);
for frameNum := 0 to tFrames-1 do begin
with Trajectory” [frameNum, objectNum] do begin
readln (trajectoryFile, x, y, theta);
theta := theta/180*pi; (Convert to radians)
if IOResult <> 0 then begin
writeln ('Error reading ',objectNum,' ', frameNum); readln;
FormTrajectory := IOResult:
Close(trajectoryFile);
Exit;
end; (if Error)
end; (with Trajectory)
end; (for frameNum)
ObjectInclude[objectNum] := True;
inc(objectNum) ;
end; (while not EOF)
end; (else List definition)
end; (while not Eof)
Close(trajectoryFile);
objectCount := objectNum;
end (if trajectory created)

C-72 The Development of Motion Tracking Strategies For Cineradiographic Images

else writeln('Error not enough memory for trajectory');
GlobalUnlock(TrajectoryH);
FormTrajectory := Error;
end; (FormTrajectory)
[et FormControlPointS—————————==cccc-cmm oo -)
Function FormControlPoints : ErrorCode;
(-Get the edge points for each object and add them to the controlPoints list and compute
the centroid of each object and add it to the ObjectIndices list along the its object
number. Finally add evenly spaced boundary control points based on BPCount.

}
var
Error : ErrorCode;
X 5V, (x and y coord counters)
count, (general counter)
edgePointCount, (Number of edge points in the current pointGroup)
edgePointNum, (Current Edge point number)
pointGroupNum (Current Point group number)
: Integer;
xSum, ySum (x and y coord sum used in object centroid calculation)
: longint;
centroid ({Centroid of the current object)
: RPoint;
begin (MAIN: FormControlPoints)
Error := NOErr;
pointGroupNum := 0;

repeat (-Range check the number of edge points in each object)
GetPointGroupName (PointInfoH, pointGroupNum, PointGroupName) ;
edgePointCount := GetEdgePointCount (PointInfoH, @PointGroupName) ;
if EdgePointCount >= MaxEdgePointCount them Error := OutOfRangeErr;
inc (pointGroupNum) ;
until (pointGroupNum = ObjectCount) or (Error <> NOErr);
if Error = NoOErr then begin
controlPointCount := 0;
for pointGroupNum := 0 to objectCount-1 do begin
if ObjectInclude([pointGroupNum] then begin (add the object)
xSum := 0; (Initialise object centroid sums)
ySum := 0;
GetPointGroupName (PointInfoH, pointGroupNum, PointGroupName) ;
edgePointCount := GetEdgePointCount(PointInfoH, @PointGroupName) ;
for edgePointNum := 0 to edgePointCount-1 do begin
GetPoint (PointInfoH, @PointGroupName, edgePointNum, point);
ControlPoints”[controlPointCount, 0] := point.x;
ControlPoints”~[controlPointCount, 1] := point.y;
ObjectIndices” [controlPointCount] .objectNum := pointGroupNum+l;
Inc(controlPointCount) ;
inc(xSum, point.x); (Add x and y values to sums)
inc (ySum, point.y);
end; (for edgePointNum)

centroid.x := xSum / edgePointCount;

centroid.y := ySum / edgePointCount;

for count := (controlPointCount-edgePointCount) to controlPointCount-1 do
ObjectIndices” [count] .centroid := centroid; (fill in object centroid)

end; (if ObjectInclude)
end; (for pointGroupNum}
(-Add in four corner boundary control points})

ControlPoints” [controlPointCount, 0] := 0;

ControlPoints” [controlPointCount, 1] := 0;
ObjectIndices”[controlPointCount] .objectNum := 0; (boundary object)
Inc (controlPointCount) ;

ControlPoints” [controlPointCount, 0] := imageSize.x-1;
ControlPoints” [controlPointCount, 1] := 0;

ObjectIndices” [controlPointCount] .objectNum := 0; {boundary object)
Inc (controlPointCount) ;
ControlPoints” [controlPointCount, 0]
ControlPoints” [controlPointCount, 1]

0;
imageSize.y-1;

ObjectIndices” [controlPointCount] .objectNum := 0; (boundary object)
Inc (controlPointCount) ;

ControlPoints”[controlPointCount, 0] := imageSize.x-1;
ControlPoints” [controlPointCount, 1] := imageSize.y-1;
ObjectIndices” [controlPointCount].objectNum := 0; {boundary object)

Inc (controlPointCount) ;
(-Add in evenly space boundary point on each axis)

count := imageSize.x div (BPCount-1);
X := count;
while x < (imageSize.x - count) do begim (Define x axis mid boundary control points)

ControlPoints” [controlPointCount, 0] := x;
ControlPoints”[controlPointCount, 1] := 0;

ObjectIndices” [controlPointCount] .objectNum := 0; {boundary object)
Inc (controlPointCount) ;

ControlPoints” [controlPointCount, 0] X;
ControlPoints”[controlPointCount, 1] imageSize.y-1;
ObjectIndices” [controlPointCount].objectNum := 0; (boundary object)
Inc(controlPointCount) ;

Inc(x, count);
end; (while x)

(Define y axis mid-boundary control points})

count := imageSize.y div (BPCount-1);

Appendix C - Pascal Source Code C-73

Yy := count;
while y < (imageSize.y - count) do begin
ControlPoints” [controlPointCount, 0] := 0;
ControlPoints” [controlPointCount, 1] := y;
ObjectIndices” [controlPointCount] .objectNum := 0; (boundary object)
Inc(controlPointCount) ;
ControlPoints” [controlPointCount, 0] := imageSize.x-1;
ControlPoints” [controlPointCount, 1] := y:
ObjectIndices” [controlPointCount] .objectNum := 0; (boundary object)
Inc(controlPointCount);
Inc(y, count);
end; {(while y)
end; (if NoErr)
FormControlPoints := Error;
end; (Function: FormControlPoints)
---------------------------------- FitTriangularPatCh--=====-cccccemmmce e cccccceee o)
Punction FitTriangularPatch(var TriPatch : TriPatchRec) : ErrorCode;
{-Computes the affine coefficients that map the input triangle formed by ipt's to the
output triangle formed by opt's. The coeffients of the triangular mapping are returned
in ax,bx,cx,dx for x and ay.by.cy,dy for y planes.

ax * in.x + bx * in.y + cx * out.x + dx = 0
ay * in.x + by * in.y + cy * out.y + dy = 0
}
var
diffl, diff2, (Point coords differences)
diff3

Real;

begin (FitTriangularPatch)
Error := NoErr;
with TriPatch do begin
(Calculate the x patch coefficents.)
diffl := opt(l]).x - opt[2].x;
diff2 longint (ipt(1l].y) - ipt(2]).y:;
diff3 longint (ipt([1l] .x) - ipt[2]).x;
ax := ipt([0).y * diffl
- opt[0].x * diff2 + (ipt[l).y * opt(2]).x - opt(l).x * ipt(2].y):
bx := -(ipt(0].x * diffl - opt(0]).x * diff3
+ (ipt[l).x * opt([2]).x - ipt[2].x * opt[l]).x)):
cx := ipt[0) .x * diff2 - ipt[0]).y * diff3
+ (longint (ipt[l].x) * ipt(2).y - longint(ipt([2].x) * ipt([l].y):
-(ipt[0]).x * (ipt[l).y * opt(2]).x - ipt(2]).y * opt([l].x)
- ipt(0].y * (ipt[l]).x * opt(2].x - ipt[2].x * opt(l]).x)
+ opt[0].x * (longint(ipt[l].x) * ipt[2).y - longint(ipt([2].x) * ipt(l]).y)):
{Calculate the y patch coefficents.)

dx :

diffl := opt[l].y - optl(2].y:;
diff2 := longint(ipt(l).y) - ipt(2].y:
diff3 := longint(ipt(l].x) - iptl[2].x;

ay := ipt(0])].y * diffl - opt[0]).y * diff2

+ (iptll).y * optl(2).y - opt(l).y * iptl(2].y):
-(ipt{0).x * diffl - opt[0].y * diff3

+ (ipt[l).x * opt(2].y - iptl2).x * opt(l]).y));
cy := ipt[0).x * diff2 - ipt(0).y * diff3

+ (longint (ipt[1l]).x) * iptl[2]l.y - longint(ipt([2].x) * iptl(l].y);
-(ipt(0).x * (ipt(l).y * opt(2).y - ipt[2].y * opt[l]).y)

- ipt[0).y * (ipt[l).x * opt(2]).y - ipt[2].x * optll].y)

+ opt[0].y * (longint(ipt[l).x) * ipt[2].y - longint(iptl2]).x) * ipt[l]).y)):
end; (with TriPatch)

by :

dy :

FitTriangularPatch := Error;
end; (FitTriangularPatch)
e e L L L DL P e L L L TransformPoint-----======-cc-e-cmmccc-cs-cremceommmeoo-)
Procedure TransformPoint (
inPoint (Input point coords)
: TPoint;
centrePoint (Centroid of transform system)
RPoint;
XYTheta {x.,y and theta defining the transform)
: XYThetaRec;
var outPoint (Transformed coords)
: RPoint);

(-Transforms the InPoint to get the OutPoint about the CentrePoint. The transform
involves simple translation and rotation about the centre point.

)

begin (TransformPoint)
with XYTheta do begin

outPoint.x := (inPoint.x - centrePoint.x) * Cos(Theta) .
- (inPoint.y - centrePoint.y) * Sin(Theta) + x + centrePoint.x;
outPoint.y := (inPoint.x - centrePoint.x) * Sin(Theta)

+ (inPoint.y - centrePoint.y) * Cos(Theta) + y + centrePoint.y;
end; (with XYTheta)
end; (TransformPoint)

Procedure LineProc(x,y : integer; lParam : Longint); Export;
begin (-Used by LineDDA in interpolating object outlines)

C-74

The Development of Motion Tracking Strategies For Cineradiographic Images

OutlinePoints[outlinePointNum].x := X
OutlinePoints[outlinePointNum].y := y
inc(outlinePointNum) ;

end; (LinProc)

Rl R Tl el O e SaveOutputMesh-===-cccmcommmm e . —m e
Function SaveOutputMesh(xMeshH, yMeshH : meshHandle; meshNumber : integer)

: ErrorCode;

{-Saves the current x and y output mesh grids as bitmap image files: xMesh_n.bmp,

ymesh_n.bmp where n = image number
v
type
TypeArray = array[0..l1] of Char;
BitmapInfoRec = record
header : TBitmapInfoHeader;
colors : array(0..255) of TRGBQuad;

end;

var
X, Y, (Counters)
address, (Mesh element address)
meshWidth, meshHeight, (Mesh width and height)
rowByteCount (Number of bytes per row in BMP)

: longint;

xBuffer, yBuffer (x and y line buffers)

: Array(0..1023] of byte;
xMeshfile, yMeshfile {x and y mesh files)

: TFileRec;
bitmapInfo : BitmapInfoRec;
fileInfo : TBitmapFileHeader;
xMesh, yMesh (Pointers to x and y mesh)
: MeshPtr;
xMeshData, yMeshData (Pointer to x and y mesh data)
: PReal;
s : string;
Error (General Error var)
: ErrorCode;

begin (SaveOutputMesh)

if (xMeshH > 0) and (yMeshH > 0) then begin (Mesh grids are defined)

writeln(' Saving Mesh grids');
xMesh := GlobalLock(xMeshH) ;
yMesh := GlobalLock (yMeshH) ;

xMeshData := @xMesh”.data;
yMeshData := @yMesh”.data;
meshWidth := xMesh”.size.x;

meshHeight := xMesh”.size.y;

Str (meshNumber, s);

Assign (File(xMeshFile), 'Meshx_' + s + '.bmp');
Assign (File(yMeshFile), 'Meshy_' + s + '.bmp');
Rewrite(File(xMeshFile), 1);

if IOResult <> 0 themn writeln('Error xMeshFile');
Rewrite (File(yMeshFile), 1);

if IOResult <> 0 them writeln('Error yMeshFile');
TypeArray(fileInfo.bfType) := 'BM';

fileInfo.bfSize := SizeOf (fileInfo) + SizeOf (bitmapInfo) + meshWidth * meshHeight;

fileInfo.bfReservedl := 0;
fileInfo.bfReserved2 := 0;
fileInfo.bfOffBits := SizeOf (fileInfo) + SizeOf(bitmapInfo);
Error := FileWrite(xMeshFile, @fileInfo, SizeOf(fileInfo), 0);

if Error <> NoErr them writeln('l Error writing output filel info

Error := FileWrite(yMeshFile, @fileInfo, SizeOf(fileInfo), 0);

if Error <> NoErr them writeln('2 Error writing output file2 info

bitmapInfo.Header.biSize SizeOf (bitmapInfo.Header) ;

bitmapInfo.Header.biWidth = meshWidth;
bitmapInfo.Header.biHeight := meshHeight;
bitmapInfo.Header.biPlanes := 1;
bitmapInfo.Header.biBitCount := 8;
bitmapInfo.Header.biCompression := 0;
bitmapInfo.Header.biSizeImage := meshWidth * meshHeight;
bitmapInfo.Header.biXPelsPerMeter := 0;
bitmapInfo.Header.biYPelsPerMeter := 0;
bitmapInfo.Header.biClrUsed := 0;
bitmapInfo.Header.biClrImportant := 0;

for x := 0 to 255 do
with bitmapInfo.Colors(x] do begin

rgbBlue = x;
rgbGreen := x;
rgbRed 1= X;
rgbReserved := 0;
end; (with)
Error := FileWrite(xMeshFile, @bitmapInfo, SizeOf(bitmapInfo),
if Error <> NoErr them writeln('3 Error writing Output Filel
Error := FileWrite(yMeshFile, @bitmapInfo, SizeOf(bitmapInfo),
if Error <> NoErr them writeln(‘'4 Error writing Output File2
rowByteCount := Align32 (meshWidth);
address := 0;
for y := 0 to meshHeight-1 do begin
for x := 0 to meshWidth-1 do begin

xBuffer(x] :=

[

a

Error) ;

Error);

Error) ;

Error);

Appendix C - Pascal Source Code C-75
Round (255 * PReal (OffsetPointer(xMeshData, address))” / meshWidth);
yBuffer([x] :=
Round (255 * PReal (OffsetPointer (yMeshData, address))” / meshHeight);
Inc (address, RSize);
end; (for x)
Error := FileWrite(xMeshFile, @xBuffer, rowByteCount, 0);
if Error <> NoErr then writeln('Error writing Output Filel');
Error := FileWrite(yMeshFile, @yBuffer, rowByteCount, 0);
if Error <> NoOErr then writeln('Error writing Output File2');
end; (for y)
Close (file(xMeshFile)) ;
Close (file(yMeshFile));
GlobalUnlock (xMeshH) ;
GlobalUnlock (yMeshH) ;
end (if mesh grids defined)
else Error := memoryErr;
SaveOutputmesh := Error;
end; (SaveOutputMesh)
-------------------------------------- WarpSequence=---==-=-eee-eemmmcme—cccccceccce——eaa-])
Function WarpSequence (InImageH, OutImageH : THandle;
ImageCount : Byte;
TrajectoryH : THandle) : ErrorCode;
(-Begining from the InImageH produce an animated sequence of ImageCount images given the
trajectoryH data.
}
label
WarpSequenceExit;
var
meshSize (Input and output image mesh dimensions, x,y)
¢ TPoint;
xMeshInH, yMeshlInH, (Handles for input image x and y meshes)
xMeshOutH, yMeshOutH (Handles for output image x and y meshes)
: MeshHandle;
xMeshIn, yMeshlIn, (Input image x and y meshes)
xMeshOut, yMeshOut (Output image x and y meshes)
: MeshPtr;
Image (General image pointer)
: ImagePtr;
Trajectory (Trajectory of objects to move)
: TrajectoryArrayPtr;
ImageNum, {Counter for images)
rowByteCount (Number of bytes in a mesh row)
: Word;
X, Y, (Row and column counters)
address (Element address)
: Longint;
Centroid, (Centroid of current object)
InPoint (Input point to be transformed)
: TPoint;
OutPoint (Output transformed point)
: RPoint;
Error (General error)
ErrorCode;
(InitialiseOut putMesh~~~~~~~~~m e e)]
Procedure InitialiseOutputMesh;
(-Intialise output mesh grid to a regular l-pixel spacing.)
var
X, Y, (Counters)
address (Element address)
longint;
xData, yData
PReal;
begin (InitialiseOutputMesh)
if (xMeshInH <> 0) and (yMeshInH <> 0) then begin (initialise the input meshes)
xData := @xMeshIn”.data;
yData := @yMeshIn”.data;
address := 0;
for y := 0 to meshSize.y-1 do begin
for x := 0 to meshSize.x-1 do begin
PReal (OffsetPointer (xData, address)}” := x;
PReal (OffsetPointer (yData, address))” := y:
Inc (address, RSize);
end; (for x)
end; (for y)
end; (if input mesh grids defined)
xData := @xMeshOut”.data;
yData := @yMeshOut”.data;
address := 0;
for y := 0 to meshSize.y-1 do begin (Initialise output meshes)
for x := 0 to meshSize.x-1 do begin
PReal (OffsetPointer (xData, address))” := x;
PReal (OffsetPointer (xData, address))” := y;
Inc (address, RSize);
end; (for x)
end; (for y)
end; (InitialiseOutputMesh)
{ AddTriPatchesToImage~ =~~~ =~~~).

C-76 The Development of Motion Tracking Strategies For Cineradiographic Images

Function AddTriPatchesTolmage : ErrorCode;
(Draws the TriPatch outlines on outImageH.)

const
Colour = 127; (greyscale index of tripatch line colour)
var
address, (Adress in image of current element)
imageWidth (width of the image)
: longint;
OutImage (Pointer to the output image)
: ImagePtr;
OutImageData (Pointer to output image data)
: PByte;
Error (General error)
: ErrorCode;
begin
Error := NoOErr;

writeln (' Adding TriPatch outlines to image');
OutImage := GlobalLock(OutImageH);

imageWidth := OutImage”.header.size.x;
OutImageData := @OutImage”.data;
for triPatchNum := 0 to triPatchCount-1 do begin

with TriPatches”[triPatchNum] do begin
(Interpolate all the outline points of the triPatch)
outlinePointNum := 0;
LineDDA (Round(opt[0] .x), Round(opt([0].y),
Round(opt(1l].x), Round(opt[l].y), @LineProc, Nil); (point 0-1)
LineDDA (Round(opt (1] .x), Round(opt[l].y),
Round(opt[2].x), Round(opt([2].y), @LineProc, Nil); (point 1-2)
LineDDA(Round(opt[2]).x), Round(opt[2].y),
Round (opt[0].x), Round(opt([0].y), @LineProc, Nil); (point 2-0)
outlinePointCount := outlinePointNum;
if outlinePointCount > MaxOutlinePointCount then begin
writeln('ERROR: Too many TriPatch outline points');

Error := OutOfRangeErr;
end; (if)
if Error = NoErr then begin
for outlinePointNum := 0 to outlinePointCount-1 do begin
address := OutlinePoints[outlinePointNum].x
+ OutlinePoints[outlinePointNum].y * imageWidth;
PByte (OffsetPointer (OutImageData, address))” := Colour;

end; (for outlinePointNum)
end; (if NoOErr)
end; (with TriPatches)
end; (for triPatchNum)
GlobalUnlock (OutImageH) ;
AddTriPatchesToImage := Error;
end; (AddTriPatchesToImage)
(- ~—— ~—— ~SmoOot hOUEtPUEMESh~~~~ =~ e e
Function SmoothOutputMesh : ErrorCode;
(-Smooths the output x and y mesh grids using a 3x3 box filter)

var
Error : ErrorCode;
X, Y (Counters)
: longint;
meshWidth ()
: Word;
xBufferlH, xBuffer2H, (Handles to two xMesh line buffers)
yBufferlH, yBuffer2H (Handles to two yMesh line buffers)
: THandle;
xBufferl, xBuffer2, (Pointers to two xMesh line buffers)
yBufferl, yBuffer2, (Pointers to two xMesh line buffers)
tmpBuffer, (Tempory line buffer)
xSrc, ySrc (xMesh and yMesh source pointers)
PRealline;
begin (SmoothOutputMesh)
MeshWidth := MeshSize.x;
Error := CreateHandle (xBufferlH, MeshWidth, 0);

if Error = NoErr then Error := CreateHandle (xBuffer2H, MeshWidth, 0);
Error := CreateHandle(yBufferlH, MeshWwidth, 0);

if Error = NoOErr them Error := CreateHandle(yBuffer2H, MeshWidth, 0);
if Error = NoErr then begin

xBufferl := GlobalLock(xBufferlH);
xBuffer2 := GlobalLock(xBuffer2H);
yBufferl := GlobalLock(yBufferlH);
yBuffer2 := GlobalLock(yBuffer2H);

(Copy first two lines of x and y meshes into buffers)
xSrc PRealLine (@xMeshOut”".data);
ySrc PRealLine (@yMeshOut~.data);
for x := 0 to MeshWidth - 1 do begin

xBufferl”[x] := xSrc™[x];
xBuffer2”[x] := xSrc”[MeshWidth + x];
yBufferl”[x] := ySrc”([x]:

yBuffer2”[x]
end; (for x)
(Smooth the meshes)

for y := 1 to MeshSize.y - 2 do begin
xSrc := PRealline(OffsetPointer (@xMeshOut”.data, (y * MeshSize.x) * RSize));

ySrc” [MeshWidth + x];

Appendix C - Pascal Source Code C-77

ySrc := PRealline(OffsetPointer (@yMeshOut”~.data, (y * MeshSize.x) * RSize)):
for x := 1 to MeshWidth-2 do begin
xSrc”~[x] := (x average)

(xBufferl~[x-1] + xBufferl~([x] + xBufferl”([x+1]
+ xBuffer2”[x-1] + xBuffer2”(x] + xBuffer2”[x+1]
+ xSrc” [MeshWidth + x-1) + xSrc”[MeshWidth + x] + xSrc”[MeshWidth + x+1]) / 9;
ySrc”[x] := (y average)
(yBufferl”[x-1] + yBufferl”[x] + yBufferl”[x+l])
+ yBuffer2”[x-1] + yBuffer2”[x] + yBuffer2”[x+1]
+ ySrc”[MeshWidth + x-1] + ySrc”[MeshWidth + x] + ySrc”[MeshWidth + x+1]) / 9;
end; (for x)
(Swap buffer pointers)

tmpBuffer := xBufferl; xBufferl := xBuffer2;

xBuffer2 = tmpBuffer; tmpBuffer := yBufferl;

yBufferl := yBuffer2;

yBuffer2 := tmpBuffer;

for x := 0 to Meshwidth-1l do begin (Buffer the next mesh x and y lines)

xBuffer2”[x]) := xSrc”([MeshWidth + x];
yBuffer2”[x] := ySrc”[MeshWidth + x];
end; (for x)
end; (for y)
(Destroy buffers)
DestroyHandle(xBufferlH); DestroyHandle(xBuffer2H) ;
DestroyHandle (yBufferlH); DestroyHandle (yBuffer2H);
end; (if NoErr)
SmoothOutputMesh := Error;
end; (SmoothOutputMesh)

----- ~ InterpolateOutputMesh ~—)
Function InterpolateOutputMesh : ErrorCode;
(-Interpolates output mesh to adjust for object motion.
Uses the triPatch coefficients to calculate the new internal patch coords.

]
var
count,
lineCount, {Number of scanlines in the current triPatch})
meshwWidth, (width of the images)
meshHeight, (Height of the images)
xMin, xMax (Min and max x coords of a triPatch scanline)
: Word;
xNew, yNew (The new x and y mesh coordinates)
: Real;
X, Y, (x and y counters)
address (Address of cureent mesh element)
: Longint;
begin (InterpolateOutputMesh)
meshWidth := MeshSize.x;
meshHeight := MeshSize.y:
for triPatchNum := 0 to triPatchCount-1 do begin

with TriPatches”[triPatchNum] do begin
(Interpolate all the outline points of the triPatch)

outlinePointNum := 0;

LineDDA(ipt([0].x, ipt(0]).y, ipt(l]).x, ipt[l].y, @LineProc, Nil); (point 0-1}
LineDDA(ipt(1l].x, ipt(l]).y, ipt[2).x, ipt(2]).y, @LineProc, Nil); (point 1-2)
LineDDA(ipt[2].x, ipt(2].y, ipt[0).x, ipt[0].y, @LineProc, Nil); (point 2-0)

outlinePointCount := outlinePointNum;

if outlinePointCount > MaxOutlinePointCount then begin

writeln('ERROR: Too many TriPatch outline points');

Error := OutOfRangeErr;
end; (if)
if Error NoErr then begin

count %= 07
(Find the start and end xCoord of each scanline in the current TriPatch)
for y := ipt(2]).y to ipt(0]).y do begin

xMin := MaxInt;
xMax := 0;
for outlinePointNum := 0 to outlinePointCount-1 do begin

if OutlinePoints(outlinePointNum].y = y then begin
(On the same horizontal scanline)

X := OutlinePoints[outlinePointNum] .x;
if x > xMax them xMax := X;
if x < xMin them xMin := x;

end; (if on the same horizontal scanline)
end; (for outlinePointNum)

TriPatchScanLines[count] .y = y;
TriPatchScanLines[count] .xStart := xMin;
TriPatchScanLines [count] . xEnd = xMax;
Inc(count);
end; (for y)
lineCount := count;
(Interpolate the new internal coords of the current TriPatch)
for count := 0 to lineCount-1 do begin
y := TriPatchScanLines(count].y:
address := (TriPatchScanlLines[count].xStart + y * meshWidth) * RSize;
for x := TriPatchScanLines[count] .xStart

to TriPatchScanLines[count].xEnd do begin
PReal (OffsetPointer (@xMeshOut”.data, address))}”

C-78 The Development of Motion Tracking Strategies For Cineradiographic Images

1= -(ax * x + bx * y + dx)/cx;
PReal (OffsetPointer (@yMeshOut”~.data, address))”
:= -(lay * x + by * y + dy)/cy:
Inc (address, RSize); (increment to next element)
end; (for x)
end; (for count)
end; (if NOErr)
end; (with TriPatches)
end; (for triPatchNum)
InterpolateOutputMesh := Error;
end; (InterpolateOutputMesh)
(= m e m e e - Main: WarpSequenCe------=-cocmm oo oo ee e m oo)
begin (MAIN: WarpSeguence)
(Get image dimensions)
Image := GlobalLock(InImageH);
MeshSize := Image”.header.Size;
GlobalUnlock (InImageH) ;
(Initialise handles)
xMeshInH := 0; yMeshInH := 0;
xMeshOutH := 0; yMeshOutH := 0;
(Create output image meshes)
Error := CreateReallImage(xMeshOutH, MeshSize.x, MeshSize.y);
if Error <> NoErr then goto WarpSequenceExit;
xMeshOut := GlobalLock (xMeshOutH) ;
Error := CreateReallmage (yMeshOutH, MeshSize.x, MeshSize.y);
if Error <> NoOErr them goto WarpSequenceExit;
yMeshOut := GlobalLock (yMeshOutH) ;
Trajectory := GlobalLock(TrajectoryH);
for imageNum := 0 to ImageCount-1 do begin
for triPatchNum := 0 to triPatchCount-1 do begin
with TriPatches”[triPatchNum] do begin (Update current triPatch output points)
for pointNum := 0 to 2 do begin
if apt([pointNum].objectNum > 0 then (Move the object point)
TransformPoint (ipt [pointNum], apt(pointNum].centroid,
Trajectory” [imageNum, apt[pointNum].objectNum - 1}, opt[pointNum]);
end; (for pointNum)
end; (with TriPatches)
(Determine the coefficents for current TriPatch)

Error := FitTriangularPatch(TriPatches”[triPatchNum]) ;
if Error <> NoErr then begin
writeln('Error fitting triangles ',6Error); readln;

end; (if Err)
end; (for triPatchNum)
InitialiseOutputMesh; (Initialise meshes to a regular grid)

Error := InterpolateOutputMesh; (Interpolate output mesh to adjust for object motion)
if Error <> NoOErr then begin

writeln('Error Interpolating meshes: ', Error);

readln;

end; (if Err)
(Force mesh boundries to image border. Prevents out of range errors during warping.)

rowByteCount := longint(meshSize.x) * RSize;

address := 0;

for y := 0 to meshSize.y-1l do begin (Left vertical)
PReal (OffsetPointer (@xMeshOut”.data, address)}” := 0;
PReal (OffsetPointer (@yMeshOut”~.data, address))” := y;
Inc(address, rowByteCount) ;

end; (for y)

address := (meshSize.x-1) * RSize;

for y := 0 to meshSize.y-1 do begin (Right vertical)
PReal (OffsetPointer (@xMeshOut”~.data, address))}” := meshSize.x-1;
PReal (OffsetPointer (@yMeshOut~.data, address))” := y;
Inc(address, rowByteCount) ;

end; (for y)

address := 0;

for x := 0 to meshSize.x-1 do begin (Bottom horizontal)
PReal (OffsetPointer (@xMeshOut”.data, address))” := x;
PReal (OffsetPointer (@yMeshOut ~.data, address))” := 0;

Inc (address, RSize);
end; (for x)
address := longint (meshSize.y - 1) * meshSize.x * RSize;
for x := 0 to meshSize.x-1 do begin (Top horizontal)
PReal (OffsetPointer (@xMeshOut~.data, address))” := x;
PReal (OffsetPointer (@yMeshOut”~.data, address))” := meshSize.y-1;
Inc (address, RSize);
end; (for x)
if SaveOutputMeshes then begin
Error := SaveOutputMesh (xMeshOutH, yMeshOutH, imageNum) ;
if Error <> NoErr them writeln('Error Saving output mesh grids');
end; (if SaveOutputMeshes)

Error := SmoothOutputMesh; (Box 3x3 filter output meshes)
if Error <> NoErr them begin
writeln('Error smoothing output meshes: °',Error); readln;

end; (if Err)

GlobalUnlock (xMeshOutH) ;

GlobalUnlock (yMeshOutH) ;

writeln('Mesh Warping image: ', imageNum) ;
Error := MeshWarpImage(InImageH, OutImageH,

Appendix C - Pascal Source Code C-79
xMeshInH, yMeshInH, xMeshOutH, yMeshOutH, False):
case Error of
MemoryErr : writeln('Insufficient memory to warp image');
DivByZeroErr : writeln('Divide-by-zero: an image may NOT be warped correctly');
OutOfRangeErr : writeln('Out-of-range:, an image has not been created');
end;
if AddTriPatchesTolmages then begin
Error := AddTriPatchesTolmage;
if Error <> NOErr thenmn writeln('Error adding TriPatches to image');
end; (AddTriPatchesToImages)
if (Error = NoErr) then Error := CompressImage(OutImageH, InterImageH);
if Error <> NoOErr then begin
writeln('Error Compressing image ', imageNum) ;
goto WarpSequenceExit;
end (if Err)
else begin
Error := FileOpen(outFile, @AnimationFileName, Version, Nil, False);
if Error <> NoOErr them writeln('Error opening output file: ', Error)
else Error := WriteImage(InterImageH, outFile, ImageDatalD + imageNum);
if Error <> NoErr them writeln('writing image ', imageNum) ;
FileClose (OutFile, Error);
DestroyImage (InterImageH) ;
end; (else NOErr)
DestroyImage (OutImageH) ;
end; (for ImageNum)
WarpSequenceExit:
GlobalUnlock (TrajectoryH) ;
DestroyReallmage (xMeshOutH); DestroyReallImage (xMeshOutH) ;
WarpSequence := Error;
end; (WarpSequence)
{===
begin (MAIN Program: CineWarp)
if ParamCount > 0 then begin
fileName := ParamStr(l); ({(Get the complete trajectory specification file name)
StrPCopy(Path, fileName) ;
FileSplit(Path, Directory, Name, Extension);
LStrCpy (TrajectoryFileName, Name) ;
end (if ParamCount)
else StrCopy(TrajectoryFileName, DefaultTrajectoryFileName) ;
ScreenSize.x := 60;
ScreenSize.y := 40;
if Error = NoErr them Error := CreateHandle(TriPatchesH, Sizeof (TriPatchArray), 0);
if Error = NoErr them TriPatches := GlobalLock(TriPatchesH) ;
(-Read trajectory file and form object trajectory)
StrCopy (outFileName, TrajectoryFileName) ; (Form the file name)
LStrCat (outFileName, TrajectorySpecFileExtn); {add the extension)
Error := FormTrajectory(outFileName) ;
if Error = NoErr them Trajectory := GlobalLock(TrajectoryH)
else writeln('Error forming trajectory ', Error);
{-Open the reference patient file and get the info)
if Error = NoErr then
Error := FileOpen(inFile, PathPtr(StringPtr(InFileName)), Version, Nil, True);
if Error = NoErr then
Error := FileReadData(inFile, docInfoDatalID, @DocumentInfo, SizeOf (DocInfoRec), Nil,0);
if Error = NoErr then begin
ImageSize.x = DocumentInfo.imageSize.x;
rowByteCount := Align32(ImageSize.x);
ImageSize.y = DocumentInfo.imageSize.y;
writeln('Image Size: ', ImageSize.x, 'x', ImageSize.y);
end; (if NoErr)
(-Get patient information)
if Error = NoErr them Error := ReadPatientID(inFile, PatData);
if Error = NoErr them Error := ReadDocID(inFile, doclID);
if Error = NoErr then
Error := FileReadData(inFile, OperatorDatalD, @OptData, Sizeof(OperatorStr), mnil, 0);
if Error = NoErr them Error := CreatePointInfo(PointInfoH, 0);
if Error = NoErr them Error := ReadPointInfo(PointInfoH, InFile, PointInfoDatalD);
if Error <> NoErr them FileClose(inFile, Error)
else ObjectCount := GetPointGroupCount (pointInfoH);
(Create images)
if Error = NoErr thenm Error := CreatelImage(InterImageH, rowByteCount, ImageSize.y);
if Error = NoErr them InterImage := GlobalLock(InterImageH) ;
if Error = NoErr them (Get centre image)
Error := ReadImage(InterImageH, inFile, ImageDatalD + (DocumentInfo.ImageCount div 2));
if Error = NoErr them FileClose(inFile, Error);
if Error = NoErr themn
Error := DecompressImage(InterImageH, InImageH); (InImage created by decompress)

(-Find first available document number)
if Error NoErr then begin
fileNum 0;

while (Error <> abortErr) amnd (fileNum <= 99999)
LStrCat (LStrCat (LStrCpy (@outFileName, CMXDocPath),

WVSPrintF (@path, @outFileName, fileNum) ;
Inc(fileNum) ;

FindFirst (@path, faReadOnly, searchInfo);
error := BPError(DosError);

end; (while)

do begin

*‘\doc%051u'), '.cmx');

C-80 The Development of Motion Tracking Strategies For Cineradiographic Images

if (fileNum > 99999) then writeln('File count exceeded ', Error)
else begin
StrCopy(outFileName, path);
Error := NoErr;
end; (else)
end; (if NOErr)
StrCopy(AnimationFileName, outFileName);
(Create and open the output file)}

if Error = NoErr them Error := FileCreate(@path, cmxFileChar, Version):;
if Error = NoOErr then
Error := FileOpen(OutFile, @path, Version, Nil, False);
if Error = NoErr them Error := WritePatientID(OutFile, @PatData, False);
LStrCat(LStrCat (DocID.name, ' '), TrajectoryFileName);
if Error = NoErr them Error := WriteDocID(OutFile, @docID, true);
if Error = NoErr then begin
DocumentInfo.imageNo := imageCount div 2; (current image the centre image)
DocumentInfo.imageCount := imageCount; (Number of images)
end; (if NoErr)
if Error NoErr themn (Add DocumentInfo to new file)

Error := FileWriteData(OutFile,DocInfoDatalD,@DocumentInfo, SizeOf (DocInfoRec), False,0);
if Error = NoErr them (Add operator info to new file)
Error :=
FileWriteData(OutFile, OperatorDataID, @OptData, Sizeof (OperatorStr), False, 0);
DestroylImage (InterImageH) ;
(Create and write pointInfo to out file)

if Error = NoOErr them Error := CreatePointInfo(PointInfo2H, DocumentInfo.imageCount);
(Create an ObjectIndices Array to hold the control point...)

if Error = NoOErr then
Error := CreateHandle(ObjectIndicesH, MaxInt div SizeOf (ObjectIndexRec),0);

if Error = NoErr them ObjectIndices := GlobalLock(ObjectIndicesH);

(Create an arrys to hold the control points)
if Error = NoErr then

Error := CreateHandle (ControlPointsH, MaxInt div SizeOf (ObjectIndexRec),0);
if Error = NoErr them ControlPoints := GlobalLock (ControlPointsH);
(-Assemble control points from objects)
if Error = NoErr them Error := FormControlPoints;
if Error <> NoErr then begin
writeln('Error Forming Control Points ', Error);
goto CineWarpExit;
end;

GlobalUnlock(ControlPointsH) ;
GlobalUnlock(TriIndicesH);

(-Form the triangular tessellation of the control points)
if Error = NoOErr then

Error := Triangulate(ControlPointsH, controlPointCount, TriIndicesH, triPatchCount);
if Error <> NoErr then begin

writeln('Error Triangulation ', Error);

goto CineWarpExit;

end;
TriIndices := GlobalLock(TriIndicesH);

if Error = NoErr then begin
(Copy pointGroups to output file structure)
for PointGroupNum := 0 to objectCount-1 do begin
if ObjectInclude[pointGroupNum] then begin (add the object)
GetPointGroupName (pointInfoH, PointGroupNum, PointGroupName) ;
Error:= AddPointGroup(pointInfo2H, @PointGroupName) ;
if Error <> NoOErr themn writeln('Error Adding new point group');
EdgePointCount := GetEdgePointCount(pointInfoH, @PointGroupName) ;
if EdgePointCount > MaxEdgePointCount them writeln('Error MaxEdgePoints exceeded');
for EdgePointNum := 0 to EdgePointCount-1 do begin
GetPoint (pointInfoH, @PointGroupName, EdgePointNum, Point);
Error := AddPoint(pointInfo2H, @PointGroupName, Point);
if Error <> NOErr them writeln('Error Adding new point');
end; (for EdgePointNo)
end; (if ObjectInclude)
end; (for PointGroupNum)
(Add in the triangulation groups)
for triPatchNum := 0 to triPatchCount-1 do begin
if AddTriPatchesToPointGroups then begin
Str(triPatchNum, s);
StrCopy (pointGroupName, StrPCopy(ss, triPatchStr + s)):
Error := AddPointGroup(pointInfo2H, @pointGroupName) ;
if Error <> NoErr them writeln('Error adding point group');
end; (if AddTriPatchesToPointGroups)

for pointNum := 0 to 2 do begin (Extract each point and its info)
Point.x := Round(ControlPoints”[TriIndices”[triPatchNum, pointNum}, 0]);
Point.y := Round(ControlPoints”({TriIndices”[triPatchNum, pointNum), 1]);
TriPatches” [triPatchNum] .ipt[pointNum] := point;
TriPatches” [triPatchNum] .opt[pointNum].x := point.x;
TriPatches” [triPatchNum] .opt([pointNum] .y := point.y;

TriPatches” [triPatchNum] .apt[pointNum]
:= ObjectIndices”[TriIndices”[triPatchNum, pointNum]];
if AddTriPatchesToPointGroups then begin
Error := AddPoint(pointInfo2H, @pointGroupName, Point);
if Error <> NoErr them writeln('Error adding TriPoint');
end; (if AddTriPatchesToPointGroups)
end; (for pointNum)

Appendix C - Pascal Source Code C-81

(Reorder the tri-points in descending order of y)
repeat (Sorted)
Sorted := True;
for pointNum := 0 to 1 do begin (Extract each point and its info)
with TriPatches”[triPatchNum] do begin
if ipt[pointNum+l].y > ipt[pointNum].y then begin
(Swap order of the tri-point data)

point := ipt([pointNum];

ipt [pointNum] := ipt[pointNum+l];
ipt [pointNum+l] := point;

rePoint := opt[pointNum];

opt [pointNum] := opt[pointNum+l];
opt [pointNum+l] := rePoint;
obPoint := apt[pointNum];

apt [pointNum] := apt[pointNum+l];
apt [pointNum+l] := obPoint;
Sorted := False;

end; (if not in order)
end; (with TriPatches)
end; (for pointNum)
until Sorted;
end; (for triPatchNum)
DestroyHandle (ControlPointsH) ;
DestroyHandle (ObjectIndicesH) ;
DestroyHandle (TriIndicesH);
end; (if NOErr)

if Error = NoErr them Error := WritePointInfo(PointInfo2H, OutFile, PointInfoDatalID);
if Error <> NOErr them begin
writeln('Error writing pointinfo ', Error);

FileClose(outFile, Error);
goto CineWarpExit;
end; (Error)
DestroyPointInfo(PointInfo2H);
(-Output trajectory to data file)
StrCopy (outFileName, TrajectoryFileName) ; (Form the file name)
LStrCat (outFileName, TrajectoryDataFileExtn); (add the extension)
Assign(dataFile, outFileName);
Rewrite (dataFile);
for objectNum := 0 to GetPointGroupCount (pointInfoH)-1 do begin
if ObjectInclude[objectNum] then begin
GetPointGroupName (pointInfoH, objectNum, PointGroupName) ;
write(dataFile, '" *,"', PointGroupName, '"," *,');
end; (if ObjectInclude)
end; (for objectNum)
writeln(dataFile);
for objectNum := 0 to GetPointGroupCount (pointInfoH) -1 do begin
if ObjectInclude(objectNum] then
write(dataFile, '"x(pixels)","y(pixels)*,"theta(degrees)",');
end; (for objectNum)
writeln(dataFile);
for imageNum := 0 to imageCount-l do begin
for objectNum := 0 to GetPointGroupCount (pointInfoH) -1 do begin
if ObjectInclude[objectNum] then
with Trajectory”[imageNum, objectNum] do
write(dataFile, *'*"',x:2:1,'","*,y:2:1,'","', (theta * 180/pi):2:1,"'",");
end; (for objectNum)
writeln(dataFile);
end; (for imageNum)
Close(dataFile);
DestroyPointInfo(PointInfoH) ;
(Add comment to the output file)
if Error = NoErr them Error := FileWriteData(TFileRec(outFile), docCommentDatalD,
@FileComment, Strlen(FileComment), False,0);
FileClose(outFile, Error);
if Error <> NoOErr them writeln('Error closing file');
(Start Image Warping, InImage contains the reference image)
GlobalUnlock (InImageH) ;
GlobalUnlock (OutImageH) ;
Error := WarpSequence (InImageH, OutImageH, imageCount, TrajectoryH):;
if Error <> NoOErr them writeln('Error warping ');
CineWarpExit: (-EXIT Block-)
if Error <> NoOErr them begin
writeln(‘ERROR: ',Error); readln;
end;
DestroyImage (InImageH); Destroylmage(OutlImageH):;
DestroyHandle (TrajectoryH) ;
DestroyHandle (TriPatchesH) ;
writeln('FINISHED');
DoneWinCrt;

C-82 The Development of Motion Tracking Strategies For Cineradiographic Images

C.10 Motion-Tracking

The following Pascal unit 'Tracking' implements the motion-tracking algorithm developed
through chapters 4 to 6 and then described and tested in detail in chapter 7. An important part of
the algorithm is the feature orientation calculation. This is based on the Fold-and-Match
algorithm described in section 7.2.2 of chapter 7 and contained in the TrackFirst function that
begins at the bottom of page C-84.

unit Tracking;

interface

PMXProcs, PMXTypes, PMXUtils, WinProcs, WinTypes,
Dialogs, Images, Globals, Maths, Points, Resource, Utils;
Punction BeginTrack(window : HWnd) : ErrorCode;
Procedure EndTrack(window : HWnd);
Punction Track(window : HWnd) : ErrorCode;

implementation

type
CentreLInfoPtr = “CentreLInfoRec;
CentreLInfoRec = record
xSum : Longint;
ySum : Longint;
count : Word;
end;

TrackDInfoPtr = “TrackDInfoRec;

TrackDInfoRec = record
pointInfoChanged : Boolean;
trackOptionsChanged : Boolean;
window : HWnd;

end;
TrackingInfoPtr = “TrackingInfoRec;
TrackingInfoRec = record

filter : Boolean;

unused : Boolean;

filterImageInfo : FilterImageInfoRec;
destImage : ImageHandle;

srclmage : ImageHandle;

imageNoOffset : Integer;

pointList : PointListHandle;
srcPointWindowList : PointWindowListHandle;
bestMatch : Real;

orientation : Real;

centre : RealPoint;

destPointList : RealPointListHandle;
pointListl : RealPointListHandle;
pointList2 : RealPointListHandle;
trackingPointList : TrackingPointListHandle;
destImageFilter : Word;

destImageNo : Word;

maxPointCount : Word;

pointCount : Word;

pointGroupIndex : Word;

pointGroupNo : Word;
pointWindowRecSize : Word;

rotCount : Word;

rotNo : Word;

srcImageFilter : Word;

srcImageNo : Word;

startPointGroupNo : Word;
end;

Procedure CentrelLineProc(x, y : Integer; lInfo : CentreLInfoPtr); export; forward;
Punction TrackFirst(window : HWnd; wInfo : DocWInfoPtr;

trackingInfo : TrackingInfoPtr) : ErrorCode; forward;
Punction TrackNext (window : HWnd; wInfo : DocWInfoPtr;
trackingInfo : TrackingInfoPtr) : ErrorCode; forward;
[e BeginTrack---------ccccmcc e e c e ccmc e e o -)
Punction BeginTrack(window : HWnd) : ErrorCode;
(Prepares everything for the start of the motion-tracking procedure
)
var

wInfo : DocWInfoPtr;
error : ErrorCode;
dInfo : TrackDInfoRec;

Appendix C - Pascal Source Code C-83

trackingInfo : TrackingInfoPtr;
pointCount : Word;
pointGroupCount : Word;
pointGroupNo : Word;

begin (BeginTrack)

error := SendMessage(window, getDocDataMsg, pointInfoDataID, Longint(mil));
if error = noErr then begin
dInfo.window := window;

case DialogBoxParam(hInstance, PChar(trackDlogID), applWindow,
@TrackDialogProc, Longint (@dInfo)) of
=iy
error := dialogErr;
id_Cancel
error := abortErr;
end; (case)
end; (if)
wInfo := DocWInfoPtr(SendMessage(window, lockWInfoMsg, 1, 0));
if error = noErr then
error := CreateHandle(wInfo”.trackingInfo, SizeOf (trackingInfoRec), gmem_ZeroInit):
if error = noErr them begin
trackingInfo := GlobalLock(wInfo”.trackingInfo);
trackingInfo~.filter := true;
trackingInfo”.startPointGroupNo := S$FFFF;
pointGroupCount := 0;
for pointGroupNo := 0 to GetPointGroupCount (wInfo”.pointInfo) - 1 do
if not PointGroupMarked(wInfo”.pointInfo, PointGroupNamePtr (pointGroupNo), trackMark)
then begin
pointCount := GetEdgePointCount (wInfo”~.pointInfo, PointGroupNamePtr (pointGroupNo));
if pointCount > trackingInfo”.maxPointCount then
trackingInfo”.maxPointCount := pointCount;
if pointCount > 0 then begin

if trackingInfo”.startPointGroupNo = $FFFF then
trackingInfo”.startPointGroupNo := pointGroupNo;
Inc (pointGroupCount) ;
end; (if)
end; (if)
error := CreateHandle(trackingInfo”.pointList,

SizeOf (TPoint) * (trackingInfo”.maxPointCount + 1), 0);
if error = noErr then
error := CreateHandle(trackingInfo”.pointListl
SizeOf (RealPoint) * (trackingInfo”.maxPointCount + 2), 0);
if error = noErr then
error := CreateHandle(trackingInfo”.pointList2,
SizeOf (RealPoint) * (trackingInfo”.maxPointCount + 2), 0);
if error = noErr then begin
SendMessage (wInfo”.messageControl, setMessageMaxMsg,
wInfo”.imageCount * pointGroupCount - 1, 0);

trackingInfo”.destImageNo := wInfo”.pointImageNo;
trackingInfo”.srcImageNo := wInfo”.pointImageNo;
trackingInfo”.pointGroupNo := trackingInfo”.startPointGroupNo;
wInfo”.showPoints := wInfo”.trackOptions.display;
EnableWindow(wInfo”.stopButton, true);

end; (if)

if error = noErr then
error := PostBackgroundMessage (window, trackMsg, 0, 0);

if error <> noErr then
EndTrack (window) ;

end; (if)
SendMessage (window, lockWInfoMsg, 0, 0);
BeginTrack := error;
end; (BeginTrack)
(R et T e T CentreLineProOC----===c-c-ecmecme oo mmmmm—m - o)

Procedure CentrelineProc(x, y : Integer; lInfo : CentreLInfoPtr);
(Used in the oritation calculation to find the axis line
J)
begin (CentreLineProc)
Inc(lInfo”.xSum, x);
Inc(lInfo”.ySum, y);
Inc(lInfo”.count);
end; (CentreLineProc)

Procedure EndTrack(window : HWnd);
(Called at the conclusion of the tracking procedure to tidyup and store the results.
)
var
wInfo : DocWInfoPtr;
image : ImageHandle;
trackingInfo : TrackingInfoPtr;
begin (EndTrack)
RemoveBackgroundMessage (window, trackMsg);

wInfo := DocWInfoPtr (SendMessage (window, lockWInfoMsg, 1, 0)):
if winfo”~.trackingInfo <> 0 then begin
trackingInfo := GlobalLock(wInfo”.trackingInfo);

SetDiscard(trackingInfo”.destImage, true);
SetDiscard (trackingInfo”.srcImage, true);

C-84 The Development of Motion Tracking Strategies For Cineradiographic Images

DestroyHandle (trackingInfo”.pointList);

DestroyHandle (trackingInfo”.srcPointWindowList) ;
DestroyHandle (trackingInfo”~.destPointList);
DestroyHandle(trackingInfo”.pointListl);
DestroyHandle(trackingInfo”.pointList2);

DestroyHandle (trackingInfo”.trackingPointList);

if (trackingInfo”.destImageFilter <> noFilter)

or (trackingInfo”.srcIlmageFilter <> noFilter) then begin

image := EndFilterImage(trackingInfo”~.filterImageInfo);
DestroyImage (image) ;
end; (if)
SendMessage (wInfo” .messageControl, setMessagePosMsg, 0, 0);
end; (if)

DestroyHandle (wInfo”.trackingInfo);
SendMessage (window, lockWInfoMsg, 0, 0);
end; (EndTrack)

{ - - - - - - - -~ = = = = — = ~ = = = ~ [- = Track------------------———cecemcccccccccccc e)
Punction Track(window : HWnd) : ErrorCode;

(Control routine for runnning the tracking algorithm.

)

var

wInfo : DocWInfoPtr;

error : ErrorCode;

trackingInfo : TrackinglInfoPtr;
begin (Track)

error := noErr;
wInfo := DocWInfoPtr (SendMessage(window, lockWInfoMsg, 1, 0));
trackingInfo := GlobalLock(wInfo”.trackingInfo);

if trackingInfo”.destImageNo = wInfo”.imageCount then
EndTrack (window)
else begin
if trackingInfo”.destImageNo = trackingInfo”.srcImageNo then

error := TrackFirst(window, wInfo, trackingInfo)

else
error := TrackNext(window, wInfo, trackinglInfo);

if (error = noErr) amd (wInfo”.trackingInfo <> 0) then
error := PostBackgroundMessage (window, trackMsg, 0, 0);

if error <> noErr then
EndTrack (window) ;
ErrorAlert (error, mnil);
end; (else)
if wInfo”.trackingInfo <> 0 then
GlobalUnlock (wInfo”.trackingInfo) ;
SendMessage (window, lockWInfoMsg, 0, 0);

Track := error;
end; (Track)
(R e e T TrackFilter---—-—--=----=--c-cmccmm e eeeeeee)
Function TrackFilter (window : HWnd; var trackingInfo : TrackingInfoRec; imageNo : Word;

var image : ImageHandle; var imageFilter : Word) : ErrorCode;
(-Control routine for filtering the images using either a median filter during tracking
or a gradient enhancement filter for visualisation.)
var
error : ErrorCode;
filteredImage : ImageHandle;
begin (TrackFilter)

error := noErr;
if image = 0 then begin
error := SendMessage(window, getDocDataMsg, imageDatalD + imageNo, Longint(@image));

if (error = noErr) amnd trackingInfo.filter then begin
Inc (imageNo) ;
SendMessage (window, setMessageMsg, filterImageStrID, Longint(@imageNo));

imageFilter := rankFilter;
error := BeginFilterImage(trackingInfo.filterImageInfo, image, rankFilter, 5);
end; (if)
end (if)
else if FilterImage(trackingInfo.filterImageInfo) then begin
filteredImage := EndFilterImage(trackingInfo.filterImagelInfo);

if imageFilter = rankFilter then begin
SetDiscard(image, true);

image := filteredImage;

imageFilter := gradientFilter;

error := BeginFilterImage (trackingInfo.filterImageInfo, image, gradientFilter, 2);
end (if)

else begin
Destroylmage (image) ;

image := filteredImage;
imageFilter := noFilter;
end; (else)
end; (if)
TrackFilter := error;
end; (TrackFilter)
(G e e L L L L TrackFirSt==-===---eccececee e ccccccce e e eccmceee)

Punction TrackFirst (window : HWnd; wInfo : DocWInfoPtr;
trackingInfo : TrackingInfoPtr) : ErrorCode;

(-Initialise the start of the tracking procedure and includes the the feature orientation
calculation.
}

Appendix C - Pascal Source Code C-85

var
error : ErrorCode;
pointList : PointListPtr;
orientation : Real;
centre : RealPoint;
pointListl : RealPointListPtr;
pointList2 : RealPointListPtr;
pointCount : Word;
pointGroupNo : Word;
------------- CalcCentre)
Procedure CalcCentre;
(Calculate current point group centroid)}
var
centreLInfo : CentreLInfoRec;
pointNo : Word;
begin (CalcCentre)
if pointCount = 1 them begin
GetPoint (wInfo”.pointInfo, PointGroupNamePtr (trackingInfo”.pointGroupNo),
0, pointList~[0]);
PointToRealPoint(pointList~[0], centre);
end (if)
else begin
GetPoint (wInfo”.pointInfo, PointGroupNamePtr (trackingInfo”.pointGroupNo),
0, pointList”~([0]);

centreLInfo.xSum := 0;

centreLInfo.ySum := 0;
centreLInfo.count := 0;

for pointNo := 1 to pointCount do begin

GetPoint (wInfo”.pointInfo, PointGroupNamePtr (trackingInfo”.pointGroupNo),
pointNo mod pointCount, pointList”[pointNo]);
LineDDA(pointList” [pointNo - 1].x, pointList”([pointNo - 1].y,
pointList” [pointNo] .x, pointList”[pointNo].y,
@CentrelLineProc, @centreLInfo);
end; (for)
centre.x := centreLInfo.xSum / centreLInfo.count;
centre.y := centreLInfo.ySum / centreLInfo.count;
end; (else)
end; (CalcCentre)
----- CalcOrientation ~ }
Procedure CalcOrientation;
{ Calculate current point group orientation to the horizontal)}
var
angle : Real;
currentArea : Real;
currentLength : Real;
lastArea : Real;
maxAngle : Real;
maxLength : Real;
minAngle : Real;
nextArea : Real;
stepAngle : Real;
direction : RealPoint;
endPoint : RealPoint;
startPoint : RealPoint;
i : Word;
j : Word;
pointListlCount : Word;
pointList2Count : Word;

Procedure CalcArea;
var
distance : Real;
maxDistancel : Real;
maxDistance2 Real;
minDistancel Real;
minDistance2 : Real;
linePoint : RealPoint;
point : RealPoint;
vector : RealPoint;
1, 9 : Word;
begin (CalcArea)
nextArea := 0;
linePoint := startPoint;
if RealEqualZero(@direction.x) then
i := Round({endPoint.y - startPoint.y) / direction.y)
else
i := Round((endPoint.x - startPoint.x) / direction.x);
vector.x := -direction.y;
vector.y := direction.x;
for i := 0 to i do begin
minDistancel := maxReal;
maxDistancel := -maxReal;
for j := 0 to pointListlCount - 2 do begin
point := linePoint;
if LineIntersectsSegment (point, @vector, @pointListl”~(j], @pointListl”(j + 1])
then begin
LineToLength(@linePoint, @point, distance);
if distance < minDistancel then

C-86 The Development of Motion Tracking Strategies For Cineradiographic Images

minDistancel := distance;
if distance > maxDistancel then
maxDistancel := distance;
end; (if)
end; (for)
minDistance2 := maxReal;
maxDistance2 := -maxReal;
for j := 0 to pointList2Count - 2 do begin
point := linePoint;
if LineIntersectsSegment (point, @vector, @pointList2”(j], @pointList2”[j + 1))
then begin
LineToLength(@linePoint, @point, distance);
if distance < minDistance2 then

minDistance2 := distance;
if distance > maxDistance2 then
maxDistance2 := distance;
end; (if)
end; (for)

if minDistance2 > minDistancel then
minDistancel := minDistance2;
if maxDistance2 < maxDistancel then
maxDistancel := maxDistance2;
if minDistancel < maxDistancel then
nextArea := nextArea + maxDistancel - minDistancel;
linePoint.x := linePoint.x + direction.x;
linePoint.y := linePoint.y + direction.y;
end; (for)
end; (CalcArea)

Procedure CalcLineSegment;
var

distance : Real;
maxDistance : Real;
minDistance : Real;
point : TPoint;
pointNo : Word;

begin (CalcLineSegment)

minDistance := 0;
maxDistance := 0;
for pointNo := 0 to GetPointCount(wInfo”.pointInfo, PointGroupNamePtr (pointGroupNo))-1
do begin
GetPoint (wIinfo~.pointInfo, PointGroupNamePtr (pointGroupNo), pointNo, point);
distance := direction.x * (point.x - centre.x)

+ direction.y * (point.y - centre.y);
if distance < minDistance then

minDistance := distance
else if distance > maxDistance then

maxDistance := distance;
end; (for)
startPoint.x := centre.x + minDistance * direction.x;
startPoint.y := centre.y + minDistance * direction.y:;
endPoint.x := centre.x + maxDistance * direction.x;
endPoint.y := centre.y + maxDistance * direction.y;

end; (CalcLineSegment}

Procedure SplitShape;
var
point : RealPoint;
pointl : RealPoint;
point2 : RealPoint;
pointNo : Word;
begin (SplitShape)

pointNo := 0;
pointListlCount := 0;
repeat

PointToRealPoint (pointList” [pointNo], pointListl”[pointListlCount]);
Inc (pointListlCount) ;
point := centre;
PointToRealPoint (pointList” [pointNo], pointl);
Inc (pointNo);
PointToRealPoint (pointList” [pointNo), point2);
until LinelntersectsSegment (point, @direction, @pointl, @point2);
if not EqualRealPoint (@pointl, @point) then begin

pointListl”[pointListlCount] := point;
Inc(pointListlCount) ;
end; (if)
pointList2”[0] := point;
pointList2Count := 1;
repeat

PointToRealPoint (pointList” [pointNo), pointList2”~[pointList2Count]);
Inc(pointList2Count) ;
point := centre;
PointToRealPoint (pointList” [pointNo], pointl);
Inc (pointNo) ;
PointToRealPoint (pointList” [pointNo], point2);
until LineIntersectsSegment (point, @direction, @pointl, @point2);
if not EqualRealPoint (@pointl, @point) then begin

Appendix C - Pascal Source Code C-87

pointList2”[pointList2Count] := point;
Inc (pointList2Count) ;
end; (if)
pointList2” [pointList2Count] := pointList2”~[0];

Inc (pointList2Count) ;
PointToRealPoint (pointList”[pointNo], pointl);
if not EqualRealPoint (@point, @pointl) then begin
pointListl”[pointListlCount] := point;
Inc(pointListlCount) ;
end; (if)
while pointNo <= pointCount do begin
PointToRealPoint (pointList” [pointNo], pointListl”[pointListlCount]);
Inc(pointNo) ;
Inc (pointListlCount);
end; (while)
end; (SplitShape)

begin (MAIN: CalcOrientation})
case pointCount of

1 =
orientation := 0;
2 : begin
i:=1;
direction.x := pointList”[0].x - pointList”[i].x;
direction.y := pointList”[0].y - pointList”(i].y;
VectorToAngle(@direction, orientation);
end; (2)
else begin
minAngle := -pi / 2 - maxStepAngle;
maxAngle := pi / 2 + maxStepAngle;
stepAngle := maxStepAngle;
for i := 0 to Round({Ln(maxStepAngle) - Ln(minStepAngle)) / Ln(10)) do begin
angle := minAngle;
lastArea := maxReal;
currentArea := maxReal;
maxLength := 0;
for j := 0 to Round({maxAngle - minAngle) / stepAngle) do begin
AngleToVector (@angle, direction);
SplitShape;
CalcLineSegment;
CalcArea;

if RealLessThan(@lastArea, @currentArea)
and ReallessThan (@nextArea, @currentArea)
and ReallessThan (@maxLength, @currentLength) then begin
orientation := angle - stepAngle;
maxLength := currentLength;
end; (if)
startPoint := pointList2~[0];
endPoint := pointList2”(pointList2Count - 2];
lastArea := currentArea;
currentArea := nextArea;
LineToLength(@startPoint, @endPoint, currentLength);
angle := angle + stepAngle;
end; (for)
maxAngle := orientation + stepAngle;
if maxAngle > pi / 2 then
maxAngle := pi / 2;
minAngle := orientation - stepAngle;
if minAngle < -pi / 2 then
minAngle := -pi / 2;
stepAngle := stepAngle / 10;
end; (for)
orientation := (maxAngle + minAngle) / 2;
end; (else)
end; (case)
end; (CalcOrientation)

begin (MAIN: TrackFirst)
pointGroupNo := trackingInfo”.pointGroupNo;

pointCount := GetEdgePointCount (wInfo”.pointInfo, PointGroupNamePtr (pointGroupNo)) ;
ClearTrackInfo (wInfo”.pointInfo, PointGroupNamePtr (pointGroupNo)};

wInfo”.changed := wInfo”.changed or pointInfoChangedBit;

pointList := GlobalLock (trackingInfo”.pointList);

pointListl := GlobalLock (trackingInfo”.pointListl);

pointList2 := GlobalLock(trackingInfo”.pointList2);

CalcCentre;

CalcOrientation;

GlobalUnlock(trackingInfo”.pointList) ;
GlobalUnlock (trackingInfo”.pointListl);
GlobalUnlock(trackingInfo”.pointList2);
SetTrackInfo(wInfo”.pointInfo, PointGroupNamePtr (pointGroupNo),
trackingInfo”.destImageNo, @centre, @orientation);
error := noErr;
if NextPointGroupNo (wInfo”.pointInfo, trackingInfo”) then begin
DestroyHandle(trackingInfo”.pointList) ;
DestroyHandle (trackingInfo”.pointListl);
DestroyHandle (trackingInfo”.pointList2);

C-88 The Development of Motion Tracking Strategies For Cineradiographic Images

if wInfo”.trackOptions.display then

SendMessage (window, setImageMsg, trackingInfo”.destImageNo, 1);
trackingInfo”.maxPointCount := 0;
for pointGroupNo := 0 to GetPointGroupCount (wInfo”.pointInfo) - 1 do

if not PointGroupMarked(wInfo”.pointInfo, PointGroupNamePtr (pointGroupNo), trackMark)

then begin

pointCount := GetPointCount (wInfo”.pointInfo, PointGroupNamePtr (pointGroupNo)) ;

if pointCount > trackingInfo”.maxPointCount then
trackingInfo”.maxPointCount := pointCount;
end; (if)
trackingInfo”.pointWindowRecSize :=
SizeOf (PointWindowRec) - SizeOf (Byte)
+ SizeOf (Byte) * Sqgr(2 * wInfo”.trackOptions.windowRadius + 1);
error := CreateHandle (trackingInfo”.srcPointWindowList,

trackingInfo”.pointWindowRecSize*trackingInfo”.maxPointCount,

if error = noErr then

error := CreateHandle(trackingInfo”.destPointList,

SizeOf (RealPoint) * trackingInfo”.maxPointCount, 0);

if error = noErr then

CreateTrackPointList;
if error = noErr then begin

trackingInfo”.destImageNo := wInfo”.pointImageNo - 1;

trackingInfo”.imageNoOffset := -1;

trackingInfo”.pointCount :=

0);

GetPointCount (wInfo”.pointInfo, PointGroupNamePtr (trackingInfo”.startPointGroupNo)) ;

trackingInfo”.pointGroupNo := trackingInfo”.startPointGroupNo;
trackingInfo”.rotCount :=
Round(2 * wInfo”.trackOptions.rotRange / wInfo”.trackOptions.rotStep) + 1;

trackingInfo”.rotNo := Word(-1);
trackingInfo”.srcImageNo := wInfo”.pointImageNo;
end; (if)
end; (if)

if error = noErr then
SendMessage (wInfo”.messageControl, setMessagePosMsg,

LoWord (SendMessage (wInfo”.messageControl, getMessagePosMsg, 0, 0)) + 1,

TrackFirst := error;
end; (TrackFirst)

SRR e TrackNext------=-----ceccccccccccccrccccccecceeem e

Function TrackNext (window : HWnd; wInfo : DocWInfoPtr;
trackingInfo : TrackingInfoPtr) : ErrorCode;
{- Performs the main core of the motion-tracking algorithm. It does this in the
background using timer events.
}

var
windowPixelPtr : BytePtr;
pixelPtr : BytePtr;
error : ErrorCode;
destImage : ImagePtr;
srcImage : ImagePtr;
x : Integer;
y : Integer;
sum : Longint;
pointGroupName : PointGroupNameStr;
pointWindowList : PointWindowListPtr;
pointWindow : PointWindowPtr;
direction : Real;
match : Real;
centre : RealPoint;
offset : RealPoint;
vector : RealPoint;
destPointList : RealPointListPtr;
paramList : record
pointGroupName : PChar;
imageNo : Word;

end;
destPoint : TPoint;
srcTrackInfo : TrackInfoRec;:

trackingPointList : TrackingPointListPtr;
trackOptions : TrackOptionsRec;
destSum : Word;
length : Word;
pixelNo : Word;
pointCount : Word;
pointGroupIndex : Word;
pointGroupNo : Word;
pointNo : Word;
rowByteCount : Word;
windowDiameter : Word;

begin (TrackNext)

error := noErr;
if (trackingInfo”.srcImage = 0) or (trackingInfo”.srcImageFilter <> noFilter) then
error := TrackFilter (window, trackinglInfo”, trackingInfo”.srclmageNo,

trackingInfo”.srcImage, trackingInfo”.srcImageFilter)
elge if (trackingInfo”.destImage = 0) or (trackingInfo~.destImageFilter <> noFilter)
error := TrackFilter (window, trackingInfo”, trackingInfo”.destImageNo,
trackingInfo”.destImage, trackingInfo”.destImageFilter)
else begin
pointWindowList := GlobalLock(trackingInfo”.srcPointWindowList) ;

then

Appendix C - Pascal Source Code C-89

trackingPointList := GlobalLock(trackingInfo”.trackingPointList);
trackOptions := wInfo”.trackOptions;
pointCount := trackingInfo”.pointCount;
pointGroupIndex := trackingInfo”.pointGroupIndex;
pointGroupNo := trackingInfo”.pointGroupNo;
rowByteCount := Align32(wInfo”.bitmapInfo.width);
windowDiameter := 2 * trackOptions.windowRadius + 1;
if trackingInfo”.rotNo = Word(-1l) then begin
GetPointGroupName (wInfo”.pointInfo, pointGroupNo, pointGroupName) ;
paramList.pointGroupName := @pointGroupName;
paramList.imageNo := trackingInfo”.destImageNo + 1;
SendMessage (window, setMessageMsg, imageTrackStrID, Longint(@paramList));
srcImage := GlobalLock(trackingInfo”.srcImage);
pointWindow := PointWindowPtr (pointWindowList) ;
GetTrackInfo(wInfo”.pointInfo,
PointGroupNamePtr (pointGroupNo) , trackingInfo”.srcImageNo, srcTrackInfo);
for pointNo := 0 to pointCount -1 do begin
direction :=
srcTrackInfo.orientation+trackingPointList”[pointGroupIndex + pointNo].direction;
PinAngle2Pi (direction) ;
AngleToVector (@direction, vector);
SetPoint (destPoint, Round(srcTrackInfo.centre.x +
trackingPointList” [pointGroupIndex + pointNo).length * vector.x),
Round (srcTrackInfo.centre.y +
trackingPointList” [pointGroupIndex + pointNo].length * vector.y)):
pointWindow”.sum := 0;
pixelPtr :=
OffsetPointer (@srcImage”.data, (destPoint.y + trackOptions.windowRadius)
* rowByteCount + destPoint.x - trackOptions.windowRadius);
windowPixelPtr := @pointWindow".data;
for y := 1 to windowDiameter do begin
for x := 1 to windowDiameter do begin
Inc(pointWindow”.sum, pixelPtr”);
windowPixelPtr” := pixelPtr";
Inc(PChar (windowPixelPtr)) ;
pixelPtr := OffsetPointer(pixelPtr, 1);
end; (for)
pixelPtr := OffsetPointer(pixelPtr, - (rowByteCount + windowDiameter));
end; (for)}
pointWindow := PointWindowPtr (windowPixelPtr);
end; (for)
GlobalUnlock(trackingInfo”.srcImage) ;
trackingInfo”.bestMatch := 0;
trackingInfo”.orientation :=
srcTrackInfo.orientation - pi * trackOptions.rotRange / 180;
PinAngle2Pi (trackingInfo”.orientation);

trackingInfo”.centre := srcTrackInfo.centre;
trackingInfo”.rotNo := 0;

end (if}

else begin
destImage := GlobalLock(trackingInfo”.destImage);

destPointList := GlobalLock (trackingInfo”.destPointList);
if trackingInfo”.rotNo < trackingInfo”.rotCount then begin

centre := trackingInfo”.centre;
for pointNo := 0 to pointCount - 1 do begin
direction := trackingInfo”.orientation + trackingPointList” [pointGroupIndex

+ pointNo] .direction;
PinAngle2Pi (direction);
AngleToVector (@direction, vector);
destPointList” [pointNo].x :=
centre.x + trackingPointList”[pointGroupIndex + pointNo].length * vector.x;
destPointList” [pointNo].y :=
centre.y + trackingPointList” [pointGroupIndex + pointNo].length * vector.y;
end; (for)

offset.x := trackOptions.transStep;

offset.y := 0;

length := 1;

while length <= 2 * trackOptions.transRadius do begin

for pixelNo := 1 to length do begin

match := 0;
pointWindow := PointWindowPtr (pointWindowList) ;
for pointNo := 0 to pointCount - 1 do begin

SetPoint (destPoint, Round(destPointList”(pointNo] .x),
Round (destPointList” [pointNo] .y));
sum := 0;
destSum := 0;
pixelPtr :=
OffsetPointer (@destImage”.data, (destPoint.y + trackOptions.windowRadius)
* rowByteCount + destPoint.x - trackOptions.windowRadius) ;

windowPixelPtr := @pointWindow".data;
for y := 1 to windowDiameter do begin
for x := 1 to windowDiameter do begin

Inc(sum, Abs(pixelPtr” * Longint (windowPixelPtr")));
Inc (destSum, pixelPtr”);
pixelPtr := OffsetPointer (pixelPtr, 1);
Inc (PChar (windowPixelPtr)) ;
end; (for)
pixelPtr := OffsetPointer (pixelPtr, -(rowByteCount + windowDiameter)) ;

C-90 The Development of Motion Tracking Strategies For Cineradiographic Images

end; (for)
if destSum * Longint (pointWindow”.sum) <> 0 then
match := match + sum / (destSum * Longint(pointWindow”.sum)j;
pointWindow := PointWindowPtr (windowPixelPtr) ;
end; (for)
if match > trackingInfo”.bestMatch then begin
SetTrackInfo(wInfo”.pointInfo, PointGroupNamePtr (pointGroupNo),
trackingInfo”.destImageNo, @centre, @trackingInfo”.orientation);

trackingInfo”.bestMatch := match;

end; (if)

centre.x := centre.x + offset.x;

centre.y := centre.y + offset.y;

for pointNo := 0 to pointCount - 1 do begin
destPointList”[pointNo] .x := destPointList”[pointNo].x + offset.x;
destPointList”[pointNo] .y := destPointList”([pointNo].y + offset.y:

end; (for)
end; (for)

direction := offset.x;
offset.x := -offset.y;
offset.y := direction;

if not RealEqualZero(@offset.x) then
Inc(length);
end; (while)
trackingInfo”.orientation :=
trackingInfo”.orientation + pi * trackOptions.rotStep / 180;
PinAngle2Pi (trackingInfo”.orientation);
Inc(trackingInfo”.rotNo) ;
end (if)
else begin -
if NextPointGroupNo (wInfo”.pointInfo, trackingInfo”) them begin
if wInfo”.trackOptions.display then
SendMessage (window, setImageMsg, trackingInfo”.destImageNo, 1);
if trackingInfo”.filter then
DestroyImage (trackingInfo”.srcImage)
else
SetDiscard(trackingInfo”.srcImage, true);
if trackingInfo”.destImageNo = 0 then begin
if trackingInfo”.filter then
DestroyImage (trackingInfo”.destImage)

else
SetDiscard(trackingInfo”.destImage, true);
trackingInfo”.destImage := 0;

trackingInfo”.srcImage := 0;
trackingInfo”.destImageNo := wInfo”.pointImageNo + 1;
trackingInfo”.imageNoOf fset := 1;
trackingInfo”.srcImageNo := wInfo”.pointImageNo;

end (if}
else begin
trackingInfo”.srcImage := trackingInfo”.destImage;

trackingInfo”.destImage := 0;
trackingInfo”.srcImageNo := trackingInfo”.destImageNo;
trackingInfo”.destImageNo :=
trackingInfo”.destImageNo + trackingInfo”.imageNoOffset;
end; (else)

trackingInfo”.pointGroupIndex := 0;
trackingInfo”.pointGroupNo := trackingInfo”.startPointGroupNo;
end (1if}
else

Inc(trackingInfo”.pointGroupIndex, trackingInfo”.pointCount) ;
trackingInfo”.pointCount :=
GetPointCount (wInfo”.pointInfo, PointGroupNamePtr (trackingInfo”.pointGroupNo)});
trackingInfo”.rotNo := Word(-1);
SendMessage (wInfo” .messageControl, setMessagePosMsg,
LoWord (SendMessage (wInfo”.messageControl, getMessagePosMsg, 0, 0)) + 1, 0);
end; (else)
GlobalUnlock(trackingInfo”.destImage) ;
GlobalUnlock (trackingInfo” .destPointList) ;
end; (else)
GlobalUnlock(trackingInfo”.srcPointWindowList);
GlobalUnlock(trackingInfo”.trackingPointList);
if trackingInfo”.destImageNo = wInfo”.imageCount then
EndTrack (window) ;
end; (else}
TrackNext := error;
end; (TrackNext}

end. (UNIT: Tracking)

	10001
	10002
	10003
	10004
	10005
	10006
	10007
	10008
	10009
	10010
	10011
	10012
	10014
	10015
	10016
	10017
	10018
	10019
	10020
	10021
	10022
	10023
	10024
	10025
	10026
	10027
	10028
	10029
	10030
	10031
	10032
	10033
	10034
	10035
	10036
	10037
	10038
	10039
	10040
	10041
	10042
	10043
	10044
	10045
	10046
	10047
	10048
	10049
	10050
	10051
	10052
	10053
	10054
	10055
	10056
	10057
	10058
	10059
	10060
	10061
	10062
	10063
	10064
	10065
	10066
	10067
	10068
	10069
	10070
	10071
	10072
	10073
	10074
	10075
	10076
	10077
	10078
	10079
	10080
	10081
	10082
	10083
	10084
	10085
	10086
	10087
	10088
	10089
	10090
	10091
	10092
	10093
	10094
	10095
	10096
	10097
	10098
	10099
	10100
	10101
	10102
	10103
	10104
	10105
	10106
	10107
	10108
	10109
	10110
	10111
	10112
	10113
	10114
	10115
	10116
	10117
	10118
	10119
	10120
	10121
	10122
	10123
	10124
	10125
	10126
	10127
	10128
	10129
	10130
	10131
	10132
	10133
	10134
	10135
	10136
	10137
	10138
	10139
	10140
	10141
	10142
	10143
	10144
	10145
	10146
	10147
	10148
	10149
	10150
	10151
	10152
	10153
	10154
	10155
	10156
	10157
	10158
	10159
	10160
	10161
	10162
	10163
	10164
	10165
	10166
	10167
	10168
	10169
	10170
	10171
	10172
	10173
	10174
	10175
	10176
	10177
	10178
	10179
	10180
	10181
	10182
	10183
	10184
	10185
	10186
	10187
	10188
	10189
	10190
	10191
	10192
	10193
	10194
	10195
	10196
	10197
	10198
	10199
	10200
	10201
	10202
	10203
	10204
	10205
	10206
	10207
	10208
	10209
	10210
	10211
	10212
	10213
	10214
	10215
	10216
	10217
	10218
	10219
	10220
	10221
	10222
	10223
	10224
	10225
	10226
	10227
	10228
	10230
	10231
	10232
	10233
	10234
	10235
	10236
	10237
	10238
	10240
	10241
	10242
	10243
	10244
	10245
	10246
	10247
	10248
	10249
	10250
	10251
	10252
	10253
	10254
	10255
	10256
	10257
	10258
	10259
	10260
	10261
	10262
	10263
	10264
	10265
	10266
	10267
	10268
	10269
	10270
	10271
	10272
	10273
	10274
	10275
	10276
	10277
	10278
	10279
	10280
	10281
	10282
	10283
	10284
	10285
	10286
	10287
	10288
	10289
	10290
	10291
	10292
	10293
	10294
	10295
	10296
	10297
	10298
	10299
	10300
	10301
	10302
	10303
	10304
	10305
	10306
	10307
	10308
	10309
	10310
	10311
	10312
	10313
	10314
	10315
	10316
	10317
	10318
	10319
	10320
	10321
	10322
	10323
	10324
	10325
	10326
	10327
	10328
	10329
	10330

